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Abstract 

Insulation breakdown is a key failure mode of high voltage (HV) equipment, with 

progressive faults such as electrical treeing leading to potentially catastrophic failure. 

Electrical treeing proceeds from defects in solid insulation, and cables are 

particularly affected. Research has shown that diagnosis of the fault can be achieved 

based on partial discharge (PD) analysis. Nonetheless, after diagnosis of a defect, 

engineers need to know how long they have to take action. This requires prognosis of 

remaining insulation life.  

The progression of a defect is far less well understood than diagnosis, making 

prognosis a key challenge requiring new approaches to defect modelling. The 

practical deployment of prognostics for cable monitoring is not currently feasible, 

due to the lack of understanding of degradation mechanisms and limited data relating 

defect inception to plant failure. However, this thesis advances the academic state of 

the art, with an eye towards practical deployment in the future. The expected 

beneficiaries of this work are therefore researchers in the field of HV condition 

monitoring in general, and electrical treeing within cables in particular. 

This research work develops a prognostic model of insulation failure due to the 

electrical treeing phenomenon by utilising the associated PD data from previous 

experiment. Both phase-resolved and pulse sequence approaches were employed for 

PD features extraction. The performance of the PD features as prognostic parameters 

were evaluated using three metrics, monotonicity, prognosability and trendability. 

The analysis revealed that features from pulse sequence approach are better than 

phase-resolved approach in terms of monotonicity and prognosability. The key 

contributions to knowledge of this work are three-fold: the selection of the most 

appropriate prognostic parameter for PD in electrical trees, through thorough analysis 

of the behaviour of a number of candidate parameters; a prognostic modelling 

approach for this parameter based on curve-fitting; and a generalised framework for 

prognostic modelling using data-driven techniques.  
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Chapter 1                     

Introduction 

1.1  Research Background 

A significant proportion of high voltage equipment in power networks is reaching or 

exceeding its anticipated design life [1]–[3]. It is a big challenge for network 

providers to manage these ageing assets effectively without compromising the 

availability and reliability of the network. The performance of these assets is 

expected to deteriorate and the consequences of equipment failure can be 

catastrophic. The associated cost of failure is not only for repair or replacement but 

also the loss of customer revenue.  

The need to balance asset availability and cost effectiveness is becoming increasingly 

important in power network industries. Providers are coming to realise the potential 

wastefulness of scheduled (time-based) maintenance that may not accurately reflect 

the usage of the asset, thus resulting in unnecessary maintenance [4]. The transition 

between scheduled maintenance to condition-based maintenance (CBM) is 

accelerating [5]. CBM provides a more cost-effective service as well as the capability 

to predict and prevent failures through health monitoring, diagnostics and fault 

prognostics; the process has been outlined in ISO 55002 [6].  

Unlike scheduled maintenance, the aim of CBM is to predict the upcoming failure so 

maintenance can be proactively scheduled when it is needed [7]. The diagnosis and 
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prognosis of a failure are performed when certain indicators show signs of 

decreasing or anomalies are detected. An advanced prognostic capability is desired 

because the ability to forecast this future condition enables a higher level of 

condition-based maintenance for optimally managing total life cycle cost. 

The major cause of failure of high voltage (HV) equipment comes mostly from the 

insulation system [1]. This could be the consequences of the insulation deterioration 

or due to insulation defects introduced during manufacturing process or maintenance 

routines. Over the years, a number of methods have been developed to diagnose and 

monitor the degradation of the insulation system. Among them, partial discharge 

(PD) analysis is a well-accepted indicator of the degradation of electrical insulation, 

permitting early detection of insulation faults [8]–[11]. 

The insulating capability of various insulating materials is influenced by many 

factors. Physical, chemical, and electrical stresses contribute to the deterioration of 

the insulating materials. The formation of electrical treeing is one of the main causes 

of insulation degradation under high electric stress [12]. Electrical trees progress by 

periodic PDs after initiating at a point of high divergent stress [13]. Hence, PD 

measurement has long been associated with electrical treeing for detection [14], 

determining the type of electrical tree (e.g. branch or bush) [15] and classifying the 

growth stage [16], [17].  

The increased integration of renewable and distributed generation has challenged 

asset management, particularly in tolerating power quality issues due to a steady rise 

in the number of power electronic devices. The gradual change in working 

environment results in a different ageing mechanism of the insulation system [2]. 

Previous work at the University of Manchester conducted experimental studies to 

investigate the effect of harmonics (one type of power quality issue) on electrical tree 

in terms of tree size, time to breakdown and phase-resolved partial discharge (PRPD) 

pattern [18]. The corresponding results are as follows: 

 No changes were detected in electrical tree growth characteristics due to 

variation of harmonic order, waveshape factor, Ks and total harmonic 

distortion (THD) in the excitation voltage at 14.4 kV constant peak. 
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 The variation in breakdown trends did not reveal a deterministic relationship 

with THD and Ks. 

 The composite waveforms influenced the partial discharge pattern produced.  

The results show that harmonics do not give a very significant impact to the 

electrical growth process. Towards an advanced CBM, the same electrical treeing 

data reported in [18] has been utilised and analysed in this thesis for further 

investigation into the prognosis of solid insulation lifetime.  

1.2  Justification for Research 

Electrical treeing is one of the main degradation mechanisms in high voltage cables  

[12], [19] that is strongly related to the existence of defects in the insulation, such as 

cavities, conducting particles and protrusions from the electrodes. These defects, 

either developed during manufacturing or assembly, promote the inception of PD 

that may trigger the initiation of electrical treeing and grow into hollow channels 

towards the opposite electrode which can lead to breakdown. As it is closely linked 

with insulation breakdown, many researchers have investigated the morphology of 

electrical trees towards breakdown and some of them have extended their work to the 

development of life models.  

It was mentioned in [20]–[22] that the extension of electrical treeing is due to 

electrical discharge activity inside the tree tubules. Hence, the electrical tree growth 

is usually studied along with the PD activities. The available models that relate PD 

mechanisms with the tree morphology can be either physics-based [20]–[24] or data-

driven [25] or the combination of both approaches [26]. Life models in [25] and [26] 

proposed the mean of PD magnitude per cycle (for every 20 seconds) as the 

prognostic parameter although skewness and kurtosis of PD magnitude per cycle also 

show a monotonic trend in [25]. The selection of the prognostic parameter was 

unclear, thus, a set of metrics should be proposed to characterise these features, 

aiding in the selection of the most appropriate feature.  
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Most of the developed models for electrical treeing are physics-based, and relate the 

tree growth with the activity of the discharges within the tree. In [26], the breakdown 

is expected to occur when the tip reaches the ground plate (negative electrode). Also, 

the simulated tree growth in [20]–[22] only considers the forward growth (the tree 

propagates from the inception point to the ground electrode). This assumption may 

be misleading due to the existence of a return tree that has been observed and 

discussed very briefly in [27]–[29]. This means, an immediate breakdown may not 

occur when the original tree traverses the insulation gap since the tree may continue 

to grow from the ground electrode to the start point of the tree.  

Literature describing the physics of the return tree is scarce and the reason for its 

existence remains unclear. Therefore, a data-driven approach is considered in this 

thesis since not much effort has been applied to modelling the return tree. Most of 

the published data-driven approaches utilise Weibull analysis of the time-to-failure 

(TTF) data. This approach lacks information on the degradation process. 

Alternatively, this research work aims to investigate the degradation behaviour of the 

selected PD feature and develop a prognostic model based on its characteristics.  

Also, this thesis incorporates the effect of harmonics on the behaviour of the selected 

PD feature. Little work has been reported on the effect of harmonics on electrical 

treeing growth. The findings in [18] did not reveal a deterministic relationship 

between THD and breakdown time. In contrast, a study in [30] has reported that 

harmonics with higher THDs could accelerate the tree growth resulting in early 

insulation failure. These contradictory findings may be due to the constant peak 

voltage used in [18]. This work therefore, aims to identify any distinct behaviour of 

the selected PD feature for different THD and harmonic orders.  
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1.3  Principal Contributions 

This research provides the following contributions to knowledge: 

 Selection of the most appropriate prognostic parameter from analysed PD 

features through the application of a set of metrics introduced in [31] which 

characterise the suitability of a prognostic parameter.  

 Relatedly but distinctly, identification of the characteristics of the selected 

prognostic parameter that correspond to the electrical tree growth. Three 

stages have been identified and the selected prognostic parameter shows a 

unique characteristic in distinguishing the stages. 

 Identification of no deterministic behaviour of the selected PD feature for 

different THD, Ks and harmonic orders. 

 Proposal of a generalised prognostic framework specifically for data-driven 

techniques where the step-by-step procedure is described in this thesis. 

 Proposal of an algorithm to improve the curve fitting approach for 

predicting the failure time in the scope of the studied samples.  

 Confirmation of the accurate and robust performance of the proposed 

prognostic algorithm. This analysis is based on the availability of the input 

data, in which the prediction‘s performance is evaluated. The accuracy is 

based on the error of the predictions while the robustness is expressed as the 

convergence of the predictions, measuring how fast the predicted 

breakdown time converges to an approximately correct prediction. 
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1.4  Thesis Overview 

This chapter has highlighted the maintenance issues in the current power network 

industry that motivates this research work, as well as giving the outline of the thesis 

and the contributions.  

The next two chapters provide the background information for this research. Chapter 

2 describes the solid insulation degradation focusing on electrical treeing in cable 

application. The key literature on partial discharge analysis is identified. The 

influence of harmonics on partial discharge activity, electrical tree growth and 

insulation life is given. The previous work in life prediction using electrical treeing 

or PD data is reviewed. Chapter 3 proceeds with the identification of techniques for 

feature selection, model fitting, sample validation and algorithm performance. 

The prognostic model is developed in the next two chapters, which are the main 

contributions for this work. Chapter 4 details the process of identifying the 

prognostic indicators using phase-resolved partial discharge analysis (PRPDA) and 

pulse sequence analysis (PSA). The developed prognostic model is described in 

Chapter 5 with the aim of predicting the failure time of the treeing samples. The 

model is validated using the holdout and 4-fold cross validation technique while the 

performance of the model is evaluated in the aspects of accuracy and convergence. 

Finally, Chapter 6 concludes and summarises the main points of this thesis, as well 

as identifying areas of future work, which could benefit and advance the developed 

model described in this thesis.  

 

 



7 
 

1.5  Publications 

The research detailed in this thesis resulted in the following publications: 

 N. H. Aziz, V. M. Catterson, S. M. Rowland and S. Bahadoorsingh, 1.

―Analysis of Partial Discharge Features as Prognostic Indicators of 

Electrical treeing‖, in IEEE Transactions on Dielectrics and Electrical 

Insulation, vol. 24, no. 1, 2017. 
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Chapter 2                                

Solid Insulation Degradation 

2.1  Solid Polymeric Materials 

Materials are commonly classified as metals, ceramics, and polymers [32], [33]. 

Ceramic insulators were first used in power transmission applications around 1880 

before natural and later synthetic polymers took the place due to their lightweight, 

hydrophobic, ease of handling, reduced cost and improved contamination 

performance [34], [35]. The evolution of solid polymeric insulation in high voltage 

applications has been discussed comprehensively in [36], [37].  

Generally, polymers can be divided into three types: thermoplastics, thermosets and 

elastomers.  Thermoplastics are polymers that will melt when heat is applied and 

reform (harden) when cooled while thermosets on the other hand, have no melting 

point and are formed through an irreversible chemical reaction often referred to as 

polymerisation or curing [32]. Polyethylene (PE) was the first (1960) thermoplastic 

used in HV cables, replacing oil-impregnated paper insulated cables, before the 

thermoset version of PE, crosslinked polyethylene (XLPE), was introduced in 1963. 

XLPE brought improvements in mechanical and thermal properties and also an 

increased resistance to treeing [37]. However, the high melting point of XLPE raises 

environmental concerns around XLPE recycling technologies [38]. Lastly, 

elastomers are soft and compliant polymers that are able to experience large and 

reversible deformations. Since elastomers have lower cross-link density than 
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thermoset materials, they can be made to function as elastomers above their glass 

transition temperatures e.g. natural rubber, ethylene propylene rubber (EPR) and 

silicone rubber (SiR) [33]. 

Improvement on the performance of dielectric materials can be achieved through 

material composition, i.e. a mixture of two or more dielectric materials. Although the 

use of composite dielectrics have been practiced before the introduction of polymers 

e.g. oil-impregnated paper cable, nowadays, the technology has evolved to the 

nanocomposites with superior thermal, electrical and mechanical properties that 

elevate commodity plastics to engineering plastics [39], [40].  

This research aims to study the electrical treeing characteristic in epoxy resin 

material and correlate it with the corresponding partial discharge measurements for 

the development of a degradation model. Epoxy resin is a thermoset polymer thus 

requiring a hardener as the curing agent [39]. Epoxy resins have excellent electrical 

insulation properties as well as high thermal resistance, hence they are mostly used 

for casting and moulding in high voltage applications, for example in bushings, cable 

accessories, instrument transformers and gas-insulated substation (GIS) spacers [41], 

[42]. The transparency of the epoxy resin permits a non-destructive approach for tree 

growth monitoring, aiding the investigation of this research work. 

2.2  Ageing Phenomenon 

Solid insulating materials hold an important role in electrical equipment although 

sometimes with a combination of liquid (paper-oil) and gaseous insulations (gas 

insulated) especially when operating at very high voltage [43]. During their service 

life, the insulation systems are subjected to ageing mechanisms thus suffering from 

degradation and deterioration. Many papers [44]–[48] have defined insulation ageing 

in accordance with the earlier International Electrotechnical Commission (IEC) [49] 

and Institute of Electrical and Electronics Engineers (IEEE) [50] standards, i.e. ―an 

irreversible deleterious change to the serviceability of insulation systems‖. In 

addition, a more specific definition can be found in [51] which defines ageing as the 
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―reflection of changes of a material‘s or a system‘s electrical and physical properties 

with time while exposed to a variety of stresses and/or environment‖.  

The ageing factors can be either individual or a combination of stress factors. 

Thermal, electrical, environmental (or ambient) and mechanical (TEAM) stresses are 

classified  as intrinsic ageing in [12], [50]. The extrinsic ageing on the other hand, 

refers to physical of the material itself i.e. contaminants, defects, protrusions and 

voids, [50] that are unintentionally introduced during material processing, 

transportation, installation, or in service [52].  

In practice, the multifactor ageing is more realistic than the individual stress. The 

synergy effect when two or more stresses are present or applied can be either direct 

or indirect interaction [44], [45], [53]. The former results in a different effect when 

the stresses are applied simultaneously compared with sequentially applied stresses, 

while in the latter the order makes no difference. Temperature and voltage stresses 

are regarded to happen simultaneously resulting in direct interaction that causes a 

faster degradation than individual applied stress [54]–[56]. Adding more stress 

factors e.g. vibration (mechanical) stress, as expected, reduces the insulation‘s 

lifetime more, however, the ageing rate is the concern of research in [57], [58]. 

All of the previous examples are considered as bulk degradation processes or 

macroscopic approaches which can aid the study of long-term life prediction [59]. In 

contrast, the microscopic approach concentrates on a local area of a whole insulation 

system, e.g. partial discharge and electrical treeing.  

This research work aims to correlate the growth of electrical treeing with the 

corresponding PD data. The extrinsic ageing factors usually result in localised 

modifications in material structure. Interaction between physical and electrical 

ageing factors yields four ageing mechanisms i.e. space charge, partial discharge, 

water treeing and electrical treeing. Electrical treeing is often regarded as the final 

stage in electrical ageing resulting from either partial discharge or water treeing [60], 

[61]. Space charge could influence partial discharge activity through alteration of the 

local electric field thus affecting the electrical treeing indirectly. 
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2.3  Space Charge 

Space charge can be defined as excessive charges that accumulate in the bulk of the 

dielectrics, at the interfaces between conductors and dielectrics, or at the interfaces 

between different dielectric materials [62], [63]. Space charge occurs when the rate 

of charge accumulation differs from the rate of charge leaving the insulation. This is 

mostly associated with mobile and trapped charges, which can be explained in terms 

of electrons, holes and ions, depending upon the mechanism of charge transfer [64].  

During the application of an electric field, charges are injected into the insulating 

material by the electrodes [65]. However, due to the existence of trapping sites in 

polymer, most of the charges may be localised and not contribute to the current flow 

[66]. Most of them are trapped in shallow traps compared to deep traps [65], where 

the former are due to physical defects (e.g. void) while the latter are due to chemical 

defects or/and impurities [67]. These trapped charges are called space charges. 

In alternating current (AC) applications, detrapping and recombination between 

mobile injected charges with trapped charges of opposite polarity may occur in the 

shallow traps during the reverse half-cycle [65]. Over a period of time, the residual 

of the trapped charges or space charges may move progressively to deeper traps and 

modify the localised electric field around the trapping sites [62]. Such field distortion 

can be significant. The enhanced electric field that is beyond the design electric field 

strength can increase the local conductivity and potentially accelerate the degradation 

of the dielectric material, and even lead to breakdown [62], [68].  

 

In comparison to direct current (DC), space charge tends to be less of an issue under 

AC excitation, and hence attracts less research attention [69]. Findings in [70], [71] 

show that only a small amount of space charge is accumulated under AC electric 

fields, and the amount was significantly reduced under high frequency conditions. At 

high frequencies, the very short duration of polarity change limits the accumulated 

amount of space charges [72]. Nevertheless, research in [72], [73] found 

contradictory results. It is suggested in [72] that different material of electrode and 

insulator could be a factor contributing to the inconsistency in the literature. Hence, 
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the role of space charge under AC fields cannot be completely ignored. The effect of 

space charge in PD initiation is vital since PD can lead to electrical treeing and 

eventually breakdown of the insulation. 

The presence of space charge has also been associated with the occurrence of 

electroluminescence (EL) prior to partial discharge inception. EL is a phenomenon 

that occur when an insulating material emits light in response to recombination of 

charge carriers of both polarities [74], while the remaining trapped charges becoming 

space charges. The same process is repeated for every cycle of the AC voltage 

resulting in the light emission of EL and a polarity reversal of the space charge. EL 

does not contribute to damage formation but it can be an indicator whereby charge 

injection may lead to deterioration of the polymeric structure [74]. Hence, it is 

suggested in [67] that the EL technique is a valuable tool to evaluate the dielectric 

properties of novel insulating materials, such as nanodielectrics. 

2.4  Partial Discharge 

IEC 60270 defines PD as ―a localized electrical discharge that only partially bridges 

the insulation between conductors and which may or may not occur adjacent to a 

conductor‖ [75]. PDs that normally happen at defect sites, such as voids, cavities, 

contaminants, and cracks, are referred to as internal discharges while PDs in between 

the edges of a conductor and the surface of insulation are called surface discharges 

[76]. Both discharges can cause progressive degradation to the insulation through 

electrical treeing and tracking phenomenon respectively. 

In the case of epoxy resins, the curing process may form gas-filled cavities within the 

insulation which can be either due to air leaking into the epoxy mould, or due to 

insufficient pressure on the epoxy liquid [77].  Early investigations revealed that PD 

characteristics are affected by the shape, size and location of defects and by the 

thickness and type of insulation [76]. The defects can affect insulation performance 

in the long term but not an immediate breakdown. Hence, PD is an indicator of the 

presence of defects in an insulating system. 
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Partial discharge and space charge are closely related. The trapped charges within a 

material may consist of space charges and charges deposited by earlier PD events 

which serve as initiatory electrons. Therefore, the PD itself also acts as a source of 

charge injection into the dielectric. The presence of these charges gives rise to the 

local electric field enhancement, thus lowering the PD inception voltage (PDIV) that 

is the lowest voltage which must be applied to initiate PD in insulation [76]. When 

voltage is reduced, the voltage at which PD ceases is called the PD extinction voltage 

(PDEV) [76]. During the discharge process, a portion of the discharge is trapped in 

the cavity surface and some migrates deeper into the dielectric. It was mentioned in 

[78] that a later stage of the degradation process deposits a PD by-product i.e. 

crystals where the ignition of PD occurs at the crystal tips. 

A general approach for an automated PD classification is given in [79] as shown in 

Figure 2-1. The first stage of the system is the measurement of PD including sensors, 

data acquisition and preprocessing, mainly for detecting the PD signals. In the latter 

stage of PD measurement, the captured signal is digitised and purified through 

denoising. The next stage is the representation of PDs either in the form of phase-

resolved, time-resolved or pulse sequence. At this stage, classification of PD defects 

is possible but with low accuracy (i.e. the pattern might be classified to more than 

one potential defect). A more accurate classification can be achieved through feature 

extraction by identifying possible descriptors for different aspects of the discharge 

pattern. The defect classification is made by comparing the extracted features with a 

defect database that is mainly generated from the knowledge of the experts.   

 

Figure 2-1. A general approach for PD classification [79]   
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2.4.1   PD Detection 

PD monitoring allows the observation of trends in PD activity for failure diagnosis 

and prognosis of high voltage plant. The presence of PD may indicate a need for 

maintenance and as such is important information for the asset manager. PDs are 

often accompanied by emissions of sound, light, heat and chemical reactions thus 

there are various methods to detect the presence of PD [75]. This includes electrical, 

acoustic, thermal, chemical and ultra-high frequency (UHF) monitoring.  

Guidelines for electrical detection for PD measurement are available in the IEC 

60270 standard, depicting the maturity of the technique [75]. The original PD current 

pulses are characterised by a very short duration (nanoseconds) thus it is not easy to 

capture the shape of such pulses. Therefore, the current-time integral (charge of the 

captured PD pulses) is measured instead of the peak value of the PD current pulses, 

giving the apparent charge levels in picocoulombs (pC), which is obtained from the 

transient voltage drop across the test object terminals [80].  

IEC 60270 recommends three basic measuring circuits which differ by the 

arrangement of the measuring impedance, Zm [75]. Figure 2-2 shows the most 

common circuit employed in practice where Zm and the coupling capacitor, Ck, are 

connected in parallel with the test object, Ca. During PD occurrence, the voltage 

across Ca decreases momentarily due to the voltage drop across the HV source 

impedance, Zn. As a result, a transient current flows through Zm, allowing voltage to 

be measured across it. A measuring instrument (MI) is then used to identify the 

apparent charge from the voltage change. The scale factor of these two parameters is 

determined through a calibration procedure by repetitively injecting a short duration 

current pulse of known charge magnitude into the terminals of the test object. 

This conventional method requires a controlled environment hence, is not suitable 

for on-site PD measurement. The electromagnetic interference and electrical noise 

produced during the operation of HV equipment may leads to false detection of PD 

[81]. In cable systems, distortion of PD pulses occurs as they propagate away from 

the PD source [82]. It is a challenge to avoid the attenuation and dispersion of the 

signal that affect the measurement of PD. 
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Figure 2-2. Most common PD measuring circuit recommended in IEC 60270 [83]   

The UHF method is an alternative with an improved signal-to-noise (S/N) ratio. This 

method was first introduced for gas-insulated switchgear and then was applied to 

power transformers [84] and cable terminations (on-line) [85] for identification of 

defect type and location. The main advantage of this method is its ability to identify 

the location of the PD by using multiple UHF sensors and the ―time-of-flight‖ 

technique (measuring the time difference for the PD signal to reach each of the 

sensors) [84]. These sensors are placed to surround the PD source, and PD can be 

detected by measuring electromagnetic emissions originating from transient currents 

of PD in the 500-1500 MHz range. The generated UHF signal is detected by the 

coupler that produces an output in the form of an oscillatory voltage signal. In most 

circumstances, the magnitude of the UHF signal was found to be dependent on the 

current pulse magnitude thus can be represented as the equivalent PD magnitude 

[86].  

In comparison to UHF sensors, acoustic emission (AE) sensors are cost effective, 

simple, easy to install and are insusceptible to external electrical and electromagnetic 

interference [87]. The basic principle of this method is the detection of the 

mechanical energy wave that propagates from the discharge site through the 

insulation. However, the application of this method is limited due to the complicated 

nature of the acoustic propagation pathways. The attenuation of the acoustic wave is 

high thus requires an appropriate level of sensitivity [88]. The guidelines for both 

UHF and AE methods are available in the IEC 62478 standard [89].  

Finally, chemical detection is the exploitation of the changes in chemical 

composition due to PD activities, and is mostly used in GIS and power transformers 

rather than power cables [88]. Dissolve gas analysis (DGA) and high performance 
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liquid chromatography (HPLC) are the common methods for this approach. DGA 

quantifies the composition levels of different gases in insulation due to 

decomposition of the material when subjected to thermal and electrical stresses [90]. 

HPLC on the other hand, measures the by-products (e.g. glucose) instead of the 

dissolved gasses. A common drawback related to both methods is the lack of 

information on the nature, intensity, and location of PD [88]. 

2.4.2   PD Data Representation 

The PD data can be represented in either phase-resolved or time-resolved format. The 

most common approach has traditionally been through the PRPD representation in 

which the variation of PD pulses (either in magnitude or repetition rate) is often 

represented by statistical quantities [91]–[94]. Later in 1990‘s, a more meaningful 

interpretation of PD phenomena was introduced in PSA approach [95]. PSA examines 

the relationship between two consecutive PD pulses, which relates to the physical 

processes occurring within the localised degradation region. 

 2.4.2.1 Phase-Resolved 

Phase-resolved PD data are acquired based on the phase angle of the AC test voltage 

waveform. For electrical detection, three basic quantities of the PD pulse are 

quantified at the measurement stage over a predetermined time duration: phase angle 

occurrence,  , charge, q and voltage cycle occurrence, n. The presentation of this 

data is commonly known as  –q–n or PRPD patterns. The UHF detection method on 

the other hand, quantifies the output voltage from the UHF coupler instead of 

discharge magnitude.  

Figure 2-3a and Figure 2-3b illustrate the PRPD pattern from electrical and UHF 

detection respectively for different PD sources. The scatter plot in Figure 2-3a shows 

the distribution of apparent charge, q, on    unrevealing the information of n. 

Alternatively, the three-dimensional (3D) plot in Figure 2-3b allows the observation 

of relative amplitude of PD pulse (obtained from the pulse captured by the UHF 

sensor) on   and n. This plot displays the PD activity in 50 cycle bursts which is the 

total data in 1 second and is used for data interpretation [96].  
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                                   (a) 

 

       (b) 

Figure 2-3. Example of PRPD pattern in (a) two-axes and (b) three-axes from different PD 

sources.  

Special terms have been used to describe the PRPD pattern and relate them to the 

nature of PD. Figure 2-4 shows the typical PRPD pattern of internal discharges. 

Observation on the PRPD pattern of a test sample with a void reveals a transition of a 

―turtle-like‖ pattern (described by the flat top shape in Figure 2-4a) into a ―rabbit-

ear‖ like pattern (higher discharge magnitude at the earlier phase as shown in Figure 

2-4b) [97]. This can be discriminated from electrical treeing that has a right-angled 

triangle shape or ―wing-like‖ pattern as shown in Figure 2-4c [98], [99]. These 

descriptions are considered in the feature extraction stage for more accurate and 

detailed diagnosis of the PD defects. 

 

     (a)          (b) 

 
        (c) 

Figure 2-4. Description of PRPD pattern [97]: (a) ―Turtle‖ like pattern,  (b) ―Rabbit-ear‖ 

like pattern, and (c) ―Wing‖ like pattern 
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Before extracting possible features from  –q–n pattern, three different two-

dimensional (2D) phase distribution graphs are constructed in [100] as shown in 

Figure 2-5. This requires a predetermined phase window which depends on the 

intensity of the PD data. Dividing one full cycle (360) into phase windows gives a 

number of phase buckets. All the PD pulses within each phase bucket are then 

represented by three quantities, the maximum charge, Hqm, the average charge, Hqn, 

and the number of charge, Hn. Plotting these quantities onto phase values allows 

various statistical features to be extracted in order to characterise the defect type.  

 

Figure 2-5. 2D examples of PD maximum pulse height, Hqm, PD pulse count, Hn and PD 

mean pulse height, Hqn [101] 

 2.4.2.2 Time-Resolved 

Recently, the high frequency current transformer (HFCT) has been widely used as an 

online PD detector in power cables for PD identification and discriminating 

interference [102], [103]. The HFCT detects the original PD pulse with the pulse 

shape as represented in time-resolved format as shown in Figure 2-6 with the 

following parameters [104]: 

 Pulse rise time,   : time required to rise from 10% to 90% levels of the peak 

value. 

 Pulse decay time,   : time required to decay from 90% to 10% levels of the 

peak value. 
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 Pulse width,   : time interval between 50% levels on both sides of the peak 

value. 

 

Figure 2-6. Typical parameters describing the shape of an ideal PD pulse [104] 

Previous research has revealed the direct relationship between the physics of the PD 

defect and the shape of the signal [103], [105]. This is due to the difference in PD 

pulse signal when generated by different PD sources. Not only that, this approach 

requires a less expensive measurement system compared to phase-resolved 

measurements. However, a distorted signal maybe expected especially for a long 

cable that increases the travel path between the PD site and the terminals of the test 

object [80]. 

 2.4.2.3 Pulse Sequence 

Pulse sequence analysis (PSA) treats PD pulses as events within a sequence. The 

rationale behind this approach is that the history and condition of a sample, including 

recent discharge events, influence the ignition and nature of the next discharge pulse 

[96]. In particular, key governing parameters of each discharge are the local electric 

field and its change from the last pulse, which are both dependent on the voltage 

difference between consecutive pulses. The voltage differences do not occur at 

random but in specific sequences characterising the discharge processes in the defect, 

at least in part due to the build-up of space charges [96].  

Figure 2-7 shows the basic principle of the PSA approach, where the solid circles 

represent three PD pulses within the reference cycle numbered as 1, 2 and 3. Three 

parameters were introduced in [96] for representing the changes in consecutive PD 
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pulses: the instantaneous voltage, u, the voltage difference, du and the voltage 

derivative with respect to time, du/dt. Considering consecutive PD pulses of 1 and 2, 

du and dt of pulse 1 can be determined using equations 2-1 and 2-2 where n = 1. 

Both equations can then be used to calculate du/dt. 

1n n ndu u u   (2-1) 

1n n ndt t t   (2-2) 

 

Figure 2-7. Basic principle of PSA [95] 

The three parameters are commonly presented in a scatter graph with consideration 

of the previous (x-axis) and current (y-axis) PD pulses. Several papers have used 

these plots to identify the nature of the PD [96], [106], [107]. For example, 

consecutive PDs  from surface discharge form six clusters in the du plot of Figure 

2-8a while PDs from a void have an extra two clusters giving eight clusters all 

together in Figure 2-8b [106]. 

 

       (a) 

 

                                  (b) 

Figure 2-8. Example of du plots considering consecutive PD pulses resulting from (a) 

surface discharge and (b) void [106] 
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Alternatively, the PSA parameters are presented as a histogram of the number of 

occurrence. Investigation in [108] found that occurrence of du in electrical treeing is 

concentrated in four characteristic values as can be seen in Figure 2-9a which can be 

considered as a systematic shift. As a comparison, surface discharge yields only three 

values of du as shown in Figure 2-9b. This non-symmetric behaviour is due to 

different PD magnitudes in the positive and negative half cycles. 

 

         (a) 

 

          (b) 

Figure 2-9. Example of accumulated du plots resulting from (a) electrical treeing and (b) 

surface discharge [108] 

2.4.3   PD Feature Extraction 

Different PD sources result in their own PD pattern due to the geometry, location in 

insulation, dielectric properties and applied electric field [109]. The unique PD 

characteristics are commonly described in terms of informative features by experts, 

that is, what they believe are the important variables to build a model. In addition to 

feature extraction, the curse of dimensionality can be a problem due to the large 

number of variables [110]. As the number of features increases, the amount of data 

needed to support the result grows exponentially. Hence, feature selection or feature 

reduction is required to discard the irrelevant or non-informative features. The 

techniques are mostly generic and not limited to PD data, thus will be discussed in 

the next chapter. In this research work, the available PD data is in phase-resolved 

format, therefore, only features of the phase-resolved pattern will be discussed here.  
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 2.4.3.1 Statistical Parameters 

The effort to improve the interpretation of PD data for diagnosis was initiated by 

Gulski with the implementation of statistical parameters for correlating PRPD pattern 

with the type of defect [91]. The statistical variation can be observed either in 

magnitude or in the phase of both positive and negative half cycles of the 2D phase 

distributions mentioned previously in Section 2.4.2.1. Thus, the three 2D 

distributions as shown in Figure 2-5 can now be expanded and expressed as ( )qmH 
, 

( )qmH 
, ( )qnH 

, ( )qnH 
, ( )nH 

 and ( )nH 
where the positive cycle ranges from 

0 to 180 while the negative cycle ranges from 180 to 360. The correlation 

between positive and negative half cycles was studied in [91] using the features in 

equations 2-3 to 2-6. As a final feature, the correlation factor in equation 2-6 is 

modified as in equation 2-7 to include the symmetrical measurement of discharge. 

 Discharge symmetry, Qs 
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 (2-3) 

where qi
-
 and qi

+
 are the discharges in the negative and positive half cycle 

respectively while qN 
 and qN   

are the number of discharges in the 

negative and positive half cycle respectively. Discharge symmetry examines 

the magnitude variation over the two phases and checks which of the two 

half cycles is experiencing the greater magnitude. 

 Phase inception symmetry,  

inc

inc

i

i









   (2-4) 

where inc 
 and inc 

 are the phase inception in the negative and positive 

half cycle respectively and i is the index number of the phase inception. The 

initial pulse of PD activity in each half cycle infers the phase inception. 
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Phase inception symmetry compares the position of the initial PD pulses 

between half cycles. For the positive half cycle, the value of 
inc

i
 is the same 

as inc 
 thus ranges from 1 to 180. This range also applies to 

inc

i
 in the 

negative half cycle which can be determined using equation 2-5.  

180 ,           180 360
inc

inc inci


 

         (2-5) 

The phase inception is symmetry when 
inc

i
  equals to 

inc

i
 giving  = 1. 

Hence, the nearer  is to 1, the more symmetrical the phase inception.  

 Cross-correlation factor, cc 
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   
 

(2-6) 

where x is the discharge in the positive half cycle, y is the discharge in the  

negative half cycle and Np is the number of phase buckets per half cycle. 

The discharge can be either Hqm, Hqn, or Hn. This measurand is used to 

evaluate the difference in shape of the positive and negative half cycle. 

Finally, the cc is modified to include the discharge and phase asymmetry factors, Q 

and , as represented in equation 2-7.  

 Modified cross correlation factor, mcc 

mcc = Q.cc (2-7) 

The evaluation of the 2D PRPD shape with respect to a Normal distribution is 

performed using skewness and kurtosis in equations 2-10 and 2-11 respectively, with 

the mean and standard deviation first computed using equations 2-8 and 2-9 where xi 

is a discrete value and N is the number of the discrete values. 
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 Mean, µ 
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 Standard deviation,  
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 Skewness, Sk 
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The skewness describes the symmetry of the 2D distributions. Positive 

skewness indicates that the distribution is asymmetric to the left while 

negative skewness indicates asymmetric to the right. Zero skewness 

represents a symmetric distribution. 

 Kurtosis, Ku 

 
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i
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 
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 

  (2-11) 

The kurtosis describes the sharpness of the distributions. Zero kurtosis 

indicates a Normal distribution, positive for sharp distribution and negative 

for flat distribution. 

By taking the skewness as an example, the PD from a cavity with and without 

electrical treeing yields a positive and negative skewness respectively in [91] thus 

could be a reference feature for PD diagnosis.   

 2.4.3.2 Waveshape Descriptors 

Strachan and Rudd et al. [92], [93] have improved on Gulski‘s approach by adding 

more features of the PRPD pattern, not limited to the statistical features. These key 

features highlight the underlying physics occurring at the site of the discharge and 
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could only be identified by experts based on their experience. Therefore, research in 

[92], [93] has interviewed experts in order to construct the expertise model.  

The hierarchical model of the identified features for PD diagnosis is shown in Figure 

2-10. This model includes all the possible features that have been highlighted by the 

experts as important features of the PRPD pattern, along with their subcategories. 

These features are called descriptors, where the asterisk (*) indicates that derived 

features were originally from Gulski‘s list [111].  

 

Figure 2-10. Descriptor hierarchy for PRPD pattern [112] 
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Not all the twelve descriptors are used to classify each of the defects. Different PD 

defects may be described with the same descriptors but at least one descriptor will 

differentiate the PD defect characteristics. For example, rolling and bouncing particle 

are described by phase position, shape, phase range and density. Both defects fall in 

the same subcategories for the first three descriptors. Thus, only the feature of the 

density descriptor distinguishes the two defects. 

 2.4.3.3 Weibull Parameters 

Weibull analysis was originally applied to sample failure data to derive a 

mathematical model for the lifetime distribution of the sample [113]. Equation 2-12 

indicates the two-parameter Weibull distribution that has been applied for the 

insulation life model in [114]. The two parameters are  and  which determine the 

scale and the shape of the distribution respectively.  

Alternatively, a number of research publications [115]–[118] have applied the 

Weibull distribution to PD data by replacing the failure time, t in equation 2-12, with 

the discharge pulse height (discharge magnitude) q, yielding the probability 

distribution of PD pulse rate, F(q) instead of probability of failure F(t) as can be seen 

in equation 2-13.  It is shown in [117] that the different discharge sources can be 

identified through the  and the identification holds even when two sources are 

applied simultaneously [115], [117]. For the latter case, a five-parameter Weibull 

function has been found to permit the separation of PD sources [115], [117] but will 

not be discussed further here. The finding in [118] however, shows that  gives 

better identification than  using the summation and the ratio of  in both positive 

and negative half cycles i.e. +
 + -

 and +
/-

. 

( ) 1 exp
t
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



 
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 2.4.3.4 Image Processing Tools 

The statistical analysis discussed previously was mainly applied to the 2D PRPD 

pattern while the Weibull analysis only needs a single parameter. To fully utilise the 

three  –q–n parameters of PRPD pattern, the 3D plot is regarded as an image on 

which image processing algorithms can be used to extract the distinguishing features. 

A literature survey in [104] has given three image processing approaches that have 

been applied to the PRPD data. The first two have been used to extract features from 

the 3D pattern, and the last approach is an image decomposition technique to 

separate the individual PD pattern from a multi-defect PD pattern. 

The first approach is the texture analysis algorithm that primarily investigates the 

grey level variation in images. The basic principle is to divide the image into M x N 

resolution pixels. Originally, the description of an image is based on the grey level 

values of the pixels. In order to apply the texture analysis algorithm for PD feature 

extraction, the grey level values were replaced by the pulse magnitudes, q whereas 

the M and N are represented by the phase divisions and AC voltage cycles 

respectively. Examples of potential PRPD image features reported in [119] are 

homogeneity, heterogeneity, local variation, local similarity and average value of 

image grey level. For PD source identification, each image feature is extracted from 

each of the tested PD defects at different levels of the voltage cycle. Features with 

high and constant variance for each tested voltage cycle would be selected for PD 

classification. 

The complex nature of the 3D PRPD pattern can be treated as a fractal surface, thus 

has encouraged researchers in [120] to introduce the second approach of fractal 

features for interpreting the pattern. The authors defined fractal as ―any shape where 

the parts, when magnified, reveal as much detail as the whole‖. By assuming a stick 

with length l is used to measure the length of (let us say) a coastline, where N(l) 

denotes the actual length of the coastline, it could be expressed (as a power law) by a 

parameter df, called the fractal dimension as in equation 2-14 where K is a constant. 

( ) fd
N l Kl


  (2-14) 
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For a curving surface such as a 3D PRPD pattern, square boxes (l x l) are used 

instead of the stick. The area where the shape resides is divided into the square 

boxes, and the number of boxes that contain part of the shape are counted. The value 

of df can be estimated from the slope of a line fit to the –log (N(l)) versus log (l), for 

different values of l. In addition to df as the fractal feature, the lacunarity,  is also 

extracted to quantify the gaps or lacunae present in a given surface. These two fractal 

features represent the 3D pattern, where df is used to quantify the surface roughness 

while  gives a measure of the denseness of the fractal surface. This approach has 

shown its capabilities in discriminating patterns from different PD defects [120]–

[124] with an advantage of less extracted features (two fractal features) compared to 

the texture analysis. Figure 2-11 shows an example of pattern discrimination reported 

in [120].As can be seen, patterns from the same class lie close to each other and 

separated from other classes. 

 

Figure 2-11. Cluster representation on the feature plane showing pattern discrimination 

capabilities [120] 

The final approach is the wavelet-based image decomposition technique that can be 

used to identify individual PD sources present in multi-defect PD patterns. It was 

mentioned in [125] that the resultant PD pattern from more than one defect is an 

overlapping of the individual defect patterns. The effectiveness of the multi-defect 

PD recognition thus depends on the degree of the overlap. The multiresolution signal 

decomposition (MSD) technique of the wavelet transform has been successfully used 

for image decomposition.  
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In the application of the 2D PRPD pattern, for example, the Hn() distribution, the 

number of PD pulses (vertical) and the phases (horizontal) are treated separately for 

decomposition. The outputs of the decomposition are then reconstructed yielding 

four subimages i.e. one approximate image and three detailed images of vertical, 

horizontal and diagonal. Investigation in [125] reveals that only the vertical and 

horizontal images represent salient features of the individual sources in a separable 

form hence could aid the identification of the individual defect from a multi-defect 

pattern.  

2.4.4   PD Classification 

The classification of a PD pattern to type of the defect requires either the knowledge 

from experts based on their experience or a database of historical PD patterns 

corresponding to particular defects. In the former case, with consideration of 

waveshape descriptors in Figure 2-10, the formulation of the descriptors are based on 

the PD behaviour determined from the experts. Taking one of the descriptors, phase 

position for example, the issue of space charge will result in PD at zero and in-

between phase positions unless, if only minimal space charge is present and no 

memory effect extends beyond the half cycle, PDs will take place at the peaks [112]. 

PD pulses could also result at random phase positions, which is one of the 

characteristics of a rolling particle. The classification of a rolling particle defect 

using the knowledge-based approach is depicted in Figure 2-12. Four descriptors are 

identified to be affected by the defect i.e. phase position, phase range, shape and 

pulse density. 

In the case of historical data, either individual or hybrids of classical and artificial 

intelligence (AI) approaches are used to learn the data for PD classification. The 

distance classifier [126]–[130], artificial neural network (ANN) [118], [128], [131]–

[134], fuzzy logic [128], [135], [136], support vector machine (SVM) [128], [129], 

[135], [136] and decision trees [137], [138] are examples of these approaches. Since 

classification is not the focus of this research work, further discussion on the AI 

techniques will be given in Chapter 3 that concerns its employment in prognostic 

studies. 
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Figure 2-12. Semantic network model of knowledge flow for rolling particle defect [112] 

2.5  Water Treeing 

Treeing is a type of damage which progresses through a dielectric section by 

resembling a tree-like path. The effect of moisture has proved so important that there 

are two major classes of treeing, i.e. water treeing and electrical treeing. Water trees, 

also known as electrochemical trees, are generally observed as a dendritic pattern of 

water-filled microcavities in the polymer [139]. The initiation of a water tree not 

only requires water and electric field, but also contaminant. Under laboratory 

conditions, it is found to be very difficult to grow water trees in pure water [140].  

The water may be present on the interface between two materials or within the 

insulating material. The former results in vented trees (Figure 2-13a) that have a 

direct contact with a reservoir of aqueous electrolyte [13] and can grow completely 

through a dielectric section to bridge the electrodes. The latter on the other hand, 

results in bow-tie trees (Figure 2-13b) which progress symmetrically from either a 

contaminant, boundary surface or water filled void within the insulation, where there 
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is limited access to an aqueous reservoir [13]. The growth of a bow-tie tree is not as 

significant as a vented tree since a bow-tie tree rarely grows large enough to cause 

electrical breakdown [141].  

                       

  (a) Vented tree                                                 (b) Bow-tie tree 

Figure 2-13. Examples of water tree: (a) Vented water trees growing from the conductor 

screen [37], (b) Bow-tie tree in clay filled EPR cable insulation initiating from a contaminant 

[139] 

An increase in the concentration of the water molecules at the tips of water trees, as 

well as the applied stress to the insulation, will increase the degradation rate, hence, 

reducing the breakdown strength of polymeric insulation [142]. However, when a 

water tree fully bridged an insulator, breakdown does not necessarily occur 

immediately, although the breakdown strength is reduced.  

The progress of water treeing is often followed by the initiation of an electrical tree 

[28], [142] . In this case, the transport of charges at the water tree tip creates a local 

field that high enough to initiate the electrical tree. Also, there is evidence that a 

water tree may propagate without the presence of partial discharge activity unless an 

electrical tree was present [12]. The electrical stress required for electrical treeing 

formation (< 100 kV/mm) is higher than water tree (< 10 kV/mm) [143].  

Investigation in [144] reveals that after the transition of water tree to electrical tree, 

the PDIV dropped with respectively 50% and 44% of the original PDIV value. This 

highlights the severity of the electrical treeing compared to water treeing in terms of 

ageing.  
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2.6  Electrical Treeing 

Electrical treeing is known to be one of the routes to cause failure in solid insulation 

[145]. Current developments of DC power transmission has brought concerns about 

electrical treeing not only in AC fields but also in DC fields, in the presence of 

voltage ramps, short circuit, polarity reversal, impulses or constant DC voltages [13]. 

Before the term of treeing was introduced, it was described as a growing pit from a 

void, which can be either carbonised or uncarbonised depending on the type of 

electrode, insulating material and stage of treeing [146]. Discharge activity in the 

voids erodes their surfaces, creating nonconducting pits protruding into the solid 

material, which later become conducting in the presence of incident discharges, 

raising the stress at the tip to intrinsic strength levels and creating localised 

breakdown. 

Electrical trees may start to grow from water trees, sharp conducting particles or 

gaseous cavities [74]. The initiation and growth of an electrical tree are accompanied 

by PD activities within the developing tree-shaped hollow channels of micrometre 

(µm) diameter and length. Figure 2-14 outlines three distinct stages of electrical tree 

growth. The inception stage is characterised by a finite initiation time. Under 

continual AC field application, the electrical tree propagates across the insulation 

with a decelerating growth rate which then accelerates leading into the runaway stage 

before breakdown.  

 

Figure 2-14. Schematic representation of electrical tree growth [13] 
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2.6.1    Inception Stage 

Generally, the common defects in polymeric dielectrics that initiate electrical trees 

can be categorised into two classes: defects producing gas discharges and defects 

producing strong local field enhancement [147]. The former are mainly dedicated to 

pit formation through partial discharge activities in gas-filled voids. The voids are 

produced either from defects formed during production, installation and operation, 

from cracks and crazes due to electromechanical stress [148], [149] or dielectric 

heating [150], or at the interface between the electrode and the dielectric due to 

electrostrictive force [151]. In addition, micro cracks produced in epoxy resins 

during casting and cooling processes would also be filled with gas.  

For a tree to be initiated, the PD activity in the cavity needs to be concentrated in a 

certain area [78]. This is automatically fulfilled in a prolate shaped cavity. In the case 

of oblate and flat cavities, the PD activity is localised by the crystal growth (solid by-

product due to PD in cavity) on the insulation surface. However, the tree initiation 

may be intrinsic if the tip of the pit becomes highly electrically stressed. Material 

experiencing thermal ageing could also initiate a tree intrinsically through the 

oxidation mechanism [148].  

The latter category of defects results from sharp point electrode protrusion either 

from material defects or from the tip of water tree. Tree initiation takes place by a 

process of electron injection and extraction from field enhancement tips, where 

charge carriers move back and forth repeatedly between the electrodes and the 

stressed dielectric [53], [151]. Trapping, detrapping and recombination mechanisms 

of space charge (explained in Section 2.3) contribute to the formation of small pits 

and electroluminescence respectively and are followed by the tree initiation. During 

this processes, the electrons will gain energy that enables them to ionize gas atoms 

when they collide and lead to electron avalanches. This intrinsic process may not 

result in a measurable PD, thus could not be detected through PD monitoring. Tanaka 

[151] divided this process into three mechanisms: field distortion charge 

accumulation, joule heating and oxidation. 
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Both defect categories explained above occur during an incubation period, defined as 

the time required for tree initiation from the time the voltage is applied [148]. This 

time period is also known as inception time, as shown in Figure 2-14. Treeing 

inception is considered to be the time required for generating an observable tree 

(usually about 10 m in length) [13]. Since the electron currents are small, no 

externally detectable signals occur during the initiation period [152]. Once a tree has 

been initiated after the incubation period, PD can be detected for both defect 

categories.  

2.6.2   Propagation Stage 

After the tree inception, electrical tree growth is driven by PD activity in the existing 

tree tubules. These discharges erode the insulation material and create tree-like 

branches. Unlike the tree initiation, the propagation process produces detectable 

current and visible light that can be the means for treeing detection [152].  

The resultant tree depends upon various factors, e.g. applied voltage [149], [153]–

[155], temperature [156], frequency, needle tip radius and sample preparation [27]. 

For instance, the increase of frequency or applied voltage results in the transition of 

branch tree to bush tree. A branch tree has multiple branched structures; the 

discharge activities are restricted to a few branches at a time and thereby the tree 

extends only from those branches [155]. Discharges in bush trees on the other hand, 

are spread throughout the body of the bush; new tree tubules are generated and 

packed together in the bush form [155]. Higher applied voltage may result in larger 

PD and lead to higher gas pressure that promotes bush formation [157]. 

Nevertheless, the higher damage density causes slower propagation in bush trees 

compared to branch trees. As this transition was mainly witnessed at ambient 

temperature, studies in higher temperature (70 for XLPE [156] and 80 for PE 

[149]) exposed the increased in gas diffusion reduces the gas pressure, yielding the 

formation of a branch tree rather than a bush tree. Both tree types are normally 

characterised through fractal dimension, df i.e. branch trees have  df < 2 whereas for 

bush trees 2 < df  3 [158]. 
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In addition, a number of researchers have introduced terms ―branch-pine‖ or 

―monkey-puzzle‖ to describe the type of electrical tree that requires voltage that is 

lower than the inception of a branch tree [154], [155], [159]. Investigation on tree 

growth in XLPE cable insulation at different voltage levels discovered the transition 

of branch-pine to branch and finally to bush [155], [159] as shown in Figure 2-15. 

The difference between branch and branch-pine trees is the presence of many short 

side branches on each side of the long branches in the branch-pine tree. This type of 

tree was also observed in epoxy resin [154].  

 

        (a) Branch-pine tree 

 

           (b) Branch tree 

 

            (c) Bush tree 

 

            (d) Bush tree 

Figure 2-15. Electrical trees obtained from XLPE samples at 9, 11, 13 and 15 kV [160] 

As can be seen in Figure 2-14, the propagation stage can be separated into two 

phases i.e. fast and slow growth. At the beginning of the propagation stage, only a 

single branch structure will grow from the tip electrode and the growth is mainly in 

the vertical direction towards the ground electrode. The tree then either continues to 

grow from the same branch or enters a slow propagation phase where more channels 

will grow out from the initial branching structure and results in a bush tree [159]. 

However, as the tree length increases, the potential and the field at the tree tip 

reduces thus decelerating the growth rate especially for a long distance gap between 

needle tip and ground plate or for low applied voltage [157]. 
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2.6.3   Runaway Stage 

The runaway growth may predominantly occur at the leading branches, where one of 

the branches continues to grow towards the plane electrode. Once a leading branch 

comes close to the plane electrode, the electrical field enhancement due to the 

proximity of the ground plane enables runaway tree growth to occur. However, this 

may not causes an immediate breakdown since a return tree might occur after the 

original tree traverses the insulation gap. A return tree is the tree that grows from the 

ground electrode to the start point of the treeing. Results from electrical treeing 

experiments using a double needle electrode system molded in PE [28], showed a 

return tree was grown after a branch tree traversed the insulation at applied root 

mean squared (RMS) voltage of 10 kV. At a higher voltage of 20 kVrms, a bush tree 

was observed to grow and a complete breakdown occurred when the tree reached the 

ground electrode. A return tree was also observed in [27], [29] which the resultant 

current in [29] was much larger than the forward tree.  

2.6.4   Corresponding Partial Discharge Analysis 

As the initiation and the growth of electrical trees are accompanied by PD activities, 

many research studies have incorporated the morphology of electrical treeing with 

the analysis of PD data. The presence of electrical treeing can be detected through 

PD pattern analysis as different PD sources result in unique PD patterns. Since PD 

data available for this research work is in the form of phase-resolved patterns, thus, 

PD analysis is limited to these parameters: phase occurrence, magnitude of PD, 

number of PD and time of PD occurrence. 

Explanation of the PRPD representation approach in Section 2.4.2.1 mentioned some 

of the terms used for describing the PRPD pattern, namely ―turtle‖, ―rabbit-ear‖ and 

―wing‖ like patterns. Early efforts in finding the correlation between electrical tree 

growth and the corresponding  –q–n plot have used these terms to distinguish the 

different stages in tree growth. Investigation in [98] has highlighted three unique 

PRPD patterns for describing the inception, early growth and late growth stages as 

illustrated in Figure 2-16. Since the initiation of an electrical tree is related to void 
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formation, the  –q–n plot during this stage depicts a ―turtle‖ like pattern, which is a 

typical pattern for a void. A branch tree grew from the low density polyethylene 

(LDPE) sample after half an hour of the experiment and yielded a ―wing‖ or 

―triangle‖ like pattern. The branch tree then changed to a bush tree where fewer 

small PD appeared when the instantaneous voltage reached the peak. These patterns 

are showed to be reproducible for a triangle wave applied voltage and different 

insulation materials i.e. ethylene–vinyl acetate (EVA) and ethylene–acrylic acid 

(EAA) copolymers. 

 
       (a) 5 minutes                (b) 30 minutes 

 
       (c) 180 minutes 

Figure 2-16. The φ-q-n plots from electrical treeing in a LDPE sample under 8kV 60Hz 

sinusoidal applied voltage; (a) tree initiation (5 min), (b) branch tree (30 min), and (c) bush 

tree (180 min) [98] 

From Figure 2-16, it can be seen that the PD pulses mainly occur in the first and third 

quadrant of the voltage waveform. The reason for such occurrence has been 

discussed comprehensively in [161].  At these quadrants, the magnitude of the 

instantaneous voltage is increasing which results in an increase to the total field 

distribution [99], thus triggering the next partial discharge [96]. The transition from 

―turtle‖ like to ―wing‖ like pattern emphasises the increase in discharge magnitude 
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with the phase angle and the instantaneous voltage during the treeing process. The 

PD yields the maximum magnitude when instantaneous voltage is nearly at its peak, 

and then becomes inactive when reaching the peaks where the derivative of voltage 

with respect to time, du/dt is equals to zero. The magnitude of instantaneous voltage 

in the second and fourth quadrants is decreasing thus lowering the total field 

distribution, resulting in less PD occurrence. This suggests that the voltage derivative 

plays a role in the occurrence of PDs [98]. 

The difference between branch and bush types of treeing could also be identified by 

observing the PRPD pattern throughout the tree growth. For a branch tree, Champion 

and Dodd [15] found that a temporary phase shift occurred at each PD burst as 

shown in Figure 2-17a. These short interval phase shifts in the partial discharge 

activity were associated with a sudden increase in the PD rates as depicted in Figure 

2-17b. In contrast, a gradual phase shift occurred during the growth of a bush tree in 

Figure 2-18, where the phase distribution widens from only the first quadrant to 

include the fourth quadrant, and from only the third quadrant to include the second 

quadrant. The PD rates in Figure 2-18b are less chaotic than those of the branch tree. 

The same characteristic of the PD rates was also found in [20], [153], [162]. 

 

        (a) Phase-time plots                                                         (b) Total PD per cycle 

Figure 2-17. PD characteristics for branch tree in (a) phase–time plots, and (b) the 

corresponding total PD rate as a function of time [15] 
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                    (a) Phase-time plots                            (b) Total PD per cycle 

Figure 2-18. PD characteristics for bush tree in (a) phase–time plots, and (b) the 

corresponding total PD rate as a function of time [15] 

The analysis of the PD sequences reveals that consecutive discharges occur in 

specific sequence [96]. For the case of electrical treeing, the specific sequence can be 

verified from the histogram of voltage difference shown in Figure 2-19a. It shows 

that there is a systematic periodic shift of the external voltages due to the space 

charge built up by the discharge process. In contrast, no specific sequence is 

provided by the phase occurrence due to the broad distribution in the Figure 2-19b. 

Since the voltage of PD occurrence brings significant impact, in PSA, three plots of 

consecutive discharges based on the instantaneous voltage are proposed in [96] i.e. 

the instantaneous voltage, u, the voltage difference, du and the ratio of the voltage 

difference to the time difference, du/dt. Figure 2-20 shows the consecutive plots of 

electrical treeing in PE (represented by the lines which connect two consecutive 

discharges) that can be a reference for PD pattern recognition.  

 

                      (a)                     (b) 

Figure 2-19. Frequency distributions of (a) du and (b) phase angles for electrical treeing in 

polyethylene [96] 
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            (a)               (b)                                         (c) 

Figure 2-20. Pulse sequence analyses of PD signals after tree initiation in polyethylene on 

the basis of scatter plots of (a) u, (b) du, and (c)  du/dt [96] 

2.7  Impact of Harmonics on Electrical Ageing 

Harmonic pollution in the distribution network is a great concern due to the increased 

use of power electronic converters in both residential and industrial areas. The 

growing interest in distributed generation makes it even worse. These converters 

generate harmonic components, which propagate towards the network supply side, 

and nonsinusoidal voltages at the load side. Consequently, there is a gradual change 

in the working environment [2]. Hence at the plant level, insulation systems will age 

differently influencing electrical ageing mechanisms such as partial discharges and 

electrical treeing.  

Harmonics cause overheating to the conductor as well as the insulation material that 

can accelerate thermal ageing of the insulation [163], [164]. In power cables, the 

additional heat is primarily due to copper loss, Pcopper, expressed as follows: 

2

copperP I R  (2-15) 

This loss is dependent on two electrical parameters: the current that flows through 

the cable, I, and the cable resistance, R. The nonsinusoidal components increase the 

net RMS load current thus increases the copper loss. The resistance on the other 

hand, increases due to the skin effect and proximity effect. Both phenomena vary as 

a function of frequency as well as conductor size and spacing.  
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Harmonics are components of a periodic wave having a frequency that is an integer 

multiple of the fundamental power line frequency. Harmonics, therefore, are a 

multiple of the fundamental frequency and are usually defined in the Fourier series as 

a periodic steady state distortion waveform shown in equation 2-13 [165].  

 1

1

( ) sin
N

hp h

h

u t U h t 


   (2-16) 

where N is the number of harmonic components contained in the voltage waveform, 

h represents the harmonic order, while Uhp, h and    are the peak voltage, angular 

frequency and phase shift for the h
th

 order harmonic respectively. In power 

engineering, the fundamental frequency is 50 or 60 Hz depending on the network.  

Figure 2-21 shows the resultant waveform when 3
rd

, 5
th

 and 7
th

 harmonics at 30% of 

amplitude pollute the fundamental at 0 phase shift.  

 

Figure 2-21. The resultant of the fundamental and 3
rd

, 5
th
 and 7

th
 harmonics when    = 0  

The measure of harmonic content is commonly expressed as total harmonic 

distortion (THD),  

2

2 1

N
hrms

h rms

U
THD

U

 
  

 
  (2-17) 

where Uhrms and U1rms is the RMS voltages of the h
th

 order harmonic and fundamental 

respectively. In addition, Montanari and Fabiani [165] have formulated three other 

measures to describe the resultant amplitude and waveshape, i.e. peak parameter, Kp, 

RMS parameter Krms, and waveshape parameter, Ks as in equations 2-16 to 2-18 

respectively. In the case of a pure sinusoid, Kp = Krms = Ks =1, while in distorted 

regimes they are probably greater than unity. 
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where Kp is the ratio of the peak voltage of the resultant waveform, Up to the peak 

fundamental, U1p.  

1

rms
rms

rms

U
K

U
  (2-19) 

where Krms is the ratio of the RMS voltage of the resultant waveform, Urms to the 

RMS fundamental, U1rms.  
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where Ks is proportional to the RMS derivative of the waveform and thus is related to 

its steepness. 

Life tests on a self-healing capacitor in [164]–[167] show that the effect of peak 

parameter,  Kp, is the most critical among the three parameters since even a small 

increase in Kp can cause a failure time reduction of ten times or more. For this 

reason, only Kp is considered for life modelling in [168], [169]. The increase of the 

peak amplitude can be noted from equation 2-16 to depend on the phase shift,    of 

the h
th

 order harmonic. As can be seen in Figure 2-21, the peak of resultant polluted 

waveform is almost similar to the peak of the fundamental when no phase shift is 

applied. However, when the 3
rd

 and 7
th

 harmonics are shifted by 180, the resultant 

waveform in Figure 2-22 yields a factor of 1.9 increase in the voltage peak.  

 

Figure 2-22. The resultant of the fundamental and 3
rd

, 5
th
 and 7

th
 harmonics when    =    = 

0 and    =    = 180 
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Further investigation on the impact of the three parameters discovered the 

significance of waveshape factor, Ks , in life reduction [170]. As can be seen in 

Figure 2-21 and Figure 2-22, not only the peak could change remarkably but also the 

slope, du/dt. The increase in du/dt involves bursts of fast voltage rise that promotes 

PD activity [170]. This can be observed in Figure 2-23 where the higher du/dt of 11
th

 

harmonic results in higher magnitude of PD. The effect of Krms however, is not very 

significant and may be considered negligible [170].  

As the amplitude of instantaneous voltage and the derivative may influence the 

occurrence of partial discharges (explained in Section 2.6.4  ), the distortion on the 

voltage waveform in the electrical network thus could change the normal PRPD 

pattern. The changes in working conditions and exploitation stresses by harmonics 

have a crucial influence on the PD arising in insulation systems compared to normal 

conditions. The influence of harmonics on the partial discharge activity can be 

observed through  –q–n plots in Figure 2-23. The following changes can be 

observed by comparing PRPD patterns at different harmonic orders and THD [171]: 

 Change in the maximum discharge magnitude 

 Change in the phase location of discharge activity 

 Change in the number and density of the discharge activity 

 Change of the symmetry of the PD images and phase distributions 

 Existence of regions with no discharge activity, known as ‗dead‘ zones  

 

                            (a)                                         (b)                                       (c) 

Figure 2-23. Influence of harmonic content on  –q–n plot, (a) ―Pure‖ test voltage with THD 

= 0.7%, (b) 5
th
 harmonic with THD = 11%, and (c) 11

th
 harmonic with THD = 11% [171] 
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IEC 61000-2-4 [172] however, has a limit on the compatibility level for harmonic 

voltage on power systems in the range 1 kV – 69 kV to a THD of 5%. This means, 

the THD at various points in a grid system shall not exceed this level, otherwise it 

may cause disturbance to the power system at plant and consumer level. At consumer 

level, it is normally required by the utility to limit the THD by installing passive or 

active filters. Nevertheless, published work on the impact of harmonics on PD 

patterns [171] and electrical tree growth [30], [173] purposely exceed the maximum 

THD allowance since no significant effect to insulation failures was found for THD 

lower than 5%. Investigation on higher THD therefore, highlights the voltage 

distortion effect which may occur due to failure of harmonics filters. 

Very few papers have reported the impact of harmonics on electrical tree growth. 

Research in [30], [174] observed bush type trees at lower harmonic voltages (even 

and odd) that are independent of THD. However, at higher harmonic orders, lower 

THD generated bush-branch trees while higher THD generated fibrillar trees i.e. a 

tree that spreads with thin fine light coloured branches. This fibrillar tree was also 

noticed at the very low frequency of 0.1 Hz where fewer branches are generated than 

when the frequency is increased to 1 Hz. Also, it was found that tree inception is 

faster at higher harmonic orders and THD level. 

Bahadoorsingh and Rowland [173] utilised seven composite waveforms (including 

one fundamental) at different THD and Ks but constant peak values to study the 

impact of harmonics on tree growth and breakdown times. Analysis of partial 

discharge height distribution (PDHD) using the Weibull distribution of equation 2-13 

pointed out that the 7
th

 harmonic produced a larger scale parameter, α than the 5
th

 

harmonic for waveforms with similar THD levels. Larger α values are associated 

with higher PD magnitudes, hence this suggests the 7
th

 harmonic is more influential 

on electrical tree growth than the 5
th

 harmonic [175]. Using different electrical 

treeing samples, analysis of breakdown times using the Weibull distribution of 

equation 2-12 at increasing THD level yielded reduced shape parameters,  

indicating a shorter lifetime. The growth rate of electrical trees considering both 

vertical and horizontal dimensions of electrical tree growth appears to be 

reproducibly independent of power quality variation. 
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As electrical treeing is associated with the PD mechanism, hence charge injection 

and extraction from the electrode to dielectric material could explain some of the tree 

behaviour due to harmonics. Harmonics that are greater than supply frequency will 

boost the charge injection and extraction process because of shorter time per half 

cycle. More charges being trapped will enhance the localised electric field, thereby 

accelerating the initiation of the electrical tree. The tree size and shape will then 

greatly depends on partial discharges in the tree channel [30]. Increased PD activity 

particularly due to the higher voltage peak of a distorted waveform can cause life 

reduction. 

2.8  Review of Polymeric Ageing Models 

When the insulation is subjected to either single or multiple of TEAM factors, there 

will be irreversible changes of the material properties hence reducing its endurance 

to the stress. The ageing process will eventually cause insulation breakdown when 

the material can no longer withstand the applied stress.  The development of ageing 

models not only can relate the dependence of breakdown time to the applied stress 

but also could estimate the remaining useful lifetime (RUL) of the insulation. This 

information is critical for CBM in making decisions for the next maintenance plan 

with the possibility of prolonging the insulation‘s lifetime.  

The emergence of polymeric ageing models has been reviewed by Montanari [48], 

[176]–[179] showing the transition from empirical to physical models. Very recently, 

Mazzanti updated the review and focusing on the life and reliability estimation of 

HVDC cables with extruded insulation [180]. The majority of the developed models 

are focused on thermal and electrical effects hence are the focus in this section. The 

models were initially derived for single stress ageing until the multistress ageing, 

particularly electrothermal stress (a combination of electrical and thermal effects), 

started to gain more attention in 1980‘s.  

The empirical ageing model is often described as a phenomenological model in the 

literature. Experimental studies are carried out in more severe conditions than normal 

operation in order to induce early failures. The stress endurance from accelerated life 
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testing mostly obeys the exponential (equation 2-21) or inverse-power law (equation 

2-22) depicting the decrease in ageing rate as insulation life increases [178].  

 1 2expy k k x   (2-21) 

2

1

ky k x  (2-22) 

where k1 and k2 are the empirical factors. The linear representation of both models in 

either semilog or log-log scale respectively, allows interpolation for design stress 

information and extrapolation for life estimation. Furthermore, the adaption of 

Arrhenius and Eyring models into these empirical studies has initiated interest in 

physics-based modelling, giving the interpretation of the ageing mechanism. 

2.8.1    Thermal Models 

Crosslinking, chain scission and oxidation are examples of mechanisms that cause 

thermal aging [49]. Experimental studies into thermal effect were conducted at 

various temperatures and some of the material properties are expected to be reduced 

as the temperature increases. The well-known exponential relationship between 

temperature and failure time has been reported since 1930 in the application of oil-

paper insulation in power transformers [181]. Montsinger demonstrated the 

relationship by plotting the tensile strength of thermally degraded paper with the 

lifetime, L, at three different temperatures, T. The relationship between L in hours 

and T in C was expressed by rewriting equation 2-18 as follows: 

 1 2expL k k T   (2-23) 

It was shown in the paper that a linear relationship exists when plotting ln L vs T for 

a constant tensile strength. 

The exponential relationship between temperature and failure time became more 

convincing when Dakin found a similarity to the well-known Arrhenius model, 

indicating chemical reaction rates vary with the temperature [182], [183] i.e. 
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where Rc is the rate constant of a chemical reaction, k1 is an empirical factor, W is 

the activation energy for the reaction in Joules, kB is the Boltzmann constant and T is 

the absolute temperature in Kelvin. In thermal ageing, Rc is considered to be the 

degradation rate which is inversely proportional to the lifetime, L, giving a life 

model: 
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 (2-25) 

However, the plot of ln L vs 1/T rarely yields a straight line, hence, Eyring‘s model is 

used as an alternative. This was initially applied for reaction rate under constant 

thermal stress, and gives the empirical factor k1 as a function of kP, kB and T.  The 

thermal life model derived from Eyring‘s model is rewritten as [48], [184]: 

expP

B B

k G
L

k T k T

 
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 
 (2-26) 

where kP is the Planck constant and G is the Gibbs free energy corresponding to the 

height of the energy barrier to be overcome for development of degradation 

reactions. A linear life line that is equivalent to the Arrhenius model can be obtained 

from the plot of ln LT vs 1/T, which is mostly used in multistress ageing models [48]. 

2.8.2   Electrical Models 

Research on electrical ageing is primarily focused on voltage endurance. Accelerated 

life testing is either conducted at much higher voltages [152], [185] or frequencies 

[186] than the operating conditions, while other variables are kept constant. The 

information on less severe conditions is then estimated by extrapolation. The life test 

data are fitted with either exponential [187], [188] or inverse power model (IPM) 

[152], [186], [189], [190] as represented in equations 2-27 and 2-28 respectively.  

 1 2expL k k U   (2-27) 

https://en.wikipedia.org/wiki/Joules
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2

1

kL k U 
 

(2-28) 

where U can be either the applied voltage [152], [187], [188], the electric field 

strength [189] or the voltage gradient [190]. Thus, a linear plot could be obtained in 

either semilog or log-log with the slope of -1/k2 or -1/ k2 when plotting U vs ln L or 

log10 U vs log10 L respectively.  

Failure times were initially determined by applying constant voltage, until the 

continuously increasing voltage was proposed in 1960‘s [185]. The latter approach is 

preferred because no preselect of test voltage is  required [185] and the scatter of 

breakdown times can be reduced [191]. Nonetheless, the testing time for constant 

voltage is considerably shorter than the progressive stress at the same breakdown 

voltage as shown in Figure 2-24 and proven mathematically in [185], [192]. The 

relationship between the breakdown time of constant voltage, tcons and progressive 

voltage, tprog can be found by fitting the IPM model to the life data and is given as 

follows: 

2( 1)prog const t k   (2-29) 

 

Figure 2-24. Inverse-power model for the EPR specimens subjected to constant electrical 

stress and progressive-stress test [191] 

At low stresses, the life line tends to become horizontal which the failure times are 

much longer than may be expected from linear extrapolation of inverse power or 

exponential models [177]. Hence, it is more accurate to treat the lower stress as a 

threshold which has been applied in both models. As regards the exponential model, 

two threshold models were proposed in the literature as in equations 2-30 and 2-31. 
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For the case of breakdown due to surface discharge, Dakin and Studniarz [188] 

proposed PDIV as the threshold voltage, Uth, using equation 2-30. 

 1
2exp ( )th

th

k
L k U U

U U
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
 (2-30) 
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 


 

(2-31) 

The inverse power model on the other hand, is modified as follows and known as the 

inverse power threshold model (IPTM) [193], [194]: 
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Among these four threshold models, the experimental results are found to better fit 

the model in equation 2-31 [194]. Plots of the exponential model (equation 2-27) and 

exponential threshold model (equation 2-31) in Figure 2-25 show how the 

exponential model could give a large discrepancy when the electrical ageing can be 

neglected at voltages lower than the threshold.  

 

Figure 2-25. Examples of electrical endurance curves obtained by the exponential and 

exponential threshold models [61] 
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In addition to the threshold characteristic, the typical voltage versus time curve for 

polyethylene and epoxies has a ―flat-z‖ characteristic which can be divided into three 

regions as illustrated in Figure 2-26 [193], [195], [196]. In Region I, the breakdown 

time typically ranges up to one hour. The change in the life curve in Region II is said 

to follow Eyring‘s law, i.e. the exponential relationship in which the electrical ageing 

mechanism may be influenced by the thermal stress [196]. Finally, the life curve 

flattens in Region III at Eth. The operating voltage should be in this region where 

electrical ageing can be neglected, giving a very long lifetime. Applying IPM to the 

three regions separately would result in the voltage endurance coefficient, k2 (also 

known as life exponent) as in equation 2-34, where k2 is inversely proportional to the 

life line slope. 

2 2 2II I IIIk k k   (2-34) 

 

Figure 2-26. General characteristics of life curve of polyethylene and epoxy resin insulations 

[193], [195], [196] 

2.8.3   Model Based on Electrical Treeing 

Electrical treeing is often regarded as a pre-breakdown phenomenon in polymeric 

insulation [60], [61]. Several mechanisms have been suggested to explain the 

initiation of electrical treeing as discussed in Section 2.6.1. Based on the electron 

emission theory, Tanaka and Greenwood [148] proposed a model that relates the 

electrical tree inception time with the local electric field. A more recent work in 
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[197], has developed a model based on correlation between the electroluminescence 

(produced from recombination process) behaviour with the observed filamentary 

damage. Although both models are limited to the early stage of tree growth with no 

breakdown information, prediction of the inception time is worthwhile as it governs 

the formation of the electrical tree.   

The extension of electrical tree channels depends on the activities of charged 

particles within the insulation material.  At very high local field enhancement, the 

space charges that were previously deposited in the cavities are accelerated then 

collide with neutral gas particles and with the channel walls. The scission of 

molecular chains of the channel walls increases the diameter of the channels that 

initiate the formation of an electrical tree. According to Bahder et al. [23], the 

charges flow mostly in the tree stem thus resulting in an increase of stem diameter, 

which is called a crater. The crater depth was found to be proportional to the charge 

flowing forward and backward through the channel, q and can be expressed as 

  1 2( , ) exp 1thq t E k ft k U U      (2-35) 

where f the voltage frequency, t the time of voltage application, U the applied voltage 

stress, Uth the threshold voltage and k1 and k2 the constants. Also, the crater depth 

was found to be inversely proportional to the maximum breakdown voltage stress. 

Both relationships are combined for determining the breakdown time, tbd considering 

the critical depth of the crater at known breakdown voltage, Ubd once the electric 

field exceeds a threshold value, Uth. This gives 

    1 2 3 4

1

exp 1 exp
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th bd

t
fk k U U k U k


    

 (2-36) 

where k1 to k4 are parameters which depend upon the material, temperature and 

geometry.  

The early models concerning the growth of the electrical tree are mostly based on 

fractal dimension. Niemeyer et al. [198], [199] proposed that tree branching has a 

stochastic nature that is not only governed by the maximum electric field around the 

tree tip but also at the point which has the highest probability of growing. Since the 
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electrical tree in nature is 3D, the total length of all branches, l(j), is represented as 

the radius of a circle, j, 

( ) fd
l j j  (2-37) 

where df is the fractal dimension. The number of branches Nb(j) is then given by 
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
   (2-38) 

This means the fractal dimension, df can be determined by counting the number of 

branches at various distances. They also found that df is dependent to the exponent k, 

from the following relation 

k

i iP E  (2-39) 

where the probability, Pi to add segment i to the tree is related to the local electric 

field, Ei. Trees with low fractal dimension (branch type) were found to grow faster 

than trees of high fractal dimension (bush type), however, higher fractal dimension 

caused a greater amount of damage [24]. This model has been modified in [200]  by 

introducing a breakdown criterion, i.e. a threshold field for the tree growth. 

Based on Niemeyer et al.‘s stochastic model (also known as the Dielectric 

Breakdown Model (DBM)), Dissado et al. proposed a deterministic model giving a 

relationship between the tree damage, D and growth time, t in terms of tree length, l 

[201]: 
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 (2-40) 

where lb is the average length of a newly created channel and tch is a characteristic 

time for channel formation. The discharge avalanche mechanism proposed by Bahder 

et al. in equation 2-35 has been adopted in the Discharge Avalanche Model (DAM) 

for determining tch i.e. the time to form a channel [158], [202].  From equation 2-35, 

the relationship between space charges and the depth of charge penetration is 

assumed to be exponential.  
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Montanari then modified Bahder et al.‘s model by adopting Dissado‘s model of 

equation 2-40 to represent the depth of charge penetration. The model is given as in 

equation 2-41 with consideration to the power relationship between the tree length 

and applied voltage.  

 3
1/

1 2( , ) exp ( ) 1fdk

thq t U k k U U t   
   (2-41) 

It was shown in [26] that this model fits satisfactorily experimental data for both 

EVA and XLPE. This model may be employed to estimate the failure time of 

insulation once a limiting value for the amount of the chosen charge height quantile 

has been selected. A generalised probabilistic aging model was then derived from the 

Weibull distribution.  

Studies in [25], [203] have also applied the Weibull function to the PDHD (resulting 

from the electrical tree and cavities respectively) and suggested the scale and shape 

parameter could indicate the level of ageing. However, both studies depict different 

behaviour of the Weibull parameters towards breakdown, thus further clarification is 

needed. 

A stochastic-deterministic model of the electrical tree growth that incorporated PD 

within the tree has been presented in [204], [205]. The direction of the new channel 

growth was determined based on stochastic dependence on the local electric field. 

The electric field distribution depends on the charge deposition within the tree 

structure that is affected by PD activities. Therefore, the damage distribution along 

the tree structure depends on PD inside the channels. A computer simulation has 

been designed based on the proposed model which allows observation on many of 

the known characteristics of tree growth.  

Another deterministic model has been proposed by Champion et al. based on partial 

discharge activities within non-conducting tree structures [21], [22]. The tree in 

which the discharges take place is represented as a spark gap with two model 

properties: Uon and Uoff.  Bursts in the partial discharge activity are suggested to be 

associated with a reduction from Uon to Uoff which allow the partial discharges to 
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propagate further into the tree structure. This is simulated by adding one or more 

dipoles of charge onto the tree structure. Each dipole of charge represents a local 

electron avalanche occurring over a distance equal to the grid spacing. Local electric 

fields surrounding a tree point were used to weight the local damage in each near 

neighbour point, with the total damage proportional to the energy dissipation at the 

tree point following a partial discharge. If the energy dissipation is greater than zero, 

damage was added to each nearest neighbour. At the end of the computation, only 

those segments that had discharged at least once were considered to be part of the 

tree structure. A tree tubule was therefore only formed provided that a discharge had 

occurred along it at some time in the past.  

The mechanical properties of the material such as its elastic modulus, tensile strength 

and fracture toughness have an effect on the growth of electrical trees thus are 

considered for the model developed in [206]. The model is originally derived from 

the Eyring model of equation 2-26. The lifetime, L in equation 2-26 is inversely 

proportional to the degradation rate, dD/dt where D is the damage caused by the 

electrical tree by applying equation 2-40. This model however, denotes l(t) as the 

linear length of the tree structure and lb as the linear length of a growing micro-void 

that forms the tree.  The time of failure is then determined by treating l(t) as the 

critical tree length. In addition, research work in [207] has implemented and 

modified this model for predicting the failure time using ANN. 

2.9  Summary and Conclusion 

Electrical treeing is one of the main reasons for the long-term degradation of solid 

insulation that may eventually lead to breakdown. Studies on electrical treeing have 

mostly focusing on polymeric insulation especially in cable application. Although 

treeing is also observed in cellulose material in transformers, tracking phenomenon 

seems to gain more interest in this area. In this thesis, epoxy resin was chosen as the 

insulating material due to its translucent property that permits observation on the tree 

growth. In addition, epoxy resins have excellent electrical insulation properties as 

well as high thermal resistance hence, and are mostly used for casting and moulding 

in high voltage applications, e.g. bushings and cable accessories. 
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Studies on solid insulation degradation due to electrical treeing have focused on the 

physics behind the phenomenon. Most of the developed lifetime models relate the 

tree growth with the PD activities inside the tubule. Nonetheless, these models only 

consider the forward growth although return trees can be expected to occur. This is 

due to the lack of understanding on the underlying process of return trees. In 

contrast, no prior knowledge is required for data-driven technique hence, is a better 

alternative to physics based model.  

Among the PD representation techniques described in this chapter, PRPD has been 

the most popular approach which statistical operators are proposed as the potential 

features. These features however, derived mathematically from the PRPD pattern 

thus not directly related to the physics behind the PD events. On the other hand, PSA   

treats PD pulses as events within a sequence. This physical interpretation is an 

advantage of PSA over the PRPD. The occurrence of PD in the first and third 

quadrant of the voltage waveform suggests that the voltage derivatives, either with 

respect to time, du/dt, or phase, du/d, play a role in the occurrence of PDs. This can 

be analysed using PSA by observing the change in instantaneous voltage of the PDs, 

which is claimed to not occur at random but in specific sequences. Therefore, both 

techniques are employed in the work reported in this thesis. 

Little studies have reported the impact of harmonics on electrical treeing growth. 

From the studies, no significant impact on the failure time was found for THD below 

5%. Hence, this research work purposely exceeds the maximum THD allowance (up 

to 40%) to highlight the voltage distortion effect which may occur due to failure of 

harmonics filters. Based on the Weibull distribution, there is a possibility for higher 

harmonic order or/and THD to reduce the failure time. This is due to the increase in 

voltage derivative of the resultant waveform, which causes an increase in the PD 

activities, and hence, accelerates the tree growth and reduces the failure time. 

However, the conclusion of failure time reduction is made based on insufficient life 

data.   

Published work on PD diagnosis mainly uses offline PD data and might not applied 

to online PD monitoring due to the differences in the applied stresses. Despite the 
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infeasibility of offline data in cable monitoring, this thesis advances the academic 

state of the art, moving beyond diagnostics towards prognostics, with an eye towards 

practical deployment in the future.  

Most of the reported insulation life models in the literature have been derived from 

Weibull distribution without considering the insulation degradation process. This 

thesis therefore proposes a different approach, considering the degradation process, 

by using PD data instead of failure times. From the literature review, the life data for 

solid insulation fits well to exponential and inverse power models. Therefore, both 

models are considered in this thesis for prognostics modelling and further 

explanation on these models is given in the next chapter. 
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Chapter 3                     

Prognostic Modelling 

3.1  Building a Prognostic Model using PD Data 

The International Standard (ISO 13381-1) [208] defines prognostics as ―the 

estimation of time to failure and risk for one or more existing and future failure 

modes‖. Basically, three different measures are used in the literature for estimating 

failure occurrence [209]: 

 Remaining Useful Life (RUL): the amount of time for a component to 

continue to function in accordance with its intended purpose, warranting 

replacement. 

 Time-to-Failure (TTF): the time when a component is expected to fail and 

no longer meet its design requirements 

 Probability of Failure (POF): the failure probability distribution of a 

component. 

Three types of prognostic algorithm are defined in [31], [210] based on the type of 

information used in making the failure prediction. Type I, or reliability-based, 

considers historical TTF data to model the failure distribution, commonly using 

Weibull analysis, without considering the operating conditions. This could be the 

case for a new component with no track record of health information except for the 

past failure times of similar components used in similar conditions. Knowing that 
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harsh conditions could reduce the RUL, type II or stressor-based methods can be 

applied only if the operating conditions and the environmental stresses are 

measurable and correlated to the component‘s degradation. As the degradation 

becomes apparent, this information can be employed to improve the RUL prediction. 

Type III, or degradation-based, applies the degradation measure to characterise the 

lifetime of a specific unit operating in its specific environment. Prediction is 

performed by extrapolation to a predefined failure threshold. The appropriate 

degradation measures however do not have to be a directly measured parameter. 

Therefore, the insulation life models discussed in Sections 2.8.1 and 2.8.2 can be 

categorised as type I or II, depending on whether operating conditions or 

environmental stresses are considered.  

Most of the tree growth models described in Section 2.8.3 were derived physically 

from the analysis of discharges in the tree channels. Nevertheless, how well the 

model fits the real data is rarely discussed in detail. This could be a major concern 

especially for a small sample size of data. Although physics-based models have a 

direct relation with the degradation mechanism, the understanding of the process 

might be misleading. The assumptions made in model development may not be fully 

applicable to real world systems, thus limiting the applicability of physics of failure 

models. As an alternative, a data-driven approach to type III prognostics could be 

applied to historical degradation data for the development of empirical life models.  

A typical data driven approach does not associate degradation with physical 

knowledge of the failure mechanism, but the use of real data from the field allows 

derivation of real degradation relationships. Although gathering enough run‐to‐

failure data for training the model might be an issue, accelerated testing could be an 

alternative approach. However, care must be taken to ensure that the failures seen 

during accelerated testing are analogous to real‐world failures. In addition, the 

primary aspect of the data driven model is not only to provide good predictions, but 

to provide general and repeatable predictions [211]. More description on the data 

driven approach is presented in Section 3.5. 
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Research studies on insulation failure diagnosis are numerous and this can be 

achieved successfully using PD analysis [10], [79], [91], [96], [122], [131], [212], 

[213]. An abundance of PD features have been suggested in the literature and some 

of them are described in Section 2.4.3.  These features however, are mostly proposed 

for classification rather than predictive modelling. Since the progression of a defect 

is far less well understood than diagnosis, studies of the correlation between PD 

features and the tree growth may give an insight for defect modelling. The quality of 

these features as prognostic parameters should be examined first as discussed in the 

next section. 

Based on the literature, the overall process of developing a prognostic model can be 

outlined as shown in Figure 3-1. Pre-processing the data for prognostic modelling 

may sometimes involve the detection of outliers, and normalisation or/and 

standardisation of the extracted features [214]. The suitability of the features as 

prognostic parameters can be examined through three main qualities [31]: 

monotonicity, prognosability and trendability. In general, fewer features are desirable 

as it reduces the complexity of the model. This can be done through feature selection 

or transformation as discussed in Section 3.4. Prognostic models are then developed 

from the selected or transformed features either using regression analysis or another 

machine learning technique. The developed models are based on training data which 

can then be validated using a testing data set. The performance of the models is then 

evaluated in terms of accuracy, precision and robustness for model selection.  

 

Figure 3-1. Possible steps in developing a prognostic model 
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3.2  Data Preparation 

The potential PD features that are described in Section 2.4.3 are on different scales 

and/or units, thus might require data rescaling to aid the comparison between the 

features. This can be done either through standardisation or normalisation [214].  

Normalisation scales all numeric variables in the range [0, 1] by using a linear 

scaling transform, 

min

max min

norm

X X
X

X X





 (3-1) 

where Xnorm is the normalised X variables, Xmin is the minimum value of X variables, 

and Xmax is the maximum value of X variables. This approach will end up with 

smaller standard deviations, which can suppress the effect of outliers. 

Standardisation transforms each variable of the features so that they will have the 

properties of a standard normal distribution, i.e. 

0

1







  
(3-2) 

where µ is the mean and  is the standard deviation. It is also known as Z-score 

normalisation in which the standard scores of the samples are determined as follows: 

X
Z






  (3-3) 

Finally, observations that deviate from a predetermined bound can be regarded as 

outliers. Looking for outliers, identifying them, and assessing their impact should be 

part of data preprocessing. A study in [215] has proposed a measure to characterise 

the tolerance of the feature to outliers in the range of [0, 1]. The measure is named as 

robustness and is determined by first decomposing the feature into its mean trend and 

a random part using a smoothing method: 

( ) ( ) ( )i T i R iX t X t X t   (3-4) 
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where X(ti) is the degradation feature value at time ti, XT(ti) is its trend value and 

XR(ti) is the residual. A feature with good robustness is less sensitive to the parameter 

variations or external disturbances. The robustness of a feature is given by 

  
1

( )1
exp

( )

N
R i

i i

X t
robustness

N X t

 
   

 
  (3-5) 

where N is the total number of observations. 

3.3  Prognostic Parameters 

Raw data are often redundant and noisy thus not directly used for prognostics [216]. 

PD analysis as discussed in Section 2.4.3 is therefore used to extract meaningful 

information that can be linked to the degradation process. A set of metrics was 

introduced in [31] which characterise the suitability of  a feature as a prognostic 

parameter. As the selection of features is vital in prognostic modelling, these metrics 

could aid the selection by comparing the characteristics of potential features.  Three 

main qualities of an ideal prognostic parameter have been proposed: monotonicity, 

prognosability, and trendability.   

Monotonicity is an important feature of a prognostic indicator as the degradation 

parameters change when the system degrades. Monotonicity characterizes the trend 

of time series data considering how consecutive data behaves i.e. increasing, 

decreasing, or static. A parameter with high monotonicity will have a strong trend in 

one direction, and will consequently provide good information for a prognostic 

model. Based on equation 3-6, the monotonicity score will be higher if most of the 

feature values change in one direction.  The change of the feature is measured as a 

derivative function with respect to the allocated time interval. 

# 0 # 0

mean
1 1

d d

dx dxmonotonicity
N N

 
  

  
   

 

 (3-6) 

where     ⁄    is the  number of sequential data points where the second is 

greater than the first (positive     ⁄ ),     ⁄    is the  number of sequential data 
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points where the second is lower than the first (negative     ⁄ ), and N  is the 

number of observations.  

Prognosability indicates the distribution of failure values, pfail, in relation to the 

initial values, pstart, of a population of systems, i.e. the repeatability of the specific 

failure value between different samples. Samples that fail when a parameter reaches 

a particular threshold value (with a narrow distribution) will have high 

prognosability, and it will therefore be easier to predict the point of failure using this 

parameter than another with lower prognosability. According to equation 3-7, a small 

standard deviation of failure values and large parameter ranges will result in a greater 

score of prognosability. 

 

 
exp

mean

fail

fail start

p
prognosability

p p

 
  
 
 

 

(3-7)

 

where  is the standard deviation and p is the value of the prognostic feature. 

Finally, trendability gives the smallest correlation coefficient, cc, between two 

samples in a population, which indicates the level of similarity of the shape of the 

failure curve between two samples. A parameter which consistently corresponds to 

one failure curve will be easier to model than another with low trendability. This 

measure is expressed as follows: 

 min ijtrendability cc

 

(3-8)

 where i and j represents two different samples.  

All the three metrics are used in this work to evaluate potential PD features as a 

prognostic parameter. Detailed explanation on the application of these metrics is 

given in Section 4.4 .    
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3.4  Feature Reduction 

Feature reduction is an essential step before training a model to avoid overfitting and 

therefore improve the model prediction accuracy and generalisation ability. 

Overfitting implies that the model derived from the training data gives poor 

generalisation ability to unseen data, leading one to be overly optimistic about the 

model performance. This can be due to the size and complexity of the data. In 

addition to this, with less data, the training process could be simpler and faster, hence 

resulting in a cost-effective predictor.  

The extracted features may greatly outnumber the sample size which is known as 

the curse of dimensionality as mentioned earlier in Section 2.4.3. Usually not all of 

these features are important or relevant and some are redundant. Consequently, 

without preselecting the most relevant features and effectively discarding redundant 

features as well as noise, the learning model has a marked risk of overfitting [110]. 

Therefore, feature reduction techniques [217] i.e. feature selection and feature 

transformation are used to remove redundant features and experimental noise by 

reducing high dimensionality features to a low dimensional space.  

In predictive modelling, it is worth noting that the prediction of RUL or TTF 

employs continuous features and responses hence require regression analysis rather 

than classification. For this reason, the algorithms for regression analysis are the 

focus in this chapter. 

3.4.1   Feature Selection 

Feature selection approaches aid the identification of the best subset of the original 

features. This means, the irrelevant and redundant features will be removed from the 

dataset since they do not contribute to the accuracy of the prediction model. Feature 

selection thus reduces the number of features; as fewer features are desirable because 

it reduces the complexity of the model. In feature selection, the original 

representation of the features is not changed hence it is preferable for someone who 

wishes to keep the original meaning of the features. Once features have been 
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selected, only these features need to be calculated and analysed. In the literature, this 

approach is generally divided into three techniques namely: filter, wrapper and 

embedded methods [218]. These techniques differ in how the learning algorithm is 

incorporated in evaluating and selecting features. 

 3.4.1.1 Filter Methods 

Filter methods rely on the characteristics of the features which are evaluated without 

utilising any learning algorithm. The aim of filter methods is to select a subset of 

features that optimises predetermined criteria. These criteria are usually statistical 

measures e.g. mean, variance, and correlation coefficients. Feature evaluation could 

be either univariate or multivariate. In the univariate scheme, each feature is ranked 

independently based on the scores, while the multivariate scheme evaluates features 

by batch. Therefore, the multivariate scheme is naturally capable of handling 

redundant features.  

Most of the filter algorithms evaluate the individual features.  The selection is either 

those that satisfy a condition or the top-ranked feature. Subsequently, no information 

is provided for the feature subset with the optimal modelling performance. Also, the 

interaction and dependencies between available features is disregarded. Despite this, 

filter methods employ a straightforward search strategy compared to wrapper and 

embedded methods, giving the benefit of an easier design and faster algorithm. 

The linear correlation between features relies on measures of the general 

characteristics of the training data such as distance, consistency, dependency, 

information, and correlation [219]. As the degradation data involves continuous 

features and responses, the correlation between these two variables is significant in 

determining the characteristics of the features. Examples of correlation-based filter 

methods are the Pearson correlation coefficient and Spearman correlation coefficient. 

Pearson correlation coefficient measures linear correlation between two variables 

[220]. The resulting coefficient lies in between -1 and 1. A correlation of -1 indicates 

a perfect negative correlation i.e. when one variable increases, the other decreases, 

whereas 1 indicates the opposite, and 0 means no linear correlation exists between 
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the two variables. Obviously, the main disadvantage of Pearson correlation 

coefficient is that it is only sensitive to a linear relationship. If the relation is non-

linear, the Pearson correlation coefficient can be close to zero. The Pearson 

correlation coefficient, ccp is defined as: 

 
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 
  (3-9) 

where cov designates the covariance and 2
 the variance. Solving for cov and 2

 give 

ccp as in equations 3-10 or 3-11. 
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(3-11) 

where xi is the feature value, yi is the response value, and N is the number of 

observations. 

The Spearman correlation coefficient is a statistical measure of the strength of a 

monotonic relationship between paired data. The relationships between features and 

the response could be nonlinear thus it is not always accurate to apply Pearson 

correlation coefficient. The Spearman correlation coefficient is more appropriate 

when the data points seem to follow a curve instead of a straight line. Also, it is less 

sensitive to the effects of outliers [221]. The Spearman correlation coefficient is 

actually a Pearson correlation coefficient based on the rank of the variables. Thus, 

the interpretation of the Spearman coefficient is similar to Pearson‘s but in this case, 

is based on the rank of the variables. Hence for variables with a monotonic trend, a 

perfect increasing trend yields a coefficient of 1 while a perfect decreasing trend is -

1. Therefore, equation 3-9 is rewritten as follows for determining the Spearman 

correlation coefficient, rs: 
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where rg is the ranking of the variables. If the data does not have tied ranks, the 

Spearman coefficient can be simplified to: 

 
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
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where i = rg(xi) - rg(yi), the difference between the two ranks of each observation. 

 3.4.1.2 Wrapper Methods 

Unlike filter methods, wrapper techniques require a predetermined learning 

algorithm and use its performance on the provided features to identify the relevant 

ones [218]. Hence, wrapper methods rank features according to their relevance to the 

model. Wrapper methods consider the selection of a set of features as a search 

problem, where different combinations are prepared, evaluated and compared to 

other combinations. In this way, feature dependencies are considered for model 

development. In comparison to the filter method, the wrapper approach is 

computationally expensive. Although this approach can improve model performance, 

overfitting may also be expected. 

In the wrapper method, heuristic strategies are normally applied. Examples of simple 

algorithms are forward selection and backward elimination. Forward selection starts 

with an empty set of features while backward elimination begins with the full set of 

features. In each iteration, forward selection keeps adding the feature which best 

improves the model until the addition of a new variable does not improve the 

performance of the model. Backward elimination on the other hand, removes the 

least significant feature at each iteration which improves the performance of the 

model. The elimination process is repeated until no improvement is observed in the 

model performance. In terms of interdependent features, backward elimination seems 

to be better than the former [110].  

The selection of either a new additional or removal feature for both wrapper methods 

requires a search algorithm. Best-first search is a simple heuristic search algorithm 

that sorts the queue for feature evaluation according to their ranking [218]. The ranks 
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of continuous types of features could be derived from filter methods. This algorithm 

chooses a subset of features with the top score ignoring the number of features in the 

subset. Hence, models derived from this approach may suffer from the curse of 

dimensionality. 

 3.4.1.3 Embedded Methods 

Embedded methods differ from the wrapper methods in the way feature selection and 

learning algorithm interact. In embedded methods, the feature selection is 

incorporated as a part of the learning process thus splitting the data into training and 

testing sets is unnecessary [110]. For instance, decision trees are iteratively 

developed by splitting the data based on appropriate features. Each feature is given a 

value depending on its importance for the classification task, and the final decision is 

made by calculating the value of decision nodes [222]. This built-in mechanism of 

feature selection makes embedded methods less prone to overfitting.  

In addition, embedded methods bridge the gap between filter and wrapper methods. 

The filter method is applied in this approach to obtain a number of candidate subsets. 

The best candidate subset is then verified through the wrapper method. Therefore, 

the embedded model usually achieves a comparable accuracy to both filter and 

wrapper methods. However, for a small size of training data, a filter method can be 

expected to perform better than an embedded method [222]. 

Regularisation techniques embed feature selection into the learning algorithm 

indirectly by improving the performance of the model. Applying curve fitting to the 

set of data in Figure 3-2 may result in either a good model, an underfitted model or 

an overfitted model. An underfitted model shown in Figure 3-2a does not really 

capture the underlying trend of the data thus results in a high bias model and destroys 

the accuracy of the model. This is mostly due to the low complexity of the model. 

Figure 3-3 shows the prediction error from the training and testing set. The 

underfitted model that has high bias yields unacceptable errors that are much greater 

than the desired performance for both sets. Nevertheless, a model with high 

complexity may fit the training data too well (low error) as shown in Figure 3-2c. 

However, the training data may contain noise and inaccurate data, hence, the model 
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might not really fit a new data set. This will negatively impact the model‘s ability to 

generalise and thus yields a very high error for the test data in Figure 3-3. The very large 

difference between the error in training and testing data shows that overfitting results in 

a high variance model. Therefore, there should be a trade-off between a high bias 

model and a high variance model so that a compromise model can be developed as 

shown in Figure 3-2b. 

 

                   (a)                      (b)                   (c)  

Figure 3-2. Model fitting based on the complexity of the model 

 

Figure 3-3. Model performance based on prediction error of the training and testing sets 

In order to overcome the overfitting problem, the regularisation approach adds a 

degree of bias to the regression model with considerably less variance. This type of 

approach penalises the coefficient magnitude of the features as well as minimising 

the error between the predicted and the true values. There are two common 

techniques for this approach i.e. Ridge and Lasso (least absolute shrinkage and 

selection operator) regressions [223]. These approaches differ in the penalisation 

mechanism, where the former adds a penalty equivalent to the square of the 

magnitude of coefficients, while the latter to the absolute value of the magnitude of 

coefficients. 
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3.4.2   Feature Transformation 

The number of extracted features determines the dimensionality of the data set. As 

the dimensionality increases, the represented space grows exponentially requiring 

substantially more axes to adequately sample the spaces [224]. With the growing 

space, the data becomes increasingly sparse. In contrast to feature selection, feature 

transformation mathematically determines the most important dimensions to be kept 

while ignoring the rest. The idea is to find a smaller subset of dimensions that 

captures the most variation in the data. This reduces the dimensionality of the data 

while eliminating irrelevant features, making successful analysis simpler.  

A common technique for this approach is principal component analysis (PCA) [11], 

[223]. The goal of PCA is to map the data from the original high dimensional space 

to a lower dimensional space that captures as much of the variations in the data as 

possible. PCA aims to find the most useful subset of dimensions to summarise the 

data. Figure 3-4a illustrates how two different features, X1 (x-axis) and X2 (y-axis), 

are reduced to only one feature: the first principal component, PC1. In order to do 

this, PCA finds a new coordinate system, in which the first principle component, 

PC1, captures most of the variation in the data. The second principle component, 

which is orthogonal to the first one, captures the second greatest variance, and for a 

greater number of features, the list continues. In PCA, the original data sample is 

mapped to this new set of dimensions with minimal loss in information.  

Despite being a useful technique for reducing the dimensionality of a dataset, PCA 

can be difficult to interpret since the new dimension in the transformed data no 

longer has actual physical meaning [219]. The PCA approach is often compared with 

linear discriminant analysis (LDA) [223]. PCA treats the entire data as a whole and 

ignores the class labels (unsupervised learning) while LDA tries to explicitly model 

the difference between class labels (supervised learning). Instead of transforming the 

features into a different space, LDA draws a decision region between the given 

classes. For example, three classes are given in Figure 3-4b (blue, red and green) for 

two features, X1 (x-axis) and X2 (y-axis). As we can see, LD1 gives a linear 

transformation to the data which maximises the separation of three classes.  
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                                (a)                                                                 (b)        

Figure 3-4. The illustration of (a) PCA and (b) LDA approach 

3.5  Model Fitting   

Predictive models can be categorised into two major classes: end-of-life predictions 

and future behaviour predictions [225]. Prognostic modelling falls into the former 

class while forecasting applications are the latter. For prognostics, the selected 

features need to be monotonic and they will reach an end point due to the 

degradation process e.g. insulation thickness. Hence, a prognostic model tries to fit a 

function with the aim of predicting when the threshold value will be reached. 

Forecasting parameters on the other hand, are unlikely to be monotonic but 

continuous over time with no threshold value e.g. wind speed and ambient 

temperature. Forecasting aims to make predictions at some time interval in the future 

instead of predicting the RUL or TTF.  

In the literature, prognostic approaches are frequently separated into three categories: 

physics-based, data-driven and hybrid approaches [216], [226]–[229]. Physics-based 

uses mathematical equations to predict the physics governing failure thus requires 

knowledge of failure mechanisms, properties of the material and operating 

conditions. Data-driven on the other hand relies completely on the analysis of the 

historical and current data. This data provides the critical threshold for RUL 

estimation. Finally, a hybrid approach is a mixture of both physics-based and data-

driven techniques for a more robust and accurate prediction. Several data-driven 

methods are discussed here to be considered as the learning algorithm for estimating 

the failure time from PD data. 
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3.5.1   Regression Analysis 

Regression analysis is a modelling technique that investigates the relationship 

between a dependent (response) and one or more independent variables (features) 

[230]. There are various kinds of regression techniques available to make 

predictions. The simplest method is linear regression. In a simple linear regression 

model, a single response measurement, Y, is related to a single feature, X, for each 

observation. This model is represented by a linear function: 

ˆ
i i iy A Bx e    (3-14) 

where ˆ
iy  is the predicted response, A is the intercept, B is the slope of the linear 

model, and e is the error term. In most problems where more than one feature is 

available, this expands to the multiple regression function:  

,
ˆ

i j i j iy A B x e    (3-15) 

for i = 1, 2, …, N and j = 1, 2, …, F where N is the number of observations and F is 

the number of features. For a nonlinear response, the best fit could be a curve with 

the power of the independent variable more than 1. The polynomial regression 

equation is given by: 

2

1 2
ˆ ... g

i i i g i iy A B x B x B x e       (3-16) 

where g is called the degree of the polynomial. However, an attempt to fit a higher 

degree polynomial for a lower error may yield an overfitted model.  

Other examples of nonlinear functions include exponential, inverse power, Gaussian, 

logarithmic, trigonometric, and Lorenz curves. Some functions, such as the exponential 

and inverse power, can be transformed to a linear equation hence linear regression could 

be performed. The exponential and inverse power law have been widely applied in 

insulation life models as discussed in Section 2.8. Both functions in equations 2-21 and 

2-22 respectively, are rewritten here for further transformation into the linear forms. 

Considering a negative relationship, the exponential function is given by: 

 1 2
ˆ expi iy k k x    

https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/Logarithmic_growth
https://en.wikipedia.org/wiki/Trigonometric_functions
https://en.wikipedia.org/wiki/Lorenz_curve
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and the inverse power function is given by: 

2

1
ˆ k

i iy k x    

The transformation of these equations are given by the equations 3-17 and 3-18 

respectively.  

1 2
ˆln lni iy k k x   (3-17) 

1 2
ˆlog log logi iy k k x   (3-18) 

For the linear representation therefore, a semilog scale is used for the exponential 

and a log-log scale for the inverse power function. The A and the B of the regression 

function are usually estimated using Least Squares fitting. This technique finds the 

best-fitting curve by minimizing the sum of the squares between the measurements 

and the model. Forward selection and backward elimination (explained in Section 

3.4.1.2) can be applied for multivariate analysis, which for the regression approach is 

known as stepwise regression. 

3.5.2   Artificial Neural Network  

The idea of artificial neural network (ANN) originates from the biology of the human 

brain. An ANN consists of input layer, one or several hidden layers and output layer 

of processing elements [231]. A large set of training data allows the ANN to learn by 

example. The processing element comprises a node and a set of weights. The ANN 

learns an unknown function by adjusting its weights with observations of input and 

output. Through the cooperation of many of such processing elements (neurons), the 

resulting network structure becomes capable of learning very complex functions.  

One prognosis model using an ANN is often called the time delay neural network 

(TDNN). This employs a sliding window approach for the input and output data 

which are usually given in a time series  [232]–[235]. For a time series, t of length m, 

and user-defined subsequence length, l, all possible subsequences of t can be found 

by sliding a window of size l across t [236]. In Matlab, the neural network toolbox 

offers three types of TDNN. First is the nonlinear input-output that predicts a series 
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of outputs, y(t) based on l past values of an external input series, x(t). However, it is 

more accurate to use both past values of the external input and y(t) (if available) as 

the input for nonlinear autoregressive with external input (NARX). Lastly, if no 

other information is available, the nonlinear autoregressive (NAR) technique can 

predict based on l past values of y(t). 

3.5.3   Autoregressive Moving Average 

Autoregressive moving average (ARMA) is a combination of autoregressive (AR) 

and moving average (MA) techniques. ARMA is often used for short-term prediction 

in time series analysis where the data is usually periodically repeated and non-

monotonic [237]. The key feature of the technique is the serial dependence between 

the measured values i.e. the current measures are potentially influenced by previous 

observations. The ARMA technique requires observation data to be weakly 

stationary with constant mean and variance over time [237]. For the case of a non-

stationary process or apparent trend, a differencing approach is commonly employed 

to the variables and this generalisation technique is known as autoregressive 

integrated moving average (ARIMA). The applications of ARIMA are mainly 

forecasting of future behaviour and without considering threshold values e.g. load 

forecasting [238], electricity prices [239], and wind speed prediction [240]. 

Nevertheless, there is also evidence of its use for prognostic applications such as in 

[241]. 

3.6  Model Validation 

Traditionally, the holdout approach is employed to increase the reliability of the 

performance measure which the available data set is split into training and testing 

sets [242]. The learning algorithm is then applied only to the training set while the 

test set is used to evaluate the model. However, the evaluation may depend on the 

choice of the sample sets. The model may yield very poor performance for an 

unfortunate split when all the test samples are outliers to the training samples. But, if 

some of the outliers are treated as training samples, the performance could be 

improved. This method is simple, but for a small number of samples a high bias 
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model can be expected because every sample may be needed for model building 

[242]. 

The estimation of the holdout method can be improved through the cross validation 

(CV) approach [223]. In k-fold cross validation, the data set is divided into k subsets, 

where one of the k subsets is used as the test set and the other k – 1 subsets are 

combined together to form a training set. The evaluation is repeated k times for a 

different subset as the test samples. The performance is determined from the average 

error of all k test samples. In this way, all samples are eventually used for both 

training and testing. Every sample is tested once and trained on k – 1 times. The 

variance of the error is reduced as k is increased.  

When k is equal to the number of available data points, it is called leave-one-out 

cross validation (LOOCV). This means that the learning algorithm is applied to the k 

– 1 samples with one sample left as the test sample. With a greater value of k, longer 

computation time is needed since the learning process is repeated k times. This 

highlights the advantage of the holdout method over cross validation. LOOCV may 

result in a low bias model but with a high variance [242]–[244]. The study in [244] 

recommends 10-fold CV over LOOCV as moderate k values (k = 10, 11, 12, …, 20) 

have smaller variance. The variance is also considerably small when compared to 

smaller k values (k = 2, 3, 4, 5). 

The bootstrap method is a smoothed version of cross validation [243], [245], [246].  

In this method, the training set has the same size as the original set. That means, 

when a number of samples are selected for testing and the remaining samples are the 

training set, some of the training samples will be duplicated so that the sample size 

equals the original size. The original bootstrap method is described in [246] to have a 

low variance but a high bias. Therefore, a modified version called .632 bootstrap was 

proposed to decrease the bias. Still, the modified bootstrap can be unstable for a 

small number of samples, hence another version called .632+ bootstrap was proposed 

[243]. However, for a large number of features, LOOCV and k-fold CV might 

outperform this latest version [242]. 
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3.7  Model Performance 

For a regression model, prediction of future values can be performed through 

extrapolation. A well-fitting regression model results in predicted values close to the 

observed data values. The characteristics of these two values can be measured using 

goodness-of-fit (GOF) statistics [246]. These statistical measures are mostly based on 

the three parameters shown in Figure 3-5a i.e. the actual response, iy , the average of

iy , iy , and the fitted response, ˆ
iy . The difference between the actual and fitted 

response gives the residual of the model which is the error term in equations 3-14 to 

3-16. 

ˆ
i i ie y y   (3-19) 

The residuals are usually visualised graphically to illustrate their behaviour so that 

the relationship between the model and the actual data can be observed. The model is 

said to fit the data well if the residuals appear randomly around zero. Figure 3-5b 

shows the residual plot of Figure 3-5a. 

(a) Linear regression 

 

 

                                                                   (b) Residual plot 

Figure 3-5.  Example of a best fitting for a simple linear regression 
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The three response parameters in Figure 3-5a are used to compute the sum of squares 

due to error, SSE, the sum of squares of the regression, SSR, and the sum of squares 

about the mean, SST as follows: 

 
2

1

ˆ
N

i i

i

SSE y y


   (3-20) 

 
2

1

ˆ
N

i

i

SSR y y


   (3-21) 

 
2

1

N

i

i

SST y y


   (3-22) 

where N is the total number of observations and SST SSE SSR  . The SSE gives the 

total deviation of the fitted values from the actual values. From SSE, the mean 

squared error, MSE and root mean squared error, RMSE are computed using 

equations 3-23 and 3-24 respectively. These two measures are examples of GOF 

metrics. The coefficient of determination, R
2
, is another GOF measure that can be 

determined using equation 3-25. R-squared ranges between 0 and 1, where 1 means 

the model explains all the variation of the independent variables. 

SSE
MSE

N
  (3-23) 

RMSE MSE  (3-24) 

2 1
SSR SSE

R
SST SST

    (3-25) 

R
2
 assumes that every independent variable in the model helps to explain variation in 

the dependent variable [246]. However, some independent variables may not 

contribute and should be penalised. To cater for this, R
2
 is modified to adjusted R

2
: 

 2 2 1
1 1

1
adj

N
R R

N F


  

 
 (3-26) 

where N is the size of the sample and F is the number of independent variables. 

Every time a new parameter is added to the model, R
2
 will increase irrespective of 
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how well they are correlated to the dependent variable. Conversely, 
2

adjR  
increases 

only when the correlation exists. 

A survey of the metrics used to evaluate model performance has been undertaken in 

[225], which classified the metrics into four subcategories: accuracy, precision, 

robustness and trajectory. MSE and RMSE contribute to the accuracy of the model 

performance as they measure the closeness of the predicted value to the actual one. 

The precision reveals how closely the predictions are clustered together and can be 

represented by standard deviation, . Robustness measures the sensitivity of the 

predictions with changes of algorithm parameter variations or external disturbances. 

Meanwhile, the definition trajectory is not clearly defined. As a result, four metrics 

are proposed in [247] that evaluate the model algorithm systematically, one metric at 

a time.  

The first metric, prognostic horizon (PH), determines the difference between the time 

index when the predictions first meet the specified performance criteria, i and the 

time index of actual end of life, EoL as given in equation 3-27. The specified 

performance criteria can be the -bounds as shown in Figure 3-6. The time indexes 

when RUL predictions of algorithm 1 and 2 enter the -bounds are denoted as i1 

and i2 respectively. Inserting the time indexes into equation 3-27 results in PH1 that 

is larger than PH2. This means algorithm 1 has better performance since its 

predictions enters the -bounds earlier than algorithm 2. 

 PH EoL i    (3-27) 

 

Figure 3-6. Prognostic horizon [248] 
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If an algorithm yields a reasonable prognostic horizon, the next metric, - 

accuracy, can identify whether the predictions, r, fall within desired error margins 

(specified by parameter α) of the actual RUL, *r , at specific time instances (specified 

by the parameter λ) by giving a binary output i.e. true or false to the condition in 

equation 3-28. Referring to Figure 3-7, the accuracy zone is given as 2 *r (i) at any 

value of i, where the lower and upper boundaries are *( ) (1 )ir    and *( ) (1 )ir   

of equation 3-28 respectively. This means only predictions, r(i), that fall within the 

cone of accuracy in Figure 3-7 satisfy the  - accuracy metric. A positive result can 

be further evaluated by comparing - accuracy with the actual RUL using the 

relative accuracy (RA) metric in equation 3-29.  

* *( ) (1 ) ( ) ( ) (1 )r i r i r i          (3-28) 

*

*

( ) ( )
1

( )

r i r i
RA

r i

 




   (3-29) 

 

Figure 3-7.  Concept of - accuracy [248] 

The RA is expressed at a specific time thus not represents the general behaviour of 

the algorithm. Evaluating the RA at multiple time instances requires an aggregate 

measure i.e. cumulative relative accuracy (CRA) which can be expressed as: 

1
( ( ))

i s

CRA w r i RA
s





 

   (3-30) 
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where w(r(i)) is a weight factor as a function of RUL at all time indices, s is the set 

of all t when a prediction is made and |s| is the cardinality of the test. 

Finally, when all the three metrics are satisfied, the convergence metric in equation 

3-31 quantifies how fast the algorithm improves with time. 

 
2

2

M c p cC x t y    (3-31) 

where CM is the Euclidean distance between the centre of mass (xc, yc) and (tP, 0). 

The centre of mass of the area under the curve, M(i) is defined as follows: 

 

 

EoUP
2 2

1

EoUP

1

( )
1

2
( )

i i

i P
c

i i

i P

t t M i

x

t t M i


















 (3-32) 

 
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












 (3-33) 

where EoUP is the time index for last useful prediction made. 

3.8  Summary and Conclusion 

In failure prognosis, physics-based models might have a direct relation with the 

degradation mechanism. However, the understanding of the underlying process may 

not fully relevant in practice, hence limiting its implementation. Instead, data-driven 

approach could be applied to historical degradation data for the development of 

prognostic model. Employing PD data as the degradation measure in predicting the 

lifetime of insulation is a concept of Type III prognostic algorithm. Type III or 

degradation based algorithm applies an indirect measure under the consideration of 

operating condition to characterise the lifetime.  

The step-by-step procedure in developing a prognostic model is generally comprises 

six stages. The first stage is pre-processing the degradation data which may include 
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normalisation, standardisation or outliers detection. Normalisation or standardisation 

is necessary when features with varying scales are grouped together.  Outliers in data 

set may be due to variability in the measurement or experimental errors. Identifying 

the outliers and assessing their impacts would help the decision either to include or 

remove the outliers. 

Second, evaluating the suitability of the extracted features as prognostic parameter 

would indirectly aid the third stage, i.e. feature reduction. This can be done by 

selecting features based on three qualities metrics: monotonicity, prognosability, and 

trendability. 

In data-driven technique, model selection involves the process of model fitting either 

through regression analysis or machine learning. Regression is the simplest technique 

for prognostic study, hence should be prioritised in developing the model depending 

on the behaviour of the selected features. 

Next, validation of a prognostic model can be done by applying the model to a new 

set data. For a small size of data, cross validation or bootstrap technique is preferred 

than holdout since all samples can be used for both training and testing. 

Finally, the performance of the prognostic model should be evaluated based on 

predictions from the test set data. Four model performance metrics (prognostic 

horizon, - performance, relative accuracy, and convergence) proposed in [247] can 

be considered for evaluating the performance of the model. 

This step-by-step procedure is the guideline applied in this thesis, for developing a 

prognostic model using PD data from electrical treeing experiment, which contribute 

to failure prognosis in cable monitoring. 
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Chapter 4                     

Identifying Prognostic Parameter 

from PD Data  

4.1  Introduction 

Automated PD data analysis systems have been shown to correctly diagnose defects 

causing PD [10], [79], [91], [96], [122], [131], [212], [213]. This thesis explored the 

extension of the concept towards predicting evolution of the defect; moving beyond 

diagnostics towards prognostics. This research work employed PD data from 

electrical treeing experiment described in the next section which incorporated both 

fundamental (50 Hz) and composite waveforms. In reference to the published works 

on PD diagnosis, a total of 31 features are extracted from the PD data using PRPDA 

and PSA. In this thesis, the behaviour of the features over time is observed and 

evaluated using three performance metrics i.e. monotonicity, prognosability and 

trendability. The extracted features might be redundant or not relevant. Therefore, 

filter technique, which is the simplest feature selection approach, is employed to 

reduce the size of the features. The relationship between the behaviour of the 

selected PD feature and the harmonic properties is identified and to be considered in 

the model development.  



82 
 

4.2  Electrical Treeing Experiment 

The prognostic model developed in this work is based on electrical treeing 

experiment done by Sanjay Bahadoorsingh at the University of Manchester in 2008 

[18]. An in-house test facility and PD instrumentation was developed under the 

Electrical Energy and Power Systems group in School of Electronic and Electrical 

Engineering, University of Manchester to investigate the influence of harmonics on 

electrical tree growth and breakdown times [173], [249], [250] as well as the 

influence on partial discharge patterns due to electrical treeing [175]. 

4.2.1   Test Waveforms 

As discussed in Section 2.7, Montanari and Fabiani [165] have formulated three 

measures to describe the amplitude and waveshape of composite waveforms, i.e. 

peak parameter, Kp, RMS parameter, Krms, and waveshape parameter, Ks as in 

equations 2-18 to 2-20 respectively. Among the three parameters, Kp was found to be 

the most prevailing in lifetime reduction [164]–[167] as the harmonic distortion may 

increase the peak voltage. The change in peak however, does not necessarily changes 

the RMS voltage, hence, Krms is less dominant than Kp. An increase in peak voltage 

will increase the voltage slope, du/dt, which is related to Ks [251]. In [170], the 

increase in du/dt was claimed to increase PD activity thus Ks was found to be more 

dominant than Kp. In contrast, research in [251] found that Ks was the least dominant 

among the three parameters.  

Due to the contradict ideas on the impact of Ks on the life reduction, Bahadoorsingh 

then investigated the influence of only Ks parameter (equation 2-20) to the insulation 

lifetime, i.e. Kp = Krms = 1. The investigation also considers the THD (equation 2-17) 

which is also a waveshape measure. Both Ks and THD are rewritten here to aid the 

interpretation of composite waveforms explained in this chapter.   

2

2 1

 =
N

h

h

U
THD

U

 
 
 

  
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The research incorporated the use of both fundamental (50 Hz) and composite 

waveforms. The composite waveforms were characterised by harmonic components 

superimposed onto the fundamental. Six composite waveforms were selected based 

on analysis of many composite waveforms with varied Ks and THD values. These 

composite waveforms are produced using a peripheral component interconnect (PCI) 

based arbitrary waveform generator (AWG) and an amplifier that capable of 

reproducing waveforms with an output in the range of ± (20-30) kV. The peak 

voltages of all waveforms are kept constant at 14.4 kV. At this voltage, the recorded 

PD is assumed to have originated internally from treeing activity and/or externally 

due to imperfect boundaries in the physical setup [18]. The mathematical expressions 

of the fundamental,    and the six composite waveforms,                  and     

are given in equations 4-1 to 4-7 where the subscripts refer to wave group detailed in 

Table 4-1. 

   1 10.25 2 sin 0.4sin 3u      (4-1) 

   7 10.18 2 sinu    (4-2) 

   8 9.7 2 sin 0.05sin 5u      (4-3) 

   9 10.4 2 sin 0.05sin 7u      (4-4) 

   11 9.35 2 sin 0.178sin 7u      (4-5) 

 12

sin 0.032(sin 5 sin 7 sin11
10.15 2

sin13 sin 23 sin 25
u

   


  

    
  

  
 (4-6) 

 13

sin 0.02(sin 5 sin 7 sin11
10.18 2

sin13 sin 23 sin 25
u

   
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  

    
  

  
 (4-7) 
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The fundamental 50 Hz signal is represented by Wave 7. Among the composite 

waveforms, Wave 1 represents the most distorted waveform with 40% of THD due 

to the 3
rd

 harmonic. This very high THD value is in reference to work reported in 

[30], [174]. The value intentionally exceeds the maximum allowable THD in IEC 

61000-2-4 [172] in order to highlight the impact of voltage distortion on the 

electrical tree growth since no significant impact was found for lower THDs. Waves 

8 and 9 employ the 5
th

 and 7
th

 harmonic orders respectively with THD = 5%. The 7
th

 

harmonic order is also employed by Wave 11 but with higher THD and Ks compared 

to Wave 9. Both Wave 12 and 13 utilize six harmonic orders i.e. the 5
th

, 7
th

, 11
th

, 

13
th

, 23
rd

 and 25
th

 with Wave 12 having higher THD and Ks than Wave 13. All the 

waveforms are plotted in Figure 4-1 and Figure 4-2. 

Table 4-1. Properties of the seven test waveforms 

Wave 

Properties 

Harmonic 

Order 

% Magnitude per 

Harmonic 
Phase Ks THD% 

1 3 40.0 0 1.56 40.00 

7 1 0.0 0 1.00 0.00 

8 5 5.0 0 1.03 5.00 

9 7 5.0 0 1.06 5.00 

11 7 17.8 0 1.60 17.80 

12 5, 7, 11, 13, 23, 25 3.2 0 1.60 7.85 

13 5, 7, 11, 13, 23, 25 2.0 0 1.27 5.00 

      

 

 

Figure 4-1. Illustration of the test waveforms defined in Table 4-1 
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Figure 4-2. Test waveforms with 14.4kV voltage peak 

4.2.2   Insulation Sample 

Research in [18] employed epoxy resins produced by Huntsman as the insulation 

sample in electrical treeing experiments. The insulation sample is prepared by 

mixing the epoxy resin (Araldite LY 5052) and an amine hardener (HY 5052) using 

a weight ratio of 100:38. This mixture was vacuumed for almost an hour to remove 

embedded bubbles. The epoxy resin is encased in a hollow acrylic square cube of 25 

mm side. The samples are tested using a point-plane test arrangement. The 

hypodermic needle with a tip radius of 3 μm, length of 51 mm and thickness of 1.1 

mm was set with a plane separation gap of 2 ± 0.5 mm as shown in Figure 4-3. Most 

hypodermic needles are coated with a transparent lubricant to reduce frictional forces 

permitting easy movement of the needle under human skin [252]. This lubricant 

coating is removed by soaking the needles in Silstrip for 72 hours. The commercially 

available chemical Silstrip derives its name from its silicone stripping attributes 

[252]. 

 

Figure 4-3. Schematic of epoxy resin sample [252] 
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4.2.3   Partial Discharge Measurement 

The developed in-house test facility includes a partial discharge measuring system 

with the ability to plot PRPD [18]. The PD instrumentation system monitored and 

recorded electrical PD activity in accordance with the IEC 60270, High Voltage Test 

Techniques – Partial Discharge Measurements standard [75] over the frequency 

range 100 to 400 kHz. The system can be divided into two parts: hardware and 

software as shown in Figure 4-4. 

 

Figure 4-4. Overview of partial discharge measuring system 

The hardware part includes the PD detection circuit, amplifier circuit and filtering 

circuit. Electrical PD detection is utilised in accordance to the IEC 60270 standard 

[75]. Instead of using a straight detection circuit, a wideband balanced circuit is 

employed which reduces the disturbances from the range of 25 pC-30 pC to 10 pC-

11 pC. The disturbances might be due to the high voltage amplifier when energized 

at zero voltage, external high voltage tests in the vicinity, internal noise from the 

measuring system, switching operations in adjacent circuits and  radio transmissions 

etc [75]. This arrangement yielded a minimum detectable level of 5.5 pC at a 

multiplier of 50 pC/V. The detected PD pulses are amplified using a non-inverting 

amplifier of variable gain of approximately 100. The filter circuit implements the 2
nd

 

order Chebyshev bandpass filter with frequency response of 100 kHz to 400 kHz. 
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The software part contains data acquisition, PD recognition and analysis and finally 

PRPD plot. The peripheral component interconnect (5112 PCI) from National 

Instruments (NI) is used for data acquisition of input signal from PD measuring 

system. Through the LabVIEW environment, data from the PCI is processed and 

analysed in Matlab and finally exported back to the LabVIEW platform for PRPD 

plotting.  The partial discharge points were superimposed onto a reference waveform 

plot and continuously updated to produce an output display as shown in Figure 4-5. 

The x-axis represents the phase locations in degrees whilst the y-axis is formatted in 

pC for partial discharge activity. For each PD, the apparent charge and excitation 

waveform phase position are logged in LabVIEW Measurement (.lvm) format. 

Discharges are collected as bursts of activity (hereafter called PD burst or PD 

pattern). The raw PD data were collected at a sampling rate of 5 MSamples/s over 

periodic 80 ms windows of continuous capture. This data is sufficient for PRPD and 

PSA approaches. 

 

Figure 4-5. PRPD plot from the PD instrumentation [18]. Red points represent the apparent 

charges while the blue line represents the applied voltage. 

4.2.4   Experimental Procedure 

The electrical treeing experiment involved a total of 42 samples with six samples 

tested under the influence of each (of the seven) composite waveforms [18]. The plan 

of the experiment is summarised in Figure 4-6. The first stage is to initiate electrical 

treeing under the influence of 50 Hz at 18.0 kV peak within 30 minutes. This 

initiation is indicated by an electrical tree of length 10 μm. If no tree was initiated, 

that sample was discarded and a new sample was setup for testing. After 30 minutes, 

the composite waveform was increased to 14.4 kV peak and maintained for a 
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maximum of 2.5 hours as the excitation waveform. During this second stage, partial 

discharge readings were recorded continuously in 5 minute batches and visual 

images of tree growth were captured for every 2 minutes. If the breakdown occurs 

during this stage, the time was recorded, otherwise, a ramp process was invoked in 

the final stage increasing the voltage at rate of 1 kVrms/min from 10.6 kV – 24.8 kV 

peak. Should the sample breakdown within ten minutes, the breakdown voltage was 

recorded.  

 

Figure 4-6. General plan for each sample under test [18] 

4.2.5   Sample Properties 

The exercise explained in Section 4.2.4 was originally to comprehensively analyse 

the influence of power quality (as a function of the composite waveforms due to 

THD and Ks) on electrical tree growth and breakdown times for all 42 samples tested 

[173], [249], [250]. However, in this research, the prognostic modelling is derived 

from the results of the samples that breakdown in Stage 2. Out of 42, only 31 

samples reached breakdown within 2.5 hours. The time that the first tree branch 

touching the ground electrode was also recorded.  Table 4-2 shows the identification 

of the 31 samples and both the touch ground time, tgnd and the breakdown time, tbd. 

The samples are labelled according to the group of the tested waveform, the batch of 

the samples and the sample number as shown in Figure 4-7. From 31 samples, one 

sample from each wave group was randomly picked as the test samples with the 

remaining 24 samples as the training.  
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Table 4-2. Breakdown time of 31 samples [18], and training/testing split 

Wave 

Stage 2 

RMS 

(kV) 

Stage 2 

Peak  

(kV) 

Sample 

ID 

Stage 2 

Touch 

Ground  

Time (min) 

Stage 2 

Breakdown 

 Time (min) 

 

Training 

 

Testing 

1 11.04 14.4 

01T346 40 115   

01T354 32 118   

01T382 42 129   

01T426 33 60   

7 10.18 14.4 

07T332 50 93   

07T343 45 103   

07T355 45 115   

07T383 43 130   

   08T365 35 147   

8 9.71 14.4 08T374 41 118   

   08T392 48 140   

9 10.40 14.4 

09T325 30 122   

09T344 48 123   

09T381 37 107   

09T412 47 138   

09T421 - 71   

11 10.14 14.4 

11T333 42 108   

11T345 45 143   

11T372 40 129   

11T391 45 120   

11T425 37 58   

12 10.21 14.4 

12T342 43 123   

12T373 40 113   

12T394 40 138   

12T424 38 77   

13 10.19 14.4 

13T324 30 93   

13T331 53 117   

13T363 47 125   

13T376 48 122   

13T393 42 149   

13T423 48 94   
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Figure 4-7. Format of sample ID 

4.3  Analysis of Partial Discharge Data 

This section describes the process of extracting PD features using PRPDA and PSA 

approaches. A total of 31 features were extracted i.e. 24 from PRPDA and 7 from 

PSA. These features are mostly used for failure diagnosis. In this thesis, the 

diagnostics concept is extended for predicting the TTF. Hence, the behaviour of 

these features over time is analysed as well as the impact of the harmonics on the 

features‘ behaviour. 

4.3.1   Phase-Resolved Partial Discharge Analysis 

This work employed the phase-resolved technique described in Section 2.4.2.1. A total 

of 24 statistical features were extracted using equations 2-6 to 2-9 considering both 

positive and negative half cycles. Figure 4-8 summarizes the flow of PRPDA 

reported in this work with more detailed description in the following subsections.  

 

Figure 4-8. The flow of PRPDA 

 4.3.1.1 φ-q-n Plots 

Phase-resolved analysis focuses on phase distribution thus the three important 

parameters, φ-q-n, were plotted in two axes, φ-q, where the pulse repetition rate is 

illustrated by the intensity of discharges. The PRPD patterns of all training samples 

were observed from the start of treeing until breakdown occurs to get the general 

idea of how the pattern changes.  
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Figure 4-9 shows the -q-n plots of treeing samples, taking one sample from each 

wave group during early and late growth in 5-minute batches. Generally, two PD 

clusters can be seen, i.e. the positive PDs which dominantly occurred along the rising 

edges of the voltage waveform and the negative PDs along the falling edges. These 

two PD clusters are growing in both axes directions throughout the treeing process 

but remain separated because no PD activity occurs after the peaks i.e. dead zones. 

This can be seen in all test waveforms except for Wave 1 due to high distortion. In 

the literature, the PD occurrence is mostly reported in the first and third quadrant. 

However, during the late growth, we can see the PD slightly enters the second and 

fourth quadrant. Those PD might be due to the residual charges in the PD site [161].  

Among the six composite waveforms, only Wave 8 has two peaks per voltage cycle, 

resembling the fundamental, Wave 7. With low THD and Ks, the resultant PRPD 

looks similar to the fundamental. On the other hand, the PRPD pattern of other 

composite waveforms which have four peaks per voltage cycle differ from Wave 7 

and 8 showing clearer harmonic influence. Although the PRPD patterns of Wave 12 

and 13 are greatly affected (due to more than one harmonic), the resultant PD can 

still be separated into two clusters. New PD clusters seem to grow in Wave 9 and 11 

(7
th

 harmonic) at around 110 and 290 where the rising edge of the second peak is. 

The distortion, however, is not high enough to induce negative PD at the falling edge 

of the first peak as shown by the six PD clusters of Wave 1 (3
rd

 harmonic). Hence, 

only 4 clusters can be seen in Wave 9 and 11. The extra two clusters however can be 

merged to the original clusters since their phase occurrence is within the range of the 

original cluster. 

The most affected PRPD pattern, Wave 1, has the highest THD and slightly lower Ks 

than Wave 11 and 12. This means the impact of THD on the resultant PD clusters is 

greater than Ks. Also, it can be concluded that the waveshape of the PRPD pattern is 

greatly influenced by the harmonic order. Waveforms with higher harmonic order 

will have more rising and falling edges thus resulting in more distorted PRPD 

patterns.   
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                  (a) Early growth                                                                (b) Late growth 

Figure 4-9. The PRPD pattern from each wave group during (a) early growth and (b) late 

growth. Red points represent the apparent charge while the blue line represents the applied 

voltage. 
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Prior to breakdown, three changes can be spotted from Figure 4-9 as listed below:- 

 The number of PD pulses per voltage cycle increases 

 The maximum PD magnitude increases 

 The phase distribution widens 

The listed changes are shown graphically in Figure 4-10 taking Wave 11 from Figure 

4-9 as an example. The number of PD pulses is represented by the red points which 

are sparsely dispersed during the early growth and turn denser towards breakdown as 

indicated with the circles. The maximum discharge can be seen to increase from 50 

pC to 300 pC as well as phase distribution from 70 to 120 (positive PDs). The φ-q-

n plots of all samples were then transformed to the two-variable plots as described in 

the next section before extracting the statistical features. 

 

                   (a) Early growth                                                              (b) Late growth 

Figure 4-10. The changes of PRPD pattern for a sample tested with Wave 11. Red points 

represent the apparent charge while the blue line represents the applied voltage. 

 4.3.1.2 Two-Variable Plots 

The two-variable plots were derived from the φ-q-n plots for the convenience of 

comparison between the number of PD pulses, n, and the discharge magnitude, q. In 

reference to [111], the discharge magnitude, q, is represented by the average and 

maximum values. Thus, three 2D phase distributions were selected for further 

analysis: 

 The distribution of the number of discharges, Hn() 

 The distribution of the maximum values of discharges, Hqmax() 

 The distribution of the average values of discharges, Hqn() 
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To generate those three plots, the one voltage cycle of 360 is divided into 60 

buckets giving each bucket 6 to smooth out some of the phase variability of PD. To 

illustrate this, one-quarter (0 - 90) of voltage cycle with 15 buckets is considered as 

shown in Figure 4-11. For each bucket, the number of discharges, Hn, the maximum 

value of discharge, Hqmax and the average value of discharge, Hqn are determined 

where Hqmax and Hqn are using absolute values. These values are plotted in Figure 

4-12 showing the three 2D phase distributions in reference to Figure 4-9.  

 

Figure 4-11. Fifteen buckets in one-quarter voltage cycle 

As mentioned previously in Section 4.3.1.1, the positive and negative PD clusters in 

Figure 4-9 are clearly separated because of no PD activity after the peaks which 

gives gaps between the clusters. Some of these gaps however, are not clearly shown 

in the 2D distributions especially when the gaps became narrower during the late 

growth as shown in Figure 4-12b. The number of peaks of the non-sinusoidal 

waveforms and the dead zone can been seen clearest in the Hn() distribution. When 

comparing the Hqmax() with Hqn() distributions, the patterns look similar except 

that Hqn() can sometime gives patterns where the positive and negative clusters are 

difficult to be identified as in the late growth of Wave 1 and Wave 11. The Hqn() 

also behaves differently in the late growth of Wave 7 and 8 with a sudden rise before 

or after a plateau. It can be concluded that Hqn() is the least similar to the φ-q-n 

plots in Figure 4-9.  
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                  (a) Early growth                                                          (b) Late growth 

Figure 4-12. Hn (dashed blue line), Hqmax (solid green line) and Hqn (solid red line) 

distributions of Figure 4-9. 
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 4.3.1.3 Statistical Features 

The three changes to the PRPD pattern observed in Section 4.3.1.1 are examined 

through four statistical moments [91]–[94] i.e. mean,  , standard deviation, , 

skewness, Sk, and kurtosis, Ku.  

The changes in the number of PD pulses can be tracked from the   and  of the 

Hn() distribution and changes in maximum PD magnitude from the   and  of the 

Hqmax() and Hqn(). Both   and  are expressed in equations 2-8 and 2-9 

respectively where the input variables, xi, and the number of samples, N, would be 

the properties of the discharges ignoring the phase values.  

In order to investigate the correlation between the changes in phase distribution and 

the PD pulse height (either Hn(), Hqmax() or Hqn()), the skewness and kurtosis of 

the three 2D phase distributions were determined. Moreover, it is mentioned in [91] 

that discharge parameters of a single defect can be fairly well described by a normal 

distribution process including skewness and kurtosis. In this case, the phase values 

are treated as grouped data, xi, where PD pulse heights are the frequencies, fi. The 

mean, standard deviation, skewness and kurtosis of a grouped data can be determined 

using equations 4-8 to 4-11 respectively. The kurtosis is in the form of excess 

kurtosis which is relative to normal distribution kurtosis.  
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As a result, for each 2D plot, four statistical moments are calculated for positive and 

negative PDs separately, giving a total of 24 features as tabulated in Table 4-3.  

Table 4-3. The total of 24 statistical features from PRPDA 

2D PRPD 

Distributions 

Statistical Features 

Positive PD Negative PD 

Hn() 

Hn pos µ 

Hn pos  

Hn pos sk 

Hn pos ku 

Hn neg µ 

Hn neg  

Hn neg sk 

Hn neg ku 

Hqmax() 

Hqmax pos µ 

Hqmax pos  

Hqmax pos sk 

Hqmax pos ku 

Hqmax neg µ 

Hqmax neg  

Hqmax neg sk 

Hqmax neg ku 

 Hqn() 

Hqn pos µ 

Hqn pos  

Hqn pos sk 

Hqn pos ku 

Hqn neg µ 

Hqn neg  

Hqn neg sk 

Hqn neg ku 

 

As mentioned previously, the phase range is widening throughout the tree growth. 

Referring to the Hn() distribution in Figure 4-12, we can see the positive PD 

clusters of Wave 7 widening from 0 - 90 in early growth to 300 - 120 in late 
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growth. No PD was recorded after 120 (slightly after the positive peak) until the 

negative PDs start to occur at around 140 until 300 (slightly after the negative 

peak). Wave 8 has a similar pattern to Wave 7 thus, was expected to have the same 

phase range. Although Wave 9 and 11 have extra clusters of positive and negative 

PDs (see φ-q-n plots in Figure 4-9 and 2D plots in Figure 4-12), both have the same 

phase range as Wave 7 and 8 since the extra clusters are within the range. For the 

cases of Wave 12 and 13, no extra PD cluster appears, therefore they result in the 

same phase range. The special case only applies on Wave 1 which has three clusters 

of positive and negative PDs, thus, giving a different phase range. Table 4-4 

summarises the phase ranges of all test waveforms. 

The PRPD pattern of each sample is recorded for every 5 minutes until breakdown 

occurs. In order to identify the prognostic indicators, every 5 minute 2D PRPD 

pattern is represented by the 24 statistical features in Table 4-3. The mean, standard 

deviation, skewness and kurtosis of the positive and negative 2D phase distributions 

of all 24 training samples are shown in Figure 4-13 to Figure 4-20 respectively. The 

features are plotted in reference to the TTF as indicated in equation 4-12 where ti is 

the current time and tbd is the breakdown time. This is to aid observation on the trend 

when reaching breakdown point. The colour of the line graph represents the test 

waveform group. 

             (4-12) 

Table 4-4. The phase ranges of positive and negative cycles for each test waveform 

Wave 
Phase Range ( ) 

Positive Cycle Negative Cycle 

1 

0 – 59 

108 – 155 

240 – 287 

336 – 359 

60 – 107 

156 - 239 

288 – 335 

7, 8, 9, 11, 

12, 13 

0 – 119 

300 – 359 
120 – 259 
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        (a)                                          (b)                            (c)  

Figure 4-13. Mean of positive (a) Hn(), (b) Hqmax() and (c) Hqn() 

 

                       (a)                                          (b)                            (c)  

Figure 4-14. Mean of negative (a) Hn(), (b) Hqmax() and (c) Hqn() 

 

                     (a)                                            (b)                            (c)  

Figure 4-15. Standard deviation of positive (a) Hn(), (b) Hqmax() and (c) Hqn() 

 

                      (a)                                           (b)                            (c)  

Figure 4-16. Standard deviation of negative (a) Hn(), (b) Hqmax() and (c) Hqn() 
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                       (a)                                         (b)                          (c)  

Figure 4-17. Skewness of positive (a) Hn(), (b) Hqmax() and (c) Hqn() 

 

                      (a)                                          (b)                            (c)  

Figure 4-18. Skewness of negative (a) Hn(), (b) Hqmax() and (c) Hqn() 

 

                      (a)                                         (b)                           (c)  

Figure 4-19. Kurtosis of positive (a) Hn(), (b) Hqmax() and (c) Hqn() 

 

                       (a)                                        (b)                            (c)  

Figure 4-20. Kurtosis of negative (a) Hn(), (b) Hqmax() and (c) Hqn() 
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The effect of harmonics can be seen in the skewness (Figure 4-17 and Figure 4-18) 

and kurtosis (Figure 4-19 and Figure 4-20) rather than the mean (Figure 4-13 and 

Figure 4-14) and standard deviation (Figure 4-15 and Figure 4-16) with Wave 1 

showing the most deviating pattern. This is because Wave 1 has the most distorted 

waveform resulting in a different phase range in Table 4-4 compared to other test 

waveforms.  

Overall, positive and negative PDs show a similar trend for all four features. For 

each 2D phase distribution, the mean and standard deviation seem to have similar 

behaviour either positive or negative PD pulses. In Hn()  distribution, both features 

rise rapidly during initial growth and start to fluctuate during intermediate growth 

before a sudden decrease just before breakdown occurs. Thus, the increase in PD 

occurrence (i.e. Hn()) highlighted in Section 4.3.1.1 can only be claimed for a part 

of the tree growth due to the sudden fall near to breakdown. The same behaviour has 

been reported in [161] for surface tracking where the number of PD is increased 

throughout the deterioration but decreases rapidly right before breakdown occurs.  

Interestingly, during the sudden decrease of Hn(), mean and standard deviation of 

Hqmax() and Hqn() experience a sudden increase after a period of gradual increase.  

To add more, the increase in PD magnitude (Hqmax() and Hqn()) is proven 

throughout the growth with a slow rise at the start and change rapidly near the 

failure. This behaviour can be seen clearer in Figure 4-21 with the plots of mean and 

standard deviation of the 2D phase distributions of a sample tested with Wave 11. 

 

                 (a)                                                (b)  

Figure 4-21. Positive and negative Hn(),Hqmax() and Hqn() distributions of a sample 

tested with Wave 11 (a) mean, and (b) standard deviation 
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It is difficult to observe the behaviour of skewness and kurtosis in Figure 4-17 and 

Figure 4-18 because the range of Wave 1 is dominant compared to others. Therefore, 

the skewness and kurtosis are replotted ignoring the Wave 1 as shown in Figure 4-22 

to Figure 4-25. Despite the small ranges of the skewness and kurtosis, we can still 

observe that the early growth of Hn() is more positive compared to late growth. 

However, some of the samples behave differently in Hqmax() and Hqn() 

distributions. Although phase distribution is found in Section 4.3.1.1 to increase 

throughout the tree growth, this observation only considered the phase itself without 

correlating with the PD numbers or magnitude. The measure of skewness and 

kurtosis perhaps can give the impact of the PDs in the phase distribution. Thus, the 

skewness and kurtosis of pure and lightly distorted waveforms give only a slight 

change while the greater harmonic distortion result in a greater changes. 

 

    (a) Hn()                             (b) Hqmax()                               (c) Hqn() 

Figure 4-22.  Replot of skewness of positive PDs in Figure 4-17 ignoring Wave 1 

 

   (a) Hn()                              (b) Hqmax()                               (c) Hqn() 

Figure 4-23. Replot of skewness of negative PDs in Figure 4-18 ignoring Wave 1 

 

     (a) Hn()                             (b) Hqmax()                              (c) Hqn() 

Figure 4-24. Replot of kurtosis of positive PDs in Figure 4-19 ignoring Wave 1 
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    (a) Hn()                              (b) Hqmax()                               (c) Hqn() 

Figure 4-25. Replot of kurtosis of negative PDs in Figure 4-20 ignoring Wave 1 

4.3.2   Pulse Sequence Analysis 

It is mentioned in [96], [253], that the voltage differences do not occur at random but 

in specific sequences due to space charges built up by the discharge process.  Thus, 

the sequence of the voltage difference between two consecutive PD pulses, du, is an 

important parameter in PD mechanism. This parameter is calculated by first 

examining the instantaneous voltage, u(t), using one of equations 4-1 to 4-7, with 

consideration of the waveform group i.e. Wave 1, 7, 8, 9, 11, 12 or 13. The du is then 

determined using equation 4-13 where n refers to the current PD pulse and n-1 to the 

previous one. 

            (4-13) 

The behaviour of du is illustrated in the plots of Figure 4-26 showing the PD pulses 

overlaid on the three cycles of instantaneous voltage for a sample tested under Wave 

7 (fundamental) at early tree growth (Figure 4-26a) and immediately before 

breakdown (Figure 4-26b). From the figure, we can see the PD occurrence is higher 

during the late growth compared to the initial stage as discussed previously in 

Sections 4.3.1.1 and 4.3.1.3 which results in a decrease of the du. This also applies to 

the phase difference between two consecutive PD pulses, d, and can be obtained by 

replacing u in equation 4-13 with . 

            (4-14) 

Both du and d  can be divided into two groups i.e. small and large. The small group 

comprises PDs from clusters 7A and 7C while the large group comprises PDs from 
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clusters 7B and 7D. These four clusters are grouped according to the polarity and 

magnitude of du depending on the consecutive voltages: 

 All PD pulses in the rising edges form cluster 7A which results in positive 

and smaller du. 

 The last pulse around the positive peaks and the first pulse in the falling 

edges form cluster 7B which results in negative and greater du. 

 All PD pulses in the falling edges form cluster 7C which results in negative 

and smaller du.  

 The last pulse around the negative peaks and the first pulse in the rising 

edges form cluster 7D which results in positive and greater du. 

 

   (a) 

 

  (b) 

Figure 4-26.  The instantaneous voltage, u(t), of PD occurrence overlaid on Wave 7 during 

(a) early growth and (b) late growth 
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The behaviour of du can be observed more clearly in the un vs un-1 plot, shown in 

Figure 4-27. Clusters A and C contain the majority of the PD pulses which occur 

after a relatively small voltage change. The small du values results in PDs which 

appear near the 45 line where un = un-1. The decrease of du towards breakdown 

yields a smoother 45 line of PDs in cluster A and C as shown in Figure 4-27b. In 

contrast, clusters B and D arise from the relatively large du around the peak voltage, 

since PD stops occurring when du changes from positive to negative or vice versa. 

The large values of du form clusters farther from the 45 line but moving towards the 

line as the electrical treeing approaches breakdown. Prior to breakdown, the PD 

pulses fill almost the entire phase range resulting a very small voltage change i.e. dun 

 dun-1, thus, forming a 45° line. Throughout the tree growth, the four clusters in 

Figure 4-27a merge to form the dominant diagonal line in Figure 4-27b although 

sometimes with distinct PDs from cluster B and D.  

 

    (a) Early growth                                                                    

 

   (b)  Late growth                                                                   

Figure 4-27.  The consecutive voltage plot, un vs un-1, of a sample tested with Wave 7 during 

(a) early growth and (b) late growth 
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The discussed characteristics of du also apply to d, therefore both features should be 

considered as prognostic indicators. The ratio of these key changes, du/d, represents 

the slope between the consecutive pulses and can be obtained by dividing equation 4-

13 with equation 4-14 i.e. 

   
   

 
       
       

 (4-15) 

In this study, three parameters are considered for further investigation i.e. du, d and 

du/d and are described in Section 4.3.2.2. 

 4.3.2.1  Effect of Harmonics 

The distorted test waveforms show slightly different behaviour in PD compared to 

Wave 7. The plots of instantaneous voltage and un vs un-1 of test waveforms 1, 8, 9, 

11, 12 and 13 are shown in Figure 4-28.  Among the six non-sinusoidal test 

waveforms, samples tested with Wave 1 show the greatest difference, having six 

clusters compared to the four clusters of all others. This is because Wave 1 has an 

extra two peaks per voltage cycle where the polarity change in du occurs more 

frequently compared to Wave 7, giving more points of non-activity in the plot (six 

points compared to two for waveform 7). However, the general trend of du 

decreasing towards breakdown remains. Although Wave 9 and 11 also have 4 peaks, 

their THD values are smaller than Wave 1, thus giving a smaller range of du values 

between the two peaks in either the positive or negative half cycle. These contribute 

to clusters 9A and 9C respectively rather than forming new clusters. 

Since Wave 8 has the smallest THD and Ks compared to the other harmonic 

waveforms, the un vs un-1 plot looks very similar to the fundamental Wave 7. Wave  9 

also shows the same characteristics as Wave 7 and 8, having also only a 5% THD. 

Wave 11 contains the 7
th

 harmonic like Wave 9, but with greater THD and Ks. Thus, 

it has extra features in the un vs un-1 plot. It can be seen that around ±5 kV of cluster 

11A and 11C, the du changes polarity from positive to negative (A1 and A2) and  

vice versa (C1 and C2). Those changes however do not generate a new cluster of 

points, but instead form an extra feature marked by circles in the un vs un-1 plot. 
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The samples tested with Waves 12 and 13 show similar characteristics to Wave 11 

but at different voltages, depending on the voltage at which the polarity of du  

changes. As we can see in plots of Wave 12, the changes occur at seven spots in 

cluster 12A and seven spots of cluster 12C. The same applies to Wave 13, but is not 

clearly shown in both plots because the changes are very small due to smaller THD 

and Ks. 

Some of the points discussed here repeat the discussion in 4.3.1.1 showing that 

phase-resolved and pulse sequence representations are closely related. Therefore, the 

same conclusion can be made here. First, waveform with high THD value may 

increases the number of PD cluster. Second, no deterministic relationship can be 

concluded between Ks and PD cluster. However, compared to PRPDA, the harmonic 

order does not seem to affect the un vs un-1 plot since du is not related to the 

waveshape. 
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   (a) Instantaneous voltage of PD occurrence               (b) Voltage of consecutive PD 

Figure 4-28. The instantaneous voltage and the un vs un-1 plots of non-sinusoidal samples 
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 4.3.2.2 PSA Features 

The PSA features are examined for each 5-minute data file as in PRPDA. Three 

promising features, du, d and du/d, are calculated using equations 4-13 to 4-15 for 

every consecutive PD in the 5-minute data. Finally, the mean of each feature is 

calculated using equation 2-8 to represent each batch of 5-minute data until the 

failure.  

The du and d features were calculated from the small group only, from the large 

group only, and from all PD pulses ignoring which group of waveform they belong 

to. The small group represents PD pulses in clusters A and C of Figure 4-28 while 

the large group represents clusters B and D (Wave 1 includes clusters E and F). 

However, the du/d behaves differently and thus was calculated from all data only. 

In total, 7 potential features have been extracted from PSA as tabulated in Table 4-5. 

The behaviour of these 7 PSA features can be observed in Figure 4-29 to Figure 

4-31. The colours of the plots indicate the wave group as in the PRPDA approach in 

Section 4.3.1.3. 

Table 4-5. The features and subfeatures from PSA 

Features Subfeatures 

du 

dusmall 

dularge 

duall 

d 

dsmall 

dlarge 

dall 

 du/d - 

 

Interestingly, du and d show a very similar pattern of decreasing exponentially 

throughout the tree growth. Voltage derivative however shows a different pattern 

with an increase during the early growth but then decreases slowly towards the 

breakdown. Also, it appears visually that PSA features show a smoother behaviour 

compared to PRPDA in Figure 4-13 to Figure 4-20. No distinct difference is 
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observed between the harmonic groups in du and d features. However, as for du/d 

in Figure 4-31, it can be seen that samples with the same harmonic group trend 

together which might be useful for classification purposes. 

Two samples from Wave 8 and 9 were found to behave differently where no PD 

activity was recorded for more than 30 minutes as indicated with the arrows in 

Figure 4-31. Although this is an expected behaviour of PD, however, this may affect 

the modelling process as these samples were not really in the same trend as the other 

samples. These two samples, 08T365 and 09T325, obviously are the outliers in the 

prognostic model reported in this work. The elimination of the outliers will be 

discussed in the next chapter. 

 

                 (a) dusmall                               (b) dularge                                  (c) duall   

Figure 4-29. The subfeatures of du (a) dusmall (b) dularge and (c) duall 

 

               (a) dsmall                                  (b) dlarge                                 (c) dall   

Figure 4-30. The subfeatures of d  (a) dsmall (b) dlarge and (c) dall 

 

Figure 4-31. The voltage derivative, du/d 
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4.4  Feature Reduction 

A total of 24 samples have been analysed using the PRPDA and PSA approaches in 

order to extract potential features as described in Section 4.3. As a result, 24 features 

are extracted from PRPDA and 7 from PSA. In order to keep the originality of the 

features, feature selection approach is employed rather than feature transformation. 

Filter technique, the simplest approach for feature selection, is applied to reduce the 

size of the features. The selection is based on the three prognostic performance 

metrics, described in Section 3.3.   

The total score of three prognostic performance metrics introduced in [31], i.e. 

monotonicity, prognosability, and trendability as indicated in equations 3-6 to 3-8 

respectively, is considered for feature reduction. The total metric is given as: 

                                               (4-16) 

For trendability, the quantile-quantile (Q-Q) plot is performed for every sample 

combination and Pearson‘s correlation coefficient is determined using equation 3-9. 

The final value is given by the smallest absolute correlation as indicated in equation 

3-8.  

The score of each metric and the total score of all metrics for all 31 features are 

tabulated in Table 4-6. Each feature is ranked based on the sum of the prognostic 

metrics. The PRPDA features are numbered from 1 to 24 while PSA features from 25 

to 31. Each of these metrics ranges from zero to one, one indicating a very high score 

on that metric and zero indicating that the parameter is not suitable according to that 

metric. The prognostic metrics and the total metric in Table 4-6 are plotted in Figure 

4-32 to Figure 4-35 in order to compare the metric scores between PRPDA and PSA. 

PRPDA features from the same statistical quantity are grouped together, i.e. mean, µ, 

standard deviation, , skewness, Sk, and kurtosis, Ku where the features are labelled 

according to the feature‘s number in Table 4-6. 
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Table 4-6. Prognostic metrics of PRPDA and PSA features 

 No Features Monotonicity Prognosability Trendability Total Rank 

P
R

P
D

A
 

1 Hn pos  0.27 0.42 0.0100 0.70 22 

2 Hn neg  0.31 0.50 0.0016 0.81 14 

3 Hqmax pos  0.29 0.59 0.0053 0.89 9 

4 Hqmax neg  0.28 0.58 0.0036 0.86 12 

5 Hqn pos  0.19 0.33 0.0016 0.52 28 

6 Hqn neg  0.21 0.34 0.0021 0.55 27 

7 Hn pos  0.24 0.36 0.0055 0.61 25 

8 Hn neg  0.30 0.40 0.0010 0.70 22 

9 Hqmax pos  0.16 0.51 0.0014 0.67 24 

10 Hqmax neg  0.19 0.51 0.0090 0.71 21 

11 Hqn pos  0.16 0.36 0.0008 0.52 28 

12 Hqn neg  0.11 0.40 0.0013 0.51 30 

13 Hn pos sk 0.12 0.45 0.0015 0.57 26 

14 Hn neg sk 0.09 0.79 0.0064 0.89 9 

15 Hqmax pos sk 0.13 0.68 0.0026 0.81 14 

16 Hqmax neg sk 0.09 0.70 0.0002 0.79 16 

17 Hqn pos sk 0.10 0.67 0.0097 0.78 17 

18 Hqn neg sk 0.12 0.62 0.0056 0.75 20 

19 Hn pos ku 0.13 0.85 0.0021 0.98 8 

20 Hn neg ku 0.10 0.89 0.0004 0.99 7 

21 Hqmax pos ku 0.11 0.77 0.0049 0.88 11 

22 Hqmax neg ku 0.09 0.74 0.0032 0.83 13 

23 Hqn pos ku 0.11 0.65 0.0028 0.76 19 

24 Hqn neg ku 0.08 0.69 0.0021 0.77 18 

P
S

A
 

25         0.39 0.93 0.0200 1.32 4 

26         0.52 0.68 0.0052 1.21 5 

27       0.50 0.95 0.0028 1.45  1 

28         0.50 0.93 0.0015 1.43 2 

29         0.63 0.74 0.0034 1.37 3 

30       0.56 0.63 0.0046 1.19 6 

31     ⁄  0.03 0.37 0.0085 0.41 31 
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Figure 4-32. Monotonicity scores 

 

Figure 4-33. Prognosability scores 

 

Figure 4-34. Trendability scores 

 

Figure 4-35. Total scores of monotonicity, prognosability and trendability 
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From the scores in Table 4-6 and bar graphs in Figure 4-32 to Figure 4-35, we can 

conclude that PSA features have better score than PRPDA for all three prognostic 

metrics as well as the total metrics. The great difference between these two 

approaches can be seen in monotonicity scores in Figure 4-32 indicating more 

consistent behavior among PSA features. According to [31], monotonicity is an 

important feature of a prognostic parameter because it is generally assumed that  

systems do not undergo self-healing, which would be indicated by a non-monotonic 

parameter. However, the monotonic trend of PSA features is mostly observed in the 

first half of the tree growth and becomes constant towards breakdown, and results in 

scores that are less than 0.7. This is due to the sequential data during the constant 

stage yields a d/dx = 0, thus not counted for monotonicity score in equation 3-6.  

Taking duall feature (first rank) of sample 08T374 as an example, the calculation of 

individual monotonicity score is shown graphically in Figure 4-36. The (+) indicates 

positive d/dx where the second is greater than the first while (-) indicates negative 

d/dx and (=) indicates zero d/dx. By referring to equation 3-6, the total of 24 data 

points yields 13 of negative d/dx and 2 of positive d/dx giving a monotonicity of 

0.48. For the case of PRPDA features,  and  results in higher score compared to Sk 

and Ku due to their monotonic trend in the early stage.  

 

Figure 4-36. The positive and negative d/dx for determining the monotonicity score of duall 

of sample 08T374. 

Most of the 24 samples behave similarly with PSA features being more monotonic 

compared to PRPDA features. However, two samples, 08T365 and 09T325, show 



115 
 

very different behaviour compared to other samples and result in a much lower score. 

This is due to the lack of PD activity at certain time intervals which results in a 

greater number of    ⁄    and almost equal number of positive and negative    ⁄  

as can be seen in the duall feature of 09T325 in Figure 4-37.  Since the number of 

positive and negative    ⁄   is the same, hence, the monotonicity score is 0. 

Among the seven PSA features, du/d behaves differently where the monotonicity 

score is even smaller than most of the PRPDA features. As we can see in Figure 

4-31, there is no certain direction of du/d with an increase at the early growth but a 

decrease towards breakdown. After all, the average of the total monotonicity scores 

of each feature are calculated and tabulated in Table 4-6 and compared in Figure 

4-32. 

 

Figure 4-37. The positive and negative d/dx for determining the monotonicity score of duall 

of 09T325 

Prognosability in equation 3-7 encourages well-clustered failure values, i.e. small 

standard deviation of failure values, and large parameter ranges. This means, 

prognosability only relies on the first (start of treeing) and the last (breakdown) 

feature data ignoring what happens in between. This is the reason that skewness and 

kurtosis in the PRPDA features have a greater score than mean and standard 

deviation as shown in Figure 4-33. Even though skewness and kurtosis of samples 

from Wave 1 behave differently, the failure values are clustered well with other 

samples as indicated with the red * in Figure 4-38a (taking Hqn pos ku as an example) 
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disregarding which harmonic group they belong to. The Hqn pos  (comparing 

standard deviation with kurtosis) in Figure 4-38b on the other hand, has greater 

parameter range but greater standard deviation of failure values, thus results in lower 

prognosability score.  

 

                      (a)  = 0.4, range = 1.0                                    (b)  = 33.7, range = 32.9                

                           prognosability = 0.65                                       prognosability = 0.36                              

Figure 4-38. The distribution of failure values (indicated by *) of (a) Hqn pos ku, and (b) Hqn 

pos  

Most of PSA features exhibit well-clustered failure values based on plots in Figure 

4-29 to Figure 4-31 with dusmall, duall and dsmall in Figure 4-33 having relatively 

higher scores than the rest. The distribution of the failure values among du 

subfeatures can be compared in Figure 4-39. Although the parameter ranges of du 

subfeatures are considered small, with a very small standard deviation, dusmall and 

duall yield high prognosability scores. The dularge however, scored less than duall and 

dusmall due to higher standard deviation, .  

          

       (a)  = 0.2, range = 3.2            (b)  = 4.3, range = 11.4             (c)  = 0.5, range = 9.1  

            prognosability = 0.93               prognosability = 0.68                  prognosability = 0.95              

Figure 4-39. The distribution of failure values (indicated by *) of du subfeatures in Figure 

4-29 
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Trendability is defined in [31] as a measurement of how well each parameter in a 

population is described by the same underlying function. This measurement is 

performed in this thesis using Q-Q plot. The Q-Q plot is a plot of the sorted quantiles 

of one data set against the sorted quantiles of another data set [254]. It is used to 

visually inspect the similarity between the underlying distributions of two data sets. 

If the two distributions are similar, then the points would lie close to the linear 

identity line, y = mx + c. Since the tree samples give data of different sizes, thus, the 

quantiles are selected to correspond to the sorted values from the smaller data set. 

The quantiles for the larger data set are then interpolated as well as the features‘ 

values. The quantiles, q of each feature are determined using equation 4-17 where i is 

the number of the quantile, N is the size of the feature, t is the recorded time in 

minutes, t0 is the start time of treeing thus equals to 0, and tbd is the failure time 

[254]. 

   
       
    

         (4-17)    

For example, using equation 4-17, the quantiles of a feature recorded every 5 minutes 

and for which failure occurs at 25 minutes (t = 5, 10, 15, 20 and 25 minutes) are 

obtained as q = 0.1, 0.3, 0.5, 0.7 and 0.9. 

From visual observation, the behaviour of PSA features looks more consistent than 

PRPDA. Therefore, it is expected that trendability among the samples in PSA 

features is better than PRPDA. However, outliers may affect the trendability scores 

since this measure only considers the minimum correlation coefficient as indicated in 

equation 3-8. The comparison between a good and a poor trendability can be 

observed in Figure 4-40 to Figure 4-42.  

In Figure 4-40a, we can see that the dsmall decreases exponentially for sample 

12T373 but behaves randomly for sample 09T325, thus results in very low Pearson‘s 

correlation coefficient, ccp (refer equation 3-9). In contrast, both samples in Figure 

4-40b show declining behaviour hence yield a very high ccp. It can be seen in Figure 

4-41 that only the Q-Q plot of high ccp shows a linear identity. 



118 
 

The trendability is given by the smallest absolute correlation coefficient. The 

Pearson‘s correlation coefficients between 09T325 and other samples are shown in 

Figure 4-42a and can be compared with the scores between 01T426 and other 

samples in Figure 4-42b. As can be seen, the ccp of 09T325 with other samples is 

lower than 0.5. Sample 01T426 on the other hand, has only three correlations that are 

lower than 0.5 i.e. with 01T354, 08T365 and 09T325 which are the potential outliers. 

The ccp with other samples are mostly greater than 0.8 showing a great strength of 

relationship between 01T426 and other samples. As a final point, the harmonics 

order does not seem to influence the correlation between samples.  

 

                       (a) ccp = 0.0015                                                     (b) ccp = 0.9964 

Figure 4-40. The relationship between two samples for dsmall feature, (a) the lowest 

correlation (b) the highest correlation 

 

                          (a) ccp = 0.0015                                     (b) ccp = 0.9964 

Figure 4-41. The QQ-plots of samples in Figure 4-40 (a) 09T325 and 12T373 (b) 13T423 

and 01T426 
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   (a) 09T325                               (b) 01T426 

Figure 4-42. The Pearson‘s correlation between (a) 09T325 and other 23 samples, and 

(b) 01T426 and other 23 samples 

4.5  Feature Selection 

Referring to Table 4-6, the first two ranks features have very close scores i.e. 1.45 

and 1.43. Both features are from PSA i.e. duall and dsmall. The individual metric 

scores of both features are also very close. As can be seen in Figure 4-29c and Figure 

4-30a, both features have very similar in characteristics. Taking both redundant 

features as the key parameter in the model development may cause overfitting as 

mentioned earlier in Section 3.4 . Features that behave similarly will have high 

correlation measure. Therefore, in this section, the Pearson‘s correlation between the 

top three features (duall, dsmall and dlarge) are calculated using equation 3-10 or 3-11 

and are plotted in Figure 4-43. As can be seen in Figure 4-43a, the correlation 

between duall and dsmall is very high, nearly 1, except for 09T325. For the third rank 

feature, dlarge, some of the samples yield lower correlation, around 0.8 (see Figure 

4-43b and 4-43c), but still a good number for the correlation measure. Considering 

the following rank-3 to rank-6 features may also introduce redundancy as the 

features are from the same subset, i.e. du and d. Rank-7 feature on the other hand, is 

from PRPD, but the total of three metrics score is much lower compared to PSA 

features. Therefore, only the first rank feature, duall, is selected for the development 

of the prognostic model in Chapter 5. Modelling with a single parameter leads to a 

simpler model and is also easier to visualise. This is very useful especially when the 

approach proposed in this thesis is new to cable monitoring. 
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(a) Pearson‘s correlation between duall and dsmall 

 

(b) Pearson‘s correlation between duall and dlarge 

 

(c) Pearson‘s correlation between dsmall and dlarge 

Figure 4-43. The Pearson‘s correlation between duall, dsmall and dlarge for all 24 samples 
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4.6  Effect of Harmonics on duall 

As mentioned previously in Section 4.3.2.2, there is no deterministic relationship 

between the harmonic order and the behaviour of duall. Here, the plots in Figure 

4-29c are replotted which correspond to the growth time instead of the TTF. Also, 

the samples are grouped according to the harmonic order, THD and waveshape 

factor, Ks as shown in Figure 4-44. Again, no deterministic relationship can be 

determined between either harmonic order, THD or Ks and duall since the growth 

rates (duall/duall) of the samples in the same group are varies. This finding supports 

the judgement of the previous research [18]. Therefore, all the samples are treated 

equally in the prognostic modelling without discriminating the harmonics content. 

 

                                                             (a) 

 

                                                             (b) 

 

                                                             (c) 

Figure 4-44. The duall feature with samples grouped in (a) harmonics order, (b) THD, and 

(c) Ks   
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4.7  Summary  and Conclusion 

Identification of potential prognostic parameters is one of the crucial components in 

prognostic modelling. The parameters are expected to show a monotonic behaviour 

that represents the degradation process of the system. In this chapter, a total of 31 

features have been extracted with 24 of them from PRPDA and 7 from PSA. These 

features are mostly used for diagnostics which the concept was extended here for 

prognostic modelling.  

Observation on PRPD patterns from the start tree growth until breakdown occurred, 

revealed three important changes i.e. the increase in number of PD, PD magnitude 

and phase occurrence. These changes were represented by four statistical measures 

(mean, standard deviation, skewness and kurtosis) on three 2D phase distributions 

(Hn(),  Hqmax() and Hqn()). The statistical measures were determined separately 

for positive and negative half cycles, giving a total of 24 PRPD features. It was 

shown visually that the positive and negative PDs of all features behaved similarly 

towards the breakdown.  

The PRPD pattern was greatly influenced by the harmonic order. Waveforms with 

higher harmonic order will have more rising and falling edges thus result in more 

distorted PRPD patterns. High THD was found to increase the number of PD 

clusters. However, no deterministic relationship can be concluded for waveshape 

factor, Ks. It was mentioned in [18] that the peak voltage employed in this thesis 

might be too high for Ks to have a dominating influenced. Among the PRPD features, 

only skewness and kurtosis were influenced by harmonics. The increased in the 

number of PD clusters due to high THD resulted in highly distorted PRPD pattern 

thus increased the skewness and kurtosis. 

From PSA, it was found that voltage change, du decreased exponentially throughout 

the tree growth. The du can be divided into two groups i.e. dusmall and dularge, while 

the total du is denoted as duall. A change in du resulted in a similar change in d. 

Hence, the same features can be extracted from the phase occurrence, i.e. dsmall, 
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dlarge and dall. Lastly, the seventh PSA feature was derived from the ratio of the 

key changes, du/d. 

Similar to PRPDA, there was no deterministic relationship between Ks and PSA 

pattern. High THD (40%) also influenced the PSA pattern (un vs un-1 plot) by adding 

two more clusters to the existing PD clusters. Nonetheless, the harmonic order did 

not change the number of clusters except for extra features in the existing PD 

clusters.  

Throughout the tree growth, PSA features showed a smoother behaviour than 

PRPDA with clearer monotonic trend. No distinct difference was observed between 

the harmonic groups in all PD features except for du/d. 

The performance of 31 PD features were evaluated using three performance metrics 

i.e. monotonicity, prognosability and trendability. The total score of these metrics 

was used to rank each feature i.e. the top rank has the highest score. For PRPDA, 

mean and standard deviation features yielded better score in monotonicity compared 

to skewness and kurtosis, and vice versa for prognosability metric. PSA features 

scored remarkably for prognosability and were comparable to skewness and kurtosis 

from PRPDA. For monotonicity, PSA features only showed a monotonic trend 

during the first half of total growth thus yielded a moderate score, but still higher 

than PRPDA.  

Although PSA features dominate the top ranks in Table 4-6, only one feature is 

selected for the model development. The reason for this, is the high correlation 

between the PSA features. Features with similar behaviour may become redundant 

and caused overfitting to occur. Therefore, only the first rank feature, duall, is 

selected for the development of prognostic model in Chapter 5.  

The three prognostic performance metrics not only assist in features selection but 

also in identifying the outliers. So far, two samples, 08T365 and 09T325, were 

spotted to show different behaviour with very low monotonicity score. These two 

samples also yield low scores in trendability analysis as shown in Figure 4-42. 
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Another sample, 01T354, gains much lower score than 09T325 in Figure 4-42 hence 

is also suspected to be an outlier. The identification process is based on the 

individual scores of monotonicity and trendability which is discussed in detail in the 

next chapter. 

Finally, no unique characteristic is observed to differentiate the effect of harmonics 

on the electrical tree growth. Grouping the samples according to the THD and Ks also 

did not reveal any relationship.  Thus, all harmonic groups are treated equally in the 

next chapter with no discrimination. 
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Chapter 5                       

Building a Prognostic Model 

Using the Selected PD Feature 

5.1  Framework of the Developed Model 

Little work has been reported regarding insulation lifetime prediction using PD data, 

even though PD monitoring is essential for condition monitoring in power 

equipment.  Published life models are mostly based on the Weibull analysis of failure 

data which has no information on the degradation process. Alternatively, this 

research work proposes a framework for developing a prognostic model using PD 

data from electrical treeing experiment. The PD data is analysed and evaluated, in 

order to find the most suitable prognostic parameter. As explained in Section 4.7 , a 

prognostic model is developed based on a degradation parameter, duall applying the 

simplest approach, curve fitting. The framework of the model development and 

evaluation is given in Figure 5-1. 

First of all, the behaviour of the first ranked feature, duall is visualised to identify the 

outliers and to aid the decision of selecting the model‘s algorithm. Next, the outliers 

are identified from the individual sample score of the monotonicity and trendability 

metrics. It is important to know the reason for different behaviour before deciding 

whether to keep or remove the outliers. The simplest option is considered for fitting 

the data i.e. curve fitting technique. At this stage, additional algorithm can be 
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introduced in order to improve the model‘s predictions. Then, the properties of the 

model are determined. This includes the threshold value where the TTF is predicted. 

Validation of the model is done by applying the model on the testing samples. Both 

holdout and cross-validation techniques are employed and compared. The 

performance of the model is finally revealed using the two metrics proposed in [247] 

i.e. prognostic horizon, PH and cumulative relative accuracy, CRA, and one metric 

proposed in this thesis, convergence horizon, CH.  

 

Figure 5-1. The framework of the developed prognostic model 
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5.2  Outliers 

This research work employs a single feature for building a prognostic model for 

electrical treeing breakdown. The feature with the highest total score of the three 

prognostic metrics (sum of monotonicity, prognosability and trendability), duall, is 

chosen. A total of 24 samples are used for training the model. However, some of the 

samples behave very differently from the others, thus requiring some filtering. From 

visual observation, most of the samples decrease exponentially and tend towards a 

constant value towards breakdown. Nevertheless, those samples with unusual 

behaviour have much less monotonicity, thus do not really trend together. Therefore, 

the monotonicity and trendability metrics are recalculated individually for each 

sample in order to verify the outlier samples. The prognosability metric is excluded 

since it is measured based on population. 

The average of the monotonicity score for 24 samples is 0.5 (see Table 4.6) which 

can be considered as a moderate score due to the consistent duall values during the 

second half of samples‘ lifetime. In this section, all 24 samples are tabulated in Table 

5-1 with the individual monotonicity and trendability scores. For the case of 

trendability, the correlation between one sample to each of the other 23 samples is 

taken and averaged. From the monotonicity scores, two samples have been identified 

to have the lowest scores i.e. 08T365 and 09T325. Both samples also yield low 

scores for trendability as well as sample 01T354. Although the monotonicity of 

01T354 is closer to the average, the trendability score is much lower compared to 

other samples. These low scores are highlighted in red and the negative sign for 

monotonicity indicates a more dominant decreasing pattern.   
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Table 5-1. Monotonicity and correlation of training samples for duall feature 

Wave Sample 

Monotonicity Pearson’s Correlation of Trendability 

24 samples 21 samples 
24 samples 21 samples 

Average Lowest Average Lowest 

1 

01T354 -0.39 - 0.22 0.016 - - 

01T382 -0.36 -0.36 0.74 0.128 0.82 0.51 

01T426 -0.73 -0.73 0.79 0.049 0.87 0.64 

7 

07T332 -0.78 -0.78 0.78 0.042 0.86 0.59 

07T343 -0.55 -0.55 0.83 0.053 0.91 0.79 

07T383 -0.56 -0.56 0.76 0.123 0.83 0.66 

8 
08T365 -0.07 - 0.45 0.111 - - 

08T374 -0.48 -0.48 0.81 0.032 0.89 0.66 

9 

09T325 -0.00 - 0.12 0.003 - - 

09T344 -0.42 -0.42 0.81 0.035 0.89 0.64 

09T412 -0.41 -0.41 0.60 0.097 0.66 0.49 

09T421 -0.50 -0.50 0.67 0.168 0.73 0.49 

11 

11T333 -0.48 -0.48 0.81 0.144 0.89 0.67 

11T345 -0.21 -0.21 0.79 0.005 0.87 0.60 

11T391 0.46 0.46 0.80 0.122 0.88 0.62 

11T425 -0.55 -0.55 0.72 0.016 0.80 0.55 

12 

12T342 -0.54 -0.54 0.81 0.058 0.88 0.67 

12T373 -0.55 -0.55 0.82 0.034 0.91 0.77 

12T394 -0.37 -0.37 0.69 0.013 0.76 0.51 

13 

13T324 -0.50 -0.50 0.81 0.003 0.89 0.67 

13T331 -0.48 -0.48 0.79 0.196 0.85 0.59 

13T376 -0.50 -0.50 0.82 0.157 0.90 0.69 

13T393 -0.25 -0.25 0.68 0.160 0.74 0.52 

13T423 -0.61 -0.61 0.80 0.120 0.88 0.59 

Average -0.41 -0.50 0.71 0.003 0.84 0.62 
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To justify those three samples as being the outliers, the average and the lowest 

correlations are recalculated using only 21 samples excluding those three. From the 

results, we can see a great difference in the lowest correlation between these two 

populations (Figure 5-2). Figure 5-3 shows the behaviour of all 24 samples with red 

solid lines representing the three outliers while the blue solid lines represent the other 

21 samples. The difference in the behaviour of the three outliers is due to the lack of 

PD activities in some of the time interval and thus causes the duall values to become 

greater or zero (when no PD is recorded). Different behaviour will result in a 

different model when the curve fitting technique is employed. Since the key 

parameters of the developed model are determined as an average from all samples 

(explained later in Section 5.5), considering the outliers will definitely alter the 

average parameters and is not representative of most of the samples. Therefore, a 

simpler approach is considered by removing the outliers in the training algorithm. 

This limitation can be improved in the future when more data is available to allow 

treatment on the outliers before the training process. 

 

Figure 5-2. Comparison on the lowest Pearson‘s correlation trendability score between the 

sets of 24 and 21 samples 
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Figure 5-3. duall plots of 21 samples and 3 outliers 

5.3  Characteristics of duall 

As outlined in the experimental plan in Figure 4-6, the inception of electrical treeing 

is performed under the influence of 50Hz at 18.0kV peak within 30 minutes. Only 

initiated electrical trees of 10µm are counted for Stage 2 where the composite 

waveform was maintained at 14.4 kV peak for a maximum of 2.5 hours. The analysis 

of PD data in Chapter 4 only considers the tree growth in Stage 2, and this section 

discusses the correlation between PD data and the electrical treeing mechanism.  

From visual observation of Figure 5-3, no distinct pattern is detected at the start of 

Stage 2 before duall decreases exponentially. When the first tree branch touches the 

ground electrode, duall reaches a consistent value before breakdown. Hence, the 

behaviour of duall can be divided into three regions as shown in Figure 5-4, taking 

sample 09T412 as an example.  

The tree image in the first region shows an electrical tree about to grow, resulting in 

a decreasing trend of duall in Region 1 (other samples may experience a different 

trend). This behaviour may be due to the change of frequency and magnitude of 

applied voltage from Stage 1 to Stage 2 of the experimental plan. Bahadoorsingh 

mentioned in [18] that at the initial stage, very faint filaments of light were observed 

at the needle tip penetrating and eroding into the epoxy resin. The light is described 

as intermittent prior to electrical tree initiation. The formed tubule gets thicker as the 

electrical tree begins to grow towards the ground electrode.  
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In Region 2, all the samples show a declining pattern with a steep drop at the start 

and becoming more gradual upon entering Region 3. The dashed line in Figure 5-3 

indicates the time of the first tree branch touching the ground electrode, tgnd.  

In Region 3, duall remains constant with all samples experiencing a return tree 

growth, i.e. the tree branches grew from the ground electrode towards the needle tip 

(see tree image in Region 3 of Figure 5-4). Notably, the return growth occurs after 

the original tree traversed the insulation gap. A similar observation was documented 

in [13], [27]–[29]. This return tree grows through the existing tubules from the 

ground electrode, and results in thicker channels. At the same time, the downward 

growth also slowly widens with fine tubules. Thus, the tree is more likely to develop 

thicker channels rather than spreading to the entire sample. It was reported in [13] 

that the tree growth was also influenced by the hot ionised gas plasma in the 

channels. These ions look for the shortest path to create and sustain the breakdown 

arc. Since breakdown did not occur when the original tree growth traversed the 

insulation gap, this suggests the original growth is non-conducting while return 

growth is conducting. However, there is no clear indicator to justify the starting time 

of the return tree. 

The small duall values in Region 3 depict a higher repetition rate of discharges. This 

can be due to the increase of ionisation in the tubules when the discharges erode the 

ground electrode [13]. The behaviour of duall of all samples can be observed in 

Figure 5-5 and Figure 5-6 in the next section. Some of the samples show fluctuations 

just before breakdown, as shown in Figure 5-4. The increase of duall just before 

breakdown might be due to the decrease of discharge activity when a tree channel 

suffers partial breakdown. This implies full breakdown is about to happen. It is 

mentioned in [18] that the discharge activity is restored gradually with further 

development of the conductive channels to create favourable conditions for the 

breakdown arc. The activity of the discharges then increases, immediately prior to 

the luminous breakdown event. 
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5.4  Applying Curve Fitting to duall 

Curve fitting is one of the simplest approaches that can be applied in model fitting. 

Since the stress endurance from accelerated life testing mostly obeys the exponential 

or inverse-power law [178], both these models are considered for fitting the duall. 

Figure 5-5 plots the duall exponential fit and inverse power fit for all 21 training 

samples. A clearer view of the points in Region 3 can be seen in Figure 5-6 by 

applying a logarithmic scale on the y-axis of Figure 5-5. As can be seen, the 

exponential fits better than the inverse power and can be verified by the GOF values 

in Table 5-2. Two of the statistical measures discussed in Section 3.6 are computed 

to evaluate the performance of the fits i.e. adjusted coefficient of determination, Radj 
2
 

and root mean squared error, RMSE. Based on the GOF values, the exponential curve 

is considered for the prognostic model rather than the inverse power curve. 

Table 5-2. The GOF of exponential and inverse-power fits 

Curve 

Fitting 

Adjusted 

R-Square 
RMSE 

Exponential 0.84 1.33 

Inverse power 0.69 2.02 

 

Referring to Figure 5-5, the inconsistency of duall values in Region 1 occurs for a 

very short period i.e. 10 to 20 minutes after the tree initiated. In this region, the 

samples do not really have a common behaviour. It should also be noted that not all 

samples experienced the random behaviour thus not all samples have a clear Region 

1 in Figure 5-5. In contrast, all samples trend together in Region 2 and 3 where the 

duall points decrease exponentially before remaining constant. One approach to 

modelling three distinct regions of behaviour is to fit three piecewise functions. 

However, if three piecewise functions were considered here, the model would have 

no predictive power because duall does not trend towards a specific value at the end 

of Region 1 and the start of Region 2. Since duall is mostly constant in Region 3, a 

piecewise model would be equal to a constant value with no predictive power. 

Hence, similarly to Region 1, no individual fitting is required for this region. 
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Figure 5-5. The exponential and inverse power fits for duall of 21 samples. Dashed line 

indicates the tgnd, red lines represent the exponential fits and green lines represent the inverse 

power fit 
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Figure 5-6. The exponential and inverse power fits in semilog scale. Dashed line indicates 

the tgnd, red lines represent the exponential fits and green lines represent the inverse power fit 
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Among the three regions, only the duall points in Region 2 show a clear monotonic 

trend. If only these points were considered for exponential fitting, it is expected to 

closely meet the duall at the touch ground time, tgnd (see Figure 5-7), which occurs at 

the ‗knee‘ of the fit. This means, the fit is close to the points in Region 2 but deviates 

from the points in Region 3 (see Figure 5-7b), thus the fit diverges from the actual 

breakdown point, duall(bd) (when TTF = 0). This is experienced by samples with no 

Region 1 e.g. 07T383, 12T342, 12T373, 12T394, 13T324 and 13T393. Referring to 

Figure 5-6, the inverse power curve seems to fit these samples more closely 

compared to the exponential.  

On the other hand, the fit of sample 09T421 (no Region 1) yields a breakdown point, 

dufit(bd) close to the duall(bd) due to the nonexistence of Region 3. Among all samples, 

only this sample has no record of the tgnd because of its very fine tree branches, 

resulting in a poorer quality image hence the first ground touch is ambiguous. The fit 

closely meets all the duall points and may include the duall at tgnd if it were known. 

Therefore, the exponential fits of the samples with no Region 1 may aid the 

prediction of tgnd better than the breakdown time, tbd when compared to samples with 

Region 1. 

From Figure 5-7, we can see that the fit of all duall points deviates from points in 

Region 2. This is due to the duall points in Region 1 which actually aid the fit to reach 

the true breakdown point. This fit yields a higher knee point and lower slope in 

Figure 5-7a and Figure 5-7b respectively when compared to the fit of only duall 

points in Region 2. Conversely, duall points in Region 3 do not really affect the fit. 

This means, fitting duall points in Region 1 and 2 of sample 11T333 will result in an 

almost identical fit to all duall points. Also, fitting duall points in Region 2 and 3 will 

result in a similar fit to the duall points in Region 2 only. Therefore, samples with a 

long Region 3 will push the fitted curve farther from the breakdown point. This can 

be seen in samples with a long breakdown time in Figure 5-6 e.g. 09T412, 11T345, 

12T394 and 13T393. On the contrary, samples with a short breakdown time will 

have a brief Region 3 e.g. 01T426, 09T421 and 11T425, hence yielding curves that 

fit closer to the breakdown point. 
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       (a)                                           (b) 

Figure 5-7. Comparison between exponential fit of all duall points and exponential fit of only 

duall points in Region 2 in (a) linear scale and (b) semilog scale 

For simplicity, the semilogarithmic (or semilog) scale is applied instead of the linear 

scale so that the fit can be expressed as a linear equation. Hence, the linear regression 

can also be considered to fit log10 duall values. The GOF in Table 5-2 is rewritten in 

Table 5-3  to compare the closeness of the three fits; exponential, inverse power and 

linear. Among the three fits, exponential shows the highest accuracy. Both linear and 

inverse power fits have very close accuracy. Since fitting log10 duall using inverse 

power does not give a linear fit, only exponential and linear fits are considered and 

compared for model development. 

Table 5-3. The GOF of exponential, inverse power and linear fits 

Curve 

Fitting 

Adjusted 

R-Square 
RMSE 

Exponential 0.84 1.33 

Inverse power 0.69 2.02 

Linear 0.71 2.01 

 

The accuracy of the lifetime predictions depends on the availability of the currently 

available data. Thus, both linear and exponential fits are employed with 

consideration of the availability of the duall values. Figure 5-8 shows the plots of both 

fits where the labels indicate which of the duall values are being fitted. For instance, 

line 1-3 fits the first three duall values. The very small change in duall in Region 1 of 

sample 07T343 causes the 1-3 line to be close to horizontal, hence it is impossible 
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for this curve to meet the actual breakdown point in two and a half hours. As the 

available duall values enter Region 2, the gradient of the fit, mfit, increases. The 

exponential fit meets the duall(bd) when the first five duall points are available whereas 

the linear fit requires four duall values. When more data are available and Region 2 

becomes more dominant than Region 1, both linear and exponential curves move 

farther from the duall(bd) point as the gradient of the line keeps increasing. Thus, mfit is 

one of the main criteria in fitting the duall.  

The changes in mfit cause the duall of the fit at TTF = 0, dufit(bd), to vary. Referring to 

Figure 5-8a, the dufit(bd) of the exponential curve decreases significantly at first and 

becomes more consistent when more duall values are available. The dufit(bd) of the 

linear curve also decreases at the initial stage but then keep increasing when the mfit 

started to decrease (see line 1-9 and above). This indicates that duall values in Region 

3 have an influence on linear fits but not on exponential fits. 

 
(a)                                                                   (b) 

Figure 5-8. Fitting the duall of sample 07T343 with consideration of the availability of the 

data (a) exponential fit (b) linear fit. 

The mfit and log10 dufit(bd) of both exponential and linear fits considering the 

availability of the duall values of sample 07T343 are given in Table 5-4 and plotted in 

the boxplots in Figure 5-9. From the boxplots, we can see both mfit and log10 dufit(bd) 

have the same distribution pattern. For exponential fits, the median of mfit and log10 

dufit(bd) are also the minimum values because of the strong skew on the data. In 

addition, the first four dufit(bd) values that lie beyond the upper whisker are outliers 
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(where the maximum whisker length is 1.5 of the interquartile range (IQR)). 

Referring to Table 5-4 and Figure 5-8, both mfit and dufit(bd) of the exponential fits 

begin to keep their values consistent when the first eight duall values (1-8) are 

available. This means, the fit of eight duall values is very similar to the fit of all duall 

values. Therefore, the properties of the prognostic model can be based on the 

exponential fits in Figure 5-6 which consider all the duall values.  

In contrast, the dufit(bd) of linear fits keep changing and do not reach a constant value 

thus resulting in a more scattered distribution than the exponential fits (higher 

variance). The closest dufit(bd) value to the duall(bd) is when all duall values are 

available which violates the purpose of prediction. As an alternative, an average 

value can be considered for determining the properties of the prognostic model. 

Based on Figure 5-8b, the average of dufit(bd) might exclude the values from the 

outliers i.e. curves 1-2, 1-3 and 1-4. 
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Table 5-4. The mfit and log10 dufit(bd) of the exponential and linear fits of sample 07T343 with 

consideration on the availability of the duall values 

Available 

duall points 

Exponential Fit Linear Fit 

mfit Log10 dufit(bd) mfit Log10 dufit(bd) 

1-2 -0.010 -0.023 -0.010 -0.023 

1-3 -0.004 0.564 -0.004 0.582 

1-4 -0.014 -0.378 -0.017 -0.664 

1-5 -0.019 -0.864 -0.026 -1.438 

1-6 -0.022 -1.148 -0.032 -1.986 

1-7 -0.024 -1.288 -0.034 -2.177 

1-8 -0.025 -1.361 -0.034 -2.218 

1-9 -0.025 -1.399 -0.034 -2.164 

1-10 -0.025 -1.417 -0.032 -2.062 

1-11 -0.025 -1.422 -0.030 -1.904 

1-12 -0.025 -1.426 -0.029 -1.813 

1-13 -0.025 -1.428 -0.028 -1.724 

1-14 -0.025 -1.429 -0.028 -1.675 

1-15 -0.025 -1.429 -0.027 -1.597 

1-16 -0.025 -1.428 -0.025 -1.517 

1-17 -0.025 -1.427 -0.024 -1.439 

1-18 -0.025 -1.427 -0.023 -1.360 

1-19 -0.025 -1.426 -0.022 -1.286 

1-20 -0.025 -1.425 -0.021 -1.211 

1-21 -0.025 -1.424 -0.020 -1.146 

 

 

 

                (a)                                                                       (b) 

Figure 5-9. The boxplot of the (a) mfit and (b) log10 dufit(bd) for both exponential and linear fits 

of sample 07T343 
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5.5  Determining the Properties of the Model 

As mentioned in Section 3.5, a prognostic model requires a threshold value as a 

prediction point. Based on the analysis of the treeing data, the prediction point can be 

formulated from the duall of the fit, dufit, either at tgnd (dufit(gnd))  or at tbd (dufit(bd)). 

Taking exponential fit as an example, these values can be extracted by gathering all 

the fittings in Figure 5-6 where the x-axis can be either time-to-ground, TTG, or 

time-to-failure, TTF, as shown in Figure 5-10a and Figure 5-10b respectively. The 

dufit(gnd) and dufit(bd) are the y-intercepts of the plots respectively. The smaller range of 

dufit(gnd) values shows a better quality of prognostic model compared to dufit(bd). 

However, for a lifetime that is less than 2.5 hours, and some of the TTG values are 

only a quarter of the TTF, predicting the TTG may be less beneficial. Therefore, the 

dufit(bd) values were selected as the prediction point of the prognostic models derived 

from exponential and linear curve fittings.  

 

                                       (a)                                                                        (b) 

Figure 5-10. Exponential fits of all 21 training samples with (a) duall vs TTG, and (b) duall vs 

TTF 

5.5.1   Exponential Fitting 

Exponential fits in Figure 5-10b are replotted in Figure 5-11a together with the actual 

breakdown points, duall(bd). As can be seen, the log10 duall(bd) varies between -1and 0 

but the fits have a wider range of  log10 dufit(bd) that is between -4 and 0  (also listed in 

Table 5-5) which depicts a poor quality of prediction point. The highlighted log10 

dufit(bd) points in Table 5-5 indicate the ones that are out of the actual breakdown 

range. Those highlighted samples mostly have high mfit values that are ranged 
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between -0.017 to -0.039. In order to obtain a closer dufit(bd) value, the mfit therefore 

should be in a smaller range. Henceforth, an algorithm was designed that would 

maximise the accuracy of breakdown point predictions by selecting a realistic 

gradient value. The construction of the algorithm proceeded as follows. 

The developed prognostic model aims to predict the TTF based on the current duall 

value. The available duall values will be fitted with an exponential curve and 

extrapolated to the threshold point, duth, which is estimated from the log10 dufit(bd) of 

the training samples. To maximise the accuracy, some of the fits in Figure 5-11a are 

modified to a new gradient, mmodel. From the properties of Figure 5-11a in Table 5-4, 

the mmodel is set to -0.016 which is the most frequent gradient that results in realistic 

dufit(bd) values. Consequently, the fits that have gradient higher than -0.16 are the 

ones that will be modified.  The new dufit(bd) values are determined by anchoring the 

fit at duall when t = 0 or TTF = -tbd. Taking sample 12T394 as an example in Figure 

5-12, the actual fit that yields the lowest log10 dufit(bd) (i.e. -4), has then increased 

using this process to -0.9.  

All the fits in Figure 5-11a are redrawn in Figure 5-11b and the new dufit(bd) values 

are tabulated in Table 5-5. As a result, the range of log10 dufit(bd) decreases from 3.89 

to 1.65. The fits are modified purposely for determining the duth which is the average 

of the log10 dufit(bd) of the modified fit, -0.61. Fixing the gradient may cause 

overfitting thus allowance for mfit values is set from -0.013 to -0.018 based on data in 

Table 5-5.  Finally, the properties of the model are given in Table 5-6 to be applied to 

the testing samples for validation in the next section. 

 

               (a)                                                                (b) 

Figure 5-11. Exponential fits of all 21 training samples with (a) the actual fits, and (b) the 

modified fits 
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Table 5-5. Properties of the fits in Figure 5-11 

Sample 

ID 

tbd 

(min) 

Actual Fits 

(Figure 5-11a) 

Modified Fits 

(Figure 5-11b) 

Gradient, 

mfit 

Log10  

dufit(bd) 

Gradient, 

mfit 

Log10  

dufit(bd) 

01T382 129 -0.014 -0.64 -0.013 -0.60 

01T426 60 -0.022 -0.29 -0.016 0.04 

07T332 93 -0.016 -0.33 -0.016 -0.29 

07T343 103 -0.025 -1.42 -0.016 -0.48 

07T383 130 -0.033 -2.82 -0.016 -0.62 

08T374 118 -0.017 -0.68 -0.016 -0.62 

09T344 123 -0.016 -0.68 -0.016 -0.67 

09T412 138 -0.021 -1.62 -0.016 -0.95 

09T421 71 -0.020 -0.69 -0.016 -0.42 

11T333 108 -0.016 -0.62 -0.016 -0.57 

11T345 143 -0.022 -1.85 -0.016 -0.97 

11T391 120 -0.019 -0.91 -0.016 -0.57 

11T425 58 -0.022 -0.16 -0.016 0.19 

12T342 123 -0.017 -1.26 -0.016 -1.09 

12T373 113 -0.024 -1.45 -0.016 -0.60 

12T394 138 -0.039 -4.05 -0.016 -0.87 

13T324 93 -0.032 -1.96 -0.016 -0.47 

13T331 117 -0.014 -0.67 -0.014 -0.67 

13T376 122 -0.018 -0.90 -0.016 -0.71 

13T393 149 -0.032 -3.83 -0.016 -1.46 

13T423 94 -0.018 -0.57 -0.016 -0.34 

Average 112 -0.022 -1.305 -0.016 -0.61 

 

 

Figure 5-12. The actual and modified fits are anchored at -tbd 
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Table 5-6. Properties of the exponential prognostic model 

Properties Minimum Maximum Range Mean 
Standard  

Deviation 

mfit  -0.013 -0.018 0.005 -0.016 0.0006 

Log10 dufit(bd) -1.46 0.19 1.65 -0.61 0.35 

tbd 58 min 149 min 91 min 112 min 25 min 

 

5.5.2   Linear Fitting 

As mentioned previously, the linear fit that represents each of the training samples 

may be taken as an average of the fits considering each availability of duall values. 

The average linear curves disregard the outliers and are plotted in Figure 5-13a, for 

which the properties are given in Table 5-7. The same algorithm is applied here for 

determining the properties of prognostic model. 

From Figure 5-11a and Table 5-5, we can see that fits with high mfit causes the 

dufit(bd) to become lower thus increase the range. As a result, those fits are modified to 

a new gradient, mmodel, in order to decrease the range. However, this is not the case 

for the linear fits in Figure 5-13a. The fits of the maximum and minimum dufit(bd) are 

in parallel (with almost same value of mfit). Hence, modifying these fits will not 

decrease the range of dufit(bd).  

The mfit varies from -0.014 to -0.028. The range is considered high and should be 

decreased to avoid unreasonable error in predictions. Nonetheless, modifying the fits 

may increase the range of dufit(bd), hence the optimum range for mfit would be from -

0.019 to -0.026. The fits that are not in the range are highlighted in Table 5-7. Those 

mfit are modified to the nearest value, either -0.019 or -0.026. All the final fits are 

replotted in Figure 5-13b. Modifying the fits does not really change the average of 

dufit(bd) giving duth = -1.41. The properties of the prognostic model are given in Table 

5-8. 
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        (a)                                             (b) 

Figure 5-13. Linear fits of all 21 training samples with (a) the actual fits, and (b) the 

modified fits 

 

Table 5-7. Properties of the fits in Figure 5-13 

Sample 

ID 

tbd 

(min) 

Actual Fits 

(Figure 5-13a) 

Modified Fits 

(Figure 5-13b) 

Gradient, 

mfit 

Log10  

dufit(bd) 

Gradient, 

mfit 

Log10  

dufit(bd) 

01T382 129 -0.018 -1.11 -0.019 -1.28 

01T426 60 -0.025 -0.44 -0.025 -0.44 

07T332 93 -0.023 -0.84 -0.023 -0.84 

07T343 103 -0.028 -1.69 -0.026 -1.52 

07T383 130 -0.027 -2.26 -0.026 -2.11 

08T374 118 -0.025 -1.53 -0.025 -1.53 

09T344 123 -0.024 -1.46 -0.024 -1.46 

09T412 138 -0.021 -1.70 -0.021 -1.70 

09T421 71 -0.014 -0.43 -0.019 -0.81 

11T333 108 -0.023 -1.20 -0.023 -1.20 

11T345 143 -0.025 -2.35 -0.025 -2.35 

11T391 120 -0.026 -1.68 -0.026 -1.68 

11T425 58 -0.026 -0.31 -0.026 -0.31 

12T342 123 -0.018 -1.38 -0.019 -1.51 

12T373 113 -0.023 -1.46 -0.023 -1.46 

12T394 138 -0.020 -1.84 -0.020 -1.84 

13T324 93 -0.028 -1.74 -0.026 -1.52 

13T331 117 -0.020 -1.23 -0.020 -1.23 

13T376 122 -0.023 -1.47 -0.023 -1.47 

13T393 149 -0.015 -1.65 -0.019 -2.30 

13T423 94 -0.025 -1.08 -0.025 -1.08 

Average 112 -0.023 -1.37 -0.023 -1.41 
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Table 5-8. Properties of the linear prognostic model 

Properties Minimum Maximum Range Mean 
Standard  

Deviation 

mfit  -0.019 -0.026 0.007 -0.023 0.003 

Log10 dufit(bd) -0.31 -2.35 2.04 -1.41 0.52 

tbd 58 min 149 min 91 min 112 min 25 min 

 

 

5.6  Validation of the Model 

Seven samples have been randomly selected from each harmonic group to be treated 

as the testing samples i.e. 01T346, 07T355, 08T392, 09T381, 11T372, 12T424 and 

13T363. The samples are used to validate the exponential and linear prognostic 

models proposed in the previous section. Both holdout and cross-validation methods 

are employed to compare the effectiveness of the methods on a small sample size.  

For testing, the duall values are plotted versus the testing time, t, instead of TTF. Each 

of the duall values will be considered for fitting as in the description of Figure 5-8 

and Table 5-4. Figure 5-14 outlines the flow of the testing procedure. Firstly, the first 

two duall points are fitted and extrapolated until the duth is reached. The mfit and the 

time when the fit meets duth, tth, are determined. The procedure is repeated for the 

next duall value and continued until the last duall. The allowable range of mfit is given 

in Table 5-6 and Table 5-8 and can be expressed as mfit(min) ≤ mfit ≤ mfit(max). Thus, 

three conditions will be treated differently: 

 If mfit is less than mfit(min), the fit will be modified to  mfit(min) and the new tth 

will be determined. 

 If mfit is between mfit(min) and mfit(max), the tth stays the same. 

 If mfit is greater than mfit(max), the fit will be modified to mfit(max) and the new 

tth will be determined. 

The new tth is obtained using the same approach to determine the new dufit(bd) as in 

the previous section. The fit is modified by anchoring the fit at t = 0. Again, referring 
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to Table 5-6 and Table 5-8, the tbd(est) should be between the tbd(min), 58 and tbd(max), 

149 minutes. That means, if tth is lower than 58 minutes, it will be disregarded and 

the tbd(est) is set to 58 minutes. The same applies if tth is greater than 149 minutes. 

Next, the TTF is calculated using equation 4-12 for both actual, TTFact and estimated, 

TTFest. The error, e, is computed as follows: 

act este TTF TTF   (5-1) 

 

Figure 5-14. The flow of the testing procedure 
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With only seven test samples, the analysis of the model performance might be 

limited, especially due to the varying behaviour of the duall trend. Some samples may 

have the same breakdown time but with different mfit. Also, samples with similar mfit 

can have a wide range of dufit(bd). Those seven samples may not represent each of the 

unique characteristics. Therefore, 4-fold cross validation is employed so that each 

sample can be tested. All the 31 samples (including the 3 outliers, 01T354, 08T365 

and 09T325) are divided into four groups. Group 1 has 7 test samples while the other 

3 groups have 8 test samples. To start cross validation, Group 1 is used as the test 

samples for the holdout approach (with Groups 2, 3, and 4 for training). The same 

training approach is then employed for the other three groups and the properties of 

the exponential and linear models are given in Table 5-9 and Table 5-10 respectively.  

Table 5-9. Properties of the exponential model employing 4-fold validation approach 

Group Properties Minimum Maximum Range Mean 
Standard  

Deviation 

1 

mfit  -0.013 -0.018 0.008 - - 

Log10 dufit(bd) -1.46 0.19 1.65 -0.61 0.35 

tbd 58 min 149 min 91 min 112 min 25 min 

2 

mfit  -0.013 -0.018 0.008 - - 

Log10 dufit(bd) -1.46 0.08 1.54 -0.61 0.35 

tbd 58 min 149 min 91 min 114 min 24 min 

3 

mfit  -0.013 -0.018 0.008 - - 

Log10 dufit(bd) -1.46 0.19 1.65 -0.56 0.36 

tbd 58 min 149 min 91 min 111 min 24 min 

4 

mfit  -0.013 -0.018 0.008 - - 

Log10 dufit(bd) -1.09 0.08 1.17 -0.58 0.29 

tbd 60 min 143 min 83 min 113min 23 min 
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Table 5-10. Properties of the linear model employing 4-fold validation approach 

Group Properties Minimum Maximum Range Mean 
Standard  

Deviation 

1 

mfit  -0.019 -0.026 0.007 -0.023 0.003 

Log10 dufit(bd) -2.35 -0.31 2.04 -1.41 0.52 

tbd 58 min 149 min 91 min 112 min 25 min 

2 

mfit  -0.019 -0.026 0.007 -0.023 0.003 

Log10 dufit(bd) -2.35 -0.31 2.04 -1.46 0.48 

tbd 58 min 149 min 91 min 114 min 24 min 

3 

mfit  -0.020 -0.026 0.006 -0.023 0.003 

Log10 dufit(bd) -2.44 -0.31 2.13 -1.39 0.48 

tbd 58 min 149 min 91 min 111 min 24 min 

4 

mfit  -0.020 -0.026 0.006 -0.023 0.003 

Log10 dufit(bd) -2.35 -0.44 1.91 -1.43 0.44 

tbd 60 min 143 min 83 min 113min 23 min 

 

Table 5-11 lists the predicted values from the exponential model of sample 09T381, 

a test sample from Group 1. All the fits have mfit greater than -0.018. Modifying the 

mfit to -0.018 gives a closer prediction, tbd(est) to the actual breakdown, tbd (107 

minutes) compared to the tth values from the actual fits. The error, e starts to 

converge at t = 26 min, where the error becomes consistent. In order to visualise the 

error, the TTFact and TTFest are plotted together versus the testing time, t (which 

represents the availability of duall values) in Figure 5-15. The estimated TTF values 

based on the actual fits (before modification) are also plotted to emphasise the 

effectiveness of the modified fits.  

As mentioned previously, when only duall values in Region 1 are available, the 

exponential and linear fits may give unreasonable predictions, as shown by the TTFest 

from the actual fit (dashed line) during the early tree growth in Figure 5-15. The 

proposed model (solid line) has improved those early predictions of all test samples. 

For the exponential model, most of the samples start to converge in less than 50 

minutes, where the error between TTFact(exp) and TTFest(exp), e, remains unchanged 
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after this point. In contrast, the linear model does not really have a convergence point 

as the e can change after being constant for a while. This is due to the behaviour 

illustrated in Figure 5-8b. 

Table 5-11. The lifetime prediction of sample 09T381 

Available 

duall points 

t 

(min) 
mfit 

 tth 

(min) 

tbd(est) 

(min) 

TTFact 

(min) 

TTFest 

(min) 

e 

1 6 - - 58 101 52 49 

1:2 11 -0.133 19 58 96 127 -31 

1:3 16 -0.055 36 138 91 94 -3 

1:4 21 -0.041 46 110 86 83 3 

1:5 26 -0.034 54 104 81 75 6 

1:6 31 -0.032 57 101 76 69 7 

1:7 36 -0.031 57 100 71 63 8 

1:8 41 -0.031 58 99 66 58 8 

1:9 46 -0.031 58 99 61 53 8 

1:10 51 -0.030 59 99 56 48 8 

1:11 56 -0.030 59 99 51 43 8 

1:12 61 -0.030 59 99 46 38 8 

1:13 66 -0.030 60 99 41 33 8 

1:14 71 -0.030 60 99 36 28 8 

1:15 76 -0.030 60 98 31 22 9 

1:16 81 -0.030 60 98 26 17 9 

1:17 86 -0.030 60 98 21 12 9 

1:18 91 -0.030 60 98 16 7 9 

1:19 96 -0.030 60 98 11 2 9 

1:20 101 -0.030 60 98 6 -3 9 

1:21 106 -0.030 60 98 1 -8 9 

1:22 107 -0.030 60 98 0 -9 9 

 

Some of the linear models result in similar or better prediction than the exponential, 

but the random behaviour towards the actual breakdown is a disadvantage.   This is 

even worse when the linear model changes the prediction to a value that is beyond 

the actual value although more duall values are available e.g. samples 11T391, 
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12T373 and 13T376 in Figure 5-15. Thus, the prediction of the exponential model is 

visually more consistent and reliable than the linear model.  

The estimation of tbd in the developed model is based on the average of log10 dufit(bd) 

values (Table 5-8) i.e. duth. From the training data analysis, the log10 dufit(bd) values 

are depending on the tbd of the samples and can be separated into three groups as 

follows: 

 log10 dufit(bd) values that are near to duth  

 log10 dufit(bd) that are much lower than duth 

 log10 dufit(bd) values that are much higher than duth 

This concept is also experienced by the test samples and hence influenced the 

performance of the error, e. Based on the predictions from the exponential model in 

Figure 5-15, we can see that samples with short tbd yield e < 0 (TTFest(exp) > TTFact) 

while samples with average and long tbd yield e < 0 (TTFest(exp) < TTFact). However, 

samples with long tbd yield very much greater e than the average tbd. Hence, a 

threshold of 20 is chosen empirically to separate the performance between the 

average and long tbd based on the relative number of e above and below this value. 

The three groups to describe the performance of the test samples are as follows:  

 E1: 0 ≤ e ≤ 20 

 E2: e > 20 

 E3: e < 0 

The samples‘ performances in Figure 5-15 are labelled as E1, E2 and E3 accordingly. 

Most of the samples fall under E1 category, in which the error is moderate. These 

samples mostly have the actual tbd from 90 to 130 minutes except for sample 09T421 

from Group 3.  

Nine samples are categorised as E2, of which three of them are the outliers 

mentioned in Section 5.2. Five of the samples have a long tbd that ranges from 130 to 

150 minutes and one sample (12T342) has E1 range. The modified exponential fit on 

12T342 results in a low tbd(est) due to the low value of the first duall which causes the 
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fit to have a lower y-intercept (see Figure 5-6) compared to other samples. The 

predictions of the E2 group are considered ―too early‖ and not good for prognostics. 

Too early prediction may lead to early replacement of the asset hence could be a 

waste of the asset‘s useful life. Nevertheless, the modified fits of E2 perform better 

than the actual fits.  

Lastly, four samples have e under the E3 category due to the low tbd that ranges from 

58 to 90 minutes, with sample 07T332 having a slightly longer tbd i.e. 93 minutes. 

The prediction is beyond the actual value, which gives a penalty to the proposed 

model. For a short tbd with a high mfit (for example sample 11T425 in Table 5-5), 

modifying the gradient thus brings the prediction farther causing the modified fits to 

perform worse than the actual fits.  

For the linear model, most of the e of the samples can be categorised in the same 

manner except for samples 09T421, 11T333, 09T381, 11T372 and 13T423. All these 

samples are under the E1 category where the exponential model results in very small 

e, that is, the TTFest(exp) values are similar to the TTFact. It can be generally concluded 

that most of the predictions from the linear model, TTFest(lin) values are greater than 

TTFest(exp) which also applied to those five samples. Hence, the linear model of those 

samples results in a greater TTF causing the e to fall under the E3 category instead of 

E1. 
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                    (a)                                  (b)                                  (c)                                 (d) 

Figure 5-15. The plots of TTF of the test samples for the 4-fold cross validation (a) Group 1, (b) 

Group 2, (c) Group 3, and (d) Group 4 
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All in all, the proposed algorithm tries to balance the performance between the more 

extreme cases of samples in E2 and E3. As a result, the algorithm performs the best 

for samples in E1. Applying cross validation allows better observation of 

performance on smaller sets of test samples. An unfortunate splitting for the holdout 

method may not represent the actual performance. For instance, from visual 

observation of the exponential model, Groups 1 and 3 that have more samples under 

the E1 category might have better performance than Groups 2 and 4. To add more, 

Group 4 has the greatest e (sample 13T393 with 65 minutes) which lowers the group 

performance. All the four groups have samples in each category except for Group 3. 

Hence, applying the holdout method with Group 3 as the test samples may give a 

biased result. Therefore, the performance of the algorithm applied in this thesis 

should not be evaluated as an average because it does not reflect the overall 

performance. Nevertheless, a more reliable analysis can be done statistically by 

applying a set of performance metrics as described in the next section. 

5.7  Performance of the Model 

The performance of the four test groups is analysed and compared to evaluate the 

effectiveness of the cross validation approach over holdout. Both exponential and 

linear models are compared with the aim to reveal the better model. The analysis also 

considers the consequences of the three error categories, E1, E2 and E3 on the 

model‘s performance. The evaluation is based on two performance metrics 

introduced in [247] and one metric proposed in this thesis. These three metrics are 

prognostic horizon, PH [247], convergence horizon, CH and cumulative relative 

accuracy, CRA [247]. For this latter, the RA metric [247] is modified in order to 

penalise predictions that are beyond the actual lifetime. The sum of the CH and CRA 

metrics is then used to rank the performance of both exponential and linear 

algorithms. 
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5.7.1   Prognostic Horizon 

The first metric, prognostic horizon, PH [247], determines how early an algorithm 

can predict within specified error limits hence can be considered as a robustness 

measurement. This means, a longer PH is better because earlier reliable prediction 

provides more time for preventive or corrective action. Therefore, the choice of error 

bound, α, should depend on the estimated time required to take the action.  With an 

average breakdown time, tbd, around 100 minutes, the error bound in this work is set 

to 20% of total lifetime.  

The equation of PH is given in Chapter 3 (equation 3-27) and is rewritten here using 

different notation, 

bdPH i i   (5-2) 

where ibd is the time index at tbd and iα is the first time index when prediction meets 

the specified criterion for a given α. The time index, i is derived as a fraction of tbd 

hence ibd = 1. All plots in Figure 5-15 are replotted in Figure 5-16 with ±α bounds as 

well as the iα for both exponential and linear models. The PH values for all samples 

are then plotted in Figure 5-17 for comparison. 

Generally, both exponential and linear algorithms of samples under the E1 and E2 

categories yield i  0.2 except for 01T346, 09T325, 09T421 and 13T393. This 

results in PH  0.8 which means, the algorithms always predict within the desired 

accuracy zone.  On the other hand, the algorithms yield the worst score for samples 

under E3 since both linear and exponential models never predict within the accuracy 

zone i.e. PH = 0. Only the exponential model on sample 07T332 results in PH = 0.2 

but this is still not as good as samples under E1. Sample 13T393 is the only sample 

under the E2 category that has PH = 0 and none from E1.  
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 Time index, i Time index, i Time index, i 

                        (a)                              (b)                                 (c)                                  (d) 

Figure 5-16. The plots of i for determining the PH metric of test samples in (a) Group 1, (b) 

Group 2, (c) Group 3, and (d) Group 4 
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Comparison between the samples suggests that predictions from both exponential 

and linear algorithms are not reliable for samples in the E3 category. Although the 

PH scores are considered high for samples in E1 and E2, it does not reflect the 

overall performance since it accounts for only the early prediction (based on duall 

values in Region 1 or early Region 2). Therefore, the score of this metric will not be 

assessed for overall performance. Comparing the average PH among the four groups, 

Group 3 yields the highest with PHave = 0.9.  This result is biased since Group 3 has 

no samples under the E3 category. Hence, the average of group performance does not 

reflects the actual algorithm‘s performance. As a final point, both exponential and 

linear models mostly yield the same PH showing that the proposed algorithm 

(modified fits) works for both of them. In addition, both models have the same PH 

average, PHave = 0.7. 

 

Figure 5-17. The scores of PH metric 
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5.7.2   Convergence Horizon 

The convergence metric introduced in [247] measures the rate of improvement over 

time of any performance metrics or TTFest itself, in order to reach its perfect score. 

This means, the best score of convergence will be achieved if the algorithm predicts 

the actual tbd as early as the prediction starts. Alternatively, convergence may be 

defined as the time instance that the prediction begins to remain unchanged, iCH until 

the failure time. After iCH, even if more data are added to the model, the predictions 

stay the same and result in a TTFest curve that is parallel to the TTFact until the end of 

life. Therefore, this research work proposed a new metric, convergence horizon, CH, 

which is expressed in a similar way as the PH metric: 

bd CHCH i i   (5-3)  

where ibd is the time index at tbd and iCH is the time index when the prediction begins 

to remain unchanged. In order to maintain the accuracy, the prediction‘s error should 

be tied to a ±α-bound. Similar to the PH metric, the ±α-bound is set to 20% of total 

lifetime that is parallel to the TTFact line.  

All the plots in Figure 5-16 are replotted in Figure 5-18 but this time with the 

indication of iCH. The exponential model works well on all E1 samples with average 

of CH, CHave = 0.6, but fail to comply with the error limit set by α in most of the 

samples under the E2 and E3 categories (CH = 0). Contrariwise, the linear model is 

only able to converge on three E1 samples with the CH score less than 0.2. This can 

be seen clearly in Figure 5-19 where the CH scores of all samples are plotted 

together to aid the comparison.  

The inability of the linear algorithm to converge is due to the inconsistent behavior 

of the linear fit that is illustrated in Figure 5-8b. Unlike the exponential model, the 

mfit and dufit(bd) of the linear curve keeps changing as time passes and thus causes the 

predictions to vary.  This variation results in a TTFest curve that is not parallel to the 

TTFact curve around the tbd.  Among the four test groups, Group 1 yields the highest 

average score while the other three groups score similarly.  
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                    (a)                                  (b)                                 (c)                                   (d) 

Figure 5-18. The plots of iCH for determining the CH metric of the test samples in (a) Group 1, 

(b) Group 2, (c) Group 3, and (d) Group 4 
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Figure 5-19. The score of CH metric 

5.7.3   Relative Accuracy 

Relative accuracy, RA is a quantitative measure of a prediction‘s error relative to the 

actual value and has been expressed in equation 3-29. In order to give a penalty to 

the predictions that are beyond the actual values, the equation is modified to 

equations 5-4 and 5-5, depending on the error of the predictions, e at time index, i = 

. For the case of TTFest(i) < TTFact(i), where e > 0 (refer to equation 5-1), 

equation 3-29 is modified to the following using the appropriate notations used in 

this chapter.  

0e  :   1
( )act

e
RA

TTF i






   (5-4) 
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There are two scenarios to be considered when e > 0, which is e ≤ TTFact(i)  and e 

> TTFact(i). The first scenario could occur if TTFest(i)  lies between 0 and TTFact(i)  

hence resulting in a positive RA which ranges from 0 to 1. Meanwhile, the second 

scenario will take place if TTFest(i)  < 0 (the prediction is made after the predicted 

failure) thus results in a negative RA which is worse than the first case. For the case 

of TTFest(i)  > TTFact(i)  in which e < 0, equation 3-29 is modified to  equation 5-5 

so that the RA is always negative. 

0e  :   
( )act

e
RA

TTF i






  (5-5) 
 

Therefore, there are three conditions to be considered i.e. TTFest(i) < 0, 0 ≤ TTFest(i) 

 TTFact(i) and TTFest(i) > TTFact(i). Only the second condition will give a positive 

score. The other two conditions result in a negative RA which has no boundary.   

In this thesis, the RA metrics are evaluated for  = 0.5, 0.6, 0.7, 0.8 and 0.9, where 

the predictions should be reliable. Equations 5-4 and 5-5 depict a measure at a 

specific time. Therefore, for multiple time instances, a normalized weighted sum of 

RA, that is, the cumulative relative accuracy, CRA is applied and can be expressed as 

1

1

j j

j

N

j

N

j

w RA

CRA

w

 















 (5-6)  

where
j

w is the weigh factor of the RA at j. It is advised in [247] to give more 

weight to RA that is evaluated at times closer to tbd. However, the right triangle shape 

error bound and negative RA score has actually given enough weight to the RA. 

Thus, the weigh factors, 
j

w , for all  values in this work are assigned to 1. The 

TTFest of all  are depicted in Figure 5-20 and the score at each  can be seen in 

Figure 5-21 and Figure 5-22. If the RA were evaluated for the exponential model at 

 = 0.8, those three conditions mentioned above are equivalent to the E2, E1 and E3 

categories respectively. However, this is not the case for other values of .  
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 Time index, i Time index, i Time index, i 

                    (a)                                  (b)                                 (c)                                  (d) 

Figure 5-20. The plots of i for determining RA metric of test samples in (a) Group 1, (b) Group 

2, (c) Group 3, and (d) Group 4 
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Both models perform the worst at  = 0.9 where the number of samples with positive 

RA is less than other  values. The linear fit is much worse since only one sample 

results in a positive RA. From 30 samples that have negative RA, 18 of them has 

TTFest(i) > TTFact(i) of which 14 are from E1 and the remaining 4 from E3. One of 

the reasons for the 14 samples of E1 to have negative RA is the inconsistent 

behavior of the linear fit as discussed for the CH metric. Unlike the exponential 

model, the duall values in Region 3 decrease the mfit of the linear model thus causing 

the TTFest(i) around the tbd (in this case  = 0.9) to become greater than the 

TTFact(i).  

In Figure 5-23, only the positive CRA values are plotted for discussion. It can be 

seen clearly that the exponential model performs much better than the linear model. 

The exponential model results in positive CRA for 19 samples which includes all the 

eighteen E1 samples and one from E2, while the linear model yields positive CRA 

for 15 samples.  

 

Figure 5-21. The score of RA of exponential model at λ = 0.5, 0.6, 0.7, 0.8, and 0.9 
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Figure 5-22.  The score of RA of linear model at λ = 0.5, 0.6, 0.7, 0.8, and 0.9 

 

Figure 5-23. The plots of CRA metric 
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5.7.4   Overall Performance 

The performance of the algorithms has been evaluated using three metrics, PH, CH 

and CRA. The values of all metrics are plotted in Figure 5-24 and Figure 5-25 for the 

exponential and linear models respectively. However, the overall performance score 

will exclude the PH metric since it only considers early predictions and does not 

reflect the entire performance. For instance, sample 12T394 in Figure 5-24 yields PH 

= 0.93 but 0 score for CH and CRA. Nonetheless, an algorithm with a very low score 

of the PH metric should be disregarded because the algorithm surely will not perform 

well in the other two metrics. This can be observed on the E3 samples 12T424, 

01T426, 07T332 and 11T425 and the only E2 sample, 13T393. 

 

Figure 5-24. The scores of PH, CH and CRA metrics of exponential model 
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Figure 5-25. The scores of PH, CH and CRA metrics of linear model 

The overall performance score is measured as the average of the CH and CRA 

metrics and is plotted in Figure 5-26. It is clearly shown that the exponential 

algorithm performs better than the linear. The low score of the linear model in the 

CH metric really affects its performance. Only samples that have positive CRA yield 

a positive average score.   

The average score of each test group does not represent the real performance of the 

model. For the holdout method to be acceptable as validation, the test group should 

have samples from the three e categories, E1, E2 and E3. However this only applies 

to the exponential model since the nonconvergence behaviour of the linear model 

results in untrustworthy results. Still, the cross validation method assists with a more 

detailed analysis thus increasing the reliability of the results. 
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Figure 5-26. The overall score 

5.8  Summary and Conclusion 

In this chapter, a framework was proposed for the development of a prognostic 

model using a degradation parameter. From the PD analysis in the previous chapter, 

duall has been chosen as the degradation parameter in this chapter. Before a model 

can be developed, any outliers were first identified and removed. Three outliers were 

recognised through the individual calculation of monotonicity and trendability 

metrics i.e. 01T354, 08T365 and 09T325. These samples were removed from the 24 

training samples since they could poorly influence the properties of the model. 

Based on the literature review, both exponential and inverse power models were 

considered for model fitting. Nonetheless, the exponential showed a better GOF thus 

was selected for model fitting. The semilog scale was applied rather than linear scale 

for simplicity. This offers another option of curve fitting; that is, linear regression. 

Both exponential and linear curves were applied to fit the duall values of the training 

samples giving two important parameters i.e. mfit and log10 dufit(bd). An algorithm was 
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designed to reduce the variance of these parameters which also improves the 

properties of the model. The allowance for mfit was determined and the average of 

log10 dufit(bd) was regarded as the threshold point, duth giving the properties of the 

exponential and linear models. 

The model was validated by applying it to the test samples. The holdout and cross 

validation methods were applied and compared. Four test groups were formed to 

perform 4-fold cross validation. The resulting error, e, of the exponential algorithm 

can be categorised according to its range i.e. E1: 0 ≤ e ≤ 20, E2: e > 20 and E3: e < 0. 

However, the error group does not applied to the linear algorithm due to its 

inconsistency in predictions. Three performance metrics were used to evaluate the 

performance of both algorithms i.e. PH, CH and CRA. The metrics showed that the 

exponential algorithm performs better than the linear algorithm. 

The resulting error categories from the exponential model were related to the failure 

time, tbd. The designed exponential algorithm performed the best for samples under 

the E1 category which has a moderate tbd that ranges from 90 to 130 minutes. This 

means, the E1 samples mostly have log10 dufit(bd) that is similar to the duth. 

Consequently, the samples with tbd greater than the E1 range will probably produce 

an E2 error. This is due to the log10 dufit(bd) values that are smaller than duth. 

Therefore, when the exponential fit is extrapolated to the duth, the resulting TTFest is 

much sooner than the TTFact giving e that is greater than 20 minutes. For samples 

with tbd lower than 90 minutes, the log10 dufit(bd) is much greater than the duth resulting 

in TTFest that is beyond the TTFact. Accordingly, all E1 samples yield positive scores 

for the PH, CH and CRA metrics. 

On the other hand, the linear algorithm only performs well for the PH metric. The 

inconsistency in the log10 dufit(bd) values was the reason for the algorithm to not 

perform well on the CH and CRA metrics.  

Lastly, the holdout method can be applied to validate the results, with the condition 

that the test samples must represent the three error categories. Nevertheless, the CV 

method allowed more dependable analysis when all samples were treated as test 

samples.   



169 
 

 

Chapter 6                       

Conclusion and Future Work 

6.1  Summary and Conclusions 

Electrical treeing is a pre-breakdown phenomenon. It is the most likely mechanism 

of electrical failure in solid insulation. Monitoring of the progress of electrical tree 

growth is therefore essential. The works related to electrical tree growth modelling 

were reviewed in Chapter 2. Most of the developed models are physics-based, and 

relate the tree growth with the activity of discharges within the tree. Although there 

were evidences for return tree growth, no explicit consideration of the return tree has 

been made in those models. The discussion of the return tree is very limited, thus the 

mechanism remains unclear.  

The electrical treeing data employed in this thesis showed that breakdown did not 

occur after the original tree traversed the insulation gap, but continued to grow in the 

opposite direction. Due to the unclear mechanism of return tree growth, this thesis 

considered a data-driven approach for building a prognostic model of the electrical 

treeing phenomenon using the associated PD data.  

The common methods for PD analysis as well as extracted PD features were given in 

Chapter 2. Based on the nature of the employed data, this thesis considered the 

PRPDA and PSA approaches for extracting PD features in Chapter 4. Twenty-four 
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features were extracted from the former and seven features from the latter, giving a 

total of thirty-one features.  

Chapter 3 detailed the methods for feature reduction, sample validation and 

algorithm performance.  This chapter introduced three metrics that were proposed in 

[31] to characterise the suitability of a feature as a prognostic parameter: 

monotonicity, prognosability, and trendability.  Four  metrics presented  in [247] 

were also introduced to evaluate the model algorithm: Prognostic horizon (PH), - 

performance, relative accuracy (RA) and convergence. 

The filter method is the simplest approach for feature reduction. However, the 

reviewed measures for the filter method in Chapter 3 were not suitable for prognostic 

purposes. Instead, this research work employed the three prognostic metrics as 

measurands for the filter method in Chapter 4. The total score of the three metrics 

was used to rank the thirty-one features and only the first ranked feature was 

considered for the prognostic model. The first ranked feature is duall, that resulted in 

remarkably good scores for prognosability and trendability but scored only 

moderately for monotonicity. This highlights the contribution of this research work 

in selecting the best feature for prognostic modelling. 

The investigation of the effect of THD and the harmonic order to the duall behaviour 

revealed no deterministic relation. Therefore, all the test waveforms were regarded 

equally in the prognosis analysis. 

Another contribution of the thesis was the identification of the characteristics of the 

duall value that correspond to the electrical tree growth. It was shown in Chapter 5 

that the duall values can be divided into three regions (Figure 5-4). The duall values 

were found to behave randomly in Region 1 due to the change of frequency and 

magnitude of the applied voltage.  In Region 2, the duall values show an 

exponentially declining pattern that represents the fast growth in the treeing 

propagation stage. The duall values remain constant in Region 3 showing an intense 

PD activity during the slow growth in the treeing propagation stage as well as the 
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runaway stage. The consistent duall values were the reason for the moderate score of 

the monotonicity metric. 

The prognostic model reported in this thesis was developed according to a 

framework proposed in Figure 5-1 in Chapter 5. This contributes to a general 

framework that can be implemented for developing a prognostic model using a data-

driven approach.  

The curve fitting approach was used to fit the duall values and both exponential and 

linear fitting were considered. The model fitting resulted in a wide range of failure 

values due to the different behaviour of duall in Region 1 and 2. Therefore, an 

algorithm was designed to decrease the range of the failure values. As a final 

approach in the modelling, the average of the failure values was regarded as the 

threshold value of the model. Both exponential and linear models were validated 

using holdout and 4-cross validation techniques. The proposed algorithm has 

improved the resultant prediction errors in most of the samples shown in Figure 5-15.  

The final contribution was the performance metrics to evaluate prognostic models. 

The errors between the predicted and actual failure time were evaluated using three 

performance metrics: prognostic horizon (PH), convergence horizon (CH) and 

cumulative relative accuracy (CRA). However, only the scores of CH and CRA were 

counted to rank the models.  

The exponential model was found to perform better than the linear model. This is due 

to the duall characteristic that is closely similar to the exponential curve rather than 

the linear curve. Nevertheless, the resultant errors showed that the proposed 

algorithm is only suitable for treeing samples that have a moderate actual failure 

time. Samples with longer failure time might experience a prediction that is ―too 

early‖ while the predictions for samples with shorter failure time were most likely to 

be beyond the actual failure. This was due to the threshold value that was taken as 

the average of the failure values. Further investigation should be made to improve 

the error as discussed in the next section. 
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As a final point, it was appropriate to apply the holdout method to validate the 

model, since the results from holdout and cross validation were similar. 

This thesis therefore, has proposed a new approach in estimating insulation failure 

time by using PD data as the degradation parameter. Considering the PD behaviour 

throughout the degradation process aids the understanding of the underlying 

mechanism. This is an advantage of this approach compared to failure probability 

approach using Weibull analysis that only employs the TTF data. With the progress 

of online PD monitoring, the practical deployment of prognostics for cable 

monitoring could be feasible when the issues related to pulse attenuation and noise 

data can be minimised. 

6.2  Future Work 

6.2.1   Treeing Samples with Longer Failure Time 

All the samples used in this thesis experienced breakdown within 150 minutes after 

the inception of an electrical tree. There is a need to validate whether a longer failure 

time (more than 24 hours) will result in the same characteristics of duall values. 

Furthermore, the treeing phenomenon that leads to insulation breakdown in electrical 

plant is obviously much longer than that. 

Future work can repeat the framework proposed in this thesis to a new set of samples 

that has a longer failure time. This can be done by increasing the insulation gap 

between the needle tip and the ground electrode or reducing the magnitude of the 

supplied voltage. The work proposed in this thesis can be validated if the duall values 

from the new sample set can be described similarly. 

6.2.2   Prediction on the Touch Ground Time 

This research work did not consider the prediction of the time-to-touch-ground, 

(TTG). For a lifetime that is less than 2.5 hours, and some of the TTG values being 

only a quarter of the TTF, predicting the TGT may be less beneficial.  
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However, the prediction of the touch ground time can be considered for samples with 

a longer failure time. Apart from that, the image recording system should be good 

enough to aid the identification. With a two-dimensional image, the identification of 

the ground line can be very difficult. 

6.2.3   Hybrid Modelling Approach 

In order to increase the validity of the predictions, both data-driven and physics-

based approaches can be considered for implementing a hybrid approach. Previous 

studies relate the discharge activity in the tree channels with the growth of electrical 

tree. Therefore, the data-driven approach can also consider the growth rate of the 

tree. Most of the published electrical tree models were given in Section 2.8.4. 

However, none of the models mentioned the growth of return tree. Further 

clarification is needed on how these models treat the return tree. Embedding both 

approaches will give a new insight in understanding the treeing phenomenon. 

6.2.4   Sample Size 

With a larger sample size, there is a possibility to separate the samples into several 

classes according to the behavior of duall e.g. the number of duall values in each 

region or the mfit values. Therefore, the threshold value can be determined separately 

for each class. In this way, the predictions will become more robust. 

6.2.5   Practical Deployment 

Most of the published work on PD diagnosis uses offline data. The work presented 

here might not be appropriate to online PD monitoring due to the differences in the 

applied stresses between on-line and off-line PD data. Therefore, towards a practical 

deployment, studies on prognostics of cables should use online PD data. However, 

online PD monitoring has been associated with issues of signal attenuation and noise. 

Minimisation of these issues should therefore increase encourage the research in 

insulation prognosis.   
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