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Abstract 

The goal of asset pricing research is to find the optimal model that explains the drivers of asset 

returns. Historically, this field has predominantly relied on data from the United States, given 

the extensive and detailed records of its financial markets. Due to the growing interdependence 

of international markets, recent research has shifted towards leveraging large global datasets to 

develop universally applicable models. However, empirical evidence suggests that these global 

models explain less variation in domestic returns compared to country-specific models.  

This thesis investigates the effectiveness of country-specific asset pricing models across a set 

of European markets, utilising both classical and Bayesian methods to assess model 

performance. The first empirical chapter begins with evaluating the relative performance of 

nine asset pricing models in developed European stock markets from 1991-2022. 

Asymptotically valid tests of model comparison, developed by Barillas, Kan, Robotti and 

Shanken (2020), are conducted, where the extent of model mispricing is gauged by the squared 

Sharpe ratio improvement measure of Barillas and Shanken (2017). The findings reveal that 

the Fama and French (2018) six-factor model, with both original and updated value factors, are 

the top-performing models in most markets. However, variation in the absolute and relative 

performance of models across samples suggests that a singular optimal European asset pricing 

model does not exist within the classical framework.  

To enhance model performance, the second empirical chapter explores the use of serial 

correlation in factor returns as conditioning information. Adopting the methodology of Ehsani 

and Linnainmaa (2022), this chapter shows that multiple investment factors in the cross-

country dataset are unconditionally minimum-variance inefficient: factor returns are positively 

autocorrelated, while risk remains constant regardless of past returns. Using Ferson and 

Siegel’s (2001) general framework, 'time-series efficient factors' are constructed by 

conditioning factor weights on historical returns to enhance the Sharpe ratios of these factors 

across the European markets under consideration. A number of these optimised factors achieve 

significantly higher average Sharpe ratios compared to the original factors, while retaining all 

the information contained in the original factors. When the model comparison tests of Barillas 

et al. (2020) are repeated with these optimised factors, the absolute performance of the lower-

performing models improves, while the relative performance among the models remains 

consistent across markets. 
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In the third and final empirical chapter, the Bayesian framework of Chib, Zeng, and Zhao 

(2020) is used to identify the optimal combination of factors from a starting collection of 12 

risk factors in each European market. The results indicate that the optimal combinations of 

factors are similar to the top-performing models in the classical tests. The optimal model from 

the scan either represents a reduced form with one or two fewer factors or an extension of the 

top model identified in Chapter Two, with one or two additional factors. This alignment 

underscores the robustness of the model selection across different testing methodologies. The 

changes in these optimal combinations are then examined under the assumptions of both 

normality and multivariate-t distributions on the factor data. Employing the methodology of 

Chib and Zeng (2020), the analysis reveals no significant disparities in results when a Student-

t distribution is assumed for the factor data. Additionally, the extent to which the efficient factor 

transformation impacts the model comparison tests in each market is analysed. The findings 

reveal that certain efficient factors are present in the optimal combination of factors across 

European markets. 
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Chapter 1 Introduction 
 

 

 

 

 

 

Abstract 

This chapter introduces the thesis; outlining the current landscape of the asset pricing literature, 

rationale for this thesis, research questions to be addressed in the three empirical chapters, and 

the key contributions of the study.  
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1.1 Asset Pricing Overview 

 

Asset pricing research aims to explain and predict financial asset returns by analysing their 

fundamental drivers in an uncertain world. Initially, asset valuation focused on market 

exposure, attributing deviations to anomalies or unique asset characteristics. However, this 

view has evolved to recognise that many of these anomalies actually stem from systematic 

factors inherent in financial markets. This shift has revealed that asset returns are influenced 

not only by market movements but also by various risk factors and economic indicators. 

Understanding these components has refined theoretical frameworks and improved empirical 

methods, allowing for a more detailed analysis of asset pricing. 

To capture these systematic factors, researchers have developed factor models that approximate 

the returns of financial securities by identifying key influences. These models are termed 

"factor models" because the outcome depends on the factors included. They suggest that a 

security’s return is driven by common factors and the security's unique sensitivities to each 

factor (factor loadings). The goal is to identify a set of factors—such as value, momentum, 

size, market, quality, and low volatility—that explains the "cross-section" of returns, or the 

spread of returns at a specific moment. Since the introduction of the classic Capital Asset 

Pricing Model (CAPM) by Sharpe (1964) and Lintner (1965), various factor-based models 

have been developed to better explain the cross-section of expected asset returns. 

These factor models are tools that help investors identify and manage investment 

characteristics that influence the risks and returns of stocks and portfolios. There is ample 

evidence, both practical observations and empirical data, that portfolio managers frequently 

utilise the Capital Asset Pricing Model (CAPM) alongside various multifactor models to 

compute return expectations (see, among others, Brealey, Myers, and Allen (2016), Fischer and 

Wermers (2012), Gitman and Mercurio (1982), Grinold and Kahn (2000), and Jagannathan and 

Meier (2002)).  In their 2001 study, John Graham and Campbell Harvey surveyed CFOs from 

approximately 4,440 firms and found that a significant majority of them rely heavily on the 

Capital Asset Pricing Model (CAPM) for estimating the cost of equity. Specifically, they 

reported that around 75% of the CFOs use CAPM as their primary tool for this purpose. This 

highlights the importance of reliable factor models in assisting portfolio managers in 

identifying key factors that influence a wide range of securities. Extending this understanding 

to asset management, Ang (2014) outlines how approximately 70% of the variation in active 

returns can be explained by exposures to systematic factors.  
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Considering the extensive array of factors that have emerged since the 1960s, finding the 

optimal model is crucial for the investment decision-making process for both professional and 

private investors. Model comparison tests help identify the most effective models in explaining 

asset return variations, enhancing our understanding of market dynamics. Traditionally, much 

of the research on comparing model performance has relied heavily on data from the United 

States, primarily due to the extensive and well-established financial market data available there. 

This historical preference for U.S. data is well-documented in empirical asset pricing research 

(Karolyi, 2016)1. However, drawing general conclusions solely from U.S. data can be 

misleading, as studies have shown that results obtained from U.S. market data do not always 

hold true in international markets (e.g., Goyal and Wahal, 2015; Jacobs and Muller, 2020). 

In contemporary research, there has been a notable shift away from relying solely on U.S. data, 

as asset pricing analysis has broadened to include global markets. This trend reflects a growing 

recognition of the importance of adopting a global perspective in financial studies. According 

to Bethmann et al. (2023), this shift is driven by the evolving nature of global financial markets 

and the need for models that accurately represent diverse economic environments. Instead of 

focusing exclusively on U.S. market dynamics, researchers are now integrating regional and 

local data to develop global factor models. Recent studies by Hanauer (2020), Qiao, Wang, and 

Lam (2022), and Huber et al. (2023) illustrate this approach. These studies aggregate data from 

various countries to form global factors, then conduct model comparison tests on these factors 

to identify the optimal model that can theoretically explain the cross-sectional variation across 

all markets. 

Nevertheless, a critical issue has arisen with this approach: global factor models have been 

shown to underperform country-specific models. Studies such as Griffin (2002) and Chaieb, 

Langlois, and Scaillet (2021) show that domestic factor models explain much more time-series 

variation in country-specific returns and generally have lower pricing errors relative to global 

models. Having a misspecified factor model can lead to inaccurate risk assessments, distorted 

pricing of assets, and misguided investment strategies. Such inaccuracies stem from the model's 

failure to capture essential market dynamics, resulting in misleading risk-return trade-offs. 

 
1 Karolyi (2016) finds that only 16% of all empirical studies published in the top four finance journals are non-

US based papers. In the top fourteen finance journals this figure rises to 23%.  
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Consequently, investors might make suboptimal decisions, allocating resources based on 

flawed understandings of market behaviour.  

In recent years, European markets have been subject to this aggregation for the purpose of 

testing global factor models, with the literature on model testing in a local or country-specific 

setting remaining quite limited. Except for the U.K., there is a lack of research focused on 

analysing stock returns at a local level across European markets to understand unique market 

drivers. Despite these research gaps, the study of linear factor models in a European setting 

remains a growing area. This is not surprising given that the European asset management 

market, valued at USD 32.20 trillion in 2023, is forecasted to grow to USD 41.61 trillion by 

2028, with a compound annual growth rate of 5.26%. Nearly 55% of these assets are managed 

for investment funds and 45% for discretionary mandates. The market is dominated by a few 

countries, where the United Kingdom, France, Germany, Switzerland, Netherlands, Italy and 

Spain comprise about 88% of the total market2.  

The study of Pukthuanthong et al., (2023) is the most recent example of efforts to understand 

model performance across European markets. Their work is somewhat aligned with my broader 

research objective; however it lacks the extensive and comprehensive approach needed to fully 

understand these models in a pan-European context. This thesis makes a significant 

contribution to the ongoing discussion regarding the effectiveness of local models in 

international asset pricing. Specifically, this study aims to examine the performance of a 

comprehensive set of prominent factor models using both classical and Bayesian model 

comparison frameworks across a sample of developed European markets. A novel optimisation 

methodology is then applied in an effort to enhance model performance. 

1.2 Rationale for research on this topic 

 

The shift towards including non-U.S. research in asset pricing reflects a broader move towards 

an international perspective in financial studies. The global testing of aggregated data is based 

on the belief that integrated financial markets share similar forces, suggesting a single, optimal 

model could explain variability worldwide. This hypothesis underpins the focus on global 

factors in recent model comparison research, as seen in studies such as Hanauer (2020), Qiao, 

Wang, and Lam (2022), and Huber et al. (2023).  

 
2 https://www.mordorintelligence.com/industry-reports/europe-asset-management-industry/market-size 
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Typically, as seen in Hanauer (2020), regional factors are formed by first applying country-

specific static and dynamic filters to market and accounting data. Countries are then categorised 

into regional groups such as Asia Pacific, Europe, Japan, and emerging markets. Within each 

region, factors like size (SMB) and value (HML) are constructed based on 2x3 sorts of size and 

other characteristics. To form global factors, the regional factors are aggregated. For example, 

the global size factor (SMB) is the average of the size factors calculated for each region. This 

standardisation ensures that the global factors are comparable across different regions and time 

periods 

However, as mentioned previously, it has been found that these global factor models perform 

poorly in asset pricing tests at a local and regional level. Studies by Griffin (2002) and Hou, 

Karolyi, and Kho (2011) reveal that local models outperform global models within 

international stock markets. The metric used in these model comparison tests is typically the 

pricing error (alpha), which represents the unexplained variations in asset returns after 

accounting for the model's factors. Griffin (2002) finds that domestic factor models generally 

have lower pricing errors than global factor models when examining returns in the U.S., Japan, 

the U.K., and Canada. The author outline how country-specific three-factor models are more 

useful in explaining average stock returns than are international versions and concluded that 

for practical applications like cost of capital calculations and performance evaluations, a 

country-specific approach to the three-factor model is preferable. Hou, Karolyi, and Kho 

(2011) also tested local versus global versions of the Capital Asset Pricing Model (CAPM) and 

a three-factor model incorporating market, momentum, and value factors. They found that local 

models consistently outperformed their global counterparts, with lower pricing errors 

indicating better model performance.  

Fama and French (2012) build on these findings by examining the performance of global and 

local versions of the Fama-French four-factor model. They found that local models generally 

surpassed global models in performance, particularly when explaining average returns on 

regional portfolios. For example, the local model for Japan provided a significantly tighter fit 

and more accurate explanation of Japanese asset returns compared to the global model. 

Performance was measured using various statistical metrics, including the average absolute 

intercepts and the Sharpe ratio for the intercepts. The results indicated that local models are 

better able to capture variation in regional asset returns.  
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This outperformance has persisted over time, with recent examples including Chaieb, Langlois, 

and Scaillet (2021), who examine the performance of global, regional, and local factor models 

in explaining individual stock returns across 47 countries from 1985 to 2018. They find that 

global factor models consistently underperform local factor models. The study highlights the 

necessity of including local market factors to accurately capture the factor structure in both 

developed and emerging markets. The authors demonstrate that neither global nor regional risk 

factors, nor currency considerations, can fully subsume the importance of local market factors. 

Their findings indicate that local factors carry significant risk premia and that models 

incorporating these local factors provide better explanations of stock returns, reaffirming the 

need for localised approaches in international asset pricing. 

Similarly, across a comprehensive dataset covering 48 MSCI developed and emerging markets, 

Hollstein (2022) compares the performance of global, regional, and local versions of various 

factor models, including the CAPM, the Fama and French three-factor model, the Carhart four-

factor model, the Fama and French five-factor model, and several others. The study focuses on 

the ability of these models to explain returns of anomaly portfolios across developed and 

emerging markets. The findings reveal that global factor models consistently underperform 

local factor models in explaining anomaly returns. The average absolute alphas for portfolios 

using global models are higher than those using local models, indicating worse performance. 

Specifically, global models result in annual anomaly portfolio alphas that are, on average, 1.7 

percentage points higher than local models, while regional models result in alphas that are 1.1 

percentage points higher than local models. 

Huber et al., (2023) also note in their study of global and regional asset pricing models that 

while factor models which include both regional and global factor versions tend to be powerful 

in explaining cross sectional returns, the contribution of regional factors tends to be larger, 

consistent with the notion that international equity markets are partially segmented and 

partially integrated. A recent study by Pukthuanthong et al. in (2023) also showed local factor 

models generally have lower average alphas than regional and global models when explaining 

a range of cross-sectional anomalies across a range of global markets.  

However, concentrating on a European sample, it might be intuitive to assume that the 

geographical closeness of European countries would lead to similar financial market 

behaviours. This similarity could be further supported by shared regulations, norms, and 

common currencies in certain regions. Consequently, one might infer that larger regional and 
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global model, with their shared influences on financial markets, would be superior to local 

models.  

However, academic research has demonstrated that this assumption does not hold true. Mirza 

and Afzal (2011) examined the performance of the Fama and French three-factor model on 

stocks from 15 European countries. Due to the increasing integration of global markets and the 

rising correlations of stocks between countries, the authors conducted their analysis at a global 

portfolio level. They used the MSCI EMU Index, which captures large and mid-cap 

representation across 10 developed countries in the European Economic and Monetary Union 

(EMU), as the market portfolio. Their findings revealed that the three-factor model failed to 

explain the variations in portfolios sorted from country returns. The findings indicate that the 

model performs poorly, with significant pricing errors (alphas) and an often insignificant 

market premium, highlighting the limitations of using a global model without accounting for 

local market factors. These results are consistent with Griffin (2002), who suggested that the 

three-factor model is domestic in nature and performs poorly for global portfolios. Some 

researchers, such as Fama and French (1998) and Hau (2011), suggest that stocks are globally 

priced. 

Following Griffin's influential 2002 study, questions arose about the variation in market forces 

across countries and regions, despite the interconnected nature of global markets. Karolyi and 

Stulz (2003) reviewed the international finance literature to assess the extent to which global 

factors affect financial asset demands and prices. They found that theoretical asset-pricing 

models based on mean-variance optimising investors fail to explain the portfolio holdings of 

investors who exhibit a home bias. Karolyi and Stulz highlighted that this preference for local 

investments significantly enhances the impact of local factors on asset prices. They argued that 

models assuming perfectly integrated international financial markets face substantial 

challenges in accurately explaining both the composition and evolution of portfolio holdings 

over time. Their work underscores that while home bias decreases the relevance of international 

determinants of domestic stock prices, it does not entirely negate the influence of global factors. 

Instead, it suggests a complex interplay where local influences are pronounced due to investor 

preferences, even as global market integration and cross-country equity flows exert significant 

effects on asset prices. Despite the theoretical expectation that investors would hold a 

diversified portfolio of equities across the world if capital were fully mobile across borders, 

home bias in equities remains prevalent in most countries, though it is slowly decreasing and 

tends to be higher in emerging markets (Kilka and Webber, 2000). French and Poterba (1991) 
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report that U.S. investors hold 93.8% of their equity portfolio in domestic stocks, Japanese 

investors 98.1%, and U.K. investors 82%. These figures have not fallen as expected over the 

course of the 2000s; for instance, in 2007, U.S. investors held more than 80% of domestic 

equities, which is much higher than the proportion of U.S. equities to the world market portfolio 

(Ardalan, 2019). 

Empirically demonstrating these concerns, Chaieb, Langlois, and Scaillet (2021) explore 

'aggregation bias,' where trends in aggregated data are wrongly applied to local markets. Their 

research shows that combining assets into portfolios can misrepresent factor exposures, 

emphasising the importance of considering local markets to understand asset pricing in both 

developed and emerging markets. They find that local market factors remain significant even 

when including global, regional, or currency risk factors, challenging the belief that global 

integration diminishes the importance of local factors. Despite this, there is still limited 

literature on identifying the optimal asset pricing model for individual markets, highlighting a 

gap in understanding local influences. 

Several key features make the European financial landscape unique and valuable for financial 

studies. Unlike North America or Asia, where major financial markets are spread over vast 

areas, European markets are in closer proximity, with monetary unity and varying economic 

regimes. This suggests the presence of both regional and local influences. Despite this, there is 

a significant gap in research focused on assessing and enhancing asset pricing models 

specifically for European markets. Beyond the U.K., most developed European markets lack 

comprehensive examinations of factor models over extended periods. 

The most recent study, and to the best of my knowledge the first of its kind, that aims to identify 

the optimal factor model for international stock markets with a focus on domestic factors, was 

conducted by Pukthuanthong et al. in (2023). This study evaluates the effectiveness of local, 

regional, and global models in explaining various cross-sectional anomalies, using a 

comprehensive international sample that includes 13 European markets. Using the Bayesian 

model scan tests of Chib et al. (2020), the author identifies the top-performing combination of 

investment factors in each market and compares their effectiveness in explaining 153 cross-

sectional anomalies. In this analysis models with local factors perform best, while there is not 

much difference in the performance of regional and global models, a finding similar to 

Hollstein (2022). The study by Pukthuanthong et al. (2023) has limitations, beginning with its 

exclusive focus on the Bayesian approach for model comparison. Given the size of the sample 
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the authors consider only 10 investment factors in their analysis, two of which are currency 

based factors. Their sample period runs for 21 years which is a short period of analysis relative 

to other recent asset pricing tests such as Chib and Zeng (2020) and Qiao, Wang, and Lam 

(2022).  

In this thesis, I examine the performance of a comprehensive set of factor models in European 

stock returns within both classical and Bayesian asset pricing frameworks over an extended 

period of analysis. Additionally, I apply a new and innovative method to enhance these models' 

performance by incorporating conditioning information from past factor returns. My 

overarching goals are as follows: Firstly, to examine if a single model outperforms across all 

the markets included in the analysis. Secondly, to determine if model performance can be 

improved using this optimisation process involving past returns as conditioning information. 

Beyond these primary objectives, this thesis provides insights into the drivers of stock returns 

in European markets at a local level. This work marks a notable advancement in European asset 

pricing studies and contributes significantly to the broader field of financial research. 

1.3 Research Aims  

 

The research is presented in three further chapters. The report finishes with a chapter drawing 

together the main conclusions of the three papers in a unified structure.  

Comparing Asset Pricing Models 

The first chapter examines the performance of traditional factor models across a selection of 

European markets, employing the asymptotically valid tests of comparison developed by 

Barillas, Kan, Robotti and Shanken (2020). The aim is to identify the top performing model in 

each market and to examine if a single model outperforms across all markets. Furthermore, this 

chapter provides an overview of the asset pricing theories that underpin the empirical analysis 

and introduces the dataset to be used in this thesis. 

The key research questions addressed in this chapter are: Which asset pricing model performs 

best in each European market? Is there a single asset pricing model that consistently 

outperforms across all European markets?  

Time Series Efficient Factors  

The second chapter explores the concept of 'time-series efficient factors,' where the serial 

correlation in factor returns is used as conditioning information to enhance the Sharpe ratios of 
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the European factors under consideration. The chapter then examines whether a distinct 

momentum factor is still necessary in the models across different markets with these efficient 

factors. Subsequently, the model comparison tests from the previous chapter are repeated to 

determine the impact of these mean-variance efficient factors on both the absolute and relative 

performance of the models across countries.  

The key research questions addressed in this chapter are: Can conditioning factor weights on 

historical returns enhance the mean-variance efficiency of factors? Is a distinct momentum 

factor still necessary when using time-series efficient factors? How do mean-variance efficient 

factors impact the Sharpe performance of asset pricing models across European markets? 

Bayesian Tests of Model Comparison 

The final empirical chapter uses the Bayesian model scanning strategy of Chib, Zeng and Zhao 

(2020) to identify the optimal combination of risk factors from an initial set in each country. 

The aim is to compare the most effective model found here with the optimal model from the 

classical tests. Additionally, the chapter aims to assess how the assumption of the distribution 

of factor data, whether Gaussian or Student-t, impacts the optimal combination of factors. 

Subsequently, the chapter integrates the time-series efficient factors from the previous chapter 

into the model scan to investigate whether these mean-variance efficient factors can enhance 

the performance of factor models.  

The key research questions addressed in this chapter are: What is the optimal combination of 

risk factors in each country according to Bayesian model scanning? How does the distributional 

assumption (Gaussian or Student-t) impact the optimal combination of factors? Can integrating 

time-series efficient factors enhance the performance of factor models in a Bayesian 

framework? 

1.4  Main Findings 

 

Comparing Asset Pricing Models 

The first empirical chapter shows that both the Fama and French (2018) and Asness et al. (2015) 

models perform well across the selection of markets. However, the best-performing model 

varies by country, indicating the presence of local influences in European stock returns. There 

is also consistency in the relative performance of models across markets, though it does vary 

by market. These findings are supported by simulation evidence.  
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For academics, this work significantly contributes to the literature on model comparison in a 

European setting, providing insights into how different models perform under varying market 

conditions. On a practitioner level, identifying the best-performing models at a local level 

allows for more accurate estimations of the cost of capital3, enhances investment decision-

making, and aids in risk assessment by tailoring strategies to specific local characteristics. 

Time Series Efficient Factors  

In this chapter several risk factors across the European sample are found to be mean-variance 

inefficient. Using the framework proposed by Ehsani and Linnainmaa (2022), conditioning 

factor weights on past returns significantly improves their Sharpe ratios. The findings indicate 

that while optimised factors reduce the importance of a distinct momentum factor, they do not 

eliminate its necessity. When rerunning the model comparison tests, the efficient factors 

enhance the absolute performance of underperforming models, with notable improvements in 

their squared Sharpe ratios. However, the best-performing model identified in the previous 

chapter and the relative performance of models remain unchanged.  

For academics, this study demonstrates that certain factors in European returns are mean-

variance inefficient, highlighting the importance of verifying the mean-variance efficiency of 

factors in future model tests. Practitioners can utilise these optimised factors to improve 

portfolio performance and enhance risk-adjusted returns by employing a more precise factor 

weighting strategy. 

Bayesian Tests of Model Comparison 

The model scan approach shows that the optimal model across markets is different from those 

identified in the classical tests. However, the optimal models do contain factors present in the 

top-performing models from the classical framework. This examination uses both multivariate 

normal and Student's t-distributions for the factor data to account for the presence of fat tails. 

Neither distributional assumption consistently outperforms across the sample. Additionally, the 

Bayesian framework shows that the time-series efficient factors enhance the performance of 

models across the sample.  

For both academics and practitioners, this study enhances Bayesian model comparison in a 

European setting through a longer period of analysis, a broader range of factors, and the 

 
3 Using historical data can lead to inaccuracies in cost of capital estimates due to potential future market 
changes, regime shifts, and evolving company risk profiles. 
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comparison of distributional assumptions. Additionally, it provides a direct comparison 

between classical and Bayesian model comparison tests, offering valuable insights into the 

effectiveness of different approaches in identifying optimal asset pricing models. 

1.5  Key Contributions 

Comparing Asset Pricing Models  

This work contributes to the European asset pricing literature by evaluating an extensive array 

of models, incorporating a broad spectrum of factors over an extended timeframe in European 

stock returns at a local level. It highlights the local influences on stock returns in European 

markets, which have been underrepresented in the literature. 

Time Series Efficient Factors 

This research is the first outside of the U.S. to examine the mean-variance efficiency of factor 

returns in this manner. We show that this transformation enhances the performance of some 

factors and factor models, thus contributing to the understanding of optimising factor weights 

and their impact on asset pricing models in a European setting. 

Bayesian Tests of Model Comparison 

This study contributes a direct comparison between classical and Bayesian model comparison 

methods to the European asset pricing literature. It provides insights into the impact of 

distributional assumptions of European factor data on the model scan. Additionally, it is the 

first to include ‘time-series efficient factors’ in a Bayesian model scan framework. 
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Chapter 2 Comparing Asset Pricing Models 

 

 

 

 

 

 

Abstract 

This study evaluates the relative performance of nine competing traditional asset pricing 

models is evaluated across developed European stock markets over the period from 1991 to 

2022. I conduct asymptotically valid tests of model comparison developed by Barillas, Kan, 

Robotti and Shanken (2020) where the extent of model mispricing is gauged by the squared 

Sharpe ratio improvement measure of Barillas and Shanken (2017). This study finds that the 

Fama and French (2018) and Asness et al. (2015) 6-factor models emerge as the dominant 

models in the majority of the markets examined.  
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2.1 Introduction 

 

As previously mentioned, much of asset pricing research has relied heavily on U.S. data 

(Karolyi, 2016). Recently, there has been a notable increase in studies conducting model 

comparison tests on global samples to identify return drivers in non-U.S. markets (Hanauer, 

2020; Qiao Wang and Lam, 2022; Huber et al., 2023). This approach involves aggregating 

accounting and financial data from various countries to form global risk factors for analysis. 

Despite the rationale that global market interconnectedness subjects all markets to similar 

forces, studies (Griffin, 2002; Hou, Karolyi, and Kho, 2011; Fama and French, 2012; Chaieb, 

Langlois, and Scaillet, 2021) emphasise the importance of local factors in asset pricing. These 

studies argue that global factor models often mis specify local influences, leading to inaccurate 

risk assessments and misguided investment strategies. Consequently, investors may make 

suboptimal decisions based on flawed understandings of market behaviour. 

The aim of this chapter is to test the performance of prominent asset pricing models across six 

distinct European markets. Rather than evaluating them on a global or broad regional scale, 

this study is focused on individual European countries to account for local market 

characteristics and variations in financial environments. Europe's developed financial markets, 

close geographical proximity, and, for the most part, unified economic and monetary systems 

make it an ideal setting for finance studies. However, differences in currency systems, such as 

the UK's use of the pound and its recent exit from the European Union (Brexit), present unique 

challenges that warrant separate consideration. Although the UK remains a major financial hub, 

the structural differences between the UK and Eurozone countries suggest that models designed 

for the broader European market may not seamlessly apply. 

Furthermore, this study is motivated by the potential local influences that underscore the 

necessity of customising factor models to account for the distinct economic and market 

environments in each country. Different markets are driven by unique factors—such as industry 

compositions and investor behaviour —which can significantly influence asset returns. These 

variations mean that a one-size-fits-all approach to asset pricing may overlook key drivers 

specific to each market. As a result, tailored models are needed to better capture the underlying 

dynamics that affect returns in each country. Despite these favourable conditions, there remains 

a notable gap in research aimed at assessing and enhancing asset pricing models specifically 

within these individual European contexts. For many of the countries in my sample, there is 
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little to no examination of a wide range of factor models over extended periods in a classical 

model comparison framework. By focusing on six specific European countries, this study aims 

to fill that gap and provide a clearer understanding of how local influences might affect the 

performance of these models. An overview of some asset pricing and model comparison studies 

conducted in these markets is provided in Section 2.5.2. 

This chapter’s focus on testing asset pricing models at the local level across European markets 

addresses an essential gap in finance research, particularly for non-U.S. regions. While global 

factor models have become a popular approach in asset pricing studies, these models often 

overlook the unique, local economic forces that influence asset returns in individual markets. 

By examining six European countries individually, this study emphasizes the importance of 

localized risk factors, addressing findings from prior studies that global models can 

misrepresent or dilute local effects. Given the distinct financial structures, investor behaviours, 

and economic conditions that vary across European markets—even in regions sharing similar 

currencies or regulatory frameworks—this chapter aims to refine the understanding of asset 

pricing models in a way that directly benefits practitioners. Through the use of Barillas et al. 

(2020)’s asymptotically valid comparison tests and Sharpe ratio-based performance metrics, 

this research not only contributes to academic literature by assessing model accuracy across 

diverse financial environments but also provides actionable insights for investors, who can 

make better-informed decisions with models tailored to specific European markets. Ultimately, 

this localised approach has implications for improved asset pricing, risk assessment, and 

investment strategies in diverse financial contexts, highlighting where local factors play a 

pivotal role. 

This study employs the asymptotically valid model comparison tests from Barillas et al. (2020), 

which facilitate the comparison of non-nested factor models, aligning with the analytical 

objectives. Model performance is assessed using the squared Sharpe ratio improvement, 

following the test asset irrelevance framework of Barillas and Shanken (2017). The key idea 

of this framework is that if test assets are common across regressions, the relative comparison 

between models is driven solely by the Sharpe ratios of the factor portfolios, providing a robust 

economic criterion for identifying the 'best-performing model’. My focus is twofold: first, to 

identify the best-performing asset pricing model in each European market within the sample. 

This approach is intended to provide practical insights for market participants, highlighting the 

cross-sectional variability. Second, to determine whether a single model can consistently 

outperform across the European sample.  
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These tests find that the Fama and French (2018) 6-factor model with both the original value 

factor and the updated value factor of Asness and Frazzini (2013) emerges as the dominant 

models in the majority of the markets examined. However, major consistency in the absolute 

and relative performance of models across markets is not observed. This indicates that local 

factors influence asset returns in a European setting, suggesting that a single model is not the 

optimal choice for all markets. Simulation evidence provides robustness to these results.  

2.2 Overview of Asset Pricing Theory 

2.2.1 Stochastic Discount Factor  

 

Before exploring factor models, or model comparison frameworks, it is important to establish 

a foundational understanding of asset pricing theory that underpins all pricing models, not just 

factor models. Asset pricing theory aims to explain the reasons for variation in asset returns 

across different assets, known as cross-sectional predictability, and the fluctuation of asset 

returns over time, referred to as time-series predictability. Additionally, it seeks to understand 

why stocks typically yield higher returns than riskless bonds, a phenomenon known as the 

equity premium. Asset pricing theory fundamentally originates from a straightforward concept 

that the price of an asset equals the expected discounted payoff.  

The Law of One Price (LOP) principle asserts that in an efficient market, assets with identical 

payoffs should sell for the same price. Hansen and Richard (1987) extend this idea to imply 

that there should be no discrepancies in the pricing of any assets if there are no market frictions 

like transaction costs or restrictions on trading. Harrison and Kreps (1979), Hansen and Richard 

(1987), and Ross (1978) show that if the LOP holds in financial markets, then a stochastic 

discount factor (𝑚𝑡+1) exists such that we can write the price of asset 𝑖 at time 𝑡 as:  

𝑃𝑖𝑡 = 𝐸𝑡{𝑚𝑡+1(𝑃𝑖𝑡+1 + 𝐷𝑖𝑡+1)},       for 𝑖=1,..,N            (2.1) 

 

where 𝐷𝑖𝑡+1 is the amount of dividends or other payments received at 𝑡 + 1, 𝐸𝑡 term is the 

conditional expectation given the information available to investors at time 𝑡, and N is the 

number of test assets. To calculate the price or value of a financial asset, you multiply its 

expected future payoffs, which is the combination of future price plus dividends or other 

payments, by the Stochastic Discount Factor (SDF). This process discounts these payoffs to 

their present value, setting that the asset's price equals the present value of its expected future 
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payoffs. This means that the pricing error (the difference between the asset's expected price and 

its market price) is zero.  

The No Arbitrage (NA) principle states that market forces tend to align prices of financial assets 

so as to eliminate arbitrage opportunities. An arbitrage opportunity arises if assets can be 

combined in a portfolio with zero cost, no chance of loss and positive probability of gain. If 

the No Arbitrage (NA) condition holds in financial markets, the 𝑚𝑡+1 will be positive in each 

period (Cochrane, 2005). Equation 2.1 upholds the NA principle, suggesting that portfolios 

with only non-negative, potentially positive payoffs should also be priced positively. This is in 

line with the foundational work of Harrison and Kreps (1979) and Hansen and Richard (1987), 

who assert that any failure in these conditions opens the door to arbitrage. For instance, a 

negative SDF would reverse the relationship between future payoffs and their present values, 

allowing investors to profit by shorting assets with positive expected payoffs since their 

discounted present value becomes artificially high. If the NA condition is rigorously upheld, 

𝑚𝑡+1  remains positive, ensuring that markets are free from arbitrage as per Cochrane (2005). 

This means that all potential arbitrage opportunities, which would allow an investor to secure 

a risk-free profit without any investment, are either non-existent or have been neutralised by 

market forces. 

Empirical asset pricing works with returns and payoffs to standardise the scale of outright asset 

prices. The gross return of an asset can be defined as 𝑅𝑡+1 = (𝐷𝑡+1 + 𝑃𝑡+1)𝑃𝑡. Then equation 

2.1 is equivalent to  

𝐸𝑡(𝑚𝑡+1𝑅𝑡+1) = 1     (2.2) 

 

where the expected discounted returns (considering all states of the world and their 

probabilities) should equate to the asset's current price, normalised to 1 in this theoretical 

framework. If the asset payoffs are considered as excess returns (returns above the risk-free 

rate), the expected value of the discounted excess returns should be zero, represented as:  

 

𝐸𝑡(𝑚𝑡+1𝑟𝑖𝑡+1) = 0     (2.3) 

 

where 𝑟𝑖𝑡+1 is the excess return of asset 𝑖 at time t+1. This formulation is central in empirical 

asset pricing, especially when testing models across various assets.  
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In addition to these principles, the concepts of complete and incomplete markets are crucial in 

understanding the application and uniqueness of the SDF. In complete markets, every possible 

future state of the world can be perfectly hedged or replicated using a portfolio of existing 

assets. This implies that there are enough securities in the market to span all possible payoffs, 

resulting in a unique and well-defined SDF. The unique SDF ensures consistent pricing across 

all assets, adhering to the Law of One Price (LOP) and preventing arbitrage opportunities. This 

concept is rooted in the Arrow-Debreu model from 1954.   

Conversely, in incomplete markets, not all possible future states can be hedged or replicated 

using the available assets, leading to the potential for multiple SDFs. This scenario can result 

in different SDFs pricing different subsets of assets correctly, causing inconsistencies in asset 

pricing. The inability to hedge all future states means that some payoffs cannot be perfectly 

priced, leading to mispricing and potential arbitrage opportunities. Without a unique SDF, the 

relationship between future payoffs and present values may not hold uniformly, and the market 

may not adhere strictly to the LOP. As a result, incomplete markets might allow for temporary 

or persistent arbitrage opportunities due to the inability to trade in certain states.  

2.2.2 Asset Pricing Model Development 

 

Early specifications of the SDF were consumption-based, linking asset prices to their 

covariances with consumption growth. Breeden and Litzenberger (1978) developed the 

Consumption Capital Asset Pricing Model (CCAPM), where asset prices reflect their potential 

to enhance future consumption, and utility is modelled with diminishing marginal returns 

(Epstein and Zin, 1991; Weil, 1989). The SDF in these models is expressed through the ratio 

of marginal utilities across time (Breeden, 1979). Despite theoretical appeal, consumption-

based models have struggled to perform well in empirical tests, particularly in explaining cross-

sectional return variations (Campbell and Cochrane, 2000; Hansen and Singleton, 1982; Hyde 

and Sherif, 2005). 

Linear factor models have emerged as powerful tools in financial economics, primarily because 

they address the practical limitations of consumption-based models, providing a more robust 

and reliable proxy for marginal utility (Cochrane, 2005). Traditional consumption-based 

models often hinge on the accurate measurement of marginal utility from consumption and its 

relationship to asset prices—a relationship that, in practice, proves difficult to quantify directly 

and consistently across different market conditions. In contrast, linear factor models simplify 
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this relationship by assuming a linear form for the stochastic discount factor (SDF), typically 

represented as, 

𝑚𝑡+1 = 𝛼 + 𝑏𝑓𝑓𝑡+1     (2.6) 

where 𝛼 and 𝑏𝑓 are parameters that adapt flexibly to empirical data. 

One of the significant advantages of linear factor models is their ability to use simpler, more 

straightforward relationships that can still effectively capture the economic states impacting 

investor concerns and market fluctuations. By linearising the SDF, these models reduce the 

complexity involved in modelling dynamic economic interactions, making it easier to apply 

these models across diverse conditions without losing the nuance of economic realities. This 

linear specification facilitates broader applications and enhances the models' adaptability to 

changing economic environments. 

Cochrane (2005) notes that consumption is related to broad economic indicators such as GDP 

growth, investment returns, and interest rates. These relationships suggest that wealth portfolio 

returns, which reflect the performance of a wide array of investments and economic activities, 

can serve as a robust proxy for the overall economic state and thus marginal utility. Cochrane 

(2005) demonstrates how the CAPM can be derived from a consumption-based framework in 

various ways, such as through assumptions of two-period quadratic utility and log utility. Each 

approach links the discount factor directly to the return on the wealth portfolio. 

For example, with log utility, there is a proportional relationship between consumption and 

wealth, simplifying the substitution of wealth for consumption in asset pricing models. This 

means that as consumption increases, the utility or satisfaction of the investor also increases.  

The marginal utility of consumption under log utility is inversely proportional to consumption, 

allowing the discount factor 𝑚𝑡+1 to be expressed as the inverse of the return on wealth: 𝑚𝑡+1 =

1

𝑅𝑊
. This means that if the return on wealth is high, the discount factor is low, and vice versa. 

This relationship eliminates the need to directly measure consumption data, which can be 

difficult, and instead uses observable market returns to estimate the discount factor. This 

simplification eliminates the need for direct consumption data, which can be difficult to 

measure accurately, and aligns the model closely with observable market returns. 

In this context, rewriting equation 2.2 to reflect the above, we get 1 = 𝐸[(𝛼 + 𝑏𝑅𝑊,𝑡+1)𝑅𝑖,𝑡+1] 

which then when rewritten and solved for the expected return gives us the CAPM equation of  
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𝐸(𝑅𝑖,𝑡+1) = 𝑅𝑓 + 𝛽𝑖(𝐸(𝑅𝑊,𝑡+1) − 𝑅𝑓)   (2.7) 

where 𝑅𝑊 is the return on the wealth portfolio, 𝑅𝑓 is the risk-free rate, and 𝛽𝑖 is the sensitivity 

of the i-th asset to the wealth portfolio. This setup directly links the market’s overall 

performance to the perceived utility, providing a clearer and more direct proxy for 

understanding and predicting investor behaviour than traditional models. 

The wealth portfolio concept is crucial for showing how linear factor models approximate 

marginal utility changes across economic states. By considering the portfolio's returns over two 

periods, these models capture how market risks affect consumption and investment decisions. 

Linearising models is essential in financial economics because they simplify complex 

relationships, making them easier to analyse and apply to real-world data. They provide robust 

approximations to nonlinear relationships, are less sensitive to small changes, and offer 

straightforward economic interpretations. Certain utility functions, such as log utility, naturally 

lead to linear relationships, simplifying the substitution of wealth for consumption in asset 

pricing models. 

One common method of linearising a model is through a Taylor expansion. This technique 

involves expanding a nonlinear function around a point, usually the mean or equilibrium value, 

and using the first-order terms to approximate the function linearly. For instance, if the factor 

model is initially non-linear, applying a Taylor expansion around an expected value of the 

factor 𝑓𝑡+1 can yield a linear approximation:  

𝑚𝑡+1 ≈ 𝛼 + 𝑏(𝑓𝑡+1 − 𝐸[𝑓𝑡+1])    (2.8) 

This linearisation makes it feasible to empirically estimate model parameters and facilitates the 

application of regression techniques for testing hypotheses about asset returns. 

Linear factor models simplify the relationship between economic states and asset prices by 

using linear representations of the SDF. This approach provides a more effective and 

empirically robust framework for asset pricing compared to traditional consumption-based 

methods. By bridging the gap between theoretical finance and practical market analysis, these 

models enhance our understanding of how systemic risks and economic variables influence 

investor behaviour and market dynamics. Consequently, the financial community gains tools 

that are both theoretically sound and practically applicable, improving the precision of asset 

pricing and investment strategy formulation. 
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2.2.3 Model Composition  

 

The question is, what should one use for factors 𝑓𝑡+1? The chosen factors should serve as good 

proxies for aggregate marginal utility growth, meaning they should reflect changes in the 

economy or market that influence the utility derived from consumption. The idea is that certain 

economic states or events (referred to as "bad states") have a significant impact on investors' 

preferences regarding risk and return. These states are characterised by a heightened concern 

over portfolio performance. Despite some criticism of consumption-based models for their 

practical limitations, all factor models are essentially extensions or special cases of the 

consumption-based model. These models incorporate additional assumptions that allow them 

to use other variables as stand-ins for the growth in marginal utility, which is a central concept 

in understanding consumption choices and asset valuations.  

Cochrane outlines that asset pricing fundamentally concerns identifying states of the world 

where investors are particularly wary of their portfolios underperforming. These "bad states" 

are moments of economic stress or downturns where the marginal utility of consumption 

typically rises, as each additional unit of consumption becomes more valuable. Investors are 

willing to sacrifice some level of average return to ensure their investments are safeguarded 

against these adverse conditions. The selected factors, therefore, should be indicators of such 

states, helping investors and economists understand when and why portfolios might 

underperform. 

The arbitrage pricing theory (APT), introduced by Stephen A. Ross (1976), was the first major 

asset pricing model to include multiple risk factors. It acknowledges that numerous 

comprehensive risk sources, such as inflation, interest rates, and business activity, shape 

security returns. The specification of a multifactor model is in the form of a multivariate linear 

regression with N excess returns, 𝑅, and K traded factors, 𝑓 . With T observations on 𝑓𝑡 and 

𝑅𝑡:  

𝑅𝑡 =  𝛼𝑟 + 𝛽𝑓𝑡 + 𝜀𝑡, 𝑡 = 1, … , 𝑇.                              (2.10) 

where 𝑅𝑡 , t , and 𝛼𝑟 are N-vectors; 𝛽 is an N × K matrix; and 𝑓 is a K-vector where K is the 

number of factors. In this case the SDF is specified as:  

𝑚𝑡+1 =  𝛼 +  𝑘=1
𝑘

𝛽𝑘𝑓𝑘𝑡+1     (2.11) 

Where β are multiple regression coefficients of returns R on the factors 𝑓𝑘𝑡+1. 
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The APT serves as an alternative to the CAPM, both proposing a linear relationship between 

expected returns and their covariance with certain risk factors. While the CAPM focuses on the 

market portfolio return, the APT includes multiple factors. Cochrane (2005) links this to mean-

variance efficiency, showing that any multiple-beta model can be expressed through a discount 

factor model, where the discount factor is a linear function of those risk factors.  

Factors in these models are selected from stock characteristics related to cross-sectional returns, 

reflecting market anomalies that contradict the efficient market hypothesis (EMH). According 

to EMH, asset prices fully incorporate all available information, making it difficult to 

consistently outperform the market on a risk-adjusted basis. However, market anomalies 

indicate potential for abnormal returns, showing patterns or events that deviate from expected 

efficient behaviour. These factors represent systematic deviations from market efficiency, often 

supported by economic theories that explain why certain stocks or strategies may outperform 

others. The existence of predictable patterns in stock returns suggests that markets are not fully 

efficient and that investors can exploit these inefficiencies for potential gains. 

Prominent stock market anomalies include the Size Effect by Banz (1981), illustrating smaller 

companies' tendency to outperform larger ones, and the Value Effect, where stocks with lower 

price-to-earnings or high book-to-market ratios excel in the long run, researched by Rosenberg, 

Reid, Lanstein (1985), Chan, Hamao, Lakonishok (1991), Fama and French (1993). The 

Momentum Effect by Jegadeesh and Titman (1993) shows that stocks with strong past 

performance often continue to perform well. Additionally, the Dividend Yield Anomaly, 

observed by Litzenberger and Ramaswamy (1979), suggests high dividend yield stocks 

outperform lower yield counterparts. The BAB (Betting-Against-Beta) factor, by Frazzini and 

Pedersen (2013), highlights the superior risk-adjusted returns of low-beta stocks, advocating 

for investments in lower-risk stocks.  

To exploit anomalies such as those outlined above, factors are typically constructed in a 

long/short manner to take advantage of these discrepancies in stock performance. Long/short 

factors are investment strategies that involve taking positions in assets expected to increase in 

value (long positions) and in assets anticipated to decrease in value (short positions), aiming to 

profit from the relative performance of these assets. This method is foundational in developing 

factors that shed light on various dimensions of risk and return in financial markets. Recent 

advancements in factor identification have been highlighted by Chib, Lin, Pukthuanthong, and 

Zeng (2023). They recommend a Bayesian approach to uncovering risk factors from a vast 
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array of potential candidates. Their approach specifically targets the derivation of slope factors 

from a broad set of stock characteristics through Fama and MacBeth (1973) regressions. Their 

follow up work utilises cubic splines, as outlined by Chib and Greenberg (2010), to generate 

non-parametric slope factors, employing the PAMS strategy—pruning, augmentation, and 

model scanning—as a comprehensive framework for factor discovery and evaluation. As more 

market anomalies are identified, there's a corresponding increase in the models that incorporate 

these anomalies, aiming to account for asset returns. 

2.3 Model Comparison 

2.3.1 Mean Variance Efficiency 

 

To examine the mean-variance efficiency of a portfolio, Gibbons Ross and Shanken (1989) 

consider the following regression equation: 

𝑅𝑖𝑡 = 𝛼𝑖𝑝 + 𝛽𝑖𝑝𝑓𝑝𝑡 + 𝜀𝑖𝑡,                                (2.12) 

where 𝑅𝑖𝑡 represents the excess return on asset 𝑖 in period 𝑡. 𝑓𝑝𝑡 is the excess return on the 

portfolio being tested. 𝜀𝑖𝑡 is the disturbance term for asset 𝑖 in period 𝑡. The disturbances are  

assumed to be normally distributed with mean zero and a non-singular covariance matrix 𝛴, 

conditional on the excess returns for portfolio 𝑝.  

Following this regression equation, the portfolio 𝑓𝑝𝑡 is considered a factor model combination, 

serving as a benchmark. This setup allows for an examination of how individual assets perform 

relative to this composite factor model. The alpha term (𝛼), initially introduced by Jensen in 

1968, plays a pivotal role in this analysis. It is used to determine whether a portfolio or asset 

performs beyond what this predictive factor model would anticipate, based on its assessed risk. 

The null hypothesis stated as 𝐻0: 𝛼𝑖𝑝 = 0, for i=1,…,N directly suggests that the intercepts 𝛼𝑖𝑝 

in the multivariate linear regression model are hypothesised to be zero for each asset i. This 

means that each asset's excess return is assumed to be fully explained by the factors included 

in the regression (in this case, the excess return on a given portfolio 𝑓𝑝𝑡), without any individual 

asset outperforming or underperforming systematically beyond what the model predicts.  

To assess whether a portfolio is mean-variance efficient, the significance of the alpha values 

can be evaluated using a t-test. If these intercept values are significantly different from zero, it 

suggests that the portfolio may not fully capture the returns of the assets, indicating that the 

model might not completely encompass all relevant risks.  
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In this equation, the left-hand side returns, 𝑅𝑖𝑡, are often termed "Test assets" or mimicking 

portfolios refer to a set of financial assets, such as stocks, bonds, or portfolios, used to assess 

the performance of an asset pricing model. Typically, a broad and diverse range of assets is 

chosen as test assets to ensure that the model is robust across different types of investments.  

Test assets are generally bivariate portfolio analysis, as described by Fletcher (2019). Fletcher 

evaluates the mean-variance efficiency of linear factor models using U.K. stock returns, 

employing two sets of test assets: 16 portfolios sorted by size and book-to-market ratio, and 

another 16 sorted by size and momentum, constructed annually using value-weighted buy-and-

hold monthly returns. For further insights into explanatory returns in asset pricing tests, see 

Fama and French (2018), who utilised 25 portfolios constructed from sorts on size and book-

to-market or size and momentum. A multitude of studies have employed test assets to evaluate 

the effectiveness of asset pricing models in this regression framework, both within the U.S. and 

globally. Notable examples include the works of Fama and French (1992, 2012, 2015, 2016, 

2018), Davis, Fama, and French (2000), Petkova (2006), and Ball, Gerakos, Linnainmaa, and 

Nikolaev (2015). 

In typical tests of asset pricing models, as outlined, there can be 16 to 25 test asset portfolios 

acting as the left-hand side variables. Conducting separate T-tests for each asset's alpha value 

could lead to issues with multiple comparisons, such as increased likelihood of Type I errors 

(falsely rejecting the null hypothesis). Gibbons, Ross, and Shanken (1989) developed a 

multivariate statistical method, based on the principles of the Wald test, to examine the joint 

hypothesis that the alphas of multiple assets or portfolios are all equal to zero in the context of 

an asset pricing model. This test, often abbreviated as the GRS test, is particularly relevant in 

evaluating the performance of a given asset pricing model across several assets or portfolios 

simultaneously.  

The Wald test is a statistical method used to determine whether a set of parameters in a model 

are jointly significant. The test statistic follows a chi-square distribution under the null 

hypothesis, which posits that all alpha values are zero (𝐻0: 𝛼1 = 𝛼2 =. . 𝛼𝑁 = 0), and is given 

by: 

𝑇∗ [
1

1+𝑆ℎ2(𝑓)
] ∗ 𝛼′Σ−1𝛼                                (2.13) 

where 𝛼′Σ−1𝛼 represents the weighted sum of the squared alphas, with weights given by the 

inverse of the residual covariance matrix, Σ. 𝑆ℎ2(𝑓) is the maximum squared Sharpe (1966) 
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performance of the K factors in the model, calculated as  𝑆ℎ2(𝑓)= 𝑢𝑓
′  𝑉𝑓

−1 𝑢𝑓. Here, 𝑢𝑓 is a 

(K,1) array of the sample mean excess returns of the K factors, 𝑉𝑓 is the Maximum Likelihood 

(ML) estimate of the sample (K,K) covariance matrix of the K factor portfolio excess returns 

(Divide by 1/T rather than 1/(T-1)). T is the sample size.  

If this statistic exceeds a critical chi-square value, the null hypothesis is rejected, indicating 

that the coefficients (in this case, alphas) are jointly significant. Conversely, failing to exceed 

the critical value implies that the coefficients are not jointly significant. The assumption of a 

chi-squared distribution for the Wald test, which has N degrees of freedom, holds well in large 

samples due to the central limit theorem. However in small samples, the actual distribution of 

the test statistic may not adequately approximate the chi-squared distribution.  

The Gibbons et al. (1989) (GRS) test modifies the Wald test statistic to make it more applicable 

and interpretable in a finite sample context by transforming it into an F-statistic. This 

transformation adjusts the statistical framework to better align with the characteristics and 

constraints of finite samples, thus providing more reliable inference. The resulting test statistic 

follows an F-distribution, which allows for easier interpretation and comparison with critical 

values from the F-distribution. The statistical assumptions are that both asset and factor returns 

follow a multivariate normal distribution, the residuals exhibit constant variance 

(homoskedasticity), there is no serial correlation in the residuals, and the relationship between 

asset returns and factor returns is linear. The GRS test is given by: 

(
T−N−K

N
) ∗ 𝑇∗ [

1

1+𝑆ℎ2(𝑓)
] ∗ 𝛼′Σ−1𝛼   (2.14) 

The GRS test conditional on the factors has a non-central F distribution with N and T-N-K 

degrees of freedom and non-centrality parameter λ = T𝛼′Σ−1𝛼 /(1 + 𝑆ℎ2(𝑓)).  Under the null 

hypothesis of mean-variance efficiency, λ = 0 and the GRS test has a central F distribution with 

N and T-N-K degrees of freedom. The factor  (
T−N−K

N
)  normalises the test statistic for the 

number of assets (N) and the degrees of freedom remaining after accounting for the number of 

factors (K) and the sample size (T). This normalisation helps mitigate the impact of varying 

sample sizes and the number of parameters being estimated, which are critical in smaller 

samples. However, it is important to note that these results are only valid if the underlying 

statistical assumptions hold true. 
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Gibbons et al. (1989) also demonstrate that the GRS test links to portfolio efficiency 

assessments, as their test can be written as: 

(
T−N−K

N
) ∗ [

( 𝑆ℎ2(r,𝑓)−𝑆ℎ2(𝑓))

(1+𝑆ℎ2(𝑓)
]   (2.15) 

where  𝑆ℎ2(r, 𝑓) is the maximum squared Sharpe performance of the N+K assets.  𝑆ℎ2(r, 𝑓) = 

𝑢′𝑉−1𝑢, where u is the sample mean (N+K,1) excess returns of the N+K assets, V is a 

(N+K,N+K) (ML estimate) of the sample covariance matrix of the N+K assets. Both formulas 

(2.14) and (2.15) represent different expressions of the GRS test, which essentially captures 

the same underlying concept. The test compares the maximum squared Sharpe performance of 

the N+K assets to the maximum squared Sharpe performance of the K factor portfolios. In 

other words, if the Sharpe ratio of the factors/test assets and factor are the same, we will not be 

able to reject H0: 𝛼 = 0, and we can say the factors price the set of test assets. The further the 

optimal portfolio of the K factors lies from the efficient frontier of the N+K assets, the more 

likely it is to reject the null hypothesis of zero pricing errors. If the F-tests reject the null 

hypothesis for all models, it means none completely capture average returns as asset pricing 

models. The GRS test assumes all factors are needed; if rejected, a method of model 

comparison is required. 

The GRS test examines the mean-variance efficiency of a single model, but to compare model 

performances, we need additional metrics. One key metric, as outlined previously, is Jensen's 

Alpha (1968), which evaluates asset performance beyond CAPM expectations. To compare the 

performance of different models, one can look at the alphas produced by each model. Smaller 

and statistically insignificant alphas indicate that the model effectively explains asset returns. 

The Sharpe Ratio (1966, 1994) assesses the risk-adjusted return of a portfolio by comparing its 

excess return over the risk-free rate to its standard deviation, providing insights into the return 

per unit of risk. The Treynor-Black Measure (1973) focuses on a portfolio's excess return per 

unit of market risk, emphasising the importance of beta in understanding investment 

performance. Jensen's Alpha has also been tested with additional factors over the CAPM, such 

as size and value factors by Fama and French (1993), and momentum by Carhart (1997). These 

extensions allow for a more comprehensive analysis of returns. Collectively, these measures 

provide robust methods for evaluating model performance. 

Fama and French (2012, 2015, 2016, 2018) also examine several alpha variations to assess 

model performance. These include: the average absolute alpha (𝐴|𝛼𝑖|), which measures 
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average mispricing, with better models exhibiting lower 𝐴|𝛼𝑖|; the 𝐴(𝛼𝑖
2/𝜎(𝑟𝑖)

2) ratio, 

representing the average squared alphas divided by the variance of the average excess returns 

of the test assets, where lower values indicate better models; the 𝐴(𝛼𝑖
2 − 𝑠𝑒(𝛼𝑖)

2)/𝜎(𝑟𝑖)
2, 

which adjusts for the standard errors of the alphas, reflecting real mispricing relative to the 

variance of the average excess returns, with lower ratios indicating better models; and the 

𝐴(𝑠𝑒(𝛼𝑖)
2/𝐴(𝛼𝑖)

2), which is the ratio of the average squared standard error to the average 

squared alpha, capturing the proportion of mispricing due to sampling error, with higher values 

suggesting better models according to Fama and French. 

2.3.2 Test Asset Irrelevance 

 

Building on the factor redundancy testing of Fama and French (2015), Barillas and Shanken 

(2017) address the issue of comparing models using the classic Sharpe ratio improvement 

metric. This metric evaluates the fit of a model by examining the improvement in the squared 

Sharpe ratio (expected excess return over standard deviation) when additional assets are 

included in the investment universe. The improvement in the squared Sharpe ratio from adding 

test assets R to the investment universe is a quadratic form in the test-asset alphas: 

α𝑅
′ Σ−1α𝑅 = 𝑆ℎ2(𝑓, R) − 𝑆ℎ2(𝑓)   (2.16) 

where the left hand side is a measure of the model's unexplained risk-adjusted performance.  

Gibbons et al. (1989), and later Barillas and Shanken (2017), highlight the importance of test 

assets in evaluating and comparing asset pricing models. Large alphas indicate that the model 

fails to capture significant portions of the return, suggesting that the Sharpe ratio of the model 

can be improved by including these test assets.  

However, Barillas and Shanken (2017) outline how test assets are irrelevant when comparing 

two models using the following setup: 

𝑆ℎ2(𝐴, B, r) − 𝑆ℎ2(𝐴) = 𝑆ℎ2(𝐴, B, r) − 𝑆ℎ2(B)   (2.17) 

where 𝐴 and B represent different models, and r represents a set of test asset returns. This setup 

measures the improvement in the squared Sharpe ratio for two models, A and B, by examining 

the difference in their squared Sharpe ratios before and after the inclusion of factors from the 

other model and test assets r. If all factors and test assets are included, the expression 

𝑆ℎ2(𝐴, B, r) remains the same on both sides. Therefore, the comparison simplifies to 𝑆ℎ2(𝐴) >
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𝑆ℎ2(𝐵), indicating that the model with the higher squared Sharpe ratio is preferable, and the 

test assets drop out of the comparison. 

Barillas and Shanken (2017) argue that what truly matters in model comparison is each model's 

ability to price the "excluded factors" from other models. If a model can effectively price the 

factors in another model (reflected in low or zero "excluded factor" alphas), it suggests that the 

first model captures the risk-return trade-offs inherent in the factors of the second model, and 

so including these factors would not improve the Sharpe ratio of that model as per Equation 

2.16. This capability is more indicative of a model's adequacy than the performance 

improvement measured by the inclusion of test assets. For example, comparing the CAPM to 

the Fama French three-factor model (FF3) would involve alpha tests on the high-minus-low 

(HML) and small-minus-big (SMB) factors to determine if FF3 provides a better risk-return 

trade-off than the market factor alone. 

2.4 Research Methods 

2.4.1 Pairwise Model Comparison 

 

Before continuing, it deserves emphasis that by “model comparison,” I mean here the 

determination of which model is superior according to a given metric. A researcher may, 

nonetheless, be interested in exploring how various models price particular assets, and this is 

certainly a form of comparison, as the term is used more generally. However, as I demonstrate, 

it is not the same as identifying the better model based on well-established criteria. 

When comparing models, we must deal with both nested and non-nested pairs, requiring 

different methods for each. To compare nested models, Barillas and Shanken (2017) show that 

we need only focus on testing the excluded-factor restriction (test assets irrelevance as outlined 

previously). When models are nested, the comparison focuses on the nested structure using the 

heteroskedasticity-adjusted GRS test. This test evaluates whether the additional factors in the 

more complex model significantly improve the Sharpe ratio compared to the simpler model. 

The GRS test compares the squared Sharpe ratios of the nested model to the expanded model 

in order to evaluate whether adding additional factors to a model significantly improves its 

performance. The test statistics and their corresponding p-values indicates whether the 

additional factors of the expanded model provide a significant improvement in performance. If 

the inclusion of additional factors significantly increases the squared Sharpe ratio, it suggests 

that the larger model offers a better risk-adjusted return. 
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Unlike nested models, where one model is a subset of another (and thus they share a common 

set of factors or variables), non-nested models do not share this hierarchy. They may include 

completely different sets of factors or explanatory variables. This lack of commonality makes 

it challenging to directly compare their explanatory power or performance since there's no 

baseline or shared dimension to evaluate them against each other. The improved fit of a model, 

as indicated by a higher squared Sharpe ratio, suggests that it better captures the dynamics of 

asset returns. However, quantifying this improvement requires a detailed analysis of the 

model's predictions against actual returns. Barillas et al. (2020) 4 develop an asymptotic test for 

testing non-nested models. These tests are based on the behaviour of statistical estimators as 

the sample size approaches infinity.  

Consider two nonnested models (A and B) with factor returns 𝑓𝐴𝑡 and 𝑓𝐵𝑡 , respectively, t =1, 

2,...,T. Denote the squared maximum Sharpe ratios that are attainable from the two sets of 

factors by 𝜃𝐴
2  = 𝑢𝐴

′  𝑉𝐴
−1 𝑢𝐴 and 𝜃𝐵

2
 = 𝑢𝐵

′  𝑉𝐵
−1 𝑢𝐵, where 𝑢𝐴, 𝑢𝐵, VA, and VB are the nonzero 

means and invertible covariance matrices of the two sets of factors. Similarly, let the 

corresponding sample quantities be 𝜃𝐴
2  = �̂�𝐴

′  �̂�𝐴
−1 �̂�𝐴 and 𝜃𝐵

2
 =�̂�𝐵

′  �̂�𝐵
−1 �̂�𝐵 ,  

The asymptotic distribution of the difference in sample squared Sharpe ratios, as outlined in 

Proposition 1 of Barillas et al., (2020), is given by: 

√𝑇([θ̂𝐴
2 − θ̂𝐵

2 ] − [𝜃𝐴
2 − 𝜃𝐵

2] ∼ N(0, E[𝑑𝑡
2]),    (2.18) 

provided that E[𝑑𝑡
2] > 0, where 

𝑑𝑡 = 2(µAt − µBt ) − (µ2
At − µ2

Bt) + (𝜃𝐴
2 − 𝜃𝐵

2),    (2.19) 

with    µ𝐴𝑡= µ'
A V

-1
A (fAt − µA) and µBt = µ'

B V
-1

B (fBt − µB).  (2.20) 

Barillas et al. (2020) outline how the differences in Sharpe ratio as outlined in 2.18 follows a 

normal distribution with mean 0 and variance E[𝑑𝑡
2]. An asymptotic distribution is the 

probability distribution that a statistic approaches as the sample size grows indefinitely. This 

indicates that as the sample size T grows, the distribution of the differences in Sharpe ratios 

converges to a normal distribution centered around the true difference.  

Barillas et al. (2020) introduced the concept of bias-adjusted squared Sharpe ratios, building 

on the foundational insights of Jobson and Korkie (1980), who first highlighted the challenges 

 
4 I am thankful to Prof Cesare Robotti for the provision of the MATLAB code on his website to perform these 

tests.  
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of estimating parameters like mean-return vectors and covariance matrices in small samples. 

The Sharpe ratio, a key metric for assessing investment portfolio performance, measures the 

excess return per unit of risk (standard deviation of returns). However, when derived from 

sample data, the Sharpe ratio often overestimates the true population Sharpe ratio due to biases 

inherent in small samples. This overestimation occurs because both the numerator (mean 

excess return) and the denominator (standard deviation of returns) are estimated from the same 

data set, leading to a biased outcome that typically inflates the sample Sharpe ratio. 

To adjust for this bias, Barillas et al. (2020) multiply the squared Sharpe ratio by a correction 

factor (𝑇 − 𝐾 − 2)/𝑇, where 𝑇 is the sample size (number of observations) and 𝐾 is the 

number of factors (or parameters) estimated in the model. This adjustment reduces the squared 

Sharpe ratio, making it a more accurate estimate of the population squared Sharpe ratio under 

the assumption of joint normality of returns. Additionally, 𝐾/𝑇, representing the proportion of 

the sample used to estimate the parameters, is subtracted to further adjust for the degrees of 

freedom consumed in parameter estimation, thus mitigating the upward bias. By adjusting for 

this bias, researchers and practitioners can make more accurate comparisons between different 

investment models or portfolios, especially when the sample sizes are relatively small.  

2.4.2 Multiple Model Comparison 

 

Suppose a researcher is considering more than two models and wants to test whether one model 

(the “benchmark”) is at least as good as the others in terms of its squared Sharpe ratio. Consider 

a benchmark model that is nested in a series of alternative models. We form a single alternative 

model that includes all of the factors contained in the models that nests the benchmark. It is 

then easily demonstrated that the expanded model dominates the benchmark model if and only 

if one or more of the “larger” models dominate it. The null hypothesis that the benchmark 

model has the same squared Sharpe ratio as the alternatives is tested using pairwise nested-

model comparison. Specifically, all factors excluded from the benchmark are projected onto 

the benchmark factors, and it is tested if these alphas are jointly zero. Rejecting this null 

indicates the benchmark is dominated by one or more alternative models; otherwise, the 

benchmark model performs as well as the other models. 

The multiple-model comparison test for nonnested models is based on the multivariate 

inequality test of Wolak (1987, 1989). Suppose there are p models. 

Let δ=(δ2 ,..., δp) and δ̂ˆ=(δ̂2 ,..., δ̂p), where δi = θ2
1 − θ2

i and δ̂i = θ̂1
2 − θ̂𝑖

2 for i = 2,..., p.  



42 

 

Here, δ represents the differences in squared Sharpe ratios between the benchmark model and 

each of the alternative models. A positive value indicates the benchmark model performs at 

least as well as the alternative. δ̂ is the sample counterpart, representing the observed 

differences. The test is as follows: 

H0 : δ ≥ 0 versus H1 : δ ∈ ȵ 

where r = p−1 is the number of nonnegativity restrictions. Thus, under the null hypothesis, 

model 1 (the benchmark) performs at least as well as models 2–p (the competing models). 

The test is based on the sample counterpart of δ, δ̂=(δ̂2 ,..., δ̂p), which has an asymptotic normal 

distribution with mean δ and covariance matrix Σδ̂ (the conditions for this are provided in the 

Online Appendix to Kan et al. (2013)). The sample counterpart δ ̂follows an asymptotic normal 

distribution as the sample size increases to infinity. This allows for the use of normal 

distribution theory to infer population parameters from sample data. 

The test involves solving a quadratic programming problem where the goal is to minimise the 

weighted squared difference between δ ̂ and δ, subject to δ being nonnegative. The likelihood-

ratio (LR) measuring deviation from the null hypothesis is given by: 

LR = T (δ̂ −δ̃) 'Σ̂δ̂ -1 (δ̂ −δ̃)    (2.21) 

The LR is calculated based on the difference between the observed δ̂ and the optimised δ̃, 

weighted by the inverse of the estimated covariance matrix5. This statistic measures the degree 

to which the observed data deviate from the null hypothesis scenario where the benchmark 

model performs at least as well as the alternatives. A large value of LR suggests that the 

nonnegativity restrictions do not all hold. This would lead to rejecting the null hypothesis in 

favour of the alternative that suggests better performance by one or more of the alternative 

models. To conduct statistical inference, the asymptotic distribution of LR is needed. Readers 

are referred to Kan et al. (2013) for its derivation and a discussion of numerical methods for 

calculating the p-value. 

In comparing a benchmark model with a set of alternative models, those alternatives nested by 

the benchmark model are removed, as the null hypothesis δi ≥ 0 holds in this case. If any 

alternative is nested within another, the "smaller" model is removed because the larger model 

 
5 The code uses bootstrapping (resampling) techniques to estimate the distribution of the Likelihood Ratio (LR) 

test statistic under the null hypothesis. 
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will have at least as high a squared Sharpe ratio. This ensures that comparisons are only made 

with models that are not inherently included in the benchmark, aligning with the null hypothesis 

that the benchmark's performance is not inferior to these models. The assumption of asymptotic 

normality of the difference in squared Sharpe ratios is crucial for the statistical test. 

2.5 Data and Models 

2.5.1 Dataset 

 

I aim to strike a balance in selecting markets for my European based analysis. Choosing a wide 

range of markets can lead to limitations due to data availability, resulting in a shorter sample 

period and fewer factors than preferred, as seen in Pukthuanthong et al. (2023). Conversely, a 

sufficient number of samples are included to guarantee the robustness of the findings within a 

European context, while also highlighting the unique characteristics of each market. 

Additionally the robustness of factors derived from these markets is a key rationale. Larger 

markets typically provide more reliable data, reducing the likelihood of anomalies driven by 

market size or liquidity constraints. This ensures that the factors extracted are representative 

and robust, making them ideal for a comprehensive analysis of European market dynamics. 

I have chosen six large developed markets in Europe for my study, specifically the U.K., 

Germany, France, Italy, Spain, and the Netherlands. As highlighted in Section 1.1, these nations 

are the primary hubs of asset management in Europe, collectively representing approximately 

75% of the European asset management industry6. Furthermore, these markets are the focus of 

empirical model comparison tests that either encompass Europe as a whole or utilise aggregated 

European samples, see Hanauer et al. (2020). Apart from the U.K. market, there is a notable 

lack of literature on the testing and comparison of asset pricing models across the markets 

included in this European sample. In the next section I provide an overview of notable studies 

in these markets.  

The set of 12 tradable investment factors is motivated by recent studies on factor model 

performance in both U.S. and non-U.S. markets, including works by Chib et al. (2023), Barillas 

et al. (2020), Hanauer (2020), Ahmed et al. (2019), Fletcher (2019), and Michou and Zhou 

(2016), among others. The first group of factors included stem from the Fama and French 

(1993,2015) and the Carhart (1997) models and include the excess returns on the Market factor 

and zero-cost portfolios for the size (SMB), value (HML), profitability (RMW), investment 

 
6 https://www.efama.org/newsroom/news/asset-managers-course-manage-eur-29-trillion-2023 



44 

 

(CMA), and momentum (MOM) effects in stock returns. The second group of factors include 

the betting against beta (BAB) factor of Frazzini and Pedersen (2014), and the timelier version 

(HMLM) of the value factor by Asness and Frazzini (2013). The two mispricing factors 

constructed from 11 Market anomalies termed Management (MMGT), and Performance 

(PERF) of Stambaugh and Yuan (2017) are also included. The period of analysis is between 

June 1991 and December 2022 

I use the factor data from Hanauer and Windmueller (2021) available on 

globalfactorpremia.org. To mitigate survivorship bias in the stock lists for each country in their 

dataset, the authors employ 'dead lists' from Datastream. The authors are then left with the 

following number of stocks for each of the countries to form the factors which will be examined 

in this thesis – U.K (3,822), France (1,616), Germany (1,459), Italy (552), Spain (318), 

Netherlands (250). The updated value factor (HMLM) is obtained from the AQR database along 

with the Betting Against Beta (BAB) factor. All factors are denominated in USD. 

This study only captures a subset of the factors that have been proposed in the literature. Pastor 

and Stambaugh (2003) propose an aggregate liquidity factor. The short-horizon behavioural 

factor (PEAD) and long-horizon behavioural factor (FIN) of Daniel, Hirshleifer, and Sun 

(2020) are also omitted due to lack of available data. All of these factors are worth exploring 

in a future study.  

2.5.2 Notable Research in Markets Of Interest 

 

Empirical work on UK stock market returns has attempted to identify the optimal asset pricing 

model using a variety of model comparison methods, see, for example, Fletcher 

(2001,2019,2019). Michou and Zhou (2016) note the investment and profitability influence 

UK stock market patterns, posing questions about performance of Fama and French (1993) 

three factor model in U.K stock returns. The author suggests the size and value factor should 

be replaced with investment and profitability factors. Nicol and Dowling (2015) also not the 

importance of these factors in U.K asset pricing tests and suggest that the Fama and French 

(2015) five factor model offers the most potential. However Foye (2018) notes that both the 

three- and five-factor models are unable to offer a convincing description of UK equity returns 

in a classical alpha based approach where the test assets are profitability and investment 

portfolios. Fletcher (2018) is the first to examine a wider set of potential asset pricing models 

in U.K. stock returns. The author adopts both a classical approach and the Bayesian approach 
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of Barillas and Shanken (2018) to examine the mean–variance efficiency of nine UK factor 

pricing models and conducts multiple model comparisons. Combining the information from 

these two approaches the author finds that six-factor model of Fama and French (2018) emerges 

as the dominant model from a starting collection of models.  

Recent literature tests the French market for a variety of anomalies such as, for example, 

herding in various sectors (Litimi, 2017), market efficiency (Boya, 2019), effects of 

environmental regulation (Pham and Ramiah, 2020), board gender diversity (Bruna et al,. 

2019). Given the highly developed nature of the French stock market the literature on drivers 

of French stock returns is light. Lajili S. (2007) examine the performance of the Fama French 

three-factor model in the French stock market over the period June 1976 to June 2001. The 

author notes a positive and robust Size premium as measured by the average premium on the 

SMB factor, of 0.742% per month. Also noted is the lower Value premium, as measured by the 

HML factor of 0.597% per month. Lajili S. and. Desban, (2018), when examining find that the 

Size factor is redundant in the French market when examining the performance of the Fama 

French five factor model. The authors also note the weak Value effect and relevance of the 

quality-minus-junk factor in their tests model performance tests. In both studies outlined above 

the small number of candidate factor models are compared in a traditional alpha based 

regression where the test assets are different portfolio sorts on both size and value. While the 

studies above are very useful to both academics and investors operating in the French market 

the number of factors included in the analysis and the models compared is limited.  

Given the highly developed nature of the German stock market the literature on drivers of 

German stock returns is extremely light. Artmann et al. (2012) and Hennecke et al. (2022) 

examine the extent to which four prominent asset pricing models can explain the cross-section 

of German returns, finding the Carhart four-factor model explains the cross section of average 

German stock returns between 2008 and 2020 best. There exists a variety of other work done 

of the German market which examines specific anomalies in more detail such as size, value, 

and momentum. Other papers have conducted a similar analysis of a proposed anomaly, see, 

for example, Glaser and Webber (2003); Walkshaeusl and Lobe (2014). The scope of asset 

pricing models in German returns is limited.  

Silvestri and Veltri (2011) investigate if the Fama and French three-factor model is able to 

explain the variations in stock returns in Italian market with mixed results. Also testing the 

Fama and French (1993) three factor model, Rossi (2012) notes that beta alone cannot explain 
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the risk-returns relationship. The results indicate that  the  size factor  accompanied by the  beta 

seems  to  have  a  greater  explanatory  power. Pirogova and Roma (2020) show that all three 

factors are significant in explaining Italian stock returns during the sample period 2000-2018. 

Unlike the previous studies mentioned above, which either found no value effect at all or no 

clear‐cut results when testing the book‐to‐market variable, these authors find that the value 

factor is statistically significant, and the associated risk premium is of a considerable size. 

In recent years much of the research done on the Spanish stock market has focused on the role 

of exogenous shocks such as liquidity crises or the Covid-19 pandemic, see, for example, 

Martinez et al., 2005; Moya-Martinez et al., 2014; Ahmar and del Val, 2020. Forner and 

Marhuenda (2003) find that momentum strategies generate abnormal returns in the Spanish 

stock market over periods of 12-months. Surprisingly, given the highly developed nature of the 

Spanish stock market the literature on investment factors is quite limited. The Dutch stock 

market demonstrates signs of inefficiency with calendar anomalies such as the January effect 

(Moor and Sercu, 2013) and the twist-on-the-Monday effect (Gultekin & Gultekin, 1983). The 

majority of work done focuses on one a singular anomaly or trading strategy. Doeswijk (1997) 

found that contrarian strategies yield an outperformance without a higher risk. Knopers (2014) 

tests the performance of value investing strategies for the Dutch stock market from 1995 to 

2013. The results of this study show there is indeed a value premium on the Dutch stock market, 

consistent with the majority of the international evidence. 

A variety of anomalies and factor models have been analysed across all markets included in 

this study, with the UK market receiving the most extensive attention. For the remaining 

markets, this study provides a pioneering analysis, evaluating the performance of a broad set 

of factor models and examining the behaviour of individual investment factors over an 

extended sample period. Where relevant, comparisons will be made throughout the document 

between the findings of this study and previous research. 

2.5.3 Model Selection  

 

Listed below is the set of models which will be compared across markets. The models chosen 

for this analysis are cited in the asset pricing literature for their ability to explain cross-sectional 

returns both in absolute terms and when compared to other models, as evidenced in both alpha-

based frameworks like the Fama and French (2015, 2016, 2018), and in Bayesian model 

comparison frameworks, as seen in the work by Chib et al. (2020).  Additionally, the collection 
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of models examined aligns with sets used in recent asset pricing model comparisons tests, such 

as Barillas et al. (2020) for U.S. returns and Fletcher (2019) for U.K. returns, reflecting their 

broad applicability. Recent Bayesian approaches, as demonstrated by Chib et al. (2023) and 

Chib and Zeng (2020), have advocated for larger models in U.S stock returns. However, as 

previously noted, the choice of models is somewhat restricted by factor data availability 

constraints across the sample. The names of the below models serve as references to the studies 

that demonstrate their effectiveness. 

 

1. Fama and French (1993) (FF3)  

The FF3 model is a three-factor model. The factors are the excess return on the market index 

and two zero-cost portfolios that capture the size (SMB) and value/growth (HML) effects in 

stock returns.  

 

2. Carhart (1997)  

The Carhart model is a four-factor model. The factors are the three factors in the FF3 model 

and a zero-cost portfolio that captures the momentum effect (MOM) in stock returns.  

 

3. Fama and French (2015) (FF5)  

This model is a five-factor model. The factors include the factors in the FF model and two zero-

cost portfolios that capture the profitability (RMWOP) and investment (CMA) effects in stock 

returns. The SMB factor constructed using the FF5 model is used across all models.   

 

4. Fama and French (2018) (FF6)  

This model is a six-factor model, which augments the FF5 model with the momentum 

(MOM) factor and replaces the operating profitability factor to a cash based factor (RMWCB).  

 

5. Frazzini and Pedersen (2014) (FrazPed) 

This model augments the Capital Asset Pricing Model with the ‘Betting Against Beta’ factor.  

 

6. Stambaugh and Yuan (2017) (SY) 

The SY model is a four-factor model that includes the excess market returns, and zero-cost 

portfolios for the size effect, and two mispricing factors termed Management (MMGT), and 

Performance (PERF). 
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7. Hou et al. (2015) (HXZ).  

The HXZ model is a four-factor model, which includes the excess market returns, and zero-

cost portfolios of the size, profitability (RMWROE), and investment (CMA) effects in stock 

returns. The SMB factor is used as the size factor in all of the models as in Chib et al. (2022). 

 

8. Asness, Frazzini, Israel, Moskowitz (2015) (AFIM) 

The ASIM model is a six-factor model, which replaces the HML factor in the FF6 model 

with the Asness and Frazzini (2013) timelier version (HMLM) of the value factor using more 

up to date price data when rebalancing.  

 

9. Chib, Zeng, Zhao (2020) (CZZ) 

This model is a five-factor model identified as the top performing model in a Bayesian model 

scan of 8 factors in Chib et al. (2020). It includes the excess market returns, and zero-cost 

portfolios of the size, return on equity (RMWROE), momentum (MOM) and investment (CMA) 

effects in stock returns. 

2.5.4 Summary Statistics 

 

Given the space constraints in this document and the six separate markets analysed, the results 

for the U.K. market are presented and interpreted first, followed by an analysis of the remaining 

markets. The detailed tables for these additional markets are contained in the appendices, which 

are referred to throughout the discussion. Table 2.1 reports summary statistics of U.K. factor 

excess returns between June 1991 and December 2022. The summary statistics in the table, 

from left to right, include the mean excess return, standard deviation of returns, Sharpe ratio, 

and t-statistic of monthly factor excess returns.  

Table 2.1 

All factors have a positive average excess return. The factor with the highest return premium 

is the Momentum (MOM) factor (0.94%), followed by the market factor, and Betting Against 

Beta. The size factor SMB (0.10%) and the updated value factor HMLM (0.07%) have the 

smallest average monthly return over the period. However the average monthly return for the 

Size and HMLM factors returns t-statistics of 0.61 and 0.36 respectively. The majority of factors 

return t-statics which are significant on the 10% level of significance with the highest t-statistic 

coming from the MOM factor (4.22).  

Table 2.2 
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Table 2.2 present the mean return of each factor across the remaining five markets in the 

dataset, which reveals a trend where all factors, except for the Size factor, generally yield 

positive returns. The Betting Against Beta (BAB) factor consistently shows high return 

premiums, notably an average monthly return of 1.38% in French returns, making it a top 

performer along with the Market, MOM, and PERF factors. This contrasts to the results of 

Lajili. S (2007) who find a robust Size premium over the period 1976-2001. German market 

summary statistics highlight the Momentum (MOM) factor with a leading 0.92% return and 

the Performance (PERF) factor having the highest Sharpe ratio (Table A.2). The Dutch market 

shows a negative premium for Size and a leading 0.83% return for MOM, though most factors 

lack statistical significance. We do not see the significant value premium observed by Knopers 

(2014) in earlier data. The Italian market presents negative returns for three factors, with only 

the Investment (CMA) factor's negative premium being significant. The Momentum (MOM) 

factor leads with the highest monthly average return across all markets of 0.80%. Full summary 

statistic results for the remaining five markets in my study are detailed in Section A.II of 

Appendix A. The factor with the highest average Sharpe ratio across all markets is also the 

Performance factor (PERF) with an average of 0.166. 

2.6 Empirical Results 

2.6.1 Tests of Equality of Squared Sharpe Ratios  

 

Table 2.3 presents the pairwise tests of equality of the squared Sharpe ratios for nine U.K. factor 

models, some nested and others nonnested, from 1991 to 2022. 

Table 2.3 

Panel A shows the differences between the (bias-adjusted) sample squared Sharpe ratios 

(column model - row model) for various pairs of models. The models are presented from left 

to right and top to bottom in order of increasing squared Sharpe ratios. The diagonal elements 

of Panel A in Table 2.2 are the sample squared Sharpe ratio differences between the model in 

that column and the next-best model.  In Panel B, p-values for the tests of equality of the 

squared Sharpe ratios are presented. A low p-value indicates that the difference between 

squared Sharpe ratio as per Panel A is significant. As previously discussed, p-values must be 

computed differently depending on whether the models to be compared are nested or 

nonnested.  
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For the U.K. market, the main empirical findings can be summarised as follows: The top three 

performing models as per Squared Sharpe ratio are the FF6, AFIM and CZZ. Panel B shows 

that the top three performing models have Sharpe ratios which are significantly higher than 

most of the remaining models in the candidate model set. This is not surprising given the fact 

that they contain factors which themselves have provided high returns over the period of 

analysis. However while the FF6 has the highest squared Sharpe ratio, the increase that it 

provides over the AFIM model and the CZZ model is not statistically significant, as indicated 

by p-values of 0.521 and 0.121 in Panel B. The FF3 three-factor model and FrazPed have the 

lowest relative performance from the candidate set. The FF3 and FrazPed models are 

outperformed by almost all other models at the 10% level of significance as seen through low 

p-values in Panel B. The Carhart model is significantly outperformed by both the FF6 and 

AFIM models but not the CZZ model.   

Table 2.4 below presents the identities of the top-performing and second-best performing 

models in each of the remaining markets. 

Table 2.4 

In most cases, either the FF6 or the AFIM six-factor models return the highest or second-

highest Sharpe ratio. This finding is in line with Barillas et al. (2020) who find the AFIM to be 

the optimal model in U.S data and also Fletcher (2019) finding the same in U.K tests of model 

comparison. The FrazPed model also performs well in certain markets. Neither the FF3 three-

factor model nor the five-factor model are top performers in any market. Panel B reports the 

squared Sharpe ratio for each model across all countries. A more detailed breakdown of the 

results across the sample is provided below.  

Full results for the remaining five markets are detailed in Section A.III of Appendix A. In the 

case of the French market, as shown in Table A.6 in Appendix A, the FrazPed model is the best-

performing model based on the squared Sharpe ratio. The difference between this model and 

the FF3, FF5, Carhart, HXZ, and CZZ models is significant at the 10% level, as indicated by 

the low p-values in Panel B. However, the differences in the squared Sharpe ratio between the 

FrazPed model and the AFIM, FF6, and SY models are not significant at any level, with p-

values of 0.549, 0.576, and 0.606, respectively. Therefore, we can conclude that while the 

FrazPed model is the best-performing model, it only significantly outperforms half of the other 

models under consideration.  
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The German market (Table A.7) has a similar profile to the U.K. market, where both the FF6 

and AFIM six-factor models perform best but cannot be significantly separated, with a p-value 

of 0.324. The AFIM model outperforms all other models at the 5% level of significance and 

the Carhart model at the 10% level of significance. The FF6 model performs less well, 

outperforming most other models except for the SY and FF5 models, with p-values of 0.128 

and 0.265, respectively.  

For the Netherlands (Table A.8), the FrazPed model performs best, which is unsurprising given 

the performance of the BAB factor in Dutch returns. The pairwise tests cannot distinguish 

between the top 7 performing models, as indicated by the high p-values in Panel B. The 

consistently high p-values across Panel B show that the pairwise tests do not find significant 

differences among many of the models.  

In both Italian (Table A.9) and Spanish (Table A.10) stock returns, the AFIM model has the 

highest squared Sharpe ratio, significantly outperforming all other models except the FF5 

model in Italy (0.262) and the Carhart model (0.105) in Spain. In both cases, the FF3 model 

and FrazPed model are the two lowest performing model. This result contrasts with that of 

Pirogova and Roma (2020) who find the FF3 to be the optimal model in pricing Italian assets 

albeit with a smaller set of models considered.  

Given the consistent performance of the momentum factor throughout the sample, it is 

unsurprising that the Carhart model performs moderately well in pairwise testing across various 

markets. Although the Carhart model is significantly outperformed by the top-performing 

models in certain markets, such as the U.K., this outperformance is not statistically significant 

in most other markets. Except for France and the Netherlands, the FrazPed model yields a 

moderate squared Sharpe ratio in most samples but is significantly outperformed by the leading 

models in most cases. Due to the strong performance of the BAB factor across markets, the 

FrazPed model significantly outperforms the FF3 three-factor model and, in the Netherlands, 

achieves the second-highest squared Sharpe performance. In contrast, the FF5 model generally 

returns one of the lowest squared Sharpe ratios and is significantly outperformed by other 

models, except in Italy. Across various markets, the FF3 model performs poorly, consistently 

ranking in the bottom two without any significant anomalies. The SY model has mixed 

performance, often ranking as the fifth or sixth best performing model but occasionally 

performing better, such as in France where it ranks as the second highest performing model. 
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The CZZ model generally performs well, frequently ranking among the top four performing 

models across most markets. 

2.6.2 Multiple Model Comparison Tests 

 

Up to this point, comparisons have been made between two competing models. However, when 

evaluating a set of models, it is useful to test whether a single model, the "benchmark," has the 

highest squared Sharpe ratio among all the models. To examine this, I employ the multiple-

model comparison test for nonnested models based on the multivariate inequality test of Wolak 

(1987, 1989). The null hypothesis in this joint test is that none of the other models are superior 

to the benchmark, while the alternative hypothesis is that some other model has a higher 

(population) θ̂2 than the benchmark. 

The empirical results for the U.K. are presented in Table 2.5. The first column lists the 

benchmark models, while the second column shows their bias-adjusted sample squared Sharpe 

ratios, reflecting risk-adjusted returns. The third column indicates the number of alternative 

models each benchmark is compared against. A selective process is employed to compare only 

non-nested models directly, explaining the varying 'r' values for models like FF3 by excluding 

nested model comparisons. The likelihood ratio statistic values calculated as per equation 2.21, 

found in the fourth column, and their statistical significance, provided in the fifth column, test 

the differences between models.  

 Table 2.5  

Table 2.5 above shows the results of the U.K. multiple model comparison tests. Naturally, 

because the FF6 six factor model has the highest sample squared Sharpe ratio (0.144), the p-

value for this model in the joint test is very large (0.801) consistent with the conclusion that 

this model performs at least as well in population as the other models. The null hypothesis of 

equivalent performance cannot be rejected for four models in the U.K. sample, as seem through 

high p-values in column five.  

Low squared Sharpe ratios in column two and low p-values in column 5 for models such as the 

FF3, FrazPed, and FF5 models indicates that they do not perform as well as the other models. 

A large likelihood ratio value indicates a violation of the nonnegativity constraints which 

implies that the benchmark model does not perform as well as the alternative models. 

Consequently, this prompts the rejection of the null hypothesis, opting instead for the 
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alternative hypothesis, which posits superior performance by at least one of the alternative 

models.  

A similar pattern is found across the remaining five markets outlined in Section A.IV in 

Appendix A. Naturally as the FF6 and AFIM six factor models have the highest squared Sharpe 

ratio across markets they return large p-values, consistent with the conclusion that these two 

models perform at least as well in population as the other models.  

In the context of French stock returns (Table A.11), the FrazPed model emerges as the top 

performer, boasting a squared Sharpe ratio of 0.089. Its high p-value of 0.697 suggests that it 

performs as well as or better than the other models. Following closely is the SY model, which, 

while not the top performer, still demonstrates competitive performance with a squared Sharpe 

ratio of 0.068 and a p-value of 0.631, indicating comparable performance to other models. 

Conversely, the FF3 and Carhart models show weaker performance, with squared Sharpe ratios 

of 0.005 and 0.034, respectively, coupled with low p-values of 0.001 and 0.027, suggesting that 

the null hypothesis of equal performance can be rejected.  

For the German stock returns (Table A.12), the AFIM model stands out as the top performer, 

boasting a squared Sharpe ratio of 0.13. Its high p-value of 0.83 indicates that it performs as 

well as or better than other models in the dataset. Although not the top performer, the FF6 

model demonstrates competitive performance with a squared Sharpe ratio of 0.114 and a p-

value of 0.533, suggesting comparable performance to other models. The Carhart model returns 

a squared Sharpe ratio of 0.085 and a p-value of 0.111 meaning that while this model 

underperforms the top two, the null hypothesis cannot be rejected. All other models reject the 

null hypothesis indicating inferior performance.  

Within Dutch stock returns (Table A.13), the FrazPed model emerges as the top performer, with 

a squared Sharpe ratio of 0.054 and a p-value of 0.743, indicating comparable performance to 

other models. There are five other models which return large p-values which shows that even 

though they have Sharpe ratios lower than the top performing model they do not reject the null 

hypothesis of equal performance.  

In the Italian stock returns (Table A.14), the AFIM model emerges as the top performers, 

boasting a squared Sharpe ratio of 0.109. A p-value of 0.817 shows the null hypothesis of 

performing as well as any other model is rejected. There are four other models which also do 

not reject the null hypothesis. Conversely, models such as FF3 and Carhart show relatively 
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weaker performance, with squared Sharpe ratios of 0.005 and 0.037, respectively, coupled with 

p-values of 0.002 and 0.04, indicating their underperformance compared to the top models. 

Within Spanish stock returns (Table A.15), the AFIM model emerges as one of the top 

performers, boasting a squared Sharpe ratio of 0.065. The p-value of 0.797 suggests that it does 

perform as well as other models in the dataset. Similarly, the FF5 model demonstrates 

competitive performance with a squared Sharpe ratio of 0.039 and a p-value of 0.842, 

indicating comparable performance to other models. However, eight of the nine models do not 

reject the null hypothesis of equal performance.  

Across markets, the null hypothesis for the CZZ and HXZ models cannot be rejected in most 

cases, indicating that these models perform as well as any other model in the model space. This 

is not surprising, given that these two models performed well in the pairwise tests. In all cases, 

the hypothesis that the FF3 performs as well as any other model in the candidate set can be 

rejected at the 5% level of significance. The same applies to the FF5, which can be rejected at 

the 10% level of significance in all cases except for the tests in Italian returns (Table A.14). In 

each market, multiple models fail to reject the null hypothesis of equal performance. 

The variations in results across countries are driven by the unique economic environments, 

market structures, and investment behaviours present in each region, which impact the 

relevance and effectiveness of different risk factors. Factors like size, value, momentum, and 

profitability may exhibit different risk-return profiles and levels of significance depending on 

local economic conditions, regulatory frameworks, and cultural attitudes toward investing. For 

example, a factor that captures momentum may perform well in markets characterized by 

higher speculative trading or where information dissemination is slower, but it may be less 

effective in markets with more efficient price adjustments. Additionally, economic sectors that 

dominate certain countries, differences in corporate governance, and varying degrees of 

exposure to global economic trends can also lead to discrepancies in factor performance. These 

market-specific nuances explain why some models consistently outperform others in particular 

regions but do not necessarily yield the same results across all European markets. 

Consequently, applying asset pricing models requires careful consideration of local market 

dynamics to accurately capture the drivers of stock returns. 

2.6.3 Simulation Evidence 
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To ensure robustness in the findings, the approach of Barillas et al. (2020) is followed by 

examining the small-sample properties of the various test statistics via Monte Carlo 

simulations. The aim is to assess the reliability of the results from the empirical tests given the 

sample size.7 Additionally, by simulating various scenarios, I evaluate how the statistical 

methods perform under different conditions. These steps are crucial to identify any potential 

biases or inaccuracies that could arise from applying these methods to small samples. 

Following the approach of Barillas et al. (2020), factor returns are drawn from a multivariate 

normal distribution. Actual rejection rates over 100,000 iterations are compared to the nominal 

5% level of the tests. This simulation approach is used to compare the top-performing models 

across each sample. 

In Section A.V of Appendix A, the properties of the multiple-comparison inequality test for 

nonnested models in small samples across the markets considered are investigated. Remember 

that this test's composite null hypothesis asserts that the θ̂2 value for the benchmark model is 

equal to or higher than that of all other models being examined. To assess the size of the test, 

scenarios where all models share the same θ̂2 value are considered, thereby maximising the 

probability of rejecting the null hypothesis under these conditions. In each market the top four 

performing models from the previous sections are simulated. If these tests are reliable the 

models in the simulations should not only replicate the empirical results but also behave 

consistently across different testing scenarios.   

For example, in the case of the U.K. market (Table A.16), the four top-performing models—

FF6, AFIM, Carhart, and CZZ—were simulated using the sample squared Sharpe ratios as the 

population θ̂2. Given that FF6 has the highest θ̂2, each of the other models was used as the null 

model in a multiple-comparison test against three alternative models. Table A.16 reports the θ̂2 

of each model, followed by the rejection rates at different significance levels (10%, 5%, 1%). 

These values represent the proportion of times the null hypothesis (that the benchmark model's 

θ̂2 is at least as high as the other models) is rejected at different significance levels. Lower 

values indicate that the null hypothesis is less frequently rejected, suggesting that the model is 

performing well relative to the benchmark. The results for different time periods (130, 260, 

390) indicate how model performance varies over time. Generally, a model that maintains low 

rejection rates over longer periods is considered more robust and reliable. In Table A.16, the 

 
7 I am thankful to Professor Cesare Robotti for the provision of this MATLAB code to perform these simulation 

experiments.  
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rejection rates for the CZZ and Carhart models are high, which is expected given their lower 

θ̂2 values relative to FF6 and AFIM. The AFIM model shows low rejection rates, consistent 

with its performance being on par with the FF6 in previous tests.  

These results lend robustness to the empirical findings from the model comparison tests 

conducted for the U.K. market. Specifically, previous tests have consistently shown that the 

FF6 six-factor model, incorporating both standard and updated value factors, outperforms all 

other models. This superiority is corroborated by the simulation evidence, which clearly 

demonstrates the model's effectiveness across various metrics and testing scenarios. Such 

consistent performance highlights the model's reliability and suitability for analysing U.K. 

market dynamics. 

Across markets in Tables A.17 through A.21, models with strong empirical performance 

consistently show low rejection rates. For instance, in France (Table A.17), FrazPed excels with 

the highest θ̂2 and maintains low rejection rates across all intervals. In Germany (Table A.18), 

while FF6* has the highest θ̂2, FF6 also demonstrates low and stable rejection rates, suggesting 

robust performance. In the Netherlands (Table A.19), FF6, along with Carhart and AFIM, show 

low rejection rates, indicating performances on par with the leading model. In Italy (Table 

A.20), AFIM leads in performance, and FF6 distinguishes itself with lower rejection rates than 

FF5 over time. Lastly, in Spain (Table A.21), AFIM again tops with the highest θ̂2, with FF6 

showing greater stability in performance compared to Carhart. These results reinforce the 

robustness of the empirical findings, as models like AFIM and FF6 have consistently 

demonstrated strong performance in empirical tests across European markets, underscoring 

their reliability and effectiveness. 

2.7 Conclusions 

 

The focus of this chapter is twofold. First, the goal is to determine if a single model can 

consistently outperform others across the selected sample of European markets. Second, if no 

single model emerges as a consistent top performer, the aim is to identify the best-performing 

asset pricing model in each specific market. This approach provides insights into the different 

drivers of returns across markets. These objectives are achieved through comprehensive 

pairwise and multiple model testing, supported by simulation evidence. 

From the perspective of an investor, this chapter underscores the variation in performance of 

risk factors across the selection of European markets throughout the analysis period. It has been 
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observed that the momentum (MOM) and Betting Against Beta (BAB) factors have shown 

superior performance in the majority of countries within the sample. Conversely, 

underperformance has been noted in both the size (SMB) and value (HML) factor portfolios 

across the entirety of the sample. 

Through the analysis, which includes both pairwise and multiple model comparisons, strong 

performance has been identified in both the Fama and French (2018) six-factor model and the 

Asness et al. (2015) model with the updated value factor of Asness and Frazzini (2013). These 

models achieved the highest or second-highest Sharpe ratio in five out of the six countries 

examined. Despite this, the top-performing model varies by country. For instance, the Frazzini 

and Pedersen (2014) model stood out as the leading model in both France and the Netherlands. 

The findings underscore the importance of beta timing, momentum, investment, and 

profitability as key drivers of stock returns during this period. Models that exclude these factors 

tend to underperform compared to those that incorporate them. The simulation results support 

these findings.  

My findings align with those of Barillas et al. (2020), who found that a variant of the 6-factor 

model by Fama and French (2018), featuring a monthly updated version of the usual value 

spread, emerges as the dominant model in U.S. tests of factor models. Similarly, Fletcher 

(2019) observes that this six-factor model outperforms other models in U.K. model comparison 

tests. The results also correspond with observations by Hanauer (2020), who noted that the 

Asness et al. (2015) six-factor model, as found in Barillas et al. (2020), outperforms other 

models in aggregate samples of international markets according to the squared Sharpe ratio.  

While the best-performing model in each sample has been documented, a key contribution to 

the European-based literature, it is evident that no single model consistently outperforms all 

others across the markets under consideration. This observation suggests the presence of local 

factors influencing stock prices in a European setting. Such a finding underscores the 

complexity of financial markets and highlights the importance of considering local elements in 

asset pricing models. 

The findings of this chapter offer significant implications for both investors and academics by 

highlighting the nuanced performance of asset pricing models across different European 

markets. For investors, these results emphasise the importance of tailoring strategies to specific 

market conditions rather than relying on a one-size-fits-all approach. The observed 

outperformance of factors like momentum (MOM) and Betting Against Beta (BAB) in multiple 
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countries suggests that incorporating these factors can yield more effective risk-adjusted 

returns, especially in markets where traditional factors, such as size (SMB) and value (HML), 

may underperform. For academics, the lack of a universally dominant model across European 

markets underscores the need for further research into localised drivers of returns, which can 

enhance the accuracy of asset pricing models beyond U.S.-centric frameworks. This chapter 

contributes to the European literature by identifying which factor models align more closely 

with market behaviours in specific countries, revealing how factors like beta timing, 

momentum, investment, and profitability influence asset returns in different financial 

environments. By documenting the variations in top-performing models across markets, this 

study enriches the discussion on model adaptability and underscores the importance of 

considering local factors in global asset pricing frameworks, informing future research 

directions and providing a refined lens for analysing market-specific dynamics. 
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Appendix A 

 

A.I U.K. Empirical Results 

 

Table 2.1. Summary Statistics for Monthly U.K. Factor Returns 

 
 

 Mean  StDev  Sharpe Ratio   t-Mean  

MKT  0.45%  4.65%  0.097  1.91**  

SMB  0.10%  3.19%  0.031  0.61  

HML  0.16%  3.11%  0.051  1.01  

MOM  0.94%  4.36%  0.215  4.22*  

RMWOp  0.22%  2.22%  0.099  1.94**  

CMA  0.38%  2.14%  0.175  3.44*  

BAB  0.54%  4.65%  0.115  2.26*  

HMLM  0.07%  3.61%  0.019  0.36  

MGMT  0.26%  2.47%  0.103  2.03*  

PERF  0.51%  2.97%  0.171  3.36*  

RMWCB  0.35%  2.10%  0.166  3.27*  

RMWROE   0.23%   2.29%   0.102   2.01*  

The table reports summary statistics of factors between June 1991 and December 2022 in UK factors. The summary statistics 

include the average excess returns (Mean) (%), standard deviation (StDev) (%), Sharpe Ratio and the t-statistic of the null 

hypothesis that the average excess factor returns are equal to zero.
 * Significant at 5%, ** Significant at 10% 
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Table 2.2. Summary Statistics for Monthly Returns Remaining Markets 

 
 

 France Germany Netherlands Italy Spain  

MKT  0.54%** 0.40% 0.64%* 0.27% 0.45%  

SMB  -0.05% -0.01% -0.08% -0.04% 0.11%  

HML  0.20% 0.52%* 0.33% 0.15% 0.30%**  

MOM  0.57%* 0.92%* 0.83%* 0.83%* 0.70%*  

RMWOp  0.25%* 0.42%* 0.14% 0.67%* 0.43%*  

CMA  0.19% 0.44%* 0.15% -0.24% 0.03%  

BAB  1.38%* 0.49%* 0.82%* 0.58%* 0.63%*  

HMLM  0.15% 0.17%* 0.09% 0.05% 0.27%  

MGMT  0.29%* 0.23% 0.10% -0.01% 0.14%  

PERF  0.63%* 0.70%* 0.64%* 0.88%* 0.32%  

RMWCB  0.45%* 0.32%* 0.23% 0.44%* 0.00%  

RMWROE   0.25%** 0.08% 0.19% 0.65%* 0.37%*  

The table reports summary statistics of factors between June 1991 and December 2022 in UK factors. The summary statistics 

include the average excess returns (Mean) (%), standard deviation (StDev) (%), Sharpe Ratio and the t-statistic of the null 

hypothesis that the average excess factor returns are equal to zero.
 * Significant at 5%, ** Significant at 10% 
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Table 2.3. U.K. Tests of Equality of Squared Sharpe Ratios 

 
Panel A: Difference in Squared Sharpe Performance  

Model FrazPed FF5 SY HXZCP Carhart CZZ AFIM FF6  

FF3 -0.014 -0.059 -0.065 -0.078 -0.082 -0.106 -0.126 -0.141  

FrazPed  -0.045 -0.051 -0.064 -0.068 -0.092 -0.112 -0.127  

FF5   -0.006 -0.019 -0.023 -0.047 -0.067 -0.082  

SY    -0.013 -0.017 -0.041 -0.061 -0.076  

HXZCP     -0.004 -0.027 -0.047 -0.063  

Carhart      -0.023 -0.043 -0.059  

CZZ       -0.02 -0.036  

AFIM        -0.016  

         
 

Panel B: p-Values  

Model FrazPed FF5 SY HXZCP Carhart CZZ AFIM FF6  

FF3 0.262 0 0.026 0.01 0 0.006 0.002 0  

FrazPed  0.137 0.096 0.047 0.037 0.019 0.006 0.003  

FF5   0.84 0.151 0.536 0.102 0.021 0.017  

SY    0.651 0.605 0.219 0.081 0.02  

HXZCP     0.92 0.346 0.155 0.07  

Carhart      0.337 0.066 0  

CZZ       0.007 0.121  

AFIM               0.521  

This table reports the asymptotically valid Barillas et al, (2020) pairwise tests of equality of the squared Sharpe ratios for 

different models, some nested and others nonnested on a set of UK factor models from 1991 to 2022. The models are 

presented from left to right and top to bottom in order of increasing squared Sharpe ratios. The diagonal elements are the 

sample squared Sharpe ratio differences between the model in that column and the next-best model. In Panel B, p-values for 

the tests of equality of the squared Sharpe ratios are reported. Low p-values indicate the difference identified in Panel A is 

statistically significant.  
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Table 2.4. Top Performing Factor Models Across European Markets 

 
Panel A: Identity of Best Models   

 

Country Top Performing Model Next Best Performing Model  
 

 
     

 
 

United Kingdom Fama and French (2018)  Asness et al. (2015)   
 

 
 

    
 

 

France 
Frazzini and Pedersen 

(2014) 
Stambaugh and Yuan (2017)  

 

 

  
 

   
 

 

Germany Asness et al. (2015) Fama and French (2018)   
 

  
 

   
 

 

Netherlands 
Frazzini and Pedersen 

(2014) 
Fama and French (2018)  

 

 

  
 

   
 

 

Italy  Asness et al. (2015) Fama and French (2015)   
 

      
 

 

Spain Asness et al. (2015) Chib, Zeng and Zhao (2020)   
 

Panel B: Squared Sharpe Measures  
 

Factor UK France Germany Netherlands Italy Spain  

FF3 0.003 0.005 0.021 0.011 0.005 0.005  

Carhart 0.085 0.034 0.085 0.049 0.037 0.037  

FF5 0.062 0.028 0.069 0.015 0.087 0.029  

FF6 0.144 0.067 0.114 0.049 0.062 0.033  

FrazPed 0.017 0.089 0.039 0.054 0.016 0.021  

SY 0.068 0.068 0.066 0.047 0.046 0.016  

AFIM 0.129 0.066 0.13 0.048 0.109 0.065  

HXZ 0.081 0.035 0.035 0.016 0.052 0.013  

CZZ 0.109 0.04 0.104 0.045 0.068 0.039  

Panel A of this table reports the identity of the top two performing models as measured by the squared Sharpe ratio. For the 

factor composition of these models see Section 2.3.2. Panel B reports the Squared Sharpe ratio for each model across all 

countries.  
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Table 2.5. U.K. Multiple Model Comparison 

 

         
 

Number of Additional Rejections Using Normal Test = 0  

   
      

 

Model θ̂2 r LR p-value      

FF3 0.003 4 11.396 0.003      

Carhart 0.085 5 3.388 0.119      

FF5 0.062 5 8.6 0.018    
  

FF6 0.144 5 0 0.801    
  

FrazPed 0.017 5 9.134 0.006    
  

SY 0.068 5 5.432 0.05    
  

AFIM 0.129 5 0.412 0.567    
  

HXZ 0.081 5 3.286 0.058    
  

CZZ 0.109 5 2.405 0.217       

This table reports the multiple model comparison tests in U.K. stock returns. 𝜃2 is the bias-adjusted maximum squared Sharpe 

performance of each model identified in the first column. LR in column four is the value of the likelihood-ratio statistic as per 

Wolak (1987,1989).  Column five is the p value for the hypothesis that this model performs as well as any other model in the 

dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 



64 

 

A.II Summary Statistics Remaining Markets 
 

Table A.1. Summary Statistics for Monthly French Factor Returns 

 
Factor  Mean  StDev  Sharpe Ratio  t-Mean  

MKT  0.54%  5.44%  0.1  1.96**  

SMB  -0.05%  2.85%  -0.02  -0.36  

HML  0.20%  3.68%  0.05  1.07  

MOM  0.57%  4.59%  0.12  2.43*  

RMWOp  0.25%  2.41%  0.1  2.00*  

CMA  0.19%  2.45%  0.08  1.56  

BAB  1.38%  4.78%  0.29  5.65*  

HMLM  0.15%  4.15%  0.04  0.70  

MGMT  0.29%  2.75%  0.11  2.05*  

PERF  0.63%  3.52%  0.18  3.48*  

RMWCB  0.45%  2.37%  0.19  3.72*  

RMWROE   0.25%   2.67%   0.09   1.84**  

The table reports summary statistics of factors between June 1991 and December 2022 in French factors. The summary 

statistics include the average excess returns (Mean) (%), standard deviation (StDev) (%), Sharpe Ratio and the t-statistic of 

the null hypothesis that the average excess factor returns are equal to zero.
  

* Significant at 5%, ** Significant at 10% 
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Table A.2. Summary Statistics for Monthly German Factor Returns 

 
Factor  Mean  StDev  Sharpe Ratio  t-Mean  

MKT  0.40%  5.73%  0.07  1.37  

SMB  -0.01%  2.95%  0.00  -0.09  

HML  0.52%  3.51%  0.15  2.88*  

MOM  0.92%  4.66%  0.20  3.87*  

RMWOp  0.42%  2.27%  0.18  3.60*  

CMA  0.44%  2.96%  0.15  2.91*  

BAB  0.49%  4.61%  0.11  2.09*  

HMLM  0.17%  3.75%  0.05  0.89  

MGMT  0.23%  2.92%  0.08  1.52  

PERF  0.70%  3.21%  0.22  4.28*  

RMWCB  0.32%  2.19%  0.15  2.88*  

RMWROE   0.08%   2.50%   0.03   0.64  

The table reports summary statistics of factors between June 1991 and December 2022 in German factors. The summary 

statistics include the average excess returns (Mean) (%), standard deviation (StDev) (%), Sharpe Ratio and the t-statistic of 

the null hypothesis that the average excess factor returns are equal to zero.
 * Significant at 5%, ** Significant at 10% 
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Table A.3. Summary Statistics for Monthly Netherlands Factor Returns 

 
Factor  Mean  StDev  Sharpe Ratio  t-Mean  

MKT  0.64%  5.91%  0.108  2.12*  

SMB  -0.08%  3.32%  -0.025  -0.49  

HML  0.33%  4.00%  0.083  1.63  

MOM  0.83%  5.53%  0.15  2.94*  

RMWOp  0.14%  3.95%  0.036  0.71  

CMA  0.15%  3.29%  0.047  0.91  

BAB  0.82%  5.11%  0.161  3.16*  

HMLM  0.09%  4.50%  0.02  0.40  

MGMT  0.10%  3.79%  0.028  0.54  

PERF  0.64%  4.46%  0.143  2.80*  

RMWCB  0.23%  3.15%  0.072  1.40  

RMWROE   0.19%   3.58%   0.052   1.02  

The table reports summary statistics of factors between June 1991 and December 2022 in Dutch factors.  The summary 

statistics include the average excess returns (Mean) (%), standard deviation (StDev) (%), Sharpe Ratio and the t-statistic of 

the null hypothesis that the average excess factor returns are equal to zero.
 * Significant at 5%, ** Significant at 10% 
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Table A.4. Summary Statistics for Monthly Italian Factors Returns 

 
Factor  Mean  StDev  Sharpe Ratio  t-Mean  

MKT  0.27%  6.80%  0.04  0.77  

SMB  -0.04%  3.18%  -0.01  -0.24  

HML  0.15%  3.63%  0.04  0.83  

MOM  0.83%  4.73%  0.17  3.43*  

RMWOp  0.67%  3.25%  0.21  4.06*  

CMA  -0.24%  2.82%  -0.08  -1.67  

BAB  0.58%  4.05%  0.14  2.81*  

HMLM  0.05%  4.40%  0.01  0.24  

MGMT  -0.01%  3.72%  0  -0.03  

PERF  0.88%  4.48%  0.2  3.85*  

RMWCB  0.44%  3.65%  0.12  2.35*  

RMWROE   0.65%   3.38%   0.19   3.78*  

The table reports summary statistics of factors between June 1991 and December 2022 in Italian factors.  The summary 

statistics include the average excess returns (Mean) (%), standard deviation (StDev) (%), Sharpe Ratio and the t-statistic of 

the null hypothesis that the average excess factor returns are equal to zero.
 * Significant at 5%, ** Significant at 10% 
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Table A.5. Summary Statistics for Spanish Monthly Factor Returns 

 
Factor  Mean  StDev  Sharpe Ratio  t-Mean  

MKT  0.45%  6.33%  0.072  1.38  

SMB  0.11%  3.32%  0.034  0.65  

HML  0.30%  3.40%  0.089  1.72**  

MOM  0.70%  5.17%  0.135  2.59*  

RMWOp  0.43%  3.14%  0.137  2.64*  

CMA  0.03%  3.11%  0.01  0.19  

BAB  0.63%  5.01%  0.126  2.44*  

HMLM  0.27%  3.96%  0.069  1.34  

MGMT  0.14%  3.39%  0.04  0.77  

PERF  0.32%  3.76%  0.084  1.63  

RMWCB  0.00%  3.70%  -0.001  -0.01  

RMWROE   0.37%   3.08%   0.121   2.34*  

The table reports summary statistics of factors between June 1991 and December 2022 in Spanish factors The summary 

statistics include the average excess returns (Mean) (%), standard deviation (StDev) (%), Sharpe Ratio and the t-statistic of 

the null hypothesis that the average excess factor returns are equal to zero.
 * Significant at 5%, ** Significant at 10% 
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A.III Tests of Equality of Squared Sharpe Ratio Remaining Markets 

 

Table A.6. France Tests of Equality of Squared Sharpe Ratio 

 
Panel A: Difference in Squared Sharpe Performance  

Model FF5 Carhart HXZ CZZ AFIM FF6 SY FrazPed  

FF3 -0.023 -0.03 -0.03 -0.035 -0.061 -0.062 -0.064 -0.084  

FF5  -0.006 -0.007 -0.012 -0.038 -0.039 -0.04 -0.061  

Carhart   -0.001 -0.005 -0.031 -0.033 -0.034 -0.054  

HXZ    -0.005 -0.031 -0.032 -0.033 -0.054  

CZZ     -0.026 -0.027 -0.029 -0.049  

AFIM      -0.001 -0.003 -0.023  

FF6       -0.001 -0.022  

SY        -0.02  

         
 

Panel B: p-Values  

Model FF5 Carhart HXZ CZZ AFIM FF6 SY FrazPed  

FF3 0.005 0 0.073 0.088 0.022 0 0.021 0.004  

FF5  0.776 0.63 0.456 0.052 0.097 0.097 0.064  

Carhart   0.978 0.718 0.085 0.001 0.127 0.095  

HXZ    0.76 0.236 0.198 0.177 0.077  

CZZ     0 0.167 0.214 0.094  

AFIM      0.954 0.919 0.549  

FF6       0.948 0.576  

SY               0.606  

This table reports the asymptotically valid Barillas et al, (2020) pairwise tests of equality of the squared Sharpe ratios for 

different models, some nested and others nonnested on a set of French factor models from 1991 to 2022. The models are 

presented from left to right and top to bottom in order of increasing squared Sharpe ratios. The diagonal elements are the 

sample squared Sharpe ratio differences between the model in that column and the next-best model. Panel A reports the 

differences in squared Sharpe ratio. In Panel B, p-values for the tests of equality of the squared Sharpe ratios are reported. 

Low p-values indicate the difference identified in Panel A is statistically significant. 
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Table A.7. Germany Tests of Equality of Squared Sharpe Ratios 

 
Panel A: Difference in Squared Sharpe Performance  

Model FF3 HXZ SY FF5 Carhart CZZ FF6 AFIM  

FrazPed -0.01 -0.024 -0.045 -0.057 -0.073 -0.087 -0.094 -0.118  

FF3  -0.014 -0.035 -0.047 -0.063 -0.077 -0.084 -0.108  

HXZ   -0.021 -0.033 -0.049 -0.064 -0.07 -0.095  

SY    -0.012 -0.028 -0.042 -0.049 -0.073  

FF5     -0.015 -0.03 -0.037 -0.061  

Carhart      -0.015 -0.021 -0.046  

CZZ       -0.007 -0.031  

FF6        -0.024  

         
 

Panel B: p-Values  

Model FF3 HXZ SY FF5 Carhart CZZ FF6 AFIM  

FrazPed 0.632 0.288 0.1 0.033 0.032 0.013 0.015 0.002  

FF3  0.471 0.248 0 0 0.033 0 0.002  

HXZ   0.44 0.048 0.108 0.022 0.03 0.003  

SY    0.667 0.398 0.15 0.128 0.025  

FF5     0.624 0.236 0.265 0.023  

Carhart      0.561 0.008 0.055  

CZZ       0.784 0  

FF6               0.324  

This table reports the asymptotically valid Barillas et al, (2020) pairwise tests of equality of the squared Sharpe ratios for 

different models, some nested and others nonnested on a set of German factor models from 1991 to 2022. The models are 

presented from left to right and top to bottom in order of increasing squared Sharpe ratios. The diagonal elements are the 

sample squared Sharpe ratio differences between the model in that column and the next-best model.  Panel A reports the 

differences in squared Sharpe ratio. In Panel B, p-values for the tests of equality of the squared Sharpe ratios are reported. 

Low p-values indicate the difference identified in Panel A is statistically significant. 
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Table A.8. Netherlands Tests of Equality of Squared Sharpe Ratios 

 
Panel A: Difference in Squared Sharpe Performance  

Model FF5 HXZ CZZ SY AFIM Carhart FF6 FrazPed  

FF3 -0.004 -0.005 -0.034 -0.036 -0.037 -0.038 -0.038 -0.043  

FF5  -0.001 -0.03 -0.032 -0.033 -0.034 -0.034 -0.039  

HXZ   -0.029 -0.031 -0.032 -0.033 -0.033 -0.038  

CZZ    -0.002 -0.003 -0.004 -0.004 -0.009  

SY     -0.001 -0.002 -0.002 -0.007  

AFIM      -0.001 -0.001 -0.006  

Carhart       0 -0.005  

FF6        -0.005  

         
 

Panel B: p-Values  

Model FF5 HXZ CZZ SY AFIM Carhart FF6 FrazPed  

FF3 0.197 0.719 0.141 0.094 0.116 0 0 0.055  

FF5  0.938 0.181 0.125 0.137 0.153 0.167 0.124  

HXZ   0.186 0.114 0.179 0.192 0.201 0.111  

CZZ    0.928 0.142 0.732 0.751 0.754  

SY     0.955 0.922 0.914 0.801  

AFIM      0.932 0.934 0.846  

Carhart       0.379 0.865  

FF6               0.872  

This table reports the asymptotically valid Barillas et al, (2020) pairwise tests of equality of the squared Sharpe ratios for 

different models, some nested and others nonnested on a set of Dutch factor models from 1991 to 2022. The models are 

presented from left to right and top to bottom in order of increasing squared Sharpe ratios. The diagonal elements are the 

sample squared Sharpe ratio differences between the model in that column and the next-best model. Panel A reports the 

differences in squared Sharpe ratio. In Panel B, p-values for the tests of equality of the squared Sharpe ratios are reported. 

Low p-values indicate the difference identified in Panel A is statistically significant. 
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Table A.9. Italy Tests of Equality of Squared Sharpe Ratios 

 
Panel A: Difference in Squared Sharpe Performance  

Model FrazPed Carhart SY HXZ FF6 CZZ FF5 AFIM  

FF3 -0.022 -0.042 -0.052 -0.057 -0.067 -0.074 -0.092 -0.114  

FrazPed  -0.02 -0.03 -0.035 -0.045 -0.052 -0.07 -0.093  

Carhart   -0.01 -0.015 -0.025 -0.032 -0.05 -0.073  

SY    -0.005 -0.015 -0.022 -0.04 -0.063  

HXZ     -0.01 -0.017 -0.035 -0.058  

FF6      -0.007 -0.025 -0.047  

CZZ       -0.018 -0.041  

FF5        -0.023  

         
 

Panel B: p-Values  

Model FrazPed Carhart SY HXZ FF6 CZZ FF5 AFIM  

FF3 0.107 0 0.025 0.029 0 0.013 0 0.001  

FrazPed  0.36 0.226 0.206 0.109 0.077 0.038 0.01  

Carhart   0.686 0.616 0.006 0.17 0.135 0.013  

SY    0.832 0.562 0.398 0.24 0.08  

HXZ     0.741 0.419 0.259 0.052  

FF6      0.792 0.417 0.066  

CZZ       0.443 0  

FF5               0.262  

This table reports the asymptotically valid Barillas et al, (2020) pairwise tests of equality of the squared Sharpe ratios for 

different models, some nested and others nonnested on a set of Italian factor models from 1991 to 2022. The models are 

presented from left to right and top to bottom in order of increasing squared Sharpe ratios. The diagonal elements are the 

sample squared Sharpe ratio differences between the model in that column and the next-best model.  Panel A reports the 

differences in squared Sharpe ratio. In Panel B, p-values for the tests of equality of the squared Sharpe ratios are reported. 

Low p-values indicate the difference identified in Panel A is statistically significant. 
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Table A.10. Spain Tests of Equality of Squared Sharpe Ratios 

 
Panel A: Difference in Squared Sharpe Performance  

Model FrazPed SY HXZ FF5 FF6 Carhart CZZ AFIM  

FF3 -0.011 -0.012 -0.016 -0.022 -0.027 -0.032 -0.037 -0.06  

FrazPed  -0.001 -0.005 -0.011 -0.016 -0.02 -0.026 -0.049  

SY   -0.004 -0.01 -0.015 -0.02 -0.025 -0.048  

HXZ    -0.006 -0.011 -0.016 -0.021 -0.044  

FF5     -0.005 -0.01 -0.015 -0.038  

FF6      -0.004 -0.01 -0.033  

Carhart       -0.006 -0.028  

CZZ        -0.023  

         
 

Panel B: p-Values  

Model FrazPed SY HXZ FF5 FF6 Carhart CZZ AFIM  

FF3 0.446 0.45 0.364 0.007 0.003 0 0.123 0.022  

FrazPed  0.966 0.811 0.634 0.523 0.415 0.322 0.106  

SY   0.779 0.606 0.458 0.367 0.193 0.059  

HXZ    0.721 0.648 0.531 0.247 0.096  

FF5     0.818 0.685 0.413 0.061  

FF6      0.794 0.547 0.056  

Carhart       0.745 0.105  

CZZ               0.002  

This table reports the asymptotically valid Barillas et al, (2020) pairwise tests of equality of the squared Sharpe ratios for 

different models, some nested and others nonnested on a set of Spanish factor models from 1991 to 2022. The models are 

presented from left to right and top to bottom in order of increasing squared Sharpe ratios. The diagonal elements are the 

sample squared Sharpe ratio differences between the model in that column and the next-best model. Panel A reports the 

differences in squared Sharpe ratio. In Panel B, p-values for the tests of equality of the squared Sharpe ratios are reported. 

Low p-values indicate the difference identified in Panel A is statistically significant. 
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A.IV Multiple Model Comparison Remaining Markets 

 

Table A.11. France Multiple Model Comparison 

 

         
 

Number of Additional Rejections Using Normal Test = 0  

   
      

 

Model θ̂2 r LR p-value      

FF3 0.005 4 14.842 0.001      

Carhart 0.034 5 7.449 0.027      

FF5 0.028 5 8.078 0.024      

FF6 0.067 5 0.313 0.646      

FrazPed 0.089 5 0 0.697      

SY 0.068 5 0.267 0.631      

AFIM 0.066 5 0.359 0.606      

HXZ 0.035 5 3.96 0.087      

CZZ 0.04 5 4.247 0.099      

This table reports the multiple model comparison tests in French stock returns. 𝜃2 is the bias-adjusted maximum squared 

Sharpe performance of each model identified in the first column. LR in column four is the value of the likelihood-ratio statistic 

as per Wolak (1987,1989).  Column five is the p value for the hypothesis that this model performs as well as any other model 

in the dataset. 
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Table A.12. Germany Multiple Model Comparison 

 

         
 

Number of Additional Rejections Using Normal Test = 0  

   
      

 

Model θ̂2 r LR p-value      

FF3 0.021 4 9.251 0.008      

Carhart 0.085 5 3.601 0.111      

FF5 0.069 5 5.089 0.079      

FF6 0.114 5 0.392 0.533      

FrazPed 0.039 5 4.327 0.06      

SY 0.066 5 4.211 0.096      

AFIM 0.13 5 0 0.83      

HXZ 0.035 5 9.231 0.012      

CZZ 0.104 5 0.154 0.716      

This table reports the multiple model comparison tests in German stock returns. 𝜃2 is the bias-adjusted maximum squared 

Sharpe performance of each model identified in the first column. LR in column four is the value of the likelihood-ratio statistic 

as per Wolak (1987,1989).  Column five is the p value for the hypothesis that this model performs as well as any other model 

in the dataset. 
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Table A.13. Netherlands Multiple Model Comparison 

 

         
 

Number of Additional Rejections Using Normal Test = 0  

   
      

 

Model θ̂2 r LR p-value      

FF3 0.011 4 6.227 0.039      

Carhart 0.049 5 0.029 0.789      

FF5 0.015 5 4.377 0.099      

FF6 0.049 5 0.026 0.779      

FrazPed 0.054 5 0 0.743      

SY 0.047 5 0.064 0.74      

AFIM 0.048 5 0.039 0.781      

HXZ 0.016 5 4.614 0.091      

CZZ 0.045 5 0.165 0.72      

This table reports the multiple model comparison tests in Dutch stock returns. 𝜃2 is the bias-adjusted maximum squared 

Sharpe performance of each model identified in the first column. LR in column four is the value of the likelihood-ratio statistic 

as per Wolak (1987,1989).  Column five is the p value for the hypothesis that this model performs as well as any other model 

in the dataset. 
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Table A.14. Italy Multiple Model Comparison 

 

         
 

Number of Additional Rejections Using Normal Test = 0  

   
      

 

Model θ̂2 r LR p-value      

FF3 0.005 4 12.557 0.002      

Carhart 0.037 5 6.149 0.04      

FF5 0.087 5 1.258 0.374      

FF6 0.062 5 2.857 0.179      

FrazPed 0.016 5 6.792 0.025      

SY 0.046 5 3.068 0.164      

AFIM 0.109 5 0 0.817      

HXZ 0.052 5 2.797 0.176      

CZZ 0.068 5 0.587 0.614       

This table reports the multiple model comparison tests in Italian stock returns. 𝜃2 is the bias-adjusted maximum squared 

Sharpe performance of each model identified in the first column. LR in column four is the value of the likelihood-ratio statistic 

as per Wolak (1987,1989).  Column five is the p value for the hypothesis that this model performs as well as any other model 

in the dataset. 
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Table A.15. Spain Multiple Model Comparison 

 

         
 

Number of Additional Rejections Using Normal Test = 0  

   
      

 

Model θ̂2 r LR p-value      

FF3 0.005 4 5.894 0.048      

Carhart 0.037 5 2.601 0.202      

FF5 0.029 5 3.292 0.144      

FF6 0.033 5 3.633 0.128      

FrazPed 0.021 5 2.584 0.195      

SY 0.016 5 3.714 0.129      

AFIM 0.065 5 0 0.797      

HXZ 0.013 5 3.008 0.144      

CZZ 0.039 5 0 0.842       

This table reports the multiple model comparison tests in Spanish stock returns. 𝜃2 is the bias-adjusted maximum squared 

Sharpe performance of each model identified in the first column. LR in column four is the value of the likelihood-ratio statistic 

as per Wolak (1987,1989).  Column five is the p value for the hypothesis that this model performs as well as any other model 

in the dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 

 

A.V Simulation Evidence for Full Sample 
 

Table A.16. U.K. Multiple Model Comparison Simulation Evidence  

 

 Carhart  FF6 AFIM CZZ  

 

  0.097 0.147 0.136 0.094 
 

T = 
 

130  
 

10% 0.401 0 0.026 0.332  

5% 0.167 0 0.005 0.168  

1% 0.014 0 0 0.023  

T = 
 

260  
 

10% 0.822 0 0.108 0.55  

5% 0.593 0 0.031 0.384  

1% 0.143 0 0.001 0.105  

T = 
 

390  
 

10% 0.969 0 0.26 0.702  

5% 0.882 0 0.104 0.548  

1% 0.451 0 0.007 0.229  

This table reports the 𝜃2 of each model in U.K stock returns from the simulation. The rejection rates at different significance 

levels (10%, 5%, 1%) are then reported. These values represent the proportion of times the null hypothesis (that the 

benchmark model's 𝜃2 is at least as high as the other models) is rejected at different significance levels. "T" represents the 

length of the time period (or sample size) for which the statistical analysis or simulation is conducted. Each "T = 130, 260, 

390" corresponds to a different time period or sample size. 
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Table A.17. France Multiple Model Comparison Simulation Evidence  

 

 FrazPed FF6 AFIM SY  

 

  0.115 0.062 0.083 0.08 
 

T = 130   
 

10% 0.04 0.32 0.044 0.131  

5% 0.015 0.167 0.016 0.06  

1% 0.001 0.026 0.002 0.011  

T = 260   
 

10% 0.023 0.753 0.096 0.21  

5% 0.007 0.58 0.047 0.106  

1% 0 0.243 0.009 0.024  

T = 390   
 

10% 0.012 0.931 0.152 0.269  

5% 0.004 0.848 0.077 0.162  

1% 0 0.568 0.016 0.041  

This table reports the 𝜃2 of each model in French stock returns from the simulation. The rejection rates at different significance 

levels (10%, 5%, 1%) are then reported. These values represent the proportion of times the null hypothesis (that the 

benchmark model's 𝜃2 is at least as high as the other models) is rejected at different significance levels. "T" represents the 

length of the time period (or sample size) for which the statistical analysis or simulation is conducted. Each "T = 130, 260, 

390" corresponds to a different time period or sample size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 

 

Table A.18. Germany Multiple Model Comparison Simulation Evidence  

 

 Carhart FF6 AFIM CZZ  

 

  0.097 0.137 0.149 0.083 
 

T = 130   
 

10% 0.365 0.018 0.002 0.45  

5% 0.168 0.003 0 0.251  

1% 0.017 0 0 0.036  

T = 260   
 

10% 0.726 0.053 0.002 0.734  

5% 0.504 0.014 0 0.563  

1% 0.121 0 0 0.212  

T = 390   
 

10% 0.908 0.095 0.002 0.874  

5% 0.773 0.034 0 0.766  

1% 0.338 0.002 0 0.441  

This table reports the 𝜃2 of each model in German stock returns from the simulation. The rejection rates at different 

significance levels (10%, 5%, 1%) are then reported. These values represent the proportion of times the null hypothesis (that 

the benchmark model's 𝜃2 is at least as high as the other models) is rejected at different significance levels. "T" represents 

the length of the time period (or sample size) for which the statistical analysis or simulation is conducted. Each "T = 130, 260, 

390" corresponds to a different time period or sample size. 
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Table A.19. Netherlands Multiple Model Comparison Simulation Evidence  

 

 Carhart FF6 AFIM FrazPed  

 

  0.057 0.064 0.062 0.042 
 

T = 130   
 

10% 0.039 0.002 0.005 0.254  

5% 0.008 0 0.001 0.122  

1% 0 0 0 0.013  

T = 260   
 

10% 0.065 0.003 0.011 0.325  

5% 0.016 0 0.002 0.181  

1% 0.001 0 0 0.031  

T = 390   
 

10% 0.105 0.002 0.018 0.379  

5% 0.027 0 0.004 0.237  

1% 0.001 0 0 0.058  

This table reports the 𝜃2 of each model in Dutch stock returns from the simulation. The rejection rates at different significance 

levels (10%, 5%, 1%) are then reported. These values represent the proportion of times the null hypothesis (that the 

benchmark model's 𝜃2 is at least as high as the other models) is rejected at different significance levels. "T" represents the 

length of the time period (or sample size) for which the statistical analysis or simulation is conducted. Each "T = 130, 260, 

390" corresponds to a different time period or sample size. 
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Table A.20. Italy Multiple Model Comparison Simulation Evidence  

 

 FF5 FF6 AFIM CZZ  

 

  0.101 0.115 0.125 0.047 
 

T = 130   
 

10% 0.126 0.015 0.004 0.686  

5% 0.041 0.004 0.001 0.464  

1% 0.001 0 0 0.099  

T = 260   
 

10% 0.277 0.031 0.003 0.933  

5% 0.119 0.008 0.001 0.849  

1% 0.01 0 0 0.482  

T = 390   
 

10% 0.426 0.057 0.004 0.988  

5% 0.238 0.021 0.001 0.964  

1% 0.038 0.001 0 0.809  

This table reports the 𝜃2 of each model in Italian stock returns from the simulation. The rejection rates at different significance 

levels (10%, 5%, 1%) are then reported. These values represent the proportion of times the null hypothesis (that the 

benchmark model's 𝜃2 is at least as high as the other models) is rejected at different significance levels. "T" represents the 

length of the time period (or sample size) for which the statistical analysis or simulation is conducted. Each "T = 130, 260, 

390" corresponds to a different time period or sample size. 
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Table A.21. Spain Multiple Model Comparison Simulation Evidence  

 

 Carhart FF6 AFIM CZZ  

 

  0.049 0.071 0.083 0.038 
 

T = 130   
 

10% 0.181 0.02 0.001 0.305  

5% 0.058 0.004 0 0.122  

1% 0.003 0 0 0.007  

T = 260   
 

10% 0.481 0.077 0 0.703  

5% 0.247 0.022 0 0.456  

1% 0.027 0.001 0 0.076  

T = 390   
 

10% 0.734 0.156 0 0.906  

5% 0.496 0.055 0 0.751  

1% 0.107 0.003 0 0.29  

This table reports the 𝜃2 of each model in Spanish stock returns from the simulation. The rejection rates at different 

significance levels (10%, 5%, 1%) are then reported. These values represent the proportion of times the null hypothesis (that 

the benchmark model's 𝜃2 is at least as high as the other models) is rejected at different significance levels. "T" represents 

the length of the time period (or sample size) for which the statistical analysis or simulation is conducted. Each "T = 130, 260, 

390" corresponds to a different time period or sample size. 
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Chapter 3 Time Series Efficient Factors 

 

 

 

 

 

 

Abstract 

This chapter explores the use of serial correlation in factor returns to enhance Sharpe 

performance of the models examined in the previous chapter. Adopting the methodology of 

Ehsani and Linnainmaa (2022), the analysis demonstrates that multiple investment factors in 

the cross-country dataset are unconditionally minimum-variance inefficient: factor returns are 

positively autocorrelated, while risk remains constant regardless of past returns. Using Ferson 

and Siegel’s (2001) general framework, 'time-series efficient factors' are constructed by 

conditioning factor weights on historical returns to enhance the Sharpe ratios of these factors 

across the European markets under consideration. A number of these optimised factors achieve 

significantly higher average Sharpe ratios compared to the original factors, while retaining all 

the information contained in the original factors. When the model comparison tests from 

Chapter Two are repeated with these optimised factors, the absolute performance of the lower-

performing models improves, while the relative performance among the models remains 

consistent across markets. 
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3.1 Introduction 

 

Asset pricing models can be enhanced either through the addition of factors that broaden the 

efficient frontier or by improving the mean-variance efficiency of the existing factors. In the 

preceding chapter, by adopting the first strategy, I found that models incorporating the 

momentum factor, as suggested by Fama and French (2018) and Asness et al. (2015), 

consistently surpassed others in the analysis. This finding is consistent with prior observations, 

where the momentum factor yields some of the highest average monthly returns among the 

factors. In this chapter, I pursue the second strategy, aiming to enhance model performance by 

scrutinising the mean-variance efficiency of the underlying factors. 

Ehsani and Linnainmaa (2022) challenge the traditional perspective that views momentum in 

individual stock returns as an independent phenomenon. Instead, they suggest that the 

momentum commonly observed at the stock level is not a unique or isolated effect. It is, rather, 

a consequence of the autocorrelations presents within the broader market factors. 

Autocorrelation, in this context, refers to the tendency of a factor's returns to be correlated with 

its past returns, creating a pattern of momentum. In an effort to leverage the predictive 

capabilities of autocorrelation observed in factor returns, the authors introduce a concept 

termed as a 'time-series efficient factor.' This innovative approach utilises autocorrelation to 

optimally time the original factor, aiming to reduce variance while preserving the expected 

return. This approach stems from the framework of Ferson and Siegel (2001) which finds an 

unconditionally minimum variance efficient portfolio. Such a strategy ensures that if a factor 

can achieve reduced variance without compromising on stable returns, an improvement in the 

factor's Sharpe ratio will be observed. The addition of a distinct momentum factor to a model 

with factors constructed in this way should not be able to enhance the model performance. This 

is because time-series efficient factors already capture the predictable variations in factor 

premiums that these momentum strategies aim to exploit.  

Time-series efficient factors address Cochrane's 2011 critique of the expanding "factor zoo" in 

asset pricing, where he pointed out the inefficiency of many asset pricing factors in 

unconditional mean-variance terms. Utilising these inefficient factors as benchmarks could 

lead to misleading conclusions about the effectiveness of asset pricing models, mistaking minor 

improvements over inefficient benchmarks for genuine anomalies. Ehsani and Linnainmaa 

(2022) argue that employing efficient factors ensures that any observed performance 

improvements are due to the real contribution of new factors, rather than the baseline 
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inefficiency of the benchmarks. This is crucial when assessing models that include a 

momentum factor, as seen in Chapter Two, to determine if their outperformance stems from 

the genuine efficacy of the momentum factor or from the inefficiencies in the model's other 

factors.  

In this chapter, the mean-variance efficiency of factors in the European dataset is explored with 

two main objectives. First, assessing whether the Sharpe ratio of these factors can be improved 

using a time-series efficient method. Second, mitigating the influence of the momentum factor 

on model comparison tests by reallocating the momentum observed in these factors' returns 

back to the factors themselves. This adjustment could potentially identify a different top-

performing model across the samples. To verify this, model comparison tests from Chapter 

Two are rerun. 

In focusing on the time-series efficiency of asset pricing factors, this chapter aims to refine our 

understanding of factor-based investing by reducing reliance on an expanding array of factors, 

as highlighted by Cochrane (2011). This approach not only addresses theoretical concerns 

about the proliferation of asset pricing factors but also responds to practical challenges faced 

by investors who seek streamlined models with robust predictive power. By improving the 

mean-variance efficiency of factors using conditioning information, such as past returns, this 

study explores a model enhancement technique that remains largely underutilised in non-U.S. 

markets. This optimisation aligns with recent findings by Moreira and Muir (2017) on volatility 

timing, further suggesting that time-series adjusted factors can enhance model robustness in 

environments where standard momentum and other traditional factors have shown mixed 

performance. In the European context, this efficient factor approach may offer investors and 

academics a new lens to interpret the dynamics of returns, providing a foundation for models 

that respond more accurately to localized economic cycles and market conditions. Ultimately, 

this chapter aims to demonstrate that factor efficiency improvements can yield models that are 

not only statistically sound but also practically valuable, reducing the risk of overfitting and 

enhancing the economic interpretability of factor-based asset pricing. 

The analysis shows that key investment factors, such as the size factor, exhibit mean-variance 

inefficiency in European markets. This finding is particularly important, as these factors have 

developed a reputation for generating low and often insignificant returns over the past three 

decades (Artmann et al., 2012; Fletcher, 2019). This chapter suggests their perceived lack of 

impact is more about inefficiency in the mean-variance framework rather than outright 
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insignificance. Furthermore, the study finds that the efficient factors reduce the reliance on a 

distinct momentum factor across models. The model comparison tests show that the 

optimisation improves the Sharpe performance of some models. However, the relative Sharpe 

performance of models across markets remains similar to the original tests. 

3.2 Momentum in Stock Returns 

3.2.1 Time Series Momentum  

Adjusting portfolio weights based on past returns requires a relationship between a factor's 

return and its historical performance. Price momentum, known for assets continuing their 

recent outperformance or underperformance, has been extensively studied in financial research. 

Early studies examined the statistical traits of price series, like return autocorrelation, to test 

the random walk model. Kendall and Hill (1953) noted uncorrelated initial price changes, 

leading to further exploration of autoregressive models. Alexander (1961) developed trading 

strategies using filters to identify profitable signals amid market noise, supporting the success 

of momentum-based strategies. This contrasted with standard risk-based theories, suggesting 

that momentum effects stem from behavioural biases and market frictions. Fama (1965) probed 

the predictive capability of historical stock prices, bolstering market efficiency theory by 

indicating that prices change independently, thus questioning the effectiveness of technical 

analysis for predicting price movements.  

Expanding on Fama's insights, Roll (1984) finds evidence that bid-ask spreads contribute to 

serial correlation in stock returns, which impacts the variance of stock returns and biases tests 

of market efficiency. Lo and MacKinlay (1988) provided significant contributions to the 

understanding of stock return behaviours as they find evidence that stock prices do not follow 

a random walk, particularly noting positive autocorrelation in weekly returns, challenging the 

efficient market hypothesis. Other research, notably by Kahneman et al. (1982) and Shiller, 

further scrutinised market behaviour and questioned prevailing assumptions about stock price 

determinants. Basu (1977) proposed the "price-ratio" hypothesis, shedding light on valuation 

anomalies. Studies by Irwin and Uhrig (1984), Tomek and Querin (1984), and Sweeney (1986) 

delved into trading strategies and market inefficiencies.  

It is important to distinguish between time-series and cross-sectional momentum. Time-series 

momentum evaluates an asset’s future performance based on its own past returns, while cross-

sectional momentum selects assets that outperform their peers. Seminal works include 

Jegadeesh and Titman (1993, 2001), who found that stocks with strong past performance tend 
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to continue performing well in the medium term, and De Bondt and Thaler (1985), who 

examined market overreaction. Rouwenhorst (1998) extended these findings to European 

markets, showing consistent momentum effects across 12 countries. Carhart (1997) 

incorporated a momentum factor into the Fama-French three-factor model, creating a four-

factor model that better explained mutual fund returns. Other relevant studies include Barberis, 

Shleifer, and Vishny (1998) on market reactions to news, Daniel, Hirshleifer, and 

Subrahmanyam (1998) on investor overconfidence, and Clare and Thomas (1995) and 

Dissanaike (1997), who observed momentum effects in the U.K. market. 

3.2.3 Factor Momentum 

3.2.3.1 Return Timing 

 

The work of Moskowitz, Ooi, and Pedersen (2012) is considered a seminal paper in the area of 

time series momentum in financial markets more generally as they examine other asset classes 

not just individual stock prices. The authors document substantial "time series momentum" 

across various asset classes, including equity index, currency, commodity, and bond futures. 

The study covered 58 liquid instruments and observed persistence in returns spanning one to 

12 months. This persistence partially reverses over longer periods, aligning with sentiment 

theories that suggest initial under-reaction and delayed over-reaction in markets. In their 

research, they showed that indices representing different asset classes, such as commodities, 

bonds, and currencies, could be effectively timed based on their recent performance trends. 

These indices, when considered as "factors" within their respective asset classes, illustrate the 

phenomenon of factor momentum, indicating that past performance trends can be indicative of 

future performance.  

Gupta and Kelly (2019) note that in recent decades, academic literature and industry practice 

have accumulated dozens of investment factors that help explain the co-movement and average 

returns among individual stocks. The authors build on the work on Moskowitz et al. (2012) 

through the analysis of a large collection of 65 such characteristic-based factors that are widely 

studied in the academic literature. From this dataset, they establish factor momentum as a 

robust and pervasive phenomenon outlining that serial correlation in returns is the basic 

statistical phenomenon underlying momentum. Gupta and Kelly (2019) demonstrate that 

individual factors can indeed be successfully timed based on their own past performance. The 

authors show that a time-series momentum trading strategy that scales exposure to a given 

factor in proportion with its own past one-month return generates excess performance over and 
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above the raw/original factor. Specifically, the authors buy the factor if its previous return is 

positive and sell if negative, then perform a regression to assess the alpha generated by this 

strategy. The alpha obtained from this regression represents the individual time-series 

momentum alpha, which is the measure of the excess performance of the time-series 

momentum strategy over the raw/original factor return. This individual time-series momentum 

alpha (i.e., after controlling for a passive investment in the factor) is positive for 61 of the 65 

factors and is statistically significant for 47 of them. 

The study of Gupta and Kelly (2019) also revealed that a time series "factor momentum" 

portfolio, which combines timing strategies of all factors, yields a notable annual Sharpe ratio 

of 0.84. This factor momentum significantly enhances the performance of investment strategies 

that use traditional momentum, industry momentum, value, and other commonly studied 

factors. They outline that whether the look-back window is as short as one month or as long as 

five years, their strategy identifies large positive momentum among factors. Gupta and Kelly 

(2019) discover that these phenomena are just as prevalent outside the United States, evident 

both in a comprehensive global sample (excluding the United States) and in a more detailed 

European sample encompassing the markets under their investigation in this study. 

The pervasiveness of momentum over time and across asset classes has given momentum the 

status of an independent factor—models without momentum cannot explain it and those with 

momentum cannot explain anything more than just momentum (Fama and French, 2016). 

Ehsani and Linnainmaa (2022) show that momentum is a dynamic portfolio that times other 

factors. These authors first confirm the findings of Gupta and Kelly (2019) through a variety 

of momentum proxy tests. They show that the average factor earns 51 basis points per month 

following a year of gains but just 6 basis points following a year of losses. They also show that 

small stocks, for example, are likely to outperform big stocks when they have done so over the 

prior year. Using a set of 15 U.S. anomalies they also demonstrate that the past returns of factors 

are a significant predictor of their future returns. Time-series regressions were conducted where 

the dependent variable is a factor's return in a given month, and the independent variable is an 

indicator for the factor's performance in the preceding month. This indicator is assigned a value 

of one if the factor's return was positive in that period, and zero otherwise. The intercepts in 

from these time series regressions measure the average factor returns earned following a year 

of underperformance. The slope coefficient represents the average return difference between 

the up and down years. In these regressions all slope coefficients are positive with 10 of the 15 

statistically significant at the 10% level of significance.  
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The main hypothesis of Ehsani and Linnainmaa (2022) is whether individual stock returns 

show momentum beyond what is explained by factor returns. To explore this, they compare 

strategies based on individual stock momentum against those based on factor momentum. 

Factor momentum is defined by extracting principal components from 47 factors, following 

Kozak, Nagel, and Santosh (2020), with higher eigenvalue components showing more 

momentum. Their findings suggest that factor momentum can price portfolios sorted by past 

one-year returns better than the traditional Carhart (1997) momentum factor. They also create 

momentum-neutral factors by adjusting the weights of factors to ensure they are independent 

of past returns. These adjusted factors yield similar returns but with reduced volatility and 

higher information ratios, showing that factor momentum is not incidental but an inherent part 

of these factors. The results indicate that factor momentum drives performance more 

effectively than stock-specific momentum, challenging the idea that individual stock 

momentum alone explains returns. 

In a follow-up paper, Ehsani and Linnainmaa (2022) advance the work of Gupta and Kelly 

(2019) by exploring factor momentum in more depth, particularly through the lens of time-

series efficiency. More specifically, they examine the autocorrelation in factor returns and show 

how it can be leveraged to create time-series efficient factors that maximise the Sharpe ratio 

by balancing return and risk more effectively. Ehsani and Linnainmaa (2022) argue that just 

because factor returns show autocorrelation, it does not automatically mean that investors can 

time the market successfully. For successful timing, the changes in expected returns must not 

align perfectly with changes in expected volatility. The typical factor's expected return depends 

on its past return, but its variance does not. This creates an opportunity for timing factors to 

improve their Sharpe ratios (a measure of risk-adjusted return). To exploit this, the authors 

create 'time-series efficient' versions of standard factors. These new versions are designed by 

an investor who believes in a specific statistical model (an AR(1) process) for a factor's returns. 

The investor uses the factor's mean, variance, and autocorrelation to form factors that are mean-

variance efficient (MVE) unconditionally, which means they maximise returns for a given level 

of risk. These time-series efficient factors use the autocorrelation in factor returns to minimise 

variance while maintaining expected return, leading to higher Sharpe ratios than the original 

factors in U.S stock returns. 

3.2.3.2 Volatility Timing 
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In addition to using factors’ past returns for timing strategies, investors can also incorporate 

other predictive measures, such as valuation ratios and past volatilities, to optimise their 

portfolios. For instance, Haddad et al. (2020) demonstrate that book-to-market ratios, a 

measure of a company's valuation, can be effective in forecasting expected returns. By 

analysing the relationship between valuation metrics and future stock performance, investors 

can implement timing strategies that adjust their exposure to stocks based on their expected 

return potential, particularly when valuation spreads signal significant opportunities. 

Another prominent timing strategy, volatility timing, is detailed in the work of Moreira and 

Muir (2017). Their method involves dynamically adjusting portfolio exposure based on the 

inverse of the previous month’s realized variance. Specifically, they scale the returns of various 

asset pricing factors—such as the market, value, momentum, and carry trade—by increasing 

exposure during periods of low volatility and reducing it during times of high volatility. This 

approach is grounded in the principle that high volatility often corresponds with increased 

market risk, where maintaining the same level of exposure could lead to substantial losses. By 

contrast, during periods of stability, increasing exposure allows investors to capitalise on 

potential returns. The appeal of Moreira and Muir’s approach lies in its simplicity and 

practicality, as it does not require complex parameter estimation and can be implemented in 

real-time without leverage. The strategy has proven particularly effective in improving the 

mean-variance trade-off, resulting in significant alphas and higher Sharpe ratios compared to 

traditional buy-and-hold strategies. Furthermore, volatility-managed portfolios have 

demonstrated robustness, outperforming during market downturns, such as recessions and 

financial crises, by minimising risk exposure when markets are turbulent and maximising 

returns during periods of calm.  Importantly, the author finds that this approach remains  

effective even after accounting for transaction costs and potential leverage constraints, making 

it a practical tool for real-world investors. 

Expanding on nonlinear timing approaches, Kozak et al. (2020) propose an advanced strategy 

that leverages a broad array of stock characteristics to forecast returns. Their nonlinear model 

allows for a more sophisticated understanding of the relationships between various stock 

attributes and future returns, using machine learning techniques to identify patterns that are not 

apparent in traditional linear models. By incorporating a wide range of characteristics, such as 

firm size, book-to-market ratio, momentum, and past volatilities, this approach can 

dynamically adjust portfolio exposure in a way that captures complex, nonlinear dependencies. 

This method stands out for its ability to adapt to changing market conditions and capture the 
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multifaceted nature of risk and return, providing a more comprehensive framework for timing 

strategies. The authors find that portfolios constructed using nonlinear timing approaches often 

achieve superior performance compared to those built on linear timing models, as they better 

exploit information embedded in stock characteristics. 

Further, Bollerslev, Tauchen, and Zhou (2009) contribute to the understanding of volatility 

timing by examining how real-time measures of volatility, such as implied volatility indices 

and high-frequency volatility estimates, can predict future returns. They show that periods of 

high implied volatility often precede lower future returns, suggesting that volatility is a key 

indicator of risk aversion and expected market performance. Their findings highlight the 

importance of integrating volatility measures into asset pricing models, as these measures 

provide valuable signals for adjusting risk exposure. Campbell and Cochrane (1999) also 

introduce the concept of consumption-based volatility timing. Their model suggests that when 

consumption is relatively high compared to its long-term trend, expected returns are lower, and 

vice versa. This relationship can be used to time the market by adjusting exposure based on the 

ratio of current consumption to its trend. This approach captures time-varying risk premiums 

and demonstrates that risk aversion fluctuates over the economic cycle, influencing expected 

stock returns. 

Lastly, the variance risk premium, studied by Bollerslev, Todorov, and Xu (2015), provides 

another avenue for timing returns. The variance risk premium is the difference between implied 

and realised variances and serves as a predictor of future equity returns. By incorporating this 

premium into their models, investors can gain insights into market sentiment and adjust their 

portfolios accordingly. High variance risk premiums often signal increased market uncertainty, 

prompting a reduction in risk exposure, while low premiums suggest a more favourable risk-

return environment. 

This chapter focuses exclusively on return timing, rather than volatility timing, because the two 

strategies address different aspects of market dynamics. While volatility timing adjusts risk 

exposure based on changes in volatility, return timing is centred on exploiting patterns in price 

returns to maximise returns for a given level of risk. Given the outperformance of the 

momentum factor based on price returns, as demonstrated in Chapter 2, our approach 

emphasises return-based signals rather than volatility adjustments. Furthermore, volatility 

timing requires managing exposure in response to past variance, which involves a different set 

of assumptions and data considerations. By concentrating on return timing, we align more 
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closely with the core principles of momentum strategies that have proven effective in our earlier 

analysis. 

3.3 Research Methods  

3.3.1 General Framework 

 

In the previous chapter, we outlined how a significant alpha can arise from the factors included 

in a model not being combined in a way that forms a minimum-variance efficient portfolio. 

Ehsani and Linnainmaa (2022) explain that this significant alpha could result from the factors 

themselves not being mean-variance efficient. In other words, there is information within the 

factors' returns that can be utilised to improve their mean-variance profile. This chapter adopts 

Ehsani and Linnainmaa’s methodology to enhance the model by exploiting factors' time-series 

properties, aiming to improve Sharpe ratios by considering the independence of returns and 

volatility over time. 

Ehsani and Linnainmaa (2022) use the framework of Ferson and Siegal (2001) to construct 

time series efficient factors. Time series efficient meaning that the weight placed on a factor is 

a function of conditioning information, which in this case is the prior month return of the factor. 

Ferson and Siegal (2001) outline a framework to find an unconditionally minimum variance 

efficient portfolio based on some conditioning information. First, this method is described for 

the case of one risky asset and the risk-free asset. Then, this framework is applied to factors 

with past returns as the conditioning information. 

Starting from a single risky asset with a return of 

�̃� = 𝜇(�̃�) + 𝜀̃,       (3.1) 

where R̃ is the risky asset's return in excess of the risk-free rate, S̃ is the predictor (signal), μ(S̃) 

is the expected excess return conditional on the signal, and ε̃ is the random noise net of the 

signal with a mean of zero and a variance of σ2
ε (S̃). The efficient strategy invests x(S̃) in the 

risky asset and the remainder, 1 - x(S̃), in the risk-free asset. The unconditional expected excess 

return and variance of this investment strategy are given by  

𝜇𝑝 = 𝐸[𝑥(�̃�) 𝜇(�̃�)]       (3.2) 

σ𝑝
2 = 𝐸 [𝑥2(�̃�) (𝜇2(�̃�) + σ𝜀

2(�̃�))] − 𝜇𝑝
2      (3.3) 
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Ferson and Siegel (2001) show that the portfolio that minimises σ𝑝
2  for a given conditional 

expectation 𝜇𝑝invests 𝑥(�̃�) in the risky asset, 

 
𝑥(S̃) =

𝜇𝑃

∂

𝜇(S̃)

𝜇2(S̃) + σε
2(S̃)

 
  (3.4) 

Here 𝜇𝑃 denotes the unconditional expected factor returns obtained from the original factor. 

The conditional expected portfolio returns 𝜇(S̃), assuming an AR(1) model is used to condition 

the time-series Efficient factor on, and the constant ∂ are defined below. 

 
∂ =

𝜇2(S̃)

𝜇2(S̃) + σε
2(S̃)

 
(3.5) 

This optimal proportion to invest in this risky asset is a function of the portfolio's expected 

return and the ratio of the signal's squared expected return to the sum of its squared expected 

return and variance denoted in 3.5. This weighting program produces a unique mean-variance 

efficient portfolio. That being no other portfolio has the same unconditional return at a lower 

unconditional variance (Ferson and Siegel, 2001). This analysis can be applied to any sort of 

conditioning information.  

3.3.2 Time Series Efficient Factors 

 

Ehsani and Linnainmaa (2022) use information embedded in the factors’ realised returns as the 

signal to create this minimum variance portfolio. In other words, the prior month return of a 

given factors may contain information useful in deciding the optimal weight on that factor in 

the following month. This case gives a closed-form solution for the MVE transformation and 

for the expected efficiency gain or increase in Sharpe ratio. The new factors the authors 

construct, using information only in factors’ past returns, are weak-form efficient in the sense 

of Fama (1970). 

Ehsani and Linnainmaa (2022)  assume that past returns are related to future returns but 

unrelated to variance. Specifically, it is assumed that returns follow a homoscedastic 

autoregressive process, 

�̃�𝑡 = 𝜇 + 𝜌�̃�𝑡−1 + 𝜀𝑡     (3.6) 

𝑣𝑎𝑟[𝜀𝑡|𝑅𝑡−1] = σ𝜀
2     (3.7) 

The factor’s conditional expected return under this model is  μ(S̃) = 𝜇 + 𝜌�̃�𝑡−1. Using equations 

(3.6) and (3.7), the investor’s optimal weight on the factor is 
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𝑥(𝑆𝑡)= μp 

SR2+1 

SR2+𝜌²
 

𝜇𝑝(1− 𝜌)+  𝜌𝑟𝑡−1

(𝜇𝑝(1− 𝜌)+𝜌𝑟𝑡−1)
2

+𝜎ε
2
 

(3.8) 

In this equation, μp is the factor’s unconditional mean, SR is the unconditional Sharpe ratio, ρ 

is the autocorrelation coefficient, and σ2
ε = (1 – p2) σ2 is the constant variance of the noise term. 

A time-series efficient factor is defined as the portfolio that invests 𝑥(𝑆𝑡) on the original factor. 

In the empirical work, like Ehsani and Linnainmaa (2022),  I use month t − 1 return as the 

conditioning information.  The optimal weight on a given factor depends on the factor’s mean, 

standard deviation, and first-order autocorrelation.  The efficient constant and portfolio weights 

are calculated for each time point t using the inverse of the sum of the covariance matrix of 

residuals from equation 3.6 and the square of the conditional mean. The portfolio weight vector 

calculated for each time point. 

The regression performed for each factor is a simple time-series regression of the factor on its 

lagged value. This regression helps understand how a factor's past value might influence its 

current value. Weights are then calculated using both the conditional mean and the conditional 

variance of this regression. This means that the weights are a function of both how well the 

factor's current value can be predicted from its past (the conditional mean) and how much 

uncertainty there is in this prediction (the conditional variance). Applying these weights to the 

original factors produces a new set of factor returns. The model uses these in-sample estimates 

to calculate the optimal weight an investor should place on a factor for future periods, based 

on the historical performance and characteristics of that factor.  

As outlined by Ehsani and Linnainmaa (2022) and the weighting program is not monotone in 

the past return. Although the optimal weight initially increases if a past return is high, the 

optimal strategy begins to scale back as the past return becomes abnormally high. Similarly, 

the investor begins to scale back on shorting the factor when the factor’s past return is very 

low. The investor’s objective is to minimise risk while maintaining a steady average return. If 

a signal indicates very high potential returns, an investor might make a big bet, but to manage 

risk, they will invest less in risky assets, aiming for smoother returns. Essentially, a high return 

in the previous month allows an investor to reduce their investment in that factor, lowering risk 

without sacrificing returns. The intuition behind this is described by Ferson and Siegel (2001) 

where the primary focus is on conditional asset pricing models. These models incorporate time-

varying information (like economic indicators or past asset returns) to adjust the expected 

returns and risks of assets or portfolios. Their approach is based on the premise that the 
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expected returns of assets are not static but vary with the economic environment or other 

conditioning information. 

Ferson and Siegel (2001) explain that unconditionally efficient portfolios, which maximise 

expected return for a given risk level without additional information, must also be conditionally 

efficient. However, the reverse is not true. Their model shows that when future returns are 

moderately predicted, portfolio weights follow traditional investment strategies. But when 

signals indicate extreme returns, the strategy becomes more cautious, reducing investments in 

risky assets despite high expected returns to manage overall risk. 

3.4 Data  

 

The analysis uses the same dataset from Chapter Two, incorporating a set of 12 tradable 

investment factors. These factors can be categorised into two main groups. The initial group 

originates from the work of Fama and French (1993, 2015) and Carhart (1997), covering the 

Market factor's excess returns and zero-cost portfolios for size (SMB), value (HML), 

profitability (RMW), investment (CMA), and momentum (MOM) effects. The second group 

features the betting against beta (BAB) factor introduced by Frazzini and Pedersen (2014), an 

updated value factor (HMLM) by Asness and Frazzini (2013), and two mispricing factors from 

11 market anomalies named Management (MMGT) and Performance (PERF) by Stambaugh 

and Yuan (2017), as elaborated in section 2.3.1. The factor data for this analysis is retrieved 

from the Globalfactorpremia.org database and the AQR Capital Management database. Again, 

the period of analysis is between June 1991 and December 2022. All factors are denominated 

in USD. 

3.5 Empirical Results 

3.5.1 Time Series Efficient Factors  

3.5.1.1 Predictive Regressions 

First, the relationship between factor monthly returns is examined by employing predictive 

regression analyses on the set of factors in European stock returns. This method directly 

assesses the potential of timing investment strategies through the lens of historical data's ability 

to forecast future performance. By regressing future returns on past returns, the analysis aims 

to uncover the degree of autocorrelation, which serves as a crucial indicator of their persistence 

over time. A significant AR(1) coefficient suggests a robust linkage between consecutive 

returns, indicating the possibility of enhancing investment strategies by leveraging signals from 
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past performance. These strategies, predicated on the historical continuity of returns, aim to 

achieve improved Sharpe ratios, denoting more efficient risk-adjusted returns. However, when 

predictive regression does not demonstrate significant autocorrelation, the viability of timing 

strategies based on past returns appears limited. In such cases, certain factors may lack the 

historical patterns necessary for adjusting investment approaches based solely on past 

performance. 

Table 3.1 

The analysis across European markets reveals varying levels of predictive power from past 

returns. The predictive return beta values from equation 3.7 and their t-statistics are examined 

in Table 3.1. The U.K. stands out with notably strong and significant 𝛽 values for factors such 

as HML (0.337 with a t-statistic of 6.995) and HMLM (0.304 with a t-statistic of 6.225), 

suggesting these factors' past returns might be particularly predictive of future returns in the 

U.K. market. Germany shows a similar trend, with factors like BAB (0.22 with a t-statistic of 

4.411) and CMA (0.206 with a t-statistic of 4.099) also indicating robust predictive 

relationships. In contrast, France and the Netherlands reveal lower 𝛽 values and fewer instances 

of significant results, pointing to a less pronounced predictive power of past returns for the 

examined factors within these markets. Meanwhile, Italy and Spain typically exhibit lower 𝛽 

values and levels of significance, although exceptions exist, such as BAB in Italy (0.138 with 

a t-statistic of 2.713), suggesting some potential for predictive utility. 

This nuanced landscape underscores the variability in the predictive power of past returns 

across different factors and countries. For instance, the market factor (MKT) displays positive 

𝛽 values across all countries, with varying degrees of significance, particularly marked in the 

U.K., but less so in Italy and Spain. The value and momentum factors (HML and MOM) show 

a general trend of positive β values across the board, with HML being notably significant in 

the U.K. and Germany. This indicates that value strategies may possess predictive power in 

these regions. Furthermore, factors related to operational efficiency and asset growth (RMWOP 

and CMA) are highlighted as significantly predictive in specific markets like the U.K. and 

Germany, pointing to the potential of these investment styles in certain European contexts. The 

significant predictive power in certain factors and markets suggests that understanding past 

return patterns can benefit investment decisions, provided these insights are applied with a 

nuanced and context-aware approach. 
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3.5.1.2 Risk Return Characteristics  

Despite observing significant autocorrelation in prices, evaluating potential enhancements in 

the key performance metric, the Sharpe ratio, also requires examining volatility co-movement. 

Again, due to space constraints in the main body of the document, the results for the U.K. are 

included in the primary tables, while results for the other five markets are detailed in various 

sections of Appendix B. 

First, this potential gain is assessed with a more empirical approach. In Table 3.2, following 

the approach of Ehsani and Linnainmaa (2022), U.K. factors are assigned into two equally 

sized groups based on their month t-1 returns. The average annualised returns and volatilities 

for each group are reported. The full sample is used to create two groups of equal size: one 

group with returns following a period of high returns and the other group with returns following 

a period of low returns. The annualised returns for each of these groups for each factor are 

reported in the first two columns of the table. The ‘H-L’ column reports the difference between 

the two subgroups. To establish if an investor should vary factor allocations with changes in 

expected return, the joint dynamics of variance and returns must be analysed. The annualised 

volatility of each group for each factor is reported in the remaining three columns of Table 3.2. 

Table 3.2 

For nine of the twelve factors the difference in expected returns (H-L) based on the prior month 

return is significantly different from zero at a significance level of 5% and one at the 10% level. 

In other words, there is a statistically significant difference in the returns that follow periods of 

low returns and periods of high returns. The findings in differences in expected factor returns 

are in line with the AR(1) coefficients ρ and their t-statistics stated in the appendices. The 

estimates show that when the Size factor (SMB) return in month t-1 is low, it’s average 

annualised return is -1.74%. If the return in month t-1 is high, the annualised return is 4.00%. 

This 5.74% difference in the returns is significant at the 10% level of significance with a t-

value of 1.81. The market return is not significantly different when the prior month returns are 

low or high. The same can be said for the Management factor (MGMT).  

The value factor (HML) and updated value factor (HMLM) see some of the largest and most 

significant differences between the high and low groups. As a result, the largest opportunities 

for increasing the Sharpe ratio when conditioning on past returns lie in factors such as HML 
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and HMLM. For example, an investor may increase their weighting on the Value factor after a 

month where the factor provides a high return and decrease their weighting after a month of 

low return. However, the focus is on the Sharpe ratio of each factor. It is necessary to examine 

if the increase in return is matched with an increase in volatility, which may leave the Sharpe 

ratio unchanged. 

The final three columns of Table 3.2 report on the relationship between past returns and future 

variances. The estimates show that when the market factor's return in month t-1 is low, its 

annualised volatility in month t is 18.82%. Following a high-return month, its volatility is 

12.88%. As such, the variance ratio of (
0.1882

0.1288
) = 0.68 is statistically significantly different 

from one with a p-value of 0.00. This means the Market factor is significantly less, rather than 

more, volatile following high returns. This variance ratio is expressed as a percentage in the 

H/L column of Table 3.1. Unfortunately this fall in volatility is not matched with an increased 

return as seen through the insignificant H-L t-statistic, which indicates there may be no 

improvement in the Sharpe ratio for this factor when information contain in past returns is 

considered. The Size and Value factors exhibit statistically significant differences in returns 

conditioned on prior month information, however the variance ratios of 0.97 and 1.01 

respectively are not statistically significant. This indicates that even though the returns 

provided by these factors in month t are greater if the return in t-1 is also high, this increase 

may be matched with an increase in volatility which may not result in an increased Sharpe 

ratio. The remaining factor also see no difference in volatility following periods of high and 

low returns.  

The risk-return dynamics for each of the remaining five markets are examined in Section B.II 

in Appendix B. Highlighting certain examples, French returns (Table B.1) show the HML factor 

with the highest difference (11.97) in returns between high and low periods from the previous 

month. This difference is complemented by a significant reduction in volatility, as indicated by 

a high/low variance ratio of 0.75 and a corresponding p-value of 0.07, suggesting that periods 

of high returns are followed by lower volatility. In Germany (Table B.2), the BAB factor leads 

with the most substantial difference in returns (14.86), followed by periods of high and low 

returns. However, this difference in returns does not translate to a significant change in 

volatility, with a variance ratio of 1.10 and a p-value of 0.51. The Dutch market data (Table 

B.3) reveals the MGMT factor as having the largest difference in returns between high and low 
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return periods (6.08). The volatility change associated with this difference is not significant, 

evidenced by a variance ratio of 1.13 and a p-value of 0.16. 

Overall, in the remaining markets, at least four factors exhibit a significant difference in 

expected returns (H-L) based on the prior month's return, with a significance level of 10%. In 

four of the five remaining markets, the Market factor is significantly less, rather than more, 

volatile following high returns. The most extreme of these coming in the case of France (Table 

B.1) with a variance ratio of 0.47, however this reduction in volatility is not matched with a 

significant increase in return. The results from these diagnostic tests on risk-return dynamics 

suggest that the potential for improving the Sharpe ratio across markets primarily arises from 

return timing rather than volatility timing.  

3.5.2 Improvements in Sharpe Ratio 

 

Improved Sharpe ratios of individual factors can increase the maximum squared Sharpe ratios 

of models by enhancing the overall risk-adjusted performance. The z-statistic for the difference 

between the efficient and original factors' Sharpe ratios can be computed. Following Jobson 

and Korkie (1981), and with the correction from Memmel (2003), the test statistic for the 

expected difference in Sharpe ratios is 

z − statistic =
 𝜎𝑜𝜇𝑒 −  𝜎𝑒𝜇𝑜 

√𝜃
 (3.9) 

 

where 𝜃 = 
1

𝑇
(2𝜎𝑒

2𝜎𝑜
2 − 2 𝜎𝑒 𝜎𝑜 𝜎𝑒,𝑜 +

1

2
  𝜇𝑒

2𝜎𝑜
2 +

1

2
  𝜇𝑜

2𝜎𝑒
2  −  

𝜇𝑒𝜇𝑜

 𝜎𝑜 𝜎𝑒
𝜎𝑒,𝑜

2 ). (3.10) 

 

𝜎𝑒 and 𝜎𝑢 are the standard deviations of the efficient and original factors. The means of the 

efficient and original factors are represented by  𝜇𝑜 and 𝜇𝑒 respectively. The covariance 

between the two factors us represented by 𝜎𝑒,𝑜. 𝜃 essentially normalises the numerator of the 

z-statistic (the difference in risk-adjusted returns) by accounting for the volatility, covariance, 

and number of observations. This normalisation is crucial for making the z-statistic a valid 

measure of statistical significance. Letting R denote the return to the original factor and x the 

efficient factor's weight on the original factor. The return on the efficient factor is thus 𝑥𝑅 and 

the covariance that needs to be computed is: 
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𝑐𝑜𝑣(𝑥𝑅, 𝑅) =  
𝜇𝑝

2(1−𝜌2)

𝑆𝑅2+𝜌2     (3.11)  

When an investment factor (like size, value, or momentum) shows a high degree of 

autocorrelation, it suggests that its past performance can be a reliable indicator for its future 

performance, at least to some extent. An efficient strategy would leverage this predictability to 

position the portfolio advantageously. The gains from such a strategy are contingent on the 

presence of autocorrelations. If the time-series predictability (i.e., autocorrelation) vanishes, 

the strategy no longer has a reliable pattern to exploit, and therefore, the gains from this strategy 

would diminish or evaporate. Factors that exhibit both high autocorrelation and lower Sharpe 

ratios are particularly ripe for improvement through this optimisation strategy.  

 

Table 3.3 presents Sharpe ratio of both the original and efficient factors in U.K returns, and the 

z-value statistic of equation 3.10 representing the significance of the difference between the 

two Sharpe ratios. As noted previously, the expectation is that the largest increases in Sharpe 

ratios will come from factors with the most autocorrelation, as seen in Table 3.1, and from those 

with distinct risk-return dynamics, where returns and variances differ significantly after high 

and low periods. In the U.K. case, prior to examining the realised gains, it is anticipated that 

the Profitability (RMW) and Value factors (HML and HMLM) should deliver significant 

improvements in Sharpe ratios. 

Table 3.3 

For all factors except the momentum factor, the transformation results in an increased Sharpe 

ratio. The realised efficient factors confirm the expectations, as the factors which provide the 

largest Sharpe ratio improvements are the Value factor (HML) with an improvement of 0.23 

and the Profitability factor (RMWOP) with an improvement of 0.22, which have z-values of 

2.89 and 3.61, respectively. Other factors which provide significant increases in Sharpe ratio 

include; BAB (0.09), PERF(0.07) and HMLM (0.23). The RMWROE factor also provides an 

increase in Sharpe ratio (0.12) at the 10% level of significance. While the Market and Size 

efficient factors provide an increase in Sharpe this is not statistically significant. Given the 

already large Sharpe ratio of the momentum factor, harvesting the information in past returns 

does not lead to an increase in the Sharpe ratio.  

Table 3.4 



103 

 

Table 3.4 outlines the realised improvements in Sharpe Ratio from moving to standard factors 

to the time-series efficient factors. Across markets, improvements in the Sharpe ratio between 

the standard and efficient versions are observed for most investment factors; however, in most 

cases, this increase is not significant. Increases at the 5% level of significance are seen for the 

BAB factor (0.13) in the German sample (Table B.7), SMB (0.11) in the Dutch sample (Table 

B.8), and CMA (0.18) in the Italian (Table B.9).  

It is noteworthy that, in the French study (Table B.6), the HML (0.12) and HMLM (0.12) factors 

exhibit increases in Sharpe ratios, with z-scores just marginally exceeding the 10% significance 

threshold, highlighting their potential relevance despite narrowly missing the conventional 

significance criteria, like other factors across the sample. The next step is to determine whether 

the inclusion of either the efficient or standard factors provides additional predictive power or 

information in the context of asset pricing models and investment strategies. 

3.5.3 Time-Series Efficient versus Inefficient Factors 

In Table 3.5, the importance of the information provided by both standard and efficient factors 

is assessed in an asset pricing model using the Fama and French (2015) five-factor model. Each 

of the five standard factors is regressed against all five efficient factors, and then the regression 

is reversed, with each efficient factor regressed against all five standard factors. The alphas 

presented in Table 3.5 can be understood in two ways. Initially, if an alpha value is not 

statistically significant, it suggests that incorporating the factor from the left-hand side of the 

regression into the asset pricing model, which includes the factors on the right-hand side, would 

not enhance the model's effectiveness (as per Barillas and Shanken, 2017). For instance, if the 

alpha of the conventional size factor is insignificant when regressed against the time-series 

efficient five-factor model, this implies that the addition of the standard size factor does not 

contribute to the improvement of the efficient model. From an investor's perspective, a non-

significant alpha also implies that there would be no advantage in terms of increased Sharpe 

ratio for an investor who already employs the factors on the right-hand side if they were to also 

trade the factor on the left-hand side (according to Huberman and Kandel, 1987). This means, 

for example, that an investor who is already utilising the efficient factors would not see any 

added value from trading the standard size (SMB) factor.   

Table 3.5 
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The above table suggests that U.K. time-series efficient factors contain all the information 

found in the standard U.K. factors. The first row of alpha values in Table 3.4 shows that time-

series efficient factors constructed using month t−1 returns, apart from the size factor, are all 

incrementally informative about future returns at the 5% level when controlling for the five-

factor model, as seen through significant alpha values. In other words, adding any of these 

efficient factors to the standard five-factor model would increase the Sharpe ratio available to 

an investor. For example when the efficient version of the value factor (HML) is regressed on 

the standard factors it returns an alpha value of 0.494 which is highly significant (5.83), 

indicating this factor would enhance the performance of the model with standard factors.   

Where standard factors are regressed against efficient factors, a similar albeit less pronounced 

trend emerges. Specifically, only three out of the five standard factors contribute to improving 

the model's performance when these factors are in their efficient form. Notably, the standard 

value factor (HML) and size factor (SMB) do not provide significant additions, as indicated by 

the insignificant t-statistics of 1.16 and 0.117, respectively, for the alpha values.  

Furthermore, a reduction in alpha values is observed for all factors, except for the market factor. 

This indicates that the model with diminished alpha values, which are statistically closer to 

zero, likely incorporates factors that more effectively capture the risks influencing asset returns. 

Such a model offers a more accurate and comprehensive depiction of those returns, suggesting 

a superior ability to explain the dynamics of asset pricing through the included risk factors. In 

other words, the standard factors contribute less to an efficient factor model, as indicated by 

the lower alpha values, compared to the efficient factors' contribution to the standard model.   

This pattern is repeated across the remaining markets presented in Section B.IV of Appendix 

B. In three of the remaining five markets, namely France (Table B.11), Germany (Table B.12), 

and the Netherlands (Table B.13), larger and more significant alpha values are observed when 

the efficient factors are regressed on the standard factors, indicating that efficient factors 

contain more information than the standard factors. In other words, the addition of an efficient 

factor to a model containing standard factors would allow for an improvement in the Sharpe 

ratio. However, in the Italian (Table B.14) and Spanish (Table B.15) cases, this is not as clear.  

The presence of positive and significant alpha values for certain standard factors across the 

sample suggests that, although the efficient factor transformation would enhance the 

performance of standard models, the extent of improvement may not be as substantial as the 
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findings of Ehsani and Linnainmaa (2022) indicate for U.S. returns. This implies that while the 

transformation to efficient factors does offer benefits over traditional models in a European 

setting, the magnitude of these benefits can vary, potentially due to differences in market 

dynamics or the specific factors examined. 

3.5.4 Momentum Factor  

After converting factors into their efficient forms, Ehsani and Linnainmaa (2022) suggest that 

the distinct momentum factor, pivotal to my models as per Chapter Two, might lose its 

significance due to the autocorrelation that underpins this factor being addressed. This raises a 

critical question: Is there a need to incorporate a separate momentum factor in asset pricing 

models for capturing momentum in European stock returns? As the time-series efficient factors 

have accounted for the return predictability, the separate momentum factor, which was formed 

from individual stock returns to capture this predictability, becomes redundant. The efficient 

factors themselves should explain the momentum profits, thus making the separate momentum 

factor unnecessary.  

To explore this, Table 3.6 presents the findings from U.K. time-series regressions that assess 

the momentum's influence within both the standard and efficient versions of the Fama and 

French (2015) five-factor model, alongside the CAPM. These analyses use the Carhart (1997) 

momentum factor as the dependent variable. If an insignificant alpha value is observed, it will 

imply that the distinct momentum factor does not contribute to model performance, challenging 

its essential role as highlighted in the model comparison tests in Chapter Two.  

Table 3.6 

Columns two and three of Table 3.6 show that Carhart’s (1997) momentum factor earns CAPM 

and five-factor model alphas of 87 and 82 basis points per month, respectively, with t-values 

of 4.35 and 3.99. The final regression, detailed in column four, explores the explanation of 

momentum using the time-series efficient version of the five-factor model. Here, the alpha 

decreases to 65 basis points per month, accompanied by a t-value of 2.21. In their analysis of 

a U.S. sample, Ehsani and Linnainmaa (2022) deem this alpha value in the efficient factor 

regression insignificant, suggesting that momentum strategy profits are largely due to the time-

series predictability captured by the original factors. Consequently, they infer that a separate 

momentum factor is unnecessary in an asset pricing model that incorporates these five factors 
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in their efficient form. However, in this study with a U.K. sample, the findings suggest the 

continued need for a momentum factor, even when the other factors are presented in their 

efficient form. Nonetheless, the reduced alpha value does indicate less reliance on this factor.  

Section B.V in Appendix B presents the results of these tests across the remaining markets with 

similar outcomes. The results of Ehsani and Linnainmaa (2022) could not be replicated; 

however, similar to the U.K., the alpha value of the distinct momentum factor decreases in 

some cases when regressed on the five-factor model with efficient factors. For example, in 

Table B.16, within the set of French factors, the alpha value falls from 0.585 to 0.061 when 

moving from a regression on the standard factors to the efficient factors. However, in the other 

five markets (Tables B.16-B.20), there is no significant change in the alpha value when moving 

from the model with standard factors to the model with efficient factors. 

3.5.5 Model Comparison with Time-Series Efficient Factors  

 

In this section, the impact of the efficient factor transformation on the Chapter Two model 

comparison tests is examined. By replacing the original factors with their efficient versions, 

the goal is to determine if the adjustments significantly improve the models' performance 

metrics and if the relative performance rankings of the models are changed. The results of the 

U.K. pairwise and multiple model comparison tests from Chapter Two are presented in Table 

3.7 below.  

Table 3.7 

Panel C in Table 3.7 contains the squared Sharpe ratio of the efficient factor test in column one 

and the same for the original tests for comparison purposes in column five. Panel C shows a 

significant improvement in the squared Sharpe ratios when comparing Chapter Two's results 

to the new tests with efficient factors: FF3 increased from 0.003 to 0.082, Carhart from 0.085 

to 0.101, and FF5 from 0.062 to 0.133. This is not surprising given that the Value (HML) factor 

and the Profitability (RMWOP) factor provided the highest increase in Sharpe ratios when 

transformed into efficient factors. As FF5 contains both of these factors, it now returns the 

highest squared Sharpe ratio in U.K. returns.  

However, this improvement is not statistically significant compared to the Sharpe ratios of the 

FF6 (which decreased from 0.144 to 0.121), AFIM (which decreased from 0.129 to 0.128), and 

CZZ (which improved from 0.109 to 0.127) models, as shown in Panel B with p-values of the 
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pairwise tests greater than 0.05. Apart from the rise of the FF5, the model rankings remain 

similar to the original tests. Improvements in Sharpe ratios are observed for most models except 

the highest-performing model in the original tests, the FF6, which saw a decrease, and the 

AFIM, which remained relatively stable with a slight decrease. Looking at the p-values in Panel 

B, less significant differences between all models can be observed. 

The results for the remainder of the sample are presented in Section B.VI of Appendix B. In 

the French market (Table B.21), after incorporating efficient factors, significant improvements 

in the squared Sharpe ratios of several models were observed. The FF3 model's Sharpe ratio 

increased from 0.005 to 0.032, and the Carhart model improved from 0.034 to 0.04, 

demonstrating moderate gains. The most notable enhancement was seen in the FrazPed model, 

which jumped from 0.089 to 0.113, marking the largest increase among the models. The FF5 

model also showed a significant improvement from 0.028 to 0.054, leading to a reshuffling of 

model rankings with the integration of efficient factors. 

In the German market (Table B.22), the introduction of efficient factors yielded mixed results. 

The FF6 model, initially leading with a 0.114 squared Sharpe ratio, saw a reduction to 0.072, 

while the AFIM model decreased from 0.13 to 0.077. Conversely, the FrazPed model showed 

a positive movement from 0.039 to 0.054, presenting the largest proportional increase. This 

shift suggests a revaluation of model performance, with previously leading models like FF6 

and AFIM experiencing declines, while others like FrazPed improved, altering the ranking of 

models based on Sharpe ratios. This is not surprising, as the FrazPed model contains the BAB 

factor, which, as outlined in Table B.8, shows the largest and most significant increase in 

Sharpe ratio when optimised. 

For the Dutch market (Table B.23), after applying efficient factors, the FF3 model's squared 

Sharpe ratio increased significantly from 0.011 to 0.028, which is the largest improvement 

across models. Meanwhile, the Carhart model maintained its performance level, and the FF5 

model saw an uplift from 0.015 to 0.036. Notably, the FF6 model, which had a higher initial 

Sharpe ratio, saw a modest increase to 0.051. These adjustments indicate a notable shift in 

model performances and rankings, emphasising the impact of efficient factor utilisation on 

enhancing model outcomes. 

In the Italian market (Table B.24), the application of efficient factors resulted in the FF5 model 

improving from a squared Sharpe ratio of 0.067 to 0.087, and the CZZ model increasing from 
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0.062 to 0.068. Despite these changes, the overall landscape of model efficacy experienced 

minor adjustments, with the FF5 model demonstrating one of the more significant 

improvements. The Spanish market analysis (Table B.25) reveals an improvement in the FF3 

model from 0.005 to 0.01, while the Carhart model saw a slight increase to 0.036. Despite these 

changes, the ranking of models based on Sharpe ratios saw a reshuffling, with some models 

improving and others, like the FF6 and CZZ, experiencing slight declines in their squared 

Sharpe ratios.  

Across the European samples, the application of efficient factors tends to improve the 

performance metrics of several models, notably the FF3 and FF5 models, which consistently 

show improvements in their squared Sharpe ratios. However, top-performing models like the 

FF6 and AFIM do not experience significant improvement. This pattern underscores the 

nuanced impact of efficient factors on asset pricing models, with certain models standing out 

across multiple markets for their enhanced performance and adaptability to efficient factor 

integration. However, the inclusion of efficient factors often leads to fewer models being 

statistically indistinguishable in terms of performance, suggesting that the transformation 

allows for a convergence in model performance. 

3.6 Conclusions 

 

In asset pricing, assessing the mean-variance efficiency of factors is crucial for enhancing 

model performance. This process involves either adding new factors to expand the efficient 

frontier or improving the efficiency of existing factors. This chapter focuses on examining the 

mean-variance efficiency of prominent investment factors in European stock returns. The aim 

is to enhance the efficacy of existing factors through the use of 'time-series efficient factors'. A 

time-series efficient factor exploits the autocorrelation in factor returns, timing the original 

factor to minimise variance while maintaining the expected return. If successful, this method 

should enhance the Sharpe ratio of factor models without needing additional momentum 

factors, as it already captures the predictable variations that momentum strategies target. 

The examination reveals that a significant number of factors across the European samples 

display serial correlation, exhibiting non-random patterns in both return and variance following 

periods characterised by either high or low returns. This behaviour points to potential 

inefficiencies in the factor set, hinting at exploitable opportunities within these factors. 
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Leveraging the methodology proposed by Ehsani and Linnainmaa (2022), time-series efficient 

factors are developed by conditioning a factor's weight on its past returns. The results show 

that converting traditional factors into efficient versions leads to a significant enhancement in 

Sharpe ratios across a wide range of factors within the European dataset. This improvement is 

particularly pronounced for the size (SMB) and value (HML) factors, which initially showed 

lower returns across markets and have generally delivered low and often insignificant returns 

over the past three decades.  

Time-series efficient factors in each sample typically capture all the information found in the 

standard factors. However, across the sample, the alpha provided by the distinct momentum 

factor cannot be fully eliminated from a model that includes efficient factors. Time-series 

efficient factors allow for less dependence on a distinct momentum factor, subsequently 

reducing factor risk for investors. Additionally, the investability of the efficient factors and the 

straightforward nature of the transformation open up an expanded set of investment 

opportunities for both retail and institutional market participants. 

Given the significant increase in the Sharpe ratio, the impact of efficient factors on the model 

comparison tests in Chapter Two is examined. Across European markets, incorporating 

efficient factors generally boosts the performance of several asset pricing models, especially 

the Fama and French (1993) three-factor model and Fama and French (2015) five-factor model, 

which consistently exhibit improved Sharpe ratios. While the absolute performance of 

previously underperforming models improves, the relative performance of models across 

samples does not experience significant change. Since not all factors are significantly improved 

using the efficient factor transformation, only certain factors enhance model performance. The 

next step is to isolate the time-series efficient factors that improve model performance across 

the samples. 

This findings on time-series efficient factors present valuable insights for both academic 

research and practical investing by reshaping how we interpret traditional factors in asset 

pricing models. For academics, these results underscore the importance of refining factors to 

capture inherent patterns, such as autocorrelation, that exist within return data but are often 

overlooked in standard factor models. This shift from merely adding new factors toward 

optimizing existing ones challenges the conventional approach in asset pricing research, 

highlighting a more sustainable path for model development that reduces reliance on an ever-

expanding factor zoo. For investors, the introduction of time-series efficient factors enhances 
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the investability and utility of asset pricing models by potentially lowering factor risk without 

sacrificing return. This factor efficiency improvement provides a robust tool for portfolio 

construction, offering models that adapt more responsively to market conditions by using 

information embedded in past returns. Such a refined approach could lead to more resilient 

portfolios, particularly for investors in European markets, where traditional factors like size 

and value have shown inconsistent performance over time. 
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Appendix B 
 

B.I U.K Empirical Results 

 

Table 3.1. Predictive Return Beta Values 

 

  U.K France Germany Netherlands Italy Spain   

  
       

MKT-RF  0.085 0.063 0.034 0.065 -0.021 0.024  

  (1.674)** (1.149) (0.664) (1.276) (-0.402) (0.455)  

SMB  0.086 -0.037 -0.079 -0.088 0.005 0.052  

  (1.69)** (-0.689) (-1.555) (-1.728)** (0.097) (1.009)  

HML  0.337 0.187 0.143 0.095 0.056 0.022  

  (6.995)* (3.483)* (2.826)* (1.875)** (1.095) (0.417)  

MOM  0.142 0.069 0.091 0.121 0.041 0.059  

  (2.801)* (1.258) (1.782) (2.389)* (0.813) (1.139)  

RMWOP  0.24 -0.01 0.075 -0.027 0.011 0.047  

  (4.827)* (-0.187) (1.475) (-0.525) (0.224) (0.91)  

CMA  0.147 0.161 0.206 0.029 -0.065 0.062  

  (2.886)* (2.979)* (4.099)* (0.574) (-1.284) (1.19)  

BAB  0.198 0.017 0.22 0.095 0.138 0.008  

  (3.958)* (0.314) (4.411)* (1.865)** (2.713)* (0.158)  

HMLM  0.304 0.19 0.111 0.095 0.045 0.071  

  (6.225)* (3.54)* (2.195)* (1.868)** (0.878) (1.371)  

MGMT  0.225 0.119 0.037 0.07 0.007 -0.016  

  (4.504)* (2.196)* (0.724) (1.369) (0.139) (-0.302)  

PERF  0.154 -0.06 0.021 0.011 0 0.084  

  (3.026)* (-1.106) (0.414) (0.209) (-0.008) (1.617)  

RMWCB  0.056 -0.048 0.087 0.048 0.115 0.023  

  (1.1) (-0.883) (1.721)** (0.922) (2.267)* (0.435)  

RMWROE  0.165 0.008 0.114 -0.012 -0.009 -0.005  

    (3.252)* (0.146) (2.242)* (-0.244) (-0.179) (-0.1)  

This table reports the beta values and associated t-statistics in parentheses for the predictive regressions of equation 3.7 

where the dependent variable is the factor return for time period t, and the independent variable is the factor return for time 

period t-1. * Significant at 5%, ** Significant at 10% 
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Table 3.2. U.K. Returns and Volatility Conditional on Month t-1 Returns 

 

  Prior Month Return   Prior Month Return   
 

  Low High H-L Low High H/L  

MKT-RF  2.93 7.70 4.77 18.82 12.88 68%  

  (0.62) (2.38) (0.85)   [0]*  

SMB  -1.74 4.00 5.74 11.23 10.87 97%  

  (-0.62) (1.46) (1.81)**   [0.62]  

HML  -8.14 11.86 20.00 10.34 10.43 101%  

  (-3.13) (4.52) (5.71)*   [0.79]  

MOM  -1.97 7.08 9.05 16.39 13.37 82%  

  (-0.98) (3.98) (3.23)*   [0.16]  

RMWOP  1.49 7.30 5.80 7.97 7.09 89%  

  (0.83) (3.84) (2.15)*   [0.16]  

CMA  1.49 7.30 5.80 7.17 7.56 105%  

  (0.83) (3.84) (2.15)*   [0.98]  

BAB  0.12 12.44 12.32 15.65 16.43 105%  

  (0.03) (3.01) (2.21)*   [0.55]  

HMLM  0.12 11.06 10.94 11.69 12.65 108%  

  (0.03) (3.48) (4.72)*   [0.94]  

MGMT  -2.87 9.05 11.91 8.55 8.27 97%  

  (-1.33) (4.35) (4.17)   [0.99]  

PERF  1.49 10.26 8.76 10.92 9.36 86%  

  (0.54) (4.36) (2.29)*   [0.87]  

RMWCB  -0.09 8.14 8.23 7.41 6.89 93%  

  (-0.05) (4.7) (3.04)*   [0.7]  

RMWROE  -0.09 8.14 8.23 7.69 7.72 1.00%  

  (-0.05) (4.7) (4.08)*   [0.6]  

This table assigns U.K. factors into two groups based on their month t − 1 returns and reports the average annualised returns 

and volatilities for each group. The full sample is used to create two groups of equal size. The high-minus-low difference in 

average returns and the high/low ratio of variances are reported. T-statistics of the null hypothesis that the average excess 

factor returns are equal to zero are given in parentheses. For the variance ratio, the p-value associated with the F-test is 

presented in square brackets. * Significant at 5%, ** Significant at 10% 
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Table 3.3. U.K. Realised Efficient Factor Sharpe Ratio Improvements 

 

   
 

   
 

  
Market SMB HML MOM RMWOP CMA  

        
 

Sharpe Ratio org   0.1 0.03 0.05 0.22 0.1 0.18  

Sharpe Ratio ef 0.12 0.06 0.28 0.19 0.32 0.2  

Δ Sharpe Ratio  0.03 0.03 0.23 -0.02 0.22 0.03  

z-value  0.82 0.36 2.89* -2.05 3.61* 0.52  

       
 

  
BAB HMLM MGMT PERF RMWCB RMWROE  

        
 

Sharpe Ratio org   0.12 0.02 0.1 0.17 0.17 0.1  

Sharpe Ratio ef 0.21 0.24 0.22 0.24 0.17 0.22  

Δ Sharpe Ratio  0.09 0.23 0.12 0.07 0.01 0.12  

z-value   1.99* 2.85* 1.71** 2.07* 0.15 1.74**  

Table 3.2 compares the Sharpe ratios of the original U.K. factors to their time-series efficient counterparts. The table includes 

the original Sharpe ratio ("Sharpe Ratio org") and the Sharpe ratio of the efficient factors ("Sharpe Ratio ef"). The row "Δ 

Sharpe Ratio" shows the increase in Sharpe ratio from switching to the efficient version of the factor. Additionally, the z-value 

for the improvement, calculated from equations (3.9), is reported. * Significant at 5%, ** Significant at 10% 
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Table 3.4. Realised Efficient Factor Sharpe Ratio Improvements 

 

  
 

   
 

 
Market SMB HML MOM RMWOP CMA  

UK 0.03 0.03 0.23* -0.02 0.22* 0.03  

France 0.03 0.04 0.12 0.00 0.00 0.06  

Germany 0.01 0.06 -0.02 0.09 0.00 0.00  

Netherlands 0.02 0.11** 0.04 0.02 0.00 0.01  

Italy 0.00 0.02 0.02 -0.01 0.00 0.18  

Spain 0.01 0.03 0.00 0.00 -0.01 0.04  

       
 

 
BAB HMLM MGMT PERF RMWCB RMWROE  

UK 0.09* 0.23* 0.12** 0.07* 0.01 0.12**  

France 0.00 0.12 0.04 0.00 0.00 0.00  

Germany 0.12* 0.03 0.00 -0.01 0.01 -0.08  

Netherlands 0.00 0.09 0.08 0.00 0.03 0.00  

Italy 0.01 0.02 0.01 0.00 0.00 0.00  

Spain 0.00 0.02 0.00 0.02 0.02 0.00  

This table reports the realised improvements in moving from the original factor to the time series efficient factor for each 

factor in each country. * Significant at 5%, ** Significant at 10% 
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Table 3.5. U.K. Time-Series Efficient Five-Factor Model: Alphas from Spanning Tests 

 

Efficient Factors 

Conditional on: 

 

 
Dependent Variable   

  MKT SMB HML RMW CMA 
GRS test      F-

Value  
 

 
      

  

Efficient factors regressed on standard factors   

Prior-month return  0.415 0.338 0.494 0.428 0.341 5.21  

 
 (2.681)* (1.448) (5.83)* (3.267)* (2.929)* 0  

 
      

  

Standard factors regressed on efficient factors   

Prior-month return 0.554 0.199 0.019 0.242 0.271 3.12  

    (2.257)* (1.16) (0.117) (2.079)* (2.453)* 0  

This table reports the alphas and t-values (in parentheses) from regressions in which the dependent variable is one of the 

factors of the efficient or standard five-factor model and the explanatory variables are all five factors of the other model. The 

Gibbons et al. (1989) test statistic is under the null hypothesis that the alphas of the five factors are jointly zero. P-values for 

these GRS  tests are reported in square brackets. * Significant at 5%, ** Significant at 10% 
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Table 3.6. U.K. Momentum versus Fama and French (2015) Five-Factor Model 

  Dependant Variable 

Independent Variable 

Momentum Factor 

CAPM FF5 FF5ef 

Alpha  0.87 0.82 0.65 

 (4.35)* (3.99)* (2.21)* 
    

Market -0.31 -0.15 -0.45 

 (-6.53) (-3.21) (-5.4) 
    

SMB  0.05 0.02 

  (1.04) (0.29) 
    

HML  -0.49 -0.13 

  (-5.98) (-0.9) 
    

RMWop  0.34 -0.11 

  (3.15) (-1.23) 
    

CMA  0.33 0.24 

   (3.1) (2.37) 

This table presents estimates from time-series regressions that measure the association between the momentum factor and 

the CAPM, as well as both the standard and efficient versions of the Fama and French (2015) five-factor model in U.K. stock 

returns. The alpha values, beta coefficients, and associated t-statistics (reported in parentheses) are presented in the columns 

across three models. In each case the dependant variable is the momentum factor. *  Significant at 5%, ** Significant at 10%.  
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Table 3.7. U.K. Model Comparison with Efficient Factors 

 
Panel A: Difference in Squared Sharpe Performance  

Model FrazPed FF3 SY Carhart FF6 CZZ AFIM FF5  

HXZ -0.011 -0.035 -0.046 -0.054 -0.073 -0.079 -0.081 -0.085  

FrazPed  -0.024 -0.035 -0.043 -0.062 -0.069 -0.07 -0.074  

FF3   -0.011 -0.019 -0.039 -0.045 -0.046 -0.05  

SY    -0.008 -0.027 -0.033 -0.034 -0.039  

Carhart     -0.02 -0.026 -0.027 -0.031  

FF6      -0.006 -0.007 -0.012  

CZZ       -0.001 -0.006  

AFIM               -0.004  

Panel B: p-Values  

Model FrazPed FF3 SY Carhart FF6 CZZ AFIM FF5  

HXZ 0.729 0.179 0.073 0.057 0.005 0.004 0.003 0.001  

FrazPed  0.382 0.298 0.16 0.093 0.095 0.087 0.053  

FF3   0.675 0.003 0.001 0.193 0.152 0  

SY    0.798 0.314 0.264 0.236 0.145  

Carhart     0.027 0.393 0.336 0.272  

FF6      0.818 0.761 0.621  

CZZ       0.193 0.776  

AFIM               0.788  

Panel C: Multiple Model Comparison  

Model θ̂2 r LR p-value n θ̂𝑂𝑅𝐺
2     

FF3 0.082 4 2.049 0.249 1 0.003    

Carhart 0.101 5 1.218 0.389 0 0.085    

FF5 0.133 5 0 0.879 1 0.062    

FF6 0.121 5 0.244 0.667 1 0.144    

FrazPed 0.058 5 3.788 0.073 0 0.017    

SY 0.094 5 2.144 0.244 1 0.068    

AFIM 0.128 5 0.072 0.752 1 0.129    

HXZ 0.048 5 12.895 0.002 0 0.081    

CZZ 0.127 5 0.081 0.726 1 0.109    

This table reports the asymptotically valid Barillas et al, (2020) pairwise tests of equality of the squared Sharpe ratios for a 

set of U.K. time series efficient  factor models from 1991 to 2022. Panel A reports the differences in squared Sharpe ratio. The 

models are presented from left to right and top to bottom in order of increasing squared Sharpe ratios. Panel B reports the 

associated p-values. Panel C reports the multiple model comparison tests of efficient factor models in U.K. stock returns. The 

𝜃2 column is the bias-adjusted maximum squared Sharpe performance of these efficient models.  LR is the Likelihood ratio 

test of Wolak (1987,1989).  The p-value column is the p value for the hypothesis that this model performs as well as any other 

model in the dataset. 𝜃𝑂𝑅𝐺
2  is the bias adjusted squared Sharpe ratio of the models with original factors.  
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B.II Risk Return Characteristics for Remaining Markets 

 

Table B.1. France Returns and Volatility Conditional on Month t-1 Returns 

 

  
Prior Month Return   Prior Month Return   

  
Low High  H-L Low High  H/L   

MKT-RF  5.09 10.78 5.69 22.06 15.07 47%  

  
(0.87) (2.69) (0.79)   

[0]*  

SMB  1.17 -1.76 -2.93 9.94 9.90 99%  

  
(0.42) (-0.67) (-0.73)   

[0.48]  

HML 
 

-3.99 7.98 11.97 13.93 12.09 75%  

  
(-1.04) (2.48) (2.36)*   

[0.07]  

MOM  3.83 2.77 -1.05 8.33 8.62 107%  

  
(1.66) (1.21) (-0.33)   

[0.04]*  

RMWOP 
 

-3.32 7.05 10.37 8.65 9.18 113%  

  
(-1.39) (2.89) (3.13)*   

[0.74]  

CMA 
 

17.58 18.90 1.32 17.34 16.73 93%  

  
(3.67) (4.25) (0.21)   

[0.42]  

BAB  17.58 18.90 1.32 17.34 16.73 93%  

  
(3.67) (4.25) (0.21)   

[0.8]  

HMLM 
 

17.58 6.98 -10.60 15.87 13.41 71%  

  
(3.67) (1.96) (2.02)*   

[0.04]*  

MGMT 
 

-0.12 6.28 6.40 9.94 9.39 89%  

  
(-0.04) (2.52) (2.12)*   

[0.39]  

PERF 
 

10.39 5.51 -4.88 13.14 11.73 80%  

  
(2.86) (1.77) (-1.04)   

[0.11]  

RMWCB 
 

5.93 5.33 -0.60 8.51 8.60 102%  

  
(2.52) (2.33) (-0.18)   

[0.86]  

RMWROE 
 

5.93 5.33 -0.60 8.99 10.33 132%  

    (2.52) (2.33) (0.54)     [0.09]**  

This table assigns French factors into two groups based on their month t − 1 returns and report the average annualized returns 

and volatilities for each group. The full sample is used to create two groups of equal size. The high-minus-low difference in 

average returns and the high/low ratio of variances are reported. T-statistics of the null hypothesis that the average excess 

factor returns are equal to zero are given in parentheses. For the variance ratio, the p-value associated with the F-test is 

presented in square brackets. * Significant at 5%, ** Significant at 10%. 
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Table B.2. Germany Returns and Volatility Conditional on Month t-1 Returns 

 

  
Prior Month Return   Prior Month Return   

  
Low High  H-L Low High  H/L   

MKT-RF  1.72 7.22 5.50 22.31 16.40 54%  

  
(0.31) (1.75) (0.92)   

[0]*  

SMB  1.91 -2.43 -4.34 10.32 10.07 95%  

  
(0.74) (-0.96) (-1.18)   

[0.73]  

HML  1.50 11.08 9.58 11.22 12.88 132%  

  
(0.53) (3.42) (2.4)*   

[0.06]**  

MOM  4.31 17.73 13.41 15.21 16.84 123%  

  
(1.13) (4.19) (2.42)*   

[0.16]  

RMWOP 
 

1.47 8.35 6.88 7.50 8.03 114%  

  
(0.78) (4.14) (2.51)*   

[0.35]  

CMA  1.94 8.68 6.74 9.10 11.16 150%  

  
(0.85) (3.1) (1.88)**   

[0.01]*  

BAB  -1.46 13.40 14.86 15.45 16.21 110%  

  
(-0.38) (3.29) (2.55)*   

[0.51]  

HMLM 
 

-0.88 5.31 6.18 12.17 13.70 127%  

  
(-0.29) (1.54) (1.34)   

[0.1]  

MGMT  0.20 4.94 4.74 10.52 9.56 83%  

  
(0.08) (2.06) (1.41)   

[0.19]  

PERF  6.46 10.20 3.75 10.53 11.62 122%  

  
(2.44) (3.49) (1.02)   

[0.18]  

RMWCB 
 

3.25 4.22 0.97 7.77 7.32 89%  

  
(1.66) (2.29) (0.4)   

[0.41]  

RMWROE 
 

3.25 4.22 0.97 9.08 8.26 83%  

    (1.66) (2.29) (0.2)     [0.19]  

This table assigns German factors into two groups based on their month t − 1 returns and report the average annualized 

returns and volatilities for each group. The full sample is used to create two groups of equal size. The high-minus-low 

difference in average returns and the high/low ratio of variances are reported. T-statistics of the null hypothesis that the 

average excess factor returns are equal to zero are given in parentheses. For the variance ratio, the p-value associated with 

the F-test is presented in square brackets. * Significant at 5%, ** Significant at 10%. 
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Table B.3. Netherlands Returns and Volatility Conditional on Month t-1 Returns 

 

  
Prior Month Return   Prior Month Return   

  
Low High  H-L Low High  H/L   

MKT-RF  5.60 10.51 4.91 23.27 17.10 58%  

  
(0.96) (2.45) (0.65)   [0]  

SMB  1.77 -3.84 -5.61 12.06 10.84 81%  

  
(0.58) (-1.41) (-1.34) 

  
[0.12]  

HML  3.88 4.51 0.62 14.06 13.62 94%  

  
(1.1) (1.32) (0.14)   [0.75]  

MOM  1.74 1.93 0.20 18.58 19.32 108%  

  
(0.46) (0.64) (0.04)   [0.53]  

RMWOP 
 

1.25 2.73 1.49 15.03 12.08 65%  

  
(0.44) (0.94) (0.37) 

  
[0.01]*  

CMA  8.73 11.37 2.64 11.20 11.58 107%  

  
(2.14) (2.38) (0.41)   [0.9]  

BAB  8.73 11.37 2.64 16.22 19.02 137%  

  
(2.14) (2.38) (0.41)   [0.04]*  

HMLM 
 

8.73 4.92 -3.80 16.08 14.80 85%  

  
(2.14) (1.32) (1.56) 

  
[0.22]  

MGMT  -1.45 4.63 6.08 12.62 13.40 113%  

  
(-0.46) (1.38) (1.29) 

  
[0.16]  

PERF  5.58 9.99 4.41 14.79 15.77 114%  

  
(1.5) (2.52) (0.85)   [0.22]  

RMWCB 
 

1.68 4.59 2.91 10.53 10.77 105%  

  
(0.64) (1.7) (0.8)   [0.4]  

RMWROE 
 

1.68 4.59 2.91 12.58 12.20 94%  

    (0.64) (1.7) (-0.59)     [0.85]  

This table assigns Dutch factors into two groups based on their month t − 1 returns and report the average annualized returns 

and volatilities for each group. The full sample is used to create two groups of equal size. The high-minus-low difference in 

average returns and the high/low ratio of variances are reported. T-statistics of the null hypothesis that the average excess 

factor returns are equal to zero are given in parentheses. For the variance ratio, the p-value associated with the F-test is 

presented in square brackets. * Significant at 5%, ** Significant at 10%. 
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Table B.4. Italy Returns and Volatility Conditional on Month t-1 Returns 

 

  
Prior Month Return   Prior Month Return   

  
Low High  H-L Low High  H/L   

MKT-RF  6.86 0.04 -6.83 25.35 21.29 71%  

  
(1.08) (0.01) (-0.82)   

[0.02]*  

SMB  -0.25 -0.77 -0.51 11.15 10.88 95%  

  
(-0.09) (-0.28) (-0.11)   

[0.72]  

HML  1.10 2.37 1.27 12.33 12.85 109%  

  
(0.35) (0.73) (0.34)   

[0.59]  

MOM  7.72 8.17 0.45 15.78 16.96 116%  

  
(2.56) (3.11) (0.11)   

[0.32]  

RMWOP 
 

-1.06 -4.45 -3.39 12.01 10.44 76%  

  
(-0.43) (-1.85) (-0.96)   

[0.05]**  

CMA  -1.06 -4.45 -3.39 9.92 9.57 93%  

  
(-0.43) (-1.85) (-0.96)   

[0.63]  

BAB  1.53 12.39 10.86 12.99 14.87 131%  

  
(0.47) (3.32) (2.26)*   

[0.07]**  

HMLM 
 

0.61 0.63 0.02 16.63 13.74 68%  

  
(0.14) (0.18) (0.04)   

[0.01]*  

MGMT  1.40 -1.40 -2.80 13.24 12.45 88%  

  
(0.42) (-0.45) (-0.61)   

[0.38]  

PERF  12.70 8.22 -4.48 14.80 16.19 120%  

  
(3.42) (2.02) (-0.82)   

[0.22]  

RMWCB 
 

3.62 7.28 3.66 12.12 13.13 117%  

  
(1.19) (2.21) (0.8)   

[0.27]  

RMWROE 
 

3.62 7.28 3.66 11.44 11.97 109%  

    (1.19) (2.21) (0.27)     [0.53]  

This table assigns Italian factors into two groups based on their month t − 1 returns and report the average annualized returns 

and volatilities for each group. The full sample is used to create two groups of equal size. The high-minus-low difference in 

average returns and the high/low ratio of variances are reported. T-statistics of the null hypothesis that the average excess 

factor returns are equal to zero are given in parentheses. For the variance ratio, the p-value associated with the F-test is 

presented in square brackets. * Significant at 5%, ** Significant at 10%. 
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Table B.5. Spain Returns and Volatility Conditional on Month t-1 Returns 

 

  
Prior Month Return   Prior Month Return   

  
Low High  H-L Low High  H/L   

MKT-RF  5.70 5.67 -0.03 24.27 19.29 63%  

  
(0.92) (1.16) (0)   [0]*  

SMB  0.48 2.58 2.09 12.42 10.57 72%  

  
(0.15) (0.96) (0.5) 

  
[0.02]*  

HML  3.35 3.98 0.64 12.22 11.41 87%  

  
(1.08) (1.37) (0.15)   [0.67]  

MOM  2.99 7.29 4.30 15.55 19.97 165%  

  
(1.22) (2.38) (1.12)   [0]*  

RMWOP 
 

-0.80 1.53 2.33 9.64 12.04 156%  

  
(-0.31) (0.53) (0.61) 

  
[0]*  

CMA  -0.80 1.53 2.33 10.14 11.41 127%  

  
(-0.31) (0.53) (0.61)   [0.06]  

BAB  11.44 3.70 -7.74 16.69 17.90 115%  

  
(2.7) (0.81) (-1.23)   [0.22]  

HMLM 
 

11.44 6.53 -4.91 13.43 14.01 109%  

  
(2.7) (1.84) (1.33) 

  
[0.4]  

MGMT  3.24 -0.40 -3.64 12.18 11.28 86%  

  
(1.05) (-0.14) (-0.85) 

  
[0.24]  

PERF  2.70 4.84 2.15 11.51 14.43 157%  

  
(0.92) (1.32) (0.43)   [0.01]*  

RMWCB 
 

0.31 -0.12 -0.42 12.39 13.17 113%  

  
(0.1) (-0.03) (-0.1)   [0.57]  

RMWROE 
 

0.31 -0.12 -0.42 9.97 11.29 128%  

    (0.1) (-0.03) (1.03)     [0.07]**  

This table assigns Spanish factors into two groups based on their month t − 1 returns and report the average annualized 

returns and volatilities for each group. The full sample is used to create two groups of equal size. The high-minus-low 

difference in average returns and the high/low ratio of variances are reported. T-statistics of the null hypothesis that the 

average excess factor returns are equal to zero are given in parentheses. For the variance ratio, the p-value associated with 

the F-test is presented in square brackets. * Significant at 5%, ** Significant at 10%. 

 

 

 

 

 

 



123 

 

B.III Realised Improvements in Sharpe Ratio for Remaining Markets 

 

Table B.6. France Realised Efficient Factor Sharpe Ratio Improvements  

 

   
       

 

  
MKT-RF SMB HML MOM RMWOP CMA  

 

Sharpe Ratio org   0.12 0.00 0.04 0.12 0.11 0.06 
 

Sharpe Ratio ef 0.15 0.04 0.16 0.12 0.12 0.13  

Δ Sharpe Ratio  0.03 0.04 0.12 0.00 0.00 0.06  

z-value  0.00 0.48 1.57 0.00 0.08 0.86  

        
 

  
BAB HMLM MGMT PERF RMWCB RMWROE  

        
 

Sharpe Ratio org   0.31 0.02 0.09 0.18 0.19 0.10  

Sharpe Ratio ef 0.31 0.14 0.14 0.19 0.20 0.10  

Δ Sharpe Ratio  0.00 0.12 0.04 0.00 0.00 0.00  

z-value   0.00 1.61 0.68 0.00 0.00 0.10  

This table compares the Sharpe ratios of the original French factors to their time-series efficient counterparts. The table 

includes the original Sharpe ratio ("Sharpe Ratio org") and the Sharpe ratio of the efficient factors ("Sharpe Ratio ef"). The 

row "Δ Sharpe Ratio" shows the increase in Sharpe ratio from switching to the efficient version of the factor. Additionally, the 

z-value for the improvement, calculated from equations (3.9), is reported. * Significant at 5%, ** Significant at 10% 
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Table B.7. Germany Realised Efficient Factor Sharpe Ratio Improvements 

 

   
     

 

  
MKT-RF SMB HML MOM RMWOP CMA  

        
 

Sharpe Ratio org   0.07 0.00 0.15 0.11 0.18 0.15  

Sharpe Ratio ef 0.08 0.06 0.13 0.20 0.18 0.15  

Δ Sharpe Ratio  0.01 0.06 -0.02 0.09 0.00 0.00  

z-value  0.38 0.76 -0.32 0.00 -0.09 0.04  

       
 

  
BAB HMLM MGMT PERF RMWCB RMWROE  

        
 

Sharpe Ratio org   0.11 0.05 0.08 0.22 0.15 0.18  

Sharpe Ratio ef 0.23 0.08 0.07 0.21 0.16 0.10  

Δ Sharpe Ratio  0.12 0.03 0.00 -0.01 0.01 -0.08  

z-value   2.10* 0.45 -0.07 0.00 0.18 -1.80  

This table compares the Sharpe ratios of the original German factors to their time-series efficient counterparts. The table 

includes the original Sharpe ratio ("Sharpe Ratio org") and the Sharpe ratio of the efficient factors ("Sharpe Ratio ef"). The 

row "Δ Sharpe Ratio" shows the increase in Sharpe ratio from switching to the efficient version of the factor. Additionally, the 

z-value for the improvement, calculated from equations (3.9), is reported. * Significant at 5%, ** Significant at 10% 
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Table B.8. Netherlands Realised Efficient Factor Sharpe Ratio Improvements 

 

   
     

 

  
MKT-RF SMB HML MOM RMWOP CMA  

        
 

Sharpe Ratio org   0.11 -0.03 0.08 0.15 0.04 0.05  

Sharpe Ratio ef 0.13 0.09 0.12 0.17 0.04 0.06  

Δ Sharpe Ratio  0.02 0.11 0.04 0.02 0.00 0.01  

z-value  0.00 1.73** 0.70 0.00 0.03 0.14  

       
 

  
BAB HMLM MGMT PERF RMWCB RMWROE  

        
 

Sharpe Ratio org   0.18 -0.02 -0.03 0.14 0.07 0.09  

Sharpe Ratio ef 0.18 0.08 0.06 0.14 0.10 0.09  

Δ Sharpe Ratio  0.00 0.09 0.08 0.00 0.03 0.00  

z-value   0.00 1.21 1.10 0.00 0.48 0.11  

This table compares the Sharpe ratios of the original Dutch factors to their time-series efficient counterparts. The table 

includes the original Sharpe ratio ("Sharpe Ratio org") and the Sharpe ratio of the efficient factors ("Sharpe Ratio ef"). The 

row "Δ Sharpe Ratio" shows the increase in Sharpe ratio from switching to the efficient version of the factor. Additionally, the 

z-value for the improvement, calculated from equations (3.9), is reported. * Significant at 5%, ** Significant at 10% 

.  
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Table B.9. Italy Realised Efficient Factor Sharpe Ratio Improvements 

 

   
     

 

  
MKT-RF SMB HML MOM RMWOP CMA  

        
 

Sharpe Ratio org   0.04 -0.01 0.04 0.18 0.21 -0.08  

Sharpe Ratio ef 0.04 0.01 0.06 0.17 0.21 0.10  

Δ Sharpe Ratio  0.00 0.02 0.02 -0.01 0.00 0.18  

z-value  -0.01 0.33 0.23 0.00 0.00 3.171  

       
 

  
BAB HMLM MGMT PERF RMWCB RMWROE  

        
 

Sharpe Ratio org   0.14 0.01 0.00 0.20 0.12 0.19  

Sharpe Ratio ef 0.15 0.04 0.01 0.20 0.12 0.19  

Δ Sharpe Ratio  0.01 0.02 0.01 0.00 0.00 0.00  

z-value   0.35 0.33 0.10 0.00 0.03 0.00  

This table compares the Sharpe ratios of the original Italian factors to their time-series efficient counterparts. The table 

includes the original Sharpe ratio ("Sharpe Ratio org") and the Sharpe ratio of the efficient factors ("Sharpe Ratio ef"). The 

row "Δ Sharpe Ratio" shows the increase in Sharpe ratio from switching to the efficient version of the factor. Additionally, the 

z-value for the improvement, calculated from equations (3.9), is reported. * Significant at 5%, ** Significant at 10% 
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Table B.10. Spain Realised Efficient Factor Sharpe Ratio Improvements 

 

   
     

 

  
MKT-RF SMB HML MOM RMWOP CMA  

        
 

Sharpe Ratio org   0.07 0.03 0.09 0.13 0.14 0.01  

Sharpe Ratio ef 0.08 0.06 0.09 0.13 0.13 0.05  

Δ Sharpe Ratio  0.01 0.03 0.00 0.00 -0.01 0.04  

z-value  0.00 0.41 0.07 0.00 0.00 0.54  

       
 

  
BAB HMLM MGMT PERF RMWCB RMWROE  

        
 

Sharpe Ratio org   0.13 0.07 0.04 0.08 0.00 0.12  

Sharpe Ratio ef 0.12 0.09 0.04 0.10 0.02 0.13  

Δ Sharpe Ratio  0.00 0.02 0.00 0.02 0.02 0.00  

z-value   0.00 0.42 -0.02 0.28 0.25 0.00  

This table compares the Sharpe ratios of the original Spanish factors to their time-series efficient counterparts. The table 

includes the original Sharpe ratio ("Sharpe Ratio org") and the Sharpe ratio of the efficient factors ("Sharpe Ratio ef"). The 

row "Δ Sharpe Ratio" shows the increase in Sharpe ratio from switching to the efficient version of the factor. Additionally, the 

z-value for the improvement, calculated from equations (3.9), is reported. * Significant at 5%, ** Significant at 10% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



128 

 

B.IV Efficient Factor Alpha Spanning Tests for Remaining Markets 

 

Table B.11. France Efficient Five-Factor Model: Alphas from Spanning Tests 

 

Efficient Factors 

Conditional on: 

 

 
Dependent Variable  

  MKT SMB HML RMW CMA  

 
      

 

Efficient factors regressed on standard factors   

Prior-month return  0.419 0.484 0.442 0.483 0.276  

 
 (2.538)* (1.077) (2.341)* (2.42)* (2.03)*  

 
      

 

Standard factors regressed on efficient factors   

Prior-month return 0.719 -0.101 0.085 0.245 0.117  

    (2.581)* (-0.673) (0.447) (1.966)* (0.938)  

This table reports alphas and t-values (in parentheses) from regressions in which the dependent variable is one of the factors 

of the efficient or standard five-factor model and the explanatory variables are all five factors of the other model. The efficient 

factors are conditional on the prior-month (t − 1) return. * Significant at 5%, ** Significant at 10% 
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Table B.12. Germany Efficient Five-Factor Model: Alphas from Spanning Tests 

 

Efficient Factors 

Conditional on: 

 

 
Dependent Variable  

  MKT SMB HML RMW CMA  

 
      

 

Efficient factors regressed on standard factors   

Prior-month return  0.536 0.493 0.142 0.359 0.143  

 
 (2.033)* (1.371) (0.975) (3.098)* (1.238)  

 
      

 

Standard factors regressed on efficient factors   

Prior-month return 0.464 0.059 0.346 0.306 0.338  

    (1.561) (0.384) (1.973)* (2.654)* (2.308)*  

This table reports alphas and t-values (in parentheses) from regressions in which the dependent variable is one of the factors 

of the efficient or standard five-factor model and the explanatory variables are all five factors of the other model. The efficient 

factors are conditional on the prior-month (t − 1) return. * Significant at 5%, ** Significant at 10% 
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Table B.13. Netherlands Efficient Five-Factor Model: Alphas from Spanning Tests 

 

Efficient Factors 

Conditional on: 

 

 
Dependent Variable  

  MKT SMB HML RMW CMA  

 
      

 

Efficient factors regressed on standard factors   

Prior-month return  0.379 0.455 0.435 0.372 0.48  

 
 (2.44)* (1.916)** (2.545)* (0.698) (1.285)  

 
      

 

Standard factors regressed on efficient factors   

Prior-month return 0.73 -0.101 0.386 0.136 0.194  

    (2.387)* (-0.589) (1.847)** (0.667) (1.124)  

This table reports alphas and t-values (in parentheses) from regressions in which the dependent variable is one of the factors 

of the efficient or standard five-factor model and the explanatory variables are all five factors of the other model. The efficient 

factors are conditional on the prior-month (t − 1) return. * Significant at 5%, ** Significant at 10% 
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Table B.14. Italy Efficient Five-Factor Model: Alphas from Spanning Tests 

 

Efficient Factors 

Conditional on: 

 

 
Dependent Variable  

  MKT SMB HML RMW CMA  

 
      

 

Efficient factors regressed on standard factors   

Prior-month return  0.239 1.345 0.176 0.406 0.454  

 
 (0.436) (0.779) (0.466) (3.914)* (2.131)*  

 
      

 

Standard factors regressed on efficient factors   

Prior-month return 0.384 -0.037 0.099 0.628 -0.298  

    (1.104) (-0.218) (0.52) (3.681)* (-2.026)*  

This table reports alphas and t-values (in parentheses) from regressions in which the dependent variable is one of the factors 

of the efficient or standard five-factor model and the explanatory variables are all five factors of the other model. The efficient 

factors are conditional on the prior-month (t − 1) return. * Significant at 5%, ** Significant at 10% 
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Table B.15. Spain Efficient Five-Factor Model: Alphas from Spanning Tests 

 

Efficient Factors 

Conditional on: 

 

 
Dependent Variable  

  MKT SMB HML RMW CMA  

 
      

 

Efficient factors regressed on standard factors   

Prior-month return  0.348 0.309 0.348 0.411 0.341  

 
 (1.319) (0.972) (1.537) (2.599)* (0.867)  

 
      

 

Standard factors regressed on efficient factors   

Prior-month return 0.509 0.082 0.306 0.39 -0.037  

    (1.547) (0.483) (1.706)** (2.356) (-0.229)  

This table reports alphas and t-values (in parentheses) from regressions in which the dependent variable is one of the factors 

of the efficient or standard five-factor model and the explanatory variables are all five factors of the other model. The efficient 

factors are conditional on the prior-month (t − 1) return. * Significant at 5%, ** Significant at 10% 
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B.V Momentum Factor Alpha Tests for Remaining Markets 

 

Table B.16. Frace Momentum Versus Fama and French (2015) Five-Factor Model  

  Dependant Variable 

Independent Variable 

Momentum Factor 

CAPM FF5 FF5ef 

Alpha  0.708 0.585 0.061 

 (3.111)* (2.765)* (2.571)* 

    

Market -0.245 -0.208 -0.263 

 (-5.911) (-5.146) (-3.63) 

  
 

 

SMB  0.042 0.048 

  (0.553) (1.776) 

  
 

 

HML  -0.264 -0.008 

  (-3.543) (-0.101) 

  
 

 

RMWop  0.481 0.053 

  (4.836) (0.872) 

  
 

 

CMA  0.206 0.055 

   (2.012) (0.58) 
This table presents estimates from time-series regressions that measure the association between the momentum factor and 

the CAPM, as well as both the standard and efficient versions of the Fama and French (2015) five-factor model in French stock 

returns. The alpha values, beta coefficients, and associated t-statistics (reported in parentheses) are presented in the columns 

across three models. In each case the dependant variable is the momentum factor. * Significant at 5%, ** Significant at 10%.  
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Table B.17. Germany Momentum Versus Fama and French (2015) Five-Factor Model 

  Dependant Variable 

Independent Variable 

Momentum Factor 

CAPM FF5 FF5ef 

Alpha  1.032 0.965 1.02 

 (4.587)* (4.3)* (4.132)* 

    

Market -0.276 -0.268 -0.141 

 (-7.001) (-5.731) (-2.982) 

  
 

 

SMB  -0.249 0.031 

  (-2.986) (0.904) 

  
 

 

HML  -0.274 -0.111 

  (-3.843) (-1.227) 

  
 

 

RMWop  0.033 -0.058 

  (0.335) (-0.534) 

  
 

 

CMA  0.418 0.049 

   (4.683) (-7.016) 
This table presents estimates from time-series regressions that measure the association between the momentum factor and 

the CAPM, as well as both the standard and efficient versions of the Fama and French (2015) five-factor model in German 

stock returns. The alpha values, beta coefficients, and associated t-statistics (reported in parentheses) are presented in the 

columns across three models. In each case the dependant variable is the momentum factor. * Significant at 5%, ** Significant 

at 10%.  

 

 

 

 

 

 

 

 

    



135 

 

Table B.18. Netherlands Momentum Versus Fama and French (2015) Five-Factor Model 

  Dependant Variable 

Independent Variable 

Momentum Factor 

CAPM FF5 FF5ef 

Alpha  1.024 1.076 1.003 

 (3.901)* (2.229)* (3.048)* 

    

Market -0.277 -0.276 -0.240 

 (-6.015) (-5.821) (-2.596) 

  
 

 

SMB  -0.141 0.018 

  (-1.681) (0.297) 

  
 

 

HML  -0.191 -0.063 

  (-2.571) (-0.704) 

  
 

 

RMWop  0.000 -0.048 

  (0.002) (-1.621) 

  
 

 

CMA  0.020 -0.060 

   (0.231) (-1.52) 
This table presents estimates from time-series regressions that measure the association between the momentum factor and 

the CAPM, as well as both the standard and efficient versions of the Fama and French (2015) five-factor model in Dutch stock 

returns. The alpha values, beta coefficients, and associated t-statistics (reported in parentheses) are presented in the columns 

across three models. In each case the dependant variable is the momentum factor.* Significant at 5%, ** Significant at 10%.  
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Table B.19. Italy Momentum Versus Fama and French (2015) Five-Factor Model 

  Dependant Variable 

Independent Variable 

Momentum Factor 

CAPM FF5 FF5ef 

Alpha  0.892 0.491 0.755 

 (3.901)* (2.229)* (3.048)* 

    

Market -0.237 -0.120 0.011 

 (-6.951) (-3.336) (0.443) 

  
 

 

SMB  0.014 0.012 

  (0.198) (1.542) 

  
 

 

HML  -0.043 0.039 

  (-0.568) (1.063) 

  
 

 

RMWop  0.550 0.222 

  (6.795) (1.671) 

  
 

 

CMA  -0.017 -0.122 

   (-0.197) (-6.952) 
This table presents estimates from time-series regressions that measure the association between the momentum factor and 

the CAPM, as well as both the standard and efficient versions of the Fama and French (2015) five-factor model in Italian stock 

returns. The alpha values, beta coefficients, and associated t-statistics (reported in parentheses) are presented in the columns 

across three models. In each case the dependant variable is the momentum factor. * Significant at 5%, ** Significant at 10%.  
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Table B.20. Spain Momentum Versus Fama and French (2015) Five-Factor Model 

  Dependant Variable 

Independent Variable 

Momentum Factor 

CAPM FF5 FF5ef 

Alpha  0.822 0.797 0.716 

 (3.23)* (3.141)* (2.61)* 

    

Market -0.267 -0.254 -0.097 

 (-6.23) (-6.017) (-1.831) 

  
 

 

SMB  -0.076 -0.034 

  (-0.961) (-0.751) 

  
 

 

HML  -0.191 -0.063 

  (-2.463) (-1.003) 

  
 

 

RMWop  0.209 0.172 

  (2.532) (1.883) 

  
 

 

CMA  -0.028 -0.021 

   (-0.349) (-0.583) 
This table presents estimates from time-series regressions that measure the association between the momentum factor and 

the CAPM, as well as both the standard and efficient versions of the Fama and French (2015) five-factor model in Spanish 

stock returns. The alpha values, beta coefficients, and associated t-statistics (reported in parentheses) are presented in the 

columns across three models. In each case the dependant variable is the momentum factor. * Significant at 5%, ** Significant 

at 10%.  
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B.VI Model Comparison Tests with Efficient Factors Remaining Markets 

 

Table B.21. France Model Comparison Tests with Efficient Factors 

 
Panel A: Difference in Squared Sharpe Performance  

Model Carhart HXZ CZZ AFIM FF5 FF6 SY FrazPed  

FF3 -0.008 -0.014 -0.002 -0.021 -0.021 -0.045 -0.045 -0.081  

Carhart  -0.006 -0.012 -0.013 -0.013 -0.037 -0.037 -0.073  

HXZ   -0.007 -0.007 -0.008 -0.031 -0.031 -0.067  

CZZ    -0.001 -0.001 -0.025 -0.025 -0.061  

AFIM     0 -0.024 -0.024 -0.06  

FF5      -0.024 -0.024 -0.06  

FF6       0 -0.036  

SY               -0.036  

Panel B: p-Values  

Model Carhart HXZ CZZ AFIM FF5 FF6 SY FrazPed  

FF3 0.04 0.478 0.338 0.28 0.008 0 0.066 0.034  

Carhart  0.758 0.458 0.404 0.449 0 0.117 0.053  

HXZ   0.569 0.523 0.516 0.118 0.189 0.084  

CZZ    0.192 0.928 0.189 0.302 0.113  

AFIM     0.959 0.193 0.314 0.125  

FF5      0.192 0.295 0.138  

FF6       0.994 0.401  

SY               0.381  

Panel C: Multiple Model Comparison  

Model θ̂2 r LR p-value n θ̂𝑂𝑅𝐺
2     

FF3 0.032 4 6.552 0.027 0 0.005    

Carhart 0.04 5 5.389 0.057 0 0.034    

FF5 0.054 5 3.667 0.169 1 0.028    

FF6 0.077 5 0.704 0.491 0 0.067    

FrazPed 0.113 5 0 0.646 1 0.089    

SY 0.077 5 0.768 0.441 1 0.068    

AFIM 0.053 5 3.961 0.149 1 0.066    

HXZ 0.046 5 5.199 0.074 0 0.035    

CZZ 0.053 5 4.317 0.126 1 0.04     

This table reports the asymptotically valid Barillas et al, (2020) pairwise tests of equality of the squared Sharpe ratios for a 

set of French time series efficient  factor models from 1991 to 2022. Panel A reports the differences in squared Sharpe ratio. 

The models are presented from left to right and top to bottom in order of increasing squared Sharpe ratios. Panel B reports 

the associated p-values. Panel C reports the multiple model comparison tests of efficient factor models in French stock returns. 

The 𝜃2 column is the bias-adjusted maximum squared Sharpe performance of these efficient models.  LR is the Likelihood 

ratio test of Wolak (1987,1989).  The p-value column is the p value for the hypothesis that this model performs as well as any 

other model in the dataset. 𝜃𝑂𝑅𝐺
2  is the bias adjusted squared Sharpe ratio of the models with original factors.  
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Table B.22. Germany Model Comparison Tests with Efficient Factors 

 
Panel A: Difference in Squared Sharpe Performance  

Model HXZ SY FrazPed FF5 Carhart FF6 AFIM CZZ  

FF3 -0.007 -0.032 -0.036 -0.036 -0.038 -0.053 -0.059 -0.061  

HXZCP  -0.025 -0.029 -0.029 -0.031 -0.046 -0.052 -0.054  

SY   -0.003 -0.003 -0.005 -0.021 -0.026 -0.029  

FrazPed    0 -0.002 -0.018 -0.023 -0.025  

FF5     -0.002 -0.018 -0.023 -0.026  

Carhart      -0.016 -0.021 -0.023  

FF6       -0.005 -0.008  

AFIM        -0.003  

Panel B: p-Values  

Model HXZ SY FrazPed FF5 Carhart FF6 AFIM CZZ  

FF3 0.63 0.173 0.202 0 0 0 0.03 0.026  

HXZCP  0.299 0.312 0.072 0.156 0.042 0.026 0.02  

SY   0.92 0.892 0.823 0.372 0.266 0.228  

FrazPed    0.996 0.95 0.626 0.508 0.464  

FF5     0.93 0.462 0.196 0.156  

Carhart      0.025 0.269 0.226  

FF6       0.768 0.66  

AFIM        0.744  

Panel C: Multiple Model Comparison  

Model θ̂2 r LR p-value n θ̂𝑂𝑅𝐺
2    

 

FF3 0.019 4 5.399 0.052 0 0.021   
 

Carhart 0.057 5 1.224 0.389 0 0.085   
 

FF5 0.054 5 1.671 0.354 0 0.069   
 

FF6 0.072 5 0.087 0.727 1 0.114   
 

FrazPed 0.054 5 0.438 0.445 0 0.039   
 

SY 0.051 5 1.256 0.361 0 0.066   
 

AFIM 0.077 5 0 0.867 1 0.13   
 

HXZ 0.026 5 6.831 0.034 0 0.035   
 

CZZ 0.08 5 0 0.863 1 0.104     

This table reports the asymptotically valid Barillas et al, (2020) pairwise tests of equality of the squared Sharpe ratios for a 

set of German time series efficient  factor models from 1991 to 2022. Panel A reports the differences in squared Sharpe ratio. 

The models are presented from left to right and top to bottom in order of increasing squared Sharpe ratios. Panel B reports 

the associated p-values. Panel C reports the multiple model comparison tests of efficient factor models in German stock 

returns. The 𝜃2 column is the bias-adjusted maximum squared Sharpe performance of these efficient models.  LR is the 

Likelihood ratio test of Wolak (1987,1989).  The p-value column is the p value for the hypothesis that this model performs as 

well as any other model in the dataset. 𝜃𝑂𝑅𝐺
2  is the bias adjusted squared Sharpe ratio of the models with original factors.  
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Table B.23. Netherlands Model Comparison Tests with Efficient Factors 

 
Panel A: Difference in Squared Sharpe Performance  

Model FF3 FrazPed FF5 SY AFIM CZZ Carhart FF6  

HXZ  -0.004 -0.01 -0.012 -0.015 -0.017 -0.02 -0.025 -0.027  

FF3  -0.006 -0.008 -0.011 -0.014 -0.016 -0.021 -0.023  

FrazPed   -0.002 -0.006 -0.008 -0.01 -0.015 -0.017  

FF5    -0.004 -0.006 -0.008 -0.013 -0.015  

SY     -0.002 -0.004 -0.01 -0.011  

AFIM      -0.002 -0.008 -0.009  

CZZ       -0.005 -0.007  

Carhart               -0.001  

Panel B: p-Values         

Model FF3 FrazPed FF5 SY AFIM CZZ Carhart FF6  

HXZ  0.794 0.607 0.42 0.364 0.326 0.274 0.24 0.217  

FF3  0.768 0.133 0.518 0.522 0.466 0.003 0.011  

FrazPed   0.926 0.802 0.745 0.675 0.534 0.523  

FF5    0.853 0.768 0.688 0.505 0.452  

SY     0.911 0.818 0.611 0.562  

AFIM      0.68 0.538 0.508  

CZZ       0.678 0.637  

Carhart               0.282  

Panel C: Multiple Model Comparison       
 

Model θ̂2 r LR p-value n θ̂𝑂𝑅𝐺
2     

FF3 0.028 4 0.543 0.523 1 0.011    

Carhart 0.049 5 0 0.828 1 0.049    

FF5 0.036 5 0.567 0.55 1 0.015    

FF6 0.051 5 0 0.817 1 0.049    

FrazPed 0.034 5 0.409 0.5 0 0.054    

SY 0.039 5 0.336 0.617 0 0.047    

AFIM 0.042 5 0.437 0.611 0 0.048    

HXZ 0.024 5 1.759 0.345 0 0.016    

CZZ 0.044 5 0.222 0.681 0 0.045    

This table reports the asymptotically valid Barillas et al, (2020) pairwise tests of equality of the squared Sharpe ratios for a 

set of Dutch time series efficient  factor models from 1991 to 2022. Panel A reports the differences in squared Sharpe ratio. 

The models are presented from left to right and top to bottom in order of increasing squared Sharpe ratios. Panel B reports 

the associated p-values. Panel C reports the multiple model comparison tests of efficient factor models in Dutch stock returns. 

The 𝜃2 column is the bias-adjusted maximum squared Sharpe performance of these efficient models.  LR is the Likelihood 

ratio test of Wolak (1987,1989).  The p-value column is the p value for the hypothesis that this model performs as well as any 

other model in the dataset. 𝜃𝑂𝑅𝐺
2  is the bias adjusted squared Sharpe ratio of the models with original factors.  
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Table B.24. Italy Model Comparison Tests with Efficient Factors 

 
Panel A: Difference in Squared Sharpe Performance  

Model FrazPed Carhart SY HXZ FF6 CZZ AFIM FF5  

FF3 -0.023 -0.035 -0.04 -0.042 -0.058 -0.065 -0.065 -0.07  

FrazPed  -0.012 -0.018 -0.019 -0.035 -0.043 -0.042 -0.047  

Carhart   -0.006 -0.007 -0.023 -0.031 -0.03 -0.035  

SY    -0.001 -0.018 -0.025 -0.024 -0.029  

HXZ     -0.016 -0.023 -0.023 -0.028  

FF6      -0.007 -0.007 -0.012  

CZZ       0.001 -0.004  

AFIM        -0.005  

Panel B: p-Values  

Model FrazPed Carhart SY HXZ FF6 CZZ AFIM FF5  

FF3 0.103 0 0.077 0.096 0 0.027 0.029 0  

FrazPed  0.607 0.46 0.462 0.207 0.154 0.166 0.128  

Carhart   0.794 0.791 0.004 0.157 0.164 0.216  

SY    0.946 0.487 0.279 0.31 0.299  

HXZ     0.554 0.222 0.253 0.24  

FF6      0.723 0.738 0.649  

CZZ       0.365 0.81  

AFIM        0.765  

Panel C: Multiple Model Comparison Tests  

Model θ̂2 r LR p-value n θ̂𝑂𝑅𝐺
2     

FF3 -0.003 4 6.467 0.027 0 0.005    

Carhart 0.032 5 1.976 0.259 0 0.037    

FF5 0.067 5 0 0.814 1 0.087    

FF6 0.055 5 0.208 0.647 0 0.062    

FrazPed 0.019 5 2.471 0.169 0 0.016    

SY 0.037 5 1.171 0.4 1 0.046    

AFIM 0.062 5 0.089 0.805 1 0.109    

HXZ 0.039 5 1.564 0.343 1 0.052    

CZZ 0.062 5 0.058 0.822 1 0.068     

This table reports the asymptotically valid Barillas et al, (2020) pairwise tests of equality of the squared Sharpe ratios for a 

set of Italian time series efficient  factor models from 1991 to 2022. Panel A reports the differences in squared Sharpe ratio. 

The models are presented from left to right and top to bottom in order of increasing squared Sharpe ratios. Panel B reports 

the associated p-values. Panel C reports the multiple model comparison tests of efficient factor models in Italian stock returns. 

The 𝜃2 column is the bias-adjusted maximum squared Sharpe performance of these efficient models.  LR is the Likelihood 

ratio test of Wolak (1987,1989).  The p-value column is the p value for the hypothesis that this model performs as well as any 

other model in the dataset. 𝜃𝑂𝑅𝐺
2  is the bias adjusted squared Sharpe ratio of the models with original factors.  
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Table B.25. Spain Model Comparison Tests with Efficient Factors 

 
Panel A: Difference in Squared Sharpe Performance  

Model SY HXZ FrazPed FF5 CZZ FF6 Carhart AFIM  

FF3 -0.006 -0.009 -0.009 -0.015 -0.021 -0.022 -0.026 -0.033  

SY  -0.003 -0.003 -0.009 -0.016 -0.017 -0.02 -0.027  

HXZ   -0.001 -0.006 -0.013 -0.014 -0.017 -0.024  

FrazPed    -0.006 -0.012 -0.013 -0.017 -0.024  

FF5     -0.006 -0.008 -0.011 -0.018  

CZZ      -0.001 -0.005 -0.012  

FF6       -0.004 -0.01  

Carhart        -0.007  

Panel B: p-Values  

Model SY HXZ FrazPed FF5 CZZ FF6 Carhart AFIM  

FF3 0.723 0.588 0.568 0.025 0.342 0.013 0.001 0.155  

SY  0.878 0.852 0.627 0.375 0.457 0.345 0.171  

HXZ   0.977 0.771 0.588 0.581 0.485 0.353  

FrazPed    0.795 0.569 0.551 0.443 0.342  

FF5     0.719 0.724 0.597 0.32  

CZZ      0.943 0.768 0.025  

FF6       0.683 0.556  

Carhart        0.67  

Panel C: Multiple Model Comparison Tests  

Model θ̂2 r LR p-value n θ̂𝑂𝑅𝐺
2     

FF3 0.01 4 2.187 0.248 0 0.005    

Carhart 0.036 5 0.182 0.67 0 0.037    

FF5 0.025 5 0.987 0.445 1 0.029    

FF6 0.032 5 0.347 0.588 0 0.033    

FrazPed 0.019 5 0.905 0.438 1 0.021    

SY 0.016 5 1.886 0.319 1 0.016    

AFIM 0.043 5 0 0.829 1 0.065    

HXZ 0.018 5 0.862 0.427 1 0.013    

CZZ 0.031 5 0.005 0.843 1 0.039    

This table reports the asymptotically valid Barillas et al, (2020) pairwise tests of equality of the squared Sharpe ratios for a 

set of Spanish time series efficient  factor models from 1991 to 2022. Panel A reports the differences in squared Sharpe ratio. 

The models are presented from left to right and top to bottom in order of increasing squared Sharpe ratios. Panel B reports 

the associated p-values. Panel C reports the multiple model comparison tests of efficient factor models in Spanish stock 

returns. The 𝜃2 column is the bias-adjusted maximum squared Sharpe performance of these efficient models.  LR is the 

Likelihood ratio test of Wolak (1987,1989).  The p-value column is the p value for the hypothesis that this model performs as 

well as any other model in the dataset. 𝜃𝑂𝑅𝐺
2  is the bias adjusted squared Sharpe ratio of the models with original factors.  
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Chapter 4 Bayesian Tests of Model Comparison 

 

 

 

 

 

 

Abstract 

In this chapter, the Bayesian frameworks of Chib, Zeng, and Zhao (2020), and Chib and Zeng 

(2020) are used to identify the optimal combination of factors from a starting collection of 12 

risk factors in each European market. The results indicate that the optimal combinations of 

factors are similar to the top-performing models in the classical tests. The changes in these 

optimal combinations are then examined under the assumptions of both normality and 

multivariate distributions on the factor data. Additionally, the extent to which the efficient 

factor transformation impacts the model comparison tests in each market is analysed. The 

findings reveal that efficient factors are present in the optimal combination of factors across 

European markets. 
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4.1 Introduction  

 

The question of which risk factors best explain the cross-section of expected equity returns 

continues to draw attention due to its significant importance in theoretical and empirical finance 

(Cochrane 2011). According to asset pricing theory, as described by Cochrane (2005), a risk 

factor is defined as any variable that features in the stochastic discount factor (SDF), also 

known as the pricing kernel. Chapter One outlined the different ways researchers have aimed 

to specify this kernel, such as consumption-based models and linear factor models. Until this 

point, it has been noted that the Fama and French (2018) six-factor model, with both traditional 

and updated value factors, has outperformed other widely cited models over the period of 

analysis across the majority of markets. These models, however, are fixed in their construction, 

implying that their risk factors are unchanging. This chapter investigates whether factors in 

top-performing models reside in the SDF by examining all potential factor models that can be 

formed from the set of risk factors. 

Addressing these questions in a classical alpha-based model comparison framework, such as 

the one used in Chapter Two, is not feasible given the large number of asset pricing models 

that can be formed from a collection of risk factors. Modern approaches to evaluating asset 

pricing models focus on identifying the optimal model from an initial set of factors. Barillas 

and Shanken (2018) were the first to propose an alpha-based optimisation methodology to 

combine various risk factors into a parsimonious asset pricing model for expected returns while 

eliminating redundant factors. Their Bayesian approach is useful because it can consider a large 

number of models, both nested and non-nested. Chib, Zeng and Zhao (2020) developed an 

SDF-based approach to identify the optimal combination of factors that fit into the stochastic 

discount factor framework. Both methodologies aim to create the most effective model by 

optimising factor inclusion and removing redundancies, underscoring their shared objective 

but distinct approaches. 

In Bayesian model comparison, models are assessed by updating an initial prior belief about 

model performance with observed data. This process involves focusing on the interaction 

between the likelihood (how likely the observed data is under the proposed model) and the 

prior distribution (the initial belief about the model's parameters). This interaction is crucial for 

calculating Bayes factors and posterior probabilities, which indicate the level of support for a 

model from the data. Chib, Zeng, and Zhao (2020) critique the approach by Barillas and 

Shanken (2018), who assign improper priors to model parameters. Improper priors can 
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excessively influence model comparison outcomes, leading to biased results. Chib et al. (2020) 

propose an alternative method for calculating the marginal likelihood (ML), which is the key 

component in Bayesian model comparison. Their method emphasises analytical solvability and 

reduces the influence of prior probabilities, aiming for a more balanced and accurate model 

assessment. 

The analysis unfolds in three main parts. Initially, the focus is on the original 12 factors in the 

benchmark model scan. Each factor is assessed as a potential risk factor (an element of the 

stochastic discount factor, SDF) or as a non-risk factor. This approach allows for various 

combinations of risk factors, leading to different restricted factor models, which are then 

compared with the data. The performance of each factor combination which can be constructed 

from the 12 investment factors is examined for each market. The performance of the traditional 

models is compared against these optimal models identified in the model scan. 

The results show that the model scan identifies top-performing models that align closely with 

those from the classical model comparison tests in Chapter Two. The optimal models either 

simplify or extend the previous models by adding or removing one or two factors, 

demonstrating the robustness of model selection. The results show that the relative performance 

rankings of these models remain consistent across different testing approaches, including 

marginal likelihood calculations. Unlike Qiao, Wang, and Lam (2022), no significant impact 

was found when applying a Student-t distribution to the data. Lastly, incorporating time-series 

efficient factors into the Bayesian model scan enhances model performance, particularly for 

factors that previously showed higher Sharpe ratios when conditioned on past returns. 

Next, following Chib and Zeng's (2020) approach, results are compared under different 

distributional assumptions for factor data. Initially, a multivariate normal distribution is 

assumed for the model scans. To address the limitation that factor data can display fat tails, a 

Student-t distribution is then employed for the factors. The outcomes of this Student-t 

distribution approach are compared to those obtained under the normality assumption to 

examine the robustness of the findings. Lastly, the impact of efficient factors is examined. 

Chapter Three highlighted that several key factors in the analysis are mean-variance inefficient, 

considering their past return information. Using the model scanning framework, the aim is to 

isolate the efficient factors that can improve model performance, instead of replacing all factors 

with their efficient versions as done in the previous chapter. 
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This chapter addresses a fundamental challenge in finance: determining the most effective 

combination of risk factors to explain asset returns across diverse markets. With asset pricing 

models at the core of both academic research and practical investment decisions, the ability to 

distil an optimal set of factors from an extensive factor pool has significant implications. 

Traditional models, while foundational, often operate under fixed assumptions that can 

overlook critical local market dynamics or redundancies in factor selection. By re-evaluating 

model performance through a Bayesian framework, this chapter contributes to a growing body 

of research aimed at refining factor efficiency, minimising redundancy, and improving model 

adaptability. Additionally, the inclusion of time-series efficient factors responds to recent 

criticisms of factor proliferation, offering a streamlined approach that remains sensitive to 

market conditions over time. This investigation holds particular value for investors seeking 

reliable, data-driven tools for risk assessment, as well as for academics interested in advancing 

the theoretical underpinnings of asset pricing through more nuanced and responsive modelling 

frameworks. 

4.2 Literature Review 

 

Classical and Bayesian econometrics are two parallel approaches for statistical analyses. In 

conventional empirical studies, the efficiency of a portfolio, known to the researcher, is tested 

as a straightforward hypothesis. Using classical statistical inference methods, this hypothesis 

is either accepted or rejected at a set significance level. However, two significant deviations 

from this traditional method have emerged.  

 

The first deviation acknowledges that the portfolio being tested is often an imperfect 

representation ("proxy") of a more theoretically ideal portfolio. The exact composition of this 

ideal portfolio is unknown, leading researchers to test a "composite hypothesis" that accounts 

for some level of inefficiency in the known portfolio. This shift moves away from testing for 

perfect efficiency towards testing for approximate efficiency, recognising the practical 

limitations of real-world portfolios. Researchers like Kandel and Stambaugh (1987) and 

Shanken (1987a) have explored ways to test these composite hypotheses of approximate 

efficiency using classical frequentist techniques. Both analytical studies (e.g., Shanken, 1985; 

Gibbons, Ross, and Shanken, 1985) and simulation studies (e.g., Stambaugh, 1981; Jobson and 

Korkie, 1982; MacKinlay, 1985) have examined the distribution of mean-variance efficiency 
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tests in finite samples, addressing the challenge of accurately measuring the relevant 

benchmark return to ensure it appropriately reflects the theoretical ideal.  

The second major change in evaluating portfolio efficiency and asset pricing models is the shift 

from traditional classical (frequentist) methods to Bayesian inference methods. In classical 

econometrics, the assumptions (priors) about the parameters are not explicitly stated, and 

estimators and test procedures are evaluated through repeated samples. In Bayesian inference, 

the process starts with prior beliefs or assumptions about the parameters. New data is then 

collected and analysed to calculate how likely it is to observe this data for different parameter 

values. This likelihood is combined with the prior beliefs using Bayes' theorem, resulting in a 

posterior distribution. The posterior distribution represents a revised belief about the 

parameters, incorporating both the prior information and the new data. It provides a range of 

probable values for the parameters, from which various summaries can be derived.  

Barillas and Shanken (2018) developed a new Bayesian test to check if a given model 

accurately fits mean-variance efficiency, which has a straightforward solution8. This test starts 

with an informative assumption (prior) about the alphas, which measure how much actual 

returns differ from expected returns under the alternative hypothesis. By focusing on these 

informative priors for alphas, the goal is to determine if assets are priced correctly according 

to the model's assumptions. This prior is based on the expected Sharpe ratio, which measures 

risk-adjusted return. The model is then evaluated against this expectation. A key feature of their 

approach is using standard "diffuse" priors for other parameters like betas and residual 

covariance. This means the actual data influences beliefs about these parameters, allowing the 

researcher to focus on setting informative priors for alphas. The test is performed using two 

regressions: one with the alphas constrained to zero and one without this constraint. The 

residuals from these regressions are compared to calculate the Bayes Factor, which measures 

the relative support for the null hypothesis.  

Barillas and Shanken (2018) employ this constrained regression approach to calculate the 

marginal likelihood (ML), which represents the support for each model under consideration. 

This approach allows for the simultaneous comparison of numerous models by integrating the 

aforementioned constraints into a regression framework, where the returns of included and 

excluded factors are assessed against the market and other included factors without intercepts, 

reinforcing the zero pricing error restriction. Barillas and Shanken show this through zero alpha 

 
8 See earlier work by Shanken (1987b), McCulloch and Rossi (1990, 1991), and Harvey and Zhou (1990). 



148 

 

restrictions on excluded factors, effectively ensuring that all assets are correctly priced by the 

model, aligning with the no-arbitrage principle central to SDF theory. Chib et al. (2020) 

criticise the approach of Barillas and Shanken (2018) and derive their own closed-form 

expressions of the log marginal likelihoods which accommodate advanced considerations such 

as model-specific priors. The constrained regression approach used by Barillas and Shanken 

(2018) and the SDF-based pricing condition outlined by Chib et al. (2020) share the goal of 

identifying the most effective combination of factors, but they differ in their methodologies.  

4.3 Research Methods  

4.3.1 Model Scan Approach 

 

In the model scanning approach, researchers aim to identify the optimal combination of factors 

from an initial set of potential risk factors, diverging from the traditional method of using 

predetermined models with specific factors. Chib et al. (2020) describe this theory using the 

stochastic discount factor (SDF) approach, which provides a theoretical foundation for deriving 

linear factor models. Specifically, a linear factor model is an empirical representation of the 

SDF. Chib et al. (2020) outline that when seeking an optimal combination of factors within a 

collection, the stochastic discount factor (SDF)-based pricing condition requires a specific 

relationship. The joint distribution of these factors should be expressed in terms of the marginal 

distribution of the factors in the SDF and the conditional distribution of those not in the SDF. 

This conditional distribution must have zero intercepts, assuming all factors are traded. In 

simpler terms, if a factor is not part of the SDF, it should not show any predictable pattern or 

influence on asset prices when SDF factors are considered. 

For a specific model 𝑀𝑗, Chib et al. (2020) considers risk factors 𝑓𝑗,𝑡: 𝑘�̆�,𝑗 𝑥 1, and a 

complementary set of non-risk factors 𝑓∗
𝑗,𝑡

: 𝑘𝑓∗,𝑗 𝑥 1. Risk factors being factors which reside 

in the SDF. Following the approach of Hansen and Jagannathan (1991), Chib et al. (2020) 

specify the SDF as: 

𝑀𝑗,𝑡 = 1 − 𝜆�̆�,𝑗
′ 𝛺�̆�,𝑗

−1(𝑓𝑗,𝑡 − 𝐸[𝑓𝑗,𝑡]),    (4.1) 

where the SDF is characterised by risk factors (𝑓𝑗,𝑡), 𝜆�̆�,𝑗
′  are the risk factor loadings and 𝛺�̆�,𝑗

−1 

is the covariance matrix of risk factors. Enforcing the pricing restrictions implied by the no-

arbitrage condition as outlined in Section 1.2: 

𝐸[𝑀𝑗 , 𝑓𝑗,𝑡
′ ] = 0 and 𝐸[𝑀𝑗 , 𝑓𝑗,𝑡

∗′] = 0    (4.2) 
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For all 𝑡, ensure that the expected returns on assets, after being adjusted by the SDF for risk, 

should net to zero across all assets and time periods. This means that the pricing of assets by 

the market, considering risk factors (𝑓𝑗,𝑡) and non-risk factors (𝑓∗
𝑗,𝑡

) should not allow for 

arbitrage opportunities. The expected value of the risk factors is 𝜆𝑥,𝑗, a constant vector. This 

implies that, on average, the risk factors should align with this baseline level. Similarly, it is 

established that the expected value of non-risk factors is related to the risk factors through a 

matrix Г𝑗 , as 𝐸 [𝑓∗
𝑗,𝑡

] = Г𝑗𝜆�̆�,𝑗. Here, Г𝑗  is a matrix that translates the loadings of the risk 

factors into the domain of the non-risk factors, effectively linking the two sets of factors.  

Considering the decomposition of factors in this way, Chib et al. (2020) build on the Bayesian 

approach of Barillas and Shanken (2018), which allows for the simultaneous examination of a 

large number of models—something not feasible in traditional alpha-based asset pricing 

frameworks. In order to calculate this support for each model we require a model set-up which 

stems from the asset pricing theory.  

Suppose that in model 𝑀1 all K factors are risk factors which could influence asset returns. 

𝑓1,𝑡 =  �̆�1 + 𝜀1̆,𝑡,    𝜀1̆,𝑡~𝑁𝐿,(0, 𝛴1),  (4.3) 

Where each risk factor at time 𝑡 (represented as 𝑓1,𝑡) is modelled as a base value (�̆�1) plus a 

random deviation (𝜀1̆,𝑡), which follows a normal distribution with mean 0 and a covariance 

matrix 𝛴1. 

Letting 𝜎1 = 𝑣𝑒𝑐ℎ(𝛴1), the nuisance parameters of 𝑀1 are simply  

𝑛1 = (𝜎1) 

A nuisance parameter here being a parameter that is not of direct interest but must be accounted 

for in the model's formulation and estimation process. For a given model 𝑀𝑗, lets assume we 

have 𝑓 risk factors and 𝑓∗ non-risk factors which have a joint Gaussian distribution.  Then the 

aforementioned pricing restrictions imply that under a marginal-conditional decomposition of 

factors, we can represent model 𝑀𝑗 (for 𝑗 =2,3,… J̆ ) in a restricted and reduced form as follows: 

𝑓𝑗,𝑡 =  �̆�𝑗 + 𝜀�̆�,𝑡,    𝜀�̆�,𝑡~𝑁𝐿,(0, 𝛴𝑗),  (4.4) 

𝑓∗
𝑗,𝑡

=  𝑩𝑗,𝑓
∗ 𝑓𝑗,𝑡 + 𝜀∗

𝑗,𝑡,      𝜀∗
𝑗,𝑡~𝑁𝐾−𝐿𝑗,(0, 𝛴∗

𝑗)  (4.5) 

With nuisance parameters 
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𝑛𝑗 = (𝛽𝑗,𝑓
∗ , 𝜎𝑗 , 𝜎𝑗

∗) 

where 𝛽𝑗,𝑓
∗ = 𝑣𝑒𝑐(𝑩𝑗,𝑓

∗ ), 𝜎𝑗 = 𝑣𝑒𝑐ℎ(𝛴𝑗), and 𝜎𝑗
∗ = 𝑣𝑒𝑐ℎ(𝛴∗

𝑗). So, each model can be 

represented as a combination of risk factors, which directly impact asset returns, and non-risk 

factors, which are influenced by the risk factors. 

4.3.2 Prior Computation 

 

The goal of the analysis is to calculate the support for each model given the data. The Bayesian 

method of model comparison requires setting specific priors for the parameters of each model, 

which are designed to be non-informative, thereby minimising any priori bias towards 

particular model configurations. Each model is then confronted with empirical data to assess 

its performance. 

Traditionally in Bayesian statistics, Jeffreys’ priors have been employed because they are non-

informative and designed to minimally influence the outcomes. However, Barillas and Shanken 

(2018) apply these priors across different models in their model scanning framework without 

specific adjustments which has led to problems. Chib et al. (2020) argue that this practice can 

result in non-comparable marginal likelihoods because Jeffreys' priors can vary significantly 

based on how each model defines its nuisance parameters.  

The main issue with this approach is that if nuisance parameters are defined differently across 

models or are derived solely from the data without a consistent foundational prior, the 

comparisons made between models can be misleading. This is because the marginal likelihood 

inherently reflects the influence of these parameters, and variations in their definitions can 

skew the comparison results. Furthermore, allowing data from the training sample to set the 

prior values can induce volatility and bias, which might favour some models over others 

unfairly. 

To overcome these inconsistencies, Chib et al. (2020) propose a new method where all priors 

are connected through an invertible mapping to a base model. This approach ensures that each 

model's priors are transformations of a single, consistent prior set on a base model, maintaining 

uniformity and comparability. The application of invertible mappings involves Jacobian 

transformations, which adjust for changes in parameter space scale as the priors are translated 

from one model to another. This not only standardises the impact of priors across different 

models but also respects the individual nuances of each model by adjusting the prior scale 

appropriately. By using this method, Chib et al. (2020) ensure that the marginal likelihoods 
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computed for each model are both valid and comparable, which is crucial for making fair and 

meaningful model evaluations and decisions based on Bayesian marginal likelihoods.  

Let model 𝑀1 in equation 4.3 have the improper prior on 𝑛1 given by  

𝑐Ѱ(𝑛1|𝑀1) = c|𝛴𝑗|−𝒌/𝟐     (4.6) 

where c is an arbitrary constant. Then the derived priors for other models of 𝑛𝑗  in 𝑀𝑗, j = 2, 3, 

.., J̆, given by 

Ѱ(𝑛𝑗|𝑀𝑗) = c|𝛴𝑗|−(2𝐿𝑗−𝐾)/2|𝛴∗
𝑗|−𝒌/𝟐     (4.7) 

For models 𝑀𝑗 (for 𝑗 =2,3,… J̆ ), the formula adjusts the weight of the priors based on the 

number of risk factors (𝐿𝑗) and the total number of factors (K), thus tailoring the priors to the 

specific complexity and dimensionality of each model. The 𝑐 constant serves to maintain 

consistency in scale across different models. This type of prior, which does not integrate to one, 

is often used in Bayesian statistics when a non-informative prior is desired. Here, it serves to 

impose minimal prior constraints on the model, allowing the data to primarily inform the 

posterior distributions. The prior Ѱ(𝑛𝑗|𝑀𝑗) is thus a combination of the base model’s prior with 

specific adjustments that make it suitable for model 𝑀𝑗. 

Instead of assuming a common prior across models for the parameter �̆�𝑗, which represents the 

mean vector of the risk factors, a model-specific prior is introduced. This prior, 

�̆�𝑗|𝑀𝑗~𝑁𝐿𝑗(�̆�𝑗0,  𝑘𝒋 ∑𝒋)     (4.8) 

incorporates a mean (�̆�𝑗0) and a covariance (𝑘𝒋 ∑𝒋) that are specific to each model 𝑀𝑗. The 

mean (�̆�𝑗0) is derived from empirical data, making the prior sensitive to the observed 

characteristics of the risk factors in the training data. I provide more detail on the Chib et al. 

(2020) priors in Section C.7 of Appendix C. 

4.3.3 Marginal Likelihood  

 

The objective of this analysis is to determine the level of support for all models which can be 

formed from a set of risk factors based on the sample data concerning the factors. Chib et al. 

(2024) conducts a prior-posterior analysis on the model space denoted by 𝑀 = {𝑀1, 𝑀2,.., 𝑀𝑗}. 

Assume that each model in the model space is given an uninformative and equal prior model 

probability, that is, for any j, Pr(𝑀𝑗) = 1/𝐽. Ensuring that these prior distributions are 
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equivalent across models is crucial, as it guarantees that the models' comparative rankings are 

influenced by the evidence from the data rather than by variations in the priors.  

In this model setup, the marginal likelihood for each model can be calculated, providing a 

quantifiable measure of support for each model from the data. This calculation integrates 

various elements evident in the model's framework, such as the impact of risk factors and their 

explanatory power over non-risk factors. The marginal likelihood evaluates how well the 

combinations of risk and non-risk factors, represented through their respective covariance 

matrices and the transformations between them, align with the observed data. By considering 

both the direct effects of risk factors and their influence on non-risk factors, the model captures 

a comprehensive picture of the underlying asset pricing dynamics. This thorough analysis helps 

in discerning which model best fits the empirical evidence.  

Marginal likelihood is the probability of observing the given data under a specific model, 

integrating over all possible values of the model's parameters, thereby capturing the model's 

overall fit to the data. Since the model prior probabilities in the numerator and the denominator 

cancel out, the ranked models are indicated as follows: 

𝑚1∗( 𝛾1:𝑇|𝑀1∗) > 𝑚2∗( 𝛾1:𝑇|𝑀2∗) > ⋯ >  𝑚𝐽∗( 𝛾1:𝑇|𝑀𝐽∗)    (4.9) 

This ranking is the basis for determining which risk factors are best supported by the data.  

This approach accounts for model uncertainty, both before and after observing the data. While 

the prior distribution reflects initial equal belief in each model, the posterior distribution, 

influenced by the data size, indicates the likelihood of each model being correct.  As the sample 

size increases, posterior probabilities converge towards the true model or the closest 

approximation. The result of their analysis is a ranking of models based on these probabilities, 

effectively determining which models (and thereby, which risk factors) are best supported by 

the data. 

Under the priors set out with c set equal to one, the marginal likelihood of model 𝑀𝑗 (for 𝑗 

=2,3,… J̆ ), is given by can be split into two pieces (because of the independence of the errors 

and the independence of the priors) as follows: 

log �̂� ( 𝛾1:𝑇|𝑀𝑗) = log �̂� (𝑓1:𝑇|𝑀𝑗) + log �̂� (𝑓1:𝑇
∗ |𝑀𝑗),    (4.10) 

 Where the first term on the right hand side is  
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−
(𝐾−𝐿𝑗)(𝐿𝑗)

2
𝑙𝑜𝑔2 −

(�̌�)(𝐿𝑗)

2
𝑙𝑜𝑔п −

(𝐿𝑗)

2
log (�̌�𝑘𝑗 + 1) −

(�̌�+𝐿𝑗−𝐾)

2
log|Ѱ𝑗| + 𝑙𝑜𝑔Г𝐿𝑗−1

(�̌�+𝐿𝑗−𝐾)

2
  

           (4.11) 

And the second term is 

(𝐾−𝐿𝑗)(𝐿𝑗)

2
𝑙𝑜𝑔2 −

(𝐾−𝐿𝑗)(�̌�−𝐿𝑗)

2
𝑙𝑜𝑔п −

(𝐾−𝐿𝑗)

2
log|𝑊𝑗

∗| −
(�̌�)

2
log|Ѱ𝑗

∗| − 𝑙𝑜𝑔Г𝐾−𝐿𝑗
(�̌�)

2
  

           (4.12) 

Where �̌� = (𝑇 − 𝑛𝑡) denotes the out-of-sample size, which is the portion of the data set that is 

not used during the training phase but instead is used to evaluate or test the model.  

The first term on the right hand side of equation 4.10 assesses the part of the model that includes 

specific factors or variables of interest. It is focused on how well these included factors explain 

the observed data. Ѱ𝑗, determinant of the covariance matrix is perhaps the most important term 

here as it reflects the spread or variability of the included factors which is defined as:  

Ѱ𝑗 =  ∑ (𝑓𝑗,𝑡 −  �̂̆�𝑗)𝑇
𝑡=1 (𝑓𝑗,𝑡 − �̂̆�𝑗)

′
+

�̆�

�̆� 𝑘𝑗+1
(�̂̆�𝑗 − �̂�𝑗0)(�̂̆�𝑗 − �̂�𝑗0)′,    (4.13) 

The second term deals with the parts of the data or additional factors that are not included in 

the main model. It evaluates the impact or relevance of these excluded factors. Here Ѱ𝑗
∗ is the 

variance-covariance matrix of the residuals from a regression of the excluded factors on the 

included ones transformed by their respective loadings. This term measures how well the 

included factors explain the variation in the excluded factors which is defined as: 

𝑊𝑗
∗ =  ∑ (𝑓𝑗,𝑡 𝑓𝒋,𝒕

′ ) 𝑇
𝑡=1 ,  Ѱ𝑗

∗ =  ∑ (𝑓𝒋,𝒕
∗ − �̂�𝒋,𝒇

∗  𝑓𝑗,𝑡)(𝑓𝒋,𝒕
∗ − �̂�𝒋,𝒇

∗  𝑓𝑗,𝑡)′ 𝑇
𝑡=1    (4.14) 

As above, the hat symbol denotes the least square estimates, but now calculated using the data 

beyond the training sample, and (Г(𝑑)) denotes the d-dimensional multivariate gamma function. 

The key terms log|Ѱ𝑗|, log|𝑊𝑗
∗|, log |Ѱ𝑗

∗|, in the log marginal likelihood are critical for evaluating 

model fit. They appear as negative terms in the above formulae, so larger values indicate more 

unexplained variability by the model, resulting in a lower log marginal likelihood and 

indicating a poorer fit. Conversely, smaller values for these terms suggest a better fit of the 

model to the data, leading to a higher log marginal likelihood. Thus, the log marginal likelihood 

provides a quantitative measure of how well each model explains the observed data, with higher 

values indicating better fit. 
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 The closed-form expressions for both log 𝑚′ ( ƒ
1:𝑇|𝑀𝑗) + log 𝑚′ (𝒇𝟏:𝑻

∗ |𝑀𝑗), mean that the 

integration typically required to compute the marginal likelihood has already been performed 

analytically as part of the derivation of the multivariate normal distribution's properties. In this 

case, the closed-form solutions make the computation of the marginal likelihood more 

straightforward and computationally efficient, as it avoids the need for numerical integration, 

which can be complex and time-consuming, especially in high-dimensional spaces. 

The method for establishing such equivalent priors is outlined in Chib et al. (2020). These 

methods of assigning priors are outlined in Section 4.3.2. Focusing on the marginal likelihoods 

(ML) of the models given the data  𝛾1:𝑇, the author calculates the posterior probability of each 

model using Bayes’ theorem as: 

Pr(𝑀𝑗| 𝛾1:𝑇) =  
𝑚𝑗( 𝛾1:𝑇|𝑀𝑗)

∑ 𝑚𝑙(
𝐽
𝑙=1  𝛾1:𝑇|𝑀𝑗)′

     (4.15) 

To ensure numerical stability during this calculation, especially when dealing with log marginal 

likelihoods, a normalisation constant is used. This constant is chosen within the range of log 

marginal likelihoods to prevent numerical overflow or underflow during exponentiation. 

Specifically, the smallest log marginal likelihood is adjusted by a factor to stabilise the values. 

The adjusted log marginal likelihoods are then exponentiated to convert them back to the 

original scale. Finally, these exponentiated values are normalised by dividing each by the sum 

of all exponentiated marginal likelihoods, ensuring they sum to one and yielding the posterior 

probabilities for each model. This process ensures that the comparative rankings of the models 

are based on the evidence from the data.  

4.3.4 Summary Statistics of Risk Factors 

 

It is possible to  derive the posterior distribution of the factor premiums in a given factor model 

as per Chib et al. (2024). 10,000 simulation draws are used for generating the posterior 

distribution of the factor premiums, and the corresponding stochastic discount factor 

coefficients in the best factor model.  This simulation involves generating a series of SDF 

values based on the historical variability of the model's factors. The distribution of the 

simulated SDF values provides insights into the risk and time-value adjustments that investors 

might require for different states of the world. The simulation of the stochastic discount factor 

(SDF) coefficients is indirectly inferred through the simulation of the factor premiums and the 

slope coefficients of the non-risk factors. 
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First, the mean and covariance of excess returns for risk factors are calculated from a training 

sample to establish a baseline for factor premiums. These premiums are then adjusted using a 

scaling factor derived from the sample period proportions. To understand the relationships 

between risk and non-risk factors, Ordinary Least Squares (OLS) estimates are performed. 

Following this, the posterior distributions of both risk factor premiums and coefficients for 

non-risk factors are simulated over 10,000 iterations9.This simulation involves generating 

covariance matrices for risk factors and non-risk factors using inverse Wishart distributions, 

and factor premiums and non-risk coefficients using multivariate normal distributions. The 

SDF loadings are computed by inverting the covariance matrix and multiplying it by the vector 

of factor premiums. 

4.3.5 Student-t Distribution 

 

Barillas and Shanken (2018) as well as Chib, Zeng, and Zhao (2020) make an initial assumption 

that risk factors conform to a Gaussian distribution. Nevertheless, it is observed that the actual 

factor data frequently exhibits heavy tails, as noted by Fama (1965), Affleck-Graves and 

McDonald (1989), and Zhou (1993), which can pose challenges. Addressing this concern, Chib 

and Zeng (2020) expand the Bayesian model scan strategy where marginal likelihoods are 

computed based on proper priors and student-t distributions of the factors. Their research 

reveals that the student-t distributed factor model performs notably better than the Gaussian 

distributed model, particularly in the context of the US stock market. In line with this, 

Pukthuanthong et al. (2023) findings support the notion that factor data displays fat tails, and 

they advocate for the superiority of Student-t distributed models over Gaussian distributed 

models across a set of international markets.  

If the model assumes a normal distribution but the data have heavy tails (as is often the case 

with stock returns), predictions and inferences made by the model could be misleading. 

Assuming normality for data that actually follows a student t-distribution could underestimate 

the probability of extreme outcomes, potentially leading to underestimating risk in financial 

applications. As such I plan to run the model scan assuming a student-t distribution on the 

factors10. This framework lacks a closed-form solution and as a result is computationally 

 
9 ‘iwishrnd’ and ‘mvnrnd’ are the MATLAB functions used for generating random numbers from inverse Wishart 

and multivariate normal distributions, respectively. These distributions are fundamental in Bayesian statistics, 

often used in the context of estimating variances and covariances in a multivariate setting. 
10 The RStudio code needed to run the Student-t model scan was obtained from Professor Siddhartha Chib’s 

webpage. 
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intensive. The central difference is in how hyperparameters are estimated. The closed-form 

solution computes them directly and analytically, while the Bayesian approach often requires 

sampling them as part of the overall parameter estimation process. 

Suppose the joint distribution of the factors 𝑓𝑡 = (𝑥𝑡, 𝑤𝑡) in each market follows the student-t 

distribution below: 

𝑓𝑡  ~𝑆𝑡𝑑(𝜇, 𝛺, 𝑉𝑓), 𝑡 > 1,    (4.16) 

where μ: 𝑑 × 1 is the mean vector, 𝛺 ∶ 𝑑 × 𝑑 is a positive definite dispersion matrix, and 𝑉𝑓 is 

the degrees of freedom. 𝑥𝑡 reflects the factors included in a given model while 𝑤𝑡 represents 

the excluded factors.  Since the Student-t distribution can be expressed as a Gamma-scale 

mixture of normal distributions, the following holds: 

𝑓𝑡|𝜏𝑓,𝑡 ~Ŋ𝑑(𝜇, 𝜏𝑓,𝑡
−1, 𝛺),     (4.17) 

𝜏𝑓,𝑡~Ģ (
𝑉𝑓

2
,

𝑉𝑓

2
),     (4.18) 

Where the scale 𝜏𝑓,𝑡 > 0 is latent.  

Focusing on the distributional aspects of the factors, the marginal and conditional distributions 

take the restricted form of:  

𝑥𝑡 =  𝜆𝑥 + 𝜂𝑥,𝑡,     (4.19) 

𝑤𝑡 =  Г𝑥𝑡 + 𝜂𝑤.𝑥,𝑡,     (4.20) 

Where  

(
𝜂𝑥,𝑡,

𝜂𝑤.𝑥,𝑡,
) |𝜏𝑓,𝑡~ (0, 𝜏𝑓,𝑡

−1 (
𝛺𝑡 0
0 𝛺𝑤.𝑥

)),   (4.21) 

And 𝛺𝑤.𝑥 = 𝛺𝑤 − 𝛺𝑥𝑤
′  𝛺𝑥

−1𝛺𝑥𝑤 : 𝑑𝑤𝑥 𝑑𝑤. 𝐸[𝑥𝑡] = 𝜆𝑥, 𝐸[𝑤𝑡] = Г𝜆𝑥, 𝜆𝑥 are risk premia 

parameters and Г is the matrix of regression coefficients in the regression of the w-factors on 

the x-factors. The regression coefficients and other model parameters are updated iteratively 

within the MCMC loop. This process involves drawing from various distributions such as the 

inverse-Wishart and multivariate normal and using the Gibbs sampler for parameter updates. 

The Gibbs sampler is a method used to sample from complex probability distributions by 

iteratively drawing from the conditional distributions of each variable given the others. Starting 

with initial parameter values, it systematically updates each parameter by sampling from its 
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conditional distribution. This creates a sequence of samples that, over many iterations, 

approximates the target distribution. The Gibbs sampler is particularly useful in financial 

modelling for parameter estimation when dealing with complex data, such as in stock market 

analysis. 

To estimate the marginal likelihood of each contending model, they employ the Chib (1995) 

method which starts with the convenient expression of the log-marginal likelihood. 

ln 𝑚( ƒ1:𝑇|𝑀𝑗) = ln п(𝜃∗|𝑀𝑗) + ln 𝑝 ( ƒ1:𝑇|𝑀𝑗𝜃∗) −  ln п(𝜃∗|𝑀𝑗 ,  ƒ1:𝑇)    (4.22) 

where 𝜃∗= (𝜆𝑥
∗  , 𝛾∗ , 𝛺𝑥

∗  , 𝛺𝑤.𝑥
∗ ) is some chosen point, say the posterior mean. In this expression, 

the prior and likelihood ordinates can be found analytically.  

The first term here is the prior probability of the parameters under a given model, the second 

term is the likelihood function, and the third term is the posterior ordinate. This third term is 

the tricky part which is where Chib’s method offers a solution.  

As previously outlined, it is essential for the priors in each model to be proper, meaning they 

must integrate to one over the parameter space. As per section 4.3.2, the prior distributions 

across different models should be, to a certain extent, consistent or comparable. This ensures 

that any observed variations in the marginal likelihoods are not simply a result of discrepancies 

in the prior distributions. MCMC is used to generate samples from the posterior distribution, 

and these samples are then used in a complex procedure to approximate the log marginal 

likelihood. 

Chib and Zeng (2020) use a burn in period to locate the mean of the prior distribution. The 

spread of the prior distribution is largely a user-specified hyperparameter. The burn in period 

is only for constructing the prior and is not used in the model estimation process. The prior for 

𝜆𝑥
∗  is based on a product of Student-t distributions, chosen for their flexibility and thick tails. 

The priors for 𝛾∗ , 𝛺𝑥
∗  , 𝛺𝑤.𝑥

∗  are derived from a single inverse Wishart prior on 𝛺. The 

posterior distribution is sampled using MCMC methods, taking advantage of the scale mixture 

of normal representation of the student-t distribution. The algorithm involves several steps, 

each sampling different elements of the model from specific distributions (like Gamma and 

normal distributions). 

As for the third term in equation 4.10, the posterior ordinate, Chib and Zeng (2020) suppress 

the model index and use a marginal-conditional decomposition to write 
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ln п(𝜃∗| ƒ1:𝑇) = ln п(𝛺𝑤.𝑥
∗ | ƒ1:𝑇) + ln п (𝜆𝑥

∗  , 𝛾∗| ƒ1:𝑇𝛺𝑤.𝑥
∗ ) +  ln п(𝛺𝑥

∗| ƒ1:𝑇 , 𝜆𝑥
∗  , 𝛾∗, 𝛺𝑤.𝑥

∗ )    

           (4.23) 

Now appealing to the approach of Chib and Jeliazkov (2001) we have that 

ln п(𝛺𝑤.𝑥
∗ | ƒ1:𝑇) =  

Ē1{𝛼(𝛺𝑤.𝑥
∗ 𝛺𝑤.𝑥| ƒ1:𝑇, 𝜆𝑥, 𝛾, 𝜏𝑓)𝛪Ϣ𝑑𝑥(𝛺.𝑥

∗
|𝜌1, 𝛺𝑤.𝑥,1

∗  )}

Ē2{𝛼(𝛺𝑤.𝑥
∗ 𝛺𝑤.𝑥| ƒ1:𝑇, 𝜆𝑥, 𝛾, 𝜏𝑓)}

  (4.24) 

where Ē1 denotes the expectation with respect to the posterior distribution п (𝜃| ƒ1:𝑇), and 

Ē2 denotes the expectation with respect to the distribution  

п(𝜆𝑥, 𝛾 | ƒ1:𝑇 , 𝛺𝑤.𝑥
∗

) 𝑥 𝛪Ϣ𝑑𝑥(𝛺𝑤.𝑥
∗

|𝜌1, 𝛺𝑤.𝑥,1
∗  )   (4.25) 

The former expectation can be calculated by Monte Carlo with the draws on θ from the full 

MCMC run. A reduced MCMC run is then performed in which 𝛺𝑤.𝑥 is fixed at 𝛺𝑤.𝑥
∗  and the 

remaining blocks of parameters are sampled as before. In this case, certain parameters are fixed 

at specific values, while others continue to be sampled. This approach can simplify the 

sampling process and isolate the effects of specific parameters. 

In a full MCMC run, all model parameters are typically allowed to vary and are sampled from 

their respective distributions. However, in certain cases, it might be beneficial to fix some 

parameters to specific values (perhaps based on prior knowledge, preliminary analysis, or other 

considerations) to reduce the complexity of the sampling process or to isolate the effects of 

certain parameters. The initial samples generated by the MCMC burn in run can be heavily 

influenced by the initial values of the parameters. The burn-in period helps to mitigate the 

impact of these initial values on the final results. By discarding these early samples, the 

subsequent samples used in analyses are more likely to be representative of the target 

distribution. This reduced MCMC run gives rise to the draws  

{ 𝜆𝑥
(𝑗)

, 𝛾(𝑗), 𝛺𝑥
(𝑗)

, 𝜏𝜆
(𝑗)

, 𝜏𝑓
(𝑗)

 }    (4.26) 

For each of these draws, 𝛺𝑤.𝑥
(𝑗)

 is sampled from the proposal distribution. 

𝛪Ϣ𝑑𝑥(𝜌1, 𝛺𝑤.𝑥,1
(𝑗)

),     (4.27) 

where 𝛺𝑤.𝑥,1
(𝑗)

 are conditional posterior quantities computed at (𝛾(𝑗), 𝜏𝑓
(𝑗)

). 
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The second ordinate, п(𝜆𝑥, 𝛾 | ƒ1:𝑇 , 𝛺𝑤.𝑥
∗

) is estimated from the output of the previous reduced 

run as  

пˆ (𝜆𝑥
∗  , 𝛾∗| ƒ1:𝑇 , 𝛺𝑤.𝑥

∗ ) = 
1

𝐽
∑ Ŋ𝑑𝑥(𝐽

𝑗=1 𝜆𝑥
∗ |𝜆𝑥

(𝑗)
, 𝐵𝜆,𝑇

(𝑗)
) Ŋ𝑞 (𝛾∗|𝛾(𝑗), 𝐵𝛾,𝑇

(𝑗)
),   (4.28) 

where 𝜆𝑥
(𝑗)

, 𝐵𝜆,𝑇

(𝑗)
, 𝛾(𝑗), 𝐵𝛾,𝑇

(𝑗)
 are computed conditional on  

(𝛺𝑥
(𝑗)

, 𝛺𝑤.
∗ , 𝜏𝑓

(𝑗)
, 𝜏𝜆

(𝑗)
).      (4.29) 

Finally, п(𝛺𝑥
∗| ƒ1:𝑇 , 𝜆𝑥

∗ , 𝛾∗, 𝛺𝑤.𝑥
∗ ) is from the output of another reduced MCMC run. Fixing 

(𝜆𝑥, 𝛾, 𝛺𝑤.𝑥) at (𝜆𝑥
∗ ,𝛾∗, 𝛺𝑤.𝑥

∗ ), the remaining blocks of parameters are sampled. Letting  

{𝛺𝑥
(𝑙), 𝜏ƒ

(𝑙)} 
𝑙=1

𝐿

     (4.30) 

denote the draws in this second reduced run then the estimate of the final ordinate is given by  

пˆ(𝛺𝑥
∗| ƒ1:𝑇 , 𝜆𝑥

∗ , 𝛾∗, 𝛺𝑤.𝑥
∗ ) = 

1

𝐿
 ∑ 𝛪Ϣ𝑑𝑥 (𝐿

𝑙=1 𝛺𝑥
∗|𝜌1 − 𝑑𝑤, 𝛺𝑥,1

(𝑙)
),  (4.31) 

where 𝛺𝑥,1
(𝑙)

 is computed conditional on (𝜆𝑥
∗ , 𝜏ƒ

(𝑙)
).  

In this framework, the marginal likelihood lacks a closed-form solution. The distinction 

between the first, second, and final ordinates lies in the specific components of the posterior 

distribution they represent, with each ordinate contributing to a piece of the overall puzzle in 

estimating the marginal likelihood. This methodical breakdown allows for the calculation of 

the marginal likelihood in models where direct calculation is infeasible.  

4.4 Empirical Results 

4.4.1 Model Performance in Bayesian Framework  

 

This chapter uses the same dataset of 12 investment factors and 9 models discussed in previous 

chapters, as detailed in Section 2.5. The period of analysis remains 1991 to 2022.  

First, the marginal likelihoods for the nine factor models will be calculated using the Bayesian 

approach outlined in Section 4.3.3. Assuming a multivariate normal distribution on our factor 

data, this method determines which model most accurately represents the data, with higher 

marginal likelihood (ML) values indicating a better fit. It balances fitting the data well with 

maintaining simplicity, ensuring models are not preferred solely for their complexity. To 
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calculate the marginal likelihood (ML) as per equation 4.9, the model's performance is first 

assessed with the included factors, capturing how these factors directly account for the 

observed data. Then, the influence of factors left out of the model is evaluated by applying 

constraints to gauge their indirect impact.  

Table 4.1 presents the ML and the corresponding posterior probability for each model across 

our set of countries. To examine if the differences in performance are significant, the difference 

in log marginal likelihoods (ML) between the best model and other models is provided in 

brackets next to the posterior probabilities. According to Chib et al. (2020), if the difference in 

log ML is ≤ 1.15, then the best model is indistinguishable from the alternative model, following 

Jeffrey's rule. 

Table 4.1 

According to the results in Table 4.1, the Bayesian analysis yields similar rankings and 

performance results for the models as the traditional methods did in Chapter Two. Specifically, 

in the U.K., the Chib et al. (2020) model emerged as the top performer in terms of marginal 

likelihood and posterior probability, outperforming the models by Fama and French (2018) and 

Asness et al. (2015), with minimal support for other models. The logML results indicate that 

the top three models have performance metrics that are statistically indistinguishable, each with 

logML values below 1.15. This aligns with the findings in Table 2.4, where these three models 

could not be significantly separated in terms of their squared Sharpe ratios. The numbers in 

brackets following the model names indicate the ranking as per the classical tests of Chapter 

Two. ‘1’ indicates the best performing model as per squared Sharpe ratio.  

For the French models, the Frazzini and Pederson (2014) model demonstrated superior 

performance, showing the highest marginal likelihood and posterior probability, indicating its 

dominance over other models. The outperformance is statistically significant with large logML 

values. This finding aligns with the classical tests, where this model also excelled. The 

Bayesian framework provides more support to this model compared with the classical analysis. 

In Germany, classical tests have highlighted the superior performance of the Fama and French 

(2018) and Asness et al. (2015) models, a trend that persisted in the Bayesian analysis. These 

models showed the highest marginal likelihoods and posterior probabilities, rendering the 

probabilities of competing models negligible. The logML for the difference between these 

models is 0.83, showing they cannot be separated in terms of performance. The difference 
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between the top model and the third highest performing model is 1.67, showing significant 

outperformance.  

In the Netherlands, the Frazzini and Pederson (2014) model was initially indistinguishable in 

performance from other leading models based on the Sharpe ratio. However, within the 

Bayesian framework, this model clearly outperformed the others, achieving the highest 

marginal likelihood and posterior probability, with no significant support for alternative 

models. Large logML difference values show significant outperformance of the top model. This 

pattern was similar to that observed in Germany and France, where the Bayesian tests provide 

more support for top models. 

In Italy, the six-factor models by Fama and French (2018) and Asness et al. (2015) led the 

models by securing the highest marginal likelihoods, with the rankings of the remaining models 

consistent with the classical analysis. Lastly, in Spain, classical tests did not strongly favour 

any particular model. This trend continued in the Bayesian analysis, where the top four models 

showed considerable posterior probabilities, indicating a more competitive landscape. The 

logML confirms this with no significant differences in performance for the top three models.  

These results align closely with those obtained from the classical tests. Specifically, both 

approaches identify the same top-performing model based on the squared Sharpe ratio, yielding 

the highest marginal likelihood (ML) in five of six countries in the sample. Moreover, the 

relative performance rankings among the models remain consistent across both methodologies. 

Notably, the ML approach offers additional support to the top-performing models compared to 

the classical tests in certain samples. Moving forward, the next step is to analyse how these 

models perform against the optimal models that could be derived from the factors for each 

sample. 

4.4.2 Bayesian Model Scan  

 

The empirical analysis begins by running the model scan using all 12 original factors across 

each market in the sample. With 4,095 possible models, an equal prior probability is assigned 

to each, following the methods of Chib et al. (2020) and Chib et al. (2024). Table 4.2 presents 

the empirical results of the U.K. model scan. 

Panel A of the table reports the results for the top six models in terms of the highest posterior 

probability. This includes the posterior probability of each model, the ratio of the posterior 

probability to the prior probability, and the difference in log marginal likelihoods (ML) between 
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the best model (M1) and other models. According to Chib et al. (2020), if the difference in log 

ML is ≤ 1.15, then the best model is indistinguishable from the alternative model, following 

Jeffrey's rule. Panel B details the identity of the factors in the top six models from the model 

scan. Panel C reports the performance of the traditional models relative to the optimal 

combinations.   

Table 4.2 

Table 4.2 reveals that the best model includes the Market, MOM, HMLM, and RMWCB factors, 

with a posterior probability of 0.03986. The second-best model, which includes three of these 

factors along with the size factor (SMB) and the investment factor (CMA), has a posterior 

probability of 0.03421. The next four best models have posterior probabilities ranging from 

0.03230 to 0.02576. The ratio of posterior probability to prior probability shows a substantial 

increase across these six best models. The differences in log marginal likelihoods (ML) in Panel 

A are all below 1.15, indicating that the top six models are statistically indistinguishable in 

terms of performance. 

The role of the market index in all of the best factor models is consistent with Harvey and Liu 

(2021) who outline that the market factor is the dominant factor for individual stocks because 

it substantially reduces pricing errors.  The momentum factor (MOM) is present in each of the 

top 6 performing models which is not surprising given the high average monthly return it 

provides.  Panel C of Table 4.1 shows that the traditional factor models perform poorly in the 

model scan.  The posterior probabilities of each model are essentially zero, with the Chib et al. 

(2020) model returning a posterior probability of 0.00083. The poor performance of the 

traditional factor models is consistent with Chib et al. (2024).  

Findings from the U.K. model scan suggest some similarities between the optimal model 

identified and the top-performing models in the classical framework. The four-factor model 

best supported by the data contains the market factor, momentum factor, updated value factor, 

and a profitability factor. While the models by Asness et al. (2015), Fama and French (2018), 

and Chib et al. (2020) outperform all others in the classical framework, the model scan indicates 

that the size factor (SMB) and investment factor (CMA) are not present in the optimal model. 

In effect, the model scan returns an optimal model that includes relevant factors and excludes 

redundant ones.  

Model scan results for the remaining five markets in my study can be found in Section C.II in 

Appendix C. Results from the French model scan (Table C.1) indicate that the four-factor 
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model best supported by the data contains the market factor and the Betting against Beta factor 

(BAB) as per the Frazzini and Pederson (2014) which performs best in the classical framework. 

However this four-factor model also contains the updated value factor (HMLM) of Asness and 

Frazzini (2013) and the performance factor (PERF) of Stambaugh and Yuan (2017). The model 

with the second highest posterior probability contains the same factors as the top performing 

model along with the size factor (SMB). These two models outperform all other 4,093 potential 

models as seen by the differences in log marginal likelihoods (ML) in Panel A are above 1.15 

for models 4-6. This indicates to us that the optimal model in the French market does not come 

from the traditional set of factor models. In fact the top performing two-factor model of Frazzini 

and Pederson (2014) ranks in 118 out of 4,095 in models best supported by the data. 

The German model scan (Table C.2) indicates that the five-factor model best supported by the 

data, with a posterior probability of 0.22766, contains the market factor, momentum factor 

(MOM), updated value factor (HMLM), profitability factor (RMWCB), and the Frazzini and 

Pederson (2014) Betting against Beta factor (BAB). The model with the second-highest 

posterior probability of 0.06692 contains the same factors as the top-performing model, along 

with the Stambaugh and Yuan (2017) performance factor (PERF). The top performing model 

significantly outperforms all other potential models based on differences in ML. The Asness et 

al. (2015) and Fama and French (2018) models significantly outperformed all other models in 

the classical tests. The top-performing model includes four factors from the Asness et al. (2015) 

model. This suggests that the optimal model in the German market does not come from the 

predetermined set, but the model scan does identify an optimal model that closely aligns with 

the Asness et al. (2015) model. 

The only case where the model scan returns an almost exact combination of factors included 

in the dominant model from the classical tests of Chapter Two is in the Netherlands (Table C.3). 

In this instance, the Frazzini and Pedersen (2014) two-factor model emerges as the dominant 

model in the classical tests of Chapter Two. The model scan returns the highest posterior 

probability of 0.15855 for a three-factor model comprising of the market factor and the Betting 

against Beta factor (BAB), supplemented by the momentum factor (MOM). The second-

highest performing model includes the Stambaugh and Yuan (2017) performance factor (PERF) 

along with the same three factors from the top model. The top two models identified in this 

model scan significantly outperform all other models. 
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Table C.4 shows that the best factor model in the model scan for the Italian stock market is a 

five-factor model with a posterior probability of 0.16565. The factors in this model are the 

market factor, momentum (MOM), updated value factor (HMLM), betting against beta (BAB), 

and profitability factor (RMWROE). The second-highest performing model is a four-factor 

model with the same factors included except for the momentum factor (MOM). The top two 

models significantly outperform all other possible models from the model scan. In the classical 

framework, the Asness et al. (2015) six-factor model emerges as the dominant factor model 

from the candidate set. Four of the six factors are included in the optimal model from the model 

scan. The size factor and the investment factor are omitted, which is not surprising given the 

low return provided by these factors in this market over the period of analysis.  

In the Spanish market (Table C.5), the model with the highest posterior probability in the model 

scan is a five-factor model. The factors in this model are the market factor, momentum (MOM), 

updated value factor (HMLM), betting against beta (BAB), and profitability factor (RMWOP), 

with a posterior probability of 0.05516. The top six models from the model scan cannot be 

statistically separated. The dominant model emerging from the classical comparison is the 

Asness et al. (2015) six-factor model. The model best supported by the data contains three of 

the factors included in the top performing Asness et al. (2015) model from the classical 

framework. 

The results from the Bayesian model scan, when compared to the classical approach, remain 

consistent across different markets, including the U.K. In every instance, the optimal model 

closely mirrors the top-performing model within each market but is fine-tuned by either 

incorporating an additional factor or eliminating a redundant one11. For example, in the Dutch 

sample, a single factor is added, while in the Italian sample, the size and investment factors are 

omitted due to their redundancy, indicating their absence in the SDF These findings highlight 

the robustness and consistency between the two approaches in identifying superior models and 

underscore the ability of the model scan approach to refine and enhance the performance of 

these models. Panel C of Tables C.1-C.5 shows that the traditional factor models perform 

poorly in the model scan across all remaining samples. The posterior probabilities of most 

models are essentially zero. This poor performance of the traditional factor models is consistent 

with findings from Chib et al. (2024). 

 
11 The difference in results arises from the methodologies used. The squared Sharpe measure focuses on 
maximising risk-adjusted returns from historical data, while the Bayesian approach incorporates model 
uncertainty and prior beliefs.  
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4.4.3 Summary Statistics of Best Model Risk Factors 

 

Table 4.2 suggests that the best-performing model in terms of posterior probability for U.K. 

returns is a four-factor model. Chib et al. (2024) derive the posterior distribution of the factor 

premiums in a given factor model. Using 10,000 simulation draws, the posterior distribution 

of the factor premiums and the corresponding stochastic discount factor coefficients in the best 

factor model is generated. This simulation involves generating a series of SDF values based on 

the historical variability of the model factors. Each simulation calculates the SDF for each 

period based on the model's parameters and the values of the underlying factors or variables at 

that time. The distribution of the simulated SDF values provides insights into the risk and time-

value adjustments that investors might require for different states of the world. The SDF 

coefficients are indirectly inferred through the simulation of the factor premiums and the slope 

coefficients of the non-risk factors. Table 4.3 reports the summary statistics of the posterior 

distribution of the factor premiums (Panel A) and stochastic discount factor coefficients (Panel 

B). The summary statistics include the mean, standard deviation (Std Dev), median, and 2.5% 

and 97.5% percentiles of the posterior distribution. 

Table 4.3 

Panel A of Table 4.3 shows that the MOM factor has the largest mean factor premium at 

0.875%, followed by the Market factor at 0.467%. All of the factor premiums are significantly 

positive using the 95% percentile interval, with the exception of the Market factor. In Panel B 

of Table 4.3, all of the mean stochastic discount factor coefficients are negative for each factor 

and significantly negative using the 95% percentile intervals. The negative SDF coefficients 

reflect the compensatory mechanism required by investors for taking on additional risks 

associated with each factor. This finding suggests that all four factors play an important role in 

the stochastic discount factor in pricing assets, given the other factors in the model (Cochrane, 

2005). The Market factor plays an important role even where the mean factor premium is not 

significantly positive. 

The findings from Table 4.3 can be contextualised by comparing the posterior factor premiums 

to the traditional estimates in Table 2.1. Notably, the MOM factor consistently shows a strong 

performance, with a high mean return and Sharpe ratio in both the Bayesian analysis and 

traditional statistics, underscoring its significance in pricing U.K. assets. Similarly, factors like 

BAB and RMWOP also exhibit robustness, as their posterior means align with their established 

positive returns. However, the variability in factor premiums, such as HML and HMLM, 
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highlights potential differences in risk compensation, suggesting that certain factors may 

require further scrutiny in the Bayesian framework. 

Panel C reports the summary statistics of the fitted stochastic discount factor values of the best 

model from the Bayesian model scan and a set of traditional factor models. The fitted values 

are estimated using the posterior mean of the stochastic discount factor coefficients. The 

summary statistics include the standard deviation (Std Dev), the minimum, maximum, and the 

proportion (Prop y<0) of fitted values that are below zero. The final column shows the 

correlations between the fitted values of the traditional factor models and the best model. The 

simulated SDFs of the ‘Best’ model, derived from the factor premiums and coefficients of the 

factors provided in Panel A of each table, show more volatility than any of the traditional 

models. This suggests that these optimal models may offer a more nuanced or accurate 

representation of market dynamics. 

Section C.III in Appendix C presents the results for the remaining markets, where a similar 

pattern is observed. Large values for the simulated factor premia on the momentum (MOM) 

and betting against beta (BAB) factors are consistent across the samples, which aligns with the 

large average return of these factors over the sample period. The highest simulated factor 

premium appears in the French market (Table C.6), where the simulation returns a mean 

premium of 1.532% on the BAB factor. In Panel C of Tables C.6-C.10, the simulated SDFs of 

the ‘Best’ model, derived from the factor premia and coefficients provided in Panel A of each 

table, show more volatility than any of the traditional models. This suggests that these optimal 

models may offer a more nuanced or accurate representation of market dynamics in each 

sample. 

4.4.4 Multivariate-t Assumption 
 

Similar to the approach by Qiao, Wang, and Lam (2022), the results from the model scan 

assuming a joint Gaussian distribution on the factors will now be compared to those assuming 

a joint multivariate-t distribution. Qiao et al. (2022) provide strong evidence that models using 

a Student-t distribution for global factor pricing significantly outperform those using a 

Gaussian distribution. This highlights the importance of using multivariate Student-t 

distributions to account for the fat tails in global risk factor data. The Student-t distribution is 

often favoured over the Gaussian distribution in financial modelling due to its ability to better 

handle "fat tails"—a characteristic of many financial datasets where extreme outcomes (e.g., 

financial crises, sudden market shocks) occur more frequently than a normal distribution would 
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predict. In a Gaussian distribution, the probability of extreme events decreases rapidly, which 

can lead to an underestimation of risk in datasets with higher volatility and more frequent large 

deviations from the mean. In contrast, the Student-t distribution has heavier tails, meaning it 

assigns a higher probability to these extreme outcomes. This feature allows the Student-t 

distribution to more accurately capture the behaviour of financial returns, which are prone to 

significant fluctuations. By accommodating the fat tails, models using the Student-t distribution 

offer a more realistic view of potential risks and returns, resulting in better predictions and 

assessments of asset pricing models, particularly in environments where extreme market 

movements are more common. 

Additionally, they find that assuming a Student-t distribution for the factor data can lead to the 

identification of a different top-performing asset pricing model compared to when multivariate 

normality is assumed. This distinction matters because if factors exhibit fat tails, a Gaussian 

distribution may underestimate the likelihood of extreme outcomes, leading to less accurate 

model assessments. Conversely, a Student-t distribution, which better captures the heavier tails 

of the data, can provide a more realistic representation of the risk and return dynamics. By 

accurately reflecting the true distribution of factor returns, the simulation approach can identify 

the most effective asset pricing models. 

Using the approach of Chib and Zeng (2020), the model scan of the set of 12 factors across the 

samples was rerun, assuming a multivariate-t distribution with three degrees of freedom. In this 

case, when the joint distribution of the risk factors follows a Student-t distribution, an initial 

portion of the data is first used as the training sample to obtain the prior distribution of the 

parameters of the factor model in order to calculate the marginal likelihood of each contending 

model. The Markov chain Monte Carlo (MCMC) method is then employed to obtain the 

posterior distribution of the parameters and calculate their posterior means, which are further 

used to calculate the marginal likelihood of the factor model. Section 4.3.5 outlines the MCMC 

at a high level. For full details on the calculation of the marginal likelihood under the 

multivariate-t assumption, see Chib and Zeng (2020). 

Table 4.4 

Similar to Qiao, Wang, and Lam (2022), the U.K. model scan presented in Table 4.4 shows that 

adopting the multivariate-t assumption leads to the identification of a different top-performing 

model compared to assuming a Gaussian joint distribution of factors. However, their study 

using global factors found that shifting from a Gaussian to a Student-t distribution resulted in 
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the addition of four extra factors to create a seven-factor model. The results here differ. When 

multivariate normality is assumed, the four factors from the original model scan remain, with 

the addition of a single factor, SMB.  

Similar to Qiao et al. (2022), increased support is found for the top-performing models when 

assuming a Student-t distribution. The top-performing five-factor model sees an increase in its 

posterior probability, rising from 0.039 to 0.065. The differences in log ML in Panel A of Table 

4 remain below 1.15 for all of the top six best-performing models, indicating their performance 

is not significantly different. When a Gaussian distribution is assumed for the factors, these top 

six models are also statistically indistinguishable from each other. The support for the top 

models has increased slightly when assuming a Student-t distribution. 

The results of the remaining model scans assuming a multivariate-t distribution are presented 

in Section C.IV of Appendix C. This analysis reveals diverse outcomes across the dataset. 

Specifically, in France and Germany (referenced in Tables C.11 & C.12), the adoption of a 

multivariate-t distribution for factor data results in the identification of different top-performing 

models compared to those identified under the assumption of multivariate normality, typically 

incorporating an additional factor. In France, this involves adding the momentum (MOM) 

factor to the four-factor model also identified from the original scan. In Germany, it includes 

both size (SMB) and profitability (RMWOP) factors, with the BAB factor dropping out. For 

Germany, the distinction between the top models becomes less pronounced under the 

multivariate-t distribution, with the top five models showing comparable performance—a 

contrast to the Gaussian assumptions, where a single model clearly outperformed the others. 

Conversely, in the Netherlands (Table C.13), the same three-factor model consistently ranks as 

the most effective regardless of the distributional assumption. The top two models' superiority 

is reinforced by a log-likelihood (ML) difference of more than 1.15 compared to the next four 

highest-performing models. In Italy (Table C.14), the Student-t assumption sees a five-factor 

model as the top performer with the BAB factor replaced by the CMA factor. While the change 

in distributional assumption does not drastically alter model composition, it diminishes their 

relative support, making differences between models less significant. As for Spain (Table 

C.15), the comparison reveals no difference in the identification and performance of the top-

performing model between the two distributional assumptions. 

4.4.5 Overall Performance Gaussian v Student-t 
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The overall performance of Gaussian versus Student-t distributed models is now examined. 

Higher marginal likelihoods (MLs) indicate that a model fits the data well, accounts for its 

complexity and prior assumptions, and captures significant data variance. This suggests strong 

explanatory power, especially when assessing the role of certain risk factors. Qiao, Wang, and 

Lam (2022) reported strong evidence in favour of global factor pricing models using the 

Student-t distribution, as indicated through higher MLs. Table 4.5 below presents the ML for 

the top six performing factor models in U.K. returns under both statistical distributions on the 

factor data. 

Table 4.5 

The Gaussian distributed factor models return a higher ML, indicating they fit the data better 

than the Student-t distributed model. The higher MLs signify that the Gaussian model more 

accurately captures the data's variance while adhering to prior assumptions. 

Analysing the log-marginal likelihoods for Gaussian and Student-t models across five 

countries, as presented in Section C.V of Appendix C, reveals mixed results. Some findings 

indicate that Gaussian distributed models outperform Student-t models, while others show the 

opposite. In France (Table C.16), Germany (Table C.17), and the Netherlands (Table C.19), 

higher log-marginal likelihoods for Student-t models indicate a better fit to the factor data. 

Conversely, in Italy (Table C.20) and Spain (Table C.21), Gaussian models are favoured, 

suggesting a more accurate representation of these market data. This distinction underscores 

the importance of selecting the right model based on its ability to accurately explain both the 

observed data and the variability of factors not included. While Qiao, Wang, and Lam (2022) 

argue for the superiority of Student-t models in global factor models, the country-specific 

analysis illustrates that this generalisation does not uniformly apply in a European setting, 

emphasising the need for a nuanced approach in model selection. 

The differences in model performance between European factors in this study and the global 

factors examined by Qiao et al. (2022) are likely due to two key factors specific to European 

markets. First, the statistical characteristic of European factor returns may differ from those of 

global factors; for instance, European markets might exhibit less pronounced fat tails, resulting 

in fewer extreme events and making the Gaussian distribution more suitable for modelling 

factor data in certain countries. Second, country-specific economic conditions and unique risk 

factors may contribute to a more stable pattern of returns in some European countries, such as 

Spain and Italy, where the Gaussian model appears to provide a better fit. Together, these 
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factors suggest that the observed differences are driven by local market conditions and 

statistical properties, highlighting the need for a tailored approach to model selection in 

European contexts. 

4.4.6 Impact of Efficient Factors 

 

As previously noted, only some factors benefit from the efficient factor optimisation, making 

it plausible that certain efficient factors contribute to incremental enhancements in model 

performance. To examine the impact of the efficient factor transformation on selecting the 

optimal asset pricing model for different samples, the model scan is rerun to include both the 

original factors and their efficient counterparts calculated using the framework of Ehsani and 

Linnainmaa (2022). This results in a starting collection of 24 factors. With these, there are now 

67,108,864 possible models, to which an equal prior probability is assigned, following the 

approach of Chib and Zeng (2020) and Chib et al. (2024). Given that Chapter Three shows the 

efficient factor transformation significantly increases the Sharpe ratio of various factors across 

the dataset, the expectation is that these factors will be included in an optimal asset pricing 

model. Due to computational limitations and the large number of models to be compared, the 

assumption of multivariate normality for the factor returns is adopted, as assuming a 

multivariate t-distribution would exceed the available computing resources. This should not be 

an issue as no major differences are found in the results from the model scans assuming 

different distributions on the factors in previous sections. 

Table 4.6 reports the empirical results of a model scan in U.K. factors with the time series 

efficient factors also included. Panel A of the Table reports the results for the top 6 models in 

terms of the highest posterior probability. Efficient factors are denoted with the superscript 

“ef”.  Panel A includes the posterior probability of each model and the difference in log 

marginal likelihoods (ML) between the best model to that of the next best model in descending 

order. Panel B reports the identity of the factors in the top 6 models from the model scan.  

Table 4.6 

Panel B of Table 4.6 shows that the best factor model from the candidate set of 24 factors is a 

seven-factor model which includes some efficient factors. More specifically the efficient 

versions of the Value (HML) factor, profitability factor (RMWOP) and the betting against beta 

(BAB) factor are included in the top performing model along with the following original factors 

{Market, BAB, HMLM, RMWCB. All of the original factors have been retained in the top-
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performing model; however, the addition of these three efficient factors enhances the 

performance of the asset pricing model. The inclusion of these specific efficient factors is not 

surprising, given the significant increase in Sharpe performance for these factors when their 

weight is conditioned on previous returns in the U.K. market, as noted in Table 3.2. For example 

the largest and most significant increase in Sharpe ratio after the efficient factor transformation 

was for the RMWOP factor of 0.22 (3.61). It is not surprising to see these efficient factors 

present in the best performing model. The posterior probability of the top model is 0.01018 

indicating that there is moderate to small support from the data for this particular model from 

the possible set. The next six best models have a posterior probability that ranges between 

0.00937 and 0.00545. The difference in log ML in Panel A of Table 4.5 is below 1.15 for the 

top six models and so the best model is statistically indistinguishable from the other top five 

models.  

Section C.VI in Appendix C presents the results for the remaining five markets. In each market, 

factors that exhibit a notable enhancement in their Sharpe ratio, when their weight is 

determined by their historical return, have been identified and incorporated into the optimal 

models during the model scanning process. Such factors, which have shown a significant 

improvement in Sharpe ratio (Section 3.3.2), are included in the highest-performing models. 

For instance, we see the inclusion of the efficient Betting Against Beta (BAB) factor in the top-

performing model for the German market (Table C.22) and the inclusion of the efficient size 

factor (SMB) in the Dutch context (Table C.23). Additionally, some efficient factors that have 

demonstrated non-significant increases, such as the HMLM factor in the top-performing 

Spanish model (Table C.25), are also included. However, in all cases, the top-performing 

models return a small posterior probability. This indicates that, while they are the best-

supported models, the top models are statistically indistinguishable from other models. 

4.5 Conclusions 

 

In this chapter, the analysis unfolded in three main parts. Initially, the Bayesian model scan 

approach proposed by Chib et al. (2020) was employed to identify the top-performing asset 

pricing model from a starting collection of risk factors in each of the European samples. Next, 

following Chib and Zeng's (2020) approach, the impact of different distributional assumptions 

for factor data on the choice of the optimal model was explored. The composition and support 

for top-performing models were compared assuming both a Gaussian and Student-t 
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distribution. Finally, the influence of the time series efficient factor transformation on the 

choice of the optimal model across markets was investigated.  

The initial model scan identifies optimal models that are similar to the top-performing models 

obtained through the classical tests of model comparison in Chapter Two. In each instance, the 

optimal model from the model scan either represents a reduced form with one or two fewer 

factors or an extension of the model identified in Chapter Two, with one or two additional 

factors incorporated. This alignment underscores the robustness of the model selection across 

different testing methodologies. The marginal likelihood for each of the original models with 

fixed risk factors was also calculated, revealing that the relative performance across the sample 

is almost identical to the relative rankings from the classical tests, further reinforcing the 

consistency of these findings.  

Contrary to the findings of Qiao, Wang, and Lam (2022), the analysis does not reveal 

significant disparities in the results when a Student-t distribution assumption is applied to the 

factor data. While there is a slight tendency towards stronger support for the top-performing 

models across the sample, the composition of these top-performing models remains relatively 

stable. The overall marginal likelihood for the top-performing models is not consistently higher 

across the sample for either distributional assumption.  

The final model scan highlights the positive impact of incorporating time-series efficient factor 

transformations on model performance. When these efficient factors are included in the 

Bayesian model scan framework, specific efficient factors emerge as components of the top-

performing model. Notably, these efficient factors align with the findings of Chapter Three, 

which show that these factors have a higher Sharpe ratio when factor weights are conditioned 

on past returns. Additionally, some efficient factors with an insignificant Sharpe ratio increase 

are also included. The model scan strategy has effectively isolated these factors within the 

model comparison framework.  

The practical implications of this work are significant. The Bayesian model scan approach 

reveals that traditional models often underperform compared to combinations of factors 

identified through the scan. This allows investors to isolate relevant risk factors that traditional 

analyses might miss. A key advantage of the Bayesian approach is its flexibility to incorporate 

different distributional assumptions, which is crucial for accurately modelling the non-normal 

behaviour of asset returns, such as skewness and kurtosis. Additionally, the dynamic updating 
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mechanism of Bayesian methods keeps the model selection adaptive to new data, enhancing 

predictive accuracy over time.  

The contributions of this chapter extend to both academic finance and practical asset 

management by offering a refined approach to model selection that addresses the limitations 

of traditional asset pricing models. For academics, this chapter demonstrates the value of 

Bayesian methodologies in model optimisation, highlighting how adaptive, data-driven 

approaches can reduce the redundancies inherent in fixed-factor models while also considering 

diverse distributional assumptions to better capture market realities. This work builds on prior 

analyses by confirming that a tailored, efficient factor approach can yield more robust and 

resilient pricing models across different markets, aligning with findings from earlier chapters 

and further emphasising the importance of conditioning factor weights. For practitioners, the 

Bayesian model scan provides a flexible framework that not only adapts to new data but also 

allows for greater precision in isolating relevant risk factors, helping investors identify optimal 

factor combinations that might otherwise be overlooked. The incorporation of time-series 

efficient factors and the flexibility to account for non-normal return distributions make this 

approach particularly valuable in volatile or complex markets, offering a robust tool for 

constructing portfolios that are both adaptable and informed by deeper market insights. 
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Appendix C 
 

C.I U.K Empirical Results 

 

Table 4.1. Model Performance in a Bayesian Framework 

 
UK  France  

Model ML Prob (logML)  Model ML Prob (logML)  

CZZ (3) 9820.74 0.53263   FrazPed (1) 8047.55 0.99994  

AFIM (2) 9820.4 0.3827 (0.14)  SY (2) 8037.79 5.8E-05(4.23)  

FF6 (1) 9818.34 0.04871(1.03)  Carhart (7) 8032.89 4.3E-07(6.73)  

HXZ (5) 9817.51 0.02118 (1.41)  HXZ (6) 8032.77 3.8E-07(6.42)  

Carhart (4) 9817.03 0.01315 (1.61)  AFIM (4) 8032.74 3.7E-07(6.43)  

SY (6) 9814.71 0.00129 (2.62)  CZZ (5) 8031.84 1.5E-07(6.82)  

FF5 (7) 9813.03 0.00024 (3.35)  FF3 (9) 8031.14 7.4E-08(7.13)  

FrazPed (8) 9812.08 9.3E-05 (3.76)  FF6 (3) 8030.46 3.8E-08(7.42)  

FF3 (9) 9807.29 7.7E-07 (5.84)  FF5 (8) 8030.21 2.9E-08(7.54)  

       
 

Germany  Netherlands  

Model ML Prob (logML)  Model ML Prob (logML)  

AFIM (1) 8739.06 0.85303  FrazPed (1) 7774.21 0.97336  

FF6 (2) 8737.16 0.12695(0.83)  Carhart (3) 7770.17 0.01722 (1.75)  

Carhart (4) 8735.21 0.01814(1.67)  CZZ (6) 7768.92 0.00493 (2.3)  

CZZ (3) 8732.86 0.00173 (2.7)  SY (5) 7768.17 0.00232 (2.62)  

FF5 (5) 8729.67 7.1E-05 (4.08)  FF6 (2) 7766.96 0.00069 (3.15)  

SY (6) 8729.67 7.1E-05 (4.08)  FF3 (9) 7766.85 0.00062 (3.2)  

HXZ (7) 8726.22 2.3E-06 (5.57)  AFIM (4) 7766.58 0.00048 (3.31)  

FF3 (8) 8724.9 6E-07 (6.15)  HXZ (7) 7766.28 0.00035 (3.44)  

FrazPed (9) 8724.04 2.5E-07 (6.53)  FF5 (8) 7763.7 2.7E-05 (4.56)  

       
 

Italy  Spain  

Model ML Prob (logML)  Model ML Prob (logML)  

AFIM (1) 8428.84 0.76395  FrazPed (8) 7830.53 0.53797  

FF6 (4) 8427.32 0.16641(0.66)  AFIM (1) 7829.25 0.1487 (0.56)  

FF5 (2) 8426.42 0.06784 (1.05)  CZZ (2) 7829.1 0.12863 (0.62)  

FrazPed (8) 8421.49 0.00049 (3.19)  Carhart (3) 7829.1 0.12855 (0.62)  

CZZ (3) 8421.28 0.0004 (3.28)  SY (7) 7827.44 0.02437 (1.34)  

Carhart (7) 8421.15 0.00035 (3.34)  FF6 (4) 7826.72 0.01188 (1.66)  

HXZ (5) 8420.98 0.00029 (3.42)  HXZ (6) 7826.67 0.01132 (1.68)  

SY (6) 8420.87 0.00026 (3.47)  FF3 (9) 7826.15 0.00669 (1.91)  

FF3 (9) 8415.11 8.3E-07 (5.96)   FF5 (5) 7824.88 0.00188 (2.46)  

The table reports the results of the Bayesian marginal likelihood computations in European stock returns.  The sample period 

is June 1991 and December 2022. The marginal likelihood of each model in presented with the corresponding posterior 
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probability which indicates support for the model from the data. The logML is the difference in the log ML of the best model 

and the model in that row.  

 

Table 4.2. U.K. Model Scan 12 Factors 

 
Panel A: 

Posterior Probability Posterior/Prior ML 

 

Top 

Models 
 

1  
 0.03986   163.242     

2  
 0.03421   140.074   0.15306  

3  
 0.03230   132.259   0.21048  

4  
 0.03123   127.894   0.24404  

5  
 0.02940   120.412   0.30432  

6  
 0.02576   105.48   0.43672  

Panel B: 
      

 

Factors  

1 Market MOM HMLM RMWCB       

2 Market SMB MOM CMA HMLM      

3 Market SMB MOM HMLM RMWCB  
    

4 Market MOM CMA HMLM RMWCB    
 

 

5 Market SMB MOM HMLM       

6 Market SMB MOM CMA HMLM RMWROE        

Panel C: Posterior Probability Posterior/Prior    

FF3    1.2E-09   4.9E-06   
 

Carhart    2E-05   0.08363   
 

FF5    3.7E-07   0.00153   
 

FF6    7.6E-05   0.30989   
 

FrazPed    1.4E-07   0.00059   
 

SY    2E-06   0.00821   
 

AFIM    3.3E-05   0.13474   
 

HXZ    0.00059   2.43464   
 

CZZ       0.00083     3.38843      

The table reports the results of the Bayesian model scan of 12 factors in U.K. stock returns.  The sample period is June 1991 

and December 2022. The first 10% of the sample period is used for the training sample, and the model scan is then conducted 

on the remaining 90% of the sample period.  Panel A reports the posterior probability, the ratio of posterior probability to 

prior probability, for the top 6 models.  The ML column is the difference in the log ML of the best model and the next best 

models 2 to 7.  Panel B presents the identity of the factors in the top 6 models from the Bayesian model scan. Panel C reports 

the posterior probabilities of the 9 candidate models examined previously. 
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Table 4.3. U.K. Summary Statistics of the Posterior Distribution of the Best Model Risk 

Factors 

 
Panel A: 

Mean Std Dev Median 2.50% 97.50% 
 

Premiums  

Market 0.467 0.251 0.470 -0.028 0.953  

MOM 0.875 0.251 0.871 0.391 1.368  

HMLM 0.081 0.204 0.081 -0.315 0.485  

RMWCB 0.330 0.115 0.330 0.103 0.552  

             

Panel B: 
Mean Std Dev Median 2.50% 97.50% 

 

SDF Coeffs  

Market -3.457 1.327 -3.454 -6.075 -0.866  

MOM -8.252 1.692 -8.228 -11.663 -5.033  

HMLM -8.994 2.275 -8.988 -13.482 -4.659  

RMWCB -11.083 3.155 -11.058 -17.220 -4.986  

      
 

Panel C: Summary Statistics of Candidate Stochastic Discount Factor Models  

 Std Dev Minimum Maximum Prop y<0 Correlation  

Best 0.360 -0.051 2.137 0.580 0.000  

CAPM 0.098 0.670 1.451 0.000 0.278  

FF3 0.105 0.528 1.553 0.000 0.229  

FF5 0.318 -0.076 2.524 0.290 0.808  

FF6 0.345 -0.056 2.680 0.580 0.749  

AFIM 0.363 -0.335 2.834 0.870 0.785  

SY 0.261 0.301 2.326 0.000 0.582  

The table reports the summary statistics of the posterior distribution of the factors in the best model from the Bayesian model 

scan of 12 factors in U.K. stock returns.  Panel A reports the summary statistics of the posterior distribution of the factor 

premiums (%), and Panel B reports the summary statistics of the posterior distribution of the stochastic discount factor 

coefficients.  The summary statistics include the mean, standard deviation (Std Dev), median, 2.5% and 97.5% percentiles 

using 10,000 simulation draws. Panel C reports the summary statistics of the fitted stochastic discount factor values of the 

best model from the Bayesian model scan, and a set of traditional factor models.  The fitted values are estimated using the 

posterior mean of the stochastic discount factor coefficients. The summary statistics include the standard deviation (Std Dev), 

the minimum, maximum, and the proportion (Prop y<0) of fitted values that are below zero.  The final column of Panel C is 

the correlations between fitted values of the traditional factor models, and the best model. 
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Table 4.4. U.K. Model Scan of 12 Factors assuming Multivariate-t Factor Distribution 

 
Panel A: 

Posterior Probability Posterior/Prior ML 

 

Top 

Models 
 

1   0.065427   267.9252   
 

2   0.052782   216.1417  0.214773  

3   0.043959   180.0123  0.397683  

4   0.041313   169.1759  0.459769  

5   0.031584   129.3381  0.728278  

6   0.029064   119.0162  0.811448  

Panel B: 
    

     

Factors    

1 Market SMB MOM HMLM RMWCB     

2 Market SMB MOM CMA HMLM     

3 Market BAB SMB MOM HMLM RMWCB    

4 Market MOM CMA HMLM RMWCB     

5 Market SMB MOM HMLM      

6 Market SMB MOM CMA HMLM RMWROE     

The table reports the results of the Bayesian model scan of 12 factors in U.K. stock returns when the joint distribution of 

factors is assumed to follow a multivariate t distribution.  The sample period is June 1991 and December 2022. Panel A reports 

the posterior probability, the ratio of posterior probability to prior probability, for the top 6 models.  The ML column is the 

difference in the log ML of the best model and the next best models 2 to 7.  Panel B presents the identity of the factors in the 

top 6 models from the Bayesian model scan. 
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Table 4.5. U.K. Log-Marginal Likelihoods of the Top Performing Models 

 
Panel A: Top Performing Gaussian Models       

  

 

Market MOM HMLM RMWCB   
  

9811.69  

Market SMB MOM CMA HMLM  
  

9810.26  

Market SMB MOM HMLM RMWCB    
9809.47  

Market MOM CMA HMLM RMWCB  
  

9810.34  

Market SMB MOM HMLM   
  

9809.43  

Market SMB MOM CMA HMLM RMWROE   
9808.37  

         
 

Panel A: Top Performing Student-t Models   

Market SMB MOM HMLM RMWCB   
 

9111.06  

Market SMB MOM CMA HMLM  
 

9110.84  

Market BAB SMB MOM HMLM RMWCB  9110.66  

Market MOM CMA HMLM RMWCB  
 

9110.6  

Market SMB MOM HMLM   
 

9110.33  

Market SMB MOM CMA HMLM RMWROE   9110.24  

The table presents the log marginal likelihoods for the best-performing U.K. models identified through both analyses. Panel 

A details top models assuming a Gaussian distribution, while Panel B details top models with a student-t distribution. 
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Table 4.6. U.K. Model Scan 24 Factors 

 
Panel A: 

Posterior Probability   
ML 

     

Top Models    

Model      

1   0.01018   
 

    

2   0.00937   
 0.08317  

 
 

3   0.00742   
 0.31567  

 
 

4   0.00597   
 0.53426  

 
 

5   0.00558   
 0.60167  

 
 

6   0.00545 
  

 0.62521 
 

 
 

Panel B: 
      

 

Factors  

1 Market MOM HMLM RMWCB HMLef RMWOP
ef BABef  

  

2 Market MOM MGMT HMLef RMWOP
ef BABef    

 

3 Market MOM HMLM RMWCB HMLef RMWOP
ef BABef   

 

4 Market MOM CMA HMLM RMWROE HMLef RMWOP
ef BABef   

5 Market MOM HMLM RMWROE Marketef HMLef BABef    

6 Market MOM HMLM RMWROE HMLef BABef        

The table reports the results of the Bayesian model scan of 24 factors in U.K stock returns. This set is made up of 12 factors 

and their efficient counterparts.  The sample period is June 1991 and December 2022. The first 10% of the sample period is 

used for the training sample, and the model scan is then conducted on the remaining 90% of the sample period.  Panel A 

reports the posterior probability for the top 6 models. The ML column is the difference in the log ML of the best model and 

the next best models 2 to 6.  Panel B presents the identity of the factors in the top 6 models from the Bayesian model scan. 

Superscript ‘ef’ denotes the efficient version of the factor. 
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C.II Bayesian Model Scan for Remaining Markets 

 

Table C.1. France Model Scan 12 Factors 

 
Panel A: 

Posterior Probability Posterior/Prior ML 

 

Top 

Models 
 

Model     

1   0.09268   379.51     

2   0.05629   230.514   0.49857  

3   0.02383   97.601   1.35799  

4   0.02331   95.4401   1.38038  

5   0.02256   92.3629   1.41315  

6   0.02053     84.0626     1.50732  

Panel B: 
      

 

Factors  

1 Market BAB HMLM PERF       

2 Market SMB BAB HMLM PERF      

3 Market RMWOP BAB HMLM PERF      

4 Market SMB BAB HMLM PERF RMWCB     

5 Market BAB PERF PERF RMWCB      

6 Market HML BAB PERF            

Panel C: Posterior Probability Posterior/Prior    

FF3    1.1E-10   4.52E-07   
 

Carhart    6.35E-10   2.6E-06   
 

FF5    4.35E-11   1.78E-07   
 

FF6    5.62E-11   2.3E-07   
 

FrazPed    0.001484   6.077379   
 

SY    8.56E-08   0.000351   
 

AFIM    5.63E-10   2.31E-06   
 

HXZ    5.49E-10   2.25E-06   
 

CZZ       2.23E-10     9.12E-07      

The table reports the results of the Bayesian model scan of 12 factors in French stock returns.  The sample period is June 1991 

and December 2022. The first 10% of the sample period is used for the training sample, and the model scan is then conducted 

on the remaining 90% of the sample period.  Panel A reports the posterior probability, the ratio of posterior probability to 

prior probability, for the top 6 models.  The ML column is the difference in the log ML of the best model and the next best 

models 2 to 7.  Panel B presents the identity of the factors in the top 6 models from the Bayesian model scan. Panel C reports 

the posterior probabilities of the 9 candidate models examined previously. 
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Table C.2. Germany Model Scan 12 Factors 

 
Panel A: 

Posterior Probability Posterior/Prior ML 

 

Top 

Models 
 

1   
0.22766   932.251     

2   
0.06692   274.039   1.22433  

3   
0.04505   184.477   1.62008  

4   
0.04116   168.57   1.71025  

5   
0.04064   166.402   1.72319  

6   
0.03492   143.012   1.87467  

Panel B: 
      

 

Factors  

1 Market MOM BAB HMLM RMWCB      

2 Market SMB MOM BAB HMLM PERF     

3 Market MOM CMA BAB HMLM RMWCB     

4 Market MOM RMWOP BAB HMLM RMWCB     

5 Market HML MOM BAB RMWCB      

6 Market MOM BAB HMLM            

Panel C: Posterior Probability Posterior/Prior    

FF3   
 4.8E-11   2E-07   

 

Carhart   
 3.4E-08   0.00014   

 

FF5   
 1.1E-09   4.3E-06   

 

FF6   
 5.9E-08   0.00024   

 

FrazPed   
 1.6E-07   0.00066   

 

SY   
 5.3E-09   2.2E-05   

 

AFIM   
 2.3E-10   9.5E-07   

 

HXZ   
 1.5E-07   0.0006   

 

CZZ       1.9E-08     7.9E-05      

The table reports the results of the Bayesian model scan of 12 factors in German stock returns.  The sample period is June 

1991 and December 2022. The first 10% of the sample period is used for the training sample, and the model scan is then 

conducted on the remaining 90% of the sample period.  Panel A reports the posterior probability, the ratio of posterior 

probability to prior probability, for the top 6 models.  The ML column is the difference in the log ML of the best model and the 

next best models 2 to 7.  Panel B presents the identity of the factors in the top 6 models from the Bayesian model scan. Panel 

C reports the posterior probabilities of the 9 candidate models examined previously. 
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Table C.3. Netherlands Model Scan 12 Factors 

 
Panel A: 

Posterior Probability Posterior/Prior ML 
 

Top Models  

Model     

1  
 0.15855   649.263     

2  
 0.05679   232.567   1.02666  

3  
 0.04378   179.285   1.28686  

4  
 0.029   118.748   1.69883  

5  
 0.02622   107.365   1.79961  

6  
 0.02573   105.358   1.81848  

Panel B: 
      

 

Factors  

1 Market MOM BAB  
      

2 Market BAB PERF        

3 Market MOM BAB PERF       

4 Market HML MOM BAB       

5 Market MOM CMA BAB       

6 Market MOM BAB RMWROE            

Panel C: Posterior Probability Posterior/Prior    

FF3    
1.4E-05   0.05574   

 

Carhart    
0.00038   1.54794   

 

FF5    
5.8E-07   0.00238   

 

FF6    
1.5E-05   0.06219   

 

FrazPed    
0.02137   87.4901   

 

SY    
5.1E-05   0.20834   

 

AFIM    
7.7E-06   0.03155   

 

HXZ    
1E-05   0.0427   

 

CZZ       0.00011     0.44335      

The table reports the results of the Bayesian model scan of 12 factors in Dutch stock returns.  The sample period is June 1991 

and December 2022. The first 10% of the sample period is used for the training sample, and the model scan is then conducted 

on the remaining 90% of the sample period.  Panel A reports the posterior probability, the ratio of posterior probability to 

prior probability, for the top 6 models.  The ML column is the difference in the log ML of the best model and the next best 

models 2 to 7.  Panel B presents the identity of the factors in the top 6 models from the Bayesian model scan. Panel C reports 

the posterior probabilities of the 9 candidate models examined previously. 
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Table C.4. Italy Model Scan 12 Factors 

 
Panel A: 

Posterior Probability Posterior/Prior ML 
 

Top Models  

Model     

1  
 0.16565   678.32     

2  
 0.08741   357.924   0.6393  

3  
 0.03865   158.264   1.45536  

4  
 0.03459   141.647   1.56628  

5  
 0.03263   133.629   1.62455  

6  
 0.03184   130.402   1.649  

Panel B: 
      

 

Factors  

1 Market MOM BAB HMLM RMWROE      

2 MOM BAB HMLM RMWROE       

3 Market MOM HMLM RMWROE  
     

4 Market MOM RMWOP BAB HMLM      

5 Market MOM BAB HMLM PERF RMWROE     

6 Market SMB MOM BAB HMLM RMWROE        

Panel C: Posterior Probability Posterior/Prior    

FF3    
3.06E-11   

1.3E-07   
 

Carhart    
1.28E-08   

5.3E-05   
 

FF5    
2.50E-06   

0.01023   
 

FF6    
6.13E-06   

0.0251   
 

FrazPed    
1.81E-08   

7.4E-05   
 

SY    
9.72E-09   

4E-05   
 

AFIM    
1.08E-08   

4.4E-05   
 

HXZ    
2.81E-05   

0.11524   
 

CZZ       1.46E-08     6E-05      

The table reports the results of the Bayesian model scan of 12 factors in Italian stock returns.  The sample period is June 1991 

and December 2022. The first 10% of the sample period is used for the training sample, and the model scan is then conducted 

on the remaining 90% of the sample period.  Panel A reports the posterior probability, the ratio of posterior probability to 

prior probability, for the top 6 models.  The ML column is the difference in the log ML of the best model and the next best 

models 2 to 7.  Panel B presents the identity of the factors in the top 6 models from the Bayesian model scan. Panel C reports 

the posterior probabilities of the 9 candidate models examined previously. 
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Table C.5. Spain Model Scan 12 Factors 

 
Panel A: 

Posterior Probability Posterior/Prior ML 

 

Top 

Models 
 

Model     

1  
 0.05516   225.897     

2  
 0.03183   130.337   0.54996  

3  
 0.03019   123.634   0.60276  

4  
 0.02738   112.131   0.70042  

5  
 0.02729   111.765   0.70368  

6  
 0.01781   72.9448   1.13038  

Panel B: 
      

 

Factors  

1 Market MOM RMWOP BAB HMLM      

2 Market MOM HMLM RMWROE     
 

 

3 Market MOM RMWOP HMLM       

4 MOM RMWOP HMLM RMWROE       

5 MOM RMWOP HMLM        

6 Market MOM HMLM              

Panel C: Posterior Probability Posterior/Prior    

FF3    
1.8E-05   

0.07574   
 

Carhart    
0.00036   

1.45477   
 

FF5    
5.2E-06   

0.02131   
 

FF6    
3.3E-05   

0.13441   
 

FrazPed    
0.00149   

6.08788   
 

SY    
6.7E-05   

0.27577   
 

AFIM    
3.1E-05   

0.1281   
 

HXZ    
0.00041   

1.6828   
 

CZZ       0.00036     1.45566      

The table reports the results of the Bayesian model scan of 12 factors in Spanish stock returns.  The sample period is June 

1991 and December 2022. The first 10% of the sample period is used for the training sample, and the model scan is then 

conducted on the remaining 90% of the sample period.  Panel A reports the posterior probability, the ratio of posterior 

probability to prior probability, for the top 6 models.  The ML column is the difference in the log ML of the best model and the 

next best models 2 to 7.  Panel B presents the identity of the factors in the top 6 models from the Bayesian model scan. Panel 

C reports the posterior probabilities of the 9 candidate models examined previously. 
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C.III Summary Statistics of Posterior Distributions in Top Models Remaining Markets 

 

Table C.6. France Summary of the Posterior Distribution of the Best Model Risk Factors 

 
Panel A: 

Mean Std Dev Median 2.50% 97.50% 
 

Premiums  

Market 0.594 0.298 0.597 0.006 1.171  

BAB 1.532 0.271 1.529 1.002 2.064  

HMLM 0.133 0.236 0.134 -0.329 0.604  

PERF 0.644 0.194 0.643 0.259 1.027  

             

Panel B: 
Mean Std Dev Median 2.50% 97.50% 

 

SDF Coeffs  

Market -3.518 1.128 -3.518 -5.738 -1.328  

BAB -5.837 1.244 -5.812 -8.346 -3.440  

HMLM -6.101 1.874 -6.099 -9.804 -2.507  

PERF -10.022 2.317 -9.992 -14.496 -5.569  

      
 

Panel C: Summary Statistics of Candidate Stochastic Discount Factor Models  

 Std Dev Minimum Maximum Prop y<0 Correlation  

Best 0.423 -0.785 2.322 1.156 0.000  

CAPM 0.105 0.618 1.419 0.000 0.252  

FF3 0.118 0.452 1.548 0.000 0.258  

FF5 0.237 0.088 1.951 0.000 0.472  

FF6 0.245 -0.109 1.867 0.289 0.462  

AFIM 0.363 -0.335 2.834 0.870 0.475  

SY 0.261 0.301 2.326 0.000 0.655 
 

The table reports the summary statistics of the posterior distribution of the factors in the best model from the Bayesian model 

scan of 12 factors in French stock returns.  Panel A reports the summary statistics of the posterior distribution of the factor 

premiums (%), and Panel B reports the summary statistics of the posterior distribution of the stochastic discount factor 

coefficients.  The summary statistics include the mean, standard deviation (Std Dev), median, 2.5% and 97.5% percentiles 

using 10,000 simulation draws. Panel C reports the summary statistics of the fitted stochastic discount factor values of the 

best model from the Bayesian model scan, and a set of traditional factor models.  The fitted values are estimated using the 

posterior mean of the stochastic discount factor coefficients. The summary statistics include the standard deviation (Std Dev), 

the minimum, maximum, and the proportion (Prop y<0) of fitted values that are below zero.  The final column of Panel C is 

the correlations between fitted values of the traditional factor models, and the best model. 
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Table C.7. Germany Summary of the Posterior Distribution of the Best Model Risk Factors 

 
Panel A: 

Mean Std Dev Median 2.50% 97.50% 
 

Premiums  

Market 0.463 0.315 0.467 -0.167 1.070  

MOM 0.966 0.263 0.963 0.455 1.478  

BAB 0.450 0.241 0.451 -0.026 0.921  

HMLM 0.180 0.214 0.180 -0.234 0.604  

RMWCB 0.363 0.123 0.364 0.120 0.599  

             

Panel B: Mean Std Dev Median 2.50% 97.50%  

SDF Coeffs       

Market -2.643 1.097 -2.641 -4.779 -0.510  

MOM -8.863 1.646 -8.815 -12.179 -5.707  

BAB -1.930 1.319 -1.932 -4.564 0.658  

HMLM -7.600 1.936 -7.566 -11.482 -3.900  

RMWCB -8.085 2.642 -8.088 -13.261 -2.947  

      
 

Panel C: Summary Statistics of Candidate Stochastic Discount Factor Models  

 Std Dev Minimum Maximum Prop y<0 Correlation  

Best 0.383 -0.566 2.287 1.445 0.000  

CAPM 0.079 0.737 1.289 0.000 0.278  

FF3 0.188 0.159 1.911 0.000 0.229  

FF5 0.383 -0.648 2.308 1.445 0.808  

FF6 0.245 -0.109 1.867 0.289 0.749  

AFIM 0.363 -0.335 2.834 0.870 0.785  

SY 0.261 0.301 2.326 0.000 0.582  

The table reports the summary statistics of the posterior distribution of the factors in the best model from the Bayesian model 

scan of 12 factors in German stock returns.  Panel A reports the summary statistics of the posterior distribution of the factor 

premiums (%), and Panel B reports the summary statistics of the posterior distribution of the stochastic discount factor 

coefficients.  The summary statistics include the mean, standard deviation (Std Dev), median, 2.5% and 97.5% percentiles 

using 10,000 simulation draws. Panel C reports the summary statistics of the fitted stochastic discount factor values of the 

best model from the Bayesian model scan, and a set of traditional factor models.  The fitted values are estimated using the 

posterior mean of the stochastic discount factor coefficients. The summary statistics include the standard deviation (Std Dev), 

the minimum, maximum, and the proportion (Prop y<0) of fitted values that are below zero.  The final column of Panel C is 

the correlations between fitted values of the traditional factor models, and the best model. 
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Table C.8. Netherlands Summary of the Posterior Distribution of the Best Model Risk Factors 

 
Panel A: 

Mean Std Dev Median 2.50% 97.50% 
 

Premiums  

Market 0.688 0.328 0.690 0.047 1.337  

MOM 0.782 0.310 0.781 0.168 1.393  

BAB 0.846 0.285 0.846 0.289 1.403  

             

Panel B: Mean Std Dev Median 2.50% 97.50%  

SDF Coeffs       

Market -2.990 0.963 -2.986 -4.889 -1.137  

MOM -2.953 1.009 -2.946 -4.961 -1.004  

BAB -3.078 1.059 -3.062 -5.207 -0.998  

      
 

Panel C: Summary Statistics of Candidate Stochastic Discount Factor Models  

 Std Dev Minimum Maximum Prop y<0 Correlation  

Best 0.260 -0.017 1.758 0.289 0.000  

CAPM 0.109 0.679 1.516 0.000 0.427  

FF3 0.124 0.625 1.655 0.000 0.358  

FF5 0.232 0.072 1.878 0.000 0.708  

FF6 0.238 -0.098 1.876 0.289 0.689  

AFIM 0.233 0.003 1.940 0.000 0.697  

SY 0.193 0.380 1.713 0.000 0.500  

The table reports the summary statistics of the posterior distribution of the factors in the best model from the Bayesian model 

scan of 12 factors in Dutch stock returns.  Panel A reports the summary statistics of the posterior distribution of the factor 

premiums (%), and Panel B reports the summary statistics of the posterior distribution of the stochastic discount factor 

coefficients.  The summary statistics include the mean, standard deviation (Std Dev), median, 2.5% and 97.5% percentiles 

using 10,000 simulation draws. Panel C reports the summary statistics of the fitted stochastic discount factor values of the 

best model from the Bayesian model scan, and a set of traditional factor models.  The fitted values are estimated using the 

posterior mean of the stochastic discount factor coefficients. The summary statistics include the standard deviation (Std Dev), 

the minimum, maximum, and the proportion (Prop y<0) of fitted values that are below zero.  The final column of Panel C is 

the correlations between fitted values of the traditional factor models, and the best model. 
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Table C.9. Italy Summary of the Posterior Distribution of the Best Model Risk Factors 

 
Panel A: 

Mean Std Dev Median 2.50% 97.50% 
 

Premiums  

Market 0.391 0.369 0.396 -0.347 1.103  

MOM 0.839 0.259 0.837 0.334 1.344  

BAB 0.653 0.223 0.654 0.215 1.087  

HMLM 0.050 0.248 0.052 -0.431 0.541  

RMWROE 0.648 0.191 0.647 0.273 1.020  

             

Panel B: Mean Std Dev Median 2.50% 97.50%  

SDF Coeffs       

Market -2.217 0.952 -2.217 -4.052 -0.339  

MOM -6.504 1.693 -6.477 -9.854 -3.257  

BAB -3.796 1.430 -3.798 -6.675 -1.053  

HMLM -10.636 2.258 -10.593 -15.186 -6.293  

RMWROE -12.378 2.542 -12.364 -17.372 -7.456  

      
 

Panel C: Summary Statistics of Candidate Stochastic Discount Factor Models  

 Std Dev Minimum Maximum Prop y<0 Correlation  

Best 0.412 -0.282 2.325 2.023 0.000  

CAPM 0.057 0.800 1.196 0.000 0.278  

FF3 0.081 0.638 1.290 0.000 0.229  

FF5 0.328 -0.174 2.238 0.867 0.808  

FF6 0.348 -0.249 1.936 1.156 0.749  

AFIM 0.363 -0.278 2.249 0.867 0.785  

SY 0.261 0.301 2.326 0.000 0.582  

The table reports the summary statistics of the posterior distribution of the factors in the best model from the Bayesian model 

scan of 12 factors in Italian stock returns.  Panel A reports the summary statistics of the posterior distribution of the factor 

premiums (%), and Panel B reports the summary statistics of the posterior distribution of the stochastic discount factor 

coefficients.  The summary statistics include the mean, standard deviation (Std Dev), median, 2.5% and 97.5% percentiles 

using 10,000 simulation draws. Panel C reports the summary statistics of the fitted stochastic discount factor values of the 

best model from the Bayesian model scan, and a set of traditional factor models.  The fitted values are estimated using the 

posterior mean of the stochastic discount factor coefficients. The summary statistics include the standard deviation (Std Dev), 

the minimum, maximum, and the proportion (Prop y<0) of fitted values that are below zero.  The final column of Panel C is 

the correlations between fitted values of the traditional factor models, and the best model. 
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Table C.10. Spain Summary of the Posterior Distribution of the Best Model Risk Factors 

 
Panel A: 

Mean Std Dev Median 2.50% 97.50% 
 

Premiums  

Market 0.473 0.354 0.478 -0.235 1.157  

MOM 0.664 0.289 0.662 0.100 1.227  

RMWOP 0.421 0.172 0.421 0.081 0.755  

BAB 0.597 0.283 0.595 0.043 1.153  

HMLM 0.221 0.224 0.223 -0.224 0.654  

             

Panel B: Mean Std Dev Median 2.50% 97.50%  

SDF Coeffs       

Market -2.365 0.972 -2.352 -4.243 -0.427  

MOM -4.357 1.456 -4.339 -7.239 -1.522  

RMWOP -4.800 1.872 -4.788 -8.553 -1.130  

BAB -2.146 1.228 -2.125 -4.565 0.213  

HMLM -4.922 1.746 -4.941 -8.340 -1.505  

      
 

Panel C: Summary Statistics of Candidate Stochastic Discount Factor Models  

 Std Dev Minimum Maximum Prop y<0 Correlation  

Best 0.287 -0.493 1.949 0.597 0.000  

CAPM 0.074 0.695 1.274 0.000 0.427  

FF3 0.117 0.621 1.470 0.000 0.358  

FF5 0.232 0.072 1.878 0.000 0.708  

FF6 0.238 -0.098 1.876 0.289 0.689  

AFIM 0.233 0.003 1.940 0.000 0.697  

SY 0.193 0.380 1.713 0.000 0.500  

The table reports the summary statistics of the posterior distribution of the factors in the best model from the Bayesian model 

scan of 12 factors in Spain stock returns.  Panel A reports the summary statistics of the posterior distribution of the factor 

premiums (%), and Panel B reports the summary statistics of the posterior distribution of the stochastic discount factor 

coefficients.  The summary statistics include the mean, standard deviation (Std Dev), median, 2.5% and 97.5% percentiles 

using 10,000 simulation draws. Panel C reports the summary statistics of the fitted stochastic discount factor values of the 

best model from the Bayesian model scan, and a set of traditional factor models.  The fitted values are estimated using the 

posterior mean of the stochastic discount factor coefficients. The summary statistics include the standard deviation (Std Dev), 

the minimum, maximum, and the proportion (Prop y<0) of fitted values that are below zero.  The final column of Panel C is 

the correlations between fitted values of the traditional factor models, and the best model. 
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C.IV Bayesian Model Scan Assuming Multivariate t for Remaining Markets 
 

Table C.11. France Model Scan of 12 Factors assuming Multivariate-t Factor Distribution 

 
Panel A: 

Posterior Probability Posterior/Prior ML 
 

Top Models  

1   0.0809   331.403   
 

2   0.0646   264.723  0.225  

3   0.0426   174.552  0.641  

4   0.0379   155.295  0.758  

5   0.0354   145.101  0.826  

6   0.0303   124.224  0.981  

Panel B: 
    

     

Factors    

1 Market MOM BAB HMLM PERF  
   

2 Market BAB HMLM PERF   
   

3 Market MOM BAB HMLM PERF RMWCB    

4 Market HML BAB PERF   
   

5 Market BAB PERF    
   

6 Market SMB BAB HMLM PERF        

The table reports the results of the Bayesian model scan of 12 factors in French stock returns when the joint distribution of 

factors is assumed to follow a multivariate t distribution.  The sample period is June 1991 and December 2022. Panel A reports 

the posterior probability, the ratio of posterior probability to prior probability, for the top 6 models.  The ML column is the 

difference in the log ML of the best model and the next best models 2 to 7.  Panel B presents the identity of the factors in the 

top 6 models from the Bayesian model scan. 
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Table C.12. Germany Model Scan of 12 Factors assuming Multivariate-t Factor Distribution 

 
Panel A: 

Posterior Probability Posterior/Prior ML 

 

Top 

Models 
 

1   
0.0898   

367.551   
 

2   
0.0806   

329.912  0.10804  

3   
0.0457   

187.072  0.67537  

4   
0.0346   

141.634  0.95361  

5   
0.0276   

113.004  1.17944  

6   
0.0227   

92.9712  1.37457  

Panel B: 
    

     

Factors    

1 Market SMB MOM RMWOP HMLM RMWCB    

2 Market SMB HML MOM RMWOP RMWCB    

3 Market SMB MOM RMWOP HMLM PERF    

4 Market SMB MOM RMWOP HMLM  
   

5 Market HML MOM RMWOP RMWCB  
   

6 Market SMB HML MOM RMWOP        

The table reports the results of the Bayesian model scan of 12 factors in German stock returns when the joint distribution of 

factors is assumed to follow a multivariate t distribution.  The sample period is June 1991 and December 2022. Panel A reports 

the posterior probability, the ratio of posterior probability to prior probability, for the top 6 models.  The ML column is the 

difference in the log ML of the best model and the next best models 2 to 7.  Panel B presents the identity of the factors in the 

top 6 models from the Bayesian model scan. 
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Table C.13. Netherlands Model Scan of 12 Factors assuming Multivariate-t Factor Distribution 

 
Panel A: 

Posterior Probability Posterior/Prior ML 
 

Top Models  

1   0.239   978.838   
 

2   0.1055   432.062  0.8178  

3   0.0483   197.687  1.59968  

4   0.0469   191.972  1.62902  

5   0.038   155.483  1.83983  

6   0.0306   125.242  2.05612  

Panel B: 
    

     

Factors    

1 Market MOM BAB  
     

2 Market MOM BAB PERF      

3 Market MOM RMWOP BAB      

4 Market MOM CMA BAB      

5 Market MOM BAB RMWCB      

6 Market BAB PERF            

The table reports the results of the Bayesian model scan of 12 factors in Dutch stock returns when the joint distribution of 

factors is assumed to follow a multivariate t distribution.  The sample period is June 1991 and December 2022. Panel A reports 

the posterior probability, the ratio of posterior probability to prior probability, for the top 6 models.  The ML column is the 

difference in the log ML of the best model and the next best models 2 to 7.  Panel B presents the identity of the factors in the 

top 6 models from the Bayesian model scan. 
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Table C.14. Italy Model Scan of 12 Factors assuming Multivariate-t Factor Distribution 

 
Panel A: 

Posterior Probability Posterior/Prior ML 

 

Top 

Models 
 

1   
0.1324   

542.01   
 

2   
0.0682   

279.428  0.66254  

3   
0.0569   

232.823  0.84501  

4   
0.0555   

227.292  0.86905  

5   
0.0324   

132.852  1.40605  

6   
0.0290   

118.81  1.51776  

Panel B: 
    

     

Factors    

1 Market MOM RMWOP CMA HMLM   
  

2 Market MOM RMWOP CMA HMLM MGMT  
  

3 Market MOM RMWOP CMA BAB HMLM  
  

4 Market MOM RMWOP CMA HMLM PERF  
  

5 Market MOM RMWOP HMLM    
  

6 Market MOM RMWOP CMA BAB HMLM MGMT    

The table reports the results of the Bayesian model scan of 12 factors in Italian stock returns when the joint distribution of 

factors is assumed to follow a multivariate t distribution.  The sample period is June 1991 and December 2022. Panel A reports 

the posterior probability, the ratio of posterior probability to prior probability, for the top 6 models.  The ML column is the 

difference in the log ML of the best model and the next best models 2 to 7.  Panel B presents the identity of the factors in the 

top 6 models from the Bayesian model scan. 
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Table C.15. Spain Model Scan of 12 Factors assuming Multivariate-t Factor Distribution 

 
Panel A: 

Posterior Probability Posterior/Prior ML 

 

Top 

Models 
 

1   
0.0701   

287.044   
 

2   
0.0690   

282.571  0.01571  

3   
0.0636   

260.572  0.09676  

4   
0.0500   

204.94  0.33692  

5   
0.0213   

87.3219  1.19004  

6   
0.0211   

86.5624  1.19877  

Panel B: 
    

     

Factors    

1 Market MOM RMWOP BAB HMLM     

2 MOM RMWOP HMLM       

3 Market MOM RMWOP HMLM      

4 MOM RMWOP BAB HMLM      

5 Market MOM HMLM PERF      

6 Market MOM HMLM            

The table reports the results of the Bayesian model scan of 12 factors in Spanish stock returns when the joint distribution of 

factors is assumed to follow a multivariate t distribution.  The sample period is June 1991 and December 2022. Panel A reports 

the posterior probability, the ratio of posterior probability to prior probability, for the top 6 models.  The ML column is the 

difference in the log ML of the best model and the next best models 2 to 7.  Panel B presents the identity of the factors in the 

top 6 models from the Bayesian model scan. 
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C.V Gaussian v Student t Overall Performance Remaining Markets 
 

Table C.16. France Log-Marginal Likelihoods of the Top Performing Models 

 
Panel A: Top Performing Gaussian Models       

  

 

Market BAB HMLM PERF   
  

8035.21  

Market SMB BAB HMLM PERF  
  

8032.94  

Market RMWOP BAB HMLM PERF  
  

8033.03  

Market SMB BAB HMLM PERF RMWCB 
  

8033.54  

Market BAB PERF PERF RMWCB  
  

8033.25  

Market HML BAB PERF     
8031.19  

         
 

Panel A: Top Performing Student-t Models   

Market MOM BAB HMLM PERF    8655.80  

Market BAB HMLM PERF    
8655.57  

Market MOM BAB HMLM PERF RMWCB  8655.16  

Market HML BAB PERF    
8655.04  

Market BAB PERF     
8654.97  

Market SMB BAB HMLM PERF     8654.82  

The table presents the log marginal likelihoods for the best-performing France models identified through both analyses. 

Panel A details models assuming a Gaussian distribution, while Panel B focuses on models with a student-t distribution. 
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Table C.17. Germany Log-Marginal Likelihoods of the Top Performing Models 

 
Panel A: Top Performing Gaussian Models       

  

 

Market MOM BAB HMLM RMWCB  
  8724.50 

 

Market SMB MOM BAB HMLM PERF 
  8723.36 

 

Market MOM CMA BAB HMLM RMWCB 
  8722.57 

 

Market MOM RMWOP BAB HMLM RMWCB 
  8727.26 

 

Market HML MOM BAB RMWCB  
  8726.24 

 

Market MOM BAB HMLM       8725.02 
 

         
 

Panel A: Top Performing Student-t Models   

Market SMB MOM RMWOP HMLM RMWCB   9110.87  

Market SMB HML MOM RMWOP RMWCB  
9110.68  

Market SMB MOM RMWOP HML_M PERF  9110.45  

Market SMB MOM RMWOP HML_M   
9110.17  

Market HML MOM RMWOP RMWCB   
9109.06  

Market SMB HML MOM RMWOP     9109.50  

The table presents the log marginal likelihoods for the best-performing Germany models identified through both analyses. 

Panel A details top models assuming a Gaussian distribution, while Panel B details top models with a student-t distribution. 
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Table C.18. Netherlands Log-Marginal Likelihoods of the Top Performing Models 

 
Panel A: Top Performing Gaussian Models       

  

 

Market MOM BAB    
  7771.44 

 

Market BAB PERF    
  7769.08 

 

Market MOM BAB PERF   
  7769.21 

 

Market HML MOM BAB   
  7769.49 

 

Market MOM CMA BAB   
  7769.05 

 

Market MOM BAB RMWROE     7766.97 
 

         
 

Panel A: Top Performing Student-t Models   

Market MOM BAB      7290.28  

Market MOM BAB PERF    
7289.46  

Market MOM RMWOP BAB    7288.68  

Market MOM CMA BAB    
7288.65  

Market MOM BAB RMWCB    
7288.44  

Market BAB PERF       7288.22  

The table presents the log marginal likelihoods for the best-performing Dutch models identified through both analyses. 

Panel A details top models assuming a Gaussian distribution, while Panel B details top models with a student-t distribution. 
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Table C.19. Italy Log-Marginal Likelihoods of the Top Performing Models 

 
Panel A: Top Performing Gaussian Models       

  

 

Market MOM BAB HMLM RMWROE  
  8419.54 

 

MOM BAB HMLM RMWROE   
  8418.87 

 

Market MOM HMLM RMWROE   
  8417.22 

 

Market MOM RMWOP BAB HMLM  
  8419.46 

 

Market MOM BAB HMLM PERF RMWROE 
  8417.38 

 

Market SMB MOM BAB HMLM RMWROE   8417.08 
 

         
 

Panel A: Top Performing Student-t Models   

Market MOM RMWOP CMA HMLM   
 7841.21  

Market MOM RMWOP CMA HMLM MGMT  
7840.54  

Market MOM RMWOP CMA BAB HMLM  7840.36  

Market MOM RMWOP CMA HMLM PERF  
7840.34  

Market MOM RMWOP HMLM    
7839.80  

Market MOM RMWOP CMA BAB HMLM MGMT 7839.69  

The table presents the log marginal likelihoods for the best-performing Italian models identified through both analyses. 

Panel A details top models assuming a Gaussian distribution, while Panel B details top models with a student-t distribution. 
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Table C.20. Spain Log-Marginal Likelihoods of the Top Performing Models 

 
Panel A: Top Performing Gaussian Models       

  

 

Market MOM RMWOP BAB HMLM  
  7829.71 

 

Market MOM HMLM RMWROE   
  7829.06 

 

Market MOM RMWOP HMLM   
  7828.51 

 

MOM RMWOP HMLM RMWROE   
  7828.94 

 

MOM RMWOP HMLM    
  7827.49 

 

Market MOM HMLM        7826.92 
 

         
 

Panel A: Top Performing Student-t Models   

Market MOM RMWOP BAB HMLM    7509.73  

MOM RMWOP HMLM     7509.70  

Market MOM RMWOP HMLM    7509.63  

MOM RMWOP BAB HMLM    7509.35  

Market MOM HMLM PERF    7508.54  

Market MOM HMLM       7508.39  

The table presents the log marginal likelihoods for the best-performing Spanish models identified through both analyses. 

Panel A details top models assuming a Gaussian distribution, while Panel B details top models with a student-t distribution. 
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C.VI Bayesian Model Scan with Time Series Efficient Factors Remaining Markets 
 

Table C.21. France Model Scan 24 Factors 

 
Panel A: 

Posterior Probability  ML 
 

Top Models  

Model     

1   0.01405        

2   0.01102     0.24285  
 

3   0.01063     0.27908  
 

4   0.00848     0.50517  
 

5   0.00799     0.5642  
 

6   0.00712     0.67972  
 

Panel B: 
      

 

Factors  

1 Market BAB HMLM PERF Marketef HMLef  
 

 
 

2 Market BAB HMLM PERF Marketef HMLef RMWCB
ef  

 

3 Market BAB HMLM PERF Marketef CMAef PERFef    

4 Market BAB HMLM PERF RMWCB Marketef HMLM
ef PERFef   

5 Market BAB HMLM PERF Marketef HMLef PERFef RMWCB
ef  

6 Market BAB HMLM PERF Marketef SMBef PERFef      

The table reports the results of the Bayesian model scan of 24 factors in French stock returns. This set is made up of 13 factors 

and their efficient counterparts.  The sample period is June 1991 and December 2022. The first 10% of the sample period is 

used for the training sample, and the model scan is then conducted on the remaining 90% of the sample period.  Panel A 

reports the posterior probability. The ML column is the difference in the log ML of the best model and the next best models 2 

to 6.  Panel B presents the identity of the factors in the top 6 models from the Bayesian model scan. Superscript ‘ef’ denotes 

the efficient version of the factor.   
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Table C.22. Germany Model Scan 24 Factors 

Panel A: 

Posterior Probability                   ML Top 

Models 

1   0.01455       

2   0.01158     0.22808  
3   0.00938     0.43944  
4   0.00916     0.46276  
5   0.00915     0.46455  
6   0.00883     0.49915  

Panel B: 
      

Factors 

1 MOM RMWOP HMLM Marketef BABef PERFef    

2 Market SMB MOM HMLM RMWOP Marketef BABef PERFef  
3 Market SMB MOM HMLM RMWOP Marketef PERFef   

4 MOM RMWOP HMLM Marketef BABef PERFef RMWCB
ef  

 

5 Market SMB MOM HMLM RMWOP Marketef BABef PERFef RMWCB
ef 

6 MOM RMWOP HMLM Marketef BABef RMWCB
ef       

The table reports the results of the Bayesian model scan of 24 factors in German stock returns. This set is made up of 13 

factors and their efficient counterparts.  The sample period is June 1991 and December 2022. The first 10% of the sample 

period is used for the training sample, and the model scan is then conducted on the remaining 90% of the sample period.  

Panel A reports the posterior probability. The ML column is the difference in the log ML of the best model and the next best 

models 2 to 6.  Panel B presents the identity of the factors in the top 6 models from the Bayesian model scan. Superscript ‘ef’ 

denotes the efficient version of the factor.   
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Table C.23. Netherlands Model Scan 24 Factors 

 
Panel A: 

Posterior Probability   ML 
     

Top Models    

Model     

1   0.01054   
 

    

2   0.0105   
 0.0038  

 
 

3   0.00985   
 0.06856  

 
 

4   0.0068   
 0.43816  

 
 

5   0.00657   
 0.47308  

 
 

6   0.00633 
  

 0.51087 
 

 
 

Panel B: 
      

 

Factors  

1 Market MOM BAB Marketef SMBef PERFef   
  

2 Market MOM BAB Marketef PERFef    
  

3 Market MOM BAB Marketef BABef PERFef   
  

4 Market MOM BAB Marketef  
   

  

5 Market BAB PERF Marketef SMBef    
  

6 Market BAB PERF Marketef SMBef MOMef        

The table reports the results of the Bayesian model scan of 24 factors in Dutch stock returns. This set is made up of 13 factors 

and their efficient counterparts.  The sample period is June 1991 and December 2022. The first 10% of the sample period is 

used for the training sample, and the model scan is then conducted on the remaining 90% of the sample period.  Panel A 

reports the posterior probability. The ML column is the difference in the log ML of the best model and the next best models 2 

to 6.  Panel B presents the identity of the factors in the top 6 models from the Bayesian model scan. Superscript ‘ef’ denotes 

the efficient version of the factor. 
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Table C.24. Italy Model Scan 24 Factors 

 
Panel A: 

Posterior Probability   ML 
 

Top Models  

Model     

1   
0.01537        

2   
0.01489    0.03166   

 

3   
0.01258    0.19995   

 

4   
0.01134    0.30392   

 

5   
0.00658    0.84842   

 

6   
0.00621    0.90526   

 

Panel B: 
      

 

Factors  

1 Market MOM HMLM RMWROE BABef RMWROE
ef 

 
 

 
 

2 Market MOM BAB HMLM RMWROE BABef   
 

 

3 Market MOM BAB HMLM RMWROE BABef RMWROE
ef    

4 Market MOM BAB HMLM RMWOP BABef RMWROE
ef    

5 Market MOM BAB HMLM RMWOP HMLef BABef    

6 Market MOM BAB HMLM RMWOP HMLef BABef RMWROE
ef    

The table reports the results of the Bayesian model scan of 24 factors in Italian stock returns. This set is made up of 13 factors 

and their efficient counterparts.  The sample period is June 1991 and December 2022. The first 10% of the sample period is 

used for the training sample, and the model scan is then conducted on the remaining 90% of the sample period.  Panel A 

reports the posterior probability. The ML column is the difference in the log ML of the best model and the next best models 2 

to 6.  Panel B presents the identity of the factors in the top 6 models from the Bayesian model scan. Superscript ‘ef’ denotes 

the efficient version of the factor. 
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Table C.25. Spain Model Scan 24 Factors 

 
Panel A: 

Posterior Probability  ML 
 

Top Models  

Model     

1   
0.00502        

2   
0.00442    0.12671    

3   
0.00334    0.4064    

4   
0.00311    0.47911    

5   
0.0025    0.69651    

6   
0.00235    0.76047    

Panel B: 
      

 

Factors  

1 MOM RMWOP HMLM Marketef BABef HMLM
ef 

 
 

 
 

2 MOM RMWOP HMLM Marketef RMWOP
ef BABef   

 
 

3 MOM RMWOP HMLM Marketef BABef      

4 MOM RMWOP HMLM BABef HMLef      

5 Market MOM RMWOP HMLM Marketef BABef HMLef    

6 MOM RMWOP HMLM BABef            

The table reports the results of the Bayesian model scan of 24 factors in Spanish stock returns. This set is made up of 13 

factors and their efficient counterparts.  The sample period is June 1991 and December 2022. The first 10% of the sample 

period is used for the training sample, and the model scan is then conducted on the remaining 90% of the sample period.  

Panel A reports the posterior probability. The ML column is the difference in the log ML of the best model and the next best 

models 2 to 6.  Panel B presents the identity of the factors in the top 6 models from the Bayesian model scan. Superscript ‘ef’ 

denotes the efficient version of the factor. 
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C.VII Prior Computation 

 

To derive the priors for a given model, Chib, Zeng and Zhao (2020) start by setting a prior on 

a model where all factors are pricing factors, referred to as model 𝑀1. The variance parameter 

(covariance matrix) 𝛺�̆�,1 in this model is given an inverse Wishart prior: 

π(𝑛1|M1) ∝ |Ω�̆�,1|
−(

v+k+1

2
)

exp (−
1

2
𝑡𝑟 (𝑄𝛺�̆�,1

−1))   (C.1) 

where v (degrees of freedom), k (number of non-risk factors) and Ω (scale matrix) are 

parameters.  

For any other model 𝑀𝑗, the parameters 𝑛𝑗 = (Г𝑗 , Ω�̆�,j, Ωw,�̆�,j) are one-to-one functions of 𝑛1. 

The Jacobian of this transformation is: 

|
𝛿𝑛1

𝛿𝑛𝑗
| ∝ |Ωx,j|

k𝑓∗,j     (C.2) 

Based on this, Chib et al. derive the prior for 𝑛𝑗  (for 𝑗 > 1) from the prior of 𝑛1 using the 

change of variable formula: 

π(𝑛j|Mj) ∝ π(𝑛1|M1) |
𝛿𝑛1

𝛿𝑛𝑗
|     (C.3) 

This ensures that all priors are derived from the single distribution below, making them 

consistent across different models. 

π(𝑛j|Mj) ∝ |Ωx,j|
−

(v−𝑘𝑓∗,𝑗+𝑘
�̆�,𝑗

+1)

2 |Ωw,x,j|
−

(v−𝑘𝑓∗,𝑗+𝑘
�̆�,𝑗

+1)

2 exp (−
1

2
𝑡𝑟 (𝑄𝑗𝛺�̆�,𝑗

−1))  (C.4) 

By this method, Chib et al. ensure that all priors are derived from a single distribution, 

maintaining uniformity and comparability across models. This approach addresses the 

limitations in the Barillas and Shanken method, ensuring valid and consistent marginal 

likelihoods for model comparison. 
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Chapter 5 Conclusions  

 

 

 

 

 

 

Abstract 

Despite a substantial body of academic research dedicated to assessing the performance of asset 

pricing models, there is a notable scarcity of studies focusing on local markets. This thesis aims 

to fill gaps in the asset pricing literature by evaluating the performance of linear factor models 

across major European markets, using different model comparison frameworks. Additionally, 

it explores opportunities to improve these models' performance by analysing the mean-variance 

efficiency of the factors included in these models. 
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5.1 Summary of Findings 
 

Historically, asset pricing tests have predominantly focused on U.S. data, a trend seen in leading 

academic journals, largely due to data availability. However, recent trends show a shift towards 

incorporating international data, with a growing emphasis on a global perspective in financial 

research. This change reflects the increasing interconnectedness of global financial markets, 

highlighting the need for models that can explain cross-sectional variation across worldwide 

markets. As a result, a notable trend in recent asset pricing studies is the aggregation of 

international data into large samples, rather than examining specific countries individually. 

This approach, while broadening the scope, has its limitations. Empirical evidence, as noted in 

Section 1.2, shows that global factor models, which combine data from various regions, often 

underperform models tailored to individual countries. This suggests that while aggregating 

international data is important for understanding global asset pricing, these models may be less 

effective if they do not consider unique local influences. 

This thesis presents an exploration and enhancement of factor pricing models within developed 

European markets. Through a detailed analysis spanning three empirical chapters, this work 

has advanced the literature on model performance in European markets. This research focuses 

on three main questions: First, is there a single optimal model for European returns, or do 

optimal models vary by country? Second, does the same model, or a set of models, outperform 

in both the classical framework and the Bayesian framework for model comparison? Lastly, 

can the performance of asset pricing models in a European setting be improved through the 

inclusion of time-series efficient factors?  

In Chapter Two, the asset pricing theories that form the foundation for the empirical analysis 

in this thesis are outlined. The Stochastic Discount Factor (SDF) and its evolution over time 

are discussed, highlighting different specifications and the role of linear factor models as 

proxies for the SDF. The relative performance of nine competing neo-classical asset pricing 

models is then evaluated in a set of developed European stock markets between June 1991 and 

December 2022. Asymptotically valid tests of model comparison, developed by Barillas, Kan, 

Robotti, and Shanken (2020), are conducted, where the extent of model mispricing is gauged 

by the squared Sharpe ratio improvement measure of Barillas and Shanken (2017). This study 

is the first to comprehensively analyse a broad range of models over an extensive time period 

within the majority of the selected markets. 
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Through the pairwise and multiple model comparisons, it was observed that both the Fama and 

French (2018) six-factor model and the Asness et al. (2015) model—which substitutes the HML 

factor in the FF6 model with a more current version of the value factor (HMLM)—demonstrate 

robust performance throughout the sample. These findings align with those of Barillas et al. 

(2020), Hanauer (2020), and Fletcher (2019), who also observe the outperformance of these 

models in other markets. However, the leading model does vary across samples; for instance, 

the Frazzini and Pederson (2014) model stands out as the superior model in two out of six 

scenarios. The results suggest that elements like beta timing, momentum, investment, and 

profitability play significant roles in determining stock returns during this period. 

Consequently, models that neglect these factors tend to underperform compared to those that 

incorporate them across the sample. These findings are supported by simulation evidence. 

Similar findings are noted by Pukthuanthong et al. (2023), where no single model outperforms 

all others across the sample.  

In Chapter Three, using the framework of Ehsani and Linnainmaa (2022), it is shown that 

multiple investment factors in the cross-country dataset are unconditionally minimum-variance 

inefficient: factor returns are positively autocorrelated while risk, conditional on past returns, 

remains constant. Ferson and Siegel’s (2001) general framework of conditioning information 

is used to transform an autocorrelated standard investment factor into a “time-series efficient” 

factor. Comparing the efficient factors to the original factors reveals that the efficient factor 

transformation allows for a significant increase in the Sharpe ratio for several factors across 

markets, such as the BAB factor in the German sample, SMB in the Dutch sample, and CMA 

in the Italian sample, along with a number of U.K. factors. The observation of mean-variance 

inefficiency among key investment factors highlights their potential in improving model 

performance.  

The model comparison tests from Chapter Two are repeated to assess the impact of the efficient 

factor transformation on both the absolute and relative performance of the models. Across the 

sample, models with low squared Sharpe ratios in Chapter Two, such as the Fama and French 

(1993) and Fama and French (2015) models, experience an increase in performance. However, 

higher-performing models do not exhibit this performance boost, and the relative performance 

of models across the sample remains unaffected by the inclusion of the efficient factors.  

In Chapter Four, the risk factors contained in the models under consideration are examined to 

determine if they truly reside in the Stochastic Discount Factor (SDF). The Bayesian 
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frameworks of Chib, Zeng, and Zhao (2020) and Chib and Zeng (2020) are used to identify the 

best model from the collection of investment factors across the different markets. In all markets, 

the model scan returns the optimal asset pricing model, which has a similar factor composition 

to that identified in the classical framework. In most cases, the optimal model is more 

parsimonious, with redundant factors dropping out.   

Similar to recent asset pricing research by Qiao, Wang, and Lam (2022), the impact of different 

distributional assumptions on the factor data for model testing is examined. Assuming a 

Student-t distribution for the factor data provides little change to the identity of the top-

performing model across the markets and the general fit of these models to the data. While 

Qiao et al. (2022) argue for the superiority of Student-t models in global factor models, the 

results from the country-specific analysis show that this does not apply in a European setting. 

The model scanning framework is then used to examine if the time-series efficient factors from 

Chapter Three enhance the performance of the asset pricing models across each sample. In all 

cases, the top-performing asset pricing model from this model scan contains at least one time-

series efficient factor while retaining all of the original factors. This analysis concludes that the 

model scan allows for the identification of specific factors that enhance model performance, 

rather than replacing all factors with their efficient counterparts when the transformation is not 

valuable.  

This thesis significantly enhances the asset pricing literature by concentrating on a select group 

of key European countries, addressing a noticeable shortfall in academic exploration within 

European asset pricing. The limited existing work on these markets makes this in-depth 

analysis especially valuable, offering investors targeted insights into stock market dynamics 

and model enhancement opportunities specific to their markets. This focus on Europe fills a 

critical research gap, as these markets have traditionally received less attention in academic 

studies compared to those in the U.S. 

Furthermore, the findings of this thesis have profound implications for practitioners, 

academics, and general readers interested in asset pricing and investment strategies. For 

practitioners, the research provides actionable insights into the performance of asset pricing 

models across key European markets, emphasizing the importance of model selection tailored 

to local conditions and the potential gains from incorporating efficient factors into investment 

strategies. This practical relevance is underscored by the demonstrated improvements in Sharpe 

ratios and risk-adjusted returns, offering valuable guidance for portfolio construction and risk 
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management. Academically, this thesis advances the discourse on factor efficiency and model 

optimization, bridging theoretical advancements with empirical testing and expanding the 

understanding of how Bayesian and classical methodologies compare in diverse settings. It 

highlights the necessity of refining factor models to incorporate market-specific dynamics 

rather than relying on generic global factors. For the general reader, this work demystifies 

complex asset pricing concepts by providing a structured and coherent analysis of how different 

factors drive stock returns in European markets, making the research accessible and relevant 

to those interested in the interplay between financial theory and real-world market behaviour. 

5.1 Areas of Further Research  
 

The focus of this thesis is on a prominent set of factors; however, the number of discovered 

factors is constantly growing, with Harvey and Liu (2019) documenting over 400 factors 

published in top journals. Considering a wider set of investment factors in future work may be 

interesting. Chib et al. (2023) have developed a new risk factor discovery methodology that 

involves reducing the cross-sectional volatility of a range of factors into ‘slope factors.’ It may 

be possible to use this data reduction method to find a smaller set of factors that could be 

analysed in a local market setting; however, data availability remains a constraint, especially 

for less pronounced factors. Ensuring that each factor included in the model is supported by a 

robust theoretical framework that explains its relevance to asset pricing is crucial. This 

approach helps justify the inclusion of factors based on economic theory rather than solely on 

historical performance. 

Despite a wealth of literature on large sample tests of asset pricing, there remains a distinct lack 

of research focused on local asset pricing model performance. This thesis sheds light on the 

drivers of returns at a local level within a European setting, highlighting the need for similar 

studies in other regions. Research in asset pricing that examines broad classifications, such as 

regional, developed, or developing markets, should also be tested at a local level to ensure the 

accuracy of aggregated results.  

The concept of combining factor models also warrants exploration. Throughout this study, 

models with predefined factors have underperformed relative to optimal models identified 

through the Bayesian model scan method. Legacy models like the Fama and French (1993) 

three-factor model have consistently underperformed across all comparison frameworks, 

despite their continued recognition. Considering the possible combination of legacy models in 
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future research endeavours is pertinent. Each factor model typically focuses on specific market 

behaviours or risk premiums. By amalgamating them, investors and researchers can achieve a 

richer comprehension and more accurate predictions of asset returns. For instance, while the 

two-factor model by Frazzini and Pederson (2014) excels in the comparison of French factor 

models within a classical framework, the model scan reveals the performance factor (PERF) 

from the Stambaugh and Yuan (2017) model as one of the top six performing models. This 

suggests that a hybrid approach, combining these models, could potentially offer a superior 

framework compared to each model operating in isolation. Combining factor models can reveal 

interactions between factors that might not be apparent when models are used separately. 
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