
Asymptotic Properties and Finite Time

Convergence of Classical and Modified Methods

for Stochastic Differential Equations

Wei Liu

Department of Mathematics and Statistics

University of Strathclyde

Glasgow, UK

October 2013

This thesis is submitted to the University of Strathclyde for the

degree of Doctor of Philosophy in the Faculty of Science.



The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50.

Due acknowledgement must always be made of the use of any material in, or

derived from, this thesis.



Acknowledgements

Finally, it is the time to say goodbye to my PhD life. At this moment, I have a

lot of words crowding in my throat and plenty of wonderful moments flashing in

my mind. I wish I could give my appreciation to every single of you, and I could

even write a book on it. However, as an acknowledge of a PhD thesis, I guess that

readers must love to focus on mathematics and only give a as quick as possible

glance of this page. So I project the unbounded set of thanks to the following a

few words and hope that readers will enjoy rest of the thesis.

First of all, I would like thank my supervisor Professor Xuerong Mao, who intro-

duces the topic to me, inspires me during my PhD study and encourages me to

challenge myself.

My thanks also go to Dr Andrew Wade, Dr Alison Gray, Dr Vladislav Vyshemirsky

and Dr Jiafeng Pan. The academic and nonacademic chats with them make my

PhD life more colourful. I could not forget Martin, Alan, Steven, David, Eusebio

and all the office chats with them.

For Hongrui, Wenwen and Chang, I need to say, without you I would have

already died from loneliness.

I thank the university of Strathclyde and the Scottish government for their

financial support, and Journal of Computational and Applied Mathematics and

Applied Mathematics and Computation for accepting my papers.

Last but not the least, thank you mum and dad for the uncountable many

reasons.

i



Abstract

As few stochastic differential equations have explicit solutions, the numerical schemes

are studied to approximate the underlying solution. The fast development in com-

puter science in recent years has made large scale simulations available, then the

numerical analysis for stochastic differential equations has been blooming in past

decades. However, the study on numerical solutions is still far behind the study

on the underlying solutions. This thesis is devoted to mathematically rigorous

investigation on the numerical solutions.

Among all those attractive mysteries in the numerical analysis of stochastic

differential equations, one of the popular problems is that if the numerical so-

lutions can reproduce different properties of the underlying solutions. In thesis,

we present some interesting results on this topic, which includes the asymptotic

moment boundedness, the stationary distribution and the almost sure stability.

The methods considered in this part are two classical methods, the explicit Euler-

Maruyama method and the backward Euler-Maruyama method, and one modified

method, the Euler-Maruyama method with random variable step size, which is

first introduced in this thesis. Another main focus of numerical analysis is the

finite time convergence. Our work on this topic is to modify the explicit Euler-

Maruyama method and investigate the strong convergence (in the L2 sense) of

it.

Our investigation first goes to reproduce the asymptotic boundedness in small

moment of the underlying solutions. The explicit Euler-Maruyama method is

shown to be able to achieve this goal if both the drift coefficient and the diffusion
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coefficient are global Lipschitz. But with the global Lipschitz condition on the

drift coefficient violated, a counter example indicates the failure of the explicit

Euler-Maruyama method. A natural replacement, the backward Euler-Maruyama

method, then is considered and successfully reproduce the asymptotic bounded-

ness. In the case of small moment, we are only able to reproduce the boundedness

property qualitatively so far. To answer another close related question that if

we could reproduce the upper bound quantitatively, we strengthen the conditions

and show that for the case of second moment the upper bound of the underlying

solution can be reproduced as well.

As the moment boundedness is key to the existence and uniqueness of the

stationary distribution, we next study this property for the numerical solution.

Since the backward Euler-Maruyama method has better performance than the ex-

plicit Euler-Maruyama method, in this part we only discuss the backward Euler-

Maruyama method. The coefficient related sufficient conditions are given for the

existence and uniqueness of the stationary distribution of the backward Euler-

Maruyama method. Then the numerical stationary distribution is proved to con-

verge to the stationary distribution of the underlying solution as step size vanishes.

These results largely extend the existing works to cover wider range of stochastic

differential equations.

The almost sure stability is one of the hottest topics and many papers have

studied the reproduction of this property by different kinds of classical methods.

Therefore, we seek to study this property by one modified method, the Euler-

Maruyama method with random variable step size. To our best knowledge, this

is the first work to apply the random variable step size to the analysis of the

almost sure stability of the explicit Euler-Maruyama method. One of our key

contributions is that we show that the time variable is a stopping time, which

were ignored by many researchers, and only under this circumstance the rest results

hold. Compare with those fixed step size or nonrandom variable step size methods,

the Euler-Maruyama method with random variable step size is shown to be able
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to reproduce the almost sure stability with much weaker conditions.

As the strong convergence of the classical methods has already been widely

studied and the recent works have shown the good performance of the modified

classical methods, we present our findings in this area by introducing the stopped

Euler method and show the strong convergence of it to the underlying solution

with the rate a half. Briefly, the stopped Euler method is the classical Euler-

Maruyama method equipped with the stopping time technique. The stopping time

is originally employed to preserve the non-negativity of the numerical solution, and

it turns out that the non-negativity in return enables the strong convergence of the

method with the rate arbitrarily close to a half. Compare with the explicit Euler-

Maruyama method, the stopped Euler method can cover some highly non-linear

stochastic differential equations.
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Notation

a.s. : almost surely, or P-almost surely, or with probability 1.

A := B : A is defined by B or A is denoted by B.

A(x) ≡ B(x) : A(x) and B(x) are identically equal, i.e. A(x) = B(x) for all x.

∅ : the empty set.

1A : the indicator function of a set A, i.e. 1A(x) = 1 if x ∈ A or otherwise 0.

σ(C) : the σ-algebra generated by C.

a ∨ b : the maximum of a and b.

a ∧ b : the minimum of a and b.

|x| : the Euclidean norm of a vector x.

MT : the transpose of a vector or matrix M.

|M | : =
√

trace(MTM), i.e. the trace norm of a matrix M.

λmin(M) : the smallest eigenvalue of a matrix M.

λmax(M) : the largest eigenvalue of a matrix M.

dxe : the smallest integer larger than a real number x.

R+ : the set of all nonnegative real numbers.

N : the set of all nonnegative integers.

Z : the set of all integers.

Q : the set of all rational numbers.

Lp(Ω;Rn) : the family of Rn-valued random variables θ with E|θ|p <∞.
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Lp([a, b];Rn) : the family of Rn-valued Ft-adapted processes {f(t)}a≤t≤b

such that

∫ b

a

|f(t)|pdt <∞.
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Chapter 1

Introduction

All our stories could date back to the year of 1827 when Scottish botanist Robert

Brown observed the irregular motion of pollen grains in water through a micro-

scope, but he was not able to determine the mechanisms that caused it. Decades

after decades, no good explanation was given to this mystery. As time passed a

new century, the paper of Albert Einstein published in 1905 (Einstein, 1905) fi-

nally came up with an explanation that the irregular motion of pollen grains was a

result of being affected by individual water molecules. Since the number of water

molecules is huge and the motion of them is so complicated, Einstein pointed out

that one best way to describe the effects of water molecules on the pollen grain is

statistical mechanics. In 1923, a mathematically rigorous description of Brownian

motion was given by Norbert Wiener (Wiener, 1923). Since then, the study on

stochastic differential modeling started to bloom. However, due to the unbound-

edness of the variation of Brownian motion, the Brownian sample path is nowhere

differentiable and the Lebesgue-Stieltjes integral cannot be defied with respect to

Brownian motion. But this is not the end of the world, as the quadratic varia-

tion of Brownian motion is finite. Motivated by this, the Japanese mathematician

Kiyosi Itô firstly defined the stochastic integral (Itô, 1944; Itô, 1946) known as

Itô integral. The corresponding differential equation is called stochastic differen-

tial equations of Itô type. In this thesis, all our studies focus on Itô stochastic
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Chapter 1: Introduction 2

differential equations (SDEs).

1.1 Motivation

After Itô’s fundamental works, SDEs have become more and more important mod-

eling tools in many disciplines, such as biology (Allen, 2007; Frank & Beek, 2001),

physics (Schuss, 1980; Sobczyk, 2001), finance (Platen & Bruti-Liberati, 2010;

Shreve, 2004) and chemistry (Gardiner, 2004; van Kampen, 1981), we just men-

tion a few of them here.

Meanwhile, increasing attention has been paid on different properties of the

solutions of SDEs. This is because, on one hand, One would like to know if the the

dynamic of the SDE model is in line with the phenomenon it is trying to describe,

for example if a population SDE model always has a nonnegative solution. One

the other hand, the studies of SDEs could be standalone interest of mathematics.

Due to that the stochastic term plays an important role in the behaviour of the

solution, the dynamic of the SDE could be so different from that of the counterpart

ODE. For example, given an ODE whose solution is explosive as time tends to

infinity, we can add a stochastic part of certain type on it and make the new SDE

system stable to the trivial solution as time advances. This is called stochastic

stabilization (Mao, 2008).

Many works have been done on the solutions of SDEs, such as existence and

uniqueness, positivity, stability, boundedness, stationary distribution and hitting

time, we just mention some of them here (Arnold, 1974; Khasminskii, 2012; Mao

& Yuan, 2006; Mao, 2008; Oksendal, 2003) and the references therein.

Although many theories have been built on the existence and uniqueness of

the solutions of SDEs, only a few SDEs can be solved explicitly. Therefore, in

most practical problems we need to demonstrate the behaviour of the solutions

numerically. Thanks to the fast development in the scientific computing technolo-

gies in recent years, the large scale computing simulations have become available.
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Then one obviously interesting question is if the numerical solution approximates

the underlying solution correctly. There already exist plenty of excellent works on

numerical analysis for SDEs, which mainly focus on finite time (strong and weak)

convergence, positivity, stability, numerical stationary distribution and bounded-

ness. We mention some of the works here (Higham et al., 2002; Higham et al.,

2007; Hu, 1996; Kloeden & Platen, 1992; Milstein, 1995; Milstein & Tretyakov,

2004) and the references therein. However, the study of numerical solutions is still

far behind the study of underlying solutions. Due to the discontinuous nature of

the numerical solutions, some essential techniques that works well on the under-

lying solutions can not be adapted to the numerical solution. Thus, alternatives

need to be found and there are many gaps needing to be filled up in the study of

numerical methods for SDEs.

This thesis contributes to finding the proper numerical methods to repro-

duce three asymptotic properties of the underlying solutions: asymptotic moment

boundedness, stationary distribution and almost sure stability. We also do some

works on the finite time strong convergence, in which the classical Euler-Maruyama

method is modified by embedding with a stopping time and the modified method

can cover larger range of SDEs.

1.2 Structure of This Thesis

In general, the next six chapters can be divided into three parts: Chapter 2 is

devoted to the brief introductions to stochastic process, stochastic differential

equations and related mathematical preliminaries which will be used in following

chapters; Chapters 3, 4, 5 and 6 contain the main results of this thesis; Chapter 7

concludes this thesis and states some potential future research.

Chapter 3 studies one important asymptotic property of numerical solutions,

the asymptotic boundedness. We first discuss a group of SDEs with the linear

growth condition and reproduce the asymptotic boundedness in small moment us-
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ing the Euler-Maruyama (EM) method. As the linear growth condition is violated,

the EM method does not function well any more. Then we move to the backward

Euler-Maruyama method and successfully reproduce the asymptotic boundedness

in small moment under the one-sided Lipschitz condition. At last, by strengthen-

ing some conditions, we can reproduce not only the asymptotic boundedness of the

underlying solution but also the upper bound accurately for the second moment.

In Chapter 4, we first investigate the existence of stationary distributions of

numerical solutions. Then we study the convergence of the numerical stationary

distribution to the stationary distribution of the underlying solution. The pur-

pose of it is to avoid solving the nontrivial Kolmogorov-Fokker-Planck equations

to find the stationary distribution of the underlying SDEs. In addition, as the

Kolmogorov-Fokker-Planck equations can be regarded as connections between so-

lutions of stochastic differential equations and deterministic differential equations,

the numerical stationary distributions could also be used as numerical solutions to

certain type of deterministic differential equations. It should be mentioned that

the moment boundedness property studied and those techniques used in Chapter

3 are essential to the proofs of this chapter.

The step size of all the numerical methods discussed in Chapters 3 and 4 is

constant. In Chapter 5, we introduce the random variable step size and embed

it with the EM method to study the almost sure stability. Most previous works

on the almost sure stability of numerical methods focused on the constant step

size, and only a few of them looked at the nonrandom variable step size. To our

best knowledge, this is the first work to apply the random variable step size to

the analysis of the almost sure stability of the EM method. The key contribution

of this chapter is that we prove the time variable is a stopping time and this

observation is crucial to other proofs. As the payoff of using the EM method with

random step size, the conditions for almost sure stability is largely released.

In Chapter 6, we continue to modify the classical EM method and study the fi-

nite time strong convergence of the modified method. As the classical EM has been
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proved to fail to work on some highly nonlinear SDEs, the classical EM method

equipped with a stopping time is introduced in this chapter. The stopping time

technique is employed to prevent the numerical solution from becoming negative.

In return, this nonnegative numerical solution converges strongly (namely in the

L2 sense) to the underlying solution. In addition, we are able to prove the strong

convergence rate is arbitrarily close to a half. Some Numerical simulations are

conducted and the observations are in line with the theoretical results.

Each of those four main chapters has its only introduction section, in which

more detailed literature review is given. The preliminary sections in those chapters

specify the related notations, numerical methods, lemmas and theorems that are

used in corresponding chapters.



Chapter 2

Mathematical Preliminaries

2.1 Random Variable, Stochastic Process and Mar-

tingale

For an experiment with uncertain outcomes, let Ω be the set of all the possible

outcomes. The element of Ω is denoted by ω. Those subsets of Ω, that are of

interest, are grouped together to form a family, F , of subsets of Ω. A family F

possessing the following three properties is called a σ-algebra:

• ∅ ∈ F ,

• S ∈ F ⇒ SC ∈ F ,

• {Si}i≥1 ⊂ F ⇒ ∪∞i=1Si ∈ F ,

where ∅ denotes the empty set and SC denotes the complement of S in Ω. Then

the pair (Ω,F) is called a measurable space, and the element of F is called a

F -measurable set.

A probability measure P on a measurable space (Ω,F) is a function: F → [0, 1]

such that

• P(Ω) = 1,

6
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• for any disjoint sequence {Si}i≥1 ⊂ F , P(∪∞i=1Si) =
∑∞

i=1 P(Si).

Then the triple (Ω,F ,P) is called a probability space.

Define x to be a real-valued function on Ω, and it is said to be F -measurable if

{ω : x(ω) ≤ c} ∈ F for all c ∈ R.

This function x is called a F -measurable real-valued random variable as well. An

Rn-valued function, x(ω) = (x1(ω), x2(ω), ..., xn(ω)), is said to be a F -measurable

Rn-valued random variable if all the entries, {xi(ω)}i=1,2,...,n, are F -measurable

real-valued random variables.

A filtration is a collection, {Ft}t≥0, of increasing sub-σ-algebra of F , i.e. Fs ⊂

Ft ⊂ F for all 0 ≤ s < t < ∞. The filtration is said to be right continuous, if

Fs = ∩t>sFt for all s ≥ 0.

Throughout this thesis, unless specified otherwise, let (Ω,F , {Ft}t≥0,P) be a

complete probability space with a filtration {Ft}t≥0, which is increasing and right

continuous, with F0 containing all P-null sets. We also define F∞ as the σ-algebra

generated by ∪t≥0Ft.

A collection of Rn-valued random variables, {xt}t≥0, is called a stochastic pro-

cess. The index t is considered to be time on [0,∞) for a convenient interpretation

in this thesis. For each fixed t ∈ [0,∞), we have a random variable xt(ω) ∈ Rn.

On the other hand, for each fixed ω ∈ Ω, we have a function of t, xt(ω) ∈ Rn,

which is called a sample path of the process.

An Rn-valued stochastic process {xt}t≥0 is said to be cadlag if it is right con-

tinuous and for almost all ω ∈ Ω the left limit lims→t xs(ω) exists and is finite for

all t > 0. It is said to be adapted if for every t, xt is Ft-measurable. It is said to

be progressively measurable if for every T ≥ 0, {xt}0≤t≤T regarded as a function

of (t, ω) from [0, T ]×Ω to Rn is B([0, T ])×FT -measurable, where B([0, T ]) is the

family of all Borel sub-sets of [0, T ].

In this thesis, we discuss both that the distribution of the numerical solution

approximates the underlying distribution of the random variable xt(ω) as t→∞,
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and that the numerical solution approximates the underlying sample path.

A random variable τ : Ω → [0,∞] is called an {Ft}-stopping time, if {ω :

τ(ω) ≤ t} ∈ Ft for any t ≥ 0. Stopping time is essential for this thesis and we

quote the following useful theorems. We refer the readers to Section 1.3 of (Mao,

2008) for more details.

Theorem 2.1.1 If {xt}t≥0 is a progressively measurable process and τ is a stop-

ping time, then xτ1τ<∞ is Fτ -measurable. In particular, if τ is finite, then xτ is

Fτ -measurable.

Theorem 2.1.2 Let {xt}t≥0 be an Rn-valued cadlag {Ft}-adapted process, and D

be an open subset of Rn. Define

τ = inf{t ≥ 0 : xt 6∈ D},

where inf ∅ =∞ is used for the convention. Then τ is an {Ft}-stopping time, and

is called the first exit time from D.

Conditional expectation plays an important role in this thesis, therefore we

quote the following general concept of conditional expectation. Let x ∈ L1(Ω;R),

and G ⊂ F be a sub-σ-algebra of F . So (Ω,G) is a measurable space. In general,

x is not G-measurable. We now seek an integrable G-measurable random variable

y such that it has the same value as x on the average in the sense that

E(1Gy) = E(1Gx) i.e.

∫
G

y(ω)dP(ω) =

∫
G

x(ω)dP(ω) for all G ∈ G.

By the Radon-Nikodym theorem, there exists a unique y a.s. It is called the

conditional expectation of x under the condition G, and we denote it by

y = E(x|G). (2.1)

If G is the σ-algebra generated by random variable y, define the σ-algebra generated

by y by σ(y), we write

E(x|G) = E(x|σ(y)) = Ey(x).
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Some important properties of the conditional expectation we need in this thesis

are listed as follows

• E(E(x|G)) = E(x);

• x ≥ 0 a.s. ⇒ E(x|G) ≥ 0;

• E(x|G) = x, if x is G-measurable;

• x is G-measurable ⇒ E(xy|G) = xE(y|G), particularly, x, y are independent

⇒ E(E(x|G)y|G) = E(x|G)E(y|G);

• G1 ⊂ G2 ⊂ F ⇒ E(E(x|G2)|G1) = E(x|G1).

The concept of martingale states that the best estimate of the expectation of future

status given all the history information is the current status. Using the concept

of the conditional expectation, formally an Rn-valued {Ft}-adapted integrable

process {Mt}t≥0 is called a martingale with respect to {Ft} if

E(Mt|Fs) = Ms a.s. for all 0 ≤ s < t <∞. (2.2)

If x = {xt}t≥0 is a progressively measurable process and τ is a stopping time, then

xτ = {xτ∧t}t≥0 is called a stopped process of x. The following is the well-known

Doob martingale stopping theorem.

Theorem 2.1.3 Let {Mt}t≥0 be an Rn-valued martingale with respect to {Ft},

and τ, ρ be two finite stopping times. Then

E(Mτ |Fρ) = Mτ∧ρ a.s.

Particularly, if τ is a stopping time, then

E(Mτ∧t|Fs) = Mτ∧s a.s.

holds for all 0 ≤ s < t < ∞. That is, the stopped process M τ = {Mτ∧t} is still a

martingale with respect to the same filtration {Ft}.
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If the equality in (2.2) is replaced by inequality, we have the two new concepts.

A real-valued {Ft}-adapted integrable process {Mt}t≥0 is called a supermartin-

gale, if

E(Mt|Fs) ≤Ms a.s. for all 0 ≤ s < t <∞.

And it is called a submartingale, if

E(Mt|Fs) ≥Ms a.s. for all 0 ≤ s < t <∞.

In addition, a right continuous adapted process M = {Mt}t≥0 is called a local

martingale, if there exists a nondecreasing sequence {τk}k≥1 of stopping times

with τk →∞ a.s. (when k →∞) such that every {Mτk∧t−M0}t≥0 is a martingale.

By Theorem 2.1.3 it can be seen that every martingale is a local martingale, but

the converse statement is not always true.

The following semi-martingale convergence theorem plays a key role in the

stability analysis of this thesis.

Theorem 2.1.4 Let {At}t≥0 and {Bt}t≥0 be two continuous adapted increasing

precesses with A0 = B0 = 0 a.s. Let {Mt}t≥0 be a real-valued continuous local

martingale with M0 = 0 a.s. Le ξ be a nonnegative F0-measurable random variable.

Define

Xt = ξ + At −Bt +Mt for t ≥ 0.

If Xt is nonnegative, then{
lim
t→∞

At <∞
}
⊂
{

lim
t→∞

Xt exists and is finite
}
∩
{

lim
t→∞

Bt <∞
}

a.s.

where D ⊂ G a.s. means P(D ∩ Gc) = 0. Particularly, if limt→∞At < ∞ a.s.,

then for almost all ω ∈ Ω

lim
t→∞

Xt(ω) exists and is finite, and lim
t→∞

Bt(ω) <∞.

The next two theorems are often used in the proofs in the this thesis without

explicitly referring.
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Theorem 2.1.5 Monotonic convergence theorem If {xk} is an increasing

sequence of nonnegative random variables, then

lim
k→∞

Exk = E
(

lim
k→∞

xk

)
.

Theorem 2.1.6 Dominated convergence theorem Let p ≤ 1, {xk} ⊂ Lp(Ω;Rn)

and y ∈ Lp(Ω;R). Assume that |xk| ≤ y a.s. and {xk} converges to x in probabil-

ity. Then x ∈ Lp(Ω;R), {xk} converges to x in Lp, and

lim
k→∞

Exk = Ex.

We end up this section by quoting the well-known Borel-Cantelli lemma.

Lemma 2.1.7 Borel-Cantelli’s lemma

• If {Ak} ⊂ F and
∑∞

k=1 P(Ak) <∞, then

P
(

lim sup
k→∞

Ak

)
= 0.

That is, there exists a set Ω0 ∈ F with P(Ω0) = 1 and an integer-valued

random variable k0 such that for every ω ∈ Ω0 we have ω 6∈ Ak whenever

k ≥ k0(ω).

• If the sequence {Ak} ⊂ F is independent and
∑∞

k=1 P(Ak) =∞, then

P
(

lim sup
k→∞

Ak

)
= 1.

That is, there exists a set Ωθ ∈ F with P(Ωθ) = 1 such that for every ω ∈ Ωθ,

there exists a sub-sequence {Aki} such that the ω belongs to every Aki.

2.2 Brownian Motion and Stochastic Integrals

Brownian motion depicts the random movement of pollen grains suspended in wa-

ter, which was initially observed by the Scottish botanist Robert Brown through a

microscope. And the rigorous mathematical explanation is due to Norbert Wiener.
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Let (Ω,F ,P) be a probability space with a filtration {Ft}t≥0. A one-dimensional

Brownian motion is a real-valued continuous {Ft}-adapted process {Bt}t≥0 pos-

sessing the following three properties:

• B0 = 0 a.s.;

• for 0 ≤ s < t <∞, the increment Bt−Bs is normally distributed with mean

0 and variance t− s;

• for 0 ≤ s < t <∞, the increment Bt −Bs is independent of Fs.

A n-dimensional process {Bt = (B1
t , ..., B

n
t )}t≥0 is called a n-dimensional Brown-

ian motion, if, for every i, {Bi
t} is a one-dimensional Brownian motion and {B1

t },

..., {Bn
t } are independent. The one-dimensional Brownian motion has many prop-

erties (similar properties hold for n-dimensional Brownian motion), we summarise

some of them that are useful in this thesis and refer the readers to (Revuz & Yor,

1999) for more details:

• {Bt} is a continuous square-integrable martingale and its quadratic variation

is 〈B,B〉t = t for all t ≥ 0;

• The strong law of large numbers indicates that limt→∞Bt/t = 0 a.s.;

• For almost every ω ∈ Ω, the Brownian sample path Bt(ω) is nowhere differ-

entiable.

Due to the last property, the integral with respect to the Brownian motion can not

be defined in the ordinary way. Kiyosi Itô firstly defined the stochastic integral

(Itô, 1944; Itô, 1946) ∫ b

a

f(t)dBt

with respect to a Brownian motion. Let (Ω,F ,P) be a complete probability space

with a filtration {Ft}t≥0 satisfying the usual conditions. Let {Bt}t≥0 be a one-

dimensional Brownian motion defined on the probability space adapted to the

filtration.
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Definition 2.2.1 Let 0 ≤ a < b < ∞. Denote by M2([a, b];R) the space of all

real-valued measurable {Ft}-adapted processes f = {f(t)}a≤t≤b such that

‖f‖2
a,b = E

∫ b

a

|f(t)|2dt <∞.

Briefly speaking, to define the Itô integral
∫ b
a
f(t)dBt, firstly we define the integral∫ b

a
g(t)dBt for a class of simple processes g = {g(t)}a≤t≤b. Then we show that each

f ∈ M2([a, b];R) can be approximated by such simple processes g. Finally, we

define the limit of
∫ b
a
g(t)dBt as the integral

∫ b
a
f(t)dBt.

There are other ways to define the stochastic integral, for example the Stratonovich

integral (Stratonovich, 1966). One of the important difference between the Itô in-

tegral and the Stratonovich integral is that the former one is a martingale but the

later one is not. In this thesis, we focus on the Itô integral.

The Itô stochastic integral has many sound properties, we list some of them as

follows. Let f, g ∈ M2([0, T ];R), a, b be two real numbers with 0 ≤ a ≤ b ≤ T ,

and τ, ρ be two stopping times such that 0 ≤ τ ≤ ρ ≤ T a.s.

•
∫ b
a
f(t)dBt is Fb-measurable;

• E
(∫ b

a
f(t)dBt|Fa

)
= 0;

• E
(∣∣ ∫ b

a
f(t)dBt

∣∣2|Fa) = E
(∫ b

a
|f(t)|2dt|Fa

)
=
∫ b
a
E(|f(t)|2|Fa)dt;

• E
(∫ ρ

τ
f(t)dBt|Fτ

)
= 0;

• E
(∣∣ ∫ ρ

τ
f(t)dBt

∣∣2|Fτ) = E
(∫ ρ

τ
|f(t)|2dt|Fτ

)
.

To define the multi-dimensional Itô stochastic integral, let f ∈ M([0, T ];Rn×m)

and {Bt = (B1
t , ..., B

m
t )}t≥0 be anm-dimensional Brownian motion, the n-dimensional

stochastic integral
∫ t

0
f(s)dBs is a n-column-vector-valued process whose ith com-

ponent is
∑m

j=1

∫ t
0
fij(s)dB

j
s . Similar properties like those listed above hold for the

multi-dimensional Itô stochastic integral as well.
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2.3 Stochastic Differential Equations

This section is devoted to the basic concept of stochastic differential equations

(SDEs) and the corresponding stochastic version of the chain rule for Itô, which

is known as Itô formula.

Let (Ω,F ,P) be the complete probability space with a filtration {Ft}t≥0 sat-

isfying the usual conditions. Let B(t) = (B1(t), ..., Bm(t)) be an m-dimensional

Brownian motion defined on the space. Let x0 be an F0-measurable Rn-valued

random variable such that E|x0|2 < ∞. For any T > 0, let f : Rn × [0, T ] → Rn

and g : Rn× [0, T ]→ Rn×m be both Borel measurable. Without loss of generality,

we set the starting time t0 = 0. The n-dimensional stochastic differential equation

of Itô type is defined as

dx(t) = f(x(t))dt+ g(x(t))dBi(t), t ∈ [0, T ], (2.3)

with initial value x(0) = x0. In this thesis, we call f(x(t)) the drift coefficient and

g(x(t)) the diffusion coefficient. This SDE is equivalent to the following stochastic

integral equation:

x(t) = x0 +

∫ t

0

f(x(s))ds+

∫ t

0

g(x(s))dB(s) for t ∈ [0, T ]. (2.4)

The SDE (2.3) is the main equation that we focus on in this thesis, there may be

slight changes in the notations in each of the following chapters. We first give the

definition of the solution.

Definition 2.3.1 An Rn-valued stochastic process {x(t)}0≤t≤T is called a solution

of SDE (2.3), if it possesses the following properties:

• {x(t)} is continuous and Ft-adapted;

• {f(x(t))} ∈ L1([0, T ];Rn) and {g(x(t))} ∈ L2([0, T ];Rn×m);

• the stochastic integral equation (2.4) holds for every t ∈ [0, T ] with probability

1.
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A solution {x(t)}0≤t≤T to (2.3) is said to be unique if any other solution {x̄(t)}0≤t≤T

is indistinguishable from {x(t)}0≤t≤T , i.e.

P(x(t) = x̄(t) for all 0 ≤ t ≤ T ) = 1.

Next, we quote two theorems on the existence and uniqueness of the solutions.

The conditions in the first one are coefficients related.

Theorem 2.3.2 Assume that there exist two positive constants K̄ = K̄(R) and

K such that

Local Lipschitz condition for all x, y ∈ Rn with |x| ∨ |y| ≤ R

|f(x)− f(y)|2 ∨ |g(x)− g(y)|2 ≤ K̄(R)|x− y|2;

Linear growth condition for all x ∈ Rn

|f(x)|2 ∨ |g(x)|2 ≤ K(1 + |x|2).

Then there exists a unique solution x(t) to SDE (2.3) and the solution belongs to

M2([0, T ];Rn).

Before presenting a more general theorem, we state the multi-dimensional Itô

formula.

Theorem 2.3.3 Let x(t) be a n-dimensional Itô process on t ≥ 0 with the stochas-

tic differential equation (2.3), here f ∈ L1(R+;Rn) and g ∈ L2(R+;Rn×m). Let

V (x(t), t) ∈ C2,1(Rn × R+;R), which is twice continuously differentiable with re-

spect to x and continuously differentiable with respect to t. Then V (x(t), t) is also

an Itô process with the stochastic differential equation given by

dV (x(t), t) =

[
∂V (x(t), t)

∂t
+
∂V (x(t), t)

∂x
f(x(t))

+
1

2
trace(gT (x(t))

∂2V (x(t), t)

∂x2
g(x(t)))

]
dt+

∂V (x(t), t)

∂x
g(x(t))dB(t).
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Let Sh = {x ∈ Rn : |x| < h}. For 0 < h ≤ ∞, let V (x, t) ∈ C2,1(Sh × R+;R+).

Define the differential operator L associate with SDE (2.3) by

L =
∂

∂t
+

n∑
i=1

fi(x(t))
∂

∂xi
+

1

2

n∑
i,j=1

[g(x(t))gT (x(t))]i,j
∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1(Sh × R+;R+), by Itô formula we see that

dV (x(t), t) = LV (x(t), t)dt+
∂V (x(t), t)

∂x
g(x(t))dB(t).

The second theorem on the existence and uniqueness of the solution of (2.3) is in

a certain sense “the best possible”.

Theorem 2.3.4 Suppose that the local Lipschitz condition holds, moreover, that

there exists a nonnegative function V ∈ C2,1(Sh × R+;R+) such that for some

constant c > 0

LV ≤ cV,

VR = inf
|x|>R

V (x, t)→∞ as R→∞.

Then there exists a unique solution x(t) to SDE (2.3) and the solution belongs to

M2([0, T ];Rn).

In general, the Markov property means that given a Markov process, the past and

future are independent when the present is known. Mathematically, denote the

σ-algebra generated by σ{x(t) : 0 ≤ r ≤ s} by Fs. A n-dimensional Ft-adapted

process {x(t)}t≥0 is called a Markov process, if the following Markov property is

satisfied: for all 0 ≤ s ≤ t <∞ and A ∈ Bn,

P(x(t) ∈ A|Fs) = P(x(t) ∈ A|x(s)).

There are several equivalent formulations of the Markov property, for example for

any bounded Borel measurable function φ : Rn → R and 0 ≤ s ≤ t <∞,

E(φ(x(t))|Fs) = E(φ(x(t))|x(s)).
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We can also rewrite it as

E(φ(x(t))|Fs) = Ex(s),s(φ(x(t))).

The transition probability of the Markov process is a function P(x(s), s;A, t), de-

fined on 0 ≤ s ≤ t <∞, x(s) ∈ Rn and A ∈ Bn, with the following properties

• For every 0 ≤ s ≤ t <∞ and A ∈ Bn,

P(x(s), s;A, t) = P(x(t) ∈ A|x(s));

• P(x(s), s; ·, t) is a probability measure on Bn for every 0 ≤ s ≤ t < ∞ and

x(s) ∈ Rn;

• P(·, s;A, t) is Borel measurable for every 0 ≤ s ≤ t <∞ and A ∈ Bn;

• The Chapman-Kolmogorov equation

P(x(s), s, ;A, t) =

∫
Rn

P(y, r;A, t)P(x(s), s; dy, r)

holds for any 0 ≤ s ≤ r ≤ t <∞, x(s) ∈ Rn and A ∈ Rn.

If the constant time is replaced by a stopping time, we have the concept of strong

Markov property. A n-dimensional process {x(t)}t≥0 is called a strong Markov

process, if the following strong Markov property is satisfied: for any bounded

Borel measurable function φ : Rn → R, any finite Ft-stopping time τ and t ≥ 0,

E(φ(x(τ + t))|Fτ ) = E(φ(x(τ + t))|x(τ)).

It can also be written as

E(φ(x(τ + t))|Fτ ) = Ex(τ),τ (φ(x(τ + t))).

In general, a Markov process is not a strong one. Then conditions that guarantee

that a Markov process possesses the strong Markov property are right continuity of
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the sample paths and the Feller property. If, for any bounded continuous function

φ : Rn → R, the mapping

(x(s), s)→
∫
Rn
φ(y)P(x(x), s; dy, s+ λ)

is continuous, for any fixed λ > 0, we say that the transition probability (or the

corresponding Markov process) satisfies the Feller property.

Next, we quote a theorem about the Markov property of the solutions of SDEs.

Theorem 2.3.5 Let x(t) be a solution of the SDE (2.3), whose coefficients satisfy

the conditions of the existence and uniqueness theorem. Then x(t) is a Markov

process whose transition probability is defined by

P(xs, s;A, t) = P(xxs,s(t) ∈ A),

where xxs,s(t) is the solution of the equation

xxs,s(t) = xs +

∫ t

s

f(xxs,s(r))dr +

∫ t

s

g(xxs,s(r))dB(r) on t ≥ s.

For the strong Markov property of the solution, we need to strengthen the condi-

tions. We quote one of the classical results as follows.

Theorem 2.3.6 Let x(t) be a solution of the Itô SDE (2.3). Assume the coeffi-

cients satisfy the global Lipschitz condition that there exists a positive constant

K̄ such that

|f(x)− f(y)|2 ∨ |g(x)− g(y)|2 ≤ K̄|x− y|2

for all x, y ∈ Rn. Then x(t) is strong Markov process.

It is clear that the global Lipschitz condition can indicate the linear growth con-

dition.

2.4 Useful Inequalities

Inequalities play a key role in many proofs in this thesis. Therefore, this section

serves as an arsenal of inequalities that will be used in this thesis.
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We start from the simplest one that for any x, y ∈ R

2ab ≤ a2 + b2,

which indicates a more flexible one that for any a, b ∈ R and any ε > 0

2ab ≤ εa2 +
1

ε
b2.

Young’s inequality states that for any a, b ∈ R and any ε ∈ [0, 1]

|a|ε|b|(1−ε) ≤ ε|a|+ (1− ε)|b|.

Hölder’s inequality that if p > 1, 1/p+ 1/q = 1, x and y are Rn-valued random

variables with E|x|p <∞ and E|y|q <∞ then

|E(xTy)| ≤ (E|x|p)1/p(E|y|q)1/q,

is frequently used in the study on finite time strong convergence. The next in-

equality will be used in the estimate of the difference of polynomials

|ap − bp| ≤ p|a− b|(ap−1 + bp−1)

for any a, b ≥ 0 and p ≥ 1.

The Gronwall-type inequality has been widely applied in the theory of stochas-

tic differential equations to prove the results on existence, uniqueness, boundedness

and stability.

Theorem 2.4.1 Gronwall’s inequality Let T > 0 and c ≥ 0. Let u(·) be a Borel

measurable bounded non-negative function on [0, T ], and let v(·) be a non-negative

integral function on [0, T ]. If

u(t) ≤ c+

∫ t

0

v(s)u(s)ds for all 0 ≤ t ≤ T,

then

u(t) ≤ c exp

(∫ t

0

v(s)ds

)
for all 0 ≤ t ≤ T.
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The discrete inequality of Gronwall type has been broadly used in the numerical

analysis for SDEs.

Theorem 2.4.2 Discrete Gronwall’s inequality Let M be a positive integer.

Let uk and vk be non-negative numbers for k = 0, 1, ...,M . If

uk ≤ u0 +
k−1∑
j=0

vjuj, ∀k = 1, 2, ...,M,

then

uk ≤ u0 exp

(
k−1∑
j=0

vj

)
, ∀k = 1, 2, ...,M.

Chebyshev’s inequality that if c > 0, p > 0 and E|x|p <∞ then

P(|x| ≥ c) ≤ c−pE|x|p,

is often used in this thesis to relate properties in probability with properties in

moment.

Some moment inequalities are presented below. Let B(t) = (B1(t), ..., Bm(t))T ,

t ≥ 0 be an m-dimensional Brownian motion defined on the complete probability

space (Ω,F ,Ft,P).

Theorem 2.4.3 Let p ≥ 2. Let g ∈M2([0, T ];Rn×m) such that

E
∫ T

0

|g(s)|pds <∞.

Then

E
∣∣∣∣∫ T

0

g(s)dB(s)

∣∣∣∣p ≤ (p(p− 1)

2

) p
2

T
p−2

2 E
∫ T

0

|g(s)|pds.

In particular, for p = 2, the equality holds.

Theorem 2.4.4 Under the same assumptions as previous theorem,

E
(

sup
0≤t≤T

∣∣∣∣∫ t

0

g(s)dB(s)

∣∣∣∣p) ≤ ( p3

2(p− 1)

) p
2

T
p−2

2 E
∫ T

0

|g(s)|pds.
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Theorem 2.4.5 Burkholder-Davis-Gundy inequality Let g ∈ L2(R+;Rn×m).

Define, for t ≥ 0,

x(t) =

∫ t

0

g(s)dB(s) and A(t) =

∫ t

0

|g(s)|2ds.

Then for every p > 0, there exist universal positive constants cp,Cp dependent only

on p, such that

cpE|A(t)|
p
2 ≤ E

(
sup

0≤s≤t
|x(s)|p

)
≤ CpE|A(t)|

p
2

for all t ≥ 0. Particularly, one may take

cp = (p/2)p, Cp = (32/p)p/2 if 0 < p < 2;

cp = 1, Cp = 4 if p = 2;

cp = (2p)−p/2, Cp = (pp+1/2(p− 1)p−1)p/2 if p > 2.

Theorem 2.4.6 Exponential martingale inequality Let g = (g1, ..., gm) ∈

L2(R+;R1×m), and let T, α, β be any positive numbers. Then

P
(

sup
0≤t≤T

[∫ t

0

g(s)dB(s)− α

2

∫ t

0

|g(s)|2ds
]
> β

)
≤ e−αβ.

2.5 Some Definitions

Definitions of different properties of both SDEs and numerical solutions are stated

in this section.

Definition 2.5.1 The trivial solution of SDE (2.3) is said to be almost surely

stable if

lim
t→∞
|x(t)| = 0 a.s.

for all x0 ∈ Rn. Particularly, if the rate of the stability is exponential, then

lim sup
t→∞

1

t
log |x(t)| < 0 a.s.

for all x0 ∈ Rn.
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Definition 2.5.2 The trivial solution of SDE (2.3) is said to be pth moment sta-

ble, if

lim
t→∞

E|x(t)|p = 0

for all x0 ∈ Rn. Particularly, if the rate is exponential, then there is a pair of

positive constants λ and C such that

E|x(t)|p ≤ C|x0|pe−λt on t ≥ 0,

for all x0 ∈ Rn.

In the case that p = 2, we call it mean square stability. When p is positive but far

less than 1, we call it stability in small moment.

Definition 2.5.3 Let p > 0. The solution of SDE (2.3) is said to be asymptoti-

cally bounded in pth moment if there is a positive constant C such that

lim sup
t→∞

E|x(t)|p ≤ C

for all x0 ∈ Rn.

When p = 2, we say it the asymptotic boundedness in mean square. And if p is

far less than 1, we call it the asymptotic boundedness in small moment.

Now we present the corresponding definitions for numerical solutions. Denote

the numerical solution to SDE (2.3) by {Xk}k=0,1,... (Here we just use it as a

symbol, and will specify in corresponding chapters that which method the solution

is derived from). Also we denote the step size by ∆t.

Definition 2.5.4 For all X0 = x0 ∈ Rn, the numerical solution {Xk} is said to

be stable almost surely with respect to the trivial solution if

lim
k→∞
|Xk| = 0 a.s.

In addition, if the rate of the stability is exponential, then

lim sup
k→∞

1

k∆t
log |Xk| < 0 a.s.

for all X0 = x0 ∈ Rn.
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Definition 2.5.5 For all X0 = x0 ∈ Rn, the numerical solution {Xk} is said to

be pth moment stable with respect to the trivial solution if

lim
k→∞

E|Xk|p = 0.

In addition, if the rate of the stability is exponential, then there is a pair of positive

constants λ and C such that

E|Xk|p ≤ C|X0|pe−λk∆t on k = 1, 2, ...

for all X0 = x0 ∈ Rn.

Definition 2.5.6 Let p > 0. The numerical solution {Xk} is said to be asymp-

totically bounded in pth moment if there exists a positive constants C such that

lim sup
k→∞

E|Xk|p ≤ C

for all X0 = x0 ∈ Rn.



Chapter 3

Asymptotic Moment

Boundedness of Numerical

Solutions

3.1 Introduction

Asymptotic properties of the solutions of SDEs have been widely studied in the

past decades, particularly the stability theory has been attracting lots of attention

(see for example, (Mao, 2008) and the references therein).

Due to the difficulty to find the explicit solutions to SDEs, different types of

numerical methods have been introduced to approximate the underlying solutions

(see, for example, (Hutzenthaler & Jentzen, 2012), (Kloeden & Platen, 1992),

(Milstein & Tretyakov, 2004)). Thus the study of the stability of the numerical

methods has naturally bloomed in recent years. We mention (Higham, 2000),

(Saito & Mitsui, 1996) and (Schurz, 1997) here, as they are among those papers

with original ideas. More recent works investigate the stability for different types

of SDEs and different sorts of numerical methods, such as (Buckwar & Kelly,

2010; Burrage & Tian, 2000; De la Cruz Cancino et al., 2010; Higham et al., 2007;

24
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Komori, 2008; Mitsui & Saito, 2007; Rodkina & Schurz, 2005; Schurz, 2005; Wu

et al., 2010) and the references therein. We also mention some works on stochastic

difference equations (Appleby & Rodkina, 2009; Appleby et al., 2009) as they are

naturally related to discrete numerical solutions.

Another important asymptotic property of the SDE solutions, the asymptotic

boundedness, has its own right. Unlike the stability property that requires the

solutions be attracted by an equilibrium state, the boundedness property only

requires the solutions stay within certain regime as time tends to infinity (Mao

& Yuan, 2006). Works on the boundedness of the underlying SDE solutions can

be found, such as (Luo et al., 2011; Mao & Yuan, 2006; Schurz, 2007; Xing &

Peng, 2012) and their references therein. But there are few papers investigating

the asymptotic boundedness of the numerical solutions.

The main purpose of this chapter is to investigate the asymptotic moment bound-

edness of two classical numerical methods. We focus on two types of moment,

small moment (i.e. pth moment with p much smaller than 1) and second moment.

For the case of small moment, they do have some applications. For instance the

stochastic permanence studied in stochastic population model, see for example (Li

et al., 2011), in which the probability of the solution larger than some constant

can be estimated by the small moment together with Markov’s inequality. The

case of second moment is widely studied for many different asymptotic properties.

In this chapter, we find that compare with the case of small moment stronger con-

ditions are required in second moment but better results could be obtained (see

Section 3.5 for details). In addition, thanks to Hölder’s inequality the asymptotic

pth moment boundedness for 1 < p < 2 could be implied by the second moment

boundedness.

Our key aim in this chapter is to answer the question: given that the solution

of the underlying Itô type SDE is asymptotically bounded in moment, is there any

numerical method that could preserve the boundedness property?

Due to the techniques used to deal with the small moment are much more
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complicated than those for the second moment, the majority of the chapter is

devoted to the case of small moment. This chapter is constructed as follows. We

briefly introduce the two classical numerical methods in Section 3.2. The main

results of the small moment are developed in Sections 3.3 and 3.4. In each of

these two sections we first present the results for the underlying true solution, the

relative results for the numerical solution then follow. Section 3.3 is devoted to

the asymptotic boundedness of the EM method under the linear growth condition,

and Section 3.4 discusses the backward EM method applied to a set of SDEs on

which the EM method fails to work. Section 3.5 discusses the results for the case

of second moment. The last section summarizes the chapter and discusses some

possible future research.

3.2 Mathematical Preliminaries

Throughout this chapter, we let (Ω,F , {Ft}t≥0,P) be a complete probability space

with a filtration {Ft}t≥0 which is increasing and right continuous, with F0 contain-

ing all P-null sets. Let B(t) = (B1(t), ..., Bm(t)) be an m-dimensional Brownian

motion defined on the probability space. The inner product of x, y in Rn is denoted

by 〈x, y〉. In this chapter, we consider the n-dimensional Itô SDE

dx(t) = f(x(t))dt+
m∑
i=1

gi(x(t))dBi(t), t ≥ 0, x(0) ∈ Rn. (3.1)

We assume that f, g1, ..., gm: Rn → Rn are smooth enough for the SDE (3.1) to

have a unique global solution on [0,∞) (see, for example, (Mao, 2008)).

Let us recall the two numerical methods we will use below. The reader is

referred to (Kloeden & Platen, 1992) and (Milstein & Tretyakov, 2004) for more

details on the numerical methods. The Euler–Maruyama (EM) method applied to

(3.1) is defined by

Yk+1 = Yk + f(Yk)∆t+
m∑
i=1

gi(Yk)∆Bi,k, Y0 = x(0), (3.2)
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for k = 0, 1, ..., where ∆t is the timestep and ∆Bi,k = Bi((k + 1)∆t)−Bi(k∆t) is

the Brownian increment.

The backward EM method (or the drift implicit EM method) is defined by

Yk+1 = Yk + f(Yk+1)∆t+
m∑
i=1

gi(Yk)∆Bi,k, Y0 = x(0), (3.3)

for k = 0, 1, ....

3.3 Euler–Maruyama in Small Moment

We begin by imposing the linear growth condition on both drift and diffusion

coefficients of the SDE (3.1):

|f(x)|2 ∨ |gi(x)|2 ≤ K|x|2 + α ∀x ∈ Rn and 1 ≤ i ≤ m, (3.4)

where K and α are positive constants. In this section, we will be concerned with

the asymptotic boundedness in small moment of the solution x(t) of (3.1) and the

preservation of this property using the EM method.

3.3.1 Asymptotic Boundedness

We first give a sufficient condition for the asymptotic small moment boundedness

of the SDE solution. It should be emphasized that more general sufficient condition

exists (see, for example, Theorem 5.2, p157 in (Mao & Yuan, 2006)). The condition

we employ in Theorem 3.3.1 is in line with the one for the boundedness of numerical

solution in Theorem 3.3.2, and it is still an open question that whether there exists

a numerical method could recover the asymptotic boundedness of the underlying

SDE solution under the more general condition (for example, the condition given

in Theorem 5.2 of (Mao & Yuan, 2006)).

Theorem 3.3.1 Let (3.4) hold. If there exists a positive constant D such that for

any x ∈ Rn

〈x, f(x)〉+ 1
2

∑m
i=1 |gi(x)|2

D + |x|2
−
∑m

i=1〈x, gi(x)〉2

(D + |x|2)2
≤ −λ+

P1(|x|)
D + |x|2

+
P3(|x|)

(D + |x|2)2
, (3.5)
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where λ is a positive constant and Pi(|x|) is a polynomial of |x| with degree i, then

there exists a p∗ ∈ (0, 1) such that for all 0 < p < p∗ the solution of (3.1) obeys

lim sup
t→∞

E(|x(t)|p) ≤ C, ∀x(0) ∈ Rn, (3.6)

where C is a positive constant dependent on K,α, p,D, but independent of x(0).

Following the same technique used in Theorem 5.2 in (Mao & Yuan, 2006), by

choosing the Lyapunov function V (x) = (D + |x|2)p/2, it is straightforward to

prove this theorem. So we omit it here. Now we give the result for the EM

solution.

Theorem 3.3.2 Let (3.4) and (3.5) hold. Then for any ε ∈ (0, λ), there exists

a pair of constants p∗ ∈ (0, 1) and ∆t∗ ∈ (0, 1) such that for ∀p ∈ (0, p∗) and

∀∆t ∈ (0,∆t∗), the EM solution (3.2) satisfies

lim sup
k→∞

E|Yk|p ≤
C ′2

p(λ− ε)
, ∀Y0 ∈ Rn, (3.7)

where C ′2 is a constant dependent on K, α, p and D, but independent of Y0 and

∆t.

Proof. For the constant D in (3.5), we compute

D + |Yk+1|2

= D + |Yk|2 + 2〈Yk, f(Yk)∆t+
m∑
i=1

gi(Yk)∆Bi,k〉+ |f(Yk)∆t+
m∑
i=1

gi(Yk)∆Bi,k|2.

Let

ξk =
1

D + |Yk|2
(2〈Yk, f(Yk)∆t+

m∑
i=1

gi(Yk)∆Bi,k〉+ |f(Yk)∆t+
m∑
i=1

gi(Yk)∆Bi,k|2),

for any p ∈ (0, 1) we have

|D + |Yk+1|2|p/2 = |D + |Yk|2|p/2(1 + ξk)
p/2.

Clearly ξk > −1, recalling the fundamental inequality

(1 + u)p/2 ≤ 1 +
p

2
u+

p(p− 2)

8
u2 +

p(p− 2)(p− 4)

23 × 3!
u3, u > −1, (3.8)
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we have

|D + |Yk+1|2|p/2 ≤ |D + |Yk|2|p/2
(

1 +
p

2
ξk +

p(p− 2)

8
ξ2
k +

p(p− 2)(p− 4)

23 × 3!
ξ3
k

)
.

Hence the conditional expectation

E(|D + |Yk+1|2|p/2
∣∣Fk∆t)

≤ |D + |Yk|2|p/2E
(

1 +
p

2
ξk +

p(p− 2)

8
ξ2
k +

p(p− 2)(p− 4)

23 × 3!
ξ3
k|Fk∆t

)
.(3.9)

Since ∆Bi,k, i = 1, ...,m, is independent from each other and is independent of

Fk∆t, we have E(∆Bi,k

∣∣Fk∆t) = E(∆Bi,k) = 0, E((∆Bi,k)
2
∣∣Fk∆t) = E((∆Bi,k)

2) =

∆t and E(∆Bi,k∆Bj,k

∣∣Fk∆t) = E(∆Bi,k∆Bj,k) = E(∆Bi,k)E(∆Bj,k) = 0, for i 6= j.

By (3.4) we can get

E(ξk
∣∣Fk∆t)

= E(
1

D + |Yk|2
(2〈Yk, f(Yk)∆t+

m∑
i=1

gi(Yk)∆Bi,k〉

+|f(Yk)∆t+
m∑
i=1

gi(Yk)∆Bi,k|2)
∣∣Fk∆t)

=
1

D + |Yk|2
(2〈Yk, f(Yk)〉+

m∑
i=1

|gi(Yk)|2)∆t+
1

D + |Yk|2
|f(Yk)|2∆t2

≤ 1

D + |Yk|2
(2〈Yk, f(Yk)〉+

m∑
i=1

|gi(Yk)|2)∆t

+K∆t2 +
C2

D + |Yk|2
∆t2. (3.10)

Similarly, we can show that

E(ξ2
k

∣∣Fk∆t) ≥
4

(D + |Yk|2)2

m∑
i=1

〈Yk, gi(Yk)〉2∆t−C1∆t2− C2

(D + |Yk|2)2
∆t2, (3.11)

and

E(ξ3
k

∣∣Fk∆t) ≤ C1∆t2 +
C2

(D + |Yk|2)3
∆t2, (3.12)

where C1 is a positive constant dependent on K, and C2 is a positive constant

dependent on α. C1 and C2 may change from line to line. Now consider the
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following two fractions,

(D + |Yk|2)p/2P1(|Yk|)
D + |Yk|2

and
(D + |Yk|2)p/2P3(|Yk|)

(D + |Yk|2)2
. (3.13)

For 0 < p < 1 the highest degrees of |Yk| in the numerators are p + 1 and p + 3

respectively, which are smaller than the corresponding highest degrees of |Yk| in

the denominators. Thus for any |Yk| ∈ R there exists an upper bound for both of

the fractions. Also it is obvious that C2/(D+ |Yk+1|2)i−p/2, i = 1, 2, 3 are bounded

by some constant that depends on α and D. Substituting (3.10), (3.11) and (3.12)

into (3.9), then using (3.4), (3.5) and the arguement for (3.13) we have that

E((D + |Yk+1|2)p/2
∣∣Fk∆t)

≤ (D + |Yk|2)p/2
(

1 +
p

2(D + |Yk+1|2)
(2〈Yk, f(Yk)〉+

m∑
i=1

|gi(Yk)|2)∆t

+
p(p− 2)

2(D + |Yk|2)2

m∑
i=1

〈Yk, gi(Yk)〉2∆t+ C ′1∆t2
)

+ C ′2∆t

= (D + |Yk|2)p/2
[
1 + p∆t

(〈Yk, f(Yk)〉+ 1
2

∑m
i=1 |gi(Yk)|2

D + |Yk|2

−
∑m

i=1〈Yk, gi(Yk)〉2

(D + |Yk|2)2

)
+
p2∆t

∑m
i=1〈Yk, gi(Yk)〉2

2(D + |Yk|2)2
+ C ′1∆t2

]
+ C ′2∆t

≤ (D + |Yk|2)p/2
(

1− pλ∆t+
mp2∆tK

2
+ C ′1∆t2

)
+ C ′2∆t,

where C ′1 is a positive constant dependent on K and p, C ′2 is a positive constant

dependent on K, α, p and D, and both of them may change from line to line.

For any given ε ∈ (0, λ), choose p∗ ∈ (0, 1) sufficiently small for mp∗K < ε, then

choose ∆t∗ ∈ (0, 1) sufficiently small for p∗λ∆t∗ ≤ 1 and C ′1∆t∗ ≤ 1
2
p∗ε. For any

p ∈ (0, p∗) and any ∆t ∈ (0,∆t∗) we have

E((D + |Yk+1|2)p/2
∣∣Fk∆t) ≤ (D + |Yk|2)p/2(1− p(λ− ε)∆t) + C ′2∆t.

Taking expectations on both sides yields

E((D + |Yk+1|2)p/2) ≤ E((D + |Yk|2)p/2)(1− p(λ− ε)∆t) + C ′2∆t. (3.14)
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By iteration we have

E((D+|Yk|2)p/2) ≤ E((D+|Y0|2)p/2)(1−p(λ−ε)∆t)k+
1− (1− p(λ− ε)∆t)k−1

p(λ− ε)
C ′2.

(3.15)

Since E(|Yk|p) ≤ E((D + |Yk|2)p/2), we have

E(|Yk|p) ≤ E((D+|Y0|2)p/2)(1−p(λ−ε)∆t)k+
1− (1− p(λ− ε)∆t)k−1

p(λ− ε)
C ′2. (3.16)

Letting k →∞, then (3.7) follows.

3.3.2 A Linear Scalar SDE Example

Let us consider a linear scalar SDE,

dx(t) = (α1 + α2x(t))dt+ (σ1 + σ2x(t))dB(t), x(0) ∈ R, (3.17)

where α1, α2, σ1, σ2 are real numbers. We impose the condition, α2 − σ2
2/2 < 0.

By using this example, we will illustrate

• the existence of the constant, D, in condition (3.5) and how to choose it.

Obviously both drift and diffusion coefficients of (3.17) satisfy the linear growth

condition (3.4). Now we consider the condition (3.5),

〈Yk, f(Yk)〉+ 1
2
|g(Yk)|2

D + |Yk|2
=

(α2 + 1
2
σ2

2)Y 2
k

D + |Yk|2
+

(α1 + σ1σ2)Yk + σ2
1

D + |Yk|2
, (3.18)

and

〈Yk, g(Yk)〉2 = (σ1Yk + σ2Y
2
k )2

= σ2
2Y

4
k + 2σ1σ2Y

3
k + σ2

1Y
2
k

= σ2
2

(
Y 2
k +

σ2
1

2σ2
2

)2

− σ4
1

4σ2
2

+ 2σ1σ2Y
3
k . (3.19)

Choose D = (σ2
1)/(2σ2

2) we have

〈Yk, f(Yk)〉+ 1
2
|g(Yk)|2

D + |Yk|2
− 〈Yk, g(Yk)〉2

(D + |Yk|2)2

≤ (α2 −
1

2
σ2

2) +
(α1 + σ1σ2)Yk + σ2

1

D + |Yk|2

+
1

(D + |Yk|2)2

(
σ4

1

4σ2
2

− 2σ1σ2Y
3
k

)
. (3.20)
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Thus −λ = α2 − σ2
2/2, P1(Yk) = (α1 + σ1σ2)Yk + σ2

1 and P3(Yk) = σ4
1/(4σ

2
2) −

2σ1σ2Y
3
k . Then the similar process to the proof of Theorem 3.3.2 leads to the

property (3.7) for the linear scalar SDE (3.17).

3.4 Backward Euler–Maruyama in Small Moment

So far, we have established some positive results on the asymptotic boundedness in

small moment of the EM method under the linear growth condition (3.4). Now we

consider to relax the constraint of the drift coefficient by imposing the one-sided

Lipschitz condition,

〈x− y, f(x)− f(y)〉 ≤ µ̄|x− y|2 + ᾱ ∀x, y ∈ Rn,

where µ̄ ∈ R and ᾱ ∈ R+. Without losing generality, we further assume for

∀x ∈ Rn

〈x, f(x)〉 ≤ µ|x|2 + α, (3.21)

where µ ∈ R and α ∈ R+. The diffusion coefficient still obeys the linear growth

condition,

|gi(x)|2 ≤ K|x|2 + α, 1 ≤ i ≤ m. (3.22)

In this section, we start with a counter example to show that the EM solution

will blow up under (3.21) and (3.22). Then we will show that the backward EM

method can still preserve the boundedness property of the SDE solution under

these conditions.

3.4.1 A Counter Example

Consider the following scalar SDE,

dx(t) = (−0.5x(t)− x3(t) + 1)dt+ (x(t) + 1)dB(t), (3.23)

to which the EM method is applied.
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Lemma 3.4.1 Suppose ∆t ∈ (0, 1) and p ∈ (0, 1), then for any Y0 ∈ R,

lim
k→∞

E|Yk|p =∞. (3.24)

Proof. By the property of conditional expectations, we have

E|Yk+1|p = E[E(|Yk+1|p
∣∣Y1)] ≥ E[1{|Y1|p≥23/∆tp/2}E(|Yk+1|p

∣∣Y1)]. (3.25)

Since there is a positive probability that the first Brownian motion increment

will make |Y1|p ≥ 23/∆tp/2, we only need to show that for |Y1|p ≥ 23/∆tp/2,

E(|Yk+1|p
∣∣Y1) ≥ 2k+3/∆tp/2 for all k ≥ 0. We show this by induction. Clearly,

E(|Y1|p
∣∣Y1) = |Y1|p ≥ 23/∆tp/2. Suppose E(|Yk|p

∣∣Y1) ≥ 2k+2/∆tp/2 for some k ≥ 1,

we will show that for any ∆t ∈ (0, 1), E(|Yk+1|p
∣∣Y1) ≥ 2k+3/∆tp/2. Applying the

EM method to the SDE (3.23),

|Yk+1| = |Yk − 0.5∆tYk −∆tY 3
k + Yk∆Bk + ∆t+ ∆Bk|.

Then by the fundamental inequality, |a+ b|p > |a|p − |b|p, we have

|Yk+1|p ≥ |∆tY 3
k + (0.5∆t− 1)Yk + Yk∆Bk|p − |∆t|p − |∆Bk|p

≥ ∆tp|Yk|3p − (1− 0.5∆t)p|Yk|p − |Yk∆Bk|p − |∆t|p − |∆Bk|p.

By the Hölder inequality, we have E(|Yk|3p
∣∣Y1) ≥ (E(|Yk|p

∣∣Y1))3. Since ∆Bk is

independent of Y1 for all k > 0, E(|∆Bk|p
∣∣Y1) = E(|∆Bk|p) < 2. Then taking

conditional expectation on both sides we have

E(|Yk+1|p
∣∣Y1)

≥ E(|Yk|p
∣∣Y1)(∆tp(E(|Yk|p

∣∣Y1))2 − (1− 0.5∆t)p − E|∆Bk|p)− |∆t|p − E|∆Bk|p

≥ E(|Yk|p
∣∣Y1)(∆tp(E(|Yk|p

∣∣Y1))2 − 1− 2)− 1− 2

≥ 2k+2

∆tp/2
(22k+4 − 3)− 3

≥ 2k+3

∆tp/2
.

Then substituting it back to (3.25) we obtain

E|Yk+1|p ≥
2k+3

∆tp/2
P(|Y1|p ≥

23

∆tp/2
).
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Hence the assertion holds.

This lemma states that for any initial value, the pth moment, 0 < p < 1,

of the EM solution will blow up. This contrasts to the initial-data-independent

asymptotic boundedness of the underlying SDE solution, shown by Theorem 3.4.2.

Hence the EM method is no longer a good candidate.

3.4.2 Asymptotic Boundedness

Let us present another theorem on the asymptotic boundedness of the solution of

the SDE (3.1). The condition used in Theorem 3.4.2 will be employed in Theorem

3.4.3 as well.

Theorem 3.4.2 Let (3.21) and (3.22) hold. If there exists a constant D such that∑m
i=1 |gi(x)|2

D + |x|2
−
∑m

i=1〈x, gi(x)〉2

(D + |x|2)2
≤ ρ+

P1(|x|)
D + |x|2

+
P3(|x|)

(D + |x|2)2
, (3.26)

where ρ is a constant with µ + ρ/2 < 0, then there exists a p∗ ∈ (0, 1) such that

for all 0 < p < p∗ the solution of SDE (3.1) obeys

lim sup
t→∞

E(|x(t)|p) ≤ C, ∀x(0) ∈ Rn, (3.27)

where C is a constant dependent on µ, α,K, p and D, but independent of x(0).

It is straightforward to adapt the proof of Theorem 3.3.1 to show Theorem

3.4.2.

Let us now begin to discuss the asymptotic boundedness in small moment of

the backward EM solution (3.3) under conditions (3.21), (3.22) and (3.26).

Theorem 3.4.3 Let (3.21), (3.22) and (3.26) hold. Then there exists a pair of

constants p∗ ∈ (0, 1) and ∆t∗ ∈ (0, 1/(2|µ|)) such that for ∀p ∈ (0, p∗) and ∀∆t ∈

(0,∆t∗), the backward EM solution (3.3) satisfies

lim sup
k→∞

E|Yk|p ≤
C ′2

p(λ− ε)
, ∀Y0 ∈ Rn, (3.28)

where −λ = µ+ ρ/2 < 0 , ε ∈ (0, |µ+ ρ/2|) and C ′2 is a constant dependent on K,

α, p and D, but independent of Y0 and ∆t.
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Proof. From (3.3), we have

|Yk+1|2 = 〈Yk+1, Yk +
m∑
i=1

gi(Yk)∆Bi,k〉+ 〈Yk+1, f(Yk+1)∆t〉.

By (3.21), we obtain

|Yk+1|2 ≤
1

2
|Yk+1|2 +

1

2
|Yk +

m∑
i=1

gi(Yk)∆Bi,k|2 + µ∆t|Yk+1|2 + α∆t.

Hence

D

1− 2µ∆t
+ |Yk+1|2 ≤

D

1− 2µ∆t
+

1

1− 2µ∆t
(|Yk|2

+2〈Yk,
m∑
i=1

gi(Yk)∆Bi,k〉+ |
m∑
i=1

gi(Yk)∆Bi,k|2 + 2α∆t)

≤ D + |Yk|2

1− 2µ∆t
(1 + ζk),

where

ζk =
1

D + |Yk|2
(2〈Yk,

m∑
i=1

gi(Yk)∆Bi,k〉+ |
m∑
i=1

gi(Yk)∆Bi,k|2 + 2α∆t).

It is clear that ζk > −1 for all k ≥ 0. For any p ∈ (0, 1), by inequality (3.8) we

have

E((D + |Yk+1|2)p/2
∣∣Fk∆t)

≤
(
D + |Yk|2

1− 2µ∆t

)p/2
E
(

1 +
p

2
ζk +

p(p− 2)

8
ζ2
k

+
p(p− 2)(p− 4)

23 × 3!
ζ3
k |Fk∆t

)
. (3.29)

Then following the same way as Theorem 3.3.2, by (3.22) we can show

E(ζk
∣∣Fk∆t) =

1

D + |Yk|2
(
m∑
i=1

|gi(Yk)|2∆t+ 2α∆t), (3.30)

E(ζ2
k

∣∣Fk∆t) ≥
4
∑m

i=1〈Yk, gi(Yk)〉2

(D + |Yk|2)2
∆t− P2(|Yk|)∆t2

(D + |Yk|2)2
, (3.31)

and

E(ζ3
k

∣∣Fk∆t) ≤ C1∆t2 +
P4(|Yk|)∆t2

(D + |Yk|2)3
, (3.32)
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where C1 is a constant dependent on K. Substituting (3.30), (3.31) and (3.32)

into (3.29), then using (3.22), (3.26) and the similar argument in (3.13) we obtain

E((D + |Yk+1|2)p/2
∣∣Fk∆t)

≤
(
D + |Yk|2

1− 2µ∆t

)p/2(
1 +

p

2

∑m
i=1 |gi(Yk)|2

D + |Yk|2
∆t

+
p(p− 2)

8

4
∑m

i=1〈Yk, gi(Yk)〉2

(D + |Yk|2)2
∆t+

p(p− 2)(p− 4)

23 × 3!
C1∆t2

)
+ C ′2∆t

≤ (D + |Yk|2)p/2

(1− 2µ∆t)p/2
(1 +

1

2
pρ∆t+

1

2
p2mK∆t+ C ′1∆t2) + C ′2∆t,

where C ′1 is a positive constant dependent on K and p, C ′2 is a positive constant

dependent on K, α, µ, p and D, and both of them may change from line to line.

Taking expectations on both sides, we obtain

E((D + |Yk+1|2)p/2) ≤
1 + 1

2
pρ∆t+ 1

2
p2mK∆t+ C ′1∆t2

(1− 2µ∆t)p/2
E((D + |Yk|2)p/2) + C ′2∆t.

(3.33)

For any ε ∈ (0, |µ+ ρ/2|), by choosing p∗ sufficiently small such that p∗mK ≤ ε/4

and sufficiently small ∆t∗, for p < p∗ and ∆t < ∆t∗ we have

(1− 2µ∆t)p/2 ≥ 1− pµ∆t− C3∆t2 > 0, (3.34)

where C3 > 0 is a constant dependent on µ and p. Then further reducing ∆t∗

gives that for ∆t < ∆t∗

C ′1∆t <
1

8
pε, C3∆t <

1

4
ε, |p(µ+

1

4
ε)∆t| < 1

2
.

Using these three inequalities together with (3.34), we have from (3.33) that

E((D + |Yk+1|2)p/2) ≤
1 + 1

2
p(ρ+ 1

2
ε)∆t

1− p(µ+ 1
4
ε)∆t

E((D + |Yk|2)p/2) + C ′2∆t. (3.35)

Since that for any h ∈ [−0.5, 0.5]

(1− h)−1 = 1 + h+ h2

∞∑
i=0

hi ≤ 1 + h+ h2

∞∑
i=0

0.5i = 1 + h+ 2h2,

then by further reducing ∆t∗ such that for any ∆t < ∆t∗ we obtain

4p(µ+
1

4
ε)2∆t+ (ρ+

1

2
ε)(p(µ+

1

4
ε)∆t+ 2(p(µ+

1

4
ε)∆t)2) < ε.



Chapter 3: Numerical Boundedness 37

Together with (3.35), we arrive at

E((D + |Yk+1|2)p/2)

≤ (1 +
1

2
p(ρ+

1

2
ε)∆t)(1 + p(µ+

1

4
ε)∆t

+2(p(µ+
1

4
ε)∆t)2)E((D + |Yk|2)p/2) + C ′2∆t

≤ [1 + p(µ+
1

2
ρ+ ε)∆t]E((D + |Yk|2)p/2) + C ′2∆t. (3.36)

Then by iteration and let k →∞, we have

lim sup
k→∞

E(|Yk+1|p) ≤ lim sup
k→∞

E((D + |Yk+1|2)p/2) ≤ C ′2
−p(µ+ 1

2
ρ+ ε)

.

The proof is complete.

3.5 The Second Moment

In this section, we discuss the asymptotic boundedness in second moment for

both the EM method and the backward EM method. Follow the same structure

as previous sections, we first give the results for the underlying SDEs, then the

results for numerical solutions are proved under the same conditions.

3.5.1 The EM Method

For the asymptotic second moment boundedness of the underlying solution, we

still require condition (3.4) but replace condition (3.5) by the following condition

that

〈x, f(x)〉+
1

2

m∑
i=1

|gi(x)|2 ≤ −β|x|2 + a1, ∀x ∈ Rn, (3.37)

where β and a1 are positive constants.

Theorem 3.5.1 Let (3.4) and (3.37) hold, then the equation (3.1) is asymptoti-

cally bounded in second moment

lim sup
t→∞

E(|x(t)|2) ≤ a1

β
, ∀x(0) ∈ Rn. (3.38)
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We refer to Chapter 5 of (Mao & Yuan, 2006) for the proof.

Now we consider to reproduce this boundedness property by the EM method.

Theorem 3.5.2 Let (3.4) and (3.37) hold, then for any ∆t < 2β/K the EM

solution (3.2) satisfies

lim sup
k→∞

E|Yk|2 ≤
2a1 + α∆t

2β −K∆t
, ∀Y0 ∈ Rn.

Moreover, let the stepsize tend to zero, then

lim
∆t→0

lim sup
k→∞

E|Yk|2 ≤
a1

β
, ∀Y0 ∈ Rn. (3.39)

Proof. Since ∆Bi,k, i = 1, ...,m, is independent from each other, we have

E(∆Bi,k) = 0, E((∆Bi,k)
2) = ∆t and E(∆Bi,k∆Bj,k) = E(∆Bi,k)E(∆Bj,k) = 0,

for i 6= j. Taking square and expectation on both sides of the EM solution (3.2),

we have

E|Yk+1|2 ≤ E|Yk|2 + ∆t2E(|f(Yk)|2) + ∆tE(2〈Yk, f(Yk)〉+
m∑
i=1

|gi(Yk)|2)

≤ E|Yk|2 + ∆t2(KE|Yk|2 + α) + ∆t(−2βE|Yk|2 + 2a1)

≤ (1− 2β∆t+K∆t2)E|Yk|2 + (α∆t2 + 2a1∆t).

By iteration, we see

E|Yk+1|2 ≤ (1−2β∆t+K∆t2)k+1E|Y0|2+(α∆t2+2a1∆t)
1− (1− 2β∆t+K∆t2)k+1

1− (1− 2β∆t+K∆t2)
.

Choosing ∆t < 2β/K, we have 1− 2β∆t+K∆t2 < 1. Let k tend to infinity and

∆t tend to 0, the assertion holds.

It is interesting to see that for the case of second moment, the EM method can

reproduce not only the boundedness property but also the upper bound accurately,

that is the upper bounds in (3.38) and (3.39) are identical. From this point of

view, the result for the second moment is better than that for the small moment.

However, it should be noticed that condition (3.37) is stronger than condition

(3.5).
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3.5.2 The Backward EM Method

To relax the constraint on the drift coefficient, we replace the linear growth con-

dition by the one-sided Lipschitz condition

〈x, f(x)〉 ≤ −η|x|2 + a2, ∀x ∈ Rn, (3.40)

where η and a2 are positive constant. We still need the linear growth condition

(3.22) on the diffusion coefficient. For the asymptotic boundedness of the second

moment of the underlying solution we state another theorem as follows and refer

to Chapter 5 of (Mao & Yuan, 2006) for the proof.

Theorem 3.5.3 Let (3.22) and (3.40) hold. If 2η > mK, the equation (3.1) is

asymptotically bounded in second moment

lim sup
t→∞

E(|x(t)|2) ≤ 2a2 +mα

2η −mK
, ∀x(0) ∈ Rn. (3.41)

However, in the same spirit of Lemma 3.4.1, we see the second moment of the EM

solution may blow up under condition (3.40). So we turn to the backward EM

method.

Theorem 3.5.4 Let (3.22) and (3.40) hold. If 2η > mK, then for any ∆t > 0

the BE solution (3.3) satisfies

lim sup
k→∞

E|Yk|2 ≤
2a2 +mα

2η −mK
, ∀Y0 ∈ Rn. (3.42)

Proof. Taking square on both sides of the backward EM solution, by (3.40) we

obtain

|Yk+1|2 = 〈Yk+1, Yk +
m∑
i=1

gi(Yk)∆Bi,k〉+ 〈Yk+1, f(Yk+1)∆t〉

≤ 1

2
|Yk+1|2 +

1

2
|Yk +

m∑
i=1

gi(Yk)∆Bi,k|2 − η∆t|Yk+1|2 + a2∆t

≤ 1

1 + 2η∆t
|Yk +

m∑
i=1

gi(Yk)∆Bi,k|2 +
2a2∆t

1 + 2η∆t
.
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Then taking expectation on both sides, by (3.22) we see

E|Yk+1|2 ≤
1

1 + 2η∆t
(E|Yk|2 +mK∆tE|Yk|2 +mα∆t) +

2a2∆t

1 + 2η∆t

≤ 1 +mK∆t

1 + 2η∆t
E|Yk|2 +

(2a2 +mα)∆t

1 + 2η∆t
.

By iteration, we have

E|Yk+1|2 ≤
(

1 +mK∆t

1 + 2η∆t

)k+1

E|Y0|2+
(2a2 +mα)∆t

1 + 2η∆t
×1− ((1 +mK∆t)/(1 + 2η∆t))k+1

1− (1 +mK∆t)/(1 + 2η∆t)
.

Due to 2η > mK, let k →∞ the assertion holds.

We have three comments on Theorem 3.5.4.

• Compare the upper bounds in (3.41) and (3.42), we observe the backward

EM method can reproduce the asymptotic upper bound of the underlying

solution accurately as well.

• There is no constraint on the stepsize for the backward EM method.

• The conditions we imposed in the case of second moment are stronger than

those used in the small moment in Section 3.4.

3.6 Conclusions and Future Research

In this chapter we have presented results on numerical asymptotic boundedness in

both small moment and second moment. In both cases, the numerical methods are

showed to be able to reproduce the asymptotic boundedness property of the under-

lying solution under certain conditions. It should be noted that the conditions for

the small moment are weaker than those for the second moment, but better results

are obtained for the second moment, that is the upper bound could be reproduced

accurately and the requirement of the stepsize could be stated explicitly.

The asymptotic moment boundedness is an essential condition for the existence

of stationary distribution of numerical solutions. Thus, in next chapter we are

going to study the numerical stationary distribution.
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Another obvious open question is in the case of small moment whether we

could recover the upper bound of the true solution of the SDE accurately by

using the numerical solution with carefully chosen D and ∆t. Besides, although

the asymptotic boundedness property for pth moment with 1 < p < 2 could

be implied by the second moment, it is still worth to investigate if there exists

different (possibly weaker) condition for p ∈ (1, 2). Also, the existence of sufficient

conditions for the case of p > 2 is interesting for future research.

The work contained in this chapter has been published, and we refer the readers

to (Liu & Mao, 2013a) for the published version.



Chapter 4

Stationary Distribution of

Numerical Solutions

4.1 Introduction

As we mentioned in Chapter 1, stochastic differential equations (SDEs) have been

widely used in modelling uncertain phenomena in many areas. The difficulty to

find general explicit solutions to non-linear SDEs has been continuously stimulat-

ing the studies on the numerical approximations. As stated in the last section of

Chapter 3, this chapter sees our further study on the asymptotic properties of the

approximation solutions. Among all those different types of asymptotic proper-

ties, the asymptotic stability particularly interests most researchers, for example

(Berkolaiko et al., 2012; Buckwar & Sickenberger, 2012; Higham, 2000; Huang,

2012; Higham et al., 2007; Mao et al., 2011; Schurz, 1997; Wu et al., 2010) and

their references therein.

However, those stabilities mentioned above sometimes are too strong and in

this case it is interesting to see if the numerical solution converges in distribution.

Mao and Yuan’s series papers (Mao et al., 2005; Yuan & Mao, 2004; Yuan & Mao,

2005) are devoted to numerical stationary distribution of stochastic differential

equations. The motivation is to avoid solving the nontrivial Kolmogorov-Fokker-

42
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Planck equations to find the stationary distribution of underlying SDEs, in those

series papers the authors proposed to use the numerical stationary distribution

as an approximation to the underlying stationary distribution. Due to the simple

structure and moderate computational cost (Higham, 2011), the explicit Euler–

Maruyama (EM) method was used in those papers. However, the explicit EM

method has its own restriction, as mentioned in (Hutzenthaler et al., 2011), it

may not deal well with the super-linear coefficient SDEs. Therefore, both the drift

coefficient and the diffusion coefficient were required to be global Lipschitz in the

series papers. Those restrictions, however, exclude many highly non-linear models,

for example (Allen, 2007; Gray et al., 2011; Higham, 2008) and references therein.

In this chapter, we propose the Backward Euler-Maruyama (BEM) method as

the approximation solution. The BEM method, which is drift implicit, has been

broadly investigated and shown better at dealing with the highly non-linear SDEs

in both finite time convergence problems and asymptotic problems. We mention

some of works (Higham & Kloeden, 2007; Higham et al., 2002; Higham et al.,

2007; Hu, 1996; Mao et al., 2011; Schurz, 1997; Szpruch et al., 2011) and refer-

ences therein. In this chapter, we are going to investigate the numerical stationary

distribution of the BEM method and the convergence of the numerical stationary

distribution to the underlying stationary distribution. One of our key contribu-

tions is that we release the global Lipschitz condition on the drift coefficient by

assuming the one-sided Lipschitz condition instead, but we still require the global

Lipschitz condition on the diffusion coefficient. We also observe that, due to the

Kolmogorov-Fokker-Planck equations, the numerical stationary distributions of

stochastic differential equations could be regarded as alternative numerical solu-

tions to certain type of deterministic differential equations.

This chapter is constructed as follows. We first brief the method, definitions,

conditions on the SDEs as well as other mathematical preliminaries in Section 4.2.

Then, we proposed the coefficients related sufficient conditions for the existence

and uniqueness of the numerical stationary distribution in Section 4.3.1. Under the
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same conditions, the stationary distribution of the underlying solution is discussed

in Section 4.3.2. The convergence of the numerical stationary distribution is proved

in Section 4.3.3. In Section 4.4, we demonstrate the theoretical results by some

numerical simulations. We conclude this chapter and brief some future research in

Section 4.5.

4.2 Mathematical Preliminaries

Throughout this chapter, let (Ω,F ,P) be a complete probability space with a

filtration {Ft}t≥0 satisfying the usual conditions (that is, it is right continuous and

increasing while F0 contains all P-null sets).

Let f, g : Rd → Rd. To keep symbols simple, let B(t) be a scalar Brownian mo-

tion. The results in this chapter can be extended to the case of multi-dimensional

Brownian motions. We consider the d-dimensional stochastic differential equation

of Itô type

dx(t) = f(x(t))dt+ g(x(t))dB(t) (4.1)

with initial value x(0) = x0.

We first assume that the drift coefficient satisfies the local Lipschitz condition and

the diffusion coefficient satisfies the global Lipschitz condition.

Condition 4.2.1 For any h > 0, there exists a constant Ch > 0 such that

|f(x)− f(y)|2 ≤ Ch|x− y|2,

for any x, y ∈ Rd with max(|x|, |y|) ≤ h.

Condition 4.2.2 There exists a constant K̄2 > 0 such that

|g(x)− g(y)|2 ≤ K̄2|x− y|2,

for any x, y ∈ Rd.
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We further impose the following condition on the the drift coefficient.

Condition 4.2.3 Assume there exist a symmetric positive-definite matrix Q ∈

Rd×d and a constant K̄1 ∈ R such that

(x− y)TQ(f(x)− f(y)) ≤ K̄1(x− y)TQ(x− y),

for any x, y ∈ Rd.

From Condition 4.2.2 and 4.2.3, it is easy to see that for any x ∈ Rd

xTQf(x) ≤ K1x
TQx+ α1, (4.2)

and

|g(x)|2 ≤ K2|x|2 + α2, (4.3)

with K2, α1, α2 > 0 and K1 ∈ R.

4.2.1 The Backward Euler-Maruyama Method

The backward Euler-Maruyama method (BEM), also called the semi-implicit Euler

method, to SDE (4.1) is defined by

Xk+1 = Xk + f(Xk+1)∆t+ g(Xk)∆Bk, X(0) = x0, (4.4)

where ∆Bk = B(tk+1)−B(tk) is a Brownian motion increment and tk = k∆t. We

refer to (Kloeden & Platen, 1992; Milstein, 1995) for more details in numerical

methods for SDEs.

Lemma 4.2.4 Let Conditions 4.2.1, 4.2.2, 4.2.3 hold and ∆t < 0.5|K̄1|−1, the

BEM solution (4.4) is well defined.

Many papers have discussed the existence and uniqueness of the BEM solution

(4.4), we therefore refer to (Mao et al., 2011; Mao & Szpruch, 2013b) for the proof

of the lemma above. From now on, we always assume ∆t < 0.5|K̄1|−1.
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It is useful to write (4.4) as

Xk+1 − f(Xk+1)∆t = Xk + g(Xk)∆Bk.

Define a function G : Rd → Rd by G(x) = x − f(x)∆t. Then G has its inverse

function G−1 : Rd → Rd. Moreover, the BEM (4.4) can be represented as

Xk+1 = G−1(Xk + g(Xk)∆Bk). (4.5)

Lemma 4.2.5 Let Conditions 4.2.1, 4.2.2 and 4.2.3 hold, then

P(Xk+1 ∈ B
∣∣Xk = x) = P(X1 ∈ B

∣∣X0 = x)

for any Borel set B ⊂ Rd.

Proof. If Xk = x and X0 = x, by (4.4) we see

Xk+1 − f(Xk+1)∆t = x+ g(x)∆Bk,

and

X1 − f(X1)∆t = x+ g(x)∆B0.

Because ∆Bk and ∆B0 are identical in probability law, comparing the two equa-

tions above, we know that Xk+1 − f(Xk+1) and X1 − f(X1)∆t have the identical

probability law. Then, due to Lemma 4.2.4, we have that Xk+1 and X1 are identical

in probability law under Xk = x and X0 = x. Therefore, the assertion holds.

To prove Theorem 4.2.7, we cite the following classical result (see, for example,

Lemma 9.2 on p87 of (Mao, 2008)).

Lemma 4.2.6 Let h(x, ω) be a scalar bounded measurable random function of x,

independent of Fs. Let ζ be an Fs-measurable random variable. Then

E(h(ζ, ω)
∣∣Fs) = H(ζ),

where H(x) = Eh(x, ω).
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For any x ∈ Rd and any Borel set B ⊂ Rd, define

P(x,B) := P(X1 ∈ B
∣∣X0 = x) and Pk(x,B) := P(Xk ∈ B

∣∣X0 = x).

Theorem 4.2.7 The BEM solution (4.4) is a homogeneous Markov process with

transition probability kernel P(x,B).

Proof. The homogeneous property follows Lemma 4.2.5, so we only need to show

the Markov property. Define

Y x
k+1 = G−1(x+ g(x)∆Bk),

for x ∈ Rd and k ≥ 0. By (4.5) we know that Xk+1 = Y Xk
k+1. Let Γtk+1

=

σ{B(tk+1)−B(tk)}. Clearly, Γtk+1
is independent of Ftk . Moreover, Y x

k+1 depends

completely on the increment B(tk+1)−B(tk), so is Γtk+1
-measurable. Hence, Y x

k+1 is

independent of Ftk . Applying Lemma 4.2.6 with h(x, ω) = IB(Y x
k+1), we compute

that

P(Xk+1 ∈ B
∣∣Ftk) = E(IB(Xk+1)

∣∣Ftk) = E
(
IB(Y Xk

k+1)
∣∣Ftk) = E

(
IB(Y x

k+1)
) ∣∣

x=Xk

= P(x,B)
∣∣
x=Xk

= P(Xk, B) = P(Xk+1 ∈ B
∣∣Xk).

The proof is complete.

Therefore, we see that P(·, ·) is the one-step transition probability and Pk(·, ·) is

the k-step transition probability, both of which are induced by the BEM solution.

4.2.2 Stationary Distributions

Denote the family of all probability measures on Rd by P(Rd). Define by L the

family of mappings F : Rd → R satisfying

|F (x)− F (y)| ≤ |x− y| and |F (x)| ≤ 1,

for any x, y ∈ Rd. For P1,P2 ∈ P(Rd), define metric dL by

dL(P1,P2) = sup
F∈L

∣∣∣∣∫
Rd
F (x)P1(dx)−

∫
Rd
F (x)P2(dx)

∣∣∣∣ .
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The weak convergence of probability measures can be illustrated in term of metric

dL (Ikeda & Watanabe, 1981). That is to say, a sequence of probability measures

{Pk}k≥1 in P(Rd) converges weakly to a probability measure P ∈ P(Rd) if and

only if

lim
k→∞

dL(Pk,P) = 0.

Then we define the stationary distribution for {Xk}k≥0 by using the concept of

weak convergence.

Definition 4.2.8 For any initial value x ∈ Rd and a given step size ∆t > 0,

{Xk}k≥0 is said to have a stationary distribution Π∆t ∈ P(Rd) if the k-step tran-

sition probability measure Pk(x, ·) converges weakly to Π∆t(·) as k →∞ for every

x ∈ Rd, that is

lim
k→∞

(
sup
F∈L
|E(F (Xk))− EΠ∆t

(F )|
)

= 0,

where

EΠ∆t
(F ) =

∫
Rd
F (y)Π∆t(dy).

In (Yuan & Mao, 2005), the authors provided the following three assumptions and

proved that under those assumptions the Euler–Maruyama solution of stochastic

differential equation has a unique stationary distribution. We observe that the

three assumptions are very general and actually can cover many other types of

one-step numerical methods including the BEM method. This is because that, in

their proofs (Theorem 3.1 in (Yuan & Mao, 2005)), only the three assumptions

were required but not the structure of the numerical method. Therefore, for any

one-step numerical solution that is a homogeneous Markov process with a proper

transition probability kernel and satisfies the three assumptions, Theorem 3.1 in

(Yuan & Mao, 2005) always holds. To keep this chapter self-contained, we state

the assumptions and the theorem as follows.

Assumption 4.2.9 For any ε > 0 and x0 ∈ Rd, there exists a constant R =

R(ε, x0) > 0 such that

P(|Xx0
k | ≥ R) < ε, for any k ≥ 0.
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Assumption 4.2.10 For any ε > 0 and any compact subset K of Rd, there exists

a positive integer k∗ = k∗(ε,K) such that

P(|Xx0
k −X

y0

k | < ε) ≥ 1− ε, for any k ≥ k∗ and any (x0, y0) ∈ K ×K.

Assumption 4.2.11 For any ε > 0, n ≥ 1 and any compact subset K of Rd,

there exists a R = R(ε, n,K) > 0 such that

P
(

sup
0≤k≤n

|Xx0
k | ≤ R

)
> 1− ε, for any x0 ∈ K.

Theorem 4.2.12 Under Assumptions 4.2.9, 4.2.10 and 4.2.11, the BEM solution

{Xk}k≥0 has a unique stationary distribution Π∆t.

We refer the readers to Theorem 3.1 in (Yuan & Mao, 2005) for the proof.

However, those three assumptions are not easy to check as they are not directly

related to the drift and diffusion coefficients of the underlying SDEs. In next

section, we will provide some coefficients-related sufficient conditions for those as-

sumptions. It should be noted that those sufficient conditions are method related,

which makes them more constrained.

4.3 Main Results

This section is divided into three parts. In the first subsection, we propose three

lemmas that are sufficient conditions for Assumption 4.2.9, 4.2.10 and 4.2.11. Then

by Theorem 4.2.12, we see that the BEM solution has a unique stationary distri-

bution. In the second subsection, we prove that given the same conditions in

the three lemmas the underlying solution has a unique stationary distribution as

well. The last subsection is devoted to the convergence of the numerical stationary

distribution to the underlying stationary distribution.
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4.3.1 Sufficient Conditions for the Numerical Stationary

Distribution

Many works have discussed the second moment boundedness of the BEM solution

in finite time, we only mention a few of them here (Kloeden & Platen, 1992;

Mao & Szpruch, 2013b) and references therein. It should be emphasized that,

comparing with techniques employed in Lemma 4.3.1, weaker conditions and more

complicated techniques have already been developed in existing literature. But

those weaker conditions may not be sufficient for other lemmas in this chapter.

To keep the conditions consistent in this chapter and to make the chapter self-

contained, we brief the following lemma. Without confusion, in some of the proofs

we omit the superscript and simply denote Xx0
k by Xk.

Lemma 4.3.1 Given Conditions 4.2.1, 4.2.2 and 4.2.3, the second moment of the

BEM solution (4.4) obeys

E
(

sup
0≤k≤n

|Xk|2
)
≤ q

(
|x0|2 + C1(n+ 1)

(
2α1∆t+ α2∆t+ 2

√
2α2∆t/π

))
× exp

(
q(n+ 1)C1

(
1 +K2∆t+ 2(

√
K2 +

√
α2)
√

2∆t/π
))

for any integer n ≥ 1, where C1 = (1− 2|K1|∆t)−1 and q = λmax(Q)/λmin(Q).

Proof. Fix any initial value X(0) = x0 ∈ Rd, from (4.4) we see that

XT
k+1QXk+1 = XT

k+1Q(Xk + g(Xk)∆Bk) +XT
k+1Qf(Xk+1)∆t.

Since Q is a symmetric positive-definite matrix, by Cholesky decomposition there

exists an unique lower triangular matrix L such that Q = LLT . Then by applying

the elementary inequality, Cauchy-Schwarz inequality and (4.2) we have

XT
k+1QXk+1 ≤

1

2
|XT

k+1L|2 +
1

2
|LT (Xk + g(Xk)∆Bk)|2 + (K1X

T
k+1QXk+1 + α1)∆t

≤ 1

2
XT
k+1QXk+1 +

1

2
[XT

k QXk + gT (Xk)Qg(Xk)|∆Bk|2 + 2XT
k Qg(Xk)∆Bk]

+ (K1X
T
k+1QXk+1 + α1)∆t.
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This implies

XT
k+1QXk+1 ≤ C1(XT

k QXk+gT (Xk)Qg(Xk)|∆Bk|2+2XT
k Qg(Xk)∆Bk)+2C1α1∆t,

where C1 = (1− 2|K1|∆t)−1. Taking sum on both sides gives

XT
k+1QXk+1 ≤ XT

0 QX0 + (C1 − 1)
k∑
i=0

(XT
i QXi) + 2α1C1(k + 1)∆t

+ C1

k∑
i=0

(2XT
i Qg(Xi)∆Bi + gT (Xi)Qg(Xi)|∆Bi|2). (4.6)

It is not difficult to show that

E

(
sup

0≤k≤n

(
k∑
i=0

gT (Xi)Qg(Xi)|∆Bi|2
))
≤ ∆tλmax(Q)

n∑
i=0

E(K2|Xi|2 + α2),

and

E

(
sup

0≤k≤n

(
k∑
i=0

XT
i Qg(Xi)∆Bi

))
≤ λmax(Q)E

(
n∑
i=0

|Xi||g(Xi)||∆Bi|

)

≤ λmax(Q)(
√
K2 +

√
α2)
√

2∆t/π
n∑
i=0

E(|Xi|2) + λmax(Q)
√

2α2∆t/π(n+ 1),

where E|∆Bi| =
√

2∆t/π is used. Therefore, taking supremum and expectation

on both sides of (4.6) yields

E
(

sup
0≤k≤n

|Xk|2
)
≤ λmax(Q)

λmin(Q)

(
|x0|2 + C1(n+ 1)

(
2α1∆t+ α2∆t+ 2

√
2α2∆t/π

)
+ C1

(
1 +K2∆t+ 2(

√
K2 +

√
α2)
√

2∆t/π
) n∑
i=0

E
(

sup
0≤k≤i

|Xk|2
))

.

Then, using the discrete-type Gronwall inequality (see, for example, (Mao, 1991))

we see the assertion holds.

From Lemma 4.3.1, by the Chebyshev inequality we can conclude that Assumption

4.2.11 holds under Conditions 4.2.1, 4.2.2 and 4.2.3.

Lemma 4.3.2 Let (4.2) and (4.3) hold. If, for the same Q in (4.2), there exists

a positive constant D such that for any x ∈ Rd

gT (x)Qg(x)

D + xTQx
− 2|xTQg(x)|2

(D + xTQx)2
≤ K3 +

P1(|x|)
D + xTQx

+
P3(|x|)

(D + xTQx)2
(4.7)
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where K3 is a constant with K1 + 0.5K3 < 0 and Pi(|x|) is a polynomial of |x|

with degree i, then there exists a pair of constants (p∗,∆t∗) with p∗ ∈ (0, 1) and

∆t∗ ∈ (0, 0.5|K1|−1) such that for any p ∈ (0, p∗) and any ∆t ∈ (0,∆t∗) the BEM

solution (4.4) has the property that for any k ≥ 1

E|Xk|p ≤ q(Dp/2 + |X0|p − 2C ′3(p(K1 + 0.5K3))−1)

where q = λmax(Q)/λmin(Q), and C ′3 depends on K1, α1, D, Q and p.

Proof. Set C1 = (1− 2K1∆t)−1, from the proof of Lemma 4.3.1 we have that

DC1 +XT
k+1QXk+1

≤ DC1 + C1(XT
k QXk + 2XT

k Qg(Xk)∆Bk + gT (Xk)Qg(Xk)|∆Bk|2 + 2α1∆t)

≤ C1(D +XT
k QXk)(1 + ζk),

where ζk = (D +XT
k QXk)

−1(2XT
k Qg(Xk)∆Bk + gT (Xk)Qg(Xk)|∆Bk|2 + 2α1∆t).

Clearly ζk > −1. For any p ∈ (0, 1), thanks to the fundamental inequality that

(1 + u)p/2 ≤ 1 +
p

2
u+

p(p− 2)

8
u2 +

p(p− 2)(p− 4)

23 × 3!
u3, u > −1, (4.8)

we see that

E((D +XT
k+1QXk+1)p/2

∣∣Fk∆t)

≤ C
p/2
1 (D +XT

k QXk)
p/2E

(
1 +

p

2
ζk +

p(p− 2)

8
ζ2
k +

p(p− 2)(p− 4)

23 × 3!
ζ3
k |Fk∆t

)
.

(4.9)

Since ∆Bk is independent of Fk∆t, we have that E(∆Bk

∣∣Fk∆t) = E(∆Bk) = 0 and

E(|∆Bk|2
∣∣Fk∆t) = E(|∆Bk|2) = ∆t. Then

E(ζk
∣∣Fk∆t)

= E
(
(D +XT

k QXk)
−1(2XT

k Qg(Xk)∆Bk + gT (Xk)Qg(Xk)|∆Bk|2 + 2α1∆t)
∣∣Fk∆t

)
= (D +XT

k QXk)
−1(2XT

k Qg(Xk)E(∆Bk

∣∣Fk∆t) + gT (Xk)Qg(Xk)E(|∆Bk|2
∣∣Fk∆t)

+ 2α1∆t)

= (D +XT
k QXk)

−1(gT (Xk)Qg(Xk)∆t+ 2α1∆t). (4.10)
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Using the facts that E(|∆Bk|2i) = (2i − 1)!!∆ti and E((∆Bk)
2i+1) = 0, where

(2i − 1)!! denotes the double factorial, i.e. (2i − 1)!! = (2i − 1)(2i − 3) · · · 3 · 1,

similarly we get that

E(ζ2
k

∣∣Fk∆t) = (D +XT
k QXk)

−2(4|XT
k Qg(Xk)|2∆t+ 3|gT (Xk)Qg(Xk)|2∆t2 + 4α2

1∆t2

+ 4α1g
T (Xk)Qg(Xk)∆t

2)

≥ (D +XT
k QXk)

−2(4|XT
k Qg(Xk)|2∆t), (4.11)

and

E(ζ3
k

∣∣Fk∆t) = (D +XT
k QXk)

−3(15|gT (Xk)Qg(Xk)|3∆t3 + 12α2
1g
T (Xk)Qg(Xk)∆t

3

+ 8α3
1∆t3 + 24α1|XT

k Qg(Xk)|2∆t2 + 18α1|gT (Xk)Qg(Xk)|2∆t3

+ 36|XT
k Qg(Xk)|2gT (Xk)Qg(Xk)∆t

2)

≤ C2∆t2, (4.12)

where C2 is a constant dependent on K2, α1, α2, λmax(Q), λmin(Q) and D.

Substituting (4.10), (4.11) and (4.12) back to (4.9) yields

E((D +XT
k+1QXk+1)p/2

∣∣Fk∆t)

≤ C
p/2
1 (D +XT

k QXk)
p/2E

(
1 +

p

2

(
gT (Xk)Qg(Xk)

D +XT
k QXk

− 2|XT
k Qg(Xk)|2

(D +XT
k QXk)2

)
∆t

+
p2

2

|XT
k Qg(Xk)|2

(D +XT
k QXk)2

∆t+
p(p− 2)(p− 4)

23 × 3!
C2∆t2

)
+ C3∆t

where C3 depends on K1, α1, D, λmin(Q) and λmax(Q). Considering the following

two fractions,

(D +XT
k QXk)

p/2P1(|Xk|)
D +XT

k QXk

and
(D +XT

k QXk)
p/2P3(|Xk|)

(D +XT
k QXk)2

.

For 0 < p < 1 the highest degrees of |Xk| in the numerators are p + 1 and p + 3

respectively, which are smaller than the corresponding highest degrees of |Xk| in

the denominators. Thus, for any |Xk| ∈ R there exists an upper bound for both

of the fractions. By (4.7), we have

E((D +XT
k+1QXk+1)p/2

∣∣Fk∆t)

≤ C
p/2
1 (D +XT

k QXk)
p/2(1 +

p

2
K3∆t+

p2

2
K2q∆t+ C ′2∆t2) + C ′3∆t
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where C ′2 depends C2 and p, and C ′3 depends C3 and p. Taking expectation on

both sides, we have

E((D +XT
k+1QXk+1)p/2)

≤ C
p/2
1 (1 +

p

2
K3∆t+

p2

2
K2q∆t+ C ′2∆t2)E((D +XT

k QXk)
p/2) + C ′3∆t. (4.13)

Set ε = 0.5|K1 + 0.5K3|, choose p∗ sufficient small such that p∗K2q ≤ 0.25ε, then

choose ∆t∗ sufficient small such that for p ∈ (0, p∗) and ∆t ∈ (0,∆t∗) we have

C1 = (1− 2K1∆t)−1 ≥ 1− pK1∆t− C4∆t2 > 0, (4.14)

where C4 is a positive constant dependent on K1 and p. By further reducing ∆t∗

such that for any ∆t ∈ (0,∆t∗)

C ′2∆t <
1

8
pε, C4∆t <

1

4
ε, |p(K1 +

1

4
ε)∆t| < 1

2
.

Now using these three inequalities and (4.14), we derive from (4.13) that

E((D +XT
k+1QXk+1)p/2) ≤ 1 + 0.5p(K3 + 0.5ε)∆t

1− p(K1 + 0.25ε)∆t
E((D +XT

k QXk)
p/2) + C ′3∆t.

(4.15)

Considering the estimate that for any κ ∈ [−0.5, 0.5]

(1− κ)−1 = 1 + κ+ κ2

∞∑
i=0

κi ≤ 1 + κ+ κ2

∞∑
i=0

0.5i = 1 + κ+ 2κ2,

by further reducing ∆t∗ we see that for ∆t ∈ (0,∆t)

4p(K1 +
1

4
ε)2∆t+ (K3 +

1

2
ε)(p(K1 +

1

4
ε)∆t+ 2(p(K1 +

1

4
ε)∆t)2) < ε.

Then (4.15) indicates that

E((D +XT
k+1QXk+1)p/2) ≤ (1 + 0.5p(K3 + 0.5ε)∆t)(1 + p(K1 + 0.25ε)∆t

+ 2(p(K1 + 0.25ε)∆t)2)E((D +XT
k QXk)

p/2) + C ′3∆t

≤ (1 + p(K1 + 0.5K3 + ε)∆t)E((D +XT
k QXk)

p/2) + C ′3∆t.
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By iteration, we obtain that

E((D +XT
k+1QXk+1)p/2) ≤ (1 + p(K1 + 0.5K3 + ε)∆t)k+1(D +XT

0 QX0)p/2

+
1− (1 + p(K1 + 0.5K3 + ε)∆t)k+1

1− (1 + p(K1 + 0.5K3 + ε)∆t)
C ′3∆t.

Since (1 + p(K1 + 0.5K3 + ε)∆t) ∈ (0, 1) for any p ∈ (0, p∗) and ∆t ∈ (0,∆t∗), we

see that

E((D +XT
k+1QXk+1)p/2) ≤ (D +XT

0 QX0)p/2 − 2(p(K1 + 0.5K3))−1C ′3.

Because Q is a symmetric positive-definite matrix, the assertion holds.

From Lemma 4.3.2, we can conclude that Assumption 4.2.9 holds for sufficiently

small ∆t.

Now we are investigating the sufficient condition for Assumption 4.2.10. The

techniques used in the proof of Lemma 4.3.3 are similar to those in Lemma 4.3.2.

Lemma 4.3.3 Let Conditions 4.2.1, 4.2.2 and 4.2.3 hold. Assume that, for the

same Q in (4.2.3) and any x, y ∈ Rd with x 6= y,

(g(x)− g(y))TQ(g(x)− g(y))

(x− y)TQ(x− y)
− 2|(x− y)TQ(g(x)− g(y))|2

|(x− y)TQ(x− y)|2
≤ K4, (4.16)

where K4 is constant with K̄1+0.5K4 < 0. Then for any two different initial values

x, y ∈ Rd, the BEM solution (4.4) has the property that for any k ≥ 1 there are

sufficiently small ∆t∗ and p∗ such that for any pair of ∆t and p with ∆t ∈ (0,∆t∗)

and p ∈ (0, p∗)

E(|Xx
k −X

y
k |
p) ≤ q(1 + 0.5p(K̄1 + 0.5K4)∆t)kE(|x− y|p),

where q = λmax(Q)/λmin(Q). Therefore, Assumption 4.2.10 follows.

Proof. From (4.4) we have

Xx
k+1 −X

y
k+1 = Xx

k −X
y
k + (f(Xx

k+1)− f(Xy
k+1))∆t+ (g(Xx

k )− g(Xy
k ))∆Bk.
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Then, in the similar manner as the proof of Lemma 4.3.1, we see that

(Xx
k+1 −X

y
k+1)TQ(Xx

k+1 −X
y
k+1)

≤ (1− 2K̄1∆t)−1((Xx
k −X

y
k )TQ(Xx

k −X
y
k ) + 2(Xx

k −X
y
k )TQ(g(Xx

k )− g(Xy
k ))∆Bk

+ (g(Xx
k )− g(Xy

k ))TQ(g(Xx
k )− g(Xy

k ))|∆Bk|2).

Set

ηk =
2(Xx

k −X
y
k )TQ(g(Xx

k )− g(Xy
k ))∆Bk + (g(Xx

k )− g(Xy
k ))TQ(g(Xx

k )− g(Xy
k ))|∆Bk|2

(Xx
k −X

y
k )TQ(Xx

k −X
y
k )

we can have

(Xx
k+1 −X

y
k+1)TQ(Xx

k+1 −X
y
k+1) ≤ (Xx

k −X
y
k )TQ(Xx

k −X
y
k )

1− 2K̄1∆t
(1 + ηk).

Taking conditional expectation on both sides and using the fundamental inequality

(4.8), for any p ∈ (0, 1) we have that

E(|(Xx
k+1 −X

y
k+1)TQ(Xx

k+1 −X
y
k+1)|p/2

∣∣Fk∆t)

≤
∣∣∣∣(Xx

k −X
y
k )TQ(Xx

k −X
y
k )

1− 2K̄1∆t

∣∣∣∣p/2 E(1 +
p

2
ηk +

p(p− 2)

8
η2
k +

p(p− 2)(p− 4)

23 × 3!
η3
k|Fk∆t

)
.

(4.17)

It is not difficult to show that

E(ηk
∣∣Fk∆t) =

(g(Xx
k )− g(Xy

k ))TQ(g(Xx
k )− g(Xy

k ))

(Xx
k −X

y
k )TQ(Xx

k −X
y
k )

∆t,

E(η2
k

∣∣Fk∆t) ≥
4|(Xx

k −X
y
k )TQ(g(Xx

k )− g(Xy
k ))|2

|(Xx
k −X

y
k )TQ(Xx

k −X
y
k )|2

∆t,

and

E(η3
k

∣∣Fk∆t) ≤ C5∆t2,
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where C5 depends on K2, λmin(Q) and λmax(Q). Together with (4.16) we derive

from (4.17) that

E(|(Xx
k+1 −X

y
k+1)TQ(Xx

k+1 −X
y
k+1)|p/2

∣∣Fk∆t)

≤
∣∣∣∣(Xx

k −X
y
k )TQ(Xx

k −X
y
k )

1− 2K̄1∆t

∣∣∣∣p/2(1 +
p

2

(g(Xx
k )− g(Xy

k ))TQ(g(Xx
k )− g(Xy

k ))

(Xx
k −X

y
k )TQ(Xx

k −X
y
k )

∆t

+
p(p− 2)

8

4|(Xx
k −X

y
k )TQ(g(Xx

k )− g(Xy
k ))|2

|(Xx
k −X

y
k )TQ(Xx

k −X
y
k )|2

∆t+
p(p− 2)(p− 4)

23 × 3!
C5∆t2

)
≤
∣∣∣∣(Xx

k −X
y
k )TQ(Xx

k −X
y
k )

1− 2K̄1∆t

∣∣∣∣p/2(1 +
p

2
K4∆t+

p2

2
K̄2q∆t+

p(p− 2)(p− 4)

23 × 3!
C5∆t2

)
.

In the same way as in the proof of Lemma 4.3.2, we can choose sufficiently small

∆t∗ and p∗ such that for any p ∈ (0, p∗) and ∆t ∈ (0,∆t∗)

E(|(Xx
k+1 −X

y
k+1)TQ(Xx

k+1 −X
y
k+1)|p/2)

≤ (1 + 0.5p(K̄1 + 0.5K4)∆t)E(|(Xx
k −X

y
k )TQ(Xx

k −X
y
k )|p/2).

Therefor, by iteration and the fact that Q is a symmetric positive-definite matrix

we show the assertion.

Therefore, given the conditions in Lemma 4.3.1, 4.3.2 and 4.3.3, from Theorem

4.2.12 we conclude that there exists a unique stationary distribution for the BEM

solution as time tends to infinity.

4.3.2 The Underlying Stationary Distribution

The existence and uniqueness of the stationary distribution for the underlying

solution is discussed in this part under the same conditions as previous subsection.

Lemma 4.3.4 Assume Conditions 4.2.1, 4.2.2 and 4.2.3 hold, the second moment

of the solution of (4.1) satisfies

E
(

sup
0≤t≤T

|x(t)|2
)
≤ (1 + E|x0|2) exp(2T ×max(K1λmax(Q) +K2, α1 + α2)),

for any T > 0.
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We refer the readers to Theorem 2.4.1 in (Mao, 2008) for the proof.

Lemma 4.3.5 Assume the conditions in Lemma 4.3.2 hold, there exists a constant

p∗ ∈ (0, 1) such that for any p ∈ (0, p∗)

E|x(t)|p ≤ q(c1t+ E|x0|p +Dp/2) exp

(
p

[
K1 +

1

2
K3 +

p

2
K2q

]
t

)
<∞,

holds for any t > 0, where q = λmax(Q)/λmin(Q) and c1 is a positive constant

dependent on p, K1, K2, α1, α2, D, λmin(Q) and λmax(Q).

Proof. For p ∈ (0, 1), from the Itô formula,

d|xT (t)Qx(t) +D|p/2

= [p|xT (t)Qx(t) +D|p/2−1(xT (t)Qf(x(t)))

+ p(
p

2
− 1)|xT (t)Qx(t) +D|p/2−2|xT (t)Qg(x(t))|2

+
p

2
|xT (t)Qx(t) +D|p/2−1(gT (x(t))Qg(x(t)))]dt

+ p|xT (t)Qx(t) +D|p/2−1(xT (t)Qg(x(t)))dB(t)

= p|xT (t)Qx(t) +D|p/2
[
xT (t)Qf(x(t))

xT (t)Qx(t) +D
+

1
2
gT (x(t))Qg(x(t))

xT (t)Qx(t) +D
− |x

T (t)Qg(x(t))|2

|xT (t)Qx(t) +D|2

+
p

2

|xT (t)Qg(x(t))|2

|xT (t)Qx(t) +D|2

]
dt+ p|xT (t)Qx(t) +D|p/2−1(xT (t)Qg(x(t)))dB(t).

Under (4.2), (4.3) and (4.7) it implies

d|xT (t)Qx(t) +D|p/2 ≤ p|xT (t)Qx(t) +D|p/2
[
K1 +

1

2
K3 +

p

2
K2q

]
dt+ c1dt

+ p|xT (t)Qx(t) +D|p/2−1(xT (t)Qg(x(t)))dB(t),

where c1 is a positive constant dependent on p, K1, K2, α1, α2, D, λmin(Q) and

λmax(Q). Since K1 + 0.5K3 < 0, given ε ∈ (0, |K1 + 0.5K3|) we may choose

p∗ ∈ (0, 1) so small that 0.5p∗K2q < ε, then for any p ∈ (0, p∗) we see that

E|xT (t)Qx(t) +D|p/2 ≤ p

[
K1 +

1

2
K3 +

p

2
K2q

] ∫ t

0

E|xT (s)Qx(s) +D|p/2ds

+ c1t+ E|xT0Qx0 +D|p/2.
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By Gronwall’s inequality, we see that

E|xT (t)Qx(t) +D|p/2 ≤ (c1t+ E|xT0Qx0 +D|p/2) exp

(
p

[
K1 +

1

2
K3 +

p

2
K2q

]
t

)
.

Although the time variable, t, appears in both the coefficient of the exponentiation

term and the exponent, the choice of the p and the fact that K1 + 0.5K3 < 0

guarantee that exponentiation term decreases as t increases. Thus, the term on

the right hand side of the inequality above has an upper.

Lemma 4.3.6 Assume the conditions in Lemma 4.3.3 hold, for any two different

initial values x0, y0 ∈ Rd, there exists a constant p∗ ∈ (0, 1) such that for any

p ∈ (0, p∗)

E|xx0(t)− xy0(t))|p ≤ qE|(x0 − y0)|p exp(p(K̄1 + 0.5K4 + 0.5pK̄2q)t),

where q = λmax(Q)/λmin(Q).

Proof. For p ∈ (0, 1), from the Itô formula,

d|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2

= [p|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2−1(xx0(t)− xy0(t))TQ(f(xx0(t))− f(xy0(t)))

+ p(
p

2
− 1)|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2−2

× |(xx0(t)− xy0(t))TQ(g(xx0(t))− g(xy0(t)))|2

+
p

2
|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2−1

× (g(xx0(t))− g(xy0(t)))TQ(g(xx0(t))− g(xy0(t)))]dt

+ p|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2−1(xx0(t)− xy0(t))TQ(g(xx0(t))− g(xy0(t)))dB(t)

= p|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2
(

(xx0(t)− xy0(t))TQ(f(xx0(t))− f(xy0(t)))

(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))

+
(g(xx0(t))− g(xy0(t)))TQ(g(xx0(t))− g(xy0(t)))

2(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))

− |(x
x0(t)− xy0(t))TQ(g(xx0(t))− g(xy0(t)))|2

|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|2

+
p

2

|(xx0(t)− xy0(t))TQ(g(xx0(t))− g(xy0(t)))|2

|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|2

)
dt

+ p|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2−1(xx0(t)− xy0(t))TQ(g(xx0(t))− g(xy0(t)))dB(t).
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Under Condition 4.2.2, 4.2.3 and (4.16) this implies

d|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2

≤ p|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2
(
K̄1 + 0.5K4 + 0.5pK̄2q

)
dt

+ p|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2−1(xx0(t)− xy0(t))TQ(g(xx0(t))− g(xy0(t)))dB(t).

Since K̄1 + 0.5K4 < 0, given ε ∈ (0, |K̄1 + 0.5K4|) we may choose p∗ ∈ (0, 1) so

small that 0.5pK̄2q < ε, then for any p ∈ (0, p∗) we have that

E|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2

≤ E|(x0 − y0)TQ(x0 − y0)|p/2

+ p(K̄1 + 0.5K4 + 0.5pK̄2q)

∫ t

0

E|(xx0(s)− xy0(s))TQ(xx0(s)− xy0(s))|p/2ds.

Then Gronwall’s inequality indicates that

E|(xx0(t)− xy0(t))TQ(xx0(t)− xy0(t))|p/2

≤ E|(x0 − y0)TQ(x0 − y0)|p/2 exp(p(K̄1 + 0.5K4 + 0.5pK̄2q)t).

As Q is a symmetric positive-definite matrix, the proof is complete.

We conclude this part by the following theorem.

Theorem 4.3.7 Given the conditions in Lemma 4.3.1, 4.3.2 and 4.3.3, the solu-

tion of (4.1) has a unique stationary distribution denoted by π(·).

Having Lemma 4.3.4, 4.3.5 and 4.3.6, the proof of this theorem follows from The-

orem 3.1 in (Yuan & Mao, 2003).

4.3.3 The Convergence

Given Conditions 4.2.1, 4.2.2, 4.2.3 and those conditions assumed in Lemma 4.3.1,

4.3.2, 4.3.3, the convergence of the numerical stationary distribution to the under-

lying stationary distribution is discussed in this subsection.

Recall that the probability measure induced by the numerical solution, Xk, is

denoted by Pk(·, ·), similarly we denote the probability measure induced by the

underlying solution,x(t), by P̄t(·, ·).
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Lemma 4.3.8 Let Conditions 4.2.1, 4.2.2, 4.2.3 hold and fix any initial value

x0 ∈ Rd. Then, for any given T > 0 and ε > 0. there exists a sufficiently small

∆t∗ > 0 such that

dL(P̄k∆t(x0, ·),Pk(x0, ·)) < ε

provided that ∆t < ∆t∗ and k∆t ≤ T .

The result can be derived from the fact that the BEM solution converges strongly

to the underlying solution in finite time (Higham et al., 2002; Hu, 1996; Kloeden

& Platen, 1992).

Now we are ready to show that the numerical stationary distribution converges

to the underlying stationary distribution as time step diminishes.

Theorem 4.3.9 Given Conditions 4.2.1, 4.2.2, 4.2.3, (4.7) and (4.16),

lim
∆t→0

dL(Π∆t(·), π(·)) = 0.

Proof. Fix any initial value x0 ∈ Rd and set ε > 0 be arbitrary real number.

According to Theorem 4.3.7, there exists a Θ∗ > 0 such that for any t > Θ∗

dL(P̄t(x0, ·), π(·)) < ε/3.

Similarly, by Theorem 4.2.12, there exists a pair of ∆t∗∗ > 0 and Θ∗∗ > 0 such

that

dL(Pk(x0, ·),Π∆t(·)) < ε/3

for all ∆t < ∆t∗∗ and k∆t > Θ∗∗. Let Θ = max(Θ∗,Θ∗∗), from Lemma 4.3.8 there

exists a ∆t∗ such that for any ∆t < ∆t∗ and k∆t < Θ + 1

dL(P̄k∆t(x0, ·),Pk(x0, ·)) < ε/3.

Therefore, for any ∆t < min(∆t∗,∆t∗∗), set k = [Θ/∆t] + 1/∆t, we see the

assertion holds by the triangle inequality.
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4.4 Examples

In this section, we illustrate the theoretical results by three examples. First, we

consider a two-dimensional SDE with scalar Brownian motion.

Example 4.4.1

dx(t) = (diag(x1(t), x2(t))b+ diag(x1(t), x2(t))Adiag(x1(t), x2(t))x(t) + c1) dt

+ (diag(x1(t), x2(t))σ + c2) dB(t), (4.18)

where x(t) = (x1(t), x2(t))T , diag(x1(t), x2(t)) denotes a diagonal matrix with non-

zero entries x1(t) and x2(t) on the diagonal, b = (1, 1)T , A = (aij)i,j=1,2 with

a1,1 = −1, a1,2 = −0.7, a2,1 = −1.2, a2,2 = −2, c1 = (0.5, 0.7)T , c2 = (3.5, 4)T and

σ = (3.5, 4)T .

Choosing Q to be identity matrix, it is clear that the drift and diffusion coefficients

of (4.18) satisfy Conditions 4.2.1, 4.2.2, 4.2.3 and (4.2) with K̄1 = 1 and K1 = 1.7,

which indicates that Lemma 4.3.1 holds. To check conditions for Lemma 4.3.2, we

see that

(3.5x1 + 0.3)2 + (4x2 + 0.2)2

D + (x2
1 + x2

2)
− 2|3.5x2

1 + 0.3x1 + 4x2
2 + 0.2x2|2

(D + (x2
1 + x2

2))2
.

Set D = 0.04/25, we can derive that (4.7) is satisfied with K3 = −7 and K1 +

0.5K3 < 0, then Lemma 4.3.2 holds. Finally, we have that (4.16) is satisfied with

K4 = −7 and K̄1 + 0.5K4 < 0, that is Lemma 4.3.3 holds.

We simulate 1000 paths, each of which has 10000 iterations. In Figure 4.1, we

plot one path of the BEM solution for x1(t) and x2(t). Intuitively, some stationary

behaviour displays.

We further plot the empirical cumulative distribution function (ECDF) of the last

iterations of the 1000 paths and the ECDF of last 1000 iterations of one path

in Figure 4.2. It can be seen that the shapes and the intervals of the ECDFs

are similar. To measure the similarity quantitatively, we use the Kolmogorov-

Smirnov test (K-S test) (Massey J., 1951) to test the alternative hypothesis that
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Figure 4.1: Left: the BEM solution to x1(t); Right: the BEM solution to x2(t).

the last iterations of the 1000 paths and last 1000 iterations of one path are from

different distributions against the null hypothesis that they are from the same

distribution for both x1(t) and x2(t). With 5% significance level, the K-S test

indicates that we can not reject the null hypothesis. This example illustrates

the existence of the stationary distribution as the time variable becomes large.

Moreover, it may indicate that instead of simulating many paths to construct

the stationary distribution, one could just use last few iterations of one path to

approximate the stationary distribution.

To compare the numerical stationary distribution with the theoretical one, we next

consider a nonlinear scalar SDE, whose stationary distribution can be explicitly

derived from the Kolmogorov-Fokker-Planck equation.

Example 4.4.2

dx(t) = −0.5(x+ x3) + dB(t).

It is straightforward to see that K̄1 = K1 = −0.5 and K3 = K4 = 0, hence all

the conditions required in Section 4.2 and 4.3 are satisfied. The corresponding

Kolmogorov-Fokker-Planck equation for the theoretical probability density func-

tion of the stationary distribution p(x) is

0.5
d2p(x)

dx2
− d

dx
(−0.5(x+ x3)p(x)) = 0.
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Figure 4.2: Left: ECDFs for x1; Right: ECDFs for x2. Red dashed line is last

1000 iterations of one path; Blue solid line is last iterations of the 1000 paths.

And the exact solution is known to be (Soong, 1973)

p(x) =
1

I 1
4
(1

8
) + I− 1

4
(1

8
)

exp(
1

8
− 1

2
x2 − 1

4
x4),

where Iν(x) is modified Bessel function of the first kind. We simulate one path

with 100000 iterations and plot the ECDF of last 20000 iterations in red dashed

line on Figure 4.3. The theoretical cumulative distribution function is plotted on

the same figure in blue solid line. The similarity of those two distribution is clear to

see, which indicates the numerical stationary distribution is a good approximation

to the theoretical one. The mean and variance of the numerical stationary distri-

bution are 0 and 0.453, respectively, which are close to the theoretical counterparts

0 and 0.466.

This example also demonstrates that the numerical method for stochastic dif-

ferential equations can serve as an alternative way to approximate deterministic

differetial equations.

At last, we consider a linear scalar equation, the Langevin equation (Uhlenbeck

& Ornstein, 1930). The comparison of the BEM method in this chapter with the

EM method studied in (Yuan & Mao, 2004) demonstrates that the BEM has less

constraint on the step size.
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Figure 4.3: Comparison of the ECDF with the theoretical cumulative distribution

function

Example 4.4.3 We write the Itô type equation of the Langevin equation as

dx(t) = −αx(t)dt+ σdB(t) on t ≥ 0, (4.19)

where α > 0 and σ ∈ R.

From (4.4), given the initial value X0 = x(0) ∈ R we have

Xk+1 = Xk +−αXk+1∆t+ σ∆Bk.

This gives that Xk+1 is normally distributed with mean

E(Xk+1) = (1 + α∆t)−(k+1)x(0)

and variance

V ar(Xk+1) = (1 + α∆t)−2V ar(Xk) + σ2(1 + α∆t)−2∆t

= σ2∆t[(1 + α∆t)−2 + (1 + α∆t)−4 + ...+ (1 + α∆t)−2(k+1)]

= σ2∆t
1− (1 + α∆t)−(k+1)

(1 + α∆t)2 − 1

=
σ2

2α + α2∆t
.
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Therefore, the distribution of the BEM solution approaches the normal distribu-

tion N(0, σ2/(2α + α2∆t)) as k → ∞ for any ∆t > 0. Recall, from Example

3.5.1 in (Mao, 2008), that the underlying solution of (4.19) approaches its station-

ary distribution N(0, σ2/(2α)) as t → ∞, then it is interesting to observe that

N(0, σ2/(2α + α2∆t)) will further converge to stationary distribution of the true

solution as ∆t→ 0.

4.5 Conclusions and Future Research

This chapter largely extend the results in Mao and Yuan’s series papers (Mao

et al., 2005; Yuan & Mao, 2004; Yuan & Mao, 2005). By using the Backward

Euler-Maruyama method, the linear growth condition on the drift coefficient is

released to the one-sided Lipschitz condition and the stationary distribution of

many more SDEs can be approximated by the numerical stationary distribution.

However, it should be mentioned that, compared to the three assumptions in

Section 4.2, those sufficient conditions in Section 4.3.1 are still quite strong. And

this is because that those assumptions are in probability, while those sufficient

conditions are in term of moment. Therefore, it is interesting to construct some

coefficients related sufficient conditions which are in probability.



Chapter 5

Almost Sure Stability with

Random Variable Step Size

5.1 Introduction

To continue the study on the asymptotic properties of numerical solutions, we

present some our findings on one of the most popular topics, almost sure stability.

This chapter is devoted to the analyses of the almost sure stability of numeri-

cal methods for stochastic differential equations (SDEs) by using the well-known

semimartingale convergence theory, see for example (Shiryaev, 1996) in terms of

equalities and (Appleby et al., 2006) in terms of inequalities. There are many pa-

pers that have adopted this approach to study the numerical almost sure stability,

for example (Buckwar & Kelly, 2010; Mao & Szpruch, 2013a; Rodkina & Schurz,

2005; Rodkina et al., 2008; Wu et al., 2010; Wu et al., 2011; Yu, 2011) and the

references therein. However, in most of the papers the step size is either fixed or

nonrandom variable.

Unlike the preceding two chapters, in which the constant step size methods are

considered, the methods discussed in current chapter and the coming chapter are

modified methods. In this chapter the random variable step size is introduced to

embed into the Euler-Maruyama (EM) method. Our key contribution is that we

67
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prove the time variable is a stopping time. Moreover, the stopping time is essential

for the application of the semimartingale convergence theory in our approach.

Benefiting from the random variable step size, the sufficient conditions for the

almost sure stability of the EM method obtained in this chapter are much weaker

than those established in (Mao & Szpruch, 2013a) and (Wu et al., 2010). To our

best knowledge, this is the first work to apply the random variable step size (with

clear proof of the stopping time) to the analysis of the almost sure stability of the

EM method.

It should be noted that the technique of adjusting the size of each step has been

broadly used in the multi-stage methods (see for example (Burrage & Burrage,

2002; Burrage et al., 2004; Römisch & Winkler, 2006), and the references therein).

Due to the application of the local error control technique, some steps could be

rejected then smaller steps may be retreated. Since the step size in those methods

is dependent on the state of the solution, it is indeed a random variable. However,

the current step size may be decided after future information available and this

indicates the time variable can not be a stopping time (Mauthner, 1998). In

fact, not like the case in this chapter the stopping time is not necessary for those

methods (Gaines & Lyons, 1997).

The Euler-type methods with the random variable step size, were also con-

sidered in different aspects, for instance in (Dávila et al., 2005) to reproduce the

finite time explosion of SDEs, in (Lamba et al., 2007) to study convergence and

ergodicity, and in (Müller-Gronbach, 2002) to optimise the error constant.

We also mention here that there are lots of other approaches to study the

almost sure stability of the numerical methods for SDEs, for example by the local

error control, by directly applying the the strong law of large numbers, and by the

Chebyshev inequality and the Borel-Cantelli lemma the almost sure stability can

be derived from the moment exponential stability. We refer to some of the works

(Higham et al., 2007; Lamba & Seaman, 2006; Mao et al., 2011; Pang et al., 2008;

Schurz, 2005) and the references therein.



Chapter 5: Almost Sure Stability 69

This chapter is constructed as follows. Section 5.2 is devoted to the mathemat-

ical notation and some preparation for the main result. In Section 5.3 we present

our main result, Theorem 5.3.1, in which we demonstrate the strategy of choosing

the step size, give the proof of the stopping time and conclude the almost sure

stability of the EM method with random variable step size. Section 5.4 sees the

computer simulations of the proposed method. In Section 5.5, alternative sufficient

conditions for the numerical almost sure stability are proposed, which enable the

EM method with random variable step size to cover wider range of SDEs. Proofs

in the last section are only briefed as the same techniques to those in Theorem

5.3.1 are employed.

5.2 Mathematical Preliminaries

Throughout this chapter, let (Ω,F , {Ft}t≥0,P) be a complete probability space

with a filtration {Ft}t≥0 which is increasing and right continuous, with F0 con-

taining all P-null sets. Let B(t) = (B1(t), ..., Bm(t))T be an m-dimensional Brow-

nian motion defined on the probability space. The inner product of x, y in Rn is

denoted by 〈x, y〉.

In this chapter, we investigate the numerical methods for the n-dimensional

SDE

dx(t) = f(x(t))dt+ g(x(t))dB(t), x(0) ∈ Rn, (5.1)

where f : Rn → Rn and g: Rn → Rn×m. The following two conditions are imposed

on the drift and diffusion coefficients. For every integer R ≥ 1, there exists a

positive constant C(R) such that, for all x, y ∈ Rn with |x| ∨ |y| ≤ R,

|f(x)− f(y)|2 ∨ |g(x)− g(y)|2 ≤ C(R)|x− y|2. (5.2)

And ∀x ∈ Rn

−z(x) := 2〈x, f(x)〉+ |g(x)|2 ≤ 0. (5.3)
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From (5.3), we can see that the monotone condition holds automatically. There-

fore under (5.2) and (5.3), there exists a unique solution to (5.1) for any given initial

value x(0) ∈ Rn (see, for example Theorem 2.3.5 in (Mao, 2008)). The theorem

for the almost sure asymptotic stability for the SDE (5.1) is presented as follows.

Theorem 5.2.1 Let (5.2) and (5.3) hold. Assume z(x) = 0 if and only if x = 0,

then for any initial value x(0) ∈ Rn

lim
t→∞

x(t) = 0 a.s.

We refer to the stochastic version of the LaSalle theorem in (Shen et al., 2006) for

the proof of this theorem.

Lemma 5.2.2 Assume z(x), defined by (5.3), is zero if and only if x = 0. Then

both f(x) = 0 and g(x) = 0 if x = 0, and f(x) 6= 0 if x 6= 0.

Proof. We first prove f(x) 6= 0 if x 6= 0. Assume f(x̄) = 0 for some x̄ 6= 0, then

by (5.3) we have −z(x̄) = |g(x̄)|2 ≥ 0. But this contradicts that −z(x) < 0 for

x 6= 0.

We now prove f(x) = 0 if x = 0. Assume f(0) 6= 0, that is f(0) = (f1(0), ..., fn(0))T 6=

0. Without loss of generality, we assume f1(0) < 0. Due to the continuity of f(x),

for some sufficiently small ε > 0 we have f1(x) < 0 for some vector x, where the

first entry lies in (−ε, ε) and all the rest are zeros. Then given x̄ = (−ε/2, 0, ..., 0)T ,

we have 〈x̄, f(x̄)〉 > 0. But this contradicts to −z(x̄) < 0.

Suppose x = 0, by (5.3) it is easy to see that |g(0)|2 = −z(0) = 0, i.e. g(0) = 0.

The next lemma is the discrete version of the semimartingale convergence theorem

(Shiryaev, 1996).

Lemma 5.2.3 Let {Ai} and {Bi} be two nonnegative Fi-measurable processes for

i = 0, 1, 2, ... with A0 = B0 = 0 a.s. and {Mi} be Fi-measurable local martingale

for i = 0, 1, 2, ... with M0 = 0. If a nonnegative stochastic process {Zi}i=0,1,... can

be decomposed as Zi = Z0 + Ai −Bi +Mi, then{
lim
i→∞

Ai <∞
}
⊆
{

lim
i→∞

Bi <∞
}
∩
{

lim
i→∞

Zi exists and is finite
}

a.s.
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5.3 The EM Method with Random Variable Step

Size

In this section, we present our main results about the variable step size EM method.

To keep the proof simple and clear we specify the choice of the step size in the

proof, but readers should notice that there are other choices. We emphasise here

that there are two important properties of the variable step size that the sum of the

steps is a stopping time and divergent. The feature of stopping time is essential

to the proof of the local martingale term in Theorem 5.3.1, and the divergence

guarantees the time is able to tend to infinity.

The first main result is that the variable step size method can reproduce the

stability of the SDE shown in Theorem 5.2.1.

Theorem 5.3.1 Let (5.2) and (5.3) hold. Assume z(x) = 0 if and only if x = 0,

and

lim inf
|x|→0

z(x)

|f(x)|2
> 0. (5.4)

Define the EM method with variable step size as

Yi+1 = Yi + f(Yi)∆ti + g(Yi)∆Bi, Y0 = x(0), i ≥ 0, (5.5)

where ∆Bi = B(ti)−B(ti−1) with ti =
∑i

k=0 ∆tk for i = 0, 1, 2... and t−1 = 0, ∆ti

is chosen to be 2−ni with ni = d1 − log2(z(Yi)/|f(Yi)|2)e for |Yi| 6= 0 and 2−2 for

|Yi| = 0. Then ti is an {Ft}-stopping time for each i = 0, 1, 2..., and the sequence

of time steps obeys
∑∞

i=0 ∆ti =∞ a.s. Moreover, for any initial value Y0 ∈ Rn

lim
i→∞

Yi = 0 a.s.

Proof. Taking square on both sides of (5.5), we have

|Yi+1|2 = |Yi|2 + 2〈Yi, f(Yi)∆ti + g(Yi)∆Bi〉+ |f(Yi)∆ti + g(Yi)∆Bi|2

= |Yi|2 + ∆ti(2〈Yi, f(Yi)〉+ |g(Yi)|2 + |f(Yi)|2∆ti) + ∆mi, (5.6)

where ∆mi = 2〈Yi, g(Yi)∆Bi〉+ 2〈f(Yi)∆ti, g(Yi)∆Bi〉+ |g(Yi)|2(|∆Bi|2 −∆ti).
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The proof is divided into three parts. Firstly, we demonstrate the strategy of

choosing the step size ∆ti in each time step and show that ti is an {Ft}-stopping

time for every i = 0, 1, .... Then we prove that mi =
∑i

k=0 ∆mk is a local martin-

gale for i = 0, 1, .... At last, we give the proof of the divergence of the sequence of

the timesteps and conclude the almost sure stability.

Step 1

Since (5.3), in each step we can choose sufficiently small and rational step size ∆ti

such that

−U(Yi,∆ti) := −z(Yi) + |f(Yi)|2∆ti ≤ 0. (5.7)

For example, when Yi 6= 0 (by Lemma 5.2.2 we know f(Yi) 6= 0) we could choose

∆ti = 2−ni with ni = d1 − log2(z(Yi)/|f(Yi)|2)e. Then it is obvious that ∆ti ≤

z(Yi)/(2|f(Yi)|2), thus the inequality (5.7) holds. When Yi = 0 (i.e. z(Yi) = 0 and

f(Yi) = 0), any choice of ∆ti will satisfy (5.7) and we simply choose, for example

∆ti = 2−2. From the iteration (5.5), we know that if at some time point the solution

becomes zero, the solution afterwards will stay at zero. Hence in this case the step

size is fixed and the almost sure stability follows naturally. In the following, we

focus on the case when ∆ti = 2−ni with ni = d1 − log2(z(Yi)/|f(Yi)|2)e. We

emphasise here that the requirement that each ∆ti is a rational number is key to

the following proof that ti =
∑i

k=0 ∆tk =
∑i

k=0 2−nk is an {Ft}-stopping time for

every i = 0, 1, ....

Assume ti is an {Ft}-stopping time for some i ≥ 0, i.e. {ti ≤ t} ∈ Ft for any t ≥

0. Note that Yi+1 is Fti-measurable. Because the choice of ∆ti+1 is dependent on

Yi+1 we have that ∆ti+1 is Fti-measurable. Then we need to show ti+1 = ti+∆ti+1

is an {Ft}-stopping time, that is to show {ti + ∆ti+1 ≤ t} ∈ Ft for any t ≥ 0. For

any s ∈ Z and any j ∈ N with j2s ∈ [0, t], we have {ti ≤ j2s} ∈ Fj2s ⊆ Ft, and

{∆ti+1 ≤ t − j2s} ∈ Fti ⊂ F . Thus we have {ti ≤ j2s} ∩ {∆ti+1 ≤ t− j2s} ∈ Ft
(see for example (Mao, 2008)). As both Z and N are countable sets, we have that
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for any t ≥ 0 (Gihman & Skorohod, 1974)

{ti + ∆ti+1 ≤ t} =
⋃

{0≤j2s≤t,s∈Z,j∈N}

({ti ≤ j2s} ∩ {∆ti+1 ≤ t− j2s}) ∈ Ft.

Thus we have proved that ti+1 is an {Ft}-stopping time. Since ∆t0 is dependent

on the given initial value Y0, we have ∆t0 and Y0 are Ft−1-measurable (recalling

t−1 = 0). By induction we conclude that ti is an {Ft}-stopping time for each

i = 0, 1, .... Substituting (5.7) into (5.6), we obtain

|Yi+1|2 = |Yi|2 − U(Yi,∆ti)∆ti + ∆mi.

Then taking sum on i we have

|Yi+1|2 = |Y0|2 −
i∑

k=0

U(Yk,∆tk)∆tk +mi, (5.8)

where mi =
∑i

k=0 ∆mk.

Step 2

Due to (5.5) and the definition of ti, it is clear that Yi is Fti−1
-measurable for i =

0, 1, .... We define another filtration {Gi}i=−1,0,1,... by Gi = Fti for i = −1, 0, 1, ....

So Yi is Gi−1-measurable and mi is Gi-measurable. We are going to prove that

{mi}i≥0 is a {Gi}-local martingale. Choosing R s.t. |x(0)| < R, we define a

stopping time

ρR = inf{i ≥ 0, |Yi| > R}.

Clearly, ρR → ∞ a.s. when R → ∞. It is easy to see that ρR is a {Gi−1}-

stopping time i.e. {ρR ≤ i} ∈ Gi−1. This indicates {ρR − 1 ≤ i} ∈ Gi. Denoting

τR = ρR − 1, we have τR is a {Gi}-stopping time. By the definition of ρR, we have

that |Yi∧(ρR−1)| ≤ R a.s. so |Yi∧τR | ≤ R a.s. for all i ≥ 0.

We claim that ti∧τR and t(i−1)∧τR are {Ft}-stopping times. For ti∧τR we have

for any t ≥ 0

{ti∧τR ≤ t} = {{ti ≤ t} ∩ {τR ≥ i}} ∪ {{tτR ≤ t} ∩ {τR < i}}.
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Denote the complement set of A by Ac. It can be seen that {τR ≤ i − 1} ∈ Gi−1,

so the complement {τR > i− 1} = {τR ≤ i− 1}c ∈ Gi−1. Because {τR > i− 1} is

equivalent to {τR ≥ i}, we have {τR ≥ i} ∈ Gi−1.

Since {τR ≥ i} ∈ Gi−1 ⊂ Gi = Fti , we have {ti ≤ t} ∩ {τR ≥ i} ∈ Ft. And

{tτR ≤ t} ∩ {τR < i} =
i−1⋃
j=0

({{tj ≤ t} ∩ {τR = j}),

because {τR = j} ∈ Fti for j = 0, 1, ...i − 1 we have {tτR ≤ t} ∩ {τR < i} ∈ Ft.

Hence {ti∧τR ≤ t} ∈ Ft. Similarly for t(i−1)∧τR , we have

{t(i−1)∧τR ≤ t} = {{ti−1 ≤ t} ∩ {τR ≥ i− 1}} ∪ {{tτR ≤ t} ∩ {τR < i− 1}}.

Similarly, we have that {τR ≤ i−2} ∈ Gi−2 indicates {τR > i−2} = {τR ≤ i−2}c ∈

Gi−2. As {τR > i− 2} is equivalent to {τR ≥ i− 1}, we see {τR ≥ i− 1} ∈ Gi−2.

Since {τR ≥ i− 1} ∈ Gi−2 ⊂ Fti , we have {ti−1 ≤ t} ∩ {τR ≥ i− 1} ∈ Ft. And

{tτR ≤ t} ∩ {τR < i− 1} =
i−2⋃
j=0

({{tj ≤ t} ∩ {τR = j}),

we have {{tτR ≤ t} ∩ {τR < i − 1}} ∈ Ft due to {τR = j} ∈ Gj ⊂ Fti for

j = 0, 1, ...i− 2. Thus {t(i−1)∧τR ≤ t} ∈ Ft.

Due to the iteration (5.5) and the fact that |Yk∧τR | = |YτR | for any k ≥ τR,

we define the Brownian motion increment with the stopping time by ∆Bi∧τR =

B(ti∧τR) − B(t(i−1)∧τR) and the time step with the stopping time by ∆ti∧τR =

ti∧τR − t(i−1)∧τR . Since τR → ∞ a.s. when R → ∞, those two definitions can

reproduce the original ones we used in the statement of the theorem. Thus they

are valid. In addition, we have

mi∧τR =

i∧τR∑
k=0

∆mk =
i∑

k=0

∆mk∧τR and mi∧τR = m(i−1)∧τR + ∆mi∧τR .

From condition (5.2) and Lemma 5.2.2, for |x| ≤ R there exists a constant c(R)

dependent on R such that |f(x)| ∨ |g(x)| ≤ c(R). By the elementary inequality,
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we have

|mi∧τR | =

∣∣∣∣∣
i∧τR∑
k=0

∆mk

∣∣∣∣∣
≤

i∑
k=0

|∆mk∧τR |

≤
i∑

k=0

(2|Yk∧τR ||g(Yk∧τR)||∆Bk∧τR |+ 2|f(Yk∧τR)||g(Yk∧τR)|∆tk∧τR |∆Bk∧τR |

+|g(Yk∧τR)|2||∆Bk∧τR |2 −∆tk∧τR |)

≤
i∑

k=0

(c1(R)|∆Bk∧τR |+ c2(R)|∆Bk∧τR |2), (5.9)

where c1(R) and c2(R) are constants dependent on R only. Hence we have

E|mi∧τR | ≤
i∑

k=0

(c1(R)E|∆Bk∧τR |+ c2(R)E|∆Bk∧τR |2) <∞.

Also we have

E(mi∧τR
∣∣Gi−1) = E(m(i−1)∧τR + ∆mi∧τR

∣∣Gi−1) = m(i−1)∧τR + E(∆mi∧τR
∣∣Gi−1).

(5.10)

Because {τR > i− 1} ∈ Gi−1 and ∆Bi is independent of Gi−1, we have

E(∆Bi∧τR
∣∣Gi−1)

= E[(B(ti)−B(ti−1))1{τR>i−1}
∣∣Gi−1] + E[(B(tτR)−B(tτR))1{τR≤i−1}

∣∣Gi−1]

= 1{τR>i−1}E[B(ti)−B(ti−1)]

= 0,

E(|∆Bi∧τR |2
∣∣Gi−1)

= E[|B(ti)−B(ti−1)|21{τR>i−1}
∣∣Gi−1] + E[|B(tτR)−B(tτR)|21{τR≤i−1}

∣∣Gi−1]

= 1{τR>i−1}E[|B(ti)−B(ti−1)|2]

= 1{τR>i−1}(ti − ti−1),
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and

E(∆ti∧τR
∣∣Gi−1)

= ∆ti∧τR

= 1{τR>i−1}(ti − ti−1) + 1{τR≤i−1}(tτR − tτR)

= 1{τR>i−1}(ti − ti−1).

Hence

E(∆mi∧τR
∣∣Gi−1)

= E(2〈Yi∧τR , g(Yi∧τR)∆Bi∧τR〉+ 2〈f(Yi∧τR)∆ti∧τR , g(Yi∧τR)∆Bi∧τR〉

+|g(Yi∧τR)|2(|∆Bi∧τR |2 −∆ti∧τR)
∣∣Gi−1)

= 2〈Yi∧τR , g(Yi∧τR)〉E(∆Bi∧τR
∣∣Gi−1) + 2〈f(Yi∧τR), g(Yi∧τR)〉∆ti∧τRE(∆Bi∧τR

∣∣Gi−1)

+|g(Yi∧τR)|2(E(|∆Bi∧τR |2
∣∣Gi−1)− E(∆ti∧τR

∣∣Gi−1))

= 0. (5.11)

Combining (5.10) and (5.11), we achieve the required

E(mi∧τR
∣∣Gi−1) = m(i−1)∧τR .

This means that {mi∧τR}i≥0 is a {Gi}-martingale. Recalling that τR → ∞ a.s.

when R→∞, we see that {mi}i≥0 is a {Gi}-local martingale.

Step 3

Therefore from (5.8) and Lemma 5.2.3, we have

lim
i→∞
|Yi|2 <∞ a.s. (5.12)

and
∞∑
k=0

U(Yk,∆ti)∆tk <∞ a.s. (5.13)

From (5.13), we have limi→∞ U(Yi,∆ti)∆ti = 0 a.s. We next show the time step

∆ti will never tend to zero as i goes to infinity, that is lim infi→∞∆ti > 0 a.s.
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According to (5.12) for almost all ω ∈ Ω, there exists C(ω) ∈ R+ such that

limi→∞ |Yi(ω)| = C(ω). Fix any such ω, write C(ω) = C and Yi(ω) = Yi. Consider

two cases:

(i) For the case when C 6= 0, there exists a sufficiently large integer i∗1 such

that for all i > i∗1, 0.5C < |Yi| < 1.5C. This indicates either 0.5C < Yi < 1.5C or

−1.5C < Yi < −0.5C. Because that z(x) = 0 and f(x) = 0 if and only if x = 0,

in both of the two intervals we have z(Yi) 6= 0 and f(Yi) 6= 0. Furthermore, due

to the continuity of z(x) and f(x), we have

min
0.5C≤|x|≤1.5C

z(x)

|f(x)|2
= η > 0.

So for any i > i∗1, we have
z(Yi)

|f(Yi)|2
≥ η > 0

then

1− log2(z(Yi)/|f(Yi)|2) ≤ 1− log2(η).

Recalling the choice of the step size, we see

ni = d1− log2(z(Yi)/|f(Yi)|2)e ≤ d1− log2(η)e

then

∆ti = 2−ni ≥ 2−d1−log2(η)e > 0.

(ii) For the case when C = 0, suppose the limit of (5.4) be D > 0. There exists

a constant δ = δ(D) > 0 such that |z(x)/|f(x)|2 −D| < 0.5D for all |x| ∈ (0, δ).

Also, there exists an integer i∗2 such that for all i > i∗2, |Yi| ∈ (0, δ), which indicates

|z(Yi)/|f(Yi)|2 −D| < 0.5D. So for any i > i∗2, we have

1− log2(1.5D) < 1− log2(z(Yi)/|f(Yi)|2) < 1− log2(0.5D).

Recalling the choice of the step size, we see

∆ti = 2−ni > 2−d1−log2(0.5D)e > 0.
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Thus ∆ti will never tend to 0 as i tends to infinity. Hence we have
∑∞

i=0 ∆ti =∞

a.s.

Now we have limi→∞ U(Yi,∆ti) = 0 a.s. Due to (5.7) and the choice of ∆ti

that ∆ti ≤ z(Yi)/(2|f(Yi)|2), we have

U(Yi,∆ti) = z(Yi)− |f(Yi)|2∆ti ≥ 0.5z(Yi) ≥ 0.

Therefore limi→∞ z(Yi) = 0 a.s. Given the condition “z(x) = 0 ⇔ x = 0”, we

obtain that limi→∞ Yi = 0 a.s. Hence the proof is complete.

We have two comments on the proof.

• The condition in Theorem 5.3.1 for the EM method with variable step size is

weaker than the condition for the EM method with fixed step size (i.e. when

θ = 0) stated in Theorem 5.3 of (Mao & Szpruch, 2013a). For example, a

scalar SDE dx(t) = (−x3(t)− x(t))dt+ x2(t)dB(t) satisfies the conditions in

Theorem 5.3.1, but not in Theorem 5.3 of (Mao & Szpruch, 2013a).

• When conducting computer simulation, the step size is naturally rational

number as computers can only deal with finite number of decimals. Thus we

may simply set each step size to be αz(Yi)/(|f(Yi)|2) for any rational number

α ∈ (0, 1). We generalise Theorem 5.3.1 to the next theorem.

Theorem 5.3.2 Let (5.2) and (5.3) hold. Assume z(x) = 0 if and only if x = 0,

and (5.4). For the EM method with variable step size (5.5), ∆ti is chosen to be

rational number satisfying ∆ti = αz(Yi)/(|f(Yi)|2) with α ∈ (0, 1) for |Yi| 6= 0,

and any nonzero rational number for |Yi| = 0. Then ti is an {Ft}-stopping time

for each i = 0, 1, 2..., and the sequence of time steps obeys
∑∞

i=0 ∆ti = ∞ a.s.

Moreover, for any initial value Y0 ∈ Rn

lim
i→∞

Yi = 0 a.s.

Most part of the proof of Theorem 5.3.2 is similar to the proof of Theorem 5.3.1,

and the only different part is the proof of the stopping time as follows.
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Assume ti is an {Ft}-stopping time for some i ≥ 0, i.e. {ti ≤ t} ∈ Ft for any

t ≥ 0. Note that Yi+1 is Fti-measurable, because the choice of ∆ti+1 is dependent

on Yi+1 we have that ∆ti+1 is Fti-measurable. Then we need to show ti+1 =

ti + ∆ti+1 is an {Ft}-stopping time, that is to show {ti + ∆ti+1 ≤ t} ∈ Ft for

any t ≥ 0. For any rational number s ∈ [0, t], we have {ti ≤ s} ∈ Fs ⊆ Ft, and

{∆ti+1 ≤ t− s} ∈ Fti ⊆ F . Thus we have {ti ≤ s} ∩ {∆ti+1 ≤ t− s} ∈ Ft (see for

example (Mao, 2008)). As the set of all rational number s ∈ [0, t] is a countable

set, we have that for any t ≥ 0 (Gihman & Skorohod, 1974)

{ti + ∆ti+1 ≤ t} =
⋃

{0≤s≤t,s∈Q}

({ti ≤ s} ∩ {∆ti+1 ≤ t− s}) ∈ Ft.

Thus we have proved that ti+1 is an {Ft}-stopping time. Since ∆t0 is dependent

on the given initial value Y0, we have ∆t0 and Y0 are Ft−1-measurable (recalling

t−1 = 0). By induction we conclude that ti is an {Ft}-stopping time for each

i = 0, 1, ....

5.4 Examples

We first consider a scalar SDE

dx(t) = (−x3(t)− x(t))dt+ x2(t)dB(t) (5.14)

with a given initial value x(0) = 1. It is easy to verify that for any x ∈ R and

x 6= 0

−z(x) := 2〈x, f(x)〉+ g2(x) = −2x2 − x4 < 0.

It is clear that z(x) = 0 ⇔ x = 0, by Theorem 5.2.1 we have the solution of the

underlying SDE is asymptotically almost surely stable. Moreover,

lim inf
|x|→0

z(x)

|f(x)|2
= lim inf

|x|→0

2x2 + x4

x2 + 2x4 + x6
= 2 > 0.

Choose the step size, for example ∆ti = 0.98z(Yi)/|f(Yi)|2 in each step, from

Theorem 5.3.2 we obtain the variable step size EM solution is asymptotically
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almost surely stable as well. Set Y0 = 1, we simulated 1000 time steps of one path

of the variable step size EM solution. The left plot on Figure 5.1 is the solution

path, from which we can see that the oscillation decays and the solution tends

zero as time increases. This is in line with the theoretical result. The plot on the

right of Figure 5.1 is the size of each time step. It is clear that with the solution

approaching the origin the step size tends to 1.96 and this is due to the limit 2

and the choice of factor 0.98. In addition, the plot also shows that the step size

does not need to tend to zero, thus we have
∑∞

i=0 ∆ti =∞ a.s.
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Figure 5.1: Left: One simulation path, Right: The step size of each time step

Now we consider a two-dimensional case

dx(t) = diag(x1(t), x2(t)) ((b+ Adiag(x1(t), x2(t))x(t)) dt+ σdB(t)) , (5.15)

where diag(x1(t), x2(t)) denotes diagonal matrix with nonzero entries x1(t) and
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x2(t) on the diagonal, x(t) = (x1(t), x2(t))T , b = (b1, b2)T , A = (aij)i,j∈{1,2}, σ =

(σij)i,j∈{1,2} and B(t) = (B1(t), B2(t))T .

We set b = (−1,−2)T , a11 = a22 = −1, a12 = −2, a21 = 1, σ11 = σ12 =

0.5, σ21 = 1, σ22 = −1. It is easy to verify that for any x ∈ R2 and x 6= 0

2〈x, f(x)〉+ g2(x)

= (2b1 + σ2
11 + σ2

12)x2
1 + (2b2 + σ2

21 + σ2
22)x2

2 + (a12 + a21)x2
1x

2
2 + a11x

4
1 + a22x

4
2 < 0.

From Theorem 5.2.1, we know the SDE solution is almost surely stable. In addi-

tion, by the elementary inequality ab ≤ a2 + b2 we have

lim inf
|x|→0

z(x)

|f(x)|2

= lim inf
|x|→0

1.5x2
1 + 2x2

2 + x2
1x

2
2 + x4

1 + x4
2

x2
1 + 2x4

1 + x6
1 + 2x2

1x
4
2 + 5x4

1x
2
2 + 4x2

2 + 4x4
2 + x6

2

≥ lim inf
|x|→0

|x|2

4|x|2 + 6.5|x|4 + |x|6 + 2.5|x|8

=
1

4
> 0.

By choosing the step size, for example ∆ti = 0.1z(Yi)/|f(Yi)|2 in each step, we

have from Theorem 5.3.1 that the variable step size EM solution is almost surely

stable as well.

We simulated 10000 time steps and plotted the two solution paths on the left

of Figure 5.2. It can be seen that as time increases both the solutions tend to zero.

And from the plot on the right of Figure 5.2 the size of the time step approaches to

0.025 as the solutions go to zeros, which shows the step size will not tend to zero.

Hence both the simulations of the one-dimensional and the multi-dimensional cases

are in line with the theoretical result.

5.5 Other Sufficient Conditions

In this section, we propose some other sufficient conditions which can cover some

SDEs that are not included in Section 5.3.
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Figure 5.2: Left: One simulation path of Y1,· and Y2,·, Right: The step size of each

time step.

A slightly better condition than (5.3) is to assume there exists a symmetric

positive-definite n× n matrix Q such that for ∀x ∈ Rn

−z̄(x) := 2xTQf(x) + trace(gT (x)Qg(x)) ≤ 0. (5.16)

Thanks to the stochastic version of the LaSalle theorem in (Shen et al., 2006), we

have that the underlying solution of (5.1) is almost surely asymptotically stable if

(5.2) and (5.16) hold, and z̄(x) = 0 if and only if x = 0. In addition, it is obvious

that given the condition that z̄(x) = 0 if and only if x = 0 the results in Lemma

5.2.2 still hold for f(x) and g(x). Denote the smallest and largest eigenvalue of Q

by λmin(Q) and λmax(Q) respectively. Now we are ready to present the following

theorem.
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Theorem 5.5.1 Let (5.2) and (5.16) hold. Assume z̄(x) = 0 if and only if x = 0,

and

lim inf
|x|→0

z̄(x)

|f(x)|2
> 0.

For the EM method with variable step size (5.5), ∆ti is chosen to be rational

number satisfying ∆ti = αz̄(Yi)/(λmax(Q)|f(Yi)|2) with α ∈ (0, 1) for |Yi| 6= 0,

and any nonzero rational number for |Yi| = 0. Then ti is an {Ft}-stopping time

for each i = 0, 1, 2..., and the sequence of time steps obeys
∑∞

i=0 ∆ti = ∞ a.s.

Moreover, for any initial value Y0 ∈ Rn

lim
i→∞

Yi = 0 a.s.

Proof. Since Q is a symmetric positive-definite n× n matrix, it is clear that for

any i ≥ 0

λmin(Q)|Yi|2 ≤ Y T
i QYi ≤ λmax(Q)|Yi|2

and

λmin(Q)|f(Yi)|2 ≤ fT (Yi)Qf(Yi) ≤ λmax(Q)|f(Yi)|2.

From (5.5) we have

Y T
i+1QYi+1 = Y T

i QYi+∆ti[2Y
T
i Qf(Yi)+trace(g

T (Yi)Qg(Yi))+f
T (Yi)Qf(Yi)∆ti]+∆mi,

where

∆mi = 2Y T
i Qg(Yi)∆Bi + 2fT (Yi)Qg(Yi)∆Bi

+(g(Yi)∆Bi)
TQ(g(Yi)∆Bi)− trace(gT (Yi)Qg(Yi))∆ti.

Then the proof can be completed by adapting the same procedure used in Theorem

5.3.1.

We see condition (5.16) as a generalisation of (5.3) as we can recover (5.3) by

choosing Q to be identity matrix in (5.16).

To keep the notations simple in the next theorem, we investigate the SDEs

with the scalar Brownian motion

dx(t) = f(x(t))dt+ g(x(t))dB(t), x(0) ∈ Rn,
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where f : Rn → Rn, g: Rn → Rn and B(t) is a scalar Brownian motion. We

still assume condition (5.2), but replace condition (5.3) by the following condition:

there exists a constant p ∈ (0, 2) such that

−v := sup
x∈Rn,x 6=0

(
2〈x, f(x)〉+ |g(x)|2

|x|2
+ (p− 2)

〈x, g(x)〉2

|x|4

)
< 0. (5.17)

Also we assume f(0) = 0 and g(0) = 0.

Under (5.2) and (5.17), the true solution of SDE (5.1) is almost surely asymp-

totically stable (Shen et al., 2006). Now we study the numerical solution.

Theorem 5.5.2 Let (5.2) and (5.17) hold. Assume

lim sup
|x|→0

|f(x)|
|x|

<∞, (5.18)

and

lim sup
|x|→0

|g(x)|
|x|

<∞. (5.19)

Define the EM method with variable step size as

Yi+1 = Yi + f(Yi)∆ti + g(Yi)∆Bi, Y0 = x(0), i ≥ 0, (5.20)

where ∆Bi = B(ti)−B(ti−1) with ti =
∑i

k=0 ∆tk for i = 0, 1, 2... and t−1 = 0.

For Yi 6= 0, ∆ti is chosen to be rational number satisfying ∆ti ≤ (p/12)×

min{j=1,2,3,4,5}{(v/Aj(Yi))(1/j)}, where {Aj}j=1,2,3,4,5 are defined in the proof. For

Yi = 0, ∆ti is chosen to be any nonzero rational number. Then ti is an {Ft}-

stopping time for each i = 0, 1, 2..., and the sequence of time steps obeys
∑∞

i=0 ∆ti =

∞ a.s. Moreover, for any initial value Y0 ∈ Rn

lim
i→∞

Yi = 0 a.s.

Proof. From the first line of (5.6), we have that for the p given in (5.17) and

Yi 6= 0

|Yi+1|p = |Yi|p
(

1 +
2〈Yi, f(Yi)∆ti + g(Yi)∆Bi〉+ |f(Yi)∆ti + g(Yi)∆Bi|2

|Yi|2

)p/2

.
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When Yi = 0 (i.e. f(Yi) = 0 and g(Yi) = 0) for some i > 0, due to the iteration

(5.20) the solution will stay at zero afterwards. In this case ∆ti could be set to be

any nonzero rational number. In the following we focus on the case that Yi 6= 0

for all i ≥ 0. Let

ζ =
2〈Yi, f(Yi)∆ti + g(Yi)∆Bi〉+ |f(Yi)∆ti + g(Yi)∆Bi|2

|Yi|2
,

and by the fundamental inequality that for any ζ ≥ −1

(1 + ζ)p/2 ≤ 1 +
p

2
ζ +

p(p− 2)

8
ζ2 +

p(p− 2)(p− 4)

23 × 3!
ζ3,

we have

|Yi+1|p ≤ |Yi|p
(

1 +
p

2
ζ +

p(p− 2)

8
ζ2 +

p(p− 2)(p− 4)

23 × 3!
ζ3

)
. (5.21)

We compute

ζ =
1

|Yi|2
(∆ti(2〈Yi, f(Yi)〉+ |g(Yi)|2) + ∆t2i |f(Yi)|2

+2〈Yi, g(Yi)〉∆Bi + 2fT (Yi)g(Yi)∆ti∆Bi + |g(Yi)|2(∆B2
i −∆ti)),

ζ2 =

1

|Yi|4
(∆ti(4〈Yi, g(Yi)〉2)

+∆t2i (4〈Yi, f(Yi)〉2 + |g(Yi)|4 + 4〈Yi, f(Yi)〉|g(Yi)|2 + 8〈Yi, g(Yi)〉fT (Yi)g(Yi))

+∆t3i (6|f(Yi)|2|g(Yi)|2 + 4〈Yi, f(Yi)〉|f(Yi)|2) + ∆t4i |f(Yi)|4

+4〈Yi, g(Yi)〉2(∆B2
i −∆ti) + |g(Yi)|4(∆B4

i −∆t2i ) + 4〈Yi, f(Yi)〉|g(Yi)|2∆ti(∆B
2
i −∆ti)

+8〈Yi, g(Yi)〉fT (Yi)g(Yi)∆ti(∆B
2
i −∆ti) + 6|f(Yi)|2|g(Yi)|2∆t2i (∆B

2
i −∆ti)

+8〈Yi, f(Yi)〉〈Yi, g(Yi)〉∆ti∆Bi + 4|f(Yi)|2fT (Yi)g(Yi)∆t
3
i∆Bi

+4fT (Yi)g(Yi)|g(Yi)|2∆ti∆B
3
i

+8〈Yi, f(Yi)〉fT (Yi)g(Yi)∆t
2
i∆Bi + 4〈Yi, g(Yi)〉|f(Yi)|2∆t2i∆Bi + 4〈Yi, g(Yi)〉|g(Yi)|2∆B3

i ),
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and

ζ3 =

1

|Yi|6
(∆t2i (24〈Yi, f(Yi)〉〈Yi, g(Yi)〉2 + 12〈Yi, g(Yi)〉2|g(Yi)|2)

+∆t3i (8〈Yi, f(Yi)〉3 + 12〈Yi, f(Yi)〉2|g(Yi)|2 + 48〈Yi, f(Yi)〉〈Yi, g(Yi)〉fT (Yi)g(Yi)

+12〈Yi, g(Yi)〉2|f(Yi)|2 + 6〈Yi, f(Yi)〉|g(Yi)|4 + |g(Yi)|6 + 24〈Yi, g(Yi)〉|f(Yi)||g(Yi)|3)

+∆t4i (12〈Yi, f(Yi)〉2|f(Yi)|2 + 36〈Yi, f(Yi)〉|f(Yi)|2|g(Yi)|2 + 15|f(Yi)|2|g(Yi)|4

+24〈Yi, g(Yi)〉|f(Yi)|3|g(Yi)|)

+∆t5i (6〈Yi, f(Yi)〉|f(Yi)|4 + 15|f(Yi)|4|g(Yi)|2)

+∆t6i (|f(Yi)|6)

+24〈Yi, f(Yi)〉2〈Yi, g(Yi)〉∆t2i∆Bi + 24〈Yi, f(Yi)〉〈Yi, g(Yi)〉2∆ti(∆B
2
i −∆ti)

+8〈Yi, g(Yi)〉3∆B3
i + 24〈Yi, f(Yi)〉2fT (Yi)g(Yi)∆t

3
i∆Bi

+12〈Yi, f(Yi)〉2|g(Yi)|2∆t2i (∆B
2
i −∆ti)

+24〈Yi, f(Yi)〉〈Yi, g(Yi)〉|f(Yi)|2∆t3i∆Bi

+48〈Yi, f(Yi)〉〈Yi, g(Yi)〉fT (Yi)g(Yi)∆t
2
i (∆B

2
i −∆ti)

+24〈Yi, f(Yi)〉〈Yi, g(Yi)〉|g(Yi)|2∆ti∆B
3
i + 12〈Yi, g(Yi)〉2|f(Yi)|2∆t2i (∆B

2
i −∆ti)

+24〈Yi, g(Yi)〉2fT (Yi)g(Yi)∆ti∆B
3
i + 12〈Yi, g(Yi)〉2|g(Yi)|2(∆B4

i −∆t2i )

+24〈Yi, f(Yi)〉|f(Yi)|2fT (Yi)g(Yi)∆t
4
i∆Bi + 36〈Yi, f(Yi)〉|f(Yi)|2|g(Yi)|2∆t3i (∆B

2
i −∆ti)

+24〈Yi, f(Yi)〉fT (Yi)g(Yi)|g(Yi)|2∆t2i∆B
3
i + 6〈Yi, f(Yi)〉|g(Yi)|4∆ti(∆B

4
i −∆t2i )

+6|f(Yi)|4fT (Yi)g(Yi)∆t
5
i∆Bi + 15|f(Yi)|4|g(Yi)|2∆t4i (∆B

2
i −∆ti)

+20|f(Yi)|2fT (Yi)g(Yi)|g(Yi)|2∆t3i∆B
3
i

+15|f(Yi)|2|g(Yi)|4∆t2i (∆B
4
i −∆t2i ) + 6fT (Yi)g(Yi)|g(Yi)|4∆ti∆B

5
i + |g(Yi)|6(∆B6

i −∆t3i )

+6〈Yi, g(Yi)〉|f(Yi)|4∆t4i∆Bi + 24〈Yi, g(Yi)〉|f(Yi)|3|g(Yi)|∆t3i (∆B2
i −∆ti)

+36〈Yi, g(Yi)〉|f(Yi)|2|g(Yi)|2∆t2i∆B
3
i + 24〈Yi, g(Yi)〉|f(Yi)||g(Yi)|3∆ti(∆B

4
i −∆t2i )

+6〈Yi, g(Yi)〉|g(Yi)|4∆B5
i ).
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Then we can rearrange (5.21) into

|Yi+1|p ≤ |Yi|p − |Yi|p∆tiU1(∆ti, Yi) + ∆mi, (5.22)

where

−U1(∆ti, Yi) :=

p

2

(
2〈Yi, f(Yi)〉+ |g(Yi)|2

|Yi|2
+
p− 2

4

4〈Yi, g(Yi)〉2

|Yi|4

)
+ ∆ti

(
p

2

|f(Yi)|2

|Yi|2

+
p(p− 2)

8

4〈Yi, f(Yi)〉2 + |g(Yi)|4 + 4〈Yi, f(Yi)〉|g(Yi)|2 + 8〈Yi, g(Yi)〉fT (Yi)g(Yi)

|Yi|4

+
p(p− 2)(p− 4)

23 × 3!

24〈Yi, f(Yi)〉〈Yi, g(Yi)〉2 + 12〈Yi, g(Yi)〉2|g(Yi)|2

|Yi|6

)
+ ∆t2i

(
p(p− 2)

8

6|f(Yi)|2|g(Yi)|2 + 4〈Yi, f(Yi)〉|f(Yi)|2

|Yi|4
+
p(p− 2)(p− 4)

23 × 3!
×(

8〈Yi, f(Yi)〉3 + 12〈Yi, f(Yi)〉2|g(Yi)|2 + 48〈Yi, f(Yi)〉〈Yi, g(Yi)〉fT (Yi)g(Yi)

|Yi|6

+
12〈Yi, g(Yi)〉2|f(Yi)|2 + 6〈Yi, f(Yi)〉|g(Yi)|4 + |g(Yi)|6 + 24〈Yi, g(Yi)〉|f(Yi)||g(Yi)|3

|Yi|6

))
+ ∆t3i

(
p(p− 2)

8

|f(Yi)|4

|Yi|4
+
p(p− 2)(p− 4)

23 × 3!
×
(

12〈Yi, f(Yi)〉2|f(Yi)|2

|Yi|6

+
36〈Yi, f(Yi)〉|f(Yi)|2|g(Yi)|2 + 15|f(Yi)|2|g(Yi)|4 + 24〈Yi, g(Yi)〉|f(Yi)|3|g(Yi)|

|Yi|6

))
+ ∆t4i

(
p(p− 2)(p− 4)

23 × 3!

6〈Yi, f(Yi)〉|f(Yi)|4 + 15|f(Yi)|4|g(Yi)|2

|Yi|6

)
+ ∆t5i

(
p(p− 2)(p− 4)

23 × 3!

|f(Yi)|6

|Yi|6

)
,
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and

∆mi =

|Yi|p(
1

|Yi|2
(2〈Yi, g(Yi)〉∆Bi + 2fT (Yi)g(Yi)∆ti∆Bi + |g(Yi)|2(∆B2

i −∆ti))

+
1

|Yi|4
(4〈Yi, g(Yi)〉2(∆B2

i −∆ti)

+|g(Yi)|4(∆B4
i −∆t2i ) + 4〈Yi, f(Yi)〉|g(Yi)|2∆ti(∆B

2
i −∆ti)

+8〈Yi, g(Yi)〉fT (Yi)g(Yi)∆ti(∆B
2
i −∆ti) + 6|f(Yi)|2|g(Yi)|2∆t2i (∆B

2
i −∆ti)

+8〈Yi, f(Yi)〉〈Yi, g(Yi)〉∆ti∆Bi + 4|f(Yi)|2fT (Yi)g(Yi)∆t
3
i∆Bi

+4fT (Yi)g(Yi)|g(Yi)|2∆ti∆B
3
i

+8〈Yi, f(Yi)〉fT (Yi)g(Yi)∆t
2
i∆Bi + 4〈Yi, g(Yi)〉|f(Yi)|2∆t2i∆Bi + 4〈Yi, g(Yi)〉|g(Yi)|2∆B3

i )

+
1

|Yi|6
(24〈Yi, f(Yi)〉2〈Yi, g(Yi)〉∆t2i∆Bi + 24〈Yi, f(Yi)〉〈Yi, g(Yi)〉2∆ti(∆B

2
i −∆ti)

+8〈Yi, g(Yi)〉3∆B3
i + 24〈Yi, f(Yi)〉2fT (Yi)g(Yi)∆t

3
i∆Bi

+12〈Yi, f(Yi)〉2|g(Yi)|2∆t2i (∆B
2
i −∆ti)

+24〈Yi, f(Yi)〉〈Yi, g(Yi)〉|f(Yi)|2∆t3i∆Bi

+48〈Yi, f(Yi)〉〈Yi, g(Yi)〉fT (Yi)g(Yi)∆t
2
i (∆B

2
i −∆ti)

+24〈Yi, f(Yi)〉〈Yi, g(Yi)〉|g(Yi)|2∆ti∆B
3
i + 12〈Yi, g(Yi)〉2|f(Yi)|2∆t2i (∆B

2
i −∆ti)

+24〈Yi, g(Yi)〉2fT (Yi)g(Yi)∆ti∆B
3
i + 12〈Yi, g(Yi)〉2|g(Yi)|2(∆B4

i −∆t2i )

+24〈Yi, f(Yi)〉|f(Yi)|2fT (Yi)g(Yi)∆t
4
i∆Bi + 36〈Yi, f(Yi)〉|f(Yi)|2|g(Yi)|2∆t3i (∆B

2
i −∆ti)

+24〈Yi, f(Yi)〉fT (Yi)g(Yi)|g(Yi)|2∆t2i∆B
3
i + 6〈Yi, f(Yi)〉|g(Yi)|4∆ti(∆B

4
i −∆t2i )

+6|f(Yi)|4fT (Yi)g(Yi)∆t
5
i∆Bi + 15|f(Yi)|4|g(Yi)|2∆t4i (∆B

2
i −∆ti)

+20|f(Yi)|2fT (Yi)g(Yi)|g(Yi)|2∆t3i∆B
3
i

+15|f(Yi)|2|g(Yi)|4∆t2i (∆B
4
i −∆t2i ) + 6fT (Yi)g(Yi)|g(Yi)|4∆ti∆B

5
i + |g(Yi)|6(∆B6

i −∆t3i )

+6〈Yi, g(Yi)〉|f(Yi)|4∆t4i∆Bi + 24〈Yi, g(Yi)〉|f(Yi)|3|g(Yi)|∆t3i (∆B2
i −∆ti)

+36〈Yi, g(Yi)〉|f(Yi)|2|g(Yi)|2∆t2i∆B
3
i + 24〈Yi, g(Yi)〉|f(Yi)||g(Yi)|3∆ti(∆B

4
i −∆t2i )

+6〈Yi, g(Yi)〉|g(Yi)|4∆B5
i )).

In each step, we need to choose ∆ti such that U1(∆ti, Yi) < 0. To do this, we
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could choose ∆ti such that

−U2(∆ti, Yi) := −p
2
v+A1(Yi)∆ti+A2(Yi)∆t

2
i+A3(Yi)∆t

3
i+A4(Yi)∆t

4
i+A5(Yi)∆t

5
i < 0,

where

A1(Yi) =
p

2

|f(Yi)|2

|Yi|2
+
p(2− p)

8

4|Yi||g(Yi)|3 + 8|Yi||f(Yi)|2|g(Yi)|
|Yi|4

+
p(p− 2)(p− 4)

23 × 3!

24|Yi|3|f(Yi)||g(Yi)|2 + 12|Yi|2|g(Yi)|4

|Yi|6
,

A2(Yi) =
p(2− p)

8

4|Yi||f(Yi)|3

|Yi|4
+
p(p− 2)(p− 4)

23 × 3!
×(

8|Yi|3|f(Yi)|3 + 12|Yi|2|f(Yi)|2|g(Yi)|2 + 48|Yi|2|f(Yi)|2|g(Yi)|2

|Yi|6

+
12|Yi|2|f(Yi)|2|g(Yi)|2 + 6|Yi||f(Yi)||g(Yi)|4 + |g(Yi)|6 + 24|Yi||f(Yi)||g(Yi)|4

|Yi|6

)
,

A3(Yi) =
p(p− 2)(p− 4)

23 × 3!
×

12|Yi|2|f(Yi)|4 + 36|Yi||f(Yi)|3|g(Yi)|2 + 15|f(Yi)|2|g(Yi)|4 + 24|Yi|f(Yi)|3|g(Yi)|2

|Yi|6
,

A4(Yi) =
p(p− 2)(p− 4)

23 × 3!

6|Yi||f(Yi)|5 + 15|f(Yi)|4|g(Yi)|2

|Yi|6
,

and

A5(Yi) =
p(p− 2)(p− 4)

23 × 3!

|f(Yi)|6

|Yi|6
.

By the elementary inequality 〈a, b〉 ≤ |a||b|, it is clear that−U1(∆ti, Yi) < −U2(∆ti, Yi)

a.s. We choose rational number ∆ti such that

∆ti ≤
p

12
min

{Aj(Yi)6=0,j=1,2,3,4,5}
{(v/Aj(Yi))(1/j)}.

Apply the same techniques used in Theorem 5.3.1, we can prove that ti is an

{Ft}-stopping time for each i = 0, 1, ... and {mi =
∑i

k=0 ∆mk}i≥0 is a Gi-local

martingale. Now from (5.22), we have

|Yi+1|p ≤ |Y0|p −
i∑

k=0

∆tk|Yk|pU1(∆tk, Yk) +mi.
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By Lemma 5.2.3, we conclude

lim
i→∞
|Yi|p <∞ a.s. and

i∑
k=0

∆tk|Yk|pU1(∆tk, Yk) <∞ a.s.

Hence we have limi→∞∆ti|Yi|pU1(∆ti, Yi) = 0 a.s. For almost all ω ∈ Ω, there

exists C(ω) ∈ R+ such that limi→∞ |Yi(ω)| = C(ω). Fix any such ω, write C(ω) =

C and Yi(ω) = Yi. Due to the choice of ∆ti, we have U1 > pv/12 > 0. Since

(5.18) and (5.19), applying the same techniques employed in Theorem 5.3.1 we

have lim infi→∞ v/Aj(Yi) > 0 for each j = 1, 2, 3, 4, 5. That is to say there is no

requirement that ∆ti vanishes as i increases, thus
∑∞

i=0 ∆ti = ∞ a.s. Hence we

can only have limi→∞ |Yi|p = 0. The proof is complete.

Because of the extra negative term in the condition (5.17), 2〈x, f(x)〉 + |g(x)|2 is

not necessarily less than 0 for all nonzero x. Therefore Theorem 5.5.2 does cover

some SDEs that can not be covered by Theorem 5.3.1. But it should be noted

that Theorem 5.3.1 is not fully included in Theorem 5.5.2. For example a scalar

SDE with f(x) = −0.5x3 − x5 and g(x) = x2. We check the conditions (5.3) and

(5.4) that for any x ∈ Rn with x 6= 0

2〈x, f(x)〉+ g2(x) = −2x6 < 0 and lim inf
|x|→0

z(x)

|f(x)|2
=

2

0.25
> 0,

i.e. all the conditions in Theorem 5.3.1 hold. To check the condition (5.17) in

Theorem 5.5.2, we have

2〈x, f(x)〉+ |g(x)|2

|x|2
+ (p− 2)

〈x, g(x)〉2

|x|4
= −x4 + (p− 2)x2.

But for any p ∈ (0, 2), we can not find a v > 0 to satisfy (5.17).

5.6 Conclusions and Future Research

In this chapter, we investigate the Euler–Maruyama method with random variable

step size and successfully reproduce the almost sure stability of the true solution

using this method with the semimartingale convergence theory. Conditions we
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impose on the drift and diffusion coefficients for the random variable step size

method are much weaker than those for the fixed or nonrandom variable step size

methods. Our key contribution also goes to the proof that the time variable is a

stopping time, and only when this is true the rest of our proof is proper.

Considering that the random variable step size method works well for the sta-

bility, it is interesting to investigate other asymptotic properties of this method.

Other numerical methods with random variable step size, such as the stochastic

θ-method, are also worth to investigate.



Chapter 6

Strong Convergence of the

Stopped Euler Method

6.1 Introduction

We have enjoyed the benefit brought by modifying the classical EM method in last

chapter and this chapter sees an alternative modification. The current chapter is

devoted to another important aspect of numerical analysis for SDEs, finite time

strong convergence.

The convergence of numerical methods for stochastic differential equations

(SDEs) has been broadly studied. Since the classical explicit Euler-Maruyama

(EM) method has its simple algebraic structure, cheap computational cost and

acceptable convergence rate under the global Lipschitz condition, its has been at-

tracting lots of attention (Higham, 2011). Under the global Lipschitz condition,

the convergence of the classical EM method is well established (see (Kloeden &

Platen, 1992; Milstein & Tretyakov, 2004)). However, most SDE models in real

life do not obey the global Lipschitz condition. In (Higham et al., 2002), the au-

thors studied the SDEs without global Lipschitz condition, and proved the strong

convergence of the classical EM method under the assumption of pth moment

boundedness of both true solution and numerical solution to the underlying SDE.

92
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However, the authors in (Higham et al., 2002) pointed out that in general, it is

not clear when such moment bounds can be expected to hold for the EM method

even when both drift coefficient and the diffusion coefficient are C1 (unbounded

derivatives of course). More recently, the authors in (Hutzenthaler et al., 2011)

answered the question negatively by proving that the explicit EM methods will

diverge in finite time for those SDEs with either the drift coefficient or the diffu-

sion coefficient being superlinear. The same group of authors then developed an

explicit method to approximate SDEs with one-sided Lipschitz drift coefficient and

the linear growth diffusion coefficient in (Hutzenthaler et al., 2012). The method

is called the tamed EM method, and to the best our knowledge it is the first ex-

plicit method to converge strongly to that type of SDEs. In (Wang & Gan, 2012),

the authors used similar idea and constructed a higher order method, the tamed

Milstein method.

Implicit methods are widely discussed as well. We refer here to the papers

(Burrage & Tian, 2002; Higham et al., 2002; Hu, 1996; Klauder & Petersen, 1985;

Milstein et al., 1998; Saito & Mitsui, 1993) and the book (Kloeden & Platen,

1992). Compare with the explicit methods, the implicit methods are better at

tackling the nonlinear SDEs but are computationally expensive. Methods with

variable step size also attract a lot of attention (Burrage & Burrage, 2002; Müller-

Gronbach, 2002; Valinejad & Hosseini, 2010; Römisch & Winkler, 2006). Other

weak forms of convergence, say weak convergence, convergence in probability and

pathwise convergence, are discussed in (Anderson & Mattingly, 2011; Gyöngy,

1998; Jentzen et al., 2009; Kloeden & Platen, 1992; Mao, 2011; Marion et al.,

2002; Milstein & Tretyakov, 2005; Wu et al., 2008), just to mention a few.

We propose a new Euler-type method in this chapter and study the strong

convergence of that method for one-dimensional SDEs in the form of

dx(t) = f(x(t))dt+ g(x(t))dB(t), x(0) = x0 > 0, (6.1)

where B(t) be a scalar Brownian motion. We assume that f(x(t)) can be decom-
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posed into two parts denoted by f(x(t)) = h1(x(t)) − h2(x(t)). Denote max(a, b)

and min(a.b) by a ∨ b and a ∧ b respectively. We impose several conditions on the

drift and diffusion coefficients in the following.

For h1(x) and g(x), we require them to satisfy the global Lipschitz condition, i.e.

for ∀x, y ∈ R there exists a constant K1 ∈ R+ such that

|h1(x)− h1(y)|2 ∨ |g(x)− g(y)|2 ≤ K1|x− y|2. (6.2)

For h2(x), we need h2(x) ≥ 0 for all x > 0, and the polynomial growth condition,

i.e. for ∀x, y ∈ R, there exist constants K2 ∈ R+ and a ∈ Z+ such that

|h2(x)− h2(y)|2 ≤ K2(1 + |x|a + |y|a)|x− y|2. (6.3)

Also for f(x) = h1(x) − h2(x), we assume for all x, y ≥ 0 there exists a constant

K3 such that

(x− y)[f(x)− f(y)] ≤ K3|x− y|2. (6.4)

With further assuming h1(0) = h2(0) = g(0) = 0, we see that for ∀x ∈ R

|h1(x)|2 ∨ |g(x)|2 ≤ K1|x|2, (6.5)

and for some constant a > 0

|h2(x)|2 ≤ K2(1 + |x|a+2). (6.6)

There are many models satisfying those conditions. For example by choosing

h1(x(t)) = bx(t), h2(x(t)) = ax2(t) and g(x(t)) = σx(t), we recover the stochastic

Lotka-Volterra model (see for example, Chapter 11 of (Mao, 2008)). Also when

h1(x(t)) = 0.5σ2x(t), h2(x(t)) = x3(t) and g(x(t)) = σx(t) we get the stochastic

Ginzburg-Landau equation (Ginzurg & Landau, 1950). Due to requirement of the

nonnegativity of the solution for biological models and financial models, numerical

solutions to these models need to be nonnegative as well.

For a given fixed time step ∆t and the initial value X0 = x(0), the classic EM

method for (6.1) is defined by

Xi+1 = Xi + (h1(Xi)− h2(Xi))∆t+ g(Xi)∆Bi, i = 0, 1, 2, · · · , (6.7)



Chapter 6: The Stopped EM Method 95

where ∆Bi = B(ti+1) − B(ti) is a Brownian motion increment and ti = i∆t. In

our analysis it will be more natural to work with the continuous version

X(t) = X0 +

∫ t

0

[h1(X̄(s))− h2(X̄(s))]ds+

∫ t

0

g(X̄(s))dB(s), (6.8)

where X̄(t) is defined by

X̄(t) = Xi for t ∈ [ti, ti+1).

The existing known results have only so far shown that the classic EM solutions

converge to the true solution in probability (Mao, 2011; Marion et al., 2002). Since

the drift coefficient of (6.1) does not satisfy the linear growth condition, the theory

established in (Higham et al., 2002) is not applicable. Besides, as f(x) satisfies the

one-sided Lipschitz condition only for nonnegative x, the result of the tamed Euler

method in (Hutzenthaler et al., 2012) may not be applicable either. Moreover, the

drift coefficient is in fact superlinear. Thus, according to the recent theory in

(Hutzenthaler et al., 2011), the classical EM method (6.7) will diverge in L2 sense

in finite time from the true solution of (6.1). All of these known results strongly

indicate that the classical EM method is not good enough for the underlying SDE

(6.1). However, the classical EM method has its great advantage due to its simple

algebraic structure and cheap computational cost. The question is:

• Can we modify the classical EM method so that not only the modified

method will preserve the simple algebraic structure and cheap computational

cost of the classical EM method but also the approximate solutions based on

the modified method will converge to the true solution in the strong sense

(namely in L2)?

To tackle this problem, we introduce a stopped EM method in this chapter. Firstly,

the classical EM method (6.8) equipped with a stopping time is considered. Define

the stopping time

ρ = inf {t ≥ 0 : X(t) ≤ 0} ,
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where throughout this chapter we set inf ∅ = ∞ (as usual ∅ denotes the empty

set). It should be noted that the stopping time, ρ, depends on the continuous

version of the approximate solution. Then the continuous approximate solution of

the stopped EM method is defined by

X∆(t) = X(t ∧ ρ), t ≥ 0, (6.9)

while the corresponding discrete one is defined by

X̄∆(t) = X̄(t ∧ ρ), t ≥ 0. (6.10)

There are two benefits from the technique of stopping time. Firstly, the stopping

time can guarantee the non-negativity of the numerical solution, i.e. X∆(t) ≥ 0 for

all t ≥ 0 almost surely. It is easy to see from (6.7) that the classical EM numerical

solution could become negative due to the random effect of the Brownian motion.

However, from Theorem 6.2.1 in Section 6.2 we can see that the underlying SDE

solution is always positive. Hence, numerical methods that can preserve non-

negativity are more desired. Next, and more importantly, both continuous and

approximate solutions of the stopped EM method converge strongly to the true

solution of the underlying SDE (6.1). We should mention that the preservation of

non-negativity has been discussed in e.g. (Appleby et al., 2010; Berkaoui et al.,

2008; Deelstra & Delbaen, 1998), and the technique of stopping time has widely

been used to control diffusion processes (see e.g. (Gobet & Menozzi, 2004; Gobet

& Menozzi, 2010)). We also mention the classical projection scheme that prevents

the numerical solution from escaping from a closed domain (Pettersson, 2000) and

its application on simulating reflected SDEs (Dangerfield et al., 2012).

It should emphasized that the stopping time ρ functions on the continuous

version of the method (6.8) which requires the whole Brownian path. However, in

practice when we implement the stopped EM method in computer simulation we

actually use a finite number of points of a Brownian path, thus a different stopping

time which functions on the discrete version of the method X̄(t) is introduced and
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defined by

ρ̄ = inf
{
t ≥ 0 : X̄(t) ≤ 0

}
.

It is clear that ρ ≤ ρ̄ a.s. We denote the discrete version of the method with

this stopping time by X̄∗∆(t) = X̄(t ∧ ρ̄). Our main result, Theorem 6.3.6, shows

that X̄∗∆(t) converges strongly to the true solution of the SDE (6.1) with a order

arbitrarily close to a half. It should be emphasized that most of the existing results

are about the strong convergence of the continuous version of the approximate

solution, but in this chapter the main result is about the strong convergence of the

discrete version of the approximate solution. It can be seen in Section 6.3 that,

compared with the continuous version, to deal with the discrete version needs much

more mathematical techniques for the stopped EM method.

This chapter is organized in the following way. In section 6.2, the positivity

and the pth moment boundedness of the true solution to the underlying SDE will

be discussed. The properties of our stopped EM method will be studied in detail

in section 6.3, where several useful lemmas as well as our main results will be

established. Section 6.4 presents the numerical simulations to demonstrate the

convergence of our stopped EM method.

6.2 Properties of the Underlying SDE

Throughout this chapter, let (Ω,F ,P) be a complete probability space with a

filtration {Ft}t≥0 satisfying the usual conditions (that is, it is right continuous

and increasing while F0 contains all P-null sets), and E denotes the expectation

corresponding to P. Let B(t) be a scalar Brownian motion defined on the space.

Define the σ-algebra generated by y(t) by σ(y(t)) and we denote the conditional

expectation by Et,y(t)(·) = E(·|σ(y(t))).

We state some known results about the underlying SDE solution that will be

used in the proofs in next section.
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Theorem 6.2.1 Assume h1(0) = h2(0) = g(0) = 0 and, (6.2) and (6.4) hold, for

any given initial value x(0) > 0, there exists a unique positive global solution x(t)

to the SDE (6.1) on t ≥ 0.

This is because the Feller’s boundary classification assures the boundary 0 not

accessible and the drift coefficient satisfies the one-sided Lipschitz condition (see

for example, Theorem 2.3.6 and Lemma 4.3.2 in (Mao, 2008)).

Lemma 6.2.2 Given x0 > 0, for each p > 2 and T > 0 there is A1 = A1(p, T,K1) >

0, such that

E
(

sup
0≤t≤T

|x(t)|p
)
≤ A1E|x0|p.

Due to (6.2), (6.4), (6.5), (6.6) and Theorem 6.2.1, it is straightforward to prove

this lemma (see for example, Theorem 2.4.1 in (Mao, 2008)).

6.3 Strong Convergence

Let us first present a number of useful lemmas before we prove our main results.

Lemma 6.3.1 Given any initial value X(0) > 0, for each p > 2 and T > 0 there

is A2 dependent on p, T and K1, but independent of ∆t, such that

E
(

sup
0≤t≤T

|X∆(t)|p
)
≤ A2E|X(0)|p.

Proof. By definition of X∆(t) and continuity of X(t), we know X∆(t) = X(ρ) = 0

for all t > ρ. For every integer n ≥ 1, define the stopping time

κn = T ∧ inf{t ∈ [0, T ] : |X(t)| ≥ n}.

Clearly, κn ↑ T a.s. By Itô’s formula, using condition (6.5) and h2(x) > 0 a.s. for

all x > 0 a.s. we have, for 0 ≤ t ≤ ρ ∧ κn

d|X(t)|2 =
[
2X(t)[h1(X̄(t))− h2(X̄(t))] + |g(X̄(t))|2)

]
dt+ 2X(t)g(X̄(t))dB(t)

≤
[
2
√
K1X(t)X̄(t) +K1X̄

2(t)
]
dt+ 2X(t)g(X̄(t))dB(t),
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Taking integration on both sides yields

|X(t ∧ ρ ∧ κn)|2 ≤ |X(0)|2 +

∫ t∧ρ∧κn

0

[
2
√
K1X(s)X̄(s) +K1X̄

2(s)
]
ds

+

∫ t∧ρ∧κn

0

2X(s)g(X̄(s))dB(s).

For t1 ∈ [0, T ] and p > 2,

sup
0≤t≤t1∧κn

|X(t ∧ ρ)|p ≤ 4
p
2
−1

[
|X(0)|p + (2

√
K1)

p
2

(∫ t1∧ρ∧κn

0

X(s)X̄(s)ds

) p
2

+K
p
2
1

(∫ t1∧ρ∧κn

0

X̄2(s)ds

) p
2

+(2
√
K1)

p
2 sup

0≤t≤t1

∣∣∣∣∫ t∧ρ∧κn

0

X(s)X̄(s)dB(s)

∣∣∣∣
p
2
]
.

Taking expectation on both sides and by the Hölder inequality, we have

E
(

sup
0≤t≤t1

|X(t ∧ ρ ∧ κn)|p
)

≤ 4
p
2
−1

[
E|X(0)|p + (2

√
K1)

p
2 t

p−2
2

1

∫ t1

0

E(X(s ∧ ρ ∧ κn)X̄(s ∧ ρ ∧ κn))
p
2ds

+K
p
2
1 t

p−2
2

1

∫ t1

0

E(|X̄(s ∧ ρ ∧ κn)|p)ds

+(2
√
K1)

p
2E

(
sup

0≤t≤t1

∣∣∣∣∫ t

0

X(s ∧ ρ ∧ κn)X̄(s ∧ ρ ∧ κn)dB(s)

∣∣∣∣
p
2

)]
. (6.11)

It is clear that

E(X(s ∧ ρ ∧ κn)X̄(s ∧ ρ ∧ κn))
p
2 ≤ E(|X(s ∧ ρ ∧ κn)|

p
2 |X̄(s ∧ ρ ∧ κn)|

p
2 )

≤ E
(

sup
0≤r≤s

|X(r ∧ ρ ∧ κn)|
p
2 sup

0≤r≤s
|X(r ∧ ρ ∧ κn)|

p
2

)
≤ E

(
sup

0≤r≤s
|X(r ∧ ρ ∧ κn)|p

)
,

and

E
(
|X̄(s ∧ ρ ∧ κn)|p

)
≤ E

(
sup

0≤r≤s
|X(r ∧ ρ ∧ κn)|p

)
.

By the Burkholder-Davis-Gundy inequality

E

(
sup

0≤t≤t1

∣∣∣∣∫ t

0

X(s ∧ ρ ∧ κn)X̄(s ∧ ρ ∧ κn)dB(s)

∣∣∣∣
p
2

)

≤ CpE
(∫ t1

0

|X(s ∧ ρ ∧ κn)|2X̄2(s ∧ ρ ∧ κn)ds

) p
4

,
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where Cp depends on p only. By the elementary inequality and the Hölder inequal-

ity,

E
(∫ t1

0

|X(s ∧ ρ ∧ κn)|2X̄2(s ∧ ρ ∧ κn)ds

) p
4

≤ E
[

sup
0≤s≤t1

|X(s ∧ ρ ∧ κn)|
p
2 (

∫ t1

0

X̄2(s ∧ ρ ∧ κn)ds)
p
4

]
≤ 1

2K
E
(

sup
0≤s≤t1

|X(s ∧ ρ ∧ κn)|p
)

+
K

2
E
(∫ t1

0

X̄2(s ∧ ρ ∧ κn)ds

) p
2

≤ 1

2K
E
(

sup
0≤s≤t1

|X(s ∧ ρ ∧ κn)|p
)

+
K

2
t
p−2

2
1 E

∫ t1

0

|X̄(s ∧ ρ ∧ κn)|pds

≤ 1

2K
E
(

sup
0≤s≤t1

|X(s ∧ ρ ∧ κn)|p
)

+
K

2
t
p−2

2
1

∫ t1

0

E
(

sup
0≤r≤s

|X(r ∧ ρ ∧ κn)|p
)
ds.

Hence, substituting these into (6.11) and choosing K = 4p/2(2
√
K1)p/2Cp/6 yields

E
(

sup
0≤t≤t1

|X(t ∧ ρ ∧ κn)|p
)

≤ 4
p
2
−1

[
E|X(0)|p + ((2

√
K1)

p
2 +K

p
2
1 )t

p−2
2

1

∫ t1

0

E
(

sup
0≤r≤s

|X(r ∧ ρ ∧ κn)|p
)
ds

+(2
√
K1)

p
2Cp

K

2
t
p−2

2
1

∫ t1

0

E
(

sup
0≤r≤s

|X(r ∧ ρ ∧ κn)|p
)
ds

]
+

3

4
E
(

sup
0≤s≤t1

|X(s ∧ ρ ∧ κn)|p
)
.

Namely,

E
(

sup
0≤t≤t1

|X(t ∧ ρ ∧ κn)|p
)

≤ 4
p
2

[
E|X(0)|p + ((2

√
K1)

p
2 +K

p
2
1 )t

p−2
2

1

∫ t1

0

E
(

sup
0≤r≤s

|X(r ∧ ρ ∧ κn)|p
)
ds

+(2
√
K1)

p
2Cp

K

2
t
p−2

2
1

∫ t1

0

E
(

sup
0≤r≤s

|X(r ∧ ρ ∧ κn)|p
)
ds

]
.

Applying the Gronwall inequality and let n→∞, we obtain the required assertion

with

A2 = 4p/2 exp[(4T )p/2(Kp
1 + (2

√
K1)p/2 + 0.5KCp(2

√
K1)p/2)].

The proof is complete.
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Since E(sup0≤t≤T |X̄∆(t)|p) ≤ E(sup0≤t≤T |X∆(t)|p), the moment bound for X̄∆(t)

is easy to obtain from Lemma 6.3.1. However, it should be emphasized that X̄∗∆(t)

is different from X̄∆(t), as ρ ≤ ρ̄ a.s. Thus we can not obtain a moment bound

result for X̄∗∆(t) directly, but need some extra effort. Before presenting the result

about the moment bound of X̄∗∆(t), we first prove the strong convergence of X∆(t)

to X̄∆(t) with the rate arbitrarily close to one half.

It is easy to see from (6.5), (6.6), Lemma 6.2.2 and Lemma 6.3.1 that there

exists a constant A′ dependent on q, A1, A2 and x(0) such that for ∀q ≥ 1 and

F = h1, h2, g,

E
(

sup
0≤t≤T

|F (x(t))|q
)
≤ A′, E

(
sup

0≤t≤T
|F (X∆(t))|q

)
≤ A′,

and

E
(

sup
0≤t≤T

|F (X̄∆(t))|q
)
≤ A′.

The technique used to deal with the expectation of Brownian motion increment

with stopping time in the next lemma is essential and will be employed several

times in the rest of the chapter. We emphasize that given any real-valued stopping

time α, we do not have E|∆B(α)|2 = E|B(α + ∆t) − B(α)|2 = ∆t, but need the

technique of raising power to handle it. A similar approach was used in (Mao,

2011).

Lemma 6.3.2 For any T > 0 and any integer r ≥ 2, let p > 1 be any integer

sufficiently large for (
2rp

2rp− 1

)r
(T + 1)

1
2p < 2. (6.12)

Then

E
(

sup
0≤t≤T

|X∆(t)− X̄∆(t)|r
)
≤ G∆t

r
2
− 1

2p , (6.13)

where G = (22r−1 + 2r+1rp)(A′ + 1).

Proof. For t ∈ [0, T ∧ ρ], let i = i(t) be the integer part of t/∆t. So t ∈ [ti, ti+1)

and

X∆(t)− X̄∆(t) = (h1(Xi)− h2(Xi))(t− ti) + g(Xi)(B(t)−B(ti)).
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Raising the power to r on both sides then taking the supremum and expectation,

we compute, by the elementary inequality and the Hölder inequality, that

E
(

sup
0≤t≤T∧ρ

|X∆(t)− X̄∆(t)|r
)

= E
(

sup
0≤t≤T∧ρ

|(h1(Xi)− h2(Xi))(t− ti) + g(Xi)(B(t)−B(ti))|r
)

≤ E
(

sup
0≤t≤T∧ρ

2r−1 (|h1(Xi)− h2(Xi)|r(t− ti)r + |g(Xi)|r|B(t)−B(ti)|r)
)

≤ E
(

sup
0≤t≤T∧ρ

2r−1(2r−1(|h1(Xi)|r + |h2(Xi)|r)(t− ti)r + |g(Xi)|r|B(t)−B(ti)|r)
)

≤ 22r−2E
(

sup
0≤t≤T∧ρ

|h1(Xi)|r
)

∆tr + 22r−2E
(

sup
0≤t≤T∧ρ

|h2(Xi)|r
)

∆tr

+2r−1E
[(

sup
0≤t≤T∧ρ

|g(Xi)|r
)(

sup
0≤t≤T∧ρ

|B(t)−B(ti)|r
)]

≤ 22r−1A′∆tr + 2r−1

[
E
(

sup
0≤t≤T∧ρ

|g(Xi)|2r
)] 1

2
[
E
(

sup
0≤t≤T∧ρ

|B(t)−B(ti)|2r
)] 1

2

≤ 22r−1A′∆tr + 2r−1
√
A′
[
E
(

sup
u=0,1,...N

sup
tu≤t≤tu+1∧T

|B(t)−B(tu)|2rp
)] 1

2p

, (6.14)

where N is the integer part of T/∆t. By the Doob martingale inequality,

E
(

sup
u=0,1,...N

sup
tu≤t≤tu+1∧T

|B(t)−B(tu)|2rp
)

≤
N∑
u=0

E
(

sup
tu≤t≤tu+1∧T

|B(t)−B(tu)|2rp
)

≤
(

2rp

2rp− 1

)2rp N∑
u=0

E|B(tu+1 ∧ T )−B(tu)|2rp

≤
(

2rp

2rp− 1

)2rp N∑
u=0

(2rp− 1)!!∆trp

≤
(

2rp

2rp− 1

)2rp

(2rp− 1)!!(T + 1)∆trp−1,

where (2rp − 1)!! denotes the double factorial, i.e. (2rp − 1)!! = (2rp − 1)(2rp −

3) · · · 3 · 1. Substituting this into (6.14), and recalling (6.12) and [(2rp− 1)!!]1/p ≤
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2rp, we have

E
(

sup
0≤t≤T∧ρ

|X∆(t)− X̄∆(t)|r
)

≤ 22r−1A′∆tr + 2r−1
√
A′

[(
2rp

2rp− 1

)2rp

(2rp− 1)!!(T + 1)∆trp−1

] 1
2p

≤ 22r−1A′∆tr + 2r−1
√
A′
(

2rp

2rp− 1

)r
(T + 1)

1
2p [(2rp− 1)!!]

1
2p∆t

rp−1
2p

≤ 22r−1A′∆tr + 2r+1
√
A′rp∆t

r
2
− 1

2p

≤ (22r−1 + 2r+1rp)(A′ + 1)∆t
r
2
− 1

2p .

In the case where ρ < T , we have that for ρ < t ≤ T

E
(

sup
ρ<t≤T

|X∆(t)− X̄∆(t)|r
)

= E
(
|X∆(ρ)− X̄∆(ρ)|r

)
≤ (22r−1 +2r+1rp)A′∆t

r
2
− 1

2p .

Hence the proof is complete.

Now we are ready to prove the pth moment boundedness of X̄∗∆(t).

Lemma 6.3.3 Given any initial value X(0) > 0, for each integer p ≥ 2 and

T > 0, there exists a constant A3 dependent on T , p and K1, but independent of

∆t such that

E
(

sup
0≤t≤T

|X̄∗∆(t)|p
)
< A3E|X0|p,

and for any ε > 0

E(1{ρ̄≤T}|X̄(ρ̄)|2) = O(∆t1−ε).

Proof. For any nonnegative real number α, we denote the integer part of it by

[α]. For every integer n ≥ 1, define the stopping time

κ̄n = T ∧ inf{t ∈ [0, T ] : |X̄(t)| ≥ n}.

Clearly, n ↑ T a.s. For 0 ≤ t < ρ̄ ∧ κ̄n, define τ = [t/∆t]∆t. Because (6.8) and

h2(x) ≥ 0 for all x > 0, we have that

0 < X̄∗∆(t) = X(τ) = X0 +

∫ τ

0

[h1(X̄(s))− h2(X̄(s))]ds+

∫ τ

0

g(X̄(s))dB(s)

≤ X0 +

∫ τ

0

h1(X̄(s))ds+

∫ τ

0

g(X̄(s))dB(s).
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Then for any integer p ≥ 2, raising the power of both sides to p we have

|X̄∗∆(t)|p ≤ 3p−1

(
|X0|p +

∣∣∣∣∫ τ

0

h1(X̄(s))ds

∣∣∣∣p +

∣∣∣∣∫ τ

0

g(X̄(s))dB(s)

∣∣∣∣p) .
Taking supremum and expectation, for t1 ∈ [0, T ] we have

E
(

sup
0≤t≤ρ̄∧t1∧κ̄n

|X̄∗∆(t)|p
)
≤ 3p−1

(
E|X0|p + E

(
sup

0≤t≤ρ̄∧t1∧κ̄n

∣∣∣∣∫ τ

0

h1(X̄(s))ds

∣∣∣∣p)
+E

(
sup

0≤t≤ρ̄∧t1∧κ̄n

∣∣∣∣∫ τ

0

g(X̄(s))dB(s)

∣∣∣∣p))
≤ 3p−1

(
E|X0|p + E

(
sup

0≤t≤ρ̄∧t1∧κ̄n

∣∣∣∣∫ t

0

h1(X̄(s))ds

∣∣∣∣p)
+E

(
sup

0≤t≤ρ̄∧t1∧κ̄n

∣∣∣∣∫ t

0

g(X̄(s))dB(s)

∣∣∣∣p)).
By (6.5), the Hölder inequality and the Burkholder-Davis-Gundy inequality, we

obtain

E
(

sup
0≤t≤ρ̄∧κ̄n

|X̄∗∆(t)|p
)

≤ 3p−1E|X0|p + 3p−1K
p
2
1 T

p
2
−1

(
T
p
2 +

(
p3

2(p− 1)

) p
2

)∫ T

0

E
(

sup
0≤r≤s∧ρ̄∧κ̄n

|X̄(r)|p
)
ds.

Then applying the Gronwall inequality and letting n→∞ give

E
(

sup
0≤t≤ρ̄∧T

|X̄∗∆(t)|p
)
< A3E|X0|p, (6.15)

where A3 = 3p−1 exp{3p−1K
p/2
1 T p/2−1(T p/2 + (p3/(2(p− 1)))p/2T}.

By the definition of ρ̄, we know ρ̄ is a multiple of ∆t, and denote ρ̄/∆t by nρ̄.

Since Xnρ̄−1 > 0 and Xnρ̄ ≤ 0 when ω ∈ {ρ̄ ≤ T}, we have

Xnρ̄ = Xnρ̄−1 + (h1(Xnρ̄−1)− h2(Xnρ̄−1))∆t+ g(Xnρ̄−1)∆Bnρ̄−1

> (h1(Xnρ̄−1)− h2(Xnρ̄−1))∆t+ g(Xnρ̄−1)∆Bnρ̄−1.

Taking square and expectation on both sides, we have

E(1{ρ̄≤T}X
2
nρ̄) ≤ 4∆t2(E(1{ρ̄≤T}|h1(Xnρ̄−1)|2) + E(1{ρ̄≤T}|h2(Xnρ̄−1)|2))

+2E(1{ρ̄≤T}|g(Xnρ̄−1)|2|∆Bnρ̄−1|2)

≤ 4∆t2(E|h1(Xnρ̄−1)|2 + E|h2(Xnρ̄−1)|2)

+2E(|g(Xnρ̄−1)|2)E(|∆Bnρ̄−1|2),
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where 1A is the indicator function of A. The Brownian motion increment in the

last term involves the stopping time ρ̄, thus we employ the technique of raising

power used in Lemma 6.3.2 here and by a similar approach we can show that

E(|∆Bnρ̄−1|2) = O(∆t1−ε) for any ε > 0. Let q > 1 be any integer sufficiently large

for (
2q

2q − 1

)2

(T + 1)
1
q < 2,

by the Hölder inequality, the Doob martingale inequality and [(2q − 1)!!]1/q ≤ 2q

we have

E(|∆Bnρ̄−1|2) = E(|B(ρ̄)−B(ρ̄−∆t)|2)

≤ E
(

sup
0≤t≤ρ̄∧T

|B(t)−B(t−∆t)|2
)

≤
[
E
(

sup
u=1,...,N

sup
tu≤t≤tu+1∧T

|B(t)−B(tu)|2q
)] 1

q

≤

[
N∑
u=1

E
(

sup
tu≤t≤tu+1∧T

|B(t)−B(tu)|2q
)] 1

q

≤

[(
2q

2q − 1

)2q N∑
u=1

E|B(tu+1 ∧ T )−B(tu)|2q
] 1
q

≤

[(
2q

2q − 1

)2q N∑
u=1

(2q − 1)!!∆tq

] 1
q

≤

[(
2q

2q − 1

)2q

(2q − 1)!!(T + 1)∆tq−1

] 1
q

≤ 4q∆t1−
1
q .

The required rate follows. By (6.5), (6.6) and (6.15), we know all the three terms,

E|h1(Xnρ̄−1)|2, E|h2(Xnρ̄−1)|2 and E|g(Xnρ̄−1)|2, are bounded by some finite num-

ber independent of ∆t, so

E(1{ρ̄≤T}|X̄(ρ̄)|2) = E(1{ρ̄≤T}|Xnρ̄|2) = O(∆t1−ε). (6.16)

Hence the proof is complete.
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It is straightforward to adapt the proof above to show that for a fixed T > 0 and

any integer k0 such that k0∆t ∈ (0, T ) we have

Ek0∆t,X̄(k0∆t)

(
sup

k0∆t≤t≤T
|X̄∗∆(t)|p

)
< A3|X̄(k0∆t)|p. (6.17)

Lemma 6.3.4 For ∀ε > 0, the continuous approximate solution (6.9) of the

stopped EM method satisfies

E
(

sup
0≤t≤T

|x(t)−X∆(t)|2
)

= O(∆t1−ε). (6.18)

Proof. Set e(t) = x(t) −X∆(t). By Itô formula and inequalities (6.2), (6.3) and

(6.4), for t ∈ [0, ρ ∧ T ] we compute

|e(t)|2 =

∫ t

0

2(f(x(s))− f(X̄∆(s)))e(s)ds+

∫ t

0

|g(x(s))− g(X̄∆(s))|2ds

+M(t)

≤
∫ t

0

[
2(f(x(s))− f(X∆(s)))e(s) +K1|x(s)− X̄∆(s)|2

]
ds

+2

∫ t

0

(f(X∆(s))− f(X̄∆(s)))e(s)ds+M(t)

≤ 2

∫ t

0

(K3|e(s)|2 +K1|e(s)|2 +K1|X∆(s)− X̄∆(s)|2)ds

+

∫ t

0

(|f(X∆(s))− f(X̄∆(s))|2 + |e(s)|2)ds+M(t)

≤ (1 + 2(K1 +K3))

∫ t

0

|e(s)|2ds

+

∫ t

0

D′(1 + |X∆(s)|a + |X̄∆(s)|a)|X∆(s)− X̄∆(s)|2ds+M(t),

where M(t) =
∫ t

0
2e(s)(g(x(s)) − g(X̄∆(s)))dB(s) and D′ is a positive constant

dependent only on K1 and K2, which may change from line to line in the following
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proof. Using the Cauchy-Schwarz and Lemma 6.3.2 with r = 4, we further compute

E
(

sup
0≤s≤t

|e(s)|2
)

≤ (1 + 2(K1 +K3))

∫ t

0

E|e(s)|2ds

+

∫ t

0

D′
[
E(1 + |X∆(s)|a + |X̄∆(s)|a)2E|X∆(s)− X̄∆(s)|4

] 1
2
ds+m(t)

≤ (1 + 2(K1 +K3))

∫ t

0

E|e(s)|2ds

+GD′∆t1−
1
4p

∫ t

0

E(1 + |X∆(s)|2a + |X̄∆(s)|2a)ds+m(t)

≤ (1 + 2(K1 +K3))

∫ t

0

E|e(s)|2ds+GD′T (1 + 2A′)∆t1−
1
4p +m(t),

where m(t) = E(sup0≤s≤t |M(s)|). But, by the Burkholder-Davis-Gundy inequal-

ity, we have

m(t) ≤ 16E
[∫ t

0

|e(s)|2|g(x(s))− g(X̄∆(s))|2ds
] 1

2

≤ 16E
[

sup
0≤s≤t

|e(s)|2
∫ t

0

K1|x(s)− X̄∆(s)|2ds
] 1

2

≤ 1

2
E
(

sup
0≤s≤t

|e(s)|2
)

+ 128K1E
∫ t

0

|x(s)− X̄∆(s)|2ds

≤ 1

2
E
(

sup
0≤s≤t

|e(s)|2
)

+ 256K1

∫ t

0

(E|e(s)|2 + E|X∆(s)− X̄∆(s)|2)ds

≤ 1

2
E
(

sup
0≤s≤t

|e(s)|2
)

+ 256K1

∫ t

0

E|e(s)|2ds+GT∆t1−
1
2p .

Hence,

E
(

sup
0≤s≤t

|e(s)|2
)

≤ (1 + 258K1 + 2K3)

∫ t

0

E
(

sup
0≤r≤s

|e(r)|2
)
ds+ (GD′(1 + 2A′) +G)T∆t1−

1
2p .

Since p can be arbitrarily large, by the Gronwall inequality, we see

E
(

sup
0≤t≤ρ∧T

|e(t)|2
)

= O(∆t1−ε). (6.19)
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In the case where ρ < T , by the strong Markov property and (6.19) we have that

E( sup
ρ<t≤T

|x(t)−X(t ∧ ρ)|2) = E( sup
ρ<t≤T

|x(t)−X(ρ)|2)

= E( sup
ρ<t≤T

|x(t)|2)

≤ E
[
E
(

sup
ρ<t≤T

|x(t)|2
∣∣σ(x(ρ))

)]
≤ E

[
Eρ,x(ρ)

(
sup
ρ<t≤T

|x(t)|2
)]

≤ E
(
A1|x(ρ)|2

)
= A1E

(
A1|x(ρ)−X(ρ)|2

)
= O(∆t1−ε).

The proof is therefore complete.

The next theorem follows from Lemma 6.3.2, Lemma 6.3.4 and the triangle

inequality directly.

Theorem 6.3.5 For ∀ε > 0, the discrete approximate solution (6.10) of the

stopped EM method satisfies

E
(

sup
0≤t≤T

|x(t)− X̄∆(t)|2
)

= O(∆t1−ε).

However due to the definition of the stopping time ρ, neither X∆(t) nor X̄∆(t) can

be implemented in practice. So it is actually the approximate solution X̄∗∆(t) that

we use for simulation. The following theorem is therefore more important.

Theorem 6.3.6 Assume (6.2), (6.3), (6.4), (6.5) and (6.6) hold, then for ∀ε > 0

the approximate solution X̄∗∆(t) converges strongly to the true solution x(t) with

order 1− ε,

E
(

sup
0≤t≤T

|x(t)− X̄∗∆(t))|2
)

= O(∆t1−ε).

Proof. To prove the assertion, by triangle inequality we need to show

E
(

sup
0≤t≤T

|x(t)−X(t ∧ ρ)|2
)

= O(∆t1−ε), (6.20)
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and

E
(

sup
0≤t≤T

|X(t ∧ ρ)− X̄(t ∧ ρ̄)|2
)

= O(∆t1−ε). (6.21)

We already proved (6.20) in Lemma 6.3.4, now we try to prove (6.21). By the

definition of ρ, we know that X(t ∧ ρ) = X(ρ) = 0 for ρ ≤ t ≤ T . It is clear that

E
(

sup
0≤t≤T

|X(t ∧ ρ)− X̄(t ∧ ρ̄)|2
)

≤ E
(

sup
0≤t≤ρ∧T

|X(t)− X̄(t)|2
)

+ E
(

sup
ρ∧T<t≤ρ̄∧T

|X(ρ)− X̄(t)|2
)

+E
(

sup
ρ̄∧T<t≤T

|X(ρ)− X̄(ρ̄)|2
)
.

According to Lemma 6.3.2, the first term on the right hand side of the inequality

equals O(∆t1−ε).

Now we consider the second term. For ω ∈ {ρ < T}, denote the next time

point larger than ρ by τ1 = ([ρ/∆t] + 1)∆t, by (6.8) for ρ ∧ T < t ≤ τ1 ∧ T , we

have

X(t) = X(ρ) +

∫ t

ρ∧T
[h1(X̄(s))− h2(X̄(s))]ds+

∫ t

ρ∧T
g(X̄(s))dB(s).

Due to Lemma 6.3.3, (6.5) and (6.6), we know h1, h2 and g are all bounded,

together with τ1 − ρ ≤ ∆t a.s. it is easy to obtain

E
(

sup
ρ∧T<t≤τ1∧T

|X̄(t)|2
)

= O(∆t1−ε).

The degradation of the rate is again due to the stopping time in the Brownian

motion increment and the application of the technique of raising power. Then by
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(6.17) and the strong Markov property we obtain

E
(

sup
ρ∧T<t≤ρ̄∧T

|X(ρ)− X̄(t)|2
)

≤ E
(

sup
τ1∧T<t≤ρ̄∧T

|X̄(t)|2
)

+ E
(

sup
ρ∧T<t≤τ1∧T

|X̄(t)|2
)

≤ E
[
E
(

sup
τ1∧T<t≤ρ̄∧T

|X̄(t)|2
∣∣σ(X̄(τ1 ∧ T ))

)]
+O(∆t1−ε)

≤ E
[
Eτ1∧T,X̄(τ1∧T )

(
sup

τ1∧T<t≤ρ̄∧T
|X̄(t)|2

)]
+O(∆t1−ε)

≤ E
(
A3|X̄(τ1 ∧ T )|2

)
+O(∆t1−ε)

= O(∆t1−ε).

Also by Lemma 6.3.3 we have

E
(

sup
ρ̄∧T<t≤T

|X(ρ)− X̄(ρ̄)|2
)

= E
(
1{ρ̄≤T}|X̄(ρ̄)|2

)
= O(∆t1−ε).

Hence we can obtain (6.21). The proof is therefore complete.

6.4 Numerical Simulation

In this section we present two SDEs and their numerical simulations to illustrate

the strong convergence as well as the convergence rate of the stopped EM method.

We choose the SDEs with their explicit solutions in order to test the efficiency of

our stopped EM method.

Firstly, we consider the stochastic Lotka-Volterra model (see for example,

Chapter 11 of (Mao, 2008)), namely the SDE (6.1) with f(x(t)) = bx(t) − ax2(t)

and g(x(t)) = σx(t), where a, b, σ > 0. Obviously, the assumptions of f , h1, h2

and g are satisfied. In (Oksendal, 2003), the explicit solution is expressed by

x(t) =
x0 exp((b− 1

2
σ2)t+ σB(t))

1 + ax0

∫ t
0

exp((b− 1
2
σ2)s+ σB(s))ds

. (6.22)

Although the integral in the denominator cannot be computed analytically, we will

use a very small step size, say 10−6, to approximate it. The approximate solution
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obtained in this way is regarded as the true solution in the following numerical

tests.
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Figure 6.1: Simulation of the EM solutions with step size 10−5, 10−4 and 10−3

respectively. The coefficients, a = 1 b = 1 σ = 2. Left: the true solution and the

EM solution on [0, 1]. Right: zoomed in plot of the left one.

We set a = 1, b = 1 and σ = 2 for all the experiments in this section. The stopped

EM solutions with step sizes of 10−5, 10−4 and 10−3 respectively are plotted in

Figure 6.1. The initial value is X(0) = 2. It is difficult to distinguish the true

solution from the three simulated solutions on the left plot, which indicates that

all the three step sizes can result in a good approximation. To find which step

size is more precise, a detailed graph is plotted. It can be seen that with the

step size decreasing the stopped EM solution makes better approximation to the

true solution. In the simulation, if the numerical solution touches 0 or becomes
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negative at some time point, we set the numerical solution at this time point and

all the time points afterwards be zero.

We calculate the strong error by

e = E
(

max
i=1,2,...,n

|x(i∆t)− X̄∗∆(i∆t)|
)
.
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Figure 6.2: Left: The strong error plot for the stochastic Lotka-Volterra equation.

Right: The strong error plot for the stochastic Ginzburg-Landau equation. The

dashed line of slope 0.5 is the reference slope.

We carry 1000 simulations for the true solution and each of the three stopped EM

solution. The strong error is calculated based on those simulations. In Figure 6.2,

the strong error plot on the left indicates better approximation with smaller step

size, which is in line with the right plot in Figure 6.1. In addition, compared with

the dashed reference line of slope 0.5, we obverse the order of about 0.5 for the
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strong convergence.

Next we consider the stochastic Ginzburg-Landau equation (Ginzurg & Lan-

dau, 1950)

dx(t) =

(
1

2
σ2x(t)− x3(t)

)
dt+ σx(t)dB(t), (6.23)

to which the true solution is known (Kloeden & Platen, 1992)

x(t) =
x0 exp(σB(t))√

1 + 2x2
0

∫ t
0

exp(2σB(s))ds
. (6.24)

The same simulation as the stochastic Lotka-Volterra equation is carried with

σ = 7. The strong error is on the right plot of Figure 6.2. It can be seen that the

order of the strong error is around 0.5 as well, which is in line with Theorem 6.3.6.

Equation (6.23) was also considered in (Hutzenthaler et al., 2011) to illustrate the

divergence of the classical EM method. In (Hutzenthaler et al., 2011), the authors

found that, for the classical EM method with fixed step size, the second moment of

the classical EM solution at the terminal time point approaches the second moment

of the true solution very poorly for σ = 5, 6 and even is explosive for σ = 7. Since

the finite time moment boundedness is key to the strong convergence, in Table

6.1 we display the simulation results for the stopped EM method at the terminal

point T = 3. The initial value is X(0) = 1 and the step size is ∆t = 1× 10−5.

It can be seen that the stopped EM performs well in approaching the second

moment of the true solution for all the σ and no explosion occurs in such a large

number of Monte Carlo runs.

Hence from both the theoretical results and the simulations, we can conclude that

the stopped EM method outperforms the classical EM method greatly for the SDE

(6.1) and the use of the stopping time contributes mostly to that outperformance.

One of our future work is to extend our theory to multi-dimensional nonlinear

SDEs.

The work contained in this chapter has been published, and we refer the readers

to (Liu & Mao, 2013b) for the published version.
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Table 6.1: Simulation of E(x(3))2 and E(X̄∗∆(3))2 for the stochastic Ginzburg-

Landau equation where the step size is ∆t = 1 × 10−5. The number of Monte

Carlo runs is 105 for both the stopped EM solution and the exact solution.

σ = 2 σ = 3 σ = 4 σ = 5 σ = 6 σ = 7

exact solution E[x2(3)] 0.4740 0.6917 0.9233 1.1478 1.3960 1.5878

simulation 1 0.4640 0.6847 0.9166 1.1138 1.3286 1.5854

simulation 2 0.4721 0.6919 0.8963 1.1302 1.3364 1.6377

simulation 3 0.4784 0.7101 0.9329 1.1373 1.3521 1.6360

simulation 4 0.4700 0.6974 0.9088 1.1386 1.3871 1.6280

simulation 5 0.4706 0.6895 0.9125 1.1127 1.3565 1.5657

simulation 6 0.4666 0.6927 0.9187 1.1452 1.3724 1.5977

simulation 7 0.4638 0.6947 0.9255 1.1596 1.3946 1.6391

simulation 8 0.4757 0.7081 0.9442 1.1824 1.4218 1.6706

simulation 9 0.4677 0.6947 0.9240 1.1568 1.3909 1.6026

simulation 10 0.4695 0.6823 0.9050 1.1287 1.3521 1.5926



Chapter 7

Conclusions and Future Research

7.1 Conclusions

Two important aspects of numerical analysis for stochastic differential equations,

the asymptotic properties and the finite time convergence, have been investigated

in this thesis. The classical explicit Euler-Maruyama method and the (implicit)

backward Euler-Maruyama method are the fundamental schemes for this thesis.

Besides, we developped two new schemes by modifying the classical method: the

Euler-Maruyama method with random variable step size was introduced to study

the almost sure stability and the stopped Euler method was developped to cope

with the finite time strong convergence.

In Chapter 3, we presented our observations on the asymptotic boundedness for

numerical solutions. Theorem 3.3.2 and Theorem 3.4.3 state our findings on the

asymptotic boundedness in small moment for the EM method and the backward

EM method, respectively. The EM method works well when the linear growth

conditions hold and the backward EM method is a good replacement for it when

the linear growth condition on the drift coefficient is violated. However, in the

case of small moment, we have only been able to reproduce the asymptotic bound-

edness qualitatively, but not the exact value of the bound. Then in Theorem 3.5.2

and Theorem 3.5.4, by strengthening some conditions we successfully reproduced

115
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the asymptotic boundedness both qualitatively and quantitatively for the second

moment.

Chapter 4 could be treated as a continuous study of Chapter 3, as the mo-

ment boundedness obtained in Chapter 3 is essential for the study of the numer-

ical stationary distribution. The coefficient-related conditions for the existence

and uniqueness of the stationary distribution of the backward Euler-Maruyama

method were given in Lemmas 4.3.1, 4.3.2 and 4.3.3. Then we further studied

the convergence of the numerical stationary distribution to the stationary distri-

bution of the underlying solution and stated the main result in Theorem 4.3.9.

The numerical simulations in Section 4.4 are in line with the theoretical results.

In addition, we observed that the numerical stationary distributions could be used

as numerical solutions to certain type of deterministic differential equations.

The EM method with random variable step size was introduced in Chapter 5.

The first almost surely stability theorem of it was given in Theorem 5.3.1. To our

best knowledge, Chapter 5 is the first work to apply the random variable step size

(with clear proof of the stopping time) to the analysis of the almost sure stability

of the EM method. Compare with the existing results, by employing the random

variable step size the new scheme is able to reproduce the almost sure stability of

much larger range of SDEs. Other sufficient conditions were provided in Theorems

5.3.2, 5.5.1 and 5.5.2, which make the new scheme more applicable.

Having tasted the sweet of modification of the classical method in Chapter

5, we considered to use the modified EM method to approximate the underlying

solution in finite time in Chapter 6. The idea of embedding a stopping time into

the classical EM method was initially adopted to preserve the non-negativity of the

numerical solution, and it turned out that the non-negativity in return guarantees

the scheme to converge to the underlying solution strongly with the rate a half.

Compare with the classical method, the stopped EM method can cover highly

nonlinear SDEs with just a little computational cost added. The main results

were stated in Theorems 6.3.5 and 6.3.6.
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7.2 Future Research

As we mentioned at the beginning chapter of this thesis, the study on the numerical

solutions of SDEs is far behind its underlying counterpart. Those results presented

in this thesis is just a tip of the iceberg, and there is still a boundless ocean to

explore.

This thesis focuses on stochastic differential equations, and it is worth to in-

vestigate if those results obtained still hold for, such as stochastic functional dif-

ferential equations and stochastic differential equations with jumps.

From Chapters 5 and 6, the non-fixed step size methods look promising. As

we mentioned at the start of Chapter 5, there already exist some works on the

adapted step size methods showing better performance than the constant step

size methods. However, the methods with constant step size still dominate the

literatures. Therefore, the study on the adapted method is an interesting direction.
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Allen, E. 2007. Modeling with Itô stochastic differential equations. Mathematical

Modelling: Theory and Applications, vol. 22. Dordrecht: Springer.

Anderson, D. F., & Mattingly, J. C. 2011. A weak trapezoidal method for a class

of stochastic differential equations. Commun. Math. Sci., 9(1), 301–318.

Appleby, J. A. D., & Rodkina, A. 2009. Stability of nonlinear stochastic Volterra

difference equations with respect to a fading perturbation. Int. J. Difference

Equ., 4(2), 165–184.

Appleby, J. A. D., Mao, X., & Rodkina, A. 2006. On stochastic stabilization of

difference equations. Discrete Contin. Dyn. Syst., 15(3), 843–857.

Appleby, J. A. D., Berkolaiko, G., & Rodkina, A. 2009. Non-exponential stability

and decay rates in nonlinear stochastic difference equations with unbounded

noise. Stochastics, 81(2), 99–127.

Appleby, J. A. D., Guzowska, M., Kelly, C., & Rodkina, A. 2010. Preserving

positivity in solutions of discretised stochastic differential equations. Appl.

Math. Comput., 217(2), 763–774.

Arnold, L. 1974. Stochastic differential equations: theory and applications. New

York: Wiley-Interscience [John Wiley & Sons]. Translated from the German.

Berkaoui, A., Bossy, M., & Diop, A. 2008. Euler scheme for SDEs with non-

118



Chapter 7: Conclusions and Future Research 119

Lipschitz diffusion coefficient: strong convergence. ESAIM Probab. Stat., 12,

1–11 (electronic).

Berkolaiko, G., Buckwar, E., Kelly, C., & Rodkina, A. 2012. Almost sure asymp-

totic stability analysis of the θ-Maruyama method applied to a test system

with stabilising and destabilising stochastic perturbations. LMS J. Comput.

Math., 15, 71–83.

Buckwar, E., & Kelly, C. 2010. Towards a systematic linear stability analysis of

numerical methods for systems of stochastic differential equations. SIAM J.

Numer. Anal., 48(1), 298–321.

Buckwar, E., & Sickenberger, T. 2012. A structural analysis of asymptotic mean-

square stability for multi-dimensional linear stochastic differential systems.

Appl. Numer. Math., 62(7), 842–859.

Burrage, K., & Tian, T. 2000. A note on the stability properties of the Euler

methods for solving stochastic differential equations. New Zealand J. Math.,

29(2), 115–127. Dedicated to John Butcher.

Burrage, K., & Tian, T. 2002. Predictor-corrector methods of Runge-Kutta type

for stochastic differential equations. SIAM J. Numer. Anal., 40(4), 1516–1537

(electronic).

Burrage, P. M., & Burrage, K. 2002. A variable stepsize implementation for

stochastic differential equations. SIAM J. Sci. Comput., 24(3), 848–864.

Burrage, P. M., Herdiana, R., & Burrage, K. 2004. Adaptive stepsize based on

control theory for stochastic differential equations. J. Comput. Appl. Math.,

170(2), 317–336.

Dangerfield, C. E., Kay, D., & Burrage, K. 2012. Modeling ion channel dynamics

through reflected stochastic differential equations. Physical Review E, 85(5),

051907.



Chapter 7: Conclusions and Future Research 120

Dávila, J., Bonder, J. F., Rossi, J. D., Groisman, P., & Sued, M. 2005. Numeri-

cal analysis of stochastic differential equations with explosions. Stoch. Anal.

Appl., 23(4), 809–825.

De la Cruz Cancino, H., Biscay, R. J., Jimenez, J. C., Carbonell, F., & Ozaki, T.

2010. High order local linearization methods: an approach for constructing

A-stable explicit schemes for stochastic differential equations with additive

noise. BIT, 50(3), 509–539.

Deelstra, G., & Delbaen, F. 1998. Convergence of discretized stochastic (interest

rate) processes with stochastic drift term. Applied stochastic models and data

analysis, 14(1), 77–84.

Einstein, A. 1905. On the motion of small particles suspended in a stationary

liquid, as required by the molecular kinetic theory of heat. Annalen der

Physik, 17(6), 132–148.

Frank, T. D., & Beek, P. J. 2001. Stationary solutions of linear stochastic delay

differential equations: Applications to biological systems. Physical Review E,

64(2), 021917.

Gaines, J. G., & Lyons, T. J. 1997. Variable step size control in the numerical

solution of stochastic differential equations. SIAM J. Appl. Math., 57(5),

1455–1484.

Gardiner, C. W. 2004. Handbook of stochastic methods for physics, chemistry and

the natural sciences. Third edn. Springer Series in Synergetics, vol. 13. Berlin:

Springer-Verlag.

Gihman, I. I., & Skorohod, A. V. 1974. The theory of stochastic processes. I.

New York: Springer-Verlag. Translated from the Russian by S. Kotz, Die

Grundlehren der mathematischen Wissenschaften, Band 210.



Chapter 7: Conclusions and Future Research 121

Ginzurg, V.L., & Landau, L.D. 1950. Concerning the theory of superconductivity.

J. Exptl. Theoret. Phys., 20, 1064–1082.

Gobet, E., & Menozzi, S. 2004. Exact approximation rate of killed hypoelliptic

diffusions using the discrete Euler scheme. Stochastic Process. Appl., 112(2),

201–223.

Gobet, E., & Menozzi, S. 2010. Stopped diffusion processes: boundary corrections

and overshoot. Stochastic Process. Appl., 120(2), 130–162.

Gray, A., Greenhalgh, D., Hu, L., Mao, X., & Pan, J. 2011. A stochastic differential

equation SIS epidemic model. SIAM J. Appl. Math., 71(3), 876–902.
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