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Abstract

The spherical pendulum is mathematically well described and different scholars contributed to

the topic in the past. Nevertheless, in the field of pendulum-based energy harvesting the interop-

eration of a simple pendulum is prevailing over the spherical pendulum. The energy harvester’s

application areas, and probably its overall capacity, may be limited as a result of this reduction

in degrees of freedom. To that end, this work presents the omnidirectional energy harvester that

operates independently of the direction of excitation. The numerical evaluation of the energy

harvester observes quasiperiodicity and chaotic dynamics for different forcing conditions but

with an increase in the power take-off the dynamics of the energy harvester become generally

more periodic. The dynamics of the system are highly dependent on the excitation frequency,

excitation amplitude, damping ratio, and power take-off torque. In the experimental analysis

two power take-off modes of different levels are compared. In the frequency responses the

softening characteristics of the spherical pendulum are observed. Additionally, excitation fre-

quency up- and down-sweeps are included to observe the broadening of the operational range

of the energy harvester. Interestingly the excitation frequency up-sweep shows a large increase

in the operational region meaning the spherical pendulum shows hardening characteristics.

An optimal operational point is defined close to the maximum deflection in the upper nonlin-

ear jump region. For the comparison of the numerical and experimental results the numerical

results undergo a simple trigonometric transformation. With an adaption of the excitation amp-

litude the numerical results show the main characteristics of the experimental results including

the hardening effect during the excitation frequency up-sweep of the experiments.
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Chapter 1

Introduction

Energy harvesting is used to supply small devices with energy. Traditionally these small devices

are powered with batteries, however they have one major downside which is that they are a finite

energy source. This generally is not a problem as long as they are easily accessible products

that can be charged every day. However, it gets more complicated if the battery is used in a

remote area or is even inaccessible. A replacement or recharging of the battery in this area is

either highly difficult or even impossible. And these are the areas where an energy harvesting

device has major advantages over the battery as a power source.

Another downside of the battery is its dependency on rare materials. Materials like lithium,

cobalt, and gold are rare, expensive, and limited, and on top of all things the ethical standards in

the mining camps are heavily criticised by human rights watch organisations. It is therefore of

crucial importance to reduce the usage of batteries and keep battery waste as little as possible.

The omnidirectional pendulum energy harvester in this work has an approximate volume of

one cubic meter with this size an application in the area of wave energy harvesting is possible.

But the system can be downscaled easily and it can be used to power for example a hearing aid

or a pacemaker. Since the last one is inaccessible after fitting it has a great advantage that the

energy harvester produces a supply voltage that powers the pacemaker. With this the energy

storage device within the pacemaker can be reduced in mass which in return saves material and

has the potential to increase the lifespan of the device. The in this work introduced omnidirec-

tional energy harvester is a pre-prototype that is used to observe the general dynamics. These

valuable results can then be further applied to the next development stage of the prototype.

In the literature a great number of simple pendulum energy harvesters are examined. But

with a further increase in the degree of freedom the number of energy harvesters observed

decreases drastically. This work is providing further numerical and experimental research to

contribute to the common knowledge in the field of three-dimensional vibrational energy har-

vesting with a pendulum based system. The advantage of an additional degree of freedom is

the increased potential of the energy harvester to operate under different forcing conditions in-
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dependent of the direction of excitation. This is the main advantage that a spherical pendulum

energy harvester as described in this thesis has over a simple pendulum energy harvester.

1.1 Research Aims & Objectives

From the previously described advantages of a two degree of freedom system over a one degree

of freedom system four major research actions can be stated.

• Development of a mathematical model of the energy harvester with an active power take-

off and investigate the mathematical model numerically.

• Conceptualise, develop, and build a pre-prototype of the omnidirectional pendulum en-

ergy harvester. Evaluate, analyse, and verify its capabilities experimentally.

• Investigate a possible broadening of the operational range of the omnidirectional energy

harvester and define an optimal operational point.

• Compare the numerical and experimental results and investigate possible improvements

of the numerical analysis.

1.2 Structure of the Thesis

Chapter 1 gives the reader an introduction in the thesis and an overview over the general struc-

ture.

Chapter 2 gives an overview ot the theoretical background. This includes four main fields of

interest. These are energy harvesting, nonlinear dynamics, spherical pendulum, and the control

of the electric power take-off.

Chapter 3 the methodology of the thesis is observed. This includes remarks on the numerical

analysis, experimental design, post-processing of the experimental data, determination of the

damping ratios, observation of internal vibrations in the experimental rig, and the introduction

of the equations to compare experimental and numerical results.

Chapter 4 introduces the mathematical model for a forced spherical pendulum. Additionally,

an active power take-off term is introduced, this transforms the mathematical model of the

spherical pendulum into an omnidirectional pendulum energy harvester.
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Chapter 5 gives a numerical analysis of the dynamics of the omnidirectional pendulum har-

vester. The dynamics are compared under different forcing conditions with and without an

active power take-off.

Chapter 6 investigates the experimental results of the omnidirectional pendulum energy har-

vester. The results of the energy harvester are compared for an operation in a low and a high

power take-off mode. Additionally, the broadening of the operational range of the energy har-

vester is observed by inclusion of excitation frequency sweeps. Videos have been uploaded to

see the experimental rig in action [3].

Chapter 7 compares the numerical and experimental results in the low and high power take-off

modes.

Chapter 8 introduces different areas of application of the omnidirectional pendulum energy

harvester and proposes and investigates theoretically a controlled power take-off.

Chapter 9 shows the conclusions of this thesis.

Chapter 10 proposes different subjects for future scholars to investigate.
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Chapter 2

Theoretical Background

2.1 Energy Harvesting

Energy harvesting is a large field of research and its popularity is constantly increasing over the

past years. Nowadays the term energy harvesting covers a wide variety of different energy har-

vesting methods. This work therefore only considers the conversion of kinetic energy to usable

energy which is mostly electric energy. Already in the antiques these ambient conditions were

used by the Greeks with their water-powered mills in 280-220 BC [4] and the Roman used

wind-powered machines in the first century AD [5] with which they mechanically grounded

grains. The difference to today’s energy harvesters is, apart from the massive technical im-

provements, for the most part the final product, electrical energy. These days ambient energy is

harvested by a broad range of energy harvesters for example to utilize wind energy with large

on- and offshore wind parks or to convert the energy of waves or tides. The last-mentioned

harvester group is often located in the subgroup of the so-called vibration energy harvesters.

This group of harvesters converts vibrational energy into electric energy. These come in dif-

ferent sizes, bigger wave energy harvesters [6], but also micro- or nanoscale machines are of

interest for researchers [7–10]. These small devices can be used in remote or inaccessible areas,

where they are self-sustained with applications in various fields for example as structural health

monitoring devices [11] and medical devices [12].

2.1.1 Potential of Vibrational Energy Harvesting

The definition of vibration energy harvesters (VEH) is the conversion of kinetic energy (mech-

anical motion energy) into electrical energy [13]. Since there is a broad variety of mechanical

motion sources available, the field of vibrational energy harvesting itself is a large field that is

constantly growing [14]. Table 2.1 shows the potential of different vibration sources by display-

ing their acceleration and frequency. It can be seen that there are hardly any limitations to the
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range of applications, ranging from small electrical appliances e.g. blenders and microwaves

over human motion [15] up to different parts of vehicles [16].

Table 2.1: Frequency and acceleration of different vibration sources [16]

Vibration Source Acceleration
[m

s2

]
Frequency [Hz]

Car engine compartment 12 200

Base of 3-axis machine tool 10 70

Blender casing 6.4 121

Clothes dryer 3.5 121

Person nervously tapping their heel 3 1

Car instrument panel 3 13

Door frame just after the door closes 3 125

Small microwave oven 2.5 121

HVAC vents in the office building 0.2 - 1.5 60

Windows next to a busy road 0.7 100

CD on notebook computer 0.6 75

Second storey floor of a busy office 0.2 100

To utilise the vibrational energy some kind of mechanical resonator that gets excited by the

vibration source is needed. The standard concepts include energy harvesters with a single mass

oscillator [17, 18], cantilever beam [19, 20], or a simple pendulum [21, 22]. The resonator can

be adapted to its excitation source, by variation of the parameters of the resonator. This can be

achieved by adapting e.g. the pendulum length, the mass, the damping ratio, and the stiffness

of the system. This tuning means that there are virtually no limits to the operational range of

the application. Only alternating differences in frequencies of the vibration source are hard to

cope with.

2.1.2 Electromechanical Conversion

After the resonator has been set in motion, the kinetic energy must be converted to electrical

energy. This is where the electromechanical conversion comes into the picture. The three main

concepts for electromechanical conversion are electromagnetic induction, piezoelectric trans-

duction, and electrostatic transduction [14, 23]. Examples of the energy harvesters with the

different concepts are shown in Figure 2.1.

Electromagnetic vibration energy harvesters (emVEH) use electromagnetic transduction

to convert the kinetic energy into electric energy [14]. The same principle of operation is used
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(a) Electromagnetic (b) Electrostatic (c) Piezoelectric

Figure 2.1: Commonly used electromechanical energy converters (adapted from [24])

for example in a DC motor. Figure 2.1a shows a simple design for emVEH, with the single

mass oscillator as a mechanical resonator, it consists of a permanent magnet that is attached to

the ground and a coil that moves vertically with a spring that applies a restoring force. When

the coil and the magnet approach each other, Faraday’s law predicts the electromotive force

that is induced. Since the movement of the coil is an oscillation, an AC voltage is generated in

the coil. This electric energy is drawn and utilized. Various different design of emVEH have

been studied over the past, examples are [25–28].

Electrostatic vibration energy harvester (eVEH) “use a variable capacitor structure to gen-

erate charges from a relative motion between two plates” [28]. It is mandatory for the principle

of operation that the two plates are charged and therefore have a potential to one another.

Figure 2.1b shows a design for an eVEH. The design is similar to the single mass oscillator

for the electromagnetic conversion. Over the past years various designs for eVEH have been

introduced, examples are [29–31].

Piezoelectric vibration energy harvesters (pVEH) utilise the piezoelectric effect to convert

mechanical energy into electric energy [14]. A large portion of the pVEH presented use a so-

called cantilever beam, see Figure 2.1c. The cantilever beam is a beam with a mass at the

end. The beam has a layer of piezoelectric material on the top and bottom which is deformed

periodically by the movement of the mass. This deformation causes an electric charge which

itself is utilised. Different energy harvesters with a piezoelectric electromechanical conversion

were introduced, examples are [32–34].

In Table 2.2 the advantages and disadvantages of the different electromechanical conver-

sions are shown. Pendulum energy harvesters usually rely on electromagnetic conversion with

the help of a DC motor or some kind of other construction that utilises the principle of elec-

tromagnetic conversion. The pre-prototype examined in this work uses DC motors. These have

the advantage that they do not require a supply voltage and are very robust, reliable and cost-

effective. However, they have a disproportionately low output voltage and are rather difficult

to scale down. In comparison, the disadvantages of electromagnetic conversion are not present

in an electrostatic system. Since the electrostatic conversion has a high voltage output and is
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Table 2.2: Advantages and disadvantages of different electromechanical conversions [14]

Transducer Advantages Disadvantages

Electromagnetic
No voltage source needed Low output voltage

Robust Difficult to microscale

Electrostatic
High output voltage Voltage source needed

Suited to microscaling Complex control electronics

Piezoelectric
No voltage source needed Requires voltage rectification

High output voltage and power Fatigue of piezoelectric beams

well suited for downscaling. However, this must be considered in relation to an external supply

voltage source that is needed and complex control electronics. In comparison, the piezoelectric

conversion does not need a voltage supply and has a high voltage output. However, the output

voltage needs to be rectified and the piezoelectric beams are fragile.

Even though Table 2.2 gives a good initial overview of the advantages and disadvantages of

different types of energy harvesters some caveats need to be mentioned. The electromagnetic

transducer has two additional disadvantages, firstly, the necessity for a permanent magnet and

secondly voltage rectification is required in some cases as well. For the electrostatic transducer,

the main disadvantage that is mentioned is that a voltage source is needed, which can be avoided

by the use of an electret device. Additionally, the table would benefit greatly by mentioning

different price points for the systems and adding the triboelectric energy conversion.

2.1.3 Nonlinearities of Vibration Energy Harvesters

Generally known are systems that are assumed to be linear such as the single-mass oscillator

with a nonlinear spring or linearised systems such as a simple pendulum with a small angle as-

sumption, but in reality these systems are not linear. Nonlinearity can occur because of different

reasons and examples of this are material, geometric, and contact properties (e.g. friction). This

means that vibrational energy harvesters show nonlinear properties which can make an at first

glance simple looking system rather complex1. But, the dynamics of nonlinear systems have

been studied extensively, and tools to analyse nonlinear dynamics are at our disposal. These

tools and a general overview of nonlinear dynamics is located in Section 2.2. A prominent

software tool to analyse nonlinear dynamics is AUTO [35] and the tool COCO can be used to

benchmarking numerical optimization algorithms [36]. Besides the nonlinearities that appear

because of mechanical properties there are also nonlinear effects observed in electrical com-

1This is exclusively referring to a first visual impression.
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ponents, these are not discussed in this work since this would exceed the topic of the thesis.

Literature recommendations for this topic are [37, 38].

The complex dynamics of a nonlinear system at first glance suggest that it cannot be advant-

ageous to intentionally design a VEH with nonlinear behaviour. But here the first impression

is deceptive because there are applications in which nonlinear behaviour is deliberately incor-

porated by design to the resonator. An example of this is the so-called broadening effect. The

theoretical background for this was published in 1918 by the engineer Georg Duffing [39].

He investigated the so- called hardening and softening effects of the equations introduced by

himself, the Duffing oscillator. The equation is discussed in Section 2.2.2. In Figure 2.2 these

Figure 2.2: Broadening of a nonlinear oscillator. Originally produced by Blokhina et al. [14]

hardening and softening effects are shown with the help of a frequency response. The figure

shows the amplitude response for different excitation frequencies. The response of a linear os-

cillator is shown in black, it shows the typical characteristics with an eigenfrequency at the

coordinate origin. To convert energy effectively, the resulting amplitudes should be as phys-

ically large as possible2, for a linear oscillator this is given in a narrow range at the natural

frequency. This means that a linear energy harvest can only work effectively in a small working

range of excitation frequencies. When looking at the amplitude resonance curve of the nonlin-

ear oscillators, it can be seen that one leans to the left and the other one to the right. This is the

previously mentioned softening and hardening effects. In addition, it can be seen that there are

areas in the frequency response for the nonlinear oscillators, where there are two stable and one

unstable solution (dashed green and blue line) present, this is the so-called multi-modality. Ad-

ditionally, the hysteresis of the system is displayed with the help of the dashed grey lines. It can

be seen that depending on the starting excitation frequency and the direction of the frequency

sweep, different amplitudes are obtained [14]. The advantage of the nonlinear resonator, how-

2This only applies to the purely mechanical system where the electrical effects i.e. parasitic damping are not
considered. These interactions between the mechanical and electrical elements are not considered here for reasons
of simplicity.
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ever, is that the frequency range with predominant high amplitudes has widened and thus the

range of application in which the system can operate is consequently larger. This broadening

of the bandwidth for vibrational energy harvesters with help of softening and hardening effects

is being studied by many researchers e.g. [40–43], and is also observed in the experimental and

numerical section of this thesis.

2.1.4 Pendulum Based Energy Harvesters

The field of energy harvesting is very large and therefore it is not surprising that a great variety

of energy harvesters has been presented that incorporate some kind of a pendulum. This section

is concerned with the different concepts of pendulum energy harvesters, an examination of the

dynamics and the mathematical models of spherical pendulums can be found in Sections 2.3.1

and 2.3.2.

The majority of the research is concerned with simple pendulums with one generalised

coordinate. These have the advantage that the mathematical description has one generalised

coordinate in comparison to the two generalised coordinates needed for the description of

the spherical pendulum. Therefore the experimental design of the simple pendulum energy

harvester is simpler compared to a pendulum with a higher number of degrees of freedom.

Nevertheless, important information is gained from these systems which can also be applied

to the spherical pendulum. Therefore, some interesting concepts of simple pendulum energy

harvesters are presented in the following.

Dai [44] introduced a pendulum energy harvester which is excited in one vertical direction.

In Figure 2.3a the concept is shown. The mass is in the shape of a triangle and magnets are

(a) Diagram of the pendulum energy har-
vester [44]

(b) Softening properties of the measured frequency re-
sponse of the peak voltage [44]

Figure 2.3: Diagram and frequency response of the voltage output of a simple pendulum energy
harvester. Originally produced by Dai [44].

attached to it in a semicircle, these move past a coil that is attached to the shaft. This induces a

voltage which then can be utilised. This is the principle of electromagnetic induction. The au-
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thor compares theoretical and experimental results, which agree well. The results in Figure 2.3b

show the nonlinearities of the simple pendulum energy harvester, the softening character and

the resulting broadening of the operational range. Similar to the softening effect that is observed

in Figure 2.2. Additionally, the author shows that the power output increases with an increase

of the acceleration. A frequency doubling is observed as well which increases the power output

of the pendulum harvester for low frequencies [44]. More on the effect of period doubling and

the resulting route to chaos will be covered in Section 2.2.3. Other interesting concepts for

simple pendulum energy harvesters are [21, 22, 45–47].

Based on the variations of the simple pendulum several interesting concepts for energy

harvesters were introduced. Exemplary cases are spring pendulums [48, 49], coupled pendu-

lums [50–52], a counterweight pendulum [53], a cantilever beam with a implemented simple

pendulum [54], and an autoparametric inverted pendulums [55]. Another interesting concept

for a simple pendulum is the adaptive oscillator that modifies the pendulum rod length and

therefore can maintain larger deflections over a wider excitation frequency area [56]. These are

just a few examples, regarding simple pendulum harvesters, but the diversity is clearly visible.

The spherical pendulum energy harvester, on the other hand, is considered less frequent in the

literature. This thesis aims to fill in some of the lacks in the literature.

In the PhD thesis by McRobb [57], different types of energy harvesters are presented.

Interesting in the context for this work are the presented simple and spherical pendulum energy

harvesters.

Another energy harvester that uses a slight modification of the spherical pendulum was

presented by Anurakpandit, Townsend, and Wilson [6]. The authors show the numerical and

experimental validation of a gimballed pendulum. Figure 2.4 shows the experimental setup of

(a) Graphical design [6] (b) Test rig [6]

Figure 2.4: Design of the gimballed pendulum harvester. Originally produced by Anurakpandit,
Townsend, and Wilson [6].

the gimballed pendulum harvester. The system has two degrees of freedom (2-DOF) which

allows the system not to be restricted in the direction of the excitation. In their work, the

authors examine the effect when one of the 2-DOF is blocked and compare the power output
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to the free moving two degree of freedom system. Contrary to expectations, the excitation in

which the system operates results in a higher power output for the 1-DOF system compared

to the 2-DOF system [6]. As the 2-DOF system has two moving shafts and the 1-DOF system

has one moving shaft it is reasonable to assume that the lower power output is because of the

additional energy losses induced by the higher overall damping ration. However, this slightly

lower power output is in contrast to the wider range of possible applications only a minor

disadvantage. It is important to keep in mind that this work is only considering cases under

ideal laboratory conditions. If a 1-DOF system is excited slightly off plane a defined amount of

excitation energy, depending on the angle, can not be converted into kinetic movement energy

of the energy harvester and therefore the overall energy efficiency of the energy harvesting

system decreases.

Noteworthy is the work of Jahangiri and Sun that investigates the implementation of a

spherical pendulum energy harvester in the tower of an offshore wind turbine which utilises

the vertical movement of the wind turbine tower [58]. Also, Wang et al. introduce a pendulum

based wave energy harvester that can rotate around two axes and is therefore not restricted by

the direction of excitation [59].

2.2 Nonlinear Dynamics

Nonlinear behaviour is ubiquitous and can be found in many systems across different discip-

lines. However, the impression often conveyed is that nonlinear behaviour is disadvantageous

and only increases the complexity of a system. And so it happens that in the engineering dis-

cipline systems are simplified and/or partial areas are considered in which the dynamics are

assumed to be linear. A common example for this is the well known small angle assumption

for the simple pendulum. However, this neglects positive effects that arise from nonlinear dy-

namics as well, as already briefly introduced in Section 2.1.3.

For the omnidirectional pendulum energy harvester that is presented in this work these

simplifications to a linear system would affect the dynamics of the system strongly and it

would simply defeat the purpose to assume linear behaviour3. Therefore, it is crucial to discuss

nonlinear effects and nonlinear dynamics. However, nonlinear dynamics is a massive field of

research and therefore this section is focused on the most important points with regard to the

work.

2.2.1 Origin of Nonlinearities

Nonlinearities occur because of various reasons that are considered in the following. The

simplest form of nonlinearity occurs because of geometrical properties of the system [60].

The geometrical nonlinearity can be shown with help of the well-known ordinary differential

3The work is mainly concerned with large deflections of the energy harvester.
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equation of a simple pendulum (2.1). For this simplified example the damping term and forcing

terms are not observed.

θ̈ +
g
l

sin(θ) = 0. (2.1)

For small oscillations around the resting point (≈±20◦) the value of sin(θ) can be linearised to

≈ θ . This small angle assumption is well-known and widely used. However, if the oscillations

exceed an angle of ±20◦ the dynamics of the system are no longer linear but instead become

highly nonlinear. This is the same effect that influences the dynamics of the omnidirectional

pendulum energy harvester in this work. More on the softening characteristics of the pendulum

is considered in greater detail in Section 2.2.2.

Another reason for nonlinearity are the physical properties of the material when it is de-

formed. Figure 2.5 shows the qualitative behaviour of stress with a variation of strain for the

Glass

Stainless steel

Plastic material

Strain

Stress

Figure 2.5: Qualitative stress strain curve for different materials

material glass, stainless steel and a plastic material. It can be seen that the material have areas

in which the relations between stress and strain are linear and there are areas in which the re-

lations are nonlinear. These material properties are then adapted in the dynamical system, for

example by using a spring or a cantilever beam. This allows for a targeted incorporation of

nonlinear properties in a resonator which then results in hardening or softening dynamics.

Nonlinearities can be caused by friction, because friction is not directly proportional to

velocity in most cases [61]. Friction is normally described with the so-called friction coefficient

µ , event though it is assumed to be a constant in most calculations it is in fact not a constant.

Additionally, the friction coefficient is categorised in the slipping coefficient and the separating

coefficient. Slipping can be assumed as soon as the applied force overcomes the sticking and

the separated materials have an absolute velocity [60].

The last reason for nonlinear behaviour is that it is designed into the system intention-

ally [62, 63]. This can be achieved by adding an additional spring when a definable oscillation

amplitude is exceeded or another option would be to constrain the movement with a limit stop.

This allows a precise adjustment of the resonator to the operational region.
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2.2.2 Hardening and Softening Effects

This section is to be seen as an extension of Section 2.1.3 and therefore goes more into depth

on the theoretical aspects of hardening and softening effects and the resulting broadening of

the frequency response. The concepts of hardening and softening are associated with Georg

Duffing, and with his damped and forced Duffing oscillator [39]. The Duffing Equation (2.2)

examined in the work of Brennan et al. [64] is shown below. Where y is the generalised co-

ordinate which is depended on the dimensionless time τ . The different terms are the inertia

term ÿ, the damping term 2ζ ẏ, the restoring force term y, and α controls the nonlinearity of

the restoring force. The term on the right-hand side of the equation is called the excitation or

forcing term with γ defining the excitation amplitude and Ω defining the excitation frequency.

ÿ+2ζ ẏ+ y+αy3 = γ cos(Ωτ). (2.2)

The Duffing oscillator can show different nonlinear characteristics depending on the values

that are chosen for the variables. Figure 2.6 shows a typical frequency response of the Duffing

Figure 2.6: Frequency response curve for the Duffing oscillator adapted from [64].

oscillator. When the control parameter α is positive the amplitude frequency curve leans to the

right this is known as hardening effect and when the control parameter is negative the frequency

response leans to the left and the system shows softening dynamics. Furthermore, it can be seen

that the softening properties increase further when the magnitude of the control parameter for

the nonlinear restoring force α is further increased. The dashed lines are shown in Figure 2.6

indicate unstable branches. These unstable branches are marked by a x and a circle (◦) symbol.

The x symbol indicates the limit frequency after which the amplitude jumps-up and the circle

symbol denotes the maximum value for the amplitude and at the same time the jump down

point [64].

13



CHAPTER 2. THEORETICAL BACKGROUND

From Figure 2.6 it can be concluded that only the control parameter α has an effect on

the nonlinearities of the system. This means that only the part +αy3 of Equation (2.2) de-

termines the intensity of the nonlinearity. Additionally, the sign of the nonlinear part of the

restoring force defines whether the systems dynamics are show hardening or softening charac-

teristics. But when recalling the previously mentioned Equation (2.1) of the simple pendulum

the softening characteristics cannot be seen directly. However, if the sin(θ) term is expanded

with a Maclaurin expansion, it can be noticed that the sine term is split into a linear part of

the restoring force term followed by a cubed part of the restoring force term. The second one

shows similarities to the term in the Duffing equation that controls the level of nonlinearity see

Equation (2.3). Moreover, it can be seen that the term has a negative sign and thus the softening

behaviour of the simple pendulum can be seen.

θ̈ +
g
l

sin(θ) = θ̈ +
g
l

(
θ − θ 3

6
+ ...

)
= 0. (2.3)

The same softening characteristics apply to the spherical pendulum in this work, more on this

in Section 2.3.2.

2.2.3 Representation of Nonlinear Dynamics and the Route to Chaos

As the complexity of the system increases, so do the findings consequently too. Therefore, in

most cases it makes no sense to use the time wave form but instead special tools to analyse

the dynamics of a nonlinear system are needed. These will be introduced in this section by

observing the route to chaos.

2.2.3.1 Phase Space

The French mathematician Henri Poincaré introduced the concept of phase space or state space

in the 1800s [65]. In the 1900s the physicist J. Willard Gibbs made the concept prominent and

it was used in statistical mechanics since then [66]. The phase space plot is an indispensable

representation of nonlinear dynamics. They show the general dynamics of a system with the

advantage that they can show fixed points and limited cycles of nonlinear systems.

The phase space can be illustrated with a so-called phase portrait. These figures shows the

generalised coordinate over the derivative of said coordinate. This is shown qualitatively in

Figure 2.7 for a damped unforced spherical pendulum oscillator. For the computation of the

qualitative Figures 2.7, 2.8, and 2.9 the Equations (4.36) and (4.37) were used. The parameters

that were used for the analysis are shown in the caption of each figure, they were selected with

a focus on showing the desired dynamics not on physical sensibility. Figure 2.7a shows the

oscillation decay process in the classical time wave form of a damped system that is initially

deflected and the amplitude decreases with each swing until its movement is completely de-

cayed. The same dynamics are shown in Figure 2.7b in a phase portrait where on the x-axis
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Figure 2.7: Qualitative diagrams for the decay process for displacement over time and phase
portrait from a damped unforced spherical pendulum. The parameters are set to: l = 0.5 kg,
m = 1.0 kg, g = 9.81 m

s2 , αθ = αφ = 0.12, au = av = aw = 0, βu = βv = 0.5βw = 0, and Pθ =
Pφ = 0.

the deflection of θ is shown and on the y-axis the velocity of the coordinate θ is shown. Here

the trajectory is spiralling towards a node (stable fixed point) in the middle of the coordin-

ate system. The node or sink is a point that attracts trajectories in its vicinity. An example of

this would be the resting point of the spherical pendulum. Other fixed points include repellers

(unstable fixed points) which repel close trajectories when they are slightly deflected from the

fixed point. An example of this is a balanced inverted pendulum where a slight deflection out of

the equilibrium causes an acceleration of the pendulum bob because of the gravitational force

acting on the pendulum bob. The last fixed points are the saddle points that repel trajectories

in one direction and attract them in the other direction [65]. An example of this is a ball that

is located on a hyperbolic paraboloid4. The mentioned fixed points apply to the spherical pen-

dulum as well. In nonlinear dynamics, the discussion of fixed points plays a very important

role, but with regard to this work they have a subordinate role and are therefore not considered

further in greater detail.

Figure 2.8 shows the displacement over time and the phase portrait for an unforced and un-

damped spherical pendulum with periodic dynamics. The oscillator in the time domain shows

classical periodic dynamics. These periodic dynamics are represented in the phase space by a

circular shape which can be distorted depending on the scaling of the axes or when the dynam-

ics do not follow a cosine/sine function as shown as in these figures.

Figure 2.9 shows non-periodic dynamics for a spherical pendulum. Each deflection of the

coordinate θ shows a different value. The clear delineated circle in Figure 2.8b of the periodic

dynamics becomes a squeezed circle that consist of many different trajectories for non periodic

dynamics see Figure 2.9b. In this case, it cannot clearly be seen which dynamics are present in

the system, however, the phase portraits can be used to determine so-called limit cycles. These

are areas where the systems dynamic are periodic for some time in an area that otherwise shows

4In non-scientific terms this shape can be described as a Pringles® crisp.
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Figure 2.8: Qualitative diagrams for displacement over time and phase portrait from an un-
damped and unforced spherical pendulum with periodic dynamics. The parameters are set to:
l = 0.5 kg, m = 1.0 kg, g = 9.81 m

s2 , αθ = αφ = 0.0, au = av = aw = 0, βu = βv = 0.5βw = 0,
and Pθ = Pφ = 0.

t
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(b) Phase portrait

Figure 2.9: Qualitative diagrams for displacement over time and phase portrait from a damped
forced spherical pendulum with non-periodic dynamics. The parameters are set to: l = 0.5 kg,
m = 1.0 kg, g = 9.81 m

s2 , αθ = αφ = 0.05, au = av = aw = 0.16, βu = βv = 0.5βw = 1.1, and
Pθ = Pφ = 0.

quasi-periodic or chaotic dynamics. Note that the phase portrait cannot determine whether the

dynamics of a system are chaotic or quasi-periodic it can only give a general first impression.

For this tools like Poincaré Sections, Bifurcation Diagrams and the Lyapunov exponent are

needed. These are discussed in the following.

A nonlinear dynamical system can get into a state of chaotic dynamics when one or more

control parameters are varied e.g. excitation amplitude or excitation frequency. During this pro-

gress the nonlinear system undergoes different dynamics this is referred to as route to chaos.

And there are different routes that lead to chaotic dynamics in a system, e.g. Landau scenario,

Ruelle-Takens scenario, route to chaos via intermittency and period-doubling which is attrib-

uted to Feigenbaum [67]. But for this work the transition from quasi-periodicity to chaos can

be observed and is therefore solely introduced.
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Figure 2.10: Schematic representation of quasi-periodic route to chaos of a forced system [65]

Figure 2.10 shows a schematic diagram of the route to chaos over the preliminary step of

quasi-periodicity. For a small control parameter the system shows a fixed point. A fixed point

shows the same deflection value for each excitational cycle and is therefore the same as periodic

dynamics. Then when the control parameter is further increased the fixed point Hopf bifurcates

in two so-called limit cycles. These limit cycles are to be understood as an oscillation that usu-

ally alternates between two or more different deflection values. This is followed by an area of

quasi-periodic dynamics. When an oscillator shows quasiperiodicity it can show dynamics that

appear to follow a repetitive pattern. However, "Quasiperiodic motion can certainly look very

complicated and seemingly irregular, but it cannot be truly chaotic in the sense of exponential

sensitivity to initial conditions" [68]. The last area of the bifurcation diagram shows chaotic

dynamics, this area does not show any repetitive pattern in the time domain. The difference

between the quasi-periodicity and chaotic dynamics is that close initial conditions can show

high differences for the end result and this does not apply for the quasiperiodicity [68].

2.2.3.2 Poincaré Section

Whether the dynamics of a system are periodic, quasi-periodic or chaotic can be portrayed well

in a so-called Poincaré section named after the scholar Henri Poincaré. In a Poincaré section

the x-axis shows the deflection of the generalised coordinate and the y-axis shows the velocity

of the same generalised coordinate. Figure 2.11b shows a Poincaré section that suggests chaotic

dynamics. In comparison, a quasi-periodic system see Figure 2.11a is characterised by the fact

that all the single points of the Poincaré section line up and from a shape often appears in a cir-

cular form [67]. A fixed point in a Poincaré section is indicated by a single point. The transition

from fixed points to quasi-periodicity to chaos for a spherical pendulum is extensively studied

more on these topics can be found in Section 2.3.3. The Poincaré section can be produced by

storing the values when the oscillator passes by a defined threshold. But for the pendulum en-

ergy harvester the approach of storing the values with respect to the excitation frequency is

used [69]. For this every full excitational circle the position and velocity of the pendulum bob

is stored. This is realised over a pre-defined time period and then the stored coordinates are

portrayed which gives a Poincaré section.
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Figure 2.11: Poincaré sections for the Duffing oscillator in Equation (2.2) with the parameters
set to arbitrary values of ζ = 0.015 and α = 5

2.2.3.3 Bifurcation Diagram

Another useful tool to get a broader overview of a dynamical system and a general idea of

the dynamics is the bifurcation diagram. This shows the maximum values of the dependent

variable over a variation of the control parameter, usually external control parameters are used

which are the excitation amplitude or excitation frequency. This shows that the previously ob-

served Figure 2.10 is technically a bifurcation diagram as well. In a bifurcation diagram fixed

points, periodic orbits, and chaotic attractors can be observed. Figure 2.12 shows a bifurcation
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Figure 2.12: Qualitative bifurcation diagram for a forced simple pendulum. With the parameters
set to l = 0.5 kg, m = 1.0 kg, g = 9.81 m

s2 , ζ = 0.028, and Ω = 0.6Hz.

diagram for a simple pendulum with the excitation amplitude as control parameter. The qualit-

ative bifurcation diagram is computed with the differential Equation (2.4) of a forced damped

simple pendulum.

θ̈(t)+2ζ ωnθ̇(t)+ sin(θ(t)) = acos(Ωt) (2.4)

18



CHAPTER 2. THEORETICAL BACKGROUND

The lines that can be seen in the bifurcation diagram in Figure 2.12 actually consist of a large

number of individual points that lie close to each other and therefore form a fixed point for a

value of the excitation amplitude from 0.5 to 0.6. Additionally, a limit cycle can be seen at the

end of the excitation amplitude range in the bifurcation diagram. The areas from an excitation

amplitude of 0.65 to 0.75 and 0.85 to 0.95 show dynamics that suggest quasi-periodic or chaotic

dynamics.

2.2.3.4 Lyapunov Exponent

The Lyapunov exponent is attributed to the mathematician Aleksandr Mikhailovich Lyapunov.

It gives a way to quantify the chaos and it is therefore called the Lyapunov exponent. The

Lyapunov exponent determines in which ratio close initial conditions converge or diverge in

the state space. This is achieved with a numerical analysis over a long period with an averaging

process [70–72]. Normally only the highest Lyapunov exponent is observed in a system since

when at least one Lyapunov exponent in the system is positive the dynamics of the system are

chaotic [72]. In the context for this work, the Lyapunov exponent does not play a role and will

therefore not be explained in greater detail; recommended literature are the textbooks that are

cited in this sub-section.

2.3 Spherical Pendulum

The first research for the pendulum was carried out by Galileo, Huygens, Newton, and Hook.

With the help of the pendulum, the first findings on gravitational acceleration and the conserva-

tion laws [73] were made. Another mile stone was the Foucault pendulum in 1851, providing

proof for the rotation of the earth. And even in our day and age journal articles are still pub-

lished that observe the Foucault pendulum [74–81].

Nowadays it is common practice that every engineering student studies the simple pendu-

lum, mostly a small angle assumption is used to remove the nonlinear part from the restoring

force term. Thus, the undamped (conservative) simple pendulum has one force that acts on the

pendulum bob which is the restoring force that comes from the gravitational acceleration. If

the small-angle assumption is not used, the simple pendulum is one of the simplest nonlinear

systems. However, this system can be further adapted to model real conditions and thus be-

comes more complex. Firstly, a damping coefficient (friction at the pivot point or aerodynamic

dissipation at the pendulum bob) should be introduced this can happen with linear damping

or nonlinear damping ratios [82, 83]. The damping ratio can be controlled with a magnet-

orheological damper and together with a nonlinear spring the dynamics of a pendulum can be

changed [84, 85]. To model natural effects it is important to excite the entire system in different

directions. Furthermore, chaos can be demonstrated if another degree of freedom is added to

the pendulum. One method for this is the double pendulum [86–90]. The spherical pendulum,
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which has two degrees of freedom as well, can show chaotic dynamics which was discussed by

various authors [91–93]. On the dynamics of the spherical pendulum is further elaborated on

in Section 2.3.3.

2.3.1 Development of the Research on the Spherical Pendulum over the Near
Past

The spherical pendulum is a planar pendulum that has been extended by a generalised coordin-

ate, which describes the rotation of the planar pendulum, see Figure 2.13 in Section 2.3.2. The

first noteworthy studies of the stability of a forced spherical pendulum were carried out by John

W. Miles in 1962 [94]. Throughout his working life he published two more articles on the sub-

ject [95, 96] and thus laid the foundation for much of the research that followed, most of which

is based, to some extent, on the equations he presented. Henceforth these equations are referred

to as the Miles equations5. In 1978 M. G. Olsson published an article [97] in which he used

the Lindstedt-Poincaré perturbation method to describe the planar movement of the spherical

pendulum with small oscillations from the plane. Three years later the author published an-

other article [98] that shows a simplified presentation of the problem to address the target

group of undergraduate students, which he succeeded in doing. Tritton shows in 1986 [99] ex-

perimentally how a spherical pendulum movement behaves from complex to chaotic motions.

Science has always been concerned with debunking pseudoscience and this is the case with

the spherical pendulum with F. E. Irons’s article [100] describing the movements of a dowsing

pendulum and calculating that a small change of the movement of the operator’s hand changes

the dynamics of the system drastically. And therefore the author gives a mathematical explan-

ation that the change in movement characteristics are most probably not connected to water

streams in the ground but instead attributed to the changes in the movement of the operator’s

hand. In 1990 Bryant and Miles published 3 consecutive articles. Even though they deal with

the simple pendulum, they are still indispensable for this PhD thesis, dealing with the different

excitations of a pendulum. The simple pendulum is excitation by an applied torque [101], a ho-

rizontal force [102], and a vertical force [103]. De Jong investigates the chaotic dynamics of the

simple pendulum [104]. Bryant published another article on the chaotic motion of a spherical

pendulum in 1993 [105] and was the first to add Lyapunov exponents to quantify the chaotic

behaviour. A similar article was published two years later by Kana and Fox [91] the main goal

of the article was the investigation of the transition from periodic or quasi-periodic dynam-

ics to chaotic dynamics. In 1999, two interesting articles were published, firstly, Tritton and

Groves published an article dealing with the Lyapunov exponents of the Miles pendulum [106].

Secondly, Aston investigated the bifurcations and the Lyapunov exponents on a spherical pen-

dulum. The interesting part about that article is that he introduces a new mathematical model

5The term ’Miles equations’ is a commonly used term in the literature by authors that are concerned with the
dynamics of the spherical pendulum.
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that does not have a singularity at the resting point of the pendulum [69]. In the same year

Markeyev published an article where he researched a spherical pendulum with a vibrating sus-

pension [107]. The next interesting paper was published in 2006 by Leung and Kuang [108]

and deals with chaotic dynamics of the spherical pendulum which is excited in the vertical dir-

ection and both horizontal directions. Similarly, Shvets is concerned with this, but his spherical

pendulum is instead vertically excited [109]. Another experimental investigation was conduc-

ted by Cartwright and Tritton in 2010 [93]. They compared their experimental results with

the Miles equations. In 2013 Náprstek and Fischer published an article on the quasi-periodic

dynamics of the spherical pendulum [110] and one year later these two authors and Pospíšil

published an ’Experimental analysis of the influence of damping on the resonance behaviour

of a spherical pendulum’ [111]. At the end of 2020 Litak et al. published the dynamic response

of a spherical pendulum when horizontally forced with a Lissajous curve [112]. Anurakpan-

dit et al. published an experimental and numerical examination of a gimballed pendulum that

is used as an energy harvester [6]. Another two degree of freedom pendulum based energy

harvester was introduced by Wang, Lou, and Zhu [59]. The design of their biaxial-pendulum

incorporated two shafts and is therefore unrestricted in its movement. The energy conversion is

done with coils and magnets that are fitted to the hemispherically shaped pendulum. To prove

the capabilities of the energy harvester the system was excited with a six degree of freedom

platform. Even with and arbitrary excitation direction and frequency the energy harvester was

able to produce an energy output [59, 113].

2.3.2 Mathematical Model of the Spherical Pendulum

The basic model of the spherical pendulum consists of a massless rod with a length l that has

a point mass m connected to it at its end. For the introduced system aerodynamic dissipation

and mechanical friction at the pivot are ignored. But the mechanical friction will be added

later for the numerical analysis see Chapter 4. There is one force of action on the system, the

gravitational force, which acts on the point mass. As generalised coordinates the angles θ and

φ are selected. As it describes the actual pendulum motion and therefore the characteristic of

the system, the coordinate θ is clearly more important. The coordinate φ is a cyclic coordinate

that describes the rotation of the planar pendulum around the z-axis, shown in Figure 2.13. The

mathematical description of the spherical pendulum is well-known in the literature and it is

derived with help of the following resources e.g. [57, 94, 98, 111, 112, 114]. The in the intro-

duction section shown mathematical model of the spherical pendulum is a simplified version

the complete mathematical model with an active power take-off term that is used for the nu-

merical analysis is derived in Chapter 4. The calculation of the ordinary differential equations

of the spherical pendulum was carried out by symbolic code written in Wolfram Mathematica®

language.
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Figure 2.13: Diagram of a spherical pendulum with kinematics (adapted from previous public-
ation related to this work [1])

Figure 2.13 gives the kinematic relations of the spherical pendulum depending on the gen-

eralised coordinates θ and φ , see Equations (2.5) to (2.7).

x =−l sinθ sinφ . (2.5)

y = l sinθ cosφ . (2.6)

z =−l cosθ . (2.7)

Differentiating the kinematic relations from Equations (2.5), (2.6), and (2.7) with respect to

time gives Equations (2.8), (2.9), and (2.10).

ẋ =−lφ̇ sin(θ)cos(φ)− lθ̇ cos(θ)sin(φ). (2.8)

ẏ = lθ̇ cos(θ)cos(φ)− lφ̇ sin(θ)sin(φ). (2.9)

ż = lθ̇ sin(θ). (2.10)

The Equations (2.5) to (2.10) are now introduced in the equations for the potential energy (2.11)

and kinetic energy (2.12).

U = mgz(t) =−mgl cosθ(t). (2.11)
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T =
1
2

mv(t)2 =
1
2

m(ẋ(t)2 + ẏ(t)2 + ż(t)2)

=
1
2

m
(

l2
θ̇(t)2 sin2(θ(t))

+
(
− lθ̇(t)cos(θ(t))sin(φ(t))− lφ̇(t)sin(θ(t))cos(φ(t))

)2

+
(

lθ̇(t)cos(θ(t))cos(φ(t))− lφ̇(t)sin(θ(t))sin(φ(t))
)2
)

=
1
2

ml2(φ̇(t)2 sin2(θ(t))+ θ̇(t)2).

(2.12)

In the following the Lagrange Equation of the second kind (2.13) is shown. The first part of the

equation is the derivative with respect to time of the generalised momentum. This is followed

by the derivative of the kinetic and potential energy with respect to the position. On the right-

hand side of the equation a generalised force term is shown.

d
dt

(
∂T
∂ q̇

)
− ∂T

∂q
+

∂U
∂q

= Qq. (2.13)

The potential and kinetic energy are now introduced in the Lagrange Equation (2.13) and dif-

ferentiated with respect to the coordinate θ̇(t).

∂T
∂ θ̇(t)

=
1
2

m
(

2l2
θ̇(t)sin2(θ(t))−2l cos(θ(t))sin(φ(t))

(
− lθ̇(t)cos(θ(t))sin(φ(t))

− lφ̇(t)sin(θ(t))cos(φ(t))
)
+2l cos(θ(t))cos(φ(t))(

lθ̇(t)cos(θ(t))cos(φ(t))− lφ̇(t)sin(θ(t))sin(φ(t))
))

= ml2
θ̇(t).

(2.14)

Differentiating Equation (2.14) with respect to time gives:

d
dt

(
∂T

∂ θ̇(t)

)
=ml2

θ̈(t). (2.15)
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Then differentiating the kinetic energy (2.12) with respect to the coordinate θ(t).

∂T
∂θ(t)

=
1
2

m
(

2l2
θ̇(t)2 sin(θ(t))cos(θ(t))+2

(
lθ̇(t)sin(θ(t))sin(φ(t))

− lφ̇(t)cos(θ(t))cos(φ(t))
)(

− lθ̇(t)cos(θ(t))sin(φ(t))

− lφ̇(t)sin(θ(t))cos(φ(t))
)

+2
(
− lθ̇(t)sin(θ(t))cos(φ(t))− lφ̇(t)cos(θ(t))sin(φ(t))

)
(

lθ̇(t)cos(θ(t))cos(φ(t))− lφ̇(t)sin(θ(t))sin(φ(t))
))

= ml2
φ̇(t)2 sin(θ(t))cos(θ(t)).

(2.16)

Now the potential energy (2.11) is differentiated with respect to the coordinate θ(t).

∂U
∂θ(t)

= mgl sin(θ(t)). (2.17)

Introducing Equations (2.15), (2.16), and (2.17) in Equation (2.13) gives the equation of motion

with respect to the coordinate θ without damping and forcing terms.

θ̈(t)− cos(θ(t))sin(θ(t))φ̇(t)2 +
g
l

sin(θ(t)) = 0. (2.18)

The Lagrange calculations are repeated with respect to the coordinate φ . Therefore the kinetic

energy is partially differentiated with respect to φ̇(t).

∂T
∂ φ̇(t)

=
1
2

m
(
−2l sin(θ(t))cos(φ(t))

×
(
− lθ̇(t)cos(θ(t))sin(φ(t))− lφ̇(t)sin(θ(t))cos(φ(t))

)
−2l sin(θ(t))sin(φ(t))

(
lθ̇(t)cos(θ(t))cos(φ(t))− lφ̇(t)sin(θ(t))sin(φ(t))

))
= l2mφ̇(t)sin2(θ(t)).

(2.19)

Differentiating Equation (2.19) with respect to time gives:

d
dt

(
∂T
∂ φ̇

)
= l2msin(θ(t))

(
sin(θ(t))φ̈(t)+2θ̇(t)φ̇(t)cos(θ(t))

)
. (2.20)
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Then differentiating Equation (2.12) with respect to the coordinate φ(t).

∂T
∂φ(t)

=
1
2

m
(

2
(
− lθ̇(t)cos(θ(t))sin(φ(t))− lφ̇(t)sin(θ(t))cos(φ(t))

)
×
(

lθ̇(t)cos(θ(t))cos(φ(t))− lφ̇(t)sin(θ(t))sin(φ(t))
)

+2
(
− lθ̇(t)cos(θ(t))sin(φ(t))− lφ̇(t)sin(θ(t))cos(φ(t))

)
×
(

lφ̇(t)sin(θ(t))sin(φ(t))− lθ̇(t)cos(θ(t))cos(φ(t))
))

= 0.

(2.21)

Now the potential energy (2.11) is differentiated with respect to the coordinate φ(t).

∂U
∂φ(t)

= 0. (2.22)

Introducing Equations (2.20), (2.21), and (2.22) in Equation (2.13) gives the equation of motion

with respect to the coordinate φ without damping and forcing terms.

l2msin(θ(t))
(

sin(θ(t))φ̈(t)+2cos(θ(t))θ̇(t)φ̇(t)
)

= sin(θ(t))φ̈(t)+2cos(θ(t))θ̇(t)φ̇(t) = 0.
(2.23)

As can be seen from Equations (2.18) and (2.23), the coordinate φ is not present as a restoring

force term in the ordinary differential equations (ODEs), therefore φ is a so-called cyclic vari-

able. To put it another way, φ can only be found in the ODEs (2.18) and (2.23) in the form of

its first or higher derivative. The mathematical model can show different dynamics. A special

case of the spherical pendulum is the so-called conical pendulum, this refers to a pendulum

where it is assumed that θ̇ = 0 and φ̇ = constant and thus the trajectory of the pendulum is a

rotation in a circular pattern around the z-axis.

2.3.3 Research on the Chaotic Dynamics of the Spherical Pendulum

Although a simplified version of the spherical pendulum is shown in Section 2.3.2, the dif-

ferential equations can be extended by damping, excitation in different directions and power

take-off as needed. These are all included in this thesis and are considered in great detail see

Chapter 4. In this section, the historical development listed in Section 2.3.1 will be examined

in more detail with respect to the dynamics of the pendulum and finally under which conditions

chaotic dynamics occur.

Many articles deal with the dynamics of the spherical pendulum and under which con-

ditions a transition to chaotic dynamic occurs. Miles studies the stability [94] of a spherical

pendulum is one of the first articles concerned with this topic. He gives three major results re-
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garding the stability of the pendulum: “planar harmonic motion is unstable over a major propor-

tion of the resonant peak, [...] non-planar harmonic motion is stable in a spectral neighbourhood

above resonance [...] [and] non-stable, harmonic motions are possible in a finite neighbourhood

of the natural frequency” [94]. Over the course of his working life he always came back to this

topic and studied the resonant motion of a spherical pendulum by looking at the loci of the equi-

librium points and bifurcations for a weakly nonlinear damped pendulum [95]. Additionally,

Miles published an article on the "internal resonance of a detuned spherical pendulum" [115].

Most scholars who work on the topic of spherical pendulums refer to this article, which

shows the importance of this fundamental research by Miles. Olsson [97] cites Miles in his

research article where he observes how a small change in the excitation amplitude changes the

dynamics of the system. That a forced spherical pendulum can develop complex and chaotic

dynamics is already known but an experimental validation has not been carried out up to this

point. The first one to do this was Tritton in 1985 [99]. He proposes an experimental validation

in which he investigates how the dynamics of the pendulum change with different excitations

and how periodic dynamics transits to a chaotic motion. A further investigation of the chaotic

dynamics of a lightly damped and horizontal forced spherical pendulum was achieved by Bry-

ant [105]. With changing of the excitation frequency the “typical sequence begins with stable,

symmetric, nonplanar oscillations, followed by bifurcation to a stable, periodic modulation of

the oscillations, then weakly chaotic modulation merging into fully chaotic modulation of the

oscillations” [105]. Bryant uses Lyapunov exponents to determine the general dynamics of the

system. Kana and Fox study the route to chaos for the spherical pendulum [91] theoretically

and experimentally. They show that the “transition from quasi-periodic to chaotic motion can

be carefully quantified in systems with very light damping” [91]. Up to this point, the spherical

pendulum has mainly been investigated with an excitation close to the free damped natural fre-

quency. But Markeyev investigates the stability of a vertically high-frequency excited spherical

pendulum with small amplitudes. The author concludes that the pendulum forms trajectories

that are close to a conical motion. He observes two cases, the first case is that the mass of the

pendulum rotates below the pivot point and the second case is where the mass rotates above the

pivot point. Regarding the stability of the cases Markeyev states the first case is stable and the

second case is only stable when the mass rotation is well above the pivot point. An interesting

study of the spherical pendulum was presented by Aston, who deviates from the mathematical

representation of the spherical pendulum of his predecessors and creates a mathematical model

which does not have its singularity at the resting point of the pendulum, see Section 2.3.4. As

usual the author examines Poincaré sections, bifurcation diagrams and determines the stability

of the chaotic solution with help of the normal Lyapunov exponent [69]. A broad study of the

stability of the spherical pendulum equations derived by Miles was conducted by Tritton and

Groves [106]. They conclude that both the likelihood of finding chaotic motion and the typical

Lyapunov exponent is highly dependent on the damping of the system. Furthermore, they prove
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the “co-existence of alternative types of attractor in regions both inside and outside the range

with non-stable fixed points and the occurrence of metastable chaos” [106]. A further valid-

ation of the equations of motion derived by Miles was carried out by Cartwright and Tritton,

these authors find a correlation between the previous theoretical results and their experiments

with regard to the chaotic dynamics of the spherical pendulum [93]. The authors Náprstek and

Fischer are concerned with the quasi-periodic response of a two degree of freedom (2-DOF)

autoparametric system. Their choice fell on the spherical pendulum, in which they determ-

ine the quasi-periodic dynamics of the system with the help of frequency sweeps [110]. In a

follow-up article Pospíšil, Fischer and Náprstek compare experimentally and numerically the

influence of damping on the resonance [111]. The excitation of the spherical pendulum with

a Lissajous curve is introduced by Litak, Margielewicz, and Ga̧ska. The authors show a wide

variety of trajectories for different excitation parameters. Furthermore, they show bifurcation

diagrams for the two generalised coordinates [112].

2.3.4 Alternative Mathematical Approaches for the Spherical Pendulum

As mentioned previously different approaches for the spherical pendulum were introduced as

well, which have different advantages and disadvantages. Two of them are shown in the fol-

lowing.

2.3.4.1 Model of a Spherical Pendulum Introduced by Aston

In his work “Bifurcations of the horizontally forced spherical pendulum” [69], Aston presents

a novel model of a spherical pendulum. The model can be seen in Figure 2.14, here excited in
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Figure 2.14: Diagram of a spherical pendulum with additional forcing terms and renamed gen-
eralised coordinates adapted from [69]

all directions and not just one horizontal direction as the original work. To obtain the original
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model from the article, the excitation u(t) and w(t) must be set to zero. Furthermore, the author

uses the generalised coordinates α and β instead of ψ and γ . The coordinates used by the author

are not used in the theory section to avoid a duplicate use with the methods of multiple scales.

Aston recognises that most of the previous considered spherical pendulums have a singularity

at x = y = 0, z =±1. The singularity in the z-direction is obviously dependent on the length of

the pendulum. Since the article is mainly considering th planar movement of the pendulum and

small perturbations from this plane the author choose a coordinate system that has singularities

at y = z = 0 and x =±1.

The kinematics of Figure 2.14 are as follows.

x =− l sin(ψ).

y =l cos(ψ)sin(γ).

z =− l cos(ψ)cos(γ).

(2.24)

After constructing the kinetic and potential energy with the added excitation terms of the

system and introducing them into Lagrange’s equation of the second kind two ordinary differ-

ential equations are obtained where the damping terms are also introduced.

0.5γ̈(t)+0.5γ̈(t)cos(2ψ(t))+2ξθ ωnγ̇(t)− γ̇(t)ψ̇(t)sin(2ψ(t))

+
gsin(γ(t))cos(ψ(t))

l
− V0Ω2

v cos(γ(t))cos(ψ(t))cos(Ωvt)
l

− W0Ω2
w sin(γ(t))cos(ψ(t))cos(Ωwt)

l
.

(2.25)

ψ̈(t)+2ωnξψ ψ̇(t)+0.5γ̇(t)2 sin(2ψ(t))+
gcos(γ(t))sin(ψ(t))

l

+
U0Ω2

u cos(ψ(t))cos(Ωut)
l

+
V0Ω2

v sin(γ(t))sin(ψ(t))cos(Ωvt)
l

− W0Ω2
w cos(γ(t))sin(ψ(t))cos(Ωwt)

l
.

(2.26)

After introducing the dimensionless parameters from Equations (4.33) the dimensionless differ-

ential equations are obtained. The subscripts have been adapted to the generalised coordinates

of the system for this purpose.

0.5γ̈(τ)+0.5γ̈(τ)cos(2ψ(τ))+αγ γ̇(τ)− γ̇(τ)ψ̇(τ)sin(2ψ(τ))

+ sin(γ(τ))cos(ψ(τ))−avβ
2
v cos(γ(τ))cos(ψ(τ))cos(βvτ)

−awβ
2
w sin(γ(τ))cos(ψ(τ))cos(βwτ) .

(2.27)
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ψ̈(τ)+αψ ψ̇(τ)+0.5γ̇(τ)2 sin(2ψ(τ))+ cos(γ(τ))sin(ψ(τ))

+auβ
2
u cos(ψ(τ))cos(βuτ)+avβ

2
v sin(γ(τ))sin(ψ(τ))cos(βvτ)

−awβ
2
w cos(γ(τ))sin(ψ(τ))cos(βwτ) .

(2.28)

2.3.4.2 Model of a Spherical Pendulum used by Ikeda, Harata, and Takeeda

In their work “Nonlinear responses of spherical pendulum vibration absorbers in towerlike

2DOF structures” [114] Ikeda, Harata, and Takeeda use a different approach for the spherical

pendulum. Figure 2.15 shows how they describe the generalised coordinates θ and φ with θx
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Figure 2.15: Diagram of a spherical pendulum with additional forcing terms adapted from [114]

and θy.

This gives the following relations (2.29) and (2.30). These relations provide the basis for

the conversion of the numerical coordinates to the experimental coordinates, see Chapter 7.

θx = θ cos(φ). (2.29)

θy = θ sin(φ). (2.30)

2.4 Application Based Background on the Electrical Power Take-
Off

To develop an application based energy harvester the theoretical background needs to be in-

troduced. When observing the field of wave energy harvesting it is evident that the excitation

frequency range changes with time and season [116]. This is represented qualitatively in Fig-
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Frequency

Amplitude

Figure 2.16: Representation of the wave spectrum (solid black line) compared to the frequency
response of the omnidirectional energy harvester (dashed black line) (adapted from [116])

ure 2.16. The dotted line shows the narrow frequency response of the omnidirectional pendulum

energy harvester and the solid line indicates the wave spectrum.

An optimal energy harvester has a high efficiency over the whole frequency spectrum which

in return increases the cost-efficiency. Of course, bounds to the laws of physics restrict this. It

can, however, be tried to adapt the energy harvester to different forcing conditions to see an

increase in efficiency. This can be accomplished by moving the frequency response of the

energy harvester along the axis of the excitation frequency. There are two main options to

accomplish this. The first possibility is a design that changes the length of the pendulum arm.

This change in length is equivalent to a change in the natural frequency of the energy harvester

and therefore the operational range of the energy harvester is shifted to another position [56].

The second solution is a controlled power take-off. In the field of energy harvesting and in the

subgroup of wave energy harvesting various examinations of different control, optimisation,

and prediction strategies for wave energy harvesters are shown. Têtu summarises the most

important control strategies which are a passive loading control, latching control, and reactive

loading control [116].The latching control is described in greater detail in Section 2.4.1.

Ozkop and Atlas review different control methods for wave energy harvesters [117]. Zhou

et al. simulate different control methods for a variable speed generator for a wave energy har-

vester with a permanent magnet generator [118]. Different power electronics for wave en-

ergy harvesters are compared by Kazmierkowski and Jasiński [119]. The development of the

electrical power output of an oscillating cater column energy harvester was investigated by

O’Sullivan et al. [120]. Kovaltchouk et al. note correctly that the energy harvesting applic-

ations are often discussed without observing the physical limitations of the electrical power

take-off [121]. Therefore, the authors propose a model predictive control for a wave energy har-

vester. Dicken et al. examines power extraction circuits for piezoelectric energy harvester [122].

Additionally, two review articles were published that are concerned with the optimised control

of different wave energy harvesters. Hong et al. classifies different wave energy harvesters ac-
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cording to their mechanical structure and compares their control strategies [123]. Another re-

view of different control strategies of wave energy harvesters was carried out by Maria-Arenas

et al. [124].

2.4.1 Latching Control

"The purpose of [a] latching control strategy is to force the velocity into phase with the excit-

ation force. An on/off PTO force is applied by means of a latching system, to avoid a phase

difference between the velocity and the incoming wave excitation force" [125]. This has the

potential to increase the efficiency of the energy harvester drastically. Figure 2.17 shows the

Figure 2.17: Latching calculations to put position and force in phase [125]

latching control used by Giorgi and Ringwood [125]. The authors state that the latching control

is best suited for excitation frequencies that are bigger than the natural frequency of the oscil-

lating element. Additionally, these authors provide a flow chart to explain a latching algorithm.

In an earlier article Ringwood and Butler examine the optimisation of the power take-off

with latching control of a simple idealised wave energy harvester [126]. The power take-off

is simulated with a damping ratio that can be controlled. They conclude that for an optimised

power take-off various requirements are needed. It is necessary that the natural frequency of

the oscillator is similar to the one of the excitation frequency. Then the power take-off can be

optimised with a latching control to bring the phase of the oscillations of the oscillator in phase

with the oscillations of the excitations in this case waves.

2.4.2 Power Electronics for the Omnidirectional Pendulum Energy Harvester

To explain the power electronics behind the electrical power take-off it is advantageous to dis-

cuss a related field. With the current ongoing electrification of individual transportation the

term regenerative braking has become more visible for the general public. This term describes

the electrical power take-off that is used to slow down a vehicle and convert the kinetic energy

into an energy form that can be used later e.g. for the positive acceleration of the vehicle. The

regenerative brakes are controlled and depending on the needed braking force more kinetic
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energy is converted which translates to a different braking force. The difference is that the re-

generative braking sees a velocity that is applied in one direction and in the energy harvester

the direction of velocity constantly changes direction. Nevertheless, the control of regenerative

braking is similar to the one that is needed for the power take-off of the energy harvester. The

terms are therefore used as synonyms in regards to this work. In the book "Electrical Engin-

eering 101" [127] the operating and control principles of regenerative braking are explained.

In Figure 2.18 a simplified motor control diagram is shown. The DC motor is connected to a

Figure 2.18: Simplified regenerative PWM motor control with a FET [127]

battery and is controlled with a pulse-width modulation (PWM). Additionally two field-effect

transistors (FET) are shown in the circuit. The primary FET is defined as the one that controls

the PWM, in Figure 2.18 this FET at the bottom. The other FET shown in the figure is called

a freewheel FET. Once one of the FETs is switched on the other one goes off and vice versa.

In this discussion of the regenerative braking the different driving strategies for FETs are not

discussed as they exceed the topic of this thesis. The principle of regenerative braking works as

follows. Assuming that the initial state of the circuit in Figure 2.18 is as follows the DC motor

was accelerated with the primary FET on and a defined PWM duty cycle of 80 %. Therefore,

the DC motor is in motion and now a braking force needs to be applied. The first step to do this

is to switch off the primary FET which in return switches on the freewheel FET. This results

in the output voltage generated by the DC motor being shorted into the input of the DC motor.

And this in return applies a braking force, and a current flows in the opposite direction accord-

ing to Faraday’s law of induction. This supplies current back into the battery and recharges

it [127]. The strength of the regenerative braking can be controlled with the PWM applied to

the freewheel FET.

With the shown circuit in Figure 2.18 energy can only be regenerated in one rotational

direction and the DC motor can only be driven in the opposite rotational direction. For the

omnidirectional energy harvester used in this work it is a requirement that energy can be re-

generated regardless of the direction of rotation. One way to do this is to use the H bridge. In

Figure 2.19 a H bridge used as power electronics for a DC motor is shown. The operating prin-

ciple or the regenerative braking is similar to the one described in Figure 2.18 but the difference
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Figure 2.19: H-bridge motor control [127]

is the more complicated design of the H bridge. Simultaneous switching of the opposing high

and low legs (arrows of current A and current B) creates a regenerative energy and therefore

a braking force is applied on the DC motor. The differential amplifiers used for this need to

be capable of operating under large voltage switches [127]. Different control strategies of the

regenerative braking were investigated by various scholars [128–130]. In the field of energy

harvesting the power electronics can be used for example to tune an electromagnetic energy

harvester [131].
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Chapter 3

Methodology

3.1 Numerical Analysis

The analysis of the numerical results is performed by symbolic code written in Wolfram Math-

ematica® language. As a numerical solver the code uses the ’NDSolve’ function to "find nu-

merical solutions to ordinary differential equations" [132]. For this the mathematical solver

uses a suitable methodology for numerical integration e.g. the Runge Kutta method. But this

approach can be subject to changes during the computation. The documentation of the soft-

ware gives overviews of the different solving methods of numerical integration for ordinary

differential equations [133, 134]. Within the function of ’NDSolve’ the method of numerical

integration can be changed if needed, however, for this work the default selected approaches

to numerical integration are sufficient. Nevertheless, there are some fine-tuning parameters to

increase the accuracy of the results. The most important ones are the ’AccuracyGoal’ which

defines the digits of the decimal places that are used during the computation, ’PrecisionGoal’

gives the "digits of precision sought" [132] and ’WorkingPrecision’ defines "precision to use in

internal computations" [132]. According to Wolfram Research Inc. the results of the numerical

analysis are accurate even with the fine-tuning parameters set to automatic, however they offer

a tutorial on the verification and improvement of numerical results [135]. In Figure 3.1 the

logarithm residual to the base of ten for the coordinate θ is shown for a numerical analysi with

arbitrary selected values that indicate a computation with high and low accuracy. The residual

is the difference between the left-hand side and the right-hand side of the ordinary differential

equation. This value should be as small as possible since the difference between the right and

left side of the ordinary differential equation should be equal to zero. With the introduction of

higher accuracies, with the parameters ’WorkingPrecision’ set to 30 and the ’AccuracyGoal’

set to 10 the accuracy of the residual of calculated parameter θ decreases by the factor 10−2

which is an overall increase of the accuracy of the numerical analysis.

However, it must always be taken into account that a variation of a parameter can massively

increase the computing time and this can lead to restrictions of the computer hardware. There-
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Figure 3.1: Difference of the residual between a low and high accurate numerical calculation
of the spherical pendulum with the parameters set to: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 ,
αθ = αφ = 0.0648, au = av = av = 0.064, βu = βv = 0.5βw = 1, and Pθ = Pφ = 0. For the low
accuracy the numerical analysis the settings were set to the default and for the high accuracy
the ’WorkingPrecision’ is set to 30 and the ’AccuracyGoal’ is set to 10.

fore, a balance between the most accurate results, time limitations, and computing hardware

limitations must be observed for each case.

Additionally, two interesting numerical solving methods that can be considered for solving

the differential equations are shown in the following. The Harmonic Balance Method (HBM) is

a frequency domain method to calculate steady-state responses of nonlinear differential equa-

tions [136]. And the orthogonal collocations method is a finite elements method that is used

where the solution has steep gradients [137].

The mathematical analysis for the different selected numerical analysis is uploaded to Git-

Hub [138]. In the branch ’Numerical-Calculation’ the calculation of the ordinary differential

equations with Lagrange, bifurcation diagrams, Poincaré sections, and time plots of different

parameters are stored.

The damping ratios used for the numerical analysis is the mean value of the experimentally

determined values for the two shafts, see Table 3.2.

3.2 Experimental Design

In this section the design and measurement equipment of the omnidirectional pendulum energy

harvester is shown.

3.2.1 Design of Energy Harvester

The design of the omnidirectional pendulum energy harvester was implemented in SOLID-

WORKS ®. The general dimensions of the cage of the pendulum energy harvester are 745 mm ×
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745 mm × 1120 mm. It can accommodate pendulum lengths with a range from l =0.1 m to

0.75 m, see Figures 3.2 and 3.3. Since the examined energy harvester is a pre-prototype care

(a) Power take-off sub-system with coordinates θ14 and θ23 (b) Complete assembly

Figure 3.2: CAD diagram of the experimental design of the energy harvester

has been taken to ensure that the design can easily be modified that a wide range of experiments

can be realised. Most importantly, the entire power take-off sub-system can be adjusted by an

offset angle to investigate different directions of excitation. For the construction mild steel was

used for the non-rotating parts and an aluminium alloy was chosen for the moving parts to

keep the mass moments of inertia as low as possible. With the exception of the pendulum rod

which is made from a standard M8 steel threaded rod which is cut into length according to the

requirements. The mass of the pendulum bob can be replaced. But for the experiments shown

the pendulum bob mass slightly exceeds 1 kg, at a nominal mass of 1.32 kg, to ensure that suffi-

cient restoring torque is available, even in areas where the velocities are low. Figure 3.2 shows

the assembly diagrams of the pendulum energy harvester. The power take-off sub-system in

Figure 3.2a consists of four individual generators/motors with coaxial gearboxes an integrated

shaft encoders. There is one symmetrically configured pair of generators per axis, and the elec-

tric load presented by the generators acts back on the harvester as a mechanical load. Each

shaft is connected to a 12 V DC motor/generator with a coaxial gearbox and encoder with a

spring coupling. Two motors/generators are used to archive a uniform movement of the shaft.

The direction of deflection of the shafts is defined with the coordinates θ14 and θ23. The built

in encoders emit 700 pulses per revolution of the shaft which results in the resolution after the

gearbox of 0.51 deg/pulse. The power take-off sub-system is mounted to a supporting structure

cage, see Figure 3.2b. This cage is then mounted onto the shaker table with M8 screws where

the rough alignment of the table is in 45 ◦ steps. For the fine adjustment of the angle the power

take-off sub-system can be rotated step-less to archive the desired offset angle. The mounting
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points for the triaxial accelerometers are shown in Figure 3.2b. Because of the dimensions of

the sensor and to ensure free movement of the shafts the accelerometers can unfortunately not

be fixed onto an extension of the centre line of the pendulum rod. But instead a slight horizontal

offset is needed as described in the following. The first accelerometer is attached to the top side

of the pendulum bob. With the coordinate system that is defined in the following in Figure 3.4

the horizontal displacement of the sensor dependent on the centre of the coordinate system can

be defined. The accelerometer on the pendulum bob has no displacement in the y-direction and

a displacement of 3.9 cm in the x-direction, see Figure 3.4. The accelerometer at the lower flat

bar of the power take-off sub-system is mounted on top of the flat bar. There is no displace-

ment in the x-direction but in the y-direction the accelerometer has a negative displacement of

-7.2 cm see Figure 3.4. The accelerometers were disassembled for most of the experiments and

were attached only when needed. This is done to keep the mass moment of inertia as low as

possible. The sensor specifications are discussed in the following Section 3.2.3.

3.2.2 Shaker Table

The energy harvester is mounted on a shaker table built by Centrotecnica SRL. With the shaker

table a maximum excitation amplitude of 14.3 cm for a frequency range from static to 100 Hz

is possible, which is more than adequate for the experiments. The maximum excitation amp-

litude decreases with an increase in excitation frequency. Because of the high dimensions of

the experimental rig the maximum excitation amplitude is therefore restricted to a value of

5.0 cm. This is still sufficient to run the energy harvester properly, and to generate results of

considerable interest. The shaker table only allows an excitation in one direction, therefore, a

coupled excitation was unfortunately not achievable for the experiments. Since the forcing in

the experimental section occurs in only one direction the symbol for the excitation amplitude is

A and the symbol for the excitation frequency is Ω. Figure 3.3 shows the shaker table with the

experimental rig mounted on top. The shaker table is connected to the computer with a CAN

to USB cable of the type "Kvaser Leaf Light HS v2". This allows for a digital data transfer of

the in- and output signal. In this case the transferred file is a text file.

In Figure 3.4 a top view diagram of the shaker table and the experimental rig is shown. The

diagram shows the power take-off sub-system with the two generators. For clarity purposes it

does not show the supporting structure and electrical equipment. It shows an important variable

for the experiments the static angular offset αo f f set , this angle defines the static rotation of the

experimental rig to the shaker table. This is particular of interest since it defines the angle of the

excitation direction. For an offset angle αo f f set = 0◦ this means that the complete oscillation is

performed with shaft 23 and for an offset angle of αo f f set = 90◦ the only oscillations are ob-

served only in shaft 14. However, with an offset angle of αo f f set = 45◦ a participation of both

shafts is ensured and the energy harvester is behaving truly omnidirectionally. The motors/gen-

erators M1 and M4 are aligned and therefore they are considered as shaft 14 and motors M2
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Figure 3.3: Shaker table with energy harvester mounted to the top

Figure 3.4: Top view of energy harvester to define the angular offset and the different rotation
angles of the shafts with a deflected pendulum bob

and M3 are defined as shaft 23. Shaft 14 is defined by the rotation coordinate θ14 and shaft 23 is

defined by θ23, as already shown in Figure 3.2a. The direction of the rotation angles is defined

from the perspective of motor 1 and motor 2. Thus, assuming that the point of reference is

on either of these motors and the line of sight faces towards the spring coupling, from there a

clockwise direction is defined as positive. To put it in other words when the pendulum bob is

deflected as shown in Figure 3.4 both coordinates show positive values. Because of a limited

budget the experimental design of the energy harvester was accomplished with the focus on

economy and mechanical simplicity. Therefore the experimental coordinates are definitionally
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different from those used in the numerical analysis. An experimental coordinate system is in-

troduced to allow a transformation between the coordinates, see Section 3.6. In the coordinate

system, the x- and y-axes are parallel to the shafts and the z-axis points in the positive direction

out of the page. When the offset angle is changed, the coordinate system will rotate as well. To

put it in other words the x- and y-axis of the coordinate system are always aligned with shaft 14

and shaft 23.

3.2.3 Measurement Equipment and Power Take-Off

The choice of measurement equipment was made with the aim of using a solution that is

fast and inexpensive but at the same time as accurate as possible. Therefore, the generators

were procured with a built-in encoder and they were together with voltage dividers and current

sensors connected to an Arduino MEGA 2560. Figure 3.5 shows the electrical schematic for

Figure 3.5: Electrical schematic for the measurement equipment with an Arduino MEGA 2560
(a larger version is located in Appendix B)

the measurement equipment. To increase the clarity a larger version of the figure is located in

the Appendix B. The current sensors that are used are the ACS712-5A and the voltage out-

put is measured with a resistive voltage divider. These outputs are connected to the analogue

pins (A3, A4, A5, A6, A8, and A9) of the microcontroller. The outputs from the DC-motors

are from left to right the motor voltage output (+), motor ground (-), encoder ground (GND),

supply voltage for the encoder (Vcc), encoder signal output A, and encoder signal output B.

The output signals of the encoder are connected to the digital pins (2, 3, 5, 7, 9, 18, 19, and
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20) of the microcontroller, it is important that pin A is connected to a so-called interrupt pin

(2, 18, 19, and 20) since otherwise the interrupt routine and therefore the measurement of the

angular position would not be possible. The need for four interrupt pins was the reason why

an Arduino MEGA was chosen over one of the smaller models in the Arduino series. The mi-

crocontroller stores the summed-up pulse trains from the encoder and the voltage and current

output values at a rate of repetition, and 12 ms was chose for practical reasons. The rate of

repetition is limited by the baud rate of the microcontroller. There is a series resistor (RS) and a

parallel resistor (RP) built into the circuit, and their values can be changed as needed. The par-

allel resistor can be disconnected if necessary. This is indicated in the following way RP = NC

this means that there is no physical connection between the in- and output before the voltage

bridge. The first measurements are carried out with a value of RS = 10 kΩ and RP = NC which

ensures that the power take-off is as small as possible. Followed by measurements where the

parallel resistor is included to increase the current output and therefore the power take-off. The

values are set to RS = 0 Ω and RP = 10 Ω for these experiments. The lower the value for the

parallel resistor the higher the power output. These two sets of resistor values are referred to

in the following as low power take-off mode and high power take-off mode respectively. They

are therefore just extremes of a continuum. Note that the term ’mode’ as used here does not

imply a flexural mode of vibration and instead refers to a basis of operation. The previously

Figure 3.6: Circuit for the voltage divider with the loading resistors

described power take-off modes are shown in greater detail in the circuit for one generator, see

Figure 3.6. With the two switches (S1 and S2) opened the resistors of the voltage divider (blue

double dotted frame) and the series resistor (RS) are in connected in line. Note that the switches

are only used as an aid for the explanation of the circuit, in the experimental set up the resistors

are removed or added manually as already mentioned in Figure 3.5. The total resistance value
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is high Rlow = 47.5 kΩ and therefore the observed current flow is low. Hence, the energy har-

vester operates in the low power take-off mode (green dashed dotted frame). The high power

take-off mode (purple dotted frame) is reached by closing both switches. With this the series

resistor is shorted and the current is divided between the two parallel branches of the circuit.

The total resistance in the high power take-off mode has a value of Rhigh = 9.997 Ω. This small

value results in a high current output and therefore a possible high power conversion as long

as the voltage source, i.e. movement of the pendulum, is unchanged. The circuit in Figure 3.6

shows that the current is measured before all the resistors. The voltage output is measured at

the shown position. The measured voltage output needs upscaling to determine the complete

voltage output of the generator, see Equation (3.1).

Vout =
7.5 kΩ

7.5 kΩ+30 kΩ
×Vin. (3.1)

Note that in the low power take-off mode (indicated by the green dash dotted frame) a series

resistor of 10 kΩ is used and therefore this value needs to be added to the denominator of

Equation (3.1) and therefore in the Arduino code. In the high power take-off mode (indicated by

the dashed purple frame) the voltage divider values as defined in Equation 3.1 are used. With the

microcontroller connected to the voltage bridge, see Figure 3.6, only positive voltage outputs

can be measured. For negative voltage outputs the microcontroller shows a value of zero. Since,

the two generators on each shaft are facing each their direction of rotation are oppositely signed.

This in return also means that the voltage output of each of the generator on the shafts are

oppositely signed. When one of the generators has a positive voltage output according to the

pre-defined direction of excitation the other generator shows a negative output receptively.

Since the negative voltage output cannot be measured with the described measurement setup

and the microcontroller output shows no voltage output, the voltage output of each shaft can

be artificially constructed1. This is done by subtracting the voltage output measured across

generator 4 from the voltage output measured across generator 1, see Equation (3.2). The same

procedure is applied with shaft 23, see Equation (3.3). This then gives an artificial constructed

sine shaped output signal for the complete shaft which then can be used for the further post-

processing.

V14(t) =V1(t)−V4(t). (3.2)

V23(t) =V2(t)−V3(t). (3.3)

The Arduino code developed for the experimental evaluation is uploaded to GitHub [138]. For

the development of the Arduino code the following references were used [139–142].

1In other words the two generator voltage outputs on each shaft have a 180◦ phase shift towards each other.
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It is important to investigate whether high frequency vibrations are prevailing in the struc-

ture of the energy harvesters since this is energy that cannot be transformed into motion energy

of the pendulum bob and it therefore reduces the efficiency of the pendulum energy harvester.

This is discussed in greater detail in Section 3.5. Examined are two points of importance,

the pendulum bob and the flat bar in the power take-off sub-system. Therefore, two points

were defined where the vibrations are measured see Figure 3.2b. Unfortunately, the only tri-

axial accelerometer that was available for the measurements is the inbuilt accelerometer of the

iPhone XS Max. The large dimensions of the smartphone and the weight inevitably influence

the vibration measurements, but this had to be accepted as there was no other triaxial accelero-

meter available. Moreover, the smartphone was only attached for the vibration measurements,

and for the rest of the measurements it was removed and therefore did not increase the mass

and mass moment of inertia of the rig for the other measurements. The directions of the accel-

erometer can be obtained from the developer website of Apple Inc. [143]. In the smartphone

used an accelerometer of the company Bosch Sensortec GmbH is used, unfortunately the man-

ufacturer of the smartphone does not give information on the exact model that is used but the

BMA accelerometer series [144] was likely used. As a recording software the mobile applic-

ation phyphox® developed by the RWTH Aachen University was used [145]. The acquisition

rate of the smartphone is set to its maximum which is 100 Hz. Since there are unfortunately

no construction schemes available for the smartphone, the position of the accelerometer is de-

termined by observing dismantling plans of the smartphone. From which the position of the

accelerometer on the logic board can be determined.

Figure 3.7: Block diagram of the microcontroller, shaker table, and post-processing process

A summary of the previously described experimental setup is shown in Figure 3.7. The

computer is connected to the shaker table (purple dotted dashed frame) with a CAN to USB

cable. With this cable an input signal file is transferred to the shaker table and the output file
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transferred back to the computer. This is plotted and discussed later in Figure 3.14. Addition-

ally, the computer is connected to the microcontroller (green dashed frame) which is connected

to the generators and encoders of the energy harvester. The output signals of the encoder and

the voltage and current output signals, measured as shown in Figure 3.6, are stored in the

microcontroller and subsequently transferred to the computer. An output text file from the mi-

crocontroller consists of columns with time, deflections, voltage, and current values. These

files are then used for the post-processing process (blue double dotted frame) as described in

Section 3.3.1.

3.3 Post-Processing and Validation of the Experimental Equipment

In the following sections the experimental equipment is validated and the post-processing of

the experimental results is described.

3.3.1 Post-Processing of the Experimental Results

The Arduino gives an output signal for the angles and voltage output for all four motors/gener-

ators and the current output for two generators. This output is stored in form of a text file on the

computer. To produce meaningful result the output text file needs careful treatment which is

observed in the following starting with the deflection values. The two generators on each shaft

face each other and therefore the direction of rotation is opposite towards each other or in other

words a 180◦ phase shift between the deflection outputs of the symmetrically configured pairs

of generators per axis can be observed. This means that the deflection of generator 1 has the

additive inverse value of generator 4, see Figure 3.8, and the deflection value of generator 2 has

the additive inverse value of generator 3. It is defined that the output values of generator 3 and

Generator 4

Generator 1

- Generator 4

Time [s]

θ
[d
eg
]

Figure 3.8: Qualitative deflection vales of generators 1 and 4

generator 4 are additively inversed. Afterwards the deflection values of the two generators on

each shaft are arithmetically averaged to get the artificially synchronised deflection values of

each shafts θ14 and θ23 as a time dependent signal. Equations (3.4) and (3.5) show in equation
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form the definitions of the coordinates θ14 and θ23.

θ14(t) =
θ1(t)+(−θ4(t))

2
. (3.4)

θ23(t) =
θ2(t)+(−θ3(t))

2
. (3.5)

The experimental results in Chapter 6 are mainly analysed in the frequency domain. The exper-

imental values however are recorded in the time domain and therefore need post-processing to

create the frequency responses. Generally, it is distinguished between frequency responses that

are measured with a steady-state signal and frequency responses that incorporate an excitation

frequency sweep. Most of the experimental analysis observes frequency responses measured

with a linear excitation frequency signal. This means that the omnidirectional energy harvester

is excited over 200 s with a constant excitation frequency, see Figure 3.9b. Then subsequently

the maximum deflection is arithmetically averaged over the last 20 s of the excitation period,

see Figure 3.9. This ensures that the energy harvesters’ deflection are observed in a steady-
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(a) Deflection of θ14 over time
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(b) Excitation frequency over time

Figure 3.9: Definition of the time period over which the linear frequency responses are calcu-
lated

state, see Figure 3.9a. This is performed for different excitation frequencies several times and

the results are arithmetically averaged and plotted in the frequency domain. Henceforth these

frequency responses are referred to as linear frequency responses or linear part of the frequency

response. The advantage of this is that transient responses are not present in any of the linear

frequency responses.

In Section 6.4 excitation frequency sweeps are included in the frequency responses to see

a potential effect on the increase of the operational range of the omnidirectional pendulum

energy harvester. The post-processing method of the frequency sweeps is slightly different

from those for the linear frequency response. In Figure 3.10a time-domain response for the

coordinate θ23 for the energy harvester excited with a frequency up-sweep from 0.82 Hz to
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(b) Excitation frequency over time

Figure 3.10: Definition of the bandwidth elements during an excitation frequency up-sweep
and down-sweeps, shown here exemplary an up-sweep from 0.82 Hz to 0.96 Hz

0.96 Hz is shown2. Additionally, vertical black lines are shown, where the horizontal distance

between two neighbouring lines is defined as a bandwidth element. In this case the up-sweep

is divided reasonably into 20 bandwidth elements of the same size of a length of 10 s. The size

of a bandwidth element is dependent on the length of the excitation sweep and the amount of

parts it is divided into. Since the frequency sweep function is linear the length of the bandwidth

elements in the time domain is equal to the frequency range. Hence the name ’bandwidth’

which is classically attributed to the frequency domain. In the shown case the length of a

bandwidth element is 0.007 Hz, see Figure 3.10b. For each of these bandwidth elements the

maximum and additive inversed deflections of the coordinates are stored and subsequently

arithmetically averaged. These results are added to the linear frequency responses. The starting

point or points of the frequency sweeps show transient dynamics. The definition of transient

dynamics being a variation of the deflection over time and therefore they can show a lower

or higher value than the steady-state. In this work the deflection values that are attributed to

the transient response are shown and mentioned in the results section but are not discussed in

greater detail since they do not influence the operational range of the energy harvester.

In Figure 3.11 the different parts of the frequency responses are defined. This definition

has been chosen solely for the sake of better understanding. The linear operational range is

the region in which the energy harvester can operate with a constant excitation frequency. This

is defined as the area between the two local maxima of the coordinate θ14. This is directly

transferred to to the coordinate θ23 for reasons of simplicity. In this region the energy harvester

is therefore considered as a linear device.

With the inclusion of up- and down-sweeps with slow sweep rates the energy harvesters

operational range broadens. These areas are called lower and upper nonlinear jump regions

see Figure 3.11. The increase of the operational range with the lower and upper nonlinear

jump regions is here referred to a broadening. Two dimensionless variables are introduced to

2Here coordinate θ23 is used to show both coordinates, see Figures 3.9a and 3.10b.
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Figure 3.11: Definition of the linear operational range, lower nonlinear jump region, and upper
nonlinear jump region of the omnidirectional pendulum energy harvester

calculate the broadening in a user-friendly per cent value, see Equations (3.6) and (3.7). For a

pendulum length of 0.35 m the used base values for the analysis have a value of 0.08 Hz in the

low power take-off mode and 0.11 Hz in the high power take-off mode. These values are used

as the basis for the calculation of the broadening of the up-and down-sweeps in percentage

terms.

Broadeningdown-sweep =
Lower jump region

Linear operational range
100. (3.6)

Broadeningup-sweep =
Upper jump region

Linear operational range
100. (3.7)

The total broadening of the linear operational range is defined in Equation (3.8).

Broadeningtotal =
Upper jump region + Lower jump region

Linear operational range
100. (3.8)
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Figure 3.12: Arithmetic mean rectified voltage output over the arithmetic mean rectified of the
velocity of θ14 with linear fitted equation

In a DC-generator the voltage output is dependent on the revolutions per unit time of the

generator [146, 147]. This dependency on velocity is important to keep in mind when com-

paring the deflection of the shafts to the voltage output later on in this work. It is evident that
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the highest voltage output is not always at the same position as the highest deflection value.

Therefore, later in the results section in Figure 6.21 the frequency responses for the velocity of

the shafts are shown additionally to prove the described relationship. The relation between the

arithmetic mean rectified voltage output and the arithmetic mean rectified velocity of θ14 in the

high power take-off mode is shown in Figure 3.12. Note that the relationship is only observed

in the operational region of the energy harvester. Therefore, voltage outputs that have a lower

value than 1.4 V are not included in the calculation of the relationship between the variables.

(a) Diode rectifier circuit

V14

Rectified V14

RMS

Arithmetic mean

Time [s]

V
14

[V
]

(b) Qualitative voltage output over time

Figure 3.13: Rectification of the voltage output of the energy harvester

The frequency responses in the result section for the voltage output do not show the peak

voltage output but the arithmetic mean rectified voltage output. Note that is abbreviated with

’avg.’. The arithmetic mean rectified is used since it is assumed that in the power electronics of

the energy harvester the low AC-voltage is converted into a DC-voltage with a full-wave diode

rectifier circuit, see Figure 3.13a. The qualitative voltage output of V14 over time is shown in

Figure 3.13b. The sine shaped oscillation of the voltage is rectified and subsequently arithmet-

ically averaged. The commonly used root mean square (RMS) averaging results are shown as

well. These are not used in this work. However, the arithmetic mean rectified voltage output

can easily be converted into the RMS with the form factor [148–150] shown in Equation (3.9).

RMSV14 =
0.707
0.637

avg.V14 = 1.11 avg.V14. (3.9)

The current is measured once for each shaft right after the output of the generators 3 and 4 and

in front of the shown circuit, see Figures 3.6 and 3.5. The power output of the energy harvester

for each shaft is calculated with Equation (3.10).

P14 = 2 V14 I4, P23 = 2 V23 I3. (3.10)

It is important to observe the sweep rate of different frequency responses in the experimental

result section, see Table 3.1. Because of the pre-defined length of the sweep of 200 s the sweep

rate varies in the different figures. Even though this has the potential to affect the jumping down
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Table 3.1: Sweep rate for excitation frequency sweeps in the different figures in the result
section

Figures Sweep rate [Hz/min]

down-sweep up-sweep

6.18 -0.009 0.039

6.19 -0.012 0.039

6.20 -0.009 0.030

6.21 -0.024 0.042

point position in the frequency response this can be neglected since the sweep rate is sufficient

small enough in all the cases shown.

3.3.2 Analysis of Experimental Inaccuracies

The determination of inaccuracies of the experimental equipment is extremely important for

experimental work, this is carried out in the following. Without the electrical measurement

equipment the length of the pendulum can reasonably be determined to an error of ± 0.5 mm.

The mass of the pendulum bob is determined on a high accuracy scale to an error of ± 0.01 g.

The time was measured by the Arduino board’s included time module, this gives with the

function ’millis()’ a time output in milli seconds. The used crystal oscillator has an accuracy of

0.0005% and the time deviation is therefore insignificant over the measurement range of 200 s.

There are several reasons for the measured inaccuracies of the rotational angle. They mostly

come from the encoders and the spring coupling that is fitted prior to the encoder and therefore

delays the rotation of the shaft slightly. This has a greater effect for small deflections but can be

neglected for higher deflections. From the encoder an accuracy of ± 0.5◦ is expected. However,

since the values of the two encoders on one shaft are arithmetically averaged and they are not

physically connected the errors are in the range from ± 0 to 1.0◦. The voltage sensor and

current sensor have errors of ± 0.05 V and ± 0.1 A. The last one is unfortunately fairly high,

for a high resistor this means that the current output is low and therefore the power output

of a lightly damped energy harvester cannot be determined since the error that influences the

result is too large. The offset angle has an accuracy of αo f f set = ± 0.25◦. Figure 3.14 shows

the input and output signal of the excitation amplitude of the shaker table over time. The input

and output curves are almost identical and therefore can be considered accurate. It is therefore

not likely that errors between the numerical and experimental results can be attributed to errors

in the excitation.
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Figure 3.14: Input and output signal of the shaker table "CENTROTECNICA S.R.L.
Lo.F.Hi.S." over time

Phyphox offers a sensor database [151] where the standard deviations of different smart-

phones are listed. For the acceleration measurements without g the standard deviation for the

used accelerometer is 0.020 m/s2 at an acquisition rate of 100 Hz.

3.4 Damping Ratios of the Omnidirectional Pendulum Energy Har-
vester

In this section the damping ratios of the pendulum energy harvester are determined. This is

accomplished with an oscillation decay process of the different shafts of the pendulum energy

harvester successively. The logarithmic decrement (3.11) is then used to calculate the damping

ratio for the different shafts of the pendulum energy harvester. Since only one shaft at a time is

observed these tests show the dynamics of the pendulum energy harvester in its rawest form.

This is carried out for different pendulum lengths. The determination of the damping ratio was

done with a load resistor value of 10 kΩ. This ensures that the current flow is minimal and

therefore the electric power take-off is tiny and can therefore be neglected. The damping ratio

is therefore solely attributed to the mechanical friction in the generators, bearings, and a tiny

quantity of aerodynamic dissipation of the pendulum bob and pendulum rod.

ξ =
δ√

δ 2 +(2π)2
where δ = ln

x0

x1
(3.11)

Figure 3.15 shows plots for the energy harvester with a length of 0.75 m and a mass of 1.32 kg

that is deflected in the angular direction of the shaft on which the generators 1 and 4 are con-

nected to. The oscillation decay process of the coordinate θ14 is shown in Figure 3.15a. From

this a damping ratio for the coordinate θ14 of ξ14 = 0.0204 is calculated. The coordinate θ23

does not show any deflection, see Figure 3.15b, this ensures that it does not affect the swing

of the coordinate θ14. The voltage output of the generators 1 and 4 is shown in Figure 3.15c,
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(b) θ23 over time
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(c) Voltage output V14 over time
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(d) Voltage output V23 over time

Figure 3.15: Experimental results of an oscillation decay process of the θ14 without excitation.
The parameters of the pendulum energy harvester are: l = 0.75 m, m = 1.32 kg, ξ14 = 0.0204,
ξ23 = 0.0200, RP = NC, and RS = 10 kΩ.

the voltage output follows basically the velocity curve of θ14 with higher frequency noise vis-

ible in the main signal of the swing. Figure 3.15d shows the voltage output of θ23. There is a

general signal noise observed. This in return means that it is reasonable to assume that when

the value of the voltage is lower than 0.05 V it is considered as background signal noise. The

noise can be attributed to the errors of the voltage bridge and the microcontroller. It is notice-

able that when the deflection of the pendulum becomes lower than around 10◦, the measured

values likewise become less accurate, this is mainly attributed to the spring coupling. Because

with low deflection values the restoring force torque becomes smaller as well and therefore the

damping within the spring coupling has a proportional higher effect on the deflection than for

higher deflections. Figure 3.16 shows plots for the energy harvester with a length of 0.75 m

and a mass of 1.32 kg that is deflected in the angular direction of the shaft 23. The mass mo-

ment of inertia of this shaft is lower compared to shaft 14 and the pillow blocks used have a

different design. Therefore, a slightly different damping ratio from shaft 23 of ξ23 = 0.020 can

be derived from Figure 3.16a. In Figure 3.16c the voltage output of θ23 is shown and it follows

θ̇23 well and the high frequency noise is observed. Figure 3.16d shows the voltage output of the

resting coordinate θ14 that shows no deflection but as before the background signal noise can
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(a) θ23 over time
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(b) θ14 over time
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(c) Voltage output V23 over time
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Figure 3.16: Experimental results for an oscillation decay process of the coordinate θ23 without
excitation. The parameters of the pendulum energy harvester are: l = 0.75 m, m = 1.32 kg,
ξ14 = 0.0204, ξ23 = 0.020, RP = NC, and RS = 10 kΩ.

be observed. From Figures 3.15a and 3.16a the damping ratios for the energy harvester with a

pendulum length of 0.75 m are determined.

Figure 3.17 shows rotational angle and voltage output for the energy harvester with a length

of 0.5 m and a mass of 1.32 kg that is deflected in the angular direction of the coordinate θ14.

The oscillation decay process of the coordinate θ14 is shown in Figure 3.17a. From this a damp-

ing ratio for θ14 of ξ14 = 0.0325 is determined. This means that the damping ratio increased

with decreasing of the pendulum length. As before it can be seen that the measurements of

the angle become more inaccurate when the measured angle is below a value of 10◦, for the

mentioned reasons. As can be seen from Figure 3.17b the coordinate θ23 does not show any

deflection and this ensures that it does not affect the swing of the coordinate θ14. The voltage

output of generators 1 and 4 is shown in Figure 3.17c. The voltage output follows, as expected,

the velocity of the coordinate θ14. Here as well the high frequency noise can be observed. Fig-

ure 3.17d shows the voltage output of the resting coordinate θ14 where the background noise

signal can be observed.

Figure 3.18 shows diagrams for deflection of the coordinate θ23 of a pendulum energy

harvester with a length of 0.5 m and a mass of 1.32 kg. In Figure 3.18a the deflection for

the coordinate θ23 is shown and from this the damping ratio is calculated with a value of
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Figure 3.17: Experimental results for an oscillation decay process of the coordinate θ14 without
excitation. The parameters of the pendulum energy harvester are: l = 0.5 m, m = 1.32 kg,
ξ14 = 0.0325, ξ23 = 0.0323, RP = NC, and RS = 10 kΩ.

ξ23 = 0.0323. The coordinate θ14 does as expected not show any deflections, see Figure 3.18b.

In Figure 3.18c the voltage output V23 is shown with its peak being at θ23 = 0, and there-

fore follows the velocity of the coordinate θ23 with high frequency noise that is observed on

the oscillation. Figure 3.18d shows the voltage output of the resting coordinate θ14 where the

background noise signal can be observed.

In Table 3.2 the damping ratios for different pendulum lengths are listed. These damping

ratios are solely attributable to the mechanical friction in the bearings, gears and generators

and a tiny quantity of aerodynamic dissipation. These values are used for the numerical calcu-

lation. The damping ratios were determined with at least three repeated measurements where

the calculated damping ratio was arithmetically averaged. It generally can be seen that with a

decreasing pendulum length the damping ratio increases.

In Figure 3.19 the damping ratios for shaft 14 and shaft 23 are plotted over the pendulum

length. The relation between length and damping ratio is not linear and is approximately re-

miniscent of a f (x) = 1/x function. For the smallest pendulum length of l = 0.2 m the damping

ratio is over proportionally high and for the longest pendulum length of l = 0.75 m the damping

ratio is the lowest. Interestingly the damping ratio for shaft 23 shows almost no increase from

a pendulum length decrease from l = 0.75 m to 0.6 m. This effect can be seen in Section 6.17
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Figure 3.18: Experimental results for an oscillation decay process of the coordinate θ23 without
excitation. The parameters of the pendulum energy harvester are: l = 0.5 m, m = 1.32 kg,
ξ14 = 0.0325, ξ23 = 0.0323, RP = NC, and RS = 10 kΩ.
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Figure 3.19: Damping ratios of the energy harvester of the different shafts over the pendulum
length

when comparing the frequency responses for the different pendulum lengths. The difference

between the damping ratios of the two shafts at the same pendulum length is within the margin
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Table 3.2: Damping ratios of the energy harvester depending on the length of the pendulum

Length [m] Damping ratios

ξ14 ξ23

0.2 0.0650 0.0699

0.35 0.0373 0.0339

0.425 0.0338 0.0333

0.5 0.0325 0.0323

0.55 0.0235 0.0247

0.6 0.0246 0.0201

0.75 0.0204 0.0200

of tolerance.

3.5 Higher Frequency Vibrations of the Structure of the Omni-
directional Pendulum Energy Harvester’s Moving Parts

In the power take-off sub-system and the bob of the pendulum energy harvester high frequency

vibrations can be seen. These need to be quantified, therefore the triaxial accelerometers as

described in Section 3.2 are used to measure those.

Figure 3.20 shows the accelerations measured with a triaxial accelerometer at the pendu-

lum bob. The Figures show the acceleration in the x, y, and z-directions over time and the

FFT-analysis of the absolute acceleration. The used accelerometer is described in the method-

ology Chapter 3.2.3. The position of the accelerometer on the pendulum bob is described in

Figure 3.2b and the coordinate system that is used for defining the acceleration directions is

described in Figure 3.4.

The acceleration in the x-direction is shown in Figure 3.20a. It is evident that there are high

frequencies present. The same applies to the other horizontal direction which is the acceleration

in the y-direction in Figure 3.20b where higher frequency vibrations are existing. Since the

pendulum energy harvester is a pre-prototype the pendulum rod consists of an M8 threaded

rod. With respect to vibration optimisation this is clearly not an ideal design but it suits the

purpose for this early stage of the development progress. For an improved version of the energy

harvester it is definitely advisable to investigate an improved pendulum rod design with the goal

of reducing the vibrations within the pendulum rod.
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Figure 3.20: Experimental results of the acceleration on the pendulum bob. The parameters
of the pendulum energy harvester are: l = 0.5 m, m = 1.32 kg, ξ14 = 0.0325, ξ23 = 0.0323,
Ω = 0.7375 Hz, A = 32 mm, RP = NC, and RS = 10 kΩ.

In Figure 3.20c the acceleration in the z-direction is shown. A general oscillation of the

pendulum bob can be seen. Here as well higher frequency vibrations are observed.

The FFT analysis in Figure 3.20d shows the first peak at a frequency of 0.733 Hz which

is almost at the excitation frequency. The following maxima are attributed to the parametric

resonance and are therefore multipliers of the first peak. They are characterised by high peaks

that can be detected up to a frequency of about 15 Hz. In addition, other frequencies can be

observed which are not attributed to the swing of the pendulum bob. The first noticeable peak

for this is observed at a frequency of 13.5 Hz and the parametric resonance of this frequency

can be seen at 27 Hz. This shows that the higher frequency vibrations are present however, they

have overall a relatively small impact on the movement of the pendulum bob. Nevertheless, this

shows that not all of the input energy gets transformed to movement energy of the pendulum

bob this therefore needs to be considered in the comparison of the numerical and experimental

results. Thus it is defined that from a frequency higher than a value of 7 Hz (approximately

10 times the natural undamped frequency of the spherical pendulum) the output is defined as

higher frequency vibrations in the pendulum bob and is therefore considered as unusable for

the energy harvesting. The percentage of the higher frequency energy to the total energy at the

55



CHAPTER 3. METHODOLOGY

pendulum bob has a value of 2.8 %.
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Figure 3.21: Experimental results of the acceleration on the flat bar in the power take-off sub-
system. The parameters of the pendulum energy harvester are: l = 0.5 m, m = 1.32 kg, ξ14 =
0.0325, ξ23 = 0.0323, Ω = 0.7375 Hz, A = 32 mm, RP = NC, and RS = 10 kΩ.

In Figure 3.21 the accelerations in the three directions and FFT analysis for the absolute ac-

celeration are shown. The accelerometer is fitted on the lower flat bar of the power take-off sub-

system for these measurements. The acceleration in the x-direction is shown in Figure 3.21a.

The fundamental oscillation of the pendulum bob and the high frequency vibrations can be

seen. These high frequency vibrations no longer have an effect on the movement of the pen-

dulum bob and can therefore not be used to harvest energy. The acceleration in the y-direction

is shown in Figure 3.21b. As in the acceleration in the x-direction in Figure 3.21a the oscilla-

tion of the pendulum bob and the high frequency vibrations of the flat bar can be seen in the

y-direction as well. This indicates that the vibrations in the y-direction have an adverse effect

on the energy harvesting. In Figure 3.21b the acceleration of the z-axis is shown. It can be seen

that there is an overall positive offset in the y-direction of the diagram. The FFT of the absolute

acceleration is shown in Figure 3.21d with the first peak at a frequency of 0.7371 Hz being at-

tributed to the natural frequency of the pendulum energy harvester. The following peaks appear

because of the parametric resonance. Two other local maxima are observed for the frequencies

11.46 Hz and 13.05 Hz. These are related to the higher frequency vibrations in the aluminium
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alloy flat bar. In a further development stage, the design of the flat bar should be examined as

well with a special focus on reducing the vibrations. As before the percentage of the higher

frequency oscillation above 7 Hz to the overall power of the vibrations is calculated with a

value of 5.8 %.

Higher frequency vibrations within the design of the pendulum energy harvester can be

seen, and it is certainly advisable to improve the design of the pendulum energy harvester

in the following development step to minimise these effect. However, these vibrations do not

effect the overall dynamics of the pendulum strongly and are therefore not further investigated

here.

3.6 Comparison of the Numerical and Experimental Results

In Chapter 7 the numerical and experimental results are compared therefore clarifications are

introduced here. Here the main points of the mathematical model are summarised. The detailed

deviation of the mathematical model is shown in the following is discussed in greater detail in

Chapter 4.
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Figure 3.22: Diagram of a spherical pendulum with the kinematic relations and the conversion
of numerical coordinates θ and φ to the numerically calculated and transformed experimental
coordinates θn14 and θn23 and showing the limits of the spherical motion reached by the bob.
Adapted from the previously published article related to this work [1]

In Figure 3.22 a schematic model of the omnidirectional pendulum energy harvester is

shown. On the pivot of the pendulum the local coordinate system (o,x,y,z) is attached. The
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global coordinate system (O,X ,Y,Z) is connected to the local coordinate system over the ex-

citation force vectors u(t), v(t), and w(t). For the numerical analysis the coordinates θ and φ

are chosen. The are defined with the necessary kinematic relations. The other pair of shown

coordinates θn14 and θn23 in Figure 3.22 relate directly to the experimental model, on the basis

that the energy harvester uses two offset orthogonal shafts to provide the necessary geometrical

freedom for spherical motion. The subscript n indicates that these coordinates are used for nu-

merical analysis. When the subscript is absent this indicates that the coordinates are associated

with the experimental system, see Figures 3.2a and 3.4. This notation is used throughout this

work and allows a clear distinction between the experimental coordinates and the coordinates

that are attributed to the numerical analysis. The relation between the numerical and experi-

mental coordinates is shown in Equations (3.12) and (3.13).

θ14 = θn14. (3.12)

θ23 = θn23. (3.13)

To obtain the coordinates θn14 and θn23 the differential equations depending on the generalised

coordinates θ and φ , described in greater detail in Chapter 4, are solved and then they are

converted to the experimental coordinates in the next step with the Equations (3.14) and (3.15).

θn14 = θ sin(φ). (3.14)

θn23 = θ cos(φ). (3.15)

A similar conversion of the spherical coordinates has been considered by Ikeda, Harata, and

Takeeda [114] as aleready described in the introduction Section 2.3.4.
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Chapter 4

Mathematical Model of a Forced
Spherical Pendulum with Active
Power Take-Off

One of the aims of the work is to develop a mathematical model to determine the possibility of

energy output from a spherical pendulum. For this purpose the spherical pendulum, introduced

in Section 2.3.2, is extended by damping, excitation and active power take-off.

The calculation of the ordinary differential equations of the omnidirectional pendulum en-

ergy harvester was carried out by symbolic code written in Wolfram Mathematica® language

and is uploaded to GitHub [138].

4.1 Development of the Mathematical Model of the Forced Spher-
ical Pendulum

The mathematical model as described in Figure 4.1 is developed here as a damped forced

system. The power take-off is developed later in Section 4.2.

In Figure 4.1 a schematic model of the spherical pendulum energy harvester is shown. The

absolute frame (O,X ,Y,Z) is connected to the local frame (o,x,y,z) by the vectors u(t), v(t),

and w(t), which excites the local system in the u, v, and w-directions (positive direction to the x,

y, and z-axis). The coordinates θ and φ are the generalised coordinate chosen for the numerical

analysis.

The kinematic relations from Figures 4.1, 4.2, and 4.3 are shown in Equations (4.1), (4.2),

and (4.3). The kinematic relations are well known in the literature e.g. [57, 98, 111, 114].

x =−l sinθ sinφ , (4.1)
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Figure 4.1: Diagram of a spherical pendulum with kinematics and excitation vectors. Adapted
from the previously published work [1]
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Figure 4.2: Diagram of a spherical pendulum in the yz-plane with kinematics and excitation
vectors

y = l sinθ cosφ , (4.2)

z =−l cosθ . (4.3)
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Figure 4.3: Diagram of a spherical pendulum in the xy-plane with kinematics and excitation
vectors

Harmonic excitation functions of this sort are assumed, where U0,V0, and W0 correspond to the

peak excitation amplitudes and Ωu,Ωv, and Ωw refer to the excitation frequencies.

u(t) =U0 cos(Ωut), (4.4)

v(t) =V0 cos(Ωvt), (4.5)

w(t) =W0 cos(Ωwt). (4.6)

The linear undamped natural frequency (4.7) of a simple pendulum is introduced for the calcu-

lations.

ωn =

√
g
l
. (4.7)

After differentiating the kinematic relations in Equations (4.1) to (4.3) and the harmonic excit-

ations functions in Equations (4.4) to (4.6) with respect to time, the functions are introduced

into the equations for the potential and kinetic energy.

U = mgz(t)−mgw(t) =−mgl cosθ(t)+mgW0 cos(Ωwt). (4.8)

T = 0.5m((ẋ(t)+ u̇(t))2 +(ẏ(t)+ v̇(t))2 +(ż(t)+ ẇ(t))2)

= 0.5m

((
lθ̇(t)cos(θ(t))sin(φ(t))+ l sin(θ(t))φ̇(t)cos(φ(t))

+U0Ωu sin(Ωut)
)2

+
(
−lθ̇(t)cos(θ(t))cos(φ(t))

+ l sin(θ(t))φ̇(t)sin(φ(t))+V0Ωv sin(Ωvt)
)2

+
(
−lθ̇(t)sin(θ(t))+W0Ωw sin(Ωwt)

)2
)
.

(4.9)
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In the following, the Lagrange equation of the second kind is shown.

d
dt

(
∂T
∂ q̇

)
− ∂T

∂q
+

∂U
∂q

= Qq. (4.10)

Therefore, Equation (4.9) is differentiated with respect to θ̇(t).

∂T
∂ θ̇(t)

= lm
(

lθ̇(t)+U0Ωu cos(θ(t))sin(φ(t))sin(Ωut)

−V0Ωv cos(θ(t))cos(φ(t))sin(Ωvt)−W0Ωw sin(θ(t))sin(Ωwt)
)
.

(4.11)

Differentiating Equation (4.11) with respect to time gives:

d
dt

(
∂T

∂ θ̇(t)

)
= lm

(
lθ̈(t)+U0Ωu(sin(Ωut)

×
(

cos(θ(t))φ̇(t)cos(φ(t))− θ̇(t)sin(θ(t))sin(φ(t))
)

+Ωu cos(θ(t))sin(φ(t))cos(Ωut))

+V0Ωv(sin(Ωvt)(θ̇(t)sin(θ(t))cos(φ(t))

+ cos(θ(t))φ̇(t)sin(φ(t)))−Ωv cos(θ(t))cos(φ(t))cos(Ωvt))

−W0Ωwθ̇(t)cos(θ(t))sin(Ωwt)−W0Ω
2
w sin(θ(t))cos(Ωwt)

)
.

(4.12)

Then differentiating Equation (4.9) with respect to the coordinate θ(t):

∂T
∂θ(t)

= lm
(

0.5l sin(2θ(t))φ̇(t)2 +U0Ωu sin(Ωut)(cos(θ(t))φ̇(t)cos(φ(t))

− θ̇(t)sin(θ(t))sin(φ(t)))+V0Ωv sin(Ωvt)(θ̇(t)sin(θ(t))cos(φ(t))

+ cos(θ(t))φ̇(t)sin(φ(t)))−W0Ωwθ̇(t)cos(θ(t))sin(Ωwt)
)
.

(4.13)

The potential energy (4.8) is differentiated with respect to the coordinate θ(t).

∂U
∂θ(t)

= glmsin(θ(t)). (4.14)
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After introducing Equations (4.12), (4.13), and (4.14) into Equation (4.10) the equation of

motion (EoM) with respect to the coordinate θ is obtained.

glmsin(θ(t))− lm(0.5l sin(2θ(t))φ̇(t)2 +U0Ωu sin(Ωut)
(

cos(θ(t))φ̇(t)cos(φ(t))

− θ̇(t)sin(θ(t))sin(φ(t))
)
+V0Ωv sin(Ωvt)

(
θ̇(t)sin(θ(t))cos(φ(t))

+ cos(θ(t))φ̇(t)sin(φ(t))
)
−W0Ωwθ̇(t)cos(θ(t))sin(Ωwt))

+ lm(lθ̈(t)+U0Ωu(sin(Ωut)
(

cos(θ(t))φ̇(t)cos(φ(t))− θ̇(t)sin(θ(t))sin(φ(t))
)

+Ωu cos(θ(t))sin(φ(t))cos(Ωut))+V0Ωv(sin(Ωvt)(θ̇(t)sin(θ(t))cos(φ(t))

+ cos(θ(t))φ̇(t)sin(φ(t)))−Ωv cos(θ(t))cos(φ(t))cos(Ωvt))

−W0Ωwθ̇(t)cos(θ(t))sin(Ωwt)−W0Ω
2
w sin(θ(t))cos(Ωwt))+Qθ

= lm
(

gsin(θ(t))+ lθ̈(t)−0.5l sin(2θ(t))φ̇(t)2 +U0Ω
2
u cos(θ(t))sin(φ(t))cos(Ωut)

−V0Ω
2
v cos(θ(t))cos(φ(t))cos(Ωvt)−W0Ω

2
w sin(θ(t))cos(Ωwt)

)
+Qθ .

(4.15)

After collecting terms from Equation (4.15) and ordering them and subsequently dividing by

ml2 gives the equation of motion (4.16) for the coordinate θ .

θ̈(t)+
gsin(θ(t))

l
− sin(θ(t))cos(θ(t))φ̇(t)2

=−U0Ω2
u cos(θ(t))sin(φ(t))cos(Ωut)

l
+

V0Ω2
v cos(θ(t))cos(φ(t))cos(Ωvt)

l

+
W0Ω2

w sin(θ(t))cos(Ωwt)
l

+ Q̂θ .

(4.16)

The damping term (4.17) is introduced in Equation (4.16) to make the equation more compar-

able to real life conditions.

Cθ =2ξθ ωn, (4.17)

This gives the equation of motion (4.18) with an included damping term for the coordinate θ .

θ̈(t)+2ξθ ωnθ̇(t)+
gsin(θ(t))

l
− sin(θ(t))cos(θ(t))φ̇(t)2

=−U0Ω2
u cos(θ(t))sin(φ(t))cos(Ωut)

l
+

V0Ω2
v cos(θ(t))cos(φ(t))cos(Ωvt)

l

+
W0Ω2

w sin(θ(t))cos(Ωwt)
l

+ Q̂θ .

(4.18)
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The kinematic energy (4.9) is derived with respect to the coordinate φ(t).

∂T
∂ φ̇(t)

= lmsin(θ(t))(l sin(θ(t))φ̇(t)+U0Ωu cos(φ(t))sin(tΩu)

+V0Ωv sin(φ(t))sin(Ωvt)).
(4.19)

Differentiating Equation (4.19) with respect to time gives:

d
dt

(
∂T

∂ φ̇(t)

)
=lm

(
lθ̇(t)sin(2θ(t))φ̇(t)+ l sin2(θ(t))φ̈(t)

+U0Ωu(sin(Ωut)(θ̇(t)cos(θ(t))cos(φ(t))− sin(θ(t))φ̇(t)sin(φ(t)))

+Ωu sin(θ(t))cos(φ(t))cos(Ωut))

+V0Ωv

(
sin(Ωvt)(θ ′(t)cos(θ(t))sin(φ(t))

+ sin(θ(t))φ̇(t)cos(φ(t)))+Ωv sin(θ(t))sin(φ(t))cos(tΩv)
))

.

(4.20)

Then differentiating Equation (4.9) with respect to the coordinate φ(t):

∂T
∂φ(t)

= lm

(
U0Ωu sin(Ωut)(θ̇(t)cos(θ(t))cos(φ(t))

− sin(θ(t))φ̇(t)sin(φ(t)))+V0Ωv sin(Ωvt)
(

θ̇(t)cos(θ(t))sin(φ(t))

+ sin(θ(t))φ̇(t)cos(φ(t))
))

.

(4.21)

The potential energy (4.8) is derived with respect to the coordinate φ(t)

∂U
∂φ(t)

= 0. (4.22)
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Introducing Equations (4.20), (4.21), and (4.22) into Equation (4.10) gives the EoM with re-

spect to the coordinate φ .

lm

(
lθ̇(t)sin(2θ(t))φ̇(t)+ l sin2(θ(t))φ̈(t)

+U0Ωu(sin(Ωut)
(

θ̇(t)cos(θ(t))cos(φ(t))− sin(θ(t))φ̇(t)sin(φ(t))
)

+Ωu sin(θ(t))cos(φ(t))cos(Ωut))+V0Ωv

(
sin(Ωvt)(θ̇(t)cos(θ(t))sin(φ(t))

+ sin(θ(t))φ̇(t)cos(φ(t)))+Ωv sin(θ(t))sin(φ(t))cos(Ωvt)
))

− lm

(
U0Ωu sin(Ωut)(θ̇(t)cos(θ(t))cos(φ(t))− sin(θ(t))φ̇(t)sin(φ(t)))

+V0Ωv sin(Ωvt)
(

θ̇(t)cos(θ(t))sin(φ(t))+ sin(θ(t))φ̇(t)cos(φ(t))
))

+Qφ

= lmsin(θ(t))
(

2lθ̇(t)cos(θ(t))φ̇(t)+ l sin(θ(t))φ̈(t)+U0Ω
2
u cos(φ(t))cos(Ωut)

+V0Ω
2
v sin(φ(t))cos(Ωvt)

)
+Qφ .

(4.23)

Thus, after ordering terms in Equation (4.23) and dividing by ml2 sin2(θ(t)) the EoM for the

coordinate φ is obtained.

φ̈(t)+
2θ̇(t)cos(θ(t))φ̇(t)

sin(θ(t))

=−U0Ω2
u cos(φ(t))cos(Ωut)

l sin(θ(t))
− V0Ω2

v sin(φ(t))cos(Ωvt))
l sin(θ(t))

+ Q̂φ .

(4.24)

The damping term (4.25) is introduced in Equation (4.24) to make the equations more compar-

able to the real life conditions.

Cφ =2ξφ ωn, (4.25)

This gives the equation of motion (4.26) with a damping term for the coordinate φ .

φ̈(t)+
2ξφ ωn

sin2(θ(t))
φ̇(t)+

2θ̇(t)cos(θ(t))φ̇(t)
sin(θ(t))

=−U0Ω2
u cos(φ(t))cos(Ωut)

l sin(θ(t))
− V0Ω2

v sin(φ(t))cos(Ωvt))
l sin(θ(t))

+ Q̂φ .

(4.26)
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4.2 Introduction of an Active Power Take-Off Term

The literature shows different approaches for the modulation of active power take-off terms. In

the following two sensible approaches with respect to this work are introduced.

4.2.1 Power Take-Off with a Sign Function

The square wave functions in Equation (4.27) applies a defined torque (T) in the opposite direc-

tion to the velocity. This models the force that is applied by the generator when energy is con-

verted from the system. McRobb’s thesis describes a power take-off with a square wave form

for a planar pendulum [57]. Similar power take-off is introduced by Watt and Cartmell [152]

Lsqθ =−Tθ sgn(θ̇(t)),

Lsqφ =−Tφ sgn(φ̇(t)).
(4.27)

The external torque in Equation (4.27), is introduced in Equations (4.18) and (4.26). For this

Equations (4.27) are divided by ml2 and by ml2 sin2(θ(t)), respectively. This gives the equa-

tions of motion for the coordinates θ (4.28) and the coordinate φ (4.29) with an active power

take-off term.

θ̈(t)+2ξθ ωnθ̇(t)+
gsin(θ(t))

l
− sin(θ(t))cos(θ(t))φ̇(t)2

=−U0Ω2
u cos(θ(t))sin(φ(t))cos(Ωut)

l
+

V0Ω2
v cos(θ(t))cos(φ(t))cos(Ωvt)

l

+
W0Ω2

w sin(θ(t))cos(Ωwt)
l

− Tθ sgn(θ̇(t))
ml2 .

(4.28)

φ̈(t)+
2ξφ ωn

sin2(θ(t))
φ̇(t)+

2θ̇(t)cos(θ(t))φ̇(t)
sin(θ(t))

=−U0Ω2
u cos(φ(t))cos(Ωut)

l sin(θ(t))
− V0Ω2

v sin(φ(t))cos(Ωvt))
l sin(θ(t))

−
Tφ sgn(φ̇(t))

ml2 sin2(θ(t))
.

(4.29)

4.2.2 Power Take-Off with an Arctangent Function

In the appendix of McRobb’s PhD thesis a different power take-off term is introduced [57] this

procedure is similar to the power take-off term introduced by Watt and Cartmell [152]. It is

basically a square wave function with rounded-off edges, mathematically this is represented

with an Arctangent function (4.30). With the help of the torque T and the 2
π

the amplitude

of the power take-off is determined. The small parameter εr < 1 and in most cases εr << 1
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determines the radius of the corners.

Larctθ =−2Tθ

π
tan−1

(
θ̇(t)

εr

)
,

Larctφ =−
2Tφ

π
tan−1

(
φ̇(t)

εr

)
.

(4.30)

The external torque in Equation (4.30), is introduced in Equations (4.18) and (4.26). For this the

Equations (4.30) are divided by ml2 and by ml2 sin2(θ(t)), respectively. This gives the equation

of motion for the coordinate θ (4.31) and the coordinate φ (4.32) for a spherical pendulum with

an active power take-off term.

θ̈(t)+2ξθ ωnθ̇(t)+
gsin(θ(t))

l
− sin(θ(t))cos(θ(t))φ̇(t)2

=−U0Ω2
u cos(θ(t))sin(φ(t))cos(Ωut)

l
+

V0Ω2
v cos(θ(t))cos(φ(t))cos(Ωvt)

l

+
W0Ω2

w sin(θ(t))cos(Ωwt)
l

− 2Tθ

πml2 tan−1
(

θ̇(t)
εr

)
.

(4.31)

φ̈(t)+
2ξφ ωn

sin2(θ(t))
φ̇(t)+

2θ̇(t)cos(θ(t))φ̇(t)
sin(θ(t))

=−U0Ω2
u cos(φ(t))cos(Ωut)

l sin(θ(t))
− V0Ω2

v sin(φ(t))cos(Ωvt))
l sin(θ(t))

−
2Tφ

πml2 sin2(θ(t))
tan−1

(
φ̇(t)

εr

)
.

(4.32)

The power take-off in the direction of the coordinate φ is included for the sake of completeness.

But a power take-off in the direction of the coordinate φ is highly limited in its usability in the

numerical analysis and is therefore not considered here. This is attributed to the missing of the

restoring force term in the ordinary differential equation of the coordinate φ .

4.3 Nondimensionalization

Introducing the dimensionless time and dimensionless parameters to reduce scaling effects.

τ = ω0t, ω2
0 = g

l , αθ = 2ξθ
ωn
ω0

, αφ = 2ξφ
ωn
ω0

,

au =
U0
l , av =

V0
l , aw = W0

l , βu =
Ωu
ω0

,

βv =
Ωv
ω0

, βw = Ωw
ω0

, Pθ = Tθ

ml2ω2
0
, Pφ =

Tφ

ml2ω2
0
.

(4.33)

Equations (4.28) and (4.29) with the Sign power take-off term are transformed to the dimen-

sionless form. This gives the following dimensionless equations of motion for the coordinate
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θ (4.34) and the coordinate φ (4.35) for a spherical pendulum with an active power take-off

term based on a sgn function.

θ̈(τ)+αθ θ̇(τ)− sin(θ(τ))cos(θ(τ))φ̇(τ)2 + sin(θ(τ))

=−auβ
2
u cos(θ(τ))sin(φ(τ))cos(βuτ)+avβ

2
v cos(θ(τ))cos(φ(τ))cos(βvτ)

+awβ
2
w sin(θ(τ))cos(βwτ)−Pθ sgn(θ̇(τ)).

(4.34)

φ̈(τ)+
αφ

sin2(θ(τ))
φ̇(τ)+

2θ̇(τ)cos(θ(τ))φ̇(τ)
sin(θ(τ))

=−auβ
2
u

cos(φ(τ))
sin(θ(τ))

cos(βuτ)−avβ
2
v

sin(φ(τ))
sin(θ(τ))

cos(βvτ)

−Pφ

sgn(φ̇(τ))
sin2(θ(τ))

.

(4.35)

Equations (4.31) and (4.32) with the arctangent power take-off term are transformed to the

dimensionless form. This gives the alternative dimensionless equations of motion for the co-

ordinate θ (4.36) and the coordinate φ (4.37) for a spherical pendulum with an active power

take-off term applying the arctangent function.

θ̈(τ)+αθ θ̇(τ)− sin(θ(τ))cos(θ(τ))φ̇(τ)2 + sin(θ(τ))

=−auβ
2
u cos(θ(τ))sin(φ(τ))cos(βuτ)+avβ

2
v cos(θ(τ))cos(φ(τ))cos(βvτ)

+awβ
2
w sin(θ(τ))cos(βwτ)− 2Pθ

π
tan−1

(
θ̇(τ)

εr

)
.

(4.36)

φ̈(τ)+
αφ

sin2(θ(τ))
φ̇(τ)+

2θ̇(τ)cos(θ(τ))φ̇(τ)
sin(θ(τ))

=−auβ
2
u

cos(φ(τ))
sin(θ(τ))

cos(βuτ)−avβ
2
v

sin(φ(τ))
sin(θ(τ))

cos(βvτ)

−
2Pφ

π sin2(θ(τ))
tan−1

(
φ̇(τ)

εr

)
.

(4.37)

It should be noted that Equations (4.34) and (4.36) are completely identical, except for the

power take-off term. The same applies to Equations (4.35) and (4.37).
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Numerical Analysis

Hereinafter, the dimensionless differential equations are solved with the NDSolve function

available in the Wolfram Mathematica® language. The decision as to which power take-off

term is more feasible for the numerical analysis is postponed to Section 5.2. For the numerical

evaluation, the dimensionless differential Equations (4.36) and (4.37) were used if not indicated

otherwise. Therefore, all shown figures in this section are with dimensionless parameters. In

the following figures that consider ranges for the excitation amplitude a which correspond to

a = au = av = aw and excitation frequency β which correspond to β = βu = βv = 0.5βw if

not indicated otherwise. A variation occurs, for example, in Section 5.1.2 where the spherical

pendulum is not excited in all directions. After a study of the initial conditions (ICs), this

gives two critical cases which are to be avoided. The numerical analysis cannot be started at

the equilibrium point for a value of θ = 0 because of the existing singularity at this point.

Another extreme case is when the ICs are selected too high, this results in a displacement

of the coordinate θ by 2π and a displacement of π for the coordinate φ [1]. Therefore the

initial conditions are set to the following somewhat arbitrary but practically achievable values:

θ(0) = 0.42, θ̇(0) = 0.42, φ(0) = 0.42 and φ̇(0) = 0.42. The excitation amplitude, excitation

frequency, and damping ratios are kept at the same value or in the general area as for the

experiments to ensure comparability. Even though the experiments are limited to one excitation,

the numerical analysis allows an excitation in more directions and to make use of the full

potential of the mathematical model this is used whenever it is needed.

The content of the numerical analysis section is examining the dynamics of the system

without power take-off, then the power take-off is introduced, and the same dynamics are com-

pared with a switched on power take-off. Additionally, the potential power output of the energy

harvester is compared over different forcing parameters and power take-off torques.

The numerical analysis section included a large parameter study to examine the effect of

the changed parameters on the dynamics of the system. To increase the readability of the thesis

summary paragraphs and paragraphs that compared the figures with and without power take-off

were added to the end of each subsection.
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5.1 Dynamics of the Spherical Pendulum without a Power Take-
Off

The spherical pendulum without a power take-off is extensively investigated in this section. It

is crucial to understand the dynamics of the system and to validate the mathematical model

without a power take-off. Successively, a variation of the excitation direction, excitation amp-

litude, and excitation frequencies are examined. The section concludes with an investigation of

the nonlinear dynamics of the system in terms of quasi-periodicity and chaotic dynamics.

5.1.1 Trajectories of the Spherical Pendulum

The spherical pendulum is represented by the generalised coordinates θ and φ which are ba-

sically polar coordinates. To get a first general overview the coordinates θ and φ can be trans-

formed into Cartesian coordinates with Equations (4.4) to (4.6) and therefore the 2D and 3D

trajectories of the pendulum bob can be illustrated. This then gives the trajectory in the xy-

plane, see Figure 5.1a for a pendulum that is forced in one horizontal direction. The trajectory

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

x(τ) [m]

y(
τ
)
[m

]

(a) Trajectory of the pendulum bob in the
xy-plane

(b) 3D trajectory of the pendulum bob

Figure 5.1: Trajectory of the pendulum bob in different planes with the parameters set to:
l = 0.5 kg, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, au = 0.064, av = aw = 0, βu = 1,
βv = 0.5βw = 0, and Pθ = Pφ = 0.

shows a flower-like shape with a change of the rotational angle φ with each swing. In Fig-

ure 5.1b the three-dimensional trajectory is shown. It can be seen that even though only one

excitation in the horizontal direction is applied, the motion is not periodic.

5.1.2 Excitation in Different Directions

Although the experimental investigation of the energy harvester is limited to one horizontal

degree of freedom for the excitation, it is advantageous to investigate a coupled excitation in

the numerical analysis. But first the focus is on a single direction excited system. Figure 5.2
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(a) θ over τ with au = 0.064 and av = aw = 0
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(b) φ over τ with au = 0.064 and av = aw = 0
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(c) θ over τ with av = 0.064 and au = aw = 0
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(d) φ over τ with av = 0.064 and au = aw = 0
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(e) θ over τ with aw = 0.064 and au = av = 0

0 50 100 150 200 250 300
0.0

0.5

1.0

1.5

2.0

τ [-]

ϕ
(τ
)
[r
ad
]

(f) φ over τ with aw = 0.064 and au = av = 0

Figure 5.2: θ and φ over τ for a variation of the excitation direction with the parameters set to:
l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, βu = βv = 0.5βw = 1, and Pθ = Pφ = 0.

shows the diagrams for the generalised coordinates θ and φ of the spherical pendulum that is

excited in all three directions subsequently. Figures 5.2a and 5.2b show the deflections of the

coordinates θ and φ for an excitation along the x-axis (u-direction) of the coordinate system.

This horizontal excitation leads to an oscillation of the coordinate θ that is not periodic but

instead changes the level of the amplitude with a low frequency oscillation. Without further

analysis it is not possible to directly identify the dynamics however it can be assumed that

quasi-periodic dynamics are present. The missing restoring force term in the differential equa-

tions for the coordinate φ is the term that mainly influences the dynamics of coordinate φ . This

gives interesting and sometimes even surprising movement patterns which will be discussed
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in the course of this section. For the coordinate φ in Figure 5.2b an oscillation-like movement

is formed that shows movement with a very low frequency is prevailing. The results for the

other horizontal excitation in direction of the y-axis (v-direction) of the coordinate system in

Figures 5.2c and 5.2d show similar dynamics as the excitation in the x-direction.

When the spherical pendulum is forced only in the vertical direction (z-axis or w-direction),

the dynamics of the system change, the coordinate θ in Figure 5.2f shows periodic dynamics

after the transient response is decayed. The coordinate φ in Figure 5.2f shows a constant value

of 1.5 rad when the steady-state response is reached.

Figure 5.3 shows the generalised coordinates θ and φ over the dimensionless time of the

spherical pendulum with coupled excitation. In Figures 5.3a and 5.3b the spherical pendulum

is forced in both horizontal directions u and v. The coordinate θ shows an oscillation where

the deflection changes with each oscillation. The change in the amplitude resembles a low-

frequency sinusoidal oscillation and this is an indication of quasi-periodicity. For the coordinate

φ the dynamics show a low-frequency oscillation with abrupt changes in deflection. When the

system is excited in one horizontal (u-direction) and one vertical direction (w-direction) the

dynamics change to periodic dynamics after the transient response decayed for the coordinate

θ see Figure 5.3c. The coordinate φ in Figure 5.3d shows a steady-state value of φ =−1.56 rad.

This indicates that the dynamics in the steady-state are those of a simple pendulum.

The excitation in three directions in Figure 5.3e shows similar results for the coordinate θ

with periodic dynamics after the transient response decayed. In Figure 5.3f the dynamics of the

coordinate φ are shown. At the beginning of the figure, it looks as if the value is approaching

a fixed value, as can be seen in the figure above. However, the dynamics are very irregular and

move with a high frequency harmonic along a line that appears to move with no clear structure.

Generally, it can be stated that when the system is excited vertically, or coupled with a vertical

part, it is in general more likely to show periodic dynamics compared to an excitation without

a vertical component.

5.1.3 Variation of the Excitation Amplitude

To get a greater overview of the dynamics of the energy harvester, bifurcation diagrams are

compared in the following. Figure 5.4 shows bifurcation diagrams with the excitation amp-

litude as control parameter. The bifurcation diagrams in the left column show the spherical

pendulum that is excited in the u-direction and the figures in the right column show the spher-

ical pendulum that is excited in the v-direction. In Figure 5.4a the system is excited with an

excitation frequency of β = 0.9. With an increase in the excitation amplitude the deflection

of the coordinate θ steadily increases, almost linearly. After the amplitude exceeds a value of

au = 0.15 the sloped decreases and in the following when an excitation amplitude value of

au = 0.16 is exceed the clearly periodic dynamics disappear and dynamics that suggest quasi-
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(a) θ over τ with au = av = 0.064 and aw = 0
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(b) φ over τ with au = av = 0.064 and aw = 0
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(c) θ over τ with au = aw = 0.064 and av = 0
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(d) φ over τ with au = aw = 0.064 and av = 0
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(e) θ over τ with au = av = aw = 0.064
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(f) φ over τ with au = av = aw = 0.064

Figure 5.3: θ and φ over τ for a variation of the excitation direction with the parameters set to:
l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, βu = βv = 0.5βw = 1, and Pθ = Pφ = 0.

periodicity or chaos appear. For the excitation in the v-direction in Figure 5.4b the periodic

dynamics are similar. Even after an excitation value of av = 0.16 is exceeded the coordinate θ

shows periodic dynamics. For an excitation frequency with the natural undamped frequency of

the simple pendulum the dynamics of the system differ drastically see Figure 5.4c. From a value

of the excitation amplitude au = 0 to 0.05 the system shows periodic dynamics with a further

increase in the excitation amplitude a jump to quasi-periodic or chaotic appearing dynamics is

observed. The same dynamics are observed for the v-direction excited system in Figure 5.4d as

well. The spherical pendulum is excited with an excitation frequency of β = 1.1 in the follow-

ing. The dynamics of the spherical pendulum for the excitation in the u-direction are shown in
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(a) θ over au with av = aw = 0 and β = 0.9
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(b) θ over av with au = aw = 0 and β = 0.9
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(c) θ over au with av = aw = 0 and β = 1.0
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(d) θ over av with au = aw = 0 and β = 1.0
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(e) θ over au with av = aw = 0 and β = 1.1
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(f) θ over av with au = aw = 0 and β = 1.1

Figure 5.4: Bifurcation diagrams for θ over the excitation amplitude for a variation of the
excitation direction and different excitation frequencies with the parameters set to: l = 0.5 m,
m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, and Pθ = Pφ = 0.

Figure 5.4e. At a low excitation amplitude the coordinate θ shows almost no displacement, but

for an excitation amplitude higher than au = 0.035 the deflection of the coordinate θ increases

steeply. From there on the deflections of the coordinate θ widen and suggest quasi-periodic

or chaotic dynamics. Within these quasi-periodic or chaotic appearing areas there are stable

periodic orbits observable e.g. at excitation amplitudes of au = 0.65 and au = 0.95. The bifurc-

ation diagram for the excitation in the v-direction in Figure 5.4f shows similar dynamics to the

u-direction excited pendulum in Figure 5.4e.
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Figure 5.5 shows bifurcation diagrams for the coordinate θ for different excitation dir-

ections and excitation frequencies. The figures in the left column are exited in the vertical
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(a) θ over aw with au = av = 0 and β = 0.9
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(b) θ over au,av with aw = 0 and β = 0.9
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(c) θ over aw with au = av = 0 and β = 1.0
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(d) θ over au,av with aw = 0 and β = 1.0
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(e) θ over aw with au = av = 0 and β = 1.1
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(f) θ over au,av with aw = 0 and β = 1.1

Figure 5.5: Bifurcation diagrams for θ over the excitation amplitude for a variation of the
excitation direction and different excitation frequencies with the parameters set to: l = 0.5 m,
m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, and Pθ = Pφ = 0.

w-direction and the figures in the right column are excited with a coupled excitation in both

horizontal directions u and v.

In Figure 5.5a the spherical pendulum is excited in the vertical direction with an excitation

frequency of β = 0.9. The deflection of the coordinate θ shows a fixed point over the entire

excitation amplitudes ranges shown whose slope decreases slightly with an increase of the ex-

citation amplitude. However, there are some outliers and definition gaps where the calculation
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has stopped because of numerical issues before a steady-state was reached. The bifurcation

diagram of the spherical pendulum for an excitation frequency of β = 1.0 and an excitation in

the vertical direction is shown in Figure 5.5c. In the beginning, the fixed point of the coordin-

ate θ rises almost abruptly but then flattens out sharply as the excitation amplitude increases.

Here too there are some outliers to be observed. In Figure 5.5e the bifurcation diagram of the

spherical pendulum for an excitation frequency of β = 1.1 for a vertical excitation is shown.

The figure shows a fixed point over the whole portrayed area with the difference to Figure 5.5c

being that the deflection starts at a higher excitation amplitude with a value of aw = 0.09 rather

than aw = 0.03.

Figure 5.5b shows the bifurcation diagram for the spherical pendulum that is excited in both

horizontal directions with an excitation frequency of β = 0.9. Most of the bifurcation diagram

shows a fixed point that rises sharply at the beginning and then makes a bend at a value of the

excitation amplitude of au = av = 0.11 from where the slope decreases. It is interesting to see

that for a short period for the control parameter from au = av = 0.122 to 0.128 an area that sug-

gests quasi-periodic or chaotic dynamics prevails. With an excitation frequency of β = 1.0 the

dynamics of the system change drastically see Figure 5.5d. A fixed point with a low deflection

of the coordinate θ can be seen until the excitation amplitude of au = av = 0.0317 is exceeded.

From there, the system immediately jumps to dynamics that appear to be quasi-periodic or

chaotic. In Figure 5.5f the bifurcation diagram for the spherical pendulum is shown with an

excitation frequency of β = 1.1 and an excitation in both horizontal directions. Up to a value

for the excitation amplitude of au = av = 0.0259 hardly any deflection of the coordinate θ is

observed. After that, the fixed point rises sharply and expands without a clear bifurcation to

a wide range of possible deflections. The bifurcation diagram appears to be chaotic from an

excitation amplitude of au = av = 0.05 onwards.

Figure 5.6 shows bifurcation diagrams with different excitation amplitudes as the control

parameters. The left column shows a coupled excitation in the u- and w-directions, synonymous

with the x- and z-directions, for a variation of the excitation amplitude with β = 0.9, β = 1.0,

and β = 1.1 in the different rows. The figures on the right side show bifurcation diagrams for

the spherical pendulum that is excited in all directions in space with a variation of the excitation

frequency for the different rows. The other parameters in Figure 5.6 are set to the values close

to the experimental values and the power take-off is set to zero.

In Figure 5.6a the bifurcation diagram of the spherical pendulum for excitation amplitudes

in the x- and z-directions as control parameters and for an excitation frequency of β = 0.9

is shown. Over the shown excitation amplitudes the bifurcation diagram shows a fixed point.

For the low excitation amplitudes the deflection of the coordinate θ increases rapidly until

the deflection of the coordinate θ jumps up to a value of 1.48 rad at a value of the excitation

amplitudes of au = aw = 0.0595. With a further increase in the excitation amplitudes the slope
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(a) θ over au,aw with av = 0 and β = 0.9

0.00 0.05 0.10 0.15 0.20 0.25
0.0

0.5

1.0

1.5

2.0

au, av, aw [-]

θ(
τ
)
[r
ad
]

(b) θ over au,av,aw with β = 0.9
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(c) θ over au,aw with av = 0 and β = 1.0
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(d) θ over au,av,aw with β = 1.0
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(e) θ over au,aw with av = 0 and β = 1.1
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(f) θ over au,av,aw with β = 1.1

Figure 5.6: Bifurcation diagrams for θ over the excitation amplitude for a variation of the
excitation direction and different excitation frequencies with the parameters set to: l = 0.5 m,
m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, and Pθ = Pφ = 0.

of the curve is strongly decreased. In the end range of the excitation amplitudes from 0.18 to

0.25, areas can be seen that do not show a fixed point.

The bifurcation diagram with the excitation amplitudes au and aw as control parameters

and the excitation frequency at the natural frequency β = 1.0 is shown in Figure 5.6c. The

bifurcation diagram shows a fixed point over the plotted area of the excitation amplitude. Up

to a value of the excitation amplitudes of au = aw = 0.034 the slope of the graph is high but it

decreases with a further increase in the excitation amplitudes gradually.
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With a further increase in the excitation frequency of 10 % above the natural frequency

the dynamics of the system change drastically see Figure 5.6e. Up to a value for the excitation

amplitudes of au = aw = 0.04 there is almost no deflection of the generalised coordinate θ ob-

servable. But afterwards the observed deflections of the coordinate θ blow up almost instantly.

Within these areas that appear to be quasi-periodic or chaotic there are areas of stable periodic

orbits observed, for example for ranges of the excitation amplitudes of au = aw = 0.093 to 0.1,

au = aw = 0.127 to 0.13, and au = aw = 0.205 to 0.21.

The bifurcation diagram with the excitation amplitudes au, av, and aw as control parameters

and an excitation frequency of β = 0.9 is shown in Figure 5.6b. At first glance the bifurcation

diagram looks similar to those on the left in Figure 5.6a. The differences being that the jump

up to the higher deflection of the coordinate θ = 1.45 rad happens slightly earlier at a value for

the excitation amplitudes of au = av = aw = 0.0499.

In Figure 5.6d the bifurcation diagram for the spherical pendulum with the excitation amp-

litudes au, av, and aw as control parameters and an excitation frequency of β = 1.0 is shown.

The bifurcation diagram shows a fixed point up to a value of the excitation amplitudes of

au = av = aw = 0.064. From there on a range of deflections for the coordinate θ is observed.

This margin remains relatively constant over the further shown control parameters, however,

the absolute values slowly increase with an increase in the excitation amplitudes.

Figure 5.6f shows the bifurcation diagram for the spherical pendulum with the excitation

amplitudes au, av, and aw as control parameters and an excitation frequency with a value of

β = 1.1. For a value of the excitation amplitudes from au = av = aw = 0 to 0.029 the coordin-

ate θ shows no significant deflection. With a further increase in the excitation amplitudes the

generalised coordinate θ shows dynamics that appear to be chaotic or quasi-periodic. For a

value of the excitation amplitudes from au = av = aw = 0.088 to 0.11 the bifurcation diagram

shows stable periodic orbits.

5.1.3.1 Summary of Section 5.1.3

When comparing Figures 5.4, 5.5, and 5.6 four main trends can be identified. Firstly, with the

lowest excitation frequency of β = 0.9 the dynamics of the spherical pendulum are generally

more periodic compared to the higher excitation frequencies β = 1.0 and β = 1.1. Secondly,

there generally is a steep increase in the deflection of the coordinate θ at the lower excitation

amplitudes, which flattens over a further increase in the excitation amplitude. This nonlinear

behaviour must be taken into account in the experiments to find an optimum operational range

for the energy harvester. Thirdly, a coupled excitation in the x- and y-directions and therefore

only horizontal excitation suggest more chaotic dynamics than a coupled excitation in the x-

and z-directions (horizontal and vertical). Fourthly, a coupled excitation that includes an excit-

ation in the z-direction generally has higher deflections for the coordinate θ .
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5.1.4 Variation of the Excitation Frequency

Figure 5.7 shows different bifurcation diagrams with the excitation frequency as a control para-

meter for different excitation amplitudes and directions. The figures in the left column show an

excitation in the x-direction and the bifurcation diagrams in the right column show the response

of the system that is excited in the y-direction.

In Figure 5.7a the bifurcation diagram with an excitation amplitude of au = 0.064 is shown.

For a value of the excitation frequency below β = 0.957 the output shows a fixed point and
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(a) θ over β with au = 0.064 and av = aw = 0
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(b) θ over β with av = 0.064 and au = aw = 0
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(c) θ over β with au = 0.2 and av = aw = 0

0.7 0.8 0.9 1.0 1.1
0.0

0.5

1.0

1.5

2.0

β [-]

θ(
τ
)
[r
ad
]

(d) θ over β with av = 0.2 and au = aw = 0
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(e) θ over β with au = 0.3 and av = aw = 0
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(f) θ over β with av = 0.3 and au = aw = 0

Figure 5.7: Bifurcation diagrams for θ over the excitation frequency for a variation of the
excitation direction and different excitation amplitudes with the parameters set to: l = 0.5 m,
m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, and Pθ = Pφ = 0.
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therefore the system shows periodic dynamics in this area. When this excitation frequency is

exceeded a broad range of displacement of the coordinate θ is observed which narrows with

an increasing excitation frequency. The narrowing is observed at the lower and upper limits of

the coordinate θ . For an excitation frequency higher than β = 0.957 the coordinate θ shows

dynamics that suggest quasi-periodicity or chaos.

Figure 5.7c shows a bifurcation diagram with an increased excitation amplitude of au = 0.2.

For an excitation frequency of β = 0.7 to 0.89 a fixed point can be observed. With a further

increase in the excitation frequency a broad range of deflections of the coordinate θ can be

seen where the maximum possible value of θ decreases with a further increase in the excitation

frequency. In the area for an excitation frequency from β = 0.89 to β = 1.15 the dynamics of

the spherical pendulum suggest quasi-periodic or chaotic dynamics.

The bifurcation diagram for an excitation amplitude of au = 0.3 is shown in Figure 5.7e.

For an excitation amplitude from β = 0.7 to 0.82 a fixed point can be seen. Followed by an

area that suggests quasi-periodic or chaotic dynamics which develops in an area of unstable

periodic orbits for an excitation frequency from β = 0.89 to 0.90. Afterwards, an area where

chaotic or quasi-periodic dynamics can be assumed is dominant until the excitation frequency

of β = 1.12 is exceeded. For the remaining range of excitation frequencies the coordinate θ

shows a fixed point.

In Figure 5.7b shows a bifurcation diagram for the spherical pendulum that is excited in

the y-direction with an excitation amplitude of av = 0.064. The bifurcation diagram is nearly

identical to the one in Figure 5.7a. It shows a fixed point up to a value of the excitation fre-

quency of β = 0.957. From there on the bifurcation diagram shows dynamics that suggest

quasi-periodic or chaotic dynamics until the end of the plotted excitation frequency.

The bifurcation diagram with an excitation amplitude of av = 0.2 in Figure 5.7d has a

similar appearance to the bifurcation diagram that is excited in the x-direction in Figure 5.7b.

The fixed point can be seen for an excitation amplitude from β = 0.7 to 0.9 afterwards a

wide range of deflections for the coordinate θ is shown that suggests quasi-periodic or chaotic

dynamics.

The bifurcation diagram for an excitation amplitude of av = 0.3 in Figure 5.7f is similar to

its counterpart on the left side in Figure 5.7e. The main difference being that for an excitation

frequency of β = 1.11 to 1.15 Figure 5.7f shows a fixed point where Figure 5.7e shows a fixed

point with numerical faulty computation gaps instead.

Figure 5.8 shows bifurcation diagrams for different excitation frequencies and excitation

amplitudes and directions for the spherical pendulum with the excitation frequency acting as

the control parameter. The bifurcation diagram for an excitation amplitude of aw = 0.064 is

shown in Figure 5.8a. A fixed point is observed for a value from the excitation frequency from
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(a) θ over β with aw = 0.064 and au = av = 0
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(b) θ over β with au = av = 0.064 and aw = 0
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(c) θ over β with aw = 0.2 and au = av = 0
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(d) θ over β with au = av = 0.2 and aw = 0
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(e) θ over β with aw = 0.3 and au = av = 0
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(f) θ over β with au = av = 0.3 and aw = 0

Figure 5.8: Bifurcation diagrams for θ over the excitation frequency for a variation of the
excitation direction and different excitation amplitudes with the parameters set to: l = 0.5 m,
m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, and Pθ = Pφ = 0.

β = 0.92 to 1.07. In the remaining area of the excitation frequency the spherical pendulum

does not show a deflection.

In Figure 5.8c the excitation amplitude is increased to a value of aw = 0.2. For an excitation

frequency from β = 0.82 to 1.15 the system shows a fixed point. In an area for the excitation

frequency from β = 0.9 to 0.901 the system shows two small triangle shaped bifurcations.

With a further increase in the excitation amplitude to a value of aw = 0.3 the numerical cal-

culation gets unstable and therefore the bifurcation diagram in Figure 5.8e shows no significant

output.
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The bifurcation diagram in Figure 5.8b shows the deflection of the coordinate θ for a

coupled excitation in the x- and y-directions with a value of the excitation amplitudes of au =

av = 0.064. For an excitation frequency from β = 0.7 to 0.93 the bifurcations diagram shows

a fixed point. With a further increase in the excitation frequency a range of deflection values

of the coordinate θ can be seen. But with a further increase in the excitation frequency the

minimum and maximum values of the shown deflections for θ converge.

In Figure 5.8d the bifurcation diagram for increased values excitation amplitudes of au =

av = 0.2 is shown. At the beginning of the illustrated range up to an excitation frequency of β =

0.835, a fixed point can be seen which then bifurcates. This is followed by an area that shows

stable periodic orbits which converges back to a fixed point for an excitation frequency range

from β = 0.896 to 0.9. Followed by an area that suggests quasi-periodic or chaotic dynamics.

This area returns to a fixed point at an excitation frequency higher than β = 1.11.

Figure 5.8f shows a bifurcation diagram for increased values of the excitation amplitudes

of au = av = 0.3. This increase in the excitation amplitudes generally shows less periodic dy-

namics. For an excitation frequency in an area from β = 0.7 to 0.763 the system shows a fixed

point which afterwards bifurcates and rapidly transforms in an area that suggests quasi-periodic

or chaotic dynamics. This area is briefly interrupted by a stable periodic orbit for a value of the

excitation frequency from β = 0.893 to β = 0.901.

Figure 5.9 shows bifurcation diagrams for different coupled excitation modes and excita-

tion amplitudes with the excitation frequency as the control parameter. The left column shows

bifurcation diagrams for a coupled excitation in the x- and z-directions and the right column

shows bifurcation diagrams that are obtained with a coupled excitation in the x-, y-, and z-

directions.

In Figure 5.9a the bifurcation diagram of the spherical pendulum for a value of the excit-

ation amplitudes au = aw = 0.064 is shown. The bifurcation diagram shows a jump up for a

value of the excitation frequency of β = 0.893 which indicates the classical softening charac-

teristics. Within the area from β = 0.7 to 1.038 the bifurcation diagram shows a fixed point.

Afterwards, the fixed point bifurcates and shows an area where the dynamics suggest chaotic

or quasi-periodic dynamics. At an area around the excitation frequency of β = 1.07 the max-

imum value of θ decreases abruptly and increases abruptly as well after the local minimum is

exceeded.

Figure 5.9c shows a bifurcation diagram for the spherical pendulum with increased excit-

ation amplitudes au = aw = 0.2. For an excitation frequency from β = 0.7 to 0.78 the figure

shows a fixed point that jumps up to a higher deflection for the coordinate θ of 2.15 rad with

a further increase in the excitation frequency. The bifurcation shows a fixed point after the up

jump until the excitation frequency of β = 1.02 is exceeded where the fixed point bifurcates
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(a) θ over β with au = aw = 0.064 and av = 0
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(b) θ over β with au = av = aw = 0.064
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(c) θ over β with au = aw = 0.2 and av = 0
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(d) θ over β with au = av = aw = 0.2
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(e) θ over β with au = aw = 0.3 and av = 0
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(f) θ over β with au = av = aw = 0.3

Figure 5.9: Bifurcation diagrams for θ over the excitation frequency for a variation of the
excitation direction and different excitation amplitudes with the parameters set to: l = 0.5 m,
m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, and Pθ = Pφ = 0.

and an area can be seen that suggest quasi-periodic or chaotic dynamics which can be seen for

the remaining excitation frequency.

In Figure 5.9f the bifurcation diagram for the spherical pendulum for a value of the excit-

ation amplitudes of au = aw = 0.3 is shown. The bifurcation diagram shows a fixed point for

an excitation frequency from β = 0.7 to 0.715 and stable periodic orbits for an excitation fre-

quency from β = 1.09 to 1.12. For the remaining area, the bifurcation diagram shows dynamics

that suggest quasi-periodic or chaotic behaviour.

83



CHAPTER 5. NUMERICAL ANALYSIS

Figure 5.9b shows the bifurcation diagram for the spherical pendulum that is excited in all

three directions with an excitation amplitudes of au = av = aw = 0.064. The diagram shows

a fixed point until the excitation frequency of β = 1.0 is reached. In between this area for

an excitation frequency of β = 0.88 there is a up jump observed that gives evidence of the

softening properties of the system. In an area of the excitation frequency from β = 1.0 to 1.15

the dynamics of the pendulum suggest quasi-periodic or chaotic dynamics.

The bifurcation diagram of the spherical pendulum for the increased values of the excitation

amplitudes of au = av = aw = 0.2 is shown in Figure 5.9d. With the increase in the excitation

amplitudes the system generally becomes less periodic. Fixed points can be seen for shorter

ranges for an excitation frequency from β = 0.7 to 0.75 and from β = 0.822 to 0.95. The other

areas show dynamics that suggest quasi-periodic or chaotic dynamics.

In Figure 5.9f the bifurcation diagram for an excitation amplitudes of au = av = aw = 0.3 is

shown. The system shows no fixed points or stable periodic orbits for the increased excitations

amplitudes. The points that are shown do not indicate any specific dynamics.

5.1.4.1 Summary of Section 5.1.4

Several general conclusions can be drawn from the bifurcation diagrams in Figures 5.7, 5.8,

and 5.9. The softening characteristics of the spherical pendulum can be seen in all bifurcation

diagrams, this is evident because the highest deflection of the coordinate θ can always be

seen for an excitation frequency lower than one. In other words the highest deflection of the

coordinate θ is at an excitation frequency value lower than the natural frequency. Additionally,

with an increase in the excitation amplitude the value for the max deflection can be seen at

a lower excitation frequency. As before, here again it can be seen that when an excitation in

the z-direction is included the system is overall more periodic than without an excitation in the

vertical direction.

5.1.5 Poincaré Sections

To quantify the dynamics of the spherical pendulum further Poincaré sections are used. Fig-

ure 5.10 shows Poincaré sections for different excitation amplitudes and frequencies. The left

column shows an excitation in the x-direction with an excitation amplitude of au = 0.064, the

right column shows an excitation in the x-direction with an increased excitation amplitude of

au = 0.3, and the different rows show an excitation frequency of β = 0.9, β = 1.0, and β = 1.1

from top to bottom.

The Poincaré section in Figure 5.10a shows the dynamics of the system for an excitation

frequency of β = 0.9 shows one single point which confirms the fixed point of the bifurcation

diagram in Figure 5.7a. This shows that the dynamics of the system are periodic for a excitation

amplitude of au = 0.064 and an excitation frequency of β = 0.9.
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(a) Poincaré section with au = 0.064 and β = 0.9
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(b) Poincaré section with au = 0.3 and β = 0.9
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(c) Poincaré section with au = 0.064 and β = 1.0
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(d) Poincaré section with au = 0.3 and β = 1.0
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(e) Poincaré section with au = 0.064 and β = 1.1
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(f) Poincaré section with au = 0.3 and β = 1.1

Figure 5.10: Poincaré sections for a variation of the excitation amplitudes and different excit-
ation frequencies with the parameters set to: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ =
0.0648, av = aw = 0, and Pθ = Pφ = 0.

With a further increase in the excitation frequency to a value of β = 1.0 the dynamics of

the system change see Figure 5.10c. The Poincaré section shows a ring-shaped pattern that is

showing a regular pattern. It looks as if the ring consists of individual pieces that are strung

together. It can be assumed that this is a stage where the dynamics of the system change from

quasi-periodic dynamics to chaotic dynamics.

In Figure 5.10e the Poincaré section is shown for an excitation amplitude of au = 0.064 and

an excitation frequency of β = 1.1. The diagram shows a circular pattern that is ring-shaped

which can be seen as a transition between quasi-periodic dynamics to chaotic dynamics.
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Figure 5.10b shows the Poincaré section for a increased excitation amplitude of au = 0.3

and an excitation frequency of β = 0.9. The diagram shows a fixed point and is therefore in

accordance with the bifurcation diagram in Figure 5.7f which shows a fixed point for a short

moment after the stable periodic orbits have passed which confirms the periodic dynamics.

The excitation frequency is further increased to a value of β = 1.0 in Figure 5.10d. For

these values the Poincaré section suggests chaotic dynamics. Additionally, the diagram has a

concentration of points in the inner area.

In Figure 5.10f the Poincaré section for a excitation frequency of β = 1.1 is shown. The

dynamics suggest a chaotic behaviour, and there is a concentration of points in the middle of

the diagram observed with two attractors on the left and right side of the y-axis.

Poincaré sections for different coupled excitations and excitation frequencies are shown

in Figure 5.11. The Poincaré section in the left column are excited in the u- and w-directions

with values of the excitation amplitudes of au = aw = 0.064 and those in the right column are

excited with increased values of the excitation amplitudes au = aw = 0.3.

In Figure 5.11a the Poincaré section for an excitation frequency of β = 0.9 and excitation

amplitudes of au = aw = 0.064 is shown. For these forcing conditions a fixed point is shown in

the Poincaré section which indicated that the spherical pendulum shows periodic dynamics.

With an increase in the excitation frequency to a value of β = 1.0 the dynamics of the

system change. The Poincaré section shows circular pattern Figure 5.11d. Where the single

points within the Poincaré section form a line-like pattern the dynamics of the system are

therefore quasi-periodic.

Figure 5.11e shows the Poincaré section for an excitation frequency of β = 1.1 and excita-

tion amplitudes au = aw = 0.064. The figure shows a ring shaped form that consists of smaller

ring shaped movements.

In Figure 5.11b the Poincaré section for an excitation frequency of β = 0.9 and a value

for the excitation amplitudes of au = aw = 0.2 is shown. The figure shows a fixed point that

indicates periodic dynamics of the spherical pendulum for the shown excitation parameters.

Figure 5.11d shows the Poincaré section for an excitation frequency of β = 1.0 and excit-

ation amplitudes of au = aw = 0.2. The figure shows an oval-shaped shape where the single

point of the Poincaré section all form one line. This clearly indicates that the dynamics of the

spherical pendulum are quasi-periodic for the shown excitation parameters.

With a further increase in the excitation frequency to a value of β = 1.1 the Poincaré sec-

tion shows a ring-shaped form see Figure 5.11f. This could be considered as a transitional stage

from quasi-periodic dynamics to chaotic dynamics.

With the help of the Poincaré section it can be concluded that the spherical pendulum shows

quasi-periodic dynamics and chaotic dynamics depending on the excitational parameters. Ad-
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(a) Poincaré section with au = aw = 0.064 and β = 0.9
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(c) Poincaré section with au = aw = 0.064 and β = 1.0
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(d) Poincaré section with au = aw = 0.2 and β = 1.0
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(e) Poincaré section with au = aw = 0.064 and β = 1.1
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(f) Poincaré section with au = aw = 0.2 and β = 1.1

Figure 5.11: Poincaré sections for a variation of the excitation amplitudes and different excit-
ation frequencies with the parameters set to: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ =
0.0648, av = 0, and Pθ = Pφ = 0.

ditional fixed points and transitioning processes between quasi-periodic and chaotic dynamics

can be observed.

5.2 Numerical Representation of Power Take-Off Methods

The mathematical model of the spherical pendulum has to have some kind of power take-off

term to operate as an omnidirectional energy harvester. The power take-off is only applied in the

direction of the generalised coordinate θ . Two main approaches are commonly used for that,
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a sign function and an arctangent function [57]. The mathematical description of the functions

for these power take-off terms can be found in Section 4.2. In this section it is examined which

power take-off method is advantageous for the following numerical analysis. Thus, the power

take-off torque is plotted over the time for a variation of the different power take-off parameters.

5.2.1 Power Take-Off with a Sign Function

With the sign function a square wave function can be produced. The parameter that can be

controlled here is the dimensionless power take-off torque Pθ which controls the amplitude

of the power take-off. The direction of the power take-off is defined by the velocity of the

coordinate θ .
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Figure 5.12: Power take-off and velocity of the coordinate θ over τ the parameters set to:
l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, au = av = aw = 0.128, β = 1.0, and
Pφ = 0.

Figure 5.12 shows two different power take-off torques for an excitation in all directions

with an arbitrary selected value for the excitation amplitudes au = av = aw = 0.128 and an

excitation frequency of β = 1.0. In Equation (5.1) the power take-off function over time is

shown.

PTOθsgn(τ) =−Pθ sgn(θ̇(τ)). (5.1)

In Figure 5.12a the velocity of the coordinate θ and the square wave function of the power

take-off according to Equation (4.34) with a value of Pθ = 0.05 are shown. It can be seen that

the deflection of these two parameters is always in the opposite direction which is the require-

ment for the power take-off. If that was not the case the power take-off term would add power

to the system instead of taking it off. The value of Pθ = 0.05 defines the amplitude of the power

take-off torque which can be observed with the purple square wave function. In Figure 5.12b

the power take-off torque is increased to a value of Pθ = 0.1. With that increase in the power

take-off torque the maximum deflection of the velocity of the coordinate θ decreases slightly

by 0.055. It is important to mention that with a further increase of the power take-off torque
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the maximum deflection of the coordinate θ decreases slightly until the power take-off torque

reaches a value where the whole deflection is completely absorbed. For the shown paramet-

ers of the energy harvester this occurs for a value of the power take-off torque higher than

Pθ = 0.1667. The maximum value for the power take-off torque depends on the parameters of

the pendulum energy harvester and the excitation parameters that are applied to the system.

5.2.2 Power Take-Off with an Arctangent Function

Another option to simulate a power take-off is with an arctangent function as mathematically

described in Section 4.2.2. This function is similar to the sign function with the major difference

being that an additional tuning parameter is introduced which is the radiusing parameter εr.

With this parameter the roundness of the corners is defined. In theory it can be selected freely

to any positive infinitesimal value, however, it is more sensible to restrict the range from a value

close to positive infinitesimal to one. The smaller the value is selected the smaller is the radius.

The arctangent power take-off over time is shown in Equation (5.2).

PTOθarc(τ) =−2Pθ

π
tan−1

(
θ̇(τ)

εr

)
. (5.2)

Figure 5.13 shows the velocity of the coordinate θ and the arctangent power take-off function

in the time domain for different values of the radiusing parameters εr. In Figure 5.13a the value

for εr is set to 0.01. This small value rounds off the edges of the arctangent slightly and almost

does not influence the amplitude of the power take-off. With a further increase of the radiusing

parameter to a value of 0.1 in Figure 5.13b the radius of the edges increases and at the same time

the pre-defined dimensionless power take-off torque Pθ is not reached anymore. This becomes

even more visible after the radiusing parameter is increased to a value of 0.2 in Figure 5.13c

and to a value of 1 in Figure 5.13d. In the latter case, only half of the power take-off torque

amplitude can be seen. From these figures it is clear that when the radiusing parameter selected

is too high this reduces the power take-off drastically and to that end a reasonable value for

εr = 0.01 is selected for the following analysis if not indicated otherwise.

5.2.3 Comparison of the Different Power Take-Off Methods

It remains to select which power take-off term is to be used for further analysis. The sign

function is in principle the simpler mathematical description, but due to the missing adjustment

parameters it is not suitable for fine-tuning. In addition, it was noticed during the numerical

analysis that the sign function generates more numerical errors than the arctangent function in

the numerical analysis and numerical problems occur earlier and more frequently. In contrast,

the arctangent function can be fine-tuned very well with the radiusing parameter. And with a

small selected value of 0.01, it is hardly possible to distinguish its overall power output from
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Figure 5.13: Power take-off and velocity of the coordinate θ over τ the parameters set to:
l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, au = av = aw = 0.128, β = 1.0, and
Pθ = 0.1, Pφ = 0.

the sign function. However, because of the advantage of increased numerical reliability during

the computation the arctangent power take-off term was chosen for the further analysis.

5.3 Dynamics of the Spherical Pendulum with a Power Take-Off

In this section the power take-off is switched on an the dynamics of the omnidirectional energy

harvester are discussed. The plots are similar to those in Section 5.1 where the power take-off

is switched off. This allows a direct comparison between a switched on and switched off power

take-off.

5.3.1 Variation of the Excitation Amplitude

Figure 5.14 shows bifurcation diagrams of the pendulum energy harvester for an excitation in

one direction for different excitation frequencies and a power take-off torque of Pθ = 0.05. The

figures in the left column are excited in the u-direction and the figures in the right column are
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(a) θ over au with av = aw = 0 and β = 0.9
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(b) θ over av with au = aw = 0 and β = 0.9
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(c) θ over au with av = aw = 0 and β = 1.0
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(d) θ over av with au = aw = 0 and β = 1.0
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(e) θ over au with av = aw = 0 and β = 1.1
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(f) θ over av with au = aw = 0 and β = 1.1

Figure 5.14: Bifurcation diagrams for θ over the excitation amplitude for a variation of the
excitation direction and different excitation frequencies with the parameters set to: l = 0.5 m,
m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, εr = 0.01, Pθ = 0.05, and Pφ = 0.

excited in the v-direction and the different rows are excited with an excitation frequency of 0.9,

1.0, and 1.1.

In Figure 5.14a the bifurcation diagram for an excitation in the u-direction with an excita-

tion frequency of β = 0.9 is shown. The diagram shows almost no deflection until the excitation

amplitude of au = 0.1 is passed where the deflection jumps up to a value of 0.22 rad. Between

that jump up and the excitation amplitude of au = 0.237 the bifurcation diagram shows a fixed

point that is increasing over the whole area which has a slope change at a value of the excitation
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amplitude of au = 0.20. At the end of the shown area the dynamics of the spherical pendulum

change to more chaotic appearing dynamics.

Figure 5.14c shows the bifurcation diagram for an excitation in the u-direction and an

excitation frequency of β = 1.0. Until the excitation amplitude of au = 0.16 is exceeded the

system shows no deflection. In this area the power take-off is stronger than the energy input

with the excitation this results in a non-existing deflection of the coordinate θ . For the rest of

the shown range the spherical pendulum shows dynamics that suggest quasi-periodic or chaotic

dynamics. Within this area stable periodic orbits can be seen.

The bifurcation diagram for an excitation in the u-direction and an excitation frequency of

β = 1.1 is shown in Figure 5.14e. Until the excitation amplitude of au = 0.188 is exceeded the

coordinate θ shows no deflection. Afterwards the system shows dynamics that suggest chaotic

or quasi-periodic dynamics.

In Figure 5.14b the bifurcation diagram for an excitation in the v-direction and an excitation

frequency of β = 0.9 is shown. Compared to the excitation in the u-direction this bifurcation

diagram shows a fixed point over the complete excitation area and there is no initial jump

at an excitation amplitude of au = 0.1 observed. Additionally, the chaotic and quasi-periodic

dynamics at the end of the range of the shown excitation amplitude cannot be seen anymore.

Figure 5.14d shows the bifurcation diagram for an excitation in the v-direction and an ex-

citation frequency of β = 1.0. The bifurcation diagram looks similar to the bifurcation diagram

that is excited in the u-direction in Figure 5.14c.

The bifurcation diagram for an excitation in the v-direction and an excitation frequency of

1.1 is shown in Figure 5.14f. The diagram shows no deflection until the excitation amplitude

of av = 0.148 is exceeded. From there on the dynamics of the coordinate θ change and suggest

quasi-periodic or chaotic dynamics.

When comparing the figures with the power take-off with those without the power take-off

in Figure 5.4 it is evident the system becomes more periodic with a switched on power take-

off. Additionally, the possible operational range in which the coordinate θ shows a deflection

decreases with an inclusion of a power take-off.

In Figure 5.15 bifurcation diagrams for an excitation direction in vertical direction (left

column) and a coupled excitation in the u- and v-directions (right column) is shown.

The excitation in the w-direction for an excitation frequency of β = 0.9 is shown in Fig-

ure 5.15a. For the most part the coordinate θ shows no deflection. In an area for the excitation

amplitude from aw = 0.137 to 0.215 the spherical pendulum however shows a fixed point.

With an increase in the excitation frequency to a value of 1.0 the area in which a fixed

point can be seen increases, see Figure 5.15c. The fixed point can be seen for an area of the

excitation amplitude from aw = 0.096 to 0.238. The remaining area does not show a deflection

of the coordinate θ .
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(a) θ over aw with au = av = 0 and β = 0.9
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(b) θ over au,av with aw = 0 and β = 0.9
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(c) θ over aw with au = av = 0 and β = 1.0
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(d) θ over au,av with aw = 0 and β = 1.0
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(e) θ over aw with au = av = 0 and β = 1.1
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(f) θ over au,av with aw = 0 and β = 1.1

Figure 5.15: Bifurcation diagrams for θ over the excitation amplitude for a variation of the
excitation direction and different excitation frequencies with the parameters set to: l = 0.5 m,
m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, εr = 0.01, Pθ = 0.05, and Pφ = 0.

Figure 5.15e shows the bifurcation diagram for an excitation in vertical direction with an

excitation frequency of β = 1.1. The generalised coordinate θ shows a fixed point for a range

of excitation amplitude from 0.13 to 0.25. For a value of the excitation amplitude lower than

0.13 the coordinate θ shows no deflection.

In Figure 5.15b the bifurcation diagram for a coupled excitation in both horizontal direc-

tions and an excitation frequency of 0.9 is shown. Over the whole shown range of the control

parameter the coordinate θ shows a fixed point. This fixed point has a value close to zero until

an excitation amplitude of au = av = 0.04 where the slope increases and the deflection of the
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coordinate θ increases gradually. At a value of the excitation amplitudes of au = av = 0.14 the

fixed point bends and the slope of the fixed point decreases.

Figure 5.15d shows the bifurcation diagram for a coupled excitation in the u- and v-

directions with an excitation frequency of β = 1.0. Until the excitation amplitudes reach a

value of 0.11 the coordinate θ shows no deflection. With a further increase in the excitation

amplitudes the dynamics of the system suggest quasi-periodic or chaotic dynamics with stable

stable periodic orbits that are observed in-between.

The excitation frequency is further increased to a value of 1.1 which is shown in the bifurca-

tion diagram in Figure 5.15f. Until the excitation amplitudes of 0.105 is reached the coordinate

θ of the spherical pendulum shows no deflection. As the excitation amplitudes are increase

further the system shows dynamics that suggest quasi-periodic or chaotic dynamics.

In Figure 5.16 bifurcation diagrams for coupled excitation in the u- and w-directions in

the left column and a coupled excitation in the u-, v-, and w-directions in the right column for

different excitation frequencies and a power take-off torque of Pθ = 0.05 are shown.

A coupled excitation in the u- and w-directions and an excitation frequency of β = 0.9 is

shown in Figure 5.16a. The bifurcation diagram shows almost no deflection of the coordinate

θ until the excitation amplitudes exceed a value of 0.073. From there on the fixed point shows

a steep rise until a value for the excitation amplitudes of 0.082 is exceeded where the deflection

jumps up to θ = 1.5 rad. With a further increase in the excitation amplitudes the system shows

a fixed point that gradually increases.

With a decrease of the excitation frequency to a value of β = 1.0 the dynamics of the system

change see Figure 5.16c. For small excitation amplitudes up to a value of 0.071 the coordinate

θ shows none to small deflections. This is followed by a jump up to a value of the coordinate θ

of 0.89 rad. The further development of the coordinate θ shows a fixed point that continuously

increases.

For a value of the excitation frequency of β = 1.1 the system shows no deflection until the

excitation amplitudes exceed a value of 0.09 see Figure 5.16e. This is followed by a small jump

up to a value of the deflection of θ = 0.32 rad. The bifurcation diagram shows a fixed point

that constantly increases for the following range of excitation amplitudes shown.

In Figure 5.16b the omnidirectional pendulum energy harvester is excited in all three or-

thogonal directions in space with an excitation frequency of 0.9. For low excitation amplitudes

the deflection of the coordinate θ shows a fixed point that increases with approximately ex-

ponential characteristics until it jumps up to a higher deflection of θ = 1.44 rad at a value

of the excitation amplitudes of 0.07. The bifurcation diagram shows a fixed point where the

deflection gradually increases with an increase in the excitation amplitudes. When the excita-

tion amplitudes pass a threshold of au = av = aw = 0.2 the fixed point ceases to exist and the

dynamics of the system change to a pattern that appears to be chaotic.
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(a) θ over au,aw with av = 0 and β = 0.9
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(b) θ over au,av,aw with β = 0.9
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(c) θ over au,aw with av = 0 and β = 1.0
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(d) θ over au,av,aw with β = 1.0
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(e) θ over au,aw with av = 0 and β = 1.1
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(f) θ over au,av,aw with β = 1.1

Figure 5.16: Bifurcation diagrams for θ over the excitation amplitude for a variation of the
excitation direction and different excitation frequencies with the parameters set to: l = 0.5 m,
m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, εr = 0.01, Pθ = 0.05, and Pφ = 0.

Figure 5.16d shows a bifurcation diagram for an excitation in the u-, v-, and w-directions for

an excitation frequency of β = 1.0. The bifurcation diagram shows a fixed point for the whole

area shown that constantly increases with an increase in the excitation amplitudes. At a value

for the excitation amplitudes of 0.049 the deflection of the generalised coordinate θ shows a

small jump up while the fixed point undergoes an inflection point. With a further increase in

the excitation amplitudes the deflection of the coordinate θ increases likewise.

With a further increase in the excitation frequency to a value of β = 1.1 the dynamics of

the system change drastically, see Figure 5.16f. For low values of the excitation amplitudes

95



CHAPTER 5. NUMERICAL ANALYSIS

lower than 0.109 the coordinate θ shows almost no deflection. With a further increase in the

excitation amplitudes the predominant fixed point, of the two figures above with a lower ex-

citation frequency, disappears completely and the bifurcation diagram of the system suggest

quasi-periodic or chaotic dynamics.

5.3.1.1 Summary of Section 5.3.1

The comparison of the Figures 5.14, 5.15, and 5.16 shows similar results to those in Sec-

tion 5.1.3. Firstly, when using a coupled excitation the coordinate θ shows a deflection for a

lower excitation amplitude than for a single direction excitation. Secondly, with an inclusion of

a vertical excitation the dynamics of the system are more periodic than a system that is excited

solely in a horizontal direction. Thirdly, within the shown operational range the system does

not show linear behaviour, there are areas in which the deflection of the coordinate θ increases

at a stronger rate than in others. Therefore, it is important to keep that in mind for the follow-

ing experimental evaluation to find the optimal operating point for the omnidirectional energy

harvester.

5.3.1.2 Comparison of figures without and with power take-off from Section 5.1.3 and
5.3.1

When comparing the results in this section with a power take-off with the figures in Sec-

tion 5.1.3 where the same figures are observed without a power take-off it can be observed

that with a power take-off the system shows generally more periodic dynamics. In return this

means that the existence of more fixed points makes the system is overall less quasi-periodic

or chaotic.

5.3.2 Variation of the Excitation Frequency

Figure 5.17 shows bifurcation diagrams for the pendulum energy harvester with the excitation

frequency as the control parameter for an excitation in the u-direction in the left column and an

excitation in the v-direction in the right column for different values of the excitation amplitudes

and a power take-off torque of Pθ = 0.05.

In Figure 5.17a the spherical pendulum energy harvester is excited with a small excitation

amplitude of au = 0.064. The bifurcation diagram shows a fixed point of the coordinate θ with

almost no deflection over the whole shown area.
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(a) θ over β with au = 0.064 and av = aw = 0
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(b) θ over β with av = 0.064 and au = aw = 0

0.7 0.8 0.9 1.0 1.1
0.0

0.5

1.0

1.5

2.0

β [-]

θ(
τ
)
[r
ad
]

(c) θ over β with au = 0.2 and av = aw = 0
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(d) θ over β with av = 0.2 and au = aw = 0
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(e) θ over β with au = 0.3 and av = aw = 0
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(f) θ over β with av = 0.3 and au = aw = 0

Figure 5.17: Bifurcation diagrams for θ over the excitation frequency for a variation of the
excitation direction and different excitation amplitudes with the parameters set to: l = 0.5 m,
m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, εr = 0.01, Pθ = 0.05, and Pφ = 0.

With an increase in the excitation amplitude to a value of au = 0.2 the coordinate θ shows

higher deflections see Figure 5.17c. For an excitation frequency from β = 0.7 to 0.907 the

system shows a fixed point for the coordinate θ that increases with approximately exponential

characteristics with an increase in the excitation frequency. With a further increase in the excit-

ation frequency the system shows a jump up to dynamics that suggest quasi-periodic or chaotic

dynamics. The maximum deflection likewise decreases with an increase in the excitation fre-

quency.
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Figure 5.17e shows a bifurcation diagram with a value for the excitation amplitude of au =

0.3. For an excitation frequency from β = 0.7 to 0.85 the coordinate θ shows a fixed point

which then bifurcates and an area that suggests quasi-periodic or chaotic dynamics emerge.

This area is interrupted by an area that shows a fixed point for an excitation frequency from

β = 0.89 to 0.90. With an excitation frequency higher than 0.9 the system shows an area that

suggest quasi-periodic or chaotic dynamics.

The bifurcation diagram in Figure 5.17b is excited in the v-direction with a small excitation

amplitude of av = 0.064. For this excitation amplitude the coordinate θ shows a fixed point with

a small almost not existing deflection.

In Figure 5.17d the excitation amplitude is increased to a value of av = 0.2. The bifurcation

diagram shows a fixed point that increases with approximately exponential characteristics for a

value of the excitation frequency of β = 0.7 to 0.907. With a further increase in the excitation

frequency the system shows an area that suggests quasiperiodicity or chaos.

Figure 5.17f shows the bifurcation diagram with a value for the excitation amplitude of

av = 0.3. Similarly to the bifurcation diagram with the excitation in the u-direction this figure

shows initially a fixed point until the excitation frequency of 0.85 is exceeded where the fixed

point bifurcates in an area that suggests quasi-periodic or chaotic dynamics. This area abruptly

changes back to a fixed point for a value of the excitation frequency from β = 0.89 to 0.907.

With a further increase in the excitation frequency the bifurcation diagram for the coordinate θ

suggests quasi-periodic or chaotic dynamics for the remaining frequency range.

In Figure 5.18 bifurcation diagrams for an excitation in the w-direction and in the u- and v-

directions with an power take-off torque of Pθ = 0.05 and the excitation frequency β as control

parameter are shown.

Figure 5.18a shows an excitation in the w-direction with an excitation amplitude of aw =

0.064. It can be seen that the numerical analysis for this set of parameters does not show

any output. A similar behaviour can be observed in Figure 5.18e for a value of the excitation

amplitude of aw = 0.3.

In Figure 5.18c the bifurcation diagram for an excitation amplitude of aw = 0.2 is shown.

The analysis shows no numerical result until the excitation frequency of 0.848 is exceeded

where the pendulum energy harvester shows a fixed point that gradually decreases with an

increase in the excitation frequency.

The bifurcation diagram for the system that is excited in the two horizontal directions with

a value for the excitation amplitudes of au = av = 0.064 is shown in Figure 5.18b. The system

shows a fixed point that increases in value with an increase in the excitation frequency. When a

value for the excitation frequency of 0.989 is exceeded the fixed point performs a down jump to

a value of the coordinate θ close to zero which is observed till the end of the shown excitation

frequency.
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(a) θ over β with aw = 0.064 and au = av = 0
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(b) θ over β with au = av = 0.064 and aw = 0
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(c) θ over β with aw = 0.2 and au = av = 0
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(d) θ over β with au = av = 0.2 and aw = 0
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(e) θ over β with aw = 0.3 and au = av = 0
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(f) θ over β with au = av = 0.3 and aw = 0

Figure 5.18: Bifurcation diagrams for θ over the excitation frequency for a variation of the
excitation direction and different excitation amplitudes with the parameters set to: l = 0.5 m,
m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, εr = 0.01, Pθ = 0.05, and Pφ = 0.

The excitation amplitudes are increased to a value of au = av = 0.2 in Figure 5.18d. The

figure shows a fixed point until the excitation frequency of 0.907 is exceeded with a short

exception for an excitation frequency from β = 0.866 to 0.89 where the fixed point bifurcates

and merges again shortly after. For a value of the excitation frequency higher than 0.807 the

dynamics of the system suggest quasi-periodicity or chaos.

Figure 5.18f shows a bifurcation diagram for the omnidirectional pendulum energy har-

vester that is excited with values for the excitation amplitudes of au = av = 0.3. For an excit-

ation frequency of β = 0.7 to 0.78 the deflection of the coordinate θ shows a fixed point that
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subsequently bifurcates. This is followed by an area that suggests quasi-periodicity or chaos.

For an excitation frequency of β = 0.896 to 0.906 the system shows stable periodic orbits

which return to an area that suggests quasi-periodic or chaotic dynamics. For this configura-

tion of excitation amplitudes areas can be seen within the quasi-periodic or chaotic dynamics

in which the single points of the bifurcation diagram are denser than in others, these are the

so-called veins.

In Figure 5.19 bifurcation diagrams with the excitation frequency β as control parameter

for coupled excitations in the u- and w-directions and in the u-, v-, and w-directions are shown

for different excitation amplitudes and a power take-off torque of Pθ = 0.05.

The excitation amplitudes are set to a value of au = aw = 0.064 see Figure 5.19a. With this

low excitation the coordinate θ shows a fixed point with a very small deflection.

In Figure 5.19c the excitation amplitudes are increased to a value of au = aw = 0.2. With

this the deflection of the generalised coordinate θ increases. The bifurcation diagram shows

a fixed point for a value of the excitation frequency from β = 0.7 to 0.796. Afterwards, it

comes to a jump up to a higher deflection value of the fixed point at an excitation frequency

of β = 0.81. During this jump up the system shows dynamics that suggest quasi-periodicity

or chaos. For an excitation frequency from β = 0.81 to 1.12 the coordinate θ shows a fixed

point with the occasional missing deflection value because of issues in the numerical analysis.

For a value of the excitation frequency from 0.94 to 0.956 there is a trapezium-shaped area in

addition to the fixed point can be seen with a deflection value lower than those of the fixed

point. At the end of the shown area of the excitation frequency with a value higher than 1.12

the fixed point bifurcates.

Figure 5.19e shows the bifurcation diagram for a value of the excitation amplitudes of

au = aw = 0.3. It is important to mention that for this configuration of the coupled excitation it

is possible that the pendulum bob performs a looping and therefore the values of the deflection

of the coordinate θ could in fact be outside of the displayed range of the y-axis. For a value of

the excitation frequency from β = 0.7 to 0.73 the bifurcation diagram shows a fixed point that

subsequently bifurcates and an area that suggests quasi-periodicity or chaos emerges. This area

is interrupted by an area of stable periodic orbits for an excitation frequency from β = 1.08 to

1.19. It is possible that there is a fixed point observed in the area of β = 0.98 to 1.15. However,

this cannot be confirmed because of the full rotation of the pendulum bob and thus the resulting

missing data points.

In Figure 5.19b the omnidirectional pendulum energy harvester is excited in all three dir-

ections of space with a value of the excitation amplitudes set to au = av = aw = 0.064. The

bifurcation diagram shows a fixed point of the whole range of the control parameter. The fixed

point shows clear softening characteristics with a jump up to a higher deflection of 1.36 rad at

a value of the excitation frequency of 0.91. With a further increase in the excitation frequency
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(a) θ over β with au = aw = 0.064 and av = 0
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(b) θ over β with au = av = aw = 0.064
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(c) θ over β with au = aw = 0.2 and av = 0
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(d) θ over β with au = av = aw = 0.2
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(e) θ over β with au = aw = 0.3 and av = 0
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(f) θ over β with au = av = aw = 0.3

Figure 5.19: Bifurcation diagrams for θ over the excitation frequency for a variation of the
excitation direction and different excitation amplitudes with the parameters set to: l = 0.5 m,
m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, εr = 0.01, Pθ = 0.05, and Pφ = 0.

the deflection of the coordinate θ gradually decreases until jumping down to a value close to

zero at an excitation frequency of 1.06.

The excitation amplitudes are increased to a value of au = av = aw = 0.2 see Figure 5.19d.

For an excitation frequency of β = 0.7 to 0.766 the coordinate θ shows a fixed point. This fixed

point then bifurcates and an area that suggests quasi-periodic or chaotic dynamics emerges. At

an excitation frequency of 0.868 a fixed point suddenly appears that remains until the excitation

frequency of 1.04 is exceeded. Here the fixed point bifurcates again and an area that suggest

quasi-periodicity or chaos emerges.
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Figure 5.19f shows the bifurcation diagram for a value of the excitation amplitudes of

au = av = aw = 0.3. The dynamics for these high excitation amplitudes are hardly quantifiable

solely an area of stable periodic orbits can be seen for an excitation frequency from β = 1.09

to 1.119.

5.3.2.1 Summary of Section 5.3.2

When comparing Figures 5.17, 5.18, and 5.19 a few general observations can be made. Gen-

erally, the softening characteristics of the system can be seen in the bifurcation diagrams. This

is proven by the fact that the highest deflection for the coordinate θ is always reached at a

value for the excitation frequency lower than the natural frequency. In other words the highest

deflection is reached at a value for β lower than one. Additionally, it can be seen that with

an increase in the excitation amplitude the defection of the coordinate θ generally increases.

When the pendulum energy harvester is excited with a coupled excitation configuration that

includes a vertical component that is parametrically excited the dynamics of the coordinate θ

are generally more periodic than without the counterpart. It can be observed that in the numer-

ically calculated results with an included power take-off an excitation amplitude of 0.064 is to

low too see a deflection of the coordinate θ .

5.3.2.2 Comparison of the figures without and with power take-off from Sections 5.1.4
and 5.3.2

Comparing Figures 5.17, 5.18, and 5.19 to those in Section 5.1.4 which are the same figures

but without a power take-off it is evident that generally a lower deflection of the coordinate

θ can be observed. Additionally, it can be seen that the power take-off seems to increase the

periodicity of the system. And in some cases a switched on power take-off completely cancels

out the motion of the pendulum bob of the energy harvester.

5.3.3 Poincaré Sections

Figure 5.20 shows Poincaré sections for an excitation in the u-direction for different excitation

amplitudes and excitation frequencies and a power take-off torque of Pθ = 0.05.

In Figure 5.20a the Poincaré section for an excitation amplitude of au = 0.064 and an

excitation frequency of β = 0.9 is shown. Generally it can be observed that the deflections

for this low excitation amplitude are low as well. The Poincareé section shows a line that is

processing towards the centre of the coordinate system.

With an increase in the excitation frequency to a value of β = 0.9 the Poincaré section

shows a sun-like shape whose beams are spiralling towards the middle as if they are forming a

circle see Figure 5.20c.
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(a) Poincaré section with au = 0.064 and β = 0.9
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(b) Poincaré section with au = 0.3 and β = 0.9
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(c) Poincaré section with au = 0.064 and β = 1.0
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(d) Poincaré section with au = 0.3 and β = 1.0
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(e) Poincaré section with au = 0.064 and β = 1.1
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(f) Poincaré section with au = 0.3 and β = 1.1

Figure 5.20: Poincaré sections for a variation of the excitation amplitudes and different excit-
ation frequencies with the parameters set to: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ =
0.0648, av = aw = 0, εr = 0.01, Pθ = 0.05, and Pφ = 0.

Figure 5.20e shows the Poincaré section for the omnidirectional pendulum energy harvester

that is excited with the excitation amplitude being au = 0.064 and the excitation frequency

being β = 1.1. The figure shows a sun-like shaped figure whose rays are spiralling towards

the middle. Here however the middle has a lower radius than for the Poincaré section with an

excitation frequency of 1.0.

With an increase in the excitation amplitude to a value of au = 0.3 and a value for the

excitation frequency of β = 0.9 the Poincaré section shows a fixed point see Figure 5.20b. This
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shows that the dynamics of the spherical pendulum are periodic for this configuration of the

excitational parameters.

Figure 5.20d shows the Poincaré section for an excitation amplitude of au = 0.3 and an

excitation frequency of β = 1.0. The Poincaré section suggests chaotic dynamics for the shown

configuration of excitation parameters.

In Figure 5.20f the Poincaré section for the system that is excited with an excitation amp-

litude of au = 0.3 and an excitation frequency of β = 1.1 is shown. The system shows dynamics

that suggest chaos.

Figure 5.21 shows Poincaré sections for different variations of coupled excitations with

different excitation frequencies and a power take-off torque of Pθ = 0.05.

The Poincaré section with a value for the excitational parameters au = aw = 0.2, av = 0 and

β = 0.9 in Figure 5.21a shows a single point and therefore indicates that the dynamics of the

coordinate θ are periodic. This is in line with the fixed point that is shown in the bifurcation

diagram in Figure 5.19e.

In Figure 5.21c the Poincaré section with a value for the excitation amplitudes of au = aw =

0.2 and av = 0 and a value for the excitation frequency of β = 1.0 is shown. The figure shows

an elliptical trajectory which consists of a great number of single points that connect together

in a way that it appears to be a line. This shape indicates quasi-periodic dynamics.

Figure 5.21e shows the Poincaé section for an value for the excitational parameters of au =

aw = 0.2, av = 0, and β = 1.1. Figure 5.21e shows quasi-periodicity for the shown excitational

parameters.

For the next figures the omnidirectional pendulum energy harvester is excited in all three

directions of space. The Poincaré section in Figure 5.21b shows the results for the system that

is excited with the parameters being au = av = aw = 0.2 and β = 0.9. The Poincaré section

shows one single point which indicates that the dynamics of the coordinate θ are periodic for

the shown excitational parameters.

In Figure 5.21d the Poincaré section for a value for the excitation amplitudes of au = av =

aw = 0.2 and an excitation frequency of β = 1.0 is shown. The elliptical shape in the Poincaré

section shows that the coordinate θ is quasi-periodic for the shown excitational parameters.

Figure 5.21f shows the Poincaré section for a value of the excitation amplitudes of au =

av = aw = 0.2 and a value for the excitation frequency of β = 1.1. The Poincaré sections shows

dynamics that show an elliptical shape however the single points are not placed next to each

other anymore but instead form some kind of belt around the centre of the coordinate system.

This would indicate that the coordinate θ is in some kind of transitioning progress from quasi-

periodicity to chaos.
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(a) Poincaré section with au = aw = 0.2, av = 0 and
β = 0.9
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(b) Poincaré section with au = av = aw = 0.2 and
β = 0.9
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(c) Poincaré section with au = aw = 0.2, av = 0, and
β = 1.0
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(d) Poincaré section with au = av = aw = 0.2 and
β = 1.0
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(e) Poincaré section with au = aw = 0.2, av = 0, and
β = 1.1
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(f) Poincaré section with au = av = aw = 0.2 and
β = 1.1

Figure 5.21: Poincaré sections for a variation of the excitation amplitudes and different excit-
ation frequencies with the parameters set to: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ =
0.0648, εr = 0.01, Pθ = 0.05, and Pφ = 0.

5.4 Power Output of the Omnidirectional Pendulum Energy Har-
vester

This section observes the dimensionless arithmetic mean rectified power output Pavg over vari-

ations of the excitation amplitude, excitation frequency, and the power take-off torque. This

allows a discussion of the optimal operational point or area of the energy harvester. The power
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output is generated by introducing a power take-off torque in the direction of the generalised

coordinate θ since the power that can be taken-off of the coordinate φ is highly limited and

would cause issues with the numerical analysis. The dimensionless arithmetic mean rectified

power output Pavg is a good indicator to determine the efficiency of the omnidirectional energy

harvester. Figures similar to those in this section were previously published [1] and this section

can be seen as an extension to the publication. The difference is that the pendulum energy har-

vester is excited in all orthogonal directions of space in the journal article and in this section

the energy harvester is excited in the u- and in u-, w-directions.

In the publication a few remarks were made to clarify the procedure. These apply here as

well and are therefore summarised. To calculate the actual power output in Watts Equation (5.3)

can used. The parameters ml2ω2
0 come from the dimensionalisation of the power take-off term

and the parameter ω0 is attributed to the dimensionless time.

Pact = Pavgml2
ω

3
0 . (5.3)

For the power output the sign shaped signal is rectified and arithmetically averaged to see

the arithmetic mean rectified power output. The numerical analysis arithmetically averages the

power output for a time period from τ = 800− 900 this ensures that the transient response is

fully decayed. It is possible that the numerical computation stops within the pre-defined range

for τ . This results in a lower value for Pavg than is actually the case. These inaccuracies however

are easy to identify and therefore do not pose any problem.

Figure 5.22 shows diagrams for the arithmetic mean rectified power output over the dimen-

sionless power take-off torque for different values of the excitation amplitudes and frequencies.

In Figure 5.22a the spherical pendulum is excited in the u-direction with an excitation

amplitude of au = 0.064. For an excitation frequency of 0.9 (blue circles) the arithmetic mean

rectified power output Pavg shows a local maximum of 0.0024 at a value of the power take-

off torque of Pθ = 0.027. With a further increase in the power take-off torque the arithmetic

mean rectified power output decreases. An increase in the excitation frequency to a value of 1.0

(orange triangles) decreases the overall power output. For the excitation frequency of 1.1 (red

diamonds) the arithmetic mean rectified power output shows an initial deflection at Pθ = 0.01.

With a further increase of the power take-off torque the arithmetic mean rectified power output

decreases.

The excitation amplitude is increased to a value of au = 0.2 in Figure 5.22c. For an ex-

citation frequency of 0.9 the arithmetic mean rectified power output sees a steep rise for an

increase of the power take-off torque until it reaches a maximum for a value for the power

take-off torque of 0.079. From there on the arithmetic mean rectified power output gradually

decreases until jumping down to a value close to zero at a value of the power take-off torque of

0.1. The excitation of the omnidirectional pendulum harvester at the natural frequency shows a
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(a) Pavg over Pθ with au = 0.064 and aw = 0
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(b) Pavg over Pθ with au = aw = 0.064
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(c) Pavg over Pθ with au = 0.2 and aw = 0
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(d) Pavg over Pθ with au = aw = 0.2
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(e) Pavg over Pθ with au = 0.3 and aw = 0
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(f) Pavg over Pθ with au = aw = 0.3

Figure 5.22: Arithmetic mean rectified power output over the power take-off torque for a vari-
ation of the excitation direction and different excitation frequencies with the parameters set to:
l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, av = 0, εr = 0.01, and Pφ = 0.

steep rise at the beginning for low power take-off torques and then jumps down to a value close

to zero for a power take-off torque of Pθ = 0.069. The excitation frequency of 1.1 shows the

lowest overall arithmetic mean rectified power output. The maximum power output is reached

for a value of the power take-off torque of 0.058.

In Figure 5.22e the excitation amplitude is increased to a value of au = 0.3. This increase

in the excitation amplitude generally increases the arithmetic mean rectified power output of

the energy harvester. The system that is excited with an excitation frequency of 0.9 shows a

maximum value of the arithmetic mean rectified power output of Pavg = 0.054 for a power
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take-off torque of 0.129. For an excitation frequency of 1.0 the maximum power output can be

observed for a value slightly lower than the one for β = 0.9. The omnidirectional pendulum

energy harvester that is excited with an excitation frequency of 1.1 shows a steep increase of

the power output a for low power take-off torques and reaches its maximum 0.0547 for a value

of the power take-off torque of 0.093.

Figure 5.22b shows the arithmetic mean rectified power output of the omnidirectional pen-

dulum energy harvester that is excited with different excitation frequencies and excitation amp-

litudes with a value of au = aw = 0.064. For an excitation frequency of β = 0.9 the power output

increases steeply at the beginning until a power take-off torque of 0.014 is exceeded. With a

further increase of the power take-off torque the arithmetic mean rectified power output jumps

down to a lower value of 0.005 and increases slightly in the following until jumping down to

zero eventually at a value for the power take-off torque of 0.037. For an excitation frequency

of 1.0 a maximum value of the arithmetic mean rectified power output of 0.022 is reached at a

power take-off torque of 0.04. This is the highest reachable power output for this shown con-

figuration of excitation parameters. For an excitation frequency of 1.1 the spherical pendulum

shows no power output.

The excitation amplitudes are increased to a value of au = aw = 0.2 in Figure 5.22d. For

an excitation frequency of 0.9 the arithmetic mean rectified power output sees an almost linear

increase with an increase of the power take-off torque. The maximum value of the arithmetic

mean rectified power output of 0.16 is reached for a power take-off torque of 0.16. With a

further increase in the power take-off torque the arithmetic mean rectified power output jumps

down to a value close to zero. For an excitation frequency of 1.0 the maximum value of the

arithmetic mean rectified power output of 0.19 is reached at a power take-off torque of 0.2.

Here as well the arithmetic mean rectified power output jumps down to a value close to zero

with a further increase of the power take-off torque. The maximum value for the arithmetic

mean rectified power output of 0.17 is reached at a power take-off torque of 0.22 for a system

that is excited with an excitation frequency of 1.1.

With an increase in the excitation amplitudes to au = aw = 0.3 significant changes in the

average power output curves can be observed in Figure 5.22f. For an excitation frequency of

0.9 the arithmetic mean rectified power output unfortunately follows no clear pattern over the

power take-off torque. The excitation frequencies of 1.0 and 1.1 show an almost linear increase

of the arithmetic mean rectified power output over the power take-off torque. The maximum

value of the arithmetic mean rectified power output 0.31 for β = 1.1 is reached at an power

take-off torque of 0.29. For an excitation frequency of β = 1.0 the maximum power output of

0.37 is reached for a power take-off torque of 0.355 and is therefore unfortunately outside of

the shown range of the diagram. The difference between the two excitation frequencies is that

β = 1.1 shows fewer numerical errors in the area of the power take-off torque higher than 0.15.

108



CHAPTER 5. NUMERICAL ANALYSIS

It is evident that the arithmetic mean rectified power output of the energy harvester is highly

dependent on the excitation amplitudes, excitation frequencies, and the power take-off torque.

For the numerical analysis only the results of Figures 5.22d and 5.22f show adequate power

outputs.

Figure 5.23 shows plot that show the arithmetic mean rectified power output over the power

take-off torque for a variation of the excitation frequency and the excitation amplitudes.
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(c) Pavg over Pθ with β = 1.0 and aw = 0
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(d) Pavg over Pθ with β = 1.0
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(e) Pavg over Pθ with β = 1.1 and aw = 0
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(f) Pavg over Pθ with β = 1.1

Figure 5.23: Arithmetic mean rectified power output over the power take-off torque for a vari-
ation of the excitation direction and amplitude and different excitation frequencies with the
parameters set to: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, av = 0, εr = 0.01,
and Pφ = 0.
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In Figure 5.23a the omnidirectional pendulum energy harvester is excited in the u-direction

with an excitation frequency of 0.9. For an excitation amplitude of au = 0.064 the energy

harvester shows almost no arithmetic mean rectified power output. With an increase in the

excitation amplitude to a value of au = 0.2 the arithmetic mean rectified power output rises

steeply for a low power take-off torque. It reaches its maximum arithmetic mean rectified power

output of 0.024 for a value of the power take-off torque of 0.079. From there on the power

output decreases slightly with an increase of the power take-off torque until jumping down

to a value close to zero for a value of the power take-off torque of 0.104. For a value of the

excitation amplitude of au = 0.3 the arithmetic mean rectified power output shows an almost

linear rise for an increase of the power take-off torque. It reaches its maximum of 0.055 for

a value of the power take-off torque of 0.13. With a further increase in the torque the power

output decreases until jumping down to a value close to zero for a value of the power take-off

torque of 0.159.

Figure 5.23c shows the arithmetic mean rectified power output over the power take-off

torque for an excitation frequency of 1.0. For an excitation amplitude of au = 0.064 a power

output cannot be seen. With an increase in the excitation frequency to a value of au = 0.2 the

power output shows an increase until reaching a maximum of 0.023 for a value of the power

take-off torque of 0.069. For a value of the excitation amplitude of au = 0.3 the power output

shows a steep rise and reaches a maximum of 0.053 for a value of the power take-off torque of

0.12. For an area of the power take-off torque from 0.083 to 0.11 the power output shows no

value which can be attributed to numerical issues where the computation stops before reaching

the pre-defined τ > 800.

The energy harvester that is excited with an excitation frequency of 1.1 is shown in Fig-

ure 5.23e. When the system is excited with an excitation amplitude of au = 0.064 a power

output cannot be seen. With an increase in the excitation amplitude to a value of au = 0.2 the

maximum value of the arithmetic mean rectified power output of 0.0176 is reached at a value

of the power take-off torque of 0.058. For a value of the excitation amplitude of au = 0.3 the

maximum power output of 0.029 is reached at a power take-off torque of 0.092.

In Figure 5.23b the arithmetic mean rectified power output over the power take-off torque

for an excitation frequency of 0.9 is shown. For a value of the excitation amplitudes of au =

aw = 0.064 the power output is close to zero. With an increase in the excitation amplitudes to a

value of au = aw = 0.2 the arithmetic mean rectified power output shows a linear increase with

the maximum power output of 0.164 reached at a value of the power take-off of 0.163. With a

further increase in the power take-off torque the power output jumps down to a value close to

zero. The power output for the system that is excited with a value for the excitation amplitudes

of au = aw = 0.3 shows various measurement points that do not indicate any clear pattern. This

can be attributed to numerical issues.
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The omnidirectional energy harvester is excited with an excitation frequency of 1.0 in Fig-

ure 5.23d. For a value of the excitation amplitudes au = aw = 0.064 the power output is close to

a value of zero. With an increase in the excitation amplitudes au = aw = 0.2 the power output

rises almost linearly and reaches its maximum power output of 0.185 for a value of the power

take-off torque of 0.198. For a value of the excitation amplitudes of au = aw = 0.3 the power

output shows an overall maximum deflection of 0.31 for a power take-off torque of 0.29. How-

ever, the path to this maximum power output is full of gaps that appear because of issues in the

numerical analysis where the computation stops before reaching the pre-defined τ > 800.

In Figure 5.23f the omnidirectional energy harvester is excited with an excitation frequency

of 1.1. For a value of the excitation amplitudes of au = aw = 0.064 the system shows an av-

erage power output close to zero. With an increase in the excitation amplitudes to a value of

au = aw = 0.2 the power output increases almost linearly and reaches its maximum of 0.174

at a value of the power take-off torque of 0.224. For a value of the excitation amplitudes of

au = aw = 0.3 the maximum value of the arithmetic mean rectified power output of 0.31 is

reached at a value for the power take-off torque of 0.29.

In Figure 5.24 the arithmetic mean rectified power output is plotted over the excitation

amplitude for a variation of the excitation frequency. Figure 5.24a shows the arithmetic mean

rectified power output of the energy harvester with a power take-off torque of Pθ = 0.05 for dif-

ferent excitation frequencies over the excitation amplitude in the u-direction. With an excitation

frequency of 0.9 the arithmetic mean rectified power output is close to zero for a value from the

excitation amplitude lower than au = 0.1. With a further increase in the excitation amplitude the

arithmetic mean rectified power output increases almost linearly. The slope of the arithmetic

mean rectified power output decreases to almost zero with an excitation amplitude value higher

than au = 0.2. For an excitation frequency of 1.0 the arithmetic mean rectified power output

shows an output with a value for the excitation amplitude higher than au = 0.17. From there

on an arithmetic mean rectified power output in the area of 0.02 can be observed for the rest of

the shown excitation amplitude range. With an excitation frequency of 1.1 the arithmetic mean

rectified power output is close to zero until the excitation amplitude of au = 0.18 is reached.

For the rest of the shown range of the excitation amplitude the arithmetic mean rectified power

output remains in the region of 0.015.

The power take-off torque is increased to a value of Pθ = 0.1 in Figure 5.24c. For the

excitation frequencies of 1.0 and 1.1 the omnidirectional pendulum energy harvester shows

a power output close to zero. With an excitation frequency of 0.9 the system shows a small

arithmetic mean rectified power output for an excitation amplitude from au = 0.16 to 0.19

which then jumps up to a higher arithmetic mean rectified power output value and steeply rises

for the rest of the shown excitation amplitude area.
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(c) Pavg over au with Pθ = 0.1 and aw = 0
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(e) Pavg over au with Pθ = 0.15 and aw = 0

β= 0.9

β= 1.0

β= 1.1

0.00 0.05 0.10 0.15 0.20 0.25
0.00

0.05

0.10

0.15

0.20

au, aw [-]

P
av
g
[-
]

(f) Pavg over au = aw with Pθ = 0.15

Figure 5.24: Arithmetic mean rectified power output over the excitation ampitude for a variation
of the excitation direction, different excitation frequencies, and different power take-off torques
with the parameters set to: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, av = 0,
εr = 0.01, and Pφ = 0.

With a further increase in the power take-off torque to a value of Pθ = 0.15 the arithmetic

mean rectified power output of the energy harvester drastically decreases see Figure 5.24e.

The excitation frequencies 1.0 and 1.1 do not show any power output. Only for an excitation

frequency of 0.9 a small power output can be observed for an excitation amplitude higher than

au = 0.22.

In Figure 5.24b the pendulum energy harvester is excited with a coupled excitation in the

u- and w-directions. For an excitation frequency of 0.9 the first power output can be seen for
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the excitation amplitudes higher than au = aw = 0.076. The arithmetic mean rectified power

output increases rapidly for a further increase in the excitation amplitudes until jumping up to

a higher arithmetic mean rectified power output of 0.04 at a value of the excitation amplitudes

of au = aw = 0.083. With a further increase in the excitation amplitudes the arithmetic mean

rectified power output increases as well. For a value of the excitation frequency of 1.0 the

arithmetic mean rectified power output shows no deflection until the arithmetic mean rectified

power output jumps up to a value of 0.028 at a value of the excitation amplitudes of au =

aw = 0.072. In the following the graph the arithmetic mean rectified power output gradually

increases with an increase in the excitation amplitudes. The arithmetic mean rectified power

output shows a jump up to 0.011 at a value of the excitation amplitudes of au = aw = 0.093 and

then gradually increases with an increase in the excitation amplitudes.

The power take-off torque is increased to a value of Pθ = 0.1 in Figure 5.24d. For a value

of the excitation frequency of 0.9 the arithmetic mean rectified power output sees a jump up

to a value of 0.09 for a value of the excitation amplitudes of au = aw = 0.13. With a further

increase in the excitation amplitudes the arithmetic mean rectified power output increases as

well. With an increase in the excitation frequency to a value of 1.0 the jump up of the arithmetic

mean rectified power output to a value of 0.072 appears at a value of the excitation amplitudes

of au = aw = 0.11. With a further increase in the excitation amplitudes the arithmetic mean

rectified power output increases. The arithmetic mean rectified power output of the energy

harvester that is excited with an excitation frequency of 1.1 shows a jump up to a value of

the arithmetic mean rectified power output of 0.038 for a value of the excitation amplitudes of

au = aw = 0.118. From there on the arithmetic mean rectified power output increases with an

increase in the excitation amplitudes.

In Figure 5.24f the power take-off torque is increased to a value of Pθ = 0.15. The energy

harvester sees a jump up to a power output of 0.149 for a value of the excitation amplitudes

of au = aw = 0.186 when excited with an excitation frequency of 0.9. With a further increase

in the excitation amplitudes the arithmetic mean rectified power output increases slightly. For

an excitation frequency of 1.0 the arithmetic mean rectified power output sees a jump up to a

value of 0.125 for a value of the excitation amplitudes of au = aw = 0.158 and the arithmetic

mean rectified power output increases further with an increase in the excitation amplitudes. For

a value of the excitation frequency of 1.1 the up jump appears at a value of the excitation amp-

litudes of au = aw = 0.15 and an arithmetic mean rectified power output of 0.085 is reached

at this value. With a further increase in the excitation amplitudes the arithmetic mean rectified

power output increases as well.

In Figure 5.25 frequency responses for different power take-off torques and a variation of

the excitation amplitudes are shown.
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(e) Pavg over β with Pθ = 0.15 and aw = 0
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(f) Pavg over β with Pθ = 0.15

Figure 5.25: Arithmetic mean rectified power output over the excitation frequency β for a
variation of the excitation direction, different excitation amplitudes, and different power take-
off torques with the parameters set to: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648,
av = 0, εr = 0.01, and Pφ = 0.

The energy harvester is loaded with a power take-off torque of Pθ = 0.05 in Figure 5.25a.

The arithmetic mean rectified power output of the energy harvester is close to zero for an

excitation amplitude of au = 0.064. With an increase in the excitation amplitude to a value of

au = 0.2 the power output shows a steep rise followed by a jump up to the maximum value

of the arithmetic mean rectified power output of 0.035 for a value of the excitation frequency

of 0.91. The arithmetic mean rectified power output decreases with a further increase in the

excitation amplitude. The different points do not form a neat curve anymore, since for this area
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of the excitation frequency the bifurcation diagram already suggested quasi-periodic or chaotic

dynamics. When the system that is excited with an excitation amplitude of au = 0.3 shows a

slightly lower overall maximum power output of 0.033 at the same excitation frequency as the

system that is excited with an excitation amplitude of au = 0.2.

In Figure 5.25c the power take-off torque of the omnidirectional energy harvester is in-

creased to a value of Pθ = 0.1. For a value of the excitation amplitude of au = 0.064 the system

does not show any power output. With an increased value of the excitation amplitude au = 0.2

the power output rises steeply to a value of 0.046 for a value of the excitation frequency of

0.97. When the excitation frequency increases further the arithmetic mean rectified power out-

put jumps down to a value close to zero. For an excitation amplitude of au = 0.3 the arithmetic

mean rectified power output increases for a value of the excitation frequency from 0.85 to 0.9.

With a further increase in the excitation frequency the arithmetic mean rectified power output

jumps up to its maximum value of 0.07. The power output shows a bowl-shaped trajectory for

a further increase in the excitation frequency until jumping down to a value close to zero for an

excitation frequency of β = 0.97.

The frequency response for the omnidirectional energy harvester with a power take-off

torque of Pθ = 0.15 is shown in Figure 5.25e. For a value of the excitation amplitude of

au = 0.064 and au = 0.2 a power output of the energy harvester is not possible. With an excit-

ation amplitude of au = 0.3 the arithmetic mean rectified power output shows a steep rise for

an excitation frequency from 0.85 to 0.95. The maximum value of the arithmetic mean recti-

fied power output of 0.08 is reached for an excitation frequency of β = 0.95. With a further

increase in the excitation frequency the arithmetic mean rectified power output decreases until

eventually the power output jumps down suddenly at a value of the excitation frequency of

0.96.

In Figure 5.25b the energy harvester is excited in the u- and w-directions and is loaded

with a power take-off torque of Pθ = 0.05. For a value of the excitation amplitudes of au =

aw = 0.064 the energy harvester does not produce any power output. With an increase of the

excitation amplitudes to a value of au = aw = 0.2 the power outputs are all aligned. The highest

arithmetic mean rectified power output of 0.053 is reached for the lowest shown excitation fre-

quency of 0.85. For an increase in the excitation frequency the arithmetic mean rectified power

output decreases. With an increase in the excitation amplitudes au = aw = 0.3 the arithmetic

mean rectified power output shows a fixed point for a value of the excitation frequency from

β = 0.915 to 1.15. This is accompanied by power output values that appear to have a chaotic

pattern.

Figure 5.25d shows the frequency response for the omnidirectional energy harvester that

is loaded with a power take-off torque of Pθ = 0.1. The energy harvester does not show any

power output when the system is excited with the excitation amplitudes of au = aw = 0.064.

With an increase in the excitation amplitudes to a value of au = aw = 0.2 the maximum value of
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the power output of 0.105 is reached at an excitation frequency of 0.85. For a further increase

in the excitation frequency the arithmetic mean rectified power output decreases. With a further

increase in the excitation amplitudes au = aw = 0.3 the power output of the system increases

further to a value of 0.114. A constant power output is feasible for a value of the excitation

frequency from β = 0.9 to 1.15. For a value of the excitation frequency lower than 0.9 the

power output follows no clear trend.

The power take-off torque is increased to a value of Pθ = 0.15 in Figure 5.25f. For a value

of the excitation amplitudes au = aw = 0.064 the energy harvester does not show any power

output. With an increase in the excitation amplitudes to a value of au = aw = 0.2 the maximum

value for the arithmetic mean rectified power output of 0.155 is reached for an excitation fre-

quency of β = 0.87. When the excitation frequency is increased further the arithmetic mean

rectified power output decreases. For a value of the excitation amplitudes of au = aw = 0.3 the

maximum value of the arithmetic mean rectified power output is 0.17. It is possible to harvest

energy from the omnidirectional energy harvester for an excitation frequency from β = 0.878

to 1.15.

5.4.0.1 Summary of Section 5.4

It is evident that the omnidirectional pendulum energy harvester’s power output is highly de-

pendent on the excitation frequency, excitation amplitudes, damping ratio, and the power take-

off torque. And it gets even more complex when the dimensions of the pendulum energy har-

vester e.g. length and mass area included as well. Since the different figures in Section 5.4

show no clear overall trend is important that an optimisation process of the energy harvester is

a single case selection. The article [1] that is published related to this work gives an optimisa-

tion process flow chart to simplify the optimisation process. In Chapter 8 a controlled switching

off and switching on power take-off is examined numerically.

5.5 Approximate Analytical Solution for a Simple Pendulum with
a Power Take-Off using the Perturbation Method of Multiple
Scales

This section is concerned with the perturbation method of multiple scales for a forced damped

simple pendulum with power take-off. A further analysis of the spherical pendulum with the

method of multiple scales can be found in the appendix, in a nutshell, it can be said that this

calculation was unfortunately abandoned because of the cyclic behaviour of the coordinate φ

and because of the fractions by which the generalised coordinates are divided by each other.
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With the latter, the problem arises of finding the secular terms that are solvable. For more

details please see the notes in Appendix A.

A literature search shows a lack of perturbation analysis by the method of multiple scales

for a spherical pendulum. Only Olsson [98] used the Lindstedt-Poincaré perturbation method

to calculate the dynamics of a spherical pendulum. However, the author is interested in small

deflections and therefore did not obtain the differential equations in polar coordinates but trans-

formed them with a small angle assumption to Cartesian coordinates instead. With this reason-

able assumption, the author removes the cyclic dynamics of the coordinate φ and in addition

the fractions with different generalised coordinates in the numerators and denominators. This

gives Olsson the possibility to avoid the two issues that emerged in the analysis of the spherical

pendulum in Appendix A. However, the transformation of the polar in Cartesian coordinates

cannot be used for this work, since this work is concerned with large deflections in the direction

of the coordinate θ since these are directly related to an effective energy harvester. Moreover,

it is evident that from the coordinate φ , that is defining the rotation of the planar pendulum, no

power can be extracted. After careful consideration of all the advantages and disadvantages,

it was decided that for the calculation of the method of multiple scales a scaled-down version

of the spherical pendulum with one degree of freedom would be sufficient. This system still

represents the important dynamics of the energy harvester including the most important part,

the power take-off over the planar coordinate θ . The sketch of the simple pendulum is shown in

y
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−

lc
os

θ

y = l sinθ

θ

w
(t
)

v(t)
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m

o

Figure 5.26: Diagram of a simple pendulum in yz-coordinate system with kinematics and ex-
citations.

Figure 5.26, it should be noted that the coordinate system is not a standard (o,x,y)-coordinate

system, but instead, a (o,y,z)-coordinate system was chosen. This is done because the results

are compared with the numerical and experimental results and thus the axes and the excitations

should match.
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In the dimensionless differential Equations (4.36) and (4.37) of the spherical pendulum, the

coordinate φ and its derivatives are set to zero and the differential Equation (5.5) for the simple

pendulum is obtained. Additionally, a parameter ω2 for the sin(θ(τ)) term is introduced, see

Equation (5.4). The value for ω2 is equal to one, this parameter is solely introduced to make

the equation mathematically more consistent.

ω
2 =

ω2
n

ω2
0
= 1. (5.4)

With this the dimensionless ordinary differential equation for the forced damped simple pen-

dulum with power take-off is obtained.

θ̈(τ)+αθ θ̇(τ)+ω
2 sin(θ(τ))−avβ

2
v cos(θ(τ))cos(βvτ)

−awβ
2
w sin(θ(τ))cos(βwτ) =−2Pθ

π
tan−1

(
θ̇(τ)

εr

)
.

(5.5)

Subsequently, the trigonometric terms are expanded one after another with the Maclaurin ex-

pansions.

sinθ(τ) = θ(τ)− θ(τ)3

6
+

θ(τ)5

120
− ... (5.6)

cosθ(τ) = 1− θ(τ)2

2
+

θ(τ)4

24
− ... (5.7)

The Maclaurin expansion of the power take-off term gives

tan−1
(

θ̇(τ)

εr

)
=

θ̇(τ)

εr
− θ̇(τ)3

3ε3
r

+ ... (5.8)

Introducing the Maclaurin expansions (5.6) to (5.8) in the ordinary differential Equation (5.5)

gives.

θ̈(τ)+αθ θ̇(τ)+ω
2
(

θ(τ)− θ(τ)3

6
+ ...

)
−avβ

2
v cos(βvτ)

(
1− θ(τ)2

2
+ ...

)
−awβ

2
w cos(βwτ)

(
θ(τ)− θ(τ)3

6
+ ...

)
=−2Pθ

π

(
θ̇(τ)

εr
− θ̇(τ)3

3ε3
r

+ ...

)
.

(5.9)

Equation (5.9) can be made to a plausible ordering scheme. Generally, the MacLaurin expan-

sions were used up to the third order, this ensures that the nonlinearities of the terms were

adequately represented in the calculation therefore the small parameter ε(ε < 1) is introduced.

The general requirement for the perturbation hierarchy is that the lowest order can be solved

analytically which requires a linear ODE at the lowest order. This so-called generation equation

should be of the form θ̈ +ω2θ = 0. This gives the linear solution in complementary function

form θ0 = AeiωT0 + Āe−iωT0 . The damping, excitation and loading terms can then be ordered in
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the equations of the perturbation hierarchy with O(ε1) and O(ε2). The nonlinear stiffness term

is controlled by −θ(τ)3

6 and should be scaled to O(ε1). Likewise the term −θ(τ)2

2 is scaled to

O(ε1). This ensures that the nonlinearities are represented in the first order of the perturbation

hierarchy. Additional relations (5.10) are introduced to get a plausible ordering scheme.

αθ = εᾱθ ,
1
6
= εγ̄, Pθ = εP̄θ ,

av = ε āv, aw = ε āw,
1
3
= εσ̄ , (5.10)

−θ(τ)2

2
=−εη̄θ(τ)2.

Introducing the relations (5.10) into Equation (5.9) gives:

θ̈(τ)+ ᾱθ θ̇(τ)+ω
2
θ(τ)−ω

2
εγ̄θ(τ)3 −avβ

2
v cos(βvτ)

(
1− εη̄θ(τ)2)

−awβ
2
w cos(βwτ)

(
θ(τ)− εγ̄θ(τ)3)=−2εPθ

π

(
θ̇(τ)

εr
− σ̄ε

θ̇(τ)3

ε3
r

+ ...

)
.

(5.11)

Introducing the independent variables according to the well-known procedure in the literat-

ure [153–157].

Tn = ε
n
τ, for n = 0,1,2, ... (5.12)

Followed by the derivatives with respect to τ .

d
dτ

=
dT0

dτ

∂

∂T0
+

dT1

dτ

∂

∂T1
+ ...=

∂

∂T0
+ ε

∂

∂T1
+ ...= D0 + εD1 + ...

d2

dτ2 =
∂ 2

∂T 2
0
+2ε

∂ 2

∂T0∂T1
+ ε

2
(

2
∂ 2

∂T0∂T2
+

∂ 2

∂T 2
1

)
+...

=D2
0 +2εD0D1 + ε

2(D2
1 +2D0D2)+ ...

(5.13)

It can be assumed that θ is represented by the series:

θ(τ) = θ0(T0,T1,T2)+ εθ1(T0,T1,T2)+ ... (5.14)

Introducing Equations (5.12) to (5.14) in the ordinary differential Equation (5.11) gives the

perturbation hierarchy for order O(0) to O(2):

D2
0θ0 +ω

2
θ0 =0. (5.15)
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D2
0θ1 +ω

2
θ1 =−2(D0D1θ0)+ω

2
γ̄θ

3
0 − ᾱθ (D0θ0)+ āvβ

2
v cos(βvτ)

+ āwβ
2
w cos(βwτ)θ0 −

(2P̄θ )(D0θ0)

πεr
.

(5.16)

The second order of the perturbation hierarchy is shown for completeness but will not be used

during the calculations since all the nonlinearities, forcing terms and power take-off terms are

represented adequately in the first-order terms.

D2
0θ2 +ω

2
θ2 =−2(D0D2θ0)−2(D0D1θ1)−D2

1θ0 +3ω
2
γ̄θ

2
0 θ1 − ᾱθ (D1θ0)

− ᾱθ (D0θ1)− η̄ āvβ
2
v cos(βvτ)θ

2
0 − γ̄ āwβ

2
w cos(βwτ)θ

3
0

+ āwβ
2
w cos(βwτ)θ1 −

2P̄θ (D1θ0)

πεr
− 2P̄θ (D0θ1)

πεr
+

2σ̄ P̄θ (D0θ0)
3

πε3
r

.

(5.17)

By solving Equation (5.15) the generating solution is obtained. Where A(T1) is a constant of the

complementary function that is dependent on the slower time scale and Ā(T1) is the complex

conjugate of A(T1).

θ0 = A(T1)eiωT0 + Ā(T1)e−iωT0 . (5.18)

Introducing the solution for θ0 (5.18) in the first-order of the perturbation hierarchy Equa-

tion (5.16) gives Equation (5.19). Note that the slower time was omitted from the amplitude

A(T1) to improve clarity. However, this does not remove the arguments dependency on the

slower time scale T1.

D2
0θ1 +ω

2
θ1 =−2iωD1AeiωT0 +2iωD1Āe−iωT0

− ᾱθ iωAeiωT0 + ᾱθ iωĀe−iωT0

+ γ̄ω
2A3e3iωT0 +3γ̄ω

2A2ĀeiωT0 +3γ̄ω
2Ā2Ae−iωT0 + γ̄ω

2Ā3e−3iωT0

+ āvβ
2
v cos(βvτ)

+ āwβ
2
w cos(βwτ)

(
AeiωT0 + Āe−iωT0

)
− 2P̄θ iωA

πεr
eiωT0 +

2P̄θ iωĀ
πεr

e−iωT0 .

(5.19)

In the following, the secular equations in Equation (5.19) are identified. Therefore the excitation

terms are expanded with the following exponential expression.

cos(βT0) =
1
2

eiβT0 +
1
2

e−iβT0 where τ ≈ T0. (5.20)
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Introducing Equation (5.20) into Equation (5.19) gives:

D2
0θ1 +ω

2
θ1 =−2iωD1AeiωT0 +2iωD1Āe−iωT0

− ᾱθ iωAeiωT0 + ᾱθ iωĀe−iωT0

+ γ̄ω
2A3e3iωT0 +3γ̄ω

2A2ĀeiωT0 +3γ̄ω
2Ā2Ae−iωT0 + γ̄ω

2Ā3e−3iωT0

+
1
2

āvβ
2
v eiβvT0 +

1
2

āvβ
2
v e−iβvT0

+
1
2

āwβ
2
wĀe−iωT0+iβwT0 +

1
2

āwβ
2
wAeiωT0−iβwT0

+
1
2

āwβ
2
wAeiωT0+iβwT0 +

1
2

āwβ
2
wĀe−iωT0−iβwT0

− 2P̄θ iωA
πεr

eiωT0 +
2P̄θ iωĀ

πεr
e−iωT0 .

(5.21)

5.5.1 Numerical Solution of the Secular Terms

The system will be excited close to the natural frequency ω which means that the excitation

frequency βv can be set to ω . The excitation frequency βw is excited at the condition of principal

of parametric resonance and therefore is set to 2ω . Note that this approach does not allow

any detuning. The calculation of the secular terms with a detuning parameter can be found in

Section 5.5.2.

D1A =− 1
2

ᾱθ A− 3
2

γ̄ωiA2Ā− 1
4

āvωi− āwωiĀ− P̄θ A
πεr

. (5.22)

The following polar notation is introduced. The polar coordinates ap and αp are real functions

of the slow time scale T1.

A =
ap

2
eiαp , Ā =

ap

2
e−iαp , ap = ap(T1), αp = αp(T1). (5.23)

The derivative of A with respect to T1 is.

D1A =
a′p
2

eiαp +
ap

2
iα ′

peiαp . (5.24)

Introducing the polar coordinates (5.23) and its derivative (5.24) in Equation (5.22) and split-

ting the secular governing terms into real and imaginary parts gives:

a′p =2
(
−1

4
ω sin(αp) āv −

1
2

ω sin(2αp)apāw −
apP̄θ

πεr
− 1

4
apᾱθ

)
. (5.25)

apα
′
p =2

(
− 3

16
ωγ̄a3

p −
1
4

ω cos(αp) āv −
1
2

ω cos(2αp)apāw

)
. (5.26)
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The first-order differential Equations (5.25) and (5.26) unfortunately cannot be solved ana-

lytically. Therefore, they are solved with a suitable procedure of numerical integration. The

results are shown in Figure 5.27. From Figures 5.27 the steady-state values for ap = 1.61 and
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(a) Amplitude ap over T1
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Figure 5.27: Numerical analysis of the amplitude ap and phase of motion αp of the secular
terms. With the variables set to: ω = 1, āv = 0.16, āw = 0.16, ᾱθ = 0.05, P̄θ = 0.0, γ̄ = 1

6 ,
ICs = 1, and εr = 0.01

αp = −1.65 are obtained. These values are being introduced in the polar equations for the

constant A and Ā in Equation (5.23). And subsequently they are introduced in the assumed

solution of the coordinate θ in Equation (5.14). This gives an analytical steady-state solution

of the coordinate θ :

θ(τ) =
1.61

2
e−i1.65eiωτ +

1.61
2

ei1.65e−iωτ where τ ≈ T0. (5.27)

In Figure 5.28a the analytical results for the coordinate θ are shown. The coordinate θ is plotted

over τ and the system shows periodic dynamics. The numerical results of the coordinate θ in

Figure 5.28b shows periodic dynamics well however the amplitudes are slightly lower than in

the method of multiple scales. The first-order differential Equations (5.25) and (5.26) are solved
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(a) Multiple scales results of θ over τ
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(b) Numerical results of θ over τ

Figure 5.28: Results for the coordinate θ . With the variables set to: ω = 1, āv = 0.16, āw = 0.16,
ᾱθ = 0.05, P̄θ = 0.0, γ̄ = 1

6 , and εr = 0.01
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with a suitable procedure for numerical integration with values close to the experimentally

determined parameters. Figure 5.29 shows the numerical results with the steady-state values
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Figure 5.29: Numerical analysis of the amplitude ap and phase of motion αp of the secular
terms. With the variables set to: ω = 1, āv = 0.064, āw = 0, ᾱθ = 0.0648, P̄θ = 0.0, γ̄ = 1

6 ,
ICs = 1, and εr = 0.01

being ap = 0.71 and αp =−2.33.

The effect of the power take-off on the movement of the pendulum is examined in the

following. Therefore, Equations (5.25) and (5.26) are being numerically integrated with a reas-

onable selected medium high power take-off of P̄θ = 0.15. Before calculating the results of the

equations it is crucial to observe the effect of the radiusing variable εr. Recalling that the para-

meter was introduced to produce a slightly rounded-off square wave power take-off function

to make the calculation less vulnerable to numerical errors [1]. The variable was set to a value

of εr = 0.01 which ensured that the power take-off function is slightly rounded off. However,

when the radiusing variable is kept at εr = 0.01 for the approximate solution the power take-

off term increases significantly by a factor of 100. This results in the fact that the numerical

calculation of the amplitude ap gets to close to zero and therefore the resulting approximation

of θ shows a small deflection which is not close to reality. Therefore the radiusing parameter

εr will be set to one in the following calculations. This changes the power take-off function

from a square wave function to an Arctangent function. In return, this means that the power

take-off in the method of multiple scales is slightly lower than in the numerical analysis. This is

in contrast to a power take-off that is 100 times too high and therefore the choice of εr = 1 is a

reasonable assumption for this work. The numerical analysis of the Equations (5.25) and (5.26)

are shown in Figure 5.30. When comparing the solutions with power take-off Figure 5.30 to

the solutions without power take-off in Figure 5.27 it can be seen that the steady-state value

is reached faster when the power take-off is switched on. This in accordance with the higher

damping that is induced because of the switched on power take-off. Additionally, it is observed

that the amplitude ap reduces slightly and the phase αp gets bigger.
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Figure 5.30: Numerical analysis of the amplitude ap and phase of motion αp of the secular
terms. With the variables set to: ω = 1, āv = 0.16, āw = 0.16, ᾱθ = 0.05, P̄θ = 0.15, γ̄ = 1

6 ,
ICs = 1, and εr = 1

From Figure 5.30 the steady-states values ap = 1.55 and αp = −1.45 are obtained. These

values are introduced in the polar equations for the complex amplitude A and Ā in Equa-

tion (5.23). And subsequently, they are introduced in the assumed solution of the coordinate θ

in Equation (5.14). In Figure 5.31a the results from the approximation of the coordinate θ are

shown and Figure 5.31b shows the numerical results for the coordinate θ . When comparing
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(a) Multiple scales results of θ over τ with εr = 1
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Figure 5.31: Results for the coordinate θ . With the variables set to: ω = 1, āv = 0.16, āw = 0.16,
ᾱθ = 0.05, P̄θ = 0.15, and γ̄ = 1

6

Figures 5.28 and 5.31, it can be seen that the amplitude drops slightly when the power take-off

is switched on. This is in accordance with the numerical results.

The first-order differential Equations (5.25) and (5.26) are solved with a suitable procedure

for numerical integration for the experimentally determined parameters. Figure 5.32 shows the

numerical results with the steady-state values being ap = 0.25 and αp =−1.6.
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Figure 5.32: Numerical analysis of the amplitude ap and phase of motion αp of the secular
terms. With the variables set to: ω = 1, āv = 0.064, āw = 0, ᾱθ = 0.0648, P̄θ = 0.15, γ̄ = 1

6 ,
ICs = 1, and εr = 1

5.5.2 Frequency Response Equation

In the following, a frequency response equation with a detuning parameter is derived. Recall-

ing Equation (5.21) and introducing principal parametric resonance with a detuning parameter

βw = 2ω+εσp and likewise introducing βv =ω+εσd . Note that as in related works [156, 158]

the detuning parameter is introduced into the exponential function. The excitation frequencies

outside the exponential function are considered as constants and are therefore replaced with ω

and 2ω , see Equation (5.28).

D2
0θ1 +ω

2
θ1 =−2iωD1AeiωT0 +2iωD1Āe−iωT0

− ᾱθ iωAeiωT0 + ᾱθ iωĀe−iωT0

+ γ̄ω
2A3e3iωT0 +3γ̄ω

2A2ĀeiωT0 +3γ̄ω
2Ā2Ae−iωT0 + γ̄ω

2Ā3e−3iωT0

+
1
2

āvβ
2
v ei(ω+εσd)T0 +

1
2

āvβ
2
v e−i(ω+εσd)T0

+
1
2

āwβ
2
wĀe−iωT0+i(2ω+εσd)T0 +

1
2

āwβ
2
wAeiωT0−i(2ω+εσd)T0

+
1
2

āwβ
2
wAeiωT0+i(2ω+εσd)T0 +

1
2

āwβ
2
wĀe−iωT0−i(2ω+εσd)T0

− 2P̄θ iωA
πεr

eiωT0 +
2P̄θ iωĀ

πεr
e−iωT0 .

(5.28)

This gives the following secular terms:

D1A =− 1
2

ᾱθ A− 3
2

γ̄ωiA2Ā− 1
4

āvωieiεσpT0 − āwωiĀeiεσpT0 − P̄θ A
πεr

. (5.29)
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Introducing the polar notation from Equations (5.23) and (5.24) in Equation (5.29) and sub-

sequently splitting the equation into real and imaginary parts gives:

a′p =2
(
−1

4
ω sin(αp −σp) āv −

1
2

ω sin(2αp −σp)apāw −
apP̄θ

πεr
− 1

4
apᾱθ

)
. (5.30)

apα
′
p =2

(
− 3

16
ωγ̄a3

p −
1
4

ω cos(αp −σp) āv −
1
2

ω cos(2αp −σp)apāw

)
. (5.31)

Introducing a transformed phase angle ψ for the parametric resonance to make Equations (5.30)

and (5.31) autonomous, see Equation (5.32).

ψ = εσpT0 −2αp = σpT1 −2αp. (5.32)

To obtain steady-state solution a′p =ψ ′ = 0 is introduced which gives σp = 2αp. Since in Equa-

tions (5.30) and (5.31) the system is excited both parametrically and in primary resonance the

same procedure is used for the primary resonance subsequently. This expression is introduced

on the left hand side of Equation (5.31). Subsequently Equations (5.30) and (5.31) are squared

and added which gives the frequency response equation.(
3
8

ωγ̄a3
p +

apσp

2

)2

+
1
4

a2
p

(
4P̄θ

πεr
+ ᾱθ

)2

=
1
4

ω
2ā2

v +ω
2a2

pā2
w. (5.33)

Figure 5.33 shows the frequency response of the pendulum as described by Equation (5.33).

There are eight different cases shown, for various excitation configurations, damping ratios,

and power take-off cases. The vertically excited simple pendulum is shown in Figure 5.33a, the

pendulum shows softening characteristics due to the cubic nonlinearities. Cartmell [156] and

Xu and Wiercigroch [158] observed similar results for their vertical excited simple pendulums.

In Figure 5.33b the pendulum is forced in the horizontal and vertical directions. This excit-

ation configuration shows the softening character of the pendulum. However, for an amplitude

ap below 0.5 the detuning parameter goes to plus-minus infinity. Similar dynamics can be ob-

served in Figure 5.33c where the pendulum is solely excited in the horizontal direction.

Figure 5.33d shows the frequency response diagram for the experimentally determined

parameters. The system shows softening characteristics.

In the next step the power take-off was set to a value of P̄θ = 0.15, see Figures 5.33e to

5.33h. For the vertical excited system in Figure 5.33e, the two branches move closer to the zero

point (closer to the y-axis) when compared to the switched off power take-off. The same occurs

when the system is excited in both directions see Figure 5.33f. The frequency response for the

horizontally excited pendulum, in Figure 5.33g, shows a maximum amplitude ap = 0.65 for

a value of the detuning parameter slightly lower than zero. Figure 5.33h shows the frequency

response diagram for the experimentally determined damping ratios and excitation amplitudes.
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(a) Excitation āv = 0.0, āw = 0.16, and P̄θ = 0
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(c) Excitation āv = 0.16, āw = 0.0, and P̄θ = 0
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(d) Excitation āv = 0.064, āw = 0.0, damping ratio
changed to ᾱθ = 0.0648, and P̄θ = 0
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(e) Excitation āv = 0.0, āw = 0.16, and P̄θ = 0.15
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(f) Excitation āv = 0.16, āw = 0.16, and P̄θ = 0.15
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(g) Excitation āv = 0.16, āw = 0.0, and P̄θ = 0.15
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(h) Excitation āv = 0.064, āw = 0.0, damping ratio
changed to ᾱθ = 0.0648, and P̄θ = 0.15

Figure 5.33: Frequency response diagrams with the variables set to: ω = 1, ᾱθ = 0.05, γ̄ = 1
6 ,

εr = 1, and ICs = 1

127



Chapter 6

Experimental Analysis

This section examines the experimental results of the omnidirectional pendulum energy har-

vester. The design is introduced in Section 3.2. The results presented in this section are given

with dimensions to clearly distinguish them from the numerical results. In the experimental

analysis section the dynamics of the two shafts are examined separately. The experimental ana-

lysis section is initially observing linear frequency responses, since the likelihood of a constant

excitation frequency is higher in possible areas of application. The section concludes with the

inclusion of excitation frequency sweeps to observe a possible broadening of the operational

range of the energy harvester.

Several excitation conditions for the energy harvester have been uploaded to YouTube to

give the reader a better overall picture of the energy harvester [3]. The uploaded videos are

those that are examined in Section 6.4.

6.1 Omnidirectional Pendulum Energy Harvester with a Pendu-
lum Length of 0.5 m

The dynamics, voltage, and power output of the energy harvester with a pendulum length 0.5 m

are examined in the following section. The measurements are conducted with and without a

power take-off.

6.1.1 Dynamics of the Omnidirectional Pendulum Energy Harvester in the Low
Power Take-Off Mode

The pendulum energy harvester presented here is limited to a frequency range where the op-

timum operational region lies. It is therefore crucial to know the precise operational range

for the pendulum energy harvester. Therefore, in this section the figures shown are for the most

part not time-dependent but the excitation frequency or excitation amplitude is used as a control

parameter. This allows the parameters to be determined over several measurements, to compare
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and take the arithmetic mean the results with each other to obtain statistically more accurate

results. This is achieved with frequency responses and deflections over excitation amplitude

responses. In this section the energy harvester is examined in the low power power take-off

mode. This means that a high value series resistor of 10 kΩ was included in the electrical cir-

cuit to decrease the current and therefore the damping ratios are determined with a value of

ξ14 = 0.0325 and ξ23 = 0.0323 which is mainly attributed to the friction within the generators

and bearings and a tiny amount of aerodynamic dissipation. The calculated undamped natural

frequency of a simple pendulum with a length of 0.5 m has a value of 0.70 Hz. This can be

assumed as the natural frequency of the spherical pendulum energy harvester.

In Figure 6.1 the pendulum energy harvester is placed on the shaker table with an offset of

αo f f set = 0◦ and is excited with an excitation amplitude of A = 24 mm for which the coordinate

θ14 does not show any deflection. This offset angle is one of the two extrema of the operational
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(a) Frequency response of the coordinate θ23
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(b) Arithmetic mean rectified voltage output avg. V23
over the excitation frequency Ω

Figure 6.1: Frequency response and voltage output over excitation frequency Ω for the pendu-
lum energy harvester in the low power take-off mode. The parameters of the pendulum energy
harvester are: l = 0.5 m, m = 1.32 kg, αo f f set = 0◦, A = 24 mm, ξ14 = 0.0325, ξ23 = 0.0323,
RP = NC, and RS = 10 kΩ.

energy harvester where the dynamics of the harvester are similar to those of a simple pendu-

lum. The energy input is converted to the movement of the coordinate θ23. This means that

the omnidirectional energy harvester degenerates to a simple pendulum energy harvester for an

angle αo f f set = 0◦ or αo f f set = 90◦ and every following 90◦ angle. The excitation amplitude

A = 24 mm is the maximum achievable value for this configuration before the pendulum bob

hits the cage. The frequency response and the arithmetic mean rectified voltage output over the

excitation frequency are shown in Figure 6.1a and Figure 6.1b. Both Figures show the expec-

ted softening characteristics of the simple pendulum. The global maximum amplitude of the

coordinate θ23 is reached at an excitation frequency of 0.68 Hz. Unfortunately, one of the pins

was disconnected from the microcontroller during this measurements and therefore the voltage

measurement failed at and is therefore cannot be seen. However, it is safe to assume that the a
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maximum arithmetic mean rectified voltage output is observed at this excitation frequency.

Figure 6.2 shows the frequency response and the arithmetic mean rectified voltage out-

put over the excitation frequency with an excitation amplitude of A = 24 mm for the energy

harvester with an offset angle of αo f f set = 90◦. As mentioned before, this configuration only
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(a) Frequency response of the coordinate θ14
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(b) Arithmetic mean rectified voltage output avg. V14
over the excitation frequency Ω

Figure 6.2: Frequency response and voltage output over excitation frequency Ω for the pendu-
lum energy harvester in the low power take-off mode. The parameters of the pendulum energy
harvester are: l = 0.5 m, m = 1.32 kg, αo f f set = 90◦, A = 24 mm, ξ14 = 0.0325, ξ23 = 0.0323,
RP = NC, and RS = 10 kΩ.

allows a rotation of the coordinate θ14 and the coordinate θ23 does not respond. These plots

show softening characteristics for the coordinate θ14 and the arithmetic mean rectified voltage

output as well. The global maximum is reached at an excitation frequency of 0.68 Hz with the

maximum values being θ14 = 47.7◦ and avg. V14 = 1.52 V.

When comparing Figure 6.1 to Figure 6.2 it is seen that even though the system is excited

with the same excitation amplitude the maximal deflection of the coordinate θ23 is slightly lar-

ger than the amplitude of coordinate θ14. This agrees with the previously determined damping

ratios which are slightly lower for the coordinate θ23 compared to the coordinate θ14.

For an omnidirectional energy harvester it is indispensable that power can be generated

from the system regardless of the excitation direction. Therefore an offset angle of αo f f set = 45◦

is selected to ensure participation of both shafts. The results for the frequency response and

arithmetic mean rectified voltage output over excitation frequency for an excitation amplitude

of A = 24 mm are shown in Figure 6.3. At first glance it can be seen that the deflection of the

coordinates θ14 and θ23 are lower compared to the simple pendulums with the same configur-

ation. Therefore, higher excitation amplitudes are achievable for this configuration before the

pendulum bob collides with the supporting structure. Additionally, the dynamics are generally

different and not as neat as for the simple pendulum and this needs to be looked at more closely

for correct interpretation of the results.
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(b) Frequency response of the coordinate θ23
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(c) Arithmetic mean rectified voltage output avg. V14
over the excitation frequency Ω
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(d) Arithmetic mean rectified voltage output avg. V23
over the excitation frequency Ω

Figure 6.3: Frequency responses and voltage output over excitation frequency Ω for the pendu-
lum energy harvester in the low power take-off mode. The parameters of the pendulum energy
harvester are: l = 0.5 m, m = 1.32 kg, αo f f set = 45◦, A = 24 mm, ξ14 = 0.0325, ξ23 = 0.0323,
RP = NC, and RS = 10 kΩ.

The frequency response of the coordinate θ14 as shown in Figure 6.3a is close to the ex-

pected softening characteristics as they are for a simple pendulum. The maximum of θ14 is

reached at an excitation frequency of Ω = 0.7125 Hz with a value of θ14 = 20.0◦. The value for

the maximum voltage output at the same excitation frequency has a value of avg. V14 = 0.82 V.

However, these results were the first ones measured, and therefore only a few points have been

measured to see that the value of the coordinate θ14 will increase again for a value of the excit-

ation frequency Ω = 0.74 Hz and then abruptly jump down to the next measured point. These

dynamics can be observed in the following figures where the density of measurements points

was increased in the important areas. The coordinate θ23 in Figure 6.3b starts with a slight

deflection and jumps down to zero after that, then the deflection angle rises steeply and reaches

its maximum θ23 = 13.7◦ for a value of the excitation frequency of Ω = 0.75 Hz. The value

for the maximum at the same excitation frequency has a value of avg. V23 = 0.59 V. After

the maximum is passed the value for the coordinate θ23 slowly decreases with an increase in

the excitation frequency. The arithmetic mean rectified voltage output in Figure 6.3c and Fig-

ure 6.3d shows the same overall characteristics as the frequency responses of the coordinates
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θ14 and θ23.

In Figure 6.4 the amplitude is increased to a value of A = 32 mm. This is the maximum
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(b) Frequency response of the coordinate θ23
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avg. V14 the excitation frequency Ω
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(d) Arithmetic mean rectified voltage output avg. V23
over the excitation frequency Ω

Figure 6.4: Frequency responses and voltage output over excitation frequency Ω for the pendu-
lum energy harvester in the low power take-off mode. The parameters of the pendulum energy
harvester are: l = 0.5 m, m = 1.32 kg, αo f f set = 45◦, A = 32 mm, ξ14 = 0.0325, ξ23 = 0.0323,
RP = NC, and RS = 10 kΩ.

achievable amplitude for the system before the pendulum bob collides with the supporting

structure for a value of the excitation frequency of Ω = 0.68 Hz. When comparing Figures 6.3

and 6.4, it is evident that more measurement points have been added at key positions. With this

higher resolution it can be observed that for the coordinate θ14 the deflection in Figure 6.4a

jumps up to a global maximum value of θ14 = 46.9◦ with a value of the excitation frequency

of Ω = 0.68 Hz. At the same time, the coordinate θ23 hardly deflects, so for this frequency

range simple pendulum dynamics can be assumed, and, as expected, the softening properties

are observed. In the following the value for the coordinate θ14 decreases up to a value of

the excitation frequency of Ω = 0.725 Hz where it reaches a local minimum. Then θ14 rises

again until eventually jumping down to a lower value when exceeding an excitation the local

maximum at a frequency of Ω = 0.75 Hz. This results in a broadening of the operational range
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of the pendulum energy harvester for the coordinate θ14 with a hardening effect that is observed

at the end of the operating range.

The dynamics of θ23 are more complicated at first glimpse and therefore need to be ob-

served with caution. Figure 6.4b shows the angular displacement of the coordinate θ23. When

increasing the excitation frequency, it can be seen that over the first three measurement points

the value of θ23 increases and then immediately drops to a value close to zero and holds this

value until it starts rising again after the excitation frequency of Ω = 0.7 Hz is exceeded. It

can be assumed that the interaction between the two shafts has an influence here. In the fol-

lowing the coordinate θ23 undergoes a frequency response as one would expect from a linear

system. The global maximum is reached for an excitation frequency of Ω = 0.75 Hz with a

value of θ23 = 27.3◦. It is worth mentioning that at this excitation frequency the trajectory of

the pendulum bob is of almost perfect circular shape and can therefore be considered to be

operating as a conical pendulum. The same applies for the preceding excitation frequency of

Ω = 0.7375 Hz. The arithmetic mean rectified voltage output again shows similar dynamics

to those of the coordinate. With the local maximum arithmetic mean rectified voltage outputs

being: avg. V14 = 1.42 V, avg. V14 = 1.18 V, avg. V23 = 0.43 V, and avg. V23 = 1.04 V (from

left to right).

Figure 6.5 shows the frequency response and the arithmetic mean rectified voltage output

over the excitation frequency for an excitation amplitude of A = 32 mm and an offset angle of

αo f f set = 135◦. The offset angle was chosen to determine whether the characteristic dynamics

of the coordinate θ14 depend on the orientation of the energy harvester towards the excitational

force or whether this is a design characteristic. The global maximum amplitude is reached at an

excitation frequency of Ω = 0.675 Hz with it being θ14 = 51.3◦. At the end of the operational

range for the coordinate θ14 the local maximum has a value of θ14 = 33.9◦ at an excitation

frequency of Ω = 0.75 Hz. Since there is hardly any difference between Figure 6.4 and Fig-

ure 6.5, it can be assumed that shaft 14 shows dynamic properties due to design properties

and the slightly higher damping ratio. One significant difference between the offset angle of

αo f f set = 45◦ and αo f f set = 135◦ can be seen in Figure 6.5b where the deflection angle θ23

drops directly to a lower value after reaching its local maximum amplitude at Ω = 0.75 Hz

with a value of θ23 = 28.4◦, compared to Figure 6.4b where an intermediate step can be seen.

The arithmetic mean rectified voltage output of the coordinate θ14 in Figure 6.5c shows

local maxima with a value of avg. V14 = 1.43 V and avg. V14 = 1.12 V. In Figure 6.5d the

arithmetic mean rectified voltage output of the coordinate θ23 has two local maxima which are

avg. V23 = 0.29 V and avg. V23 = 0.99 V.

Furthermore, the quasi-periodic dynamics of the pendulum energy harvesters within the

frequency response in Figure 6.5 can be found. It should be noted that these dynamics can

be found at the same position in all frequency responses with an offset angle αo f f set = 45◦

133



CHAPTER 6. EXPERIMENTAL ANALYSIS

0.65 0.70 0.75 0.80 0.85
0

10

20

30

40

50

60

Excitation Frequency [Hz]

θ 1
4
[d
eg
]

(a) Frequency response of the coordinate θ14

0.65 0.70 0.75 0.80 0.85
0

5

10

15

20

25

30

Excitation Frequency [Hz]

θ 2
3
[d
eg
]

(b) Frequency response of the coordinate θ23

0.65 0.70 0.75 0.80 0.85
0.0

0.5

1.0

1.5

Excitation Frequency [Hz]

av
g.
V
14

[V
]

(c) Arithmetic mean rectified voltage output avg. V14
over the excitation frequency Ω

0.65 0.70 0.75 0.80 0.85
0.0

0.5

1.0

1.5

Excitation Frequency [Hz]

av
g.
V
23

[V
]

(d) Arithmetic mean rectified voltage output avg. V23
over the excitation frequency Ω

100 120 140 160 180
-40

-20

0

20

40

t [s]

θ 1
4
[d
eg
]

(e) θ14 over time for an excitation frequency of Ω =
0.7125 Hz
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(f) θ23 over time for an excitation frequency of Ω =
0.7125 Hz

Figure 6.5: Frequency responses, voltage output over excitation frequency Ω, and deflection
angles over time for the pendulum energy harvester in the low power take-off mode. The
parameters of the pendulum energy harvester are: l = 0.5 m, m = 1.32 kg, αo f f set = 135◦,
A = 32 mm, ξ14 = 0.0325, ξ23 = 0.0323, RP = NC, and RS = 10 kΩ.

and αo f f set = 135◦. Figures 6.5e and 6.5f show the time domain responses for an excitation

frequency of Ω = 0.7125 Hz for the two coordinates θ14 and θ23. The time domain clearly

suggests quasi-periodic dynamics.

The dynamics of the energy harvester show a repeating pattern. This is with the assistance

of Figures 6.5a and 6.5b. For this the energy harvester is observed from the top view. Before

the first local maximum of the coordinate θ14 is reached the pendulum bob moves parallel to
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the direction of excitation. Therefore, both shafts are engaged in the movement in equal parts.

When the first local maximum of the coordinate θ14 is reached the whole motion is observed in

shaft 14. The coordinate θ23 does not show any oscillation at this point. With a further increase

in excitation frequency the trajectory of the pendulum bob becomes more oval and eventually

becomes almost circular when the second local maximum of the coordinate θ14 is reached. With

a further increase the trajectory of the bob oscillates parallel to the direction of excitation again.

Figure 6.6 shows the angular displacement and the arithmetic mean rectified voltage output

for a variation of the excitation amplitude for an excitation frequency of Ω = 0.7375 Hz. The
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(b) θ23 over the excitation amplitude A
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(c) Arithmetic mean rectified voltage output avg. V14
over the excitation amplitude A
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(d) Arithmetic mean rectified voltage output avg. V23
over the excitation amplitude A

Figure 6.6: Variation of the excitation amplitude A of the pendulum energy harvester in the low
power take-off mode. The parameters of the pendulum energy harvester are: l = 0.5 m, m =
1.32 kg, αo f f set = 45◦, Ω= 0.7375 Hz, ξ14 = 0.0325, ξ23 = 0.0323, RP =NC, and RS = 10 kΩ.

excitation frequency was chosen because the bob here shows a circular motion and therefore

both coordinates show a deflection. The coordinate θ14 shows a steep rise with an increase of

the excitation amplitude until it reaches a point at an excitation amplitude of A = 30 mm where

the graph bends and afterwards the slope of the coordinate θ14 is smaller. This trend can be

observed for the arithmetic mean rectified voltage output avg. V14 as well, see Figure 6.6c.

For the coordinate θ23 in Figure 6.6b, the system shows an inflection point at an excitation

amplitude of A = 28 mm. Within the area of the infection point the slope is slightly increased
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but afterwards the slope decreases again to pre-inflection point values. The arithmetic mean

rectified voltage output V23 in Figure 6.6d shows similar characteristics to the deflection of the

coordinate θ23.

This shows that not only the excitation frequency but also the excitation amplitude shows

nonlinear properties. For an effective energy harvester it is advantageous to operate the system

above an excitation amplitude of A = 30 mm to utilise the previously completed steep slope.

6.1.2 Dynamics of the Omnidirectional Pendulum Energy Harvester in the High
Power Take-Off Mode

In this section the power take-off load is increased electrically. This is achieved by removal

of the series resistor and inclusion of a 10 Ω resistor parallel to the voltage sensor see Fig-

ure 3.5. This gives a higher current output and and therefore a higher electrical power output.

The damping ratios of the two coordinates remain the same as in the low power output and

have a value of ξ14 = 0.0325 and ξ23 = 0.0323. Since the current output is now physically lar-

ger and over surpasses the background noise of the current sensor the current can be measured

and therefore the power output of the energy harvester can be determined.

Figure 6.7 shows the frequency response and arithmetic mean rectified voltage output of the

pendulum energy harvester with an offset angle of αo f f set = 45◦ and an excitation amplitude

of A = 32 mm. Therefore, the measurements in Figure 6.7 are basically the measurements in

Figure 6.4 with an increased power take-off. Therefore, it is not surprising that the amplitudes

observed in the high power take-off mode are generally lower. Additionally, it can be seen that

the previously clear jumps become less clear as the power take-off increases. The coordinate

θ14 shows a global maximum deflection of θ14 = 31.86◦ at an excitation frequency of Ω =

0.6875 Hz. The global maximum arithmetic mean rectified voltage output of the coordinate

θ14 is observed at the same excitation frequency and has a value of avg. V14 = 0.95 V. In

Figure 6.7b the local maximum deflections of the coordinate θ23 are at excitation frequencies

of Ω = 0.68 Hz and Ω = 0.76 Hz and have values of θ23 = 9.32◦ and θ23 = 12.29◦. The

arithmetic mean rectified voltage output at these positions gives values of avg. V23 = 0.18 V

and avg. V14 = 0.51 V.

Next, the excitation amplitude is increased to its maximum possible value of A = 44 mm.

With a higher excitation amplitude the pendulum bob would collide with the supporting struc-

ture. The excitation amplitude A = 44 mm is therefore the maximum possible excitation amp-

litude for the shown parameters of the pendulum energy harvester. This is carried out to show

the maximum feasible power output of the harvester with a pendulum length of 0.5 m.
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(a) Frequency response of the coordinate θ14
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(b) Frequency response of the coordinate θ23
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(c) Arithmetic mean rectified voltage output avg. V14
over the excitation frequency Ω
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(d) Arithmetic mean rectified voltage output avg. V23
over the excitation frequency Ω

Figure 6.7: Frequency responses and arithmetic mean rectified voltage output over excitation
frequency Ω for the pendulum energy harvester in the high power take-off mode. The paramet-
ers of the pendulum energy harvester are: l = 0.5 m, m = 1.32 kg, αo f f set = 45◦, A = 32 mm,
ξ14 = 0.0325, ξ23 = 0.0323, RP = 10 Ω, and RS = 0 Ω.

Figure 6.8 shows the rotational angles, the arithmetic mean rectified voltage, and the arith-

metic mean rectified power output over the excitation frequency. Firstly, it can be observed that

the jumps within the frequency response can clearly be seen again with an increased excitation

amplitude. In Figure 6.8a θ14 shows a frequency response similar to the previously observed

plots with the characteristic softening properties and the light hardening effect at the end of the

operational range. The global maximum deflections of the coordinate θ14 being at excitation

frequencies of Ω = 0.675 Hz and Ω = 0.7625 Hz with the values for the amplitudes being

θ14 = 49.45◦ and θ14 = 37.4◦. Likewise, the frequency response for θ23 is similar to the previ-

ously observed figures with a global maximum deflection reached at an excitation frequency of

Ω = 0.7625 Hz with a value of θ23 = 31.7◦. The other local maximum is observed at an excit-

ation frequency of Ω = 0.6625 Hz with a value of θ23 = 12.78◦. The arithmetic mean rectified

voltage output mostly verifies the angular displacement diagrams. The local maximum voltage

outputs of the coordinate θ14 in Figure 6.8c being avg. V14 = 1.37 V and avg. V14 = 1.27 V. For

the coordinate θ23 the arithmetic mean rectified voltage outputs at the positions of the maximal

deflection are avg. V23 = 0.33 V and avg. V23 = 1.5 V see Figure 6.8d.
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(b) Frequency response of the coordinate θ23
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(c) Arithmetic mean rectified voltage output avg. V14
over the excitation frequency Ω
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(d) Arithmetic mean rectified voltage output avg. V23
over the excitation frequency Ω
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(e) Arithmetic mean rectified power output P14 over
the excitation frequency Ω
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(f) Arithmetic mean rectified power output P23 over
the excitation frequency Ω

Figure 6.8: Frequency responses, voltage output over excitation frequency Ω, and arithmetic
mean rectified power output over excitation frequency Ω for the pendulum energy harvester in
the high power take-off mode. The parameters of the pendulum energy harvester are: l = 0.5 m,
m = 1.32 kg, αo f f set = 45◦, A = 44 mm, ξ14 = 0.0325, ξ23 = 0.0323, RP = 10 Ω, and RS = 0 Ω.

The coordinate θ14 has an arithmetic mean rectified power output of 0.67 W that can be

produced for an excitation frequency of Ω = 0.675 Hz. The right branch of the power output in

Figure 6.8e is higher with a value of P14 = 0.71 W. This is because the velocity of the pendu-

lum is higher on the right branch compared to the left branch. And with an increase in velocity

the power output increases. The maximum power output of the coordinate θ23 has a value of
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0.63 W at an excitation frequency of Ω = 0.7625 Hz see Figure 6.8f .

Figure 6.9 shows the amplitudes of the two generator coordinates, the arithmetic mean

rectified voltage output, and the power output over the excitation amplitude with an excitation

frequency of Ω = 0.7375 Hz. The excitation frequency was chosen because the bob here shows
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(a) θ14 over the excitation amplitude A
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(b) θ23 over the excitation amplitude A
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(c) Arithmetic mean rectified voltage output avg. V14
over the excitation amplitude A
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(d) Arithmetic mean rectified voltage output avg. V23
over the excitation amplitude A
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(e) Arithmetic mean rectified power output P14 over
the excitation amplitude A
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(f) Arithmetic mean rectified power output P23 over
the excitation amplitude A

Figure 6.9: Deflection of the coordinates θ14 and θ23, arithmetic mean rectified voltage output
avg. V14 and avg. V23, and arithmetic mean rectified power output P14 and P23 over the excitation
amplitude A of the pendulum energy harvester in the high power take-off mode. The parameters
of the pendulum energy harvester are: l = 0.5 m, m = 1.32 kg, αo f f set = 45◦, Ω = 0.7375 Hz,
ξ14 = 0.0325, ξ23 = 0.0323, RP = 10 Ω, and RS = 0 Ω.
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an almost circular motion and therefore both coordinates show a physically large deflection.

In Figure 6.9a the deflection of the coordinate θ14 over the excitation amplitude is shown.

For excitation amplitudes A = 26 mm and A = 28 mm the deflection shows two measurement

points that have a large physical difference to each other. Therefore, the measurement was

repeated several times to confirm the correctness of the measured points. Since the additional

measurements confirmed the fact that they are in fact two individual points, it is not reasonable

to take the arithmetic mean value for these measurements and instead it must be assumed that

this shows an unstable branch with softening characteristics. For an excitation amplitude of

A = 26 mm, this means that an amplitude for the coordinate θ14 of 6.1◦ or 17.2◦ can occur at

the same time. At an excitation amplitude of A = 28 mm the two deflections have values of

θ14 = 7.17◦ and θ14 = 20.6◦. It is important to mention that the same approach was used for

the coordinate θ23. As the excitation amplitude continues to increase further than an excitation

amplitude of A = 28 mm, the deflection of the coordinate θ14 increases as well, but the slops

flattens over time. The global maximum is reached with a value of θ14 = 35.5◦ for an excitation

amplitude of A = 48 mm. Investigating a higher excitation amplitude is not possible, before

internal collisions occur during the transient response, but it is safe to assume that a higher

excitation amplitude would increase the deflection of the coordinate θ14.

The arithmetic mean rectified voltage output avg. V14 is shown in Figure 6.9c and it follows

the coordinate θ14 well and the global maximum arithmetic mean rectified voltage output has

a value of avg. V14 = 1.3 V for an excitation amplitude of A = 48 mm. The values for the

arithmetic mean rectified voltage output at an excitation amplitude of A= 26 mm are avg. V14 =

0.21 V and avg. V14 = 0.68 V and for an excitation amplitude of A= 26 mm they have the values

avg. V14 = 0.26 V and avg. V14 = 0.83 V.

In Figure 6.9e the power output P14 over the excitation amplitude is shown. The global

maximum power output of P14 = 0.77 W at an excitation amplitude of A = 48 mm is observed.

The coordinate θ23 over the excitation amplitude is shown in Figure 6.9b. As in the case of

the coordinate θ14, the measured values of the excitation amplitude A = 26 mm and A = 28 mm

have measurement points that are far from each other and are therefore confirmed as different

points after repeated measurement. The value for an excitation amplitude of A = 26 mm are

θ23 = 14.5◦ and θ23 = 21.5◦ and for an excitation amplitude of A = 28 mm they have values

of θ23 = 15.2◦ and θ23 = 24.1◦. The global maximum has a deflection of θ23 = 24.8◦ at an

excitation amplitude of A = 48 mm.

The arithmetic mean rectified voltage output avg. V23 follows the coordinate θ23. The value

for an excitation amplitude of A = 26 mm are V23 = 0.29 V and V23 = 0.76 V and for an

excitation amplitude of A = 28 mm they have are V23 = 0.25 V and V23 = 0.76 V. The global

maximum arithmetic mean rectified voltage output has a value of avg. V23 = 0.94 V for an

excitation amplitude of A = 48 mm.
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The power output P23 over the excitation amplitude is shown in Figure 6.9f. The global

maximum power output at an excitation amplitude of A = 48 mm has a value of P23 = 0.6 W.

6.2 Omnidirectional Pendulum Energy Harvester with a Pendu-
lum Length of 0.75 m

The dynamics, voltage, and power output of the omnidirectional pendulum energy harvester

with a pendulum length 0.75 m is examined in the following section. The experiments were

carried out with and without a power take-off. It is generally known that the natural frequency

of a simple pendulum can be calculated over the length of the pendulum see Equation (4.7).

In principle, the longer the pendulum arm the lower the natural frequency becomes. Thus, the

operational range of the pendulum energy harvester can be moved and optimised by deliber-

ate selection of the pendulum length. A pendulum length of 0.75 m with a calculated linear

undamped natural frequency of 0.576 Hz is tested in this section. This natural frequency is

assumed for the spherical pendulum.

6.2.1 Dynamics of the Omnidirectional Pendulum Energy Harvester in the Low
Power Take-Off Mode

The damping ratios with a pendulum length of 0.75 m show values of ξ14 = 0.0204 and

ξ23 = 0.020. In Figure 6.10 the frequency response and the arithmetic mean rectified voltage

output over the excitation frequency of the pendulum energy harvester with an offset angle

of αo f f set = 0◦ and with an excitation amplitude of A = 24 mm are both examined. Because
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(a) Frequency response of the coordinate θ23
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(b) Arithmetic mean rectified voltage output avg. V23
over the excitation frequency Ω

Figure 6.10: Frequency response and arithmetic mean rectified voltage output over excitation
frequency Ω for the pendulum energy harvester in the low power take-off mode with the para-
meters set to: l = 0.75 m, m = 1.32 kg, αo f f set = 0◦, A = 24 mm, ξ14 = 0.0204, ξ23 = 0.020,
RP = NC, and RS = 10 kΩ.

of the selected offset angle the coordinate θ14 does not deflect and only a deflection of the
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coordinate θ23 is observed. The coordinate θ23 shows a classical frequency response of a sys-

tem with softening properties with its maximum close to the calculated natural frequency at

Ω = 0.575 Hz with a global maximum amplitude of θ23 = 44.8◦ see Figure 6.10a. The same

applies to the arithmetic mean rectified voltage output in the frequency domain with the global

maximum arithmetic mean rectified voltage output being avg. V23 = 1.26 V see Figure 6.10b.

Figure 6.11 shows the frequency response and the arithmetic mean rectified voltage out-

put over the excitation frequency for the pendulum energy harvester with an offset angle of

αo f f set = 90◦ and with an excitation amplitude of A = 24 mm. In this configuration only the co-
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(a) Frequency response of the coordinate θ14

0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Excitation Frequency [Hz]

av
g.
V
14

[V
]

(b) Arithmetic mean rectified voltage output avg. V14
over the excitation frequency Ω

Figure 6.11: Frequency response and voltage output over excitation frequency Ω for the pen-
dulum harvester in the low power take-off mode. The parameters of the energy harvester are:
l = 0.75 m, m = 1.32 kg, αo f f set = 90◦, A = 24 mm, ξ14 = 0.0204, ξ23 = 0.020, RP = NC, and
RS = 10 kΩ.

ordinate θ14 is oscillating and is therefore exclusively shown. As expected for a simple pendu-

lum the angle θ14 and the arithmetic mean rectified voltage output show softening characterist-

ics. With the global maximum deflection being at an excitation frequency of Ω = 0.575 Hz see

Figure 6.11a. The global maximum amplitude of the coordinate θ14 has a value of θ14 = 41.4◦

and the maximum arithmetic mean rectified voltage output has a value of avg. V14 = 1.21 V

see Figure 6.11b.

Since this work is concerned with an omnidirectional energy harvester, the offset angle is

set to a value of αo f f set = 45◦ for the following figures. Figure 6.12 shows the frequency re-

sponse and the arithmetic mean rectified voltage output over the excitation frequency for the

coordinate θ14 and the coordinate θ23 with an excitation amplitude of A = 32 mm. Firstly, it is

noticeable that a significantly larger excitation amplitude is required to obtain similar deflec-

tions of θ14 compared to the simple pendulum. It can be seen that, apart from the displacement

along the x-axis of the frequency response due to the change in length, the frequency responses

are very similar in shape to those with a pendulum length of 0.5 m. The coordinate θ14 in

142



CHAPTER 6. EXPERIMENTAL ANALYSIS

0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70
0

10

20

30

40

50

Excitation Frequency [Hz]

θ 1
4
[d
eg
]

(a) Frequency response of the coordinate θ14
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(b) Frequency response of the coordinate θ23
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(c) Arithmetic mean rectified voltage output avg. V14
over the excitation frequency Ω
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(d) Arithmetic mean rectified voltage output avg. V23
over the excitation frequency Ω

Figure 6.12: Frequency responses and voltage output over excitation frequency Ω for the pen-
dulum energy harvester in the low power take-off mode. The parameters of the pendulum
energy harvester are: l = 0.75 m, m = 1.32 kg, αo f f set = 45◦, A = 32 mm, ξ14 = 0.0204,
ξ23 = 0.020, RP = NC, and RS = 10 kΩ.

Figure 6.12a shows the same softening and hardening characteristics that show a favourable

effect on the operational range. The global maximum deflection of θ14 = 39.9◦ is reached at an

excitation frequency of Ω = 0.575 Hz with the corresponding arithmetic mean rectified global

maximum arithmetic mean rectified voltage output being avg. V14 = 1.18 V. The deflection of

the coordinate θ23 in Figure 6.12b shows an initial deflection for an excitation frequency of

0.5625 Hz with a deflection of θ23 = 4.9◦ and afterwards drops toward a value close to zero.

Then the frequency response shows a classical linear resonance curve with its global maximum

reached at a value of the excitation frequency of 0.6125 Hz with a deflection of θ23 = 19.2◦.

The arithmetic mean rectified voltage output at this position has a value of avg. V23 = 0.66 V

see Figure 6.12d.

Since these measurements were conducted with a series resistor with a physically high

value of 10 kΩ the ground potential is not affected by the movement of the coordinates, there-

fore the voltage outputs in Figures 6.12c and 6.12d confirm the measured rotational angle

values.
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In Figure 6.13 the values for the coordinates θ14 and θ23 and the arithmetic mean rectified

voltage output avg. V14 and avg. V23 are plotted over a variation of the excitation amplitude.

The excitation frequency is set to a value of Ω = 0.612 Hz and for this value both coordinates
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(a) θ14 over the excitation amplitude A
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(b) θ23 over the excitation amplitude A
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(c) Arithmetic mean rectified voltage output avg. V14
over the excitation amplitude A
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(d) Arithmetic mean rectified voltage output avg. V23
over the excitation amplitude A

Figure 6.13: θ14, θ23, avg. V14, and avg. V23 for a variation of the excitation amplitude A of
the pendulum energy harvester in the low power take-off mode. The parameters of the energy
harvester are: l = 0.75 m, m= 1.32 kg, αo f f set = 45◦, Ω= 0.612 Hz, ξ14 = 0.0204, ξ23 = 0.020,
RP = NC, and RS = 10 kΩ.

have a fairly high deflection because when observing the pendulum bob from the top view it

follows an almost circular trajectory. The amplitude values for the coordinate θ14 are shown in

Figure 6.13a. For the first four measurement points the deflection rises sharply. However, when

the value for the excitation amplitude of A = 25 mm is exceeded the slope decreases rapidly

and the deflection hardly increases with an increase in the excitation amplitude. The global

maximum deflection is reached at an excitation amplitude of A = 36 mm and has a value of

θ14 = 29.7◦. The arithmetic mean rectified voltage output avg. V14 in Figure 6.13c follows

the same trend as the deflection of the coordinate θ14. With the global maximum value being

avg. V14 = 0.97 V at a value of the excitation amplitude of A = 36 mm see Figure 6.13c. A

higher excitation amplitude cannot be examined since the pendulum bob would collide with

the supporting structure of the energy harvester during the transient response.
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The coordinate θ23 over the excitation amplitude is shown in Figure 6.13b. Contrary to

expectations, the first three measuring points do not show a constant increase of the deflec-

tion. At an excitation amplitude of A = 25 mm a deflection of θ23 = 14.1◦ is reached, then

the amplitude slightly decreases to a value of θ23 = 11.0◦ with the next measurement point.

For an excitation amplitude with a value of A = 27 mm the coordinate θ23 increases strongly

to a value of θ23 = 25.9◦. After that, the deflection decreases again and, similar to the final

phase of the coordinate θ14, and hardly increases with increasing excitation amplitude. The

global maximum deflection is not reached at the highest excitation amplitude but instead at an

excitation amplitude of A = 27 mm with a value of θ23 = 25.9◦. The arithmetic mean rectified

voltage output avg. V23 follows the deflection of the coordinate θ23 well and reaches its global

maximum for an excitation amplitude of A = 27 mm with a value of avg. V23 = 0.88 V see

Figure 6.13d.

6.2.2 Dynamics of the Omnidirectional Pendulum Energy Harvester in the High
Power Take-Off Mode

The power take-off is now increased to determine the maximal power output of the pendulum

energy harvester with a length of 0.75 m. This is achieved by including a parallel resistor with

a physically low value of 10 Ω. A detailed description of the measurement circuit can be found

in Section 3.2.3. With this the electrical power output of the energy harvester increases. The

damping ratios continue to have values of ξ14 = 0.0204 and ξ23 = 0.0200.

Figure 6.14 shows the frequency response, arithmetic mean rectified voltage output over

the excitation frequency, and the mean rectified power output over the excitation frequency for

the different coordinates with an increased power take-off with an excitation amplitude of A =

32 mm and an offset angle of αo f f set = 45◦. The coordinate θ14 shows a gradual increase over

the excitation frequency until it reaches a value of Ω= 0.575 Hz where it jumps up to the global

maximum deflection of θ14 = 36.5◦. Over the next four measurement points the deflection

slowly decreases until it slightly increases after a value for the excitation frequency of Ω =

0.6 Hz is exceeded. At the excitation frequency Ω = 0.6125 Hz a local maximum is reached

with a value of θ14 = 26.6◦ afterwards the deflection jumps down to a lower deflection value.

From there on the coordinate slowly converges towards zero. The arithmetic mean rectified

voltage output avg. V14 follows the trend of the coordinate θ14 with two maximum voltage

outputs being avg. V14 = 0.96 V and avg. V14 = 0.86 V. The two maximum power outputs

from the coordinates θ14 are at excitation frequencies mentioned above and have values of

P14 = 0.33 W and P14 = 0.25 W.

Figure 6.14b shows the frequency response of the coordinate θ23. The first four measure-

ment points show a steady increase with the local maximum reached at an excitation frequency

of Ω = 0.57 Hz with a deflection of θ23 = 11.5◦. This is followed by a sudden jump down close
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(a) Frequency response of the coordinate θ14
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(b) Frequency response of the coordinate θ23
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(c) Arithmetic mean rectified voltage output avg. V14
over the excitation frequency Ω

0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70
0.0

0.2

0.4

0.6

0.8

Excitation Frequency [Hz]

av
g.
V
23

[V
]

(d) Arithmetic mean rectified voltage output avg. V23
over the excitation frequency Ω
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(e) Arithmetic mean rectified power output P14 over
the excitation frequency Ω
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(f) Arithmetic mean rectified power output P23 over
the excitation frequency Ω

Figure 6.14: Frequency responses, arithmetic mean rectified voltage output over excitation fre-
quency Ω, and arithmetic mean rectified power output over excitation frequency Ω for the
pendulum energy harvester in the high power take-off mode. The parameters of the pendu-
lum energy harvester are: l = 0.75 m, m = 1.32 kg, αo f f set = 45◦, A = 32 mm, ξ14 = 0.0204,
ξ23 = 0.0200, RP = 10 Ω, and RS = 0 Ω.

to zero. From there on the deflection gradual increases with an increasing excitation frequency

until it reaches a global maximum at an excitation frequency of Ω = 0.6175 Hz with a value of

θ23 = 22.5◦. When the global maximum is passed the amplitude slowly decreases.

Comparing Figures 6.14b and 6.14d, it can be seen that the voltage output mostly matches

the amplitude of θ23, however, in a region for the excitation frequency of Ω= 0.575−0.5875 Hz
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the arithmetic mean rectified voltage output shows values that are directly influenced by the

high levels of deflections of the coordinate θ14 and therefore need to be observed with caution.

In fact the voltage output at this range is too high. But at the global maximum deflection of

the coordinate θ23 the deflection is fairly small and therefore the voltage and current output at

this position is correct and an arithmetic mean rectified voltage output avg. V23 = 0.69 V and a

global maximum power output of P23 = 0.19 W are observed.

In Figure 6.15 the excitation amplitude is increased to a value of A = 38 mm. This value

corresponds to the maximum achievable excitation amplitude that is give by the physical re-

strictions of the cage in which the pendulum oscillates. The coordinate θ14 is plotted over the

excitation amplitude in Figure 6.15a. Here, the classical dynamics of the harvester with an off-

set angle of αo f f set = 45◦ can be observed with the softening properties at the beginning of the

operational range and the slight hardening effect at the end. The local maxima are observed

at values for the excitation frequency Ω = 0.5675 Hz with a deflection of θ14 = 45.6◦ and

Ω = 0.62 Hz with a amplitude of θ14 = 30.76◦. The arithmetic mean rectified voltage output

V14 shows a similar development as the coordinate θ14. The maximum arithmetic mean recti-

fied voltage outputs have values of avg. V14 = 0.99 V and avg. V14 = 0.94 V see Figure 6.15c.

Therefore, the global maximum arithmetic mean rectified power output from the coordinate

θ14 can be given as P14 = 0.47 W at an excitation frequency of 0.5675 Hz and the local max-

imum power output has a value of P14 = 0.35 W at an excitation frequency of Ω = 0.62 Hz see

Figure 6.15d.

The deflections of the coordinate θ23 over the excitation frequency are shown in Fig-

ure 6.15b. The maxima are observed at excitation frequencies of Ω= 0.5625 Hz, Ω= 0.5875 Hz,

and Ω = 0.62 Hz with the maximum deflection values being θ23 = 13.3◦, θ23 = 16.61◦, and

θ23 = 28.6◦. From Figure 6.15d the arithmetic mean rectified voltage output of these points can

be observed with the values being avg. V23 = 0.28 V, avg. V23 = 0.596 V, and avg. V23 = 0.84 V.

The maximum power output on these three excitation frequencies has a value of P23 = 0.028 W,

P23 = 0.15 W, and P23 = 0.36 W see Figure 6.15f.

Figure 6.16 shows the deflections of the coordinates θ14 and θ23, arithmetic mean rectified

voltage output avg. V14 and avg. V23, and arithmetic mean rectified power output P14 and P23

over the excitation amplitude. The pendulum harvester is excited with an excitation frequency

of Ω = 0.612 Hz. For this excitation frequency the trajectory of the pendulum bob (observed

from the top view) follows an almost circular pattern. This ensures that both shafts show high

deflection values. In Figure 6.16a the coordinate θ14 is shown over the excitation amplitude.

For the first five measurement points the deflection gradually decreases with a decrease in the

excitation amplitude. For a value of A = 34 mm the deflection shows two values θ14 = 17.8◦

and θ14 = 27.4◦ that have a great distance towards each other. This is confirmed with several
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(a) Frequency response of the coordinate θ14
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(b) Frequency response of the coordinate θ23
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(c) Arithmetic mean rectified voltage output avg. V14
over the excitation frequency Ω
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(d) Arithmetic mean rectified voltage output avg. V23
over the excitation frequency Ω
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(e) Arithmetic mean rectified power output P14 over
the excitation frequency Ω
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(f) Arithmetic mean rectified power output P23 over
the excitation frequency Ω

Figure 6.15: Frequency responses, arithmetic mean rectified voltage output over excitation fre-
quency Ω, and arithmetic mean rectified power output over excitation frequency Ω for the
pendulum energy harvester in the high power take-off mode. The parameters of the pendu-
lum energy harvester are: l = 0.75 m, m = 1.32 kg, αo f f set = 45◦, A = 38 mm, ξ14 = 0.0204,
ξ23 = 0.0200, RP = 10 Ω, and RS = 0 Ω.

measurements and the steady-state solution settles to either of these two values. This again

shows the nonlinearity that occurs with a variation of the excitation amplitude. From then on,

the deflection of the coordinate θ14 increases steadily, but the slope is no longer as steep as

before the jump. The global maximum deflection is reached with an excitation amplitude of

A = 40 mm with a value of θ14 = 29.9◦.
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(a) θ14 over the excitation amplitude A
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(b) θ23 over the excitation amplitude A
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(c) Arithmetic mean rectified voltage output avg. V14
over the excitation amplitude A
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(d) Arithmetic mean rectified voltage output avg. V23
over the excitation amplitude A
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(e) Arithmetic mean rectified power output P14 over
the excitation amplitude A
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(f) Arithmetic mean rectified power output P23 over
the excitation amplitude A

Figure 6.16: Deflection of the coordinates θ14 and θ23, arithmetic mean rectified voltage output
avg. V14 and avg. V23, and arithmetic mean rectified power output P14 and P23 over the excitation
amplitude A of the pendulum energy harvester in the high power take-off mode. The parameters
of the pendulum energy harvester are: l = 0.75 m, m = 1.32 kg, αo f f set = 45◦, Ω = 0.612 Hz,
ξ14 = 0.0204, ξ23 = 0.0200, RP = 10 Ω, and RS = 0 Ω.

The arithmetic mean rectified voltage output avg. V14 in Figure 6.16c shows similar char-

acteristics as the coordinate θ14. Here too a jump up is observed at an excitation amplitude of

A = 34 mm, the two corresponding voltages have a value of avg. V14 = 0.71 V and avg. V14 =

0.92 V. The global maximum arithmetic mean rectified voltage output of avg. V14 = 0.96 V is

reached at an excitation amplitude of A = 40 mm.
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In Figure 6.16e the power output P14 of the coordinate θ14 is shown over the excitation amp-

litude. The graph follows the coordinate θ14 well and the jump up at an excitation amplitude

of A = 34 mm is observed as well with the two values being P14 = 0.30 W and P14 = 0.36 W.

The global maximum power output is reached at an excitation amplitude of A = 40 mm with a

value of P14 = 0.42 W.

The coordinate θ23 over the excitation amplitude is shown in Figure 6.16b. Over the first 5

measuring points the amplitude gradually increases. At an excitation amplitude of A = 34 mm,

two points whose values are θ23 = 18.8◦ and θ23 = 29.7◦ are shown. The deflection of θ23 =

29.7◦ corresponds to the global maximum amplitude of the displayed area. After the excitation

amplitude of A = 34 mm is exceeded, the deflection continues to increase, but the slope is not

as steep as before and the overall deflection is lower than before the jump.

Figure 6.16d shows the arithmetic mean rectified voltage output avg. V23 of the coordinate

θ23 over the excitation amplitude. The voltage output shows similar characteristics to the de-

flection of the coordinate θ23. The arithmetic mean rectified voltage output is rising and then

the two different arithmetic mean rectified voltage output values can be seen for an excita-

tion amplitude of A = 34 mm. Afterwards the arithmetic mean rectified voltage output stays

constant for a further increase in excitation amplitude.

In Figure 6.16f the power output P23 of the coordinate θ23 is shown over the excitation amp-

litude. The arithmetic mean rectified power output shows similar characteristics as the levels

of deflection of the coordinate θ23. The first five points show a rise in arithmetic mean recti-

fied power output. At an excitation amplitude of 34 mm the power output shows two different

levels. With a further increase in excitation amplitude the arithmetic mean rectified power out-

put continues to increase.

6.3 Comparison of Different Pendulum Lengths

In this section the frequency responses for different pendulum lengths are compared to see the

different dynamics of the energy harvester in a general overview figure. Figure 6.17 shows the

frequency responses for the coordinates θ14 and θ23 for different pendulum lengths. To allow

a clear differentiation between the different pendulum lengths the measurement points of the

different frequency responses were connected. With a variation of the pendulum length the

damping ratios vary for a pendulum length of l = 0.75 m damping ratios of ξ14 = 0.0204 and

ξ23 = 0.02 are observed, for a pendulum length of l = 0.6 m damping ratios of ξ14 = 0.0246

and ξ23 = 0.0201, for a pendulum length of l = 0.55 m damping ratios of ξ14 = 0.0235 and

ξ23 = 0.0247, for a pendulum length of l = 0.5 m damping ratios of ξ14 = 0.037 and ξ23 = 0.037

are observed, for a pendulum length of l = 0.35 m damping ratios of ξ14 = 0.0373 and ξ23 =

0.0339, and for a pendulum length of l = 0.2 m damping ratios of ξ14 = 0.065 and ξ23 = 0.0699

are observed. The energy harvester is excited with an excitation amplitude of A = 32 mm for all
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(b) Frequency responsse of the coordinate θ23

Figure 6.17: Frequency responses over excitation frequency Ω for the pendulum energy har-
vester for different pendulum lengths in the low power take-off mode. The damping ra-
tios variable depending on the length l = 0.75 m → ξ14 = 0.0204 and ξ23 = 0.02, l =
0.6 m → ξ14 = 0.0246 and ξ23 = 0.0201, l = 0.55 m → ξ14 = 0.0235 and ξ23 = 0.0247,
l = 0.5 m → ξ14 = 0.0325 and ξ23 = 0.0323, l = 0.35 m → ξ14 = 0.0373 and ξ23 = 0.0339,
and l = 0.2 m → ξ14 = 0.065 and ξ23 = 0.0699. The parameters of the energy harvester are:
m = 1.32 kg, αo f f set = 45◦, A = 32 mm, RP = NC, and RS = 10 kΩ.

lengths of the pendulum rod. The frequency responses for the lengths l = 0.5 m and l = 0.75 m

are repetitions of Figures 6.4 and 6.12.

Figure 6.17a shows the frequency responses for the coordinate θ14. With a variation of the

pendulum length the natural undamped frequency of the energy harvester changes, therefore as

expected the different responses have their maximum deflection for different excitation amp-

litudes. However, it is interesting to note that the maxima do not increase constantly with a

decrease in pendulum length. From a pendulum length 0.75 m to 0.5 m the maximum deflec-

tion of the coordinate θ14 increases by 7.0◦, with a further decrease of the pendulum length

from 0.5 m to 0.2 m, however, the maximum deflection drops by 11.9◦. The maximum deflec-

tions are here not determined with sweep measurements and can therefore show slightly lower

values. The measurements with sweeps are observed in Section 6.4.

The situation is different for the coordinate θ23 in Figure 6.17b. Here the deflection shows

different maximum deflections over the shortening of the pendulum length. For a pendulum

length of 0.75 m the maximum deflection has a value of 19.2◦, for a pendulum length of 0.6 m

the maximum deflection is 34.4◦, for a pendulum length of 0.55 m the maximum deflection

is 36.28◦, for a pendulum length of 0.5 m the maximum deflection is 27.4◦, for a pendulum

length of 0.35 m the maximum deflection is 36.34◦, and for a pendulum length of 0.2 m the

deflection has a value of 33.3◦.
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6.4 Broadening of the Operational Range of the Omnidirectional
Pendulum Energy Harvester

In this section the influence of excitation frequency up- and down-sweeps on the operational

range of the energy harvester is examined. Figure 6.18 shows frequency responses for the

coordinates θ14 and θ23 with a length of the pendulum of 0.55 m and an excitation amplitude

of A = 32 mm. As mentioned in Section 3.3.1 the blue points were obtained by giving the
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(a) Frequency response of the coordinate θ14
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(b) Frequency response of the coordinate θ23

Figure 6.18: Frequency responses for the pendulum energy harvester in the low power take-
off mode with up- and down-sweeps. The parameters of the pendulum energy harvester are:
l = 0.55 m, m = 1.32 kg, αo f f set = 45◦, A = 32 mm, ξ14 = 0.0325, ξ23 = 0.0323, RP = NC,
and RS = 10 kΩ.

system a constant excitation frequency input signal and observing the value of the deflection

for the steady-state, henceforth as previously mentioned this is referred to as linear frequency

response. The orange and red points were measured with a sweep input signal to the shaker

table. For the orange points a down-sweep with the excitation frequencies of Ω = 0.66 Hz

to 0.63 Hz over a time of 200 s is used and for the red points a up-sweep starting with an

excitation frequency of Ω = 0.69 Hz to 0.82 Hz over a time of 200 s is used. The output signal

is divided in six (down-sweep) and twenty (up-sweep) partitions where the arithmetic mean

rectified deflection is calculated for each partition. The starting point of each sweep is marked

with a black circle in the figures.

In Figure 6.18a the frequency response for the coordinate θ14 is shown. The linear part of

the frequency response shows the common dynamics with the jump up to a local maximum

followed by a local minimum, another local maximum, and a jump down back to a lower

deflection value. The down-sweep (orange triangles) shows a lower value than the linear fre-

quency response for the first circled point, this is because of the fact that the system is still

in the transient response at that point. With a further decrease of the excitation frequency the

deflection of the coordinate θ14 gradually decreases. Until the pendulum bob hits the cage at

a value of the excitation frequency of Ω = 0.6375 Hz, the value for the deflection should be

larger but it is physically restricted. This physical restriction for an angle of θ14 = θ23 = 52.3◦
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is present at all pendulum lengths higher than l = 0.4 m. The up-sweep (red diamonds) shows

lower deflections for the first two shown points, which is attributed to the transient dynamics of

the system that are observed in this area. From there on the system shows a gradually increas-

ing deflection until the physically achievable maximum is reached at an excitation frequency of

Ω = 0.81675 Hz. The upper and lower nonlinear jump regions broaden the operational range

of the coordinate θ14 of the energy harvester compared to the linear operational range, see

definition in Equations (3.7) and (3.6). The lower nonlinear jump region broadens the opera-

tional range by 29.17 % (0.0175 Hz) according to Equation (3.6). The upper nonlinear jump

region broadens the range where the energy harvester shows high deflection values by 177.92 %

(0.10675 Hz), according to Equation (3.7). The broadening of the operational range however is

physically restricted by the pendulum cage and it can therefore only be assumed that a larger

broadening is theoretically possible.

Figure 6.18b shows the frequency response for the coordinate θ23. The down-sweep (or-

ange triangles) has values that are close to zero and is therefore not relevant, the system is

basically operating as a simple pendulum energy harvester in that region. The up-sweep (red

diamonds) shows lower deflections than the linear frequency response for the first two measure-

ments points which are attributed to the transient dynamics that are observed at the beginning

of the up-sweep. From there on the deflection of the coordinate θ23 gradually increases. With

an excitation frequency higher than Ω = 0.72 Hz the trajectory of the spherical pendulums

is similar to that of a conical pendulum. This shows that the operational range of the energy

harvester can be drastically increased when starting the up-sweep in a region of the excitation

frequency Ω = 0.65 Hz to 0.71 Hz. The upper nonlinear jump region broadens the operational

range of the harvester coordinate θ23 by 177.97 % (0.10675 Hz), according to Equation (3.7).

Unfortunately, as mentioned before, pendulum lengths larger than 0.4 m are restricted by the

cage and can therefore not show their full broadening potential. Therefore the pendulum length

is reduced to a length of 0.35 m in the following experiments.

Figure 6.19 shows the frequency responses for the coordinates θ14 and θ23 with a pendulum

length of l = 0.35 m with the same excitation amplitude as in Figure 6.18. This pendulum length

is not physically restricted by the boundaries of the supporting cage since the pendulum bob

operates above the horizontal reinforcement square tube. The frequency responses include up-

and down-sweeps (red diamonds and orange triangles) to examine the operational range of the

system and the frequency response that is measured with different steady-state measurement

points is shown in blue colour. The starting points of the up- and down-sweeps at an excitation

frequency of 0.84325 Hz and 0.7875 Hz are circled in black.

The first measurement point of the down-sweep for the coordinate θ14 in Figure 6.19a has

a lower value than the linear frequency response. With a further decrease of the excitation fre-

quency the deflection of the coordinate θ14 increases with a maximum deflection of 51.25◦
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(a) Frequency response of the coordinate θ14
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(b) Frequency response of the coordinate θ23
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(c) Frequency response of the variable avg. V14
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(d) Frequency response of the variable avg. V23

Figure 6.19: Frequency responses and voltage output in the frequency domain for the pendulum
energy harvester in the low power take-off mode with up- and down-sweeps. The parameters
of the pendulum energy harvester are: l = 0.35 m, m = 1.32 kg, αo f f set = 45◦, A = 32 mm,
ξ14 = 0.0373, ξ23 = 0.0339, RP = NC, and RS = 10 kΩ.

reached at an excitation frequency of 0.7575 Hz. From there on the deflection of the coordinate

θ14 jumps down to a value close to the linear frequency response (blue circles) with an interme-

diate step. This intermediate step can be explained with the post-processing of the measurement

data see Section 3.3.1. To obtain the down-sweep a value for the range over which the results

are arithmetic averaged is picked, in this case a delta of 0.005 Hz is selected. This range is se-

lected with care as a big value would decrease the accuracy and the exact value of the jump is

harder to determine and when the frequency range delta gets too small different values cannot

be arithmetically averaged anymore, which increases the error. Therefore, a reasonable middle

course has to be found. The lower nonlinear jump region broadens the operational range of the

coordinate θ14 by 0.0225 Hz which is equivalent to a value of 28.125 % according to Equa-

tion (3.6). The down-sweep of the coordinate θ23 in Figure 6.19b shows values that are close

to zero and do not show any clear trend. This means that the omnidirectional pendulum energy

harvester can be considered as a simple pendulum energy harvester for the lower nonlinear

jumping region.

The starting point for the up-sweep is at an excitation frequency of 0.84325 Hz. For the

coordinate θ14 in Figure 6.19a the deflection is lower than the linear frequency response de-
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flection (blue circles) this is attributed to the transient dynamics in the arithmetically averaged

bandwidth element. From there on the spherical pendulum shows dynamics that are similar to

a conical pendulum with an increase in the excitation frequency until a maximum deflection

for the coordinate θ14 of 47.97◦ and for the coordinate θ23 of 47.44◦ at an excitation frequency

of 0.94725 Hz is reached. The following measurement points show a slightly lower value than

the maximum deflection and the next measured value shows a jump down to values of the co-

ordinates θ14 of 13.84◦ and θ23 = 16.88◦. With this jump down the circular trajectory of the

pendulum bob that is observed from above changes to a linear motion that follows the excitation

direction.

In Figure 6.19c the voltage output in the frequency domain with up- and down-sweeps is

shown. The figure shows the arithmetic mean rectified voltage output avg. V14 the linear fre-

quency response follows the one of the coordinate θ14 well. It shows a maximum voltage output

of 1.43 V for a value of the excitation frequency of 0.78 Hz. With a further increase in the ex-

citation frequency the arithmetic mean rectified voltage output decreases and reaches a local

minimum of 1.20 V for a value of the excitation frequency of 0.83 Hz. The arithmetic mean

rectified voltage output continues to increase afterwards with a further increase in the excita-

tion frequency and reaches a local maximum of 1.32 V for a value of the excitation frequency

of 0.86 Hz. With a further increase in the excitation frequency the linear frequency response

shows a down jump to a value of the arithmetic mean rectified power output of 0.76 V. The up-

per nonlinear jump region in Figure 6.19c shows similar dynamics to the one in Figure 6.19a.

The starting point has a lower voltage output than the linear response which is attributed to

the transient dynamics that are prevailing in this area. With a further decrease of the excitation

frequency the arithmetic mean rectified voltage output continues to increase and reaches a max-

imum of avg. V14 = 1.61 V for a value of the excitation frequency of 0.757 Hz. The arithmetic

mean rectified voltage output continues to decrease with a further increase in the excitation

frequency. The upper nonlinear jump region of the voltage output shows similar behaviour to

the upper nonlinear jump region of the coordinate θ14 as well. Because of the transient dy-

namics in the area of the bandwidth element the starting point shows a lower arithmetic mean

rectified voltage output than the linear frequency response. With a further increase in the excita-

tion frequency the arithmetic mean rectified voltage output increases and reaches its maximum

arithmetic mean rectified voltage output of 1.76 V at a value of the excitation frequency of

0.948 Hz. The arithmetic mean rectified voltage output jumps down to the arithmetic mean

rectified voltage output value of 0.72 V with a further increase in excitation frequency.

The frequency response for the variable avg. V23 is shown in Figure 6.19d. The linear

frequency response (blue circles) follows the linear frequency response of the coordinate θ23

well. The down-sweep shows similar characteristics. Because of the transient dynamics the first

measurement point of the up-sweep has a lower value for the arithmetic mean rectified voltage

output than the linear frequency response. With a further increase in the excitation frequency
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the arithmetic mean rectified voltage output increases and reaches its maximum of 1.78 V at

a value of the excitation frequency of 0.948 Hz. The arithmetic mean rectified voltage output

jumps down to a value of 0.88 V with a further increase in the excitation frequency.

The hardening and softening characteristics that can be seen in the frequency responses

broaden the operational range of the omnidirectional pendulum energy harvester. The lower

nonlinear jump region for the coordinate θ14 broadens the operating region, where the omni-

directional pendulum energy harvester shows high levels of deflections, by 28.125 % (0.0225 Hz)

compared to the linear frequency response operational range see Equation (3.6). The upper non-

linear jump region of the coordinate θ14 broadens the operational range of the omnidirectional

pendulum energy harvester by 109.0625 % (0.08725 Hz) compared to the linear frequency re-

sponse operational range see Equation (3.7). Therefore, the coordinate θ14 is overall broadened

by 137.1875 %. The broadening effect with the upper nonlinear jump region of the coordinate

θ23 is for this work considered as the increase of the operational range after the global max-

imum of the linear frequency response is passed, therefore, the operational range is broadened

by 109.0625 % (0.08725 Hz), according to Equation (3.7).

Figure 6.20 shows frequency responses for the coordinates θ14 and θ23 with the inclusion

of an up-sweep (red diamonds) and down-sweep (orange triangles). For these two figures the
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(a) Frequency response of the coordinate θ14
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(b) Frequency response of the coordinate θ23

Figure 6.20: Frequency responses for the pendulum energy harvester in the high power take-
off mode with up- and down-sweeps. The parameters of the pendulum energy harvester are:
l = 0.35 m, m = 1.32 kg, αo f f set = 45◦, A = 32 mm, ξ14 = 0.0373, ξ23 = 0.0339, RP = 10 Ω,
and RS = 0 Ω.

power take-off was increased with the known procedure of changing the resistor values. The

starting point for the down-sweep is at an excitation frequency of 0.7985 Hz. For the coordinate

θ14 in Figure 6.20a the starting point shows a lower value than the value of the linear frequency

response (blue circles), this is because the transient dynamics that are observed in this area.

The following down-sweep measurement points have a slightly higher value than the linear

frequency response (blue circles). For the coordinate θ23 the down-sweep shows a higher value

than the linear frequency response for the first measurement point which is attributed to the
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transient dynamics of the pendulum energy harvester. The following measurement points show

a lower initial deflection that gradually increases with a decrease of the excitation frequency.

The starting point of the up-sweep at an excitation frequency of 0.8225 Hz shows a higher

deflection of the coordinate θ14 than the linear frequency response (blue circles) which is attrib-

uted to the transient dynamics that are predominant for this value of the excitation frequency.

The following measurement points of the up-sweep show a good alignment with the steady-

state frequency response. However, with the up-sweep a slight increase of the operational range

is possible. The up-sweep of the coordinate θ23 in Figure 6.20b shows measurement points that

are almost identical with two exceptions. The first one is the starting point which shows a higher

deflection than the linear response because of the transient dynamics in the starting region of

the sweep. Secondly, the local maximum of the linear frequency response (blue circles) cannot

be seen with the up-sweep (red diamonds) which indicates that the frequency sweep changes

the frequency too swiftly and the linear frequency response is simply not reached. Since this is

a local phenomenon it hardly affects the overall results.

Since the frequency responses in Figure 6.20 now shows clear hardening or softening char-

acteristics and in general for low deflections the excitation amplitude is increased to see whether

these characteristics can be seen with a higher power take-off as well.

Figure 6.21 shows the frequency responses for the omnidirectional pendulum energy har-

vester with a high power take-off that is excited with an excitation amplitude of A = 48 mm.

The blue circles indicate the linear frequency response, the orange triangles are measured with

a down-sweep where the starting point is at an excitation frequency of Ω = 0.808 Hz, and

the red diamonds are attributed to the up-sweep with the starting point being at an excitation

frequency of Ω = 0.8235 Hz.

In Figure 6.21a the frequency response with sweeps for the coordinate θ14 is shown. The

linear frequency response shows the well-known pattern that is described in greater detail in the

figures. It starts with a low deflection of the coordinate θ14 that then jumps up to a maximum

deflection with an increase in the excitation frequency. This is followed by a bowl-shaped

trajectory that eventually jumps down back to a value of the deflection close to zero. The down-

sweep which starts at an excitation frequency of Ω = 0.808 Hz shows a lower deflection value

for the first two shown measurement points, which is attributed to the transient dynamics of the

system. From there on the deflection follows the linear frequency response well and increases

the operational range slightly until the excitation frequency of Ω= 0.756 Hz is exceeded. There

the deflection decreases steeply and reaches a value close to 20◦ at the end. During the down-

sweep the coordinate θ14 performs high deflections, however, the dynamics of the coordinate

θ23 in Figure 6.21b show a deflection that is lower than 10◦. Therefore, it is safe to assume

that the spherical pendulum energy harvester can be considered as a simple pendulum energy

harvester in the area of the down sweep where the coordinate θ14 has high levels of deflections.
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(a) Frequency response of the coordinate θ14
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(b) Frequency response of the coordinate θ23
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(c) Frequency response of the variable avg. V14
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(d) Frequency response of the variable avg. V23
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(e) Frequency response of θ̇14
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(f) Frequency response of θ̇23
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(g) Frequency response of the variable avg. P14
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(h) Frequency response of the variable avg. P23

Figure 6.21: Frequency responses and voltage output, velocity, and power output in the fre-
quency domain for the pendulum energy harvester in the high power take-off mode with up- and
down-sweeps. The parameters of the pendulum energy harvester are: l = 0.35 m, m = 1.32 kg,
αo f f set = 45◦, A = 48 mm, ξ14 = 0.0373, ξ23 = 0.0339, RP = 10 Ω, and RS = 0 Ω.
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The first measured point of the coordinate θ14 of the up-sweep shows a lower deflection

than the linear frequency response which is because of the transient dynamics of the system.

From there on the up-sweep follows the linear frequency response well. However, the jump

down to a lower deflection value happens in the upper nonlinear jump region later than in

the linear frequency response. This means the upper nonlinear jump region shows hardening

properties which increase the operational range of the energy harvester drastically. After an

excitation frequency of Ω = 0.943 Hz is exceeded the deflection jumps down to a deflection

value of 15◦ with an intermediate step. The dynamics of the coordinate θ23 in Figure 6.21b are

similar to those of the coordinate θ14. When looking at the omnidirectional pendulum energy

harvester from the top the trajectory of the bob follows a circular pattern during the upper

nonlinear jump region. This means that the dynamics upper nonlinear jump region are similar

to those of a conical pendulum.

In Figure 6.21c the frequency response of the variable avg. V14 which is related to the

coordinate θ14 is shown. The linear frequency response (blue circles) shows initially a strong

increase of the arithmetic mean rectified voltage output and reaches a maximum of 1.73 V

at a value of the excitation frequency of 0.77 Hz. With a further increase in the excitation

frequency the mean rectified voltage output decreases slightly and reaches a local minimum

of 1.59 V at a value of the excitation frequency of 0.83 Hz. The deflection of the arithmetic

mean rectified voltage output increases and reaches a local maximum of 1.77 V for a value

of the excitation frequency of 0.88 Hz as the excitation frequency increases. With a further

increase in the excitation frequency the arithmetic mean rectified voltage output jumps down

to a lower value of 0.697 V. The down-sweep (orange triangles) follows the down-sweep of the

coordinate θ14 well. It overshoots the maximum arithmetic mean rectified voltage output of the

linear frequency response slightly and shows its maximum arithmetic mean rectified voltage

output value of 1.82 V at a value of the excitation frequency of 0.76 Hz. The up-sweep (red

diamonds) shows a constant rise in arithmetic mean rectified voltage output with an increase

of the excitation frequency until reaching its maximum value of the arithmetic mean rectified

voltage output of 2.06 V at an excitation frequency of 0.94 Hz. With a further increase in the

excitation frequency the arithmetic mean rectified voltage output V14 jumps down to a lower

value. It is evident that the right local maximum shows a higher voltage output than the left

local maximum. This is attributed to the fact that with an increase in the excitation frequency

the oscillation frequency of the pendulum increases as well. The voltage output depends on the

velocity and is therefore higher when the oscillation frequency of the pendulum is higher. This

is the additional advantage of having the operational point in the upper nonlinear jump region.

The frequency response of the variable avg. V23 is shown in Figure 6.21d. It follows the

frequency response of the coordinate θ23 well. The up-sweep (red diamonds) shows the same

characteristics as the up-sweep of the coordinate θ23. With an increase in the excitation fre-

quency the arithmetic mean rectified voltage output continuously increases and reaches its
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maximum value for the arithmetic mean rectified voltage output of 1.86 V for a value of the ex-

citation frequency of 0.94 Hz. The mean rectified voltage output jumps down to a lower value

with a further increase in the excitation frequency.

The lower nonlinear jump region of the coordinate θ14 increases the operational range of the

omnidirectional pendulum energy harvester slightly by 4.54 % (0.005 Hz), see Equation (3.6).

The upper nonlinear jump region for the coordinate θ14 broadens the operational range of the

omnidirectional energy harvester by 55.0 % (0.0605 Hz), according to Equation 3.7. This is

an overall increase of the operational range of the coordinate θ14 by 59.55 %. For the coordin-

ate θ23 the operational range is with the upper nonlinear jump region increased by 61.36 %

(0.0675 Hz), according to Equation (3.7).

The arithmetica mean rectified velocity of the coordinates θ14 and θ23 is shown in Fig-

ures 6.21e and 6.21f to show the relationship between the voltage output and the velocity of

the coordinates. In Figure 6.21e it is evident that the maximum velocity in the lower nonlinear

jumping region is lower than the maximum velocity in the upper jump region. This is consistent

with the mean rectified voltage output and shows the overall higher velocity on the right side

of the total operational range.

In Figure 6.21g the frequency response of the the arithmetic mean rectified power output of

the coordinate θ14 is shown. As mentioned in the methodology Section 3.3.1 the voltage output

of the two generators is added and subsequently multiplied by the current to get the power

output of the system. Overall this shows that the arithmetic mean rectified power output has

the same characteristics as the other frequency responses. The arithmetic mean rectified power

output of shaft 14 shows two overall maxima when including the excitation frequency sweeps.

The first maximum is observed at an excitation frequency of 0.768 Hz where an arithmetic

mean rectified power output of 1.74 W is observed. During the upper nonlinear jump region

the second maxima with an arithmetic mean rectified power output of P14 = 2.86 W is observed

for an excitation frequency of 0.9355 Hz. The higher arithmetic mean rectified power output

can be explained with the higher velocity of the pendulum that is prevailing compared to the

first maximum observed. The broadening of the operational range with the upper nonlinear

jumping region and lower nonlinear jump region is in the frequency response of the arithmetic

mean rectified power output can be seen as well.

The frequency response of the arithmetic mean rectified power output of the coordinate

θ23 is shown in Figure 6.21h. The frequency response shows similar characteristics as the fre-

quency responses for the deflection and arithmetic mean rectified voltage output. In the upper

nonlinear jump region the maximum arithmetic mean rectified power output of 2.525 W is ob-

served at an excitation frequency of 0.9355 Hz.

It is evident that the lower and upper nonlinear jumping regions drastically increase the

operational range of the pendulum energy harvester. This is especially interesting for the upper
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nonlinear jump region since in this area both coordinates show a high deflection and therefore

the power take-off is high. However, it is important that the stating excitation frequency is

located between the two local maxima of the coordinate θ14 in order to archive this widening

in operational range. The perfect operational point is therefore located in the upper nonlinear

jump region. At this point the voltage and power output are the highest.
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Chapter 7

Comparison of Numerical and
Experimental Results

In this chapter, the numerical and experimental results are compared. To do this the generalised

coordinates θ and φ are numerically calculated and then they are transformed to the coordinates

θn14 and θn23 with the Equations (3.14) and (3.15) in the methodology in Section 3.6.

The frequency responses in the experimental section were created by arithmetically aver-

aging the maximum deflections over a defined time period, see Section 3.3.1. For the experi-

mentally determined linear part of the frequency response the maximum deflection values were

arithmetically averaged over the last 20 s, see Figure 3.9. In order to allow a direct comparison

between the experimental results and numerical results the numerical results need to be post-

processed similarly to the experimental results. Therefore, the maximum deflections of the nu-

merical coordinates θn14 and θn23 are arithmetically averaged over a range of τ = 800 to 1200.

This is performed for different excitation frequencies and the results are plotted in the frequency

domain.

7.1 Omnidirectional Pendulum Energy Harvester with a Pendu-
lum Length of 0.5 m

The section compares the experimental and numerical results of the pendulum energy harvester

with and without a power take-off for a pendulum length of 0.5 m.

7.1.1 Dynamics of the Omnidirectional Pendulum Energy Harvester in the Low
Power Take-Off Mode

Figure 7.1 shows the frequency responses for the experimentally and numerically calculated

results for the coordinates θ14, θ23, θn14, and θn23. The experimentally determined frequency

responses in Figures 7.1a and 7.1b are the same ones as Figures 6.4a and 6.4b with a slightly
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(a) Experimental frequency response of the coordin-
ate θ14
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(b) Experimental frequency response of the coordin-
ate θ23
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(c) Numerical frequency response of the coordinate
θn14
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(d) Numerical frequency response of the coordinate
θn23
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(e) Numerical frequency response of the coordinate
θn14 with slightly increased damping ratio αθ =αφ =
0.071
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(f) Numerical frequency response of the coordinate
θn23 with slightly increased damping ratio αθ =αφ =
0.071

Figure 7.1: Experimentally and numerically calculated frequency responses for the pendu-
lum energy harvester in the low power take-off mode. The parameters of the experimental
evaluation of the energy harvester are: l = 0.5 m, m = 1.32 kg, αo f f set = 45◦, A = 32 mm,
ξ14 = 0.0325, ξ23 = 0.0323, RP = NC, and RS = 10 kΩ. The values for the numerical analysis
are: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, au = 0.064, av = aw = 0, and
Pθ = Pφ = 0.

adapted excitation frequency range to make the numerical and experimental ranges equal in

size and thus the figures can be directly compared. The repeated use of the experimental results
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increases the overall length of this work, however, increased clarity and readability for the

reader justifies this. Thus, selected figures from Chapter 6 are reused in the following sections.

The experimentally determined coordinate θ14 in Figure 7.1a shows a maximum deflection

of 46.92◦ for an excitation frequency of Ω = 0.68 Hz. For more information on the experi-

mental frequency response of the coordinate θ14 see Figure 6.4a. In Figure 7.1b the numer-

ically calculated arithmetic mean frequency response for the coordinate θn14 is shown. The

spherical pendulum is excited in the u-direction with the damping ratio that is determined on

the experimental rig. The maximum deflection of the coordinate θn14 is reached at an excita-

tion frequency of Ω = 0.673 Hz an has a value of θn14 = 49.0◦. The numerically calculated

maximum deflection shows a higher value than the experimental investigation. One possible

explanation is that the excitation energy is transformed in three main components. The ma-

jority of the energy is transformed in kinetic energy that excites the pendulum bob. A small

part of the energy is energy loss due to the damping properties of the harvester’s mechanical

parts and aerodynamic dissipation. The last part of the energy is transformed in high frequency

vibrations in the mechanical parts of the energy harvester, for example the pendulum mass,

pendulum rod or flat bars see Section 3.5. Since these high frequency vibrations are not taken

into account in the numerical analysis, they must be incorporated by clever manipulation of the

parameters, for which there are two methods. Note that these two approaches are purely theor-

etical methods to compensate for the energy loss because of high frequency vibration within the

harvester. The first approach is to reduce the excitation amplitude and thus reducing the overall

energy input in the system. Thus the part of the energy that is converted into high-frequency

oscillations is not initially introduced to the energy harvester. This brings the maximum de-

flection of the coordinate θn14 to the same level as the experimentally observed coordinate.

After several iterations an excitation amplitude of au = 0.061 proves to be the adequate value.

The second method is to increase the damping ratio slightly. After several iteration steps a

damping ratio of αθ = αφ = 0.071 proves to be adequate. Unfortunately, these two purely the-

oretical approaches do not show the characteristic hardening effects of the experiment. This

upper nonlinear jumping region is discussed in greater detail in the following in Section 7.3.

The maximum deflection θn14 = 45.56◦ for this damping ratio is at an excitation frequency of

Ω = 0.677 Hz, see Figure 7.1e.

The purely theoretical adaption of the damping ratio decreases the maximum deflection of

the coordinates slightly and therefore compensates for the higher frequency vibration within

the mechanical parts of the energy harvester. Therefore, in this section theoretical frequency

responses with for each case adapted damping ratios are additionally shown.

In Figure 7.1d the theoretical frequency response for the coordinate θn23 is shown. Until the

excitation frequency of Ω = 0.67 Hz is not exceeded the coordinate shows no deflection, this

means that in this area the omnidirectional pendulum energy harvester is showing the dynam-

ics of a simple pendulum energy harvester. From there on the theoretical frequency response
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shows two local maxima with a deflection of θn23 = 9.0◦. Afterwards, a local minimum is ob-

served and then the deflection increases steadily. In Figure 7.1f, as with the coordinate θn14, the

damping ratio is increased to a value of αθ = αφ = 0.071. For the higher damping ratios the co-

ordinate θn23 shows no deflection until the excitation frequency of Ω = 0.677 Hz is exceeded.

Then the deflection shows a local maximum at an excitation frequency of Ω = 0.68 Hz with

a deflection of θn23 = 13.0 Hz. From there on the numerical frequency response has a local

minimum, and then the deflection of the coordinate θn23 gradually increases with an increase

in the excitation frequency.

Figure 7.2 shows θn14 and θn23 over the dimensionless time for different excitation frequen-

cies. The excitation frequencies that are shown are the maximum deflections of the coordinate
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(a) θn14 over τ for an excitation frequency of Ω =
0.673 Hz
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(b) θn23 over τ for an excitation frequency of Ω =
0.673 Hz
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(c) θn14 over τ for an excitation frequency of Ω =
0.683 Hz
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(d) θn23 over τ for an excitation frequency of Ω =
0.683 Hz

Figure 7.2: Numerically calculated deflection over time. The values for the numerical analysis
are: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, au = 0.064, av = aw = 0, and
Pθ = Pφ = 0.

θn14 at a value of the excitation frequency of Ω = 0.673 Hz and the following local minimum

with a value of the excitation frequency of Ω = 0.683 Hz. It can be seen that for a value of

the excitation frequency of Ω = 0.673 Hz the coordinate θn14 is moving periodically while the

coordinate θn23 does not show any deflection, see Figures 7.2a and 7.2b. This is observed in
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the experimental results at the maximum deflection of the coordinates θ14 and θ23 as well see

Figure 6.5.

For an excitation frequency of Ω = 0.683 Hz, the system no longer shows periodic dynam-

ics, see Figures 7.2c and 7.2d but instead a behaviour that suggests quasi-periodic dynamics

are observed. This agrees with the experimental data, see for example Figures 6.5e and 6.5f.

Figure 7.3 shows frequency responses for the experimental and numerically determined co-

ordinates θ14, θ23, θn14, and θn23. The numerically determined frequency responses are almost

the same as in Figure 7.1, the difference being the direction of excitation. This allows one to

compare if a variation in excitation direction has the potential to change the dynamics of the

energy harvester. In Figure 7.3 a coupled excitation in the x- and y-directions is used to sim-

ulate the offset angle αo f f set = 45◦. To achieve this, both excitation amplitudes are multiplied

by sin(45◦). The experimentally determined frequency responses in Figures 7.3a and 7.3b are

identical to Figures 7.1a and 7.1b and have only been repeated for the sake of clarity and reader

convenience.

In Figures 7.3c and 7.3d the frequency response for the numerically calculated coordin-

ates θn14 and θn23 with the experimentally determined damping ratios of αθ = αφ = 0.0648 are

shown. The theoretical frequency response for the coordinate θn14 reaches its maximum deflec-

tion of θn14 = 34.65◦ at an excitation frequency of 0.673 Hz. Which is close to the experiment-

ally observed maximum for the coordinate θ14. From the maximum deflection onwards the

value for the coordinate θn14 drops rapidly. With a further increase in the excitation frequency

the deflection of the coordinate θn14 gradually decreases. The numerical frequency response

for the coordinate θn23 is shown in Figure 7.3d. With the maximum deflection of θn23 = 36.86◦

reached at an excitation frequency of 0.676 Hz. The frequency response is similar to the one

of the coordinate θn14 shown in Figure 7.3c. However, this commonality between the numer-

ically calculated frequency responses shows that there are no similarities in comparison with

the experimental frequency response. Nevertheless, the coupled excitation is investigated for

the variation of the excitation amplitude in the following figures and a final conclusion on the

usability of this approach is made at the end of this section.

Figures 7.3e and 7.3f show the numerically calculated frequency responses for the coordin-

ates θn14 and θn23 with a slightly increased damping ratio of αθ = αφ = 0.071 to compensate

for energy losses due to high frequency vibrations within the structure of the pendulum energy

harvester. With the higher damping ratio the maximum deflection of the coordinate θn14 has a

lower value of 32.21◦ at a slightly higher excitation frequency of 0.677 Hz, see Figure 7.3e.

The maximum deflection is slightly higher for the coordinate θn23 = 38.29◦ for slightly higher

excitation frequency of 0.680 Hz.
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(a) Experimental frequency response of the coordin-
ate θ14
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(b) Experimental frequency response of the coordin-
ate θ23
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(c) Numerical frequency response of the coordinate
θn14
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(d) Numerical frequency response of the coordinate
θn23

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
0

10

20

30

40

Excitation Frquency [Hz]

θ n
14
(τ
)
[d
eg
]

(e) Numerical frequency response of the coordinate
θn14 with slightly increased damping ratio αθ =αφ =
0.071

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
0

10

20

30

40

Excitation Frquency [Hz]

θ n
23
(τ
)
[d
eg
]

(f) Numerical frequency response of the coordinate
θn23 with slightly increased damping ratio αθ =αφ =
0.071

Figure 7.3: Experimentally and numerically calculated frequency responses for the pendu-
lum energy harvester in the low power take-off mode. The parameters of the experimental
evaluation of the energy harvester are: l = 0.5 m, m = 1.32 kg, αo f f set = 45◦, A = 32 mm,
ξ14 = 0.0325, ξ23 = 0.0323, RP = NC, and RS = 10 kΩ. The values for the numerical analysis
are: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, au = av =
√

2
2 0.064, aw = 0, and

Pθ = Pφ = 0.

Figure 7.4 shows deflections of the coordinates θ14, θ23, θn14, and θn23 over the excitation

amplitude in the x-direction with an excitation frequency of β = 1.04615 which equivalent to

an experimental excitation frequency of 0.7375 Hz. The experimentally determined deflection
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(a) Experimentally determined coordinate θ14 over
the variation of the excitation amplitude
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(b) Experimentally determined coordinate θ23 over
the variation of the excitation amplitude
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(c) Numerically determined coordinate θn14 over the
excitation amplitude
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(d) Numerically determined coordinate θn23 over the
excitation amplitude
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(e) Numerically determined coordinate θn14 over the
excitation amplitude with slightly increased damp-
ing ratio αθ = αφ = 0.071
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(f) Numerically determined coordinate θn23 over the
excitation amplitude with slightly increased damp-
ing ratio αθ = αφ = 0.071

Figure 7.4: Experimentally and numerically calculated deflection over the excitation amplitude
for the pendulum energy harvester in the low power take-off mode. The parameters of the exper-
imental evaluation of the pendulum energy harvester are: l = 0.5 m, m= 1.32 kg, αo f f set = 45◦,
Ω = 0.7375 Hz, ξ14 = 0.0325, ξ23 = 0.0323, RP = NC, and RS = 10 kΩ. The values for the
numerical analysis are: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, β = 1.04615,
av = 0, aw = 0, and Pθ = Pφ = 0.

over the excitation amplitude plots in Figures 7.4a and 7.4b are repetitions from Figure 6.6

which were repeated in this section to increase the clarity for the reader. As described previ-
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ously the slope of the coordinates θ14 and θ23 increases steeply with an increase in the excitation

amplitude until the excitation amplitude of 30 mm, from there on the slope decreases.

The numerically determined deflection of the coordinate θn14 over the excitation amplitude

is shown in Figure 7.4c. The deflection gradually increases with an increase in the excitation

amplitude, however, the different slopes from the experimental results cannot be seen. Due to

the absence of the steep slope in the area of the excitation amplitude from A = 25 to 30 mm the

deflection for the coordinate θn14 is generally lower than its experimentally determined value

θ14.

In Figure 7.4d the numerically determined deflection of the coordinate θn23 over the ex-

citation amplitude is shown. The deflection of the coordinate θn23 decreases with an increase

of the excitation amplitude. Over the shown range of the excitation amplitude the deflection

decreases from 12◦ to 8◦. Unfortunately, this does not agree with the experimental results.

As before, the damping ratios have been slightly increased to a value of αθ =αφ = 0.071 to

compensate for the energy that is converted into higher frequency vibrations in the experimental

rig. Figure 7.4e shows the deflection of the coordinate θn14 over the excitation amplitude. Be-

cause of the higher damping ratios the overall deflection is lower than the one in Figure 7.4c.

Over the shown range of excitation amplitudes the deflection gradually increases.

In Figure 7.4f the deflection of the coordinate θn23 over the excitation amplitude with an

increased damping ratio of αθ = αφ = 0.071 is shown. The deflection decreases with an in-

crease of the excitation amplitude. Interestingly with a decrease of the damping ratio the overall

deflection of the coordinate θn23 increases slightly.

Figure 7.5 shows the deflection of the coordinates θ14, θ23, θn14, and θn23 over the excitation

amplitude. The numerically determined figures are determined with a coupled excitation in the

x- and y-directions, this is implemented by multiplying both of the excitation amplitudes by

sin(45◦). This is executed on the x-axis of the figure as well. This rescaling of the excitation

amplitudes allows the numerical results and experimental results to be consistent and they can

therefore be compared to the previous figures without any intermediate calculation steps. The

experimentally determined deflection over the excitation amplitudes in Figures 7.5a and 7.5b

are repetitions from Figure 6.6. They show a steep slope until the excitation amplitudes of

A = 30 mm is reached. Afterwards the slope decreases and the deflection of the coordinates θ14

and θ23 increases in smaller steps with a further decrease in the excitation amplitudes.

In Figure 7.5c the deflection of the coordinate θn14 over the excitation amplitudes is shown.

The deflection gradually increases with an increase in the excitation amplitudes. However, the

overall deflections are lower than the experimentally determined values in Figure 7.5a.

The coordinate θn23 over the excitation amplitudes is shown in Figure 7.5d. With an in-

crease of the excitation amplitudes the deflection of the coordinate θn23 increases. The overall

deflection of the coordinate θn23 is lower than its experimentally determined equivalent θ23.
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(a) Experimentally determined coordinate θ14 over
the variation of the excitation amplitude
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(b) Experimentally determined coordinate θ23 over
the variation of the excitation amplitude
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(c) Numerically determined coordinate θn14 over the
excitation amplitudes
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(d) Numerically determined coordinate θn23 over
the excitation amplitudes
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(e) Numerically determined coordinate θn14 over the
excitation amplitudes with slightly increased damp-
ing ratio αθ = αφ = 0.071
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(f) Numerically determined coordinate θn23 over the
excitation amplitudes with slightly increased damp-
ing ratio αθ = αφ = 0.071

Figure 7.5: Experimentally and numerically calculated deflection over the excitation amplitude
for the pendulum energy harvester in the low power take-off mode. The parameters of the exper-
imental evaluation of the pendulum energy harvester are: l = 0.5 m, m= 1.32 kg, αo f f set = 45◦,
Ω = 0.7375 Hz, ξ14 = 0.0325, ξ23 = 0.0323, RP = NC, and RS = 10 kΩ. The values for the
numerical analysis are: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, β = 1.04615,
aw = 0, and Pθ = Pφ = 0.
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For the last two figures the damping ratio is increased to a value of αθ = αφ = 0.071 to

accommodate the energy transformation in higher frequency vibrations in the experimental rig

see Section 3.5. Figure 7.5e shows the deflection of the coordinate θn14 over the excitation amp-

litudes. The deflection increases with an increase in the excitation amplitudes and the overall

deflection is lower which is attributed to the higher damping ratio.

In Figure 7.5f the deflection of the coordinate θn23 over the excitation amplitudes is shown.

With the increased damping ratio the deflection of the coordinate θn23 in Figure 7.5f is lower

than in Figure 7.5d.

The idea to use coupled excitations in Section 7.1.1 unfortunately does not show the ex-

pected results. They are therefore not used anymore in the following. However, it is noticed

that an increase of the damping ratios brings the numerical analysis closer to the experimental

results. Additionally, the increase of the damping ratios compensates for the higher frequency

vibrations that are present in the experimental rig. Generally, it can be said that the dynamics

of the coordinate θn23 are harder to reproduce than the coordinate θn14.

7.1.2 Dynamics of the Omnidirectional Pendulum Energy Harvester in the High
Power Take-Off Mode with Inclusion of the Arctangent Power Take-Off
Term

The arctangent power take-off term is used to simulate the power take-off of the energy har-

vester in this section.

Figure 7.6 shows frequency responses for the experimental coordinates θ14 and θ23 and

the numerical reconstruction of the experimental coordinates θn14 and θn23 with an inclusion

of a power take-off torque Pθ = 0.0144. This power take-off torque is selected after several

iterations where the maximum deflection of θn14 is reached by adapting the power take-off

torque.

The frequency response for the experimentally determined coordinate θ14 is shown in Fig-

ure 7.6a. For the first two measurement points the coordinate θ14 shows a small deflection

which then jumps up to a local maximum of 49.4◦ at a value of the excitation frequency of

0.675 Hz. With a further increase in the excitation frequency the deflection sees a local min-

imum with a deflection of 33.87◦ for a value of the excitation frequency of 0.725 Hz. Af-

terwards the deflection increases again and reaches a local maximum of 37.5◦ for a value of

the excitation frequency of 0.7625 Hz. When the excitation frequency is increased further the

deflection of the coordinate θ14 jumps down to a deflection value close to 15◦.

Figure 7.6b shows the experimentally determined frequency response of the coordinate

θ23. The first two measurement points see an increase in deflection similar to those of the

coordinate θ14. With a further increase in the excitation frequency the coordinate θ23 shows

a small deflection until the excitation frequency of Ω = 0.69 Hz is exceeded. With a further
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(a) Experimental frequency response of the coordin-
ate θ14
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(b) Experimental frequency response of the coordin-
ate θ23
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(c) Numerical frequency response of the coordinate
θn14 forced in au = 0.088 and av = 0
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(d) Numerical frequency response of the coordinate
θn23 forced in au = 0.088 and av = 0
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(e) Numerical frequency response of the coordinate
θn14 with coupled excitation au = av =

√
2

2 0.088
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(f) Numerical frequency response of the coordinate
θn23 with coupled excitation au = av =

√
2

2 0.088

Figure 7.6: Experimentally and numerically calculated frequency responses for the pendulum
energy harvester in the high power take-off mode. The parameters of the experimental evalu-
ation of the pendulum energy harvester are: l = 0.5 m, m = 1.32 kg, αo f f set = 45◦, A = 44 mm,
ξ14 = 0.0325, ξ23 = 0.0323, RP = 10 Ω, and RS = 0 Ω. The values for the numerical analysis
are: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, aw = 0, and Pθ = 0.0144, Pφ = 0.

increase in the excitation frequency the deflection rises gradually until reaching its maximum

deflection of 31.4◦ for an excitation frequency of 0.7625 Hz. Then the deflection jumps down

to a deflection value of around 20◦.
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The numerical analysis of the frequency response of the coordinate θn14 is shown in Fig-

ure 7.6c. The deflection of the coordinate θn14 increases with approximately exponential char-

acteristics for a value of the excitation frequency from 0.55 Hz to 0.67 Hz. With the maximum

deflection of 49.7◦ reached at an excitation frequency of 0.67 Hz. For an excitation frequency

from 0.67 Hz to 0.71 Hz the deflection of the coordinate θn14 decreases rapidly. This is followed

by an area where the system cannot be solved numerically. With an excitation frequency higher

than 0.76 Hz the coordinate θn14 shows a gradual decrease with an increase of the excitation

frequency.

In Figure 7.6d the numerically calculated frequency response for the coordinate θ23 is

shown. Until the excitation frequency of 0.67 Hz is exceeded the coordinate does not show

a deflection. This is followed by an area where the levels of deflections do not follow a clear

trend. After an excitation frequency of 0.71 Hz is exceeded the system shows no deflection be-

cause of numerical issues. With an excitation frequency higher than 0.76 Hz the system shows

a gradually increasing deflection until the end of the shown excitation frequency range.

The omnidirectional pendulum energy harvester is excited with a coupled excitation in the

u- and v-directions with the amplitudes au = av =
√

2
2 0.088. This simulates the excitation with

an offset angle of αo f f set = 45 ◦ and is here observed again for the sake of completeness.

Figure 7.6e shows the theoretical frequency response for the coordinate θn14. The deflection of

the coordinate θn14 increases with approximately exponential characteristics for a value of the

excitation frequency from Ω = 0.55 Hz to 0.67 Hz. For an excitation frequency of 0.67 Hz the

maximum deflection of the coordinate θn14 = 35.1◦ is reached. With a further increase in the

excitation frequency the deflection of the coordinate θn14 decreases rapidly. This is followed

by an area where the deflection stays constant for an excitation frequency from Ω = 0.7 Hz

to 0.725 Hz. For a further increase in the excitation frequency the deflection of the coordinate

θn14 gradually decreases.

In Figure 7.6f the theoretical frequency response for the coordinate θn23 that is excited in

the u- and v-directions is shown. The deflection of the coordinate θn23 increases with approxim-

ately exponential characteristics with an increase in the excitation frequency until a maximum

deflection of the coordinate θn23 of 40.7◦ for a value of the excitation frequency of 0.67 Hz

is reached. With a further increase in the excitation frequency the deflection first decreases

strongly. For a value of the excitation frequency from Ω = 0.698 Hz to 0.73 Hz the deflection

of the coordinate θn23 does almost show no decrease. After the excitation frequency of 0.73 Hz

is exceeded and the excitation frequency is further increased the deflection of the coordinate

θn23 decreases gradually.
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7.2 Numerical Comparison of Different Pendulum Lengths

In this section, the frequency responses for different pendulum lengths are examined for the

numerically calculated coordinates θn14 and θn23. This is similar to the figures in Section 6.3

where the same figure is shown for the experimental results. The energy harvester is excited

with an excitation amplitude of A= 32 mm. In the nondimensionalisation process the excitation

amplitude is divided by the pendulum length the dimensionless excitation amplitudes au show

different values for different pendulum lengths. The experimentally determined damping ratios

for the different pendulum lengths were used for the numerical analyses.
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(b) Numerical frequency responses of the coordin-
ate θn23

Figure 7.7: Numerical frequency responses over excitation frequency Ω for the pendulum
energy harvester for different pendulum lengths. The values for the numerical analysis are:
m = 1.32 kg, g = 9.81 m

s2 , av = aw = 0, Pθ = 0., and Pφ = 0. The damping ratios, and nondi-
mensional excitation amplitude are depending on the pendulum length and are therefore set to:
l = 0.75 m → αθ = αφ = 0.0404 and au = 0.0426667, l = 0.6 m → αθ = αφ = 0.0447 and
au = 0.0533333, l = 0.5 m → αθ = αφ = 0.0648 and au = 0.064, l = 0.35 m → αθ = αφ =
0.0712 and au = 0.0914286, and l = 0.2 m → αθ = αφ = 0.1349 and au = 0.16.

The numerical frequency responses for the coordinate θn14 is shown in Figure 7.7a. The

frequency responses are placed over the shown range of the excitation frequency as is expec-

ted since the natural frequency of the spherical pendulum is dependent on the length in the

pendulum rod. With a decrease of the pendulum length l = 0.75 m to 0.35 m the overall max-

imum deflection of the coordinate θn14 increases. For a pendulum length of 0.2 m the maximum

deflection of the coordinate θn14 decreases compared to a pendulum length of 0.35 m.

In Figure 7.7b the theoretical frequency responses for the different pendulum lengths for

the coordinate θn23 are shown. Due to the different lengths of the pendulum and the result-

ing different natural frequencies, the theoretical frequency responses are distributed over the

excitation frequency range. The maximum deflection of the coordinate θn23 increases with a

decrease of the pendulum length.
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7.3 Numerical Replication of the Broadening Effect of the Omni-
directional Pendulum Energy Harvester

In the previous sections it became clear that the experimental results can unfortunately only be

reproduced numerically to a limited extent when the same parameters as in the experimental

evaluation are used. Especially the coordinate θ23 and the upper nonlinear jump region in Sec-

tion 6.4 are difficult to reproduce numerically. The aim of this section is to reproduce these

two effects with numerical analysis. To do this, the excitation amplitude has to be massively

increased by a factor of 2 to 3.5 of the excitation amplitude values in the experimental evalu-

ation. Unfortunately, because of safety reasons these high values of excitation amplitudes can

only be investigated theoretically because although the excitation amplitudes are theoretically

feasible for the shaker table, they are not for the dimensions and mass of the energy harvester.

It is important to examine how an increased excitation amplitude affects the dynamics of the

pendulum energy harvester. This is accomplished, by comparing the experimentally determined

frequency responses in Figures 6.20 and 6.21 where the pendulum energy harvester with a

pendulum length of 0.35 m is excited with an excitation amplitude of 32 mm and 48 mm. It can

be seen that with an increase in the excitation amplitude the operational range of the pendulum

energy harvester increases drastically. The same is expected to be observed from the numerical

analysis.

In Figure 7.8 experimental and numerical frequency responses are shown. The experiment-

ally determined frequency responses in Figures 7.8a and 7.8b are a repetition of Figure 6.19

with a rescaled x-axis to allow a direct comparison between the experimental and numerical

frequency responses. The spherical pendulum in the experimental frequency responses is ex-

cited with an excitation amplitude of A = 32 mm and is examined in the low power take-off

mode. The dynamics of the frequency responses are described in greater detail in Section 6.4

see Figure 6.19.

Figures 7.8c and 7.8d show the numerically calculated frequency responses of the co-

ordinates θn14 and θn23. The spherical pendulum is excited with an excitation amplitude of

au = 0.314286, in experimental excitation amplitude values this is a value of A = 110 mm.

The excitation amplitude of the numerical analysis is therefore about 3.5 times higher than the

experimental excitation amplitude in Figures 7.8a and 7.8b. The excitation amplitude must be

selected to a high value because this is the first time that the hardening effect can clearly be

seen this is discussed in greater detail with Figure 7.11 and is therefore not repeated here.

In Figure 7.8c the numerically determined frequency response of the coordinate θn14 is

shown. As already observed in the experimental evaluation with an increase in the excita-

tion amplitude the operational range of the spherical pendulum increases. This is observed for

the numerical analysis here as well. For a value of the excitation frequency from Ω = 0.5 to

0.765 Hz the deflection of the coordinate θn14 increases gradually and reaches its maximum
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(a) Experimental frequency response of the coordin-
ate θ14
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(b) Experimental frequency response of the coordin-
ate θ23
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(c) Numerical frequency response of the coordinate
θn14
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(d) Numerical frequency response of the coordinate
θn23

Figure 7.8: Experimental and numerical frequency responses for the pendulum energy harvester
in the low power take-off mode. The values for the numerical analysis are: l = 0.35 m, m =
1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0712, au = 0.314286, av = aw = 0, Pθ = 0, and Pφ = 0. The
parameters of the experimental evaluation of the pendulum energy harvester are: l = 0.35 m,
m= 1.32 kg, αo f f set = 45◦, A= 32 mm, ξ14 = 0.0373, ξ23 = 0.0339, RP =NC, and RS = 10 kΩ.

deflection of 62.2◦ at an excitation frequency of 0.765 Hz. With a further increase in the excit-

ation frequency the deflection of the coordinate θn14 decreases and reaches its minimum at an

excitation frequency of 0.91 Hz. This is followed by a jump up to a higher deflection value. For

a range of excitation frequencies from 0.91 Hz to 1.08 Hz the deflection of the coordinate θn14

increases and reaches its maximum deflection of 55.1◦ at the end of the excitation frequency

range. With a further increase in the excitation frequency the deflection of the coordinate θn14

jumps down to a value of around 30◦ and decreases from there on gradually. The numeric-

ally determined frequency response of the coordinate θn14 shows all the characteristics of the

experimental frequency response of the coordinate θ14 in Figure 7.8a. The main difference is

the overall higher deflection of the numerically determined coordinate θn14 and the increased

excitation frequency range that shows higher deflections which can both be fully attributed to

the higher excitation amplitude. This is observed in the following figures as well.

In Figure 7.8d the theoretical frequency response of the coordinate θn23 is shown. For

a value of the excitation frequency from 0.5 Hz to 0.675 Hz the theoretical frequency re-
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sponse shows no deflection of the coordinate θn23. In the range of the excitation frequency

from 0.675 Hz to 0.755 Hz the coordinate θn23 sees levels of deflections similar to those at the

beginning of the experimental frequency response in Figure 7.8b. With a further increase in

the excitation frequency the deflection of the coordinate θn23 increases until it jumps up to a

higher deflection value of 53.9◦ at an excitation frequency value of 0.935 Hz. Until the excita-

tion frequency of 1.08 Hz is exceeded the deflection of the coordinate θn23 gradually increases

and then jumps down to a deflection value of the coordinate θn23 of around 18◦ with a further

increase in the excitation frequency. The coordinate the numerically reproduction of the co-

ordinate θ23 shows the same initial random appearing deflections and the hardening effect of

the experimental results.

Figure 7.9 shows frequency responses for the numerical and experimental examined pen-

dulum energy harvester in the high power take-off mode with a pendulum length of 0.35 m.

The experimentally determined frequency responses in Figures 7.9a and 7.9b are repetitions

of the experimental frequency responses shown in Figure 6.21. They show the experimental

frequency responses for the pendulum energy harvester in the high power take-off mode that is

excited with an excitation amplitude of A = 48 mm. The experimental frequency responses are

examined in greater detail in Section 6.4 and is therefore not repeated here.

In Figures 7.9c and 7.9d the numerically determined frequency responses are shown. In the

numerically determined frequency responses the omnidirectional pendulum energy harvester is

excited with a value of the theoretical excitation amplitude of au = 0.314286 which transforms

to an experimental excitation amplitude of A = 110 mm which is an increase in the excitation

amplitude by around 2.3 times. The dimensionless power take-off torque is set to a medium

value of Pθ = 0.0330964.

The frequency response for the numerically determined coordinate θn14 is shown in Fig-

ure 7.9c. For a range of excitation frequency from 0.5 Hz to 0.765 Hz the deflection of the

coordinate θn14 gradually increases. At an excitation frequency of 0.765 Hz the coordinate θn14

reaches its global maximum of 62.0◦. Until the excitation frequency of 0.89 Hz is reached the

deflection of the coordinate θn14 decreases. At a value of the excitation frequency of 0.94 Hz

the deflection of the coordinate θn14 jumps up to a value of 45.3◦. With a further increase in the

excitation frequency the deflection of the coordinate θn14 increases and reaches its maximum

of 54.6◦ at a value of the excitation frequency of 1.06 Hz. When this excitation frequency is

further increased the deflection of the coordinate θn14 jumps down to a value between 20◦ and

30◦.

Figure 7.9d shows the theoretical frequency response for the coordinate θn23. For a value of

the excitation frequency from 0.5 Hz to 0.68 Hz the coordinate θn23 shows no deflection. Until

the excitation frequency of 0.76 Hz is exceeded the system shows similar deflections to those

in the experimental frequency response in Figure 7.9b. With a further increase in the excitation
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(a) Experimental frequency response of the coordin-
ate θ14
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(b) Experimental frequency response of the coordin-
ate θ23
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(c) Numerical frequency response of the coordinate
θn14
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(d) Numerical frequency response of the coordinate
θn23

Figure 7.9: Experimental and numerical frequency responses for the pendulum energy harvester
in the high power take-off mode. The values for the numerical analysis are: l = 0.35 m, m =
1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0712, au = 0.314286, av = aw = 0, Pθ = 0.0330964, and
Pφ = 0. The parameters of the experimental evaluation of the pendulum energy harvester are:
l = 0.35 m, m = 1.32 kg, αo f f set = 45◦, A = 48 mm, ξ14 = 0.0373, ξ23 = 0.0339, RP = 10 Ω,
and RS = 0 Ω.

frequency the deflection of the coordinate θn23 increases gradually. At a value of the excitation

frequency of 0.936 Hz the deflection of the coordinate θn23 jumps up to a value of 54.1◦. From

there on the deflection increases until reaching its maximum deflection of 62.0◦ at a value of

the excitation frequency of 1.06 Hz. With a further increase in the excitation frequency the

deflection of the coordinate θn23 jumps down to a value close to 15◦.

Both numerically determined frequency responses show the main characteristics of the ex-

perimental frequency responses.

In Figure 7.10 numerically determined frequency responses for the pendulum energy har-

vester in the low power take-off mode are shown. Since the dynamics of the system are highly

dependent on the damping ratios different values for the damping ratios are examined here.

The damping ratios are arbitrary selected to values 6.7 %, 15.2 %, and 18 % higher than the

damping ratio in the low power take-off mode of the experimental evaluation with a pendulum
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(a) Numerical frequency response of the coordinate
θn14 with αθ = αφ = 0.076
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(b) Numerical frequency response of the coordinate
θn23 with αθ = αφ = 0.076
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(c) Numerical frequency response of the coordinate
θn14 with αθ = αφ = 0.082
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(d) Numerical frequency response of the coordinate
θn23 with αθ = αφ = 0.082
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(e) Numerical frequency response of the coordinate
θn14 with αθ = αφ = 0.084
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(f) Numerical frequency response of the coordinate
θn23 with αθ = αφ = 0.084

Figure 7.10: Numerical frequency responses for the pendulum energy harvester. The values for
the numerical analysis are: l = 0.35 m, m = 1.32 kg, g = 9.81 m

s2 , au = 0.314286, av = aw = 0,
Pθ = 0, and Pφ = 0.

length of 0.35 m. The excitation amplitude is selected to a value of au = 0.314286 which is a

value of A = 110 mm in dimensionalised terms and is therefore only reachable theoretically.

The damping ratio is selected to a value of αθ = αφ = 0.076 in Figures 7.10a and 7.10b. In

Figure 7.10a the thoretical frequency response for the coordinate θn14 is shown. For a value of

the excitation frequency from 0.5 Hz to 0.76 Hz the deflection of the coordinate θn14 gradually

increases and reaches its maximum deflection of 63.0◦ at a value of the excitation frequency
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of 0.76 Hz. With a further increase in the excitation frequency the deflection of the coordinate

θn14 decreases until the excitation frequency of 0.928 Hz is exceeded where the deflection

jumps up to a higher deflection value of 43.5◦. The deflection of the coordinate θn14 gradually

increases with a further increase in the excitation frequency and reaches its maximum deflection

of 53.9◦ for a value of the excitation frequency of 1.06 Hz. With a further increase in the

excitation frequency the deflection of the coordinate θn14 jumps down to a value of around 30◦

and continues to slightly decrease for the rest of the shown frequency range.

Figure 7.10b shows the theoretical frequency response for the coordinate θn14. Until the

excitation frequency of Ω = 0.68 Hz is exceeded the coordinate θn23 shows no deflection. For a

range of excitation frequency from 0.68 Hz to 0.77 Hz coordinate θn23 shows deflection values

which are similar to the experimentally observed values. With a further increase in the excit-

ation frequency the deflection of the coordinate θn23 increases as well until jumping up to a

higher deflection value of 54.1◦ at an excitation frequency of 0.935 Hz. Onward the deflec-

tion further increases and reaches its maximum of θn23 = 62.7◦ for a value of the excitation

frequency of 1.06 Hz. With a further increase in the excitation frequency the deflection jumps

down to a value of the coordinate θn23 of around 15◦. And continues to decrease with a further

increase in the excitation frequency.

In Figure 7.10c the theoretical frequency response for the coordinate θn14 with an increased

damping ratio of αθ =αφ = 0.082 is shown. The deflection of the coordinate θn14 sees a gradual

increase in deflection with an increase in the excitation frequency until reaching its maximum

of 63.7◦ at an excitation frequency of 0.765 Hz. After the maximum is passed the deflection

of the coordinate θn14 decreases with an increase in the excitation frequency. At a value of

the excitation frequency of 0.93 Hz the deflection jumps up to a higher value of θn14 = 43.7◦

and gradually increases in value with an increase in the excitation frequency. The second local

maximum with a value of 52.3◦ is reached for an excitation frequency of 1.04 Hz. With a

further increase in the excitation frequency the deflection of the coordinate θn14 jumps down to

a value of 25◦ to 30◦. For the rest of the shown frequency range the deflection of the coordinate

θn14 decreases.

The theoretical frequency response for the coordinate θn23 with an increased damping ratio

of αθ = αφ = 0.082 is shown in Figure 7.10d. For a range of excitation frequency from Ω =

0.5 Hz to 0.68 Hz the coordinate θn23 shows no deflection. This is followed by an area where the

diagram shows different deflection values comparable to the experimental results. For a value of

the excitation frequency of 0.93 Hz the deflection of the coordinate θn23 jumps up to a value of

51.1◦ and gradually increases from there on with an increase in the excitation frequency until

reaching its maximum deflection of 60.8◦ at a value of the excitation frequency of 1.04 Hz.

When this maximum deflection is exceeded the deflection jumps down to a deflection value of

around 15◦ and stays constant for the rest of the shown excitation frequency.

180



CHAPTER 7. COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS

In Figure 7.10e the theoretical frequency response for the coordinate θn14 with an increased

damping ratio of αθ = αφ = 0.084 is shown. The deflection of the coordinate θn14 increases

over a range of the excitation frequencies from 0.5 Hz to 0.768 Hz. The maximum deflection of

the coordinate θn14 = 64.06◦ is reached at an excitation frequency of 0.768 Hz. With a further

increase in the excitation frequency the deflection of the coordinate θn14 decreases gradually.

The hardening effect that can be seen in the two figures above almost vanishes with the selected

damping ratio.

Figure 7.10f shows the theoretical frequency response for the coordinate θn23 with a damp-

ing ratio of αθ = αφ = 0.084. Until the excitation frequency of Ω = 0.69 Hz is exceeded

the coordinate θn23 shows no deflection. From there on the coordinate θn23 shows deflection

values similar to the experimental investigation until the excitation frequency of 0.756 Hz is

exceeded. With a further increase in the excitation frequency the deflection of the coordinate

θn23 increases to a value of around 15◦ at an excitation frequency of 0.87 Hz. This value stays

constant for the rest of the shown excitation frequency. For a range of excitation frequency from

0.93 Hz to 0.97 Hz a few points with a higher deflection can be seen similarly to the figures

with a lower damping ratio above.

From the theoretical frequency responses in Figure 7.10 it can be concluded that with an

increase of the damping ratios the hardening characteristics of the spherical pendulum energy

harvester decrease. They even disappear completely when the damping ratios are increased

further than a value of αθ = αφ = 0.084. Therefore it is evident that the damping ratio highly

influences the hardening effect in the numerical analysis.

The theoretical dynamics of the omnidirectional pendulum energy harvester are not only

dependent on the damping ratios but on the excitation amplitude as well. The influence of

the different excitation amplitudes is examined in the following. In Figure 7.11 the theoretical

frequency responses of the coordinate θn14 and θn23 are shown. In each row the excitation

amplitude is increased to a higher value.

The theoretical frequency response for the coordinate θn14 with an excitation amplitude

of au = 0.285714 is shown in Figure 7.11a. This excitation amplitude is equivalent to a value

of A = 100 mm and is therefore lower than the excitation amplitudes that are observed in

Figure 7.8, 7.9, and 7.10 with having a value of 110 mm. For a range of excitation frequency

from 0.5 Hz to 0.77 Hz the coordinate θn14 increases gradually. The maximum deflection of the

coordinate θn14 of 66.06◦ is reached at an excitation frequency of 0.77 Hz. After the maximum

is passed the deflection of the coordinate θn14 decreases gradually. The hardening effect can be

seen in between for a range of excitation frequencies from 0.938 Hz to 0.98 Hz and this results

in an increase in the deflection of the coordinate θn14. With a further increase in the excitation

frequency the deflection of the coordinate θn14 jumps down to a lower deflection value and then

decreases with a further increase in the excitation frequency.
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(a) Numerical frequency response of the coordinate
θn14 with au = 0.285714
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(b) Numerical frequency response of the coordinate
θn23 with au = 0.285714
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(c) Numerical frequency response of the coordinate
θn14 with au = 0.314286
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(d) Numerical frequency response of the coordinate
θn23 with au = 0.314286
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(e) Numerical frequency response of the coordinate
θn14 with au = 0.342857
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(f) Numerical frequency response of the coordinate
θn23 with au = 0.342857

Figure 7.11: Numerical frequency responses for the pendulum energy harvester. The values
for the numerical analysis are: l = 0.35 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0712,
av = aw = 0, Pθ = 0, and Pφ = 0.

In Figure 7.11b the theoretical frequency response for the coordinate θn23 for a value of

the excitation amplitude of au = 0.285714 is shown. The coordinate θn23 shows no deflection

until a value of the excitation frequency of 0.69 Hz is exceeded. For a range of excitation

frequency from 0.69 Hz to 0.76 Hz the coordinate θn23 shows similar dynamics to those of the

experimentally determined coordinate θ23. With a further increase in the excitation frequency

the deflection of the coordinate θn23 increases gradually until jumping up to a higher deflection
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value of 52.51◦ at a value for the excitation frequency of 0.94 Hz. With a further increase in the

excitation frequency the deflection of the coordinate θn23 increases and reaches its maximum

deflection of 56.3◦ at a value of the excitation frequency of 0.98 Hz. Afterwards, the deflection

jumps down to a value close to 15◦ which remains constant for the rest of the shown excitation

frequency range.

In Figures 7.11c and 7.11d the excitation amplitude is increased to a value of au = 0.314286.

These figures are repetitions of Figures 7.8c and 7.8d and detailed discussion can be found in

the text related to these figures. The figures were included to directly allow a comparison for

an increase in the excitation amplitude.

The theoretical frequency response for the coordinate θn14 with an excitation amplitude

au = 0.342857 of is shown in Figure 7.11e. For a range of excitation frequency from 0.5 Hz

to 0.758 Hz the deflection gradually increases and the maximum deflection of the coordinate

θn14 of 64.07◦ is reached at the end of this range. With a further increase in the excitation

frequency the deflection of the coordinate θn14 decreases. The deflection starts to rise again after

an excitation frequency of 0.9 Hz is exceeded. The deflection of the coordinate θn14 reaches a

local maximum of 62.0◦ at an excitation frequency of 1.185 Hz. With a further increase in the

excitation frequency the deflection of the coordinate θn14 jumps down to a lower value.

Figure 7.11f shows the theoretical frequency response for the coordinate θn23 for the spher-

ical pendulum that is excited with an excitation frequency of au = 0.342857. Until the excita-

tion frequency of 0.73 Hz is exceeded the coordinate θn23 shows no deflection. For a range of

excitation frequency from 0.73 Hz to 0.756 Hz the coordinate θn23 shows levels of deflections

similar to the experimental investigation in this area. With a further increase in the excitation

frequency the deflection of the coordinate θn23 increases gradually. At a value of the excitation

frequency of 0.938 Hz the deflection increases strongly for a short-range and then the slope flat-

tens again and gradually increases with an increase in the excitation frequency. The maximum

deflection of the coordinate θn23 of 68.73◦ is reached at Ω = 1.19 Hz. With a further increase

in the excitation frequency the deflection of the coordinate θn23 jumps down to a lower value

and continues to decrease gradually.

From the theoretical frequency responses in Figure 7.11 it can be seen that a higher excit-

ation amplitude increases the visibility of the hardening effect. With an excitation amplitude

lower than A = 100 mm the hardening effect cannot be seen anymore for this configuration of

parameters. Additionally, it can be seen that the hardening effect can be seen for a longer range

of excitation frequencies when the excitation amplitude is higher. It becomes evident that the

excitation amplitude of A = 110 mm is the first time that the hardening effect can clearly be

seen. This is the reason for the excitation amplitude selected in Figures 7.8 and 7.9.

The last parameter that influences the dynamics of the pendulum energy harvester is the

power take-off. This is examined here and therefore, in Figure 7.12 the theoretical frequency
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responses for the coordinates θn14 and θn23 for a variation of the power take-off torque are

shown.
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(a) Numerical frequency response of the coordinate
θn14 with Pθ = 0.0110321
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(b) Numerical frequency response of the coordinate
θn23 with Pθ = 0.0110321
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(c) Numerical frequency response of the coordinate
θn14 with Pθ = 0.0220642

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
0

10

20

30

40

50

60

70

Excitation Frquency [Hz]

θ n
23
(τ
)
[d
eg
]

(d) Numerical frequency response of the coordinate
θn23 with Pθ = 0.0220642
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(e) Numerical frequency response of the coordinate
θn14 with Pθ = 0.0441285
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(f) Numerical frequency response of the coordinate
θn23 with Pθ = 0.0441285

Figure 7.12: Numerical frequency responses for the pendulum energy harvester. The values
for the numerical analysis are: l = 0.35 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0712,
au = 0.314286, av = aw = 0, and Pφ = 0.

Figure 7.12a shows the theoretical frequency response for the coordinate θn14 with a power

take-off torque of Pθ = 0.0110321. For a value of the excitation frequency from 0.5 Hz to

0.758 Hz the deflection of the coordinate θn14 increases. The maximum deflection of 65.38◦ is

reached at a value of the excitation frequency of 0.758 Hz. With a further increase in the ex-
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citation frequency the deflection of the coordinate θn14 decreases and reaches a local minimum

at around 0.9 Hz. Afterwards the deflection increases and reaches a local maximum of 55.07◦

at a value of the excitation frequency of 1.08 Hz. With a further increase in the excitation fre-

quency the deflection of the coordinate θn14 jumps down to a value close to 25◦. For the rest of

the shown excitation frequency the deflection of the coordinate θn14 decreases gradually with

an increase in the excitation frequency.

The theoretical frequency response for the coordinate θn23 with a power take-off torque of

Pθ = 0.0110321 is shown in Figure 7.12b. The coordinate θn23 shows no deflection until the

excitation frequency of 0.676 Hz is exceeded. In the following range of excitation frequencies

up to a value of 0.76 Hz the coordinate θn23 shows different values of deflection that appear to

follow no clear trend, this is similar to the in the experimentally determined frequency response

observed results. The deflection of the coordinate θn23 increases gradually until the excitation

frequency of 0.92 Hz is exceeded where the slope of the decrease becomes very steep for a short

while and then returns to a smaller slope subsequently. For a value of the excitation frequency

of 1.075 Hz the theoretical frequency response shows a maximum deflection of the coordinate

θn23 of 63.09◦. After the maximum is passed the deflection jumps down to a lower value of

around 15◦. With a further increase in the excitation frequency the deflection of the coordinate

θn23 decreases gradually.

In Figure 7.12c the numerical frequency response for the coordinate θn14 with an increased

value of the power take-off torque of Pθ = 0.0220642 is shown. The deflection of the coordinate

θn14 gradually increases for a range of excitation frequencies from 0.5 Hz to 0.767 Hz. For a

value of the excitation frequency of 0.767 Hz the maximum deflection of the coordinate θn14

of 60.33◦ is reached. With a further increase in the excitation frequency the deflection of the

coordinate θn14 decreases and reaches a local minimum at a value of the excitation frequency

of around 0.9 Hz. The deflection of the coordinate θn14 jumps up to a value of 44.4◦ for a value

of the excitation frequency of 0.94 Hz and gradually increases with an increase in the excitation

frequency. Another local maximum of 55.3◦ is reached at a value of the excitation frequency

of 1.08 Hz. With a further increase in the excitation frequency the deflection of the coordinate

θn14 jumps down to a deflection value of around 25◦ and decreases gradually with an increase

in the excitation frequency.

Figure 7.12d shows the numerical frequency response for the coordinate θn23 with an in-

creased value of the power take-off torque of Pθ = 0.0220642. Until the excitation frequency

of 0.68 Hz is exceeded the coordinate θn23 show no deflection. In the range of the excitation

frequency from 0.68 Hz to 0.76 Hz the deflection of the coordinate θn23 shows different deflec-

tion values that do not seem to follow any pattern, this is similar to the experimental examined

results. With a further increase in the excitation frequency the deflection of the coordinate

θn23 increases as well until jumping up to a higher deflection of the coordinate θn23 of 54.1◦ at

Ω = 0.945 Hz. The deflection continues to increase with an increase in the excitation frequency
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and reaches a local maximum of 62.83◦ at a value of the excitation frequency of 1.07 Hz. With

a further increase in the excitation frequency the deflection of the coordinate θn23 jumps down

to a value of around 15◦ and decreases gradually.

The theoretical frequency response for the coordinate θn14 with a power take-off torque of

Pθ = 0.0441285 is shown in Figure 7.12e. Until the excitation frequency of Ω = 0.77 Hz is

exceeded the deflection of the coordinate θn14 increases gradually and reaches its maximum

deflection of 65.1◦ at this point. With a further increase in the excitation frequency the de-

flection of the coordinate decreases and reaches a local minimum at an excitation frequency

of around 0.9 Hz. At a value of the excitation frequency of 0.94 Hz the deflection of the co-

ordinate θn14 jumps up to a deflection value of 45.4◦ and increases onwards with an increase

in the excitation frequency. Another local maximum of θn14 = 54.1◦ is reached at an excitation

frequency of Ω = 1.05 Hz. With a further increase in the excitation frequency the deflection of

the coordinate θn14 jumps down to a value of around 25◦ and decreases gradually onwards with

a further increase in the excitation frequency.

In Figure 7.12f the numerical frequency response for the coordinate θn23 with a power

take-off torque of Pθ = 0.0441285 is shown. The coordinate θn23 shows no deflection until a

value for the excitation frequency of 0.68 Hz is exceeded. For a range of excitation frequency

from 0.68 Hz to 0.76 Hz the coordinate θn23 shows defections that do not follow any particular

pattern similar to those in the experimental investigation. The deflection continues to rise with

an increase in the excitation frequency until reaching an excitation frequency of 0.936 Hz

where the deflection of the coordinate θn23 jumps up to a value of 53.2◦. With a further increase

in the excitation frequency the deflection of the coordinate continues to increase until seeing

a maximum deflection of 61.1◦ at a value of the excitation frequency of 1.05 Hz. The high

deflection jumps down to a deflection of around 15◦ and continues to decrease with a further

increase in the excitation frequency.

From the theoretical frequency response in Figure 7.12 it can be concluded that the increase

in the power take-off torque mainly shortens the hardening branch of the theoretical frequency

response and therefore reduces the operational range of the pendulum energy harvester slightly.

With a power take-off torque higher than Pθ = 0.057367 the hardening effect completely dis-

appears and therefore drastically less energy can be drawn from the system in this area.

It is evident that the theoretical frequency responses are highly dependent on the excit-

ation frequency, damping ratios and the power take-off torque. With an adapted selection of

these parameters the general characteristics of the experimental frequency responses can be re-

produced with the numerical computation. The coordinate θn14 shows a theoretical frequency

response with two local maxima and a local minimum in-between similar to those in the ex-

periments. This includes the hardening characteristics that are observed in the experiments as

well. This applies to both coordinates. Additionally, it can be seen that similar to the experi-
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mental examination at the beginning of the frequency responses the spherical pendulum shows

the dynamics of a simple pendulum, where only shaft 14 shows a deflection. This is followed

by a transformation to dynamics that represent the trajectory of a conical pendulum during the

operation on the hardening branch. The selection of the high excitation amplitude is therefore

responsible for the high levels of deflections of coordinate θn23 on the hardening branch. It

can be concluded the numerical investigation with a higher excitation amplitude shows all the

characteristics of the experimentally determined frequency responses.
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Chapter 8

Towards an Application of the
Omnidirectional Pendulum Energy
Harvester

The energy harvester discussed in this thesis is a pre-prototype, therefore it is crucial to define

the next steps toward applications for the energy harvester.

8.1 Possible Areas of Application

The omnidirectional pendulum energy harvester can be used in various areas of application.

According to the application the physical size of the energy harvester changes. In the follow-

ing discussion two different applications are proposed at the small and large ends of the size

spectrum. In Figure 8.1 an earring pendulum energy harvester is shown. The idea behind this

concept is to power a hearing aid by utilising the movement of the person who is wearing the

earring. The combination of a medical device and a mode fashionable accessory has the po-

tential to motivate people to tackle their hearing problems earlier and remove the stigma of

hearing aids being devices for pensioners. Additionally, the device can be used to monitor the

fitness levels of the user by calculating the number of steps. This can have an overall positive

effect on the health of the user.

An application at the other end of the size spectrum is a wave energy harvester, see Fig-

ure 8.2. A large-scale device can be used to convert energy from sea waves. This can be used

purely as an energy harvesting device or it is possible to use the energy harvester as an addi-

tional power supply for a self-sustained monitoring buoy. This can be used to substitute phases

in which photovoltaic cells do not produce enough electricity. A monitoring buoy can collect

civil data like weather data, water quality, tidal measurements, and wave measurements.
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Figure 8.1: Application of the omnidirectional pendulum energy harvester as a self-sustained
hearing aid with earring

Figure 8.2: Application of the omnidirectional pendulum energy harvester as a wave energy
harvester

8.2 Different Control Strategies of the Power Take-Off for the En-
ergy Harvester

The electrical load of the energy harvester discussed in this work is implemented with the most

economic option possible which is a resistor that can be replaced accordingly to apply different

electrical loads see Figure 3.5 in the methodology section. This however means that the power
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take-off is constantly applied to the energy harvester. Even though this is sufficient for the

observed experiments it has two main downsides.

Firstly, the power take-off is applied constantly over the whole operational area even at the

start of the excitation where the dynamics of the energy harvester are showing transient dy-

namics. Therefore, an optimal operational point may be reached later than otherwise possible.

Secondly, in low deflections of the energy harvester the power take-off is applied as well and

in some cases this results in a complete stop of the oscillation of the pendulum bob. This de-

creases the efficiency of the energy harvester as well. Additionally, the operational range of the

energy harvester is within a narrow frequency range. It would be advantageous to be able to

move the frequency response along the frequency axis to the optimum point, to accommodate

for different excitation frequencies. To increase the efficiency of the energy harvester a control

is necessary. Different scholars have observed the optimisation and control of various energy

harvesters and these are reviewed in the theory Section 2.4 of this thesis. Different theoretical

approaches for an optimised power take-off control strategy for the omnidirectional energy

harvester are discussed in the following three sections.

8.2.1 Switching Control with Three Conditions

From the theory Section 2.4 on the electrical power take-off a few general conclusions for an

optimised electrical power take-off for the omnidirectional energy harvester can be drawn. It is

important to be able to control the speed or the power take-off of the generators. This allows the

operation of the energy harvester to be based on the highest possible deflections and velocity.

For an optimised power take-off of the omnidirectional pendulum energy harvester three

general conditions are defined that always need to be fulfilled. Firstly, the coordinates θ14 and

θ23 should always have a higher deflection than a definable lower switching off limit. This is

because for low deflection values the load due to the requested power output can completely

cancel out the oscillations of the pendulum. Therefore, it is advantageous only to convert en-

ergy when the maximum deflection angle is higher than a definable lower switch off limit. In

this first case an arbitrary value of 20◦ is selected as the lower switch off limit. This value is

from here on referred to as the lower switch off limit. The lower switch off limit prevents the

movement of one or both shafts to be damped too strongly, which would cause the oscillation

to stop. Therefore the power take-off should be switched off completely for the shaft whose

deflection is lower than 20◦. It should be assessed whether it is sensible that for different de-

flection angles different levels of power take-off torques should applied see Section 8.2.2. The

second condition is that during the transient response the power take-off is switched off. This

can be applied easily with a timer but a threshold for deflections of the shaft is possible as

well. The third condition is a safety feature that prevents against the destruction of the energy

harvester. The maximum possible deflection value is dependent on the length of the pendulum.

For a pendulum length of 0.5 m the maximum deflection value gets higher than 52.3◦. This is
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from here on referred to as the safety limit. The conditions for the control strategy are shown

Start

Measure max-
imum deflection

θ < 20◦

θ ≤ 52.3◦

Operational
power take-off

No power take-off

Safety mode Count safety
and store time

More than
5 counts

per minute?

Emergency stop

Yes

No

No

Yes

No

Yes

Figure 8.3: Conditions for an optimised power take-off flow chart with three conditions

in the flow chart see Figure 8.3.

The differential Equations (4.36) and (4.37) are extended by two terms a(τ) and b(τ) see

Equations (8.1) and (8.2). With these terms the numerical integration within the NDSolve tool

in Wolfram Mathematica® can directly be influenced. The terms a(τ) and b(τ) are from now

on referred to using terminology from Mathematica®, as discrete variables. These variables are

used for the controlled power take-off as described in the flow chart in Figure 8.3. Where the

discrete variable a(τ) controls the level of the power take-off and the variable b(τ) simulates an

emergency brake to bring the energy harvester into safety mode. This is done by increasing the

damping ratios by a factor of 10 and doubling the power take-off torque. When the deflection of

the coordinate θ gets higher than 52.3◦ the safety break applies, this is simulated in the damping

term of the differential equations. The ordinary differential equations with the discrete variables

are shown in Equations (8.1) and (8.2).

θ̈(τ)+b(τ)αθ θ̇(τ)− sin(θ(τ))cos(θ(τ))φ̇(τ)2 + sin(θ(τ))

=−auβ
2
u cos(θ(τ))sin(φ(τ))cos(βuτ)+avβ

2
v cos(θ(τ))cos(φ(τ))cos(βvτ)

+awβ
2
w sin(θ(τ))cos(βwτ)−a(τ)

2Pθ

π
tan−1

(
θ̇(τ)

εr

)
.

(8.1)
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φ̈(τ)+b(τ)
αφ

sin2(θ(τ))
φ̇(τ)+

2θ̇(τ)cos(θ(τ))φ̇(τ)
sin(θ(τ))

=−auβ
2
u

cos(φ(τ))
sin(θ(τ))

cos(βuτ)−avβ
2
v

sin(φ(τ))
sin(θ(τ))

cos(βvτ)

−a(τ)
2Pφ

π sin2(θ(τ))
tan−1

(
φ̇(τ)

εr

)
.

(8.2)

In Figure 8.4 the Mathematica® code for an NDSolve function following the flow chart in

Figure 8.3 is shown. The first line shows the input of Equations (8.1) and (8.2). In the second

NDSolve[{equation1, equation2,

θ[0] ⩵ IC, ϕ[0] ⩵ IC, θ'[0] ⩵ IC, ϕ'[0] ⩵ IC,

a[0] ⩵ 1, b[0] ⩵ 1,

WhenEvent[θ'[t] == 0 && RealAbs[θ[t]] < 0.35,

{a[t] → 0, b[t] → 1}],

WhenEvent[θ'[t] == 0 && 0.91 ≥ RealAbs[θ[t]] ≥ 0.35,

{a[t] → 1, b[t] → 1}],

WhenEvent[θ'[t] == 0 && RealAbs[θ[t]] > 0.91,

{a[t] → 2, b[t] → 10}]},

{θ, ϕ, a, b}, {t, 0, tend}, DiscreteVariables → {a, b}]

Figure 8.4: Numerical integration strategy of the controlled power take-off with NDSolve

and third line the initial conditions are selected reasonably as defined at the beginning of Sec-

tion 5. The next following six lines are WhenEvent commands. These commands allow for the

switching off and on of the power take-off in accordance with the pre-defined thresholds. In

the first WhenEvent the power take-off is switched off when the deflection of the coordinate θ

falls below a definable limit in this case 20◦ (or 0.35 rad). The second WhenEvent describes

the activation of the operational power take-off. The last WhenEvent simulates the safety mode

where the power take-off and the damping ratios are increased drastically to break down the

pendulum bob and bring it to a halt to prevent destruction of the energy harvester. This has

no influence on the energy harvesting capabilities but is used purely as a safety feature. The

last line of Mathematica® code defines the different variables (θ , φ , a, and b), the independent

variable (dimensionless time τ in this case abbreviated as t), and the discrete variables (a and

b).

In Equation (8.3) the power take-off function of the coordinate θ is shown. It is used to

visualise the power take-off over the dimensionless time in Figure 8.5.

PTOθarc(τ) =−a(τ)
2Pθ

π
tan−1

(
θ̇(τ)

εr

)
. (8.3)

Figure 8.5 shows time responses of the acceleration of the coordinate θ and the power take-

off function from Equation (8.3) over the dimensionless time τ . The arithmetic mean rectified

power output is calculated as described in Section 5.4 and is shown in the figures. The system
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(a) With optimised power take-off β = 1.0
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(c) With optimised power take-off β = 1.1
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(d) Without optimised power take-off β = 1.1

Figure 8.5: Power take-off and velocity of the coordinate θ over τ the parameters set to: l =
0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, au = av = aw = 0.064, βu = βv = 1.0,
βw = 2.0, Pθ = 0.1, Pφ = 0, lower switch off limit = 20◦, and safety limit = 52.3◦.

is excited with relative low excitation amplitudes to prevent the safety break operating. This

allows a concentration on the optimisation of the power take-off rather than the operational

safety of the energy harvester. In the first row of figures the energy harvester is excited with an

excitation frequency of β = 1.0 and in the second row with an excitation frequency of β = 1.1.

In the left column the energy harvesters’ power take-off is optimised and in the right column a

constant power take-off torque is applied similar to the numerical Section 5.3 in this work.

In Figure 8.5a the energy harvester is excited with an excitation frequency of β = 1.0

and the power take-off is controlled. It can be seen that with the optimised power take-off the

oscillation of the energy harvester is sustained over the whole time period shown. It can also

be seen that the power take-off is switched off when the deflection of the coordinate θ is lower

than 20◦. The arithmetic mean rectified power output shown over the dimensionless time period

is 0.01744.

Figure 8.5b shows the energy harvester that is excited with an excitation frequency of β =

1.0 and a constant power take-off. The velocity of the coordinate θ is constantly reduced with

the power take-off torque and with a τ higher than 20 the velocity is below a level where energy
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can be sufficiently converted from the energy harvester. The arithmetic mean rectified power

output over the shown dimensionless time period is 0.00243.

In Figure 8.5c the energy harvester is excited with an excitation frequency of β = 1.1. The

switching off of the power take-off when the lower limit of 20◦ is reached sustains the swing of

the pendulum arm longer compared to the constant power output in Figure 8.5d. This is clear

for the arithmetic mean rectified power output of both systems as well. With the optimised

power take-off an arithmetic mean rectified power output of 0.00401 is reached and without

the optimised power output an arithmetic mean rectified power output of 0.00176 is achieved.

In the cases shown the direct comparison between the different levels of power output is not

significant since in the constant power take-off mode the velocity of the coordinate θ does not

show sufficient deflections with a time higher than τ = 20 for β = 1.0 or τ = 15 for β = 1.1.

Since the power output is a multiplication of the velocity of the coordinate θ and the power

take-off torque the arithmetic mean rectified power output becomes close to zero with τ > 20

for β = 1.0 or τ > 15 for β = 1.1. Nevertheless, the arithmetic mean rectified power output

indicates that the switching control within NDSolve can optimise the power output and sustain

the oscillations of the pendulum for longer.

8.2.2 Switching Control with Four Conditions

In this section an additional switching condition is added to the three condition switching con-

trol shown in Section 8.2.1. The goal is to further optimise the power take-off algorithm. In

Figure 8.6 the flow chart for the four condition switching control is shown. With a deflection

angle of the coordinate θ below 10◦ the power take-off is set to zero. This prevents the load

due to the required power take-off to reducing the oscillations of the pendulum in such a way

that they are completely stopped. For deflection values of θ from 10◦ to 20◦ the power take-off

is set to a value of half of the operational power take-off. This is done to get a power output

from the energy harvester without it being too high and cancelling out the oscillation. When the

deflection of the coordinate θ is between a value of 20◦ and 52.3◦ the energy harvester operates

with the pre-defined operational power take-off offering a medium load. With an increase in

the deflection higher than 52.3◦ the energy harvester goes into a safety mode to prevent the

destruction of the experimental rig. In the safety mode the power take-off is selected to a high

value and additionally the damping ratio is increased drastically which simulates an applied

braking force. Every time the safety mode is reached a counter stores the amount of the safety

modes over the last minutes. If this value is higher than 5 counts per minute it is assumed that

the excitation force is currently too high and therefore an emergency stopping procedure is

initiated.

In Figure 8.7 the velocity of θ and the power take-off over time is shown for the optimised

power take-off control with four conditions and different excitation frequencies. Figure 8.7a
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Figure 8.6: Conditions for an optimised power take-off flow chart with three conditions

shows the optimised power take-off with an excitation frequency of β = 1.0. The switching

of power take-off to half its value is observed and over the shown time period the oscillations

of θ̇(τ) are sustained. Over the shown range the arithmetic mean rectified power output has a

value of Pavg = 0.01545. In Figure 8.7b the energy harvester is forced under the same conditions

but the power take-off is applied with a constant power take-off torque. The oscillation of

the coordinate θ̇(τ) decays fast and with a value for τ higher than 20 almost no significant

oscillations of θ̇(τ) are observed. Therefore, the arithmetic mean rectified power output is

significantly lower with a value of Pavg = 0.00243.

With an increase in excitation frequency to a value of β = 1.1 the dynamics of the system

change for the optimised power take-off, see Figure 8.7c. The optimised power take-off forces

the dynamics of the system in such a way that the velocity values are lower overall and this

results in an arithmetic mean rectified power output of Pavg = 0.00232. In Figure 8.7d the

system under the same forcing conditions is shown with a constantly applied power take-off.

The oscillations decay fast and the arithmetic mean rectified power output has a value of Pavg =

0.00176.
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(a) With optimised power take-off with β = 1.0
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(b) Without optimised power take-off with β = 1.0
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(c) With optimised power take-off with β = 1.1
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(d) Without optimised power take-off with β = 1.1

Figure 8.7: Power take-off and velocity of the coordinate θ over τ the parameters set to: l =
0.5 m, m = 1.32 kg, g = 9.81 m

s2 , αθ = αφ = 0.0648, au = av = aw = 0.064, Pθ = 0.1, Pφ = 0,
lower switch off limit = 10◦, operational power take-off limit = 20◦, and safety limit = 52.3◦.

It is observed that the introduced additional half power take-off switching limit does not

increase the power output of the energy harvester for the forcing conditions shown. Therefore,

the switching limits need to be examined in the following.

8.2.3 Comparison of the Different Limits for the Power Take-Off

When comparing Figures 8.5 and 8.7 it is evident that the arithmetic mean rectified power out-

put is reduced with the additionally introduced condition. The limits for the switching on and

off of the power take-off torque so far were selected arbitrarily to see the general functionality

of the controlled power take-off. Therefore, the switching limits are investigated further in the

following section. Figure 8.8 shows the flow chart for the investigation of the lower limit. The

upper limit that activates the safety mode is set to 90◦ to be able to investigate the full potential

of the energy harvester1.

1This is only theoretically possible because in the experiment the cage restricts high deflections.
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Figure 8.8: Determination of the lower limit for the power take-off

In the following the numerical integration is repeatedly iterated with the lower limit para-

meter being incremented. The mean rectified power output over the lower switch off limit

for different levels of the power take-off torque is shown in Figure 8.9. In Figure 8.9a the

power take-off torque is set to a value of 0.1. The rectified mean rectified power output in-

creases gradually and reaches a maximum value of 0.0587 at a lower value of the threshold of

1.05 rad (60.16◦). With a further increase of the lower switch on limit of the power take-off

the arithmetic mean rectified power output jumps down to zero. The power take-off torque is

increased to a value of 0.2 in Figure 8.9b. The arithmetic mean rectified power output increases

gradually with an increase in the lower switch off limit. During the gradual rise plateaus are

observed where the power output does not change for a range of lower switching off limits.

The maximum mean rectified power output of 0.109 is reached at a lower power take-off limit

of 1.11 rad (63.60◦). With a further increase in the switching off value a power output is not

possible anymore. Figure 8.9c shows the mean rectified power output over the lower switching

off value for a power take-off torque of 0.3. For a low switching off value no power can be

converted from the energy harvester. Afterwards, the power output increases with an increase

in the lower switching off limit and reaches its maximum arithmetic mean rectified power out-

put of 0.1517 at a lower switching off value of 1.15 rad (65.90◦). With a further increase in the

lower switching off limit the power output of the energy harvester drops to zero. In Figure 8.9d

the power take-off torque is increased to a value of 0.4. Until a lower switching off limit of

0.316 is exceeded the energy harvester shows almost no power output. With a further increase

in the lower switching off limit the arithmetic mean rectified power output increases gradu-
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(c) Pθ = 0.3
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(d) Pθ = 0.4

Figure 8.9: Arithmetic mean rectified power output of the energy harvester Pavg over the lower
power take-off switching off level. With the variables set to: l = 0.5 m, m= 1.32 kg, g= 9.81 m

s2 ,
αθ = αφ = 0.0648, au = av = aw = 0.064, β = 1.0, and Pφ = 0, and safety limit = 90◦

ally. Throughout the increase different plateaus can be seen. The maximum power output of

0.1756 is reached for a lower switch off limit of 1.17 rad (64.0◦). It is evident that a relatively

high selected lower switching off limit of around 60◦ to 64◦ shows the highest power output of

the energy harvester. Therefore, it is reasonable only to switch on the power take-off for high

deflections.

8.2.4 Comparison of the Radiusing Parameter εr for a Switching Control with
Three Conditions

In this calculation the optimised power take-off as shown in the flow chart in Figure 8.8 is used

for a comparison of the radiusing parameter εr over the power take-off. The power take-off

function in a real application can physically never be a pure square wave function and there-

fore it is important to investigate the effect of the radiusing parameter on the power take-off. In

Figure 8.10 the arithmetic mean rectified power output is shown over the radiusing parameter

εr for different power take-off torques. Figure 8.10a shows the development of the arithmetic

mean rectified power output over the radiusing parameter εr for a power take-off torque of 0.1.

For a low radiusing parameter the highest arithmetic mean rectified power output of 0.0591 is
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(d) Pθ = 0.4

Figure 8.10: Arithmetic mean rectified power output of the energy harvester Pavg over the
radiusing parameter εr. With the variables set to: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 ,
αθ = αφ = 0.0648, au = av = aw = 0.064, β = 1.0, Pφ = 0, lower switch off limit = 1 rad
(57.3◦), and safety limit = 90◦.

reached. With a further increase in the radiusing parameter the observed arithmetic mean recti-

fied power output decreases gradually. The power take-off torque is increased to a value of 0.2

in Figure 8.10b. For the lowest observed radiusing parameter of 0.002 the highest arithmetic

mean rectified power output of 0.1052 is observed. With an increase in the radiusing parameter

the arithmetic mean rectified power output gradually decreases. In Figure 8.10c the power take-

off torque is increased to a value of 0.3. The highest arithmetic mean rectified power output

of 0.1418 is reached at a radiusing parameter equal to 0.002. With a further increase in the

radiusing parameter the arithmetic mean rectified power output of the energy harvester gradu-

ally decreases. In Figure 8.10d the power take-off torque is increased to a value of 0.4. The

maximum value of the arithmetic averaged power output 0.1660 is reached for a radiusing

parameter of 0.03. With a further increase in the radiusing parameter the arithmetic mean rec-

tified power output gradually decreases. It is evident that with an increase in the power take-off

torque the decrease in arithmetic mean rectified power output diverges from an initial straight

line. Generally, it is observed that with an increase in the radiusing parameter the converted

power of the energy harvester decreases.
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In Figure 8.11 the arithmetic mean rectified power output is shown over the radiusing para-

meter for a variation of the lower switching off limit, as defined in Figure 8.8. The lower
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(c) Lower switching off limit 0.873 rad (50◦)
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(d) Lower switching off limit 1.0472 rad (60◦)

Figure 8.11: Arithmetic mean rectified power output of the energy harvester Pavg over the
radiusing parameter εr. With the variables set to: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 ,
αθ = αφ = 0.0648, au = av = aw = 0.064, β = 1.0, Pθ = 0.2 , Pφ = 0, and safety limit =
90◦.

switching off limit is set to a value of 30◦ in Figure 8.11a. The highest arithmetic mean rec-

tified power output of 0.0625 is reached for a radiusing parameter of 0.004. With a further

increase in the radiusing parameter the arithmetic mean rectified power output gradually de-

creases until slightly increasing again with a value for the radiusing parameter higher than

0.623. The lower switching off limit is increased to a value of 40◦ in Figure 8.11b. The highest

arithmetic mean rectified power output of 0.0888 is reached for a radiusing parameter of 0.008.

With a further increase in the radiusing parameter the arithmetic mean rectified power output

decreases continuously. In Figure 8.11c the lower switching off limit is increased by 10◦ to a

value of 50◦. For a radiusing parameter of 0.006 the maximum arithmetic mean rectified power

output of 0.0974 is reached. With a further increase in the radiusing parameter the arithmetic

mean rectified power output decreases. The lower switching off limit is further increased to a

value of 60◦ in Figure 8.11d. The maximum arithmetic mean rectified power output of 0.113 is

reached for a radiusing parameter of 0.006. With a further increase in the radiusing parameter

the arithmetic mean rectified power output gradually decreases until jumping down to zero for
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a radiusing parameter higher than 0.762.

From Figures 8.10 and 8.11 it can be concluded that the lower the power take-off torque

is the more the arithmetic mean rectified power output forms a line with little to no outliers.

Additionally, it is observed that a lower switching off limit increases the complexity of the

relationship between the arithmetic mean rectified power output over the radiusing parameter.

It is therefore important to examine the radiusing of the power take-off function at the final

stage when all the other excitation and design parameters are known or defined to fine-tune the

power take-off.

In the following Figures 8.12 and 8.13 the safety limit is set back to the experimental value

of 52.3◦.

Figure 8.12 shows the arithmetic mean rectified power output over the radiusing parameter

εr with the lower switch off limit set to 30◦. The power take-off torque is varied for the differ-
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(c) Pθ = 0.3
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(d) Pθ = 0.4

Figure 8.12: Arithmetic mean rectified power output of the energy harvester Pavg over the
radiusing parameter εr. With the variables set to: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 ,
αθ = αφ = 0.0648, au = av = aw = 0.064, β = 1.0, Pφ = 0, lower switch off limit = 30◦,
and safety limit = 52.3◦.

ent figures. In Figure 8.12a the power take-off torque is set to a value of 0.1. The maximum

arithmetic mean rectified power output of 0.035 is reached for a radiusing parameter of 0.014.

The power output decreases and reaches a local minimum of 0.0237 for a radiusing parameter

201



CHAPTER 8. TOWARDS AN APPLICATION OF THE ENERGY HARVESTER

of 0.174. After the local minimum is passed the power output increases shortly and continues

to decrease afterwards with a further increase in the radiusing parameter. In Figure 8.12b the

power take-off torque is increased to a value of 0.2. With an increase in the power take-off

torque the individual points become more disordered compared to a power take-off torque of

0.1. The maximum observed power output of 0.0625 is reached for a radiusing parameter of

0.004. With a further increase in the radiusing parameter the power take-off torque gradually

decreases. During this decrease two exceptions are observed where the power output increase.

These range from a radiusing parameter from 0.164 to 0.217 and from 0.626 to 0.804. In Fig-

ure 8.12c the power take-off torque is increased to a value of 0.3. The maximum power output

is 0.0777 and it is reached at a radiusing parameter of 0.046. The power output decreases gen-

erally with an increase in the radiusing parameter. As before areas can be seen in which the

power output increases e.g. for a radiusing parameter from 0.155 to 0.199 and 0.381 to 0.503.

The power take-off torque is increased to a value of 0.4 in Figure 8.12d. The maximum power

output of 0.0755 is reached for a radiusing parameter of 0.184.

In Figure 8.13 the arithmetic mean rectified power output is shown over the radiusing para-

meter for different lower switching off limits. The lower switching off limit is set to a value

of 35◦ in Figure 8.13a. The maximum power output of 0.0625 is reached for a radiusing para-

meter of 0.004. The power output generally decreases with a further increase in the radiusing

parameter. An exemption of this decrease are small areas in which the power output slightly

increases for a small range of the radiusing parameter. The areas are from a radiusing parameter

from 0.161 to 0.2418 and 0.628 to 0.8. In the next step the lower switching off limit is increased

to a value of 40◦ see Figure 8.13b. The maximum power output of 0.0888 is observed for a ra-

diusing parameter of 0.008. With a further increase in the radiusing parameter the power output

of the energy harvester decreases. In Figure 8.13c the lower switching off limit is increased to

a value of 45◦. The maximum power output of 0.0889 is reached for a radiusing parameter of

0.042. With a further increase in the radiusing parameter the power output gradually decreases.

In Figure 8.13d the lower switching off limit is set to a value of 50◦. With this high switching

off limit the single observed points start to form an ordered pattern. The maximum power out-

put of 0.0696 is reached for a radiusing parameter of 0.24. But an almost similar high power

output is reached over the complete area of the radiusing parameter from 0.033 to 0.328. With

a further increase in the radiusing parameter the power output of the energy harvester decreases

gradually.

When comparing the figures without a safety limit (Figures 8.10 and 8.11) to the ones

with a safety limit (Figures 8.12 and 8.13) it can be seen that the safety mode is switched on

often and therefore the power output curve of the energy harvester becomes generally more

irregular. Generally, from a design point of view it can be said that it is advantageous to keep

the movement of the pendulum arm as unrestricted as possible.

202



CHAPTER 8. TOWARDS AN APPLICATION OF THE ENERGY HARVESTER

0.0 0.2 0.4 0.6 0.8
0.00

0.02

0.04

0.06

0.08

0.10

ϵr [-]

P
av
g
[-
]

(a) Lower switching off limit 0.611 rad (35◦)
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(b) Lower switching off limit 0.698 rad (40◦)
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(c) Lower switching off limit 0.785 rad (45◦)
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(d) Lower switching off limit 0.873 rad (50◦)

Figure 8.13: Arithmetic mean rectified power output of the energy harvester Pavg over the
radiusing parameter εr. With the variables set to: l = 0.5 m, m = 1.32 kg, g = 9.81 m

s2 ,
αθ = αφ = 0.0648, au = av = aw = 0.064, β = 1.0, Pθ = 0.2 , Pφ = 0, and safety limit =
52.3◦

8.2.5 Comparison of the Different Control Strategies

Previously different control strategies for the power take-off were investigated. It is shown that

the oscillations of the pendulum can be sustained for longer with a controlled power take-off

torque. This in return has a positive effect on the power of the energy harvester that can be

converted see Section 8.2.1. Additionally, a second lower switching off limit with half of the

power take-off torque was investigated but it unfortunately did not increase the power output of

the energy harvester, see Section 8.2.2. Therefore in the following Section 8.2.3 the amount of

the energy that can be converted depending on the lower switch off limit is investigated. Gen-

erally, it can be seen that the arithmetic mean rectified power output increases until a definable

limit after which it jumps down to zero. For the investigated cases the maximum arithmetic

mean rectified power output is reached for a lower switching off limit from 60◦ to 64◦. Note

that this is examined with a high limit for the safety mode of 90◦. It is therefore concluded that

it is advantageous to build an experimental rig that is restricted by the supporting structure as

little as possible. This is shown in the future work Section 10.6. In Section 8.2.4 the arithmetic
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mean rectified power output over the radiusing parameter is shown. It is evident that generally

with an increase of the radiusing parameter the power output of the energy harvester decreases.

Unfortunately, the control within is restricted by the possibilities within the numerical

solver, therefore other control strategies could not be implemented. But even a simplified con-

trol shows advantages over a constantly applied power take-off torque.
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Chapter 9

Conclusions

The literature discusses a wide variety of simple pendulum energy harvesters. But with the

introduction of an extra degree of freedom the number of energy harvesters discussed to date

decreases drastically. The main advantage of an additional degree of freedom is that the pos-

sible areas of application of the energy harvester are increased. The aim of this work was to

investigate an effective omnidirectional pendulum energy harvester that can harvest energy in

three orthogonal axes and, in principle, from rotations about those axes. Therefore, this thesis

proposed a newly designed omnidirectional pendulum energy harvester defined by two gen-

eralised coordinates. The dynamics of the omnidirectional pendulum energy harvester were

numerically evaluated at the beginning of the work. For this a mathematical model that incor-

porates forcing terms in all orthogonal directions, damping terms, and an active power take-off

term was introduced. The results were plotted in the time domain, bifurcation diagrams, in

Poincaré sections, and in figures that showed the power output of the energy harvester over

various parameters. In the following work the dynamics, voltage, and power output of the ex-

perimental rig were compared for different pendulum lengths and power take-off modes. The

experimental results were mainly plotted in the frequency domain to get the operational range

of the energy harvester. The thesis includes a comparison of the numerically and experiment-

ally obtained results. The final chapter introduced various concepts that could be developed for

an application-based energy harvester, with the main focus being on the numerical optimisation

of the power take-off.

The developed mathematical model, which consists of two ordinary differential equations

with two generalised coordinates with an active power take-off term, was solved through a

numerical integration procedure in Chapter 5. The polar coordinates of the three-dimensional

system θ and φ were selected. The omnidirectional pendulum energy harvester was forced un-

der different excitation conditions in up to three orthogonal directions. This showed the energy

harvesters’ capability for converting energy, independent of the direction of excitation. The

active power take-off term uses an arctangent function to simulate a square wave function, with
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the edges being slightly rounded. This increased the numerical stability drastically compared

to using a power take-off with a sign function. The numerical section mainly showed bifurca-

tion diagrams and Poincaré sections but figures in the time domain and trajectory plots of the

pendulum bob in 2D and 3D were shown as well. From the numerical evaluation a few gen-

eral observations can be made. Generally it can be said that the numerical analysis showed the

softening characteristics of a pendulum well. This was observed in the frequency domain where

the highest deflection of the coordinate θ was observed at an excitation frequency value lower

than the natural frequency. In the bifurcation diagrams it was observed that the dynamics of the

system can show quasi-periodic or chaotic appearing dynamics. It was evident that the system

showed more periodic dynamics when the system was excited with an excitation frequency of

ten per cent lower than the natural frequency compared to it being excited directly at the natural

frequency or at a higher excitation frequency. Additionally, it was clear that the dynamics of

the omnidirectional pendulum energy harvester were more periodic when an excitation in the

vertical direction was included. When the excitation amplitude was used as a control parameter

for the bifurcation diagrams it became evident that the dynamics of the energy harvester were

nonlinear as well. Ranges of excitation amplitudes were observed where the energy harvester’s

dynamics were periodic, but quasi-periodicity and areas that suggest chaotic dynamics were

observed as well. In this work the difference between different constant power take-off torques

was also compared. The difference between an omnidirectional pendulum energy harvester that

was loaded with a low and a high power take-off was, for the most part, that the system became

more periodic when the power take-off torque was increased. The arithmetic mean rectified

power output was highly dependent on the excitation amplitude, the excitation frequency, and

the power take-off torque. Therefore caution was required when selecting an optimal opera-

tional point. An analysis of a simple pendulum energy harvester using the perturbation method

of multiple scales concluded the analytical section of this thesis.

The experimental analysis of the omnidirectional energy harvester was shown in Chapter 6.

The energy harvester consists of two shafts that were deflected through coordinates θ14 and θ23,

defining the overall deflection of the pendulum. For the most part frequency responses of the

system were observed. The linear frequency responses for the coordinate θ14 showed two local

maxima at the upper jump point and the lower jump point. Between them a local minimum

was observed. The coordinate θ23 showed various levels of deflections, without a clear trend

for low excitation frequencies, and then displayed a frequency response similar to the one for a

linear system for the remaining frequency range. In the region of the first local maximum of the

coordinate θ14 the coordinate θ23 showed almost no deflections. The dynamics of the energy

harvester were therefore similar to those of a simple pendulum harvester in that region. The

second local maximum of the coordinate θ14 was observed at the same excitation frequency as

the maximum of the coordinate θ23. At this excitation frequency the trajectory of the pendulum
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bob was of almost perfect circular shape and can therefore be considered to be operating as a

conical pendulum. Additionally, the arithmetic mean rectified voltage and power output of the

generators was measured. Section 6.4 examines the possible broadening of the omnidirectional

pendulum energy harvester and was therefore the most significant section in the experimental

analysis. This was achieved by the inclusion of excitation frequency with up- and down-sweeps.

The lower nonlinear jumping region increased the operational range of the energy harvester of

the coordinate θ14 slightly. An up-sweep of the excitation frequency increased the operational

range of the energy harvester for both coordinates drastically. Because both shafts showed high

levels of deflections during the upper nonlinear jump region an optimal operational point of the

energy harvester was therefore located there. The trajectory of the pendulum bob was of almost

perfect circular shape and can therefore be considered to be operating as a conical pendulum

at the optimal operational point. An additional advantage of this position was that oscillations

of the pendulum were at a higher frequency compared to the lower nonlinear jumping region.

With the higher resulting velocity the generators produced a higher maximum voltage output.

Therefore the overall efficiency of the energy harvester was highest at the optimal operational

point. To reach this optimal operational point an excitation frequency (between the two max-

ima of the linear frequency response of the coordinate θ14) has to be selected from where the

up-sweep was performed. It is important to mention that the upper nonlinear jump region was

an unstable hardening branch. Meaning a sweep that increased the excitation frequency too

high results in a jumping down of the deflection. The deflections of the omnidirectional energy

harvester were compared through a variation of the excitation amplitude as well. It was evident

that the deflection did not increase linearly with an increase in the excitation amplitude. For the

observed excitation amplitudes the deflection increased steeply at the beginning and then the

slope flattens with a further increase in the excitation amplitude. For optimal energy harvesting

it was therefore important to excite the energy harvester with an excitation amplitude at a value

where the steep slope was already passed, to take full advantage of this steep rise in deflection.

In the frequency responses of the experimental analysis similar characteristics were observed,

and with an increase in the excitation amplitude the operational range of the energy harvester

increased.

In Chapter 7 the experimental results were compared to the numerical analysis. The nu-

merical coordinates θ and φ were transformed into the numerical-experimental coordinates

θn14 and θn23. At the beginning of the comparison the damping ratios in the numerical analysis

were the same as those observed in the experimental analysis. In this case the coordinate θn14

showed the maximum at the same position as the experimental results. The absolute deflection

value of the coordinate however was slightly higher in the numerical analysis than in the ex-

perimental analysis. Unfortunately, the second local maximum and the upper nonlinear jump

region, which were observed in the experimental results, were not visible in the numerical ana-
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lysis. The coordinate θn23 unfortunately did not show any similarities with the experimental

results. In the next part of the work the damping ratio in the numerical analysis was adapted

slightly to accommodate for the energy loss because of higher frequency vibrations that were

observed in the experimental rig. This decreased the overall deflection of the coordinates and

brings them closer to the experimental results. This is followed by a theoretical investigation of

the damping ratio, excitation amplitude and power take-off torque. For these investigations the

excitation amplitude was several times greater than that used in the experimental investigation.

With this higher value of the theoretical excitation amplitude two main characteristics were ob-

served. Firstly, the overall area where the omnidirectional pendulum energy harvester showed

a higher deflection value widens, as observed in the experimental results as well. Secondly, an

upper nonlinear jump region was observed for the coordinates θn14 and θn23. This hardening

effect broadened the operational range of the energy harvester drastically. This was in accord-

ance with the experimentally observed results, where the frequency sweeps were incorporated

into the measurements.

The following necessary steps from a pre-prototype, to an application of the omnidirec-

tional energy harvester, was explained in Chapter 8. In the beginning possible areas of applic-

ation for different dimensions were highlighted. Additionally, a controlled power take-off was

introduced in the numerical analysis and investigated for a variety of various power take-off

parameters.

The omnidirectional pendulum energy harvester proposed in this thesis showed that energy

conversion was possible for a physical construction in which the two generalised coordinates

respond. Therefore, energy harvesting was possible, independent of the direction of excitation.

In the experimental and numerical parts of the thesis different dynamics of the energy har-

vester were observed that were highly dependent on the excitation frequency and excitation

amplitude. The numerical analysis was able to reproduce the position and level of the first

local maximum of the coordinate θ14. Additionally, the upper nonlinear jumping region was

reproduced numerically for both coordinates with an increased excitation amplitude.
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Chapter 10

Future Work

The omnidirectional pendulum energy harvester studied in this research is a pre-prototype that

was developed and produced with a strong focus on the harvester as an economic experiment.

Different changes to the design of the energy harvester, a new design, an optimised power take-

off, and a downscaling procedure are proposed in the following final discussion. These should

be investigated as they might allow for a further improvement of the efficiency of the energy

harvester.

10.1 Possible Improvements to the Pre-Prototype

In the pre-prototype of this work high frequency vibrations within the rotational mechanism and

the pendulum rod are observed. This is described in greater detail in Section 3.5. These higher

frequency vibrations can directly affect the efficiency of the energy harvester. It is therefore

of crucial importance to adapt the design of the different moving parts of the energy harvester

with specific focus on the reduction of vibrations. A special focus should be laid on the ex-

amination of the fatigue under excitation conditions where the dynamics of the system show

quasi-periodic or chaotic dynamics. This should always be compared to the general goal of con-

struction, to keep the mass moment of inertia and mass of the moving parts of the pendulum

energy harvester as low as possible.

10.2 Proposal for Different Prototype Design

This pre-prototype demonstrated the general dynamics of a feasible system well, but it is im-

portant to implement the experiences gained and draw improvement recommendations for any

following research. The proposed energy harvester in this thesis harvests energy from both of

the shafts. Therefore energy harvesting is possible independent of the direction of excitation.

In the following, a different design is proposed that also has the potential to harvest energy
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independent of the direction of excitation. It may be of interest for future researchers to ex-

amine that design with a focus on its efficiency. In Figure 10.1 a diagram for such a design is

m

θ

φ

m

Generator

Bearing

l

Figure 10.1: Diagram for the proposal of a different prototype

shown. The coordinates for this model are identical to those of the mathematical model in this

work. The difference between that and the omnidirectional pendulum energy harvester that is

proposed in this work is that the complete power take-off is realised in the direction of the co-

ordinate θ , and the coordinate φ only rotates to accommodate different directions of excitation.

This way the energy harvester can accommodate different excitation directions. It remains to

be investigated whether a bearing in the position of the coordinate φ would be sufficient for

adjusting the rotation, or if a stepper motor and a more complicated control of the coordinate

φ is necessary. Both of these variations generally require a more complex design than the one

proposed in this work, and would therefore be more costly as well. This is in contrast with the

fact that the power take-off is only applied to one shaft, therefore the construction is gener-

ally more reliable and an interaction between two different shafts in the power take-off is not

needed.

The change in the design of the energy harvester comes with different advantages and

disadvantages. Generally, the construction of the alternative energy harvester would be more

costly. But in return the risk that the different shafts have a coupling effect to each other is

reduced. Another advantage is that the numerical results do not need to be transformed in order

to compare them to the experimental results. Additionally, the new proposal for the design

would have fewer moving parts and therefore the overall mass and the mass moment of inertia

of the energy harvester are lower. Therefore, the energy harvester has the potential to be more

effective. There are, however, a few disadvantages and uncertainties that need to be examined. It

is questionable if the rotation in the direction of the coordinate φ would work without any kind

of control. And if a control mechanism is needed can it still be considered as an omnidirectional
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pendulum energy harvester, or does it turn into a simple pendulum energy harvester with active

direction control? It has to be investigated if the upper nonlinear jump region, which is observed

in Section 6.4, would still occur with such a changed design.

10.3 Proposal for a Pendulum Energy Harvester with an Adaptive
and Controllable Pendulum Length

Li et. al. propose a simple pendulum that can adapt to different excitation frequencies by chan-

ging its rod length [56]. The most important advantage of incorporating an adaptive pendulum

arm in the omnidirectional energy harvester is the possibility of operating the energy harvester

over a broader range of excitation frequencies. Therefore, the area for application of the energy

harvester becomes larger.

There is another interesting concept that can be performed. Assuming an omnidirectional

pendulum energy harvester with an adaptive pendulum rod is excited with a constant excitation

frequency. However, the energy harvester is supposed to operate at its optimal operational point

on the upper nonlinear jumping region as described in Section 6.4. To reach this operational

point it is theoretically possible to slowly reduce the pendulum length, which increases the

natural frequency of the energy harvester, and this could have a similar effect to the frequency

up-sweeps observed in the experimental section. In Figure 10.2 the frequency response with

the up and down-sweep from the experimental section is shown as a qualitative figure. This is

a repetition of Figure 6.21a where the single measurement points are joined and the frequency

sweeps only show the points that increase the operational area, to increase clarity. Additionally,

the calculated natural undamped frequency for a pendulum length of 0.35 m and 0.3 m is

shown. It is clear that with a decrease in pendulum length the natural frequency of the energy

harvester increases. Therefore a controlled decrease in the pendulum length over time is, in

theory, potentially similar to an excitation frequency sweep. An experimental evaluation of an

omnidirectional energy harvester with adaptive pendulum length has not been published, as

yet.

Certainly, an adaptive pendulum arm system also has various disadvantages that need to

be considered. Generally it can be assumed that such a system would be more fragile and

therefore more susceptible to damage. Additionally, the construction of an adaptive pendulum

arm system is more complex and therefore expensive. Nevertheless, the feasibility and potential

of such a concept is an interesting topic for future research.
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Figure 10.2: Qualitative frequency response with the natural frequencies for a pendulum length
of 0.35 m and 0.3 m marked

10.4 Downscaling of the Omnidirectional Pendulum Energy Har-
vester

The omnidirectional pendulum energy harvester has the potential to operate in different en-

vironments, from the field of wave energy harvesting to powering small devices that need a

supply voltage e.g. pacemakers or hearing aids are possibilities, see Chapter 8. Since the nat-

ural frequency, and therefore the ideal operational region of the energy harvester, is defined by

the pendulum length it is of interest to observe smaller energy harvester designs. It is likely

that the scaling factor will not be linear and therefore this scaling of energy harvesters has the

potential to further optimise the design. A theoretical study in terms of dynamic scaling of a

space tether was accomplished by Cartmell and Ziegler [159]. This article would be a useful

basis for the theoretical background.

10.5 Does the Sweep Rate Affect the Broadening of the Energy
Harvester?

It is generally known that the frequency sweep rate affects the jump down points in nonlinear

systems. The higher the sweep rate the lower the amount of time available for the collection

of the data becomes, and this has the potential to influence the jumping down points. In an

ideal world the sweep rate would be infinitesimally slow [160]. In Section 6.4 the sweep rate

was kept reasonably low. However it is interesting to investigate how the operational range

of the energy harvester increases when the sweep rate goes towards zero. A proposal for a

measurement procedure is shown in Figure 10.3. The frequency up-sweep is performed with

a high sweep rate after the marked point is reached the sweep rate is reduced. With this low
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Figure 10.3: Qualitative frequency response with a proposed measuring process for the up-
sweep by inclusion of a fast and slow frequency sweep rate

sweep rate the exact jump down point can be determined within a relatively reasonable time

frame.

10.6 Almost Unrestricted Movement of the Pendulum

In the experimental Section 6 it is stated several times that the pendulum bob can hit the cage

when the excitation amplitude is set to a high value. This has the potential to cause destruc-

tion to the rig. Additionally, in Chapter 8 it was proposed that with higher deflections more

power can be converted in the energy harvester. Therefore, in Figure 10.4 a design is suggested

that allows an almost unrestricted movement of the pendulum bob. The spherical cage offers

Figure 10.4: Almost unrestricted movement of the pendulum energy harvester without support-
ing structure which prevents rolling movement

sufficient clearance for the pendulum bob for all possible deflection angles. The only slight

restriction to the pendulum is around connection between the cage and the power take-off sub-
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system (pivot point). This mechanical connection point needs to be optimised with regards to

vibrations that act on it to ensure reliable operation.

10.7 Optimisation of the Energy Harvester with Power Electronics

The thesis presented has a strong focus on the mechanical aspect of the energy harvester. How-

ever, it previous research showed the potential of optimising the power output of energy har-

vesters with power electronics. A selection of these articles are listed in the theoretical Sec-

tion 2.4. It may be of interest for future researchers to form a multidisciplinary team to exam-

ine the power electronics with a focus on the optimisation of the power take-off of the energy

harvester by using power electronics.
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Appendix A

Approximate Analytical Solution using
the Perturbation Method of Multiple
Scales for a Spherical Pendulum

This analysis in this section summarises an attempt to use the perturbation method of multiple

scales to find an approximate analytical solution to the dynamics of the spherical pendulum

harvester. This analysis was initiated through discussions with the first supervisor, and repro-

duced his informal notes provided as a starting point for this analysis. In this analysis, the

dimensionless differential equation for the coordinate θ (4.34) is recalled and a parameter ω2

is introduced in front of the sin(θ(τ)) term. The value for ω2 is equal to 1 and this is done to

make the equation mathematically more consistent with conventional forms of the 2nd order

differential equations, and as required for a perturbation analysis.

ω
2 =

ω2
n

ω2
0
= 1. (A.1)

θ̈(τ)+αθ θ̇(τ)+ω
2 sin(θ(τ))− sin(θ(τ))cos(θ(τ))φ̇(τ)2

+auβ
2
u cos(θ(τ))sin(φ(τ))cos(βuτ)−avβ

2
v cos(θ(τ))cos(φ(τ))cos(βvτ)

−awβ
2
w sin(θ(τ))cos(βwτ) =−2Pθ

π
tan−1

(
θ̇(τ)

εr

)
.

(A.2)

To apply the perturbation method of multiple scales for these particular ordinary differential

equations, a dummy restoring force term for the equation φ is required. The dimensionless

differential equation for the coordinate φ (4.36) is extended by the introduction of the term

ψ̄2φ(τ). This term is intended to be physically small ψ < 1, with it being a numerical fraction

of the restoring force term of the coordinate θ , but its presence ensures that the governing

equation is in the required form and can be solved using an asymptotic technique such as
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multiple scales.

φ̈(τ)+
αφ

sin2(θ(τ))
φ̇(τ)+

2θ̇(τ)cos(θ(τ))φ̇(τ)
sin(θ(τ))

+ψ̄
2
φ(τ)

+auβ
2
u

cos(φ(τ))
sin(θ(τ))

cos(βuτ)+avβ
2
v

sin(φ(τ))
sin(θ(τ))

cos(βvτ) = 0.
(A.3)

Subsequently, the various trigonometric terms can be expanded using the appropriate Maclaurin

expansions.

sinθ(τ) = θ(τ)− θ(τ)3

6
+

θ(τ)5

120
− ... (A.4)

cosθ(τ) = 1− θ(τ)2

2
+

θ(τ)4

24
− ... (A.5)

cosθ(τ)sinθ(τ) = θ(τ)− 2θ(τ)3

3
+

2θ(τ)5

15
− ... (A.6)

sinφ(τ) = φ(τ)− φ(τ)3

6
+

φ(τ)5

120
− ... (A.7)

cosφ(τ) = 1− φ(τ)2

2
+

φ(τ)4

24
− ... (A.8)

cosθ(τ)sinφ(τ) = φ(τ)− φ(τ)3

6
− φ(τ)θ(τ)2

2
+ ... (A.9)

cosθ(τ)cosφ(τ) = 1− φ(τ)2

2
− θ(τ)2

2
+

φ(τ)2θ(τ)2

4
+

θ(τ)4

24
+

φ(τ)4

24
+ ... (A.10)

The following Equations (A.11) to (A.14) have a sinθ(τ) or sin2
θ(τ) term in their denomin-

ators.
cosθ(τ)

sinθ(τ)
=

1
θ(τ)

− θ(τ)

3
− θ(τ)3

45
+ ... (A.11)

cosφ(τ)

sinθ(τ)
=

1
θ(τ)

− φ(τ)2

2θ(τ)
+

φ(τ)4

24θ(τ)
+

θ(τ)

6
− θ(τ)φ(τ)2

12
+

7
360

θ(τ)3 + ... (A.12)

sinφ(τ)

sinθ(τ)
=

φ(τ)

θ(τ)
− φ(τ)3

6θ(τ)
+

θ(τ)φ(τ)

6
+ ... (A.13)

1
sin2

θ(τ)
=

1
θ(τ)2 +

1
3
+

θ(τ)2

15
+ ... (A.14)

Equation (A.15) shows the Arctangent function for the power take-off. The Arctangent term

is also expanded using the Maclaurin expansion. The numerical validation of the Arctangent

power take-off can be found in Section 5.2. Note that the parameter εr defines the radius of the

power take-off and is not equivalent to the small perturbation parameter ε . The parameter εr

is set to 1 and the power take-off function is therefore in the form of an Arctangent function.
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More on the radiusing parameter with regards to the method of multiple scales can be found in

Section 5.5.

The Maclaurin expansion of the power take-off term is given here.

tan−1
(

θ̇(τ)

εr

)
=

θ̇(τ)

εr
− θ̇(τ)3

3ε3
r

+ ... (A.15)

Equations (A.4) to (A.15) are now introduced in the differential Equations (A.2) and (A.3).

Terms that are higher order than O(3) are not considered.

θ̈(τ)+αθ θ̇(τ)+ω
2
(

θ(τ)− θ(τ)3

6

)
−

(
θ(τ)

)
φ̇(τ)2

+auβ
2
u cos(βuτ)

(
φ(τ)− φ(τ)3

6
− φ(τ)θ(τ)2

2

)
−avβ

2
v cos(βvτ)

(
1− φ(τ)2

2
− θ(τ)2

2

)
−awβ

2
w cos(βwτ)

(
θ(τ)− θ(τ)3

6

)
=−2Pθ

π

(
θ̇(τ)

εr
− θ̇(τ)3

3ε3
r

)
.

(A.16)

φ̈(τ)+αφ φ̇(τ)

(
1

θ(τ)2 +
1
3
+

θ(τ)2

15

)
+2θ̇(τ)φ̇(τ)

(
1

θ(τ)
− θ(τ)

3
− θ(τ)3

45

)
+ ψ̄

2
φ(τ)

+auβ
2
u cos(βuτ)

(
1

θ(τ)
− φ(τ)2

2θ(τ)
+

φ(τ)4

24θ(τ)
+

θ(τ)

6
− θ(τ)φ(τ)2

12
+

7
360

θ(τ)3
)

+avβ
2
v cos(βvτ)

(
φ(τ)

θ(τ)
− φ(τ)2

6θ(τ)
+

θ(τ)φ(τ)

6

)
= 0.

(A.17)

Equation (A.16) and (A.17) can be re-cast, according to a reasonably physically plausible or-

dering scheme. Generally the trigonometric Maclaurin expansions were used up to the third

order to ensure that the nonlinearities of the terms were adequately represented in the analysis.

The small parameter ε (ε < 1) is introduced in the following. Firstly, looking at the differential

Equation (A.16), the general requirement to order the ordinary differential equation is that the

lowest order equation in the perturbation hierarchy is linear and therefore analytically solvable.

The structure of Equation (A.16) suggests that a standard generating equation of the form,

θ̈0 +θ0 = 0 can be obtained. This gives the normal linear solution in complementary function

form, θ0 = Ae(iωT0) + Āe(−iωT0) where Ā is the complex conjugate of A and A is a cmoplex

amplitude. The damping, excitation and loading term can then subsequently be in the terms to

O(ε1) and O(ε2). The nonlinear stiffness term (restoring force term) is controlled by −θ(τ)3

6 so

it could reasonably be scaled to O(ε1).
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The cubic term −θ(τ)φ̇(τ)2 is, large when compared to the other cubic terms. The only

way this term can be removed from the O(ε0) perturbation equation is to restrict φ̇(τ) to reas-

onably low values. As long as φ̇(τ) is reasonably small φ̇(τ)2 will be very small. This shows

that the analysis is not restricted to very small φ̇(τ). This means that that Equation (A.16) can

be structured to contain −εφ̇(τ)2θ(τ) and Equation (A.17) to contain εαφ

3 φ̇(τ). Additionally,

the term 1
θ(τ)2 was by intention scaled to ε

θ(τ)2 to ensure that it appears in the first order per-

turbation hierarchy. This approach ensures that the lowest order perturbation equation is equal

to zero, and is more in line with the approach of a lightly damped pendulum. From this the

following relations (A.18) and (A.19) can be observed.

αθ = εᾱθ ,
1
6
= εγ̄, au = ε āu,

av = ε āv, aw = ε āw, Pθ = εP̄θ , (A.18)

1
15

= εν̄ , 2 = ερ̄,
1
3
= εσ̄(= 2εγ̄).

φ̇(τ)2
θ(τ)→ ε

2
δ̄ φ̇(τ)2

θ(τ),
φ(τ)θ(τ)2

2
→ εη̄φ(τ)θ(τ)2,

φ(τ)2

2
→ εη̄φ(τ)2,

θ(τ)2

2
→ εη̄θ(τ)2, (A.19)

1
θ(τ)2 → ε

θ(τ)2 ,
φ(τ)2

2θ(τ)
→ εη̄

φ(τ)2

θ(τ)
.

After introducing the Maclaurin expansions (A.4) to (A.15) and the relations (A.18), (A.19) in

Equations (A.2), (A.3) the Equations (A.20) and (A.21) are obtained.

θ̈(τ)+ εᾱθ θ̇(τ)+ω
2
θ(τ)− εγ̄ω

2
θ(τ)3 − ε

2
δ̄ θ(τ)φ̇(τ)2

+ εauβ
2
u cos(βuτ)

(
φ(τ)− εγ̄φ(τ)3 − εη̄φ(τ)θ(τ)2)

− εavβ
2
v cos(βvτ)

(
1− εη̄φ(τ)2 − εη̄θ(τ)2)

− εawβ
2
w cos(βwτ)

(
θ(τ)− εγ̄θ(τ)3)=−ε2Pθ

π

(
θ̇(τ)

εr
− (σ̄ε) θ̇(τ)3

ε2
r

)
.

(A.20)
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φ̈(τ)+ ᾱφ φ̇(τ)

(
ε

θ(τ)2 + εσ̄ + ε
2
ν̄θ(τ)2

)
+ ερ̄φ̇(τ)θ̇(τ)

(
1

θ(τ)
− εσ̄θ(τ)

)
+ ψ̄

2
φ(τ)+ εauβ

2
u cos(βuτ)

(
1

θ(τ)
− εη̄φ(τ)2

θ(τ)
+ εγ̄θ(τ)

)
+

εavβ 2
v cos(βvτ)φ(τ)

θ(τ)
= 0.

(A.21)

Introducing the independent variables according to the well-known asymptotic analysis pro-

cedure of perturbation in the literature [153], [154], [155] and [156].

Tn = ε
n
τ, for n = 0,1,2, ... (A.22)

This is followed by treatment the derivatives with respect to timescaling.

d
dτ

=
dT0

dτ

∂

∂T0
+

dT1

dτ

∂

∂T1
+ ...=

∂

∂T0
+ ε

∂

∂T1
+ ...= D0 + εD1 + ...

d2

dτ2 =
∂ 2

∂T 2
0
+2ε

∂ 2

∂T0∂T1
+ ε

2
(

2
∂ 2

∂T0∂T2
+

∂ 2

∂T 2
1

)
+...

=D2
0 +2εD0D1 + ε

2(D2
1 +2D0D2)+ ...

(A.23)

It can be assumed that the coordinates θ and φ can be represented by the truncated power

series.

θ(τ) = θ0(T0,T1,T2)+ εθ1(T0,T1,T2)+ ... (A.24)

φ(τ) = φ0(T0,T1,T2)+ εφ1(T0,T1,T2)+ ... (A.25)

With Equations (A.22) to (A.25), the perturbation hierarchy for the coordinate θ is obtained

with the help of code written in Mathematica® to do the requisite analysis.

D2
0θ0 +ω

2
θ0 =0. (A.26)

D2
0θ1 +ω

2
θ1 =−2(D0D1θ0)− ᾱθ (D0θ0)+ γ̄ω

2
θ

3
0

− āuβ
2
u cos(βuτ)φ0 + āvβ

2
v cos(βvτ)

+ āwβ
2
w cos(βwτ)θ0 −

(2P̄θ )(D0θ0)

πεr
.

(A.27)
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D2
0θ2 +ω

2
θ2 =−D2

1θ0 −2(D0D2θ0)−2(D0D1θ1)

+ δ̄ (D0φ0)
2
θ0 +3γ̄ω

2
θ

2
0 θ1 − ᾱθ (D1θ0)− ᾱθ (D0θ1)

+ η̄ āuβ
2
u cos(βuτ)θ

2
0 φ0 + γ̄ āuβ

2
u cos(βuτ)φ

3
0

− āuβ
2
u cos(βuτ)φ1 − η̄ āvβ

2
v cos(βvτ)θ

2
0

− η̄ āvβ
2
v cos(βvτ)φ

2
0 − γ̄ āwβ

2
w cos(βwτ)θ

3
0

+ āwβ
2
w cos(βwτ)θ1 +

(2σ̄ P̄θ )(D0θ0)
3

πε3
r

− (2P̄θ )(D1θ0)

πεr
− (2P̄θ )(D0θ1)

πεr
.

(A.28)

And subsequently, with Equations (A.22) to (A.25) the perturbation hierarchy for the coordin-

ate φ is also obtained. Recalling the assumed power series solution for the coordinate θ in

Equation (A.24), this expression is introduced in the denominator of Equation (A.21) and there-

fore the denominators are of the form θ0(T0,T1,T2)+ εθ1(T0,T1,T2)+ ... or (θ0(T0,T1,T2)+

εθ1(T0,T1,T2)+ ...)2. However, these denominators cannot be ordered with respect to ε and this

prevents the future analysis, therefore the denominators need to be truncated to θ0(T0,T1,T2)

and θ0(T0,T1,T2)
2. Physically this means that the terms in the denominator are linearised,

which is a gross approximation, but is required to make some future progress.

D2
0φ0 + ψ̄

2
φ0 =0. (A.29)

D2
0φ1 + ψ̄

2
φ1 =−2(D0D1φ0)−

ρ̄ ((D0θ0)(D0φ0))

θ0

− σ̄ ᾱφ (D0φ0)−
ᾱφ (D0φ0)

θ 2
0

− āuβ 2
u cos(βuτ)

θ0

− āvβ 2
v cos(βvτ)φ0

θ0
.

(A.30)

D2
0φ2 + ψ̄

2
φ2 =−D2

1φ0 −2(D0D2φ0)−2(D0D1φ1)−
ρ̄ ((D1θ0)(D0φ0))

θ0

− ρ̄ ((D0θ1)(D0φ0))

θ0
− ρ̄ ((D0θ0)(D1φ0))

θ0
− ρ̄ ((D0θ0)(D0φ1))

θ0

+ ρ̄σ̄ (D0θ0)(D0φ0)θ0 − γ̄ āuβ
2
u cos(βuτ)θ0

+
η̄ āuβ 2

u
(
cos(βuτ)φ 2

0
)

θ0
− āvβ 2

v (cos(βvτ)φ1)

θ0
− σ̄ ᾱφ (D1φ0)

− σ̄ ᾱφ (D0φ1)−
ᾱφ (D1φ0)

θ 2
0

−
ᾱφ (D0φ1)

θ 2
0

− ᾱφ ν̄ (D0φ0)θ
2
0 .

(A.31)

The generating solution is obtained by solving the lowest order Equation (A.26) for the co-

ordinate θ .

θ0 = A(T1,T2)eiωT0 + Ā(T1,T2)e−iωT0 . (A.32)
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Solving the lowest order Equation (A.29) in the perturbation hierarchy for the coordinate φ

gives the generating solution for the coordinate φ .

φ0 = B(T1,T2)eiψ̄T0 + B̄(T1,T2)e−iψ̄T0 . (A.33)

Additionally, the derivatives of the zeroth order perturbation solutions with respect to timescale

T0 area as follows.

D0θ0 = iωA(T1,T2)eiωT0 − iωĀ(T1,T2)e−iωT0 . (A.34)

D0φ0 = iψ̄B(T1,T2)eiψ̄T0 − iψ̄B̄(T1,T2)e−iψ̄T0 . (A.35)

The excitation terms are converted from the trigonometric form to exponential form.

cos(βT0) =
1
2

eiβT0 +
1
2

e−iβT0 where τ ≈ T0. (A.36)

Introducing the solutions of θ0 (A.32) and φ0 (A.33) into the first-order perturbation hierarchy

term for the coordinate θ (A.27) gives Equation (A.37). Note that the arguments (T1,T2) after

the complex amplitude functions A, Ā,B and B̄ are removed from here on to increase clarity.

D2
0θ1 +ω

2
θ1 =−2iωD1AeiωT0 +2iωD1Āe−iωT0

− ᾱθ iωAeiωT0 + ᾱθ iωĀe−iωT0

+ γ̄ω
2A3e3iωT0 +3γ̄ω

2A2ĀeiωT0 +3γ̄ω
2Ā2Ae−iωT0 + γ̄ω

2Ā3e−3iωT0

− 1
2

āuβ
2
u Beiψ̄T0−iβuT0 − 1

2
āuβ

2
u Beiψ̄T0+iβuT0

− 1
2

āuβ
2
u B̄e−iψ̄T0−iβuT0 − 1

2
āuβ

2
u B̄e−iψ̄T0+iβuT0

+
1
2

āvβ
2
v eiβvT0 +

1
2

āvβ
2
v e−iβvT0

+
1
2

āwβ
2
wĀe−iωT0+iβwT0 +

1
2

āwβ
2
wAeiωT0−iβwT0

+
1
2

āwβ
2
wAeiωT0+iβwT0 +

1
2

āwβ
2
wĀe−iωT0−iβwT0

− 2P̄θ iωA
πεr

eiωT0 +
2P̄θ iωĀ

πεr
e−iωT0 .

(A.37)

The secular terms in Equation (A.37) are those that include the expression eiωT0 . These need to

be set equal to zero to prevent an unbounded growth of the solution to θ , over time. Removal

of the secular terms leads to

−2iωD1A− ᾱθ iωA+3γ̄ω
2A2Ā− 2P̄θ iωA

πεr
= 0. (A.38)

The system will be excited close to the natural frequency for βu and βv which means that these

values can be set to ω . The excitation frequency βw applies the the principle of parametric
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resonance therefore βw is set to 2ω . Note that this approach does not here allow any detuning.

Recalling that ψ̄ is physically small (ψ̄ < 1) therefore it can be assumed that the expression

eiψ̄T0+iβuT0 can be approximated by eiβuT0 . This approximation is applied to the other excitation

terms as well. After implementing this approximation four additional secular generating terms

are obtained.

−2iωD1A− ᾱθ iωA+3γ̄ω
2A2Ā− 1

2
āuω

2B− 1
2

āuω
2B̄+

1
2

āvω
2 +2āwω

2Ā

− 2P̄θ iωA
πεr

= 0.
(A.39)

Removing the secular terms from Equation (A.37) gives.

D2
0θ1 +ω

2
θ1 =+ γ̄ωA3e3iωT0 + γ̄ωĀ3e−3iωT0

+2āwω
2Ae3iωT0 +2āwω

2Āe−3iωT0 .
(A.40)

Equation (A.40) is solved analytically using code written in Mathematica® and the particular

integral part of this solution is shown in Equation (A.41).

θ1 =
1

48ω2 e−5iωT0

[(
A3e4iωT0

(
8e

3
2 e−iωT0(−1+e2iωT0)ω −8e(

3
2 e−iωT0(−1+e2iωT0)ω+2iωT0)

−6e2iωT0ω −3e4iωT0ω +3e6iωT0ω

)
+
(

8e
3
2 ω(e−iωT0−eiωT0+4iT0)

−8e(
1
2 ω(3e−iωT0−3eiωT0+8iT0)) +3ω −3e2iωT0ω −6e4iωT0ω

)
Ā3
)

γ̄

−2ω

(
Ae4iωT0

(
−8e

3
2 e−iωT0(−1+e2iωT0)ω +8e(

3
2 e−iωT0(−1+e2iωT0)ω+2iωT0)

+6e2iωT0ω +3e4iωT0ω −3e6iωT0ω

)
+
(
−8e

3
2 ω(e−iωT0−eiωT0+4iT0)

+8e(
1
2 ω(3e−iωT0−3eiωT0+8iT0))−3ω +3e2iωT0ω +6e4iωT0ω

)
Ā
)

āw

]
.

(A.41)
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Introducing Equations (A.32) and (A.33) into Equation (A.30) gives Equation (A.42).

D2
0φ1 + ψ̄

2
φ1 =−2D1iψ̄Beiψ̄T0 +2D1iψ̄B̄e−iψ̄T0

− ρ̄

(
iωAeiωT0 − iωĀe−iωT0

)(
iψ̄Beiψ̄T0 − iψ̄B̄e−iψ̄T0

)
AeiωT0 + Āe−iωT0

− σ̄ ᾱφ iψ̄Beiψ̄T0 + σ̄ ᾱφ iψ̄B̄e−iψ̄T0

−
ᾱφ iψ̄Beiψ̄T0 − ᾱφ iψ̄B̄e−iψ̄T0

A2e2iωT0 +2AĀ+ Ā2e−2iωT0

−
1
2 āuβ 2

u eiβuT0 + 1
2 āuβ 2

u e−iβuT0

AeiωT0 + Āe−iωT0

−
(1

2 āvβ 2
v eiβvT0 + 1

2 āvβ 2
v e−iβvT0

)(
Beiψ̄T0 + B̄e−iψ̄T0

)
AeiωT0 + Āe−iωT0

.

(A.42)

After introducing βu = βv = ω , Equation (A.42) becomes as follows.

D2
0φ1 + ψ̄

2
φ1 =−2D1iψ̄Beiψ̄T0 +2D1iψ̄B̄e−iψ̄T0

− ρ̄

(
iωAeiωT0 − iωĀe−iωT0

)(
iψ̄Beiψ̄T0 − iψ̄B̄e−iψ̄T0

)
AeiωT0 + Āe−iωT0

− σ̄ ᾱφ iψ̄Beiψ̄T0 + σ̄ ᾱφ iψ̄B̄e−iψ̄T0

−
ᾱφ iψ̄Beiψ̄T0 − ᾱφ iψ̄B̄e−iψ̄T0

A2e2iωT0 +2AĀ+ Ā2e−2iωT0

−
1
2 āuω2eiωT0 + 1

2 āuω2e−iωT0

AeiωT0 + Āe−iωT0

−
(1

2 āvω2eiωT0 + 1
2 āvω2e−iωT0

)(
Beiψ̄T0 + B̄e−iψ̄T0

)
AeiωT0 + Āe−iωT0

.

(A.43)

The secular terms in Equation (A.43) are defined by the presence of eiψ̄T0 . This gives the fol-

lowing secular terms for the coordinate φ .

−2D1iψ̄B− ρ̄

(
iωAeiωT0 − iωĀe−iωT0

)
AeiωT0 + Āe−iωT0

(iψ̄B)− σ̄ ᾱφ iψ̄B

−
ᾱφ iψ̄B

A2e2iωT0 +2AĀ+ Ā2e−2iωT0
−
(1

2 āvω2eiωT0 + 1
2 āvω2e−iωT0

)
AeiωT0 + Āe−iωT0

B = 0.

(A.44)

To solve the secular term Equations (A.39) and (A.44) the following polar notation is intro-

duced for the complex amplitudes A and B. The polar notation is characterised by use of the

subscript p.

A =
ap

2
eiαp , Ā =

ap

2
e−iαp , ap = ap(T1), αp = αp(T1). (A.45)

B =
bp

2
eiβp , B̄ =

bp

2
e−iβp , bp = bp(T1), βp = βp(T1). (A.46)
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The derivative of A with respect to T1 is.

D1A =
a′p
2

eiαp +
ap

2
iα ′

peiαp . (A.47)

The derivative of B with respect to T1 is.

D1B =
b′p
2

eiβp +
bp

2
iβ ′

peiβp . (A.48)

The terms in Equation (A.39) are rearranged.

D1A =− 1
2

ᾱθ A− 3
2

γ̄ωiA2Ā+
1
4

āuωiB+
1
4

āuωiB̄− 1
4

āvωi− āwωiĀ− P̄θ A
πεr

. (A.49)

Introducing the polar notation from Equations (A.45) to (A.48) into the secular terms equation

for the coordinate θ and separating the real and imaginary parts leads to.

a′p =
1
4

ω sin(αp −βp)bpāu +
1
4

ω sin(αp +βp)bpāu −
1
2

ω sin(αp) āv

−ω sin(2αp)apāw −
2apP̄θ

πεr
− 1

2
apᾱθ .

(A.50)

apα
′
p =− 3

8
ωγ̄a3

p +
1
4

ω cos(αp −βp)bpāu +
1
4

ω cos(αp +βp)bpāu

− 1
2

ω cos(αp) āv −ω cos(2αp)apāw.

(A.51)

Rearranging the terms in Equation (A.44) gives:

D1B =− 1
2

ρ̄

(
iωAeiωT0 − iωĀe−iωT0

)
AeiωT0 + Āe−iωT0

B− 1
2

σ̄ ᾱφ B

− 1
2

ᾱφ B
A2e2iωT0 +2AĀ+ Ā2e−2iωT0

+
1
2

(1
2 āvω2eiωT0 + 1

2 āvω2e−iωT0
)

AeiωT0 + Āe−iωT0

(
i
ψ̄

B
)
.

(A.52)

Introducing the polar coordinates from Equations (A.48) and (A.49) into Equation (A.52) and

separating the real and imaginary parts gives:

b′p =−1
2

σ̄bpᾱφ −
sec2 (ωT0 +αp)bpᾱφ

2a2
p

+
1
2

ωρ̄bp tan(ωT0 +αp) . (A.53)

bpβ
′
p =

ω2 cos(ωT0)cos(ωT0 +αp)bpāv

(1+ cos(2(ωT0 +αp))) ψ̄ap
. (A.54)

The Equations (A.50), (A.51), (A.53) and (A.54) can be solved by using numerical integration.

In order to do this the faster time scale T0 is replaced with εT1 to ensure that the equations

are numerically consistently structured. It is observed that the equations can only be solved

numerically if the system is solely excited vertically. Therefore au and av are set equal to
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zero. Unfortunately, a switching on of the power take-off causes a numerical error and an

examination is therefore not possible.

The results for amplitude and phase for the coordinate θ are shown in Figures A.1a and

A.1b. As expected they show a transient response that decays over time and settle to a fixed

value. In Figures A.1c and A.1d the amplitude and phase for the coordinate φ are shown.

Looking at the amplitude bp it can be seen that the value is normally equal to zero but arbitrarily

jumps to a large positive or negative value. The value for βp shows a constant value of 1. The
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Figure A.1: Numerical analysis of the secular terms. With the variables set to: ω = 1, ψ̄ =
0.05, ᾱθ = 0.05, ᾱφ = 0.05, āu = 0, āv = 0, āw = 0.16, P̄θ = 0, γ̄ = 1

6 , σ̄ = 1
3 , ρ̄ = 2,εr = 1,ε =

0.1, ICs = 1

simplification of the denominators for the perturbation hierarchy of the coordinate φ introduces

complicated higher order dependencies. Since this work has a strong focus on the experimental

and numerical analysis the perturbation method has been abandoned but further research could

address the problems to find a more trackable representation of these differential equations for

the full spherical system.
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