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Abstract

Finite size closed systems are guaranteed to recur eventually. According to Poincaré’s

recurrence theorem, recurrence is expected after a time scaling exponentially with the

system volume. Low-amplitude recurrences are not covered by the theorem, but can be

relevant for modern applications in quantum physics which depend on information to be

delocalized in the system. The first part of this work is concerned with the investigation

of such low-amplitude recurrences in quantum systems that can be set up in current day

AMO systems, such as Rydberg arrays. Modifications to a toy Hamiltonian of hopping

bosons are made and their impact on the scaling of the low-amplitude recurrence time

with the system volume is investigated. Thereafter, the influence of interactions on this

same scaling is analyzed in the system of an XXZ spin-12 chain. Both avenues show the

possibility of generating superlinear scaling, which for low-amplitude recurrences is not

inherently given and can be shown to not hold in the most simple setup. The origin of

this superlinear scaling cannot be neatly tracked to either the spectral properties of the

underlying Hamiltonian, nor to the dimensionality of the Hilbert space traced out by the

initial-state evolution. It arises in situations associated with disorder in non-interacting

cases, as well as in scrambling dynamics in the presence of interactions. Further in-

vestigating the origin of superlinear low-amplitude recurrence is the most promising

continuation of this work. The second part of this work is concerned with the effi-

cient delocalization of information in a quantum system. Following up an investigation

in Clifford circuits by Kuriyattil et al. [1], this work contrasts the efficiency of dense

and sparse long-range coupling models in delocalizing quantum information. Instead of

a gate-based approach, this work considers quenches between translationally invariant

quadratic fermionic Hamiltonians with dense or exponentially sparse long-range cou-

pling. The tripartite mutual information after a short time evolution is investigated in

order to check for the dynamical transition in decay exponents α observed in gate-based

models of [1]. The differences to the gate-based models, as well as the models of in-

termediate sparsity between exponentially sparse and fully dense, which could also be

used in gate-based experiments, are shown in this work as potential avenues for future

investigation.
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Habe nun, ach! Philosophie, Juristerei and Medizin, Und leider auch

Theologie, durchaus studiert, mit heißem Bemühn. Da steh’ ich nun,

ich armer Tor, Und bin so klug als wie zuvor!

Johann Wolfgang von Goethe, Faust

1
Introduction

The transfer of information is, together with its storage, one of the core features that

distinguish humans among the animal kingdom. Information transfer has undergone

massive advances over the course of human civilization. Starting with oral traditions and

drawings, going to scripture on tablets, then on letters and further to modern telecom-

munication methods. Removing the direct feedback from the audience was the advent

of broadcasting communication: Perhaps started by tales spoken around a campfire,

advancing to proclamations made by heralds and hammered to the doors of churches1;

becoming even more delocalised by the radio, television and ultimately the internet.

Farther reaching and faster communication have made the world much larger, until

eventually its finite size has become apparent. From then on, with the neverending im-

provements in speed of communication, the world has reduced in scope again. Instead

of infinite space there is only so far information can go, and eventually it might return.

In which ways this information finds its way back to its origin depends, in this human

analogy at least, on too many variables to list exhaustively. One might listen to a funny

anecdote at a party and realize that it concerns ones own experience fifteen years earlier.

One might hear the echo of ones own voice when screaming into a cliffside.

1That Martin Luther actually put up his 95 theses on church doors in Wittenberg in October 1517
is not historically confirmed.
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Introduction 2

This work is not aimed at the human element noted in the above analogy. In this work,

we investigate the return of information, its recurrence, in finite size quantum systems

that can be experimentally implemented in current day atomic, molecular and optical

(AMO) laboratories. The finite size of these systems is treated not as a roadblock, but

as a feature to understand the timescales on which information can stay away from its

origin. This in turn informs on which timescales the system at hand is not showing its

boundaries. In terms of the simple examples given above, we adjust the distance of the

cliffside to the human and investigate the time it takes for the echo to be noticed.

Recurrence is defined as the restoration of a system to a state it occupied at a previous

point in time. Partial recurrence can be defined when a distance measure between states

exists and one can therefore speak of the state of a system coming close to a previously

occupied state. The strict notion of recurrence was developed and first investigated

by Poincaré [2], who drew from ideas by Liouville [3] in Hamiltonian systems. This

result had the astonishing implication of reversibility on any scale, something already

discussed in statistical physics by Boltzmann, Loschmidt, Nernst, Arrhenius and many

others [4–8]. Here lies the apparent paradox one first encounters when learning about

entropy. The fact that at some point in time, the pencil dropped to the floor might

spontaneously spring back up into the waiting hand. The degrees of freedom necessary

to describe such a process fully are so large that such a recurrence is only relevant in

the theoretical realm. As such, the intuition we humans get from interacting with a

world that typically does not feature such recurrences is not at odds with the tenents of

classical physics. In statistical physics, this is formalized by the notion of entropy, differ-

entiating between possible and likely processes. The statistical description by ensembles

instead of individual trajectories also directly incorporates contractive dynamics, for

which Liouville’s theorem is not applicable and recurrence is not guaranteed.

Full recurrence implies the dynamics of the system state to be periodic. The simplest

example for this is a motion resolved by a single frequency ω, such as that of a harmonic

oscillator. For countably many frequencies participating in the dynamics of the system

state this remains true, although with the caveat that for any distance ϵ to a previous

state, the system is guaranteed to get closer to that state than ϵ. This is the quasi-

ergodic theorem by Poincaré. An example of this quasi-ergodicity coming into play is

the motion of a state described by two incommensurate frequencies, ω1,2. As the rational

numbers lie dense in the real ones, we can find q, p ∈ N such that |qω1−pω2| is arbitrarily

small. The recurrence investigated by Poincaré and later Rice, Kac and others [9–12]

focused on the volume in phase space accessible to the initial state of the system, which

it traverses via the dynamics governed by the Hamiltonian (or a different dynamical

map).
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In quantum physics, this volume is replaced by the effective dimension, which is the in-

verse of the inverse participation ratio [13–16]. Small scale quantum systems of current

interest are focused on the distribution of initially local information to many qubits,

entangling them in the process and enabling the scaling advantage of quantum systems

for computing tasks [17, 18]. For these even partial recurrence can be relevant, as reac-

cessing the initial qubit in this time might effect the computational task more strongly.

Due to the exponential scaling of Hilbert-space dimension with system size in quantum

physics, even for small scale quantum systems the effective dimension can be very large,

and with so many degrees of freedom numerical treatment can become impossible.

Both open quantum systems theory and eigenstate thermalization theory have been

used to reduce the number of degrees of freedom in a similar way as thermodynamic

variables for a simpler description of processes exactly described by statistical physics

[19–22]. Open quantum systems naturally distinguish the quantum system from its

environment, in which e.g. a measurement apparatus can be placed. The underlying

assumptions necessary for the construction of open quantum system dynamics disable the

investigation of recurrence, which also agrees with the idea of a measured particle to not

reenter the quantum system. As such, the investigation of (partial) recurrence can also be

framed in a way of determining timescales on which a finite size, exact quantum system

can act as an environment for a different quantum system. Eigenstate thermalization

poses a similar question, focusing solely on spectral properties of the system [22–25] and

successfully developing statistical mechanics of closed quantum systems.

The approach taken in this work is slightly different. We consider systems that can

be realized in contemporary atomic, molecular or optical (AMO) experimental systems

[26? –32], with initial states that possess an initially local quantum of information. On

short timescales, this information will propagate from its local original position into the

rest of the system. On long timescales, a generic system will either have thermalized or

decohered due to experimental imperfections, which can be understood as leakage out

of the system. On intermediate timescales, the information will be delocalized in the

system but fully confined within it. These are the timescales we investigate, and we

specifically are interested in the first time the information relocalizes onto the original

position.

Another question we investigate in this thesis regards different variants of long-range

coupling. Simple geometries such as square or triangular lattices in varying dimen-

sions have been the initial starting point for discrete space quantum systems. Quantum

magnetism in these geometries has provided strong insights into static and dynamic

quantities of spin systems and is relevant to this day [33–38]. Dense long-range coupling
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is, despite its difficulties, a natural setup, as it clearly mimics the unshielded interac-

tion of continuous space systems such as gravity and Coulomb electromagnetism. In an

experimental setup, the fast growth of the number of connections in dense long-range

systems is problematic, as the time to apply all necessary computational gates competes

with the decoherence time of the system. Sparse long-range coupling has recently been

investigated in order to understand whether the properties of long-range coupling sur-

vive the sparsification [1, 39–41]. We consider these models for larger system sizes in

quadratic fermionic models and investigate their properties further.

1.1 Thesis outline

For the sake of compartmentalization, the theory of this thesis is split into two chapters.

Chapter 2 considers the theory of recurrence in quantum systems. We first repeat the

notion of recurrence in greater detail and connect it to different quantities, most promi-

nently the initial state fidelity. The initial state fidelity directly connects the quantum

treatment of recurrence with the classical one [42–46]. In the transition from the single-

particle case to interacting many-body quantum systems, we highlight the necessity

for more refined measures such as the entanglement entropy and mutual information,

both of which are also highly relevant in current day quantum computing considerations

[47–49].

Chapter 3 focusses on the theory of correlation-propagation in the context of quadratic

models. The exact diagonalization possible in quadratic models enables investigation of

very large system sizes, for which sparse coupling patterns might approach a thermody-

namic limit as well [39, 40, 50]. We further restrict to quadratic fermionic models and

present efficient calculation techniques for quench dynamics in these models.

In chapter 4, we use the theory of chapter 2 to motivate and discuss the results we get

in the single-particle regime for recurrences and absences. Moreover, without invoking

the spectral tools of eigenstate thermalization research, we consider statistical properties

of recurrences and absences in order to judge the typicality of our results. Chapter 5

follows this, but considers the many-body regime. In line with considerations in quantum

computing setups, the relocalization and extraction of the information by means of

experimental protocols is investigated as well [51, 52].

Chapter 6 uses the theory of chapter 3 and contrasts correlation spreading and tripartite

mutual information dynamics in dense and sparse long-range coupling graphs. Several

analytical results for static properties of these models are derived, similar to the general

result of Vodola et al [53]. System size scaling is performed for all models, showing
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well-converged behaviour. Additionally, the sparse long-range coupling graphs are in-

vestigated further, specifically their properties that are connected to critical deviations

in system size, something not done before.



No man ever steps in the same river twice, for it is not the same river

and he is not the same man.

Heraclitus

2
Theory of recurrence in quantum systems

In this chapter, we will lay out the theoretical concepts necessary to understand recur-

rence in quantum systems. We instructively sketch the origin of these considerations

from classical physics, dating back to Poincaré, Liouville and Loschmidt. The important

takeaway from this is that recurrence is not something unique to quantum systems. The

heuristical or statistical approach of many classical theories, concerned with meso- or

macroscopic quantities instead of the full phase-space of all involved particles, obfuscates

recurrence in the classical regime. With the goal of describing the full wave-function

of a system, recurrence is a relevant phenomenon in mesoscopic closed quantum sys-

tem considerations. The quantum description of recurrence starts in section 2.2, where

we describe the typical distance measure to an initial configuration using the fidelity.

Motivations for understanding recurrence in fidelity as a measurement witness of our

quantum system are presented here. In section 2.3 we broaden this approach to a

generic measure, which in turn broadens the recurrence analysis to different scientific

fields, typically considered as recurrence quantification analysis (RQA) [54–59]. We

show inequivalence between different quantities that are relevant for quantum informa-

tion purposes, such as trace distance, entanglement entropy and mutual information.

The entanglement entropy is further described in section 2.3.4. How to extract the in-

formation from a quantum system by means of special protocols without having to wait

for actual recurrence is described in section 5.2.

6
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2.1 Recurrence in classical systems

Any physical process in continuous time can be written as a dynamical system, wherein a

set of differential equations maps phase space, consisting of all possible configurations of

the system state, onto itself. If, given an initial configuration Ξ, there exist restrictions

on the dynamical map such that the orbit of Ξ under the dynamical map is bound to a

finite region in phase space, the system is guaranteed to approach the initial configuration

to any degree of precision. This is Poincaré’s Recurrence theorem [2].

In a full system description, where no part of the physical system interacts with an envi-

ronment whose degrees of freedom are only perturbatively or approximately described,

dynamics are time-reversal invariant, or conservative, and by Noether’s theorem conserve

the system energy [60]. Liouville’s Theorem then states that the phase-space volume

does not shrink under time evolution and an initial state will recur with arbitrary pre-

cision [3].

As this stands in contrast to real-world experience, we can understand that the timescales

of large recurrence for sufficiently complex systems are far greater than observation times

of humans. This can inversely be taken as the indication that a reduced and potentially

dissipative description of the dynamics of a few degrees of freedom can faithfully pro-

duce short-time dynamics, where ‘short’ is defined by the astronomical full recurrence

time and therefore encompasses typical experimental or human timescales. However,

with recurrence being defined with respect to a distance to the initial configuration, we

can consider partial recurrences. Depending on magnitude, these are experimentally

accessible, for which reduced dynamical considerations may be ill-suited.

2.2 Fidelity-recurrence in quantum systems

Given a time-independent Hamiltonian H with a discrete spectrum λi, i ∈ 0, · · · , N − 1

and eigenvectors |ψi⟩ forming a basis, we can expand any physical state in these eigen-

vectors

|ϕ⟩ =

N−1∑
i=0

ci|ψi⟩. (2.1)

Normalization dictates
∑N−1

i=0 |ci|2 = 1. The Hilbert space dimension of the physical

setup is given by N , but this does not directly translate to the volume of the orbit

traced out by an initial state |ϕ⟩ under time-evolution U(t) = exp (−iH t), where we
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set ℏ = 1. Instead, the effective dimension Deff of a state is given by

Deff(|ϕ⟩) =

(
N−1∑
i=0

|ci|4
)−1

. (2.2)

This quantity is sometimes denoted as the inverse participation ratio (IPR), especially

when the coefficients ci in (2.2) relate to a position basis instead of the energy eigenbasis

[13–16]. The effective dimension tracks the spread of the state |ϕ⟩ over the energy

eigenstates |ψi⟩. It is invariant under time evolution, has the image Deff ⊂ [1, N ], is

minimized by energy eigenstates |ψi⟩ and maximized by equal superpositions |ci| = 1√
N

.

The effective dimension allows comparison of different initial states by giving a relation

of the dimension of the manifold they trace out under dynamics, instead of invoking the

Hilbert-space dimension. Following the classical recurrence theorem, the estimate for

the recurrence time of the full system scales as TR ∝ eDeff . Consider the initial state

(2.1), whose time-evolution is given by

|ϕ(t)⟩ = U(t)|ϕ⟩ =

N−1∑
k=0

cke
−iλkt|ψk⟩. (2.3)

In order to set up the prerequisites for recurrence considerations, we require a notion

of distance in Hilbert space. The typical measure for this is connected to the fidelity,

which for pure states |ϕ1,2⟩ is written as

F (|ϕ1⟩, |ϕ2⟩) = |⟨ϕ1|ϕ2⟩|2 . (2.4)

The domain of F is the compact interval [0, 1] and F (|ϕ⟩, |ϕ⟩) = 1. For pure states, the

trace distance Q is directly related to the fidelity,

Q(|ϕ1⟩, |ϕ2⟩) =
√

1 − F (|ϕ1⟩, |ϕ2⟩). (2.5)

The trace distance serves as a distance in the space of density matrices and has a direct

interpretation in terms of the distinguishability between quantum states [44–46]. Fixing

one state in (2.4) as our initial state |ϕ⟩, the initial state fidelity, also called the Loschmidt

echo or the survival probability, can be expressed

F (t) =|⟨ϕ|ϕ(t)⟩|2 =

∣∣∣∣∣
N−1∑
k=0

|ck|2e−iλkt
∣∣∣∣∣
2

=
N−1∑
k,s

|ck|2|cs|2e−i(λk−λs)t

=
∑
k

|ck|4 + 2
∑
k<s

|ck|2|cs|2cos ((λs − λk) t) .

(2.6)

With the finite set of energies λk generically being non-commensurate, the initial state

fidelity (2.6) is an almost periodic function. More specifically, it is the Fourier-transform
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of the spectral overlaps ck [61, 62]. This entails that for any p > 0 there exists a time T

such that 1 − F (T ) < p.

2.2.1 State Recurrence

The initial state fidelity (trace distance) at time t = 0 is at its maximum (minimum).

Under any non-trivial time-evolution, there exists a time tM > 0 such that for any two

t1 < t2 < tM we have F (t1) > F (t2). For a short time, the initial state fidelity will

decay monotonically in time, and similarly there will be a monotonic increase in the

trace distance to the initial state [42]. Thereafter, the dynamics of the initial state

fidelity are encoded in the full state-vector and hard to generalize. Expansions around

small p for F (t) ≈ 1−p enable investigation of the functional form of the fidelity around

its maximum value 1 [42, 43]. From these expansions it is however not possible to infer

the exact times at which the fidelity is close to its maximum. The question at the core

of the research presented in this thesis is concerned with these times, more specifically,

the first of these times. Take a pure initial state |ϕ⟩ subject to unitary time evolution

under U(t) = exp (−iH t). For any p ∈ [0, 1) there exists a time t1 > 0 and a number

ϵ > 0 such that ∀t∗ ∈ [0, t1), F (t∗) > p and ∀t̃ ∈ [t1, t1 + ϵ], F
(
t̃
)
≤ p. In words, until t1,

the fidelity is bigger than p, and for a finite time ϵ after t1, it is less than p. It is always

possible to find such a t1, because F (0) = 1 and F (t) is continuous. If F (t) never drops

below p, then t1 = ∞. The recurrence time T pR is then found by the maximization of ϵ,

T pR = t1 + max ϵ. (2.7)

Additionally, we can define the absence time T pA,

T pA = max ϵ. (2.8)

In other words, the recurrence time (2.7) is determined by the first time the initial state

fidelity (2.6) crosses the threshold p from below, whereas the absence time (2.8) is given

by the length of time the initial state fidelity is less than p for the first contiguous time.

At t = T pR, we say that the system experiences backflow/recurrence. Fluctuations and

non-monotonic behaviour confined to magnitudes smaller than p are not resolved in this

framework. The justification for this is heuristical, in the same way as a probabilistic

cutoff made in experimental setups. In section 2.2.2, we show how the trace-distance

is used as a non-Markovianity measure in an attempt to link open and closed quantum

system theories. The core difference between this and our definition of the recurrence

is the attention to non-monotonicity in the former. Nonetheless, we can use the inter-

pretability of the trace-distance in terms of a probability to distinguish quantum states
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Figure 2.1: (a) The absence time T p
A(N) with reference to the threshold p = 0.14

(shown as a dashed horizontal line) indicates how long the excitation is absent from
its original position in the probe at site 0, see eq. (2.8). The short time before the
excitation departed from the probe at site 0 is t1, the difference between the absence
and the recurrence time. (b) Single-particle dynamics for a non-interacting chain of
40 sites with uniform coupling J and on-site energy ωl = 0. The system is site 0, the
bath are the remaining sites {1, · · · 39}. A single particle, initialised on the system-
site 0, travels through the bath ballistically and returns to the system site in a time
proportional to the bath size. We ask under which circumstances the timescale for the
bath to retain information about the system instead grows exponentially with the bath

size.

as an argument for why we are interested in the recurrence and absence time as defined

in (2.7)& (2.8). With early time evolution monotonically increasing the trace-distance

between the state ρ(t) and ρ(0), this is understood as unidirectional information transfer

between a system and a bath, in much the same way as we would appreciate it from a

measurement apparatus. Non-monotonicity implies information backflow [63] into the

system, but as long as the majority of the information still resides outside of the sys-

tem, the measurement is in some way successful. Thus we justify using a threshold p to

cap the maximum backflow into the system, arriving at the recurrence time. In other

words, no matter where you go, as long as you stay 200 kilometers away from home,

you are considered abroad. The difference between the absence and the recurrence time

is illustrated in Fig. ??. For our position localized initial states, the difference is hardly

relevant, but the distinction is systematically important. Our interest is based on the

question of the timescale on which we can consider |ϕ(t)⟩ sufficiently far away from the

initial state, where ‘sufficiently far away’ is conditioned on the function W we choose to

investigate. In other words, given at time t = 0 our (normalized) function W ⊂ [0, 1] is

maximal, W (0) = 1, if t1 is the smallest time for which W (t) < p is true, and t2 is the
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smallest time for which t2 > t1 and W (t) > p, our recurrence time is defined as

T pR = t2, (2.9)

and our absence time is defined as

T pA = t2 − t1. (2.10)

Not all arguments translate directly between the recurrence and the absence time. The

former is more readily approachable, but the latter is the actual quantity of interest. We

are interested in the scaling of T pA as a function of physical system size N , which in turn

is connected to the effective dimension (2.2) of the initial state. The system size N may

either be an actual volume in continuous space or a number of sites in discrete space. For

p sufficiently large, this comes (for the recurrence T pR) back to the full recurrence time,

which we expect to scale exponentially in Deff due to the recurrence theorem [2, 64].

The initial state fidelity specifically can also be tackled perturbatively in this regime

when 1 − p is small [42]. On the other hand, for p sufficiently small, local dynamics

get sampled and the system size scaling vanishes completely. Is there a direct crossover

between local sampling and full orbit sampling or does an intermediate region exist,

where all degrees of freedom are sampled but structure beyond the effective dimension

can be investigated?

2.2.2 Open quantum systems and reduced states

If the system is coupled to degrees of freedom which are perturbatively described, the

situation changes. Given a full system that is partitioned into system S and environment

E, the state of the system is obtained by tracing out the degrees of freedom of the

environment

ρS = TrE [ρ] . (2.11)

Here ρ and ρS denote density matrices and the latter is called the reduced density ma-

trix. Even if the dynamics of the full system+environment S
⊗
E is generated by a

Hamiltonian

H = HS ⊗ 1+ 1⊗ HE + HI , (2.12)

the reduced dynamics on the subspace S are not unitary. The investigation of the

reduced dynamics of S sparked the research avenue of open quantum systems [20].

Relevant in this context is the behaviour of the trace distance under a subset of dynamical

maps found in open quantum systems, namely completely positive, trace-preserving

(CPTP) maps. These maps give rise to Lindblad master-equations for the reduced
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density matrix ρS . Under the action of a CPTP map, the trace distance Q is contractive

[65]. This means, that for a CPTP map Φ and two states ρ1, ρ2 in S, it is true that

Q(Φ[ρ1],Φ[ρ2]) ≤ Q(ρ1, ρ2). (2.13)

An open quantum system accurately modelled by such a master equation will monoton-

ically decrease distinguishability between different starting states, contracting the orbits

towards lower-dimensional submanifolds in Hilbert-space (steady-states for dimension=

0, limit cycles for dimension= 1). This property of the trace distance has been used to

investigate closed quantum systems and ask to what extent a Lindblad master equation

of these systems is appropriate [63]. Closed system unitary dynamics under U(t) leave

the distance between states invariant

⟨ϕ|U †(t)U(t)|ψ⟩ = ⟨ϕ|ψ⟩. (2.14)

The contractivity of the CPTP dynamics towards steady states suggests that the initial

state fidelity (2.6) in an open system saturates and never recurs. As such we interpret

recurrence of the initial state fidelity as a breaking of the open system, or at least the

Markovian open system paradigm.

2.2.3 Probability distributions for absence and recurrence times

Starting with an initial state |ϕ⟩ and finding the first absence (recurrence) time, one can

go further and ask about any absence (recurrence) that appears until the time-evolution

eventually returns the system to its initial state. This path has had many fruitful

results in interdisciplinary research, typically under the name of recurrence quantification

analysis (RQA) [54–59]. Investigating the average number of roots of a random time-

series or random polynomials has been one of the first avenues for this [9, 12], and has

recently been extended for quantum systems [64]. Here we outline a way of thinking

about it without employing spectral considerations or ergodicity. Whether a system is

ergodic or not, the time-evolution of an initial state traces out an orbit in Hilbert space

O|ϕ⟩ = {|ϕ(t)⟩|t ∈ R+}.

Consider |ψ⟩ = |ϕ(t1)⟩ to be a state in this orbit. The initial state fidelity with respect

to |ψ⟩ can be written as

⟨ψ|ψ(t)⟩ = ⟨ϕ|U(−t1)U(t+ t1)|ϕ⟩ = ⟨ϕ|U(t)|ϕ⟩ = ⟨ϕ|ϕ(t)⟩, (2.15)
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and is thus the same for any |ψ⟩ ∈ O|ϕ⟩ – it is an orbit invariant. Sampling all the

absence (recurrence) times T pR up to a final time Tmax, we can obtain a probability dis-

tribution for all absence (recurrence) times and analyze their qualities. This probability

distribution is another orbit invariant, just as is the effective dimension (2.2). All of

this circumvents questions on integrability and ergodicity of the underlying Hamilto-

nian [22–25], although one would expect to see these qualities reflected in the absence

(recurrence) time distribution. One thing ergodicity is expected to achieve is answer the

question of typicality. Whether an orbit obtained from a small deformation of a different

orbit, O|ψ⟩+ϵ|ϕ⟩, possesses a similar absence time distribution, is not immediately clear,

and considering scars found in many-body quantum systems suggests that typicality

cannot be easily dismissed.

2.2.3.1 Average recurrence time

From the limiting distribution for absence (recurrence) times we can extract their cu-

mulants as orbit invariants. The mean of these distributions might be thought of as a

fitting estimator, but there exists a different formulation of an ‘average’ recurrence time

that can be calculated from a measure theoretic background. If we define the time of the

n-th recurrence up to the threshold p (where in these results p ≫ 0) as tpn, the average

recurrence time [9, 12, 64, 66] is defined as TR(p) = limn→∞
tpn
n . In classical discrete-

time systems, it is directly obtained by a result of Smoluchowski [64], requiring only the

spectrum Ω = {ωi|i ∈ {0, · · · , N − 1}, ωi ∈ R}, and can be extended to continuous-time

systems

TR(p) ≃ ϵ exp [log (2π/ϵ)N ]∑N
i=1 ωi

.

Thus the claim on exponential scaling of the recurrence time in classical systems is

established. In quantum systems, a similar derivation results in a doubly exponential

scaling for TR(p) in non-integrable systems and a single exponential scaling in integrable

systems with respect to the system volume V [64]

TR(p) ∝ exp
[
eαV

]
. (2.16)

As such, the long time limit behaves in the expected manner, and does so independently

of microscopic details beyond spectral ones.
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2.3 Equilibration and recurrence described via physical

properties of the system

At early times, the decay speed of fidelity from an initial state follows a universal

quadratic scaling, whose prefactor depends on the details of the Hamiltonian [42, 43, 67–

69]. Beyond the universal decay, questions arise on how fast thermalization can be

achieved, in contrast to stipulating it as something arising eventually. At very long

times, many systems thermalise, and instead of investigating time-resolved qualities of

the system, the typical state and fluctuations around it are investigated [22–25]. As the

recurrence time is by definition beyond the monotonic early time regime, but aims at

finding time-resolved macroscopic deviations away from the typical state, we are unable

to use the tools of thermalization and small-time expansions. The simplest heuristic

for the effects of intermediate time behaviour arises from physical setups in which we

understand the Schrödinger equation as a wave equation. This pertains not only to

noninteracting systems, but to any system that is sufficiently well described as a few in-

teracting momentum excitations. As such, investigating e.g. the recurrence time scaling

of noninteracting particles on a chain of length N , for example a hopping boson or spin

excitation, we will find the ballistic result T pR(N) ∝ N , true for any initial state that

describes an initially localized excitation. This forms the basis of our intuition and many

of the results presented in chapters 4 & 5 aim at deviating from it in an understandable

way.

2.3.1 Single-particle hopping

Here we present a simple single-particle setup for which we can investigate recurrence

in different measures. Consider a bosonic particle hopping on a chain of N sites, whose

dynamics are generated by the Hamiltonian

H =
N−1∑
i=0

ωia
†
iai + J

N−2∑
i=0

(
a†iai+1 + h.c.

)
. (2.17)

In the single-particle regime, we consider our system to be given by site i = 0, which

initially hosts a particle, whereas the remaining chain is empty. Here the on-site occu-

pation number ⟨n0⟩ = ⟨a†0a0⟩ ∈ [0, 1] is an appropriate distance measure. We have the

initial state with ⟨n0(t = 0)⟩ = 1, and ⟨n0(t)⟩ = 0 means the particle is not on the initial

site. For this specific case however it turns out that ⟨n0(t)⟩ and F (t) are equivalent.

Our initial state is given as |ϕ⟩ = a†0|0⟩, where |0⟩ is the state of an empty site defined

by a0|0⟩ = 0. With U(t) = e−iH t we have |ϕ(t)⟩ = U(t)|ϕ⟩, and the initial state fidelity
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is then given by

F (t) = |⟨0|a0U(t)a†0|0⟩|
2 = ⟨0|a0U(t)a†0|0⟩⟨0|a0U

†(t)a†0|0⟩. (2.18)

The time-evolution of the on-site occupation in the Schrödinger picture is given by

⟨n0⟩t = ⟨ϕ(t)|n0|ϕ(t)⟩ = ⟨0|a0U †(t)a†0a0U(t)a†0|0⟩

= ⟨0|a0U †(t)a†0|0⟩⟨0|a0U(t)a†0|0⟩.
(2.19)

The second equation expands |ϕ(t)⟩. The third equation uses the fact that the initial

state has 1 particle and the time-evolution conserves particle-number. Therefore, writing

the identity as
∑

k|k⟩⟨k|, only k = 0 will generate a non-vanishing overlap and so

we can insert the identity as |0⟩⟨0|. The last expressions in (2.18) and (2.19) are the

same. A measure that produces a very different behaviour in terms of recurrence time

is the entanglement entropy. The initial state of the single particle setup is the state

|1⟩|000000⟩, where the sites are ordered in any way where the first index describes the

initial site. If we consider e.g. a simple chain, the evolution will propel the excitation

into the bulk of the chain, away from the initial site. After a short time, the state will be

approximately described by |0⟩|ψ⟩, which again has the initial value of the entanglement

entropy, 0. The reason for the entanglement entropy not working in this single-particle

case is subject of the next section.

2.3.2 Recurrence of a general quantity

We return to the Hilbert space picture and slightly extend the definition previously for-

malised for the trace-distance, the initial state fidelity and the on-site occupation, see

sections 2.2 and 2.3.1, to any number valued function. Given a number valued func-

tion W on the Hilbert-space of quantum states with compact domain that is extremal

(maximal or minimal) at time t = 0, the absence time T pA, (2.7), determines how long

the time-evolution keeps this function at values sufficiently far from the initial value.

Whether this is a relevant quantity depends on the physical arguments used to choose

the function W . One of our requirements is based off the experimental idea that initially,

an excitation is localized in position. Thus, we are interested in recurrence within this

initial position, and therefore we require our function to be local to the Hilbert space

of this subsystem. Next, we want to investigate a quantity that is relevant for quantum

setups. The trace-distance satisfies both of these requirements, given the fact that it di-

rectly corresponds to the distinguishability between quantum states and the probability

of recreating said quantum state, even if only locally. The trace-distance as a metric also

has a strong mathematical meaning. On the other hand, we could imagine a function W
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that has a different motivation, such as the entanglement entropy of the subsystem with

its complement (as the initial state is pure) or the value of a local observable such as the

magnetization in a graph of spins. Lastly, we require the extremal value of W that is not

taken at t = 0 to be meaningful in some way. For the trace-distance, maximal distance

implies maximal distinguishability. For the entanglement entropy, maximality implies

a highly quantum state of the subsystem that can be used to e.g. teleport information

from the subsystem to somewhere else [52]. For the magnetization, this implies finding

the spin in an eigenstate of the magnetization axis.

Whether a local observable is a useful quantity to analyse via recurrence has to be de-

cided on a case-by-case basis. A useful guideline for this is found via thermalization.

Despite an ill defined limit t → ∞ for finite size closed quantum systems with unitary

time-evolution, there has been substantial progress to extend thermalization consider-

ations from open to closed quantum systems, using the effective dimension (2.2) as a

crucial tool [22–25]. Closed system thermalization, assuming non-degenerate energy

spacings in the spectrum, considers the typical state, i.e. the qualities of a state that

the system can be expected to be close to at almost all times t > 0. Not only that, but

fluctuation-strengths around this typical state (or observables thereof) are accessible as

well. Closed system thermalization investigates time nonlocal behaviour around a typ-

ical state that depends on system size. In contrast, except when considering statistics,

the absence (recurrence) time considers the time-local behaviour at intermediate times,

comparing them to the expected behaviour of a bath of infinite size. With the definition

of recurrence using the function W , our focus lies on deviations from the non-initial

extremal value. Maximum distinguishability for the trace-distance, minimal particle

occupation for the on-site occupation number, maximal von Neumann entropy for the

entanglement. This difference is mostly relevant for finite system sizes. For the on-site

occupation number, the typical value is the equipartition 1
N . For the von Neumann

entropy, given e.g. an XXZ chain of spin-12 particles, the typical value is the Page limit

[70]. These all approach the extremal value for N → ∞. In order to understand how

well the thermodynamic limit can be mimicked by a finite size bath, the comparison is

always made against the infinite bath-size value.

From the above we can also deduce why the entanglement entropy is a bad measure in

the single-particle case of section 2.3.1. The Page limit for the entanglement entropy in

the single particle case decays to zero for increasing system size. As such, the typical

value of the entanglement entropy as our number valued function W is close to the

extremal value of the initial state, instead of being close to the other extremal value.

Similarly, the on-site occupation number would not be useful if every site of the chain

described in (2.17) starts with one boson. This is explored in the next section.
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2.3.3 Many-Body setups

The step from 1 to 2 particles on the chain described in section 2.3.1 via (2.17) indicates

the inequivalence of the different measures. Partial recurrence in ⟨n0⟩ is very different

from partial recurrence in trace-distance. With two particles on the chain, both starting

at site 0, we have ⟨n0⟩ ∈ [0, 2]. If in the course of dynamics the reduced density matrix

on site 0, ρ0(t) = Tr1,···N−1 [ρ], corresponds to 1 particle, ρ0(t) = |1⟩⟨1|, we get a 50%

recurrence in ⟨n0⟩, whereas the trace-distance is maximal. This inequivalence is nicely

indicated with two additional measures we could employ. One is the purity of the

reduced density matrix ρ0. Similar to the trace-distance, the purity is contractive for

CPTP maps that are unital (the infinite temperature density matrix is a fixed point)

[71, 72]. The other is the entanglement entropy between system and environment. The

entanglement we investigate via the von Neumann entropy

SvN = −TrS [ρS log (ρS)] , (2.20)

and the purity we write as

FP = TrS
[
ρ2S
]
. (2.21)

Fidelity (2.6) and purity (2.21) resolve the proximity to an initial state to a different de-

gree. Starting with an arbitrary pure state |ϕ⟩ and a pure product state |ψ⟩ = |ψS⟩|ψE⟩,
the following inequality can be derived [43]

|⟨ψ|ϕ⟩|4 ≤ TrS [σSρS ]2 ≤ TrS
[
ρ2S
]

= FP , (2.22)

where ρS = TrE [|ϕ⟩⟨ϕ|] and σS = |ψS⟩⟨ψS |. For the purpose of our investigation, we can

take |ϕ⟩ = U(t)|ψ⟩ and the parts in (2.22) can be reformulated in quantities of interest,

the initial state fidelity and the purity,

F (t)2 ≤ TrS [σSρS(t)]2 ≤ FP (t). (2.23)

From (2.23) we see that the initial state fidelity is a more sensitive measure than the

purity. For a state to have high fidelity, it is required to have high purity, but not

vice-versa. As the purity is a measure of mixedness of a state, and in case of said state

being a reduced state from a global pure state, also a measure of entanglement, we get

a non-equivalence between fidelity and entanglement.
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2.3.4 Entanglement

Entanglement is a quality that is exclusively associated with quantum systems. The

possibility of entanglement is at the heart of the exponential scaling of Hilbert-space

dimension RN from local Hilbert-space dimension R, as opposed to classical phase-space

scaling, which is linear, with the dimension being 6N . Many measures for entanglement

exist, all of them (for finite Hilbert space dimension) compact with extremal values

agreeing to denote no entanglement (= 0) and maximal entanglement (= max). We

repeat the definition of the von Neumann entropy, which itself is either seen as a quantum

mechanical analogue to the Shannon entropy or a special case of the Rényi-entropy with

parameter q = 1. For a density matrix ρ, it is given as

SvN = Tr [ρ logρ] . (2.24)

Imagine a system described by a Hilbert-space HS . By virtue of a cut, that by no means

is required to be happening in real space, we partition this system into two, HA and

HB, that make up the full space via a Kronecker product, HS = HA ⊗HB. Consider a

pure state |ψ⟩ in HS . Decomposing it into orthonormal basis-elements |i⟩ on HS , it is

written as

|ψ⟩ =

N∑
i=0

ci|i⟩. (2.25)

By means of a Schmidt decomposition we can follow the cut through HS also in this

formulation, arriving at

|ψ⟩ =
M−1∑
i=0

qi|ui⟩A|vi⟩B, (2.26)

where |ui⟩A and |vi⟩B denote the orthonormal basis elements of HA and HB, respectively.

The reduced state on HA is given by a partial trace of ρ = |ψ⟩⟨ψ|,

ρA = TrB [ρ] =

M−1∑
i=0

|qi|2|ui⟩A⟨ui|A, (2.27)

and analogously for B. As the full state |ψ⟩ is pure, its density matrix has rank 1 and

its von Neumann entropy is = 0. This quality does not extend to the reduced density

matrix ρA in (2.27). Its von Neumann entropy is given as

SvN [ρA] = −
M−1∑
i=0

|qi|2log
(
|qi|2

)
= SvN [ρB] . (2.28)

The symmetry SvN [ρA] = SvN [ρB] shows that entanglement is a property of a cut as

much as of the states generated by said cut. ρA represents a pure state iff qi = δi,j for
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one j ∈ {1, · · · ,M − 1}.

2.3.5 Mutual Information

The von Neumann entropy is the unique quantum entropy for which the chain rule

for conditional entropy holds. This consequentially enables the formulation of different

information theoretic measures such as conditional information and mutual information.

The mutual information in turn is given as

I(A,B) = SvN (ρA) + SvN (ρB) − SvN (ρ) . (2.29)

Similar to entanglement, mutual information can also serve as a witness for quantum

effects. It quantifies the amount of information one can get on A by investigating B.

Using subadditivity of the entanglement entropy and the triangle inequality, one can

show [73]

0 ≤ I(A,B) ≤ 2min (SvN (A), SvN (B)) , (2.30)

which reduces to

I(A,B) = 2SvN (A) (2.31)

if the state ρAB is pure. If the mutual information tracks the amount of information

about A that is contained in B, We can use maximally entangled pairs to monitor

the recurrence of a specific piece of information back into the local region A even in a

many-body regime.

2.3.6 Equivalence of mixedness measures

The special situation of the single-particle regime in section 2.3.1 can be formalized

further, relating the purity and the von Neumann entropy.1 Now given a 2 × 2 den-

sity matrix ρ, i.e. a positive semi-definite hermitian matrix with unit trace, we can

diagonalize it by a unitary transformation and reveal that it is a one-parameter group

ρ =

(
p 0

0 1 − p

)
. (2.32)

1The von Neumann entropy itself is a special case of the Rényi entropy, denoting the unique entropy
for which the chain rule for conditional entropy holds. This consequentially enables the formulation of
different information theoretic measures such as the mutual information.
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From this we get the purity and the von Neumann entropy as

FP (ρ) = Tr
[
ρ2
]

= 2p2 − 2p+ 1,

SvN (ρ) = −Tr [ρlog (ρ)] = plog (p) + (1 − p) log (1 − p) .
(2.33)

We can invert the relation for the purity and get an equation for the parameter p

p =
1 ±

√
2FP (ρ) − 1

2
, (2.34)

which can be used in the formula for the von Neumann entropy to get a unique value.

Therefore, for 2 × 2 density matrices, purity and von Neumann entropy are equivalent.

This procedure fails when considering larger density matrices, and one can formulate a

geometrical argument for this on the space of density matrices[45]. For a given purity,

the subset of density matrices with said purity is not a subset for constant von Neumann

entropy. At their extremal values the measures (and all other mixedness measures) co-

incide, but in between there is no mapping for this, except in the special case shown

above, which also applies in the single-particle case presented in section 2.3.1. Going

forward, we will employ the von Neumann entropy as our measure for mixedness/en-

tanglement. The inequality (2.23) cannot be explicitly invoked, but the usefulness of

formulating mutual information measures will be relevant for the extended study of our

systems [43].

2.4 Summary

In this chapter, the necessary ingredients for understanding recurrence results are laid

out. From the classical origin of recurrence we have introduced the quantum analogue

using the initial state fidelity and the trace-distance. With motivation from current

day quantum computing ideas, we have introduced physical motivations for different,

more restrictive measures of recurrence that are based on physical motivations instead

of strict mathematical analogy to the classical phase-space picture. For the interested

reader that may try to expand this line of thinking, the section 2.3 is the most important

one, as it presents the necessary conditions we identified for a quantity whose recurrence

might be insightful. The theory of this chapter is used to get the results shown in two

chapters. In chapter 4, we consider single-particle bosonic setups and its recurrences

and absences. In chapter 5, results for a many-body model of a spin-12 chain subject

to an XXZ Hamiltonian are shown. In addition to recurrence results, this chapter also

highlights different methods of extracting the delocalized information from the system

in the intermediate time by means of different experimental protocols.



Was einmal gedacht wurde, kann nicht mehr zurückgenommen werden.

Friedrich Dürrenmatt, Die Physiker

3
Theoretical methods

In this chapter we lay out the theory of quadratic models featuring long-range cou-

plings, both sparse and dense. Long-range coupling is specifically difficult to handle for

numerical methods such as tensor-network techniques, limiting scaling with system size.

However, approaching the thermodynamic limit in long-range coupling models typically

necessitates a bigger system. As a consequence, analyzing long-range coupling systems

requires easing the numerical intensity of the model at hand. Part of the work in this

thesis is directly motivated by a gate-based approach to long-range coupling of qubits

using the Clifford group [1]. In this case, the Clifford group as a subgroup of the group of

all quantum gates is the numerical simplification. In the case of this thesis, it is focusing

on quadratic models whose diagonalization via a Bogoliubov-Valatin transformation is

possible. This work aims at investigating whether the result of the gate-based approach,

which showed a dynamical transition in the tripartite mutual information as a function of

the coupling exponent, i.e. the decay strength of the long-range coupling over distance,

persists in the continuous-time Hamiltonian model. In sections 3.2 and 3.3, we describe

the dynamical quantities of interest in the comparison between coupling-styles. Section

3.4 focuses on the diagonalization techniques of our models, with section 3.5 specifying

us further to fermionic gaussian states. The diagonalization and the restriction to a sub-

space of the whole Hilbert-space are the simplifications enabled through investigation

of the quadratic models. In section 3.6 we introduce the different styles of long-range

21
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coupling and derive relations for the dispersion relation and the group-velocity and the

density of states.

3.1 Background

Many striking and elegant mathematical results in physical systems rely on particular

symmetries reducing the complexity of the system under investigation. Shared symme-

tries between systems give rise to universality in their properties close to criticality and

enable the classification of similar behaviour in very different systems, such as magnets,

superconductors, biological systems and cold-atom ensembles [50, 74, 75]. Tabularising

the critical exponents of the scaling of the order parameters such as magnetization in

magnets or flux tubes in superconductors enables comparison between these physical

systems based only on these exponents. In quantum physics, research has for several

decades focussed on systems with local, short-range interactions, either based on lattice

geometries with nearest-neighbour interactions or field theories with ϕ4 interactions.

The reason for this is based on simplicity, as in parallel also conformal field theories

in quantum field theory were intensively studied. Starting from Ising’s investigation

in 1D [33] and Onsager’s extension to 2D [34], the investigations of these short-range

systems has advanced in many directions. One of which being tensor-network based

methods that continue to push numerical and even conceptual boundaries in physics,

mathematics and computer science [76, 77].

Classical systems have historically considered non-local theories most notably newto-

nian gravity and electromagnetism with Coulomb interactions [78], and in recent years,

advances have been made on long-range quantum systems [40, 79–83], and a review of

the current state of the art is written by Defenu et al. [50]

With tunability and control of quantum systems increasing steadily, one of the basic

qualities of the physical models investigated can be relaxed: Density of couplings. The

gravitational force cannot be shielded, and except for very special cases in condensed

matter physics the coupling between different points in space is monotonously decaying

with distance. With high-fidelity control of quantum systems, Hamiltonian systems can

have an underlying structure more intricate than a typical lattice [84, 85]. Additionally,

the gate-based investigations dominant in quantum information theory research can

forego the need for a lattice theory and instantiate any coupling graph. Sparse long-

range coupling is substantially cheaper in computational resources, and current research

is investigating whether these sparse models show substantially different features than

either their dense counterparts or the short-range models [1, 39, 40, 86].
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3.2 Lieb-Robinson bounds

In classical systems, the upper limit of information propagation is dictated by rela-

tivistic speed limits and Lorentz covariance. Physical effects are confined in a causal

region, which is dubbed a “light-cone”. In quantum theories, even those disregarding

special relativity, a similar concept is found, arising from the underlying dynamics of the

Schrödinger equation without explicit insertion of a physical mechanism to uphold sub-

liminal information travel. In quantum physics, the light-cone traces indicates a speed

of information propagation called the Lieb-Robinson velocity. Given two operators Ai

and Bj on different sites i, j of a lattice system, the correlations building up between the

operators relate to the speed at which the dynamics manage to delocalize the operators,

such that their supports start overlapping considerably. The simplest model for this

takes the shape

||[Ai(t = 0), Bj(t = T )]|| ≤ C e−µ·(d(i,j)−vT ). (3.1)

Here, C, µ > 0 are constants, v is the Lieb-Robinson propagation velocity and d(·, ·) is a

distance function. From the exponent we see the exponential damping of correlations if

the distance d(i, j) cannot be bridged in time T with velocity v. The above equation is

best fitting for locally interacting systems (with respect to the distance function d(i, j))

and imply a constant Lieb-Robinson velocity through time until the operators are spread

among the whole available space. Dense and sparse long-range interacting models have

different functional forms for the Lieb-Robinson velocity that can speed up for later times

[87]. A simple example for non-constant propagation velocity is diffusion-like spread of

correlations. A toy model for this is the heat-equation, whose fundamental solution is

f(x, t) =
1√

4πat
exp

(
−x2/4at

)
. (3.2)

Here, x ∈ R denotes spatial position, t > 0 denotes time and a > 0 is a constant that

denotes the initial width of the gaussian f(x, 0). If we consider a threshold 0 < p < 1,

we can perform the investigation as described above, asking when the functional value

f(x, t) exceeds p. This we can rewrite for position and get the velocity, resulting in

v(p, t) =
∂

∂t
x(p, t) =

1

2
√
a

√
−log (p)

1

2
√
t
. (3.3)

In this case we see a non-constant propagation velocity, which in fact decreases for larger

and larger times, which aligns with the general picture on diffusion.

For long-range coupling, propagation velocities can also dramatically depend on the

initial state under investigation, ranging from linear propagation as in the local regime

up to power-law regimes [88]. Lieb-Robinson light-cones, whether linear or not, confine
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any measure of information transfer, including the build-up of entanglement over long

distances. A certain notion of entanglement, the tripartite mutual information (TMI)

we will use to codify whether correlations are transported to different regions in our

setups.

3.3 Tripartite Mutual Information

Here we expand on the notion of entanglement that was developed in chapter 2, section

2.3.4. Build-up of entanglement across a distance is confined by Lieb-Robinson bounds.

As mentioned in section 2.3.4, the von Neumann entropy can also be used to develop

more complex notions such as the mutual information I(A,B), shown in eq. (2.29). The

mutual information codifies how much information about a subregion A is obtained by

measuring region B. Partitioning the system S into more than two subregions allows

the extension of the mutual information. Split into four, A, B, C, D, the tripartite

mutual information (TMI) I3 is given by

I3 = I(A : B : C) = I(A,B) + I(A,C) − I(A,BC)

= SA + SB + SC − SAB − SAC − SBC + SABC
(3.4)

From understanding the mutual information, we can use the first line of (3.4) to un-

derstand its purpose. When I3 < 0, the information acquired on A when investigating

BC is larger than the combined information on A obtained by investigating B and C

independently. This requires there to be excitations within the different subregions to

generate entanglement between them, as this is the origin of non-separability of the

quantum state. As such, generating non-trivial TMI requires at least three excitations

that are dispersed within the subregions [89, 90]. Were this not the case and thus one

of the subregions (for example A) were empty, no information about other subregions

could be located in A. In quadratic models, Wick’s theorem always allows breaking

down higher order correlations into two-point functions, and as such one can always find

a basis in which these correlations will be restricted to two particles, making the TMI

trivial vanishing. Nonetheless, certain partitions of our degrees of freedom are special

insofar as they correspond to partitions that are naturally singled out by measurement-

devices, such as a laser that probes the internal state of a spin and is hence position

local. We will orient ourselves around those partitions and investigate the TMI therein.
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3.4 Quadratic models

Given a Hamiltonian of the form

H =
∑
i,j

ai,jc
†
icj +

(
bi,jcicj + bi,jc

†
ic

†
j

)
, (3.5)

where ci (c†i ) are annihilation (creation) operators that either obey fermionic or bosonic

statistics and. We write the commutator in q-deformation, which combines both canon-

ical commutation (CCR) and canonical anti-commutation relations (CAR),

[o1, o2]q = o1o2 + (−1)q o2o1. (3.6)

We express the fermionic (q = 0) and bosonic (q = 1) relations as[
c†i , cj

]
q

= δi,j

[ci, cj ]q = 0.
(3.7)

The numbers ai,j and bi,j can be arranged into the matrices A = (ai,j)i,j∈{0,··· ,N−1},

B = (Bi,j)i,j∈{0,··· ,N−1}. In order for the Hamiltonian to be hermitian, the matrix A is

hermitian, while B is anti-hermitian for fermions and hermitian for bosons. We rewrite

the Hamiltonian as

H = v†Av + vTBv + v†B
(
v†
)T

, (3.8)

where vT = (c0, c1, · · · , cN−1) is the vector of operators1. Doubling the operator space

and writing the vector wT =
(
c0, · · · , cN−1, c

†
0, · · · , c

†
N−1

)
2, any quadratic Hamiltonian

can be written as a quadratic form

H =
1

2
w†Dw +O. (3.9)

Here, O ∝ 1 is an offset due to the (anti)commutation relations (3.7), whichever appro-

priate, but is typically irrelevant, as it merely corresponds to a global energy shift. The

dynamical matrix D can be deduced from (3.8) as

D =

(
1 0

0 (−1)q 1

)(
A B

B A

)
= Iq

(
A B

B A

)
, (3.10)

where Iq upholds the structure of the operators. Diagonalizing the Hamiltonian cor-

responds to diagonalizing the dynamical matrix in such a way that the commutation

1The dagger operator on a vector applies the transpose to the vector and the dagger on the individual
elements

2also known as Nambu space
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relations of the operators (3.7) are respected. The diagonalization procedure aims at

obtaining the basis of non-interacting normal modes. The transformation used for this

diagonalization should preserve the structure from (3.7). This amounts to understand-

ing the normal modes in a system of fermions (bosons) to still behave like fermions

(bosons). This transformation is known as the Bogoliubov-Valatin transformation. In

the q-deformation language, the structure to be preserved is given by Iq, which is the

identity for Fermions and symplectic for Bosons. That is to say that the transformation

matrix T connecting the Nambu vector wT of original modes and the Nambu vector

ζT =
(
a0, · · · , aN−1, a

†
0, · · · , a

†
N−1

)
of normal modes is required to obey

T−1IqT = Iq. (3.11)

This guarantees that the normal modes in ζ obey the same structure (3.7) as the original

modes in w. This is achieved by not diagonalizing D, but instead IqD. The result is

then given by

H =
1

2
ζ†Eζ =

1

2

∑
i

ϵia
†
iai, (3.12)

where ϵi are the elements of the diagonal matrix E and denote the eigenenergies of the

normal modes ai, which obey the same statistics as the ci.

3.4.1 Translationally invariant fermionic systems with quadratic hamil-

tonians

Quadratic fermionic models with long-range interactions have been investigated in many

different contexts, the most famous being the celebrated Sachdev-Ye-Kitaev (SYK)

model [91–93]. They also often arise in the context of spin-models subject to a Jordan-

Wigner transformation [94]. After a successful mapping between spins and (quadratic)

fermions has been established (or when starting off from a quadratic fermionic model),

the routines of this section can be employed, although some care has to be taken.

First, the Jordan-Wigner transformation is typically multi-valued, giving rise to sev-

eral fermionic Hamiltonians whose relevance to the underlying spin-model has to be

carefully understood [94–96]. In this work we treat fermions on their own footing and

complications arising of understanding the connection to spin-models are disregarded.

This line of questioning started with Sachdev, Ye, Kitaev and Vidal and has received

much attention in different contexts [41, 79, 81, 91–93]. Translational invariance enables

splitting the Bogoliubov-Valatin transformation outlined above into two parts. The
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starting Hamiltonian is written as

H =
N∑
s,r

J|s−r|c
†
scr + ∆|s−r|cscr + ∆|s−r|c

†
sc

†
r

=
1

2
w†

(
J ∆

∆ −J

)
w +O,

(3.13)

identifying J = A and ∆ = B from earlier and using periodic boundary conditions.

Translational invariance and fermionic statistics imply that J is a hermitian circulant

matrix, and ∆ is anti-hermitian circulant. Circulant matrices, irrespective of their en-

tries, are diagonalized by discrete Fourier-transformation matrices,

FN = (fs,r)s,r∈{0,··· ,N−1} , with fs,r = e−
2πi
N
s·r, (3.14)

and so the blocks of the block matrix in (3.13) are independently diagonalized via(
FN 0

0 FN

)(
J ∆

∆ −J

)(
F−1
N 0

0 F−1
N

)
=

(
DJ D∆

D∆ −DJ

)
. (3.15)

Permutation of the basis via a permutation matrix P reveals that this matrix is now

blockdiagonal with blocks of size 2 (given that N was even). Such a block we write as

Bk =

(
Jk Dk

Dk Jk

)
. (3.16)

Both the Fourier-transformation and the permutation conserve the structure Iq=0 = 1,

and the second part of the Bogoliubov-Valatin transformation is reduced to indepen-

dently diagonalizing the 2 × 2 blocks.3 The transformation achieving this is (in the

fermionic case) given by

Uk =

(
uk vk

−vk uk

)
, (3.17)

and due to the fermionic structure Iq=0 the entries can be parametrized as u = cos (θk/2)

and v = i sin (θk/2). The angle θk is obtained from the relation

eiθk = cos (θk) + i sin (θk) =
Jk + Dk√
|Jk|2 + |Dk|2

, (3.18)

and the eigenenergies of the particle-like excitations are given as

ϵk =
√
|Jk|2 + |Dk|2. (3.19)

3This independence between the 2×2 blocks is the big gain obtained by investigating a translationally
invariant model and by splitting the Bogoliubov transformation into two instructive parts.
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The spectrum of the diagonalized matrix includes also the hole-like excitations with

energies −ϵk, and filling all those excitations provides the ground-state of the model.

3.4.2 Normal modes

In section 3.4.1 we investigated the translationally invariant fermionic Hamiltonian (3.13)

and split the Bogoliubov-Valatin transformation Q that diagonalized the dynamical

matrix into three parts. The Fourier-transformation FN , the permutation P and the

unitary transformation U made up of 2 × 2 blocks Uk on the diagonal,

Q = UP

(
FN 0

0 FN

)
. (3.20)

Thus we said we can rewrite the Hamiltonian (3.13) in the following way (dropping the

constant offset O)

H =
1

2
w†Q−1Q

(
J ∆

∆ −J

)
Q−1Qw

=
1

2

[
w†Q−1

] [
Q

(
J ∆

∆ −J

)
Q−1

]
[Qw]

=
1

2

[
w†Q−1

](E 0

0 −E

)
[Qw]

. (3.21)

It is potentially easier to understand section 3.4.1 from the perspective of transforming

the fermionic modes cs into their normal modes via Qw. The first step, the Fourier-

transformation, can be written as

ck =
1

N

N−1∑
s=0

e−
2πi
N
k·scs. (3.22)

The block-diagonal form of the Hamiltonian (3.13) after performing only the Fourier-

transformation and the Permutation thereafter is

H =
1

2

∑
k

(
c†k cN−k

)(Jk Dk

Dk −Jk

)(
ck

c†N−k

)
. (3.23)

The unitary transformation as the last step is(
αk

α†
N−k

)
=

(
uk vk

−vk uk

)(
ck

c†N−k

)
, (3.24)

which is how the single-mode Bogoliubov-Valatin transformation is typically displayed.
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3.5 Fermionic Gaussian states

As mentioned at the beginning of this chapter, the motivation for investigating quadratic

models lies in the fact that they enable efficient and even analytical diagonalization. In

order to further simplify the situation and give us a bigger numerical edge, we focus

on fermionic gaussian states (FGS). These include all the eigenstates of a quadratic

fermionic system and the space of FGS is closed under evolution by any quadratic

Hamiltonian. This further means that quenches between different quadratic models will

always remain in the space of FGS. As such, this restriction is similar to the restriction to

the Clifford group in gate-based state-evolution. The description of fermionic gaussian

states given here follows the exhaustive and comprehensive review given by Surace and

Tagliacozzo [97]. A fermionic state that is fully described by its two-point correlations,

⟨c†rcs⟩, ⟨crcs⟩ is called a fermionic gaussian state (FGS). Its density matrix can be written

as

ρ =
e−H

Z
. (3.25)

Here, H is not the generator of time-translations, but is called the parent Hamiltonian

or the entanglement Hamiltonian [98–100]. The equivalent information in the density

matrix is found in the correlation matrix Γ

Γ =

(
Γc

†c Γcc

Γc
†c† Γcc

†

)
. (3.26)

Here,
(

Γc
†c
)
i,j

= ⟨c†icj⟩, etc. and from the CAR we get Γcc
†

= 1−Γc
†c and Γcc = −Γc†c† .

This is equivalent to saying there is a one-to-one correspondence between the parent

Hamiltonian and the correlation matrix

Γ =
1

1 + e2H
. (3.27)

Bogoliubov diagonalization of the parent Hamiltonian via a matrix Q will also diagonal-

ize the correlation matrix Γ. If the FGS is the ground-state of the physical Hamiltonian,

this diagonal picture will give the correlation matrix (in the diagonal basis) as

ΓGS =

(
0 0

0 1N

)
. (3.28)

The ground state correlation matrix has only eigenvalues 0 or 1, with eigenvalues = 1

corresponding to hole-like excitations (see (3.19) and below). This means that the

Fermi-sea is filled, i.e. all the fermionic excitations that lower the energy of the state are

occupied, while none of the other ones are. Every ground state of a quadratic fermionic

Hamiltonian has this structure and is a FGS.
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3.5.1 Dynamics

The space of fermionic gaussian states is closed under the action of unitary opera-

tors arising from quadratic fermionic Hamiltonians. Additionally, every eigenstate of

a quadratic fermionic Hamiltonian is an FGS [98, 99]. In this thesis we are interested

in dynamics arising from quenches between different quadratic fermionic Hamiltonians,

starting in a ground state. The full dynamics are thus captured in the correlation matrix

Γ. The ground state |0⟩ is determined in particle-like normal modes a†
k0

(which all have

positive eigenenergies) by αk0 |0⟩ = 0 for all momenta k0. The pre- and post-quench

Hamiltonians are fully defined by the Bogoliubov-angles θ0k and θk, respectively. For

ease of reading we define cosk = cos(θk/2) and sink = sin(θk/2). The time-evolution on

normal modes introduces nothing but a phase. Thereafter inverse-transforming them

into the Fourier-modes yields(
ck(t)

c†M−k(t)

)
=

(
cosk −i sink

−i sink cosk

)(
e−i ϵk 0

0 ei ϵk

)(
αk

α†
M−k

)
. (3.29)

The pre-quench normal modes are defined similarly, adjusting the angles to θk0 ,(
ck

c†M−k

)
=

(
cosk0 −i sink0

−i sink0 cosk0

)(
αk0

α†
M−k0

)
. (3.30)

The direct transformation between pre- and post-quench normal modes is then(
αk

α†
M−k

)
=

(
cosk0−k −i sink0−k

−i sink0−k cosk0−k

)(
αk0

α†
M−k0

)
. (3.31)

From this we can write the evolution of the Fourier-modes in quadratic form of the

pre-quench normal modes,(
ck(t)

c†M−k(t)

)
=

(
cosk −i sink

−i sink cosk

)(
e−i ϵk 0

0 ei ϵk

)(
cosk0−k −i sink0−k

−i sink0−k cosk0−k

)(
αk0

α†
M−k0

)
.

(3.32)

From this line we can calculate the two-point correlation functions in real-space modes

for ground-state quenches

⟨c†l (t)cj(t)⟩ =
1

2N

N−1∑
k=0

exp

(
−i2πk

N
(l − j)

){
1 − cos θk cos δθk

+ sin θk sin δθk cos[2ϵkt]

}
,

(3.33)
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⟨c†rc
†
r+d⟩(t) =

i

2M

M−1∑
k=0

e
−2πi
M

kd

{
sin (θk) cos

(
θ0k − θk

)
+ sin

(
θ0k − θk

) (
e2itϵk cos2 (θk/2) − e−2itϵk sin2 (θk/2)

)}
,

(3.34)

where δθk = θk0 − θk is the difference in pre- and post-quench Bogoliubov angles. The

correlations we investigate in this work are density-density correlations,

g2 (r, r + d) = ⟨nrnr+d⟩ − ⟨nr⟩⟨nr+d⟩

= |⟨a†ra
†
r+d⟩|

2 − |⟨a†rar+d⟩|2.
(3.35)

The second line in (3.35) comes about using Wicks theorem, since the model of investi-

gation is quadratic. Density-density correlations are connected to the Czzr,r+d correlation

functions of the long-range Ising model by virtue of a Jordan-Wigner transformation

[53]

Czzr,r+d = ⟨σzrσzr+d⟩ − ⟨σzr ⟩⟨σzr+d⟩.

3.5.2 Correlation and density matrix

The correlation matrix of an FGS on N sites is a 2N×2N matrix in the space of fermionic

operators, whereas the density matrix has dimensions 2N × 2N in the space of fermionic

states. If the correlation matrix is diagonal in the basis α⃗, the density matrix is diagonal

in the basis of Fock-states {|k⟩}k∈{0,1}N generated by the action of the operators in α⃗ on

the ground state |0⟩. The reduced density matrix of a FGS obtained by tracing out a set

of degrees of freedom is again a FGS. The same tracing out of degrees of freedom can be

performed on the correlation matrix. The spectrum of the reduced correlation matrix

leads to the spectrum of the reduced density matrix and from this we can calculate

complex quantities such as the entanglement entropy and higher constructions of it,

such as the mutual information [98, 99, 101].

3.6 Long-range coupling

The interaction range of physical models in quantum mechanical systems has initially

been investigated with a hard cutoff, such as nearest neighbour lattice geometries in

bosonic, fermionic or spin-models [33–35, 102, 103]. These simple setups provide an in-

tuitive starting point, their physics have proven to be rich and have proven to be relevant

approximations of many physical setups. Different approaches led into considering mod-

els on graphs such as central spin models in quantum cavity dynamics, like the Jaynes-

Cummings or the Dicke model [104, 105]. Many classical theories have interactions that
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(a) (b)

(c) (d)

Figure 3.1: Different sketches for the two considered coupling-models. Different
colours denote couplings at different distances. The strength of couplings at a fixed
distance d is Jd. The models have the ring as the α → ∞ limit. (a) Dense long-range
coupling, also called the dense algebraic model, where every site is connected to every
other site. At α = 0 this is the all-to-all model. (b) Sparse coupling between sites
separated by powers of 2, also denoted as PWR2 coupling. The number of sites is not
a power of 2 and therefore the furthest coupling is present twice. In this example the
furthest coupling forms a 3-cycle or a triangle. (c) PWR2 coupling for a system size
that is a power of 2. The furthest coupling is present only once and thus forms a line.
(d) PWR2 coupling for a system size one less than a power of 2. The furthest coupling

forms a hamiltonian cycle going through all sites of the system.

decay algebraically with distance such as gravity and electromagnetism. Employing such

algebraic decay of the interaction strength Jr ∼ 1
rα into quantum mechanical systems

has led people to investigate the cross-over from the local to the non-local regime. In

the local regime, the local energy density remains finite when the system is brought into

the thermodynamic limit. For the non-local regime, the long-range contributions to the

local energy density diverge as
∫
r−αdDr and renormalization is necessary to keep the

theory finite [50, 78, 83]. This is known as the Kac prescription. As an example, consider

a translation-invariant, quadratic fermionic Hamiltonian as investigated in 3.4.1. We set

∆ = 0 and write the exchange term as an algebraic decay over the site-indices,

J|s−r| (α) =

0, if s = r

J1
|s−r|α , if s ̸= r.

(3.36)
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This setup is shown in Fig. 3.1(a). Writing d = |s− r|, the local energy density is then

given by
N−1∑
d=1

Jd (α) = J1

N−1∑
d=1

1

dα
= J1WN−1,α, (3.37)

where WN−1,α is known as the generalized harmonic number of order α. For α > 1, the

limit N → ∞ exists and is equal to the Riemann Zeta-function,

lim
N→∞

WN−1,α = ζ(α) =

∞∑
n=1

1

nα
. (3.38)

Comparing this to e.g. Newtonian gravity and electromagnetism, which both decay

quadratically with distance, we see that our chain-like Fermion model (a lattice with

dimension D = 1 with additional long-range terms) is working without problems for

α > D = 1. For α < D, such as the all-to-all spin-model which is equivalent to

α = 0, require a proper normalization by the Kac prescription. This keeps the local

energy density constant for changing system size N into the thermodynamic limit. The

exponent separating the local and the non-local regime is α∗ = D. For consistency this

prescription can also be employed at values of α where the local energy density does not

diverge inherently. This normalized coupling function is then given as

J̃d (α) =
J1

WN−1,α

1

|s− r|α
. (3.39)

The Kac prescription does not turn a non-local model into a local one, but enables

consistent investigation at any decay-exponent. Notably, this also includes negative

exponents α < 0.

3.6.1 Sparse long-range coupling

With increased control over atomic configurations in Rydberg tweezer arrays and in gate-

based quantum computation [26–32], the physical grounding for dense long-range cou-

pling can be relaxed, and sparse coupling-graphs can be experimentally approached [106,

107]. With this, the theoretical investigation of these setups becomes more important.

Sparse coupling graphs require a different set of resources. In the gate based approach of

Kuriyattil et al. [1], the shuffling operations were faster than the interaction operations,

and this reduction of resources might be possible to engineer in the Hamiltonian models

as well. Whether properties from dense long-range coupling graphs carry over to sparse

long-range coupling graphs is an area of active research, of which the results in this

thesis are a part.
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An example of a sparse coupling-graph is the coupling of any two sites whose chain-like

distance is a power of a prime number p,

Jd (α) =


1
dα , if logp (d) ∈ N,

0, otherwise.
(3.40)

This model is motivated by the possibility of connecting such a model to the mathematics

of p-adic field theory [39, 40], and a sketch of the geometry is shown in Fig. 3.1(b)&(c).

We again ask about the critical exponent α∗ separating the local and non-local regimes.

In the dense model, we identified this as α = D. We write the distance as d = pr, where

r ∈ {0, logp (N) − 1}. This yields

logp(N)−1∑
r=0

Jd (α) =

logp(N)−1∑
r=0

1

pr·α
=

1 − p−(logp(N))α

1 − p−α
=

1 −N−α

1 − p−α
, (3.41)

where the second equation uses the formula for the geometric series. In the thermody-

namic limit N → ∞ (3.41) remains finite for α > 0, so α∗ = 0. Another example uses

additive distances instead of multiplicative ones. We define the n-th Fibonacci number

as fn, and with the starting values f0 = 0 and f1 = 1 the recursive relation is

fn+2 = fn+1 + fn, n ∈ N. (3.42)

Different additive relations are the Tribonacci numbers, which have been investigated in

many-body localization research [16, 108]. With the set of Fibonacci numbers {fn}n∈N,

we define

Jd (α) =


1
dα , if d ∈ {fn}n∈N ,

0, otherwise.
(3.43)

Using the ratio test for the convergence of local energy density gives

lim
n→∞

∣∣∣∣ fnfn+1

∣∣∣∣α = ϕ−α, (3.44)

where ϕ = 1−
√
5

2 is the golden ratio. From this we get α∗ = 0. Another way of seeing

that both the sparse prime graph and the sparse Fibonacci graph have α∗ = 0 is to

realise that both the powers of primes and the Fibonacci numbers grow exponentially.

The algebraic attenuation via α is not strong enough to overcome this, and as such the

convergence remains valid for α > 0. We can contrast this both with the dense long-

range coupling with simple algebraic decay, but also with sparse long-range coupling of
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a quadratic form

Jd (α) =


1
dα , if

√
d ∈ N,

0, otherwise.
(3.45)

In the thermodynamic limit, we find the critical exponent α∗ in the same way as in the

dense long-range coupling, since the square can be absorbed into the exponent

lim
N→∞

N−1∑
d=1

Jd (α) =

∞∑
d=1

1

d2α
=

∞∑
d=1

1

dβ
= ζ (β) . (3.46)

Here we wrote β = 2α, and from the convergence of the ζ-function we find α∗ = 0.5.

3.6.2 Spectrum, group velocity and density of states

Following the derivation in section 3.4.1, the Fourier-transformation of the coupling and

the pairing functions, Jk and Dk, respectively, form the energy of the normal modes via

(3.19). We set ∆ = 0, such that the coupling function Jk is equivalent to the dispersion

relation ϵk. From this we then derive properties of the spectrum, the group velocity vgrk

and the density of states (DOS) Dk

vgrk =
N

π

dϵk
dk

, (3.47)

Dk =
N

π

∣∣∣∣d2ϵkdk2

∣∣∣∣−1

. (3.48)

The coupling function takes the form

Jk (α) =

{
2

N∑
d=1

Jd (α) cos

(
2πk

N
d

)}
− Sk, (3.49)

where Sk = JN/2 cos
(
2πk
N

N
2

)
= −JN/2 accounts for the fact that the furthest distance in

the ring-geometry appears without partner when the number of sites is even, N/2 ∈ N.

This term does not dictate the overall functional behaviour of Jk (α) and is omitted

for the further derivations. We see from (3.49) that at k = 0 we obtain the L1-norm of

all the coupling terms via Plancherels theorem, which is equivalent to the value for the

Kac prescription. As such, Jk=0 (α) diverges for α < α∗.
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3.6.2.1 Dense algebraic coupling

Going one step back in the derivation of (3.49), using k̃ = 2πk
N and taking the thermo-

dynamic limit such that k̃ ∈ [0, 2π), we write for the dense algebraic coupling,

Jk̃ (α) = J
∑
d∈Z\0

e−ik̃d

|dα|
= J

[
Liα

(
eik̃
)

+ Liα

(
e−ik̃

)]
= 2JRe

[
Liα

(
eik̃
)]
.

(3.50)

Here, Liα(z) is the polylogarithm of order α and argument z. It’s important to note that

in (3.50) the boundary-term SN/2 is omitted, restricting the validity to α > 0. From

the rules for the polylogarithm we can understand the behaviour of the derivatives of

Jk (α),

∂Jk (α)

∂k
∝
∂Liα

(
eik
)

∂k
= iLiα−1

(
eik
)
∝ Jk (α− 1) . (3.51)

This relation and iterations on it show that if Jk=0 (α < α∗) diverges, then its n-th

partial differential diverges for α < α∗ + n. This divergence is carried through to the

dispersion relation ϵk and its derivatives, the group velocity and the density of states,

lim
α→2+

vgrk=0 (α) → ∞,

lim
α→3+

Dk=0 (α) = 0.
(3.52)

Divergence of the group velocity implies the possibility for infinitely fast information

transport. However, the density of states is suppressed even stronger, such that limk→0 v
gr
k Dk →

0 for α < 2. As such, whilst there is some correlation buildup, it is minuscule and the

majority of transport happens at lower speeds. Nonetheless, the divergence of the group

velocity heralds the rarefaction of the lightcone, as will be presented later.

3.6.2.2 Sparse prime-power coupling

In analogy to the dense calculation, we investigate what happens for the sparse coupling

graphs where sites are connected iff their ring-distance is a power of a prime, see (3.40).

A theorem by Hardy [109] guarantees the following:

Theorem 3.1. For every real number b ≥ a > 1 the function

W (t) =

∞∑
l=0

a−le(i b
lt) (3.53)

is bounded and continuous on R with no points of differentiability



Long-range hopping Fermions - Theory 37

For b = p a prime and a = pα, the theorem directly applies to the coupling function

of the PWRp graphs (3.40). Therefore, even before the crossover α∗ = 0, the coupling

function undergoes a dramatic change, becoming non-differentiable for α < α∗
Hardy = 1.

For α ≥ 1, Jk (α) is smooth, while for α < 1, it is bounded, continuous, and nowhere

differentiable. If the pairing function Dk is non-pathological (smooth), we see from the

chain-rule that this non-differentiability of Jk carries over to the dispersion-relation ϵk.

The derivatives of the coupling function (if well-defined) relate in the same way back as

in the dense case
∂2Jk (α)

∂k2
∝ ∂Jk (α− 1)

∂k
∝ Jk (α− 2) . (3.54)

Thus, for the PWRp graphs, the shifted crossovers between dispersion-relation, group

velocity and density of states does not only apply to the local - non-local transition

(given by α∗ = 0), but also to the smooth - non-differentiable transition (given by

α∗
Hardy = 1). Across this second transition, the dispersion-relation remains bounded and

Lipschitz-continuous. Thus, the group velocity will not diverge at α∗
Hardy, but merely

ill-defined. We expect the light-cone picture to remain intact insofar as that correlations

are suppressed outside the light-cone, although within the light-cone dynamics can be

complicated.

3.6.2.3 Monna map

The structure of the PWRp model is such that for α < 0, which favours long-range cou-

pling over short-range coupling, we can employ a transformation to return the structure

to the local case. The special case of p = 2 is called the Monna map. Expression of the

site-numbers in base 2 indicates directly which component sites are connected, as their

Hamming distance is exactly 1 - a single bit is flipped. Large euclidean distances are

encoded in later bits, and so to transform large distances to small ones one can flip the

order of bits. Consider a number w expressed in base 2,

w =

Q∑
s=0

cs2
s, (3.55)

where cs ∈ {0, 1} are the states of the bits and Q = ⌊log2 (w)⌋ is the length required to

represent w. The Monna map M acts as

M (w) =

Q∑
s=0

cQ−s2
s. (3.56)

A further visual example is given by table 3.1, as well as in Fig. 3.2.



Long-range hopping Fermions - Theory 38

Base 10 Base 2 M
5 101 101
12 1100 0011
20 10100 00101

Table 3.1: Illustration of the action of the Monna map

Figure 3.2: Action of the Monna map from the construction of binary numbers via the
binary tree. The Monna map flips the reading order of the bits, which is mathematically
described by (3.56). For later use, we also show different partitions of a set of numbers.
For the euclidean geometry, the partition µ (blue box) takes a contiguous set of numbers.
In the ultrametric geometry, the partition µM (red box) takes again a contiguous set of
numbers, where contiguity is however described in the ultrametric space. Extensions

to bigger partition sizes generalize naturally from the plot.

3.6.2.4 Phase-transitions

With the squeezing function being chain-like (see (6.2)) and dispersion relation (3.19) we

can directly investigate points at which the energy gap between the ground-state and the

first excited state vanishes. Both constituents of the sum in (3.19) are strictly positive,

so for ϵk = 0, we independently require Jk = 0 and Dk = 0. The general description

of this is made in [53] and can at least functionally be written down explicitly for the

quadratic, translationally invariant fermionic models. For the purpose of this thesis,

we specify the squeezing function to be derived from a nearest-neighbour squeezing

interaction, resulting in (6.2). Fixing the squeezing function, criticality by closing the

spectral gap is possible at k̃ ∈ {0, N/2}, given N is even. Since J|s−r| ≥ 0 for all

arguments and Jk=0 =
∑

d Jd, the only remaining wave-number is k̃ = N/2

JN/2 = 2


N/2∑
d=1

Jd cosπd

− SN/2. (3.57)

The closing of the gap depending on the value (3.57) is discussed in chapter 6.
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3.7 Summary

In this chapter, we explained how the specific models we investigate, quench-dynamics in

translationally invariant quadratic fermionic models, simplify the analytical and numeri-

cal treatment from the full problem of just propagating the full system-wavefunction. In

sections 3.2 and 3.3 we described the quantities we aim to investigate in our models, the

Lieb-Robinson velocity via correlation spreading and the tripartite mutual information

(TMI). Section 3.4 expanded on the general treatment of fermionic and bosonic quadratic

models, explaining the full diagonalization techniques based on the Bogoliubov-Valatin

transformation. We focused on fermionic models in section 3.5, where a particular sub-

group of quantum states, the fermionic gaussian states (FGS) are explained. Section 3.6

investigated the peculiarities of the long-range coupling that is inherent in the models

we consider. Not only is the difference between dense and sparse models illuminated,

but more specifics in the sparsity-patterns of sparse models are highlighted. The theory

developed in this chapter is used in chapter 6 to investigate the numerical and analytical

results for the translationally invariant quadratic fermionic models.



Coming back to where you started is not the same as never leaving.

Terry Pratchett, A Hat full of Sky

4
Recurrence dynamics in single particle systems

In this chapter we will use the theory on recurrence developed in chapter 2 to analyse

recurrence and absence time scaling in single-particle setups. The setups we investigate

are prototypical for experiments in atomic, molecular and optical (AMO) physics [29–

32, 110] and also quantum computing tasks. A single excitation local in position interacts

with a graph of sites, with the dynamics being unitary. Wherever only one of either

recurrence or absence time is shown, the scaling of the other one is the same and hence

omitted. The scaling by spatial size N of the setup requires a canonical way of increasing

the system size. This is typically done by naming the graph and should be understood

trivially. The same goes for the initial state on the graph, which in the single particle

state extends trivially to larger sizes. A single excitation is localized on one site, the

rest of the sites are empty. The results are broadly split into three parts, in line with

three major (not independent) ways of modifying the simple Hamiltonian shown in (4.1).

For each of these parts results are shown that illustrate the impact of modulating this

hyperparameter. After the first recurrence time has been addressed, we show results for

the statistics of the recurrence and absence times following the orbit of the same initial

state. This makes it possible to clearly see the ballistic behaviour in some configurations,

while it is completely absent in others.

40
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Figure 4.1: Sketch of the three different hyperparameters we address in the results
of this chapter. The site in black is the initial position of the excitation, the probe on
the full graph G. The remaining sites constitute the bath. Dashed edges signal the
‘canonical’ extensions of the graph by adding more sites. (a) Different graph geometries,
the most obvious being lattices of arbitrary dimensions. (b) Modulating the coupling
strength between sites is signalled by different colours of the edges. This technically also
falls under bath-geometry shown in (a), but here we specifically consider modulations
in different coupling, whereas the coupling-strengths in (a) are equal. (c) Modulating

the on-site energies, shown by different colours in the sites.

4.1 Setup

Different variations on non-interacting, single particle model we consider are sketched

in Fig. 4.1. They are all sharing the feature of an excitation on a single site (which we

label as site 0), which is part of a simple connected graph G with a set of labelled sites

i ∈ V (G) and edges (i, k) ∈ E(G) connecting sites i, k ∈ V (G). The graph excluding

site 0 forms our finite effective bath. Site 0 we call the probe. The tight-binding

Hamiltonian of this setup is written as

H =
∑

i∈V (G)

ωia
†
iai +

∑
(i,k)∈E(G)

Ji,k

(
a†iak + h.c.

)
, (4.1)

where a†i (ai) are the creation (annihilation) operators of a particle on the ith site, ωi is

the strength of the on-site term of the ith site, and Ji,k is the tunnelling strength between

sites i and k. The different hyperparameters sketched in Fig. 4.1 refer to modulations of

different parts in the Hamiltonian (4.1). Modulating the geometry refers to changing the

set of edges E(G) while keeping the weights of all edges equal. Modulating the couplings

changes the set of edges E(G) but also their weights Ji,k, resulting in a weighted graph

G. Modulating the on-site energies changes the ωi. In this chapter we investigate the

single-particle sector of the particle-number conserving Hamiltonian (4.1), which in the
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computational basis can be decomposed as

H1 = Ω + J . (4.2)

Here, Ω = diag (ω0, ω1, ..., ωN ) is the diagonal matrix with the on-site energies ωi ∈ R
of sites in V (G) and (J )i,k = Ji,k is the hermitian matrix holding the weights of edges

(i, k) in E(G). The probe site is i = 0, energy is considered in units of J0,1 and time

in units of J−1
0,1 . Throughout, we set ℏ = 1. For bath-scalings that change the local

energy density
∑

(0,k)∈E(G) J0,k, we do not employ a Kac normalization fixing this local

energy density to a constant. Without Kac normalization the comparison of recurrence

times for different sizes of graphs is more straightforward, as the smaller of the two

graphs is a subgraph of the larger one.As H is time-independent, the time-evolution

operator is given by a simple exponential U(t) = exp (−iH t), calculated, unless specified

otherwise, using numerical exact diagonalization. This means that the eigenvectors and

eigenvalues of H1 are calculated numerically, and with these the matrix-exponential

in scipy is used. The initial state of the probe holds one particle, while the bath

is empty,
∑

j∈V (G)\0⟨a
†
jaj⟩ = 0. This relation fully specifies the bath initial-state for

any bath size. All considerations in this chapter are equivalent to a continuous time

quantum random walk (CTQW) of one particle on a weighted graph [111–113]. There

are two conventions in the literature of CTQW. The first is using a direct correspondence

to continuous time classical random walks (CTCW). There, the diagonal elements of

H1, the elements of Ω, are fixed by the N conditions ωk = −
∑

s ̸=k Js,k. This way, the

matrix H1 is fully determined by J and is proportional to the Laplacian of the weighted,

symmetric graph G. IN CTCW, the Laplacian serves as the transition-rate matrix and

the conditions on the diagonal elements ensure conservation of probability. In quantum

mechanics however, conservation of probability is inherent in the normalization of the

wavefunction, and the conditions on the diagonal elements are not necessary. Therefore,

the energy-detuning of a site can be changed independently of the coupling strengths

to other sites. This is the second convention in the literature of CTQW. Since it is

compatible with the freedom found in experimental setups, it is the one used in this

thesis. For the single particle case, the Hilbert-space of the problem scales linearly with

the size N of the graph G(N). This in turn upper bounds the effective dimension (2.2)

of initial states to linear scaling.

4.2 Recurrence for different graph geometries

In this section we present the results for a small collection of different graph geometries

that display a wide range of different qualities. As mentioned in the previous section,
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different graph geometries amounts to different sets of edges E(G), where each edge has

the same weight J = J0,1.

4.2.1 The chain

The simplest setup is a chain. Its single-particle Hamiltonian (4.2) is a tridiagonal sym-

metric Toeplitz matrix with ω on its diagonal and J on its first off-diagonals. This matrix

can be explicitly diagonalized, but we will not use analytical solutions for obtaining our

results. For the results in Fig. 4.2, we used ω = 0. In (a) we show the scaling of the

Figure 4.2: Absence time scaling and instructive dynamics through the chain. (a) The
absence time scales linearly with bath size N , which is also the Hilbert space dimension,
the effective dimension and the graph radius. As such, the chain is our prototypical
setup from which we investigate deviations. The absence time for the threshold p = 0.01
is constant and indicates that too low a threshold samples only local reflections. (b)
The dynamics of the single particle on the chain is fully ballistic. The absence time is
related to the group-velocity, as the initial state is spread over all momentum modes.

The particle explores the whole chain and returns in linear time ∝ N .

first absence time with bath size, T pA(N) ∝ N and in (b) an example of the dynamics of

the particle through a bath with N = 100. The linear scaling of T pA(N) fails once the

reflected waves profile is not coherent enough to trigger the threshold p. Hilbert-space

dimension, effective dimension of the initial state and graph radius all scale linearly

with N , making this setup our starting point. Modifications to the bath will distinguish

these three quantities and provide some insight into the relevant features for maximizing

absence time scaling with bath-size.

4.2.2 Lattices

The intuition of the chain extends to the square lattice. Most of the analysis for the chain

repeats for higher-dimensional square lattices, which are given as iterative Kronecker
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products of the chain. Our system site is one corner of the lattice, the bath consists

of all other sites. Fig. 4.3(a) shows the absence time scaling T pA(N) ∝
√
N , which is

explained by Fig. 4.3(b). There, the dynamics of the particle in terms of distance to

the system-site are shown. The M ×M square lattice has a radius of 2 (M − 1). For

each k ∈ {0, 1, · · · , 2 (M − 1)}, we write as Nk the collection of sites that are a distance

k away from the system-site. The probability for the particle to be a distance k away

from the system-site is then given as

Pk =
∑
j∈Nk

⟨nj⟩.

The dynamics of Pk(t) in Fig. 4.3(b) show that the exploration of the lattice is still mostly

ballistic, otherwise the wavefront would not collectively move through the equidistant

collections Nk. As the radius of the square lattice scales as a square root R(G(N)) ∝
√
N , this ballistic flow through Nk makes the first absence time scale in the same way,

T pA(N) ∝
√
N .

Figure 4.3: Absence time scaling and shell dynamics through the square lattice. (a)
The absence time scales linearly with edge-length

√
N , which is also the graph radius.

This behaviour extends to all higher dimensional lattices constructed from Kronecker
products of the chain. At the p = 0.13 line, we see a steep increase. This is due to the
returning wave-package (after the ballistic traversal through the lattice) not being high
enough to trigger the threshold anymore. The absence time increases dramatically and
is not tracked anymore. (b) The dynamics of the single particle on the lattice is here
shown in terms of shells, i.e. collections of sites of constant distance to the system-site.
In terms of shells, the exploration of the system is ballistic, which corroborates the

scaling T p
A(N) =

√
N of (a).

4.2.3 Tree-like graphs

With our system having a typical size of 1 site, a natural thought is to attach subsequent

bath degrees of freedom directly to the system. In the simplest case, these degrees of

freedom, subsequently called satellites, are independent and without loops, leading us



Recurrence - Single Particle - Results 45

Figure 4.4: Sketches of two different types of tree-like graphs. As in Fig. 4.1, the site
on which the particle is initially localized is shaded in black. In these examples, it is
always the central site. (a) This graph corresponds to the n-ary tree. For n = 2 it is the
binary tree, for n = 3 it is known as the Bethe lattice. Extending this graph is done by
increasing the tree-depth, shown by the dashed edges. (b) This graph is the prototypical
star graph. Here it is not relevant that the satellites, i.e. the different disjoint subgraphs
attached to the central site, are trivial one-site graphs. They could also be composed of
finite depth n-ary trees as in (a). Relevant is that they are mutually disjoint and that
the extension is made via attaching more satellites, instead of extending the satellites,

which falls under (a).

to tree-like graphs, shown in Fig. 4.4. The simplest of these is the star graph in Fig. 4.4,

whose single-particle Hamiltonian is given by an arrowhead matrix.

H1 =



d0 J0,1 J0,2 · · · J0,N−1

J0,1 d1 0 · · · 0

J0,2 0 d2 0 · · ·
...

... · · 0

J0,N−1 0 · · · 0 dN


(4.3)

We will here consider dj = d0 = c. Using a global rotation we can set c = 0 and use

the Cauchy interlacing theorem, which shows that the spectrum of (4.3) has an N − 2

times degenerate eigenvalue of 0. Only the first row and column of H1 are nontrivial

and given by r0 = (0, J0,1, J0,2, ..., J0,N−1). The two different eigenvalues are given by

λ1,2 = ±
√∑

k>0 J
2
0,k. The initial state fidelity (2.6) has, for any initial state, at most

two frequencies. Additionally, when adding more sites to the bath, the frequencies get

larger and thus the timescale of recurrence goes down. The star graph with ωi = ω0

and J0,k = J0,1 has non-trivial eigenvalues λ1,2 ∝
√
NJ0,1 and thus features the scaling

of the first absence time with the inverse square-root of the bath size,

T pA(N) ∝ 1√
N

(4.4)

Nonuniform coupling strengths or on-site energies do not save this situation. The effec-

tive dimension scaling improves, but absence times are still of order 1 as the particle

flows from the central site to satellites and back. Larger trees, where the satellites are

graphs instead of single sites, changes the situation. The ballistic heuristic suggests a

scaling according to the scaling of the smallest graph radius among satellites. This raises
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the question why not to remove this bottleneck (the fastest recurring satellite), but once

this is done, another satellite is the smallest. In the single-particle dynamics, the satel-

lite dynamics are trivial and disconnected as soon as the system site is not occupied. As

such, only the dynamics of a single satellite need be considered, which are the dynamics

of a graph that itself is smaller than N . If there should be any chance for these dynamics

to destructively interfere with those of another satellite, there would need to be some

sort of phase-difference, which due to the tree-like structure, disallowing non-trivial in

the graph, is impossible. In technical terms, we look at one satellite. If the scaling of

the first absence time were superlinear in satellite-size for this satellite, the remaining

satellites are obsolete and one could instead construct the larger version of the graph

of the satellite, as the superlinearity implies T pA(N1) + T pA(N2) < T pA(N1 + N2). Put

differently, the absence time is dominated by the shortest absence time of any of the

satellites (as they do not interact with one another). If this shortest absence time scales

superlinearly, the other satellites are unnecessary and there is no need to consider them

at all, but instead just the one satellite. Tree-like graphs highlight the peculiarities in

the single-particle considerations. For a many-body setup, we would expect nontrivial

interactions between satellites mediates via the central site that may lead to persistent

entanglement on longer timescales. However, since in the single-particle case the dif-

ferent satellites cannot interact and their dynamics are fully independent, superlinear

scaling is not possible.

4.2.4 General trends in recurrence time scaling for modulated graph

geometries

From the underlying ballistics associated with the Schrödinger equation and the initial

state being position-localized on site 0, an educated guess for the first absence time

scaling with bath-size is linear in graph-radius R(G; 0)

T pA(N) ∝ R(G(N); 0). (4.5)

The graph-radius from site 0 is here defined as the largest of the minimal path-lengths

between site 0 and sites of the bath. In absence of non-trivial structure in on-site

energies and tunnelling strengths, the deviations from (4.5) can be traced directly to

bath-extensions that change the degree (and with it the local energy density) of the

probe-site. The illustrative example for this is the family of star graphs touched upon in

section 4.2.3 and shown in Fig. 4.4. From (4.5) we also spot that, contrary to intuition,

high-dimensional lattices are worse with increasing dimension d, as the radius scales as

R(G(N)) ∝ N−d, which is also seen in section 4.2.2.
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4.3 Tunnelings

With the ballistic behaviour of the setups in section 4.2 apparent, modulation of tunnel-

ings serves to slow transport within the bath down. We do not consider modulations that

create couplings that grow arbitrarily large with system size, and thus the spectral ra-

dius of the single-particle Hamiltonian grows slowly. Local variations in tunnelings lead

to enhanced backflow of the particle. Whether our setup creates a non-trivial scaling

for the absence time depends crucially on this. Modulation of couplings will also entail

couplings of long-range behaviour. These setups will change the local energy density of

the system. Kac normalization is not employed such as to keep the proper marginal-

ization of larger into smaller baths intact. This however puts a limit to the long-range

couplings, as the local energy density should not diverge in the thermodynamic limit

N → ∞. This is typically referred to as the local regime, where the influence of the

long-range coupling does not change the effective dimension of the setup.

4.3.1 Decaying coupling functions - Speedwagon

Slowing down an excitation traveling through the bath suggests iteratively reducing the

coupling strength between site-collections Nk of increasing distance to the system-site.

From section 4.2, the chain has proven to be the most promising geometry. We are hence

interested in a coupling function J with Jk,k+1 > Jk+1,k+2, where k ∈ {0, 1, · · · , N − 2}.

Thinking about this as a wagon rolling uphill, we refer to this as the Speedwagon

setup. For a given coupling function J , our estimate of the first absence time is given

by twice the traversal time, which itself is estimated by the sum of pairwise interaction

times tk,k+1 = J−1
k,k+1.

Ttraversal(N) ∝ 1

2

N−1∑
k=1

tk,k+1 =
1

2

N−1∑
k=1

J−1
k,k+1 (4.6)

For polynomial decay, Jk,k+1 ∝ k−α, the estimate (4.6) is polynomial, Ttraversal(N) ∝
Nα+1. We find however that this is never realised. For any α > 0, backflow leads to

localization and the absence time does not scale at all with bath size. Using instead

a geometrical (or exponential) decay in J makes the estimate itself exponential, and it

turns out that there is some success associated with this strategy. Following the results

in Fig. 4.5, the coupling function is given as

Jk,k+1 = 1/qk = 1/1.01k, (4.7)
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Figure 4.5: In the Speedwagon setup, the iteratively weaker and weaker coupling to
more remote bath sites leads to an exponential scaling for the absence time in chain
size. (a) This scaling does not persist, neither in the absence time nor in the effective
dimension. Partial reflections in the bulk of the bath conspire to trigger a chosen
threshold and subsequently added bath sites have no effect - the scaling stops. (b) The
nonlinear traversal through the chain is evident. Comparing this to 4.2(b), the presence
of stronger partial reflections is evident, as the system site features slight population

even before the return of the wave-packet.

and the estimate of the absence time following from this is shown in red in Fig. 4.5(a)

T pA(N) ∝
N−1∑
k=1

J−1
k,k+1 =

N−1∑
k=1

1.01k =
1.01N+1 − 1

0.01
. (4.8)

From the geometric series used in the scaling (4.8) the chain limit limq→1 T
p
A(N) ∝

N is recovered. The closer q is to 1 from above, the longer the exponential scaling

(4.8) persists, but the more meaningless it becomes. This is reflected in the scaling

of the effective dimension (Fig.4.5(a) inset). For any q > 1, there is a superlinearly

scaling region, followed by a plateau, which indicates that the absence time cannot scale

indefinitely. This plateau occurs later and later for q closer to 1, but the superlinear

region is less extreme in turn.

4.3.2 Long-range coupling

In non-interacting models, the ballistic propagation of the excitation is central to our

efforts. Even when succeeding in slowing the excitation down as shown with the Speed-

wagon configuration in 4.5, the coherent nature of the wave-packet is still prevalent,

viz 4.5(b). Departure from coherent propagation can be engineered using long-range

coupling models. We consider the coupling function on a complete graph of N sites,

given as Jj,k = |j−k|−α [38, 50, 83]. As such, arranging the sites by increasing index re-

veals that this is a chain with additional long-range couplings that decay with exponent
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α with distance in the chain geometry. In this section, unless specified otherwise, the

long-range coupling model always refers to the example of quadratic decay, α = 2. This

case is local, as the local energy density stays finite in the thermodynamics limit, since

the couplings decay sufficiently fast. In contrast, for no decay, the local energy density

diverges ∝ N . The dimension of this setup is (N − 1), as the sites can be embedded

in (N − 1) dimensional space as the standard (N − 1)-simplex [114]. The local regime

is typically considered of similar interest as the case without long-range coupling, how-

ever, for the case of studying the absence time scaling, we find a drastic difference to

the chain in section 4.2.1. The scaling of the first absence time is quadratic in system

size. Moreover, as we can see in Fig. 4.6(a), this scaling persists for arbitrary N , as

does the scaling of the effective dimension of the initial state, Deff ∝ N . The dynamics

are no longer ballistic or soliton-like - the excitation gets spread over the whole bath. In

Figure 4.6: The algebraic long-range coupling introduces the system site to all the
bath sites, albeit at a strength decaying quadratically with distance in chain geometry.
For such a strong decay, the local energy density remains finite for all bath sizes. (a) The
scaling of the absence time is quadratic in bath size. This scaling persists for all system
sizes, as does the linear (maximal) scaling with bath size of the effective dimension of
the initial state. (b) At short times, the light-cone dynamics are dominant, but the

excitation soon becomes delocalized, covering the whole bath.

contrast to other studied baths, the fidelity decay of the long-range coupling model is

monotonous beyond timescales of the order J−1
0,1 . There are no local reflections when the

excitation explores the bath, which enables an investigation of the threshold p for values

scaling with bath size. A natural choice for this is p = p(N) = 1
N , such that a recurrence

is considered for the fidelity being stronger than the equipartition value. This connects

to the classical case, where the limiting distribution is exactly the equipartition. For this

case, the long-range coupling features an absence time scaling linearly with bath-size,

T
1
N
A ∝ N. (4.9)
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Figure 4.7: Using different exponents for the long-range coupling model worsens the
scaling overall. (a) For α > 2, the scaling becomes linear, while for α = 3

2 , there is

a small regime where it scales as T p
A(N) ∝ N

3
2 , after which no consistent scaling is

present. (b) The equipartition scaling is more resilient, although it breaks again when
departing too far from α = 2, plateauing in both extremes.

This is a stark qualitative difference to all other setups considered. The spectrum of

the long-range coupling model with α = 2 is quadratic, and thus models a free theory

in continuous space. This case also bridges the gap between the first absence time

diagnostic and the non-Markovianity measures such as the trace-distance, as described

in section 2.2.2.

4.3.2.1 Different exponents

Varying the exponent α does not merely change the scaling of the recurrence time, as

shown in Fig. 4.7. Even though the effective dimension of the initial state scales linearly

for other α values, the first absence time scaling becomes erratic. Going further towards

the local regime, α > 2, the scaling becomes linear. It retains some nonlinear character

for 2 > α > 1, which breaks down at moderate bath sizes > 100. The equipartition

scaling remains linear around α = 2, however not as clear as for the exact quadratic

case. The absence time does not plateau as in the Speedwagon configuration, but the

erratic behaviour makes the scaling of T pA(N) difficult to interpret and potentially an

unfitting candidate for investigating the delocalization properties of the model.

4.3.3 Continuous space ring

The quadratic spectrum of the algebraic long-range coupling model bridges the gap

to space-continuous models. In general, these would necessitate the introduction of

quantum field theory results or first quantization formulation, e.g. using the Gross-

Pitaevskii equation. We will however not delve deep into this regime and use a single

example of a particle on a ring of circumference L. The time-independent Schrödinger
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equation reads

− ℏ2

2m
∇⃗2ψ = Eψ, (4.10)

where ℏ is the reduced Planck constant, m is the mass of the particle, ∇⃗ = e⃗x∂x +

e⃗y∂y + e⃗z∂z is the Nabla operator and E is the eigenenergy. With the particle confined

to S1, the differential operator is rewritten in polar coordinates and the system can be

solved for its spectrum and eigenfunctions. The spectrum is quadratic,

En =
2π2n2ℏ2

mL2
, (4.11)

with doubly-degenerate eigenfunctions

ψn(x) =
1√
L

exp
(
±in2π

x

L

)
. (4.12)

As initial state, we start with the raised cosine distribution

f(x;µ, s) =
1

2s

(
1 + cos

(
x− µ

s
π

))
. (4.13)

Defined like this on the interval [µ− s, µ+ s] and zero elsewhere. This functional form

makes the support of the initial wave-function independent of bath size (ring circumfer-

ence L) in analogy to the discrete-space setup. We choose µ = 0 and s = 1,

f(x; 0, 1) =
1

2
(1 + cos (πx)) . (4.14)

The square root of this is the initial wavefunction

ϕ(x, t = 0) =
√
f(x; 0, 1). (4.15)

The decomposition into eigenstates is given by

ϕ(x, t = 0) =
∞∑
n=0

4L
√
L

π (L2 − 16n2)
cos

(
2πn

1

L

)
ψn(x). (4.16)

With this, we can now investigate the overlap of the initial state with the time-evolved

initial state,

∫ L
2

−L
2

ϕ(x; t = 0)ϕ(x; t)dx =
16L3

π2

∞∑
n=0

cos2
(
2πn 1

L

)
(L2 − 16n2)2

exp

(
−it2π

2n2ℏ2

mL2

)

=
16

Lπ2

∞∑
n=0

cos2
(
2πn 1

L

)(
1 − 16n

2

L2

)2 exp

(
−it2π

2n2ℏ2

mL2

)
.

(4.17)
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From the spectrum we can immediately read off the macroscopic time T 1
A(L) = T at

which time-evolution unravels, U(T ) = U(0) = 1

T =
L2m

πℏ2
.

This total time scales quadratically with ring circumference L. This is reflected in the

scaling of the absence time, which is itself quadratic in L. Even though the prototypical

example of the chain was used to motivate linear scaling of the recurrence time, the

continuous counterpart of the chain features quadratic scaling, which is in line with the

result for the quadratically decaying coupling. This is not fully surprising, as the second

quantized tight-binding Hamiltonian of the discrete space chain does not reflect the

higher-order interactions beyond s-wave scattering. For constant energy-density on shells

of radius R from a point source in three dimensions, we expect interactions decaying

quadratically with distance, which is exactly modelled in the long-range coupling setup

of section 4.3.2. That the spectrum for the long-range coupling setup with α = 2 is also

quadratic underpins this even further.

Figure 4.8: For the continuous space ring, the total period of the system scales
quadratically with the ring circumference L. This is reflected in the absence time
scaling (a), which scales quadratically throughout. In (b), the initial state fidelity is
shown for times up to the total period. The inversion of dynamics at the halfway point

is clearly visible.
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4.3.4 General trends for the absence time scaling for modulated tunnelling-

strengths

In a simple hopping model, tunnellings dictate the timescale over which traversal between

sites happens. Locally slowing bath-dynamics down, such that extensions have itera-

tively slower transport, has the potential to keep the particle away from the system (the

site i = 0 it originated from) for a longer time. The main problem encountered in this

setting are partial reflections of the particle, which for larger and larger baths conspire

to activate the threshold and halt the bath-scaling of the recurrence time completely, as

is seen in the Speedwagon configuration 4.3.1. For long-range coupling models, there is a

sweetspot found at quadratic decay, for which a clean quadratic scaling of T pA(N) is ob-

served. This is also found in the continuous space ring setup. Deviating from quadratic

decay in the discrete space model yields a smooth crossover to the chain, together with

the eventual departure of the linear scaling at system sizes too large, for which the

returning wave-packet is not coherent enough to be detected. The long-range coupling

case is special also because it allows a system size dependent activation threshold p = 1
N ,

which mirrors the actual average value of the equipartition. For the other models, local

reflections will interfere with this choice and eventually the dynamics across only the first

site is sampled. This behaviour however does not remain stable for different exponents.

4.4 Absence-time distributions

This section revisits all the models for which data has been shown in the previous

section. Here we will consider not the scaling of the first absence time, but instead

try to understand the structure of absences arising within the orbit associated with

the initial state, as explained in 2.2.3. For each set of data presented within a figure,

the maximal evolution time is constant for the different system sizes, large enough to

have gotten considerable statistics, such as to give meaning to both the mean absence

time ⟨T pA(N)⟩ and the average recurrence time T p
R (N). The number of absences and

recurrences is given by r̂ ≫ 1.

⟨T pA(N)⟩ =
1

r̂

r̂∑
w=1

(
T pA(N)

)
w
, (4.18)

T p
R (N) =

[
T pR(N)

]
r̂

r̂
. (4.19)

For the chain and the lattice, the first absence time and integer multiples thereof are

prominent as accumulations point of the absence time samples gathered and shown

sorted by size in Figs.4.9&4.10(b). The absence times in the two cases appear identical.
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The thresholds for the lattice are (only in subfigure 4.10(b), thus the dashing) chosen

as the square of the typical thresholds,

p̃ = p2. (4.20)

Doing this transforms the lattice data to look exactly like the chain data. The trans-

formation (4.20) is not coincidental. The lattice with edge-length M has the squared

number of bath sites compared to the chain of length M . The equipartition occupa-

tion on the bath, which is the a priori agnostic choice for a long-time state, is M−2 for

the square and M−1 for the chain. Since the square lattice is obtained by the graph

Kronecker product of two chains and no interactions are present, the dynamics should

share general features if fluctuation sizes are rescaled. This rescaling is then exactly

the transformation (4.20). For small thresholds the first absence time is substantially

larger than the mean absence time. This is in general dependent on system size, which

one can see in Figs.4.9-4.12(a). The first absence time for p = 0.1 is shown in red,

together with the mean absence time for different thresholds 0.01 ≤ p ≤ 0.15. There is a

crossover in system size, such that for N < Ncrit(p) we have T pA(N) > ⟨T pA(N)⟩A and for

N > Ncrit the opposite relation is true. The mean absence time scales exponentially for

all the models considered whose initial state effective dimension scales indefinitely. The

Speedwagon setup, whilst providing exponential scaling at intermediate system sizes,

plateaus and takes a more local form. The exponential scaling of the mean absence

time is contextualized best by considering the average recurrence time T p
R (N). Follow-

ing [64], it is possible to derive an exponential scaling of the average recurrence time,

T p
R (N) ∝ exp (pDeff) using spectral properties of the Hamiltonians (which in the single

particle non-disordered case are integrable). Except for the Speedwagon configuration,

the scaling of the effective dimension is maximal, Deff ∝ N . In Fig. 4.9(d) the scaling

collapse does suggest the functional form

T p
R (N) = Q(p) epDeff , (4.21)

where Q(p) is independent of system size N . A similar scaling collapse is achieved in the

lattice, see Fig. 4.10(d). Here however the distinction between the effective dimension

and the graph radius becomes relevant. Even though the effective dimension scales

maximally, the average recurrence time scales with the graph radius R (G(N)) ∝
√
N ,

T p
R (N) = Q(p) epR(G(N)), (4.22)
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Figure 4.9: Statistics of the chain-bath for sizes 6 ≤ N ≤ 300. (a) Average absence
time scaling with bath size, ⟨T p

A(N)⟩, on a logarithmic scale. The red dashed line shows
the first absence time scaling for p = 0.1. For smaller bath sizes, the scaling of the
average absence time is linear in N , changing to an exponential scaling for sufficiently
big N . (b) Sample of absence times obtained up to the maximum time for the bath
size 81, ordered by magnitude. Not all thresholds feature the same number of absence
times, so the indices are normalized ρ ∈ [0, 1]. Even though the first absence time is
linear in system size and thus t ≈ 81 for all thresholds, for small p, most other absences
are a lot smaller. As thresholds get larger, there is a clear plateau at the first absence
time, and a second plateau forms at double this value. (c) Average recurrence time,
using the last recurrence time found for the time evolution. The number of recurrences
is large, r̂ ≫ 1. The scaling is exactly exponential. (d) Scaling the data in (c) with
the thresholds p leads to a scaling collapse, suggesting the functional form (4.21). This

exactly retrieves the scaling found in [64].

Even though the Speedwagon configuration does not feature persistent scaling in either

the mean absence nor the average recurrence time, Fig. 4.11 shows that the plateau-

height scales exponentially with the threshold p,

T p
R (N) ∝ exp (p) (4.23)

Given that Figs.4.9-4.12(c) support this exponential scaling, the mean absence time

following a similarly universal scaling is not surprising.

4.5 Disordered on-site energies

The previous sections considered deterministic setups that modify both the graph ge-

ometry and the tunneling coefficients. Varying on-site energies has, in the deterministic

case, not been met with success in finding superlinear scaling in the first absence time, so

instead this section highlights results found for on-site energies randomly drawn from a
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Figure 4.10: Statistics of the square lattice bath for sizes 22 ≤ N ≤ 402. (a) Average
absence time scaling with bath size, ⟨T p

A(N)⟩, on a logarithmic scale. The red dashed
line shows the first absence time scaling for p = 0.1. For smaller bath sizes, the scaling
of the average absence time is linear in N , changing to an exponential scaling for
sufficiently big N . (b) Sample of absence times obtained up to the maximum time
for the bath size 812, ordered by magnitude. Instead of the typical thresholds, the
thresholds here are chosen as p̃ = p2, indicated by the dashing. The absence times
exactly follow the form found in the chain of length 81, see Fig. 4.9(b). The adjustment
of the thresholds (4.20) reflects the change in bath size from the chain to the lattice. A
plateau is visible at the first absence time, although for small thresholds the majority
of absence times is lower. More plateaus at integer multiples emerge. (c) Average
recurrence time, using the last recurrence time found for the time evolution. The
number of recurrences is large, r̂ ≫ 1. (d) Scaling the data in (c) with the thresholds
p leads to a scaling collapse, suggesting the functional form (4.22). In contrast to the
results from [64], the scaling is dictated by the graph radius R (G(N)) ∝

√
N instead

of the effective dimension Deff ∝ N .

probability distribution P , which is taken to be a gaussian with mean 1 and variance σω.

The on-site energies are independently, identically distributed (i.i.d.). We consider two

cases that, in the deterministic setups, we were able to relate directly to one another.

The chain and the square lattice. It is well known that the disorder will localize the

eigenfunctions of the single-particle Hamiltonian in real space. This in turn limits the

scaling of the effective dimension of our initial state, which measures the support of the

initial state in energy eigenstates. From the earlier results, we understand that scaling

effective dimension is a prerequisite for scaling absence time, so we expect the scaling

of the absence time to depend on σω, potentially in a nontrivial way. For limσω→0 we

retrieve the deterministic result, and should do so smoothly. For limσω→∞ the position

basis approaches the energy eigenbasis and there is no nontrivial time-evolution. The

absence time does not scale at all. The results in this section highlight whether in-

termediate disorder strengths non-trivially interpolate between these limiting cases. In

contrast to the deterministic models, disorder requires a statistical analysis of the first
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Figure 4.11: Statistics of the speedwagon-bath for sizes 6 ≤ N ≤ 300. (a) Average
absence time scaling with bath size, ⟨T p

A(N)⟩, on a logarithmic scale. The red dashed
line shows the first absence time scaling for p = 0.1. There is a clear transition from
an exponential into a stagnant regime, in accordance with both the effective dimension
and the first absence time. (b) Sample of absence times obtained up to the maximum
time for the bath size 81, ordered by magnitude. For many thresholds the first absence
time is far above the median, and a clear plateau is visible at the first absence time
and double its value. (c) Average recurrence time, using the last recurrence time found
for the time evolution. The number of recurrences is large, r̂ ≫ 1. The behaviour is
similar to the mean absence time, with a crossover from exponential to a plateau. (d)
Scaling of the plateau of average recurrence times as a function of the thresholds. It is

exponential, (4.23).

absence time. We write the mean first absence time here similar to the mean absence

time in the deterministic models,

⟨T pA(N)⟩Ω =
1

|Ω|

|Ω|∑
i=1

[
T pA(N)

]
i
, (4.24)

where the subscript i refers to the i-th disorder instantiation of the Hamiltonian. Ac-

quiring statistics of all the absences, as done above for the deterministic models, would

require two averages - one over the samples and one over the different absences. We will

not investigate this, but instead rely on the possibility of the disorder itself to do both

of these tasks in one.

4.5.1 The chain

On the disordered chain all the aforementioned regimes, the ballistic, the localized and

the intermediate one, are present, albeit not for a single threshold p. In Fig. 4.13(a),

with σω = 0.1, the low thresholds p = 0.01 are fully local and do not scale at all
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Figure 4.12: Statistics of the long-range coupling bath for sizes 6 ≤ N ≤ 300. (a)
Average absence time scaling with bath size, ⟨T p

A(N)⟩, on a logarithmic scale. The red
dashed line shows the first absence time scaling for p = 0.1. Small bath sizes feature
quadratic scaling (just as the first absence time), which then goes over to exponential
scaling. (b) Sample of absence times obtained up to the maximum time for the bath
size 81, ordered by magnitude. The plateaus for integer multiples of the first absence
time are visible, but most absence times are much smaller than this. (c) Average
recurrence time, using the last recurrence time found for the time evolution. The
number of recurrences is large, r̂ ≫ 1. The intermediate exponential scaling diminishes
to a quadratic one. (d) Recurrence times as they occur during the time evolution.
Early times feature a lot more recurrences. This reflects that good statistics for large

thresholds at larger bath sizes require longer time-evolution.

with bath size. Slightly larger p shows a reduced ballistic scaling on all bath sizes.

Increasing p further shows the ballistic result up to intermediate bath sizes. Beyond

this, the excitation does not only explore the full spatial range of the disordered chain,

but does so very nontrivially. The mean first absence time scales exponentially with

bath size. All the above is corroborated by Fig. 4.13(b), where the first absence times

of the 1000 different disorder instantiations for the chain of size N = 150 are shown in

ascending order. At T ≈ 150, the ballistic value, a strong plateau is shown for many

thresholds p. The lowest two thresholds rarely or never show absence times of this order.

This is similar in the absence times analyzed in the deterministic models, but since the

mean first absence time does not scale with bath size either, we conclude that w.r.t.

these thresholds the dynamics are localized. Larger thresholds have increasingly smaller

plateaus at the ballistic absence time, exceeding it in the majority. For Fig. 4.13(c)&(d),

the same considerations are shown for σω = 0.05. Naturally, the deterministic region

is a lot larger, but even here the smallest threshold is localized, and larger thresholds

show exponential onset eventually. This exponential onset is a lot steeper. From the

disordered case we can deduce that, with respect to the language of the absence time,

localization is a quality connected to the pair (Deff , p) of an initial state |ϕ⟩. Depending
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Figure 4.13: Absence times for chains with i.i.d. on-site energies with mean 1 and
variance σω. For all sizes 1000 disorder instantiations were taken and the first absence
time computed. Their disorder average (4.24), is shown in (a) and (c). (a) σω = 0.1.
Three regimes are visible. For very small p, the mean first absence time is smaller than
in the deterministic case, signaling that the excitation does not explore the full system.
For other p and at smaller system sizes, the scaling agrees with the deterministic one.
For larger system sizes, some thresholds surpass the deterministic scaling and become
exponential, ∝ exp (Np). (b) σω = 0.05. The same three regimes are visible, although
the exponential regime is not yet fully featured at the system sizes investigated. (c)
σω = 0.1, N = 150. For small p, the absence-times are all local, as they lie below
the ballistic regime. For intermediate p a large ballistic plateau is visible, that shrinks
upon increasing p. (d) σω = 0.05, N = 150. For all except the smallest p we see strong
clustering at the ballistic value. The disorder is not strong enough to overcome the

ballistic features at the length-scale ∝ N = 150.

on threshold p, we’d consider a state |ϕ⟩ localized or not, expanding the conventional

picture of localization which is dominated by the effective dimension Deff .

4.5.2 The square

For the square, we see exponential scaling in the mean first absence time from Fig. 4.14(a)&(c).

In Fig. 4.14(a), the onset of the ballistic ∝
√
N scaling is still visible for smaller squares,

indicating that the exponential scaling does not immediately take over for arbitrarily

small, nonzero σω. In Fig. 4.14(c), this small onset is further suppressed and resembles

scaling of the mean absence time of the deterministic lattice in Fig. 4.10. Opposed to

the disordered chain, the ballistic regime is less threshold-dependent. The exponential

scaling is also present for the median first absence time (not shown). Drawing parallels

to the results for the deterministic lattice in 4.10 reveals a lot of conceptual overlap.

The mean absence time in the deterministic model corresponds to the mean first ab-

sence time in the disordered model, at least in a functional form. For sufficiently strong
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Figure 4.14: Absence times for square lattices with i.i.d. on-site energies with mean 1
and variance σω. For lattices between sizes 2×2 and 20×20, 2000 disorder instantiations
were taken and the first absence time computed. (a) Mean first absence time (4.24) for
σω = 0.4. The scaling starts as

√
N , similar to the deterministic lattice, but takes an

exponential form ∝ exp (Np). (b) σω = 0.4, N = 162. Despite the average (and the
median) first absence time scaling exponentially, there is a clustering of first absence
times around the ballistic result. (c) σω = 0.6. The initial subexponential regime is
smaller, while the exponential regime scales slightly less strong. (d) σω = 0.6, N = 162.
No clustering is visible at all. The ballistic features of the model have vanished even

on the level of the first absence time.

disorder, the spatial structure of the lattice loses its dominance in determining the ini-

tial behaviour of the absence time, and instead the spectral form of the disorder takes

over, bridging the gap between ⟨T pA(N)⟩Ω and ⟨T pA(N)⟩A. This is further corroborated

when we arrange the first absence times of the disordered model in the same ascending

order as the absence times of the deterministic model, seen in Fig. 4.14(b)&(d). For

the disordered model, the different first absence times stand in relation to one another

only through the impact of the disorder and the underlying spatial structure. The ab-

sence times shown in Fig. 4.14(b)&(d) do not belong to the same orbit, but are the

first absence times of different disorder instantiations on a lattice of fixed size 16 × 16.

The structure is understood from the zero disorder limit, σω = 0. In such a case, the

different instantiations are the same and we get a bunch of horizontal lines at a height

∝
√
N . For sufficiently weak disorder, this clustering absence time is still observed, see

Fig. 4.14(b), but eventually vanishes for increasing disorder strength. The difference

to the deterministic model is clear from the missing clustering absence times at mul-

tiples of the lattice radius,
√
N . This indicates that the disorder is strong enough to

(on average) override the ballistic dynamics into diffusive ones on length-scales smaller

than 4
√
N . As such, we expect to recover the second plateau both for smaller σω and

smaller N . From this in turn it is clear that, when we are only concerned with the first
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Figure 4.15: Absence times for square lattices with i.i.d. on-site energies with mean
1 and variance σω = 0.6. In contrast to Fig. 4.14, where the particle starts out always
in the same corner, the particle is placed always on the site with the lowest (a)&(c) or
the median (b)&(d) on-site energy. For lattices between sizes 2 × 2 and 12 × 12, 500
disorder instantiations were taken, for 13×13 up to 20×20, 1000 disorder instantations
were taken. The disorder average of their first absence times, (4.24), is shown in (a)
and (b). For both cases (a) and (b), the scaling at sufficiently large sizes is exponential,
although placing the particle systematically on the site with the lowest ωi suppresses
the scaling. The ordered first absence times for the different disorder instantiations

show no stark qualitative difference between (c) (lowest) and (d) (median).

absence time, the necessary disorder for superlinear (and as these results suggest even

exponential) scaling decays as N grows. When implementing this care should be taken

to have physical arguments for why this does not clash with the notion of extensibility of

the bath, as for every change in system size the whole bath, even the smaller subgraph

denoting the bath of a smaller size, is changed. This is similar to the variable thresholds

used in the long-range coupling models in section 4.3.2. Even there it might be argued

that the whole bath experiences a change due to additional long-range couplings being

introduced. The difference there is that, due to not using the Kac normalization, the

smaller bath is still present as a subgraph in the total bath.

4.5.3 Spectral sampling

In the deterministic models considered for different graphs and tunnelling-strengths,

the initial state chosen as a localized particle on one (fixed) site (site 0, the system)

has a trivial extension to larger system sizes. In probabilistic models, the choice of

initial site emerges as its own hyperparameter, both regarding system size scaling and

even regarding the disorder averaging (??) for a fixed system size. When sampling the

different disorder instantiations for the data shown in Fig. 4.14, the initial particle is
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always placed onto the site in one corner of the square. Depending on whether the

random on-site energy on this site is high or low, this state has support on different

parts of the spectrum. Averaging over all the disorder instantiations in this way averages

over the spectrum of the random Hamiltonians (which, despite being different for each

instantiation, have universal properties as random matrices). In order to investigate

whether this averaging procedure is the cause of the self-averaging behaviour of the

mean first absence time as shown in Fig. 4.14, we redo the setup, but this time place

the initial particle on a site with a specific quality. In one case, the particle is always

put on the site with the lowest on-site energy. In the other case, the particle is put

on the site with the median on-site energy. The results for these setups are shown in

Fig. 4.15. For both cases we recover exponential scaling of the mean first absence time,

although it is a lot weaker when the particle is on the site with the lowest energy. The

ordered first absence times show a similar behaviour, but as in Fig. 4.14(d), there is no

pronounced plateau at the lattice radius. From this we conclude that the scaling itself is

independent of the accidental spectral sampling of the particle sitting at different points

in the spectrum, but rather from the overall spectral sampling by the different disorder

instantiations. Finite size effects in random matrices manifest predominantly at the

edges of the spectrum, so the weakening of the scaling at the bottom of the spectrum is

expected. That the exponential scaling itself persists is however interesting.

4.6 Conclusion

The single-particle case is an instructive way to understand the mechanisms at play

when faced with the question of relocalization of information in a quantum system. The

different witnesses for relocalization are in some ways interchangeable and the problem

can be tackled head-on. Via the studied setups we have shown that local geometry,

spatial extent and partial reflections are the dominant contributors to different scalings

of the first absence time. Furthermore, we confirmed that the persistent scaling of the

effective dimension is a necessary criterion for persistent scaling of the first absence time,

as shown by the Speedwagon construction. It comes as a surprise however, that it is not

a sufficient criterion, which in turn can be seen in the algebraic construction, even in a

local setup. Changing over to the absence or recurrence time statistics, results obtained

in the literature via spectral considerations have been shown to hold in our setups and

unify their behaviour, resulting in a persistent exponential scaling with the threshold p

and the effective dimension Deff . The maximal persistent nonlinear scaling was found in

the algebraic long-range model, where a quadratic scaling with system size was observed.

Parallels to the continuous space free theory highlighted the difference to the discrete

space setup, which originally served as our baseline for suspecting linear scaling in bath
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size. Introducing disorder into certain setups revealed that the spectral results, obtained

in the clean systems only for the full absence/recurrence time statistics, appear already

in the first absence time by virtue of self-averaging. It seems promising to conclude that

the spectral nature of the mean first absence time in disordered systems washes out the

geometry dependent behaviour of the first absence time, bridging the gap immediately

to the results found via thermalization arguments. We have ruled out one mechanism of

self-averaging by forcing the particle (and with it the wavefunction) into different parts

of the spectrum.

4.7 Outlook

Two restrictions were set for the single-particle setup that, if lifted, could provide the

basis for ongoing investigations. The first of which was the requirement that the exten-

sion of the baths works in such a way that small baths are marginals of bigger baths.

This way, one could genuinely think of extending a bath in a way of appending more

sites without changing the local structure of the already present bath. This disabled

Kac normalization and for example restricted the long-range coupling model from going

into regimes where the unnormalized local energy density diverges in the thermody-

namic limit. This is easily fixed, although the fundamental motivation of bath size

scaling is compromised. Statistics at fixed bath sizes are still available, but as has been

shown, they can already be inferred via spectral considerations without attention to the

microscopic details of the Hamiltonian at hand. The second restriction concerns the

time-independence of the Hamiltonian. A non-periodic drive trivializes the problem, as

the system can, after injecting the excitation into the bath, be decoupled and recurrence

suppressed forever. For periodic drives, the problem extends in complexity and this

is a viable route for further investigations. This might be interesting to combine with

experimental setups that motivate such a procedure, possibly something connected with

gate-based quantum computing techniques. As a potential first step, it might prove

useful to investigate further the disordered case that was lightly touched upon for two

geometries. It would be interesting to see whether the calculation of both averages, one

over the different disorder instantiations, one over the later occurring absences within

the same orbit, lead to the same result. Acquiring the statistics for the disordered square

is time consuming due to the exponential scaling of the first absence time, which is the

main difficulty in this analysis. The results found already indicate that the spectral

behaviour is retrieved directly.
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5
Recurrence dynamics in many-body quantum

systems

In this chapter we will expand what has been investigated in the single-particle chapter 4

to the many-body setup. This comes with numerical and theoretical opportunities. On

the numerical side the Hilbert-space scaling is superlinear in the system size. Whilst this

seems beneficial on the level the scaling of the effective dimension, the computational

resources prohibit us from investigating large system sizes. Regarding the theory, in

the many-body system there are many more quantities whose recurrence can be inves-

tigated. Not all of those will show relevant scaling in the recurrence and absence time.

We will focus on the mutual information and its recurrence. The mutual information

is a relevant resource for quantum computation, as the sharing and manipulation of in-

formation between qubits is the basis of any computing algorithm. In conjunction, this

delocalized information can straightforwardly be relocalized by means of a specific mea-

surement protocol. This way, even if recurrence happens to be exponentially far away,

the information can be retrieved by means of a protocol. The scrambled information is

delocalized, but not lost.

64
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5.1 Setup

The many-body case changes the bath setup from that of the non-interacting/single-

particle case in two important ways. First, we can break the quasiparticle picture

by including strong interactions without involved schemes for altering the tunnelling

or on-site terms. Second, the Hilbert space dimension of a many-body system scales

superlinearly with the system size. From the single-particle results in chapter 4, we

know that superlinear scaling of the effective dimension Deff is not a sufficient criterion

for superlinear absence time scaling, but it is necessary. The many-body system we

consider is the spin-12 XXZ model. The Hamiltonian of this model is written as

HXXZ = J

N−1∑
i=1

(XiXi+1 + YiYi+1 + ∆ZiZi+1) , (5.1)

where X, Y , and Z are the Pauli matrices, the interaction strength is given by ∆ and

J is taken to be the unit of energy. This Hamiltonian conserves magnetization in the

Z direction, which mirrors the particle number conservation of the single-particle setup.

Spatial magnetization dynamics are enabled via the hopping term J , whilst magnetiza-

tion dependent dephasing is related to ∆. For ∆ = 0, no dephasing is present and the

system consists of non-interacting spins which in certain geometries can be mapped to

spinless Fermions using a Jordan-Wigner transformation. For J = 0, the model does

not feature magnetization transport and only dephasing occurs. As an additional bene-

fit, the Hamiltonian is diagonal in the computational basis for J = 0, even though the

closed form solution for the eigenenergies is difficult to gauge. The integrability of the

many-body model is not of central importance. This might come surprising, especially

considering results by [64] and general thermalization work. A simple adjustment to the

spin-12 XXZ chain can be made in order to induce non-integrability, defined by the level

spacing statistics of the model displaying Wigner-Dyson statistics. Introducing a local

Zk term on a single site k that is not on the boundary creates Wigner-Dyson statistics

[37]. This local impurity does not change the scaling of the first absence time, which is

strongly tied to space-resolved dynamics, as opposed to spectral considerations.

As explained in section 2.3.4, using the entanglement entropy between system and bath,

which in itself measures separability of the system from the bath, does not reflect what

we are out to investigate. Along an orbit of the time-evolution, there may be different

states |ψσ⟩ that almost decompose into pure states on system and bath, although the

information injected via the system has not relocalized in it at all. To make this un-

ambiguous, we entangle our system with a reference spin, labelled R throughout this

chapter, and use the entanglement of system-reference as our measure of having relocal-

ized the initial information. The initial state between the probe and the reference is a
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Figure 5.1: Sketch of the many-body setup. The probe spin A is initialized in an Bell
(or EPR) pair with a reference spin R, which otherwise is not involved in the dynamics.
The bath D is connected to the probe spin and the dynamics are governed by the XXZ

Hamiltonian (5.1).

Bell state,

|ψinitRA ⟩ =
1√
2

(|0⟩|0⟩ + |1⟩|1⟩) . (5.2)

Unless specified otherwise, the state (5.2) is always the initial state of the subsystem

of reference and probe. The reference R is not connected to the rest of the setup and

therefore does not undergo time-evolution. This setup is sketched in Fig. 5.1. The

mutual information between the reference R and the probe A determines the amount

of localization of the initial information on the probe. The reference can also be used

to track the location of the information in the many-body bath by virtue of the mutual

information I(R; d), where d is a collection of sites in the bath, see 2.3.4. As opposed

to the single-particle regime, the bath in the many-body setup does not have an innate

unique configuration. Pointing back to our efforts to make the bath size scaling faithful,

the initial states of the baths should be chosen in a way that makes their extension to or

marginalization from larger baths well-defined. For baths in non-stationary initial states

with constant magnetization density, we consider the Néel state, given by alternating

spin-orientations in the z-direction, e,g. |0101010⟩, since it does not inherently separate

the bath into different spatial domains. On a computational level this is beneficial since

it locks the dynamics into a sector of constant magnetization, reducing the Hilbert space

scaling to a slower growing exponential. One can also initialize the bath into a stationary

state, i.e. an energy eigenstate, typically the ground state. The latter is equivalent to a

local quench in the coupling between A and sites in D, with the energy band in which

the initial state lies being of a width of order J01. Starting in the Néel state amounts to

a global quench (if the Néel state is not an eigenstate) and the initial state is spread over

a much bigger band of energies. In terms of the effective dimension, superlinear scaling
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with the system size N is not expected for the local quenches, in contrast to the global

quenches. In chapter 4 we have seen that also a linear effective dimension can result in

superlinear absence time scaling, but the potential benefit of the many-body regime has

to be found elsewhere in this case. The early-time behaviour of the initial information

on A through the bath after a local quench is seen in Fig. 5.2. Here the initial state on

the bath is the lowest energy eigenstate in the 2-particle sector of the Hamiltonian (5.1).

For weak interaction, ∆ = 0.1 in Fig. 5.2(a), the information strongly relocalizes back

onto A in a time ∝ N and integer multiples thereof, a clear indication of ballistic, weakly

dispersive propagation. For strong interaction, ∆ = 1 in Fig. 5.2(c), this behaviour is

strongly suppressed, suggesting that even the local quench might produce superlinear

scaling in the absence time. Looking at the probability distribution function of the

recurrences of I(R;A), we find that for increasing system size it becomes log-normal

distributed, as is seen in Fig. 5.2(b)&(d). This behaviour emerges for weak and strong

interactions, and is also seen for global quenches from the bath in the Néel state.

As seen in Fig. 5.3, the ballistic propagation is still visible at weak interactions, getting

smeared out for increasing interaction strength. This is quantified in Fig. 5.4, where the

absence time scales linearly for weak interactions. Strong interactions on the other hand

are not as simply explained as hoped. The absence time quickly grows very large for

increasing bath size. The scaling is superlinear, but at the same time not clearly dictated

by a functional form. The raggedness makes interpretability difficult, with larger bath

sizes not featuring absence times that lie within the regions expected from extrapolating

the results from smaller sizes. We can confidently say that absence times are very large

very quickly. However, the scaling is unclear. This might mean that recurrence in the

sense defined by us might not be a useful quantity. Maybe the mutual information is

not suitable to such an investigation. Maybe the absence time is not a useful concept.

5.2 Extraction of information

The benefit of the closed system quantum treatment is the fact that whilst the informa-

tion can become delocalized, it will never vanish. With the aim of pushing the recurrence

scaling as far as possible, a quantity should be chosen that does not undergo macroscopic

recurrence in the local regime but still retains some meaningful interpretability on a phys-

ical level. Before recurrence is found, we expect the local information to be distributed

amongst the participating degrees of freedom. This distribution is the main investiga-

tion of research into quantum information scrambling. While thermalization describes

how a local region loses its information, scrambling extends this to describe where this

information is lost to in the system [38, 73, 115, 116]. As such, scrambling is strongly
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Figure 5.2: Instructive behaviour of the mutual information I(R;A) under dynamics
and an investigation on the number of recurrences in I(R;A) over a long time as a
function of threshold p. The initial state of the bath is the lowest energy eigenstate
of the 2-particle sector of the bath Hamiltonian and the dynamics are calculated via
exact diagonalization in the appropriate magnetization sectors. Reference and probe
are set up in the Bell pair as in (5.2). Mutual information dynamics for different system
sizes with ∆ = 0.1 (a) and ∆ = 1 (c) show that the strong ballistics from the non-
interacting regime survive for weak interaction and get more and more suppressed for
strong interaction. For both weak (b) and strong (d) interactions, for increasing system
sizes the probability distribution functions of recurrences of I(R;A) converges to the

log-normal distribution w.r.t. thresholds p.

Figure 5.3: Dynamics of the mutual information I(R; d) between the reference site
R and individual bath-sites d. The initial state of the bath is the Néel state, whereas
probe and reference are in a Bell pair as (5.2). The dynamics are calculated via exact
diagonalization in the appropriate magnetization sectors. (a) Weak interactions ∆ = 0.1
show the non-dispersive propagation clearly, with bunching at the edges of the chain.
This bunching is still present in the strongly interacting bath ∆ = 1 (b), even though

the interactions successfully spread the information in the whole bath.
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Figure 5.4: Absence time scaling with system size for different thresholds p in the
XXZ model. The initial state of the system is |Ψ⟩ = |ψinit

RA ⟩ |Neel⟩, where |ψinit
RA ⟩ is

given in (5.2). Dynamics are calculated via exact diagonalization in the appropriate
magnetization sectors. (a) ∆ = 0.1. For weak interaction we recover the single-particle
ballistic behaviour in T p

A(N). The effective dimension of the initial state scales linearly
with the bath size. (b) ∆ = 1. Strong interaction changes the absence time scaling.
For low p the local recurrences are stronger than in the weakly interacting model. For
higher p this changes drastically and the absence time shows exponential scaling in
bath size. This scaling is very ragged, and for higher system sizes data-points were not
able to be obtained and did not occur on scales as expected from extrapolation of the

previous data.

connected with the observation of light-cones via which delocalization is measured. For

recurrence the light-cones are of no relevance, instead we consider the behaviour of the

relocalization to the local degrees of freedom, which by nature are confined within the

light-cones. Distribution of information as investigated by scrambling is highly relevant

in the context of quantum information theory. Imagining the general case of several local

readouts within a quantum system that want to share information, scrambling dynamics

can generate overlap between these disjoint readouts, enabling sophisticated protocols

that relocalize the information at any of them [51, 52, 117].

5.2.1 Teleportation protocol

Here we adapt the mechanisms of the information-readout described in [52] and expanded

upon in the instructional review of Xu and Swingle [73] to our model. Consider a system

of N qubits, the first of which we denote as the probe A, and the remaining N − 1 as

the bath D. The probe is the location of the initial information held by Alice, which by

means of some evolution U(t) is delocalized among the probe and the bath. As such,
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Figure 5.5: The extended setup in the many-body case for enabling information
teleportation. The unprimed sites R, A and D constitute the original system (red). R
is the reference qubit that is prepared in an EPR-pair with the probe A, whereas D
is the bath. Each site in the bath D is prepared in an EPR-pair with its partner site
in another bath, D′. The primed reference R′ and probe A′ are also in an EPR-pair.
Apart from initially prepared entanglement, physical connectivity is marked by solid
black lines. Thus, both R and R′ are unaffected by time-evolution, and the evolution
on A∪D is separable from the evolution on A′ ∪D′. This setup is called teleportation
because despite this lack of information transfer due to dynamics it enables transfer of

information between R ∪A to R ∪R′.

the initial state is a product state between A and D

ρ = ρA ⊗ ρD. (5.3)

One approach might be to track the entanglement between A and D, but this essen-

tially only tracks the separability of the state without assessing whether the original

information returned to A. The setup is expanded by introducing a reference qubit R,

that is not part of any non-trivial time-evolution, but is initially set up into a maximally

entangled state with A. For qubits, we chose one of the EPR-pairs as the initial state

on R ∪A
|ψRA⟩ =

1√
2

(|0⟩|0⟩ + |1⟩|1⟩) . (5.4)

The mutual information I(R,A) can resolve whether the information initialized on A is

still there. Starting the system at t = 0 in the state

|Ψ⟩ = |ψRA⟩ |ϕ⟩, (5.5)

where |ψRA⟩ is an EPR-pair as in (5.4), we obtain I(R,A) = 2 log(2). During time-

evolution, we can track the information throughout regions Q in the system by calcu-

lating I(R,Q). This leads back into being able to observe light-cones of information
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propagation. In any case, the mutual information I(R,A) becomes the quantity of in-

terest in our many-body setup. The information initially held by Alice we would like to

transfer to Bob, without giving Bob access to the whole of the N sites, as the protocol

for recovery could then simply be the unravelling of the evolution by U † and measuring

at A itself. How to achieve this is shown in Fig. 5.5. Instead, a copy of the setup is

produced. An additional N + 1 qubits, the first two of which are the reference R′, the

site on which we want to localize the information for Bob, A′, and the remaining N − 1,

called D′ (referred to as memory in [73]). Each qubit in D is prepared in an EPR-pair

with its copy in D′. The initial state on the bath D is thus the infinite temperature

state, purified by including the primed bath D′. The initial state of both baths together

is written as

ψDD′ =
⊗
k<N

|EPR⟩kk′ . (5.6)

Reference and probe qubits, R and A, are prepared as (5.4), just as the primed qubits.

The primed setup is to be understood similar to ancillary qubits used for enabling

protocols in quantum information theory. The original and the primed setup dynamics

are fully independent. Due to monogamy, this setup leaves no room for additional

entanglement. At the same time, the dynamics will entangle system RA with bath D

and similar for the primed qubits. The protocol now has the following steps, assuming

the Hamiltonian is real (see Fig. 5.5b)):

1. Evolve the original setup under U(t) = exp (−iHt) and the primed setup under

U †(t).

2. After time t, project the reduced state on DD′ back onto the initial state on DD′.

3. Measure the mutual information between RR′.

The first part of the protocol is time-evolution in the initial setup. The primed (or

decoding) setup is evolving ‘backwards in time’, which for real Hamiltonians is equiv-

alent to changing signs of all energies. Projecting the DD′ state at time t back to its

initial state (5.6) breaks all entanglement to R, A, R′ and A′. A mutual information

measurement now reveals that the system and its copy, RA and R′A′, are entangled.

Following the protocol as described will entangle R and R′, and also A and A′. Instead

of the last step being a mutual information measurement, one can also project RR′ (or

AA′) into an EPR pair. The success probability of going through the whole protocol and

ending up with an EPR pair between RR′ is lower bounded by the squared dimension

of the Hilbert-space of site A, Psuccess ≥ 1
d2A

[52]. In this form, the teleportation protocol

makes use of scrambling dynamics, allowing us to transfer the state to the new copied

system via the “bath” atoms. In this sense, while mutual information shows us how the
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information is distributed, the teleportation protocol also provides us a mechanism to

extract the information from the bath degrees of freedom. This brings us full circle, from

starting out with systems we wish to fully distribute the information as long as possible

among the bath degrees of freedom, just as we would expect an open system to behave.

At the same time, the unitarity of the dynamics allows undoing this distribution and

relocalizes the information.

5.2.2 “Weighing” the bath by measuring magnetization

Teleportation is not the only way of deciding on the initial information input localized on

the probe A. For the many-body model we investigate a XXZ spin-12 model in chapter

5. The procedure to extract the initial information in A is presented here in view of this

model. The total magnetization ⟨Sz⟩ =
∑

i∈G(N)⟨Szi ⟩ of an XXZ model is conserved.

With an initial product structure between bath and probe, where both are written in

eigenstates of Sz, we can split ⟨Sz⟩ = ⟨SzA⟩+ ⟨SzD⟩, and via repeated projective measure-

ments on the bath D we can deduce the initial magnetization on A. This idea works for

any quantity conserved in this way by the total dynamics. The probe site A can host

at most a single quantum of magnetization. Since the full magnetization is conserved,

the magnetization of the bath can fluctuate by ±1. Measuring the collective magneti-

zation of the bath projects it into one of three subspaces with different magnetizations,

MD ∈ {M0
D,M

0
D − 1,M0

D + 1}, where MD denotes the magnetization of the bath after

the projection and M0
D the initial magnetization of the bath. Each of these results is

associated with its own probability. If we set up the initial state of the reference and

probe as

|ψRA⟩ =
1√

a2 + b2
(a|11⟩ + b|00⟩) , (5.7)

we can repeat projective measurements until a conclusive measurement, MD = M0
D± 1,

is made. The probabilities for these turns out as

lim
n→∞

= Pn1 =
a2

a2 + b2
,

lim
n→∞

= Pn0 =
b2

a2 + b2
.

(5.8)

This result shows that, exploiting a conserved quantum number (the magnetization) en-

ables experimental setups in which the initial amplitudes of the system can be evaluated

via the bath, irrespective of the nature of dynamics occurring in the bath, as long as

they conserve the quantum number. For finite repetitions n, the growth of Pn0,1 is highly

dependent on the internal dynamics and convergence towards (5.8) is not symmetric,

i.e. Pn0 /P
n
1 ̸= const. If the bath is in a state |ψ0

D⟩ with definite magnetization M0
D, the



Recurrence - Many-Body - Results 73

Figure 5.6: Weighing the chain at different times ti with i ∈ N. The limiting proba-
bilities after infinite time and as many measurements as necessary to get a conclusive
result are given by (5.8). For a finite number q of measurements, the probabilities for
the different outcomes can be found by truncating the sketch after tq and sum the prob-
abilities of all the different terminal measurements. All the red (blue) stars for t ≤ tq
denote P q

0 (P q
1 ), and the two black dots at tq denotes 1 − P q

0 − P q
1 , the probability of

the measurement being not yet conclusive.

dynamics of the full state |Ψ⟩ = |ψRA⟩ |ψ0
D⟩ separate,

|Ψ(t)⟩ =
1√

a2 + b2
(|1⟩|ψup(t)⟩ + |0⟩|ψdown(t)⟩) . (5.9)

The projection of TrA (|ψup(t)⟩) into the different magnetization sectors can only result in

{M0
D,M

0
D+1}, whereas the projection for TrA (|ψdown(t)⟩) can only produce {M0

D,M
0
D−

1}. That the conclusive results originate from disjoint dynamics illustrates the simple

shape of the result in (5.8). Fig. 5.6 illustrates a sketch of the previously said. The top

and bottom row are the disjoint dynamics, which at different times ti with i ∈ N are

subject to the projective measurement. Conclusive results are found when the projection

leads to M0
D ± 1 (the red and blue stars). Inconclusive results continue the monitoring

at later times.

5.3 Weighing the chain

Here we show and discuss the numerical results following up the ideas laid out in section

5.2. Fig. 5.6 shows the possible avenues the projective measurement on the bath can

achieve. With the initial state on RA being a Bell-pair like (5.2), there are two disjoint

dynamics of the form (5.9). The projective measurement can either be indecisive and

return the original magnetization M0
D of the bath or it is conclusive and returns M0

D±1,

at which point subsequent measurements will either be inconclusive or return the same

conclusive result. The statistics on repeatedly setting up the same initial state and per-

forming this measurement sequence samples the probabilities for the different outcomes

and we can calculate the cumulative distribution function (CDF) for the measurement
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Figure 5.7: Weighing the bath in order to infer the initial state of the probe. Over a
series of projective measurements at times separated by δt, the cumulative probability
function (CDF) for each measurement outcome can be deduced. The bath initial state
is the Néel state |0101010101⟩, reference and probe are in a Bell state (5.2) and the
interaction is strong ∆ = 1. Dynamics are calculated via exact diagonalization. Dif-
ferent relaxations to the limiting values are explained by different dynamics in the two
sectors as explained in the text. (a) For a = b, the limiting values (5.8) are equal, 0.5.
The CDFs for {M0

D − 1,M0
D + 1} at measurement times are given by the caltrops and

triangles, respectively, and the data between the measurement times are connected by
lines. 1−CDF (M0

D + 1)−CDF (M0
D−1) is given by the plusses. The different colours

correspond to different evolution-times δt. (b) Evolution towards the limiting values
for a ̸= b.

outcomes after q measurements. The result is shown in Fig. 5.7. The different relax-

ation speeds for the two conclusive measurements is due to the different dynamics of

the sectors. This is easily seen when we look at the Néel state for the initial state in

the bath D, |ψD⟩ = |010101 · · · ⟩. With the initial Bell-pair on RA we get the full initial

state as

|Ψ⟩ =
1√

a2 + b2
(|00⟩ |010101 · · · ⟩ + |11⟩ |010101 · · · ⟩) . (5.10)

The dynamics of the bath-magnetization in the first part in (5.10) are slowed down

because the magnetization on A is blocked from entering the bath immediately by the

magnetization on the first bath-site. The limiting values of the CDF are given by (5.8)

and shown as dashed horizontal lines in Fig. 5.7. This blocking is also visible at early

times in 5.8, where Pn=1
0 (t1) rises delayed in comparison to Pn=1

1 (t1). Despite the initial

bath state being the Néel state |0101010101⟩, the ballistic behaviour of the dynamics is

visible through the projective measurements for ∆ = 0. Depending on the free evolution

time before the first projective measurement, the probabilities Pn=1
0,1 experience strong

peaks at times proportional to the chain length, see 5.8(a). For strong interaction ∆ = 1,

this sensitivity to the free evolution time between measurements is smoothened out, see

5.8(b).
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Figure 5.8: The ballistic dynamics on the bath can be highlighted by tuning the time
δt in-between measurements. The first measurement occurs at t1 = δt. The initial state
and interaction strength are the same as in Fig. 5.7. Dynamics are calculated via exact
diagonalization. (a) For ∆ = 0, the ballistics of the bath-dynamics are visible by the
fluctuations in the projection probabilities at the first measurement. Clear peaks (dips)
in probability are visible at select t1. (b) ∆ = 1. The peaks (dips) visible in (a) are
absent and the early stages of the projective measurement sequence are less dependent

on the free evolution time between measurements.

5.4 Teleportation

The teleportation protocol outlined in section 5.2 and sketched in Fig. 5.5 is used to

follow up the dynamics with which we successfully delocalize the information from A

into the bath D, see Fig. 5.4. The mutual information I(R; d) allows us to keep track

of the information within the bath as seen in Fig. 5.4, where the interaction strength

again disperses the wave-packet.

5.5 Conclusion

Local interactions in the many-body system can indeed produce scaling in the absence

time that is superlinear. This works even though the XXZ chain is not chaotic and

transport itself is ballistic. For system sizes in which the numerical exact diagonalization

is feasible, the timescales of the first recurrence is so large that it is virtually inattainable

and lies far beyond the coherence time of current experimentally available setups. This

is not to say that for these sizes the finite size effects of the bath only come into effect

at these times, but rather that these finite size effects only conspire to a significant

amount of information relocalization at these times. This strong scaling has only been

observed for global quenches, where the bath initial state is not an eigenstate of the

bath. That this is connected to the linear scaling of the effective dimension in this case

is contradicted by the superlinear absence time scaling in the single-particle regime.
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Figure 5.9: Dynamics in the setup for the teleportation protocol for strong interaction
∆ = 1. The bath initial state on DD′ is given by (5.6). Reduced on D, this gives the
infinite temperature state ρD = 1

2D
1. (a) Fidelity of the state on DD′, ρDD′(t), with

its initial state (5.6), calculated as Tr (ρDD′(t) ρDD′(0)). For different bath-sizes this
fidelity is typically at its minimum value 1

4 , the dimension of the Hilbert-space of RA.
The mutual information I(R;R′) directly depends on this fidelity and is maximal if
the fidelity is minimal, i.e. if the baths have maximally strayed from their initial state.
For |D| = 3, I(R;R′) is shown by a dashed line. (b) The dynamics of the mutual
information I(R; d) for d ∈ {1, 2, 3, 4, 5}. On this bath-size, the interaction does not
spread the information effectively on the ballistic timescale. Larger dimensions are

difficult to investigate due to the presence of the copy of the system.

5.6 Outlook

In order to sharpen the heuristics we were able to present in both the single-particle and

the many-body regime, it should prove useful to investigate local quenches in many-body

systems. Since the scaling of the effective dimension is not equivalent to the scaling of the

absence time scaling, this avenue enables more complicated setups with a softer but still

nonlinear Hilbert-space dimension scaling with system size. For initial states such as the

Néel state, the proper scaling of the absence time cannot be deduced by exact numerical

methods, which are necessary if the absence time scales superlinearly. The chaotic setup

of the disordered single-particle case can be extended to the many-body system in a

deterministic fashion. For the XXZ chain, this is as simple as introducing a single on-

site σz operator on a single site that is not at the boundary [118]. This is especially

interesting, as the spectral impact of this seems promising, whilst the spatial impact

might introduce partial reflections and undo the scaling completely. Local quenches also

introduce the possibility for considering statistics such as in the single-particle case.



Solange uns eine absolute Wahrheit nicht zugänglich ist, müssen wir uns

damit begnügen, daß die relativen Wahrheiten einander korrigieren.

Viktor Frankl

6
Information spreading with long-range coupling

models

Information spreading in quantum systems is confined to causal regions. As opposed

to classical physics, where this structure emerges from Lorentz-covariance in special

relativity, this causal structure can be derived without relativity and gives rise to Lieb-

Robinson bounds [119]. These bounds are related to the specifics of the quantum system

at hand as well as the precise dynamics this system undergoes [87, 120–122]. The search

for ever-increasing Lieb-Robinson velocities has eventually merged it with the question

of information scrambling in quantum systems [40, 48, 52, 86, 123, 124]. Long-range

interactions have provided a great platform for investing information scrambling. In

order to harness the benefits of scrambling experimentally and computationally, the

structure of long-range systems would optimally be simple. The many interactions of

long-range interacting systems make this difficult, but there are alternatives to dense

coupling that have been explored in recent years [1, 40, 86, 123].

In this chapter we use the theory outlined and developed in chapter 3 to investigate

quench-dynamics between translationally invariant quadratic Fermion models. The

models being quadratic enables the diagonalization via a Bogoliubov-Valatin transfor-

mation, as shown in section 3.4. Translational invariance makes this transformation

factorize into a Fourier-transformation and a block-wise unitary transformation (for

77
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fermions). Quench-dynamics restrict the dynamics to the subspace of fermionic gaus-

sian states (FGS). These three simplifications conspire to give us a great analytical

handle over the physics of this model, which translates to computational gain in sim-

ulations. In section 6.1 we formulate the Hamiltonian with which the different setups,

dense and sparse long-range coupling models, are described. In section 6.2, we establish

the ring model which is the local α → ∞ limit of the long-range models we consider.

From this ring geometry quenches in the pair (α,∆) are performed into the different

geometries. Section 6.3 investigates the dense algebraic model, starting in section 6.3.1

with static properties such as the spectrum and the ground-state correlations for differ-

ent special cases. These include impacts of variations in system size, whose relevance

especially in the long-range regime α < α∗ becomes apparent. The rest of the section is

concerned with quenches from the ring geometry into the dense algebraic model. Cor-

relation spreading over the system and half-system entropy dynamics are considered.

Thereafter the scaling of the tripartite mutual information I3 with α after a short time

is investigated in the spirit of Kuriyattil et al [1]. Section 6.4 mirrors the preceeding

section, investigating the sparse long-range Power p (PWRp) models.

6.1 Setup

Our models conceptually start from the ring-geometry introduced in section 3.4.1 &

6.2, equipped with nearest-neighbour pairing c†sc
†
s+1 proportional to ∆ and long-range

hopping c†scr proportional to J|s−r|. The Hamiltonian has the same structure as the one

in (3.13), and is repeated here,

H =
∑
s,r

J|s−r|c
†
scr + ∆|s−r|cscr + ∆|s−r|c

†
sc

†
r

=
1

2
w†

(
J ∆

∆ −J

)
w +O

. (6.1)

We specifically confine the pairing to local interactions, ∆|s−r| = ∆ δ|s−r|,1
1, whereas the

hopping J|s−r| is unspecified in range [81]. The local pairing ∆ allows us to investigate

quench dynamics between different hopping geometries by variation of ∆. In contrast to

this Vodola et al. investigates the same algebraic decay for hopping and pairing terms,

treating them on an equal footing [53]. The local form of pairing specifies the k-space

pairing function Dk, first seen in section 3.4.1, as

Dk = 2∆ sin

(
2π

N
k

)
. (6.2)

1Here δ denotes the Kronecker delta.
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As shown in section 3.6, the Kac prescription, fixing the local energy density given by

the sum of all hopping-magnitudes to a constant, is required at low enough α, depending

specifically on the models at hand. For consistency’s sake, the Kac prescription is used

throughout for all results shown (except when specified otherwise). As such, the ratio
∆
J , hinting at the dominance of either hopping or pairing terms in the Hamiltonian, is

understood as
∆∑N/2

d=1 Jd (α)
= ∆. (6.3)

This is done to keep the notion of local competition intact, as the pairing is in com-

petition with all the hopping terms originating from a site. With the Kac prescription

fixing the magnitude of the sum of hoppings to 1, ∆ itself denotes regime the system

is in. For the models under investigation, we will explicitly derive the criteria for the

spectral gap closing for different algebraic decay exponents and show the density-density

correlations for different regimes. Subsequently, we will quench into these systems from

the ring-geometry using the pairing term ∆. Since in the limit α→ ∞, the translation-

ally invariant models introduced in 3.4.1 reduce to the ring, the quench ∆0 → ∆ can be

understood as from the ground-state of the model with (∆0, α0 = ∞) to → (∆, α).

6.2 The Ring

When considering time-evolutions of the more involved models already introduced in

section 3.4.1, we consider quenches from the ring to those models. As such, we first

describe the ring. The ring is defined by Js−r = J δ|s−r|,1 in the Hamiltonian (6.1).

The diagonalization is straightforward from the theory-section, yielding the dispersion

relation

ϵchaink = 2

√
cos2

(
2πk

N

)
+ ∆2 sin2

(
2πk

N

)
. (6.4)

From this, the model is identified as gapped except for ∆ = 0. At ∆ = 0(∆ ̸= 0), the

ground-state density-density correlations g2 (3.35) decay algebraically (exponentially).

Using eqs. (3.33)&(3.34), we can derive that at ∆ = 1 and for d > 1, the correlations

are ⟨c†rcr+d⟩ = 0 and ⟨c†rc†r+d⟩ = 0, and g2 (r, r + d) =
δd,0
4 . This state we use as an

initial state. Whereas ∆ ≫ 1 models a strong z-field in the associated spin-model

[53, 81], bridging the gap between Fermions and spins, we use ∆ = 1 as every build-up

of correlations can be ascribed to the post-quench model.



Long-range hopping Fermions - Results 80

6.3 Dense algebraic model

The dense algebraic model is described by Jd = d−α, already introduced in (3.36).

Long-range algebraic coupling naturally arises in Rydberg systems, where the coupling

decay is typically of V (d) ∼ 1
d3

or V (d) ∼ 1
d6

. With high fidelity control in cold atom

systems, this exponent can be tuned further, and using spatial shuffling operations

strong-couplings can be engineered. The ground-state properties of the algebraic model

with long-range hopping and pairing are investigated in [53], while the dynamics with

local pairing is investigated in [81]. A general review for dense coupling models is given in

[83]. A sketch of the model is seen in Fig. 3.1(a). Here, we describe some results already

known, such as the rarefaction of the light-cone for 0 < α < 2 and the diverging group

velocity [81]. We use the Kac normalization to extend the model to α < 1, even into

α < 0. We particularly remark on the relevance of the boundary conditions in this case,

contextualizing it with results discussed in [53]. We also use dynamics to investigate

the tripartite mutual information buildup, where we are specifically interested in the

strongly non-local regime −1 < α < 1.

6.3.1 Spectrum and ground-state correlations

With Jd = d−α and using (6.2) in (3.19) we find the critical exponents αcrit for which

the spectral gap closes. Examining (3.57), the signs introduced by cos (πd) alternate,

resulting in the alternating harmonic series of order α. For N even and α = 0, the sums

cancel out, with the unpaired term SN/2 = (−1)N/2 as a remainder. For N odd and

α = 0, the boundary term does not exist, but also k̃ = N
2 does not. We investigate the

point α = −1. The cosine in (3.57) oscillates between −1 and 1, whilst the coupling

strength linearly increases with distance d

JN/2 = 2


N/2∑
d=1

(−1)d d

−N/2. (6.5)

The alternating series (−1, 2,−3, 4, · · · ) has partial sums (−1, 1,−2, 2, · · · ), cycling through

all integers, which we can write as

N/2∑
d=1

(−1)d d =


N
4 if N/2 even

−N+1
4 if N/2 odd.

(6.6)

For N/2 even, substituting the partial sum into (6.5) exactly cancels with the unpaired

term SN/2 = N/2 and the gap closes. This result and the derivations for diverging group

velocity from section 3.6 are subsumed in Fig. 6.1. The Kac normalization, normalizing
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Figure 6.1: The dispersion-relation ϵk and information derived thereof for the long-
range algebraic coupling on a ring of N = 212 sites. Kac normalization is used through-
out, fixing J0 = 2. (a) The spectral gap for α ∈ [−3, 3] and ∆ = 1. As the wavenumber
of the spectral gap is k = N/2 for all α, the value of ∆ is irrelevant. The inset shows the
gap fully closing at α = −1, as derived in eqs. (6.5) and (6.6). (b) Dispersion-relation
ϵk for different α-values at ∆ = 0.5. The Kac normalization prevents the divergence of
ϵk for any α, but this does not extend to the group velocity, which can be inferred from
the slope. In the local regime it is finite, diverging for α < 2 at k = 0. (c) Density of

states (DOS), obtained from the dispersion-relation via (3.48).

the local energy-density in the Hamiltonian, is employed throughout for these results.

The closing gap at α = −1 is shown in 6.1(a). The divergence of the group velocity

for α < 2 is visible from the slope of 6.1(b), similar to the results already observed in

[81]. It might be argued that the precise dependence on even or odd N should vanish

in the thermodynamic limit, and as such there is some doubt on the derivation of the

critical α = −1. However, for α < 0 the coupling-strength JN/2 is dominant, and

by extension this is true for the unpaired term SN/2. As such, the difference between

periodic and open boundary conditions is amplified in the thermodynamic limit for α < 0

and determined by SN/2. Therefore, we can anticipate to implement open boundary

conditions by omitting the unpaired term SN/2. This term rebalances the contribution

of the furthest coupling JN/2 to Jk, for which at even system-sizes exists only a single

site, unlike all other distances on the ring-geometry. Stated more directly, the antipodal

point to a site on a ring of even sites is unique. In contrast, all other points at a specified

distance d come in pairs, either d sites clockwise or d sites anti-clockwise of the original

site. Thus, omitting SN/2 is equivalent to pretending that the site N/2 sites clockwise of

our original site is not the same site as the one N/2 sites anti-clockwise of our original

site. Implicitly, this is also done in the thermodynamic limit considered in [53], where

the Fourier-transformation is given as block-diagonalizing the infinite size long-range

Kitaev chain considered there.
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The impact of omitting this boundary term is apparent from Fig. 6.2. In (a), the

density-density correlations g2 (r, r + d) are shown for the circular model, acknowledg-

ing the unpaired term. For slow enough algebraic decay (or rise), −1 < α < 1, the

correlations are long-range. For α < −1, where long-range couplings are strongly dom-

inant, the correlations with the antipodal site are dominant. Removing the unpaired

term has massive results, as is seen in (b). For non-maximal distances and α > 0,

the correlations are unchanged, decaying exponentially for α > 2 and algebraically for

α < 2 and becoming long-range for 0 < α < 1. For long-distances close to the antipodal

sites(s) (as now we pretend two exist), the correlations are macroscopical for even posi-

tive 0 < α < 1. This macroscopic correlation becomes dominant and, more interestingly,

correlations at intermediate distances decay exponentially. This mirrors the correlation

structure associated with edge-modes, which due to the chain-like geometry do in fact

exist. Edge modes of this kind were already numerically found in long-range Kitaev

chains analyzed in [53]. As our analysis extends to non-decaying coupling α < 0, the

deviation from these results is relevant to point out. This highlights the care necessary

when combining long-range coupling models in the non-local regime with the thermody-

namic limit. As our analysis is semi-analytical, this is not due to approximations made

with respect to some locality, but a feature of the changing structure of the models when

varying α.

Equivalent results as in Fig. 6.2 but without the Kac normalization are shown in Fig.

6.3. This restricts the valid exponents to α > 1 in the thermodynamic limit, but at

finite size, the investigation is nonetheless insightful. Removing the Kac normalization

is useful to highlight that for α > 1, the locality of the dynamics prevail insofar as that

the decay of correlations remains similar. Again however, the simple removal of the

unpaired term SN/2 has implications even for α = 1, and moreso for slower decay. Most

extreme it shows when contrasting the ring and the chain for α = −1. Correlations

remain long-ranged in the ring and are dominant at maximal distance. They fully decay

in the ring and sharply peak at maximal distance.

6.3.2 Correlation spreading

Starting out from a state with local correlations, such as the one ground-state for the

ring with ∆ = 1 described in 6.2, we quench to the long-range algebraic model with

∆ = 0 and varying α. We choose ∆ = 0 such that the correlation-spreading is due to

the long-range hopping. The time-evolution of density-density correlations g2(r, r + d)

of such a quench are shown for α > 0 in Fig. 6.4. This is mostly a reiteration of results

displayed in [81]. For strongly local models, 6.4(a), the lightcones for different thresholds

are collapsed and form a definite “shockwave”. This shockwave is rarefied for α < 2,
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Figure 6.2: Correlations of the ground state of the dense long-range algebraic model,
highlighted via the density-density correlations g2. The pairing term ∆ is chosen low
to highlight the impact of different α, although the showed features persist for higher
∆. For ∆ = 0, the system is gapless and the correlations decay algebraically. The
system size is N = 212, and the distances are d ∈ [0, 212], such that the correlations are
symmetric around 211 = 2048. (a) Using the unpaired term SN/2, the correlations on
the circle feature exponential decay in the local regime α = 3, turning algebraic below
α = 2 and becoming constant for α < 0. Correlations with the antipodal site become
dominant below α = −1. (b) Omitting the unpaired term SN/2 changes the behaviour
at large distances and α < 0. Correlations with the antipodal site(s) are dominant for
α < 1, and are generally long-range for −1 < α < 0. For α = −1, correlations at
intermediate distances decay exponentially, whilst being macroscopic for the antipodal

site(s). This is akin to Majorana edge-modes in chain-like Fermionic models.

6.4(b)&(c), and weak correlations travel at much higher velocities through the system.

This is consistent with the analytics found for the group velocity in section 3.6 and in Fig.

6.1. The impact of the Kac normalization becomes apparent for α < 1, 6.4(d). In terms

of correlations, the local dynamics get majorly impacted by the Kac normalization by

slowing down. Light-cone rarefaction is still visible, but correlations spread through the

system slower. Fitting the first occurrences of correlations of a certain strength occuring

at different distances reveals that the Lieb-Robinson velocities for different thresholds

−log10(p) scale exponentially for 0 < α < 2 and noticeably being slower for the non-local

regime 0 < α < 1.

6.3.3 Entropy dynamics

We investigate the entropy dynamics for the partition of the ring into two contiguous

halves. From the α → ∞ connection with the Ising model via a Jordan-Wigner trans-

formation [125], we cross-check the entropy scaling in the quench (α = ∞,∆ = 1) →
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Figure 6.3: Results equivalent to those seen in Fig. 6.2, but without employing the
Kac normalization. Correlations of the ground state of the dense long-range algebraic
model, highlighted via the density-density correlations g2. The pairing term ∆ is chosen
low to highlight the impact of different α, although the showed features persist for
higher ∆. The system size is N = 212, and the distances are d ∈ [0, 212], such that
the correlations are symmetric around 211 = 2048. The analysis is similar to the one
for Fig. 6.2, so here the differences are highlighted. The decay of correlations in the
local regime α > 1 has a uniform envelope, showing the preserved local structure of
the model without the Kac normalization. Contrast this to Fig. 6.2, where even initial
decay is vastly different for different α > 0. The edge-mode features in the chain are
massively accentuated without the Kac normalization, with correlations at intermediate

distances being virtually absent.

(α = ∞,∆ = 0). In Fig. 6.5(a), the half-ring entanglement entropy is shown as a func-

tion of time for rings of different sizes. The quench is (α = ∞,∆ = 1) → (α = 3,∆ = 0),

so the long-range model mimicks the short-range ring. From Fig. 6.5(a), we see that

the local dynamics for the half-ring entropy persist for larger rings. Rescaling both

(SvN , t) → (SvN/µ, t/µ), where µ = N/2 is the size of the equally large partitions of

the ring, the thermodynamic limit shows the half-ring entropy scaling consistently. The

initial growth of entanglement is present at different system sizes, and the saturation

scales with the size µ = N/2, as expected from the transverse field Ising model [126, 127].

The panels (b), (c) and (d) in Fig. 6.5 show the entropy evolution for quenches from

the ring to different α for a ring of size N = 27. The evolution-time in the panels is

different. Whilst for (b), the Kac normalization is fully employed and time scales with

the local energy density, (c) foregoes this, and (d) scales the time with the largest cou-

pling only. In (b) we see the lowering of α slowly changing the profile for the entropy,

with strong slowing down occuring for α < 1, where the Kac normalization becomes

necessary. Without the Kac normalization, the local energy density grows fast and the

dynamics for α < 1 are accelerated, as can be seen in (c). To a lesser extent this is

visible also in (d). Here we see that for large α, the dominant coupling-strength dictates
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Figure 6.4: Time evolution of density-density correlations log10|g2(r, r + d)| shown
for the ground-state quench (α0 = ∞,∆0 = 1) → (α,∆ = 0). The initial state has

g2 (r, r + d) =
δd,0
4 . For three thresholds log10p = [−4.8, 6.6, 8.4], denoted with white

crosses, circles and triangles, respectively, the lightcones are shown. (a) For α = 2
(and similarly for α > 2), the lightcones collapse to form a definite wave-front, outside
of which correlations decay exponentially. For α = 1.5 (b), the rarefaction of the
“shockwave” that is the unique lightcone is evident, and becomes stronger towards
α = 1 (c)&(d). For α < 1, the Kac normalization slows down the local dynamics. The
lightcones remain spread out for different thresholds, but overall traversal through the
system is slower. Note that the Kac normalization is present for all panels, but the
slowing down is only observed below α = 1, which is the non-local regime. (e) The
Lieb-Robinson velocities for different α and thresholds p are shown. For α ∈ {2, 3}, the
collapse of the lightcones is apparent since the speed is uniform for different thresholds.
The rarefaction starts at α = 2 and is most prominent for 0 < α < 1, where vp scales

exponentially in −log10p.

the envelope of the dynamics. For α ∈ {3, 2, 1.5}, the entropy peaks at similar times.

This behaviour vanishes around α = 1 and is fully absent for the non-local regime. We

conclude that in the thermodynamic limit the entropy dynamics slow down progressively

for α < 1.

6.3.4 Mutual Information

The slowing down of dynamics in the non-local regime is also visible from the tripartite

mutual information (TMI) I3, introduced in (3.4). However, additionally to this, the
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Figure 6.5: Entanglement entropy across a partition of the ring that cuts it in two
chains of equal size µ. The quenches go from (α0 = ∞,∆ = 1) to various α and
∆ = 0. (a) α = 3 and varying system sizes. The entropy dynamics follow the re-
sult known for the transverse field Ising model that is connected to the fermionic ring
via a Jordan-Wigner transformation. The entropy rises linear in time to a value ∝ µ.
(b) α ∈ {3, 2, 1.5, 1, 0.5,−2} and N = 27. The Kac normalization is used, and its im-
pact becomes strong for α < 1, slowing down the entropy dynamics. (c) similar to (b),
but no Kac normalization is used. The model does not have a thermodynamic limit,
and while for α > 1 the dynamics are similar to (b), they depart strongly from it for
α < 1. (d) Different rescaling of couplings, such that the largest coupling is constant
through α. The thermodynamic limit does not exist for α < 1. For α > 1, the local
dynamics are dominated by this largest coupling, which can be seen from the entropy

peaks occurring at roughly the same time.

thermodynamic limit also contributes to the slowing down, as can be seen from Fig.

6.6. The TMI is not rescaled for the different partition sizes, but the evolution-time

is. For the different exponents α in the different panels of Fig. 6.6, we see the regime

of area-law scaling expand in time, until the partition-size becomes important and the

lines depart from one another.
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Figure 6.6: Tripartite mutual information (TMI) dynamics for a partition that quar-
ters the ring. The different panels show different α and the scaling with ring-size. For
different sizes N the time is rescaled differently by µ = N/2. The Kac normalization is
employed throughout. In rescaled time, the collapse of I3 for early times indicates the
slowing down of TMI buildup when approaching the thermodynamic limit. (a) α = 2.
Before unit time, I3 shows no scaling with ring-size. This includes the zero-plateau and
the first buildup of negative I3. At unit time, the magnitude of I3 starts scaling with
N . (b) α = 1.5. Similar to (a), the scaling of I3 with N only appears at the second
part of the dynamics. (c) α = 1. Dynamics start to slow down, even in rescaled time.
(d) α = 0.5. Dynamics have slowed down markedly, consistent with the behaviour of

the halfring entanglement entropy in Fig. 6.5.
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6.4 Power p models

In this thesis, a Power p model (also called a PWRp model) is a model with periodic

boundary conditions where sites at a distance d are coupled iff logpd ∈ N0. This means

that connections are between sites whose distance is itself a power of p. The PWRp

models are the models of consideration when looking at translationally invariant sparse

coupling graphs. Examples of the PWR2 model at different system sizes are shown in

Fig. 3.1(b)-(d). A big difference that has already been highlighted in [39, 40] is that,

opposed to dense coupling, these models turn non-local only at α ≤ 0.

6.4.1 Spectrum and ground-state correlations

The investigation for PWRp models simplifies in comparison to the dense case. We

rewrite the sum in (3.57) to be in powers of our prime base

JN/2 = 2


Q∑
q=0

Jpq cosπpq

− SN/2. (6.7)

Using p = 2 is especially insightful, as for all q ̸= 0 the cosine will be positive. Hence,

JN/2 = 2


Q∑
q=1

J2q

− 2J1 − SN/2 = 2


Q∑
q=1

2−αq

− 2 − SN/2,

= 2
2−α − 2−α(Q+1)

1 − 2−α
− 2 − 2−αQ,

=
1

1 − 2−α

[
2−α+2 − 2 − 2−α(Q+1) − 2−αQ

]
.

(6.8)

For α > 0, we can take the thermodynamic limit in N and Q without problems and

eventually arrive at αcrit = 1 = α∗
Hardy, such that

JN/2 (α = 1) = 0. (6.9)

We can also look at (6.8) and think about a functional relationship between α and Q.

For the full PWR2 model, we require Q = log2(N/2), having the boundary term SN/2

present. For smaller Q (with N remaining large and decoupled from Q), we just get a

truncated model, all the way to Q = 1 denoting the next-nearest neighbour model. We

find the critical αcrit for any 1 ≤ Q < log2 (N/2) by imposing JN/2 (αcrit) = 0, leading

to

2−α(Q+1) = 2−α+1 − 1. (6.10)
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Q 0 1 2 ∞
αcrit gapped 0

log(1+
√
5)

log(2) − 1 1

Table 6.1: Critical decay exponents αcrit at which the truncated PWR2 model is
gapless. Q = ∞ denotes the non-truncated PWR2 model.

In table 6.1, we note some of the critical exponents for the models of different truncation

order. The convergence to αcrit = 1 of the full PWR2 model is very fast.

For α → 0+, the unnormalized version (6.8) is not appropriate anymore. However, the

use of the geometric series allows us to explicitly perform the Kac normalization, leaving

us with the following formula (for Q = log2(N/2), including the boundary term)

JN/2

J0
=

2−α+2 − 2 − 2−α(Q+1) − 2−αQ

2 − 2−α(Q+1) − 2−αQ
. (6.11)

Using L’Hôpital, we can perform the limit α→ 0+ and obtain

lim
α→0+

JN/2

J0
=

2Q− 3

2Q+ 1
. (6.12)

Thus, even in the thermodynamic limit, the PWR2 system is gapped at α = 0. For the

PWR3 model with p = 3, the situation is simpler. All cosine terms in (6.7) are negative,

i.e.

JN/2 = −2


Q∑
q=0

3−αq

− SN/2 = 2
1 − 3−α(Q+1)

3−α − 1
− SN/2. (6.13)

We directly see that the gap of the PWR3 model never closes. This consideration holds

true for all other primes, since we only required all powers to be odd (which is true for

all primes except 2). As such, for any odd p, the PWRp model does not feature a closing

gap.

On the other hand we can see that for even p, we can follow the PWR2 model in the

derivation of αcrit. Specifically for p that themselves are powers of 2, we obtain αcrit

trivially by substituting into the formulas via p = 2w, arriving at αcrit,2w = αcrit,2/w. In

Fig. 6.7, the properties of the PWR2 model are investigated further. The ground-state

gap is shown in 6.7(a). Above α∗
Hardy = 1, for sufficiently large ∆ the gap is independent

of ∆ and can thus only be at k = N
2 . Interestingly, this is also the case for sufficiently

negative α. As derived, the gap closes at α∗
Hardy = 1 and does not close for α = 0. For

α < 0, a region is present that shows erratic behaviour which scales with the magnitude

of ∆, suggesting that the thermodynamic limit is not yet reached for the system size

N = 219. Increasing the system size further dampens these fluctuations, as can be seen

in Fig. 6.7(b). Around α = 0, they decay exponentially in log2(N), so linearly in the

number of coupling terms, for α < 0. The fluctuation region therefore seems to be
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Figure 6.7: Spectral gap and coupling-function Jk of the PWR2 model for different
parameters. (a) N = 219. The spectral gap closes at α = 1 and does not close at
α = 0, which was found analytically above. The limiting regions of very positive and
very negative α behave smoothly, whilst in-between the behaviour is less clear. For
0 < α and α < −1.2, the behaviour is well-converged in system size, whilst in-between
an increase in system-size does attenuate the fluctuations of the gap. (b) Gap-scaling
in the fluctuating region with system size. For every colour, dashed lines indicate −α
for the value of the solid line. Algebraic decay in N is visible for the fluctuating region.
On the other hand, the region between α = 0 and α∗

Hardy = 1 does not scale down and
the model remains gapless.

gapless in the thermodynamic limit, whereas the gapped region between α = 0 and

α∗
Hardy = 1 remains so.

Limits of this coupling-function are well behaved, as is shown in the remaining panels

of Fig. 6.8. This presentation is chosen to facilitate the side-by-side comparison with

Figure 2(b) in Bentsen et al. [40], where the same model for spins is studied. In the

local regime, α = 2 (6.8(a)), the coupling function is continuously differentiable, whereas

at α = 0 (6.8(b)) it is a Weierstrass-function. For α = −2 (6.8(c)), the pathological

behaviour has gone so far that the the function assumes values only in a few select bands,

jumping between them. The second row shows the same coupling function reordered

according to the Monna-mapped wavenumbers M (k), explained in section 3.6.2.3. For

α > 0 (6.8(d)&(e)), this transformation does not simplify anything. However, for α < 0

(6.8(f)), the Monna map orders the coupling-function into more or less flat bands.

Here we investigate the ground-states of the PWR2 model in the limits α→ {∞,−∞}.

For the ring limit, the model is equivalent to the ring and correlations decay exponentially

(algebraically) for ∆ ̸= 0(∆ = 0) in distance d. For the opposite limit, α → −∞, the

behaviour strongly depends on the system size. For N = 2p for any p ∈ N, there is a

single site at maximal coupled distance 2p−1, and the model decouples into N/2 pairs

of antipodal sites, {w,w+ 2p−1}. This can be seen in Fig. 3.1(c), where the light-yellow

coupling connects antipodal sites. If instead we take N = 2p+1, see Fig. 3.1(d), there are
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Figure 6.8: Locality in different geometries and crossover. (a)-(c) Coupling function
for ∆ = 0 and α ∈ {2, 0,−2}. At α = 0, the Weierstrass-function is clearly visible, and
for α = −2 the oscillations are so fast that Jk only takes values in narrow bands. (d)-
(f) The same coupling function, but arranged by Monna-mapped wavenumbers. The
effect of the Monna map is opposite when comparing α = 2 and α = −2, the latter

becoming organized by the transformation.

two sites q1, q2 at maximal coupled distance from site q, and they are adjacent. Thus, the

sites that are ring-like adjacent to q are at maximal coupled distance to either q1 or q2,

respectively. Following this construction along edges at maximal coupled distance, the

whole graph is traversed with each site visited once. Thus, this geometry is equivalent

to a ring. This construction is possible for any odd system size and boils down to the

fact that multiples n of 2p−1 can only match a multiple q of the odd system size when

n = w · q with w ∈ N. Said differently, a closed cycle on the sparse coupling graph of

size Q using only maximal coupled distances 2p−1 has length n if

modQ
(
2p−1 · n

)
= 0. (6.14)

If Q is odd, the smallest n for which this is true is n = Q, and so the shortest closed

cycle using only maximal coupled distances has size Q and thus covers the whole graph.

For even system sizes that are not powers of 2, a related result can be derived. We

decompose any even number N into its powers of 2 and the rest, using its unique prime

factorization given by

N = 2w · U.

The relevant equation is again (6.14), and this time the smallest n for which it holds is

n = U . For example, considering a graph of size 12 = 3 · 22 gives a cycle of size 3, as

can be seen in Fig. 3.1(b). This example is especially interesting, as for a graph of size

3 · 2p with the cycle of size 3, we could expect frustration in e.g. an anti-ferromagnetic
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transverse-field Ising model. The stark difference in correlations this produces can be

seen by comparing Figs. 6.9 and 6.10. For α = −2 and N = 212 (Fig. 6.9), correlations

to sites other than the singular antipodal one are strongly suppressed (with α) for

∆ ̸= 0. More specifically, for sites at a distance d∗ a power of 2, the correlations decay

algebraically, whilst to other sites they decay exponentially. For ∆ = 0 all correlations

vanish except the antipodal ones, which are macroscopic. Contrast this to N = 212 + 1

(Fig. 6.10), where for α = −2 and any ∆ correlations decay algebraically for any distance

and resemble the result for the ring. A similar distinction can be achieved for the dense

algebraic coupling, even though the behaviour is not as clean for finite negative α. In

the sparse model, the impact of the ring-local pairing term is intuitively seen from the

other features of Figs. 6.9 and 6.10. Correlations locally peak at distances d∗ which

are a power of 2. Depending on the magnitude of ∆, the correlations decay differently

from those distances. For large ∆, they decay slower (see 6.9(a)). At the most extreme

∆ = 0, correlations away from d∗ instantly decay to a bulk-value (see 6.9(c) for α = 0).

6.4.2 Correlation spreading

Starting out from a state with local correlations, such as the one ground-state for the

ring with ∆ = 1 described in 6.2, we quench to the PWR2 model with ∆ = 0 and

varying α. The sparse coupling leads to a very different spreading of correlations when

compared to the dense model. Since the dispersion-relation is Lipschitz-continuous,

even if it is not differentiable, it is not expected that Lieb-Robinson velocities speed up

indefinitely. In Fig. 6.11, quenches into α ≥ 0 are shown. Even in the local regime the

sparse connections inject correlations into far sites to which they are connected. At the

same time, clear light-cones are visible within which correlations are strong. The biggest

contrast to the dense model is the fact that the time-scales are not slowed down for strong

long-range coupling, even if employing the Kac normalization. In 6.11(d), correlations

are spread fast through the whole system, even if the local energy-density is the same as

for different α. For α < 0, the local structure of the model becomes apparent again by

employing the Monna map. In Fig. 6.12, at α = −2, the model is local in the dominant

antipodal couplings. In the ring-geometry, correlations build up almost instantly across

the sites, but stay somewhat local to those sites. However, employing the Monna map

reveals that the correlations do spread ballistically in this new configuration, as seen

in 6.12(b). Most notably, as seen in 6.12(a), the actual connections do not feature

density-density correlations, but instead the immediate ring-like neighbours do. This

is a remnant from the pre-quench initial state, for which ∆ = 1 and density-density

correlations in neighbouring sites are suppressed. Once again contrasting odd and even

ring-sizes, we see the stark differences resulting from this in Fig. 6.13. The bound-pairs
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Figure 6.9: Correlations of the ground state of the PWR2 model, highlighted via
the density-density correlations g2. Different pairings ∆ are used in different panels
to show the competition between the local and the sparse geometry. In each panel,
results show α ∈ {2, 0,−2}. Note that the y-axis has different limits for the different
panels. (a) ∆ = 1. The local peaks in correlation strengths at distances d∗ of a power
of 2 show local exponential decay surrounding them. The peaks are very weak for the
ring-like case α = 2. (b) ∆ = 0.01. In the ring-like case, the local exponential decay
around the distances d∗ is dominated by the global exponential decay. For α ∈ {0,−2},
this local decay is so fast that only sharp peaks at exactly d∗ appear. (c) ∆ = 0.
The system is gapless, and the exponential decay of correlations turns algebraic. For
α = −2, correlations are absent except at d∗ = N

2 , peaking strongly. This general form
is also what is found for the dense algebraic coupling at ∆ = 0. The tendency to see for
decreasing ∆ is that the local correlation-cones around strong peaks get successively
narrower until the global behaviour dominates. For α < 0, the global behaviour dictates

correlations only between antipodal sites.

due to the singular dominant coupling in antipodal sites for N = 2p decay immediately

for a single site difference, as explained before there now exists a full-graph orbit of

dominant couplings. The light-cones return in ring-like fashion. The difference in light-

cones between N = 2p ± 1 stems from the fact that for N = 2p − 1 the number of

total couplings per site is 2 (p− 1), the furthest and dominant being to a site of distance

d = 2p−2, while for N = 2p + 1 it is 2p, with the furthest coupling being double the

distance to d = 2p−1. For fixed α, the strongest couplings are, whilst employing the Kac

normalization, different, as can be derived from (3.41). Due to this, the light-cones are

different.
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Figure 6.10: Density-density correlations of the ground state of the PWR2 model
for odd N = 212 + 1. The presentation mirrors that of Fig. 6.9. Short distances are
completely unaffected by the addition of a single site. For large distances and α < 0,
the impact is dramatic. For odd N , the α → ∞ limit does not result in a graph of
disconnected pairs, but in a ring. This manifests in the ground-state correlations for
α = −2, where we see not only the peak at maximal distance, but also a gradual

algebraic decay away from the maximal distance.

Figure 6.11: Density-density correlation-dynamics of quenches into the PWR2 model
at different α. (a)&(b) Despite the non-trivial dynamics, there are clear light-cones
visible, spreading out from different parts of the ring that are at a distance of a power
of 2. This is consistent with the group velocity remaining finite. (c)&(d) Despite the
group velocity not diverging, correlations cover the system extremely fast. Since the

maximal graph-distance scales as log2(N), no contradiction arises.
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Figure 6.12: Correlation dynamics for a quench to α = −2. (a) Distances are ring-
like and correlations are localized around the distances of powers of 2. The actual
correlations are strong on the immediate neighbours of the connected sites, which is
due to the use of the density-density correlations and the initial state being the ground-
state for ∆ = 1. (b) Using the Monna map on the distances and rearranging, we recover
the light-cone structure, indicating that the model is in fact local. Instead of starting at
the closest distance, the light-cone emerges from the intermediate distance M(d) = 64,

whilst M(d) < 64 (not shown) are completely uncorrelated.

Figure 6.13: Correlation spreading for the quench to α = −2 and different ring-sizes.
(a)&(c) Despite being deep in the ultrametric regime, the correlations fan out in light-
cones. The geometry in the ultrametric regime for odd N can be reshaped to a ring.
(b) correlations stay localized to the vicinities of sites that are at distances of powers

of 2. This is reformulated into a light-cone using the Monna-map, see Fig. 6.12.

6.4.3 Mutual Information

The initial state, which is the ground state of the ring at ∆ = 1 is not a product state in

real space. Therefore, changing the partition changes the initial value of the tripartite

mutual information (TMI) I3. Different partitions such as the Monna-partition are

nonetheless insightful and allow us to show the limiting behaviour at the extreme values

of α. In Fig. 6.14(a)&(b), we show I3 at particular early time-values for different α, both

in the ring- and the Monna-partition (see Fig. 3.2 for the differences in these partitions).

For α > 0(< 0), the dynamics are suppressed in the ring-partition (Monna-partition),

whereas they are nontrivial in the opposite regime. Since the same quench is shown

respectively, we know the dynamics are non-trivial overall and the static behaviour is

connected to the cut itself. This is also visible from Fig. 6.14(c)&(d), where the TMI

dynamics are shown for select values of α. Whereas the ring-like α = 2 shows no

dynamics for the ring-partition, the same is true for the Monna-like α = −2 for the

Monna-partition. The oscillating behaviour of I3 for α = −2 that is seen in Fig. 6.14(a)

is also visible in Fig. 6.14(c).



Long-range hopping Fermions - Results 96

Figure 6.14: Tripartite mutual information for quenches from (α = ∞,∆ = 1) to
∆ = 0, different α and different partitions. (a) The partition quarters the ring into 4
line-segments of equal size N/4. I3 after fixed evolution time T is shown as a function of
α and for N = 28 (solid) and N = 29 (dashed). Close to α = 0, I3 either directly turns
negative or has a very small positive dip. For α ≈ −1, I3 turns strongly negative. (b)
Same as (a), but the partition is in Monna-mapped nearest distances. In this partition,
I3 of the initial state (the ground state of the ∆ = 1 chain) is strongly negative. For
α < 0, no dynamics are apparent. This mirrors the α > 0 regime in (a). (c) Time
evolution of I3 for quenches to different α in the ring-partition. For α = −2, the
oscillation around 0 is exactly what is also observed in (a). (d) Same as (c), but the
partition is in Monna-mapped nearest distances. The behaviour of α = −2 here again

mirrors α = 2 in (c).

6.5 Conclusion

We have proven that the exponentially sparse PWR2 model’s non-local nature is centered

around the singular point α = 0, around which either the euclidean or the ultrametric

geometry of the Monna map localizes the model. In contrast, such a transformation

is not obvious for the algebraic model and it seems like the transition from a local

to a non-local model is accompanied with a freezing of the dynamics. This has been

investigated recently under the name of cooperative shielding [128, 129]. The PWR2

model does not show this freezing. For α < 0, we highlighted the impact of the system

size which comes about from the dominant contributions of what otherwise would be

boundary terms in euclidean local models. With this, we showed that frustration in

sparse models can be engineered either by changing the sparse coupling pattern or simply

by adjusting the system size. The typical system size that is in some way congruent
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with the coupling pattern seems to be an outlier result, even though other patterns have

not been investigated as of yet.

6.6 Outlook

The sparsity patterns of PWRp coupling models we showed are only a single example of

possible patterns. A pattern of considerable interest so far has been the hypercube [130].

Another possibility is the Fibonacci-like coupling that was briefly touched upon in section

3.6. One can also investigate sparse patterns that are not exponentially but algebraically

sparse, such as the pattern of couplings that depend on perfect squares, mentioned at

the end of section 3.6. This crucially enables to further specify the behaviour of the

dense algebraic model as something that depends on the all-to-all nature or on the

sparsity of the pattern. Even further, one can combine these patterns to interpolate

between the dense and the sparse models by virtue of distance. Combining p-adic

coupling patterns with p = {2, 3, 5, 6, 7}, makes the low-distance behaviour dense, while

long-range behaviour is sparse. This might introduce length-scales on which different

features dominate, which is especially interesting when considering the critical regimes

when the models change their local energy density. Additionally, following one of our

results, algebraically sparse couplings might possess similar nontriviality as the dense

algebraic model. These could thus prove to be an interpolation point between dense and

exponentially sparse coupling models, such as couplings reliant on perfect squares.



Zwischen einer Handlung und der nächsten muss der Bogenschütze sich

an alles erinnern, das er getan hat, mit seinen Verbündeten sprechen,

sich ausruhen und sich darüber freuen, dass er lebt.

Paulo Coelho, Der Weg des Bogens

7
Discussion and Outlook

In this thesis we have motivated and presented research revolving around the delocal-

ization of quantum information in closed quantum systems. Chapters 2, 4 and 5 have

focused on understanding the relocalization after delocalization, termed recurrence, in

toy models that can be realised in AMO experiments. Starting from the intuition of

ballistic transport in the single-particle setup, we have departed from the associated

result of recurrence time scaling linearly with graph radius by means of a few different

modifications to the model. Changing the local energy density with star-graphs and

long-range coupling models, changing the coupling-strength along a model to induce

slowing down of transport, and introducing disorder into the on-site energies. For these

modifications, we have presented heuristics and calculations explaining the non-linear

recurrence time. Via adding interaction to the model we moved to many-body physics

in order to understand whether this addition can also produce superlinear recurrence

time scaling, which indeed was the case. Additionally, the many-body setup introduced

the possibility of measurement protocols to relocalize the information at will. This way

the many-body setup guarantees very large times of delocalized information while at

the same time providing a possibility of recapturing the information via a protocol. The

XXZ model we explored in the many-body regime could be implemented in a cold atom

setup using Rydberg arrays, where the relocalization protocols also would be applicable.

98



Discussion and Outlook 99

The setup of repeated local Bell pairs in the baths for the purposes of the teleportation

protocol might prove problematic for larger setups due to limited coherence times.

The results from the random disordered single-particle case show that the (average)

recurrence can scale exponentially both with system size and with effective dimension

of the position local quantum state. However, the full random matrix theory result is

not clear from our investigation, and it would be interesting to understand whether our

results from a position local quantum state translate to an arbitrary quantum state,

elevating the result to a statement about the Hamiltonian only. This would bridge the

gap into general many-body interacting quantum systems by means of the level spacing

statistics, which follow random matrix theory results.

Chapters 3 and 6 investigated the delocalization properties of long-range quadratic

fermionic systems in the attempt to investigate the dynamical phase transition found in

Kuriyattil et al. [1]. We presented new results for this dynamical phase transition in

these models, although the results are not as decisive as in the gate-based model. A lot

of understanding has been gained by analysing the sparse long-range coupling models,

showing that their phase-diagram is decidedly dependent on the system size in the non-

local regime. PWR3 coupling graphs in anti-ferromagnetic spin-systems are investigated

to understand whether a dynamical transition takes place due to the emerging frustra-

tion in the long-range regime. The results in this thesis show that such a frustration

does not innately require PWR3 coupling, but can be achieved with PWR2 coupling

via minimally adjusting the system size. As next steps, it would be very interesting to

understand whether the intermediate class of systems between the dense and the expo-

nentially sparse long-range coupling systems can behave differently. Examples are the

algebraically sparse long-range coupling systems such as one with couplings only on dis-

tances that are perfect squares. The exponentially sparse models feature the crossover

between local and non-local behaviour only at non-decaying exponent α, whereas an

algebraically sparse model shows this transition at non-trivial α∗ ̸= 0.
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loschmidt echoes. Progress of Theoretical Physics Supplement, 150:200–228, 2003.

doi: 10.1143/PTPS.150.200.
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[100] Marcello Dalmonte, Benôıt Vermersch, and Peter Zoller. Quantum simulation and

spectroscopy of entanglement hamiltonians. Nature Physics, 14(8):827–831, 2018.

doi: 10.1038/s41567-018-0151-7.

[101] Pasquale Calabrese. Entanglement entropy, the reduced density matrices of free

fermions, and beyond. Journal of Physics A: Mathematical and Theoretical, 49

(42):421001, 2016. doi: 10.1088/1751-8113/49/42/421001.

[102] Harold A Gersch and Gilbert C Knollman. Quantum cell model for bosons. Phys-

ical Review, 129(2):959, 1963. doi: 10.1103/PhysRevA.111.022223.

[103] Wu-Pei Su, John Robert Schrieffer, and Alan J Heeger. Solitons in polyacetylene.

Physical Review Letters, 42(25):1698, 1979. doi: 10.1103/PhysRevLett.42.1698.

[104] Robert H Dicke. Coherence in spontaneous radiation processes. Physical Review,

93(1):99, 1954. doi: 10.1103/PhysRev.93.99.

[105] Edwin T Jaynes and Frederick W Cummings. Comparison of quantum and semi-

classical radiation theories with application to the beam maser. Proceedings of the

IEEE, 51(1):89–109, 1963. doi: 10.1109/PROC.1963.1664.

[106] Jonathan D Pritchard, D Maxwell, Alexandre Gauguet, Kevin J Weatherill, MPA

Jones, and Charles S Adams. Cooperative atom-light interaction in a blockaded

rydberg ensemble. Physical Review Letters, 105(19):193603, 2010. doi: 10.1103/

PhysRevLett.105.193603.

[107] Charles S Adams, Jonathan D Pritchard, and James P Shaffer. Rydberg atom

quantum technologies. Journal of Physics B: Atomic, Molecular and Optical

Physics, 53(1):012002, 2019. doi: 10.1088/1361-6455/ab52ef.

[108] Anouar Moustaj, Julius Krebbekx, and Cristiane Morais Smith. Anomalous polar-

ization in one-dimensional aperiodic insulators. Condensed Matter, 10(1):3, 2025.

doi: 10.3390/condmat10010003.

[109] Godefroy Harold Hardy. Weierstrass’s non-differentiable function. Trans. Amer.

Math. Soc, 17(3):301–325, 1916. doi: 10.2307/1989005.

[110] Manuel Endres, Hannes Bernien, Alexander Keesling, Harry Levine, Eric R An-

schuetz, Alexandre Krajenbrink, Crystal Senko, Vladan Vuletic, Markus Greiner,

and Mikhail D Lukin. Atom-by-atom assembly of defect-free one-dimensional cold

atom arrays. Science, 354(6315):1024–1027, 2016. doi: 10.1126/science.aah3752.



Bibliography 110

[111] Viv Kendon. Quantum walks on general graphs. International Journal of Quantum

Information, 4(05):791–805, 2006. doi: 10.1142/S0219749906002195.

[112] Oliver Mülken, Volker Pernice, and Alexander Blumen. Universal behavior of

quantum walks with long-range steps. Physical Review E, 77(2):021117, 2008. doi:

10.1103/PhysRevE.77.021117.

[113] Oliver Mülken and Alexander Blumen. Continuous-time quantum walks: Models

for coherent transport on complex networks. Physics Reports, 502(2-3):37–87,

2011. doi: 10.1016/j.physrep.2011.01.002.

[114] Harold Scott Macdonald Coxeter. Regular polytopes. Courier Corporation, 1973.

doi: 10.1017/S0008439500024413.

[115] Lorenzo Cevolani, Giuseppe Carleo, and Laurent Sanchez-Palencia. Spreading of

correlations in exactly solvable quantum models with long-range interactions in

arbitrary dimensions. New Journal of Physics, 18(9):093002, 2016. doi: 10.1088/

1367-2630/18/9/093002.

[116] David J Luitz, François Huveneers, and Wojciech De Roeck. How a small quantum

bath can thermalize long localized chains. Physical Review Letters, 119(15):150602,

2017. doi: 10.1103/PhysRevLett.119.150602.

[117] Patrick Hayden and John Preskill. Black holes as mirrors: quantum information

in random subsystems. Journal of High Energy Physics, 2007(09):120, 2007.

[118] Aviva Gubin and Lea F Santos. Quantum chaos: An introduction via chains of

interacting spins 1/2. American Journal of Physics, 80(3):246–251, 2012. doi:

10.1119/1.3671068.

[119] Elliott H Lieb and Derek W Robinson. The finite group velocity of quantum spin

systems. Communications in Mathematical Physics, 28(3):251–257, 1972. doi:

10.1007/BF01645779.

[120] Bruno Nachtergaele and Robert Sims. Lieb-robinson bounds and the exponential

clustering theorem. Communications in Mathematical Physics, 265:119–130, 2006.

doi: 10.1007/s00220-006-1556-1.

[121] Alioscia Hamma, Fotini Markopoulou, Isabeau Prémont-Schwarz, and Simone Sev-

erini. Lieb-robinson bounds and the speed of light from topological order. Physical

Review Letters, 102(1):017204, 2009. doi: 10.1103/PhysRevLett.102.017204.

[122] Daniel A Roberts and Brian Swingle. Lieb-robinson bound and the butterfly

effect in quantum field theories. Physical Review Letters, 117(9):091602, 2016.

doi: 10.1103/PhysRevLett.117.091602.



Bibliography 111

[123] Brian Swingle, Gregory Bentsen, Monika Schleier-Smith, and Patrick Hayden.

Measuring the scrambling of quantum information. Phys. Rev. A, 94:040302, Oct

2016. doi: 10.1103/PhysRevA.94.040302.

[124] Bin Yan, Lukasz Cincio, and Wojciech H Zurek. Information scrambling and

loschmidt echo. Physical Review Letters, 124(16):160603, 2020. doi: 10.1103/

PhysRevLett.124.160603.

[125] Michael A Nielsen et al. The fermionic canonical commutation relations and the

jordan-wigner transform. School of Physical Sciences The University of Queens-

land, 59:75, 2005.

[126] Pasquale Calabrese and John Cardy. Evolution of entanglement entropy in one-

dimensional systems. Journal of Statistical Mechanics: Theory and Experiment,

2005(04):P04010, 2005. doi: 10.1088/1742-5468/2005/04/P04010.

[127] Maurizio Fagotti and Pasquale Calabrese. Evolution of entanglement entropy

following a quantum quench: Analytic results for the xy chain in a transverse

magnetic field. Physical Review A—Atomic, Molecular, and Optical Physics, 78

(1):010306, 2008. doi: 10.1103/PhysRevA.78.010306.

[128] Lea F Santos, Fausto Borgonovi, and Giuseppe Luca Celardo. Cooperative shield-

ing in many-body systems with long-range interaction. Physical Review Letters,

116(25):250402, 2016. doi: 10.1103/PhysRevLett.116.250402.

[129] GL Celardo, R Kaiser, and Fausto Borgonovi. Shielding and localization in the

presence of long-range hopping. Physical Review B, 94(14):144206, 2016. doi:

10.1103/PhysRevB.94.144206.

[130] Gregory S Bentsen, Andrew J Daley, and Johannes Schachenmayer. Entanglement

dynamics in spin chains with structured long-range interactions. In Entanglement

in Spin Chains: From Theory to Quantum Technology Applications, pages 285–

319. Springer, 2022. doi: 10.1007/978-3-031-03998-0 11.


	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis outline

	2 Theory of recurrence in quantum systems
	2.1 Recurrence in classical systems
	2.2 Fidelity-recurrence in quantum systems
	2.2.1 State Recurrence
	2.2.2 Open quantum systems and reduced states
	2.2.3 Probability distributions for absence and recurrence times
	2.2.3.1 Average recurrence time


	2.3 Equilibration and recurrence described via physical properties of the system
	2.3.1 Single-particle hopping
	2.3.2 Recurrence of a general quantity
	2.3.3 Many-Body setups
	2.3.4 Entanglement
	2.3.5 Mutual Information
	2.3.6 Equivalence of mixedness measures

	2.4 Summary

	3 Theoretical methods
	3.1 Background
	3.2 Lieb-Robinson bounds
	3.3 Tripartite Mutual Information
	3.4 Quadratic models
	3.4.1 Translationally invariant fermionic systems with quadratic hamiltonians
	3.4.2 Normal modes

	3.5 Fermionic Gaussian states
	3.5.1 Dynamics
	3.5.2 Correlation and density matrix

	3.6 Long-range coupling
	3.6.1 Sparse long-range coupling
	3.6.2 Spectrum, group velocity and density of states
	3.6.2.1 Dense algebraic coupling
	3.6.2.2 Sparse prime-power coupling
	3.6.2.3 Monna map
	3.6.2.4 Phase-transitions


	3.7 Summary

	4 Recurrence dynamics in single particle systems
	4.1 Setup
	4.2 Recurrence for different graph geometries
	4.2.1 The chain
	4.2.2 Lattices
	4.2.3 Tree-like graphs
	4.2.4 General trends in recurrence time scaling for modulated graph geometries

	4.3 Tunnelings
	4.3.1 Decaying coupling functions - Speedwagon
	4.3.2 Long-range coupling
	4.3.2.1 Different exponents

	4.3.3 Continuous space ring
	4.3.4 General trends for the absence time scaling for modulated tunnelling-strengths

	4.4 Absence-time distributions
	4.5 Disordered on-site energies
	4.5.1 The chain
	4.5.2 The square
	4.5.3 Spectral sampling

	4.6 Conclusion
	4.7 Outlook

	5 Recurrence dynamics in many-body quantum systems
	5.1 Setup
	5.2 Extraction of information
	5.2.1 Teleportation protocol
	5.2.2 ``Weighing'' the bath by measuring magnetization

	5.3 Weighing the chain
	5.4 Teleportation
	5.5 Conclusion
	5.6 Outlook

	6 Information spreading with long-range coupling models
	6.1 Setup
	6.2 The Ring
	6.3 Dense algebraic model
	6.3.1 Spectrum and ground-state correlations
	6.3.2 Correlation spreading
	6.3.3 Entropy dynamics
	6.3.4 Mutual Information

	6.4 Power p models
	6.4.1 Spectrum and ground-state correlations
	6.4.2 Correlation spreading
	6.4.3 Mutual Information

	6.5 Conclusion
	6.6 Outlook

	7 Discussion and Outlook
	Bibliography

