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Abstract
Understanding the behaviour of many-body quantum systems is one of the great

challenges in physics. Both at and out of equilibrium, besides few exactly solvable

cases, our understanding relies on numerical simulations. Unfortunately, simulating

many-body quantum systems is a hard computational problem. The standard lore is

that this problem is exponentially hard in the case of simulating many-body quantum

systems out-of-equilibrium. Even for simple systems, such as 1D spin chains, the current

algorithms, based on the time-dependent density matrix renormalization group, are

exponentially expensive in the amount of entanglement in the system. In generic out-

of-equilibrium scenarios, the amount of entanglement grows linearly with time, resulting

in exponentially expensive simulations. In the last years, however, the developments of

the experimental techniques for controlling many-body quantum systems have pushed

the exploration of out-of-equilibrium many-body quantum systems further. A critical

assessment of the scope and limitations of classical numerical simulations that could

help to both validate and understand the new experiments is thus necessary.

In this thesis we address this issue by unveiling the real role entanglement has in

limiting our ability to simulate many-body quantum systems out-of-equilibrium. In

particular, we first develop the tools for numerical computations. We build a

comprehensive library for the manipulation of Fermionic Gaussian States with the

programming language Julia. Then, we proceed to design and characterize a specific

algorithm that allows to systematically approximate the equilibration value of local

operators after a quantum quench. At the core of this algorithm there is the idea of

transforming entanglement between distant parts of the system into mixture, while at

the same time preserving the local reduced density matrices. Finally, we show that,

for the Ising model, during the out-of-equilibrium evolution the entanglement

spectrum allows us to obtain universal information. This information encodes the

data of the underlying conformal field theory describing the system at the critical

point, suggesting that it should be possible to adopt an analytical approach based on

conformal field theories to obtain information about the out-of-equilibrium dynamics.
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Chapter 1

Introduction

Understanding many-body systems is one of the great challenges driving research in

physics. Many-body systems are composed of a large number of constituents which

we can characterise singularly and for which we know the laws of interactions. A

description of a many-body system involving the details of each of its constituents

is called a microscopic description. The complexity of a microscopic description is

notoriously computationally expensive. This can easily be seen by considering that the

number of interactions can grow as the factorial of the number of constituents.

In this thesis, we are going to consider closed many-body quantum systems. These

are systems where the constituents behave according to the laws of quantum

mechanics and that are not in contact with any external environment. The study of

these systems presents many challenges both experimentally and theoretically.

Experimentally, isolating a system from the environment and observing the quantum

behaviour of its constituents requires the abilities to work at really low temperatures

and to keep a great degree of control on single atomic systems. Theoretically, the vast

majority of quantum many-body systems are not analytically solvable and their

investigation requires numerical studies. Numerical studies, in turn, are often

impossible due to the exponential growth of the Hilbert space with the number of

constituents of the system.

Due to the above mentioned limitations, the research in this field progressed slowly

until not long ago.
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This changed since the beginning of the ’90s. The first Bose-Einstein condensate

has been observed in 1995 [2–4]. This discovery marked the starting point of the fast

development of the study of cold atoms systems. Indeed, in the subsequent decades,

the joint development of experimental cooling techniques [5–8] together with methods

for trapping and manipulating cold atoms (see e.g. [9] for a review) radically

improved the ability of controlling many body quantum systems.

The fast development of experimental techniques contributed to pushing for the

development of advanced numerical methods for simulating many-body quantum

systems. In 1992 S. R. White developed the Density Matrix Renormalization Group

(DMRG) [10], allowing the computation, with a limited amount of resources, of the

ground state of particular one-dimensional many-body systems. In the same years

and together with the flourishing of the field of many-body physics there has been the

birth of the field of quantum information. The field of quantum information studies

how the information is encoded and stored in quantum states, and subsequently how

such information is processed during the dynamics. The central object of study in

quantum information is the entanglement. It is from the cross-fertilisation of the

study of many-body quantum systems and the study of quantum systems as

information processing systems that in 2003 G. Vidal introduced the so-called Matrix

Product States (MPS) as a fundamental tool for the study of many-body quantum

systems [11, 12] (MPSs have been originally discovered in 1988 [13–15], while the first

connection between MPS and DMRG was found by [16]).

Matrix product states provide a particular encoding of quantum states. Consider

the state vector |ψ〉 of a many-body quantum system with N constituents. Generally,

this vector is characterised by the collection of the coefficients obtained by projecting

|ψ〉 on a specific basis of the Hilbert space associated with the system. The number of

these coefficients is exponential in N . Matrix product states, instead, are characterised

by a collection of N matrices, each associated with each constituent of the system. The

dimension of these matrices is exponential with the amount of entanglement of the state.

The discovery of the MPS encoding allowed to represent low-entangled quantum states

with few computational resources, elevating entanglement to one of the most important
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concepts in quantum many-body simulations and making the physics of many-body low

entangled states tractable.

Coincidentally, following a series of theoretical results [17–19], it has been found

that ground states of one-dimensional gapped many-body local Hamiltonian are all

low-entanglement states. Thus, ground states of one-dimensional gapped

Hamiltonians belong to the set of states efficiently tractable with MPS. Being able to

solve the ground state physics of a big class of systems with MPS pushed for the

development of new and sophisticated tensor network techniques (see [20–23] for a

review) that allowed the computation of relevant equilibrium states as well as the

simulation of the dynamics of some many-body quantum systems for short times. The

necessity of extending MPS to the description of matrices gave birth to the Matrix

Product Operators (MPO) formalism [24–26]. This allowed to efficiently study

Hamiltonians with long-range interactions [27–30] and density matrices of mixed

states, which made it possible to perform calculations at finite temperatures [25, 31].

Tensor network techniques fastly became the standard tools for condensed matter

simulations.

The strong development of experimental and theoretical methods for the physics

at equilibrium prepared the ground for the study of many-body closed quantum

systems out-of-equilibrium. Together with the fundamental questions about the

statistical mechanics of quantum systems [32–36], many other reasons pushed the

research in this direction. For instance, we have witnessed over the last years, a huge

development of quantum technologies. In this context, the majority of quantum

processes are out-of-equilibrium [37]. Moreover, from a perspective of condensed

matter physicists, looking at out-of-equilibrium physics we can explore an even richer

zoo of phenomena that may not be present at equilibrium.

Furthermore, one can be interested in non-thermal equilibrium states as they can be

considered as a resource [38]. It is clear, thus, that being able to simulate many-body

systems out-of-equilibrium can have a big impact in many different fields.

Unfortunately, while experimental results on the out-of-equilibrium physics of

many-body quantum systems proceeded fast [39–50] (see [51] for a review), the
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numerical methods developed for the study of equilibrium physics started to fail in

the out-of-equilibrium regime. In fact, moving out of equilibrium, the entanglement of

the evolving state grows [52–58] and standard tensor networks techniques become too

computational expensive. A faithful description of a general highly entangled state is

in general impossible with standard numerical tools.

The combination of new experimental and numerical capabilities, nonetheless, lead

to a parallel resurgence of the study of quantum statistical mechanics. Two topics,

in particular, will be relevant for us. The study of the process of equilibration and

thermalisation of closed quantum systems, a field until recent times inaccessible to

experiments, and the study of universal properties of many-body quantum systems

with the tools of conformal field theories.

In chapter 4 we will introduce quantum quenches [59], the standard protocol for

investigating the out-of-equilibrium properties of closed quantum systems. Starting

from the ground state |ψ0〉 of a parameter-dependent local Hamiltonian H(λ0), one

obtains its out-of-equilibrium evolution evolving it with the Hamiltonian H(λ1)

obtained with the change of parameter λ0 → λ1. For a broad class of systems, in the

long-time regime, the state is expected to equilibrate in some sense to a stationary

state. Generally, this state is expected to be a thermal state of the Hamiltonian, but,

for closed quantum systems, this cannot be the case. In fact, since in closed quantum

systems the time evolution is unitary, starting from a pure state (as the ground state

of a Hamiltonian) it is impossible to obtain a mixed state, thus the system cannot

relax to a Gibbs State. As said, though, these systems are expected to equilibrate in

some sense. In these cases, one defines a local notion of equilibration. While a global

relaxation is impossible, focussing on the local degrees of freedom makes it possible to

recover a notion of relaxation [60–64].

These ideas suggest novel approaches for the numerical simulation of many-body

quantum systems out-of-equilibrium. Instead of focussing on the microscopic

dynamics, and thus on the faithful description of the state at each instant of time, we

can instead individuate some relevant quantities that we are interested in and find the

most efficient description capturing their behaviour. Focussing on local properties, we
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have the intuition that the entanglement possibly does not have a crucial role in

encoding information about relevant quantities. If this is true, it would imply that it

is not necessary to be able to encode highly entangled states in order to simulate an

approximation of the evolution out of equilibrium. This would allow to devise a

computationally efficient approximate description of the dynamics out of equilibrium.

In chapter 6 we will present an algorithm that exploits these ideas. In particular, this

algorithm will transform entanglement between distant parts of the system into

mixture, while at the same time preserving the local reduced density matrices of the

system. This will allow the algorithm to compute an approximate description of the

equilibration process at a low computational cost.

In chapter 5 we will introduce quantum conformal field theories. We have said

that at equilibrium the wave-functions of quantum many-body systems characterised

by gapped Hamiltonians contain a limited amount of entanglement that allows us to

efficiently represent them with tensor networks. At quantum critical points this fact

does not happen anymore [65]. Here the Hamiltonians become gapless and the

entanglement of the ground state grows. Again we are in a situation where standard

MPSs fail to encode the state of the system efficiently. In 2003 Vidal et al. [66] found

that this growth of the entanglement follows universal laws. This means that this

growth can be explained by an underlying theory independent of the particular

details of the system one is considering. Here, the underlying theory is a conformal

field theory [67–69]. In general, with the concept of universality one refers to the

possibility for different systems to exhibit the same behaviour (evaluated with some

defined quantity) if they present some same qualitative properties. When two systems

exhibit the same behaviour, those systems are said to belong to the same universality

class. Discovering that a system belongs to a known universality class allows us to

compute some of its properties by working out the analogous calculations on the

simplest system belonging to the same universality class. In this sense, the system

becomes as difficult to treat as the simplest system in the same universality class. In

the case of ground states of Hamiltonians at the quantum critical point, the study of

the growth of the entanglement in the ground state as the dimension of the system
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grows, allows unveiling some of the data of the underlying conformal field theory.

Thus, studying the behaviour of the entanglement we can connect the system to its

simpler description in terms of conformal field theory. In chapter 7 we will find that,

even during the complex out-of-equilibrium dynamics, systems appear to always

retain a universal behaviour associated to the critical point of the Hamiltonian and its

underlying conformal field theory. As from chapter 6, also in this case, we will find

that during the equilibration process, some relevant quantities of the system can be

computed without the complete description of the higly-entangled state. In

particular, in this case, we will need to know just the data specifying the particular

underlying theory.

For dealing with these questions and investigating many-body quantum systems

out-of-equilibrium it is essential to equip ourself with the necessary instruments.

With this purpose, in chapter 3 we will develop the numerical tools for the treatment

of Fermionic Gaussian systems. Fermionic Gaussian systems are completely solvable

and it is possible to simulate their dynamics out of equilibrium with a memory cost

linearly dependent on the number of constituents of the system. Some spin models,

like the celebrated Ising model, are mappable to Fermionic Gaussian systems. The

ability to easily manipulate these systems, allows us to explore the out-of-equilibrium

dynamics easily. In general, the use of non-interacting systems is often seen as a first

benchmark for tensor network algorithms (see e.g. [70]). This is because the strength

of the interactions in a specific Hamiltonian does not necessarily affect the amount of

entanglement between the constituents in its ground state. For example, ground

states of free systems can be robustly entangled, thus highly entangled Fermionic

Gaussian states are efficiently computable. Recently, several authors have realised

that it is also possible to directly implement tensor network algorithms at the level of

the correlation matrices (see e.g [71–75]). The numerical tools we will present include

also part of these algorithms, together with our implementation of the time evolving

block decimation algorithm [12] directly on the correlation matrices and other

algorithms useful for mimicking tensor networks with Fermionic Gaussian states.

These tools are collected in a package for Julia called F_utilities released on
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Github.

1.1 Overview

This thesis is organised as follows.

In chapter 2 we present an overview of the standard methods used for encoding

quantum systems. The chapter is divided into two parts. The first part presents

methods dealing with the full Hilbert space, while the second one introduces methods for

the reduced Hilbert space (reduced bond dimension). We present the topics highlighting

the approximations and methodologies that fail when trying to simulate systems out

of equilibrium and that will be treated in the second part of the thesis.

In chapter 3, we present the Julia library F_utilities together with a practical

review of Fermionic Gaussian systems. Our aim with this chapter is presenting the

main numerical tools developed for this thesis, that is a complete library, written in

the proramming language Julia, for the manipulation of Fermionic Gaussian states.

Starting from the basics of Fermionic Gaussian states, we develop the chapter including

many relevant results from the literature, presenting useful models, experimental codes

and new algorithms that we developed. Fermionic Gaussian states are an essential tool

for numerical experiments, explorations and benchmarkings. Alongside the relevant

theory, we present an explanation of examples of code and numerical experiments with

the intention of realising a self-consistent chapter that can be used as a reference for

the Julia library F_utilities.

In chapter 4 we introduce the topic of the out-of-equilibrium evolution in the context

of quantum quenches and equilibration of closed quantum systems. We present the main

equilibrium ensembles for equilibrated closed many-body quantum systems together

with the fundamental mechanisms responsible for the equilibration. We pay special

attention to quadratic systems, with explicit examples.

In chapter 5, we summarize important concepts, tools and quantities of quantum

conformal field theories. In particular, we focus on conformal field theories in two

dimensions, giving relevance to the quantities studied in chapter 7 and to the Ising

model.
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In chapter 6, we present our algorithm for predicting the value of some relevant

quantities in the long-time regime of the out-of-equilibrium evolution. At the core of

our proposal, there is the idea of transforming entanglement between distant parts of

the system into mixture, while at the same time preserving the local reduced density

matrices. We benchmark the algorithm by studying quenches of quadratic Fermionic

Hamiltonians.

In chapter 7, we present our results on the universal information encoded in the

out-of-equilibrium evolution of the Ising model. We consider the time evolution of the

gaps of the entanglement spectrum for a block of consecutive sites in finite transverse

field Ising chains after sudden quenches of the magnetic field. We provide numerical

evidences that, whenever we quench at or across the quantum critical point, the time

evolution of the ratios of these gaps allows to obtain universal information.

In Chapter 8 we draw our conclusions and give an overview of the key findings

discussed in this thesis, together with possible interesting future directions of research.
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Chapter 2

Encoding of quantum states

In chapter 3 we are going to give a full overview on how to describe and manipulate a

special class of quantum systems with the programming language Julia. In this chapter

we study the task of encoding a quantum system from a more general perspective. We

ask how a general quantum system, described as the principles of quantum mechanics

dictates, can be encoded and manipulated with a computer. We first see how the

encoding of a general quantum state requires a prohibitive amount of resources already

for small physical systems. Then we see various methods for compressing the encoded

quantum states and review modern techniques for approaching the closed dynamic of

many-body quantum systems.

2.1 From first principles

2.1.1 Quantum states

The description of a quantum system entails a memory cost exponentially bigger than

the description of a classical system. Indeed, encoding the state of a classical system

(a point in a classical phase space) requires a number of parameters ∼ N .

The principles of quantum mechanics associate a (complex and separable) Hilbert

space to every quantum system. The description of a specific state of the system is a

ray in the Hilbert space. Let us consider the system associated to the Hilbert space

H1 of dimension /BK(H1) = d1. Any state |ψ〉 can be represented as the linear

32
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combination |ψ〉 =
∑d1

i=1 ψi|i〉, where {|i〉}di=1 is an orthonormal basis of H1 and

ψi = 〈i|ψ〉.

Fixing a standard orthonormal basis, as for example the basis {|i〉}di=1, every state is

completely encoded by the set of d1 coefficients ψi. A quantum state is encoded in d1

complex numbers.

It is a postulate of quantum mechanics that the joint state of two quantum systems

H1 and H2, is a ray of the tensor product Hilbert space H1,2 = H1 ⊗H2.

If the dimension of H2 is /BK(H2) = d2, then the dimension of the joint system is

/BK(H1,2) = h1 · h2 and any state in H1,2 is encoded by a set of d1 · d2 complex

coefficients.

Let us consider a joint system of N constituents, its associated Hilbert space is

H =
⊗N

x=1Hx, where Hx is the Hilbert space associated to each constituent of the

system. The total dimension of H is /BK(H) = d = d1d2 . . . dN , and each state will be

described by d1d2 . . . dN complex coefficients.

It is clear at this point that for every quantum system we are going to consider there

will always be two different dimensions. A dimension N corresponding to the number

of constituents of the system and a dimension d corresponding to the number of

parameters necessary for encoding the state of the system. These two dimensions are

generally connected by the relation d ∼ eN .

The same relation holds even in the case of statistical mixtures of quantum states,

where each state is encoded by the d2 complex elements of its density matrix ρ. In

general, every bounded operator on H can be completely encoded by d2 complex

coefficients.

2.1.2 Quantum Hamiltonians

Central to our discussion, is the closed evolution of quantum states.

The postulates dictate that the dynamics of a quantum system is governed by its

Hamiltonian. The Hamiltonian is an Hermitian bounded operator H(t) on the Hilbert

space H associated to the system, possibly dependent by the time parameter t.
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How a quantum state |ψ〉 evolves with the given Hamiltonian H is written in the

principles of quantum mechanics, it is the solution of the eigenvalues problem

d|ψ〉
dt

= − i

ƉhH(t)|ψ〉, (2.1)

where we chose |ψ〉 as boundary condition. For the rest of the thesis we will set Ɖh = 1.

In the case of a time-independent Hamiltonian H(t) = H the solution |ψ(t)〉 is given

by

|ψ(t)〉 = U(t)|ψ〉 = e−iHt|ψ〉, (2.2)

where U(t) is called the evolution operator.

The spectral theorem tells us that there is an orhonormal basis {|Ej〉}dj=1 for H of

eigenvectors of the Hermitian Hamiltonian H and that each associated eigenvalue is

real. The time evolved state |ψ(t)〉 takes the form

|ψ(t)〉 =
d∑

j=1

e−iEjt〈Ej |ψ〉|Ej〉 =
d∑

j=1

e−iEjtcj |Ej〉, (2.3)

where {cj}dj=1 are the coefficients that encode the state |ψ〉 in the non-standard basis

{|Ej〉}, called energy eigenbasis.

In order to use the energy eigenbasis for solving the time evolution of a closed quantum

system, we need to first solve the eigenvalues problem

Ei|Ei〉 = H|Ei〉 (2.4)

Solving this problem, that is diagonalising an Hermitian matrix, generally is a

computationally demanding task (diagonalising an N ×N matrix requires, in general,

O(Nν) operations, where ν ∈ (2, 3) [76]). This, in addition to the necessity of storing

all the coefficients encoding the Hamiltonian and the states, makes encoding the

dynamics of a system exponentially expensive in the number of consitituents of the

system.
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2.2 Methods in the full Hilbert space

2.2.1 Symmetries

One technique for reducing the computational cost of the diagonalisation of an

Hamiltonian without any approximation, consists in exploiting the symmetries of the

system. To every symmetry corresponds a conserseved quantity and thus an operator

that commutes with the Hamiltonian. The fact that an operator commutes with the

Hamiltonian implies that the Hamiltonian can be divided in blocks, where each block

is associated to a different eigenvalue of the commuting operator. Consider for

example a Hamiltonian H that commutes with the parity operator P (3.13)

([H,P ] := HP − PH = 0). The parity operator has two different eigenvalues

λ± = ±1. This tells us that Hamiltonian H is divided in two sectors as represented in

the middle part of fig 2.1. Each sector can be diagonalised independently, thus in

order to diagonalise H we just have to diagonalise two matrices of smaller dimension.

Since the cost of diagonalisation is a power of the dimension of the matrix, this

already simplifies the task of diagonalising the whole matrix. If one is able to find

multiple symmetries, then, each symmetry introduces a new block factorisation of the

Hamiltonian, factorising each existing block in new sub-blocks. As an example, let us

suppose that Hamiltonian H additionaly commutes with an operator T with 3

different eigenvalues t1, t2, t3. This would divide the matrix H in the block structure

showed in the right part of figure 2.1, simplyfing further the diagonalisation process.

2.2.2 Approximate numerical methods for diagonalisation the
Hamiltonian

There exists many different methods for solving the eigenvalues problem (2.4), as, for

example, [77–79].

It is not always the case, though, for someone to be interested in the full spectrum

of the Hamiltonian. One can be interested in just a part of the spectrum, as for

example the low-lying energy eigenvalues. In this case the computational cost can be
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Figure 2.1: On the left we have a representation of the Hamiltonian H where each dot
represents an entry. Blue dots correspond to zeroes, while red dots correspond to entries
possibly different from 0. In the middle a representation of the block diagonal form on
the sectors of the P operator. The operator P is such that [H,P ] = 0 and it has just
two eigenvalues λ± = ±1. On the right we include the symmetry of T operator. Each
sector is subdivided in 3 sectors corresponding to one of the three different eigenvalues
of T .

significantly lowered and one can efficiently exploit the properties of the Hamiltonian

such as sparsity. Iterative methods based on series expansions, as for example the

Lanczos algorithm [80–82], allow us to compute the extremal parts of the spectrum

(biggest or lowest eingenvalues and associated eigenvectors) with a computational cost

that scales with the number of elements different from 0 in the matrix to diagonalise,

thus exploiting the sparsity of the problem. These methods are the adaptations and

development of the simple power method algorithm.

Power method algorithm The power method algorithm is based on the following

idea. Suppose we want to find the biggest eigenvalue λ1 and its associated eigenvector

|λ1〉 of a diagonalisable matrix H. We will consider the eigenvalues of H to be ordered

as λ1 > λ2 ≥ λ3 ≥ . . . . We start by choosing a random vector |v[0]〉. We define the

iterative algorithm

|v[n+1]〉 = H|v[n]〉∥∥H|v[n]〉
∥∥ , (2.5)

where ‖|v〉‖ is the norm of |v〉. Starting with |v[0]〉, we expect that, if 〈λ1|v[0]〉 $= 0 and

λ1 is not degenerate, for n sufficiently big, |v[n]〉 ∼ |λ1〉. The fact that this algorithm

converges towards |λ1〉 can be easily proved by expanding |v[0]〉 on the eigenbasis {|λi〉}i
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of H

|v[0]〉 = c1|λ1〉+ c2|λ2〉+ . . . , (2.6)

with ci = 〈λi|v[0]〉 and thus c1 $= 0 because of the assumption 〈λ1|v[0]〉 $= 0. Now

applying H to |v[0]〉 for n times returns

Hn|v[0]〉 = c1λ
n
1

(
|λ1〉+

c2
c1
(
λ2
λ1

)2|λ2〉+ . . .

)
. (2.7)

Since λ1 is the biggest eigenvalue we have that ( λiλ1 )
n → 0 with n → ∞ for all i $= 1.

Because of this, we obtain that in the limit for n → ∞, taking care of the

normalisation, Hn|v[0]〉 → |λ1〉.

The convergence of this method is slow (it is geometric with ratio
∣∣∣λ2λ1

∣∣∣) and it

becomes slower as λ2 → λ1.

We note here the importance of the value of the difference |λ1 − λ2|.

In condensed matter one is often interested in computing the ground state energy

E0 of a Hamiltonian H, that is the smallest eigenvalue of H. By adding a sufficiently

big number to the Hamiltonian, one obtains that the smallest eigenvalue of H

corresponds to the eigenvalue with the smallest magnitude. In order to compute the

smallest eigenvalue in magnitude of H one can use the inverse power method [83] that

fundamentally is the power method applied to H−1. In this case the algorithm will

converge geometrically with ratio E0
E1

, where E1 is the second smallest eigenvalue of

the Hamiltonian H. If E1 − E0 = 0 then the algorithm will not converge.

Because of its importance, the difference between the two lowest eigenvalues of an

Hamiltonian (that is the difference between the ground state energy and the first

excited state energy) has a specific name and it is called Hamiltonian Gap or spectral

gap often denoted by ∆E. In particular, definining a family of Hamiltonians

dependendent on the parameter N (the dimension of the system), we call gapless

Hamiltonians those Hamiltonians for wich the Hamiltonian Gap → 0 in the

thermodynamics limit N → ∞, and we call gapped Hamiltonians those Hamiltonians

for which the spectral gap remains positive in the thermodynamic limit.
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2.2.3 Approximate methods for the time evolution

Similar iterative methods used for computing the eigenvalues of the Hamiltonian can

be used to compute the time evolution of a state. In fact, the Taylor expansion of the

evolution operator

U(t) = e−iHt = I+ (−iHt)1

1!
+

(−iHt)2

2!
+ · · ·+ (−iHt)n

n!
+ . . . , (2.8)

tells us that the time evolved state can be computed as

|ψ(t)〉 = |ψ〉+ (−iHt)1

1!
|ψ〉+ (−iHt)2

2!
|ψ〉+ . . . , (2.9)

that is just the sum of an iterative application of the Hamiltonian to the computed

state. The series above can be truncated at step n leading to an approximation of

the order O(tn). Methods based on this expansion, such as for example the Krylov

subspace methods, suffer from the fact that they require to store the full Hamiltonian

in the memory. As already said, storing the full Hamiltonian, often even when it is

sparse, requires an amount of memory that scales exponentially with the dimension of

the system.

To overcome these difficulties one can divide the Hamiltonian in different parts and

then consider as the application of H the iterative application of each part of H. These

methods are based on the Suzuki-Trotter decomposition [84,85].

Suzuki-Trotter decomposition Let us consider two n× n matrices A and B. We

are interested in computing the exponential eA+B knowing eA and eB. In general we

will have that [A,B] $= 0, and thus, simply by the series expansion of eA+B we notice

that eA+B $= eAeB. The Trotter formula [84] tells us that

eA+B = HBK
n→∞

(
eA/neB/n

)n
. (2.10)
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Starting from this, one can get the the Suzuki-Trotter decomposition at first order

[85,86]

eδ(A+B) = eδAeδB +O(δ2), (2.11)

with δ a real number.

The Suzuki-Trotter decomposition results useful in physics as often the Hamiltonians

considered have a local structure. To understand what a local structure is and how

this can be exploited by a Suzuki-Trotter decomposition, it is instructive to look at

an example. Let us consider a system of N constituents. To each constituent i we

associate a Hilbert space of dimension d. We define the dN × dN Hamiltonian of the

system as

H =
N−1∑

j=1

hj (2.12)

where hj := I1⊗ · · ·⊗ Ij−1⊗ h̃j,j+1⊗ Ij+1⊗ · · ·⊗ IN with Ii the identity operator acting

on the Hilbert space of the i-th constituent and h̃j,j+1 a matrix acting on the Hilbert

space of the j-th and j + 1-th constituents. This Hamiltonian is called local because

it is a sum of local terms, in the sense that each term has non trivial support on just

few sites (1 site in this specific case) and thus [hi, hj ] = 0 if |i − j| > 1. Because of

this property one can associate a geometry to the Hamiltonian and imagine the label of

each hi to correspond to the site of a chain. In general, a variable is defined as k-local

if it is supported on at most k sites. Using the Suzuki-Trotter decomposition we can

write

e−iHt =
N−1∏

j=1

e−ihjt +O(t2), (2.13)

and thus for small values of t we have a good approximation of the evolution operator

as a product of the matrices e−ihjt. The key point of the approximation is the locality

of the matrices hj . In fact it is easy to see that

e−ihjt = I1 ⊗ · · ·⊗ Ij−1 ⊗ e−ih̃j,j+1 ⊗ Ij+1 ⊗ · · ·⊗ IN , (2.14)
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thus instead of exponentiating a dN ×dN , we just need to compute N exponentiation of

d× d matrices. The dimension of the matrices to exponentiate dropped exponentially.

If the single terms of the Hamiltonian were not local this would have not happened.

2.3 Methods in the reduced Hilbert space

Everything we can talk about can be encoded in bits, therefore in order to understand

the limitations of encoding and compressing data we can always think about binary

strings.

Consider WN the set of all binary strings of length N . The number of different elements

in this set is 2N .

We call W<N the set of all the binary string of length less or equal to N − 1. Each

element of this set is a couple (χ, c) where χ = |c| is a number specifying the length

of the binary string c and c is the binary string, one example is (3, 010). The number

of different elements in this set is 2 + 22 + 23 + · · · + 2N−1 = 2N − 1. This means

that, excluding one single element of WN , we can map WN to W<N . This mapping

corresponds to a compression. We see that the elements of WN mapped to elements of

W<N with χ really small will be effectively compressed, while elements of WN mapped

to elements of W<N with χ ∼ N will possibly requires more bit to be stored than the

original string (as the description of the couple (χ ∼ N, c) possibly requires more than

N bits).

We also notice that sets of which the elements have shorter descriptions are set with

smaller cardinality. Thus just few elements can be mapped to shorter strings and this

comes at the cost of mapping other elements to longer strings.

These properties of the encoding can be exploited for compressing messages. If we

define a message {ψt}t as a collection of elements ψt ∈ WN (where repetitions are

allowed), we can compress the message simply assigning shorter string to elements that

repeat more often and longer strings to elements that appears less often or do not

appear at all. This idea is at the base of entropy encoding (see e.g. the seminal work

of Huffman [87]) and it can be used for explaining why in spoken languages common
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words (as for example "yes" and "no" with 3 and 2 letters respectively) are shorter than

uncommon words (as for examples "entanglement" with 12 letters). This technique is

called entropy encoding because the length of the compressed message is proportional

to the Shannon entropy of the message [88].

In this section we present the powerful methods of matrix product states and

operators, based on the tensor network representation [20–23, 89]. These methods

characterise, out of all possible quantum states of a system, a restricted class of them

and defines an efficient way for describing them. In analogy with the entropy

encoding one can associate the set of all the states |ψ〉 ∈ H to the set WN and think

of a message as the collection of all the states that we encounter in calculations or in

experimental measurements. Matrix product states methods individuate a class of

states that repeats very often in this message and tell us a method for encoding them.

With an inspirational sentence we can say that tensor networks are the efficient

language for describing our quantum mechanical experience.

2.3.1 Entanglement, Entropy and Spectra

In order to introuduce matrix product states, we will first review some notions of the

theory of entanglement.

Entanglement

A pure state |ψ〉 on the tensor product Hilbert space H = HA ⊗HB is a product state

if it can be written as

|ψ〉 = |ψ〉A ⊗ |ψ〉B, (2.15)

with |ψ〉A ∈ HA and |ψ〉B ∈ HB. This definition can be expanded to mixed states. A

mixed state acting on the tensor product Hilbert space H = HA ⊗HB is a separable

state if it can be written as

ρ =
∑

i

piρ
A
i ⊗ ρBi , (2.16)

where {ρAi }i and {ρBi }i are set of density matrices acting respectively on HA and HB

and {pi}i are positive real numbers such that
∑

i pi = 1.
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Product states are separable. A state is entangled if it is not separable.

Entanglement entropy

Definining a resource theory of entanglement it is possible to give a meaning to a

quantification of the entanglement [90, 91]. In the theory of entanglement measures,

functions that quantify the amount of entanglement in a state are called entanglement

monotones.

For pure states, an entanglement measure is the entanglement entropy. The definition

of entanglement entropy is based on the concept of von Neumann entropy, that is the

natural extension of the Shannon entropy to the context of quantum mechanics. Given

a quantum state ρ the von Neumann entropy of ρ is defined as

S(ρ) = −Tr [ρ HQ;(ρ)] . (2.17)

In term of the eigenvalues ρi of ρ the von Neumann entropy reads as

S(ρ) = −
∑

i

ρi HQ;(ρi). (2.18)

For every state the von Neumann entropy has values in a finite interval. It is easy to

see that the von Neumann entropy is always positive or zero since ρi ∈ [0, 1]. The von

Neumann entropy of pure states is always zero. In fact the density matrix ρ = |ψ〉〈ψ|

of a pure state is a rank 1 matrix with unit trace, thus has just one eingenvalue equal

to 1. The von Neumann entropy of a state is bounded from above by the dimension of

ρ as

S(ρ) ≤ HQ;(/BK(ρ)), (2.19)

where this bound is saturated in the case of a completely mixed state ρ = I//BK(ρ),

with I the identity matrix. On a lattice, where all the N local Hilbert spaces have
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dimension d, the upper bound reads as

S(ρ) ≤ N HQ;(d). (2.20)

The entanglement entropy of a state is then easily defined as follows. Let us consider the

pure state ρA,B = |ψAB〉〈ψAB| of a system on a lattice divided in two complementary

partitition A and B, and its two reduced density matrices ρA and ρB respectively on A

and B. The entanglement entropy EE(ρAB) of this state with respect to the bipartition

A,B is

EE(ρAB) = S(ρA) = S(ρB). (2.21)

From the observation that the von Neumann entropy of a pure state is zero, it is easy to

see that the entanglement entropy of a product state is zero. The more entangled the

two partitions are the higher the value of EE(ρAB) will be. The entanglement entropy

is bounded by above by the dimension of the smaller partition as

EE(ρAB) ≤ |A| HQ;(d), (2.22)

where |A| is the number of lattice sites in partition A.

2.3.2 Entanglement Contour

In the seminal work [92] Chen and Vidal introduced a fine-grained version of the

entanglement entropy called entanglement contour.

Given a pure state decomposed in two complementary partitions A and B, the

entanglement entropy S(A) = S(B) is a measure of the amount of entanglement

between the two partitions. The entanglement contour sA(x) (respectively sB(x)) at a

point x of the partition A (respectively B) is a measure of the local contribution of

the site x to the entanglement between the partitons A and B. In particular the

entanglement contour is not-uniquely defined by the following five properties

1. Positivity: The contribution of each site to the total entanglement must be non-
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negative

sA(x) ≥ 0 ∀x ∈ A. (2.23)

2. Normalisation: The sum of the contour sA(x) of each site of partition A must

add up to the total entanglement entropy S(A) of the partition

∑

x∈A
sA(x) = S(A). (2.24)

3. Symmetry: If T is a symmetry of ρA, the reduced density matrix of partition A,

that is TρAT † = ρA, and T exchanges site i with site j, then sA(i) = sA(j).

4. Invariance under local unitary transformation: If UX is a local unitary with

support X ⊆ A and ρ′A = UXρAU
†
X , then sA(X) is equal for both ρA and ρ′A,

where

sA(X) =
∑

x∈X
sA(x). (2.25)

5. Upper bound: If the Hilbert space of A is factorised as HA = HΩ ⊗HΩ̄ and HX

is contained in HΩ, then

sX ≤ S(Ω). (2.26)

In general it is still an open question whether more conditions may be needed in order

to uniquely identify an entanglement contour. In section 3.3.10 we are going to see

a particular entanglement contour defined for Fermionic Gaussian states. Other than

for Fermionic Gaussian states, entanglement contours have been defined for harmonic

lattices, single intervals in holographic CFTs and inhomogeneous critical systems [93–

95]

Entanglement Spectrum

In order to characterise the entanglement in a system one can consider other quantities

other then just the entanglement entropy. It is possible, for example, to extend the
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definition of von Neumann entropy S(ρ) to the family of Renyi entropies

Sα(ρ) =
1

1− α
HQ;(Tr [ρα]), (2.27)

for α ≥ 0. The von Neumann entropy is the limit for α→ 1 of the Renyi entropy.

The information content of the Renyi entropies is equivalent to the one encoded in

the whole spectrum of ρ. It is thus convenient to consider directly the spectrum of

the density matrices [96]. In particular the spectrum of the reduced density matrix

of a system is called entanglement spectrum [97–101] as it encodes all the properties

of the reduced states and thus the entanglement properties of the general state. The

entanglement Hamiltonian of a state ρAB is defined as the Hermitian matrix HA such

that ρA = eHA .

2.3.3 Local Hamiltonians

In the paragraph about the Suzuki-Trotter decomposition 2.2.3 we introduced the

concept of local Hamiltonians without any reference to the geometry of the system.

We introduce here the concept of quantum lattice model, for which a distance

between the various constituents of the system is defined.

Definition of Local Hamiltonians

A lattice model is based on the structure of a graph G = (V,E) where V is the set of

vertices and E is the set of edges (that is a set of couples of vertices). If we associate

to each vertex a constituent of our physical system, we can define the distance between

two constituents as the minimum number of edges that connects the vertices associated

to each one of the two constituents.

For an example see figure 2.2. In general every kind of graph is possible, but we will

will focus principally just on chains and square lattices that are two simple examples

of graphs (see figure 2.2). We define a geometrically local Hamiltonian on the lattice

G (from this point onwards we omit geometrically and call it just local Hamiltonian)
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Figure 2.2: Three examples of graphs. The blue circles represent the vertices, the black
lines represent the edges. In (1) we represent a generic graph, the nearest neighbours
of vertex a are vertices b, c, d, e. In (2) a square lattice, in (3) a chain lattice.

an Hamiltonian of the form

H =
∑

j∈V
hj (2.28)

where each hj has non trivial support only on vertices at short distances from vertex

j. In the case of a chain, for example, if for every j ∈ V we have that hj has non

trivial support only on j − 1, j, j + 1 we will say that the Hamiltonian is local.

The same definition of locality applies to any observable and we will say that an

observable is local if it has non trivial support only on neighbouring vertices.

Examples of local Hamiltonians are for examples the hopping model 3.4 and the

transverse field Ising model 3.5.

The property for a Hamiltonian of being local has strong consequences. We remind,

for example, that in the treatment of the Suzuki-Trotter decomposition 2.2.3, we have

seen how the fact that the Hamiltonian H is local implies that within a good

approximation we can exponentially reduce the number of parameters necessary for

describing H.

Exponential decay of correlations

An important property of systems described by local and gapped Hamiltonian is that

the correlation functions of the ground state decay exponentially with the distance

[102, 103]. Considering a chain lattice system with ground state |ψ〉, for two local
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observables Oi and Oj with support on sites i and j respectively, one has

|〈ψ|OiOj |ψ〉 − 〈ψ|Oi|ψ〉〈ψ|Oj |ψ〉| ≤ Ce−|i−j|∆E/2v||Oi||||Oj ||, (2.29)

where C is a positive constant, || · || is the operator norm, and v is a positive constant

called the Lieb-Robinson velocity [104].

The decaying rate ξ := 2v
∆E defines a length scale for the correlations and it is called

correlation length. This bound is generalised to observables with support on more

than one site and for thermal states [102].

Area Law

We have seen how for local gapped Hamiltonians the correlations in the ground states

decay exponentially. Because of this rapid decay of correlations, we can consider each

subsystem of contiguous sites to be correlated just with the subsystems at its

boundaries.

This observation gives us some intuition about the behaviour of entanglement for

these states. Let us consider the ground state of a gapped local Hamiltonian on the

lattice of figure 2.3. We can think about the partition A as correlated just with

partitions C and C ′.

Now we focus on the partition scheme (A,B + C + C ′), which means that the system

is divided in two complementary partitions, one of the elements labelled with A and

the complementary with elements labelled with B, C and C ′ referring to figure 2.3.

We ask about the amount of entanglement of the state. If, for measuring the

entanglement entropy we focus on partition A, we can naively suppose that we are

actually dealing with just a pure state of the system A + C + C ′ because of the

exponential decay of correlations. Let us take this supposition seriously. This would

imply that A is effectively directly entangled just with C. Since S(C + C ′) is upper

bounded by |C + C ′| HQ;(d) we would have that S(A) ≤ |C + C ′| HQ;(d). Thus we

would expect the entropy of a partiton A of the ground state of a gapped local
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Hamiltonian to be bounded by the dimension of the boundary of the partition.

AC C’ BB
--0-0-0-0-0-0-0-0-0-0-0-0-ooo

Figure 2.3: Exponentially decaying correlation on a periodic 1D lattice. Since
the correlations are decaying exponentially, partition A can be considered effectively
correlated just with C and C ′ and in a product state with partition B.

This bold statement is actually been verified in many different cases and it is an

instance of the entanglement’s area law [19]. More specifically, a generic quantum

state on a lattice obeys the area law if the entanglement of two complementary

partitions grows at most proportionally with the size of the boundary between the

two complementary partitions. For a one-dimensional chain lattice the boundary

consists only of two sites for every chosen dimension of the partition, for a 2D square

lattice the boundary of a squared partition grows as the perimeter of the partition

and so on for higher dimensions.

The fact that exponentially decaying correlation functions imply an area law has been

proved only in the case of 1D gapped Hamiltonians [105] and it is in general not true.

Nevertheless, even if it is in general not true that exponentially decaying correlations

implies an entanglement’s area law, still one can find many instances for which the

low-lying energy state of local gapped Hamiltonians satisfy an area law.

The idea that low-lying energy states of a local gapped Hamiltonian should satisfy an

area law has been supported by many evidences, starting from the work of Bekenstein

on the entropy of black holes [106] to the works on spins [66,69] and bosons [107,108].

Inspired by these evidences, the validity of the area law has been proved for various

systems. For example for the ground state of gapped one dimensional finite systems

the von Neumann entropy S of a partition is bounded by [109]

S ≤ c0η HM(η) HM(d)2η HM(D), (2.30)
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where c0 is a constant, d is the dimension of the Hilbert space at each site of the lattice

and η = 6·K�t(2v/∆E, ξ) with ξ the correlation length, ∆E the gap of the Hamiltonian

and v is a constant of the order of the norm of the local terms of the Hamiltonian.

While in the ground state of gapped one dimensional continuous systems at the

critical point the von Neumann entropy of the ground state scales as [69,110]

S ∼ Nb
c

6
HQ;(L) + c1, (2.31)

where Nb is the number of boundaries between the subsystems, c is the central charge

of the corresponding conformal field theory (see chapter 5), L is the size of the

system, and c1 is a constant (non universal). Away from the critical point the entropy

scales as in (2.31) but with the dimension of the system L substituted by the

correlation lenght ξ.

The area law has been proved also for other systems as gapped quadratic fermionic

and bosonic Hamiltonians [107, 111], gapless quadratic bosonic Hamiltonians for

lattices of dimension bigger than 1 [112], and for a generic class of low-energy states

of finite-range interactions Hamiltonians [113].

2.3.4 Matrix Product states

On average, the entropy of a partition of a pure state |ψ〉 is proportional to |A| [114].

States satisfying the area law are thus a tiny fraction of all the possible states in a

Hilbert space. From last section we have seen how states satisfying the area law are

an interesting class of states, representing, for example, ground states of 1D gapped

Hamiltonians.

Putting all these observations together we individuate and characterise a small set of

quantum states out of the exponentially many of the full Hilbert space. We are now

interested in being able to compress this class of states. One of the most efficient

methods for compressing these states is using matrix product states [12, 115].
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Let us consider an N constituents systems and a vector in its Hilbert space H = (Cd)⊗N

|ψ〉 =
∑

i1,...,iN

ci1,...,iN |i1, . . . , iN 〉, (2.32)

where |i1, . . . , iN 〉 = |i1〉 ⊗ · · ·⊗ |iN 〉 and for each l = 1, . . . , N il ∈ {1, . . . , d}. In total

we have dN different coefficients. The coefficient tensor ci1,...,iN can be rewritten as

ci1,...,iN = A[1]
i1
A[2]

i2
. . . A[N ]

iN
, (2.33)

where for l $= 1 and l $= N , A[l]
i is a D ×D matrix, A[1]

i ∈ C1×D is a row vector, and

A[N ]
i ∈ CD×1 is a column vector. We encoded all the coefficients of the state in NdD2.

The state can then be written as:

|ψ〉 =
∑

i1,...,iN

A[1]
i1
A[N ]

iN
. . . A[N ]

iN
|i1, . . . , iN 〉 (2.34)

Equation (2.34) is called Matrix Product State (MPS) representation of the state.

The dimension D of the matrices is called bond dimension of the state. The faithful

MPS representation of a generic state requires a bond dimension Dmax = d
N
2 , thus

the specification of DdN+1 coefficients. We will see that the bond dimension is a

measure of the entanglement across any two complementary partitions of the system,

thus, the bond dimension of the MPS representation of low-entangled states is

expected to be much smaller than Dmax and in general to not depend on the system

size. The power of the MPS representation is that it allows to efficiently obtain a

low-entanglement approximation of states, that is an approximated MPS

representation of bond dimension D smaller then the value necessary for obtaining a

faithful description of the state. To have an intuition of the kind of approximation

one is performing when using an MPS ansatz at lower bond dimension for

representing a state, we review the basic ideas of the method for constructing an MPS

in the canonical form [116].
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v |v⟩i

M

i

i j Mi,j

Mi jv ∑
i

viMi,j

TM[1] M[2]i j

x y z

∑
i,j

(M[1]
x )i(Ty)i,j(M[2]

z,z′ 
)j

z′ 

Figure 2.4: Tensor network notation. A box with n legs corresponds to a tensor with n
indices. On the left, starting from the top the tensor network notation of the vector |v〉
and of the matrix M . Legs connecting two boxes correspond to summed indices of the
two tensors corresponding to the two boxes. On the right a vector matrix multiplication
and a more complex summation.

A[1] A[2] A[3] A[N]

i1 i2 i3 iN

Figure 2.5: A graphical representation of the MPS representation of eq (2.34).

Schmidt decomposition and Singular Value Decomposition We first

introduce two important mathematical tools at the core of MPS, the Singular Value

Decomposition (SVD) and the Schmidt decomposition, we then show how this two

tools are strictly connected.

Singular value decomposition Let C be an m×n matrix. It is always possible

to decompose C as

C = USV †, (2.35)

where

• U is an m×m unitary matrix.

• V is an n× n unitary matrix.

• S is an m×n real rectangular diagonal matrix, with diagonal elements Sα,α called

singular values.
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Schmidt Decomposition Let HA and HB be two Hilbert spaces of dimension

dA and dB respectively. Assume that dB ≥ dA. Then for every |ψAB〉 ∈ HAB =

HA⊗HB there exist two orthonormal basis {|ψ[A]
i 〉}dAi=1 and {|ψ[B]

i 〉}dBi=1 of HA and HB,

the Schmidt basis, such that

|ψAB〉 =
dA∑

α=1

λα|ψ[A]
α 〉 ⊗ |ψ[B]

α 〉, (2.36)

with Schmidt coefficients λα ≥ 0 for every α.

The number of Schmidt coefficients different from 0 is called Schmidt rank. A product

state has Schmidt rank equal to 1.

The entanglement spectrum of partition A and partition B is equal and it is {|λα|2}α,

the entanglement entropy of |ψAB〉 is S(A) = S(B) = −2
∑

α |λα|2 HQ;(|λα|).

Relation between Schmidt decomposition and SVD Consider again the

state |ψAB〉 of the last section. This time we consider two different basis for HA and

HB, namely {|iA〉}i and {|jB〉}j . In general, if the chosen basis is not the Schmidt

basis, the expression of the state on this basis will take the form:

|ψAB〉 =
∑

i,j

ci,j |iA〉 ⊗ |jB〉. (2.37)

We apply a SVD to the matrix of the coefficients ci,j =
∑

α Ui,αSα,αV
†
α,j and we obtain

|ψAB〉 =
∑

i,j

∑

α

Sα,αUi,α|iA〉 ⊗ V †
α,j |jB〉. (2.38)

Comparing this equation with equation (2.36) we can identify the singular values Sα,α

with the Schmidt coefficients λα and the two orthonormal basis {
∑

i Ui,α|iA〉}α and

{
∑

j V
†
α,j |jB〉}α with the two Schmidt Basis. The rank of the matrix S, that is the rank

of matrix c is the number of Schmidt values different from 0.

Construction of an MPS in one dimension Let us imagine that the quantum

state ψ of equation (2.32) is defined on a 1D lattice. We consider the complementary
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partitioning of the system A1 and B2,...,N , where the subindices denotes the sites of the

lattice belonging to the partition. The Schmidt decomposition of |ψ〉 with respect to

this partition is

|ψ〉 =
d∑

α1=1

λ[1]α1
|ψ[1]
α1
〉 ⊗ |ψ[2,...,N ]

α1
〉, (2.39)

where {|ψ[1]
j 〉}j and {|ψ[2,...,N ]

j 〉}j are orthonormal basis of the Hilbert spaces associated

to the two partitions of the lattice.

We express |ψ[A]
j 〉 on the original basis {|i1〉} as |ψα1〉 =

∑d
i1
Γ[1]i1
α1 and we obtain

|ψ〉 =
∑

i1,α1

Γ[1]i1
α1

λ[1]α1
|i1〉 ⊗ |ψ[2,...,N ]

α1
〉. (2.40)

Repeating this procedure now for the system (2, . . . , N) with the partitioning A2,

B3,...,N and then iteretively until the partitioning AN−1,BN of the system (N − 1, N),

we obtain

ci1,...,iN =
∑

α1,..,αN−1=0

Γ[1]i1
α1

λ[1]α1
Γ[2]i2
α1α2

λ[2]α2
Γ[3]i3
α2α3

λ[3]α3
· .. · Γ[N−1]iN−1

αN−2αN−1λ
[N−1]
αN−1

Γ[N ]iN
αN−1

. (2.41)

This is a different notation for MPS, often called Vidal’s notation. The Vidal’s notation

relates to the MPS notation (2.34) introduced before by the equality

(A[l]
il
)αl−1,αl = Γ[l]il

αl−1,αl
λ[l]αl

. (2.42)

From this equality we see that the bond dimension corresponds to the number of

Schmidt values in the Schmidt decomposition that corresponds to the rank of the

matrix S in the SVD decomposition. It is clear that the dimension of each matrix A[l]
il

can vary fo each l, this is indeed the general case. One refers to the bond dimension

of a state when the dimension of each matrix A[l]
il

is fixed, as we will see in the case of

truncated MPS representation. We remind that this is just one of the many ways of

constructing MPS [12], for a more precise and complete treatment we refer to [117] or

one of the many reviews already cited in this chapter.
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Entanglement of an MPS Expressing the MPS with Vidal’s notation is particularly

convenient for understanding the entanglement properties of MPS states. Indeed, each

set {λ[l]αl}αl , is exactly the set of Schmidt coefficients of the partitioning A1,...,lBl+1,...,N .

We note that, from equation (2.42), the dimension of the matrix associated to each site

used in the MPS representation (2.34) corresponds to the number of Schmidt values

for the partition scheme of the system with boundary at that site.

Eckart-Young Theorem Suppose we have a matrix C and we want to

approximate it with a matrix C̃ of rank at most r. This approximation is called low

rank approximation.

The Eckart-Young theorem [118] tells us that the best low rank approximated matrix

C̃ can be obtained by performing the SVD of C and setting the smallest singular

values of C to zero, leaving just r singular values different from 0.

Thus, if C = USV † with singular values {S1,1, S2,2, . . . , Sn,n} such that

S1,1 ≥ S2,2 ≥ · · · ≥ Sn.n ≥ 0, we define S̃ as the rectangular diagonal matrix with

same dimensions of S and with diagonal elements {S1,1, S2,2, . . . , Sr,r, 0, . . . , 0}. The

low rank approximated matrix is C̃ = US̃V †.

It is importat to keep in mind that the quality of the approximation is measured in

Frobenius norm. Thus C̃ is defined by the equality

||C − C̃||F = KBM
rank(D)=r

||C −D||F , (2.43)

where the Frobenius norm is defined for a generic m× n matrix M as

||M ||F =

√√√√
m∑

i=1

n∑

j=1

|Mi,j |2. (2.44)

The Frobenius norm weight all the elements of the matrix M equally. The same

result has been generalised by Mirsky [119] to include all the unitarily invariant

norms, including the spectral norm (the spectral norm of a matrix is its biggest

singular value).

We will see that, many times, measuring the approximation error with other norms
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can be useful. We could, for example, be interested in finding the low rank

approximation of a matrix M for wich we want to preserve all the diagonal elements

and at the same time we do not care about the possible changes of the out-of-diagonal

elements (we will develop on this intuition in chapter 6). In this case, we would like to

minimise the error of a norm that weights more the elements of the diagonal and less

the out of diagonal elements. This kind of minimisation problems is known as

weighted low-rank approximation. The general weighted low-rank approximation

problem does not admit an analytic solution in term of the singular value

decomposition and it is usually solved by variational methods which do not guarantee

that a global optimal solution is found.

The weighted low-rank approximation problem is strictly connected to the so-called

Netflix problem [120,121] that is an active research topic in computer science.

Truncated MPS Putting the ingredients of all last paragraphs together we can

finally study the MPS ansatz at lower bond dimension. In fact, if during the process

of building the MPS for a state ψ we decide to always keep just the χ biggest Schmidt

values at each Schmidt decomposition step, what we are are actually doing is

performing a low-rank approximation of the coefficient matrix. Doing so we obtain an

MPS with bond dimension χ, which we know minimises the error in Frobenius norm

at each step of the construction.

This low-rank approximation, or, as it is called in condensed matter, fixed bond

dimension approximation has proven to be optimal for various reasons. It is really

efficient, indeed we have seen that the amount of coefficients needed to store the state

of a lattice of N sites of local dimension d is dNχ2, that for small χ is much smaller

than dN . The MPS representation is also the state of the art compression of states

obeying the area law, thus the relevant class of state we individuated in this section.

Fixing the bond dimension of a state implies fixing the number of Schmidt coefficients

of each partition, thus bounding the Entanglement Entropy of each partition. Indeed,

it is easy to see that the the entanglement entropy of any partition of an MPS of fixed
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bond dimension χ is bounded by

EE ≤ 2 HQ;(χ). (2.45)

From this bound on the entanglement, we obtain that the computational resources

needed for encoding an MPS grow exponentially with the amount of entanglement.

At this point we know that an MPS state with fixed and small bond dimension is a

low entangled state. We do not know if low entangled states are always efficiently

representable as an MPS.

From this intuition we expect for the MPS representation to be an efficient ansatz for

representing low entangled states (as the one obeying the area law), this is indeed the

case in many cases. More precisely we know that if for a state |ψ〉 the Renyi entropies

for α < 1 of any block are bounded by a constant, then an efficient approximation of

|ψ〉 by a truncated MPS exists [122]. The general connections between the efficiciency

of the representation of a state with a truncated MPS and its entanglement is studied

in [123].

2.3.5 Matrix Product Operators

A generic operator O can be expanded on a suitable basis as

O =
∑

i1,...,iN
i′1,...,i

′
N

c
i′1,...,i

′
N

i1,...,iN
|i1, . . . , iN 〉〈i′1, . . . , i′N |, (2.46)

where c is a tensor of d2N coefficients.

Analogously with what we have done introducing the MPS representation for

quantum states, we introduce here the Matrix Product Operator (MPO)

representation [124] for the general operator O as

O =
∑

i1,...,iN
i′1,...,i

′
N

B[1]
i1,i′1

B[2]
i2,i′2

. . . B[N ]
iN ,i′N

|i1, . . . , iN 〉〈i′1, . . . , i′N | (2.47)
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where each B[l]
il,i′l

is a D ×D matrix. One difference with equation (2.34) is that now

we have two sub indices, thus a greater number of matrices.

B[1] B[2] B[3] B[N]

i1 i2 i3 iN

i′ 1 i′ 2 i′ 3 i′ N

Figure 2.6: A graphical representation of the MPO representation of eq (2.47).

Matrix product operators can be used to approximately represent density matrices

and Hamiltonians [25, 31]. In this context, since the state is mixed, the entanglement

entropy cannot be used to measure entanglement and intuitions related to the area

law and the truncation of the MPO to lower bond dimension are partially lost.

Another difficulty in dealing with truncated MPO is the fact that it is difficult to

control the positivity of the operator. Valid density matrices are positive semidefinite

operators, the process of truncating the bond dimension of the MPO is not

guaranteed to conserve the positivity and thus it is not guaranteed that the truncated

version of an MPO is a valid density matrix. Furthermore, checking if the MPO is

positive is a computationally inefficient task [125]. Fortunately, it has been shown

that thermal states of spin lattices can efficiently be approximated by MPO [126–129]

and generic thermal state can be guaranteed to be positive with a relatively efficient

procedure [126].
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Julia library for manipulation of
Fermionic Gaussian states:
F_utilities

In this section we present a practical introduction to the manipulation of Fermionic

Gaussian systems. In particular we will focus on the encoding of these systems in a

computer using a Julia package called F_utilities. Starting from the basis, we will

move to relevant modern results and techiques, and finish introducing novel algorithms.

By the end of the chapter the reader should be able to reproduce all the results of this

thesis using the package F_utilities and make good use of F_utilities for other

relevant numerical simulations. It should be possible to read this chapter independently

from the rest of the thesis and use it as the documentation of the package F_utilities

and as a useful resource in the broad and fertile field of Fermionic Gaussian states.

58
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3.1 The canonical anticommutation relations

3.1.1 The Hilbert space characterised by the canonical
anticommutation relations

Consider a set of operators {ai}Ni=1 acting on a Hilbert space H. We say that these

operators satisfy the canonical anticommutation relation (CAR) when they satisfy

{ai, a†j} = Iδi,j ; {ai, aj} = 0, (3.1)

with {a, b} := ab+ ba the notation for the anticommutator.

As shown in [130] a number of properties of the set of operators {ai}Ni=1 and of the

Hilbert space H can be inferred just by the fact that such operators exist and obey the

CAR.

The a†iai form a set of commuting, Hermitian, positive operators with eigenvalues {0, 1}.

We denote with /x ∈ {0, 1}N a binary string of length N with the i-th elements xi. With

|/x〉 we identify one of the 2N states that is the simultaneous eigenstate of a†iai for all

i = 1, . . . , N with eigenvalues respectively xi. The operator ai acts as a lowering

operator for a†iai and a†i acts as a raising operator for a†iai in the sense that

1. If a†iai|/x〉 = |/x〉, that is, |/x〉 is an eigenvector of a†iai with eigenvalue equal to 1,

then the action of ai on |/x〉 lowers the corresponding eigenvalue, meaning that

a†iai(ai|/x〉) = 0(ai|/x〉).

2. If a†iai|/x〉 = 0|/x〉, that is, |/x〉 is an eigenvector of a†iai with eigenvalue equal to

0, then the action of a†i on |/x〉 raises the corresponding eigenvalue, meaning that

a†iai(a
†
i |/x〉) = 1(a†i |/x〉).

We define an ordering by explicitly defining |/x〉 := (a†1)
x1(a†2)

x2 . . . (a†N )xN |/0〉, where /0

is the string of N zeros. The set {|/x〉})x∈{0,1}N forms an orthonormal basis. Since the

dimension of the Hilbert space H is 2N , then {|/x〉})x∈{0,1}N is an orthonormal basis of

H.

The orthonormal basis {|/x〉})x∈{0,1}N is called Fock basis. The action of the raising and
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lowering operators on |/x〉 is then

ai|/x〉 =






−(−1)S
i
"x |/x′〉 with x′i = 0 and x′j (=i = xj (=i, if xi = 1

0 if xi = 0
, (3.2)

a†i |/x〉 =






0 if xi = 1

−(−1)S
i
"x |/x′〉 with x′i = 1 and x′j (=i = xj (=i, if xi = 0

, (3.3)

with Si
)x =

∑i−1
k=1 xk.

In appendix A we report some useful equalities valid for operators satisfying the CAR.

3.1.2 Dirac and Majorana representations

The raising and lowering operators a†i ,ai are called Dirac operators and they represent

the action of adding and removing the i-th Fermionic mode.

Both ai and its adjoint a†i are not Hermitian. The Hermitian combinations of the raising

and lowering operators

xi =
ai+a†i√

2
, pi =

ai−a†i
i
√
2
, (3.4)

are called Majorana operators.

The inverse transformations are:

ai =
xi+ipi√

2
, a†i =

xi−ipi√
2

. (3.5)

In terms of Majorana operators the CARs read as

{xi, xj} = {pi, pj} = δi,j , {xi, pj} = 0. (3.6)

We remark that to Majorana operators labelled by i correspond Dirac operators

labelled by i. Moving between Majorana and Dirac operators does not mix modes.
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Vector notation We can collect the Dirac operators of a system with N modes in

the vector /α of length 2N defined as

/α =





a†0
...

a†N−1

a0
...

aN−1





, /α† =
(

a0 . . . aN−1 a†0 . . . a†N−1

)
. (3.7)

Analogously we can collect the Majorana operators in the vector /r defined as

/r =





x0
...

xN−1

p0
...

pN−1





, (3.8)

in terms of /r the CAR are conveniently written as

{ri, rj} = δi,j . (3.9)

We define the unitary matrix Ω as

Ω = 1√
2



 I I

iI −iI



 , Ω† = Ω−1 = 1√
2



 I −iI

I iI



 . (3.10)

Such a matrix, applied to the vector of the Dirac operators /α, returns the vector of

Majorana operators /r = Ω/α.

Fermionic transformation A transformation /r → /s = O/r is said to preserve the

CAR in the Majorana representation if it maps a vector of Majorana operators /r to a
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new one /s = O/r. If we explicitly impose /s = O/r to preserve the CAR we obtain

δi,j = {si, sj} =
∑

k,l

Oi,kOj,l{rk, rl} = (OOT )i,j , (3.11)

thus matrix O must be an orthogonal matrix.

We call Fermionic transformation any transformation /α → /β = U/α that preserves

the CAR of the Dirac operators vectors. Matrix U has the form of U = Ω†OΩ with

O an orthogonal matrix. It has been shown in [131] that Fermionic transformations

are generated by Fermionic quadratic Hamiltonian (to be defined later), thus have the

general form U = e−iĤ , with Ĥ a generic Fermionic quadratic Hamiltonian.

Clifford Algebra The Majorana operators {ri}i=1,...,2N are Hermitian, traceless

and generate the Clifford algebra denoted by C2N .

Any arbitrary operator X ∈ C2N can be represented as a polynomial of the Majorana

operators as [131]

X = α0I+
2N∑

p=1

∑

1≤q1<···<qp≤2N

αq1,...,qprq1 . . . rqp , (3.12)

where I is the identity and the coefficients α0 and αq1,...,qp are real. When the

representation of X ∈ C2N involves only even powers of Majorana operators, we call it

an even operator. If the representation of X involves only odd powers of Majorana

operators, then X is called odd operator.

We define the parity operator as

P = (i2)Nr1r2 . . . r2N =
N∏

i=1

(I− 2a†iai) (3.13)

Every even operator X commutes with the parity operator P . The parity pX of an

operator X is defined as PX = pXX and it can only assume the two values pX ∈

{−1, 1}.

Fermionic quadratic Hamiltonians (to be defined later) are even operators. For an N -

mode Fermionic system with orthonormal basis {|/x〉}, the matrices |/x〉〈/x| defined for
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every /x have the polynomial representation

|/x〉〈/x| =
(
I
2
− i(−1)x1r1r2

)(
I
2
− i(−1)x2r3r4

)
. . .

(
I
2
− i(−1)xN r2N−1r2N

)
, (3.14)

thus {|/x〉〈/x|} are all even operators with parity p|)x〉〈)x| = −(−1)
∑N

i=1 xi .

Mixed matrices |/x〉〈/x′| with /x $= /x′ are odd operators if mod(d(/x, /x′), 2) = 1, where

d(/x, /y) is the Hamming distance of /x and /y, and they are even operators if

mod(d(/x, /x′), 2) = 0.

3.2 Fermionic Quadratic Hamiltonians

3.2.1 Dirac Representation

The general Fermionic quadratic Hamiltonians (f.q.h.) on a finite lattice of N sites in

the Dirac operators representation can be written as

Ĥ =
N∑

i,j=1

(
Ai,ja

†
iaj − Āi,jaia

†
j +Bi,jaiaj − B̄i,ja

†
ia

†
j

)
, (3.15)

where A is a Hermitian complex matrix, A† = A, and B is a skew-symmetric complex

matrix, BT = −B .

Defining the matrix

H =



 −Ā B

−B̄ A



 , (3.16)

the compact form of equation (3.15) reads

Ĥ = /α†H/α. (3.17)

We will call Hamiltonians both Ĥ and H as for a fixed choice of Dirac operators one

completely identifies the other.
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3.2.2 Majorana Representation

The Majorana representation of the generic f.q.h. reads as

Ĥ = i
N∑

i,j=1

(
hxxi,jxixj + hppi,jpipj + hxpi,jxipj + hpxi,jpixj

)
= i/r†h/r, (3.18)

where

ih = ΩHΩ† = i



 0{A+B} 1{A+B}

1{B −A} 0{A−B}



 = i



 hxx hxp

hpx hpp



 . (3.19)

Where 0{·} and 1{·} are respectively the imaginary and the real part of their

argument.

Using the properties of matrices A and B, it is easy to see that matrix h is real and

skew-symmetric.

3.2.3 Diagonalisation

Diagonal form of the Hamiltonian with Dirac operators Given a particular

f.q.h. Ĥ in the general form (3.15) it is always possible to find a new set of Dirac

operators {bk}Nk=1 such that Ĥ in terms of {bk}Nk=1 reads as

Ĥ =
N∑

k=1

εk(b
†
kbk − bkb

†
k), (3.20)

with εk ∈ R for all k = 1, 2, . . . , N [132].

We call Hamiltonians in this form free-free fermion Hamiltonians.

In compact form

Ĥ = /β†HD
/β (3.21)
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with

HD = U †HU =





−ε1 0 . . . . . . 0

0
. . . . . . ...

... . . . −εN

ε1
. . . ...

... . . . . . . 0

0 . . . . . . 0 εN





, (3.22)

where /β is the collection of the Dirac operators bk, b
†
m ordered as in /α, and U is the

Fermionic tranformation that diagonalises the Hamiltonian.

We will always order the eigenvalues in descending order (ε1 ≥ ε2 ≥ · · · ≥ εN ≥ 0).

Diagonal form of the Hamiltonian with Majorana operators In terms of

Majorana operators the diagonal form of a generic f.q.h. reads as

Ĥ = i
N∑

i=1

λi(x̃ip̃i − p̃ix̃i). (3.23)

for a set of Majorana operators {x̃i}i, {p̃i}i. In compact form

Ĥ = i/s†hD/s, (3.24)

where /s is the collection of the Majorana operators x̃i, p̃j ordered as (3.31) and where

hD = OThO =
N⊕

i=1



 0 λi

−λi 0



 (3.25)

is a block diagonal matrix and O the orthogonal transformation that diagonalises the

Hamiltonian in the Majorana operators representation. Substituting the definition of

Majorana operators (3.4) into equation (3.23) and confronting with equation (3.20)

we note that εk = λk.
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3.2.4 Numerical diagonalisation

As seen in subsection 3.2.3, diagonalising a general f.q.h. Ĥ reduces to diagonalising

(or to block diagonalise in the case of Majorana representation) the matrix H of its

compact form.

We are thus interested in finding the Fermionic transformation U that maps H and

the vector of Dirac operators /α respectively to the diagonal matrix HD = U †HU and

to the vector of Dirac operators /β = U/α such that, in term of /β, the Hamiltonian is in

the diagonal form (3.20).

Here we focus on the numerical approach, we diagonalise the Hamiltonian using

standard matrix decomposition techniques. For a more physical approach we refer

to [132].

First step in the diagonalisation procedure is moving to the Majorana representation

of H

Ĥ = /α†H/α = /α†Ω†ΩHΩ†Ω/α =

= i/r†h/r. (3.26)

The following theorem is a standard result in matrix theory [133,134]

Theorem 1 (Block diagonal form of skew-symmetric matrices)

Let h be 2N ×2N a real, skew-symmetric matrix. There exists a real special orthogonal

matrix O such that

h = OhDO
T , (3.27)

with hD a block diagonal matrix of the form

hD =
N⊕

i=1



 0 λi

−λi 0



 (3.28)

for real, positive-definite {λi}i=1,...,N . The non-zero eigenvalues of matrix h are the

imaginary numbers {±iλi}i=1,...,N .

For a more general form of this theorem see appendix A.1.5.



Chapter 3. Practical manipulation of Fermionic Gaussian states: F_utilities 67

Matrix h in (3.18) is real, skew-symmetric, thus, using theorem (3.27) we know

there exists an orthogonal transformation O that diagonalises the matrix

Ĥ = i/r†h/r = i/r†OO†hOO†/r = (3.29)

= i/s†




N⊕

i=1



 0 λi

−λi 0







/s = i/s†hD/s (3.30)

That is Ĥ = i
∑N−1

i=0 λi(x̃ip̃i − p̃ix̃i) once defined the new collection of Majorana

operators /s = O/r as

/s =





x̃0

p̃0

x̃1

p̃1
...

x̃N−1

p̃N−1





. (3.31)

The vector of Majorana operators /s has a different ordering with respect to the vector /r.

We call the order of the operators in /s an xp ordering and the ordering of the operators in

/r and xx ordering. The transformation matrix Ω† maps a vector of Majorana operators

in xx ordering to a vector of Dirac operators, thus, before being able to move to the

Dirac representation we have to reorder the element of vector /s. To do so we use the

matrix

Fxp→xx =

i = 0

i = 1
...
...

i = N

i = N + 1
...

i = 2N + 1





1 0 0 0 . . . . . . 0 0

0
... 1

... ... ...
... ... ... ... 0

...
... 0 0 0 1

...
... 1 0 0 0

...
... 0

... 1
... ...

... ... ... 0
... 0

0 0 0
... . . . . . . 0 1





(3.32)
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that applied to a vector /s with the xp ordering returns a vector /̃r = Fxp→xx/s with xx

ordering. Mapping back to the Dirac representation we obtain the diagonal form of the

Hamiltonian in the Dirac operators representation as

Ĥ = i
(
/sF T

xp→xxΩ
) (

Ω†Fxp→xxhDF
T
xp→xxΩ

)(
Ω†Fxp→xx/s

)
= (3.33)

=
N∑

k=1

εk(b
†
kbk − bkb

†
k) =

/β†HD
/β. (3.34)

The Fermionic transformation U that diagonalises the Hamiltonian H in the form (3.22)

is

U = Ω† ·O · F †
xp→xx · Ω. (3.35)

F_utilities 3.2.1: Diag_h(H)→ HD, U

This function diagonalises H. HD is the diagonal form with the first half

diagonal negative and the second one positive ordered as (3.22). U is the

Fermionic transformation such that: H = UHDU †.

Block-diagonal form of real skew-symmetric matrices The matrix

decomposition (3.27) of theorem 1 is numerically obtained in 3 steps

1. Compute numerically a Schur decomposition (or Schur triangularisation as in

[134]) of the skew-symmetric matrix h such that: h = Õh̃DÕT . The matrix h̃D

should be a block-diagonal matrix with each block in the anti-diagonal form



 0 λ̃i

−λ̃i 0



 . (3.36)

It is not guaranteed that the λ̃i are positive for each i. It is necessary to reorder

them as in step 2.
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2. Build the orthogonal matrix S =
⊕-N/2.

i=1 si with

si =



 0 1

1 0



 (3.37)

if λ̃i < 0 or

si =



 1 0

0 1



 , (3.38)

if λ̃i > 0.

3. The final orthogonal transformation is O = ÕS such that h = OhDOT .

F_utilities 3.2.2: Diag_real_skew(h) → hD, O

This function implements the algorithm for the block diagonalisation of h a

generic skew-symmetric real matrix. hD is the block-diagonal matrix of (3.27)

and has the following property: it is in the block diagonal form, each 2× 2 block

is skew-symmetric with the upper-right element positive and real and hD is in

ascending order for the upper diagonal. O is an orthogonal matrix such that:

h = OhDOT .

3.3 Fermionic Gaussian States

3.3.1 Fermionic Gaussian states

Definition 1 (Fermionic Gaussian state)

A state ρ is a Fermionic Gaussian state (f.g.s.) if it can be represented as

ρ =
e−Ĥ

Z
=

e−)α
†H)α

Z
(3.39)

with Z := Tr
[
e−Ĥ

]
a normalisation constant and Ĥ a Fermionic Gaussian

Hamiltonian called parent Hamiltonian of ρ.

Every possible value of the norm of the Hamiltonian is admitted,
∥∥∥Ĥ

∥∥∥
1
∈ [0,+∞].
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Both extremum values are reached with a single sided limit procedure in the definition

of ρ.

All the information about the state is encoded in the 2N × 2N matrix H at the

exponential.

Fermionic Gaussian states have an immediate interpretation as thermal Gibbs states

of f.q.h.. One can even rescale the parent Hamiltonian as ˆ̃H = 1
β Ĥ such that

∥∥∥ ˆ̃H
∥∥∥ = 1

and β = 1
‖Ĥ‖ . In this way the state reads as ρ = e−β ˆ̃H

Z with β ∈ [0,+∞]. Since f.g.s are

exponential of f.g.h. and f.g.h. are even operator, it follows that f.g.s are even operator.

Single mode Gaussian states Consider the single mode parent Hamiltonian Ĥ1 =

ε(b†b − bb†) of the f.g.s. ρ = 1
Z e

−Ĥ1 . The explicit representation of ρ on the basis

{b†|0〉, |0〉} is

ρ =



1− f 0

0 f



 (3.40)

where f = 〈0|ρ|0〉 and the two coherences are 0 because we cannot have the odd terms

|0〉〈1| and |1〉〈0| in the expansion of the even operator ρ (see [1,135] for a detailed and

beautiful analysis of the admitted coherences). Using the polynomial expansion (3.14)

we can see that f = Tr
[
ρb†b

]
:= 〈b†b〉, that is the occupation of the Fermionic mode,

thus a single mode Gaussian state is completely characterised by the occupation 〈b†b〉.

3.3.2 Correlation Matrix

We have seen that for any f.q.h. H it is always possible to find a Fermionic

transformation U that diagonalises H transforming the Dirac operators vector as
/β = U/α. Diagonalising the parent Hamiltonian of a f.g.s. ρ we obtain its

decomposition in terms of single-mode thermal states

ρ =
e−

)β†HD
)β

Z
=

1

Z

N⊗

k=1

e−εk(b
†
kbk−bkb

†
k) =

N⊗

k=1

e−εk(b
†
kbk−bkb

†
k)

Zk
, (3.41)

where Zk = Tr
[
e−εk(b

†
kbk−bkb

†
k)
]
.

Each single-mode thermal state is completely characterised by its occupation number,
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thus ρ is completely characterised by the set of occupations {〈b†ibi〉}Ni=1. Expressing the

occupations in term of the operators /α = U †/β, we find that every f.g.s. is completely

characterised by the collection of all the correlators Γa†a
i,j := 〈a†iaj〉 and Γaa

i,j := 〈aiaj〉.

We collect these correlators in the so called correlation matrix

Γ := 〈/α/α†〉 =



Γa†a Γa†a†

Γaa Γaa†



 (3.42)

with Γaa
i,j = −Γa†a†

i,j and Γaa†
i,j = (I − Γa†a)†i,j , where A is the conjugate of A. The

correlation matrix Γ is Hermitian, Γaa and Γa†a† are skew-symmetric, and Γa†a and

Γaa† are Hermitian.

Expressed in term of Majorana operator the correlation matrix is defined as

Γmaj := 〈/r/r†〉 = ΩΓΩ†. (3.43)

It is interesting observing that, since a f.g.s. is completely described by its correlation

matrix, with the spirit of the maximum entropy principle (see [136,137]), it is possible

to equivalently define Fermionic Gaussian states as the states that maximise the von

Neumann entropy given the expectation values collected in the correlation matrix.

3.3.3 Covariance matrix

The covariance matrix of a f.g.s. is the real, skew-symmetric matrix defined as

γ := iTr [ρ[/ri,/rj ]] , (3.44)

with [/ri,/rj ] the commutator of the two Majorana operators /ri and /rj .

As for the correlation matrix, the covariance matrix of a f.g.s ρ completely describes

the states. In fact γ and Γ are related by the equality

γ = −iΩ (2Γ− I)Ω† = −i
(
2Γmaj − I

)
. (3.45)
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In this thesis we will use both the covariance matrix and the correlation matrix

approach.

3.3.4 Wick’s theorem

As mentioned, f.g.s. are fully characterised by their covariance matrix. This means that

it must be possible to obtain the expectation value of every operator X from γ solely.

To do so we just need to take the polynomial expansion (3.12) of X and apply the

celebrated Wick’s theorem [138] to each monomial term. The Wick’s theorem states

that for a f.g.s. ρ and a monomial of Majorana operators rq1rq2 . . . rqp one has

Tr
[
ρrq1rq2 . . . rqp

]
= Pf(γ|q1,q2,...,qp ) (3.46)

where 1 ≤ q1 < q2 < · · · < qp ≤ 2N and γ|q1,q2,...,qp is the restriction of the covariance

matrix to all the two points correlators involving just the Majorana operators

{rq1 , rq2 , . . . , rqp} and Pf() is called the Pfaffian. Since the Pfaffian is nonvanishing

only for a 2N × 2N skew-symmetric matrix [139], it is clear that the expectation

value of any odd operators is always zero.

Example

Consider a system composed by 2 Fermionic modes corresponding to the Dirac

operators a1 and a2. The Majorana operators vector is /r = (r1, r2, r3, r4) , thus the

covariance matrix takes the form

γ =





0 〈r1, r2〉 〈r1, r3〉 〈r1, r4〉

−〈r1, r2〉 0 〈r2, r3〉 〈r2, r4〉

−〈r1, r3〉 −〈r2, r3〉 0 〈r3, r4〉

−〈r1, r4〉 −〈r2, r4〉 −〈r3, r4〉 0




(3.47)
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where 〈ri, rj〉 := iTr [ρ[ri, rj ]]. Using Wick’s theorem we have that

Tr [ρr1r2r3r4] = Pf





0 〈r1, r2〉 〈r1, r3〉 〈r1, r4〉

−〈r1, r2〉 0 〈r2, r3〉 〈r2, r4〉

−〈r1, r3〉 −〈r2, r3〉 0 〈r3, r4〉

−〈r1, r4〉 −〈r2, r4〉 −〈r3, r4〉 0




= (3.48)

= 〈r1, r2〉〈r3, r4〉 − 〈r1, r3〉〈r2, r4〉+ 〈r2, r3〉〈r1, r4〉, (3.49)

and

Tr [ρr2r4] = Pf



 0 〈r2, r4〉

−〈r2, r4〉 0



 = 〈r2, r4〉, (3.50)

and

Tr [ρr1r2r4] = Pf





0 〈r1, r2〉 〈r1, r4〉

−〈r1, r2〉 0 〈r2, r4〉

−〈r1, r4〉 −〈r2, r4〉 0




= 0. (3.51)

3.3.5 Diagonalisation of the correlation matrix

In subsection 3.3.2 we have seen that for any f.g.s. ρ there exists a Fermionic

transformation U that diagonalises its parent Hamiltonian . With the new Dirac

operators /β the state can be expressed as a tensor product of single mode thermal

states
e−

)β†HD
)β

Z
=

1

Z

N⊗

k=1

e−εk(b
†
kbk−bkb

†
k) =

N⊗

k=1

e−εk(b
†
kbk−bkb

†
k)

Zk
. (3.52)

with Zk = Tr
[
e−εk(b

†
kbk−bkb

†
k)
]
.

Expressed with these operators the correlation matrix is diagonal. If we consider the

Fock basis {|/k〉})k∈{0,1}N built with the action of the operators /β on |0〉, we have that

in this basis ρ assumes a diagonal form. We call Uρ the unitary transformation that

moves from the basis {|/x〉})x∈{0,1}N to the one of the modes {|/k〉})k∈{0,1}N .
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It is easy to see that expressed on this basis ρ has the diagonal form

ρD = U †
ρρUρ =

N⊗

i=1



 νi 0

0 1− νi



 . (3.53)

The same Fermionic transformation U that diagonalises the parent Hamiltonian brings

Γ in the diagonal form

ΓD = U †ΓU =





ν1 0 . . . . . . 0

0
. . . . . . ...

... . . . νN

1− ν1
. . . ...

... . . . . . . 0

0 . . . . . . 0 1− νN





, (3.54)

with νi ∈ [0, 1] the occupation number of the i-th free mode. To numerically obtain the

diagonal form of the correlation matrix we notice that the covariance matrix γ is a real,

skew-symmetric matrix, thus using theorem 1 we know that we can find an orthogonal

transformation O such that

γ = OγDOT = O




N⊕

i=1



 0 ηi

−ηi 0







OT (3.55)

with ηi ∈ [−1
2 ,

1
2 ].

Following the same procedure of subsection 3.2.4, we can write the diagonal elements

of ΓD as

νi =
1

2
− ηi. (3.56)

The elements of HD and ΓD are related by the following formulas

εk =
1

2
HM

(
1− νk
νk

)
, (3.57)

νk =
1

1 + e2εk
, (3.58)
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with νk ∈ [0, 1] and εk ∈ [−∞,+∞], where the boundary values are taken with a limit.

The complete calculation can be found in appendix A.1.1. In (3.22) we defined all the

εk to be positive, to use the same notation, one just has to exchange b with b̃† and b†

with b̃, that is exchanging occupations with vacancies for the mode with εk negative.

This corresponds to switching νk with 1− ν̃k and 1− νk with ν̃k.

In general the correlation matrix Γ and the parent Hamiltonian H are related by the

formula [66,140–142]

Γ =
1

1 + e2H
. (3.59)

F_utilities 3.3.1: Diag_gamma(Γ)→ ΓD, U

This function returns ΓD, the diagonal form of the Dirac correlation matrix Γ

and U the Fermionic transformation such that Γ = UΓDU†.

Phisicality of a state It is known that a matrix ρ represents a valid physical

density matrix if it is a positive semi-definite Hermitian matrix with trace equal to one.

The condition for a matrix Γ to represent a valid physical correlation matrix of a f.g.s.

is

Γ2 − Γ ≤ 0, (3.60)

or equivalently

γγ† ≤ −I. (3.61)

These conditions are equivalent to the request that all the eigenvalues νi of matrix Γ

have to belong to the interval [0, 1].

Ground states of Fermionic quadratic Hamiltonians Suppose we have a

f.q.h. H and that we are interested in obtaining the correlation matrix Γ0 associated

to its ground state |0〉. In order to obtain Γ0 we proceed by first finding the Fermionic

transformation U that diagonalise H. Since our algorithm associates to each free mode

of the diagonalised Hamiltonian a positive energy, in the diagonal basis the ground
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state is |0〉〈0|. The correlation matrix associated to the state |0〉 is the block matrix:

Γ|0〉〈0| =



0 0

0 IN×N



 . (3.62)

To obtain the ground state Γ0 we just need to move back to the original basis, thus

Γ0 = UΓ|0〉〈0|U
†. (3.63)

F_utilities 3.3.2: GS_gamma(HD, U)→ Γ0

This function returns Γ0, the ground state of the Hamiltonian H = UHDU †.

Thermal state of Fermionic quadratic Hamiltonians Suppose we have a

f.q.h. H and that we are interested in obtaining the correlation matrix Γ0 associated

to the thermal state ρβ = e−βH

Tr[e−βH ]
.

As we did for computing the ground state, we move to the diagonal basis with the

Fermionic transformation U . In the diagonal basis the thermal state has the correlation

matrix

ΓD
β =





1
1+e2βε1

0 . . . . . . 0

0
. . . . . . ...

... . . . 1
1+e2βεN

1
1+e−2βε1

. . . ...
... . . . . . . 0

0 . . . . . . 0 1
1+e−2βεN





. (3.64)

To obtain the thermal state Γβ we just need to move back to the original basis, thus

Γβ = UΓD
β U

†. (3.65)

F_utilities 3.3.3: Thermal_fix_beta(HD, U,β)→ Γ0

This function returns Γβ, the termal state at inverse temperature β of the

Hamiltonian H = UHDU †.
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F_utilities 3.3.4: Thermal_fix_energy(HD, U,E)→ Γβ(E),β(E),∆(E)

This function variationally computes and then returns Γβ(E), the thermal state

at inverse temperature β(E) of the Hamiltonian H = UHDU †, and β(E) the

temperature such that Tr
[
ρβ(E)H

]
= E and ∆(E) the difference between the

required energy E and the actual energy of the state Γβ(E). It outputs the

precision ∆(E) and β(E).

Energy of a Fermionic Gaussian state Consider a f.q.h H and a f.g.s. Γ.

The energy of Γ with respect to H is the expectation value Tr
[
Ĥρ

]
of the associated

Ĥ computed on the associated state ρ.

In order to compute this expectation value one just needs to find the Fermionic

transformation U that diagonalises H. With this, one is able to find the energies εk
and the occupations 〈b†kbk〉 and 〈bkb†k〉. The correlation matrix Γ is not diagonal in the

diagonal basis /β of H, but we are just interested in its diagonal elements.

The energy EH(Γ) of Γ is thus

EH(Γ) =
∑

k

εk(〈b†kbk〉 − 〈bkb†k〉). (3.66)

F_utilities 3.3.5: Energy(Γ, HD, U)→ EH(Γ)

This function returns EH(Γ) the energy of the state Γ calculated with H.

Matrices HD and U are the output of Diag_h(H).

3.3.6 Eigenvalues of ρ and eigenvalues of Γ

We have seen that the diagonal form of the correlation matrix Γ and of the density

matrix ρ of a f.g.s. can be obtained respectively with a Fermionic transformation U

and a unitary operation Uρ. The Fock basis in which ρ is diagonal is the one generated

by the set of operators that expresses Γ in diagonal form.
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In these two basis ρ and Γ assume the forms

ΓD =





ν1 0 . . . . . . 0

0
. . . . . . ...

... . . . νN

1− ν1
. . . ...

... . . . . . . 0

0 . . . . . . 0 1− νN





,

ρD =
N⊗

k=1



 νk 0

0 1− νk



 =





π)0 0 . . .

0
. . . ...

... . . . π)1




. (3.67)

Thus if we denote each of the 2N eigenvalues π)x of ρ with a binary string /x ∈ {0, 1}N

we have that

π)x =
N∏

k=1

(/xkνi + (1− /xk)(1− νk)) . (3.68)

It is evocative changing the order of the Dirac operators in the representation of ΓD

/β =





b†0
...

b†N−1

b0
...

bN−1





→ /̃β =





b†0

b0

b†1

b1
...

b†N

bN





, (3.69)

this can be easily done with the Fermionic transformation Γ̃D = F †
xp→xxΓDFxp→xx.

With this ordering we have

Γ̃D =
N⊕

k=1



 νk 0

0 1− νk



 , ρD =
N⊗

k=1



 νk 0

0 1− νk



 . (3.70)
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To tensor product of density matrices corresponds a direct sum of correlation

matrices.

F_utilities 3.3.6: Eigenvalues_of_rho(Γ)→ /ν

This function returns the eigenvalues of the correlation matrix ρ associated to

the Fermionic Gaussian state with Dirac correlation matrix Γ.

3.3.7 Reduced density matrix and tensor product of Fermionic
Gaussian states

Trying to define a partial trace over Fermionic modes subspaces one soon faces what

is often called the "partial trace ambiguity" [1, 135] (see also the end of appendix

A.1.6).

In the case of Fermionic Gaussian states, though, this is a much simpler task. Any

reduced state formalism has to satisfy the simple criterion that the reduced density

operator must contain all the information about the subsystem that can be obtained

from the global state when measurements are performed only on the respective

subsystem alone [1, 135].

With Wick’s theorem in mind it is easy to see that the correlation matrix of the

reduced state on the modes i1, . . . , im is just the correlation matrix Γ|{i1,...,im} and

that the reduced state of a f.g.s. is a f.g.s. too.
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F_utilities 3.3.7: Reduce_gamma(Γ,m,i_1)→ Γ|{i1,...,im}

This function takes a Dirac correlation matrix Γ, a dimension of the partition

m and the initial site of the partition i1 and return Γ|{i1,...,im}, the reduced

correlation matrix on the contiguous modes {i1, . . . , im} where im = i1 +m and

periodic boundary conditions are always assumed.

Examples: the green elements of the matrix M6×6 are the ones returned by the

function calls.

Reduce_gamma(M6×6,2,1)→

Reduce_gamma(M6×6,2,3)→

The correlation matrix ΓA,B of the tensor product of two f.g.s. ΓA and ΓB is

obtained simply by collecting all the elements of ΓA and ΓB in a single well ordered

correlation matrix ΓA,B. The code for obtaining ΓA,B from ΓA and ΓB is

D_A = size(Gamma_A,1);

D_B = size(Gamma_B,1);

D = D_A+D_B;

Gamma_AB = zeros(Complex{Float64}, D,D);

Gamma_AB = Inject_gamma(Gamma_AB,Gamma_A,1);
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Gamma_AB = Inject_gamma(Gamma_AB,Gamma_B,D_A+1);

This code makes use of the function Inject_gamma.
F_utilities 3.3.8: Inject_gamma(Γ, Γinj, i)→ Γcomp

This function takes a 2N × 2N matrix Γ and a 2n× 2n matrix Γinj with n ≤ N .

It returns the 2N × 2N matrix Γcomp as shown in the pictures.

Γ = , Γinj =

Inject_gamma(Γ,Γinj , 1) → ,

Inject_gamma(Γ,Γinj , 3) → .

In the last example it is clear the systems behave with periodic boundary

conditions.

If Γ is the correlation matrix of a f.g.s ρ and Γinj is the correlation matrix of a

f.g.s ρinj then Γcomp is the correlation matrix of the state Tri,...,i+n-1 [ρ]⊗ ρinj .
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Figure 3.1: System with Open Boundary Conditions. If the state is translational
invariant, then the reduced density matrix on sites 1 and 2 is the same as the one on
sites 3 and 4, but is different from the one on sites 5 and 1

Figure 3.2: System with Periodic Boundary Conditions. If the state is translational
invariant then the reduced density matrix on sites 1 and 2 or sites 3 and 4 or even sites
5 and 1 are all the same

It is clear that with the ordering (3.69), the tensor product of two f.g.s. corresponds

to the direct sum of their correlation matrices

ρA,B = ρA ⊗ ρB → Γ̃A,B = Γ̃A ⊕ Γ̃B. (3.71)

3.3.8 Correlation matrices of translational invariant states

We consider a state ρ of a system of N sites and all its reduced density matrices ρA,

where A is any possible set of sites of the system. We denote with A + m the set of

sites A +m = {j = i +m|i is a site of A}, that is a translation of all site of A by m

sites. When we will assume Periodic Boundary Conditions (PBC) we will allow for

translations "over the border" of the system, in the sense that when i + m > N (or

i + m < 1) we will substitute it with i + m → mod(i + m − 1, N + 1) + 1. This is

interpreted as connecting the first site with the last site of the system. Thus for PBC

all translations are allowed. When we will assume Open Boundary Conditions (OBC)

only translations within the system. This means that if i ∈ A and i + m > N (or

i+m < 1), then the subset A+m is not an allowed subset of sites.
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A translational invariant state is a state such that for every A we have ρA = ρA+m

for every allowed m.

This property easily translates to correlation matrices of states. For the two point

correlators of a translational invariant state we have that 〈a†jal〉 = 〈a†j+mal+m〉 and

〈ajal〉 = 〈aj+mal+m〉 for every m. The specific correlator is thus individuated just by

the difference of the sites of the first and second operator ∆ := l− j with ∆ ∈ [−(N −

1), N − 1]. Using this, we substitute 〈a†jal〉 → 〈a†a〉∆ and analogously 〈ajal〉 → 〈aa〉∆.

We now focus on Γa†a, explicitly expressing it, we have

Γa†a





〈a†a〉0 〈a†a〉1 〈a†a〉2 . . . 〈a†a〉N−1

〈a†a〉−1 〈a†a〉0 〈a†a〉1 . . . 〈a†a〉N−2

〈a†a〉−2 〈a†a〉−1 〈a†a〉0 . . . 〈a†a〉N−3

... ... ... . . . ...

〈a†a〉−(N−1) 〈a†a〉−(N−2) 〈a†a〉−(N−3) . . . 〈a†a〉0





. (3.72)

Matrix with this structure are called Toeplitz matrices.

If we further require the system to have PBC, we have that the parameter ∆ is restricted

to the range [0, N − 1]. Consider for example the specific instance of the correlator

〈a†a〉1−N = 〈a†Na1〉, because of the translational invariance property of the system and

because of the PBC we know that 〈a†Na1〉 = 〈a†N+1a1+1〉 = 〈a†1a2〉 = 〈a†a〉1 (see figure

3.2).

With PBC, Γa†a has the form

Γa†a =





〈a†a〉0 〈a†a〉1 〈a†a〉2 . . . 〈a†a〉N−1

〈a†a〉N−1 〈a†a〉0 〈a†a〉1 . . . 〈a†a〉N−2

〈a†a〉N−2 〈a†a〉N−1 〈a†a〉0 . . . 〈a†a〉N−3

... ... ... . . . ...

〈a†a〉1 〈a†a〉2 〈a†a〉3 . . . 〈a†a〉0





. (3.73)

We see that Γa†a is the circulant matrix (see appendix A.1.4) characterised by the

circulant vector /〈a†a〉 =
(
〈a†a〉0, 〈a†a〉1, 〈a†a〉2, . . . , 〈a†a〉N−1

)
. Following the same
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reasoning, we see that Γaa† is a circulant matrix characterised by the circulant vector
/〈aa†〉 =

(
〈aa†〉0, 〈aa†〉1, 〈aa†〉2, . . . , 〈aa†〉N−1

)
. Matrices Γaa and Γa†a† are circulant

skew-simmetric matrices, often called skew-circulant matrices. If N is even Γaa and

Γa†a† are specified by the circulant vectors

/〈aa〉 =
(
〈aa〉0, 〈aa〉1, 〈aa〉2, . . . , 〈aa〉N

2 −1, 0,−〈aa〉N
2 −1,−〈aa〉N

2 −2, . . . , 〈aa〉1
)

and

/〈a†a†〉 =
(
〈a†a†〉0, 〈a†a†〉1, 〈a†a†〉2, . . . , 〈a†a†〉N

2 −1, 0,−〈a†a†〉N
2 −1,−〈a†a†〉N

2 −2, . . . , 〈a
†a†〉1

)
.

If N is odd Γaa and Γa†a† are specified by the circulant vectors

/〈aa〉 =
(
〈aa〉0, 〈aa〉1, 〈aa〉2, . . . , 〈aa〉N−1

2
,−〈aa〉N−1

2 −1,−〈aa〉N−1
2 −2, . . . , 〈aa〉1

)

and

/〈a†a†〉 =
(
〈a†a†〉0, 〈a†a†〉1, 〈a†a†〉2, . . . , 〈a†a†〉N−1

2
,−〈a†a†〉N−1

2 −1,−〈a†a†〉N−1
2 −2, . . . , 〈a

†a†〉1
)
.

Eigenvalues using the properties of circulant-matrices In appendix A.1.4 we

show the general form of the eigenvalues of a circulant matrix. For Γaa,Γa†a†matrices

Γa†a,Γaa† we have that their respective eigenvalues λa†ak ,λaa†k are

λa
†a

k =
N−1∑

∆=0

ei
2π
N ∆k〈a†a〉∆ λaa

†
k =

N−1∑

∆=0

ei
2π
N ∆k〈aa†〉∆. (3.74)
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For matrices Γaa,Γa†a† we have that their respective eigenvalues λaak ,λa†a†k are

λaak =






2
∑N

2 −1
∆=0 ei

2π
N k∆〈aa〉∆ if N even

(1 + e−i π
N )

∑N
2 −1
∆=0 ei

2π
N k∆〈aa〉∆ if N odd

,

λa
†a†

k =






2
∑N

2 −1
∆=0 ei

2π
N k∆〈a†a†〉∆ if N even

(1 + e−i π
N )

∑N
2 −1
∆=0 ei

2π
N k∆〈a†a†〉∆ if N odd

. (3.75)

We notice that the eigenvalues of Γaa,Γa†a† comes in pairs λaak = −λaa
k+/N

2 0 and λa†a†k =

−λa†a†
k+/N

2 0 as expected from the property of skew-symmetric matrices (see appendix

A.1.5).

Eigenvalues using the Fourier transform on a linear lattice We introduce the

Fourier transforms on a linear lattice

fk =
1√
N

N∑

j=1

ei
2π
N kjaj , f †

k =
1√
N

N∑

j=1

e−i 2πN kja†j , (3.76)

with inverse transformations

aj =
1√
N

N∑

k=1

e−i 2πN kjfk, a†j =
1√
N

N∑

k=1

ei
2π
N kjf †

k . (3.77)

It is easy to see that the Fourier modes {fk, f †
k}k obey to the CAR and are valid

Dirac operators.

Now we perform the substitutions (3.5.1) in the expression of Γa†a and we further

exploit the translational invariance (〈a†a〉∆ = 1
N

∑N
j=1〈a

†
jaj+∆〉) to obtain

〈a†a〉∆ =
1

N2

N∑

j

∑

k,k′

ei
2π
N k′∆ei

2π
N (k−k′)j〈f †

kfk′〉. (3.78)

Collecting the Kronecker delta (see appendix A.2.4) we can express the elements of
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Γa†a as

〈a†a〉∆ =
1

N

N∑

k=1

e−i 2πN k∆〈f †
kfk〉. (3.79)

With the same procedure we obtain

〈a†a〉∆ =
1

N

N∑

k=1

e−i 2πN k∆〈f †
kfk〉, 〈aa†〉∆ =

1

N

N∑

k=1

e−i 2πN k∆〈fkf †
k〉

〈aa〉∆ =
1

N

N∑

k=1

e−i 2πN k∆〈fkfN−k〉, 〈a†a†〉∆ =
1

N

N∑

k=1

e−i 2πN k∆〈f †
N−kf

†
k〉. (3.80)

with inverse transformations

〈f †
kfk〉 =

N∑

∆=1

ei
2π
N k∆〈a†a〉∆, 〈fkf †

k〉 =
N∑

∆=1

ei
2π
N k∆〈aa†〉∆

〈fkfN−k〉 =
N∑

∆=1

ei
2π
N k∆〈a†a〉∆, 〈f †

kf
†
N−k〉 =

N∑

∆=1

e−i 2πN k∆〈aa†〉∆. (3.81)

We can easily identify

λa
†a

k = 〈f †
kfk〉, λaa

†
k = 〈fkf †

k〉

λaak = 〈fkfN−k〉, λa
†a†

k = 〈f †
kf

†
N−k〉. (3.82)

At last, we note that the Fourier transform does not mix creation and annihilation

operators and can be implemented directly on the vector of Dirac operators /α with the

Fermionic transformation Uω that has the block diagonal form

Uω =



W 0

0 W̄



 , (3.83)

where W is the matrix implementing the discrete Fourier transform (see appendix

A.1.4) and it acts separately on the creation and annihilation operators sectors of /α.

For an example of diagonalisation of translational invariant matrices see e.g.

subsection 3.4
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F_utilities 3.3.9: Build_Fourier_matrix(N)→ Uω

This function returns the Fermionic transformation Uω for a system of N sites.

3.3.9 Product Rule

It will result useful to compute the product ρ = ρ1ρ2 of the density matrices of two

Fermionic Gaussian states. We observe that the commutator of two quadratic terms of

Majorana operators /r is always again a quadratic operator or zero

[rirj , rkrl] = δk,irlrj + δk,jrirl − δi,lrkrj − δl,jrirk. (3.84)

This is also valid for Dirac operators. We say that the commutator of two monomials

of Dirac operators of degree at most 2 is a polynomial of Dirac operators of degree at

most 2. Using this observation together with the Baker-Campbell-Hausdorff formula (

equation B.C.H.0 in appendix A.2.4), it is easy to see that ρ, the product of two f.g.s.,

is always a f.g.s.

ρ =
e−Ĥ

Z
, (3.85)

with Ĥ given by the B.C.H.0.

It is possible to derive the covariance matrix γ of ρ directly from the covariance matrices

γ1 and γ2 of the states ρ1 and ρ2. This formula appears in [143] where a more detailed

description, considering even pathological cases, is given. If we assume that I− γ1 and

I− γ2 are invertible then we have

γ = I− (I− γ2)
1

I+ γ1γ2
(I− γ1). (3.86)

F_utilities 3.3.10: Product(Γ1,Γ2)→ Γ

This function returns the correlation matrix Γ corresponding to the f.g.s ρ =

ρ1ρ2, where ρ1 and ρ2 are characterised by the correlation matrices Γ1 and Γ2.
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3.3.10 Information measures

Von Neumann Entropies The von Neumann entropy of a quantum state described

by the density matrix ρ is

S(ρ) = −Tr [ρ HM(ρ)] . (3.87)

In terms of the eigenvalues λ of ρ, the von Neumann entropy reads as

S(ρ) = −
∑

λ

λ HM(λ) (3.88)

If ρ is a f.g.s. of a system with N sites, since the von Neumann entropy is invariant

under unitary transformation of the state, substituting in (3.87) the product form (3.70)

and using the fact that the von Neumann entropy is additive for product states, the von

Neumann entropy becomes a function of the eigenvalues νi of the correlation matrix Γ

and it is the sum of just 2N terms

S(Γ) ≡ S(ρ) = −
N∑

k=1

[νk HM(νk) + (1− νk) HM(1− νk)] . (3.89)

F_utilities 3.3.11: VN_entropy(Γ)→ S

This function returns S, the Float64 value of the von Neumann Entropy of the

state described by the Dirac correlation matrix Γ.

Purity A state is pure if its correlation matrix Γ is such that [144]

Γ2 = Γ, (3.90)

or, equivalently,

γ2 = −I (3.91)

The purity of a state ρ is defined as

Purity(ρ) ≡ Tr
[
ρ2
]
. (3.92)
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We have that:

Purity(ρ) =
N−1∏

i=1

1

2

(
1 + i�M?(εi)2

)
, (3.93)

Purity(Γ) =
N−1∏

i=1

(2 (νi − 1) νi + 1), (3.94)

Purity(γ) =
N−1∏

i=1

(
2η2i +

1

2

)
, (3.95)

the value of the purity is the same if computed with any of these equations. For

more details see appendix A.1.2.
F_utilities 3.3.12: Purity(Γ)→ p

This function returns p the purity of the Fermionic Gaussian state with Dirac

correlation matrix Γ.

Entanglement Contour In 2014 Chen and Vidal [92] introduced the entanglement

contour "a tool for identifyng which real-space degrees of freedom contribute, and how

much, to the entanglement of a region A with the rest of the system B". We consider

the state of a system on a chain of N sites, we divide the chain into two complementary

partitions, partition A and partition B. Now suppose partitions A and B are entangled

and that there exists a measure E(A,B) that quantifies the amount of entanglement

between A and B. The entanglement contour cA(i) of partition A tells us how much

each site i of partition A contributes to the total amount of entanglement betwen A

and B. Furthermore summing cA(i) over all the sites of A one should obtain exactly

E(A,B).

Chen and Vidal state five reasonable properties that define when a function is a contour

function. In the same paper they show that these five properties do not identify a unique

contour function, but instead a class of functions. In chapter 2.3.2 we presented these

five properties and introduced the general concept of entanglement contour, here we

are going to focus on a specific entanglement contour defined for Fermionic Gaussian

states. First of all we restrict to pure states. For a pure state, it is known that a
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good measure of entanglement between two complementary partition A and B is the

entanglement entropy, that is the von Neumann entropy E(A,B) = S(A) of the reduced

state on A.

We consider an Hilbert space H divided in the two complementary partitions H =

HA⊗HB, each partition with NA and NB sites respectively. The Schmidt decomposition

(see section 2.3.4) of a pure state |ψA,B〉 in H is

|ψA,B〉 =
∑

i

√
pi|ψA

i 〉 ⊗ |ψB
i 〉, (3.96)

with pi ≥ 0,
∑

i pi = 1 and

ρA ≡ TrB
[
|ψA,B〉〈ψA,B|

]
=

∑

i

pi|ψA
i 〉〈ψA

i |. (3.97)

The entanglement entropy for this choice of partition is thus S(A) = −
∑

i piln(pi).

Factorising the Hilbert space HA in its tensor product structure HA =
⊗

j∈AHj , we

individuate in each local Hilbert space Hj a site of the partition A. We remind that

ρA cannot be expressed as a product state over this factorisation of HA and that the

von Neumann entropy is not additive. Thus the von Neumann entropy computed on

each site is not a good entanglement contour function.

We know from 3.3.7 that ρA is a f.g.s., thus we can express the entanglement entropy

S(A) as the sum of the von Neumman entropy of each mode in A,

S(A) =
NA∑

k=1

Sk = −
NA∑

k=1

[νk HM(νk) + (1− νk) HM(1− νk)] . (3.98)

Each mode k, associated to the Dirac operators βk = b†k, βk+NA = bk, is connected

to the real space modes associated the Dirac operators αi = a†i , αi+NA = ai by the

Fermionic transformation U such that

βk =
NA∑

i=1

Uk,iαi. (3.99)
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We want to use this equation to find how much a fixed mode k contributes to a fixed

site i. We call this contribution pi(k) and we define it as

pi(k) :=
1

2

[
|Uk,i|2 + |Uk+NA,i+NA |

2 + |Uk,i+NA |
2 + |Uk+NA,i|2

]
. (3.100)

The entanglement contour for partition A is thus defined as

cA(i) :=
NA∑

k=1

pi(k)Sk. (3.101)

It is easy to see that each of the pi(k) is positive and that

NA∑

k=1

pi(k) = 1, (3.102)

as

NA∑

k=1

pi(k) =
1

2

[
2NA∑

l=1

Ui,lU
∗
l,i + Ui+NA,lU

∗
l,i+NA

]
=

1

2

(
(UU †)i,i + (UU †)i+NA,i+v

)
= 1,

since U is unitary. Thus one has the desired property

NA∑

i=1

cA(i) = S(A). (3.103)

F_utilities 3.3.13: Contour(ΓA)→ /cA

This function returns the vector /cAi = cA(i) of the entanglement contour of the

correlation matrix ΓA.

3.3.11 Examples

We will use the function



Chapter 3. Practical manipulation of Fermionic Gaussian states: F_utilities 92

F_utilities 3.3.14: Random_NNHamiltonian(N)→ H

Generate a random f.q.h. Hamiltonian for a system of N sites with just nearest

neighbour interactions.

Computing the energies of H In this program we compute the energies εk of a

random nearest neighbours Hamiltonian on a linear lattice of N = 64 sites generated

with the function Random_NNHamiltonian(64). The program generates the output

figure 3.3 .

using F_utilities;

using PyPlot;

using LinearAlgebra;

const Fu = F_utilities;

N = 64;

#Generate and diagonalise the hamiltonian

H = Fu.Random_NNhamiltonian(N)

H_D, U_D = Fu.Diag_h(H)

#Print the energy modes epsilon_k

figure("Energies")

plot(1:N,diag(H_D)[1:N])

xlabel(L"$k$")

ylabel(L"$\epsilon_k$")
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Figure 3.3: Output of examples 3.3.11. In the plot are represented the
eigenvalues of a random nearest-neighbour Hamiltonian computed with the code
Random_NNHamiltonian(N) for a system with N = 64 sites.

Computing the entanglement contour of a partition of a ground state In

this program we compute the entanglement contour and the entropy of a partition

of NA = 32 sites in the bulk of the ground state of a random nearest neighbours

Hamiltonian on a linear lattice of N = 64 sites. The program generates the output

figure 3.4.

using F_utilities;

using PyPlot;

using LinearAlgebra;

const Fu = F_utilities;

N = 64;

H = Fu.Random_NNhamiltonian(N);

H_D, U_D = Fu.Diag_h(H);
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Gamma = Fu.GS_Gamma(H_D, U_D);

println("The energy of the ground state is: ", Fu.Energy_fermions(

↪→ Gamma,H_D, U_D));

N_A = 32;

#I consider the reduced state over the sites 17,18,...,48

Gamma_A = Fu.Reduce_gamma(Gamma,N_A,17);

#I compute the entangement entropy

S_A = Fu.VN_entropy(Gamma_A);

#I compute the contour of partition A

c_A = Fu.Contour(Gamma_A);

lbl_title = string(L"$S(A) = $", S_A);

lbl_legend = string(L"$\sum_{i=1}^{N_A} c_A(i) = $", sum(c_A));

figure("Contour of A")

title(lbl_title)

plot(1:N_A, c_A, marker="o", label=lbl_legend);

xlabel("i")

ylabel(L"$c_A(i)$")

legend();

Output:

The energy of the ground state is: -83.1750144099933
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Figure 3.4: Output of examples 3.3.11. In the plot it is represented the entanglement
contour of the reduced density matrix of the first 32 contiguous site of a linear chain,
when the global state is the ground state of a nearest-neighbour Hamiltonian on a linear
chain of N = 64 sites. Note how for a nearest neighbour Hamiltonian, the contour is
higher on the boundary of the partition.

3.3.12 Time Evolution

We learned about Hamiltonians and states. Now it is time to put these two

ingredients together and finally talk about the unitary evolution of Fermionic

Gaussian states.

We start stating that the space of Fermionic Gaussian states is closed under evolution

induced by Fermionic quadratic Hamiltonians.

The best way for seeing this is using the Majorana operators representation. We

consider a general f.q.h. Ĥ and a generic f.g.s. ρ = e−Ĥρ

Z with both Ĥ and Ĥρ of the

form (3.18). Using standard notation we call ρ(t) the state ρ at time t defined as

ρ(t) := e−itĤρeitĤ =
e−itĤe−ĤρeitĤ

Z
. (3.104)

As already observed in subsection 3.3.9, the commutator of two quadratic monomial

of Dirac operators is a polynomial at most quadratic in Dirac operators. Using this



Chapter 3. Practical manipulation of Fermionic Gaussian states: F_utilities 96

observation together with the Baker-Campbell-Hausdorff formula ( equation B.C.H.0

in appendix A.2.4), it is easy to see that ρ(t) has the form

ρ(t) =
e−Ĥρ(t)

Z
, (3.105)

with Ĥρ(t) a Fermionic quadratic Hamiltonian. Thus ρ(t) is again a Gaussian state

proving that the space of Gaussian states is closed under evolution induced by Fermionic

quadratic Hamiltonians.

We will now compute an explicit formula for the time evolution of the correlation

matrix Γ(t) of the f.g.s. state ρ(t). The first step is computing the time evolution

of the creation and annihilation operators in the Heisenberg picture. We denote with
/β the vector of Dirac operators that diagonalises H. The annihilation and creation

operators bk and b†k evolved at time t are (see appendix A.1.3)

bk(t) = e−iĤtbke
iĤt = e−i2εktbk, (3.106)

b†k(t) = e−iĤtb†ke
iĤt = ei2εktb†k. (3.107)

In compact form this can be written as

/β(t) = ei2HDt/β. (3.108)

It is easy now to compute the time evolution of the correlators 〈/β/β†〉

〈/β(t)/β†(t)〉 = 〈ei2HDt/β/β†e−i2HDt〉. (3.109)

Thus, if U is the Fermionic transformation such that /β = U/α, the Fermionic

transformation implementing the time evolution of /α is U †ei2HDtU = ei2Ht. We finally

obtain that the correlation matrix Γ evolves with H as

Γ(t) = ei2HtΓe−i2Ht. (3.110)
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F_utilities 3.3.15: Evolve(Γ, H_D, U, t)→ Γ(t)

This function returns the correlation matrix Γ evolved at time t with H. Matrices

HD and U are the output of Diag_h(H).

3.4 Hopping model

We consider the translational invariant hopping Hamiltonian for a system of N sites

Ĥ =
N−1∑

i=1

[a†iai+1 − aia
†
i+1] + δ[a†Na1 − aNa†1], (3.111)

with δ = 1 for periodic boundary conditions and δ = 0 for open boundary conditions.

The compact form (3.16) of Ĥ is specified by the two circulant matrices (see A.1.4)

A =





0 1
2 0 . . . 0 δ 12

1
2 0 1

2 0 . . . 0

0 1
2 0 1

2 0 . . .
... ... . . . . . . . . . ...

δ 12 0 0 . . . 1
2 0





B =





0 . . . 0
... . . . ...

0 . . . 0




(3.112)

As seen in subsection 3.3.8 and appendix A.1.4) we know that H is diagonalised with a

Fourier transformation. Indeed, if we express the hopping Hamiltonian (3.111) in term

of the Fourier modes (3.5.1) we obtain

Ĥ =
N∑

k=1

φk(f
†
kfk − fkf

†
k), (3.113)

where

φk = +Qb(2π
N

k). (3.114)

The Fermionic transformation that diagonalises the Hamiltonian is Uω as defined in

(3.83).
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3.4.1 Numerical diagonalisation

In the following code we show how to initialise and diagonalise the hopping Hamiltonian

using functions of F-utilities. We perform these calculations using two different

methods. The energies computed with both methods are reported in figure 3.5, the

ground states correlations matrices are identical.

using F_utilities;

using PyPlot;

using LinearAlgebra;

const Fu = F_utilities;

N =127;

H = Fu.Build_hopping_hamiltonian(N,PBC=true);

U_omega = Fu.Build_Fourier_matrix(N);

D_omega = U_omega’*H*U_omega;

D,U = Fu.Diag_h(H);

figure("Energies")

plot(diag(real.(D_omega))[(N+1):(2*N)],label="Method Fourier");

plot(real.(diag(D))[(N+1):(2*N)], label="Method Diag_h");

xlabel(L"$k$");

ylabel(L"$\epsilon_k$");

legend();

Gamma_omega = Fu.GS_gamma(D_omega,U_omega);

Gamma = Fu.GS_gamma(D,U);



Chapter 3. Practical manipulation of Fermionic Gaussian states: F_utilities 99

println("")

println("Energy GS Method Fourier: ",Fu.Energy(Gamma_omega,(

↪→ D_omega,U_omega)))

println("En GS Method Diag_h: ",Fu.Energy(Gamma,(D,U)))

Output:

Energy GS Method Fourier: -80.85277253991693

En GS Method Diag_h: -80.85277253997737

Figure 3.5: In this example we diagonalised the Hamiltonian with two different
methods. Using the Fourier transform method we obtain the energies specified in
(3.114). These energies are both positive and negative. Using the Diag_h method of
F_utilities we obtain just positive energies. The difference in the diagonal energies
comes from the fact that Diag_h, for every eigenmode with negative energy, substitutes
creation and annihilation operators in order to redefine the energy as positive, and then
reorders the modes in order to have the energies in descending order. If we diagonalise
with the Fourier transform then the ground state is obtained filling all the modes with
negative energy. If we diagonalise with Diag_h then the ground state corresponds to
the empty state.
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F_utilities 3.4.1: Build_hopping_Hamiltonian(N, PBC=true)→ H

This functions return the Hamiltonian H if dimension 2N × 2N for the hopping

model. If PBC=false it return the hopping Hamiltonian with open boundary

conditions

For the numerical diagonalisation of the Hamiltonian we used two methods, the

analytical one using the Fourier modes, and the numerical one introduced in the

previous subsection.

These methods return the hopping Hamiltonian in the diagonal forms

Ĥω =
N∑

k=1

φk(f
†
kfk − fkf

†
k), Ĥ =

N∑

k=1

εk(b
†
kbk − bkb

†
k), (3.115)

where the differences in the energies are due to the fact that Diag_h considers all the

energies εk positive, thus defines bk = f †
k and b†k = fk for each k such that φk < 0

(that corresponds to flipping the sign of φk when it is negative, such that the

corresponding εk = −φk), and then reorder the modes such that to modes with

smaller k correspond biggest energies.

3.4.2 Time Evolution

For the hopping model we analytically obtained the Fermionic transformation Uω that

diagonalises the Hamiltonian. This allows us to give an analytical expression for the

time evolution of the correlation matrix.

Expressing the correlation matrix Γ in term of the operators /φ and computing the time

evolution with the diagonal Hamiltonian (3.113) we obtain

〈a†l am〉(t) = 1

N

∑

k,k′

∑

x,y

ei2(φk−φk′ )tei
2π
N (k(l−x)−k′(m−y))〈a†xay〉 (3.116)

〈alam〉(t) = 1

N

∑

k,k′

∑

x,y

e−i2(φk+φk′ )te−i 2πN (k(l−x)+k′(m−y))〈axay〉. (3.117)
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Because of the block diagonal structure of Uω there is not mixing of the two types of

correlators during the evolution of the correlation matrix.

Time evolution of translational invariant states Let us consider a translational

invariant state Γ. In subsection 3.3.8 we expressed Γ in term of the Fourier modes

f †
k , fk. Using the diagonal form (3.115) of the Hopping Hamiltonian to compute the

time evolution of the correlators of Γ expressed as in (3.80) we have that Γ evolves as

〈a†a〉∆(t) =
1

N

N∑

k=1

e−i 2πN k∆〈f †
kfk〉, 〈aa†〉∆(t) =

1

N

N∑

k=1

e−i 2πN k∆〈fkf †
k〉

〈aa〉∆(t) =
1

N

N∑

k=1

ei4φ(k)te−i 2πN k∆〈fkfN−k〉, 〈a†a†〉∆(t) =
1

N

N∑

k=1

e−i4φ(k)te−i 2πN k∆〈f †
N−kf

†
k〉.

(3.118)

in the following program we numerically compute the time evolution induced by a

hopping Hamiltonian on a random translational invariant gaussian state with

exponentially decaying correlation functions. We consider a linear system of N = 50

sites and evolve it for Nsteps = 100 steps of δsteps = 0.1. The program generates the

output figures 3.6 and 3.7.

using F_utilities;

using PyPlot;

using LinearAlgebra;

const Fu = F_utilities;

N=50;

N_steps = 100;

delta_steps = 0.1;

#Build the circulant vector for the adaa part of the Gamma with
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↪→ exponential decaying correlations

adaa = zeros(Complex{Float64},N);#

for i=1:div(N,2)

adaa[i] = exp(-i*0.15)*(rand()+im*rand())

end

adaa[((div(N,2))+1):N]= reverse(adaa[1:div(N,2)]);

#Build the translational invariant adaa part of the Gamma

Gamma_adaa = Fu.Circulant(adaa);

Gamma_adaa = (Gamma_adaa+Gamma_adaa’)/2.

#Build the circulant vector for the aa part of the Gamma

aa = zeros(Complex{Float64},N);

aa[2] = rand()+im*rand();

aa[3] = rand()+im*rand();

#Build the translational invariant aa part of the Gamma

Gamma_aa = Fu.Circulant(aa)

Gamma_aa = (Gamma_aa-transpose(Gamma_aa))/2.;

#Build the translational invariant Gamma

Gamma= zeros(Complex{Float64}, 2N,2N);

Gamma[(1:N),(1:N)] = Gamma_adaa;

Gamma[(1:N).+N,(1:N).+N] = (I-Gamma_adaa)’;

Gamma[(1:N).+N,(1:N)] = Gamma_aa;

Gamma[(1:N),(1:N).+N] = -conj(Gamma_aa);

Fu.Print_complex_matrix("Gamma",Gamma)

H = Fu.Build_hopping_hamiltonian(N,PBC=true);

D,U = Fu.Diag_h(H);
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Gamma_evolved = copy(Gamma);

adaa = zeros(Complex{Float64}, N_steps)

aa = similar(adaa);

#Start the time evolution cycle

#at each cycle it saves the value of two correalotors

adaa[1] = Gamma_evolved[1,2];

aa[1] = Gamma_evolved[N+1,2];

for t=2:N_steps

global Gamma_evolved = Fu.Evolve(Gamma_evolved,(D,U),

↪→ delta_steps);

adaa[t] = Gamma_evolved[1,2];

aa[t] = Gamma_evolved[N+1,2];

end

figure("Evolutions")

plot(real.(adaa), color="black", label=L"$\mathfrak{R}(\langle a_1

↪→ ^{\dagger}a_2 \rangle)(t)$");

plot(imag.(adaa), color="black",linestyle="--", label=L"$\mathfrak{

↪→ I}(\langle a_1^{\dagger} a_2 \rangle)(t)$");

plot(real.(aa), color="purple", label=L"$\mathfrak{R}(\langle

↪→ a_1a_2 \rangle)(t)$");

plot(imag.(aa), color="purple", linestyle="--", label=L"$\mathfrak{

↪→ I}(\langle a_1 a_2 \rangle)(t)$");

legend()

xlabel("timestep")

Output:
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Figure 3.6: This is a representation of the real and imaginary part (left and right
plots) of the elements of the correlation matrix Γ of a translational invariant state
with exponentially decaying correlations. The element (i, j) corresponds to Γi,j . The
exponential decay of the correlation is evident from the fading of the colours moving
to matrix elements farer from the diagonal.

Figure 3.7: The time evolution induced by the Hopping Hamiltonian of the real and
imaginary part of 〈a†1a2〉 and 〈a1a2〉 of the translational invariant state specified in the
code. The expectation values evolve as predicted by equations (3.118).
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3.5 Transverse Field Ising Model

The Hamiltonian of the Transverse Field Ising model (TFI) has the form

Ĥ = −
N−1∑

n=1

σxnσ
x
n+1 − gIσ

x
Nσ

x
1 − +Qi(θ)

N∑

n=1

σzn, (3.119)

where N is the number of sites, σαi with α = x, y, z are the Pauli matrices at the i-th

site and +Qi(θ) is the magnetic field, with 0 < θ < π
2 .

The parameter gI encodes the boundary conditions of the Ising model: here we

consider gI = −1, 0,+1, corresponding, respectively, to anti-periodic, open and

periodic boundary conditions.

The model is called transverse field Ising model because the field interacts with the

spins with σzi , while the spins interact between each others with σxi σ
x
i+1.

The TFI Hamiltonian can be exactly diagonalised using a Jordan-Wigner

transformation (see appendix A.1.6) mapping spin operators to spinless

fermions [68,132,145–150].

In term of fermions the Hamiltonian has the form

Ĥ = −
N−1∑

n=1

(a†n − an)(an+1 + a†n+1) + gIP (a†N − aN )(a1 + a†1)− +Qi(θ)
N∑

n=1

(a†nan − ana
†
n),

(3.120)

where P =
∏N

n=1(1− 2a†nan) is the parity operator introduced in 3.1.2.

We notice that becuase of the presence of the parity operator P , the TFI Hamiltonian

cannot be directly mapped to a f.q.h.. Nonetheless, since the Hamiltonian Ĥ commutes

with the parity operator P we can diagonalise Ĥ and P̂ simultaneously. On the diagonal

basis of P we have that Ĥ has the block diagonal form Ĥ = Ĥe⊕ Ĥo, where Ĥe, called

even sector Hamiltonian, corresponds to the eigenvalue +1 of P and Ĥo, the odd

sector Hamiltonian, corresponds to the eigenvalue −1 of P . We can then proceed to

diagonalise the Hamiltonian on the two sectors independently (see section 2.2.1 and

figure 2.1).
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The Hamiltonians of the two sectors are:

Ĥ e
o
= −

N−1∑

n=1

(a†n − an)(an+1 + a†n+1)± gI(a
†
N − aN )(a1 + a†1)− +Qi(θ)

N∑

n=1

(a†nan − ana
†
n).

(3.121)

Finally, we see that on each parity sector the TFI Hamiltonian is mapped to a f.q.h..

A bit of confusion can raise from considering the boundary conditions. The boundary

conditions of the TFI Hamiltonian do not correspond to the boundary conditions of

the Fermionic Hamiltonian. In fact, let us consider the three f.q.h.

Ĥ(gF ) = −
N−1∑

n=1

(a†n−an)(an+1+a†n+1)−gF (a
†
N−aN )(a1+a†1)−+Qi(θ)

N∑

n=1

(a†nan−ana
†
n),

(3.122)

where the boundary conditions are encoded by the parameter gF = −1, 0. + 1 and

corresponds respectively to antiperiodic, open and periodic boundary conditions of

the Fermionic Hamiltonian. The correspondences between spin model and Fermionic

model are collected in table 3.1. Written in compact form (3.17), Hamiltonian (3.122),

is specified by the matrices

A = −1
2





2 +Qi(θ) 1 0 . . . 0 gF

1 2 +Qi(θ) 1 0 . . . 0

0 1 2 +Qi(θ) 1 0 . . .
... ... . . . . . . . . . ...

gF 0 0 . . . 1 2 +Qi(θ)





(3.123)

and

B = −1
2





0 −1 0 . . . 0 gF

1 0 −1 0 . . . 0

0 1 0 −1 0 . . .
... ... . . . . . . . . . ...

−gF 0 0 . . . 1 0





. (3.124)

We already know how to numerically diagonalise this Hamiltonian. We will present

here the standard method for analytical diagonalisation, introducing the Bogoliubov
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gI = 1 (TFI periodic) Even sector gF = −1, (f.q.h. antiperiodic)
Odd Sector gF = +1, (f.q.h periodic)

gI = 0 (TFI open) Even/Odd sector gF = 0, (f.q.h. open)

gI = −1 (TFI antiperiodic) Even sector gF = +1, (f.q.h. periodic)
Odd Sector gF = −1, (f.q.h antiperiodic)

Table 3.1: Corrspondences between spin models and Fermionic models

transformations, and we will compare the results with the numerical diagonalisation.

3.5.1 Analytical diagonalisation of the TFI Hamiltonian

In this subsection we will see how to diagonalise the three Hamiltonians (3.122)

analytically. For a complete and detailed treatment we refer to [132, 148] or the more

recent review [150].

Antiperiodic and periodic boundary condition Fermionic Hamiltonian Let

us first consider the case of antiperiodic and periodic boundary conditions, gF = −1,+1

(APBC and PBC respectively). Both cases can be brought to the form:

Ĥ =− 2
∑

k>0

[
(+Qi(θ) + +Qb(2π

N
k))(f †

kfk − fkf
†
k) + i bBM(2π

N
k)(f †

kf
†
−k − f−kfk)

]
+

− (1 + +Qi(θ))(f †
0f0 − f0f

†
0)− (+Qi(θ)− 1)(f †

−N
2

f
−N

2
− f

−N
2
f †
−N

2

), (3.125)

where

fk =
1√
N

N∑

j=1

ei
2π
N kjaj , f †

k =
1√
N

N∑

j=1

e−i 2πN kja†j , (3.126)

with inverse transformations

aj =
1√
N

∑

k

e−i 2πN kjfk, a†j =
1√
N

∑

k

ei
2π
N kjf †

k . (3.127)
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and

k =
−N + 1

2
,
−N + 1

2
+ 1, . . . ,

N − 1

2
for gF = −1 and N even or gF = 1 and N odd

k =
−N

2
,
−N

2
+ 1, . . . ,

N

2
− 1 for gF = +1 and N even or gF = −1 and N odd.

(3.128)

Terms with f †
0 , f0 and f

−N
2
, f †

−N
2

in (3.125) are present just when k = 0 and k = −N
2

are allowed.

The different quantisations of the k in the two cases are justified in [132] and can

be understood by intuition noting that with the first quantisation one would have

aN+1 = −a1, while with the second aN+1 = a1. We can write the Hamiltonian in the

compact form

Ĥ =
∑

k>0

(
f †
k f−k

)
hk



 fk

f †
−k



− (1 + +Qi(θ)(f †
0f0 − f0f

†
0), (3.129)

with

hk =



−2(+Qi(θ) + +Qb(2πN k)) 2i bBM(2πN k)

−2i bBM(2πN k) 2(+Qi(θ) + +Qb(2πN k))



 . (3.130)

This divides the modes space in sectors that couple each k with −k. For each of these

sectors we have the unitary transformation

Uk =



 sk −itk

−itk sk



 , (3.131)

such that it diagonalises hk as

U †
khkUk =



εk 0

0 −εk



 , (3.132)

with eigenvalues

εk = 2

√
1 + +Qi(θ)2 + 2 +Qi(θ) +Qb(2π

N
k). (3.133)
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The elements of Uk are defined as

sk =
bBM(2πN k)

√
εk(εk/2 + +Qi(θ) + +Qb(2πN k))

, (3.134)

tk =
εk/2 + +Qi(θ) + cos(2πN k)

√
εk(εk/2 + +Qi(θ) + cos(2πN k))

. (3.135)

This defines the Fermionic transformation of all the Fourier modes that read as

fk = skbk − itkb
†
−k, (3.136)

f †
−k = skb

†
−k − itkbk. (3.137)

This transformation is called Bogoliubov-Valatin transformation [151, 152], and

sometimes sk and tk are expressed respectively as +Qb(φk) and bBM(φk), with φk called

Bogoliubov angle. One has that for PBC and APBC each f.q.h. of the form (3.125) is

characterised by the choice of the quantisation of k and a particular Bogoliubov angle.

We finally obtain the diagonal form of the Hamiltonian

Ĥ =
∑

k (=−N
2 ,0

εk
2
(b†kbk−bkb

†
k)−(1−+Qi(θ))(f †

0f0−f0f
†
0)−(+Qi(θ)−1)(f †

−N
2

f
−N

2
−f

−N
2
f †
−N

2

).

(3.138)

Open boundary condition Fermionic Hamiltonian For the open boundary

conditions (OBC) form of Hamiltonian (3.122) there is not a clear meaning for the

term aN+1, thus we will not apply any Fourier transform. We will not show here the

procedure for the diagonalisation, we refer to [132,148] or the more recent [153] for it.

We have that the energies εk of the Hamiltonian in diagonal form will be

εk =
√
1 + +Qi(θ)2 + 2 +Qi(θ) +Qb(φk) (3.139)

with {φk}Nk=1 the roots of equation

bBM((N + 1)φ)

bBM(Nφ) = − 1

+Qi(θ) , (3.140)
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in the interval 0 ≤ φk ≤ π.

3.5.2 Ground state

In the case of OBC the ground state is easily found using the function GS_gamma()

with the Hamiltonian (3.122) imposing gF = 0.

For computing the ground state in the case of APBC or PBC we need to know if the

ground state is even or odd or if it is a superposition of states with different parities.

It is known that, at finite dimension, with N even, for the antiperiodic Ising model the

ground state is in the odd sector, while for the periodic Ising model the ground state is

in the even sector. When N is odd, for the antiperiodic Ising model the ground state

is in the even sector and for the periodic Ising model the ground state is in the odd

sector [149].

In the thermodynamic limits, the energy difference between the two sectors goes to

zero, the ground state becomes degenerate. Here we present a program for finding the

correct sector of the ground state and for verifying that as N grows the energy difference

between the ground state of the two sectors goes to zero. The program generates the

output figure 3.8.

Analitical and Numerical energies

using F_utilities;

using PyPlot;

using LinearAlgebra;

const Fu = F_utilities;

N = 10;

theta = pi/8;

H_APBC = Fu.TFI_Hamiltonian(N, theta; PBC=-1);

HD_APBC, U_APBC = Fu.Diag_h(H_APBC);
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NE_APBC = diag(HD_APBC);

H_PBC = Fu.TFI_Hamiltonian(N, theta; PBC=+1);

HD_PBC, U_PBC = Fu.Diag_h(H_PBC);

NE_PBC = diag(HD_PBC);

H_OBC = Fu.TFI_Hamiltonian(N, theta; PBC=0);

HD_OBC, U_OBC = Fu.Diag_h(H_OBC,2);

NE_OBC = diag(HD_OBC);

AE_APBC = zeros(Float64, 2*N);

AE_PBC = similar(AE_APBC);

AE_OBC = similar(AE_APBC);

#The solutions of equation sin((N+1)*phi)/sin(N*phi)=-1/cot(theta)

phi = [0.293377974249272,0.586547314382234,

0.879273168816649,1.17126278605144,

1.46212217642804,1.75129510871389,

2.03798675412035,2.32111594487769,

2.59947341172037,2.87247738375037]

for n=1:N

AE_APBC[n] = sqrt(1+cot(theta)^2+2*cot(theta)*cos(2*pi*((1-N)

↪→ /2+n-1)/N));

AE_PBC[n] = sqrt(1+cot(theta)^2+2*cot(theta)*cos(2*pi*((-N)

↪→ /2+n-1)/N));

AE_OBC[n] = sqrt(1+cot(theta)^2+2*cot(theta)*cos(phi[n]));

end

AE_APBC[(N+1):(2*N)] = -AE_APBC[1:N];

AE_PBC[(N+1):(2*N)] = -AE_PBC[1:N];
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AE_OBC[(N+1):(2*N)] = -AE_OBC[1:N];

fig = plt.figure("Comparison Analitical and Numerical Results",

↪→ figsize=(10, 6), dpi=80)

plt.subplots_adjust(wspace=0, hspace=0)

ax1 = plt.subplot2grid((21,10), (0,0), colspan=10, rowspan=7);

ax1.set_title("Comparison Analitical and Numerical")

ax1.plot(sort(AE_APBC)[11:20], color="black", marker="o",

markersize=10, mfc="none" , label="Analytical APBC");

ax1.plot(sort(NE_APBC)[11:20], color="red", marker="+",

markersize=10, linestyle="None", label="Numerical APBC");

ax1.xaxis.set_ticklabels([])

yticks([1.5,2,2.5,3],[L"$1.5$",L"$2$",L"$2.5$",L"$3$"],fontsize=15)

ax1.set_ylabel(L"$\epsilon_k$",fontsize=18)

legend();

ax2 = plt.subplot2grid((21,10), (7,0), colspan=10, rowspan=7);

ax2.plot(sort(NE_PBC)[11:20], color="purple", marker="o",

markersize=10, mfc="none" , label="Analytical PBC" );

ax2.plot(sort(AE_PBC)[11:20], color="green", marker="+",

markersize=10, linestyle="None", label="Numerical PBC");

ax2.xaxis.set_ticklabels([])

yticks([1.5,2,2.5,3],[L"$1.5$",L"$2$",L"$2.5$",L"$3$"],fontsize=15)

ax2.set_ylabel(L"$\epsilon_k$",fontsize=18)

legend();

ax3 = plt.subplot2grid((21,10), (14,0), colspan=10, rowspan=7);

ax3.plot(sort(NE_OBC)[11:20], color="blue", marker="o",

markersize=10, mfc="none" , label="Analytical OBC" );

ax3.plot(sort(AE_OBC)[11:20], color="orange", marker="+",

markersize=10, linestyle="None", label="Numerical OBC");
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ax3.set_ylabel(L"$\epsilon_k$",fontsize=18)

ax3.set_xlabel(L"$k$",fontsize=18)

xticks([0,1,2,3,4,5,6,7,8,9],[L"$1$",L"$2$",L"$3$",L"$4$",L"$5$",L"

↪→ $6$",L"$7$",L"$8$",L"$9$",L"$10$"],fontsize=15)

yticks([1.5,2,2.5,3],[L"$1.5$",L"$2$",L"$2.5$",L"$3$"],fontsize=15)

legend();

tight_layout();

GS_APBC = Fu.GS_gamma(HD_APBC,U_APBC);

GS_PBC = Fu.GS_gamma(HD_PBC,U_PBC);

E_GS_APBC = Fu.Energy(GS_APBC,(HD_APBC,U_APBC));

E_GS_PBC = Fu.Energy(GS_PBC,(HD_PBC,U_PBC));

println("Ground State Energies");

println("G_F=-1 : ", E_GS_APBC);

println("G_F=+1 : ", E_GS_PBC);

Output:

Ground State Energies

G_F=-1 : -25.18934650837823

G_F=+1 : -25.189223629491178

We have N = 10 so the ground state is expected to be in the GF=-1 sector. The

computed energies confirm this.
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Figure 3.8: Output of the code 3.5.2. The three plots represent the analytical and
numerical values of the free mode energies εk of the Hamiltonian (3.122) computed
with antiperiodic, periodic and free boundary conditions. We see that the energies
computed with F_utilities correspond to the one computed analytically.

Degenerancy of the ground state In the following program we check that the

ground state energies of the TFI hamiltonians (3.122) with gF = ±1 converge to the

same value as the dimension of the system grows. The program generates the output

figure 3.9.

using F_utilities;

using PyPlot;

const Fu = F_utilities;

theta = pi/8;

Delta_E = zeros(Float64, 47)

for N=4:50

H_APBC = Fu.TFI_Hamiltonian(N, theta; PBC=-1);
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HD_APBC, U_APBC = Fu.Diag_h(H_APBC);

H_PBC = Fu.TFI_Hamiltonian(N, theta; PBC=+1);

HD_PBC, U_PBC = Fu.Diag_h(H_PBC);

E_GS_APBC = Fu.Energy(Fu.GS_gamma(HD_APBC,U_APBC),(

↪→ HD_APBC,U_APBC));

E_GS_PBC = Fu.Energy(Fu.GS_gamma(HD_PBC,U_PBC),(HD_PBC,

↪→ U_PBC));

global Delta_E[N-3]= abs(E_GS_APBC-E_GS_PBC);

end

figure("|E_GS(GF=+1)-E_GS(GF=-1)|")

plot(4:50, log10.(abs.(Delta_E)));

xlabel(L"$N$");

ylabel(L"$\log|E_{GS}(g_F=+1,N)-E_{GS}(g_F=-1,N)|$");

tight_layout();

Figure 3.9: The ground states of Hamiltonians (3.122) for gF = ±1 converge
exponentially to the same value. The ground state of the antiperiodic and of the
periodic transverse field Ising model is degenerate in the thermodynamic limit.
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3.5.3 Time Evolution

As in the case of the Hopping model, even for the Hamiltonian (3.122) it is possible

to explicitly compute the time evolution of the correlation matrix elements. We focus

here on the case of gF = −1 and N even in order to simplify the analitical form. The

principal difference with the Hopping model is that, in the case of the Fermionic TFI,

the transformation that diagonalises the Hamiltonian is not a simple Fourier transform,

but it is a composition of a Fourier transform and a Bogoliubov transformation. We

exemplify how to obtain an analitical form for the time evolution of the term 〈a†1a1〉 of

a translational invariant correlation matrix. As a first step, exploiting the translational

invariance of the state and moving to the Fourier modes, we write

〈a†1a1〉 =
1

N

N∑

n=1

〈a†nan〉 =
1

N2

N∑

n=1

N+1
2∑

k=−N+1
2

N+1
2∑

k′=−N+1
2

e−i 2πN n(k−k′)〈f †
kfk′〉 =

=
1

N

N+1
2∑

k=−N+1
2

〈f †
kfk〉. (3.141)

We then move to the Bogoliubov modes with the transformation (3.136) obtaining

〈a†1a1〉 =
1

N

N+1
2∑

k=−N+1
2

[
s2k〈b

†
kbk〉+ t2k〈b−kb

†
−k〉+ isktk(〈b−kbk〉 − 〈b†kb

†
−k〉)

]
. (3.142)

In this basis the Hamiltonian is diagonal, thus the time evolution easily computed as

〈a†1a1〉(t) =
1

N

N+1
2∑

k=−N+1
2

[
s2k〈b

†
kbk〉+ t2k〈b−kb

†
−k〉+ isktk(e

i2εkt〈b−kbk〉 − e−i2εkt〈b†kb
†
−k〉)

]
.

(3.143)

To obtain the expression of 〈a†1a1〉(t) in terms of correlators of the operators a†, a we

just have to map the b†, b to a†, a.
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3.6 Benchmarking with Fermionic Gaussian states

Fermionic Gaussian states can be used as a tool for benchmarking algorithms. We will

see how tools developed for general quantum states can be translated to the language

of correlation matrices. To understand the idea behind the benchmarking, let us take

an explicit example. In the next subsection we are going to see the imaginary time

evolution of Fermionic Gaussian states. One usually uses the imaginary time evolution

of a state for computing the ground state of an Hamiltonian. Of course, in the case of

f.g.s., computing the ground state is not the main purpose, as we know already how to

compute it for any f.q.h.. Knowing already the exact results allows us to compare the

algorithm for the imaginary time evolution with the exact results and get good insight

in what we should expect in a context where the exact result is not known.

If we have an algorithm acting on some generic quantum state, we can try to translate

it in the formalism of f.g.s. and benchmark it to the exact results.

In this subsection we present the translation of some well known algorithm in the

language of correlation matrices. The purpose of this subsection is not to benchmark

these algorithm, but instead, to translate some important existing algorithms. This

will provide us the translations of the possible building blocks of any novel and more

complex experimental algorithm.

3.6.1 Imaginary-time evolution

In order to find the ground state of a non-degenerate Hamiltonian H one can use the

following equality

|GS〉 = HBK
τ→∞

e−Hτ |ψ〉
||e−Hτ |ψ〉|| (3.144)

starting from a generic state |ψ〉 with 〈GS|ψ〉 $= 0.

To see this, let us consider the orthononormal basis {|Ei〉}i generated by the collection

of the eigenvectors of H, with eigenvalues {Ei}i such that 0 ≤ E0 ! E1 ≤ E2 ≤, where

H is the Hilbert space on which H act.

Expanding |ψ〉 on this basis one obtains |ψ〉 =
∑

i ci|Ei〉, with c0 $= 0 from the fact that
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〈GS|ψ〉 $= 0. One can thus see that eq (3.144) is just a projection to the ground state:

HBK
τ→∞

e−Hτ |ψ〉
||e−Hτ |ψ〉|| = HBK

τ→∞

∑

i

e−Eiτ ci√∑
i e

−2Eiτ |ci|2
|Ei〉 = (3.145)

= HBK
τ→∞

∑

i

e
− Ei

E0
τ
ci√∑

i e
−2

Ei
E0
τ |ci|2

|Ei〉 = |E0〉, (3.146)

and thus that HBKτ→∞
e−Hτ

||e−Hτ || is the projector on the ground state:

HBK
τ→∞

e−Hτ

||e−Hτ || = HBK
t→∞

∑
i e

−Eiτ |Ei〉〈Ei|√∑
i e

−2Eiτ
= (3.147)

= HBK
τ→∞

∑
i e

− Ei
E0
τ |Ei〉〈Ei|√∑

i e
−2

Ei
E0
τ

= |E0〉〈E0|. (3.148)

The imaginary-time evolution is directly related to the power method presented in

section 2.2.2. The eigenvenvector associated to the smallest eigenvalue E0 of H is the

eigenvector associated to the biggest eigenvalue of e−H and this can be approximately

obtained using the power method by computing (e−H)N |ψ〉, a procedure that in the

limit of N → ∞ is analogous to equation (3.144).

Applying the same method to the density matrix one can obtain the ground state

ρGS of a non degenerate Hamiltonian H from a general density matrix ρ such that

Tr[ρρGS ] $= 0 as

ρGS = HBK
τ→∞

e−Hτρe−Hτ

Tr [ρe−2Hτ ]
. (3.149)

We refer to the method for obtaining the ground state using (3.144) as performing an

imaginary time evolution.

This is the case because, if for the time evolution operator U(t) = e−iHt for the

Hamiltonian H, we select t = −iτ we obtain the operator e−Hτ that is the one of eq

(3.144). One can thus write in a non-formal way |GS〉 = HBKt→−i∞
|ψ(t)〉
||ψ(t)〉|| .

It is important to keep in mind that the operator e−Hτ is not unitary and for this

reason it does not preserve the norm of the state and one has to renormalise it.
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3.6.2 Numerical Imaginary time evolution

In the numerical approach to imaginary time evolution one faces some difficulties.

Almost in all cases one is forced to evolve the state step by step renormalising every

time, performing a discrete imaginary time evolution.

This procedure does not allow to reach infinite time in a finite amount of time steps,

thus one has to find a criterion to stop the evolution when the convergence is accurate

up to some confidence parameter. To check if the reached state is the expected state

is tricky and theoretically impossible in most of the cases since one does not always

have the exact value of the energy of the ground state.

A method for checking the convergence is to check the energy difference between two

steps of the discrete imaginary time evolution. Once the difference in energy between

two steps is lower than an acceptable value ε, one decides that the algorithm

converged.

It is not always the case though. It is also possible that the approximate imaginary

time evolution stops at some plateaux and thus it tricks the algorithm in believing in

a false convergence to the ground state.

Imaginary time evolution of the correlation matrix The imaginary time

evolution of the correlation matrix is defined as

Γi,j(τ) = Tr
[
ρ(τ)/αi/α

†
j

]
= (3.150)

=
Tr

[
e−Ĥτρe−Ĥτ /αi/α

†
j

]

Tr
[
e−Ĥτρe−Ĥτ

] . (3.151)

Obtaining an explicit form for Γ(τ) just in term of H and Γ(0) is not easy. Following

the reasoning made for the real time evolution, one can compute the imaginary time

evolution in Heisenberg picture with e−Ĥτ of the operator /αi/α
†
j . Using the Baker-

Campbell-Hausdorff formula (i.e. eABeA =
∑∞

n=0
1
n! {A, ...{A︸ ︷︷ ︸

n

, B }...}︸︷︷︸
n

i.e. B.C.H.2 in

Appendix A.2.4) and moving in the diagonal basis with Dirac operators /β one can write
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the Hamiltonian as Ĥ =
∑

k ε(k)
(
b†kbk − bkb

†
k

)
.

Thus one has

e−Ĥτ /βl/β
†
je

−Ĥτ =
∞∑

n=0

−τn

n!
{Ĥ, ...{Ĥ︸ ︷︷ ︸

n

, /βl/β
†
j }...}︸︷︷︸

n

. (3.152)

Since b†l bjĤ = (Ĥ +2∆l,j)b
†
l bj , we cannot simplify this expression as in the case of real

time evolution.

To obtain a numerical algorithm for the imaginary time evolution one has to realise

that, for each value of τ , Γ(τ) is just the correlation matrix of the f.g.s.

ρ(τ) =
e−Ĥτρe−Ĥτ

Tr
[
e−Ĥτρe−Ĥτ

] , (3.153)

and this can be seen as the state obtained by correctly normalising the matrix product

of the density matrices of three states. The trick for obtaining the correlation matrix

Γ(τ) is thus using the product rule (see subsection 3.3.9) of the initial f.g.s. ρ and

the thermal state ρβ=τ = e−Hτ

Tr[e−Ĥτ ]
. This allows us to compute the imaginary time

evolution of Fermionic Gaussian states.
F_utilities 3.6.1: Evolve_imag(Γ, H_D, U, τ)→ Γ(τ)

This function returns the correlation matrix Γ evolved at imaginary time τ with

H. Matrices HD and U are the output of Diag_h(H).

3.6.3 Fermionic Gaussian States with Fixed Bond Dimension

The compression of correlation matrices of f.g.s. in a similar fashion of matrix product

states (MPS) has been introduced in [154].

Let us consider a pure Fermionic Gaussian state completely described by the N × N

matrix Λi,j = 〈a†iaj〉. Since Λ is a pure state, its eigenvalues are either 1 (the mode

is occupied) or 0 (the mode is unoccupied). This high degeneracy can be exploited

mixing occupied (or unoccupied) eigenstate for finding a basis in which these modes

are localised. In systems with a limited entanglement structure we expect to be able to
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find a basis in which eigenstates are localised. This fact can be justified as follows. Let

Λ be the ground state of a 1D local Hamiltonian. We consider the partition of the first

$ sites of the system. The state of the partition is described by the $ × $ correlation

matrix Λ". In ground states of 1D local Hamiltonians, the entanglement of partitions

of the systems of dimension $ grows at most as HQ;($). This means that for growing

values of $ we expect to find eigenvalues of Λ" closer and closer to 1 or 0. Now suppose

that diagonalising Λ", the eigenvalue associated to the eigenvector /v is ∼ 1. This makes

/v also an approximate eingenvalue of Λ.

Figure 3.10: In blue the eigenvalues λi of the reduced state Λ"=16 of the ground state
of a hopping Hamiltonian with N = 500. In orange the von Neumann entropy S(λi)
of the mode associated to each eigenvalue λi. The total von Neumann entropy of the
partition Λ"=16 is given by the sum of the entropies of each mode (see (3.89)). Since
the entropy of a partition Λ" is bounded by HQ;($), with growing $ the added modes
must have associated eigenvalues close to 0 or 1.
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Figure 3.11: In blue the number of eigenvalues of Λ" that are 0 or 1 up to machine
precision, in orange the total number of eigenvalues of Λ" in the ground state of a
hopping Hamiltonian with N = 500. When the dimension of the partition is $ > 10 the
entanglement saturates and the number of eigenvalues equal to 1 or 0 starts growing
linearly.

In [154], developing on this idea, the authors are able to construct a compression

algorithm for correlation matrices and directly map it to the MPS representation of

the state.

Here we will illustrate a method for obtaining the correlation matrix of a f.g.s.

expressed as an MPS with fixed bond dimension D.

Let us consider a pure f.g.s. |ψ〉 on a system with N sites with associated N × N

correlation matrix Λ. We denote with |ψD〉 the state obtained representing |ψ〉 with

an MPS of fixed bond dimension D. We are interested in the correlation matrix ΛD of

the state |ψD〉.

For a bipartition having bond dimension D corresponds to having Schmidt rank D

[66]. If a state |ψ〉 has bond dimension D′ > D, we can approximate it at bond

dimension D by setting to 0 the lower Schmidt coefficients and renormalising the state.

With the formalism of correlation matrices we cannot directly manipulate the single

Schmidt coefficients, but we can approximate low entangled modes with product modes.
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Approximating an entangled mode with a product mode corresponds to setting half of

the Schmidt coefficients to zero. With this insight we can devise the following algorithm

for obtaining ΛD.

We proceed as follows. We consider Λ1,...,m+1, the correlation matrix of the partition

of the first $ sites, where m = 5HQ;2(D)6. We will refer to m as the bond dimension of

the correlation matrix.

We diagonalise it as Λ1,...,m+1 = U1D1
1,...,m+1U

†
1 , the diagonal elements of D1,...," are

organised such that, the top left element λ11 is the closest to 0 or 1. Suppose λ11 ∼ 1.

We expand U1 to be N ×N adding ones on the diagonal and we have that the top left

element of Λ1 = U †
1ΛU1 is λ11. We set the first column and first row of Λ1 to 0 and (Λ1)1,1

to 1 (because λ11 ∼ 1). We then proceed diagonalising Λ1
2,...,m+2 = U2D2

2,...,m+2U
†
d .

Suppose this time the top left element of D2 is λ21 ∼ 0 . We set the second column

and second row of Λ2 = U †
2Λ

1U2 to 0 and (Λ2)2,2 to 0 (because λ21 ∼ 0). Iterating this

procedure N − $ times we obtain a correlation matrix Λ(N−m1) with N −m diagonal

elements equal to 0 or 1. We proceed with the same procedure decreasing the dimension

of the reduced system everytime until after N steps we obtain a diagonal matrix with

diagonal elements equal to 0 or 1. Returning to the original basis applying all the

transformation {Ui}i=1,...,N to ΛN we obtain the correlation matrix associated to the

state |ψD〉. We report a schematic representation of the algorithm in figures 3.12 and

3.13.
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(a) Step 1: Diagonalise the
subsystem Λ1

1,...,m+1. The
eigenvalues are ordered such
that KBM(|1 − λ11|, |λ11|) ≤
KBM(|1 − λ12|, |λ12|) ≤ · · · ≤
KBM(|1− λ1m+1|, |λ1m+1|).

(b) Step 2: Since λ11 ∼ 1
(λ11 ∼ 0) we set it to 1 (0).
We set to zero all the other
elements of the first row and
first column of Λ. This will
be the an eigenvalue of Λ.

(c) Step 3: We move
to the second subsystem
Λ2
2,...,m+2. We note that

now the correalation matrix
is represented in a mixed
basis and the lower indices
do not exactly represent the
sites of the system.

Figure 3.12: Steps of the algorithm for reducing the bond dimension of a Fermionic
Gaussian state. The big squares represent the correlation matrix Λ. We repeat this
procedure (N −m) times then we continue for m steps reducing by one the dimension
of the reduced system at each step. At the end one obtain a diagonal matrix with
diagonal elements equal to 1 or 0.
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(a) Step 4: We diagonalise Λ2
2,...,!+1

(b) Step6: After resetting λ21, we move to
Λ3
3,...,m+3

.
Figure 3.13: Steps 4 and 6 of the algorithm for reducing the bond dimension of a
Fermionic Gaussian state.

In figure 3.14 we plot the number of eigenvalues different from 0 and 1 for

different partitions of the system for the ground state Γ of a hopping Hamiltonian of a

system of N = 100 sites, and for Γ with bond dimension reduced to m.

We know that for ground states of 1D local Hamiltonians the amount of

entanglement (measured by the von Neumann entropy S) of any region of an MPS of

bound dimension D is bounded by S ≤ HQ;(D). In figure 3.15 we plot the value of the

entropy of different regions of the ground state of a random Hamiltonian. The

entropy is indeed bounded by S ≤ HQ;(D) with D = 2m.

Combining this method with the imaginary time evolution algorithm one can

construct the time evolving block decimation algorithms on the space of correlations

matrices.

Together with the algorithm for reducing the bond dimension of one dimensional

systems on the space of correlation matrices, in F_utilities we include the



Chapter 3. Practical manipulation of Fermionic Gaussian states: F_utilities 126

algorithm for reducing the bond dimension of specific two dimensional systems. In

particular we focussed on two dimensional systems where the Hamiltonian can be

sectorised. This algorithm differs from the one for one dimensional systems in the way

it handles the lowest Schmidt’s coefficients of different sectors. Taking advantage of

the sectorisation of the Hamiltonian, the algorithm becomes more complex, but at the

same time more efficient.

3.6.4 Reduction of the bond dimension of a two dimensional system
divided in sectors

We consider the Fermionic quadratic Hamiltonian

Ĥ =
∑

x

∑

y

[
a†x,yax+1,y + a†x+1,yax,y + (−1)x

(
a†x,yax,y+1 + a†x,y+1ax,y

)]
, (3.154)

defined on the on an L × L lattice on a cylinder with periodic boundary conditions

along the x direction and open boundary conditions along the y direction as in figure

3.6.4. Because of the boundary conditions we have that L must be even.

Substituting the Fourier operators

a†x,y =
1√
L

∑

k

e−i 2πL kxc†k,y, (3.155)

where, because of the boundary conditions, we choose k as

k = −L

2
,−L

2
+ 1, . . . ,

L

2
− 1, (3.156)

the Hamiltonian becomes as

Ĥ =
∑

k<0

[∑

y

2 +Qb(2π
L

k)

(
c†k,yck,y − c†

k+L
2 ,y

ck+L
2 ,y

)
+ (3.157)

+ c†k,yck+L
2 ,y+1 + c†

k+L
2 ,y

cx,y+1 + c†
k+L

2 ,y+1
ck,y + c†k,y+1ck+L

2 ,y

]
.

In this form the Hamiltonian is divided in L
2 sectors, each one corresponding to the

couples of values of {k, k + L
2 }. This means that the eigenstates of this Hamiltonain
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are product states of states defined on each {k, k+ L
2 } sector. Thus, these eigenstates,

instead of being described by a 2L2 × 2L2 correlation matrix, are instead described by

just a collection of L
2 correlation matrices of dimension 2L × 2L, where each of these

correlation matrices corresponds to a stripe of the cylinder in the (k, y) space.

We call states of this kind, sectorised states.
A B

x

yy

x

y

Figure 3.14: Lattice with periodic boundary conditions along the x direction. Red
lines correspond to negative couplings, blue lines correspond to positive couplings.
Two possible partitions A and B are higlighted in red and green respectively.

Performing the reduction of the bond dimension of a sectorised state, one can expolit

the sectorisation property in order to reduce the computational cost of the operation.

Consider for example the ground state of Hamiltonian (3.154). Once we move to the

Fourier basis along the x direction this becomes a sectorised state. Mimicking the

encoding of this quantum state with a tensor network corresponds to fixing its Schmidt

rank relatively to some iterative partition scheme. We choose a partition scheme that

increasingly cuts the cylinder perpendularly to y. Since the Fourier transformation we

applied mixes only Dirac operator corresponding to the same value of y, this partition

scheme is a geometric partition scheme (it is equivalent on the (x, y) space and the (k, y)

space). Step l of the partition scheme divides the system in a partition A consisting of

all the elements corresponding to y = {1, . . . , l} and a partition B corresponding to all

the elements corresponding to y ∈ {l + 1, . . . , L} analogously of the iterative partition

scheme used for the one dimensional system of the last section.

Choosing this partition scheme allows us to exploit a parallel implementation of the

algorithm for the reduction of the bond dimension of the state. In fact, instead of

considering the full 2L2 × 2L2 correlation matrix describing the state we consider the
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L
2 correlation matrices of dimension 2L × 2L. The first step of the algorithm consists

in partitioning the system at step m + 1 of the partition scheme. These corresponds

to taking the first 2(m + 1) elements of each correlation matrix. One then proceed

diagonalising these subsystem. This step is analogous to step 1 of the one dimensional

system presented in the last section, with the difference that now we are acting on
L
2 correlation matrices simultaneously. This returns L(m + 1) eigenvalues from the L

2

sectors. Step 2 consists in considering all these L(m+1) eingenvalues together, selecting

the 2L
2 closest to 0 or 1 and then approximating them with 0 or 1 respectively in the

respective correlation matrix and setting them to product state with the rest of the

system analogously to what was done in step 2 of the one dimensional case. Here the

difference with the one dimensional case of the last section consists in the fact that

we are setting to product state L modes, not just one, and that we are choosing them

from all the correlation matrices. Step 3 consists in moving to the partition scheme

m + 2, enlarging the first partitions. Differently from the one dimensional case, here

one has to keep track of the number of approximations performed in each sectors before

diagonalising. As in the one dimensional case, the algorithm then proceed iteratively

returning after at most L steps, the correlation matrix Γ(m) of a state with reduced

bond dimension with the respect to the partitions along the chosen spatial direction.

Considering larger values of m, the correlation matrix Γ(m) converges towards Γ, the

exact correlation matrix.
F_utilities 3.6.2: RBD(Γ, m)→ Γ(m)

This function returns the correlation matrix Γ(m) obtained reducing the bond

dimension of Γ to m.

F_utilities 3.6.3: RBD_csectors(/Γ, Lx, Ly, m)→ /Γ(m)

This function returns the correlation matrices /Γ(m) obtained reducing the

bond dimension to mL of the system on the Lx × Ly cylinder described

by the correlation matrices /Γ. Each correlation matrix must cointains

information of two values of k and must be organised following the order

/α = (ak,1, ak+L
2 ,1

, ak,2, ak+L
2 ,2

, . . . )
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using F_utilities;

using PyPlot;

using LinearAlgebra;

const Fu = F_utilities;

const LinA = LinearAlgebra;

N = 100;

H = Fu.Build_hopping_hamiltonian(N);

HD, U = Fu.Diag_h(H);

Gamma = Fu.GS_gamma(HD,U);

Gamma_RBD = Fu.RBD(Gamma,5)

prod_modes_border = zeros(Int64, N);

prod_modes_RBD_border = zeros(Int64, N);

prod_modes_bulk = zeros(Int64, div(N,2));

prod_modes_RBD_bulk = zeros(Int64, div(N,2));

for l=1:N

DA,UA = Fu.Diag_gamma(Fu.Reduce_gamma(Gamma,l,1))

↪→ ;

DA_RBD,UA_RBD = Fu.Diag_gamma(Fu.Reduce_gamma(Gamma_RBD,l

↪→ ,1));

prod_modes_border[l] = count(i->i!=0, round.(real.(LinA.

↪→ diag(DA)[1:l]),digits=14));

prod_modes_RBD_border[l] = count(i->i!=0, round.(real.(LinA.

↪→ diag(DA_RBD)[1:l]),digits=14));

end

for l=1:div(N,2)

DA,UA = Fu.Diag_gamma(Fu.Reduce_gamma(Gamma
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↪→ ,l, div(N,2)));

DA_RBD,UA_RBD = Fu.Diag_gamma(Fu.Reduce_gamma(

↪→ Gamma_RBD,l, div(N,2)));

prod_modes_bulk[l] = count(i->i!=0, round.(real.(LinA.

↪→ diag(DA)[1:l]),digits=14));

prod_modes_RBD_bulk[l] = count(i->i!=0, round.(real.(LinA.

↪→ diag(DA_RBD)[1:l]),digits=14));

end

figure("prod_eigenvalues");

plot(1:N,prod_modes_border, marker="s", markersize=3, label=L"$\#(

↪→ eigenval(\Gamma_{1,\dots,\ell}\neq 0,1)$");

plot(1:div(N,2),prod_modes_bulk, marker="s", markersize=3, label=L"

↪→ $\#(eigenval(\Gamma_{\frac{N}{2},\dots,\frac{N}{2}+\ell})\

↪→ neq 0,1)$");

plot(1:N,prod_modes_RBD_border, marker="s", markersize=3, label=L"$

↪→ \#(eigenval(\Gamma(m=5)_{1,\dots,\ell}\neq 0,1)$");

plot(1:div(N,2),prod_modes_RBD_bulk, marker="s", markersize=3,

↪→ label=L"$\#(eigenval(\Gamma(m=5)_{\frac{N}{2},\dots,\frac{N

↪→ }{2}+\ell}\neq 0,1)$");

axvline(div(N,2), linestyle="--", linewidth=0.5, color="gray")

xlabel(L"$\ell$")

grid(axis="y", linestyle="--")

legend();

Output:
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Figure 3.15: Eigenvalues different from 0 and 1 for different partitions of the system
for the ground state Γ of a hopping Hamiltonian of a system of N = 100 sites, and
for Γ with bond dimension reduced to m. The blue dots correspond to partitions of Γ
with first site at the boundary of the system and with dimension $. The orange dots
correspond to partitions of Γ with first site at the boundary of the system and with
dimension $. The green dots are anologous to the blue dots, but computed for the
state Γ(m = 5) obtained reducing the bond dimension of Γ to m = 5. Red dots are
anologous to the orange dots, but computed for Γ(m = 5). As expected the number of
eigenvalues different from 0 and 1 are bounded as Oeigenval( $= 0, 1) ≤ 2m.

using F_utilities;

using PyPlot;

using LinearAlgebra;

const Fu = F_utilities;

const LinA = LinearAlgebra;

function Random_hamiltonian(N)

A = rand(N,N)+im*rand(N,N);

A = (A+A’)/2.;

bd = rand(N-1).+im*rand(N-1);

B = Tridiagonal(bd, zeros(Complex{Float64}, N), -bd);

H = zeros(Complex{Float64}, 2*N, 2*N);

H[(1:N),(1:N)] = -conj(A);

H[(1:N).+N,(1:N)] = -conj(B);
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H[(1:N),(1:N).+N] = B;

H[(1:N).+N,(1:N).+N] = A;

return H;

end

N = 100;

H = Random_hamiltonian(N);

HD, U = Fu.Diag_h(H);

Gamma = Fu.GS_gamma(HD,U);

Gamma_RBD = Fu.RBD(Gamma,1)

S_modes_border = zeros(Float64, N);

S_modes_RBD_border = zeros(Float64, N);

S_modes_bulk = zeros(Float64, div(N,2));

S_modes_RBD_bulk = zeros(Float64, div(N,2));

for l=1:N

S_modes_border[l] = Fu.VN_entropy(Fu.Reduce_gamma(Gamma,l

↪→ ,1));

S_modes_RBD_border[l] = Fu.VN_entropy(Fu.Reduce_gamma(

↪→ Gamma_RBD,l,1));

end

for l=1:div(N,2)

S_modes_bulk[l] = Fu.VN_entropy(Fu.Reduce_gamma(Gamma

↪→ ,l, div(N,2)));

S_modes_RBD_bulk[l] = Fu.VN_entropy(Fu.Reduce_gamma(

↪→ Gamma_RBD,l, div(N,2)));

end

figure("Entropies");

plot(1:N,log.(abs.(S_modes_border)), marker="s", markersize=3,

↪→ label=L"$F=S(\Gamma_{1,\dots,\ell}\neq 0,1)$");
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plot(1:div(N,2),log.(abs.(S_modes_bulk)), marker="s", markersize=3,

↪→ label=L"$F=S(\Gamma_{\frac{N}{2},\dots,\ell+\frac{N}{2}})\

↪→ neq 0,1)$");

plot(1:N,log.(abs.(S_modes_RBD_border)), marker="s", markersize=3,

↪→ label=L"$F=S(\Gamma(m=1)_{1,\dots,\ell}\neq 0,1)$");

plot(1:div(N,2),log.(abs.(S_modes_RBD_bulk)), marker="s",

↪→ markersize=3, label=L"$F=S(\Gamma(m=1)_{\frac{N}{2},\dots,\

↪→ ell+\frac{N}{2}}\neq 0,1)$");

axvline(div(N,2), linestyle="--", linewidth=0.5, color="gray")

axhline(log(log(2)), linestyle="-.", color="red", label="F=log(D)")

axhline(log(2*log(2)), linestyle="-.", color="red", label="F=2*log(

↪→ D)")

xlabel(L"$\ell$")

ylabel(L"$\log(F)$")

# grid(axis="y", linestyle="--")

legend();

Output:
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Figure 3.16: The entropy of different regions of the ground state of a random
Hamiltonian. The blue dots correspond to partitions of dimension $ with first site
at the boundary of the chain. The orange dots correspond to partitions of dimension
$ with first site in the middle of the chain. The green dots are anologous to the blue
dots but computed for the state Γ(m = 1) obtained reducing the bond dimension of Γ
to m = 1. Red dots are anologous to the orange dots, but computed for Γ(m = 1). As
expected since the Hamiltonian is random and long range, the entropy of the partitions
almost always saturates. The red dash-dotted horizontal lines represent the upper
bound for the entropy of a partition (starting at the border or not respectively for
HQ;(D) and 2 HQ;(D)). As we can see the entropy is always bounded by S ≤ HQ;(D)
with D = 2m as expected.



Chapter 4

Equilibration in closed quantum
systems

In chapter 2 we studied efficient methods for encoding a particular class of static

quantum states. In this chapter we are going to study what happens when these

states are free to evolve within an out-of-equilibrium dynamics. We will see that,

generally, the resources needed for the description of the evolved states grow in time,

posing difficult challenges in the simulation of the dynamics of many-body quantum

systems.

This is not surprising, as even for classical systems, following the microscopic

evolution of a many-body system is a challenging task.

As already imagined by the first works on quantum mechanics [33, 155], closed

quantum systems can equilibrate towards stationary states in a similar fashion of

thermalising dynamics in classical physics.

In this chapter will see how the concept of thermalisation and equilibration emerges

in the context of many-body quantum physics and how it differs from its classical

counterpart. In particular we will focus on the locality properties of the spreading of

correlations paving the way for understanding how these can be exploited for

simplifying the description of the out of equilibrium dynamics.

135
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4.0.1 Quantum Quenches

In order to study systems out of equilibrium we need to decide a method for moving

out of equilibrium.

The simplest protocol (that makes sense theoretically and experimentally) for the out-

of-equilibrium dynamics is that of quantum quenches [63]. A quench protocol consists

in considering an eigenstate (most of the time the ground state) |ψ〉 of an Hamiltonian

H0 (most of the time a local Hamiltonian) and studying its evolution after a sudden

quench of the Hamiltonian H0 → H1. The out of equilibrium dynamics is

|ψ〉(t) = e−iH1t|ψ〉. (4.1)

Quantum quenches are categorised as of two different types. There are local

quenches, where the difference between the Hamiltonian pre-quench H0 and the

Hamiltonian after-quench H1 is local. An example of local quench is changing a

particular interaction between two specific lattice sites. There are global quenches

where the after-quench Hamiltonian can differ in any way from H0.

The categorisation of the quenches is strictly connected with the possible

experimental implementation of the out-of-equilibrium dynamics.

In the following we will consider local Hamiltonians parametrised by a real number

(this number can for example correspond to the strength of nearest neighbour

interaction). We will quench the system by changing the value of this parameter.

Since the properties of ground states are in many cases efficiently computable, we will

have the advantage of starting from a state we can characterise efficiently.

In the following we will consider the Fermionic Ising transverse field Hamiltonian H

of eq (3.122) with N = 200 and gF = 1 for periodic boundary conditions. The

Hamiltonian is dependent on the parameter θ ∈ [0, π2 ]. A quench protocol would

consist in computing the ground state of H(θ0) with θ0 = π
128 and then evolve it with

θ = π
8 with timesteps δ = 0.25.



Chapter 4. Equilibration in closed quantum systems 137

4.0.2 Entanglement and complexity

The computational resources needed by matrix product states techniques grow

exponentially with the amount of entanglement in the system (see equation (2.45)). If

we want to be able to efficiently simulate systems out of equilibrium we should hope

for the entanglement to remain bounded during the evolution. Unfortunately, this is

not the case.

In fact, the post quench dynamics spreads the initially localised correlations to

arbitrarily large distances [156, 157] leading to a fast growth of entanglement with

time [54–58,158].

The speed of the dynamical growth of entanglement is upper bounded by a linear

growth in time t [159–161], a result that is the consequence of the finite velocity of the

propagation of correlation derived from the Lieb-Robinson bounds [162]. This upper

bound can be tight for quadratic models [149,156,163,164].
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Figure 4.1: Growth of the entanglement entropy of different partitions in the transverse
field Ising model. We consider the quenched dynamics of the Hamiltonian (3.122) with
N = 200 and gF = 1, with the quench θ : π

128 → π
8 . The system is divided in two

complementary partitions A and B. We plot the von Neumann entropy of partition
A at times 0.25t. The entropy grows linearly until it saturates to a value proportional
to the dimension of the partition. A linear growth of entanglement corresponds to an
exponential growth of the resources needed to encode the state with matrix product
states.

Since the entanglement is bounded by the logarithm of the bond dimension (see

(2.45)), a linear growth of entanglement corresponds to an exponential growth of the

resources needed to encode the states with standard tensor network techniques.

Standard tensor network techniques fail to describe out-of-equilibrium states.

As an example we consider the quench of the Fermionic Ising tranverse field Hamiltonian

introduced at the end of the last paragraph. In figure 4.1 we analyse the dynamical

behaviour of the entropy of an increasingly larger partition A of the system analogously

to what is done in [156]. We know that for 1D systems satisfying an area law the EE is

a finite quantity independent from the dimension of the partition. In the first part of

the dynamics in figure 4.1 the system satisfies indeed an area law, up to a time t = 20

the EE is independent from the dimension of the partition (even if it grows linearly).
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In the long-time regime the EE saturates at a value that is proportional to the size of

the partition.

4.0.3 Quasi Particle Picture

In order to explain the dynamical behaviour of the entanglement after some quantum

quenches and to give a general intuition of the results explained in the last section, in

many cases one can rely on the quasi-particle picture [59, 149, 156, 164–168] (see [169]

for a system not admitting quasi-particle picture, but with linear growth of

entanglement). In the quasi-particle picture one imagines that the energy injected in

the system by the quantum quench creates couples of entangled quasi-particles evenly

distributed in the lattice. During the evolution these quasi-particles move ballistically

with constant velocity and spread through the system. Because of conservation of

momentum, each pair of entangled particles is expected to be created with opposite

momenta (zero momentum conservation).

Following the scheme of figure 4.2 we can see how the linear growth of entanglement

and the area law can be easily understood from the quasi-particle picture. At time

t = 0 on each site we have a couple of entangled quasi-particles. As soon as the

dynamics kicks in, the particles belonging to each couple start spreading in the system

with opposite velocities. We fix a partition of the system A of dimension $. At short

times t = t1, some couples of entangled particles, in particular the ones generetaed

near the boundaries of the two partitions, have the left moving particles inside of A

and the right moving particles inside the complementary partition and vice-versa.

Each shared couple of entangled particles contributes to the total amount of

entanglement between the two partitions, thus at time t the entropy SA(t) of

partition A is proportional to the total number of quasi particles pairs that are shared

between A and the complementary partition. Specifically one has that, if there is just

one kind of quasi-particles identified by their quasi-momentum λ, moving with

velocity v(λ) [168],

SA(t) ∝ 2t

∫

2|v|t<"
dλv(λ)f(λ) + $

∫

2|v|t>"
dλf(λ), (4.2)
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Figure 4.2: Representation of the quasi particle picture. From bottom to top we
represent an infinite system at three different times with 0 < t1 < t2. At every time
each site of the system is represented as a column with a violet and a green circle. The
green and violet circles represent the quasi-particles. Red filled boxes highlight the
quasi-particles that contributes to the entanglement between A and its complement.
Violet quasi-particles move left with a fixed speed v, green quasi-particles moves in the
opposite direction at the same speed so that the total momentum for each couple of
quasi particles is conserved. Particles with the same number are entangled. At time
t = 0 in each site of the system a couple of entangled quasi-particles is created. All
the quasi-particles inside of A have their entangled partner inside of A. At time t = t1
the quasi particles moved. Particles 5, 6, 11, 12 have their entangled partner outside
the partition. Each quasi-particle in A with entangled partner outside A contributes
to the entanglement of the partition with the rest of the system. We note that in this
picture the first sites to contribute to the entanglement are the sites at the boundaries.
At time t = t2 the entanglement between partition A and the system is saturated as all
the quasi-particles inside of A have the entangled partner outside of A. We note that
for an infinite system the entropy of partition A at this point is fixed for the rest of the
evolution, but the entangled partners are moving further away from A.

where f(λ) depends on the production rate of the quasi-particle in the quench. Equation

(4.2) holds exactly in the limit t, $→ ∞ with t$ fixed. In figure 4.2 we represent a system

with quasi-particles with one single velocity v and we consider equation (4.2) as holding

exactly, thus we have that

SA(t) = KBM(2|v|t, $) · f(v). (4.3)

From this equation and from figure 4.2, we see that after enough time has passed (a

time proportional to the dimension of the partition) the entropy is expected to saturate
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as all the quasi particles in the partition are entangled with a quasi-particle outside

the partitition. This picture gives a clear intuition of the reason why entanglement is

expected to grow at most linearly in time and tells us that the entropy of a partition can

saturate to a value proportional to the dimension of the partition. In fact, the entropy of

a partition is saturated when the partition is saturated with entangled quasi-particles.

If we assume a finite Hilbert space for the constituents, the number of entangled quasi-

particle that fits in a partition is proportional to the volume of the partition.

The validity of equation (4.2) has been verified for free models, it has been proved for

rational Conformal Field Theories [170] and it has been studied in interacting integrable

models [171,172].

An important insight we get from the quasi-particle picture is that we can consider the

contribution to the entanglement of each partition with the rest of the system as coming

from regions further away from the partitions as time passes (see the red rectangles in

figure 4.2) . We will investigate further this idea in the paragraph on the equilibration

of quadratic sytems 4.1.4 and in chapter 6.

4.1 Equilibration

The linear growth of entanglement during the post quench dynamics is a curse for the

simulation of many-body systems out of equilibrium. MPS compression techniques

would require an exponential amount of resources to store the istantaneous

information of the state during the evolution.

However, many-body quantum systems seemingly relax to equilibrated states, and, in

particular cases, they relax to thermal or almost thermal states [64, 173–176]. This

suggests that the long-time regime many-body quantum states can be efficiently

encoded.

The topic of equilibration of closed quantum systems is broad and we will cover just a

small fraction of it. A good review for the interested reader is [64] together with the

seminal articles [174–176].

We start by considering an initial state ρ, we call ρ(t) the time evolved state with

Hamiltonian H. We are interested in the possible equilibration of the state. It is clear
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that, in finite systems, it is impossible for ρ(t) to reach a steady value. The dynamics

is unitary and for long enough times we will have recurrence effects, thus unless

ρ(t) = ρ at every time, the state will never equilibrate.

Unitarity is not incompatible, though, with the relaxation of some observables to

their expectation values or even to the relaxation of reduced density matrices to

steady states.

For closed-quantum systems we can then define thermalisation focussing on particular

properties of the system. A quantum system is said to equilibrate if, on average,

during the time evolution the reduced density matrix of the state over a small

partition or the expectation value of some observables is close to a steady density

matrix or a steady value respectively. The fact that many-body quantum systems are

expected to thermalise in this sense is supported by the two results summarised

in [177] (see also [178–180]). Defining the steady equilibrium state 刀H(ρ)

("katanaH(ρ)"), we have that the time-averaged fluctuation of an equilibrating

observable A around the equilibrium value are bounded by

(〈A〉ρ(t) − 〈A〉刀H(ρ))
2 ≤ ||A||2e−S2(刀H(ρ)) (4.4)

where S2 denotes the 2−Reny entropy and 〈A〉ρ = Tr [ρA]. In a similar fashion focussing

on the reduced density matrices one has that the time-average distance between the

reduced state on partition S, ρS(t) = TrSc [ρ(t)] ∈ HS and the reduced density state

刀H(ρ)S = TrSc [刀H(ρ)] (where Sc is the partition of the system complementary to S)

is

||ρS(t)−刀H(ρ)S ||1 ≤ 2dse
−S2(刀H(ρ)S)/2, (4.5)

where ds is the dimension of the Hilbert space associated to the partition S.

4.1.1 Diagonal Ensemble

We study the time evolution of the expectation value of an observable O. We call

〈O(t)〉 = Tr [ρ(t)O] the expectation value of O at time t. We say that the value of

〈O(t)〉 equilibrate if, for most of the time, 〈O(t)〉 is close to a steady value that we call
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O.

If the steady value O exists, it must be equal to infinite time average of 〈O(t)〉

O := HBK
T→∞

1

T

∫ T

0
dt〈O(t)〉 = Tr

[(
HBK
T→∞

∫ T

0
dt
ρ(t)

T

)
O

]
= Tr [刀H(ρ)O] , (4.6)

where 刀H(ρ) = HBKT→∞
∫ T
0 dtρ(t)T , is the diagonal ensemble of ρ with respect to the

Hamiltonian H.

Since the state of quantum state is convex, the diagonal ensemble is a valid correlation

matrix and it is the state that encodes all the information on the equilibrium values of

every observable. The diagonal ensemble of a state ρ with respect to the Hamiltonian

H is obtained by the application of the decohering or dephasing operator刀H(·) defined

as

刀H(ρ) :=
∑

E

|E〉〈E|ρ|E〉〈E| (4.7)

where {|E〉}E is the set of eigenvalues of H.

It is clear that, in order to compute 刀H(ρ) we have to be able to diagonalise the

whole Hamiltonian, a task that requires an exponential amout of the resources in the

dimension of the system. Furthermore, being able to diagonalise the complete

Hamiltonian, would allow us to compute the complete microscopic out-of-equilibrium

dynamics, thus eliminating the need of approximating the equilibrium state.

We can see how, for non degenerate H, this definition corresponds to the form of the

diagonal ensemble of equation (4.6) expanding eiHt on the diagonal basis of H as

eiHt =
∑

E eiEt|E〉〈E|, where

HBK
T→∞

∫ T

0
dt
ρ(t)

T
= HBK

T→∞

1

T

∫ T

0
dte−iHtρeiHt =

= HBK
T→∞

∫ T

0
dt
e−i(E−E′)t

T

∑

E,E′

|E〉〈E|ρ|E′〉〈E′| =

=
∑

E

|E〉〈E|ρ|E〉〈E| =刀H(ρ), (4.8)

that is exactly the identity used in eq (4.6).
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4.1.2 Maximum Entropy Principle

In 1957 Jayne [136, 137] introduced in statistical mechanics the principle of maximum

entropy. This principle states that, given a prior knowledge, the probability distribution

that best represents the current state of knowledge is the one that maximise the entropy.

The principle of maximum entropy, or Jayne’s principle, is now seen as a foundational

principle of statistical mechanics.

We can see how statistical ensembles can be constructed by a direct application of

the principle. Suppose, for example, that our prior knowledge of the state consists in

knowing the expectation value {〈I(n)〉}n of a set of observables {I(n)}n. Then Jayne’s

principle says that the state ρJ that best describes the system is the solution of the

maximisation problem
K�t
ρ

S(ρ)

s.t. Tr
[
ρI(n)

]
= 〈I(n)〉 ∀n,

(4.9)

and it has the general form

ρJ =
e−

∑
n λnI

(n)

Tr
[
e−

∑
n λnI

(n)
] , (4.10)

where λn ∈ R are such that Tr
[
ρJI(n)

]
= 〈I(n)〉 ∀n.

4.1.3 Generalised Gibbs Ensemble

To every Hamiltonian H it corresponds a set of observables {In}n such that [H, In] = 0

for every n. These are conserved quantities (see section 2.2.1) and their expectation

value does not change during the dynamics. If the state we are considering is going to

equilibrate, we can be sure that in the diagonal ensemble 刀H(ρ) the expectation value

of each of these conserved observables is the same as the one computed on the initial

state ρ.

This observation connects the diagonal ensemble to the Jayne’s principle. It can be

shown that the diagonal ensemble is the unique state that maximises the von Neumann

entropy given the expectation value of all the conserved quantities [179], thus, the
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diagonal ensemble can be computed as the solution of the maximisation problem (4.9)

with {In}n the set of all the conserved quantities imposing 〈I(n)〉 = Tr
[
ρI(n)

]
, ∀n.

In the previous sections we have seen how being able to compute the diagonal ensemble

corresponds to be able to diagonalise the Hamiltonian. This complexity can be seen

also in the construction of the diagonal ensemble from the Jayne’s principle. In fact,

in quantum systems the number of conserved quantities scales exponentially with the

number of constituents (indeed it scales as the dimension of the Hilbert space). To see

this, it is sufficient to consider the basis of the eigenstates {|E〉}E of the Hamiltonian

H. The number of eigenvectors of H are expected to scale as the dimension of the

Hilbert space. Building a projector PE = |E〉〈E| out of each eigenvector we obtain an

exponentially large set of conserved quantities since [PE , H] = 0.

The Jayne’s perspective, nonetheless, leads us to the question if it is really necessary to

preserve all the conserved quantities or if it is possible to obtain a good approximation

of the equilibrium state preserving only a subset of conserved quantities.

In particular, we remind that we are interested in the equilibration of a system with

respect to the expectation values of local operators, thus we are not interested in the

full information encoded in the diagonal ensemble. Starting from Jayne’s principle, it

would be desirable to characterise a restricted set of conserved operators {I(n)}n such

that the state that maximise the entropy given the set of constraint on the expectation

values of all {I(n)}n is going to reproduce, with good approximation, the expectation

value of local observables in the diagonal ensemble, that is, in the equilibrated state.

This state is called Generalised Gibbs Ensemble (GGE) [181–185] (In section 4.2 we will

introduce the Gibbs Ensemble, and the reason for the name generalised Gibbs ensemble

will be clear).

The characterisation of the set {I(n)}n, and thus of the GGE, has been longly debated.

The GGE has been firstly introduced in the context of free systems [184], where the set

of conserved quantities has been individuated as the occupations of the free modes (a

set of conserved quantities polynomially large in the system size). Extending this notion

of GGE to interacting systems [176], the GGE is constructed from the set of conserved

operators constituted by the projectors on the energy eigenstates of the Hamiltonian.
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This, de facto, identified the diagonal ensemble with the GGE (an identification that

appears also in [186]). It has subsequently been suggested that in interacting and not

intergacting systems, the conserved quantities defining the GGE should be just local

quantities [181,182]. It can be shown [181] that, for free systems, the GGE formulations

based on the set of conserved free modes and the GGE formulation based on local

conserved quantities are equivalent. Here we are going to consider the formulation of

the GGE based on local conserved quantities. For a mathematical precise formulation

of this GGE see e.g. [64].

The validity of the GGE, as a state that locally well approximates the equilibrium

state, has been confirmed by many results (see for example [64, 181, 182] and

references therein).

The set of local conserved quantities generally grows linearly with the number of

constituents of the system. This allows us to deal with bigger system, but in the case

of infinite systems, the number of constraints would be infinite nevertheless (see [187]

for an example where this infinite set is explicitly computed). In these cases a notion

of truncated GGE, where just a part of the the infinite set of local conserved

quantities is conserved, has been adopted [182, 184, 188], showing that even the

information about all the local conserved quantities can be redundant.

4.1.4 Equilibration of quadratic systems

Here we present the formulation and the properties of the GGE in the particular case

of free systems. A complete treatise of free Hamiltonians, for Fermionic systems is

given in Chapter 3. We use here the same notation.

One key property of Fermionic Gaussian systems is that the set of Fermionic

Gaussian states is closed under the the evolution induced by a quadratic Hamiltonian.

Thus one expects that, if a Gaussian state is going to equilibrate, it should equilibrate

to a Gaussian state.

The definition of diagonal ensemble does not capture this property. In fact, the

diagonal ensemble can be defined as an infinite-time average (see eq (4.6)), but a

convex combination of Gaussian states is not a Gaussian state [189]. One can still
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compute the projection of the diagonal ensemble to the space of Gaussian states, that

is the Gaussian state characterised by the correlation matrix of the diagonal

ensemble. We construct it now, explicitly, in an example. Let us consider a Fermionic

quadratic Hamiltonian H and an initial Fermionic Gaussian state Γ. With an abuse

of notation we denote the density matrix associated to a correlation matrix Γ as ρ(Γ)

and the correlation matrix computed from a (not necessarily Gaussian) state ρ as

Γ(ρ). The diagonal ensemble is 刀H(ρ). The projection on the Gaussian state is

Γ(刀H(ρ)) or ρ(Γ(刀H(ρ))). In general 刀H(ρ) $= ρ(Γ(刀H(ρ))). In order to compute

Γ(刀H(ρ)) directly from Γ we can just compute the infinite-time average of the

correlation matrices. In particular, we firstly move Γ in the diagonal basis of H. In

this basis the Hamiltonian is a free Hamiltonian of the form (3.20)

H =
∑

k

εkb
†
kbk. (4.11)

Considering just the first quadrant of the correlation matrix Γb†b
i,j = Tr

[
ρb†ibj

]
, its time

evolution is

Γb†b
i,j (t) = Tr

[
ρb†ibj

]
ei2(εi−εj)t. (4.12)

In the case of no degenerancies taking the infinite-time average of Γb†b corresponds

to setting all the out-of-diagonal elements of Γb†b to 0. This procedure corresponds to

building the Gaussian state that in the eigenbasis of H preserves all the free occupations

(Tr
[
ρb†ibi

]
) and has set to zero all the other elements of the correlation matrix. We

define the ensemble built following these steps the Gaussian diagonal ensemble (GDE),

we refer to it has ρGDE or ΓGDE or Γ(刀H(ρ)).

From section 3.3.2, we know that Gaussian states are the states that maximise the

entropy for a given set of fixed expectation value for the two points correlators.

For free theories, it can be showed [181] that the state that maximise the entropy for a

given set of occupations of the free modes is the GGE. Thus for free theories we have

the equivalence between the GGE and the GDE.
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Entanglement Contour Dynamics

With the quasi-particle picture we got an intuition on the behaviour of entanglement

during the post-quench dynamics. In particular we have seen that, if we consider a

bipartite system (A,B), with partition B bigger then partition A (see fig. 4.2), the

contribution in B to the entanglement between partition A and B moves further from

partition A.

In the context of free systems, this intuition can be strengthened by the study of the

dynamics of the entanglement contour (see 2.3.2 and 3.3.10).

We consider again the Hamiltonian (3.122) with gF = 1 corresponding to a system

with periodic boundary conditions as in figure 4.3. We choose the system size to be

N = 200 and we consider the quench from θ = π
128 to θ = π

8 , each timestep t correponds

to δ = 0.25. In figure 4.4 we study the dynamics of the contour out of equilibrium for

two complementary partitions A of dimension NA = 40 and B of dimension NB = 160.

Figure 4.3: A system with periodic boundary conditions divided in two complementary
partitions A and B.

From figure 4.1 we know the entanglement entropy of partition A is going to saturate

to a value proportional to |A|. Since the von Neumann entropy of complementary

partitions of a pure state is symmetric (2.21), we know that the value to which the von

Neumann entropy of B saturates is dictated by partition A.

In the left panel of figure 4.4 we see the entanglement contour dynamics for partition

A. At time t = 0 the only sites that contribute to the entanglement are those at the

boundaries. This is expected. In fact, we know that this state obeys an area law,

thus, for every partition we choose, the scaling of the entanglement is proportional to
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Figure 4.4: Out of equilibrium dynamics of the entanglement contour for two partitions
of different dimensions. In the small partition A on the left, at saturation of the EE,
the entanglement contour is flat in the middle of the partition. In the big partition B
on the right the entanglement contour propagates being always localised.

the scaling of the boundaries of the partition and we have seen that this is a direct

consequence of the exponential decay of the correlations. Therefore we expect that

the leading contribution to the entanglement should come from the boundaries of the

partition. Proceeding with the evolution the entanglement entropy of partition A grows

linearly and the contour starts spreading in the bulk of the partition. Each site of the

partition is starting to contribute to the total entanglement of the partition. When

the entanglement entropy of the partition is saturated, the profile of the entanglement

contour is flat in the bulk and has two spikes at the boundary. It looks like the profile

at time t = 0, with the difference that the contribution of each site is higher, thus a

constant term of entropy is added.

In the right panel of figure 4.4 we see the dynamics of the entanglement contour for

the bigger partition B. At time t = 0 the contour is localised at the boundaries as

expected. During the dynamics the contribution to the entanglement spreads inside

of the partition entering inside of B from both sides because of the two boundaries.

In perfect accordance with the quasi-particle picture, we notice that the contribution

to the entanglement spreads further from the boundaries, thus partition A results to

be effectively entangled with increasingly distant parts of the system. In figure 4.5 we

focus on the contour of partition B at three different timesteps t = 0, t = 70 and t = 90.
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Figure 4.5: Entanglement contour inside of partition B at three different times. At
initial time the entanglement is localised at the boundaries of the partition. The
entanglement then starts spreading in the partition, always being localised, as it is
evident from the two orange peaks. The green curve represents the entanglement
contour at the moment when the two entanglement fronts meet.

We notice how at t > 0 the contour at the boundaries is comparable to the peak of

the contour in the bulk. We notice also how the contribution at the boundaries rapidly

decays in space, making the contribution in the bulk extremely localised.

Equilibration times and Gaussification

For systems evolving with a quadratic Fermionic Hamiltonian there exists general, and

mathematically rigorous statements about the equilibration of the systems towards the

GGE [190,191].

The framework in which these theorems hold is that of a generic 1D fermionic system

of N sites with translational invariant local Hamiltonian H with periodic boundary
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conditions, with the additional assumption that the derivative of the dispersion relation

ε(k) have not coinciding roots (there is not a k such that d2

dk2 ε(k) =
d3

dk3 ε(k) = 0). In this

context, for every initial state ρ of the system with finite correlation lenght and no long-

wavelength dislocations in the two points correlators of Dirac operators (see chapter 3),

there exists a constant relaxation time t0 and a time of recurrence tR proportional to

the system size N such that, for all t ∈ [t0, tR], the state locally equilibrate to a GGE

with

|〈O〉ρ(t) − 〈O〉GGE | ≤ Ct−γ , (4.13)

with O a local observable and C, γ > 0 independent from N .

It is important to notice that no assumptions on the Gaussianity of the initial state

have been made. It is indeed possible to choose as initial state a state that is not

Gaussian, it is the quadratic form of the Hamiltonian H that, through a process called

gaussification [190], transforms the state to a state locally indistinguishable from a

Fermionic Gaussian state.

Gaussification is a general result conferring even more relevance to Fermionic Gaussian

states.

Following again [191] we have that for an initial Fermionic state ρ with exponential

decay of correlations and a non-interacting translational invariant Hamiltonian H with

the derivative of the dispersion relation with not coinciding roots (there is not a k

such that d2

dk2 ε(k) =
d3

dk3 ε(k) = 0), there exists a constant relaxation time t0 and and a

recurrence time tR proportional to N such that, for all t ∈ [t0, tR],

|〈O〉ρ(t) − 〈O〉ρ(Γ(ρ(t)))| ≤ Ct−1/6, (4.14)

where C > 0. This shows that, under these conditions, the expectation value of the

local observable O converges with a power law in time towards the same value computed

with the Gaussian projection of the state.
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Equilibration of occupations in the Fermionic transverve Field Ising model

In some cases it is possible to explicitly compute the equilbration of some local

observables.

In chapter 3.5.3 we compute the time evolution of the single site occupation 〈a†1a1〉

during the out-of-equilibrium dynamics of a translational invariant state with

Hamiltonian (3.122) where gF = −1 and N is even.

We are now interested to verify if this observable equilibrates.

In order to avoid recurrence effects we compute the limit of expression (3.143) in the

case of the number of sites going to infinity N → ∞. Defining the quantity p = −2π
N

we can write

〈a†1a1〉(t) =

= HBK
N→∞

1

N

N+1
2∑

k=−N+1
2

[
s2k〈b

†
kbk〉+ t2k〈b−kb

†
−k〉+ isktk(e

iεkt〈b−kbk〉 − e−iεkt〈b†kb
†
−k〉)

]
=

= −
∫ π

−π
dp

[
s2−p〈b

†
−pb−p〉+ t2−p〈bpb†p〉+ is−pt−p(e

iε(p)t〈bpb−p〉 − e−iε(p)t〈b†−pb
†
p〉)

]
,

(4.15)

with

sp =
bBM(p)√

εk(εp/2 + +Qi(θ) + +Qb(p))
,

tp =
εp/2 + +Qi(θ) + cos(p)√
εp(εp/2 + +Qi(θ) + cos(p)

,

ε(p) = 2
√
1 + +Qi(θ)2 − 2 +Qi(θ) +Qb(p). (4.16)

The two time-dependent terms of the integral (4.15) have the same form, thus it suffices

to study the long-time behaviour of the integral

I(t) =

∫ π

−π
dpeiε(p)ts−pt−p〈bpb−p〉. (4.17)
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In order to study the long-time beaviour of I(t) we use the result about oscillatory

integral in [192] chapter VII proposition 3. Having that d
dpε(p)

∣∣∣
p=0

= 0 and
d2

dp2 ε(p)
∣∣∣
p=0

$= 0, for large values of t, the integral can be approximated as

I(t) ∼ t−1/2
∞∑

j=0

a2jt
−j , (4.18)

where each aj depends only on finitely many derivatives of both ε(p) and s−pt−p〈bpb−p〉

at p = 0. Computing aj explicitly we find that a0 = 0, thus we have that at large t

I(t) ∼ t−3/2. (4.19)

Plugging this result into (4.15) we find out that the single site occupation, in the

long-time regime, equilibrates as t−3/2 to the asymptotic value of

〈a†1a1〉 = −
∫ π

−π
dp

[
s2−p〈b

†
−pb−p〉+ t2−p〈bpb†p〉

]
, (4.20)

that is exactly the one predicted by the GDE.

4.2 Thermalisation

In the last sections we have been studying ensembles depending on less and less

conserved quantities. Starting from the diagonal ensemble, the state that maximises

the entropy given all the conserved quantities, we moved to the GGE, for which one

considers just the local conserved quantities, and we finished with the truncated

GGE, the state constructed out of a selection of local conserved quantities. Taking

this process to the limit, we end up introducing the state that maximise the entropy

given just one single conserved quantity, the total energy of the system. This state is

called thermal state or Gibbs state. Given a Hamiltonian H and a fixed E, a thermal
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state is defined as the state that solve the maximisation problem

K�t
ρ̃

S(ρ̃)

s.t. Tr [ρ̃H] = E.

(4.21)

The solution of this problem has the form

ρβ,H =
e−βH

Tr [e−βH ]
(4.22)

where the inverse temperature β is chosen in order to satisfy the constraint

Tr [ρβ,HH] = E.

Whenever a state equilibrates to an equilibrium state that is close to a thermal state

(in the local sense explained before) we say that the system thermalise.

The choice of the energy of the state as the only conserved quantity is the most

natural. Other than the considerations on classical and statistical mechanics, we note

that a quantum system is characterised by two operators: the state ρ and the

Hamiltonian H. The state ρ is not a conserved quantity (we are studying the

dynamics), while the expectation value of H is a conserved quantity. Concurrently, H

is the starting point for finding all the other conserved quantities as operators that

commutes with H.

Following this, one can argue that energy conservation is actually the only conserved

quantity necessary to be considered as all the operators commuting with (a non

degenerate) H are functionally dependent on H [193], but, as explained in [176], even

if the operators are functionally dependent their expectation values are generally not.

4.2.1 Eigenstate Thermalisation Hypotesis

At the core of the theory of thermalisation of closed quantum systems there is the

Eigenstate Thermalisation Hypothesis (ETH). The ETH was first introduced in the

two independent works of Deutsch and Srednicki [174, 175], suggesting that

thermalisation in quantum mechanics has a different nature from thermalisation in

classical mechanics.



Chapter 4. Equilibration in closed quantum systems 155

Differently from classical mechanics, for the ETH, thermalisation is not strictly

connected to the dynamics, but it is, instead, derived from the properties of the

eigenstates of the Hamiltonian [176]. The ETH is a hypothesis on two properties of

the energy eigenstates of many-body interacting Hamiltonians that, if satisfied, lead

the system to thermalise.

ETH [174, 175, 194] Consider H the Hamiltonian of a quantum system with N

constituents. Let {|α〉}α be the set of eigenstates of H with eigenvalue {Eα}α
respectively and let O be a few-body observable. The set of eigenstates is sorted such

that to close values of α corresponds close values of the eigenvalues, or energies, Eα.

Then the elements 〈α|O|β〉 satisfy the ETH if:

1. Oα,α := 〈α|O|α〉 changes slowly with the state, with the difference between

neighboring values Oα+1,α+1 −Oα,α exponentially small in N

2. Oα,β := 〈α|O|β〉, with α $= β are exponentially small in N .

To see how the ETH implies thermalisation we first show that, in the hypothesis that the

systems thermalise, the ETH implies a correspondence between the diagonal ensemble

and the microcanonical ensemble.

For doing so, let us consider a non degenerate Hamiltonian H and the collection of

its eigenstates {|α〉}α, where with Eα we indicate their eigenvalues, the energies. We

consider a state |ψ〉 =
∑

(α|Eα∈E)Cα|α〉 that is the linear combination of eigenstates of

H with corresponding energies in the interval E := [E0 −∆E,E0 +∆E].

The expectation value of an observable O in the diagonal ensemble刀H(|ψ〉〈ψ|) will

be

〈O〉DE = Tr [刀 (|ψ〉〈ψ|)O] =
∑

α|Eα∈E

|Cα,α|2Oα,α, (4.23)

Assuming that the eigestates of H satisfy the ETH and that ∆E is small enough, the

value of Oα,α with α|Eα ∈ E will be approximately constant, we call this constant value

OE0 . We then have

〈O〉DE = OE0

∑

E∈E
|CE,E |2 = OE0 . (4.24)
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Computing the same value assuming that we are in the microcanonical ensemble (that

is the equally weighted mixture of all energy egeinstates with energy in E) we would

have the equally weighted sum

〈O〉micro :=
1

N
∑

α|Eα∈E

Oα,α, (4.25)

with N = |{|α〉|Eα ∈ E}| the number of eigenstates in the considered energy window.

Considering the ETH even in this case we have that

〈O〉micro = OE0

1

N
∑

α|Eα∈E

1 = OE0 . (4.26)

The diagonal ensemble and the microcanonical thus give the same prediction for the

equilibration value of O.

This proof relied only on the point (1) of the ETH. Point (2) is required for the system

to equilibrate [175,176]. Different versions of the ETH exist, we refer to [64] for a version

of the ETH valid for degenerate Hamiltonians that leads to thermal Gibbs states.

It is still an open question under wich conditions the ETH holds. Rigorous proofs exist

that the ETH holds for special models as for example [195] and that conditions similar

to the ETH hold for more general models [196].
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Quantum conformal field theories

In this chapter we introduce and review some of the main concepts and tools of

conformal field theories. Exploiting conformal symmetries we are able to encode

relevant and universal properties of quantum systems in just a few parameters

describing the theory. In chapter 7 we will use these ideas to characterise states in the

long-time out-of-equilibrium dynamics.

5.1 Conformal transformations (in 2D)

A conformal transformation is defined as a function that locally preseserves the angles.

If we denote with gµ,ν the metric tensor of a manifold of dimension d, then a conformal

transformation is the invertible coordinate transformation r → r′ = r′(r) that changes

the metric as

g′α,β(r
′) =

∂rµ

∂r′α
∂rν

∂r′β
gµ,ν(r) := Ω(r)gα,β , (5.1)

that is, the coordinate transformation that scales the metric by a position-dependent

factor Ω(r).

If we consider the infinitesimal transformation rµ → rµ + εµ(r), then we have that

the first order transformation of the metric is

gµ,ν → gµ,ν − (∂µεv + ∂νεµ). (5.2)

157
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If we ask for this infinitesimal transformation to be conformal (that is, to obey eq (5.1))

we obtain that

∂µεν + ∂νεµ =
2

d
∂ηε

ηgµ,ν . (5.3)

In dimensions d = 2 the characterisation of the infinitesimal conformal mapping

(5.3) becomes the Cauchy-Riemann equations. In fact expanding (5.3) on the indices

(µ, ν, η = 1, 2) and solving the system we obtain

∂1ε1 = ∂2ε2, ∂1ε2 = −∂2ε1. (5.4)

If we introduce the complex coordinate

z = r1 + ir2, z̄ = r1 − ir2, (5.5)

as new coordinates in d = 2, we denote the partial derivatives as

∂z =
1

2
(∂0 − i∂1), ∂z̄ =

1

2
(∂0 + i∂1), (5.6)

and we denote the infinitesimal transformations ε(z) and ε̄(z̄) as

ε(z) = ε1 + iε2, ε̄(z̄) = ε1 − iε2, (5.7)

we find that the conformal transformations in two dimensions can be identified by the

holomorphic functions z → w(z) and z̄ → w̄(z̄).

Unless global properties of some functions are explicitly needed one may treat z and z̄

as separate, independent coordinates [197].

We can express the infinitesimal transformations as z′ = z + ε(z) where, because of its

analyticity, ε(z) admits the Laurent expansion

ε(z) =
∞∑

−∞
cnz

n+1. (5.8)

As functions of z, z̄ these infinitesimal transformations are generated by the differential
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operators

ln = −zn+1∂z, and l̄n = −z̄n+1∂z̄ (5.9)

respectively as can be seen considering a field φ(z) and its expansion after a

transformation of the coordinates

δ(φ) = φ′(z′, z̄′)− φ(z′, z̄′) = −ε(z)∂φ− ε̄(z̄)∂̄φ =

=
∑

n

[
cnlnφ(z, z̄) + c̄n l̄nφ(z, z̄)

]
, (5.10)

where

φ′(z′z̄′) = φ(z, z̄) =

= φ(z′, z̄′)− ε(z′)∂′φ(z′, z̄′)− ε̄(z̄′)∂̄′φ(z′, z̄′). (5.11)

The generators (5.9) form the so called Witt algebras characterised by the following

commutation relations

[ln, lm] = (n−m)ln+m,

[l̄n, l̄m] = (n−m)l̄n+m,

[ln, l̄m] = 0. (5.12)

If one is interested in global conformal transformation, then one has to require for ε(z)

(and ε̄(z̄)) to be analytic everywhere. To check the analyticity of ε(z) we study its

Laurent expansion 5.8.

We see that the series diverges at z = 0 for n < −1. In order to study the singularities

at z = ∞ we map z → ( 1
w ) obtaining

∂

∂z
=
∂w

∂z

∂

∂w
= −w2 ∂

∂w
, (5.13)
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thus in term of w the generators have the form

ln = −
(
− 1

w

)n−1

∂w, (5.14)

and the singularity at w = 0 (z = ∞) occur for n > 1. From this we derive that global

conformal transformations are generated by the set of generators {l−1, l0, l+1}. Global

conformal transformations are also called Mobius transformations (see figure 5.1). In

general Mobius transformations z → w = w(z) are characterised by four parameters

a, b, c, d and are written as

w(z) =
az + b

cz + d
, (5.15)

with the constraint that ad− bc = 1 .

Figure 5.1: The stereographic projection is a conformal map. On the left we see a grid
on the complex plane mapped onto a sphere, on the right, via stereographic projection.
The intersection between the lines of the grid are still perpendicular. A general Mobius
transformation (see equation (5.15)) can be built from a stereographic projection of the
plane onto the sphere, followed by a rotation and translation of the sphere, subsequently
followed by a projection of the points of the sphere onto the complex plane.
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5.2 Conformal field theories (in 2D)

5.2.1 Primary fields and restriction on correlation functions

In 2D there is a special set of local fields {φ(z, z̄)} called primary fields (or primary

operators) characterised by their transformation after a conformal mapping of the

coordinates z → w = w(z). In particular a local field {φ(z, z̄)} is said to be a primary

field, if, for any conformal transformation w(z), it transforms as

φ(w(z), w̄(z̄)) =

(
dw

dz

)−h(dw̄

dz̄

)h̄

φ(z, z̄), (5.16)

where (h, h̄) are the conformal dimensions of the field.

For two primary fields φ1 and φ2, with conformal dimensions (h1, h̄1) and (h2, h̄2)

respectively, the two points correlation function is fixed to

〈φ1(z1, z̄1)φ2(z2, z̄2)〉 =
C1,2

(z1 − z2)2h(z̄1 − z̄2)2h̄
if






h1 = h2 = h

h̄1 = h̄2 = h̄
, (5.17)

with C1,2 a numerical constant. In the case of two fields with different conformal

dimensions the correlators vanishes. Constraints for more-points correlation functions

exists too (see e.g. [197, 198]). If we have a field theory that is invariant under the

group of conformal transformations, this invariance manifests itself in the correlation

functions as expressed for example in (5.17). Fields that are not primary fields are

called secondary fields. For example, if φ is a primary field, derivatives like ∂nz φ are

called secondary fields over the primary field φ.

5.2.2 Quantum conformal field theories on the cylinder

In order to get a quantum Conformal Field Theory (CFT) first of all we need a quantum

field theory. The main ingredients of a quantum field theory are an Hilbert space H,

a vacuum vector |0〉 and a set of relevant observables {φ}, that is a selected subset of

operators on H that, in 1 + 1 dimensions, are labelled by (x, t) .

Until now we have considered field theories on a manifold with coordinates z, z̄, that is
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Figure 5.2: Mapping from the cylinder to the complex plane.

in a space of 2+0 dimensions, a 2 dimensional euclidean space. The standard technique

for connecting the two description consists in considering the analytical continuation

of the quantum field theory in complex time and thus move to a quantum field theory

in 2 + 0 dimensions via Wick rotation.

With this procedure we obtain a quantum field theory in euclidean space time, where

we associate one dimension with (imaginary) time and one with space.

Similarly to what is done for regularising a quantum system by putting it in a finite

box in space, it is convenient to make the space direction finite by imposing periodic

boundary conditions [198]. We decide to compactify the space dimension x by imposing

x = x+ 2π. With this compactification we describe the physical theory on an infinite

cylinder, with the periodic dimension corresponding to the space dimension x and the

infinite dimension corresponding to the time t going from −∞ to +∞.

With a convenient conformal transformation we then map the cylinder to the complex

plane (z, z̄). To do so we use the mapping

z = et+ix, z̄ = et−ix. (5.18)
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In the complex plane the time flows along the radial direction and space moves changing

the angle coordinate (see figure 5.2). The entire circle of the system at time t = −∞

is mapped to the single point at the origin of the complex plane (this particularity

allows for a direct correspondence between states and operators [67] in conformal field

theories). We have now a quantum CFT of a one dimensional system with periodic

boundary conditions.

5.2.3 Virasoro Algebra and CFT Hamiltonian

In the Hilbert space description, the algebra of the generators of the conformal mappings

is not the Witt Algebra (5.9) of the generators {ln, l̄m}n,m, but instead we have that the

generators of local conformal transformation in the Hilbert space are now {Ln, L̄m}n,m,

and these generators obey the commutations rules

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0,

[L̄n, L̄m] = (n−m)L̄n+m +
c̄

12
n(n2 − 1)δn+m,0,

[Ln, L̄m] = 0, (5.19)

where c, c̄ are called central charges. The algebras of Ln and L̄n are two copies of the

so called Virasoro Algebra, they are identical to the Witt algebra, except for the central

term characterised by the value of the central charges c, c̄. There are different ways of

introducing the Virasoro Algebra. If one for example asks for a projective representation

of the Witt Algebra (this is a reasonable request, since in quantum mechanics we most

often encounter projective representations, in fact we talk about rays in the Hilbert

space and not about vectors in the Hilbert space), then the Virasoro Algebra is the

central extension of the Witt Algebra and its representation is equivalent to a projective

representation of the Witt Algebra [199, 200]. For a complete introduction we refer to

the seminal article [67] as well as the many introductory textbooks [68,198,201]. Going

back to our physical CFT we note that the operator L0 + L̄0 generates the dilations

(z, z̄) → λ(z, z̄). It is easy to see that dilations correspond to translations along the

radial dimension. After the mapping of the cylinder to the plane we have that time
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level Eigenvalue states
0 h |h〉
1 h+ 1 L−1|h〉
2 h+ 2 L−2|h〉, L2

−1|h〉
3 h+ 3 L−3|h〉, L−1L−2|h〉, L3

−1|h〉
... ... ...

Table 5.1: Example of primary state and its first descendants, the complete set of states
is called Verma module. The collection of the eigenvalues of L0 of the not null states
of the Verma module for a given primary state is called Virasoro tower or Conformal
tower

.

flows along the radial direction, thus we have that L0 + L̄0 generates time translations

in the coordinate system of the complex plane.

This considerations leads us to consider L0 + L̄0 proportional (up to a factor) to the

Hamiltonian of the system, or, as we will call it, to the CFT Hamiltonian [67, 68, 198,

202].

5.2.4 The Hilbert space and Verma module

Suppose we have a state |h〉 that is eigenstate of L0 (and L̄0) with eigenvalues h (

respectively h̄)

L0|h〉 = h|h〉 (L̄0|h〉 = h̄|h〉). (5.20)

Because of the commutation rules of the Virasoro algebra we have that

L0Ln|h〉 = (h− n)Ln|h〉, (5.21)

thus Ln are raising and lowering operators for n < 0 and n > 0 respectively.

We remind that the Hamiltonian is proportional (up to a factor) to L0 + L̄0. In order

for the energy of the system to be bounded from below there must exists a state that

is annihilated by Ln with n > 0. Such a state is called primary state or highest weight

state and it is the state of lowest energy.
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Acting with the raising operators L−n (n > 0) on the primary states we obtain an

infinite tower of states called descendants of the primary states that are an irreducible

representation of the Virasoro algebra. If we know the eigenvalues of the primary

states, we know the spectrum of the whole Hamiltonian. Acting with different raising

operators on a primary state we note that the Hilbert space of the conformal states has

a nested structure. There exist indeed multiple ways of constructing the descendants

corresponding to the eigenvalue h+2. We can both act with L−2 to obtain the eigenstate

L−2|h〉 or just raising the primary state two times with L−1 to obtain the eingestate

L−1L−1|h〉. This property creates an exponential growth of the dimensions of the

degenerate L0 eigenspaces (see table 5.1).

The collection of the primary state together with all its descendants is called Verma

module. In constructing the Verma module one has to remember that states in a

Verma module are not guranteed to be all linearly independent. The possibility of

finding vectors that are a linear combinations of others depends on the structure of

the Virasoro algebra for the given choice of the central charge c and of h. Linear

combinations of states of the Verma module that vanishes are called null states. A

great work has been done in analytically characterise null states (see e.g. [203, 204]).

The represantion of a Virasoro algebra is constructed from the Verma module deprived

of the null states.

The collection of the not null states of the Verma module for a given primary state is

called Virasoro tower or Conformal tower.

Because of the one to one correspondence between operator and states in CFT

(see [67]), it is possible to see that primary states are associated to primary fields and

that the eigenvalues h are the conformal dimensions h of the primary field associated

to the state. In particular, if |0〉 is the vacuum of the theory, the primary state |h〉

associated to the primary field φ(z) of conformal dimenions h is |h〉 = φ(0)|0〉.

The existence of a primary state implies the existence of a primary field and vice versa.
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Unitary minimal models

In the last section we supposed the existence of at least one primary field. It possible

though, that a theory with a primary field is impossible to build, as well as it is possible

that every CFT results having an infinite number of primary fields. An answer to these

doubts is found by restricting to unitary representation of conformal field theories with

central charge c < 1 [205]. In this case one considers unitary minimal models. In

particular, using the notation of [203], one parametrise a family of central charges with

a parameter N 8 m > 2 with the formula

c = 1− 6

m(m+ 1)
. (5.22)

For each value of c there are m(m− 1)/2 primary fields, one for each value of

hr,s(m) =
[(m+ 1)r −ms]2 − 1

4m(m+ 1)
, (5.23)

where r, s are the two positive integers r = 1, . . . ,m− 1 and s = 1, . . . ,m.

Models characterised by central charges and primary fields defined by these formulas

are known as unitary minimal models. Because of (5.22) and (5.23) unitary minimal

models with c < 1 have only a finite number of primary fields.

The model corresponding to m = 3 is associated to the Ising model at the critical

point [116,206]. In particular, in the case of the critical Ising model on the cylinder one

consider also the generators L̄n of the Virasoro algebra with central charge c̄ = c = 1
2 .

The primary fields are thus described by two conformal dimensions (h, h̄). It can be

seen that the allowed primary states are |0, 0〉, |12 , 12〉, | 116 , 1
16〉, knowing their associated

Virasoro Towers allows us to compute the spectrum of the CFT Hamiltonian of the

Ising model.

At last, we note that the primary state |0, 0〉 is always present as it is built out of the

action of the identity operator on the vacuum |0〉 (and |0〉 is defined in any field theory).

Because of the symmetry property of the vacuum |0〉, we have that |0, 0〉 is annihilated

by the generator of global conformal transformations Ln, L̄n for n = −1, 0,+1.
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Virasoro Tower for the minimal model m = 3

In [68] we can find a catalog for the degenerancies of the first level of the Virasoro towers

for the three primary states |0〉, |12〉, | 116〉. If we denote with d(h,N) the degenerancies

at level N of the Virasoro tower of the primary state corresponding to the conformal

dimension h we have that, for the unitary minimal model m = 3, the degenerancies in

the Virasoro towers are as in table 5.2.

N 0 1 2 3 4 5 6 7

d(0, N) 1 0 1 1 2 2 3 3

d(1/16, N) 1 1 1 2 2 3 4 5

d(1/2, N) 1 1 1 1 2 2 3 4

Table 5.2: Degenerancies at the low levels of the Virasoro towers of each of the primary
state of the minimal model c = 1

2 , m = 3.

Conformal spectrum of the CFT Ising model

The CFT Ising model is the product of two copies of the Virasoro algebra m = 3 with

generators Ln and L̄n. From table 5.2 it is possible to compute the low levels of the

Virasoro towers associated to the primary states |0〉, |1/16〉, |1/2〉 of each of the two

single Virasoro algebras. As we said in section 5.2.4 there are just three primary states

|0, 0〉, |12 , 12〉 and | 116 ,
1
16〉 for the CFT Ising.

Joining the results of each single Virasoro algebra in a suitable way [198, 201], we

obtain the towers of eingevalues of L0 + L̄0 for the primaries and low descendants as

reported in figure 5.3. Since the CFT Hamiltonian is proportional (up to a factor) to

L0 + L̄0, considering the three towers together we obtain the conformal spectrum of

the Ising critical model.
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Figure 5.3: Conformal spectrum of the CFT Ising model Hamiltonian organised in
Virasoro towers. On the right we use dashed line to highlight the positive 1

8 shifting of
all the horizontal line from their closest integer value.

5.3 The continuum limit of the Ising model

In section 3.5 we have seen how to map the transverse field Ising model Hamiltonian

to the quadratic Fermionic Hamiltonian (3.120)

Ĥ(gF ) = −J
(N−1∑

n=1

(a†n − an)(an+1 + a†n+1) (5.24)

− gF (a
†
N − aN )(a1 + a†1)− +Qi(θ)

N∑

n=1

(a†nan − ana
†
n)
)
,

where J > 0 is a multiplicative factor, N is the number of sites of the chain,

gF ∈ {−1, 0,+1} encodes the fermionic boundary conditions and θ ∈ [0, π2 ] is the
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parameter that control the strength of the transverse field. The relation between

boundary conditions of the Ising Hamiltonian in terms of spins and the fermionised

Ising Hamiltonian is explained in section 3.5. In the following we will consider the

case gF = 1. In this section, we want to compute the continuum limit of this

Hamiltonian.

Already in chapter 4 we have studied the behaviour of some quantities related to this

Hamiltonian in the limit for N → ∞. Here we consider a different limit procedure.

Denoting with s the lattice spacing, with continuum limit at the critical point we

refer to the procedure of taking simultaneously the limit for N → ∞, s → 0, and

J → ∞ for some fixed value L of the product Ns = L and for Js = 1. In our

treatment we always considered the lattice spacing equal to 1, thus it was never

explicitly appearing in the expressions. We start denoting the Dirac operators with

the continuum (in the limit s → ∞) Fermi fields

Ψ(xi) =
1√
s
ai, Ψ†(xj) =

1√
s
a†i , (5.25)

where xi = si thus, for example, Ψ(xi+1) = Ψ(xi+s), and where the factor 1√
s

is chosen

in order to obtain the correct commutation relations in the limit s → ∞. In fact, in

the limit s → 0, N → ∞ with Ns = L fixed, Ψ and Ψ† satisfy the anticommutation

relation

HBK
s→0

N→∞

{Ψ(xi),Ψ
†(xj)} = HBK

s→0

δi,j
s

= δ(xi − xj), (5.26)

where δ(xi − xj) is the Dirac delta function.

We substitute (5.25) in (5.24), take the limits explained above, and we obtain [207]

ĤF =

∫
dx

[
Ψ†∂Ψ

†

∂x
−Ψ

∂Ψ

∂x

]
. (5.27)

The procedure for obtaining this field theory from the TFI Hamiltonian is often called

scaling limit.
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In order to see the connection between this Hamiltonian and its underlying CFT model

it is necessary to represent the dynamics induced by HF with the formalism of path

integral. The full derivation can be found in [198]. We report here that the action in

euclidean time is

S =
1

2π

∫
dzdz̄

(
ψ(z, z̄)∂z̄ψ(z, z̄) + ψ̄(z, z̄)∂zψ̄(z, z̄)

)
, (5.28)

that is the action of a free massless real fermion model.

We can see that if Ψ and Ψ̄ have conformal weight (h, h̄) = (12 , 0) and (h, h̄) = (0, 12)

respectively, then the action is conformal invariant

S′ =
1

2π

∫
dzdz̄

[
Ψ′(z, z̄)∂z̄Ψ

′(z, z̄) + Ψ̄′(z, z̄)∂zΨ̄
′(z, z̄)

]
=

=
1

2π

∫
∂z

∂w

∂z̄

∂w̄
dwdw̄(

∂w

∂z
)1/2

∂w̄

∂z̄
Ψ(w, w̄)∂w̄(

∂w

∂z
)1/2Ψ(w, w̄)+

+ (
∂w̄

∂z̄
)1/2

∂w

∂z
Ψ̄(w, w̄)∂w(

∂w̄

∂z̄
)1/2Ψ̄(w, w̄) =

=
1

2π

∫
dwdw̄

[
Ψ′(w, w̄)∂w̄Ψ

′(w, w̄) + Ψ̄′(w, w̄)∂wΨ̄
′(w, w̄)

]
. (5.29)

This conformally invariant action leads to a theory with central charge cIsing = 1
2 that

corresponds to the CFT Ising Model [198,206,208].

As we said in the last section the CFT Ising model is characterised by the three primary

states |0, 0〉, |12 ,
1
2〉 and | 116 ,

1
16〉 thus its conformal spectrum will be the union of the

three conformal towers associated to the three primary states (see figure 5.3). From

section 3.5 we know that the spectrum of the Ising model is divided in two parity

sectors. The same division appears also in the case of the free fermions theories on

a circle. Here the two sectors are individuated by the realisation of different primary

fields. In the sector with periodic boundary conditions, called Neveu-Schwarz sector,

are realised the Virasoro towers associated to h = 0 and h = 1/2, while in the sector

with antiperiodic boundary condition, called Ramond sector, is realised the Virasoro

tower associated to h = 1/16.
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Figure 5.4: Mapping from the strip to the upper half complex plane. The boundary
conditions are highlighted in blue and red.

5.4 Conformal field theories with boundaries

In the previous sections we have studied conformal field theories on a cylinder with

periodic boundary conditions. In many different cases one is interested in physical

systems with open boundary conditions. CFT defined for specfic boundary conditions

are called Boundary CFT (BCFT) [209–212].

The request for specific boundary conditions on the systems are introduced during

the step of compactification of the space dimension. In the case of open boundary

conditions one restricts the spatial coordinate to x ∈ [0,π], obtaining the geometry

of an infinite strip instead of that of an infinite cyilinder. One then proceed applying

the same mapping to the complex plane z = e(t+ix) used precedently and finds that

the system is now mapped to the upper half part of the complex plane and the two

boundary conditions a, b are defined on the positive and negative real axis (see figure

5.4).

One consequence of considering a CFT defined only on the upper half complex plane,

is that, in this case, it is possible to consider just a single set of Virasoro generators

Ln [213]. Consider for example the critical Ising model with open boundary conditions,

the Hamiltonian in this case is proportional to L0 and it is described by a single copy
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of the Virasoro algebra of the unitary minimal model with c = 1
2 .

Differently from CFTs on the whole plane, these will be specified not just by the central

charge, but by the knowledge of the boundary conditions a, b. For the Ising model on

the upper half complex plane we thus have that the Hamiltonian is proportional (up

to a factor) to L0 and just three different values for the boundary conditions a and b

are admitted. In chapter 7 we will report the conformal spectrum of the Hamiltonian

of the BCFT Ising on the upper half complex plane for different combinations of the

boundary conditions.



Chapter 6

Finding the low parts of the
entanglement wall trading
entanglement with mixture

In chapter 2 we have seen two clashing properties of many-body quantum systems out

of equilibrium. We have seen how moving out of equilibrium the resources needed to

describe a state grow exponentially in time. Concurrently, we have seen that many-

body quantum systems are expected to locally equilibrate in the long-time regime. The

equilibrium states so reached can be efficiently approximated with the encoding tools

described in chapter 2.

This puts us in the situation where starting from an efficiently encodable state, evolving

it out of equilibrium we have to pass through a stage of the evolution requiring an

enormous amount of computational resources in order to obtain an equilibrium state

that is again efficiently encodable.

Being a curse for the out-of-equilibrium simulations, this high complexity middle phase,

got the infamous name of entanglement wall [214–216].

The growth of computational resources is due to the the linear growth of entanglement

out of equilibrium, linear growth that is due to the spreading of correlations in the

system. As we have seen in chapter 4 correlations spread inside the system in a localised

fashion.

173
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In this chapter we are going to exploit this locality property in order to surpass the

entanglement wall. In particular we exploit the idea of transforming entanglement due

to long-distance correlations into local entropy. We present our proposal [217] for a

novel algorithm that allows to systematically approximate the equilibration value of

local operators after a quantum quench.

6.1 Introduction

Simulating the time evolution of many-body quantum systems by classical means is

hard. In fact, simulating an N constituents system requires storage and computation

time that scale exponentially with N .

In order to understand how this exponential growth can limit our simulations,

consider for example a system of N qubits. Characterising a state |ψ〉 requires to

specify 2N complex coefficients. Now suppose we want to store the information about

the state in a computer. We decide to encode each real number with a Float64, so

that storing a single complex coefficient requires 27 bit. This implies that storying

the whole state would require ∼ 1.6 · 10−8 · 100.3N Gigabytes. This is a requirement

of almost 20.000 Gigabyte of memory for just 40 qubits.

The problem of the exponential growth of the resources needed to completely describe

a many-body system is not exclusive to quantum mechanics. Already in statistical

mechanics the number of possible configurations grows exponentially with the number

of constituents of the system. In this context, exploiting the specific structure of some

systems has led to the creation of efficient classical algorithms for the simulation of

classical many-body systems. We remind, for example, how in classical statistical

mechanics, using Monte-Carlo techniques, one is able to simulate a system efficiently

sampling only on a polynomially-large set of configurations [218]. Efficient algorithms

have been devised also for quantum mechanical systems, we showed in chapter 2 how,

with MPS and MPO ansatzes, we are able to efficiently compress the ground and

thermal states of gapped local Hamiltonians, as we are able to simulate the short time

evolution of some systems out of equilibrium.

Traditional tensor networks techniques are a powerful tool for describing states with
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local correlations [18, 19, 109], but they fail as soon as the locality of correlation is

lost. This is what happens in the context of many-body quantum systems

out-of-equilibrium. Consider for example a dynamics obtained with a quench process.

Here initially localised correlations spread across the system [52, 53] leading to a fast

growth of entanglement. Since the resources needed to describe a system with tensor

network techniques strongly depend on the amount of entanglement present in the

state, soon enough, the resources needed to describes the current state are grown too

much. Simulating the time evolution from this point forward results unaffordable if

we want a good approximation. It is said that the evolution just hit the

"entanglement wall".

The quest of getting on top of the wall is, in its most general form, quite hard, if not

even impossible. Here we will focus to the specific case of systems that, in the

long-time regime, are expected to locally equilibrate to some state well approximated

with traditional tensor network techniques. In this scenario, we will focus of finding a

locally consistent approximate dynamics as schematised in figure 6.1. We know, in

some sense, that what we want to obtain is behind the wall and not above it, so we

just decide to pass through the wall.

6.2 Robust aspects of quantum quenches

We will focus on the out-of-equilbrium dynamics that follows a quantum quench (see

section 4.0.1 and [219]). Consider a local Hamiltonian H(θ) dependent on the parameter

θ. As explained in section 4.0.1 a quench protocol is composed by two steps. We take

the ground state |ψ(θ0)〉 of H(θ0) and we evolve it with the new Hamiltonian H(θ1).

This evolution is described by:

|ψ(t)〉 = e−itH(θ1)|ψ〉. (6.1)

Cardy and Calabrese [52] showed that in this setting the entanglement entropy

between two different partitions of |ψ(t)〉 grows linearly in time, a footprint of the
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Locally described by

Locally consistent
approximate
dynamics

Efficiently encodable 

Efficiently encodable 

Ground state of 1D gapped Hamiltonian

Thermal state

Expensive encoding

Initial time

Long time

Middle time

Figure 6.1: From top to bottom the three time scales of the dynamics out of equilibrium
after a quantum quench. At the initial time the state is the ground state of a 1D
Gapped Hamiltonian, it is easily encondable with an MPS. The entanglement grows
during the dynamics (represented by the growing number of connections between the
purple boxes), gradually the state becomes too expensive to be represented with an
MPS. We hit the entanglement wall. In the long-time regime the state equilibrate to a
state locally well approximated by an easy to describe equilibrium state (as for example
a thermal state). Thermal states have an efficient representation as MPO. The aim of
the presented algorithm is finding a locally consistent approximate dynamics that would
allow to go from the initial time to the long-time regime, avoiding the entanglement
wall.

radiation of the correlation as pseudo-particles [52, 149, 163, 164, 168]. This leads the

corresponding states to become too entangled and hard to represent with standard

tensor network algorithms after relatively short times [31, 43] 1. The quenched system

hits the entanglement wall.

We have to give up trying to compute a complete description of the state at each

step of the dynamics.

We focus instead on the robust features of the out-of-equilibrium dynamics after a
1Here we consider only systems whose excitations are extended and can be described using pseudo

particles.
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quench, that is, features that are not too sensitive to the specific details of the quench.

One of such features is the equilibration of local observables occurring at long times

after the quench.

As motivated in chapter 4, if a closed quantum system equilibrates, the value of the

relaxed local observables is predicted by its diagonal ensemble. The DE of a state ρ

with respect to the Hamiltonian H is defined as

ρDE(H) :=刀H(ρ), (6.2)

where 刀H is the complete dephasing map with respect to the eigenbasis of H (see eq

(4.7)).

We remind here that, in order to construct the diagonal ensemble 刀H(ρ), one needs

to be able to build the completely dephasing map 刀H and this requires to diagonalise

the Hamiltonian H. This is an exponentially hard task in the number of constituents

of the system. In the case of ETH Hamiltonians (see section 4.2.1) the DE is locally

approximated by the Gibbs Ensemble

ρH(β) :=
e−βH

Z
, (6.3)

where Z := Tr
[
e−βH

]
. The inverse temperature β of the approximating Gibbs

ensemble is defined by imposing Tr [刀H(ρ)H] = Tr [ρH(β)H] and thus, only depends

on the energy of the initial state ρ. This suggests us that, as long as we are

conserving the information about the initial energy of the state, we should have

enough information to be able to build a good approximation of the state that

approximate the value of the relaxed local observables. For those systems described

by a local Hamiltonian, the energy is conserved if we conserve short-range

correlations. As a result, by designing an approximated dynamics conserving

short-range correlations, the robustness of the thermalisation process forces the

convergence to the correct state, in spite of discarding the long-range correlations.

We will benchmark our algorithm with free Fermions. As explained in section

3.6 non-interacting systems are often used as a first benchmark for tensor network
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algorithms, see for example [220]. Following this methodology one is able to study the

relevant effects of the approximation using larger systems with respect to the use of

tensor network techniques. Nonetheless, in order for the benchmark to be informative,

one has to pay attention to the special characteristic of the system considered. In our

case, non interacting Fermionic systems do not satisfy the ETH. The relaxed state

of a Fermionic system depends on the initial occupation of all the free modes since

these are conserved during all the evolution (see chapters 4 and 3). Containing more

information about the initial state than just the total energy, the system of the relaxed

state cannot be approximated by the Gibbs ensemble. Instead, the equilibrated state

is locally described by the Generalised Gibbs Ensembles (GGE). If the Gibbs ensemble

is defined as the state that maximise the entropy at fixed value of the energy, the

GGE can be defined as the state that maximise the entropy at a fixed value of all the

conserved quantities (see section 4.1.3 for a discussion about the possible definitions of

the GGE [149, 163, 182, 184, 221–227]) . Luckily a weaker notion of robustness can be

recovered. The occupation of the free modes can be re-expressed as the conservation of

charges whose densities are defined on bounded regions of the lattice. This corrseponds

to the equivalence of the construction of the GGE discussed in chapter 4. We can thus

sort the conserved charges by the dimension of the support of their density. Charges

whose densities have support on smaller blocks are more local than those with support

on larger blocks.

This methods defines a weaker notion of robusteness on which our benchmark relies.

Any algorithm correctly describing short-range correlations is forced by this weaker

robustness to convergence to a truncated version of the GGE. We both design and

characterise such an algorithm in the following sections. Before moving to the next

section we want to remind here the relations between the GGE and the DE explained

in chapter 4.

It is known that the set of Fermionic Gaussian states is not a convex set (see chapter

3 and [189]). This tells us that the DE, being an infinite average of Gaussian states is

not guaranteed to be a Gaussian state. At the same time since the space of Fermionic

Gaussian states is closed under the evolution with Fermionic quadratic Hamiltonian,
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we expect that at any time the state we are going to deal with must be Gaussian, even

the relaxed state. For this reason, instead of considering the full DE, we are going

to consider its projection on the space of Fermionic Gaussian state. We are going to

call this projected state Gaussian Diagonal Ensemble (GDE). It is interesting to note

that, in the case we are going to consider, the GDE corresponds to the GGE. Since the

projection on the space of Fermionic Gaussian states preserves the expected value of

all the two point correlators, we have that the value of the two point correlators of the

GGE corresponds to the same value computed with the GDE, that are the same value

computed with the DE.

6.3 The algorithm

Taking inspiration from the TEBD [11], t-DMRG [228, 229] and their more recent

developments (see for example [230]), the algorithm we introduce is designed to work

with tensor network states.

In particular the algorithm exploits the ablities of tensor network techniques, to encode

efficiently slightly correlated states and the ability to perform, almost exactly, their

short-time dynamics.

Concurrently, the algorithm differs from traditional tensor network techniques for

two main reasons:

1. MPS ansatz rely on a repeated application of the singular value decomposition

followed by a truncation of some singular values. The Eckart-Young-Mirsky

theorem tells us that this is the best fixed rank approximation with respect to

the Frobenius norm distance (see section 2.3.4). The Frobenius norm distance

does not encodes any notion of locality. Our algorithm, instead, ensures that

the approximated state has the short-range correlations of the state we want to

approximate.

2. The approximate state computed by our algorithm can be encoded with available

resources even after the short-time dynamics.
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3. The approximated state computed by our algorithm is a mixed state, as the one

that we expect to locally approximate the equilibrated state. The ideas is to

trade entanglement with mixture. TEBD algorithms on pure states returns pure

states.

By using 1) we exploit the idea of robustness; with 2) we make sure that the algorithm

is practically useful, also at long times. The choice of 3) is because we want to obtain an

approximation of the state that approximate the equilibrium state, namely the GGE.

In Fig. 6.2 we present our algorithm in the case of a 1D system using standard

tensor network notation. The algorithm is divided in three steps, each represented in

a panel.

The initialisation step is in panel a).

We start by the encoding the initial state with an MPS, the blue rectangles at the

top of the panel, and the time evolution as an MPO, the light-blue circles in the middle

of the panel. At the bottom of the panel we have the MPS of the state after one

step of the time evolution. Evolving the state for a sufficient time, the computational

resources needed to encode the state as an MPS would exceed our resources. We have

to approximate the state if we want to proceed with the evolution.

At the top of panel b) we have the MPS that we want to approximate with a mixed

state ρ(0) encoded in the MPO (the orange circles in the second line). In order to find

the tensors of the MPO representation of ρ(0) we force the local reduced density matrix

to be indistinguishable up to a fixed precision. This can be done variationally. This

step is illustrated in the third line of panel b) where the m = 3 sites reduced density

matrix of the MPS state is forced to be indistinguishable to the m = 3 sites reduced

density matrix of the MPO state. The size m of the reduced density matrix forced to

be indistinguishable is our refinement parameter. In the case of m = N , where N is

the dimension of the system, we obtain a t-DMRG simulation. In the fourth line of

panel b) we compute a time step of the evolution of the MPO.

In panel c), after having evolved the MPO for enough time, the computational

resources needed to describe the state exceed again our capabilities. We approximate

the state again with another MPO of fixed operator Schmidt rank imposing the
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indistinguishability of the m = 3 sites reduced density matrices of the state before

and after the approximation. We proceed iterating the step of panel c) until local

variables equilibrate.

The main idea of the algorithm consist in trading the evolved state with a mixed

state, precedure that can be interpreted as transforming the entanglement present in

the initial state into mixture. This is exactly what is done when approximating the

long-time equilibrium state with a thermal state. The difference, is that here we are

performing this transformation already at relatively short times, and then repeating it

iteratively.

This procedure of increasing the entropy at each step can be interpreted as an

iterative implementation of Jayne’s principle [136,137].

At the same time, the local conserved quantities (relevant in the construction of

the GGE) are protected from the approximations and thus kept constant. We thus

expect that, as a consequence of the robustness of the equilibration, the process will

equilibrate to a state locally indistinguishable from the DE.

It is clear that at very long times this approximation procedure is possible. It

corresponds to building the maximum entropy mixed state that is locally identical to the

locally equilibrated state. This would be a truncated generalised Gibbs ensamble [188].

In our case we do not know if the process of repeatedly applying the approximation,

starting from the early stages of the evolution, is going to converge to the desired state

anyway. We thus need to understand if mixed states that are locally indistinguishable

from the states produced in early stages of the evolution exist, how to construct them,

and the effects they induce once used at a given time as the starting point for the

subsequent evolution.

Benchmarking with free Fermions allows us to separate any methodological

difficulty associated with a tensor network algorithm from the physical effects that

such approximation will produce. In fact, working directly with MPO would require,

for example, choosing the norm to use in order to force the equalities in Fig. 6.2, we

would not know how to construct an initial guess for it that can be variationally

improved or how to design a tensor network algorithm guaranteed to converge to the
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optimal MPO starting from this initial guess. We do not have clear control on the

effect of the truncation of an MPO.

Figure 6.2: Tensor network scheme for the proposed algorithm. a) An initial state,
represented by the MPS with blue boxes, is evolved for a short time applying the pale-
blue MPO encoding the evolution. The evolved system is represented by the contraction
of the MPS and the MPO. b) The evolved state becomes highly entangled, we decide
to approximate it with a mixed state represented here by the orange MPO. In order
to obtain the MPO we variationally search for it by imposing that its reduced density
matrices up to distance m coincide exactly with those of the evolved state. Here m = 3.
Subsequentely the best MPO approximation of the evolved state is evolved again for
short times. c) The dynamics increases again the amount of computational resources
needed beyond the one we can deal with. We approximate the MPO with an MPO with
lower operator-Schmidt rank (in red in the figure). The key point of the approximation
is always forcing the local indistinguishability of the approximate state and the evolved
one, for all the contiguous blocks of size up to m.

We will benchmark the algorithm with Fermionic quadratic Hamiltonians and

Fermionic Gaussian states. As a specific example we will consider the Fermionic

transverse field Ising model (3.122)
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H(θ) =−
N−1∑

i=0

[
a†iai+1 − aia

†
i+1 + a†ia

†
i+1 − aiai+1

]
+

− +Qi(θ)
N−1∑

i=0

[
a†iai − aia

†
i

]
. (6.4)

The ground state of this Hamiltonian can be completely characterised by its correlation

matrix

Γi,j = 〈/αi/α
†
j〉, (6.5)

where /α† =
(
a1, a2, . . . , aN , a†1, a

†
2, . . . , a

†
N

)
is the collection of annihilation and

creations operators for every site.

We study the case of the out-of-equilibrium evolution generated by a sudden quench

of the Hamiltonian. We start from the ground state Γ0 of the Hamiltonian (6.4) for a

given θ0, H(θ0) and we evolve it with the Hamiltonian H(θ), where θ $= θ0.

We are now interested in translating the algorithm of Fig. 6.2 in the language

of Fermionic Gaussian states, in a similar fashion of what we do in section 3.6. In

particular we need to translate the truncation step. In the language of f.g.s. the

truncation step corresponds to defining a truncated matrix 刀{a†a},m(Γ), with m ∈
[
0, 9N2 :

]
, obtained from Γ expressed in the basis of the Dirac operators {a†, a} by

setting all the matrix elements corresponding to correlations at distances d > m to

zero. We remark that for denoting the truncation operator we used the same symbol

used for denoting the total dephasing operator (4.7), as the truncation with m = 0 of

a correlation matrix is the analogous of the dephasing on the space of the correlation

matrices. Whether刀 corresponds to the truncation operator or the dephasing operator

will be understood from its argument.

Consider for example Γ, the correlation matrix of the f.g.s ρ, if {b†, b} are the modes

that express the f.q.h. H in diagonal form, we have

刀{b†,b},m=0(Γ) = Γ(刀H(ρ)). (6.6)

In the following we will drop the basis specification {a†, a} as it is implicitly specified
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by Γ and denote the truncation operator just as 刀m(·). For every finite-size system

made by N constituents, as m grows to m̃ = 9N2 :, 刀m̃(Γ) = Γ and thus the

approximation becomes exact.

We see that 刀m(Γ) preserves all the reduced density matrices consisting of m + 1

sites and, consequently, all the expectation values of local operators with support on

m + 1 contiguous sites. This corresponds to the implementation of the equality of

panels b) and c) of 6.2.

With F_utilities it is possible to obtain 刀m(Γ) using Katana(Γ,m).
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Figure 6.3: The action of the truncation operator on the top left quadrant of the
correlation matrix Γ. The red squares indicate elements of the matrix with a definite
value, the light blue squares indicate elements of the correlation matrix that are set to
0. Truncating at a fixed value of m preserves all the reduced correlation matrices of
dimension m×m, in the picture we represent a truncation at m = 2.

For the transverse field Ising Hamiltonian we are considering, setting m ≥ 1 is

enough to conserve the total energy of the state. From equation (6.4) we see that the

information about the energy of a state is encoded in the nearest neighbour correalators.

For a generic f.q.h. sum of operators with support on at most l neighbouring sites, the

truncation preserves the energy if we choose m ≥ (l − 1).

Furthermore, the truncation maps translational invariant states to translational

invariant states, thus preserving translation invariance for every choice of m. We are

now able to build the approximate time evolution algorithm by approximating Γ with

刀m(Γ) at every step of the evolution. The translation of the algorithm of Fig. 6.2 in

pseudo-code for f.g.s is reported in Algorithm 1.
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Algorithm 1 Truncated time evolution of precision m

1: procedure Trunc-Evolv(Γ, Ns, δt,m)
2: t := 0
3: while t < Ns do
4: Γ := Katana(Γ,m) 6 Truncation step
5: Γ := Evolve(Γ, (H(θ1)), δt) 6 Evolution step
6: t := t+ 1
7: end while
8: return Γ
9: end procedure.

The Evolve step is performed with the Evolve function of F_utilities.

As a first observation, we remark that at each truncation step we are erasing some

information, loosing in this way the unitarity of the exact dynamics. This process is

reminescent of what happens during open dynamics that lead to thermalisation. We

are indeed trying to obtain a good approximation of the Gaussian diagonal ensemble

ρGDE .

As a second observation, we note that we do not have full control on the effect of

the truncation effect on the state. Even if we are sure to preserve the local reduced

density matrices of the sytem we do not know how the global state is changed. It can

be even possible that the truncated correlation matrix is not a valid correlation

matrix (a problem reminescent of the positivity problem after a Schmidt rank

truncation in the MPO formalism).

Let us consider a simple example of the effect of the truncation. Consider the positive

definite matrix

M =





4 3 2 1

3 4 3 2

2 3 4 3

1 2 3 4




(6.7)

this matrix has eigenvalues λ1,2 = 6 ±
√
26 and λ3,4 = 2 ±

√
2. The eigenvalues of

刀1(M) are instead λ̃1,2 =
1
2(11± 3

√
5) and λ̃3,4 =

1
2(5± 3

√
5) and thus the positivity

is lost.
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We see that, in general, the truncation operation modifies the eigenvalues of the

matrix. Since, in order to check this changes, we should diagonalise the whole

correlation matrix before and after the truncation, we do not have real control on this

changes. This means that we cannot know if the truncation step preserves the

positivity of the state. The possibility of obtaining a not positive correlation matrix,

implies that it is possible that a locally indistiguishable global mixed state could not

exist or it is hard to identify. In the numerical analysis we will adress the question

about the positivity.

Our exact results refer both to the full out-of-equilibrium dynamics of the system

and to the GDE. Because of the local identification of the DE with the GDE explained

at the end of section 6.2, with a slight abuse of notation we will refer to the GDE as

DE.

6.4 Numerical results

We study in detail the dynamics for the quench in the ferromagnetic phase

θ : π4 + 0.1 → π
4 + 0.3 of the Hamiltonian (6.4). We compare the results with the one

obtained for different quenches, both in the disordered phase and across the phase

transition and we show that qualitatively similar results are obtained.

We use systems of three differents sizes.

We choose a large system with N = 1500 as our model for the dynamics in the

thermodynamics limit. For this system we compare the long-time dynamics up to its

recurrence time. For testing the dynamics induced by the algorithm we choose a

system of dimension N = 200. This intermediate dimension allows us to study the

effects of the truncation for many values of the refinement parameter m.

We then choose a small system of dimension N = 41. This system is used for the

comparisons with a specific truncated dynamics that requires similar computational

resources.

In all the numerical simulations we set the length of the time step to δt = 0.25.

We study the dynamics induced by the algorithm introduced in the last section.
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Chosen the quench, the output state of the algorithm depends on three parameters:

N the total dimension of the system, t the time for wich we want to compute the

approximated dynamics and m the refinement parameter specifying the magnitude of

the truncation. We denote the state as ρN (t,m). In the case of the exact dynamics we

simply omit m and denote the time evolved state with ρN (t).

The first analysis we perform is on the behaviour of the single site occupation n = a†a

(we remind that the system is translationally invariant, thus the choice of a specific

site is irrelevant). In particular we study the deviation of the dynamics of n from its

expected equilibrated value computed in the GDE

∆N,m(t) := 〈n〉ρN (t,m) − 〈n〉GDE , (6.8)

where we use the notation 〈O〉ρ = Tr [ρO].

In figure 6.4 we plot the evolution of ∆N,m(t) for the systems we decided to analyse.

Inspecting the blue curve, the one associated with the big system of N = 1500, we see

the local equilibration towards the GDE in action. This is a consequence of the

general results about the equilibration rate (measured as the damping of the envelope

of the oscillations in figure 6.4). For this specific system we have that the envelope of

the oscillations of the blue line converges towards 〈n〉GDE as a power law proportional

to t−
3
2 , in agreement with the predictions for the infinite system limit contained in

section 4.1.4.

In the exact dynamics of the small and medium systems (N = 41 and N = 200) we

can clearly identify the recurrence effects by the rebirth of large oscillations at later

times. It is worth noting that before the recurrence effects become evident, the

dynamics of the local observable is the same for all the sizes of the systems we have

considered. In the inset of figure 6.4 we show the details of the dynamics in the first

time part of the evolution. We can further appreciate the fact that, as expected, the

recurrence time is proportional to the size of the system. In the thermodynamic limit

the recurrence time is proportional to the maximum group velocity of the pseudo

particles as it is the minimum time for the correlations to spread across the entire

system [52,149,163,164].
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Figure 6.4: Time evolution of the quantity ∆N,m(t) := 〈n〉ρN (t,m)−〈n〉GDE for different
values of the parameters N and m. In the inset a zoom on the first part of the
dynamics where the recurrence effects for two exacts evolution and the approximation
error deriving from the truncations are visible. In the main picture we plot the evolution
for long-times. The truncated dynamic converges towards the GDE more slowly than
the exact one.

The light green line in figure 6.4 represents the truncated dynamics 〈n〉ρN (t,m=20). As

we can see from figure 6.3, the choice m = 20 implies that the truncation step always

preserves the reduced density matrices of all the sub-systems of N = m + 1 = 21

consecutive sites and for each site it preserves all the correlations with 2m + 1 = 41

sites. This explains our choice of N = 41 for the dimension of the small system. For

the exact evolution of the small system, when correlations spreads at greater

distances than 41, they meet again because of the periodic boundary conditions. This

disturb the local equilibration process. The dynamics is unitary, no information on

the initial state is lost and we have recurrence effects. For the truncated evolution,

when correlations spreads at greater distances than 41 they get erased. Information is

lost and the dynamics is not unitary anymore.
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In the inset of figure 6.4, we compare 〈ρ〉ρ200(t,20) with 〈ρ〉ρ200(t). Because we chose as

initial state the ground state of Hamiltonian (6.4) for θ = π
4 + 0.1, we see that the

truncation does not affect the dynamics at short times. In fact the ground state of a

gapped Hamiltonian has correlations that decay exponentially with the

distance [18,109,231].

Focussing on the long-time dynamics of the truncated evolution, we see that erasing

correlations spreaded at great distances completely changes the dynamics. The

approximated dynamics deviates both from the one of the small system and from the

one of the larger system (considered in our simulation as the system in the

thermodynamic limit). We see for example that the envolope of the light green line in

figure 6.4 shrinks with time even after the recurrence time expected for system of

dymension N = 41 and N = 200. The approximated dynamics converges towards a

value close to the one predicted by the GDE, we call this value e(m = 21). In general,

we call e(m) the value towards which each truncated evolution with parameter m

converges. We are interested in characterising the dependence of e(m) from m and

the trend of convergence of the truncated dynamics towards e(m). We adress this

analysis in figure 6.5. In the main figure we consider the trend of convergence during

the truncated dynamics of the local occupations n towards its equilibration value

e(m). We plot the quantity HQ; |〈ρ〉ρN (t,m) − e(m)| versus the logarithm of time, for

the exact evolution of the big system and the truncated evolution of the medium

system with m = 10. A linear behaviour highlights a power law convergence. In the

case of the exact dynamics, we expect the equilibration value to be e(∞) = 〈n〉GDE .

The linear fit on the exact dynamics returns a slope ∼ −3
2 in complete accordance

with the analytical preditiction for system of infinite dimension in section 4.1.4 where

the system equilibrates towards the GDE as t−3/2. The linear fit for the truncated

evolution has a slope qualitatively similar to the one of the exact dynamics.

In the inset of figure 6.5 we study the convergence of e(m) towards the equilibration

value predicted by the GDE.
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Figure 6.5: (Main) Logarithmic difference between 〈n〉ρN (t,m) and the expected
equilibration value at a given m, e(m), as a function of the logarithm of time. The exact
dynamics converges algebraically to 〈n〉GDE . The approximate dynamics converges
algebraically to e(10). The two dotted lines are linear fits to the data of the dynamics.
The quantity 〈n〉ρN (t) converges to 〈n〉GDE as t− 3

2 for t < TR, where TR is the recurrence
time for the given N . We qualitatively see that the truncated dynamics converges
towards e(10) with a similar trend. (Inset) Here we address the dependence of e(m)
on m. We plot the log-log difference between the equilibration values e(m) and 〈n〉GDE

as a function of HQ;(m). The linear dependence suggests that e(m) converges towards
〈n〉GDE as (e(m)− 〈n〉GDE) ∼ e−mγ . Our best fit gives an estimate γ = 0.642± 0.003.
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The data suggest a dependence

e(m) = e−mγ
+ 〈n〉GDE , (6.9)

where the value of γ, extracted numerically, is found to be γ = 0.642± 0.003.

We perform an analogous analysis for different quenches. As shown in figure 6.6 the

truncated dynamics of the local occupation for different quenches is qualitatively

similar. With the process of equilibration we are expecting the system to locally

Figure 6.6: (Main) The difference |e(m) − 〈n〉GDE |, where e(m) is the equilibrium
value of the local observable n for the truncated evolution with parameter m in the
corresponding quench (different quenches correspond to different colours) and 〈n〉GDE

is the value of n computed on the corresponding GDE. (Inset) We plot the same data
of the main figure, with a suitable scale, in order to check the validity of the ansatz

equilibrate. In order to check if the algorithm is able to correctly capture this

phenomenon, checking the dynamics of the local occupation is not enough. We thus

turn to check the local convergence of the 2−sites reduced density matrices

ρ[2]N (m, t) := Tr[3,...,N ][ρN (,t)] towards the 2− sites reduced density matrices of the GDE
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ρ[2]GDE := Tr[3,...,N ][ρGDE ]. We report the results of this analysis in figure 6.7. In figure

6.7 we plot the time evolution of the trace distance

D
(
ρ[2]N (m, t), ρ[2]GDE

)
=

1

2
Tr

[∣∣∣ρ[2]N (m, t)− ρ[2]GDE

∣∣∣
]

(6.10)

in HQ;-HQ; scale.

The numerical values returned by the trace distance corresponds to the maximum

probability of distinguishing between ρ[2]N (m, t) and ρ[2]GDE with a local measurement.

From figure 6.7 we see that the 2−sites reduced density matrices, both of the exact as

well as the truncated dynamics, converge towards the value predicted by the GDE with

a behaviour qualitatively similar as the one of the local occupations of figure 6.5.

Figure 6.7: Time evolution of the logarithm of the trace distance D
(
ρ[2]N (m, t), ρ[2]GDE

)
.

Both the exact dynamics and the truncated dynamics locally converge towards the
GDE.

Having found that the algorithms is able to predict an approximation of the local

equilibration values, we are now interested in the effect of the truncated dynamics on
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Figure 6.8: Logarithm of the time evolution of the difference between the second Reny
entropy of the truncated state and the second Reny entropy of the GDE for a fixed
partition of 100 sites and different values of m.

the state.

One of the ideas behind the algorithm is trading entanglement for mixture. A misure

of mixedness of the state ρN (m, t) is its purity. As we expect, the exact dynamic

mantains the purity of the state. The truncated dynamics decrease the purity of the

state, indeed transforming the state in a mixed state. As explained in the last section,

the truncation step of the algorithm adds mixedness to the global system, while at

the same time (for m > 1) conserving local densities, in perfect accordance with

Jayne’s principle.

We then consider the dynamics of a block of 100 consecutive sites described by the

reduced density matrix ρ[100]N (t,m) = Tr101,...,N [ρN (tm, )].

In figure 6.8 we study the time evolution of the second Reny entropy of

ρ[100]N (t,m). The second Reny entropy is defined for a generic density matrix ρ as
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S2(ρ) = − HQ;(Tr
[
ρ2
]
).

In particular we plot the quantity |S2

(
ρ[100]N (t,m)

)
− S2(ρ

[100]
GDE)| in logarithmic scale,

for different values of the parameters N and m.

For the exact dynamics with N = 200, S2 grows close to the value of S2(ρ
[100]
GDE)

before starting to decrease as a result of the recurrence. It then oscillates, with a

frequency fixed by the size of the system.

In the truncated dynamics, correlations are not allowed to return into the

partition, therefore, once spread outside, they are lost forever. We see that, indeed,

the entropy always increases getting closer to S2(ρ
[100]
GDE).

An interesting question, is wether or not the truncated algorithm preserves the

physicality of the state. It is in fact not guaranteed that the matrix 刀m(Γ) is a valid

correlation matrix. The analogous of this question, in the language of density

matrices, is asking if the 2N × 2N Hermitian matrix ρ(t,m) with trace 1 is positive or

not. Checking if a matrix is positive requires diagonalising it. Diagonalising a

2N × 2N is an unfeasible task already for small values of N . Even in the case of tensor

networks, it has been shown that checking for the positivity is a task NP-hard in the

dimension of the system [125].

In the case of Fermionic Gaussian states, checking the physicality of the state

corresponds to check if the eigenvalues of the 2N × 2N correlation matrix Γ lie

between 0 and 1. Because of the properties of Γ, the eigenvalues of Γ appear in

couples (λi, 1 − λi) (see chapter 3), thus to check the physicality it will be sufficient

that no eigenvalues are negative.

We check if the physicality is conserved on average. In doing so we compute the

truncated evolution for every allowed value of m for Ns number of steps. For every

truncated evolution, we consider the average correlation matrix

Γ̄(m) =
1

NS

Ns∑

t=1

Γ(t · δt,m). (6.11)
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For each of the average truncated correlation matrix Γ̄(m) we consider the quantity

N (x,m) = 1− ||Γ̄(m)x||l=1 − 1

2
= 1−

∑

i

|λi|− λi
2

, (6.12)

where Γ̄(m)x is the restriction of Γ̄(m) to the sites [1, . . . , x] (an analogous of the

reduced density matrix on the first x sites if the global state were physical), and {λi}i
are the eigenvalues of Γ̄(m)x. If the state is physcal, and thus Γm does not have negative

eigenvalues, each term of the sum
∑

i
|λi|−λi

2 is zero. Thus N (x,m) = 1 for physical

states. In general N (x,m) decreases as the absolute value of the sum of the negative

eigenvalues of Γ(m)x increases.

In Figure 6.9 we plot N (m,x) versus m for different values of x. Each colour

represents a different dimension of the reduced system we are considering. The value of

m where a line reaches the value of 1 corresponds to the minimum value of m required

for the truncated algorithm to preserve the physicality on average. The fact that for

large enough m all the lines are at 1 tells us that for big values of m the correlation

matrix Γ(m) is physical for every size x. In the inset, we plot the value of m where for

the first time each line interesects the horizontal line y = 1. This is the minimum value

of precision mphys required for Γ(m)x to be physical for every choice of its size x.

This fact should be related to the finite correlation length present in the GDE. In

order to describe correctly the expectation value of a local operator we just need to

embed the local system into a larger system whose size exceeds the correlation length

of the desired state (see e.g. [129,232–235]).

6.5 Conclusion

We have designed an algorithm for the efficient prediction of the approximated

relaxed values of local operators in the out-of-equilibrium dynamics. The existence of

such algorithm is explained by the presence of robust aspects in the

out-of-equilibrium dynamics, that is, the presence of features that are not too

sensitive to the specific details of the quench. One of such features is the equilibration
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Figure 6.9: (Main) The value of N (m,x) versus m is plotted for different dimensions
x of the reduced matrix Γ(m)x. When N (m,x) = 1 then Γ(m)x is physical. (Inset)
Minimum value of the precision mphys for a specific x such that Γ(m)x is physical. It
is remarkable that, already for moderate values of m, the average approximate state is
physical over a large range of distances.
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of local observables occurring at long-times after the quench. As long as the relevant

conserved quantities are protected from the approximation, it is possible to

manipulate the description of the state for making it computationally affordable. In

our algorithm the relevant conserved quantities are defined as the conserved

quantities built out of local densities. The degree of locality of such conserved

quantities naturally acts as the refinement parameter of the algorithm allowing to

increase the precision of the results by increasing the computational cost.

We provided a benchmark of the algorithm with Fermionic Gaussian systems. In

this context the approximation required by the algorithm corresponds to setting to zero

the elements of the correlation matrix that encodes correlations at distances larger than

a certain refinement parameters m.

We have observed that, in most cases, for moderate values of the refinement

parameter m, our algorithm provides a good local approximation to the DE, by

practically generating a dynamics that monotonically increases the entropy while

exactly protecting the local conserved quantities. Furthermore, the precision of the

approximation improves exponentially as we increase the value of m and, hence, the

computational cost of the algorithm.

The results can be extendend checking if the same algorithm would give good

results in the presence of strong interactions implementing the variational version of

the algorithm using tensor networks as anticipated in the scheme presented in Fig.

6.2. Another possible further step in the development of these ideas would be relating

this approach with the other proposed ideas for surpassing the entanglement

wall [58, 236–241].



Chapter 7

Universal data in the
entanglement spectrum of
systems out of equilibrium

The equilibrium states of 1D gapped many-body quantum systems contain a limited

amount of entanglement. In chapter 2 we have seen how the limited amount of

entanglement can be exploited for the efficient encoding of these states. During the

out-of-equilibrium evolution the entanglement grows. In chapter 6 we have

investigated how to efficiently encodes states in this scenario.

At the Quantum Critical Point (QCP) Hamiltonians become gapless.

The equilibrium states of non-gapped quantum many-body systems are more

complex, their entanglement grows with the dimension of the partition. This growth

of the entanglement follows universal laws [65,66] encoded in an underlying conformal

field theory (CFT) model (see chapter 5). In this chapter we are going to see how the

out-of-equilibrium evolution of the entanglement spectrums encodes information on

the CFT describing the system at the quantum critical point.

198
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7.1 Universality out of equilibrium

Approaching a quantum critical point can be dangerous if we want to faithfully and

efficently simulate the system with standard tensor network techniques. It has been

found that the entanglement entropy of a partition A of the ground state of a 1D

gapped Hamiltonian tends to be a finite number independent from the dimension |A|

(this is an instance of the area law described in chapter 2). Approaching a quantum

critical point, though, this finite number grows becoming, at the critical point,

proportional to HQ;(|A|).

This is where standard tensor networks techniques fail already at equilibrium.

This failiure does not imply an impossibility of describing the system in a compact

way, it tells us, instead, that we should change the language of the description.

Moving closer to a quantum critical point, the correlation length is expected to grow

much larger than the lattice spacing. In this regime, it is believed that, for the ground

state of a quantum spin chain, the low-lying eigenstates and the behaviour of the

correlations at long distance are described by a quantum field theory [69]. In

particular, exactly at the quantum critical point, where the correlation length

diverges, it is believed that the properties of these systems follow universal laws

dictated by an underlying Conformal Field Theory (CFT). For example, for a CFT

theory, in Ref. [110] it has been computed that

S(A) =
c+ c

6
HQ;2(|A|), (7.1)

where c is the central charge of the CFT. For the quantum transverse field Ising model

at the Quantum Critical Point (QCP) it has been found by [66] that

S(A) ∼ 1

6
HQ;2(|A|) + k, (7.2)

where k is a fixed numerical constant. The proportionality of entanglement to the

logarithm of the dimension of the system is indeed in perfect agreement with the

predictions of the CFT calculation as showed in the seminal works [66,67,69,110,242].
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Often the specific data characterising the underlying CFT model are not known, but

they can be found studying the behaviour of the system.

Because of the power of the universality, even studying the system in a really coarse

way, we can retreive these universal data. For example we can make the choice of

discretizing the space on a finite lattice and performing finite size scaling [243] or we

can choose to study an infinite system restricting to a limited amount of entanglement

in the ground state and performing finite-entanglement scaling [244].

As previously showed, the central charge of the CFT underlying the quantum Ising

model can be deduced to be c = 1
2 from the study of the entanglement

entropy [69,242].

The remaining data describing the underlying CFT are encoded in the entanglement

entropy when the geometry of the partition A is more complicated [245–249].

We see again how entanglement happens to be a fundamental quantity, able to reveal

information about the system we want to study. In this case it gives us access to

universal information, without the necessity of understanding the details of the model,

such as, e.g., the presence of an order parameter. Driven by these facts, several

theoretical proposals on how to measure entanglement in experiments have led to the

first experimental measures in the context of cold atoms and trapped ions [250–261].

Such experiments are able to measure entanglement not only of equilibrium states,

but even during the out of equilibrium dynamics. This put experimental results ahead

of theoretical predictions, in fact the entanglement wall prevents us from extracting

reliable preditiction for the long-time out-of-equilibrium dynamics.

Even though exact solutions of the out-of-equilibrium dynamics are generally

computationally too expensive, there exist several approximate methods, as the one

presented in the previous chapter and the others cited therein, for approximating the

dynamics. For every approximate method it is important to understand if it is able to

retain information about relevant physical properties of the dynamics. Building our

intuition on equilibrium phenomena, we can say that, if we are able to identify a form

of out-of-equilibrium universality, this out-of-equilibrium universality should be

detectable even through these approximate methods, after appropriate scaling
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analysis. In the following we are going to discuss a form of universality based on the

dynamics out of equilibrium. Universality out of equilibrium has been previously

studied and observed in some specific scenarios. In [262] (see references therein for

other examples) it is reported how the scaling of the spatio-temporal evolution of the

system can be described by universal exponents and functions.

We are going to consider the quenched evolution of the transverse Ising field model in

1 dimension, providing numerical evidences that in various quench scenarios the

entanglement spectrum of the evolved state contains informations about the specific

conformal field theory describing the QCP.

7.2 Setup and relevant quantities

We are going to consider the quantum transverse field Ising model (see sections 3.5 and

5) described by the one parameter Hamiltonian (3.119)

H(θ) = −
N−1∑

n=1

σxnσ
x
n+1 − +Qi(θ)

N∑

n=1

σzn − gIσ
x
Nσ

x
1 , (7.3)

where N is the number of sites, σαi with α = x, y, z are the Pauli matrices at the i-th

site, and +Qi(θ) is the magnetic field, with 0 ≤ θ ≤ π
2 . The parameter gI encodes the

boundary conditions of the lattice. In the following we are going to consider systems

with Open Boundary Conditions (OBC) and Periodic Boundary Conditions (PBC)

corresponding to the choices of gI = 0 and gI = 1 respectively.

At zero temperature this system exhibits two phases: an ordered (ferromagnetic) phase

for θ ∈ (π4 ,
π
2 ] and disordered (paramagnetic) phase for θ ∈ [0, π4 ). The two phases are

separated by a QCP at θ = π
4 .

We consider every system divided in two complementary partitions, a partition A made

by $ contiguos sites and the complementary partition B made by N − $ contiguous

sites. We are going to study two quantities. The first one is the Entanglement Entropy

(EE), defined as the von Neumann entropy S(A) (3.87) of the reduced density matrix

ρA = TrB [ρ]

SA := −Tr [ρA HQ;(ρA)] . (7.4)
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The second quantity we are interested in, is the Entanglement Spectrum (ES) (see

section 2.3.2 and [97]) , defined as the ordered collection {ξi}i of the negative logarithm

of the eigenvalues {λi := e−ξi} of ρA. By definition ξ2|A|−1 ≥ · · · ≥ ξi+1 ≥ ξi ≥ · · · ≥

ξ0 ≥ 0.

In particular we will study the gaps {gr}r in the low-lying entanglement spectrum,

defined as

gr := ξr − ξ0 ≥ 0, (7.5)

for the first 16 eigenvalues r ∈ [1, 15]. We are going to consider the dynamics induced

by a quench. We evolve the state ρ0 = |ψ0〉〈ψ0|, the ground state of the Hamiltonian

H(θ0), with the Hamiltonian H(θ). At each time t the evolved state will be

ρ(t) = e−iH(θ)tρ0eiH(θ)t. In particular we will focus on results for quenches to the

critical point, quenches across the critical point and quenches within the same phase.

As seen in chapter 5, in the continuum limit, at the critical point, the transverse

field Ising model becomes a free Fermions massless field theory describeed by the Dirac

action

S =
1

2π

∫
(ψ∂̄ψ + ψ̄∂ψ). (7.6)

This action is conformally invariant and the two fields ψ and ψ̄ have conformal weight

of (h, h̄) = (12 , 0) and (h, h̄) = (0, 12). This can be described by a CFT with Virasoro

algebra with central charge c = 1
2 and it is in general associated to the unitary minimal

model m = 3 called two dimensional critical Ising model (see section 5.2.4) for which

the space state is generated by just three primary fields called identity (conformal

dimension 0), spin (conformal dimension 1
16), and energy (conformal dimension 1

2).

As observed by Läuchli with numerical studies on the ground state of finite

systems [263], the entanglement spectrum can be related to the conformal spectrum

of a conformal field theory with boundaries (BCFT) defined by proper Conformal

Boundary Conditions (CBC). In the presence of boundaries, the conformal symmetry

of the Ising BCFT allows only three CBC for each boundary spin [210,212]. Denoting

these three boundary conditions with (+), (−) and (f), in figure 7.1 we report the



Chapter 7. Universal entanglement spectrum of systems out of equilibrium 203

Figure 7.1: Catalog of the conformal spectrum for the Ising BCFT for different
combinations of boundary conditions at the two boundaries.

low-lying conformal spectrum for the possible combinations of boundary conditions

for two boundaries.

We are going to compare the numerical results with the analytical results of the

CFT analysis of the out-of-equilibrium dynamics for a quench to the QCP for half of

an infinite line [264]. Here Cardy and Tonni predicts that the quantity gr/g1, ($gr)−1

and grSA encode the conformal weights of the theory (a similar analysis has been

performed for an infinite harmonic chain and for free fermions systems at half

filling [265]). Comparing these results we will be able to identify the appropriate

configuration of the boundary conditions of the BCFT and to find out that the

entanglement spectrum in the post quench dynamics encodes information about the

CFT model underlying the QCP of the evolution Hamiltonian.
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Figure 7.2: Time evolutions of the first 16 eigenvalues λmax ! λ1 ! λ2 ! · · · ! λ15 of
the ES and of the EE (grey line) for an interval with $ = 64 sites in the chain with
L = 256 sites and PBC after the quench θ = π/8 → θ = π/4 to the QCP. Different
degeneracies are observed in regimes I, II and III within the period.

7.3 Numerical Analysis

7.3.1 Quenches at the quantum critical point

We start with the results for a system with PBC for which we consider the time

evolution induced by the quench θ0 = π
8 → π

4 from the ordered phase to the QCP. In

figure 7.2 we report the time evolution of the first 16 elements of the entanglement

spectrum for $ = 64 and N = 256, together with the time evolution of the EE.

Referring to the quasi-particle picture of section 4.0.3, we identify three different

regimes for the evolution, which we separate with vertical dashed-dotted lines.

Immediately after the quench the entangled couples of quasi particles separate and

start traveling in opposite directions with velocity vq = min(1, +Qi θ)
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[104, 266]. As long as at least one of the quasi-particles initially belonging to the

same couple in A are still crossing the boundaries of partition A the EE keeps growing

linearly in time. We identify this as the first regime (regime I) of the time evolution.

The system enters in the second regime (regime II) of the time evolution in the

moment when all the quasi particles in partition A have their entangled partner outside

of partition A. For what explained in chapter 4, we will refer to the time at which regime

II starts as equilibration time.

After enough time the quasi-particles spreading in the system will be both again

in partition A. When the first couple of quasi particles are again present in partition

A, the system enters in third regime (regime III). Since the system is finite, we

observe recurrences effects. Indeed, after a time that can be easily calculated to be an

integer multiple of tPBC
3 = L/2

vq
(for PBC) the quasi-particle partners will meet again

as at time t = 0. This is when phase I starts again. In the case of OBC, where the

quasi particles will be reflected by the borders of the system, recurrence time is

tOBC
3 = L

vq
, because the quasi particles need to travel double the distance, with

respect to the PBC case, in order to be back again in partition A.

We can identify the three regimes as starting at the times t1 = nL/2
vq

, t2 = "/2
vq

+ t1

(equilibration time), and t3 = (L−")/2
vq

+ t1 where n ∈ N0. In the case of OBC we

identify the same three regimes, but the times are doubled.

The three different regimes can be easily identified by the value of the first derivative

of the EE.

We remind that a CFT analytic expression of the entanglement spectrum for the

dynamics we are going to consider is not available in the literature. Referring to the

CFT results in [267] and adopting the BCFT approach to global quantum quenches

with the critical evolution Hamiltonian [52, 59, 268–270] (see [271] for a recent review)

we want to identify the two CBC (a, b0) (see [272] for a detailed description of the CFT

analysis and interpretation) of the underlying BCFT. A similar analysis has been done

by Läuchli [263] for systems at equilibrium, where it has been found the correspondence

with a (f, f) Ising BCFT on a strip. Here we study, instead, systems out of equilibrium
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Figure 7.3: Time evolution of ($gr)−1 (top), gr/g1 (middle), grSA (bottom), and SA/$
(in grey) after the quench θ0 = π/8 → θ = π/4 for an interval in the chain with PBC.

with the quench dynamics of a system that thermalise. For systems of this kind we

consider the following CFT predictions [156,267]

SA ∝






2πc
3τ0

t at short times (regime I)
c
6W at equilibration time (regime II),

(7.7)

and

gr ∝






πτ0c
2t ∆r at short times (regime I)

2π2∆r
W at equilibration times (regime II),

(7.8)

where

W = 2 HQ;( β
πτ0

bBM?(π$
β
)), (7.9)
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Figure 7.4: Time evolution of ($gr)−1 (top), gr/g1 (middle), grSA (bottom), and SA/$
(in grey) after the quench θ0 = π/8 → θ = π/4 for an interval in the chain with OBC.

with β the temperature to which the system thermalise, ∆r ∈ S(a, b0) \ {0} are the

element of the conformal towers of the primary fields and of their descendants of the

BCFT with CBC (a, b0) (collected in figure 7.1 including the vanishing values for the

Ising BCFT), and the parameter τ0 encodes information about the initial state [267].

We see that from the quantities gr/g1 and grSA we can extract the conformal spectrum

of the underlying BCFT [272]. In fact

gr
g1

=
∆r

∆1
, (7.10)

and

grSA ∝






π2

3 c2∆r at short times (regime I)
π2

3 c∆r at equilibration time (regime II).
(7.11)
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We are going to infer the CBC (a, b0) from the consistency of the data for the ES

compared with the table in figure 7.1.

In figure 7.3 and figure 7.4 we report the post quench dynamics of the quantities we

want to study (SA, 1
"gr

, gr
g1

, and 6grSA
π2 ) for systems with PBC and OBC respectively

and quench θ0 =
π
8 → θ = π

4 (quench to the QCP).

For both boundary conditions we observe a linear growth of 1/$gr in regime I as

expected while in regime II it equilibrates to a static value. We are now interested in

extracting the values of ∆r in each regime. To do so we study the time evolution of the

ratio of the gaps gr/g1. We expect this ratio to be constant in all regimes. From figure

7.3 and figure 7.4 we can see that this is indeed the case, except for an abrupt change

(followed by some oscillations) passing from regime I to regime II in the case of PBC.

We compare the value of gr/g1, the ratios of the gaps, with ∆r/∆1, the value of the

ratios of the gaps in the conformal spectrum for the free-free boundary conditions in

figure 7.5 computed from the elements of the conformal towers in figure 7.1.
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Figure 7.5: Catalog of the ratios of the gaps in the conformal spectrum of one and two
copies of the Ising BCFT with free-free boundary conditions.
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We see that the time evolution of the spectral gaps in regime I of the OBC case

and regime II of the PBC and OBC case seem determined by the gaps of the conformal

spectrum given by a BCFT with free-free boundary conditions (f, f). Regime I of the

dynamics of the system with PBC can be interpreted as encoding the information of two

copies of the conformal spectrum given by a BCFT with free-free boundary conditions

(f, f)2.

7.3.2 Thermalisation in regime II

The results we presented show that the low-entanglement part of the entanglement

spectrum of the reduced density matrix of a block in regime II of the quenches, the

equilibrated regime, coincides with the low-energy spectrum of a given Hamiltonian.

Given this, one would be tempted to extend this result saying that for the reduced

density matrix of a partition of $ spins ρ($) ; 2tT(−βH"), that is our equilibrated

state is thermal, it is described by a Gibbs Ensemble (GE). This temptation should

be resisted since it obviously contradicts what is known about the equilibration of

integrable systems that equilibrate to Generalized Gibbs Ensemble (GGE) (see chapter

4). At the same time, this observation is an insightful intuition. We remind and stress

the fact that we are only looking at the very low entanglement energies. The relation

between the GGE and the GE in this regime, that is by projecting them at very low

energies, has not yet been studied. It is known indeed, that for small blocks the GGE

and the GE are distinguishable and the GE fails to correctly reproduce the expectation

values of local operators when these operators equilibrate after the quench [273]. This

is apparent also by comparing the eigenvalues of the two ensemble as we do in Fig.

7.6. The two ensembles are well distinguishable if one considers the full spectrum, but

they are very close to each other in the lower part of the spectrum. In the first panel

of Fig.7.6 we plotted the spectrum for $ = 4, for this size of the partition we just

have 16 eigenvalues in total. We can appreciate how the lower eigenvalues of the GGE

deviate from those of the GE already after 5 eigenvalues. The situation changes as we

increase $, and as a result the number of eigenvalues increases as 2". Focussing on the

first 16 eigenvalues we are thus focussing on an exponentially small relative low energy
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Figure 7.6: First 16 gap ratios of GE versus GGE spectra for different dimensions $ of
the reduced density matrix at the temperature obtained from the quench π

8 → π
4 , in a

chain of L = 256 with PBC. In each of the four plots, in the case of two ratios with
almost the same value (as for example the case of gr/g1 ∼ 8 in the leftmost plot), we
plot the second one on a second column labelled by 2. Moving from left to right the red
crosses moves inside the black circles. On the left we consider a partition of dimension
$ = 4, thus, plotting 16 eigenvalues, we are plotting its whole spectrum. We see that
in this case the GE and the GGE are different as expected. On the right we consider a
partition of $ = 32 sites, thus, plotting the first 16 eigenvalues we are considering only
the first ∼ 4 · 10−7W of its spectrum. Here the GE approximates the GGE.

subset. In this subset the two ensembles become less and less distinguishable as shown

for $ = 32 where they almost coincide through all the range. As a result we can safely

confirm that our results are in agreement with the generalised thermalisation to the

GGE of the states after a quench.

7.3.3 Quenches across the quantum critical point

Quenches to the critical points encode the information about the CFT underlying

the Hamiltonian at the critical point, that is the Hamiltonian inducing the dynamics.

We investigate now the scenario of quenches across the QCP. In this scenario neither

the initial Hamiltonian nor the post-quench Hamiltonian are critical. Knowing that
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the system is going to equilibrate though, tells us that the starting state and the

equilibrated state of the system are two equilibrium states of two Hamiltonian in two

different phases. We expect thus, that the state, in some way, passes across the critical

point. By quenching across the quantum critical point of the Ising model we encounter a

dynamical quantum phase transition [274]. Dynamical quantum phase transition occurs

at those times when the return probability to the original state after the quench vanishes

(see [275] for a recent review). Usual quantum phase transitions induce a universal

behaviour of correlation functions. Although the return probability to the ground

state bares similarities with a boundary partition function at complex temperature,

the presence of dynamical quantum phase transition does not have the same universal

consequences on time dependent correlation functions.

Here we show that the entanglement spectrum still becomes universal when

crossing the dynamical quantum phase transitions. The results of a typical quench

across the QCP are shown in Fig. 7.7, where qualitatively different ES are observed

when quenching in the two different directions between the two phases.

In regimes I and III for the quench having θ0 < π
4 and θ > π

4 we see spikes in the

plots on the left panel in Fig. 7.7. They identify the points in time where the first gap

vanishes and hence the ratios gr/g1 diverge. In regime I, these times coincide with the

times when the Loschmidt echo is singular [276]. This implies that these are the times

that identify the location of dynamical quantum phase transitions.

For quenches in the other direction (right panels) across the QCP the spikes are

absent. Still, the ES becomes gapless as witnessed by the linear increase of the inverse

gaps (modulo the spikes we have discussed) in the regimes I of the quenches in both

directions (see [276,277]). When we quench from larger to smaller θ this is more visible

due to the absence of spikes.

In the next section we will see that for generic quenches in the same phase indeed

the entanglement spectrum remains gapped.

We try to identify the spectrum we observe even in this context. The ratios gr/g1

display surprising behaviour, they approach integer values in regimes I and II in the

right panel of Fig. 7.7. Furthermore, similar steady integer values are present also in
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Figure 7.7: Time evolution of ($gr)−1 (top), gr/g1 (middle), grSA (bottom), and SA/$
(in grey) after quenches such that H and H0 belong to different phases given by θ0 =
π/8 → θ = π/2 − π/8 (left) and θ0 = π/2 − π/8 → θ = π/8 (right), for an interval
having $ = 128 sites in the chain with PBC having L = 512 sites.

regime II in the left panel. This feature is the same observed in the quenches at the

QCP (see regime I in Fig. 7.3) and could be attributed to the crossing of the QCP.

Indeed, comparing to the case when the QCP is not crossed (see Fig. 7.8), we see that

plateaux at integer values for gr/g1 in regime II are not observed if the QCP is not at

least crossed. We observe that the convergence of the curves of gr/g1 to the integer

plateaux in regime II for the quench from the paramagnetic phase to the ferromagnetic

phase improves as |θ − θ0| increases.

Comparing again to figure 7.5, these integer values can be related to two copies of

the Ising BCFT with free-free boundary conditions.

The appearance of a universal entanglement spectrum when crossing several

dynamical quantum phase transitions, seems to suggest the possibility of defining
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scaling and universality there, something that as of today was still considered an open

question as discussed e.g. in [275].

7.3.4 Quenches in the same phase

Both quenches at the QCP or across the QCP encode universal information about the

conformal spectrum of the Ising boundary conformal field theory with the proper CBC.

Here we investigate if this information is encoded even in quenched dynamics where

the initial and the equilibrium state are inside the same phase. The dynamics of the

entanglement spectrum for this kind of quenches is showed in Fig. 7.8 both inside the

paramagnetic phase (panel on the left) and inside the ferromagnetic phase (panel on

the right).

Comparing Fig. 7.8 with the data of figures 7.1 and 7.5, the gaps ratios gr/g1 seem

to not encode any information about the quantum critical point.
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Figure 7.8: (color online). Time evolution of ($gr)−1 (top), gr/g1 (bottom), and SA/$
(in grey) after the quench θ0 = π/12 → θ = π/4−π/12 within the paramagnetic phase
(left) and θ0 = π/2− π/12 → θ = π/4 + π/12 within the ferromagnetic phase (right),
for an interval with $ = 128 sites in chain with PBC having L = 512 sites.

7.4 Conclusion

We studied the dynamics of the gaps of the entanglement spectrum in the post

quench dynamics of the transverse field Ising model with periodic and open boundary

conditions.

Analysing the ratios of the gaps in the low energy part of the spectrum, we found

that they take constant values in different time regimes.

In particular we found that, in the first thermalisation regime (regime II), the ratios

of the gaps encode information about the conformal boundary conditions of the

underlying Ising BCFT. The appearence of this feature, even during the dynamics

induced by quenches across the QCP, suggests the possibility of a form of universality
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out-of-equilibrium.

Our results are robust under a reasonable change of the parameters of the quench.

The results are double-sided. From one side the numerical analysis suggests us the

proper conformal boundary conditions to adopt in the boundary conformal field

theory approach to global quenches. From the other side it tells us that we can adopt

a BCFT approach to obtain information about the results of the numerical analysis.

A possible extension of this work would be considering different BC, different

protocols for the quenches, different bipartition schemes and different interacting spin

chains models.

Another research direction suggested by the numerical analysis is studying

quantitatively the role of the GGE in our analysis, in particular the differences

between the low energy spectrum of the GE and GGE.

This results also suggest a more quantitative study of the connections between the

features of the dynamical quantum phase transition and the entanglement spectrum

dynamics in quenches across the quantum critical point.

At last, our results suggest that critical exponents could be possibly measured by

experiments on entanglement spectroscopy of correlated many-body quantum systems

out of equilibrium.



Chapter 8

Conclusions

In this thesis, we have explored the evolution of many-body quantum systems out of

equilibrium. We have focussed on understanding if the fast growth of entanglement

really prevents a classical treatment of these systems or if it is just a clue that we are

focussing on a wrong description. We have assumed, as a research hypothesis, that

this growth can be overcome by appropriate algorithms and encodings. To answer

this question, we developed proper tools for the exploration of the out-of-equilibrium

dynamics and used them in different scenarios. These tools are presented in chapter 3

together with the documentation, and with practical examples for the usage of the

package F_utilities. With this package, it is possible to perform simulations with

Fermionic Gaussian states using the programming language Julia. It includes

standard algorithms for the manipulation of Fermionic Gaussian states (as partial

trace, time evolution etc.) as well as algorithm from the modern literature (as the

product formula [143], the reduction of bond dimension a la White [154] etc.). We

have also implemented algorithms for mimicking tensor networks with Fermionic

Gaussian states, as for example a version of the time evolving block decimation, used

widely in the context of matrix product states. The next steps in the development of

the package include implementing tools for the manipulation of reduced density

matrices of infinite Fermionic Gaussian states (see e.g. [66]) and possibly extending it

to Bosonic systems.

In chapter 6 we designed and benchmarked a numerical algorithm for the prediction

216
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of the long-time expectation value of local observables in the quantum many-body

dynamics out of equilibrium.

For translationally invariant systems described by local Hamiltonians entanglement

spreads in the system. As a consequence the constituents belonging to a small region

of contiguous sites become entangled with constituents further away from them as time

passes. We thus argue that to describe their dynamics it is not necessary to preserve

information about their entangled partners.

Trading the entanglement of the state for mixture we obtain a local description of

the state as viewed by the local terms of the Hamiltonian. The state so obtained is

efficiently encodable in a computer. We translate these ideas into a working algorithm

that we show provides good predictions of the equilibrated expectation values of the

system. A natural extension, on which we are working, is to check that the same

algorithm works in the presence of strong interactions. This requires implementing the

generic version of the algorithm using tensor networks.

In chapter 7 we explored the dynamics of the transverse field Ising model, a model

that at the critical point is described by a quantum conformal field theory. We

discovered that during the out-of-equilibrium dynamics for quenches to the critical

point, and across the critical point, the entanglement spectrum encodes information

of the conformal field theory of the system at the critical point. Thus, even if the

entanglement grows during the evolution, we see that, in the appropriate basis, at

low-entanglement, the systems looks thermal with time dependent temperature. We

can interpret this as another clue that the growth of entanglement does not imply the

loss of the ability to describe the system.

In order to accumulate more evidences of the appropriateness of this simplified

picture we need to perform more numerical simulations focussing in particular on

interacting systems. As a side result, we have observed that at low entanglement the

GE and GGE are locally indistinguishable. This is an interesting observation that we

need to further extend and explore.

In conclusion, we have accumulated a growing set of evidences that, although

entanglement grows out of equilibrium, we may still be able to describe many-body



Chapter 8. Conclusions 218

quantum systems using numerical simulations, thus confirming our initial research

hypothesis.



Appendix A

Appendix to F_utilities

A.1 Extended calculations

A.1.1 Eigenvalues of Γ and Hα

We consider the state ρ = e−"α†H"α

Z , we diagonalise H changing the basis to /β = U †/α.

Thus we have

ρ =
e−

)β†HD
)β

Z
=

e
−

∑N
k=1 εk

(
b†kbk−bkb

†
k

)

Z
. (A.1)

We change the basis of the correlation matrix too

Γb
i,j =

(
U †ΓU

)

i,j
= Tr

[
ρ/βi /βj

†]
. (A.2)

Now we want to explicitly compute the elements of Γb. First of all we compute the

normalisation constant

Z = Tr

[
e
−

∑N
k=1 εk

(
b†kbk−bkb

†
k

)]
= 2N

N∏

k=1

(+Qb? (εk)) . (A.3)

To compute the numerator part this equalities will result useful

• For x $= y
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Tr

[
e
−

∑N
k=1 εk

(
b†kbk−bkb

†
k

)

b†xby

]
=

∑

v∈{0,1}N
〈v|e−

∑N
k=1 εk

(
b†kbk−bkb

†
k

)

b†xby|v〉 =

=
∑

v∈{0,1}N
〈v|e−

∑N
k=1 εk

(
b†kbk−bkb

†
k

)

|ṽ〉 =

=
∑

v∈{0,1}N
e−

∑N
k=1(−1)vk+1εk〈v|ṽ〉 = 0

(A.4)

Tr

[
e
−

∑N
k=1 εk

(
b†kbk−bkb

†
k

)

bxb
†
y

]
= 0 (A.5)

• ∀x, y

Tr

[
e
−

∑N
k=1 εk

(
b†kbk−bkb

†
k

)

bxby

]
= 0 (A.6)

Tr

[
e
−

∑N
k=1 εk

(
b†kbk−bkb

†
k

)

b†xb
†
y

]
= 0 (A.7)

Thus the numerator can be explicitly written as

Tr

[
e
−

∑N
k=1 εk

(
b†kbk−bkb

†
k

)

/αi /αj
†
]
= (A.8)

=
2N∑

l=1

2N∑

m=1

Ui,lU
†
m,jTr

[
e
−

∑N
k=1 εk

(
b†kbk−bkb

†
k

)
/βl /βm

†
]
=

=
N∑

l=1

Ui,lU
†
l,jTr

[
e
−

∑N
k=1 εk

(
b†kbk−bkb

†
k

)

b†l bl

]
+

N∑

l=1

Ui,l+NU †
l+N,jTr

[
e
−

∑N
k=1 εk

(
b†kbk−bkb

†
k

)

blb
†
l

]
=

=
N∑

l=1

Ui,lU
†
l,je

−εl
∏

k (=l

2 +Qb?(εk)) +
N∑

l=1

Ui,l+NU †
l+N,je

εl
∏

k (=l

2 +Qb?(εk))

I can divide by Z and obtain
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Γi,j =
N∑

l=1

Ui,lU
†
l,j

e−εl

eεl + e−εl
+

N∑

l=1

Ui,l+NU †
l+N,j

eεl

eεl + e−εl

=
N∑

l=1

Ui,lU
†
l,j

1

1 + e2εl
+

N∑

l=1

Ui,l+NU †
l+N,j

1

1 + e−2εl
=

= (UΓDU †)i,j .

(A.9)

So the same transformation U that moves to the free Hamiltonian HD is also the

transformation that diagonalise the correlation matrix. The eigenvalues νi of the

correlation matrix Γ are related to the eigenvalues of the parent Hamiltonian H by

νi =
1

1 + e2εi
, (A.10)

εi =
1

2
ln

(
1− νi
νi

)
, (A.11)

since νi ∈ [0, 1] the eigenvalues εi∈[-∞,+∞].

A.1.2 Purity

From the previous paragraph we have:

Z2 =
N∏

k=1

(2 +Qb? (εk))
2 (A.12)

and

Tr

[
e
−

∑N
k=1 εk

(
b†kbk−bkb

†
k

)]
=

N∏

k=1

(2 +Qb? (2εk)) . (A.13)

Thus the purity is:

Purity =
N∏

k=1

1

b2+?(εk) + 1
(A.14)



Appendix A. Appendix to F_utilities 222

A.1.3 Real Time Evolution

We want to compute the time evolution in the Heisenberg picture of the annihilation

operator bk induced by the Hamiltonian Ĥ =
∑N

l=1 εl(b
†
l bl− blb

†
l ). First we simplify the

expression exploiting the commuting terms

bk(t) = eiĤtbke
−iĤt = eit

∑N
l=1 εl(b

†
l bl−blb

†
l )bke

it
∑N

l=1 εl(b
†
kbl−blb

†
l ) = (A.15)

= eitεk(b
†
kbk−bkb

†
k)bke

itεk(b
†
kbk−bkb

†
k). (A.16)

Secondly applying B.C.H.1 (see B.C.H.1 in A.2.4) we obtain that

bk(t) =
∞∑

n=0

(iekt)n

n!
[b†kbk − bkb

†
k, . . . [v

†
kbk − bkb

†
k,︸ ︷︷ ︸

n

bk ] . . . ]︸︷︷︸n, (A.17)

and using the fact that

[b†kbk − bkb
†
k, bk] = −2bk, (A.18)

we obtain

bk(t) =
∞∑

n=0

(2iekt)n

n!
bk = e−i2ektbk. (A.19)

A.1.4 Circulant Matrices

An N ×N circulant matrix C is a matric of the form

C =





c0 c1 c2 . . . cN−1

cN−1 c0 c1 . . . cN−2

cN−2 cN−1 c0 . . . cN−3

... ... ... . . . ...

c1 c2 c3 . . . c0





. (A.20)

A circulant matrix is completely specified by the circulant vector /c, that is its first row.

/c = (c0, c1, c2, . . . , cN−1) . (A.21)
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All the other rows of the matrix are cyclic permutations of /c with offset increasing by

one going down with the rows.

Since each descending diagonal from left to right is constant, circulant matrices are a

special case of Toeplitz matrices.

Because of their special structure, circulant matrices are diagonalised by taking their

Fourier transform.

Given a vector /v of length N its Fourier transform is expressed as /w = W/v, with W

defined as

W =
1√
N





ω ω2 ω3 · · · ωN−1 1

ω2 ω4 ω6 · · · ω2(N−1) 1

ω3 ω6 ω9 · · · ω3(N−1) 1
... ... ... . . . ... 1

ωN−1 ω2(N−1) ω3(N−1) · · · ω(N−1)(N−1) 1

1 1 1 1 · · · 1





, (A.22)

with ω = e−i 2πN .

The columns of W are the normalised eigenvectors |λi〉 of every circulant matrix of

dimension N ×N .

The corresponding eigenvalues depend on the specific circulant vector /c specifying the

circulant matrix and are given by

λj = c0ω
j + c1ω

j + c2ω
j2 + · · ·+ cN−2ω

j(N−2) + cN−1ω
j(N−1). (A.23)

A.1.5 Block diagonal form of skew-symmetric matrices

Let h be a N ×N skew-symmetric matrix of rank 2m, where N ≥ 2m.

Then there exist a N ×N unitary matrix U such that [134]

UThU =



 0 λ1

−λ1 0



⊕



 0 λ2

−λ2 0



⊕ · · ·⊕



 0 λm

−λm 0



⊕ 0̂N−2m, (A.24)
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where 0̂N−2m is a (N − 2m) × (N − 2m) matrix with all elements equal to zero and

where the real and positive-definite {λi}i=1,m are the singular values of h.

Since a skew-symmetric matrix h is similar to its own transposehT , then h and hT must

have the same eigenvalues. Thus, the eigenvalues of a skew-symmetric matrix of even

dimension will always come in pairs ±λ̃ (for the case of odd dimension there will be an

unpaired eigenvalue equal to 0).

A.1.6 Jordan-Wigner transformation

The Jordan-Wigner transformation, introduced in the original paper [278], is a

transformation that maps spin-12 systems to fermionic systems.

Suppose we have a system of N spins-12 with the usual Pauli matrices σxj , σyj and σzj

acting on the j-th spin of the system The Jordan-Wigner transformation defines the

operator aj as

aj = −
(
⊗j−1

k=1σ
z
k

)
⊗ σ+j

(
⊗N

k=j+1Ik
)
, (A.25)

where σ±j =
σx
j ±iσy

j

2 and Ij is the identity acting on the j-th spin. Taking the adjoint

obtains

a†j = −
(
⊗j−1

k=1σ
z
k

)
⊗ σ−j

(
⊗N

k=j+1Ik
)
. (A.26)

Computing the anticommutator of these two operators we notice that they obey the

CAR, thus using this transformation for every site j we are able to build a legitimate

set of Dirac fermionic operators starting from a set of Pauli matrices.

Knowing the expression for the creation and annihilation operators, we can easily find

the mapping of the single site occupation operator in term of Pauli operators:

a†jaj =
(
⊗j−1

k=1Ik
)
⊗

Ij − σzj
2

(
⊗N

k=j+1Ik
)
. (A.27)

Finally there are two important remarks. We notice that the mapping from spins to

fermions is not local, in the sense that equation A.25 maps a string of Pauli operators

acting non trivially on j spins to a Dirac operator local only on site j.

We even notice that in the definition of the annihilation operator A.25 it is encoded
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some information on the geometrical structure of the spin system, in particular it is

encoded the distance of site j from the border.

When using the Jordan-Wigner transformation one has to be careful about these two

observations.

In the main text we are interested in mapping the transverse field Ising Hamiltonian

to a fermionic system, thus we need the inverse Jordan-Wigner transformation. We

have that the Pauli operator σzj is easily mapped to fermionic annihilation and creation

operators as

σzj = aja
†
j − a†jaj = 1− 2a†jaj . (A.28)

We see that for this transformation local spin operators are mapped to local fermionic

operators. We know nonetheless that the Jordan-Wigner transformation does not

preserve locality in general, indeed we have that the Pauli operators σxj and σyj maps

to fermionic operators as

σxj = −
(
⊗j−1

k=1σ
z
k

)
⊗ (aj + a†j)

(
⊗N

k=j+1Ik
)

σyj = i
(
⊗j−1

k=1σ
z
k

)
⊗ (a†j − aj)

(
⊗N

k=j+1Ik
)
, (A.29)

where for each σzk one should use the substitution (A.28).

Fortunately, if we consider the product of Pauli operators, as for example are the spin-

spin interactions in the TFI model we have

σxj σ
x
j+1 = (a†j − aj)(aj+1 + a†j+1),

σyj σ
y
j+1 = −(a†j + aj)(a

†
j+1 − aj+1),

σxj σ
y
j+1 = i(a†j − aj)(a

†
j+1 − aj+1),

σyj σ
x
j+1 = i(a†j + aj)(a

†
j+1 + aj+1), (A.30)

nearest neighbour interactions are mapped to nearest neighbour interactions.

It easy to see that an interaction of this kind between two arbitrary spins at site j

and k will map to a string of Dirac operators acting non trivially on all sites between
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j and k.

We have seen that the Jordan-Wigner transformation defines an isomorphism

from a system of n fermions to a system of n spins. One should ask why we cannot

completely identify spin systems with fermionic systems or vice versa. To answer to

this question we remind that, as specified above, the Jordan-Wigner mapping does

not preserve the locality. One of the consequence of this fact is that the procedure of

partial tracing does not generally commute with the Jordan-Wigner mapping [1, 135].

Consider for example a state of N fermions ρAB defined on a system divided in two

complementary partitions A and B. We map ρAB with a Jordan-Wigner

transformation to a state ρ̃AB of N spins. Now we consider the reduced states ρA and

ρ̃A on partition A of the states ρAB and ρ̃AB. If, using a Jordan-Wigner

transformation, we map the state ρA to the spin state ˜̃ρA, we will generally have that

ρ̃A $= ˜̃ρA as shown schematically in figure A.1.6.

1
2

34

5

1 2 3 4 5

ρAB ρ̃AB

ρA ˜̃ρA  ≠  ρ̃A

TrB TrB

Jordan-Wigner

Jordan-Wigner

Fermions Spins

Figure A.1: The mapping of the reduced state is different from the reduced state of the
mapping [1]

For a detailed and very well explained treatment of this question see [1]. We end this

subsection pointing out that, the fact that the well defined trace for fermionic system is

not consistent with the mapping between fermions and qubits, leads to many interesting

questions on entanglement in fermionic systems, see e.g. [279–284]
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A.2 Useful relations

A.2.1 Pauli Matrices

1. σ+ =



0 1

0 0



, σ− =



0 0

1 0



, σz =



1 0

0 −1



, σy =



0 −i

i 0



, σx =



0 1

1 0



,

|+〉x = 1√
2



1

1



, |−〉x = 1√
2



 1

−1



, |+〉y = 1√
2



1

i



, |−〉y = 1√
2



 1

−i



, |0−〉z =



0

1



, |1+〉z =



1

0





2. σzσ− = −σ−

3. σzσ+ = σ+

4. σ−σz = σ−

5. σ+σz = −σ+

6. σ+σ− = σz+I
2

7. σ−σ+ = I−σz

2

A.2.2 Operators obeying CAR

1. {ai, a†j} = Iδi,j {ai, aj} = {a†i , a
†
j} = 0

2. aiaj = −ajai; a†ia
†
j = −a†ja

†
i

3. a2i =
(
a†j

)2
= 0

4. aia
†
j = δi,j − a†jai

5. aiaj =
aiaj−ajai

2

6. aia
†
j =

aia
†
j−a†jai
2 + δi,j

2

7. a†iaj =
a†iaj−aja

†
i

2 + δi,j
2

Commutators
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1. [a†i , aj ] = δi,j − 2aja
†
i = a†iaj − δi.j

2. [ai, a
†
j ] = δi,j − 2a†jai = aia

†
j − δi,j

3. [ai, aj ] = 2aiaj

4. [a†i , a
†
j ] = 2a†ia

†
j

Majorana operators

1. x2i = p2i =
1
2

2. a†a = i
2 (xp− px) + 1

2 = ixp+ 1
2

3. aa† = i
2 (px− xp) + 1

2 = ipx+ 1
2

4. xp = − i
2

(
a†a− aa†

)
= −i

(
a†a− 1

2

)

A.2.3 Jordan-Wigner Transformations

spinless fermions → spins

1. aj = −
⊗j−1

k=1 σ
z
k ⊗ σ−j

⊗N
k=j+1 Ik

2. a†j = −
⊗j−1

k=1 σ
z
k ⊗ σ+j

⊗N
k=j+1 Ik

3. a†jaj = ⊗j−1
k=1Ik ⊗

σz
j+Ij
2 ⊗N

k=j+1 Ik

spins → spinless fermions

1. σzj = a†jaj − aja
†
j

2. σxj = −
⊗j−1

k=1 σ
z
j ⊗ (aj + a†j)

⊗N
k=j+1 Ij

3. σxj = i
⊗j−1

k=1 σ
z
j ⊗ (a†j − aj)

⊗N
k=j+1 Ij

4. σxj σxj+1 = (a†j − aj)(aj+1 + a†j+1)

5. σyj σ
y
j+1 = −(a†j + aj)(a

†
j+1 − aj+1)

6. σxj σ
y
j+1 = i(a†j − aj)(a

†
j+1 + aj+1)

7. σyj σxj+1 = i(a†j + aj)(a
†
j+1 + aj+1)
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A.2.4 Formulas

1. B.C.H. 1: eAeB = eZ with Z = A+B+ 1
2 [A,B] + 1

12 [A, [A,B]] + 1
12 [B, [A,B]] +

. . . higher commutators of A and B

2. B.C.H 2: eABe−A =
∑∞

n=0
1
n! [A, . . . [A︸ ︷︷ ︸

n

, B ] . . . ]︸︷︷︸
n

where [A,B] = AB −BA.

3. B.C.H 3: eABeA =
∑∞

n=0
1
n! {A, . . . {A︸ ︷︷ ︸

n

, B } . . . }︸ ︷︷ ︸
n

where {A,B} = AB +BA.

4. Kronecker Delta: δn,m = 1
N

∑N
k=1 e

i 2πN k(n−m).
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