IMPROVING THE THERMAL PERFORMANCE OF COOLING TOWERS BY CONDITIONING OF AIR

MAGOSE ABRAHAM EJU PGD, M.Tech.

A thesis submitted for the Degree of Doctor of Philosophy

Energy Systems Research Unit Department of Mechanical Engineering University of Strathclyde, Glasgow, UK.

December 2009

COPYRIGHT DECLARATION

This thesis is the result of the author's original research.

The copyright of this thesis belong to the author under the terms of the United Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50.

Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis.

ABSTRACT

Up to the present, attempts at improving the performance of cooling towers have been focused on the design of the components such as the packing, nozzles, fans, etc. This investigation has been carried out to assess the viability of a new and novel approach, which involves conditioning the inlet air to the cooling tower in order to reduce the wet-bulb temperature, which is the principal external parameter that affects performance.

The wet-bulb temperature of the air entering the cooling tower determines operating temperature levels throughout a water-cooled plant, process or system. It is very important to have the cold water temperature low enough to exchange heat or to condense vapours at the optimum temperature level.

The investigation of performance involved the development of a suite of integrated computer models which were used along with real-time plant data to assess the performance improvement achievable with the proposed air conditioning system.

The results of the analysis indicated the feasibility of this new and novel approach. However, significant further work will be required before the concept can be implemented in reality.

DEDICATION

This project is dedicated to GOD ALMIGHTY

ACKNOWLEDGEMENT

I wish to express my appreciation and profound gratitude to the following persons who have, in one way or the other, contributed to the successful completion of this thesis.

My sincere thanks go to my main supervisor for this research study, Robert Craig Mclean for his prudent supervision and guidance over the four years of this study. My thanks also go to Dr. Tom Scanlon, Dr. Michael Kummert and Dr. Nicolas Kelly, who have been my second supervisor at one stage or the other in the course of this research, for their support with the modelling aspects of this study, their instructive advice and constructive criticism. My thanks also go to Professor Joseph Clark and Cameron Johnstone for their encouragement and support.

Likewise, my immense gratitude goes to Dr. Donald MacKenzie, Head of Department, and the entire staff of Mechanical Engineering Department for providing the right atmosphere for me to successfully undertake this study. I am also grateful to my research colleagues for the very useful interactions and exchange of ideas.

Also, I wish to thank the leadership of the Faculty of Engineering and the University of Strathclyde for the training opportunities they gave me during the period of my study.

I like to say a big thanks to my lovely wife, Mrs. Mofe Abraham Eju and great daughter, Elisabeth Abraham-Eju, for their perseverance and support.

Above all, I acknowledge with a deep sense of respect the help rendered by God Almighty in the success of this research study.

TABLE OF CONTENT

Title Page	i
Authenticity and Copyright Declaration	ii
Abstract	iii
Dedication	iv
Acknowledgement	·v
Table of Content	vi
List of Figures	·ix
List of Tables	xii
List of Symbols and Abbreviations	xiv
Glossary of Terms	xvii

CHAPTER 1 - INTRODUCTION

1.1	Research Background	1
1.2	Problem Statement	3
1.3	Objective of Research	-3
1.4	Scope of Research	4
1.5	Cooling Tower in a Liquefied Natural Gas Plant	4
1.6	Research Methodology1	0
1.7	Data Collection1	1
1.8	Summary1	2

CHAPTER 2 - LITERATURE REVIEW

2.1	Introduction	13
2.2	General Principles of Cooling Tower	-13
2.3	Types of Cooling Tower	-16
2.4	Cooling Tower Components	-18
2.5	Cooling Towers Thermal Design Principles	-20
2.6	Factors Influencing Cooling Tower Performance	-22
2.7	Previous Studies on Analysis and Performance	
	Improvement of Cooling Towers	-24

2.8	Concept of This Research –	
	Conditioning of Cooling Tower Inlet Air	-27
2.9	Modelling and Simulation Overview	28
2.10	Liquid Desiccant Air Conditioning	-30
2.11	The Basic Glycol Dehydration Unit	-33
2.12	Psychrometry (Hygrometry)	-37
2.13	Description of the Cooling Water Circuit of the	
	Nigerian Liquefied Natural Gas Plant	-47
2.14	Summary	-50

CHAPTER 3 – ANALYTICAL THEORIES

3.1	Introduction	-51
3.2	Cooling Tower Analytical Theory	51
3.3	Cooling Tower Heat Transfer Equations	57
3.4	Basic Process Design Factors and Analysis	
	for Glycol Dehydration	65
3.5	Summary	89

CHAPTER 4 – MODELLING, SIMULATION AND SIZING

4.1	Introduction	90
4.2	Process Flow Description	90
4.3	Design Criteria	92
4.4	Research Design Specifications	93
4.5	Justification for Limit on Pre-Conditioned Air	94
4.6	Modelling	96
4.7	Model Verification	125
4.8	Model Assumptions	130
4.9	Uncertainty Analysis	131
4.10	Sensitivity Analysis	133
4.11	Summary	144

CHAPTER 5 – RESULT ANALYSIS

5.1	Introduction	146
5.2	Results	146
5.3	Evaluation of Results	156
5.4	Cost Analysis	165
5.5	Discussion	172
5.6	Summary	178

CHAPTER 6 – DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS

6.1	Introduction	-179
6.2	Conclusions	179
6.3	Recommendations	180
6.4	Summary	-181

REFERENCES182

APPENDICES

Appendix 1: One Year Real-Time Dataset from NLNG Plant	185
Appendix 2: TRNSYS and EES Simulation Models	186
Appendix 3: Model Verification Data Sheet	254
Appendix 4: Simulation Model Results	255
Appendix 5: Air Conditioning Unit Sizing Calculation Sheet	267
Appendix 6: Cooling Tower Characteristic Calculation Sheet	-271
Appendix 7: Physical Properties of Glycol	273
Appendix 8: Derivation of the Cooling Tower Characteristic	
Equation	-274
Appendix 9: Air Conditioning Unit Component Sizing Calculations	279

LIST OF FIGURES

Figure 1.1: Picture of Damaged Packing of NLNG Cooling Tower	page 2
Figure 1.2: Picture of Propane Condenser and Sub-cooler at NLNG Plant	page 3
Figure 1.3: Process Flow Diagram of an LNG Plant	page 5
Figure 1.4: Line Diagram of NLNG Cooling Tower	page 6
Figure 1.5: Propane Refrigeration Circuit for Natural Gas	page 8
Figure 1.6: Pressure-Enthalpy Diagram	page 8
Figure 1.7: Propane p-h Diagram	page 9
Figure 2.1: Closed Loop Cooling Tower System	page 14
Figure 2.2(a): Mechanical Draft Counterflow Tower	page 18
Figure 2.2(b): Mechanical Draft Crossflow Tower	page 18
Figure 2.3: Cooling Tower Components	page 19
Figure 2.4: Variation of Water Temperature with Wet-bulb Temperature of Air	page 23
Figure 2.5: Basic Glycol Dehydration Unit	page 36
Figure 2.6: Psychrometric Chart	page 46
Figure 2.7: Picture of NLNG Plant Cooling Tower (9 cells)	page 49
Figure 2.8: Picture of Internals of NLNG cooling Tower	page 49
Figure 3.1: Schematic showing heat movement around a water droplet	page 52
Figure 3.2: Graphical Representation of the Cooling Tower Characteristics	page 55
Figure 3.3(a): Cooling Tower Schematic	page 58
Figure 3.3(b): Control Volume of Cooling Tower	page 61
Figure 3.4: Cooling Tower Characteristic Curve	page 64

Figure 3.5: Equilibrium H ₂ O Dew point vs. Temperature at Various TEG Concentrations	page 66
Figure 3.6: Nomograph for Estimating Regenerator Performance	page 70
Figure 3.7: Effect of Stripping Gas on Lean TEG Concentration	page 72
Figure 3.8: Water Removal vs. TEG Circulation Rate	page 78
Figure 3.9: Plot of Kremser-Brown Equation	page 81
Figure 3.10: Activity Coefficient for H ₂ O Concentration	page 83
Figure 3.11: Mol Fraction H ₂ O vs. TEG Concentration	page 84
Figure 3.12: Bubblecap Tray, Random and Structured Packing	page 85
Figure 4.1: Schematic of Cooling Tower Air Conditioning system	page 91
Figure 4.2: Information Flow Diagram of Cooling Tower Model	page 100
Figure 4.3: Conceptual Schematic of the Counterflow Cooling Tower	page 102
Figure 4.4: Information Flow Diagram for Steady State Cooling Tower Simulation	page 104
Figure 4.5: Information Flow Diagram for the Heat Transfer Coefficient Model	page 109
Figure 4.6: TRNSYS Schematic of a Single Cell CounterFlow Cooling Tower	page 119
Figure 4.7: Psychrometric Chart for the Air States Through Cooling Tower	page 120
Figure 4.8: Design vs. Model Cold Water Temperature (Real-Time)	page 128
Figure 4.9(a): Site vs. Model Cold Water Temperature Error Variation with Air Density	page 129
Figure 4.9(b): Cold Water Temperature Error vs. Air Density Plot (Real-Time)	-page 129
Figure 4.10: Wet-bulb Temperature Variation with Air Temperature	page 137

Figure 4.11: Wet-bulb Temperature Variation with Relative Humidity	page 137
Figure 4.12: Cold Water Temperature Variation with Air Temperature	page 140
Figure 4.13: Cold Water Temperature Variation with Relative Humidity	page 140
Figure 4.14: COP Variation with Cold Water Temperature	page 143
Figure 4.15: LNG Production Variation with Cold Water Temperature	page 144
Figure 5.1: Seasonal Variation Comparison for Cold Water Temperature	page 150
Figure 5.2: Seasonal Variation Comparison for Wet-bulb Temperature	page 150
Figure 5.2: Seasonal Variation Comparison for LNG Production	page 152
Figure 5.4: Process Flow Diagram with Key Variables	page 155
Figure 5.5: Cooling Tower Effectiveness Results	page 157
Figure 5.6: Cooling Tower Characteristic Chart	page 159
Figure 5.7: Cooling Tower Heat Duty	page 160
Figure 5.8: Refrigerant Cycle Coefficient of Performance	page 161
Figure 5.9: Propane Compressor Work	page 162
Figure 5.10: Mixed Refrigerant Compressor Work	page 162
Figure 5.11: Liquefied Natural Gas Production	page 163
Figure 5.12: Overall Plant Energy Balance	page 164
Figure 5.13: NLNG Plant Sensitivity Curve – production vs. cooling water temperature	page 175

LIST OF TABLES

Table 2.1: Decomposition Temperatures of Glycols	page 34
Table 4.1: Manufacturer's Design Data for NLNG Cooling Tower	page 92
Table 4.2: Specifications for the Cooling Tower Air-Conditioning System	page 94
Table 4.3: Steady State Models Input and Output Parameters	page 126
Table 4.4: Time Series Models Input and Output Parameters	page 127
Table 4.5: Uncertainty of Calculated Variables	page 133
Table 4.6: Wet-bulb Temperature Variation with Air Temperature	page 135
Table 4.7: Wet-bulb Temperature Variation with Relative Humidity	page 136
Table 4.8: Cold Water Temperature Variation with Air Temperature	page 138
Table 4.9: Wet-bulb Temperature Variation with Relative Humidity	page 139
Table 4.10: COP Variation with Cold Water Temperature	page 142
Table 4.11: LNG Production Variation with Cold Water Temperature	page 143
Table 5.1: Key Results Comparison	page 147
Table 5.2: Seasonal Variation Comparison for Cold Water Temperature	page 148
Table 5.3: Seasonal Variation Comparison for Air Wet-bulb Temperature	page 149
Table 5.4: Monthly Variation Comparison for LNG Production	page 151

	xiii
Table 5.5: Components Sizing	page 153
Table 5.6: Computation of Cooling Tower Characteristic with Pre-Conditioned air	page 158
Table 5.7: Computation of Cooling Tower Characteristic without Pre-Conditioned air	page 158
Table 5.8: Initial Investment Costs for Cooling Tower Air Conditioning Unit	page 171

LIST OF SYMBOLS AND ABBREVIATIONS

а	Contact area/tower volume (m^2/m^3) (area of effective transfer surface per unit of tower packing volume)
A	Absorption factor
С	Cooling tower mass transfer constant
С	Specific heat (kJ/kg K)
C_p	Specific heat at constant pressure (kJ/kg K)
CR	Circulation ratio (liters TEG/kg H ₂ O)
E_{a}	Absorption efficiency
Exp	Exponential function
G	Air rate [kg/(m ² .s)] (mass of air flow per unit plan area of packing)
h	Specific enthalpy (kJ/kg)
Η	Enthalpy (kJ)
dh	Change in air enthalpy (kJ/kg)
k	Equilibrium constant
K	Mass transfer coefficient kg/ $[(m^2.s. (kg/kg)]^1$
l	Glycol circulation (moles/unit time)
L	Water rate [kg/(m ² .s)] (mass of water flow per unit plan area of packing)
m	Mass flow rate
MW	Molecular weight (kmol/kg)

¹ Coefficient of mass transfer defined in terms of difference in absolute humidity. That is kilogram per second per square meter per kilogram water per kilogram dry air.

n	Cooling tower mass transfer exponent
Ν	Number of theoretical trays
NTU	Number of transfer units
LNG	Liquefied natural gas
Р	System pressure (Pa)
q	Volumetric flow rate (m ³ /h)
Q	Heat transferred in cooling tower from water to air (kW)
t	Temperature (°C)
Т	Temperature (K)
dT	Cooling tower temperature range (K)
TEG	Triethylene glycol
UA	Overall heat transfer coefficient – area product (W/K)
v	Gas flow rate (moles/unit time)
V	Specific volume (m ³ /kg)
V	Active cooling volume/plan area (m ³ /m ²) (effective packing volume per unit area of packing)
W	Mass of water per standard volumetric flow rate of gas (kg/ 10^6 std m ³)
W	Work (kW)
x	Mol fraction of water in lean glycol
X	Weight percent TEG (wt%)
У	mol fraction of water in gas

GREEK SYMBOLS

- ε Effectiveness
- γ Activity coefficient for water in TEG-water system

- η Cooling efficiency of tower
- λ Average latent heat of vaporisation of water vapour (kJ/kg)
- ρ Density (kg/m³)
- *ω* Humidity ratio or absolute humidity (kg/kg da)
- μ Mean

SUBSCRIPTS:

1	Inlet
2	Outlet
a	Air
d	Design
dehyd	Dehydrated
8	Saturation
in	Inlet
n	molar
out	Outlet
Ref	Reference
S	Water Vapour
std	Standard condition
t	Test
TEG	Glycol
Undehyd	Undehydrated
W	water
wb	Wet-bulb

GLOSSARY OF TERMS

Term	Definition
Absorption process	The attraction and retention of vapours (water) by liquids (glycol) from a gas (air) stream.
Air flow	Total quantity of air, including associated water vapour.
Approach	Difference between exit water temperature (from cooling tower) and the inlet air wet-bulb temperature.
Cell	Smallest subdivision of a cooling tower bounded by exterior walls and partition walls which can function as an independent unit as regards air and water flow.
Cold water basin	A device at the bottom of the cooling tower to receive cold (exit) water from the tower, and direct its flow to the suction line of the circulating pump.
Cooling Range	Difference between the inlet water temperature and the exit water temperature of the cooling tower.
Drift eliminator	A system of baffles located at the exit of the tower, designed to reduce the quantity of entrained water in the exit air.
Drift loss	Water lost from the cooling tower as liquid droplets entrained in the outlet air.
Effective volume	The volume within which space the circulating water is in intimate contact with the air flowing through the tower.
Fan power	Power input to the fan drive assembly excluding power losses in the driver.

Heat flux	The average heat transfer rate through an heat exchanger tube, to the fluid per unit tube surface area.
Heat load	Rate of heat removal from water in the cooling tower.
Lean glycol	Glycol which has been regenerated and has a low water content.
Louvres	Members installed in a tower wall tp provide openings through which air enters the tower; usually installed at an angle to the direction of air flow.
Make-up water	Water added to the circulating water system to replace water loss from the system by evaporation, drift, blowdown and leakage.
Packing (cooling tower)	Material placed within the cooling tower to increase heat and mass transfer between the circulating water and the air flowing through the tower.
Packing (glycol absorber)	Material installed in the absorber, still column or stripping column that provides large surface area for intermingling liquid and vapour to facilitate mass transfer during absorption, distillation or stripping.
Purge (or Blowdown)	Water discharged from the system to control concentration of salts or other impurities in the circulating water.
Recirculation	Portion of the exit air that re-enters the cooling tower.
Reflux	Condensed liquid which flows back down a column to maximise separation efficiency.
Rich glycol	Glycol which has absorbed water and thus has a high water content.
Spray nozzle	Used in a pressure distribution system to break up the flow of the circulating water

	into droplets, and effect uniform spreading of the water over the wetted area of the tower.
Standard (temperature and pressure)	Unit of ideal gas volume at reference conditions of 101.3250kPa and 15 °C. Abbreviated: std m ³
Stripping gas	Gas that is contacted with glycol to help remove water from the glycol.
Unit circulation rate (circulation ratio)	Volumetric or mass flow rate of lean glycol per mass flow rate of water removed (absorbed).
Water loading	Inlet water flow expressed in quantity per unit of plan packing area of tower.