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SYNOPSIS 

All the previous works on Framed-tube structures 

required the services of a digital computer of reasonable 

size to obtain a solution. There appears to be a 

distinct need to develop a simple method which will enable 

hand-calculations to be carried out rapidly in the early 

stage of design to give a reasonable, assessment of the 

structural behaviour and to make preliminary estimates 

of the main structural element sizes. 

In the simple approximate analysis presented in 

this thesis, the rigidly-jointed perimeter frame panels 

are replaced by equivalent orthotropic plates, whose 

properties are chosen to represent both the axial and 

shearing deformation characteristics of the frames. The 

use of an artificially low shear modulus G enables the 

racking deformations of the frame to be simulated. The 

stress distributions in the panels are assumed to be 

represented with sufficient accuracy by polynomial series 

in the horizontal coordinates, the coefficients of the 

series being functions of the height coordinate only. 

After satisfying the equations of equilibrium,, the 

unknown functions are determined from the principle of 

least work by means of the calculus of variations. 

Two methods of analysis are suggested. In the 

first very simple method the stress distributions 

represented by the basic beam theory are modified to 

include the effects of shear lag. Closed form solutions 

are presented for three standard load cases, a uniformly 
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and a triangularly distributed load, and a point load at 

the top. Design curves are developed to enable solutions 

to be obtained rapidly. A limited study is carried out 

to examine the effects of variable corner column stiffness 

and the ratio of column width to spandrel beam depth on 

the optimisation of the Framed-tube structure. 

A more general analysis of the Framed-tube structure 

yields simultaneous differential equations for the two 

unknown functions which are solved for the three standard 

load cases. 

The effects of an elastic base on the boundary 

conditions of the Framed-tube structure are considered. 

Framed-tube structures with different stiffness regions 

are also examined. 

An analogous simplified method is presented for the 

analysis of Framed-tube structure subjected to torsion. 

Closed form solutions, and associated design curves, are 

presented for the three standard load cases. 

The behaviour of Bundled-tube structures is more 

complex and a number of simplifying assumptions are made 

to reduce the number of unknown functions to a manageable 

size. Both simple and more general methods are presented 

for the analyses of such structures with two and nine 

modular tubes. 

A method is presented to consider the likely 

effects of the flexibility of the spandrel beams on the 

stress distribution in a Framed-tube structure subjected 

to vertical forces. 
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A number of numerical examples are given which 

illustrate the various aspects of the theories developed 

and enable the best disposition of the materials to be 

made. 

The results from a series of tests carried out on 

Perspex models are compared with the theoretical values 

in order to assess the validity of the approximations. 
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CHAPTER 1 

INTRODUCTION 

1.1. BACKGROUND 

The shear wall type o construction was first 

introduced in the early fifties and was immediately used 

in the construction of apartment and office buildings. 

This type of construction has been found to be efficient 

for buildings up to about 30 storeys in height, but for 

taller buildings the lateral sway as well as the wind 

stresses begin to control'the design. As a result, the 

structural elements designed only for gravity loads need 

to be increased in order to increase the stiffness and 

strength of the building. For buildings over 30 storeys 

in height the framed-tube type of construction has been 

found to be more efficient, In its basic form, the 

system consists of closely spaced exterior coltunns tied 

at each floor level by deep spandrel beams to form a 

rectangular tube perforated by holes for the windows. 

Alternatively it may be regarded as a system of four 

orthogonal rigidly jointed frame panels forming a closed 

rectangular system as shown in Fig. 1.1. Both steel and 

concrete have been used in the construction of such 

structures. This system was first used in 1963 for the 

43-storey De Witt Chestnut Apartment Building in Chicago, 

U. S. A. Since then the concept has been widely used by 

designers all over the world, the most significant of 

which are the 110-storey twin towers for the World Trade 

Centre in New York, U. S. A. 
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From the point of view of construction economy, 

the framed-tube compares favourably with the usual shear 

wall type of construction for medium rise buildings, but 

possesses definite advantage for taller buildings. The 

closely spaced column system also serves as the window 

wall system, thus replacing the vertical mullions for the 

support of glass windows. 

In the framed-tube system the exterior columns are 

usually spaced from 1.2 ri to a maximum of 4.5 m, centre to 

centre. The size of the spandrel beams varies from 

600 mm to 1.2 m in depth and from 250 mm to 1m in width. 

In the De Witt Chestnut Apartment Building the columns 

were spaced at 1.68 m centres and the spandrel beams were 

600 mm deep. 
(') 

The framed-tube type of structure is suitable for 

buildings up to about 50 storeys. Beyond this the 

premium, in terms of increased member sizes, increases 

rapidly. The main reason for this is that, although the 

system looks like a tube, the two faces parallel to the 

direction of wind act like multi-bay rigidly-jointed frames 

when subjected to wind load. Consequently the bending 

moments in the columns and edge beams due to wind load 

become the controlling factors for very tall buildings. 

Furthermore, of the total lateral sway under wind load 

about 75 per cent is caused by frame racking and only 

25 per cent is due to column shortening caused by the 

cantilever action of the framed-tube. For taller buildings, 

it is generally more efficient to use the Bull-core or 
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Tube-in-tube structure as illustrated in Fig. 1.2. It 

consists of an outer framed-tube connected by floor slabs 

to a central core which houses all the services. This 

system provides large column-free space, and is very 

suitable for office buildings. The 52-storey One Shell 

Plaza Building in Houston, U. S. A. with a height of 218 m 

was designed as a tube-in-tube structure. The tube-in- 

tube system is a refined version of the frame-shear wall 

interaction type of structure and combines the advantages 

of both framed-tube and shear wall types of structure. 

The shear wall inner core reduces th3shear deflection of 

the columns in the outer framed-tube and greatly increases 

the efficiency of the structure. 

For still taller structures, especially where a 

large plan area is involved, the modular tube or bundled- 

tube system may be used. This system consists basically 

of a bundling of smaller size tubes which reduces the 

shear lag effect and thereby induces more effective 

participation of the interior columns in resisting the 

wind load. The Sears Tower, Chicago, the world's tallest 

building, with 109 storeys for a height of 442 m above 

ground was designed as a bundled tube structure2'3'4) and 
( 

is illustrated in Fig. 1.3. The basic shape consists of 

nine 22.86 mx 22.86 m modular tubes for an overall square 

floor size of 68.58'm x 68.58 m which continues up to the 

50th floor. Step Backs, in the form of a termination of 

megamodular areas, then occur at floors 50,66 and 90, 

creating a variety of floor configuration as shown in 

Fig. 1.3. 
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It is obvious that better cantilever efficiency can 

be achieved by replacing the vertical columns altogether 

and substituting closely spaced diagonals in either 

direction, as illustrated in Fig. 1.4. This "Diagonal 

truss tube" system is an extremely efficient system and 

was used in the not too high 13-storey IIN Building in 

Pittsburgh, U. S. A. A large number of joints have to be 

handled as in the framed-tube system, but as the diagonal 

truss system is much more rigid, any adjustment during 

construction becomes extremely difficult. 
(5) 

The problems of large shear lag and a large number 

of joints in the framed-tube structure, and excessive 

rigidity and number of joints in the diagonal truss tube 

system can be largely overcome by the use of an optimum 

combination of columns, spandrels and diagonals to form 

an effective tube, as shown in Fig. 1.5. In this system, 

known as the Column diagonal truss tube(s), the exterior 

columns can be spaced between 6 in and 18 m, connected by 

widely spaced diagonals at an inclination of about 450" 

The spandrels designed for floor loads are normally 

sufficient to resist the internal force distribution 

between the columns and the diagonals except at levels 

where the diagonals from both planes meet at the corner. 

At these levels heavier tie spandrels are provided to 

limit the horizontal stretching of the floors and also to 

make the diagonals more efficient as inclined columns and 

as primary load distribution members. 
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1.2 PAST WORK 

It is theoretically possible to analyse framed- 

tube structure by matrix techniques using standard three- 

dimensional computer programs. But small computers are 

not generally equipped with such programs, and even if 

they are, the storage requirements for such an analysis 

may overtax their capacity. It is, therefore, necessary 

to develop simplified methods of analysis, which reduce 

the number of degrees of freedom to a manageable size. 

By recognising the dominant modes of deformation 

in the orthogonal planes Coull and Subedi(6) have produced 

a method to reduce the three-dimensional system to an 

equivalent plane frame with a consequent large reduction 

in the amount of computation required. This simplified 

method recognises that the lateral loads are resisted by 

two primary actions, the rigidly jointed side frames 

parallel to the direction of loads undergo shearing 

deformations, whilst the normal frame panels undergo axial 

deformations of the columns, the uniformity of which will 

depend on the stiffness of the connecting spandrel beams. 

The interactions between the side and normal panels 

consist mainly of vertical shear forces, and fictitious 

elements, have been introduced to effect the vertical shear 

transfer which occurs. 

Rutenberg(7) investigated the out-of-plane 

deformation of the frames by an alteration to the equivalent 

plane frame used in the analysis by Coull and Subedi. 

These out-of-plane deformations will always occur, but 
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these will be restricted by the high in-plane stiffness 

of the floor slabs, and are usually assumed insignificant 

in relation to the primary actions. 

Khan and Amin 
(8) 

used the equivalent plane frame 

technique for developing a series of 'influence curves' 

for the preliminary analysis of framed-tube structures. 

These curves are used to compute the column axial force 

coefficients for both the side and normal frames and shear 

force coefficients for the spandrels in the side frames. 

These curves have been plotted against non-dimensional 

parameters representing the basic properties of the column 

and beam elements and aspect ratios (length of normal 

frame/length of side frame). Although developed for 

ten-storey structures, these design curves can be used for 

framed-tubes of any number of storeys by the use of 

reduction model techniques. 

Schwaighofer and Ast(9, b0) 
suggest complete 

separation of the frames to reduce the computer storage 

requirement. The interaction forces between the frames 

are determined and their effect combined with the effect 

of horizontal load for the side frames. The normal frames 

are subjected to interaction forces only. Using the 

above technique they carried out a series of analyses on 

a wide range of framed-tube structures with different 

geometrical characteristics, and tabulated the results 

for the side frames only. The effects of joint stiffnesses 

were taken into account in the analysis. 

The design of a 37-storey building, built in 

ll) Caracas, Venezuela, was described by MazzeoMand De Pries, 
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A frame-tube structure is used to resist all of the 

seismic effects and to limit the side sway. Columns are 

purposely omitted at the corners, so that the beams near 

the building corners transfer vertical shears. The 

equivalent plane frame technique is applied to analyse 

the structure. 

The effect of torsional action on framed-tube 

structures was investigated by Coull and Subedi. 
(12) 

Two 

forms of deformation are produced in the framed-tube 

structure under torsional moments, a pure rotation and an 

out-of-plane warping displacement of the cross-section. 

The structure is reduced to an equivalent plane frame system 

and the flexibility matrices in the two directions are 

derived by the standard plane frame programs. For the 

complete solution of the structure a special program is 

needed. 

Rutenberg(13) has presented two methods of 

analysing tube structures under torsion, using the 

equivalent plane frame approach. In the first method of 

successive approximations, the spatial behaviour is 

represented by two plane frames. In one, the fictitious 

corner. supports are constrained vertically at every floor 

level and the frame analysed. In the other, which is 

horizontally constrained at every floor level, the frame 

is subjected to vertical forces found acting on the 

fictitious corner supports. By the process of iteration 

satisfactory results are obtained. The second method of 

Rutenberg is very similar to the one proposed by Coull 

and Sübedi, 
(12) 

except that the frame is analysed directly 
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without first deriving the flexibility matrices. 

As a result of the work carried out in this thesis 

a paper(14) was published in which the simple approximate 

method for the rapid evaluation of the stresses in the 

framed-tube structures, subjected to lateral forces was 

presented. Design curves were given for different 

loading conditions. 

1.3 REASONS FOR STUDY 

All the previous works on framed-tube structures, 

mentioned earlier, require the services of a digital 

computer of reasonable size to obtain a solution. There 

appears to be a distinct need for a simple method which 

can be used in the early stages of design to give a 

reasonable assessment of the structural behaviour, and 

allow preliminary evaluation of the main structural element 

sizes to be made. The simplified analysis of framed-tube 

structures under bending has been presented in a paper(14) 

and will form part of this thesis. 

1.4 SCOPE OF THE THESIS 

This thesis is concerned with the investigation of 

high-rise buildings essentially comprising framed-tube or 

bundled-tube structures, under the action of lateral wind 

load. Particular attention is paid to the assessment of 

sway caused by lateral forces,. since this may control the 

design of the structural system. 

A very simple method of analysing a framed-tube 

structure is presented, and design curves are given for 
4 
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three standard load cases, a uniformly distributed load, 

a triangularly distributed load, and a point load at the 

top. The design curves enable hand-calculations to be 

carried out rapidly in a design office. In many cases, 

the four corner columns are considerably stiffer than the 

other columns, and provision is made in the analysis for 

the inclusion of stiff individual corner elements. In 

the particular case of a uniformly distributed load a 

formula is presented to assess the maximum drift at the 

top of the structure. The effects of variable corner 

column stiffness and variable column width to spandrel 

beam thickness ratio on the optimisation of a framed-tube 

structure are investigated. 

The assumption of a rigid base for the framed-tube 

structure is not strictly true and a simple method is 

presented for the bending analysis of the structure 

supported on an elastic base. 

The structural properties of the framed-tube 

structure may not be uniform over the entire height, but 

may be constant over specified levels. Such cases are also 

treated in this thesis. 

The vertical forces acting on a framed-tube structure 

consist of (a) a uniform component due to the self weight 

of the structure itself, and (b) a variable component 

induced due to the dead and live load acting on the floor 

areas. A simple procedure is described to consider the 

effects of vertical forces on the structure, with a view 

to examine any redistribution which may take place. 
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The effect of torsion on framed-tupe structure is 

considered and simple equations are derived to analyse 

_the structure. A method is presented to determine the 

maximum rotation at the top of the structure, when 

subjected to a uniformly distributed torque and a point 

torque at the top. Most of the design curves used for 

bending analysis may also be used for torsion. 

The effect of lateral load on bundled-tube structure 

is also considered. The same design curves used for 

framed-tube structures can also be used for bundled-tube 

structures. 

A description is given of an experimental 

investigation carried out to study the effect of lateral 

load on perspex models of framed-tube and bundled-tube 

structures. The results of the tests are compared with 

-the relevant analytical solutions'in order to assess the 

validity of the latter. 

In the thesis figures and tables are referred to 

by the chapter number and are included at the end of the 

relevant chapter. 
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Fig. 1.1 Framed-tube building 
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Fig. 1.2 Hull-core structure 
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Fig. 1.3 Bundled-tube structure 



Fig. 1.4 Diagonal truss-tube system 

Fig. 1.5 Column diagonal truss-tube system 

ý-'`! 



11 

CHAPTER 2 

ANALYSIS OF FRAMED-TUBE STRUCTURES 

SUBJECTED TO BENDING 

NOTATION 

The following symbols are used in this chapter: 

A area of corner column; c 

a aspect ratio (b/c); 

b half breadth of framed-tube; 

c half depth of framed-tube; 

d, d1, d2 bay widths; 

E elastic modulus; 

, EI, Exz E elastic moduli of equivalent orthotropic 
Y 

,E ,E E plate; yz Z y 

e clear distance between spandrel beams; 

ee xz ' direct strains; 
ey, eZ 

F total shearing force at any'level; 

F1, F2, F3 design functions; 

f 
1, 

f 2, f 3, f4 stress functions; 

G shear modulus; 

,G G shear moduli of equivalent orthotropic yz xz 

plate; 

H total 

h storey 

I second 

Id'Id1'Id 
2 

second 

Ih second 

zeight of building; 

height; 

moment of area of framed-tube; 

moments of area of beams; 

moment of area of column; 
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k, k1, k2 structural parameters; 

1,11,12 clear distance between columns; 

M applied moment at any level; 

m geometrical ratio; 

N axial force in column; 
A 

n ratio -° ct ' 

P concentrated load at top; 

p intensity of lateral loading per unit height; 

S, S(I SI stress functions; 

S ,S shearing forces in beams and columns b c 

respectively; 

t thickness of equivalent plate; 

tl width of column; 

t2 depth of spandrel beam; 

U strain energy; 

x horizontal coordinate; 

y horizontal coordinate; 

z, zt vertical coordinates; 

d1 d2 geometrical ratios; 

ß 
1, 

P2 structural parameters; 

Y shear strain; 
Y 

Xz, 
Y 

yz shear strains in the equivalent orthotropic 

plate; 
b lateral deflection at the top of structure; 

direct strain; 
ApA 

1' 
>2 geometrical ratios; 

non-dimensional height coordinate (Z); 
H 

6 direct stress; 
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db direct stress according to engineer's 

beam theory; 

shear stress. 

2.1 INTRODUCTION ' 

The behaviour of a framed-tube is more complex than 

that of a simple closed tube, and the stiffness is less. 

In addition to the cantilever bending action, which 

produces tensile and compressive stresses on opposite 

faces of the tube, the side frames undergo the usual 

plane-frame shearing action in each storey under the 

action of lateral forces. This primary action is 

complicated by the fact that the flexibility of the 

spandrel beams produces a shear lag which has the effect 

of increasing the axial stresses in the corner columns, 

and of reducing them in the inner columns of the normal 

panels as illustrated in Fig. 2.1. The latter effects 

will produce warping of the floor slabs, and consequent 

deformations of the interior partitions and secondary 

structure which must be considered in the design. 

Problems of shear lag occur in aircraft wing 

structure which consists mainly öf ä cantilevered tapered 

box beam in which thin sheets are reinforced by corner 

booms and intermediate stringers. 
15' 16 Due to shearing 

deformations of the sheets the load distribution in the 

booms and stringers is not uniform. Theoretical and 

experimental investigations of the problem have been 

carried out to determine the magnitude of the effect of 

shear lag and many methods have been suggested for its 
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solution. 

Reissner has presented simple solutions for a 

thin-walled box beam type of structure using the principle 

of least work17 and minimum potential energy. 
18 In. the 

least work solution, Reissner has assumed a parabolic 

stress distribution in the flanges and derived a simple 

differential equation for the stress function and 

boundary conditions for it. A parabolic variation of 

sheet displacements is assumed in his minimum potential 

energy solution and an ordinary differential equation 

for the beam deflection and boundary conditions for it 

are obtained. 

In the present analysis, a parabolic distribution 

of stress in the flanges will be assumed and the principle 

of least work applied. 

The magnitude of lateral displacement of the 

building is a measure of the stiffness of the structure 

and its maximum allowable limit is based on the 

consideration of the effects of lateral sway on (a) the 

stability of the individual columns and the structure as 

a whole, (b) the integrity of nonstructural partitions 

and glazing, and (c) the comfort of the occupants of the 

building. In designing for wind load, a deflection index 

ranging from 
300 to 600 has been used in practice. The 

higher value of about 300 appears to be more appropriate 

for the building types of several decades ago where the 

heavy so-called non-structural masonry partitions and 

exterior cladding considerably increased the lateral 

stiffness of such structures. The recent trend of using 
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lightweight elements and glass for interior partitions 

and exterior cladding would suggest the use of a relatively 

lower limit. The ACI committee 435 on "Allowable 

deflections"19 recommends a deflection limit of 500 ' 

Under earthquake forces the allowable drift may be increased 

to twice that allowed for wind. 

2.2 ASSUMPTIONS 

The analysis of the framed-tube structure is based 

on the following assumptions: 

(i) The material for all the members of the tube is 

the same; it is homogeneous, isotropic and stressed 

within the linear elastic limit. 

(ii) The floor system is very stiff in its own plane 

which will restrict any tendency for the exterior frame 

panels to deform out of plane. Thus only in-plane effects 

will be considered in each panel. 

(iii) Spacing of columns and beams are uniform through- 

out the height. 

(iv) Both beams and columns are of uniform section or 

the axial stiffness EA and the shearing rigidity GA 

remain constant throughout the height. 

2.3 REPLACEMENT OF FRAMED PANELS BY EQUIVALENT 

ORTHOTROPIC PLATES 

In the framed-tube structure shown in Fig. 2.2(a), 

the lateral load is resisted primarily by the following 

actions: (a) the rigidly-jointed frame actions of the 

shear-resisting panels parallel to the load (AB and DC), 

(b) the axial deformations of the frame panels normal to 
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the direction of the load (AD and BC) and (c) the axial 

forces in the discrete corner columns. The interactions 

between the normal and side panels consist mainly of, 

vertical interactive forces along corners A, By C and D. 

As a result of these interactive forces, panels AD and-BC 

undergo axial deformations, the uniformity of which across 

each panel will depend on the relative stiffness of the 

spandrel beams. 

Certain plane stress problems which cannot readily 

be solved by mathematical methods have been solved by 

substituting the solid plate by an equivalent grid to 

reproduce the physical deformation characteristics of the 

plate. 
(20) In the present analysis it is assumed 

conversely that each framework panel of columns and 

spandrel beams may be replaced by an equivalent orthotropic 

plate, to form a substitute closed tube structure as 

illustrated in Fig. 2.2(b). The properties of the 

orthotropic plate must be chosen so that the two elastic 

moduli in the horizontal and vertical directions represent 

the axial stiffnesses of the beams and columns respect- 

ively, and the shear modulus represents the shear 

stiffness of the frame work. That is, under the actions 

of identical axial or shear forces, the axial or shear 

deformations of both framework and equivalent * orthotropic 

plate will be the same. 

In the case of axial forces, (Fig. 2.3), the load. 

deformation relationships for both frame and plate will 

be equal if, for each bay, 

AE =dt EZ ...... 
(2.1) 
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where A is the cross-sectional area of a column in a bay 

of span d, E is the elastic modulus, t is the thickness 

of the equivalent plate, and EZ is the equivalent elastic 

modulus. It is then most convenient to fix the value of 

t for the structure, by making the area of the plate of 

width d equal to the cross-sectional area of the column 

in each panel, and vary the elastic moduli for different 

panels. In the normal case of a square or rectangular 

tube with identical column cross sectional areas on all 

four faces, the orthotropic plates will have identical 

properties in all faces. In the particular case where the 

normal and side panels have different equivalent elastic 

moduli these could be included in the analysis. 

A similar relationship to equation (2.1) may be 

written for horizontal axial deformations also. 

The shear modulus of the equivalent plate must be 

chosen so that the horizontal displacement of both frame 

panel and plate must be the same when both are subjected 

to the same shearing forces Q (Fig. 2.3). 

Consider the single storey segment of a frame 

panel shown in Fig. 2.3. Since the columns may be 

closely spaced, and the spandrel beams relatively deep, 

the finite size of the joint relative to the free column 

height and beam span must be. taken into account. This 

may be done by assuming that short rigid arms exist at 

each node, of width equal to the width of the column, and 

of height. equal to the depth of the beams. This gives 

an tipper bound to the equivalent shear modulus. The 

lower bound may also be determined by neglecting the finite 
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size of the joint. 

It is assumed that the columns are constrained to 

deflect equally at each floor level due to the high in- 

plane rigidity of the floor slabs, and that the beams 

deflect with a point of contraflexure at their mid-span 

position. It is further assumed that the columns bend 

with points of contraflexure at their mid-height positions. 

The forces on the frame segment, and effective boundary 

conditions, are then as shown in Fig. 2.3. 

If a horizontal shear force of magnitude Q is 

applied at the node D, the resulting horizontal displace- 

ment is A. 

The slope-deflection method will be applied to 

analyse the different members of the frame segment, shown 

isolated in Fig. 2.4. 

For the member AE (Fig. 2.4(a)), the end reactions 

may be computed by statics to be, 

2MEA 
RA = di ...... (2.2) 

The slope-deflection equations applied to the 

elastic ends of the member will give, 

4EId 9A 2EId 
16E 

6EId 
1 

t2l 0E 

MAE =0=1- 11 - 11 2 

22 ý2 

8EId OA 4E Id1 3t1 
+1) 8E 

...... (2.3) 
111 

t 2EId ßA 4EId gE 6EIa t1® 

11112 DZEA RA. 2 ------- 2 
(72 

22 
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4EId 0A 4EId 3t 
= 11 -11 (2 + 1) eE...... (2.4) 

111 

On substituting equation (2.2) into equation (2.4) 

it is found that, 

4EId d1 4EId d1 
3t1 

DiEA =12 eA 
-12 (2 + 11) 

eE 
...... (2.5) 

11 

Eliminating 9A from the equations (2.3) and (2.5) 

MEA becomes, º 

6EI di 

MEA =- 
13 E ...... (2.6) 

1 

The same procedure when followed for the member 

EC will give, 

6EId 
2 

d2 

MEC _-13 6E 
...... (2.7) 

2 

If the equilibrium of the complete frame panel 

(Fig. 2.3) is considered, it is found that the horizontal 

reaction at the hinge B is equal in magnitude to the 

applied shearing force Q. 

For the member BE, the slope-deflection equations 

yield 

-4EIh 9B 2EIh 6E 6EIh (LA 
1- 

t20 
E) 1112 TiIIE =0= 

(2) - 
(2) 

+ 
(2)2 

"_- 8EI 
h 6B 4EIh1 3t2 24EIh1 Al 

e-e 
i(1 )eE+ 

2 
e 

000999 
(2.8) 
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2EI e thB 4EI e 6EI ( 
hE r1 

A 
1 

t 
- 22 8E) 

M EB 2- (ý) q. + _ (R) 
2 

(a- ( )2 

4EI1 ®B 4EIh t 24EIh A1 

_-. C-e 
1(2+ 3 e)8E+ 

2 
e 

"...... 
(2.9) 

Also 
MEß 

...... (2.10) 
(2) 

Substituting equation (2.10) into equation (2.9) 

yields, 

4EI11 
1h 

0B 4EIh h 
3t2 24E-Ih 

1h 
Q1 

18 DSEB =- 
e2 

- 
e2 

-(2 +eE 
e3 

...... (2.11) 
The slope 0B is eliminated from the equations 

(2.8) and (2.11) giving, 

6EIh h2 12EIh h 
11 MEB =- 

e3 
eE+ 

e3 
Al 

...... (2.12) 

Similarly for the member ED, the slope-deflection 

equations yield, 

6EIh h2 12EIh h 
DIED 8E +32(A_ tý 

1) ...... (2.13) 
e3 e 

In the above equations, h= storey height, I11 
1 

and Ih are the second moments of area of columns of two 

consecutive storeys, Id and I d2 are the second moments 
1 

of area of the adjacent beams of total lengths d1 and d2 

respectively, t1 and t2 are the length and height of the 

rigid arms, and 

e =h-t2 
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11 =d1 -t1 

12 = d2 - t1 

The resultant moment at E must be zero, so that 

MEA + NEC + 11 EB + 'DIED =00..... (2.14) 

The moments MEII and MED are equal, each being 

equal to Q. 2 
. From the equations (2.12) and (2.13) it 

follows that, 

A= 
h2 

Q+ I- 
I h2 h0....... (2.15) 

1 Ih1+ 1112 Ih1+ Ih E 

2 

On substituting equations (2.6), (2.7), (2.12), 

(2.13) and (2.15) into equation (2.14), the slope 0E at 

E may be expressed as, 

4 Ih Ih 
12h 

I11 + Ih 
e3 

e ý. z (2.16) 
Id.. Id ' d2 4 Ih Ili 2 1212h 

13 13 
+111+Ih 

e3 1212 

Consideration of the equation MEB MED Q2 

shows that the load-displacement relationship is 

Ih 
h 12Eh 1 

Ih 
2O (2.17) 

e3 
Ih1 Ih2 'h1 Ih2 

41" 2 

e3 
Ih + Ih 

1+12 
Id1 . d1 2 Id. d2 

2 

13 
+ 

13 12 

For an equivalent plate of the same width, 

subjected to the same shearing force Q (Fig. 2.3)) the 
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load-displacement relationship is, 

_ -1 h0900. (2.18) 

GA 

where G is the effective shear modulus and A is the 

plate area. 

From the two relationships (2.17) and (2.18), the 

shearing rigidity GA of the equivalent plate becomes, 

GA 24M 
Ih1 Ih2 

1 

e3 
Iý11+ h2 4h2 

1h1 Ih2 

e3 
Ih + Ih 

1+12 22 Id d1 Id2 d 

13 
+3 

12 

This relationship is applicable also to an 

(2.19) 

exterior column if the second moment of area of one of 

the beams is taken to be zero. 

If, as is normally the case with this kind of 

structure, Ihl 
1= 

Ih 
2= 

Ill, Id 
1= 

Id 
2= 

Id, and d1 = dl =d 

or 11= 12 =1=d- t1 

12E Ih h1 
GA = ...... (2.20) 

e3 Ih h2 13 1+Idd2 
e3 

If the finite size of the joint is neglected, that 

is, t1 = t2 = 0, the equation (2.19) for the effective 

shearing rigidity reduces to, 

GA =2E 

Ih 
1 (2.21) 

h2. Ihi+ h2 41h1 1h2 

Ih + Ih 

1+12 

.I`. I 

12 
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If a stiffer corner column is included in the 

analysis, part of the corner column area may be 

distributed to the adjacent end half bays to produce the 

equivalent uniform smeared plate area. The rest 

constitutes the area Ac, concentrated at the corner of 

the structure. When the analysis has been completed, 

the stresses, and the corresponding forces in these end 

half bays must be allocated as additional forces to the 

corner columns. 

2.4 METHOD OF ANALYSIS OF THE EQUIVALENT TUBE 

The equivalent tube composed of orthotropic plate 

panels is shown in Fig. 2.5, in which the stress system 

on a small element on each face is given. 

The equations of equilibrium for the normal panel 1 

are, in the absence of any body forces, 

a 6' Br äY+ 
az =o 

aZ + ay =o 

...... (2.22) 

The corresponding equilibrium conditions for the 

side panel 2 are, -, 

a 6X at xz ax +az=° 

(2 L3) 
3 61 2) rc 
az + ax =o 

It is assumed that the structure possesses two 

horizontal axes of symmetry, passing through the vertical 

central axis, so that the stress systems in the side 
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panels are identical, and those in the normal panels are 

equal and opposite. 

The orthotropic stress-strain relations for the 

two panels may be expressed as, 
21 

6Y = EYeY + EYzez 

ß-Z =EZeZ+ EYzeY 

2'yz = Gyz Yyz 

and 

vx -E xex 
+E 

xz et z 

tEtet Q-z zz 
+ Exzýx 

rxz Gxz Y 
xz 

...... (2.24) 

...... (2,25) 

where the two sets of equations refer to the normal and 

side panels respectively. In structures of this nature, 

the cross-elasticity terms Eyz and EXZ may be assumed 

negligible. In addition, since the spacings and 

properties of both beams and columns are assumed uniform 

throughout the height, 

EZ = EZ =E 

...... (2.26) 
Gyz = Gxz =G 

This latter assumption is not essential, but it 

does accord with the common practice which requires as 

great a level of uniformity as possible for simplifying 

the construction, and enables the complexity of the 

formulae to be reduced to a minimum. 

The assumption is now made that the stresses may 

be expressed with sufficient accuracy as a power series 
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in the horizontal coordinate x or y, the coefficients of 

the series being arbitrary functions of the height 

coordinate z. 

In order to model the anticipated distribution of 

vertical stresses cr in the normal panel, caused by the 

shear lag effect, the simplest approximation which may be 

used is a parabolic distribution. The stress distribution 

a'z may thus be expressed in the form, (cf. Fig. 2.6), 

6=II+ So(z) + (Y)2 S(z) ...... (2.27)* 

where S0(z) and S(z) are functions of the height 

coordinate z only and M is the bending moment-at any 

level. 

The second and third terms are thus perturbations 

on the basic beam theory stress given by the first term. 

Because of symmetry, only even powers of the normal 

coordinate y may be used. 

In equation (2.27) 1 is the second moment of area 

of the equivalent tube cross-section, given by 

I=3 tc2(3b + c) + 4Ac. c2 

where 2b and 2c are the lengths of the normal and side 

panels, t is the effective thickness of the orthotropic 

tube, and Ac is the cross-sectional area of the corner 

column. The value of I is equal to that of the 

individual column areas in the real structure. 

In the same way, the distribution of vertical 

stresses 6Z in the side panels may be expressed in the 

form, 

0-1 = 
11 (ý)3 S1(z) ...... (2.28) 
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In this case, because of the skew-symmetry of the 

stress distribution, only odd powers of the polynomial 

may be used. 

The condition of vertical strain compatibility at 

the corners requires that 

6z 
6z 

a'c(z) 

E 
(- b, z) =E (c, z) =E (2.29) 

where d is the axial stress in the corner column given 

by, on using equation (2.27), 

6= (cr) =I c+S +s 
y=b 0 

(2-30) 

In equation (2.29) the elastic moduli of the 

corner columns and the plates are assumed to be equal; 

as will generally be the case in practice. 

If the stiffnesses of the normal and side panels 

were not the same, and the corner columns were of a 

different material, different values of the effective 

elastic modulus E would be required in equation (2.29). 

Substitution of equations (2.27) and (2.28) into 

(2.29) gives, 

S1 =S0+S 
(2.31) 

006000 

The condition of overall moment equilibrium at 

any height is, 

bc 

2J6 tcdy+2 
(& 

txdx+4Acc6 M(z) 

-b , 1_c 

...... (2.32) 

where M(z) is the total bending moment at any level 

due to the applied lateral loading. 

On substituting equations (2.27), (2.28), (2.30) 
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and (2.31)*into (2.32) and integrating, it is found that, 

S --31 ms ...... 
(2.33) 

0. 

where Ac 
5b+ 3c + 15t 

m=A 

5b+c, +5- ° 
t 

which is always greater than unity. 
I 

The vertical stresses 6z and e2 may thus be 

expressed in terms of the single unknown function S(z) as, 

2 
6= I c- 3 m_ (b) S ...... (2.34) 

e'1 =Mx+(1, - -im) 
(C) 

3S0000.0 
(2.35) 

The stress in the corner column then becomes, 

rs 
y=b 

On substituting equations (2.34) and (2.35) into 

the equilibrium conditions (2.22) and (2.23), and 

integrating, the remaining stress components become, 

ß- b2c Y- 
=- 21 

[i21 
(b) 

dz2 
+ 12 

[(2m - 1) - 2m (y)2 + (b)4 
]d2 

2 dz 

yz =-YI dz -3Lm- (Ü)2] 
dz 
dSj (2.37) 

a3 sU 
Ac b 2A xi (a) 3 d2M 

21 
[2(3 

+c+ 
ct)+(1 

+ 2C + c)(c) - 3(c) 
]2 

ct dz 

22 
ý1 

3mß 20 
[0) 

- 
T51 d2 

dz 

ccx2 dM 1c1 dS 
xz - 21 

C1 
+ 2; + 

ct 

2A 

- ýcý dz + (1-3m) 4 
[T- (a)4 

c] dz 
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The integration constants were evaluated from 

the following boundary conditions, 

At x=_c, aX=0 

At y= "=b, 6=0 

The equation of equilibrium at the corner column is, 

Ac ao'c 

_b 
=t az rxz)x=c + ýyz) 

Y- 

yz 
is skew-symmetric with respect to the axis 

y=0. 

The following conditions are satisfied 

automatically as a result of the earlier equilibrium 

conditions that have been used. 

At x= +c, 6= 2t =- 2t 
dM 

dz 

Because of symmetry, each side frame will carry 

half of the total applied shear, so that, 

+c ºz 

tJT 
Xz 

dx = 2F =2fp dz =2 dz 

-c o 

where p is the total applied load per unit height of 

building, and F is the total shear force. 

The total strain energy U stored in the structure 

is given by, 

H +b 22 +c t2 2 

U=t Ez 
+ 

ry7)dy 
+z 

Gxz)dx 
dz 

so 

b 

I-C 

"A II 
+2ýccr dz 

.... .. 
(2-38) S0 

It is assumed that, because of the high in-plane 



29 

stiffness of the floor slabs, the horizontal strains are 

negligible, and the strain energy due to the horizontal 

direct stresses 6x and ¶ may be neglected. 

On substituting equations (2.34), (2.35), (2.36) 

and (2.37) into equation (2.38), the strain energy U may 

be expressed as, 

H +b Z 
U=t (E Si 

c-L 3m - (X)2 S dY 

,ý -b 

+b 2 2c c1M i21S +GyI dz -3m- (b) 
' 

dz dy 

-b 

+c 2 

+Er 
Ix 

+ (1 - 3m)(c)3 S dx 
J-c 

+c 
2 2A 1 c b c x 2 dM 

+ 
( [1 

+ 2 + ) 
] 

G 
J 

21 c ct c dz 

-C 

+ (1 mc 
1_ x) 4 dS 2 

dx 34S 
(C" 

dz 

+2 
Ac ic+ (1 - 3m)S 

2)dz 

...... (2.39) 

The strain energy integral must be a minimum, by 

virtue of the principle of least work. According to the 

rules of the calculus of variations, 
22 the condition for 

a minimum of U is that the variation of U, 6U, vanishes. 

From equation (2.39) the variation of U is 

expressed as, 

H +b 
bU = 2t Ic- 

[*rn 
- j(b) 

2S 3m - (b) 2S dy 
J0 

-b 
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+b 
1 

y2 cd 3l 1my2 dS 
_i m_ y2 dS dy 

I dz -3- ýbý 
dz 3 

ýbý adz) y 

_b 

+C 

+J 
Ix + (1 - 3M)(ý)3S ý1 - 3m)(c)3 

cS dx 

-c 

+c 2A 
+G 

fi 
1+ 2c + 2ct - 

ý2 
d+ 

-c 

Ii 
_x4 

dS 
_I 

c i_ dS ýcý 
dz ' 

{(1 
3mý4 $ 

(2E)4 
cSýdzý 

dx 

+ tEc 
Ic + (1 - 3m)S (1 - 3m) bS)dz 

and since b(dS) = d( 6S) 

there follows, on integrating by parts, 

(H 332 
bU = 2t 1 --G 945(35"2 - 42m + 15) + 225 

(1-3m)2 d2 

JJo dz 

co-lm) s +E 
2b (5m2 - 10m + 9) + 

2c(1-3m)2 + 
2A 

45 

3 2c4 2 
+G 45' 

(5m - 3) - 1051 
(1-3m) d 

(1Z 
2 dz 6S 

+ 2t 2b3 2 2c3 12 dS 
G 945 35m - 42m + 15) + 225 

(1-3m) dz 

20 4 ýi 

+ 451c (5m - 3) + 12c 
M) 

051 (1-3m) dz bS 
0 

=o ...... (2.40) 

Since the structure is free at the top the direct 

stresses c and O-z become zero at z=0. It, therefore, 

follows from equations (2.34) and (2.35) that 
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At z=0, S=0 
...... 

(2.41) 
Hence at z=0,6S =0 

Also since 5S(z) is arbitrary throughout the 

height, including the base, the integrand of the first 

term and the second term of equation (2.40) must vanish 

separately, resulting, together with equation (2.41), in 

the following differential equation and boundary 

conditions for S(z): 

A 
(1+7). 

d2S 7(5m2 - 10m + 9) + 5(3 - m)2 h- 

2- 
45 GE (H)2 

322 
dz 15(35m2 - 42m + 15) + 7() (3 - m) 

II 

7(5m - 3) - (b)3(3 - m) d2 6b 
= 45 2 (2.42) 

15(35m 2- 42m + 15) + 7(b) 3(3 
- m) 

2 dz 

At z=0, S=0 

c 
dS 7 (Sm -3) -(b) (3-m) d ý_ 

At z=H, dz - 45 
15(35m2 - 42m + 15)+I(Ü)3(3-m)2 dz 

...... (. 2.43) 

For convenience, and in order to indicate the 

relationship between the perforated tube stresses and 

those derived from ordinary beam theory, the right hand 

side of equation (2.42) has been expressed in terms of 

the stress 6b, given by 

cr M 
b=l c ...... 

(2-44) 

that is, esb is the stress in the normal faces assuming 

that the framed tube behaves as a simple cantilevered 

tubular beam. Since the function S(z) is a measure of 

the degree of shear lag in the normal panels, its relative 
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magnitude compared to the beam theory stresses is 

immediately apparent. 

The differential equation (2.42) and the boundary 

condition (2.43) may be written in simpler forms as, 

22d2 cs d2- (i) s= %2 
2b ...... (2.45) 

dz dz 

dis zd 

6b 
At z=H, dz - dz =0 """""" (2.46) 

where the parameters k and A are defined as 
A 

2GH2 7(5m2-10m+9) + 5(3-m)2 (1 +7 
c1-t1) k =45E (b) 

2_ c32 15(35m 42m+15) + 7(b) (3-m) 

...... 

(2.47) 

7(5m - 3) - (°-)3(3 - m) b 45 
15(35m2 - 42m + 15) + 7(b)3(3 - m) 2 

In the particular case where the corner columns 

are of the same stiffness as the others, so that they can 

be included as a segment of the equivalent orthotropic 

plates, the concentrated area Ac is zero, and the 

parameters k2 and a2 reduce to, 

k2 _9G (H)2 (3m2 + Ism - 6) 3- m) 
Eb (35m3 - 42m2 + 51m - 20) 

)2 _ _9 
45m3 - 72m2 - 33m + 32 
(3. - m)(35m3 - 42m2 + 51m - 20) 

and the cross-sectional shape of the structure is described 

by the ratio m, given by 

m- 55U-b ±+3c 

In the common practical case of a building with 
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square section of sides 2b and corner column area Ac, the 

parameters reduce to 

A 

k2 = 45 G (i) 2 10m2 - 25m + 27 + (3 - m) 
2 

bt 
EU 133m2 _ 168m + 72 

2_ 135(3m -'2) 
133m2 - 168m+72 

and the geometrical ratio m is expressed as 
A 

8b + 15 c 
t 

M`A 
6b +t 

In the case of a square section, where. the corner 

columns are of the same stiffness as the other columns, 

m is equal to 1.33. Assuming that the extreme ranges of 

shape would be given by the cases b= 2c, and 2b = c, the 

values of m range from 1.18 to 1.57. 

For practical structures, the value of k2 as given 

by equation (2.47)' is positive for all values of (12) and 
A 

(ct). 
Consequently, the homogeneous part of the solution 

of equation (2.45) may always be expressed in the. form, 

S=A cosh 
Hz+B 

sinh 
H-Z 

...... (2.48) 

The particular integral part of the solution will 

depend on the form of applied loading and the resultant 

stress 6-b" 

Solutions are derived for three standard load 

cases, a point load P at the top, a uniformly distributed 

load of intensity p per unit height, and a triangularly 

distributed load whose intensity varies linearly from 
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zero at the base to a value p at the top. Any 

trapezoidal form of applied loading may be obtained by 

the superposition of uniform and triangular load forms. 

A uniformly distributed or. trapezoidal form of loading 

may be used to simulate wind effects, whereas a combin- 

ation of point loads and triangularly distributed loads 

may be, used to simulate seismic effects. 

Case 1 Concentrated load P at z-= 0 

In this case, the applied moment M at any level z 

is given by, 

M=Pz 

and the datum stress of crb becomes, 

6PI. cz 
b 

The complete solution of equation (2.45), subject 

to the boundary conditions (2.41)and (2.46), then becomes, 

_)- 
X2 sinh k S( k6 b(H) cosh k ...... 

(2.49) 

where the base stress erb(H) = 
PIH 

and, 

for convenience, the solution has been expressed in terms 

of a non-dimensional height coordinate y given by 

_ -c--H 

Case 2 Uniformly distributed load p throughout the height 

In this case, 
2 

M= 2- and 6b= 2I z2 

The complete solution becomes, 

2\2ß. ýH) cosh k (1 - _) +k sink k_ 
-1 k2 b cosh k 

...... (2.50) 
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where o'b(ü) _ 'L 

Case 3 Triangularly distributed load 

For a load intensity which varies linearly from 0 

at z=H to p at z=0, 

P2 z3 M=-2 (Z - 31. i) 

nc 2 z3 and crb = 21 
(z - 3H) 

The complete solution is found to be, 

S(ý) _ 
3A 2 

v" (H) 2k cosh k(1 -)+ (k2-2) sinh k4 
_ 

k2 b 2k cosh k 

(1 -S)..... (2.51) 

where 
o"b(H) _- 31 

V-- -1 

Once the indeterminate stress function S has been. 

determined, the other stress components follow from the 

formulae derived earlier (equations (2.34), (2.35) and 

(2.37)). 

In the above analysis the strain energy due to the 

horizontal direct stresses crX and y were neglected and 

the simple second order differential equation (2.45) was 

obtained for the stress function S. If, however, the 

strain energy due to cr and y are also included in the 

total strain energy equation. (2.38) the analysis will 

yield a , fourth order differential equation. Such an 

equation will be more difficult to solve. For distributed 

load another boundary condition, which was neglected in 

the present analysis, becomes 
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At z=0, 
z- 

0 

The above boundary condition ensures that the 

shear stresses ryz and TXZ are zero at z=0. 

2.5 DESTGN CURVES 

The four important design stress components -, 

6Zt ,z yZ and t 
xz may be expressed in terms of the stress 
dS 

functions S and d7 as indicated in equations (2.34), 

(2.35) and (2.37). 

In order to produce simple design curves, it is 

convenient to express the stresses in the following forms, 

a-Z =6 'U -[ 
3m 

- (Ü)2 ] db(Ii) FiF2 

ýZ 
= öý(ý) -}- (1 3m) (ý) 3 6b(11) F1F2 

d 
yZ =-d 

6b 
-3- (b)2 a'b(1I) FiF3 (2.52) 

11 g 

2' - 1+2 
b+2Ac x2 

d_ 

xz 211 ca ct - ýcý 
dc 

+ (1 - 3m) 9 15.1 - (a) 4] 
mb(H) F1F3 

d 6b 
in which the parameters and functions 6b' d j, 

F1' F2 

and F3 for the three standard load cases are shown in 

Table 2.1. 

6b and 
d erb 
d are functions of the load form only. 

The function F12 equal to A Z, is a function only 

of the cross-sectional shape and relative size of corner 

columns, defined by the parameter m of equation (2.33). 

The functions F2 and F3 depend on the parameter k 
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and the height ordinate ý. As shown in equation 

(2.47), the parameter k is in turn a function of the 

parameters 
G, 

b and in. 

A set of curves showing the variations of the 

functions F1, F2 and F3 for all three standard load cases, 

for the range of parameters likely to be met in practice, 

are given in Figs. 2.7 to 2.13. 

2.6 USE OF DESIGN CURVES 

For a given structure, the values of the effective 

elastic and shear moduli E and G may be determined from 

the formulae given in Article 2.3. A knowledge of the 

cross-sectional dimensions b and c, and the area of the 

corner columns Ac, yields the value of the ratio m from 

equation (2.33), and the value of k follows from equation 

(2.47). The value of function F1, (i. e., X 2), 
may be 

determined directly from Fig. 2.7, or may be calculated 

from the formula of equation (2.47). For the standard 

load conditions specified, the values of the functions 

F2 and F3 follow from the appropriate curves in Figs. 2.8 

to 2.13, for the known value of k, for the level to be 

investigated. Knowing the values of a-b and 
eb 

d at 

the required level, the stress components follow from 

equations(2.52). 

Design curves have not been presented for the 

horizontal axial stresses X 
and 6 since they are 

generally small. However, if necessary, they may be 

obtained directly from equations(2.37). 
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,7 CALCULATION OF COLUMN AND BEAM FORCES 2 

The results from the equivalent continuous system 

must be transformed into the real discrete structure, 

The axial force in 1ny particular column, for example, 

will be obtained by integrating, graphically, numerically 

or analytically, the direct stresses or or 154 over half 

a bay width on either side of the column concerned. The 

axial forces in the corner columns will be obtained from 

contributions from the stresses in the end bays on both 

normal and side panels, and from the stresses in the 

corner column. The shear force in any column or beam 

will be obtained by integrating the appropriate shear 

stress over half a bay or storey height on either side of 

the column or beam respectively. 

The axial forces in columns and the shear forces 

in columns and beams for the normal and side panels are 

given below. The axial force in the corner area Ac is 

also given. 

NORMAL PANELS 

(i) The axial force in a column at position yi and level 

z is given by 

yi +2 

N = t 6 dy 
i Z d 

*Ti -2 

On substituting the value of cZ from equation 

(2.34) and integrating, the axial force becomes 

j" 
Ni --t d Qb- 3[m-2(3yi+ 42)S (2.53) 
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where S= eb(H)F1F2 and may be evaluated at that level 

directly from the design curves. 

(ii) The axial force in the corner column is given by 

b 

N1 =t 6'Z dy 

b-d 2 

2 2d 
-3fm-2 (3b2 -Z bd + 4) ] 

(II)FiF2 
Lb 

(iii) 
by 

(2. 
-54) 

The shear force in a column at position yi is given 

S =t ci 

Yi +Z 

dy 
yz 

d 
yi -2 

The value of 't'yZ may be substituted from equation 

(2.37) and then integrated, giving, 

tdyi d ab 2 
Sei --H ds -3m- 

b2 (yi + 
2) dS (2.55) 

where 
d= b(H)FlF3 

. 

(iv) The shear force in the corner column becomes 

b 

S = t c yz 
dy 

c i 
b _ 2 

a 

=-d (b - 
d) 

d 

Ib 
-3 

rm 
- 

12 (2b2 - bd + 
42) 

fi L 2b 

Q"b(H)FIF3 (2.56) 

(v) The shear force in spandrel beam at position yi 

and level 9. (zi ) is given by 
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zý +h 

Sb tT 
yz 

dz 

h 
zý -2 

=-typ 
[cij(zi 

+ 
2)'- h) 

-3rmb - (y. )2 

ýb(H)F1 
[F2zj 

+ 
2) 

- F2(z1 - 
2)J (2.57) 

SIDE PANELS 

(i) The axial force in a column at position xi is 

xi+d 
2 

Ni =t cr Z dx 

d 
xi -2 

= 
tcxl 

1.0-,:, 
+ (1 - 3m) 

c2 
(xi + 4) 

db(H)F1F2 (2.5$) 

(ii) The axial force in the corner column becomes, 

C 

N1 =t a-Z dx 

d 
c-2 

= 
td( 

d) 
ýab 

+ (1 - 3m) 4(c2 
- 

cd +$2 ) ab(II)F1F2 
c 

(2.59) 

(iii) The shear force in column at position xi may be 

expressed as 

Xi+ 2d 

Sc =t ir xz 
dx 

i 
d 

Xi -2 
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tcd b Ac 
12 d2 d G-b 

211 
11 

1+2c+2 ct 3c2 
(3xi + 4) d 

+1 (1 im} 1-1 (5x4 +I d2 X2 + 
d4) Q" (H)F F 10 -3C 

c4 
21 16 b13 

(2.60) 

(iv) The shear force in the corner column is 

c 

Sc =t 
JT 

xZ 
dx 

d 

2U 
ZAc 

+dcdd 
crb l; cci 

J[- 

4ii c+ et 2c2 - ýiý d 

b) . _ 
5(1-3 

nt) 1- 
4d ý 

(Sc3 -2 c2d +$ cd2 _ 
i3 

ßb(11) F1F3 (2.61) 
. 

(v) The shear force in spandrel beam'at position xi 

and level zj(ý j) is 

Z -{- Zh 

SbiJ t 
IT 

z d 
xz 

h 
zý -2 

tc b 2Ac x. -2 
=2 1+2 

c+ ct 
(c) 

ýb(zj + 
2) 

- a-b(zi _ 2) + 2(1 
_ 3m). 

x. 4 
5- c) jcrb(11)F1 

[F2(zj 
+ 

2)- F2(zj - 
2) 

(2.62) 
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CORNER AREA A_ 

The. axial force in the concentrated area A at the 
c 

corner is given by, 

NA Cr ccc 

On substituting the value of Cr from equation 

(2.36), N. is obtained as, 

Nc = Ac 
ý 

0'b + (1 - 3m) (rb(H)F1F2 } (2.63) 

The total axial force in the corner column is the 

sum of the three values obtained by equations (2.54), 

(2.59) and (2.63). 

2.8 ASSESSMENT OF LATERAL DRIFT 

Once the stress distribution is known throughout 

the structure, it is a relatively straightforward although 

tedious procedure to determine the'deflection at any 

position by means of the principle of virtual work. 

In particular, the lateral deflection & 
at the 

top of the building is given by, 

HbHc 

2t dy dz +2 Cr- .Et dx dz 
0 -b 0 -c 

H 

+4(c -E c 
Ac dz (2.64) 

0 

where is the true (direct or shear) strain, 0' is the 

virtual (direct or shear) stress in equilibrium with a 

unit lateral load applied at the top of the structure, 

and the suffix c denotes the corner column position. 

The stresses under a uniformly distributed load p 

may be evaluated from equations (2.34), (2.35), '(2.36) 
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and (2.37) and are expressed as, 

cr= J2 c 
(z2 

_2A2 H2 m2 
z 21 

(l 
k2 

r cosh k (1 - 
Zi) +ksinh ki 

L cosh k-1 

1-1 

a- - (X)z2 +2 
2 112 

3 
(1 Im) (X) . I 

21 
{c 

k2 
-3 

cosh k(1 - 
{) +k sinn 

! t-z 

cosh k-1 

c~ tZ2 +2 
Z2 

II2 (1 - -3! m)- 21 k 

cosh k(1 - 
i) +k sinh 

j- 

cosh k-1 

22 
T'yz '-iyz- 3k cosh k Ii 

[m 
- (b) 

]. 

sinh k (1 -+k cosh 
kam; I 

2 2A 2 
D-r- 

t[ 
1+2 ý+ 

mot- J(ý)2 Z+2k coshk1i(1-3m). 21 't'XZ= 

5- 
(ý)4 - sinh k(1 - H) +k cosh 

'Z 
11 C ... 1 

(2.65) 

The stresses due to a unit load applied at the top 

are given by, 

c _2 1y2 kz 
ýZ == 1z-k cosh k iI 3'n '. {bý sink 

2 

,z- cz 
+k 

cosh k 11 (i- 3m)(ý)3 Binh 
Hz 



44 

U= °- Z+ H(1 - 3m) sinh 
kZ (2.66) 

cIk cosh kH 

c- ý2 y2 "j kz 
Zyz =-Iy13 cosh kCmb1 cosh H 

2 2A 22 
ýxz 21 1+2c 

ctc -cJ+2 cosh k 
(1 - im). 

1 5- (c) 
41. 

cosh 11 C 
From the stresses given in equation (2.65) the 

true strains can be evaluated by the stress-strain 

relationships 

E'G 

Substituting the values of virtual stress a-, and 

true strain z 
it is found that 

Hb 

2t (rz .Ezt dy dz 

0b 

2Hb2 
=Eß"2 z-k cosh k 

3''i 
- (b)2 sinh 

Hz 

0 -b 

z2 -2 

2H2 
im 

- (b)2 
cosh k(i -H+k Binh 

tj 

-1 k23 cosh k 

dydz 

Integrating first with respect to y and then with 

respect to z it is found that 

Hb 

2 a' 
z 

E- 
zt 

dy dz = 
2pbc2H4t i, 

-2 
\2 (m - 1) 

0 -b 
E 12 3kß' cosh k 

(k2 cosh k- 2k sinh k+2 cosh k- 2) +4 
k4 cosh2k 



45 

2 
9_ 29 + 5-1). 

(2 cosh k-2 cosh2k - k2 +k sieh k+ 

k sinh k cosh k)I (2.67) 

Similarly the other virtual work components due 

to axial stresses become 

11 c 
tt dx dz =_ 

2pc3H4t 1+ 
22 

X2 
20 

ic 
a-z zE12 12 5k4 cosh k 

(1 - äm) . 
(k2 cosh Iz - 2k sinli k+2 cosh k- 2) 

12 +42 (1 - m) " 
7k casri k 

(2 cosli k-2 cosh2k - k2 + Iz sinh k+k sinn k cosli k)] 

(2.68) 

II 2pc2H4A 2 
Q' EA dz =c+2A (1 Vim). 

0c 
ccE I2 4 k4 cosh k3 

Ä4 2 
' (k2 cosh k- 2k sinh k+2 cosh k- 2)+ (1 - 3m) k4cosh2k 

(2 cosh lc -2 cosh2k - k2 +k sinh k+k sinh k cosh k)ý 

(2.69) 

The equations (2.67), (2.68) and (2.69) are added 

to give 

ý3 
4 s1 

_2c2t 
13 +9 

[(5m2 
- 10m + 9) h+ (3 - m)2. 

EI 16c t 

Ac) 4 
+ ý+ý 

4cosh 2k 
(2 cosh k-2 cosh2k - k2 +k sinh k 

"k 

k sinh k cosh k) (2.70) 

The deflection is caused by the cantilever 

action of the framed-tube. If the second term inside the 

bracket, which represents the effect of shear lag, is 
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neglected, 
8i becomes 

PIi sl 
8EI 

The above expression is identical to the one 

obtained in basic beam theory. 

The virtual work components due to shear stresses 

are 

Hb 

2 TyzIyz t dy dz 

0 -b 

-4 
1-'b3c- 1t22 

os 
(3m - 

5) [sinh 
k- k(cosh 1; -1)J -3G12-k cosh k 

A4 2 
+ (-3 -5+ 

2m 7)(k 
- sinh k+ sinh k cosh k) 

6k cosh2k 
7 

(2.71) 

Hc 
t dx dz 2T xz 

I 
xz 

0 -c 

2ýc5H2t; 2_ 2b2 
Ac 

b Ac 
(b 

2 Ac 2 

G I2 

11 
15 

+ tL3c 
+3 

Ct 
+2C 

Ct 
+ 

`C) 
+ (Ct. ý 

+42 (1 - 
3m) sinh k-k (cosh k- 1) 

105k cosh k 

+42 (1 - 3m)2(l; 
- sink k+ sink k cosh k) 

225k cosh k 
(2.72) 

The equations (2.71) and (2.72) are added giving 

_ 
2p 51,2t 

c S 2 2b2 
Ac 

' + + rb 
2b Ac 

+ ý+2 
Ac 2 ý ý 

22 
G I 

15 3 Ct 3C c Ct `C Ct 

+ 45 7 (3-m) - (5m-3)(c)3 2 + 3(c)3 
2 

k cosh k 
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(k Binh k- cosh k+ 1) + 135 15(3-m)2 + "(35m2 
- 42m 

+ 15)(b)3 
ý (k - sinh k+ Binh k cosh k) (2.73) 

Ck cosh 
2k 

The deflection 82 includes the racking of the 

side frames. 

The top lateral deflection for a uniformly 

distributed load is the sum of the two equations (2.70) 

and (2.73) and is given by, 

S= 91 + S2 (2.74) 

In the particular case of a square section of 

side, 2b the deflection equation is reduced to 

34 8_ 2pb HtI+1 1(5m2 
_ 10m + 9) + (3 - º)2. 

E12 16b3t 95 

A4 
(ý + bC 4o2 (2 cosh k-2 cosh2k - k2 +k sinh k 

k cosh k 

+k sinh k cosh k) 

2pb5H2t 2 Ac Ac 2 16 +G 
I2 15 +3 bt + Abt) 

]i(3m2). 

A2 (k sinh k- cosh k# 1) + ---(133m2-168m+72). 
k2 cosh k 14175 

A4 
----- (k - sinh k+ Binh k cosh k) 
k cosh2k 

Similar expressions may be derived for the other 

standard load cases. 

2.9 NUMERICAL EXAMPLE 

A 50-storey concrete high-rise building, shown in 

plan in Fig. 2.14, is considered with the following 
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dimensions: 

h 
.= storey height = 3.6 m, 

d= bay width = 3.0 m, 

2b = total width of framed tube = 24 m, 

2c = total depth of the framed tube = 12 m, 

t1 = width of the columns = 1.0 m, 

t2 = depth of the spandrel beams = 0.6 m, 

tw = thickness of columns and beams = 0.3m. 

The corner columns are twice the area of other 

columns. The building is subjected to a uniform lateral 

load of 1 kN/m height. 

For concrete, E= 22.24 x 106 kN/m2. 

The thickness t of the equivalent orthotropic plate 

Js given by 

dt = area of a column =1x0.3 m2 

.. t=3.0 = 0.1 m 

b 12 
=2 cU 

50x3.6=180m 

A= 1x0.3=0.3m2 
C 

Ac 0.3 
_ 0.5 

ct= 6x0.1 

5x1 2+3x6+1 
1 

M 
5x 12+6+5x1 

1.5185 0*3 
0. 

I= 3x0.1x62(3x 12+6)+4x0.3x62=244.8m4 

(7-b (H) 2x 244.2 8x6= 397.06 kN/m2 

A2 32.1475 - 0.1852 
- 45 x 478.912 + 1.9205 - 2.9913 
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Zh = 
0.312 13 

= 0.025 m4 

Id = 
0.3 x2o. 63 

= 0.0054 m4 

1 =d-t1=2. O'm' 

e=h- t2 = 3.0 m 

G xE= 11 
x 0.32x 

273 6"1 
+11.9753 = 0.044813 

k2 = 45 x 0.044813 x ý180)2 37.4095 + 24.6920 
12 478.9122 + 1.9205 

= 58.6013 

k=7.655 

sinh k= cosh k= 1055.6 

The columns and beams are numbered as shown in 

Fig. 2.14. 

Axial forces in columns 

The axial forces in columns at the second floor 

level are evaluated as follows 

_ 50 - 0.96 

bg20.9216 mb(H) 

kg=7.349 

k(1 - 9, )=0.306 

sinh ký= 777.32 

cosh k(1 -ý)=1.0472 

5s( )2"2.9913 (5.6380 - 1) = 0.4735 a-U(H) 58.6013 

Normal Panel 

The axial forces in the columns of the normal panel 
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are evaluated from equations (2.53) and (2.54) as 

N = 
0.1 x x 397.06 j 0.9216 - 3(1.5185 - 2.6406)0.4735 

1 
= 65.4378 kN 

N2 = 0.1 x3 x . 397.06 {O. 9216 -3 (1.5185 - 1-70300.4735 } 
J 

= 113.2498 kN 

N3 = 0.1 x3 x 397.06. { 0.9216 - 3(1.5185 - 0.7656)0.4735 

= 95.6240 kN 

N4 = 0.1 x3 x 397.06 
f 

0.9216 
l - 3(1.5185 - 0.20300.4735 

ý 

. 
= 85.0486 kN 

N5 = 0.1 x3x 397.06{ 0.9216 - L(1.5185 - 0.01563)0.4735} 
J 

= 81.5240 M. 

Side Panel 

The axial forces in the side panel are determined 

with the help of equations (2.58) and (2.59) as 

_ 
0.1 x3x5.25 N 12 x 397.06(0.9216 + 0.49383 x 0.78125 

1 
x 0.4735) = 57.5485 kN 

N 0.1 xxx 397.06(0.9216 + 0.49383 x 0.3125 2 
x 0.4735) = 59.2416 kN 

N3=o 

Corner area Ac 

The axial force in the corner area is obtained 

from equation (2.63) as 

N1 = 0.3 x 397.06(0.9216 + 0.. 49383 x 0.4735) = 137.6323 kN 

0 
0. Total axial force in the corner column 

= 65.4378 + 57.5485 + 137.6323 

= 260.6186 kN 
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Shear forces in columns 

The shear forces in the. columns are determined 

at the middle of the third storey. 

=5 
ALI =0: 95 

dcrb 

d=2c Crb(H) = 1.90 b(H) 

k=7.272 

lc(1 - 5) _, 0.383 

sinli k(1 - ¬2 )=0.3924 

cosh lz = 719.72 

dS 
_2x2.9913 d5 7.655 x 5,2189 

Normal Panel 

6- 00 = 4.0787 db(Ii) 

The shear forces in the columns of the normal 

panel are (cf equations (2.55) and (2.56)) 

S= 
c c 

i -0-1 
xx 11.25 x 397.06 jl. 90 3 - (1.5185 ). - 0.8828. 

l 
4.07871 _-3.8554 kN 

S =-0.118x 03 
x9x 397.06 { 1.90 - 3(1.5185 - 0.5781). c2 l 

4.07871 3.7014 kN 

S =-0.11x03 
x6x 397.06 { 

1.90 - 3(1.5185 - 0.2656). 
c3 

4.07871 _-0.7806 kN 

S =-0.118x 03 
x3x 397.06 { 1.90 - 3(1.5185 - 0.078125). 

c4 1. 
4.0787J = 0.1157 kN 

S =0 c5 

Side Panel 

The shear forces in the columns of the side panel 

" are (equations 2.60 and 2.61) 
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S=0.172x 06 
x3x 397.06 { 5.2292 x 1.90 -5x0.49383 x c1 

(1 - 0.4873)4.07871 = 9.4524 1-N 

S=o. 13x06 x3x 397.06 5.7292 x 1.90 + 10 x 0.49383 x 
C2 

(1 - 0.4727)4.0787) = 21.8218 kN 

S=0.13xö6 x3x 397.06{ 5.9792 x 1.90 +öx0.49383 x c3 
(1 - 0.0039o6)4.0787j = 22.9523 kN 

Shear forces in spandrel beams 

The shear forces in the spandrel beams are 

determined at the second floor level. 

zj+2 
11 

= 174.6m 

corresponding 1- 
118 6=0.97 

0 

= 171.0 m zj -h 

1.0 17 
corresponding 2= 180 = 0.95 

4rb(zj + 2) - äb(zi - 
h) 

_(1-ý, 
2) b(II) = 0.0384 mb(H) 

ký1=7.425 

k(1 - 1) = 0.230 

'sink k ý, 1 = 838.71 

cosh k(1. - 4 1) = 1.0266 

S(zj + 2) 
= 

258.6013 3x (6.0831 - 1) 

k42=7.272 

k(1 -; 2) = 0.383 

O-b(Ii) = 

0.51893 ab(H) 

sinhk; 2=719.72 

cosh k(1 -ý 2) = 1.0742 
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S(z. _ 
h) 

_2x2.9913 x (5.2203 
- 1) cT (ü 2- 58.6013 b 

= 0.43085 crb(ti) 

S(zj + 2) - S(zj - 
h) = 0.08808 b(H) 

Normal Panel 

For the normal panel the shear forces in the 

spandrel beams are evaluated as (equation 2.57) 

Sb 0.1 x 10.5 x 397.06 { 0.0384 - x, (1.5185 - 0.7656). 
1 

0.088081 =-6.7936 kN 

s 0.1 x 7.5 x 397.06 10.0384 
- 3(1.5185 - 0.3906). b 2 

0.08808 = -1.5738 kN 

sb 0.1 x 4.5 x 397.060. O384 - 3(1.5185 - 0.1406). 
3 

0.08808} + 0.3672 kN 

Sb = b - 0.1 x 1.5 x 397.06 j 0.0384 - x(1.5185 - 0.015625)- 

o. o88o8 J 
_+0.3409 kN 

Side Panel 

The shear forces in the side panels are calculated 

as (equation 2.62) 

s=0.1 x6x 397.06 (5.4375 x 0.0384 -2x0.49383 x b2 
0.11641 x 0.08808) = 24.5703 kN 

s=0.1 x6x 397.06 (5.9375 x-0.0384 +2x0.49383 x b2 2 
0.19609 x 0.08808) = 27.6669 kN 

Deflection at the top 

The deflection at the top of the structure is 

s_2x1. x 63 
6 

1804 x 0.2 x 1.000 10.70833 + (2.1377 + 
22.24 x 10 x (244.8) 

1.4110)0.014758 7 

+2x1x 
65 x 1802 x 0.1 x 1000 10.7167 -ý- 

0.044813 x 22.24 x 106 x (244.8)2 

45 
" (0.21164 - 36.740) 0.33975 + 
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135 
(0.14632 + 36.4885)1.1678 mm 

24.30 + 8.378 

= 32.678 mm 

2.10 COMPARISON BETWEEN APPROXIMATE SOLUTION AND MORE 

ACCURATE ANALYSIS 

Using the equivalent plane frame technique described 

in Chapter 1, Schwaighofer and Ast9 carried out a series 

of analyses on a range of framed-tube structures with 

different geometrical characteristics, and tabulated the 

results for the side frames only. 

All structures considered were square in plan, with 

a constant storey height of 12 ft., thickness of columns 

and beams 1 ft., and with 12 columns in each frame. Three 

different heights, three different ratios of bay width to 

storey height, three different column width and three 

different spandrel beam depth were considered. The 

analyses refer to the lateral wind load specified by the 

National Building Code of Canada, which allows for a 

uniform suction on the leeward side, and a variable 

pressure on the windward side of the building. 

The results obtained from the present simplified 

procedure are compared with the column axial forces given 

by Schwaighofer and Ast, for nine different representative 

50-storey buildings, in Table 2.2. The present results 

are based on a uniform pressure loading which gives the 

same total moment at the section considered, at second 

storey level, 24 ft. above the base. Similar results 

have been obtained for the range of structures examined by 
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Schwaighofer and Ast. 

It is seen that the maximum forces in the corner 

columns are generally predicted to a good degree of 

accuracy, although the errors are greater in the interior 

less highly stressed columns. In most cases, the values 

are conservative, and are sufficiently accurate for 

initial design studies. 

Unfortunately, Schwaighofer and Ast did not tabulate 

the forces in the normal panels, and so it is not possible 

to compare results other than in the corner columns. 

2.11 OPTIMISATION OF FRAMED-TIJ1E STRUCTURE 

2.11.1 INTRODUCTION 

Optimisation of a Framed-tube structure consists 

of proportioning the individual members of the structure 

to develop maximum strength and minimum lateral drift 

with minimum materials and cost. The level of optimis- 

ation depends on the number of design variables considered. 

One such variable is the stiffness of the corner 

columns. The corner columns may be of the same stiffness 

as the other interior columns or, as is usually the case 

in practice, they may be considerably stiffer than the 

interior columns. - The effect of variable corner column 

stiffness on the optimisation of the structure is 

investigated. 

Another variable which is considered-is the ratio 

of column width to spandrel beam depth. For the same 

total quantity of materials this ratio is varied and the 

effect on the distribution of stresses in the structure 
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and horizontal deflection at the top is investigated. 

2.11.2 EFFECT OF VARIABLE CORNER COLUMN STIFFNESS 

Due to the shear lag effect, corner columns are 

stressed more heavily than other columns in the normal 

panels of the structure. It may,. therefore, seem 

logical to concentrate more of the total column areas at 

the corners and less in the interior of the structure. 

But the effect of this unequal distribution of column 

areas on the stress distribution in the interior columns 

and spandrel beams and also on the lateral drift should be 

investigated. The stress in any single column is the 

sum of the stresses due to the axial force and due to the 

bending moment caused by the shear force in that column. 

For 'a spandrel beam the axial force has been neglected 

and the only stress is that due to bending moment caused 

by the shear force. 

In order to examine the effect of variable corner 

column stiffness, a typical concrete building of square 

section is considered, with constant storey height 12 ft. 

(3.66 m), total height 600 ft. (183 m), thickness of 

columns and beams 1 ft. (0.3 m), -total area of columns 

154.0 ft. 2 (14.31 m2), and with 12 columns in each frame. 

Three different ratios of bay width to storey height 

( 43 = 0.8,1.0 and 1.2), three different spandrel beam 

depth (t2 = 2.5 ft. (0.76 m), 3.5 ft. (1.07 m) and 4.5 ft. 
A 

(1.37 m)) and six different corner column area (ct = 0, 

0.2,0.4,0.6,1.0 and 2.0) are considered. The value 

of E for concrete is assumed to be 464,500 kips/ft2 
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(22.24 x 106 kN/m2). The structure is analysed for the 

same lateral wind load as in Article 2.10. The stresses 

in the columns and beams at the second floor level and the 

maximum deflection, at the top of the building are 

determined. 

The results of the analysis are shown in Figs. (2.16) 

to (2.24). The columns and beams are numbered from the 

corner to the centre of the side frame, as illustrated 

in Fig. 2.15. They indicate that the increase in the 

corner column areas has the beneficial effect of reducing 

the stresses in these columns. But it has the adverse 

effect of rapidly increasing the stresses in the interior 

columns of the side panels and the horizontal deflection 

at the top of the building. The stresses in the spandrel. 

beams also increase gradually. 

A large corner column area is, therefore, 

discouraged. An area of corner columns roughly twice 

those of interior columns appears to yield the optimum 

solution based on these limited criterion. 

2.11.3 EFFECT OF VARIABLE RATIO OF COLUMN WIDTH TO 

SPANDREL BEAM DEPTH 

The amount of shear lag encountered in framed- 

tube structures depends largely on the flexibility of the 

spandrel beams� With the columns remaining the same, 

any increase in the depth of the spandrel beams tends to 

reduce the shear lag effect. The horizontal deflection 

at the top of the structure is also reduced. It was, 

therefore, decided to examine the effect of a variable 
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ratio of column width to spandrel beam depth on the 

strength and lateral sway characteristics of the structure. 

The same typical concrete high-rise building of 

square cross-sectional area is considered, with constant 

storey height 12 ft. (3.66 m), total height 6oo ft. 

(183 m), thickness of columns and beams 1 ft. (0.3m), 

volume of the sub-system consisting of a column and a 

spandrel beam (Fig. 2.2.5) 65.0 ft. 3 (1.84 m3), and with 

12 columns in each frame. Three different ratios of bay 

width to' storey height (ý = 0.8,1.0 and 1.2), three 
A 

different corner column areas (-ct" = 0,0.2 and 0.4) and 

seven different ratios of column width to spandrel beam 
t 

depth (ti = 0.50,0.75,1.00) 1.25,1.50,1.75 and 2.00) 
2 

are considered. The structure is subjected to the same 

wind load as described earlier in Article 2.10. The 

results of the analysis of the structure are shown in 

Figs. (2.26) to (Z. 34). 

On examining the figures it appears that the optimum 

solution is obtained for a ratio of column width to 

spandrel beam depth ranging from 1.0 to 1.5. The ratio 

to produce optimum solution seems to increase with the 

decrease of J5 
(ratio of bay width to storey height) and 

also with the decrease of corner column area. 

2.12 MORE GENERAL ANALYSIS OF THE EQUIVALENT TUBE 

In Article 2.4 the vertical stresses in the normal 

and side panels were given by equations (2.34) and (2.35), 

where the first term in each equation represented the 

basic beam theory stress. For the side panels the 
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perturbation on the linear basic beam theory stress 

distribution was a cubic term in coordinate x. It. seems 

more appropriate that the perturbation consists of linear 

and cubic terns to represent more accurately the stress 

distribution in the side panels. To achieve this the 

vertical stresses in the two panels may be expressed in 

general terms as, (c. f. Fig. 2.35) 

2 
QZ =1+ (b) f2 ...... (2.75) 

er1 = (ß)f3 + (ß)3f4 
...... (2.76) 

where f1, f2, f3 and f4 are functions of the coordinate z 

only. 

The condition of vertical strain compatibility at 

the corner yields, 

fi+f2 = f3+f4 
...... (2.77) 

The condition of moment equilibrium at any height 

was expressed by equation (2,32). On substituting 

equations (2.75), (2.76) and (2,77) into equation (2.32) 

and integrating, it is found that 

Mc a+ 3n +1f+2 
ti =I- 3a + 3n +12 5(3a + 3n + 1) f4 (2.78) 

A 
where a=ý, .. = ---S and 

I 3tc2Ob+c) +4Acc2 

From equation (2.77) it follows that 

4 

f_M+ 2a f- . 
3(Sa + 5n + 0) f (2. -79) 3=I 3a + 3n +12 5(3a + 3n + 1) 4 
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The vertical stresses C- and C-t may, therefore, 

be expressed in terms of two unknown functions f2 and f4 

as 

Ma+ 3n +122 z -I c- 3a+ 3n 1- 
(b) f2+ 5(3a+ 3n + 1)4 

...... (2.80) 

3(5a + 5n + 1) xx3 
z=Ix+ 3a +23n +1c 

f2 - 5(3a + 3n + 1) cc 
]f4 

" ..... . 
(2.81) 

The second and third terms in equations (2.80) 

and (2.81) represent the perturbations on the basic beam 

theory stress expressed by the first term. 

The stress Q'c in the corner column then becomes, 

M 2a 2 (z)y-b=I c+ 3a+ 3n +12 5(3a + 3n + 1) f4 

...... 

(2.82) 

The equilibrium conditions for the normal and side 

panels were given by equations (2.22) and (2.23) 

respectively. On substituting equations (2.80) and (2.81) 

into the equilibrium conditions, and integrating, the 

shear stress components Tyz and- Txz are found to be, 

dM a+ 3n +11y21 df2 

yz -y dz 3a + 3n +1 3b ) 
dz + 

J 

2 df4 

5(3a + 3n + 1) dz """""" (2.83) 

2x2 dM ca Tc 
xz = IT (2a + 2n + 1) - (c) 

dz + 3a+3n+1 

x2 
df2 

c 7a + 7n +1 6(5a + 5n + 1) 3c 
dz 20 3a + 3n +1 3a + 3n +1 

ý 
(ý)2 + 5(x)4 dz 
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The conditions for evaluating the integration 

constants are identifal to those of the simplified 

analysis of Article 2.4. 

The total strain energy stored in the structure 

was given by equation (2.38). On substituting equations 

(2.80), (2.81), (2.82), and (2.83) into equation (2.38), 

the total strain energy U is expressed as, 

b2 

=tH1Mc- 
a+ n+1 y EI 3a+3n+1 - (byý f2+ $(3 

2 
a+3n+1f )4 dy 

0 -b 

b2 
12c Lim 

[a+3n+1 
1y2 

df2 2 
did 

+GJyI dz - 3a+3n+1 - 3(bß dz + 5(3a+3n+1)dz dy 

-b 

2 

,3 
(5a+5n+1) xx3 dx ý +LI x+ 3a+3n+1(c)f2 - 5(3a+3n+1) 

(c )-(c jf4 
_c 

2 

I 
(2a+2n+1ý2 dZ 

+ ca 2. 
3a+3n+1 3 +G 

Jcc 
2 

df 2c 
[7a+7n+1 6 (5 a+5 n+ 1) (Z)2 x4df42 dx dz - 20 3a+3n+1 - 3a+3n+1 ýc. + 5ýc) dz 

2 2A N1 2a 2 
tE I°+ 3a+3n+1 f2 + 5(3a+3n+1) f4 dz 

...... (2.84) 

The variation of U, SU) vanishes giving, 

Hb 
1Mc- ra+ n+ 1y2f+2f 
E 3a+3n+1 - (b) 

2 5(3a+3n+1) 4 
0 -b 

a+ n+1 
- (y) 2Sf+2 sf dy [3a+3n+1 b2 5(3a+3n+1) 4 
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b 

+1 y2 c dM 
- 

a+ n+1 
- 1()21 

df 22 
GJI dz [3a+3n+i b dz + 5(3a+3n+1) dz ' 

-b 

J ra+ ri+ 1 
- 3a+3n+1 

c 
Ix+ J 

-c 

2 Sdf2 2 d£4 

3(b) 
(dz )+ 

5(3a+3n+1) 
ýdz dy 

2a ß(5a+5n+1) 3 
3a+3n+1 

(c x) f2 - L53a+3n+1)(cx)-(xx) f4 

2a x Sf- 3 (5a+5n+1) x3 sf- dx 
3a+3n+1 

(c) 2- L53aý31) (2£) 
c-(C 4 

1 je c2 x2 (IM ca 1x2 
d12 

. }. G 21 

[(2a+2 
n+1)-(c) dz + 3a+3n+1 -(c) dz 

-c 

c 
17a+ n+1 6(5a+5n+1) x24d 

f4 

20 3a-h3n+1 - 3a+3n+1 
ýcý + 5ýcxý 

] 
dz 

ca x2 8(df2 c a+ n+1 
3a+3n+1 3-Cc) dz 

ý- 
20 3aa++33nf1 

6(5a+ n+1) (x)2 + 5(X)4 S(ddf4) dx 
3a+3n+1 cc dz 

2a 2 
+ 

2tE 

1IC+ 3a+3n+1 f2 + 5(3a+3n+1) f4 

3a+3n+1 
Sf 

2+ 5 (3a+3n+1) 
9f4 dz =0 

According to the theory of variations 

6 (df2) = d(6f2) ;6 (df4) =d (6f 
4) 

Integrating and rearranging the above equation 

yields, 

H d2g 

_1 
20 

c3a2(6a3+54a2n+1S3an2+18a2+102an+17a+7) 
2 

dz 
0 

+ 
E, 10ca(3a2+18n2+21an+7a+12n+2) f2 
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2f 

-}- 
1 2ý 3 

a(7a3 + 42a2n + 14a2 + 10a + 10n + 1) 
d2f4 

dz2 

1 IOca(3a + 3n + 1)f4 

,ý 
+1 a(3a + 3n + 1)(3a3+18a2n+6a2-1) 

ß2zdz 6f 
322 

H3 d2 f2 
+1 

27 
a(7a3 + 42a2n + 14a2 + 10a + 10n + 1) 2 G dz 

0 

f 1 10ca(3a + 3n + 1) 
E2 

3 d2f 
12 (105a3+135a2+135n 2 +270an+30a+30n+2) 

ý 
'G 105 dz 

6c (30a2 + 30n2 + 60an + 13a, +13n + 1)f4 

-. 
1 74 

1(3a +3n + 1)(35x3-10x-10n-1) 
2 ä2 dz Sf 4z 

+1 
10 

c3a2(6a3+54a2n+153an2+18x2+102an+17a+7) 
df 2 

21 dz 

3 df 

_ 
27 a(7a3 + 42a2n + 14a2 +10a +10n +1) dz 

_ 
534 

1 a(3a + 3n + 1)(3a3 + 18a2n + 6a2 - 1)dz sf 

H 

2 0 

3 df 
+G_ 

2ý 
a(7a3+42a 

2 
n+14a2+loa+10n+1) dz2 

2,3 
dý 

+ 
10S 

(105a3+135a2+135n2+270an+30a+30n+2) dz 
H 

+ 71 
(3a + 3n + 1)(35a3 - l0a - ion - 1) dz 

4=0 0 

...... 
(2.85) 
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The structure is free at the top and the vertical 

stresses cT'z and cZ are, therefore, zero, at z=0. It 

follows from equations (2.80) and (2.81) that 

At z=0, "L2=0 000000 

(2.86) 

Hence Sf 
2=0 

At z=0, f4 =0...... (2.87) 

Hence S f4 =0 

Since f2 and f4 are arbitrary throughout the height, 

including the base, the integrands of the first and second 

term of equation (2.85) have to vanish separately. The 

third and fourth term of the same equation must also 

vanish. This will give the differential equations for 

the functions f2 and f4 as, 

d2f2k22 d2f 
. 
ßi 2 d2 a- U 

dz 
H f2 - 0ý1 

ä+(H) 
f4 = ý2 

1 dz2 
(2.88) 

d2f2 k2 22d PZ 2Z d2crh 

dz2 
- (H) f2 °` 2 dz2 

+ 11 
)fq- ý2 

dz2 
(2.89) 

where the parameters k1, o( 1, 'ß 1, 
A 

1, 
k2, °C 21 

ý2 and 

A2 are defined as 

2=GH2 a(3a + 3n + 1)-(. i +6n + 2) k1 21 Eb 6a3+54a2n+153an2+18a2"1-102an+17a+7 

2 7a3 + 42a2n + 14a2 + 10a + 10n +1 
°ý1 5 

a(6a3 + 54a2n + 153an2 + 18a2 + 102an + 17a + 7) 

21 G(H) 
2 

a(3a + 3n + 1) 2= 
1Eb 6a3+54a2n+153an2+18a2+102an+17a+7 

2Z (3a + 3n + 1)( a3 + 18a2n + 6a2 - 1) Al 2 
a(6a3+54a2n+153an2+18a2+102an+17a+7) 
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2 
__ 

GH2 a2(3a + 3n 1) k2 35 Ebb) 7a3. + 42a2n + 14a2 + 10a + 10n +1 

21 105a3 + 135a2 +. 135n2 + 270an + 30a + 30n +2 a2 15 
a(7a3-+ 42a2n + 14a2 + 10a + 10n + 1) 

2 212 a(3a + 3n + 1)(10a + 10n + i) 
23 E(b) 7a3 + 42a2n + 14a2 + 10a + 10n +1 

2_2 (3a + 3n + 1)(35x3 - 10a - 10n - 1) A2 
a(7a3 + 42a2n +14a2 + 10a + 10n +'1) 

The boundary conditions for f2 and f4 may then be 

expressed as 

At z=0, f2 = 0 (equation 2.86) 

At z=0, f4 = 0 (equation 2.87) 

At z=H, 
df2 

dz 
2 df 

a1- 2d 6b. 
X1 

dz =0 (2.90) 

At z=H, 
df2 

dz 
2 äf4 

- °ý2 dz 
2 d6b 

2 dz =0 (2.91) 

Using the operator D, the homogeneous equations 

corresponding to equations (2.88) and (2.89) may be 

written as 

22 k: 
(D2 

H2)f2 
- (°< 

1D2 
ý2)f4 

0 (2.92) 

k2 2 
(D2 - 

H2)f2 
- (o( 

2D2 - )f4 = (2.93) 
H 

In order to satisfy the differential equation 
(2.92) the variables f2 and f4 may be expressed in terms 

of a new variable w as 
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f2 = (ä 2 D2 2 

k2 
f= (D2 - 

1)w 
4. H2 
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...... (2.94) 

...... (2.95) 

where w is a function of the coordinate z only. 

On substituting equations (2.94) and (2.95) into 

equation (2.93) it is found that, 

t (ýC1 -a2 )D4 -; 2 
(aik2 - oC2k1 + p1 - 432)n2 + 

ßt4 
(p 2 Ic2 -. 

21zi) w=o...... (2.96) 

The characteristic equation for the differential 

equation (2.96) is, 

(oC2 d2)m4 1 (0( 2k2 
C< 

2k2 
+ . 

ý2 2)m2 
+1 1- 20 TIT 1 2- 2112o 

Ii4 

2k222 ýý1 
2- . 

ý2k1) =0 

The above equation may be solved to give, 

2222 

2H2(OC 2- 
o(2) 

(a 
1k2 0( 21 1+1 X32) -ý 

12 

(« 2k22k2+ ja 2 2) 2=4 
(0( 2 

a' 
2) 2k2_ 2k2 ) 1 2- 211 -ý2 1- 212 P2 

1 

...... (2.97) 

For practical structures, the value of aspect ratio 
A 

m(= 
ý) 

should range from 0.5 to 2 and n (= 
ct) 

from 0 to 2. 

ý The values of m22, as given by equation (2.97), are 

positive for all values of m and n within the above range. 

The constant m0 has four values which may be 

expressed as 
± 

m1 and 
± 

m2. The solution of equation 
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(2.96) then becomes 

w= Al cosh miz + A2 sinh m1z + A3 cosh m2z + A4 sinh m2z 

...... (2.98) 

On substituting equation (2.98) into equations 

(2.94) and (2.95), f2 and f4 are found as 
2 

f2 = (o(2 
l m1 - 

1)(A1 
cosh m1z + A2 sinh miz) + 

2 
(o( 2m2 

-ß 
1)(A3 

cosh m2z + A4 sinh m2z) (2.99) 
Ii 

k2) 
(A1 cosh m1z + A2 sinh m1z) + f4 = (mi - TIT 

2 k 

. 
(m2 -- 

I12)(A3 
cosh m2z+ A4 sinh m2z) (2.100) 

The particular integral part of the solution will 

depend on the stress a'b, which in turn depends on the 

form of applied loading. - 

Uniformly distributed load n throughout the height 

In this case, 

O' -"c Z2 b 21 

d. 6" 
c 

dz2 

Let the particular integrals for the differential 

equations (2.88) and (2.89) be given by 

f2 -A5 ; f4 =A6 

Substituting the values of f2 and f4 into equations 

(2.88) and (2.89) yields 

22 ý1 
_2 pc 

II2 
ý$ + 

H2 
A6 -1I 
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k2 2 

_2A+2A 
A2 j2c 

H2 
5H621 

The particular integrals A5 and A6 are,, therefore, 

evaluated as 

2222 

_ 
ý1 A2 '2 -P 1 T)c 2 A$ = 
412 k2 2 k2 IH 

12- 
J3 

21 

A= 
Al 

2 

6 2 

2 k2 

2 

2 
-ý2 

2 

k1 z ßi2 
2 ý 

1 
k 

2 rß2 k 
1 

The constants A1, A2, A3 and A4 are determined 

frone the boundary conditions (2.86), (2.87), (2.90) and 

(2.91) and are expressed as 

-p_11 
2 ý12 2 (o(1k2-1322 

2)- A2(«11ý1 - p1) 
A2 1 I(m2-m2) (a2Iz2-ß2) m2 H2 (o(2 a 2) 1 

1211111 '" 2 

pcli2(sinh m1H-m111) 
AZ 

I(m1 2- 
m2) (o( iki 

- ßi) cosh m1H 

2(0 2k222222 
112- ß2) -ý2(°<k] 

m1II2(c< 
1- 

o( 2 )1 

r" 

peH2 

I(m2 - m2)(o 
2 ßt2 2 

1211 1) 

z22 ß2) - X2(a2k2 2 °ý 1k2 -221.1 - 1ý 
-2 

m2H2 0( 
2_ 

o(2 21 2) 

-pcII2 (sinh m2II - m211) 
A4 = 

I (mi-m2) (v( 2ki 
- ,ß 1) cosh m2H 
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ýi(a 
1k2 

- , 
ý2) - A2(d 1ýL1 

' , 
ý1) 

_>2 
m2H2 oC 

2- 
c(2 1 

21 2) 

The complete solution then becomes, 

(°( lm11L2 
-, ý1) 

f2 
H2(m2 - m2) (aC 21e2 2 

1211 -ý'1) 

; ý1(°( jk2 - ý2) - !, 2(0( 
ill _ ß1) 

- ý2 
ra21I2(o(i _ o( 

2) 1. 

cosh m111(1 -9)+ m1II sinh m1H ý 

L cosh ni1I1 J 

(o( 
12 m2H2 -ß 1) 

H2(m1 - m2) (a 
1Iz1 

i 

Ä 
i(a 2 k2 - P2) - >%2(0( 

1k1 - 
1) 

-2 
m2 2 H2(o(1 - o(2) 

cosh m2H(1 -)+ m2H sinn m2H 

cosh m2H 
2222 

+ ý`1 ß2 -Ä2 ß1 

2222 "". """ 
(2.101) 

ß1 
k2 - ß2 k1 

26 (11) - 

(m1Ii2 - k1) 
b222Z22 (m1 - m2) (o(1k1 - ,ý1 

A2 
A(d1k2 P2) ý2(aCk1 22 

m2H2(o( 
2_ 

o( 
2 

1 
.1 

2) 

cosh m1H(1 + m1H sinh m1H 

cosh m1H 
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(m2H2 - k1) 
+ 

H2 (m2 - m2) (a 
lk -p 

1) 

1(o( ik2 
- . 

ß2) -A 
2(o( 1ki 

- ,ß 1) 
-2 

m2H2 oC 
2. 

X 

- o( 
21 

2(1 2) 

cosh m2H (1 - 4) + m211 sinn m2II E, 

cosh m2H 

22_22 

+ 
ý1k2 2ý`1 

2k2 
-ß 

2Ic2 
1221 

Concentrated Load P at the ton 

In this case, 

M= Pz , 

LC- 
'a b= Zs 

d6b Pc 
d2 6b 

0 dz i' dz2 
= 

...... 
(2.102) 

The equations (2.88) and (2.89) become homogeneous 

and the solutions of the equations were given by (2.99) 

and (2.100). The constants of integration All A2, A3 

and A4 are determined to satisfy the boundary conditions 

(2.86), (2.87), (2.90) and (2.91). They are 

Al=A3=0 

P 
c 

A- 
2 (o( 2- 

o(22 )I (m1 - m2) m1 cosh m1H 2 

2 

C< 
2k 

1- 
2 °(1 -0(2)m2H2 +2 1- 

11 `ý 1 
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Pc 

A= 4 (o( 2- 
o( 2 

2) (m 
12-m2 

2) 
1m2 cosh m 2H" 

2' 

ý2 - 2k2 
1 

ß2 
(a 1 

-0(21 11 2 
+(°(Zk1 - , 

ß1) 

111 

On substituting the value of the constants into 

the equations (2.99) and (2.100) the variables f2 and 

f4 are expressed as 

f2 = 
a'U(I1) 

(« 
x- o2) (m2 -" m2)Ii2 

(oC 2- <2)m2ti2 + (o( 2111 - ß1) 022 

(o( 
1rn2H2 - , 

ß1) sinh m1IIS 

mill cosh m1H 

2 

_ A2 _ 
Al 

2k2 
(a i_c 2)m2112 

+ (a 2ki 
_ß i) 

l k2 ý1 

(o( 2m2H2 
- i) Binh m2II 

(2.103) 
m211 cosh m2H ...... 

2 
2 ý`1 

i" 
2- 2k2 2 

11- ý1 

f-b 
(H) 

ý2 - 
A2 1 

(c(1 cý 
2) (m1 - m2)H2 

22 kl -p2 

2+2k2 
21 

(m1I12 - kl) sinh m1l1 g 

m1It cosh m1II 
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2 

-2-2 21 2 

f(o(1 

- oC 
2) 

m1 H2 + (o( 21,1 
- ,ýi) a1 

1 -P1 

(m2H2 -k2) sinh m2H 

m2I1 cosh m2H """""" (2.104) 

Triangularly distributed load 

For triangularly distributed load which varies 

linearly from 0 at z= 11 to, p at z=0, 

_P2 
z3 M-2 (z ' 3H) 

6_ Z2 - 
23 

b 21 
( T{ 

2 d 6'b 
c 2Z Z2 

d 6b 
cz 

dz = 2I( - H) ' dz2 
=I (1 - Iý) 

The particular integrals of the equations (2.88) 

and (2.89) are evaluated as 

22 2ß 

k2 2 
1 

22 

22 H 
1 - J12 k 

2 
pdIi2 

X2 

12 

2 k1 

2 

2 
-1 

2 

2 k2 

2 
(1 - H) 

1 k 2 2 k 1 

The complete solutions of the equations (2.88) 

and (2.89) are 
2 

f2 = (o( 
imi - )(A1 cosh miz + A2 sinh miz) 

H 
2 

+ (oC2m2 - )(A3 cosh m2z + A4 sinh m2z) 
112 
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2222 
ý1ý`2 -ý2''1 

(1 - 
Z) 

....... (2.105) 2 k2 - ß2 k2 1 
1221 

k2 
i1 

f4 -: - 
(m - 2)(A1cosh m1z+ A2 sinh m1z) 

H 

k2 
+ (m2 2)(A3 

cosh m2z + A4 sinh m2z) 

2k2 2 k2 A2 1- ý1 2Li (1 - 
Z) 

....... (2.106) 
ß 2k2 2 k2 I II 

12 -ß2 1 

The constants of integration A1, A2, A3 and A4 

are determined from the boundary conditions (2.86), 

(2.87), (2.90) and (2.91) as 

-ncH2 
j3 

2 (m1 - m2) 
A1 

Iý°ý 1 k1 -1 

\I(c< 1 k2 - , 
ß22 

2)- 
ý2(o(1 k1 22 

- ý1) 

-2 (a 2 
-a 22 

) m2112 1 

pell 
2 21(d I2 

ki 2- 
i31) (°(1 - o( 

2) (M2 
- m2)m1 cosh mill 

2(o(i - o(2)m1H sinh m1H .2 

1(c 12 
k2 -ß2) -Ä 

2(a 1k1 
-1) 

-ý2 (°(1 -« 2)m1H2 
1 

[A21 
e2 222k2+ 2k2) 2A 2(°C2k2 

- , 
ß2) 

+112 
ý2 - ý1 2 P2 -211 

m211 
2 

ýi(o( 22 k1 2- ßi +2 0(i -2 0(2) +%2(d 2 ki 2 ) 
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A= pcH2 
2k22 

m2 m2 3 Iýý 11ý 11- lp 1ýý 12 

A i(o( 
ik2 -. ý2) - A2(0( 

1k1 -, ß1) 2 

(°< 2- 
o(2)m2H2 

1 

A_- ncH , 
21 c( 

2k2 2 
o(2 - o( 

2) (m2 - m2m cosh m211 (1 
1- 

ý1)( 
121 2) 2 

2(0(i -0(2) m2H sinn m 211 

2 2It2 p2) ý2 (a 2k2 2 
t 2- 2-2y 1- 1) 

2 (a 2-c 2)m2I1 1 

>, 
2 (2 0( 

2k2 2 j3 
22k2+ 

-2k2) -2 A2 (o(2 k2 -ß2) 1122m ý1 2 '2 1211.2H 
Z 

) 
-Ä2 (o( 2 

2k12- Ili +2 o(1 - 2o( 2)22+A2 (o( 
iki-ß2 

The values of the constants A1, A2, A3 and A4 may 

be substituted in the equations (2.105) and (2.106) to 

determine the variables f2 and f4. 

2.13 NUMERICAL EXAMPLE 

The problem considered earlier in Article 2.9 is 

solved here applying the general analysis of Article 2.12. 

a=b2 = 

A 
n =0.5 ct 

k2 - 21 2 (H) 22x8.5 x7-5.584358 G H2 
1Eb 447.5 >; b2 
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2 222 
°t1 52x 447. = 0.148827 

2 

, 
ýi 21 xE (b)2 4472 = 0.797765 

L b2 

ý1 =22. x 447.5 = 2.758939 

2 
2= 35 

E, (b)2 4 
22x228.5 = 5.360360 E H2 

b 

2 
0(2 - 15 2 x0222 - 0.264377 

q2 G II 22x8.5x 26 
= 5.972973 2 1I2 

i-2 
3 Eýbý 222 . 972973 F b2 

2 8.5 x 254 
= 2.431306 

2=22x 222 

m2 _1G 
112 

-5.853818 
± 134.267180_13.4402721 

° 
-2112 x 0.11555 b2 

= 45.077754 
E2 

or 5.582722 L2 
bb 

b 
or ± 2.362778 Eb "+6.713997 

FF 
mo =- 

2 
o( 

2m2Ii2 
-2=5.911022 

GH 
111E b2 

a im2li2 -2=0.0330947 
Ebi2 

2 

(mi _ m2)H2 = 39.495032 EG bg 2 
ji 2 

2 
a iki - ýi = 0.0333382 E H2 

b 

miH2 - k2 = 39.493396 G H2 
E b2 
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m2H2 - ki =-0.001636 E 
112 

2 b 

ý2k2 - ý2k2=- 29.078912 G2 

E2 

j, 4 
0 

22 A1 P2 
22 

-'>` 2Pi = 14.539458 
E 2 

b2 b 

ýik2 - X2k1 = 1.211623 E ßi 2222 

U 

ý2(a 
2k2-2222-2 

1]2 'ý2) -A (°( 
1k1 ý1) 

-A=-0.002197 
m2I12(oCi -c 

Z) 

2 2,2 22222 
A1(0( 1- 2 -ß2) -A2(oC 11- ßl) 2 

rn2IIL (oC 2- 
a(2 )_1= 

19.500385 
212 

The variables f2 and f4 are evaluated from 

equations (2.101) and (2.102) as 

E b2 5.911022 x 0.002197 f2 -2 6b(H) G 
1i2 39.495032 x 0.0333382 

cosh m1II(1 -V+ m111 sinn m1Ii ý 

cosh m1I1 

+ 0.0330947 x 19.500385 cosh m2H(1 -9 )+ m2II sink n' m 211 
39.495032 x 0.0333382 cos" m211 

14.539458 
- 29.078912 

E b2 cosli m 11(1- f)+m H sinh m II 
-G2 

6b (11) 0.019726 111 
H cosli m1H 

cosh m2H(1- 9)+ m211 sinh m21; 
+ 0.9803 

cosh m2H - 1.0 

E b2 32. 
-493396-x 0.002197 f4 =2 6b(H) G H2 39.495032 x 0.0333382 
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cosh m1H(1 - c) + m1H sinh m1H g 

cosli m1H 

0.001636 x 19.50038 
- 39.495032 x 0.0333382 

cosh m2 H(1 - y) + m2I1 sinn m2II"g 1.211623 
cosh m211 - 29.078912 

=G 
b2 b(H) 0.13180 

cosh m1H (1- g)+ ml11 sink m1I-i g 

11 cosh m1II 

cosh m21I 0- gý) + ni21I sinli in21I f 
-0.0484 cosh m211 -0.08333 

0.044813 

= 0.2117 

m111 6.713997 x 0.2117 x 180 21.32 

m2Ii = 2.362778 x 0.2117 x 182 
= 7.503 

cosh m1H = 9.088 x 108 

cosh m2H = 906.75 

The column axial forces are evaluated at the 

second floor level, where 

= 0.96 

m111; = 20.47 

m1H(1- ;)=0.8528 

Binh m1H ý=3.8853 x 108 

cosh m1H(1- ') = 1.3862 

m2H g=7.203 

m2H(1- S) = 0.3001 

sinh m2H ý= 671.73 

cosh m2H(1- t) = 1.0454 
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12 2 
f2 = 0.044813 

(180) (0.019726 x 9.1147 + 0.9803 x 5.5595 

- 1.0) 6b(11) 

= 0.4592 6-b(H) 
1 12 

4813 
(180')2(0.13180 x 9.1147 - 0.04846 x 5.5595 4=0.04 

- 0.08333) 6b(H) 

= 0.08416 6b(1) 

6b(z) _ c2 6'b (H) = 0.9216 6b(II) 

M 
-2 - (y) 2f+ 

-ý-ý f 6z=I c L17 b2 85 4 

6Z =Ix+8 (c) f2 -[ 
85 (c) - (c) 

3] 
f4 

The columns are numbered as shown in Fig. 2.14. 

Normal Panel 

(i) The axial force in column at position yi may be 

expressed as 

yi+12- 

N1t 6z dy 

yi-d 2 

2 
= td ß'b - L'7 

1 

3b 2 
(3yi +4 11 ) f2 +8 f4 

(ii) The axial force in the corner column becomes 

b 

N1=t 6'z dy 

b-d 2 

2 t2 b-- 
3b2 

(3b2 -2 bd + 4) f2+Pf4 17 

The axial forces in columns are, 
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N1 _ 
0.12x 

x 397.06 0.9216 -(9- 0.8802) 0.4592 + 

4x 0.08416 64.7192 kN 

N2 = 0.1 x3 x 397.06 0.9216 - (ý - 0.5677)0.4592 + 

85 
x 0.08416 

}= 
112.3452 kN 

N3 = 0.1 x3 x 397.06 0.9216 -( 17 - 0.2552) 0.4592 + 

85 
x 0.08416 ý= 95.2516 kN 

N4 = 0.1 x3 x 397.06 0.9216 - (ý - 0.06771) 0.4592 + 

85 
x 0.08416 = 84.9979 kN 

N5 = 0.1 x3 x 397.06 0.9216 .7 (ý - 0.005208) 0.4592 + 

x 0.08416 = 81.5792 kN 

Side Panel 

(i) The a xial force in colu mn at position x is given i 

by 

xi 
d 

Ni = t6Z dx 

d 
xi -2 

_ 

tdxi 

c 
8f 

b+ 17 2 
81 

-[ 85 
12d 2 

-- 2 (xi + )1f4 
C 

4 

(ii) The axial force in cor ner column is expressed as 

c 
N1 = t 6* dx 

d 
c -2 

td(c - 
2 

a 
4) 6 

b+ 1 
f2 _ 

81 
8 _ 

2 cd d2 (c -2+$ )] f 7 5 2 4 
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The axial forces in columns are evaluated as, 

N 0.1 x12 x 5.25 
x 397.06 0.9216 +8x0.4592 - 

(85 - 0.78125)0.08416 
1v 

= 58.5369 kN 

N2 _ 
0.1 x63 x3x 397.06 0.9216 +x0.4592 - 17 

(85 - 0.3125)0.08416 = 64.5497 kN 

N3 =o 

Corner area A 

The axial force in the concentrated corner area 

A is 
c 

4 
N1 = Aýý 6b + i7 f2 + 85 f4) 

= 0.3 x 397.06(0.9216 + 17 x 0.4592 + 85 x 0.08416) 

= 135.9916 kN 

Total axial force in the corner column is 

N1 = 64.7192 + 58.5369 + 135.9916 = 259.2477 kN 

If necessary, the shear forces in columns and 

spandrel beams may also be evaluated. 

The results obtained by the more general analysis 

are compared with the column axial forces at the second 

floor level given by Schwaighofer and Ast, for nine 

different frame combinations, in Table 2.3. 

The results of the more general analysis are also 

compared with the approximate analysis of Article 2.4 for 

the same frame combinations, in Table 2.4. 
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Framed-tube Column Column Column Column Column Column 
Geometry 123 4 5 6 

Bl. o/600/20-20 
N 
N` 1.00 1.38 1.49 1.53 1.53 1.54 

N 
`'I 6 8 1 30 B1.0/600/20-33 N 
s 

1.17 1.25 0.9 1.2 1.30 . 

N 
a 8 18 1 1 1 Bi. 0/600/20-45 N 
s 

0.95 1.0 1.15 1.17 . . 7 

N 
36 1 1 37 131.0/600/30-20 N 

s 
1.00 1.24 1.35 1.35 . . 

N 
a 6 1 1 1 1 131.0/600/30-33 N 
s 

0.97 1.12 1.0 1.14 . 5 . 5 

N 
2 6 6 1 1 131.0/600/30-45 N 
s 

0.9 1.00 1.05 i. o . 07 . 09 

N 
a 26 2 B1.0/600/40-20 N 

s 
0.99 1.14 1,24 1.25 1. 1. 4 

N' 
ý` 6 8 B1.0/600/40-33 N 
s 

0.9 1.00 1.05 1.07 1.0 1.11 

B1. o/600/40-45 
N 
Na 0.97 

S 
0.97 1.01 1.03 1.04 1.05 

Table 2.2 Comparison between Results of 
Schwaighofer and Ast and Present Approximate 
Solution. 

Note - In the above table, 

(1) Na and Ns are the column axial forces due to the 

present method and Schwaighofer's results 

respectively. 
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(2) The columns are numbered from the corner to the 

centre of the side frame. 

(3) The notation used to describe the geometry of 

the framed-'tube is that given by Schwaighofer 

and Ast. The four figures mean, respectively, 

the ratio of 

building hei, 

the depth of 

t1 and B are 

building (B 

bay width d to storey height h; the 
t 

ght (in ft. ); 100 where t2 is 
t 

the spandrel beams; 1200 B, 
where 

the column width and total width of 

2b = 11d) respectively. 
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Framed-tube Column Column Column Column Column Column 
Geometry 1 2 3 4 5 6 

B1.0/600/20-20 N' 
s 

1.04 1.34 1.33 1.26 1.20 1.17 

6 /2 
N 

0 1 1 16 1 1 14 1 10 1 08 00 0-33 B1.0/ N 

s 
. 99 . 5 . . . . . 

/2 6 
N 

o 6 1 o6 1 8 1 0 1 05 1 03 00 0-45 B1.0/ N 

s 
.9 . .0 . 7 . . 

0 20 / 6 
N 

02 1 22 1 1 2 24 1 1 21 1 19 
- 00 B1.0/ 3 

s 
. . . 7 . . . . 

0 / 33 6 
N 

0 98 1.05 1 0 1 09 1 08 1 08 - oo B1. O/ 3 
s 

. . 9 . . . 

N 
6 . B1.0/600/30-45 N 

s 
o. 9 1.00 1 03 1.04 1.05 1.05 

N 
B1.0/600/40-20 

s 
1.00 1.13 1.20 1.20 1.19 1.16 

B1.0/600/40-33 
s 

0.97 1.00 1.05 1.05 1.06 1.09 

N 
81.0/600/40-45 Na 

s 
0.97 0.97 1.01 1.03 1.04 1.05 

Table 2.3 Comparison between Results-of 
Schwaighofer and Ast and the 
Present more General Solution. 

Note: N9 and Ns are the column axial forces due to the 

present method and the. Schwaighofer's results 

respectively. 
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Framed-tube Column Column Column Column Column Colum 
Geometry 1 234 5 6 

2 /2 6 
N 

1 6 00 0- 131. o/ N 

a 
. 04 0.97 0.90 0.83 0.79 0.7 

/20 /6 33 1 03 0 8 88 8 8 - 00 B1.0 N 
a 

. .9 0.93 0. 5 0. 3 0. 

6 /2 
N 

02 1 8 8 88 00 0-45 B1.0/ 9 

a 
. 0.9 0.95 0.91 9 0. 0. 

B1,0/600/30-20 
N 
N 1.02 0.98 0.94 0.91 0.89 0.87 

6 / 
N 

1 01 6 00 30-33 B1.0/ j 
a 

. 0.99 0.97 0.9 0.95 0.94 

6 / 
N 

1 01 . 8 00 B1.0/ 30-45 N 
a 

. 1.00 0.99 0 9 0.97 0.97 

6 2 
N 

1 01 0 00/40- B1.0/ N 

a 
. 0.99 0.97 0.95 0.94 0.94 

B1.0/600/40-33 
N 
N 

a 
1.00 1.00 0.99 0.99 0.98 0.98 

131.0/600/40-45 
N 
N 

a 
1.00 1.00 1.00 1.00 1.00 1.00 

Table 2.4 Comparison between Results of 
Approximate Solution and the more 
General Solution. 
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CHAPTER 3 

ANALYSIS OF FRAMED-TUBE STRUCTURES SUBJECTED 

TO TORSION 

NOTATION 

The following symbols are used in this chapter: 

A area of corner column; 
c 

a aspect ratio (b/c); 

b half breadth of framed-tube; 

c half depth of framed-tube; 

d bay width; 

E elastic modulus; 

F2, F3 Design functions for bending action 

corresponding to functions R2 and R3 for 

torsional action ) 

G equivalent shear modulus; 

H total height of building; 

h storey height; 

k structural parameter; 

N axial force in column; 
A 

n ratio ° 
ct 

R1, R2, R3 design functions; 

r0, r, r1, r2 stress functions; 

S ' S shear forces in beam and column b c 
respectively; 

T torsional moment at any level; 

T concentrated torque applied at the top; 
0 

t thickness of the equivalent orthotropic 

plate; 
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to torsional moment per unit height; 

U total strain energy; 

x, y horizontal coordinates; 

zt, z vertical coordinates; 
R2 R 

design factor (F or F 
}; 

23 
e rotation at top of structure; 

geometrical ratio; 

non-dimensional height coordinate II 
direct stress; 

T shear stress; 

s 
St. Venant shear stress. 

3.1 INTRODUCTION 

In Chapter 2a method was presented for the 

simplified analysis of framed tube structures under bending 

actions. By replacing the discrete structure by an 

equivalent orthotropic tube, whose elastic properties were 

chosen to model both the axial and shearing or racking 

deformations of the framed panels, and making simplifying 

assumptions regarding the stress distributions in the 

structure, a simple second-order governing differential 

equation was obtained. Closed form solutions were 

obtained for three standard load cases, which enabled 

design curves to be derived for rapid approximate analyses 

of the dominant behaviour, suitable for design office use. 

Provision was made in the analysis for the 

inclusion of stiffer individual corner elements, since in 

many practical situations the four corner columns are 

designed to be considerably stiffer than the others. 
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A similar simple analysis, based on the same basic 

assumptions regarding the structural behaviour, is 

presented in this chapter for the torsional analysis of 

framed-tube structures. Closed form solutions are 

obtained, and design curves are developed for three 

standard torsional loading cases, corresponding to those 

considered in the bending analyses, namely a point torque 

at the top, and uniformly and triangularly distributed 

twisting moments. It is shown that the design curves 

are identical in form to those derived for the bending case. 

3.2 METHOD OF ANALYSIS 

The application of a torsional moment to a framed- 

tube structure produces two forms of deformation, a pure 

rotation and an out-of-plane warping displacement of the 

cross-section. The combined action may be considered as 

a combination of plane frame actions of the four panels 

and the effects of the interactions between the orthogonal 

panels. It is again assumed that the floor slabs act as 

rigid diaphragms so that all structural elements at any 

cross-section rotate equally under torque. Twisting 

moments will be resisted primarily by shearing actions, 

giving rise to shear forces S1 and S2 in the frame panels, 

as illustrated in Fig. 3.1. The interactions between the 

orthogonal panels consist mainly of vertical interactive 

forces along the corners A, B, C and D. Torsional moments 

resisted by individual beam and column elements are 

assumed negligible in comparison with the primary action. 

If the rotations are small, the frame panels may be 
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assumed to deform in their own planes. 

The spacings of the beams and columns are assumed 

uniform throughout the height, as is usually the case in 

practice. In addition, in order to simplify the analysis, 

it is assumed that both beams and columns are uniform 

throughout the height. This is not strictly necessary, 

and it is straightforward to extend the analysis to 

include a number of regions in which the beams and columns 

have constant stiffnesses. The framed-tube structure 

with different stiffness regions has been analysed for 

bending in Chapter 5 and a similar procedure may be followed 

for torsion as well. 

It is then assumed that each framework panel of 

columns and spandrel beams may be replaced by an equivalent 

uniform orthotropic plate, to form a substitute closed 

tube structure. The substitute tube is assumed to have 

a uniform thickness t, with vertical elastic modulus E and 

shear modulus G. The use of an artificially low shear 

modulus G enables the racking deformations of the frame 

to be simulated in a way that the usual. elastic moduli 

would not. The derivation of the properties of the 

orthotropic plate to model the vertical, horizontal and 

shearing stiffnesses of the frame panels was given in 

Chapter 2. 

The stress system on a small element of each face 

of the equivalent tube is shown in Fig. 3.2. 

The equations of equilibrium for the two mutually 

perpendicular panels are, in the absence of any body 

forces, 
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ß-X arxz 
aX +az 

a 67 a rxz 
- az + ax 

6- V 
a Zyz 

+z=o 

a6, az Z aZ +ay 

000000 

(3.1) 

.00.00 

(3.2) 

Because of the symmetry of the system, the 

distributions of the direct stresses will be skew 

symmetrical about the centre-lines of each panel, whilst 

the shearing stresses will be symmetrical. 

In order to model the anticipated distributions of 

stresses in the substitute system, as simply as possible, 

it is assumed that the shearing stresses may be expressed 

as parabolic distributions of the form, 

dro 
+x2 

dr 
Txz =dz 

(c) 
dz 

"""""" 
(3.3) 

dr1 
Y2 

dr2 

yz =, dz (b) dz ...... (3.4) 

where r0, r, r1 and r2 are functions of the height 

coordinate z only. 

Statically consistent distributions of the other 

stress components may then be obtained from the equili- 

brium conditions (3.1) and (3.2). 

The total shear force S1 at any level on face AB 

or DC is 

S1(z) =-t 
, 

IC 
Txz dx ...... 

(3.5) 
-c 
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where t is the thickness of equivalent uniform tube. 

The total shear force S2 on face AD or BC is, 

correspondingly, 

b 
s2 (Z) 

_tlyZ 
dy 

...... 
(3.6) 

-b' 

The equation of torsional equilibrium at any 

level is, 

2bS1 + 2cS2 = T(z) 000000 (3.7) 

where T(z) is the total applied twisting moment at that 

level. 

Substituting equations (3.3), (3.4), '(3.5) and 

(3.6) into equation (3.7) yields 

dro 
i dr dr1 dr2 

T 
dz dz + dz + dz - 4bct """""" (3.8) 

On substituting equations (3.3) and (3.4) into 

equations (3.1) and (3.2) and integrating, the vertical 

stresses 6z and 6z are determined asp 

r 000000 (3.9) 
c 

r 
6Z=-b22-00.. 

00 

(3.10) 

For direct stresses the skew-symmetry of the 

stress-distribution was used to obtain the constants of 

integration involved. 

The condition of vertical strain compatibility at 

the corners requires that, 
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E (V'Z) (o )= 

yýC ..... (3.11) 
x=c 

1J z y=b L 

in which 6 is the axial stress in the corner column, 

given by, 

6 (ß' ) 
...... (3.1.2) 

Cz X=c z y=b 

Substituting equations (3.9) and (3.10). into 

equation (3.11) it is found that 

b r2=cr 
000000 

(3-13) 

The vertical stress 6z, therefore, becomes 

Cz -- be r ...... (3.14) 

The equation of equilibrium for the corner column 

may be shown to be (cf 'Fig. 3.3), 

(T)+(T)= 
Ac a 6C 

...... (3.15) xz x=c yz y=b. taz 

where Ac is the cross-sectional area of the corner 

column. 

Substituting equations (3.3), (3.4), (3.9) and 

(3.12) into equation (3.14) gives 

dr0 dr dr1 dr2 
_ 

2Ac dr 
...... (3.16) UT + dz + dz + dz - et dz 

The functions r0 and r1 are evaluated from 

equations (3.8), (3.13) and (3. '16) in terms of the single 

function r as, 

dro T2 1h + 
Ac dr 

dz 8bct - (3 + 3'c ct) dz ...... (3.17) 

dr1=T-(3+ 

3b 
+A _a) 

dr. 

00000 

(3-18) 

dz 8bct c ct dz 



93 
The shear stresses Txz and Tyz may, therefore, 

be expressed in terms of the single unknown function 

r(z) as, 

T 
Txz =- 8bct -[ 3(a + 3n + 2) - (c)2 I 

dz (3.19) 

Tyz 8bct -[ 3(2a + 3n + 1) - a(b)2 
1 dz (3.20) 

where a= and n= ct ...... (3.21) 

On substituting equations (3.19) and (3.20) into 

the equilibrium conditions (3.1) and (3.2) and integrating, 

the horizontal direct stress components are evaluated as 

j' 2 
6=ct (X) !! -T +1 

[(a 
+ 3n + 2)(x)-(x)3 dr 

x 8bct c dz 3cc dz2 

...... 

(3.22) 

6. =b (y) dT +3 (2a + 3n + 1)(ý)-a(Y. )3 d2r 
y 8bct b dz bb2 dz 

...... 
(3.23) 

The skew symmetry of the stress-distribution was 

again used to obtain the constants of integration. 

The axial stress in the corner column becomes, 

_t2 G- ()=-Cr0000061 (3.24) 

X=C 

Because of the, skew-symmetry of the rotational 

deformations, the axial stresses in the corner columns A 

and C will be opposite in sense from those in B and D. 

The total strain energy, U, stored in the 

structure is 

Hcý6 Iý 2 
, ý, 

2 

U_t Ez +G xz dx + 
0 LJ-c 
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b ,, 22H 

JEz + GY-7 dy dz +2 -S 6ý dz (3.25) 

-b 0 

It is assumed that, as a result of the high in- 

plane stiffness of the floor slabs, the horizontal strains 

are negligible, and the strain energy due to the 

horizontal direct stresses, 6X and 6, may be ignored. 

On substituting equations (3.9), (3.14), (3.19), 

(3.20) and (3.24) into equation (3.25) the total strain 

energy may be expressed as, 
Hcc 

u=t4` r2x2dx +G 8bct JJ 
0 -c -c 

x2 cir 
2 

dx + 3(a + 3n + 2) - (c) 
dz 

bb 
22T 

+ 
Eb cry 

dy +G 8bct 
b 

-b 

- 
[*(2a 

+ 3n + 1) - a(b)2 
dZ 2 dy 

+ 
$A2 

r2 dz (3.26) 
Etc 

The strain energy integral must be a minimum, by 

virtue of the principle of least work. The condition 

for minimum U is that the variation of U, 6 U, must 

vanish, so that 

Hcc 

S U= 2t 4r Sr x2 dx +G -1 
T 

8 bct + 
0 -c -c 

[*aý3n+2) 

- (x)2dr 
' c dz 
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1 (a + 3n + 2) _ (c)2 S(dlir 
z) 

dx 3 

b 
4 +E 

1-b 
rSr y2 dy 

b 

+G 8bat - 
[*(2a 

+ 3n + 1)-a(b)2 dz 

-b 

3 (2a + 3n + 1) - a(b)2 S(dz dy 

8A 
-}- 2rsr dz =0 

Etc 

Since 6(dr) = d(ä r), there follows, by 

integration, 

H 

G 15 
(a + 1)(3a2 + 15n2 + loan + 2a + 10n + 3) a 2r 

dz 2 
0 

+E 3c 
(a + 3n + 1)r+G 12bt 

(aý" 3n + 1)(a - 1) -Z dz &r 

+1 
?ý (a + 1)(3a 2+ 15n2 + 10an + 2a + 10n + 3) dl 

G 15 dz 

I (a + 3n +1)(a- 1)T Sr=0 (3.27) - 12bt 
0 

Since at the top 6Z and -6-'are zero, it follows 

further that 

At z=0, r=0 

Hence at z=0, Sr =0...... 
(3.28) 

Also since Sr(z) is arbitrary, the integrands of 

the first term and the second term of equation (3.27) 

have to-vanish separately, resulting in the following 

differential equation and the boundary condition for r(z): 
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der aH2 a2(a + 3n + 1) -r 20 ( 
dz2 Eb (a + 1) (3a2 + 15n2 + 10an +. 2a + 10n + 3) IIZ 

-1 5(a - 1)(a + 3n + 1) dT - 8bct 
(a + 1)('3a2 + 15n2 + 10an + 2a + 10n + 3) dz 

...... (3.29) 

At z=H, 

dr 
_1 

5(a - 1)(a + 'fin + 1) T=0 dz 8bct (a + 1)(3a2 + 1511 2+ loan + 2a + 10n + 3) 

...... (3.30) 

The differential equation (3.29) and the boundary 

condition (3.30) may be expressed as 

2 ä- (H) 
2r=A2 ddrzs 

...... (3.31) 

At -z = Ii, dz A2 Ts =0...... (3-32) 

where the parameters k and A may be defined. as 

2- 20 G H)2 a2 (a + 3n + 1) k E(b (a + 1)(3a2 + 15n2 + 10an + 2a + lOn + 3) 

2_ 5(a - 1) (a + In +_1) 
(a + 1)(3a2 + 15n2 + 10an + 2a + 10n + 3) 

099009 

(3-33) 

For convenience, and to indicate the relationship 

between the perforated tube stresses and those derived 

from ordinary torsion theory of thin walled tubes, the 

right-hand side of equation (3.31) has been expressed in 

terms of ts, the St. Venant shear stress, given by, 
T 

Ts = 8bct 0"0000 

(3.34) 

The analogy between equations (3.31), (3.28) and 

(3.32) and the corresponding ones derived for the bending 
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of framed-tube structures in Chapter 2 (equations 2.45, 

2.41 and 2.46) will be obvious. 

In the particular case where the corner columns are 

of the same stiffness as the others, so that they can be 

included as a segment of the equivalent orthotropic plate, 

the concentrated corner area Ac is zero, and the 

parameters k2 and A2 reduce to 

k2 = 20 G (L)2 a2 
b 3a 2+ 2a +3 

000000 
" (3-35) 

ý2 5(a - 1) 

3a2 + 2a +3 

In equations (3.33) and (3.35), it is convenient 

to denote the greater side of the framed-tube by 2b, so 

that the aspect ratio a is always greater than or equal 

to unity. In that case, the parameters k2 and A2 are 

always positive. 

The homogeneous part of the solution of equation 

(3.31) may thus always be expressed in the form 

r= K1 cosh it z+ K2 sinh 
kz...... (3.36) 

in which K1 and K2 are integration constants to be 

determined from the boundary conditions. 

The particular integral part of the solution will 

depend on the form of the applied torsional loading and 

the resultant St. Venant shear stress Ts. 

In the particular case of a square section, a=1, 
2 

and the parameter A becomes zero. 

Solutions are derived for three standard load 

cases. corresponding to those considered for bending actions 
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in Chapter 2. 

Case 1 Concentrated torque To at the ton 

In this case, the St. Venant shear stress, Ts; is 

constant and is given by 
T 

0 
s 8bct 

The particular integral is zero and the complete 

solution of equation (3.31), subject to the boundary 

conditions (3.28) and (3.32), becomes 

A2 sinli k 
r(ý) =k if Z"s 

cosh k """""" 
(3.37) 

where ý is the non-dimensional height coordinate given 

by 

II 

Case 2 Uniformly distributed twisting moment of intensity 

to per unit height 

In this case, the total torque T at any level is 

given by 
tz 

T=tz and 'Z' =o 0. s 8bct 

The particular integral is given by, 

r=- 
ý2 t0 

H2 
k2 8bct 

and the complete. solution becomes, 

r 
A2 cosh k (1 - ý) +k Binh k-1 
k2 s cosh k 

t 11 
...... 

(3-38) 

where ZS(II) = 8bct 
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Case Triangularly distributed torque 

For a torque whose intensity varies linearly from 

zero at the base to a value of to per unit height at the 

top, 

2 
T= totz - 211 7 

2 

8bct 
tZ 

' 
21 

The particular integral is given by, 

r 
A2 to 2- 

z) 
k2 

8bct 1 
if 

The complete solution becomes, 

2 
r(, ) = 

2k H Ts(H) . 

2k cosh k(1 - .)+ (k2 - 2) sinn k 
2k cosh k 

. ".. "" tH 
(3.39) 

where T5(H) = 16b0 ct 

3.3 DESIGN CURVES 

The torsional loads will, in each of the three 

standard load cases, be given by a situation where the 

corresponding lateral load is offset from the central axis 

of the building. 

In order to produce simple design curves, it is 

convenient to express the four important design stress 

components ß"z' Cr z' 
Txz and T 

yz 
in the following forms, 

6'z -- 
?2H Ts(11) RiR2 
c 

6Z - 
bC H T's(H) R1R2 
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xz = - TS - 
[*a 

+ 3n + 2) - (X)2 
] 

S(H) R1R3 

Z'yz = is - 3(2a + 3n + 1) - a(b)2 
1 

TS(ii) R1R3 

. *00000 
(3-40) 

in which the parameters Ts, Ts(H), and the functions 

R1, R2 and R3 are given in Table 3.1 for the three load. 

cases. For convenience, the functions have been expressed 

in terms of the non-dimensional height coordinate c. 

The terms Ts and TS(H) are functions of load 

form only. 

The function R1, ---equal to A2 p depends only on the 

cross-sectional shape (a) and the relative size of the 

corner columns (n). Fig. 3.4 shows the variation of the 

function R1 with the two ratios a and n. 

The functions R2 and R3 depend on the stiffness 

parameter k and the height c. The stiffness parameter 

k depends in turn on the ratios 
E, b, 

a and n. These 

functions are of the same form as the corresponding 

functions F2 and F3 derived for the bending of framed-tube 

structures (cf. Table 2.1 of Chapter 2). It is seen 

that in the case of a point torque at the top, the 

functions R2 and R3 are identical to the functions F2 and 

F3 for a point load at the top; in the case of a 

uniformly distributed torque, the value of functions R2 

and R3 are half of the values of the functions F2 and F3 

derived for a uniformly distributed lateral loading; and 

in the case of a triangularly distributed torque, the 

values of the functions R2 and R3 are 3 of the values of 
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functions F2 and F3 derived for a triangularly distributed 

lateral loading. 

The variations of the stress functions F2 and F3 

with the parameters k and g' were shown in Figs. 2.8 to 

2.13 for the three corresponding lateral load cases in 

Chapter 2. Consequently the same curves may be used 

directly for the case of the corresponding torsional 

loadings, if the functions R2 and R3 are derived by 

multiplying the corresponding values of F2 and F3 in 

Chapter 2 by the factor (1,2, or 3 as appropriate) 

as indicated in Table 3.1. It is thus unnecessary to 

reproduce the curves in this chapter. 

In the case of a square tube, 

values of the stresses reduce to 

I= 6=0 

dt 
6=X 

dz 

rxz =-r 

A2 = 0, and the 

oy= -y 
ar 

dz 

3 'ry 
Z=Ts 

In this case, because of symmetry, the stress 

system degenerates to the case of a pure St. Venant 

torsional shear stress, and no warping occurs. 

3.4 USE OF DESIGN CURVES 

For a given structure, the values of the effective 

elastic and shear moduli, E and G, may be determined from 

the formulae given in Chapter 2 (Article 2.3). The 

values of a and n are obtained from equation (3.21) and 

the value of k from equation (3.33). The function R1 

(i. e., A 2) 
may be interpolated from the curves of Fig, 3,4 
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or evaluated directly from equation (3.33). For the 

standard load condition specified, the values of the 

functions R2 and R3 follow by factoring the values of F2 

and F3 by ', F2'and F3 having been obtained at the level 

being investigated, from the appropriate curves in 

Chapter 2. For this purpose, the corresponding standard 

loadings are: 

Concentrated torque T0 at top Point load at top 

Uniformly distributed torque = Uniformly distributed 

lateral load 

Triangularly distributed torque Triangularly distributed 

lateral load. 

Knowing the values of 'C's and Ts(II), the stress 

components at the level concerned are given by equations 

(3.40). 

Design curves have not been given for the horizontal 

axial stresses x and 6y since they are generally small. 

However, if necessary, they may be determined from 

equations (3.22) and (3.23). 

3.5 CALCULATION OF COLUMN AND BEAM FORCES 

The results from the substitute continuous system 

must be transformed into the real discrete structure to 

give the shears, and hence moments, and axial forces in 

the beams and columns. These are obtained simply by 

integrating the stress distribution over the particular 

bay width or storey level as required. 

The axial forces in the columns and the shearing 

forces in the columns and spandrel beams, for the two 
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mutually perpendicular panels are derived below. The 

axial force in the corner area Ac is also given. 

PANELS Al) & BC 

(i) The axial. fbrce in column at position yi is given 

by 
2 

y+ 1 
Ni =t6z dy 

d 
Ii -2 

On substituting the value of 6 from the equation 

(3.14) and integrating, the axial force becomes, 

- 
ltd Ni = be yi r ...... 3.41 

(ii) The axial force in corner column is 

b 

N1 =t dy 

b ,d 2 

td (b A) 
-4...... (3.42) 

(iii) The shear force in column at position yi is given 

by 

Yi+2 

Sc =t yZ 
dy 

id 
yi -2 

= td TS- 
3H 

(2a+3n+1)- 
b 
2(3yi + 42) dg 

...... 

(3.43) 

(iv) The shear force in corner column becomes 
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b 

S=t ITyZ dy 
ý 

bd 2 

2 d 
= 

t2 rs - 3H 
(2a+3n+1) -b 2(3b2- Zbd + 

d4 %j 
dý 

...... (3.44) 

(v) The shear force in spandrel beam at position y. 

and level zj is given by 

zj +2 

Sb. =tT yz 
dz 

1 
h 

zj -2 

For a concentrated torque at the top or a uniformly 

distributed torque for the whole height, the shear force 

in the spandrel beam may be expressed as 

Sblý 
=th Ts - 

{*(2a+3n+1) 
- a(- )2 

r(z + 11) 
- r(zj = 

11) (3.45) 

In the case of triangularly distributed torque the 

shear force in the spandrel beam becomes 

2 Sbij =t2H T(H) Zj 3 z2 
2+4 ) 

_ý 3(2a+3n+1) - a(bl)2ý 
{r(z 

+ Z11 ) -r(zj - 2)ý 

...... .. 
(3.46) 

PANELS AB DC 

(i) The axial force in column at. position xi is 

xi + 2 

Ni =tZ dx 2t2 
xi r ...... (3.47) 

C 
d 

xi 2 
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(ii) The axial force in corner column is given by 

c 
N1 t6Z dx _ 

t2 (c - 
11)r 

...... (3.48) 

d 
c-2 

(iii) The shear force in column at position xi becomes 

xi +d 

T dx S 
C. 

t xz 
d 

xi -2 

yi: 3 -t d+ (a+3n+2)- 2(3x + 42) 
. 

...... (3.49) 

(iv) The shear force in corner column is 

C 

Sc xZ 
dx 

1d 
C-2 

t2 V. + 311 
{(a+3n+2) 

- CZ(3c2 - 
2cd 

+d ý 
4)J] 

...... (3.50) 

(v) The shear force in spandrel beam at position Yi 

and level zj becomes 

zý +h _ 

dz Sb1J =tT xz 
h 

zj -2 

In case of a concentrated torque at the top or 

uniformly distributed torque, the shear force in a 

spandrel beam becomes, 

2 
Sb 

ith 

TS +3 (a+3n+2)-(-) r(zJ+ 211 
)-r(zJ 

2)l 
J 

"""""" (3.51) 
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In case of a triangularly distributed torque the 

shear force in a spandrel beam is 

2 
Sb.. = -t 2H Ts(H) z. - 6H (3z + h2) 

+ 3_ (X1)2 
1ý 

r(zi + 11) 
- 

h)j 
1 

...... (3.52) 

CORNER AREA A_ 

The axial force in the corner area Ac becomes 

Ný = Aý ß'ý 

On substituting the value of 6 from equation 

(3.24), NC becomes 

N=- 2ntr 
c ...... (3.53) 

The total axial force in the corner column is the 

sum of the three values obtained by equations (3.42), 

(3.48) and 

3.6 ASSESSMENT OF ROTATION 

The rotation at the top of the structure may again 

be evaluated by means of the principle of virtual work. 

The stresses under a uniformly distributed torque 

to may be evaluated from equations (3.9), (3.14), (3.19), 

(3.20) and (3.24) and are expressed as 
2 

\2 to H 
cosh k (I- -) +k sinh kg 6Z 

k2 4bc3t cosh k x 

-1 6 1\2 
tö 2E 

cosh k(1- £) +k sinh kV, 
Z k2 4b2c2t cosh k 
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2 2t0H 

cosh k(1- )+k sinn k F, ýc =- 
k2 4bc2t cosh k1 

tö-I A2 
Txz =- 8bct +k 

[(a+3n+2) 
(c)2 

k cosh k, - si. nh k (l 
cosh k 

H 
Tyz 8bct ' 

12 [*2a+3n+1) 
- a(ß)2 

k cosh k£- Binh k (l. - (3-54) 
cosh k 

From the stresses given in equation (3,. 54) the 

true strains can be evaluated by the stress-strain 

relationships 

E' ý' G 

A unit torque is applied at the top due to which 

the virtual stresses may be expressed as, 

1\ H a-z --k cosh k 4bc3t 
X sinh k 

6z -Hk cosh k22y sink k 
4b ct 

2~ 

ck cosh k2 sinh kgý (3.55) 
4bc t 

2 
ý' =I1+A 

[*a+3ný2_2 
cosh kg 

xz BUct cosh kc 

2 
'r' =11- -- --- 

[. 
&(21+3n1ý1) 

-a () 2 
cosh yz 8bct cosh kb 

The rotation 0 at the top of the structure is 
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given by 
Hc 11 b 

8=2t dxdz+2 t dydz+ 
L 

-c 0 

J-b 

"H 
4 (6 E )c Ac dz ...... (3.56) 

0 
On substituting the values of ß" and .E in equation 

(3.56) and integrating with respect to x and y the rotation 

0 becomes 

to H4 >4 
1 

8= 
12b2c3t E0 cosh k 

(a + 3n + 1) Binh le 

0 

cosh k (l +k sink k 
cosh k -1 dý 

t HZ 12 

+b2 (a + 1) ;, -o (a-1) (a+3 n+ 1) . 16b ctG 03 
cosh k 

cosh kSNZ 3k cosh k (a - 1)(a + 3n + 1)" 

Ck cosh k; - sinh k (l -} 

+4 (a+1)(3a2 + 15n2 + 10an + 2a + 10n + 3). 
15k cosh2k 

cosh k k cosh k; - sinh 'k (1 -) dS 

Integrating with respect to g the rotation 0 is 

found out as 

8= 
tH4 

3 
(a+3n+1) 

4 

42 
(2 cosh k-2 cosh2k 

24b 
2c 

tEk cosh k 

- k2 +k sinh k+k sink k cosh k) 
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t H2 
-f- 

0 (a + 1) 1- 4(a-1)(a+3n+1) A2 

32b2 ctG 
3(a+1) k2 cosh k 

(k sinh k- coshk+ 1) 

+ i5 (3a2 + 15n2 + 10an + 2a + 10n + 3) 
4 

.2 k cosh k 

(k - Binh k+ sinh k cosh k) 

...... (3.57) 

In the particular case of a square section 

( A2 = 0) of side 2b the rotation equation reduces to 

t H2 
8=° 

16b3 tG 
000000 

(3.58) 

Similar expressions may be derived for the other 

standard load cases. In case of a concentrated torque 

T0 applied at the top, the rotation 0 at the top may be 

expressed as, 

T H3 
a+3n+1 

)4 Binh 2k 8 
24b2c3tE k2 cosh2k 

2k 

+ 
T°i 

(a+1) 1°_ 2(a-1)(a+ n+1) A2 
tanh k 

16b2ctG 3(a+1) k 

+ 3Ö (3a2 + 15n2 + 10an + 2a + lOn + 3) 
\4 

" 
cosh 

2k 

Binh 2k (`---- 2k--- + 1) ...... ( '5-59) 

3.7 ASSESSMENT OF WARPING 

Due to the different senses of bending actions in 

the frame panels on opposite sides of the tube, warping 
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of the floor slabs will occur in rectangular tubes. The 

vertical strains which arise due to the direct stress 6'I 
z 

and (5- may be summed up to give the total vertical 

movement at each corner at the top of the structure, in 

order to determine the maximum relative movement between 

the corners. This warping action may be of importance 

when considering the action of torsion on non-structural 

partitions as well as the floor system. 

The total vertical movement, W. at the corner at 

the top of the structure is given by, 

II 

w dz ...... (3.6o) 
0 

On substituting equation (3.24) into equation 

(3.60), the vertical movement w becomes 

H 

w=-r dz ...... (3.61) 

0 

Solutions are derived for the three standard load 

cases mentioned earlier in Article 3.2. 

Case 1 Concentrated torque To at the top 

On substituting equation (3.37) into equation 

(3.61) and integrating, it is found that 

2 A2 2 cosh k-1 
w-- cE k2 

H rs 
cosh k ...... 

(3.62) 

T 
0 

where Ts = 8bct 
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Case 2 Uniformly distributed twisting moment of intensity 

to per unit height 

From equations (3.38) and (3.61) the vertical 

movement w is determined as 

2 A2 2 Binh k-k 
w=- cE k2 

H Ts(H) 
k cosh k ...... (3.63) 

tH 
where sT 

(H) 
8bct 

Case Triangularly distributed torque 

For a torque whose intensity varies linearly from 

zero at the base to a value of to per unit height at the 

top, the stress function r was given earlier by equation 

(3.39). On substituting equation (3.39) into equation 

(3.61) and integrating, the vertical movement w becomes, 

2 X2 2 
w=- ýE 2H s(H) 

tH 
where TS (H) = 16bct 

3.8 NUMERICAL EXAMPLE 

2 sinn k+k2 (cosh k-1) 1 

k cosh k - 1] 

...... (3.64) 

The high-rise building described in Article 2.9 

is analysed here for the case where the lateral load of 

1 kN/m height is offset from the central axis of the 

building by 0.1 times the total width of the building. 

The thickness t of the equivalent orthotropic plate 

is given by 

t_1.0 x 0.3 
_ 0.1 m 3.0 
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Ii = 50 x 3.6 = 180 m 

=2 a=6 

Ac = 1.0 x 0.3 = 0.3 m 

Ac 0ý . 
n et =6x0.1 = 0.5 

The uniformly distributed twisting moment is given 

by 

to =1 kN/m x 2.4 m= 2.4 kNm/m 

T- (11) _ 
tö1 

_ 
2.4 x 180 

= 75 1tN m2 s 8bct 8x 12 x6x0.1 " 

I11= 
0.312 1.03 

=0.025 m4 

0.3 x O. G3 
Id = 12 = 0.0054 m4 

e= h-t2=3.0m 

1=d- t1 = 2.0 m 

The value of 
E is calculated from equation (2.20) 

and is given by 

G_ 12 x 0.025 x 3.6 1-0.044813 
E 1.0 x 0.3 x 27 x 2.9753 

The values of k2 and \2 are determined from 

equation (3.33) as 

k2 = 20 x 0.044813 x (180)2 4-x 4.5 32.0517 12 3x 37.75 

k-5.6614 

X25x1x4.5 = 0.1987 3x 37.75 

cosh k= 143.7772 

sinh k= 143.7737 
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The columns and beams are again numbered as shown 

in Fig. (2.14) of Chapter 2. 

Axial forces in columns 

The axial farces in the columns at the second 

floor level are evaluated as follows 

I=H=0.96 

k; =5.4349; k(1- c) = 0.2265 

sinh k¬ = 114.6328 

cosh k(1- ý) = 1.0258 

The function r(; ) is calculated from equation 

(3.38) as 

r=0.1 
8x 

180 x 3.5209 32.0517 2'S(II) = 3.9289 S(H) kN/m 

The column axial forces in panels AD and BC 

(24 m sides) are found from equations (3.41) and (3.42) as 

_ 
0.1 x3x 11.25 

N1 = 12 x6x3.9289 x 7.5 1.3813 kN 

2x0.1 x N2 =- 12 x6x9x3.9289 x 7.5 =-2.2100 kN 

2x0.1 x3 N3=- 12x6 x6x3.9289x7.5-_ 1.4733kN 

N4 =-2 120.1 
E _I x3x3.9289 x 7.5 =-0.7367 kN 

N5=0 

Similarly the column axial forces in panels AB and 

DC (12 m sides) are determined from equations (3.47) and 

(3.48) as - 
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N1 =- 
0'36" x 5.25 x 3.9289 x 7.5 = -1.2892 kN 

N2x0.1 x3x3x3.9289 
x 7.5 =-1.4733 kN 2 36 

N3=0 

The axial force in the corner area Ac is given 

by equation (3.53) as 

Nc =-2x0.5 x 0.1 x 3.9289 x 7.5 =-2.9467 kN 

The total axial force in the corner column 

becomes 

- 1.3813 - 1.2892 - 2.9467 =-5.6172 1tN 
The distribution of axial forces in columns are 

shown in rig. 3.5. 

Shear forces in columns 

The shear forces in the columns at the middle of 

the third storey are determined as below. 

= 0.95 

T- s=ý 
TS (H) = 0.95 vs (H) 

k; = 5.3783 ' k(i -g)=0.2831 

cosh ký= 108.3291 

sinh k(1 -)=0.2869 

dr A 2Lk 
cosh k- 

dkH 
TsýHý E' Binh k(1 -) 

cosh k 

0.1987 
= 5.6614 x 180 x 4,2636 7S(H) 

= 26.9354 T 
S(H) 

kN/m 

The shear forces in the columns in panels AD and 

BC are evaluated from equations (3.43) and (3.44) and 
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are given as 

S = 
0.1 xx 7. 5 0.95 - (6.5 - 5.28125)26.9354 c i 540 

= 1.0004 kN 

S = 0.1 x3x 7. 5 0.95 - (6.5 - 3.40625)26.9354 C 2 540 
= 1.7903 kN 

s = 0.1 x3x 7. 5 0.95 - (6.5 - 1.53125)26.9354 c 3 540 

= 1.5799 kN 

s = 0.1 x3x 7. 5 L 
0.95 - 

L (6.5 - 0.40625)26.9354 c 4 S o 
1.4536 kN 

S = 0.1 x3x 7. 5 0.95 - (6.5 - 0.03125)26.9354 c 5 540 
= 1.4115 kN 

From equations (3.49) and (3.50), the shear forces 

in columns in panels AB and DC become 

S`-0.2 Xx7.5 { 
0.95 + 540 (5.5-2.3125)26.9354 

c1 

=-1.2476 kN 

S_-0.1 x3x7.5 0.95 + 540(5.5-0.8125)26.9354 *2 
2.6636 kN 

S_-0.1 x3x7.5 { 0.95 + 540(5.5 - o. o625). 26.9354 C3 

=-2.7478 kN 
The distribution of shear forces in columns are 

illustrated in Fig. 3.6. 

Shear forces in spandrel beams 

The shear forces in the spandrel beams at the 

second floor level are evaluated as follows. 

= 0.96 

zj +2= 174.6 m; corresponding t1 = 0.97 
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h 
zý -2= 171.0 m; corresponding ý2 = 0.95 

kg 1=5.4916, k(1- g1) = 0.1698 

sinh le 1= 121.3205 

cosh k(1 - t1) = 1.0145 

r(zi + 2) 
= 

32.0517 
x 180 x 3.7842 Zs(II) = 4.22273 Ts(11) 

k ¬2 = 5.3783, k(1 - f, 2) 0.2831 

sink k 12 = 108.3245 

cosh k(1- 42) = 1.0403 

r(zj - 2) = 3210517 x 180 x 3.2726 V(II) 3.65184 s(II) 

. 
". 

r(z + 
2) 

- r(z - 
2) 

= 0.57089 T5(1-1) 

From equation (3.45) the shear forces in the 

spandrel beams for the panels AD and BC are 

2 
Sb1 = 0.1 x 7.5 

[3.6 
x 0.96 -6- 2(1125) 0.57089 

= 2.3199 kN 

Sb = 0.1 x 7.5 
[3.6 

x 0.96 - - 2( 5)2 0.57089 
2 3 

= 1.9988 kN 

Sb = 0.1 x 7.5 
[3.6 

x 0.96 - - 2( 02 0.57089 
3 1 

= 1.7847 kN 

Sb = 0.1 x 7.5 
[3.6 

x 0.96 - - 2(112)2 0.57089 
4 

1.6777 kN 

The shear forces in the spandrel beams for the 

panels AB and DC are evaluated from equation (3.51) as 
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2 
Sb =-0.1 x 7.5 

[3.6 
x 0.96 + 1- 5- 

- 
`' 0.57089 

1 

=-3.1361'kN 
2 

Sb =-0.1 x 7.5 3.6 x 0.96 +- (1' ) 0.57089 

=-3.3502 kN 

The total rotation e at the top of the building 

may be determined from equation (3.57) as 

er2, x 18o4 x 4.5 
6x0.1 

82x3.7130 

24 x 144 x 216 x 0.1 x 22.24 x 10 32.05172 

+ 
2.4 x 18 02x 

32 x 144 x6x0.1 x 0.044813 x 22.24 x 10 

3 X. 
5 x 3ý 

x 4.6682 +3 

315 x5x0.9933) 

_ (0.9745 + 81.2352) x 10-6 

= 82.2097 x 10 
6 

radian 
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Fig. 3.2 Notation for stresses 
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CHAPTER 4 

FRAMED-TUBE STRUCTURE SUPPORTED ON ELASTIC BASE 

NOTATION 

The following symbols are used in this chapter: 

Ac = area of corner column; 

b= half breadth of framed tube; 

c= half depth of framed tube; 

E= equivalent elastic modulus; 

G= equivalent shear modulus; 

H= total height of building; 

I= second moment of area of framed tube; 

k= structural parameter; 

ko = modulus of supporting medium; 

M= applied moment at any level; 

m= geometrical ratio; 

P= concentrated load at top; 

p= intensity of lateral loading per unit height; 

S= stress function; 

t= thickness of equivalent orthotropic plate; 

U= strain energy; 

w= vertical displacement; 

x, y= horizontal coordinates; 

z, zt = vertical coordinates; 

A= geometrical ratio; 

= non-dimensional height coordinate I 

Cr = direct stress; 

6b= direct stress according to engineer's beam 

theory. 
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4.1 INTRODUCTION 

In the analysis of framed-tube structure presented 

in Chapters 2 and '3, it was assumed that,. the structure was 

supported on a rigid base. Closed form solutions were 

obtained for different loading conditions, which enabled 

design curves to be developed for the rapid approximate 

analyses of the structure under bending and torsional 

actions. 

The assumption of rigid base is not strictly true 

and the structure may be founded on a number of piles or 

may be supported on transfer girders on a series of 

columns along the perimeter of the structure at first 

floor level. The discrete supporting elements may be 

replaced approximately by a continuous elastic medium, 

whose elastic stiffness properties are chosen to model the 

axial deformations of the supporting elements. 

A similar simple analysis, based on the same basic 

assumptions regarding the structural behaviour, is 

presented in this chapter for the bending analysis of the 

framed-tube structure supported on an elastic base. The 

governing differential equation remains the same as that 

derived for the structure with rigid base, but the 

boundary condition at the base is modified to include the 

effect of deformation of the elastic base. 

4.2 METHOD OF ANALYSIS 

The wind forces acting on the structure will 

produce continuously distributed reaction forces in the 

supporting medium. It is assumed that the intensity of 
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the reaction forces at any point is proportional to the 

vertical displacement of the structure at that point. 

The reaction forces are assumed to be acting vertically 

and opposing the displacement of the structure. Hence 

where the displacement is directed downward there is 

compression in the supporting medium, but, on the other 

hand, where the displacement happens to be upward, tension 

is produced. 

In addition to the vertical reactions there will be 

horizontal forces along the surfaces where the structure 

is in contact with the supporting medium. The influence 

of such horizontal forces on the total strain energy of 

the structure is neglected in the following analysis. 

It is then assumed that each framework panel of 

columns and beams may be replaced by an equivalent uniform 

... _orthotropic plate, to form a substitute closed-tube 

structure. The derivation of the properties of the 

orthotropic plate to model the vertical, horizontal, and 

shearing stiffnesses of the frame panels was given in 

Article 2.3. 

The direct and shear stresses in the normal and 

side panels are determined in terms of a single unknown 

function S(z) as in Article 2.4. 

The stress-displacement relationship at the base of 

the structure for the normal panels may be expressed in 

the form 

(C-) )= kow ...... (4.1) 
z=H 
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where w is the vertical displacement at the base, and 

k0 is defined as the modulus of the supporting medium. 

If the structure is supported on relatively rigid 

girders founded on"a number of columns, it is assumed 

that the girders are supported on a number of independent 

springs whose stiffnesses are chosen to model the axial 

deformations of the columns. The spring stiffnesses are 

then diffused to produce a continuous elastic base for 

which the value of k0 may be determined. 

The energy stored in the supporting medium under 

the two normal panels is given by 

b 

Uf =t(6). w dy ...... (4.2) 
1 

-b 
Z=11 

becomes 

On substituting ko from equation (4.1) Uf 
1 

b 
t2 dY 

...... (4.3) Uff lto 
'-b 

6z 
z=H 

The energy stored in the supporting medium under 

the side panels, and the concentrated corner elements are 

similarly determined. The total energy stored in the 

supporting medium, therefore, becomes 

jb c 2 2A 
U f= 

ko 6 dy +( Zdx 
+ 

�bZ 

-c z=H 

...... (4.4) 

On substituting equations (2.34), (2.35) and 

(2.36)into equation (4.4) it is found that 

t 
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bL 
2 

1I 3m 
-()S dy 

-b 

c 32 
+kIx+ (1 

- m)ý S dx 
a 

_c 

2A 2 
+kcc+ (1 " 3m)S 

1 

Z=1I 
...... (4.5) 

The energy stored in the framed-tube structure is 

given by equation (2.39). The total energy stored ist 

therefore, the sum of the two equations (2.39) and (4.5). 

The variation of Uf, SUf is given by ' 

b 
bUf = 

kam' 
=c- 

[qjni 

_ (b)2 
°b 

- 3m 
- (b) 2. öS dy 

c 
+ iL 

Ix +1- a( 
2E) 3S (1 

.- 3m) 
(ý) sS dx 

0 
-c 

4Ac hi +kIc+ (1 - 3m)S (1 - 3m) as 
0 

z=I I 

On integration, SUf becomes 

SUI = 
rt 45(5m2 

- 10m + 9) + 2c(1 
- 3m)2 07 

...... (4.6) 

2A 
(1 -2+c 3m) 

.Sss t ...... (4.7) 

z=H 

The variation of the total strain energy is given 

by the sum of the equations (2.40) and (4.7). On 
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equating this variation to zero, the following governing 

differential equation is obtained. 

22d2 Cr ds_ (]z) S_ ý2 b 
...... (4.8) 

dz2 Ii dz2 

where the parameters k and A are defined as 

A 

2G jý 2 7(5m210m+9) + 5(3-m)2 b ct 
L 

0(1 +7 2) 
k= 45 (b) 

15(35m2-42m+15) + 7(1)3 (3-m) 2 

7(5m - 3) - (`-")3(3 - m) A2=45 b 
15(35n2 - 42m + 15) + 7(f) 3 (3 - m) 

2 

....... (4.9) 

The differential equation (4.8) and the parameters 

k and A given by equation (4,9) are identical to the 

corresponding ones derived for the bending of-framed-tube 

structures with a rigid base (equations 2.45 and 2.47). 

The boundary conditions are 

At , z=0, S=0....... (4.10) 

dS Ek 2S 2d 6b 
At z II dz +kHS 

dz =0....... (4.11) 
0 

On. comparing the boundary condition (4.11) with 

(2.46) it is found that the equation (4.11) contains an 

extra term j 
(H )2S on the left hand side of the equation. 

0 
This term vanishes for a structure founded on a rigid 

base when ko = oC . 

As before, the homogeneous part of the solution of 

equation (4.8) may be expressed in the form 

S=A cosh 
Hz+B 

sinh 
Hz....... (4.12) 
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The particular integral parts of the solution are 

derived for the three standard load cases discussed 

earlier. 

Case 1. Concentrated load P at the top 

In this case, the applied moment M at any level z 

is given by 

M=Pz 

and the datum stress öb becomes 

6 -c 
Z bI 

The equation (4.8) becomes homogeneous, so that 

the particular integral part of the solution vanishes. 

The constants A and B in equation (4.12) are 

determined from the boundary conditions (4.10) and (4.11) 

as 

A=0 

" ý, 2 
ß=k ß-b(H) 1. 

cosh k+kI; sinh k 
0 

The complete solution of equation (4.8) then, 

becomes 

2 
S( )_6 (H) sinh k 

..... (4.13) k 
cosh k+k Li 

sinkk 
0 

where 6b(Ii) = 
PIH 

and = II 

When the base is rigid, ko = oC , and S (q ) 

reduces to that of equation (2.49) derived earlier. 
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Case 2 Uniformly distributed load p throughout the height 

In this case, 

2 
M= 2" and Cr b= ZI z2 

The particular integral part of the solution is 

S= -X2 
k2 1 

The constants A and B are determined as 

A= 
ý` 2 

ncii 
2 

k2 1 

(1 - cosh k) 
B`A2 pclt2 

k- si. nhk+ ko rý 

k2 I 
cosh k+k iI 

sinh 1: 
0 

The complete solution becomes 

S(ý) = 
21 L 6b(11) D 

cosh k(1 - ¬ý )+k sinn kg 

+Ek Binh k1 ko lI (-)+ sink kfý -1 

....... (4.14) 

where D= cosh k+ k'' 
11 sinh k ...... (4.15) 

0 

For a rigid base the equation (4.14) reduces to 

that of equation (2.50) determined earlier. 

Case Triangularly distributed load 

For a load intensity which varies linearly from 

0 at z= 11 top at z= 0, 

2 Z3 ( M= 2z _ iii) 

3 222 
and 6b = 2Iýz - 31I 
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The particular integral part of the solution is 

given by 

" ncli2 z S=- 
k2 

The constants A and B are found out as 

A= 
ý2 H2 

k2 

, \2 cIi2 
k-k-2 sinn k-21E li 

cosh k 
0 II = 

x--- 

k 21 
cosh k+ sinh k 

0 

The complete solution of equation (4.8) then 

becomes 

2 3Ä[ 
2 

ßb(11) 2D 2 cosh k (1- gý )+ (k - 
k) 

sink lc 

+2E 
Ii 

sinn k(1 
0 

...... (4.16) 

where D was given by equation (4.15). 

For a structure supported on rigid base the 

equation (4.16) reduces to equatign (2.51) derived 

earlier. 
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CHAPTER. 5 

FRAMED-TUBE STRUCTURE WTT11 DIFFERENT 

STIFFNESS REGIONS 

NOTATION 

The following symbols are used in this chapter: 

A, 
cA c2 areas of corner columns; 

l 
b half breadth of framed tube! 

c 

E1' E2 

GG2 

Ii 

Iii 

11' 12 

k1' k2 

M 

in 

P 

half depth of framed tube; 

elastic moduli of equivalent tubes; 

shear moduli of equivalent tubes; 

total height of building; 

level of building where the lower region 

begins; 

second moments of area of framed tube; 

Si' S1' S1' S2 

tl' t2 

U 

x, y 

z, z 

Q" 

°-_ b 

7 

structural parameters; 

applied moment at any level; 

geometrical ratio; 

intensity of lateral loading per unit 

height; 

stress functions; 

thicknesses of equivalent tubes; 

total strain energy; 

horizontal coordinates; 

vertical coordinates; 

direct stress; 

direct stress according to engineer's 

beam theory; 

shear stress. 
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5.1 INTRODUCTION 

In the analysis of framed tube structures described 

in the earlier chapters, the spacings of beams and 

columns were assumed uniform throughout the height, as is 

usually the case in practice. In addition, in order to 

simplify the analysis, it was assumed that both the beams 

and columns were of uniform section throughout the height. 

This latter assumption is not strictly necessary and in 

practice the structure may include a number of regions in 

which the beams and columns have constant stiffnesses. 

A simple method of analysis, similar to the one 

described in Chapter 2, is presented here for structures 

with variable beam and column stiffnesses in different 

regions. The spacings of beams and columns need not 

necessarily be the same throughout the height but in a 

particular region the spacings must be uniform. 

In many cases, the four corner columns are 

considerably stiffer than the other columns, and provision 
is again made in the analysis to include stiffer corner 

elements. 

5.2 METHOD OF ANALYSIS 

The framed tube structure, shown in Fig. $. 1, 

includes two regions in each of which the beams and columns 

have constant stiffnesses and uniform spacings. The 

framework panel in each region, consisting of columns and 

spandrel beams is replaced by an equivalent uniform 

orthotropic plate, to form a substitute closed-tube 

structure. The properties of the orthotropic plate must 
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be so chosen that, under the action of identical axial or 

shear forces, the axial and shear deformations of both 

framework and equivalent orthotropic plate will be equal 

(Chapter 2). 

The equations of equilibrium for the normal and 

side panels of the, substitute tube may be expressed as, 

-a aT Z° -1,6' +ä 

000000 a6z aTyz 
bz+ ay ° 

aX + aZ 
1 

...... 
(5.2) 

The vertical stress distributions 6'Z and ö' in 

the normal and side panels of the upper region (0 z< H1) 

may be expressed in the form, (cf. Fig. 5.2), 

M2 
=Ic+ S1 + b) S1 

...... (5.3) 
1 

°rZ -Mx+ (c) 
3S...... 

(5.4) 

In equations (5.3) and (5.4) I1 is the second 

moment of area of the substitute tube cross-section in the 

upper region, given by 

I1 =3 ti c2 (3b + c) + 4Ac c2 
1 

where 2b and 2c are the lengths of normal and side panels, 

t1 is the effective thickness of the orthotropic tube, and 
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Ac is the area of the corner element. 
i 

The condition of vertical strain compatibility at 

the corner requires that 

ý'z (± b, z) 6' z 
(c, z) 

...... (5.5) E1 ý1 ýf1 

where E is the elastic modulus of the upper region, and 

6c is the axial stress in the corner column given by, on 

using equation (5.3), 

a- _( a- )b=IC+ Si + S1 ...... (5.6) 
y= b 

Substitution of equations (5.3) and (5.4) into 

equation (5.5) yields, 

S1_ = Si + S1 ...... (5.7) 

The condition of overall moment equilibrium at any 

height is, 

b c. 

.2rt1c 
dy +26Zt ix dx + 4Ac c6=M (Z) 

_b -c 
1 

...... (5.8 

where DN(z) is the total bending moment at any level. ' 

On substituting equations (5.3), (5.4), (5.6) and 

(5.7) into equation (5.8), it is-found that, 

Si =-3m S1 

A 
cl 

5b + 3c + 15 

where m=A 

5b+c+ 
cl 

5t 
1 

The stresses 6'z and (F1 may, therefore, be 

expressed in terms of the single unknown function S1(z) as, 
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M 
c- 1 m- (y)2 s1 9694-66 (5.9) 

z S1 3b 

6z =Ix+ (1 - 3m)(ß)3 S1 ...... (5.10) 
., 1 

The stress in the corner column becomes,. 

6-c =I1c+ (1 - 3m)S1 000000(5.11) 

On substituting equations (5.9) and (5.10) into 

the equilibrium conditions (5.1) and (5.2), and integrating, 

the shear stress components yZ and T,. become 

c dM Iy2 
dSl 

Tyz =-y I1 dz "' m (b) 
dz ...... (5.1.. ) 

2A 
c2 1+2 

b+ c1 x2 dM 
Txz 21 1c ct 1 

ý' (c) 
] 

dz + 

_c1x4 dS 1 
' 

(1 3m) 45 
(c) 

dz...... 
(5.13) 

The boundary conditions for evaluating the 

integration constants are similar to those described in 

Chapter 2. 

Similarly the various stress components in the 

lower region (H1< z< H) can be_found as, 

2 
6z 

2c gym (b) S2 

6-' =Ix+ (1 - m) ý3 S2 
z2 

6'c =Ic+ (1 - 3m) S2 
2 

Y 
dM 1m (y)2 

dS2 
, rYz I2 dz b dz 
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2 
2A:: 

-() 

[1+ 
2 b+ x2 dý'ý4 

'Cxz 2I,, c cdz 
4 

dS 
(1 _ 'n) 4S ý' ýc) dz2 ...... (5.14) 

where S2 is a function of height coordinate z only. 

In equation (5.14) 12 is the second moment of area 

of the equivalent tube for the lower region of the 

structure, given by, 

I2 =3ý; 2 c` (3b + c) +4 Ac2. c2 

where t2 is the thickness of the substitute tube and 

A is the area of concentrated corner element, 
c2 

In deriving equation (5.14) it has been assumed 

that, 

AA 
1= G ce 

...... (5.15) 
t t2 

Equation (5.15) follows from the assumption that 

the corner columns in the'two regions are proportional to 

the interior columns, with the result that the geometrical 

ratio m remains the same throughout the height of the 

building. This is not strictly-necessary and different 

values of m may be used for the two regions if required. 

The total strain energy U stored in the structure 

is given by, 

H1 b-iy22 J1 
ý`7 [. 

m - () S1 dy U= t1 

0 
g1 

S 

-b 
11c[] 

b2 dS 
G y2 Z dz (b) 

dz dy 
1 J_b 1 
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_{.. 

C 
E x32 )S dx Mx+ (1 - 3m)( 

c 
-c 

F 

c 
1 c2 b+ 1+2 

2A 
c1 x2 mm 

-( ) + 
G 21 c ct1 dz c 

-c 

(1 - 3m) 

4 
) ( 

2 
dS 

dx 
4 c 5 dz 

2A 2 

+ t EI 11 

I-ý 
c+ 

1 
- 3m) S 

]dz 

II b 2 2 
+ i, 2 2 Ic- 2 

i3m - (b) S2 dY 

H1 _b 

+ 

b 
I 

Y2 c dM 
_3 m- (Y )2 

dS2 2 

dy 
G2 2 dz b dz 

-b 

c 32 
+ E 

2 
Ix+ 

2 
(1 - 3m) (ß) S2 dx 

-c 

c 2 b+ 1+2 

? Ac2 

_x2 
dM ( ) + 

G 2I2 c dz ct2 c 2 
-c 

(1 - 
äm) 4 

4 
) ( 

dS2 2 

dx 
c 5 dz 

+ 

2A 
2 

Ic+ (1 - . 1m) S 
2 

dz 
tE 22 2 

.... .. (5.16) 

The condition fora minimum of U is that the 

-vari ation o fU vanishes. Thi s gives 

I; 1 1 2b 3 2 3 2S 2 d 
1 

t 1 - [ 
[ 

G 14175 
15(35m _4 2m+15)+7() (3_m) 

b , 2 ` 
1 dz 

0 
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A 
C 

+ E1 
315 

[7(Sm2_1On1+9)+5()(3_rn)2 
+ 35 bti(3-m)2 S1 

3 2 dz SS (z) +1 3153c 7(5m-3) - (2)3(3-m) 
d2 11 dz 

+ G1 14175 

[15(35rn2_42m+15) 
+ 701)3(3-m)2 dz 

1 

H 

- 32 7(5m-3) - (51)(3-m)ýZ ssl(z) 
1 

1ý 

ýi 332 d2S 2+ 
t2 - 

G2 
14175 

[15(35m2_42rn+15)+7(j) (3-m) 
dz22 

2 Ac 2 
+ 2b 

[75m2_lOm+9) 
+ 5(x )(3-m) + 35 2(3-m) jS B2 315 b )(3-m) 2 

332 
+G (3-m) d2 dz SS 

2(z) z 
31$1z 7(5m-3)-(b) 

dz 

+2 14175 
[1S(351112_42mý15)+ 

7($)3(3-m)2 
d 

d2 G 
2 14 

x 

- 32b3 
c %(5m-3)-(Ü) 

3 
(3-m) dZ s S2(z) =0 31512 

11 1 

...... (5. x7) 
f The stresses 6 and öz are zero at the top, so 

that 

at z=0, S1=0 ...... 
(5.18) 

Hence at z=0,8 S10 

At z= H1, because of vertical equilibrium, the 

stresses in the two regions are inversely proportional to 
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the thicknesses of the orthotropic plates. This gives 

at z= II1 

S12.... 

i 5.1 9) 

S2 = t1 I1 

Hence at z= H1 

I 
Ss ° I1 6s1 

22 

On substituting equations (5.18) and (5.19) into 

equation (5.17) it is found that 

2 d2S 
t 

ßi1 

-1 
2b3 L15(35m2_42m+157(b)3(3-m) 2 

1 G1 14175 dz 
0 

1 2b 
[7(5m2_lOrn+9) 

+ 5(c)(3-m)2+ 35 

AC1(3-m)2 
S + E1 315 b bti 1 

332 
+G 3i51c 

7(5m-3)-(b) (3-m) dL dz ö S1(z) 
11 dz 

H32 

+2-G 
[15(35m2_42m+15)+7()3(3_m)2 ddz2 1H[ 

2 
1 

1 2b 
2C 2(3-M) 

+ E2 315 7(5m2-10m+9) + S(b)(3-m) + 35 bt2(3-m) 2 
S2 

332 
+ 

G2 
32= 

7(Sm-3) - tb) (3-m) `i 2 dz S S2(z) 
dz 

2b3 
3 

14175 
15 (35m2-42m+15) + 7(b) (3-m)2 

tl dS1 t2 I1 dS2 
(G1 dz - G2 12 dz) 



137 

2 H1 
33ttI 

- 3151° 

[7(5m 
-3) - (b) (3-m) (c' - GZ 

2) 
äz S S1(i11) 

1121L 

+ G2 14175 

[15(352_42m+15) 
+ 7(b)3(3-m)2 

dS2 

2 

20 
II 

' 3i 22 

[7(5rn3)_()3(3_m)] im ss2(1t) =0 

000000 
(5.20) 

The variations S S1(z) and 6 S2(z) are arbitrary 

values. Therefore, the integrand of the first and 

second term in equation (5.20) will each be equal to zero. 

Also the third and fourth term will each be equal to zero. 

This results in the following differential equations and 

boundary conditions for S1 and S2: 

d2S G2 7(5m2-10m+9) + 5(3-m)2 b(1 +7 Ct S 
--21-45E1 (b) 322 dz. 1 15(35m2-42m+15) + 7(Ü) (3 - m) 

Ii 

7(5m -3) - (b)3 (3 - m) d26b 
45 322 (5.21) =1 

15ß5m2-42m+15)+ 7(b) (3 - m) 
dz 

_A c 
2s 2 7(5m2-10m+9) + 5(3-m)2 Ü(1+7 

ct2 S d d2- 
45 2(H)2 2 

dz2 
E2 b 15(35m2-42m+15)+ 7 0)3(3-m)2 Ii2 

7(5m - 3) - (b)3(3 - m) 
d2 Crb2 

= 45 
15(35m2-42m+15) + 7(b)3(3 - m)2 dz2 

...... (5.22) 

At z1 

dS1 
,. 

G1 dS2 

dz G2 dz G I1ý, 
22 



1j0 

45 
7(5m - 3) - (b)3(3 - m) 

d cr'b1 

15ß5m2 - 42m + 15) +7 (b) 3ß 
- m)2 

dz 

At z=H 

...... (5.23) 

d'U dS 7(5m - 3) - (b)3(3 -3 m) 
2d dz 0 

d =z2 -' 45 
15(35m 2- 42m + 15) + 7(b)(3 - m) 

...... (5.24) 

The stresses 6b and öb are given by 
12 

b1 - 11 c b2 I2 
M ö9 d" =Mc...... (5.25) 

The equations (5.21) and (5.22) and the boundary 

conditions (5.23) and (5.24) may be expressed in the form 

2 
d- 1=1 22d Cr b 

dz2 
(1I) S1 

dz2 ...... (5.26) 

d2S k2 

CL 
2? _ (H) S2 

d2 -b 
ý2 2 

dz2 ...... (5.27) 

At Z=H1 

dS G1 dS 2G1I12db1 
dz 

6' 

=0... (5.28) d G2 dz - (1 - G2 I2 
)' 

d (3- b2 
At Z=H, dz2 - ý`2 dz ý=0...... 

(5.29 

2 
Ac 

2 G1 H2 
7(5m2-10m+9) + 5(3-m) b(1+7 

ct1) 
where k= 45 () 

1 ý1 b 15(35m2=42m+15) + 7(b)3 (3-m)2 

A 
C2 

2 G2 H2 
7(5m2-10m+9) + 5(3-m)2 b(1+7 

ctý 
) 

k2 = 45 g2 
(b) 

15(35m2-42m+15) + 7(b)3 (3-m)2 
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2 7(5m - 3) - (b)3 (3- m) 
45 

15(35m2 - 42m + 15) + 7(b)3 (3 - ni) 

Comparing k2 and k2 it is found that, 

k2_ G1 E 
I2 

k2 G2 E1 

For practical structures, the values of ki and k2 
A 

are positive for all values of 
b 
C and 

cal 1" 
Consequently, the homogeneous part of the solution 

of equation (5.26) may be expressed as, 

kk 
S1 = Al cosh Iý1 z+ B1 sinh ßi1 z ...... (5.30) 

The homogeneous part of the solution of equation 

"" (5,27) becomes, 

s=A cosh 
2z+ B2 sinh ýI z ...... (5.31) 

22H 

In the case of uniformly distributed load p 

throughout the height, 

2 
-PZ 2 

pc 22 
b- 2I1 Z b2 212 z 

1 

The particular integrals for the equations (5.26) 

and (5.27) are 

A2 
S1 =- 

k2 1 

LcH 
2 

I1 

A2 
S2 =- 

k2 2 

T)CII2 
I2 
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The constants of integration All B1, A2 and B2 

are evaluated from the boundary conditions (5.18), (5.19), 

(5.28)and (5.29) and may be expressed in the form, 

>2 ßi2 Al - k2 I1 
1 

22 Ie k2kH 
A2 2I2Dk cosh k2 1- (1 - 

2) 
cosh ýi 

1 

2 k2 

G1 I1 k1111 k1H1 
+ (1 -GI) Iý sinn I--I 22 

Ic Hk II GIkHk II 
k cosh 

11 
sink 

211 .1121 "2 k2 HH "G2 12 sinn II nosh II 

B_ 
A2 acIi 1lI 

cosh k (1 
II1) 

(1 
G1 I1) 

1 k2 I1 D k2 2 Ii - G2 I2 lt 

sink 
kIiH 1+G'I1 

2 
2H 

k2 
(1 - 

k2 
-cosh 

k1 1) 
Binh k2 (1 - 1{ + kl k2 2 

lc21 kIi 
B2 = 

ý2 I2D 
k2 sinh 121- (1 - 

2) 
cosh 

11 
k2 21_ k2 

GIkHkH 
+ (1 - G1 I: 

1)" H 
sinh 

H 
22 

-k 

k1 
cosh 

k1H1 
cosh 

k2H1 
_ 2 k2 HH 

G1I1k H1 kH 
G2 I2 sinh H sink 

H1 
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where 
k1 kHHGI 1<11 

D_k cosh H1 cosh k2(1 - 
H) + G1 I1 sinh 

I1 

222 
H 

sinh k2(1 - 
H) 

Substituting the values.. of the integration 

constants the stress functions S1 and S2 become 

_2 k, 
cosh k1 

lit 1cýH1 
a S1 = 

lt2 I1 D k2 2( 1i) cosh H 
(1 - H1) 

1" 
GI II k1111 k1z Gx I1 

+ (1 - GZ 12) 11 " sink li + G2, I2 " 

H k11t1 
z sieh k2 (1 - Il) sink 11 

(1 -H) 

le2 Hi2 
+ (1 - 1L2) 

sink k2 (1 - II) + k2 
2 

kIz 
sinh 11 -1...... (5.32) 

2" 

S2 )C, 1 1 k2 
1- (1 - 

k1 
cosh 

kl Il i 
2 k2 12LtD k1 1L2 11 

22 
G1 I1 k1H1 k1H1 

. 1" (1 _ G2 I2) 11 sinh 11 

GIkHkH 
cosh k2(1 - 

H) + k2 G1 12 sinh Ij 
1 

cosh 
H 1(Ii 

- 1) 
221 

k1H1 k2111 
Z + k1 cosh Ii sink 

...... (5.33) 

In the case of uniform column and beam stiffnesses 

throughout the height the equations (5.32) and (5.33) 

reduce to 
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2 
ýcH2 cosh k (l - 

3) +k sinhI 
Sý - S2 - k2 I cosh k-1 

where k1 amd k2 are equal and denoted by k and I1 and 12 

are equal and denoted by I. 

Other standard load cases may be considered and 

the equations (5.26) and (5.27) solved subject to the 

boundary conditions (5.18), (5.19), (5.28) and (5.29). 

In the case where the structure includes more than 

two regions, with different beam and column st iffnesses, 

the nature of the governing differential equations for 

stress functions will be similar to equations ($. 26) and 

(5.27). For every additional region there will be two 

more boundary conditions similar to the boundary conditions 

(5.19) and (5.28). Once the differential equations for 

the stress functions and boundary conditions are known, 

it is a simple but tedious matter to solve the equations 

to determine the stress function at any level of the 

structure for any type of load conditions. 
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CHAPTER 6 

ANALYSTS OF BUNDLED TUBE STRUCTURE 

NOTATION 

The following symbols are used in this chapter: 

A1, A2 = areas of columns at the intersections of 

flange and web panels; 

a = aspect ratio (1); 
c 

b = half breadth of bundled tube; 

c = half depth of bundled tube;. 

d = bay width; 

E = elastic modulus; 

p = applied shear force at any level; 

f1, f2, f3, f4 = stress functions; 

G = equivalent shear modulus; 

= total height of building; 

I = second moment of area of bundled tube; 

k, k1, k2 = structural parameters; 

M = applied moment at any level; 
Al 

n1 = ct 
A2 

n2 ct 3 

S' So'S1 = stress functions; 

t= thickness of equivalent orthotropic plate; 

U= strain energy ; 

X' y= horizontal coordinates; 

zý zr = vertical coordinates'; 

0( 11 0(2 = geometrical ratios; 
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ß1,2 = structural parameters; 

A1, A2= geometrical ratios; 

= non-dimensional height coordinate (f); 

Cr = direct stress; 

b= 
direct stress according to engineerts 

beam theory; 

shear stress. 

6.1 INTRODUCTION 

Conventional square or rectangular framed tubes, 

relying on facade frames, exhibit a large amount of shear 

lag with consequent loss of cantilever efficiency. The 

Bundled Tube or Modular Tube system, which basically 

consists of a bundling of smaller size tubes, was evolved 

to reduce the shear lag effect, thereby inducing more 

effective participation of the core columns or interior 

columns in resisting lateral loads. In this system 

additional frames are provided in each direction which 

are engaged to perimeter frames with the result that the 

axial load distribution line exhibits peak points at each 

intersection of the web frame and the flange frame. This 

improved behaviour can be seen in Fig. 6.1 where the shear 

lag is confined to only the width of a modular tube. The 

structural premium for height (extra structural weight 

per square metre in tall buildings to provide wind 

resistance) is reduced considerably due to improved 

tubular behaviour. 

Apart from its improved structural efficiency, the 

Bundled Tube system is particularly suitable to satisfy the 
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modularisation of space. This consists of "step back" 

in which the floor areas are systematically reduced at 

various heights. The modular step back is accomplished 

by termination of columns pertaining to the particular 

tube while other columns continue. It is claimed that 

such modulation of rental space maximises rental revenue. 

6.2 ANALYSIS OF STRUCTURE WITH TWO TUBES 

In the simplest form of bundled tube structure 

shown in Fig. 6.2, one additional weh frame is added to 

the usual perimeter frames of the framed tube structure. 

The perforated walls of each tube consist of closely 

spaced columns and deep spandrel beams at each floor level. 

The two adjacent framed tubes share one set of columns 

and beams. The basic character of the frame is maintained 

throughout the height of the building. 

As already discussed in Chapter 2, each framework 

panel of columns and spandrel beams is replaced by an 

equivalent uniform orthotropic plate, to form a substitute 

structure with two adjacent closed tubes. The substitute 

structure is shown in Fig. 6.3, in which the stress 

systems on small elements on the-normal and side panels 

are given. 

The equations of equilibrium for the normal and 

side panels are 

ö a_ý ö Tyz + az 

...... (6.1) 
a 6z bryz 

Z) z+öY 
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a(rX arxz 
aX + aZ =o 

Z) 6Tt a zX Z 
...... (6.2) 

az+ aX -. ° 

It is assumed that the structure possesses two 

horizontal axes of symmetry, passing through the vertical 

central axis, so that the stress systems in the side 

perimeter panels 1 and 2 (Fig. 6.4) are identical and those 

in the normal panels are equal and opposite. Since the 

additional web panel 3 and the side perimeter panels are 

identical and their deflection profiles are also the same, 

it is assumed that the vertical stress distributions in 

the three web panels are identical. It-is further 

assumed that the axial load distribution curve in the 

normal panel of each tube is symmetrical about the vertical 

centre line of the panel, so that the peak stresses at the 

intersections of web and flange panels are all equal in 

magnitude (Fig. 6.4). These assumptions are necessary 

to reduce the number of unknown functions and produce a 

simple solution to the problem of shear lag in bundled- 

tube structure. 

The simplest 

the vertical stress 

modified by the she 

distribution. The 

(Fig. 6.4) may thus 

approximation which 

distribution in 
z 

ar lag effect, is a 

stress distribution 

be expressed in the 

may be made for 

the normal panel, 

parabolic 

6'Z in panel 4 

form, 

2 
0=Ic+ Sa + 4(b - 2) S 

...... (6.3) 
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where So and S are functions of the height coordinate 

z only. 

In equation (6.3) 1 is the second moment of area of 

the equivalent tube cross-section, given by 

I= 2tc2(2b + c) + 4AIc2 + 2A2c2 

where 2b and 2c are the overall cross-sectional dimensions 

of the bundled tube, normal and parallel to the wind 

directions respectively, and Al and A2 are the cross- 

sectional areas of the stiffer columns at the inter- 

sections of the flange and web panels. 

The distribution of vertical stresses 6z in the 

web panels may be expressed as, 

3 
arZ =zx+ (c) sl ...... (6.4) 

where S1 is a function of the height coordinate z only. 

Because of the skew-symmetry of the stress 

distribution only odd powers of the polynomial have been 

used in equation (6.4) for the web panels. 

The condition of vertical strain compatibility at 

the intersections of flange and web panels requires that 
-. t 6Z öj 

(E)=( E) =E...... (6.5) 
y=0 or b x=c 

where a is the axial stress in the column at the 

intersection of normal and side panels given by, on using 

equation (6.3) 

ß- _ crz) _= c+S +s ...... 
(6.6) 

y=0 or b 

On substituting equations (6.3)and (6.4) into 
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equation (6.5) it is found that 

S1 = So +S....... (6.7) 

The condition of overall moment equilibrium at any 

height may be expressed in the form, 

bJc 

4 c'Z tcdy +3 O' Z txdx + (4A1 + 2A2)c = M(z) 

0 -c 
....... (6.8) 

where M(z) is the total bending moment at that level 

caused by the applied lateral loading. 

On substituting equations (6,3), (6.4), (6.6) and 

(6.7) into the equilibrium condition (6.8) and integrating, 

it is found that 

S=-3 in S 

lob+9c+3o 
A 1+ 15ýt 

where m= A 
lob +3c+1o t1 + 52 

which is always greater than unity. 

The vertical stresses Cr and Cr' may, therefore, 

be expressed in terms of the single unknown function S as, 

CY- =Ic+ 
[(i. 

- 3m) - 4(b) +4 (b)2 ]S.... (6.10) 

x3 Cr' =Ix+ (1 - 3m) (c) S ..... ". (6.11) 

The stress 4r then becomes 

a' 
Mc+ (1 - 

3m)S 
*'******o 

(6.12) Q-c =( Z) Y=0 or bI 

On substituting equation (6.10) into equation (6.1) 

and integrating, the shear stress Tyz is given by. 
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Vyz = -y 
äz + (1 - 3m) - 2(b) + ü) } äs + ci 

.... 

J.. 

(6.13) 

where C1 is the constant of integration; that is, 

constant with respect to y. 

At y=o, T'yz=C1 ...... -(6.14), 

At y= bj Tbc (IM +b m^ 1 T+ C 
yz I dz 3 dz 

...... (6.15) 

Similarly on substituting equation (6.11) into the 

equilibrium equation (6.2) and integrating, the shear 

stress T is found out as 

24 
TXZ 

21 dz 4(1 - 3m) C3 dz + C2 
""""". 

(6.16) 

Atx=c, 

_ 
c2 dm 

- 
c( im) dS T 

ý{ Z- 21 C1 Z Cý. 
13 

(r- 
+C2" 

u@* "" (6.17) 

The constants of integration are evaluated from 

the equilibrium equations for the columns at the int. er- 

sections of flange and web panels. 

The equation of equilibrium for the column at the 

intersection of panels 1 and 4 is given by 

Al ö 
(T 

)ý 
+T 

()_ý 
000000 

(6.1 8) 

xz x^c Yz y=b 
töz 

For the column at the intersection of panels 3 and 

4 the equilibrium equation becomes 

A2 öcr'c 
Txz), 

x=c 
2C TYz, 

Y=O 
t az ...... (6.19) 
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On substituting equations (6.14), (6.15) and 

(6.17) into the equilibrium equations (6.18) and (6.19), 

the constants of integration C1 and C2 are determined as 

2b Al A2 OM cib C1 -c31 
(c + 

ct - ct) dz 3ý , 3(m - 1) 
C 

Al A2 dS (1 - 3m)(ct - ct) dz ...... (6.20) 

..... (6.21) 
2b 

c2 =ý 63: (9$ +38m 
c) drz + 20 

(1 " äm) 
dz 

The shear stresses Tyz and T 
xz may, therefore, 

be expressed in the form 

be cy (Im Tyz = 31 
C1+b 

(Al 
ct - 

A2 

ct) - 3(b) dz 

'AA 

-U 9(m 1) 3(1 smý b (ct '" et) 

+ (i - 3m)(b) - 2(b)2 + 3(b)3 ] äZ 
...... (6.22) 

Ir c2 9+ 8b321 dM 
xz -ýI 53- mc c dz 

+ (1 - 3m) 4L5- (2E) 
4] dS 

...... (6.23) 

The horizontal direct stresses cr, and 6'y are 

small compared to the vertical stresses a'z and cr z 
and 

are not evaluated. 

The total strain energy stored in the structure is 

given by, 

Ii b 
Q. 

2 , I, 2 

U =t 2 EZ+ GYZ dy 

00 
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c2 
(6'I) T2 2A +AH 

2z+Gzdx 
dz +1E2 Q' 

2 dz 

0 
-c 

...... (6.24) 

On substituting equations (6.10), (6.11), (6.12), 

(6.22) and (6.23) into equation (6.24), U becomes 

H 
lb 22 

U. tEIc+ 
[(I 

- 3m) - 4(b) + 4(u) s aY 
00 

b AA 
+G 31 1+ bct t) - b) 

] 

dz 
0 

-b 
(m -'1) -3 (1 -3 m) býA ct -A ct) 

+ (1 - 3m)(b) -2 (Ü)Z +3 (b)3 dZ 2 
dY 

C 

.. F -Mx+ (1 - 
1-m) 

3S 2 
dx 

2E L IM) 

-c 

C 

c2 , 
g, 8bx2 dM 

2G 6I 5+3-mC 3(c) dz 

-c 
2 

+ (1 - m) 4[5c4 dz dx 

2A +A2 

.F-tE21Ic+ 
(1 - 3m)S dz ...... 

(6"25) 
1 11 

The variation of U, 6U, may be expressed as, 

Hh 

öU= 2t 
EIc+ (1 - 3m) - 4(ý) + 4(b)2 S" 

0C0 

C(1 - 3m) - 4( )'+ 4 (b) 
] 

öS wdy 

Nw, 
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b 
be c1 

A2 
y dM 

+G 31 +b pct 
ctý 

3ýb) 
dz 

0 

-b 
1(m, 

- 1) i(1 
- int 

Al A2 

933) b(ct - ct) 

3 
3m) (b) - 2(t) 

2+3 
(b) 

] 
dz 

' A2 
3(1 -3 m) bct 

- ct 

_-23 
acs s) + (1 

3 (b) 2(b) + 3(b) dz d3. 

c 

+3 11 
Ix+(1- 

3m) (E) 
3S(1- 

3m) (ý) 
3öS 

dx 2E c 

-c 

C 
c2 

,28bx2 
drt + 2G äI 5+3-m 3(cß 

] 
dz 

-C 

1c1x4 dS 
In) 

J} 

(1 - 3m) 415_ (c)4J ýä S)dx 

2A1 + A2 M 'j 
+tEc+ (1 - 3m) S. (1 - 3m) 

5SJ dz 

(6.26) 

To obtain the minimum value of strain energy U, 

the variation SU must vanish. On integrating equation 

(6.26) and equating to zero, the following equation is 

obtained. 

JH [_lb3 2AA 

G 2835 
(35m2-49m+20) + 

2ý7ý(m-1)(1-3M) (ct - c) 
0 
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2212 
Al AZ 2 

c3 12d2s + be (1 -3) (et - ct) %$ 
(1 - 3m) 2 dz 
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2 2A1 + A2 2 

45(5m2-10m + 9) + (1 - Vim) +t (1-3 m) S 

1 b3c 
22AA 

+G 1351(10m - 7) + 
2271 (2 - m)(ct - ct) 

2bc3ýý 
A_A2 

c4 ýý 1mý d2M dz SS 
9I 

3 
et ct - 51 -]z dz 

2AA 
+ 

[12b3 
2835(35m2-49m+20) 

+. 
222c(m-1)(1-ým)(ct 

- 
2) 

212 
Al A2 2 

c3 
2 dS 

-ý- g 
be (1 - 3-m) (et 

ct) 
+ ý$(1 - 3m) 

] 
dz 

322AA b c(10m 
- 7) + 

2271 (2 - m)(ý; --"2) -1351 

3 2bc i 
Al A2 2 

c4 I dM t 
91 ( SS ] 

Ii 

_ 
(1 - 3m) (ct - ct) 51 

(1 - 3m) dz 
.1,,, 

J 
0 

=U...... (6.27) 

The governing differential equation may, thereforb, 

be expressed in the form 

2 22d2 cT bSd_ (k) S=A2 
2 ...... 

(6.28) 
dz H dz 

where 
22 

k2 = 45 
E (b) D [14(5m2 

- 10M + 9) + 5(3 - m) "(b) " 1 
2A1 + A2 

(3+7 
ct 

Al 
A2= 15 x 

D1 7(10m - 7) + 70(2 - m)(cÜ)(mo - 

A) 
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2A A2 c 1- 70(3 - m)(b)(ct - 
11h 

- 9(3 - m)(b)3 

t,; htrore Dx = 10(35m2 - 49m + 20) + 7(3 - m) (li) " 

t- c) + 50(3-m)( (mot - ct)2 

I 
50(m-1)(cA' 2 

+ 3(3 - m) (b)2 j 

For the case of. a structure rigidly fixed at the 

base and free at the top, the boundary conditions are 

At z=0, S=0...... (6.29) 

d ý2 
do"b 

_0 At z= Ii, dz - dz """""" 
(6-30) 

It is found that the governing differential 

equation (6.28) and the boundary conditions (6.29) and 

(6.30) derived for a bundled tube structure are identical 

,. to the governing differential equation (2.45) and boundary 

conditions (2.41) and (2.46) respectively suitable for a 

framed-tube structure. The solution of the equation for 

different lateral loading conditions will, therefore, be 

identical. The same design curves Figs. 2.8 to 2.13 may 

be used to evaluate the direct and shear stresses. The 

function F1, equal to A2, may be calculated directly 

from equation (6.28). 

In the particular case where the columns at the 

. ntersections of the flange and web frames have suitable 

pt . ffnesses (the same as other columns at the intersection 

fJf. ' panels 1 and 4, and 
2 times the other columns at the 

j. xpLersection of panels 3 and 4), so that they can be 

-Included as a segment of the equivalent orthotropic plates, 
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the concentrated areas Al and A2 are zero, and the 

parameters k2 and % 2. 
reduce to., 

k2 = 162 Eb2 (3 m) (Sm2 + 15m - 6) 

385m3 - 714m + 597m - 160 

2-Q 790m3 - 1593m 
2+ 228m + 323 

2 (3 - m)(385m3 - 714m2 + 597m - 160) 

where the geometrical ratio m is given by 

10b + 9c 
m lob + 3c 

63 NUMERICAL EXAMPLE 

in the bundled tube structure shown in Fig. 6.5, 

one additional web frame has been added to the perimeter 

frames of the framed-tube structure analysed in Article 

2,9; The building has the same dimensions and is 

subjected to a uniform lateral load of 1 kN/m height. 

With the given data it is found that 

t =0.1m 

Al =0.3m2 

A2 = 0.105 m2 

I= 266.76 m4 

mT1.6147 

Cr b(I1) = 364.37 lkN/m2 

A2=2.4568 

G=0.044813 
V 

k2 = 157.55 

k= 12.5519 

The function S at the second floor level (y=0.96), 

given by equation (2.50), becomes 
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S=0.2057 Csb(H) 

The axial force in column 1 of flange panel is 

given by (Fig. 6.5) 

b 

N1 =t jüJz dy 

b-d 2 

On substituting CrZ from equation (6.10) and 

integrating N1 becomes 

N1-t2 b+[(1-3m) -2 (b-3) S 
b 

The axial force in column in the flange panel 

at position yi may be expressed as 

yi +2 

Ni =t 0z dy 

d 
yi"2 

which on the substitution of the value of cr becomes, 

Yi Ni = td a"b + C(1 - 3m) -b yi + 
3b 

4 (3i +S 

The axial force in column 5 of the flange panel is 

double the axial force in column _1. 
The axial forces N1 in column 1 and Ni in column at 

position xi in the web panel may be expressed as 

2 
N1 c(c -r 

4) 
b+ 

(1 - 3m) 2(c2 
-2+8 )S 

c. 

and 

Ni = 

t--- 
b+ (1 -3 m) 

2 (xi + 
4)S 

c 

In the concentrated areas A1 and A2, the axial 
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" forces Nc 
1 

and N 
C2 respectively are given by 

+ (1 - 3m)S Nc = Al ýCb 
1 

and Ný 
2= 

A2 6'b + (1 - 3m) S 

From the above equations the axial forces in the 

columns of the flange panel may be evaluated as 

N2 = 94.7285 kN 

N3 = 89.1071 kN 

N4 = 94.7285 kN 

The axial forces in the columns of the web panel 

are 

N2 = 51.9930 kN 

N3=0 

The total axial forces N1 and N5 in the columns at 

the intersections of the flange and web panels are 

determined as 

N1 = 211.7335 kN 

N5 = 192.4880 kN 

Comparing the results of the present analysis with 

the analysis of Article 2.9 it is found that while the 

second moment of area of the section of the bundled-tube 

structure has increased by 8.97 per cent over that of the 

framed-tube structure, the ratio of minimum to maximum 

stress in the columns of the flange panel has also 

increased from 0.6256 in the case of framed-tube structure 

to 0.8417 in the case of bundled tube structure. Thus 

the shear lag effect is considerably. reduced by the 

addition of an extra web frame. 

I 
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6.4 MORE GENERAL ANALYSIS OF STRUCTURE WITH TWO TUBES 

t The vertical stress (rz in the web panel, given by 

equation (6.11), had for its first term the basic beam 

theory stress, and the perturbation consisted of a cubic 

term in the coordinate x. It seems more appropriate to 

include linear and cubic terms in addition to the linear 

basic beam theory stress term. In order-to achieve this 

the vertical stresses 6'Z and 6Z in the flange and web 

panels are expressed in more general terms as (Fig. 6.6), 

Q"Z = ý1 +A (b - 2) 
2 f2 ...... (6.31) 

3 
crZ = (2ý) f3 + (C) f4 ...... (6.32) 

where f1, f2, f3 and f4 are functions of coordinate z 

. only. 

The condition of vertical strain compatibility at 

the intersections of the flange and web panels requires 

that, 

E (fl + f2) =E (f3 + f4) = Eý ...... 
(6.33) 

The condition of moment equilibrium at any height 

is given by equation (6.8). On substituting equations 

(6.31), (6.32) and (6.33) into the equilibrium condition 

(6.8) it is found that 

2a + 6n1 + 3n2 +32 
fl =I c "3(2a+2n1+n2+ 1) 

f2+5(2a+2n1+n2+ 
1) ý4 

...... (6.34) 

where a=ý 
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A1 
_A2 n1 _ ct , n2-ct 

On substituting equation (6.34) into equation 

(6.33) the function f3 may be expressed as, 

M 4a 10a + 10n1 + $n2 +3 
f3 =Ic+ 3(2a+2n1+n2+1) f2 $(2a + 2n1 + n2 + 1) f4 

...... (6.35) 

The vertical stresses 6Z and 6r may, therefore, 

be expressed in terms of only two unknown functions f2 

and f4 as, 

MaY2 
=Iý+4 

[3(2a 

+ 2n1 + n2 + 1) - (b) + (b) f2 

2 
+ 5(2a + 2n1 + n2 + 1) f4 

...... (6.36) 

4a 
dz I ý`+3(2a+2n1+n2+ 1) 

(c) f2 

Ionxx3 
5(2a + 2n1 + n2 + 1) c) - (c) f4 

...... (6.37) 

The stress in the corner column then becomes, 

M4a2 
oc =Ic+ 3(2a + 2n1 + n2 77-1) f2+ 5(2a + 2n1 + n2 + 1)f 4 

...... (6.38) 

The equations of equilibrium for the flange and 

web panels are given by equations (6.1) and (6.2). On 

substituting equation (6.36) into the equation of 

equilibrium (6.1) and integrating, the shear stress tyz 

is given by 
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yz I dz 3(2a+2n1+n2+1) 2b 3b2 dz 

2 
+ $(2a+2n1--n2+1) dz `f' C3 ...... (6.39) 

where C3 represents the constant of integration. 

At y=o, Tyz = C3 ...... (6.40) 

c dM 2(2n1 + n2 + 1) df2 
At y= b' T 

yz __ -b I dz 3(2a+2n1+n2+1) dz 

+2 $(2a+2n1+ft2+1) dz + C3 (6.41) 

The shear stress t, may also be determined on 

substituting equation (6.37) into the equilibrium equation 

(6.2) , and is given by 

x2 dM 2a x2 
df 

2 
Txz 2I dz - 3(2a+2n1+n2+1) dz 

+ IL 
[ 10a + 10n1 + 5n2 +3 

X2 x4 
dd 

4 [5(2a+2n1+n2+iJ 
c 2c3 dz +c 

...... (6.42) 

where C4 is another constant of integration. 

- "C = 
C2 dM '2a df 2 

At xc xz 21 dz 3(2a + 2n1 + n2 + 1)ý dz 

10a + 10n1 + $n2 +1 df 
+ 20(2a +2n 1 +n 2+ 1) c dz + C4 6 43) 

The equations of equilibrium for the columns ae the 

intersections of flange and web panels are given by 

equations. (6.18) and (6.19). On substituting equations 

(6.40), (6.41) and (6.43) into the equilibrium equations 



161 

(6.18) and (6.19), the constants C3 and C4 are evaluated 

as 

62 2a(3n2+ 1) df2 
C3 = (a + n1 - n2) 31 dz - 9(2a+2n1+n2+1) c dz 

2 a+nI-n2 df4 
+ 15 2a + 2n1 + n2 +1c dz """""" (6.44) 

2 df 
C4 = (4a + 4n1 + 2n2 + 3) c61 Tz 

+ 9(2a+2n 1 +n +1) c dz2 

14a + 14n1 + 7n2 +3 : LA 
- 60(2a + 2n1 + n2 -T-1) c dz "'"""" (6.45) 

The shear stresses 'iyz and 'rxz may, therefore, 

be expressed in terms of two variables f2 and f4 as, 

.- 2- (a + ri -n)- 3a(ß') dM 
- 2b 

3n2 +1 

yz 31 1 2) b dz 
[9(2n++1) 

2 df2 
+ 3(2a +a2n1 + n2 + 1) b- (b) + 3(b)3 dz 

2b (a (ý + 15a(2a+2n1+n2+1) + n1 n2)-3a b) dz 

..... (6.46) 

IVxz =2 61 (4a + 4n1 + 2n2 + 3)ý 3(c) 
2 

JI 

] 
dz 

Za 2 
+ 9(2a + 2n1 + n2 + 1) c1- 3(cx)2 

df 

dz 

c 
14a+14n1+7n2+3 10a+10n1+5n2+3 

x2 
-2 30(2a+2n1+n2+1) - 5(2a+2n1+n2+1) c 

4 df 
+ .2d...... (6.47) 
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It is found that each web frame carries one third 

of the total shear force caused due to the lateral load, 

so that 

C 

_F dx =i 
am 

xz 3 dz 
-c 

The total strain energy stored in the structure is 

expressed by equation (6.24). On substituting equations 

(6.36), (6.37), (6.38), (6.46) and (6.47) into the 

equation (6.24), the total strain energy U may be expressed 

as, 

Hb 2 
U= tEI C+ 3(2a+2n1+n2+1) - (b)+(b) f2 

00 

2 2 
+ 5(2a + 2n1 + n2 + 1) 

1Q. dy 

b 

+22 () dM 
_ 2b 

3n2 +1 [(a+ni_n2) 
- 3a U dz 9(2a+2n +n2+1) 

01 

2a 
- 

f. ]l- 
+ 3(2a +2n 1 +n 2 +1) 

(b) - (b)2 + 3(b)3 dz2 

df 2b y + 15a(2a+2n1+n2+1) 
(a+n1-n2)- 3a (b-) d2 dY 

+ 2E Ix+ 3(2a +42n1+ n2+ 1) 
(c) f2 

c 

10a + 10n1 + $n2 +3xx32 

cý 
f4 dx -L 5(2a + 2n1 + n2 + 1) 

(c) - (Z)3 

c2 2- G 61 
[(4a+4n1+2n2+3) 

- 3(c) dz 
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2a X2 
df 2 + 9(2a + 2n1 +n2 + 1) 1- 3ýc) dz 

14a+14n1+7n2+3 10a+10n1+5n2+3 2 

2 30(2a+2n1+n2+1) - $(2a+2n1+n2+1) 
(c) 

dZ 
dx + 2(ý) 

J dz 

2A1 + A2 Rý 4a 
+tEI+ 3(2a + 2n1 + n2 + 1) 

f2 

2 
2 

+f 5(2a + 2n1 + n2 + 1) 4 dz 

I' 

...... (6.48) 

F'or minimum U, the variation SU must vanish. On 

minimising U, the following equation is obtained. 

Ii 32aG°3 
(6a3 + 468ani + 117an2 + 54a2n1 + 27a2n2 

'0 d2 2 
.. 162an1n2 + 27a 2+ 258an1 + 24an2 + 47a + 42) 2 dz 

+E 8ca(2a2 + 12n1 + 3n2 + 14an1 + 7an2 + 12n1n2 

+7a+12n1+6n2+ 3) f2 

3 
+G 105 

(42a3 - 420ani - 210an2 + 462a2n1 + 21a2n2 

+ 630an1n2 + 161a2 % 70an1 + 70an2 + 240a + 240n1 

d2f 
+ 120n2 + 36) 2-E 12ca(2a + 2n1 + n2 + 1) f4 

dz 

.} 164Za (2a + 2n1 + n2 + 1)(6a3 - 60ani - 30an2 + 66a2n1 
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+ 3a2n2 + 90an1n2 + 23a2 - 10an1 + 10an2-12)d 
22 

dz sf2 
dz 

H3 

ot. 

L c +G]. 0$ 
(42a3 - 420ani - 210an2 + 462a2n1 + 21a2n2 

+ 630an1n2 + 161a2 - 70an1 + 70an2 + 240a + 240n1 

d2 
+ 120n2 + 36)d2-2 -E 12ca(2a + 2n1 + n2 + 1) 

z2 

0-3 
3 

(70a3 + 70ani + 70an2 - 70a2n 1+ 70a2n 175 G2 

- 140an1n2 + 180a2 + 180ni + 45n2 + 3o0an. 1 + 180an2 

d4 
+ 180n1ny + 60a + 60n1 + 30n2 + 6) 

2 dz 

+Ei 
18c 
35 

(40a2 + 40ni + 10n2 + 80an1 + 40an2 + 40n1n2 

+ 26a* + 26n1 + 13n2 + 3) f4 

_G 34 

4 
(2a + 2n 1+n2+ 1)(70a3 + 70ani + 70an2 - 70a2n1 

A 
+ 70a2n2 - 140an1n2 - 60a - 60n1 - 30n2 - 9) 

d2 dzsf4 
dz 

32 
+G X63 (6a3 + 468ani + 117an2 + 54a2n1 +2 7a2n2 

2 df2 
162anin2 + 27a + 258an1 + 24an2 + 47a + 42) d2 

- 
3' 

105 
(42a3 - 420ani - 210an2 + 462a2n1 + 21a2n2 

+ 630an1n2 + 161a2 - 70an1 + 'IOan2 + 240a + 240n1 
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df 4 

+ 120n2 + 36) dz 
- 

°61(2a +2n1 + n2 +"1)(6a3 

_ 
60ani - 30an2 + 66a2n1 + 3a2n2 +90an 1 n2 

+ 23a2 - 10an1 + 10an2 - 12) dz f2 

0 

-ý- 
1- v'3a (42a3 - 420an2 - 210an2 + 462a2n + 21a2n 
G 105 1212 

+ 630an1n2 + 161a2 - 70an1 + 70an2 + 240a 

+ 240n + 120n + 36) 
d+ 2c3 (70a3 + 70an2 12 dz 75 1 

+ 70an2 - 70a2n1 + 70a2n2 - 140an1n2 + 180a2 

+ 180ni + 45n2 + 360an1 + 180an2 + 180n 1 n2 

df 
+ 60a + 60n1 + 30n2 + 6) dz 

4 
+ 351 

(2a + 2n1 + n2 + 1)(70a3 + 70an1 + 70an2 - 70a2n1 

H 

+ 70a2n2 - 140an1n2 - 60a - 60n1 - 30n2 - 
dM ö f4 

0 

=0...... (6.49) 

The governing differential equations for the 

functions f2 and f4 may, therefore, "be expressed as 

d2f2 lel 22 d2f4 ß1 2 2. d26'h 

d- 
'" ( 

H) f2 1 dz2 
+( ii 

) f4 = ý1 
dz2 

...... (6.50) 

a 2f 

-122 f2 -a2d2+( 

H22 
f2 

dLýb 

dz 
(H) 

dz 42 dz 

...... (6.51) 

where 
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2 
ki = 126 E 

(b) 
D a(2a+2n1+n2+1)(a+6n1+3n2+3) 

2 

10 aß 
(42a3 - 420an2 - 210 an + 462a2n1 + 21a2n2 

2 

+ 630an1n2 + 161a2 - 70an1 + 70an2 

+ 240a + 240n1 + 120n2 + 36) 

i= 189 
E (b)2 a(2a + 2n1 + n2 + 1) 

2 

2_ 21 1 (2a + 2n +n+ 1)(6a3 -. 60an2 - 30an2 
1 `- 8 aD 21212 

+ 66a2n1 + 3a2n2 + 90an1n2 + 23a2 

- 10an1 + 10an2 - 12) (6.52) 

2 
2k2-- 1260 EbD 

a2 (2a + 2n1 + n2 + 1) 
3 

pý2 
=61 (70a3 + 70an2 + 70an2 - 70a2n + 70a2n 

2 aD3 1212 

;. - 140an1n2 + 180a2 + 180n1 + 45n2 + 360an1 

+ 180an2 + 180n1n2 + 60a. + 60n1 + 30n2 + 6) 

2 
2= 54 G (H) i 

a(2a + 2n +n+ 1)(20a + 20n + 10n +3) 2Eb D3 1212 

2=3 aD 
(2a + 2n1 + n2 + 1)(70a3 + 70ani + 70an2 

3 
22 

- 70an1 + 70an2 - 140an1n2 - 60a - 60n1 

- 30n2 -9) 

In equation (6.52) D2 and D3 are constants, given by 
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D2 = 6a3 + 468an1 + 117an2 + 54a2n1 + 27a 2n2 

162an1n2 + 27a2 + 258an1 + 24an2 + 47a + 42 

D3 = 42a3 - 420an2 I- 210an2 + 462a2n 1+ 21a2n2 + 630an1n2 

+ 161a2 - 70an1 + 70an2 + 240a + 240n1 + 120n2 + 36 

(6.53) 

The boundary conditions become 

Atz= 0, f2=0 (6.54) 

At z= 0, f4=0 (6.55) 

At = H 
df 2 df 2doh 2' °ý =0 -ý 56) (6 z , dz 1 dz 1 dz . 

At = H 
df 22 df 2d ýS"b 

=0 
d '' °( (6 57) z , z 2 2 dz dz . 

It may be noted that the differential e quations 

(6.50) and (6.51) and the boundary conditions (6.54) to 

(6.57) are again identical to the differential equations 

(2.88) and (2.89) and the boundary conditions (2.86), 

(2.87), (2 . 90) and (2.91) derived in Chapter 2 for a 

framed tube structure. Hence the solutions o f the equations 

will al so be identical. For different loadin g conditions 

f2 and f4 were derived in Chapter 2. 

In the particular case where there are no stiffer 

columns at junctions of web and flange panels, so that 

-and n n2 are each equal to zero, the paramete rs k1, °ý1, 
1 

1, k2, oC 2,2 and i\ 
2 reduce to 

1 

k2 = 126 
G (H)2 a(2a + 1)(a + 3) 

1Eb 6a3 + 27a2 + 47a + 42 
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2-- 42a3 + 161a2 + 240a + 36 

°ý1 20 
a(6a3 + 27a2 + 47a + 42) 

2 189 
G (H)2 a(2a + 1) 

1Eb 6a3 + 27a2 + 47a + 42 

2 21 (2a + 1)(6a3 + 23a2 - 12) 
1827a 

k2 = 1260 
G (H)2 a2(2a + 1) 

2Eb 42a3 + 161a2 + 240a + 36 

2 12 35a3 + 90a2 + 30a +3 
fi °C 25 a(42a3 + 161a2 + 240a + 36) 

2_ 54 
G (IT 2a (2a + 1) (20a + 3) 

2Bb 42a3 + 161a2 + 240a + 36 

2 (2a + 1)(70a3 - 60a - 9) 
23 a(42a3 + 161a2 + 240a + 36) 

6.5 BUNDLED-TUBE STRUCTURE WITH NINE TUBES 

6.5.1 INTRODUCTION 

For a high--rise building with a large plan area 

bundling of a relatively large number of tubes may be 

required to develop high cantilever efficiency. In the 

bundled tube system of the Sears Tower, Chicago two 

additional web frames in each direction are engaged to 

perimeter frames. In other words, nine small tubes are 

bundled together to create the large overall tube. The 

improved behaviour of the tube due to the large reduction 

of-shear lag effect can be seen in Fig. 6.7. 

The analysis of such a structure without the aid 

of a computer presents some difficulty. The rigidly 
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jointed frame panels may be replaced by equivalent 

orthotropic plates as shown in Chapter 2. The plan 

of the structure is symmetrical about the horizontal 

coordinates and only one quarter of the structure need be 

considered for the analysis. The vertical stress 

distribution in the different panels due to lateral load 

may be expressed most simply in the form! (Fig. 6.8) 

for panel 1, cr2 = a1 + bly2 

for panel 2, = a2 + b2y + e2y2 

for panel 3, a-Z = a3 + b3y2 

for panel 4, ß"Z = a4 +b 4y + c4y2 

for panel 5, öZ= a5x + b5x3 (6.58) 

for panel 6, o-Z = a6 + b6x + c6x3 

for panel 7, Q'-' =* ax+b x3 z77 

and for panel 8, C'=a+bx+cx3 
z888 

where a1, b1, a2, b2, c2, a3, b3, a4, b4, c4, a5, b5, 

z6, b6, c6, a7, b7, a8, b8 and c8. are functions of the 

height coordinate z only. 

The condition of vertical strain compatibility at 

the junctions of the different panels will yield 8 

equations and the condition of overall moment equilibrium 

at any level will give one more equation. This will 

leave 11 unknown functions to be dealt with. 

Some additional simplifying assumptions must 
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therefore be made to reduce the number of functions to 

a manageable limit. The simple approximate analyses of 

bundled tube structure are discussed in Articles 6.5.2 

and 6.5.3. 

6.5.2 SIMPLIFIED ANALYSIS 

The vertical stresses in the interior panels 3 and 

4 are small (nearly a third of the maximum vertical stress 

in the flange panels 1 and 2) and the moments resisted by 

them are still smaller (nearly a ninth of the moment 

resisted by panels 1 and 2). The effect of panels 3 and 

4, in resisting lateral load is, therefore, neglected in 

the first instance (Fig. 6.9). 

It is then assumed that the vertical bending stress 

distribution curves in the normal panels 1 and 2 are 

symmetrical about the vertical central axes of the two 

panels, so that the peak stresses in the panels are all 

equal in magnitude. 

It is further assumed that the stress distribution 

in the panels 5 and 6 is expressed by a continuous curve 

and that the stress distribution in the panels 7 and 8 is 

identical to the one for panels S and 6. 

Using equation (6.58) the following 16 relations 

between the 20 unknown functions are obtained. 
2 

a2=a1+ý9 b1 
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a3 =b3= a4 =b4= c4= 0 

a5 = b6 = a7 b8 

b5 =c6= b7 c8 

a6 =a8= 0 

The verti 

panels reduce to 

for panel 1, Cr 

for panel 2, a; 

cal stress distributions in the different 

= a1 + bly2 

2 
= a1 + b1(y - 

? 3) (6.59) 

for panels 5-6 and 7-8 

Q'I = a5x + b5x3 

The condition of vertical strain compatibility at 

the junctions of flange and web panels and the condition 

of overall moment equilibrium at any level will give two 

additional equations,, still leaving two unknown functions. 

In order to further simplify the analysis the 

distribution of vertical stresses 6z in the normal 

panel 1 may be expressed in the form (cf Fig. 6.9) 

VZ=Mc+SO+9()S 000000 
( 6.6o) 

where S0 and S are functions of height coordinate z only. 

The second moment of area I of equivalent tube 

cross-section in equation (6.60) is given by 

I= 4c2t (b + 3c) 

where 2b and 2c are the overall cross-sectional dimensions 

of the bundled tube, normal and parallel to the wind 

directions respectively, and t is the thickness of the 
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equivalent uniform orthotropic plate. 

The stiffnesses of the columns at the intersections 

of web and flange panels are assumed to be just adequate 

to form a segment of the equivalent orthotropic plates. 

If, however, they are stiffer the effect may be included 

in the analysis. 

Similarly the distribution of vertical stresses in 

---normal panel 2 may be expressed as 
2 

a-z= 
I 

c+So+9(Y-3) S 
....... 

(6.61) 

The distribution of vertical stresses 6z in the 

web panels 5-6 and 7-8 may be expressed in the form 

3 
"-6- 

() 
...... 

(6.62) 

zx+c 
S1 

where S1 is a function of height coordinate z. 

The condition of vertical strain compatibility at 

the intersections of flange and web panels requires that 

C3' 
--- 

(rz 
( 

...... 
(6.63) 

(E )y-3 b 
or bE x= c 

On substituting equations (6.60) to (6.62) into 

equation (6.63) it is found that 

-S 
+S=S1 

000000 
(6.64) 

The condition of overall moment equilibrium at any 

level z may be expressed in the form 

bbc 

cr tcd 2 tcdy+4 z y+4 C'Ztxdx=M(z) 
bJ Jb -c 

---33.... 
.. 

(6.6s) 

where M(z) is the total bending moment at that level 
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.:...... -.. caused by the applied lateral loading. 

on substituting equations (6.60), (6.61), (6.62) 

and (6.64) into the equilibrium condition (6.65) and 

integrating, it is' found that 

so --3 ms ...... (6.66) 

where the geometrical ratio m is given by 

b+ 6c 
nl 5b+2c 

which,, is always greater than 1. 

The vertical stresses a'z and 6"Z in the flange 

and web panels may, therefore, be expressed in terms of 

the single unknown function S as, 

for-panel 1, . 

M (ý 
2S 

Cr =c- 3m -9 b) ...... (6.67) 

-for panel 2, 

2 
Q- 

Mc- 3m -4+ 12(b) - 9(b) S ...... 
(6.68) 

Z 

for web panels, 
3 

- Q'z =x+ (1 - 3m)(C) S ...... (6.69) 

The equations of equilibrium for a small element 

in the flange and web panels are given by equations (6.1) 

and (6.2). 

On substituting equation (6.67) into the equili- 

brium condition (6.1) and integrating, the shear stress 

component 'iyz in panel 1 may be expressed as 

dM 2 dS 
'ý''yz =YI dz - 

[*m 
- 3(b) dz ...... (6.70) 
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The constant of integration is zero as yz is 

skew-symmetric with respect to the axis y=0. 

At y3 the shear stress (Tyz) 
1 is found to be 

bc dM i_ dS 
Yz 3I dz - dz 1) dz ...... (6.71) 

On substituting equation (6.68) into equation (6.1) 

and integrating, the shear stress Z'yz in panel 2 may be 

expressed in the form 

yzY 
Idz3m-4+6(b) 

-3 (Y-) 
] dS 

dz 

...... (6.72) 

where C5 is the constant of integration. 

The shear stresses (Vyz)2 and yz)3 at y=3 

and y=b respectively are 

bf Rz 
duz +3 (7 - m) dz + C5 ..... (6.73) 

yz) =-3 2 

(t 
z) =-bI dz + (1 - LM) 

dA-S z}+ 
C5 ...... (6.74) 

Y 3 

On substituting equation (6.69) into the 

equilibrium condition (6.2) and integrating, the shear 

stress component V, in the web panels may be found to be 

=- 
x2 M- 4(1 

- 3m) x4 dS 
+C...... (6.75) 

xz 2I dz 
c3 

dz 6 

where C6 is another constant of integration. 

The shear stress Z'xz)1 in the web panel at 

x=c is evaluated as 

c2 dM 1 im) c dS 
6 ...... (6.76) (rXz)1 2I dz -(-34 dz +C 

Considering the equilibrium of shear forces at the 
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intersections of the flange and web panels it may be 

seen that 

(''yz) 
1- 

(ZyZ) 
2- 

(Zxz) 
i ...... 

(6.77) 

and 

('yz)3 =- ('Cxz)1 ...... (6.78) 

On substituting equations (6,71), (6.73), (6.74) 

and (6.76) into the equations (6.77) and (6.78), the 

constants C5 and C6 are determined as 

C5 = 2I dz +6 (5 - m) dz ...... 
(6.79) 

2 
C (1 + 

b) dM +L (1 - 3m) RU (m - 1) b dS 
6 21 c dz 4c dz 

` 
...... (6.80) 

The shear stresses 'I"yz in the normal panel 2 and 

Z' z 
in the web panels may, therefore be expressed as, 

for panel 2 

be 1- 2(b) ýZi +bL (5 - m) + (3m 
- 4)(ü) 

Yz 21 
[ 

+ 6(b)2 - 3(x)3] äZ 
- ...... (6.81) 

2 b (x)2] M+ (1 - im) c1- (x)4 dS 
ýxz - 21 

C 
1+ 

c- c dz 34 
r5 

c dz 
L 

...... (6.82) 

On calculating (Tyz)1' ('Cyz) 
2' ('ryz) 3 and 

('xz) 1 it is found that 

' !i ('C )=- yz2 = 3(Tyz)3 =- 3('rxz)1 ...... (6.83) 
yz 

It is also found that each web panel carries one 

quarter of the total applied shear, so that 

c 
t 'CCZ dx =4 dz -4...... (6.84) 
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The total strain energy U, stored in the structure 

is then given by 

H 
b 

2 

c- 
[ 

-9(x)2 S dy *m 

0 
-b 

b/3 2 

+ 
G 

Y2 Id 3(x)2 dz dY 

-b 

b 2 

+ 
Ic 

- 3m - 4+ 12(x) 9(x)2 S dy 

b 
3 

b 

+ G 21 1- 2(b) dZ 
+b 

[*(S_m)+(*m_4) 
(Ü) 

b 
3 

+ 6(b)2 - 3(b)3 dz 
(Is dy 

+ E 

c 
Ix 

32 
+ (1 - 3m) 

(ß) S dx 

c 

+ Ga 

c 2 
R_ 
21 

r1 
+c 

2 

C dz 
c 

(1 - sm) 
C 1_ 
45 

x4 ! IS 2 
(c) 

dz dx dz ..... (6.85) 

T he variat ion of U. SU may be expressed as 

SU 2t 
IH [E 

b/3 
M 

c 
[im 2 

- -9( 
b) ]S. 

1 
0 -b/3 . 

- 3 
2 

m- 9(b) 
] Fi S dy 
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b 

2 Of [*m 
y2 dS 

+GyI dz -- 3b dz 
-b/3 

[*m 2 

_-- 
3(b) 

] dd S) dy 

b 
. [*m 2 

+E c -4+12(b) -g() S 

b/3 

2 
- 3m -4+ 12(t) 9(Ü) JSS dy 

b 

+G 21 [1-2J+b[*snI) 

_"- 
b/3 

3 dS 2 
+ (3m-4)(b) + 6(b) - 3(b) dz 

23 OS S) b 
r*(5-m) 

+ (3m-4)(b) + 6(b) - 3(b) dz dY 
L 

c33 

+E{Ix+ (1-3m) (ý) S" (1-3m) (c) öS dx 

-c 

-} 
c2 X2 (1-3rn1 

[i+ 

cc 

Idz 
q. 

[5 

c 

]dz 
" 

L: 

{ 
4 

(1-3m) 4S 
(c) ddz S) dx 

1 
dz "... (6.86) 

J 

On integration SU may be expressed in the form 

H 

U= 2t -l 
b3 315m3 - 637m2 + 521m - 135 d2S 

G 17010 3-m dz2 
0 

+E _Ab (5m2 + 15m - 6) S 315 

`-1 b3c 915m3 - 1961m2 + 561m + 261 d2M dz SS(z) 
G 56701 (3 

- m) 
2 

dz2 
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+ It b3 315m3 637m2 + 521m - 135 dS 
G 17010 3-m dz 

H 
b3c 915m3 - 1961m2 -I 561. m -! - 261 dM 

± 56701 
' (3 - m)2 

dz 
sS 

0 

...... (6.87) 

For minimum U, the variation SU must vanish. 

On equating SU to zero, the following governing 

differential equation is obtained. 
2 

c12S (le 
25 

A2 
d Crb 

dz2 
- lI dz2 ...... 

(6.88) 

where 

It2 - 216 r (I; )2 (3 - m) (5m2 + 15m - 6) 
Fb 315m - 637m2 + 521m - 135, 

2 915m3 - 1961m2 + 561m + 261 3 
(3-m)(315m3 - 637m + 521m - 135) 

For the case of a structure built in at the base 

and free at the top, the boundary conditions become 

At z=0, S=0"...... (6.89) 

dS 2 
dab 

At z=H, dz -) dz =0...... (6.90) 

It may be noted that the governing differential 

equation (6.88) and the boundary conditions (6.89) and 

(6.90) are identical to the governing differential equation 

(2.45) and the boundary conditions (2.41) and (2.46) 

respectively. Hence the same'design curves Fig. 2.8 to 

2.13 may be used to evaluate the direct and shear stresses 

the structure. The function F1, equal to A2, may be 

evaluated directly from equation (6.88). 
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In the above analysis the effects of panels 3 and 

4 in resisting the lateral load were not considered. 

Once the structure has been analysed and the stresses 

determined, the uniform vertical stresses acting in panels 

3 and 4 may be evaluated from the strains at the junction 

456 or 3478 (Fig. 6.9). The resultant moment, p M1, 

resisted by these panels may, then, be determined. The 

main structure (with the panels 3 and 4 omitted) is now 

-considered with the applied moment M-A M1. Due to 

the reduced moment all stresses are also reduced 

proportionately. The new stresses in the panels 3 and 4 

and the resultant moment, AM 2 
(AM2 <A M1) resisted by 

them are calculated. The structure is then analysed for 

the moment M- A"12. The process may be repeated until 

:' -- -the difference in results -between two consecutive steps 

is within tolerable limits. 

6.5.3 MORE GENERAL ANALYSIS 

In order to analyse a bundled tube structure with 

nine tubes subjected to lateral load, certain simplifying 

assumptions regarding the stress distributions in the 

various panels of the structure were made in Article 6.5.2. 

The panels 3,4 
, 
in Fig. 6.10 were omitted in the first 

iteration and a simple closed solution was obtained. By 

a"process of iteration the stresses in the different 

panels were subsequently determined. 

In the following more general analysis the same 

simplifying assumptions regarding the distribution of 

stresses are made. The effect of panels 3 and 4 in 
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_-, resisting lateral load is neglected in the first instance. 

The distribution of vertical stresses 6' in the 
z 

flange panel 1 may be expressed in the form 

2 
6z _1+ 9(b) f2 ...... (6.91) 

where f1 and f2 are functions of the height coordinate 

z only. 

For the flange panel 2, the distribution of 

vertical stresses. -0' may be expressed as 

-a=f+ 9(b -3 
2 

f ...... (6.92) 12 

The distribution of stresses o'Z in the web panels 

5-6 and 7-8 may be expressed in the form 

.--tx3 cs-Z = (c) f3 + (ýx) f4 ...... (6.93) 

where f3 and f4 are also functions of coordinate z. 

Comparing the equations (6.91) to (6.93) with the 

equation (6.59) it is found that 

f1 =a 

2 f2 = b1 
b 

c5 

f 

- and = b5 

The condition of vertical strain compatibility at 

the intersections of flange and web panels yields 

f1 + f2 = f3 + f4 ...... (6.94) 
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The condition Of overall moment equilibrium at 

any level was given in Article 6.5.2 (equation 6.65). 

On substituting equations (6.91) to (6.94) into the 

equilibrium condition and integrating, it is found that, 

Ma+2 
fi =c- 3a +2 f2 + 5(3a4+ 2) f4 ...... (6.95) 

where ab =c 

On substituting equation (6.95) into equation 

(6.94), the function f3 is found to be 

ß (_5 a+ 2ý, f3 =Mc+ 3a + 
2a 

2 f2 - 5(3a + 2) f4 ...... (6.96) 

The distribution of vertical stresses 6-7 and Q'z 

in the flange and web panels may be expressed in terms of 

two unknown functions f2 and f4 as, 

for flange panel 1, 

M2 
= 

[a++2 
2- 9(b) f2 + 5(3a + 2) 

f4 (6.97) 

for flange panel 2, 

M 11a +62 
c+ 3a +2- 

12(b) + 9(b) f2 + 5(32 + 2) f4 

_ ...... (6.98) 

for web panels, 

-_ tM 2a x 3( a+ 2) x ßZ =x+ 3a +2 
(c)f2 - 5(5a + 2) 

(c) - (Z)3 
cf4 

...... (6.99) 

The equations of equilibrium for small elements 

in the flange and web panels are given by equations (6.1) 

and (6.2) respectively. 
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On substituting equation (6.97) into the equilibrium 

equation (6.1) and integrating, the shear stress in 
yz 

panel 1 is found to be, 

'ý - -y 
c dM Da +2 3(y)2 

df2 
+I dz +2b] dz 5(3a + 2) dz 

...... (6.100) 

The constant of integration is zero as 'C* 
yz 

is 

skew-symmetric with respect to the axis y=0. 

At y=3, the shear stress ('Cyz)1 becomes 

be dM 4 df2 4 dit 
-ryz)1 =-3I dz 3(3a + 2) dz + 5(3a + 2) dz 

...... (6.101) 

The shear stress in panel 2 is similarly determined 

as 

_ -y 
c d1ý2 + 11a +6- 6(f) + 3(y)2 

df2 

.. _. yz I dz 3a +2bb dz 

df 
+ 5(3a 

+ 
2) 

dz + C7 ...... (6.102) 

where C7 is the constant of integration. 

The shear stresses yz)2 and 
yz)3 

at y3 

and y=b respectively become 

_-b 
dM+2(9a+4) df2+ 4 d--ý 

+C 
yz 23I dz 3(3a + 2) dz 5(3a + 2) dz 7 

...... 
(6.103) 

T) ---b 
cdM+ 2a df2+ 4C 

yz 3I dz 3a +2 dz 5(3a + 2) dz 7 

...... (6.104) 

On substituting equation (6.99) into the 

equilibrium equation (6.2) and integrating, the shear 

stress etXz for the web panels may be expressed as 
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x2 
2 dM a x2 

df 

xz r 2I dz - 
-3a 

+2c dz 

[3(Sa 
+ 2), x2 x4 

df 
+ 100a + 2) c- 4c3 dz + C8 6.105) 

where C8 is a constant of integration. 

The shear stress (`Cxz) at x=c is found to be 
1. 

1 ra+ 2c_. 
_i +C 

2Macdz2+ 
(ý 

xz)1 21 dz 3a +2 20(3a + 2) dz 8 

...... (6.106) 

Considering the equilibrium of shear forces at the 

-intersections of the flange and web panels it is found 

that 

( yz) -1 (Tyz) 
2 

('rxz) ...... (6.107) 

and rCyz) 'Cxz) 
...... (6.108) 

3 
On substituting equations (6.101), (6.103), (6.104) 

and (6.106) into equations(6.107) and (6.108), the constants 

C7 and C8 become 

: 
-C _ 

c2 dM 2(3a + 
df2 

2a. (If 

21 a dz 3(3a + 2) b dz + 5(3a + 2) c dz 

(6.109) 

c C= 
2(a+ 

1) 
dIT+ 1bdf2- 7a+2 

c 8 21 dz 3(3a + 2) dz 20(3a + 2) dz 

....... (6.110) 

The distribution of shear stresses 'Cyz in panel 2 

and Z'XZ in web panels are given by, 

., 
for panel 2, 

be 1- 2(ý) +b 2(3a + 1) 1 1a +6 (y 
yz 21 b dz 

[30a 
+ 2) - 3a +2b 
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23 df df 
+ 6(b) 3ýb) dz2 +UM+ 2) 1- 2ýb) dz 

...... (6.111) 

for side panels, 

[(a 
++x2 

2) 

[ 2] 

c a+2 x2 6(5a+2) 4 
20 3a +2 3a +2c c) dýzl 

...... 

(6.112) 

The total strain energy U, stored in the structure 

becomes, 

H b/ 322 
1M a+ 2 UtE Ic 3a +2- 9(b) f2 +Y 5(3ý ä+2j fq d 

0 b/ 3 

/3 
2 df df 2 

2c ciM 
[a+2 

y2 +GyI dz - 3a+2 - 3(b) dz + 5(3a+2) dz dy 

-b/3 

b22 

+EIc+ 3a+26 - 12(b) + 9(Ü)] f2 +5 3a+2)f4, dy 
b/ 3 

b 

+2 
be [1_2()] dM 

+ b- 2 a+i 1]a +6 
G 21 b dz 3(3a+2) - 3a +2b 

b/3 

2- 
y3 

f2 2b yd + 6(b) 3(b) dz + 5{ 1 2(b) dz dy 

c2 
2 bT 2ax a+2 xx3 

I x.. + 3a+2 
(c)f2 - 5(3a+2) c)-(c 

f4 dx 

-c 
c 22 df 

`. _: 
+G 2I 

[(a+1)()2] d+ 
3(3 

[1 
- 3(x) dz2 
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c 
[7a±2 6(5a+2) (x)2 

4 f4 2 
+ 5(X) dx dz - 20 3a+2 3a+2 cc dz 

...... (6.113) 

On minimising the integral by the calculus of 

variations, the following equation is obtained. 

1 20c3a2 
a3 

2 
2f 

2 
567 

(9 + 54a + 137a + 189) 2 
0 dz 

+ 10ca(3a + 2)(a + 4)f2 

2 3 
+G 

4189 (21a3 + 119a2 + 270a +"54) 
df2 

dz 

- 20ca (3a + 2) f4 

2" 
+ 

524 41 
(3a + 2)(3a3 + 17a 2- 18) ! j2 m dz Sf 

22 
., dz 

H3 d2f 

2 
4c a (21a3 + 119a2 + 270a + 54) 2 
189 

dz 
0 

"-E 
20ca(3a + 2) f2 

c3 32d2f 
". -G 

o5 (35a + 135a + 60a + 8) ---2 
dz 

+2 (5a + 1) (3a + 2) f4 

-1 
c4 (3a + 2)(35a3 - 60a - 12) d2M dz Sf 

G 21I dz2 4 

32 df 20567 (9a3 + 54a2 + 137a + 189) dz 

3 
""" 4189 (21a3 + 119a2 + 270a + 54) dz 
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4 ca 

- (3a + 2)(3a3 + 17a2 - 18) Sf 271 dz 2 
0 

3 df 
+G[- 

4189 (21a3 + 119a2 + 270a + 54) dz2 

+ 10S (35a3 + 135a 2+ 60a + 8) dz 

4H 
+ 21I 

(3a + 2)(35a3 - 60a 12) dz 
s fq 

J 
0 

I_-=0... . .. 
(6.114) 

The governing differential equations may, therefore, 

be expressed as 

d.. 
_. _2 

f2- k1 22 dý 122 d2 Crb 

dz2 
C 

H) f2 -« 1 dz2 
+ H) f4X1 

dz2 
(6.115) 

and 

d2 f2 k2 22 d2f 4222 d2 crb 

d 
(H) f2 - a2 

dz2 
+( Ii f4 = A2 

dz2 
(6.116) 

in which 

k2 _ 
r6% G (H)2 a(3a + 2)(a + 4) 

12Eb 9a3 + 54a2 + 137a + 189 

«2_3 
21a3 + 119a2 + 270a + 54 

5 
a(9a3 + 54a2 + 137a + 189) 

. 
43 

2 
567E (H)2 a(3a + 2) 

1b 9a3 + 54a 2+ 137a + 189 

2= 21 (3a + 2)(3a3 + 17a2 - 18) 
14 a(9a3 + 54a + 137a + 189). 

k2 = 945 G (H)2 a2(3a + 2) 
2Eb 21a3 + 119a2 + 270a + 54 
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ä2 5a3 + 135a2 + 60a +8 

a(21a + 119a2 + 270a + 54) 3 

2 
a(5a + 1) (3a + 2) ß2 162 G (H) 2Eb ý1a3 + 119a2 + 270a + 54 

and 

2 (33 + 2)(35a3 - 60a - 12) 

a(21a "+ 119a2 + 270a + 54) 

Por the case of a structure rigidly built-in at 

the b tme and free at; the top, the appropriate boundary 

conditions are 

at z-0, f2 =0...... (6.117) 

at z 0, f4 =0...... (6.118) 

df2 2 df 2d a'b 
at ZR II, dz - °( 1d-A1 dz =0 (6.119) 

and 
df2 2 df 2d G'b 

at z II, dz °( 2d- 
ý2 

dz 0 (6.120) 

The equations (6.115) to (6.120) are identical to 

the cot-responding equations for the bending of framed- 

tube structures in Chapter 2 (equations 2.88,2.891 2.86, 

2.87,2.90 and 2.91). Hence the solutions of the 

equations for different loading cases will be the same. 

In the particular case of a bundled tube structure 

with a square cross-section of sides 2b, the aspect ratio 

a becovies 1, and the parameters are reduced to 

2 
ki = 15.2198 E (b) 

P(2=0.7157 



188 
2 

. 7.2879E (b) 

x1 = 0.1350 

k2 = 10.1832 E (b' 
2 

2) 

a20.9233 

2 
ý3 2= 10.4741 E () 

2=-0.8971 

The process of iteration, described in Article 

6.5.2 is also carried out in the present analysis and the 

stresses in the various panels of the structure determined. 

t. 



Fig. 6.1 Shear lag in Framed Tube and Bundled Tube 
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Fig. 6.7 Column axial load distribution 
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CHAPTER 7 

FRAMED-TUBE STRUCTURE UNDER VERTICAL FORCES 

NOTATION 

The following symbols are used in this chapter: 

A area of cross-section of framed-tube; 

A = area of corner column; 

a = aspect ratio; 

b = half breadth of framed-tubes 

c = half depth of framed-tube 

F = elastic modulus; 

f 1' f 2' f 3' f4 stress functions; 

G = equivalent shear modulus; 

II = total height of building; 

k ,k = structural parameters; l 2 A 
c 

n _ =ct ; 

t = thickness of equivalent orthotropic plate; 

U = strain energy; 

w = applied force at any level; 

x, y = horizontal coordinates; 

Z. 9 zt = vertical coordinates; 

1' 0(2 = geometrical ratios; 

P2 = structural parameters; 

= non-dimensional height coordinate (lI); 

s = force per unit volume due to self weight; 

f' 
f f = maximum vertical forces in the panels 

2 1 
induced due to the loads on the floor areas; 

a"- = direct stress; 

Z = shear stress. 
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7.1 INTRODUCTION 

The analysis of framed-tube structures subjected 

to lateral wind load was considered in Chapter 2. By 

replacing the discrete structure by an equivalent 

orthotropic tube, and making simplifying assumptions 

regarding the stress distribution in the structure a 

simple closed solution was obtained. 

In addition to the lateral load the structure is 

subjected to vertical forces due to the dead load of the 

structure and the live load acting on the floor areas. 

The dead load includes the weight of (a) the exterior 

structural wall consisting of columns and spandrel beams, 

(b) the floor system of deep girders or trusses, the 

metal deck and the concrete slab, and (c) the light weight 

elements and glass for interior partitions and exterior 

cladding. 

The magnitude of the live load depends on the 

purpose for which. the floor areas are used and are 

different for office areas, mechanical rooms, public 

spaces and plaza areas. 

The vertical-force acting-on the panels is not 

uniform and a redistribution of vertical stresses in the 

panels may take place due to the flexibility of the spandrel 

beams. A simple procedure is described in this chapter 

to examine any redistribution which may take place. 

In many practical structures, the four corner 

columns are considerably stiffer. than the other columns, 

and provision is again made in the analysis to include 
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stiffer individual corner elements. 

7.2 METHOD OF ANALYSIS 

In the framed-tube structure with stiffer corner 

columns shown in plan is Fig. 7.1, the vertical load is 

resisted primarily by the axial deformations of the four 

frame panels. The interactions between the orthogonal 

panels consist mainly of vertical interactive forces 

along the corners A, B, C and D. 

The spacings of the beams and columns are assumed 

uniform throughout the height, as is usually the case in 

practice. In addition, in order to simplify the analysis, 

it is assumed that both beams and columns are of uniform 

section throughout the height. This is not strictly 

necessary, and it is straightforward to extend the analysis 

to include a number of regions in which the beams and 

columns have constant stiffnesses. The analysis of 

framed-tube structureswith different stiffness regions 

was discussed in Chapter 5 for bending action and a 

similar procedure may be followed for vertical forces. 

It is then assumed that each framework panel of 

columns and spandrel beams may be replaced by an equivalent 

uniform orthotropic plate, to form a substitute closed- 

tube structure. The substitute tube is assumed to have 

a uniform equivalent thickness t, with vertical elastic 

modulus E and shear modulus G. The derivation of the 

properties of the orthotropic plate to model the vertical, 

horizontal, and shearing stiffnesses of the frame panels 

was given in Chapter 2. 
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The vertical force caused due to the weight of the 

structure itself consisting of closely spaced columns and 

deep spandrel beams, and exterior cladding may be 

considered as a uniform force .s per unit volume of the 

equivalent tube structure. 

The weight of the floor system and the interior 

partitions, and the live load acting on the floor areas 

are transferred to the four panels of the equivalent tube 

at every floor level. It is assumed that the vertical 

forces along the frame. panels at every floor level may be 

expressed as parabolic distributions (21) 
On dividing 

the force per unit width by the thickness t of the 

equivalent tube and the storey height h, the vertical 

forces in the panels AD and DC may be expressed as a 

-continuous force per unit-volume for--the whole height of 

the building of the form, 

d ff 
1L1 

-- (b)2 
...... (7.1) 

(ý)2 
] 

...... (7.2) 
2 

where 
Pf 

and j 
P, are constant terms independent of the 

12 
height coordinate z. 

These parabolic distributions of vertical forces 

will modify the distributions of vertical stresses in 

the panels, expressed ordinarily by the average stress 
Ä, 

and induce horizontal direct stresses and shear stresses. 

The assumption is now made that the stresses may be 

expressed with sufficient accuracy as a power series in 

the horizontal coordinate, x or y, the coefficients of the 



193 

_... series being arbitrary functions of the height coordinate 

z, The simplest approximation which may be made for the 

symmetrical distributions of vertical stresses az and Cr' 

in the panels AD and DC respectively are parabolic 

distributions. The stress distribution, cr, for panel 

AD may thus be expressed as, 

2 
Vz=fy+ 

(ýji. ) f2 

000000 
(7-3) 

in which f1 and f2 are functions of the height 

coordinate z only, 

In the same way, the distribution of vertical 

stresses, Cr , in the panel DC may be expressed in the 

form, 

x2 
. a-z = f3 + (t) f4 ...... (7.4) 

---in-which f3 and f4 are also functions of the coordinate z. 

The condition of vertical strain compatibility at 

the corner requires, 

ýz 
(-F b, z) = Ez 

(± c, z) (7.5) 

in which cr is the axial stress in the corner column of 

area Ac, given by, on using equation (7.3)? 

Cr =( 
0- )=f+f... 

... 
(7o6) 

cz y=b 
12 

On substituting equations (7.3) and (7.4) into 

equation (7.5), it is found that 

f1+f2=f3+f4 
...... (7.7) 

The condition of vertical force equilibrium at any 

level is 
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bc 

t dy +2 crz t dx + 4Ac cC _ -W(z) (7.8) 
1-b 

-c 

in which W(z) is the total vertical force at that level, 

given by 

bc 

W2t dy z+2t dx z+ 
[4(b+c)t 

± 4A 
c 

f_be 

. 
Ps. z ...... (7.9) 

on substituting equations (7.1) and (7.2) into 

equation (7.9), the total vertical force W becomes, 
A 

W= 4tz 
[ 

3b , 
Pf + 3c 

Ff+ (b +c+ t) fs] (7-10) 
12 

On substituting equations (7.3) and (7.4) into 

equation (7.8) and integrating, it is found that, 

A 

[b(f1 4t + 32) + c(f3 + 34) + (f+ f2) 
]= 

-W 

.... 

The functions f1 and f3 may, therefore, be 

determined from equations (7.7) and (7.11) as, 

f_W a+ 3n+ 3f+2f 
(7.12) 

1 -A - 3(a+n+ 1) 2 3(a +n+ 1) 4 
" 

fW 
2a 

- -3a 
+ 3n + (7.13) 

3 =-A+ 3(a+n+ 1) 
f2 

3(a +n+ 1) 
f4 

in which a=b c 
A 

and n= ct 

In equations (7.12) and (7.13), A is the area of 

the equivalent tube cross-section, given by 

"A. = 4(b + c)t + 4A0' ...... (7.14) 
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The vertical stresses, 6z and 6'z, may thus be 

expressed in terms of the two unknown functions f2(z) 

and f4(z) as, 

Cr _ _W 
a+ 3n+ 322 

z-A 3(a+n+ 1) 
(b) f2+ý3(a+n+ 

1) 
f4 

"" 
--..... 

(7-15) 

W 2a 3a + 3n +1-( X) 
2f 

zA+ 3(a +n+ 1) f2 3(a +n+ 1) cj4 

...... (7.16) 

The stress in the corner element then becomes 

0-c =_Ä+ 3(a +2 
an 

+ 1) f2 + 3(a +2n + 1) f4 (7.17) 

The equations of equilibrium for the-panel AD are 

ý--ý 
+ vz =0 Yz 

v 
.ä+y+ 

Ps +4f1_ (b) 
]=o 

The equilibrium conditions for, the panel DC are 

6x 
+ 

a7xz 
o Z= 

ýýz a yxZ X 
(7.19) 

.a+aX+P+ ff [i- (ý) =o 2 

On substituting equations (7.15) and (7.16) into 

the equilibrium conditions (7.18) and (7.19), and 

integrating, the remaining stress components become 

2 
b2 a+Sn+_ a+ n+3 y2v4 

df 
2 

= Cr '' 6 2(a+n+1) a+n+1 b) + 12(b) 
'2 

dz 

_ 
b2 

1_ (Z) 
2 d2f 2 

3(a+n+ 1) 

Cb]2 

dz 

>I 
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a+ 3n +3_ (Y-) (dig -P yz 3a+n+1b dz f1ý 

2 
dfA 

a+n+ 1( dz 'Pf 
2 

d2 
ac X2 

f2 
ý 

3(a +n+ 1) 

C1 

- (c) 
]2 

dz 

2 f4 
+c2 

5a + 5n +1 3a + 3n +1Xy+24d 
6 2(a +n+ 1) a +n+ 1cc 

() 
2 dz 

x- 2a Cdf 2- 
.P xz 3a+n+1 dz f1ý 

+[ 
ä+n 

+n l+ 
12 d£ 

- (c) (dz -f.... (7.20) 
2 

The integration constants were evaluated from the 

following boundary conditions: 

0 At y=±b, y 

At x-±c, CF- 

In addition yZ and XZ are skew symmetric with 

respect to the axes y=0 and x=0 respectively. 

It is seen that the following equation of equili- 

brium at the corner column is automatically satisfied. 

Txz)x=c 
+ 'ryz) = 

At 
(dam c+ Ps 

y=b 

The total strain energy, U, stored in the structure 

1S 

I 

Hb22 
ý. 

2c (a-ý) 'C 
U=t 

so 

-b 

[+]dY+ 

E+ 
Gdx dz 
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2A H 

+ Eý ... 
S 

CT dz 
Jo 

&#0000 (7.21) 

The strain energy due to the horizontal direct 

stresses, Cr and 0, is small and may be neglected. 

On substituting equations (7.15), (7.16), (7.17) 

and (7.20) into equation (7.21), the strain energy U may 

be expressed as, 

H2 
1 W_ 22 

U=tE-A 
[a+3n+3 

3(a+n+1) - b) 
1f2 

+ 3(a+n+1)f4 dy 
J 0 -b 

b2 
df 2 

G9 

[a+n+l 

b dz f 
-b. 

df 2 
2 

a+n+1 dz 
pf2) dY 

c22 
W 2a 3a+3n+1 x +EA+ 3(a+n+1) f2-[ 

3(a+n+1) - (c) f dx 

-c 

C 

x2 
_ 

2a df2 
+G 9 a+n+ 1 

(dz - 
ff1) 

-C 

+C 3n +11-2 df 2 
d 

'Ff ) dx 
2 

2Ac W 2a 22 +tE -Ä+ 3(a+n+ 1) 
f2+ 

3(a+n+ 1) 
f4 dz 

...... (7.22) 

The variation, ö U, of the strain energy may be 

determined by the calculus of variations and is given by, 
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Hb 
w SU 
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2 
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2 dam) 
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C 
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+ tEc -Ä 

Lq, 
+ 3(a+n+1) f2 + 3(a +2n + 1) 

f4 ' 

2a 2 
3(a +n+ 1) 
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s fQ dz 

...... (7.23) 
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In order to minimise the strain energy the 

variation SU must be equal to zero, which gives 

H23 

- 
2a2c (2a3+ 18a2n + 18a2 + 51an2 + 102an 

fo 

d2f 
2 + Sla + 35) 2 dz 

+ 
ALac (a2+fan+7a+6n2+ 12n+6). f2 

+1 GC (a3 + 6a2n + 6a2 + 6a + 6n + 1) 
d 2f 

4 
2 dz 

210 ac (a +n+ 1) f4 ] dz E 
6: 62 

ýI 
43 d2f 

-I- 
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f2 
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0 

_ 
210 `1c (a+n+ 1) f2 
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+ 18a2n + 18a2 + 51an2 + 102an 

2 

+ 51a + 35)( 
df 
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+ 2c3(35a3 + 51a2 + 102an + 18a + 51n2 
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2 

=0...... 

II 
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(7.24) 
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The governing differential equations may, 

therefore, be expressed as 

d2222f d 

dz d2` 
-( Hi) f2 - °C 

2 

dz 24 + (ýý1) f4 =0 (7.25) 

and 

d2 f2 k2 22 d2 f4 
22 

dz2 
- (H) f2 - °C2 

dz2 
+( i1 

) f4 =0 (7.26) 

in which 2 

k2 = 21 (H) b 
a(a + 6n + 6) (a +n+ 1) 

1 E 2a3 + 18a2n + 1842 + 51an2 + 102an + 51a + 35 

0( 
2 =7 

ä3 + 6a2n + 6a2 + 6a + 6n +1 
1 

a( 2a3 + 18a2n + 18x2 + 51an2 + 102an + 51a + 35) 

2 
- 1o5 G(H)2 

Eb 
a(a +n+ 

1 2a3 + 18a2n + 18a2 + 51an2 + 102an + 51a + 35 
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G (H)2 

b 
a2(a +n+ 1) 

2 E. 
a3 + 6a2n + 6a2 + 6a + 6n +1 

2 
=13 

5a3+" 51x2+102an+18a+51n2+18n +2 
2 7 

a(a3 + 6a2n + 6a2 + 6a + 6n + 1) 
and 

2 3G (H 
2 

a(a +n+ 1) (6a + 6n + 1) 
2 E b 

a3 + 6a2n + 6a2 + 6a + 6n +1 

For the case of a framed-tube rigidly built-in at 

the base and free at the top, the boundary conditions are 

At z = 0) - f2 =0...... (7.27) 

At z = 0, f4 =0...... (7.28) 

At z = H, 
df2 

dz 
2 df 

- 'Pf - 0(1 (dz - 
ff )=0 (7.29) 

2 

At z = H, 
df2 

dz -- oC2 
d-! A 

-, 
f=0 

f ) 2 
(dz 

f (7.30) 
1 2 
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If it is assumed that the structure is supported 

on an elastic base, the boundary conditions (7.29) and 

(7.30) will-be modified to include the effects of the 

elasticity of the base. A procedure similar to the one 

described in Chapter 4 may be followed to. determine this 

} 
modification and hence the effect of elastic base on the 

redistribution of vertical forces in the panels. 

The. equations (7.25) and"(7.26) are identical to 

the homogeneous parts corresponding to the equations (2.88) 

and (2.89), derived for the bending of framed-tube 

structures. The solutions of the equations were given 

in Chapter 2 as, 

2 

f2 = (CC i ml -ý 
H2) 

(A1 cosh m1z + A2 sinh m1z) 

2 

+ (o(1 2- 
2)(A3 cosh m2z + A4 sinh m2z) (7.31) 71-k 

12 f4 = (m1 - )(A1 cosh m1z + A2 sinh m1z) 

k2 
+ (m2 - 

2)(A3 
cosh m2z + A4 sinh m2z) (7.32) 

H 

where m1 and m2 are given by 

m2 _122222+ 
2x 2 (a 2_ p(2) 

[(oC 

1 lc2 - o(2 k1+2 
12 

22222222222 (a 
1 k2 'a2 kl 4(a1-a2) (lik2-, ß2k 

...... (7.33) 

The constants A1, A2, A3 and A4 are determined with 



202 

the help of the four boundary conditions. They are 

Al =0 

(m2H2 - k12 2) Pf 
- (0< 

1m2H2 -P 12 
) 

.P f2 1 A2 
(o( 2k 

- ,3 
i) (m1 - m2) m1 cosh m1If 

A3 =0 

A4 = 

2 (m1H2 - k1) Pf 
- (o( 

1m1H2 -i . Pf 
-12 2 2I 

1)(m1 - m2) m2 cosh m2H 

(7.34) 

The complete solutions become 
22 

f(' 2mi 
-) A2 sinh m1Hgý +(0(2M2 - 2i) . HH 

A4 sinh m2II ý (7.35) 

k2 k2 
f4 = m2 - 

2) A2 sinh m1II, + (m2 - 
21)A4 

sinh m2H 
ii H 

(7.36) 

Considering equations (7.34) to (7.36) it may be 

seen that the uniform force Ps has no effect on the 

functions f2 and f4. 

In the particular case where the cross-section of 

the framed tube is square, of side 2b, the aspect ratio a 

becomes equal to unity. The constants ff and Pf are 
12 

(equal and may be denoted by ff. The parameters 

reduce to k, y (1) 
,ý1,. 

k22 2, 
(2 and 

2 

. k2=21 
G (H) 

2 (6n+7) n+2) 
11b 51n2 + 120n + 106 

2 14(6n + 7) 
1 51n2 + 120n + 106 
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)n+2 2= 105 G (H 
2 

Eb 51n2 + 120n + 106 

k2 
E b) 2n+2 

22n+7 

2 51n2 + 120n + 106 a2 14(6n + 7) 

and ,p222-2E 
(b) H (n + 2) 

The following relations between the parameters 

may be noted. 

22 
1 cß(2 

222 
1 

k2 
'ß1 

and oC1 j3 = k1 

The constants m1 and m2 reduce to 

2 
ß1 + k1 

m1 
H2 0( 2+1 

and 
22 

21 kl 
m2 

H2 o( 
2-1 

The constant A2 reduces to zero and A4 becomes 

(a i- 1) H2 rf 
A4 

(0( 21k2 
- 431 2)m 

2 cosh m2H 

The functions f2 and f4 become equal and may be 

denoted by f. It is found that 
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, 
Pf 

sinh m2H 
f= "".... (7.37) 

m2 cosh m211 

The distributions of stresses in all the four 

panels are identical. For the face AD, they may be 

expressed as, 

In +2 Z--A-[ 
3(n + 2) - (b) Jf....... (7.38) 

_n+22 Zyz =31n+2- Ü) 1 (Iz - 
ff) 

....... (7.39) 

.1 

6. _ 
b2 5n +2 3n +22y42 df 

y6[ 2(n + 2) n+2 b) + 2(b) 2 dz 

0000009 
(7-40) 

The framed-tube structure with variable f. and 4 

f in different regions may be analysed by a procedure 

similar to the one described in Chapter 

7.3 NUMERICAL EXAMPLE 

A 50-storey concrete high-rise building of square 

cross-section, shown in plan in Fig. 7.2, is considered 

with the following dimensions: 

h= storey height = 3.6 m- 

d= bay width = 3.0 m 

2b = side of the cross-section = 24.0 m 

t1 = width of the column =1m 

t2 = depth of the spandrel beam = 0.6 m 

tw = thicknesses of column and beam = 0.3 m 

The corner column is twice the area of other 

columns. 
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The building is subjected to vertical forces 

defined by, 

.Ps=1 kN/m3 

(ýf=3.5kk/m3 

With the given data it is found that, 

t=0.1 m 

n=0.25 

A= 10.8 m2 

2 
ki = 2.8855 ET () 

oc 
2=0.8550 

i== 2 
1.6974E (1; ) 

G 0.044813 E 

m2 = 0.050497 m1 

At the second floor level (=0.96) it is 

found that, 

W= 5736.96 kN 

f= 48.18 kN/m2 

The axial force in column 1 is given by (Fig. 7.2), 

b 

N1=t 6'Z dy 

bd 2 

On' substituting equation (7.38) into the above 

equation and integrating, it is found that 
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td 
_W 

2 

n+2-b2 
(3b2 - 

ZU. d + 
d4 )]f N1 _=-2A+3 

[3ný. 

The axial force in column at position yi may be 

expressed as 

A 
yi + 

N =t dy i z 
d 

vi - 2 

On substituting equation 

above equation and integrating, 

N. in+21 Ni = -td A+3n+2 b2C3. 

(7.38) again into the 

Ni becomes, 

2 

a 

The axial force in the corner element Ac is given 

by 

-- [ -h' 4 Nc = Ac A+ 3(n + 2) 

From the equations given above the axial forces 

in the columns are found to be, 

N1 = - 303.3209 kN 

N2 = - 157.0431 kN 

N3 = - 161.5600 kN 

N4 = - 164.2700 kN 

N5 = - 165.1734 kN 

If stiffer spandrel beams of depth 1. '5 m are used 

it is found that 

GE=0.28404 
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m2 = 0.127131 m1 

f= 11.0221 kN/m2 

The axial forces in columns become 

N1 =- 315.1971 kN 

N2 =- 158.8300 kN 

N3 =- 159.8633 kN 

N4 160.4833 kN 

N5 160.6899 kN 

Comparing the results of the two cases,. it appears 

that the flexibility of spandrel beams has small effect 

on the distribution of vertical stresses in the panels. 

The shear forces in columns and beams are very 

. -small and are not evaluated here. 

4 
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CHAPTER 8 

EXPERIMENTAL INVESTIGATION 

8.1 INTRODUCTION 

In view of the limited number of published works" 

regarding the structural behaviour of the framed-tube and 

bundled-tube type of structures, it was considered 

imperative to carry out experimental investigations in 

order to provide an understanding of their behaviour tinder 

lateral loads and torsional moments. The results of the 

various tests on the structural models were compared with 

the corresponding analytical solutions in order to assess 

the validity of the assumptions which were made in the 

derivation of the simple approximate methods of analysis. 

In the earlier analyses of Chapter 6 it was found 

that the bundling of tubes improves the cantilever 

effectiveness of'the structure by reducing the shear lag 

effects. It was decided to verify this improved 

behaviour of the bundled-tube structure over the framed- 

tube structure by suitable model tests. 

A list of models tested is given below. 

Model 1: 15-storey, 28-column framed-tube structure 

of square cross-section. 

Model 2: Model 1 with strips glued to the corner 

columns. 

Model 3: 15-storey, 24-column framed-tube structure 

of rectangular cross-section. 

Model 4: Model 3 with an additional web frame glued to 
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form a bundled-tube structure with two 

modular tubes. 

8.2 CHOICE OF MATERIAL 

The selection of a suitable material for a structural 

model depends upon several requirements. The material 

must be such that the laws of similitude are satisfied and 

certain practical needs are met. The material must be 

easily available in a wide range of sizes, easily 

fabricated, easily cast into shape and relatively cheap 

and it must have reproducible mechanical properties and 

geometric stability. The most commonly used materials 

for constructing models are plastics, cementitious 

materials (plain and reinforced) and metals. Specific 

materials in each of these categories, and their 

properties, advantages and limitations were discussed by 
(24) 

Roll 
23 

and Breen. 

For models designed to simulate the elastic 

response of the prototype, various plastics have proved to 

be extremely effective as model materials. Comprehensive 

studies of plastics suitable for models were made by 

Fialho. 
(25) 

In addition to being easily available and relatively 

inexpensive, plastics possess various properties which 

make them suitable for model materials. They generally 

exhibit linear stress-strain relationship in the usual 

range of strains used in models, and the elastic moduli 

are low so that measurable strains and deflections are 

obtained without requiring large loads. Most plastics 
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can be considered to be isotropic and homogeneous. One 

important advantage of plastics is the ease with which 

models made from them can be fabricated and machined. 

Some characteristics of plastics are disadvantageous 

and introduce some difficulties in interpretation of test 

results. For example, the mechanical properties of 

plastics may be affected by temperature, humidity, strain 

rate and duration of load. It is, therefore, essential 

that the testing of plastic : models , i, 5. conducted under 

controlled environmental conditions. A serious 

disadvantage of plastics is their low thermal conductivity. 

one method of handling this problem, when using electrical 

resistance strain gauges, is to simultaneously switch into 

the measuring circuit an active (measuring) gauge and a 

"'. dummy (compensating) gauge. Another property that can 

lead-to errors is the time-dependent strain, known as 

creep. It is common practice to allow a sufficiently 

long time to elapse between application of load and 

reading of gauges so that creep is essentially terminated 

and to use an asymptotic value of modulus of elasticity E 

for all gauges. 

Of the available plastic materials Araldite and 

Perspex are the most widely used for shear wall and 

framed-tube models. Araldite is the more suitable of the 

two as it can be readily machined and exhibits negligible 

creep under low loads. It is, however, expensive and for 

complex models, where a large quantity of material is 

needed, the cost would be rather high. It was, therefore, 

decided to construct the models using the less expensive 

alternative, Perspex acrylic sheets. The properties of 
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Perspex are affected by changes of temperature and 

humidity, it creeps under load and is comparatively 

difficult to machine. Detailed properties of Perspex 

and the various cementing techniques have been given in 

I. C. I. Publications. 
(26p27) 

If experiments are carried 

out under controlled environmental conditions and 

necessary precautions are taken during testing, results 

of reasonable accuracy may be obtained from models using 

Perspex sheets. 

8.3 MODEL CONSTRUCTION 

The various panels of each model were out by band 

saw to their approximate size from Perspex sheets of 5 mm 

thickness. The panels were then milled to their correct 

profile. 

Openings in the panels were made by 4 mm diameter 

slot drill leaving the columns and beams of the required 

dimensions with 2 mm radius fillets at all intersections 

of columns and beams. The fillets help to avoid stress 

concentrations and the resultant cracks developing at 

beam-column connections. All the panels were cut with an 

extra length of material at the base for fixing to the 

base plate. 

I. C. I. Tensol cement No. 7) which has properties 

similar to those of Perspex when cured, was used throughout 

the assembly of the models. 

The rigid foundation required for each model was 

provided by cementing the extra length of each framed panel 

into slots cut in a 25 mm thick Perspex base plate. The 
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panels were held perpendicular to the base plate and at 

the correct level while the slots were completely filled 

with cement and until the cement had hardened sufficiently. 

The models were numbered in the order in which they 

were tested and their dimensions are given in Figs. 8.1 

to 8.4. Models under test are illustrated in Figs. 8.5 

to 8.8. 

For models 1 and 2,3 mm thick diaphragms with a 

number of holes were glued at the free end and also at 

the eighth floor level. 3 mm thick rectangular pieces with 

central openings to fit the model were used in models 3 and 

4. These diaphragms were used to maintain the shape of 

the models. The holes in the diaphragm prevent any 

coupling action between the columns except through the 

spandrel beams. 

To minimise the cost of the experimental work, the 

4 

models were constructed in stages, each completed stage 

tested fully before the addition of some component part 

required for the next model. -Thus model 2 was built by 

cementing additional strips to the corner columns of 

model 1. Model 3 was built with a slot all through the 

central column of each of the flange panels to accommodate 

an additional web panel to form model 4. 

The cementing of the various components of the model 

was done in stages so that the strains induced by 

shrinkage of the cement after setting would remain as low 

as possible. - 
At least a week after the final construction 

of the model, the experimental investigation was started. 
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8.4 TEST FRAME 

The test frame consisted of a pair of vertical 

mounting units set up parallel to each other at some 

distance apart and interconnected by horizontal and 

inclined bracings to form a stiff self supporting box 

frame. Since the model was set up-Inside the box, it was 

protected from accidental damage and disturbance (Figs. 

8.5 to 8.8). 

Each mounting unit consisted of two " (12.7 m) i 

thick by 6t' (152.4 mm) wide steel plates, provided with a 

regular array of holes for use in fixing the models to the 

test frame. The ends of each plate were welded to the 

vertical legs which consisted of 3" x 12" (76.2 mm x 38.1mm) 

steel channels welded to 6" x 5"" (152.4 mm x 127.0) 

rectangular base plates. The bracings consisted of 211 x 1" 

(50.8 mm x 25.4 mm) rectangular hollow sections with welded 

end plates which were bolted to the vertical legs. There 

was a third unit similar to the two mounting units and 

placed one metre distant from the nearer mounting unit to 

form the complete box and give the test frame its stability. 

The base plate of the model was positioned on the 

mounting unit and fixed by four " (19.05 mm) diameter 4 

bolts through the base plate. Extra -" (12.7 mm) thick 

plates and 2" x 1" (50.8 mm and 25.4 mm) hollow tube 

lengths were used to clamp the base and minimise the 

rotation of the base. The correct positioning of the 

model was carried out by means of a spirit level and plumb 
line before the start of the test. 
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8.5 MEASURING DEVICES 

8.5.1 DEFLECTION MEASUREMENT 

The deflections were measured by "John Bull" dial 

gauges, manufactured by British Indicators Limited. To 

measure the deflections of the model under test the 

gauges were supported on a framework bolted to the test 

frame. The gauges were positioned directly above the two 

side frames of the model at every third floor level. At 

the second floor level additional gauges were positioned. 

The gauges used were generally type 2U which were very 

sensitive and could read 0.002 mm per division of the dial 

with a maximum travel of 12 mm. Near the free end of the 

model, where the deflection is large, gauges of type 2S 

with a sensitivity of 0.01 mm per division and a travel of 

25 mm were used. Gauges of type 2U, supported by 

magnetic stands, were used to detect any deformation of 

the Perspex base plate. 

8.5.2 STRAIN MEASUREMENT 

The strains induced in the model due to the applied 

loads were measured by electrical resistance strain 

gauges. The gauges were glued to the columns at positions 

midway between the second and the third floors. The 

position of the gauges was selected close to the base to 

give measurable strains but not too close to be affected 

by any local effects caused by the base to frame connection. 

The location of the gauges also helped to avoid any local 

effect caused by beam-column interaction. 
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The strain gauges, Japanese type PL-10, and the 

terminal strips for the wire leads were glued to the 

Perspex model by M Bond 200 adhesive. All strain gauges 

were insulated against small changes in temperature and 

humidity by a coat of Ai-coat A. The resistance of each 

gauge was checked by the Solartron 4440 Digital Multimeter 

for any fault in the gauge or the connection. 

The strain gauges were wired to Baldwin-Lima- 

Hamilton BLH Model 220 Switching units which in turn were 

connected to Baldwin-Lima-Hamilton BLII Type 20 Strain 

indicator. The dummy gauges were provided by a Perspex 

model not under test which had the same thickness and was 

fitted with identical strain gauges to the model under 

test. 

The model 220 Switching unit provides a means of 

monitoring 10 strain gauge outputs in succession on one 

strain indicator. When monitoring of more than 10 strain 

gauge outputs is necessary, two or more switching units 

can be stacked and their output terminals connected in 

parallel to the indicating instrument. Each gauge and 

its compensator were wired to one channel of the 10- 

channel Switching unit. 

The BLH Portable type 20 Strain indicator was used 

with a self contained battery power pack for measuring 

strains. It used a manually operated null-balance system 

with digital readout for fast accurate reading. The 

indicator had a total range of 0 to ± 30,000 microinches 

per inch and could read strains as low as 5 microinches 

per inch. 
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8.6 TEST PROCEDURE 

The model was bolted to the test frame and the 

correct positioning of the model was checked by means of 

a spirit level and plumb line. Uniform lateral load was L 

simulated by applying point loads at each of the two side 

frames at every alternate floor level. For combined 

bending and torsion the loads were applied at one of the 

side frames at every alternate floor level. The loads 

were placed on light hangers which were suspended by 

terylene threads. The load applied at the free end of 

the model was half the loads at other points. 

With no weights on the hangers the readings for 

each strain gauge and dial gauge were recorded. The load 

was applied at every alternate floor level in increments 

of 4 kgf for model 1 and 2,1 kgf for model 3 and 1.6 kgf 

for model 4. The loads were placed on the hangers with 

the utmost care to avoid any impact effect. A time 

interval of 10 minutes was allowed after the addition of 

each load increment before the readings were taken to 

permit the gauges to settle to reasonably stable values. 

Deflections and strain readings were recorded for four 

increments. 

After the application of the maximum load the model 

was unloaded by equal decrements and a separate set of 

readings were recorded. The mean of the results obtained 

from loading and unloading was used. 

After the model was completely unloaded at least an 

interval of 24 hours was allowed before starting new 
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experiments with the same model. 

Model no. 1 was tested in one position, then rotated 

through 1800 and was retested. 

Each test was carried out at least three times and 

the best of the results was used. 

8.7 DETERMINATION OF MODULUS OF ELASTICITY 

In order to evaluate the stresses induced in the 

models from the strain gauge readings and to determine the 

deflection using the theoretical analysis the modulus of 

elasticity of Perspex was evaluated. 

The specimens for the test, 5 mm x 50 mm x 300 mm, 

were cut from the same sheets of Perspex as were used to 

make the models. An electrical resistance strain gauge, 

as used in the models, was fixed longitudinally on one 

face near the mid point of each of the specimens. The 

exact width and thickness of the specimen in the region 

near the gauge were measured by means of a vernier and a 

micrometer respectively. 

The specimen was tested in bending, between level 

supports, 240 mm apart with equal loads at the third 

points of the span to induce constant bending and no shear 

in the region of the strain gauge. During a test on one 

specimen the strain'gauge of the other specimen of the 

sane thickness was used as a dummy gauge. A dial gauge 

was used to measure the deflection of the specimen at the 

centre of the span. ' 

The specimen was loaded gradually by small 

increments of 200 gf and the readings of dial gauge and 
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strain gauge were recorded. After four increments the 

specimen was gradually unloaded. The specimen was 

tested twice, once with the strain gauge on the upper face 

and then with the strain gauge on the lower face. 

From the results of the test the load-deflection 

and load-strain graphs were plotted. The best straight 

line in each case was drawn by eye and the value of the 

modulus of elasticity was evaluated. 

The average values of Young's modulus for the 

specimens, based on deflection and strain results, are 

given in Table 8.1. 

8.8 EVALUATION OF STRAINS AND DEFLECTIONS 

From the test results the readings recorded from 

any gauge were plotted to scale against the load increments 

and the best straight line through the points was drawn. 

The slope of the line was determined in each set of 

readings to obtain the strain or deflection per unit load 

(N/mm) for that gauge. 

The stress distribution in columns at the middle of 

the third storey, and the deflections at different storey 

levels for the four models were plotted as shown in 

rigs. 8.9 to 8.24. 
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E in N/mm2 based E in N/mm2 based 
Specimen on deflection on strain results 

results 

1 2857.3 3138.1 

2 2857.3 3074.2 

Table 8.1 Young's modulus of Perspex used for 
models 
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CHAPTER 9 

DISCUSSION AND CONCLUSIONS 

9.1 DISCUSSION OF RESULTS 

9.1.1 EXPERIMENTAL RESULTS 

The rigorous test procedure outlined in Chapter 8 

was meant to eliminate or reduce as far as possible as 

many of the sources of error which occur as a result of 

the inherent deficiencies in the model material and the 

testing equipment used. However, a number of sources of 

error still continued to exist. Some of the possible 

sources of error encountered in the course of the 

experimental work and their likely effects on the test 

results are discussed below. 

The conditions at the bases of the models which 

were required to be rigid could introduce some error in 

the measured displacements. Two dial gauges were 

positioned on the base plate, one near the top flange and 

another near the bottom flange, to measure the movement of 

the base plate. It was found that the deflection at the 

free end of the model caused by the rigid body movement at 

the base was less than 1 per cent of the deflection due to 

the applied loads. Deformations must also have occurred 

within the depth of the Perspex base plate due to its own 

elasticity, but it was not practical to measure these 

deformations by positioning gauges on the other side of 

the base plate as well; although presumably the 

deformations would have been too small to be measured by 
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such devices. These deformations could affect the accuracy 

of the test results by tending to give results for 

deflection of the model in excess of the results if the 

base was truly rigid. 

Simulation of a uniformly distributed load was 

carried out by applying dead weights on hangers suspended 

from the two perimeter web frames at every alternate floor 

level. A combination of a uniformly distributed load and 

a torsional moment was simulated by hanging weights from 

one of the perimeter web frames at alternate floor levels. 

When the individual weights were applied on or removed 

from the hangers the model underwent rapid changes of 

deflection. Great care was taken to ensure that the 

increments and decrements were carried out smoothly in 

order to minimise the effect of impact on the model. The 

effect of impact will be of no significance if the material 

of the model is perfectly elastic and the yield stress is 

nowhere exceeded. However Perspex is not perfectly 

elastic, and some error could be introduced from this 

source. 

As noted in section 8,2. Perspex undergoes 

considerable creep under sustained loading conditions which 

can lead to serious errors if not accounted for. It was 

found that the gauge readings became reasonably constant 

10 minutes after the application of the loads, suggesting 

that the creep had essentially terminated. It was, 

therefore, decided to allow a waiting time of 10 minutes 

to eliminate to a'considerable extent the errors caused 

due to creep in Perspex. The modulus of elasticity E of 
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Perspex was also determined from the deflection and strain 

readings allowing the same waiting time of 10 minutes. 

One possible source of error encountered in using 

Perspex as model material is the low thermal conductivity 

of Perspex. Because of the low conductivity, heating of 

the strain gauges and the material under the gauge occurs 

when the measuring current is passed through it. This 

local heating may affect the mechanical properties of 

Perspex. The heating of the gauge causes a drift in the 

measuring circuit so that the output changes with time. 

Furthermore, it is not possible to separate the portion of 

the output due to structural response and that due to 

drifting caused by the heating of the gauge. The 

compensating dummy gauges together with a low-voltage 

strain indicator were used to minimise the effects of 

gauge heating. 

The fabrication of the components and the assembling 

of each model to the correct dimensions were of utmost 

importance. The model required a number of panels each 

with a large number of openings which were made by slot 

drill of 4 mm diameter. As the depth of the spandrel 

beams was small, any small discrepancy could have serious 

effects on the experimental result's and great care was 

taken while cutting these openings. The presence of 

fillets at all the intersections could also affect the 

accuracy of the result. 

The measuring devices used were precision instruments 

and only negligible error could be introduced by them. 

Small errors may be introduced by the dial gauges if the 
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ball of the dial gauge bears on an uneven surface. . 
The 

chances of this type of error were remote as the dial 

gauges were everywhere bearing on smooth surfaces of the 

Perspex model. The dial gauges were supported by a 

framework made from Dexion angles which was securely bolted 

to the test frame. The Dexion is comparatively flexible 

and might introduce some error were it to be disturbed 

during the test. 

The adhesive with which the strain gauges were glued 

might stiffen the Perspex locally which could affect the 

test results to some extent. 

The value of modulus of elasticity, as used to 

evaluate the stresses in the model from the results of 

the strain gauge readings was assumed to be constant in 

both tension and compression throughout the sheet. This 

could also introduce errors in the results since the 

elastic properties of Perspex are known to differ in 

tension and compression and also to vary within the single 

sheet. 

The only means available to assess the accuracy 

of the strain readings was to check the statics of the 

structure by comparing the magnitude of the moment obtained 

from the experimental values of the strain in all the 

columns with the moment induced due to the applied loads, 

and also by comparing the total tensile force with the 

total compressive force at the section. 

9.1.2 THEORETICAL RESULTS 

The analyses of models 11 2 and 3 (Framed-tubes) 

subjected to bending were carried out by the simplified 
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analysis discussed in section 2.4. For torsion the 

analysis of section 3.2 was used. Model 4 (Bundled-tube) 

was analysed for bending using the simplified analysis 

suggested in section 6.2. The theoretical results 

presented in graphical form at the end of chapter 8 were 

evaluated using the physical dimensions and structural 

" -. conditions which most accurately represented the models 

under test. 

For the analyses of the models the beams and 

columns were assumed to be uniform, the storey height and 

the bay width were taken to be constant throughout the 

height of the models. In order to represent the model 

as accurately as possible each of the dimensions used in 

the analyses was measured at a number of places and the 

mean value was used. The base of the model was assumed 

to be rigid. The elastic properties of the model 

material were assumed to be constant throughout the model. 

The variations in any of these properties could not be 

accommodated in the analyses. 

The modulus of elasticity of Perspex was determined 

on the basis of the deflection and the strain results of 

the test specimens. They were found to differ by nearly 

10 per cent which might be attributed to the local 

stiffening of Perspex due to 
. 
the adhesive used for the 

purpose of gluing the strain gauges to the model. The 

value of the modulus of elasticity evaluated on the basis 

of deflection results was used in the analysis to deter- 

mine the maximum deflection at the free end of the model. 
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Since the columns were closely spaced and the 

spandrel beams relatively deep, the finite size of the 

joint relative to the free column height and beam span 

was taken into consideration in the analysis. A simple 

method to consider this was suggested in section 2.3. 

9.1.3 COMPARISON BETWEEN EXPERIMENTAL AND THEORETICAL 

RESULTS 

The theoretical and experimental results for models 

1 to 4 are illustrated in Figs, 8.9 to 8.24.. The graphs 

are largely self explanatory and hence only general 

features are discussed below. 

The deflection profiles are double-curvature curves, 

thus indicating the frame-tube interaction present in the 

structure. The experimental values of the maximum 

deflection at the free end of models 1 and 2 exceed the 

theoretical values by as much as 35. per cent. The large 

discrepancy cannot be attributed to any deficiency in the 

theory developed for evaluating the deflection, since the 

same theory gives the value of maximum deflection for 

model 3 which is in excess of the experimental value by 

nearly 5 per cent. The deflection profile of model 1 

indicates no marked change when it is rotated through 180 

degrees. Models 1 and 3 were tested in combined bending 

and torsion. Deflection profiles in this case agree 

closely with the respective profiles for simple bending. 

The rotation of the model at any level was 

determined from the readings of the two dial gauges 
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positioned over the two web frames at that level. The 

difference of the two readings was divided, by the width 

of the flange frame to give the rotation in radians. 

The rotation profiles also exhibit double curvature. 

The percentage agreement between the experimental results 

and the analytical solutions is again markedly poor, the 

experimental result being 20 per cent greater than the 

analytical solution for model 1 and 15 per cent less for 

model 3. 

The stresses in the columns of the models, as 

derived from the strain gauge readings taken during the 

tests, yield a general form of stress distribution which 

bears a very consistent relationship to the stress 

distributions predicted by the analytical solutions. The 

non-uniform nature of the stress distribution in the 

flange panels is due to shear lag effects. In framed-tube 

models 1,2 and 3 the flexibility of the spandrel beams 

produces a large deviation from the ordinary beam theory 

stress, increasing the axial stress in the corner columns 

and reducing them in the inner columns of the flange panels. 

This deviation is considerably reduced in the bundled-tube 

model 4, which is fabricated by incorporating an extra web 

frame in the framed-tube model 3. In the web panels, the 

stress distribution is non-linear. 

Inspection of some of the graphs (8.19 and 8.22) 

would indicate that the effect of shear lag in the flange 

panels has been overestimated and the stresses in the 

centre columns are much higher than the analytical solution 

would suggest. This may be due to experimental errors or 
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due to the inadequacy of the proposed simplified analysis 

which assumes a simple parabolic stress distribution in 

the flange panel. 

The stresses indicated by the strain gauges attached 

to the corner columns of flange frames and web frames 

generally agree, thus indicating efficient corner joints. 

A statical check for the applied and internal 

moments and for the tensile and compressive forces in the 

cross-section was carried out. The results of the check 

for models 2 to 4 are given in the table 9.1. 

The difference between the internal moment and the 

applied moment never exceeds 11 per cent which compares 

favourably with the earlier experiments on simpler plane 

models. 

9.2 SUGGESTIONS FOR FUTURE RESEARCH 

In this thesis an attempt has been made to produce 

a simplified analyses of framed-tube and bundled-tube 

structures which can be carried out without the aid of a 

computer. There still remain many related problems which 

need to be investigated. Some of these are summarised below. 

1. In the analyses suggested 'for'framed-tube and 

bundled-tube structures the distributions of vertical 

stresses in the flange and web panels were assumed. The 

elementary beam theory stress distributions were modified 

to include the effects of shear lag caused by the 

flexibility of'the spandrel beams. It would be desirable 

to find a solution to the problem by assuming the vertical 

displacements in the flange and web panels. The 

principle of minimum potential energy may be applied to 

obtain the solution. 
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2. The effectiveness of a framed-tube structure is 

. Increased by incorporating a central core which is 

connected to the outer frames by the floor slabs. The 

: juuteraction between the shear wall type of core and the 

framed-tube should be considered. 

3, Stiff girders or trusses are sometimes introduced 

in the framed-tube and bundled-tube structures at the top 

t%nd also at intermediate levels. The influence of the 

presence of these elements in reducing tile-effects of 

shear lag in the structure should be investigated. 

4. The diagonal truss tube system. described in 

Chapter 1, is an extremely efficient system for very tall 

buildings. It will be interesting to enquire into the 

possibility of replacing the panels consisting of closely 

spaced diagonals by an equivalent uniform orthotropic 

plate, to form a substitute closed-tube structure. This 

will lead to an analysis of the structure similar to the 

one discussed in this thesis. 

5.. Mazzeo and De Fries"') have described the design 

of a framed-tube building in which the corner columns were 

omitted. For such a structure it would be desirable to 

Investigate the nature of shear transfer through the 

spandrel beams near the corners. 
A, In the analysis discussed in this thesis it was 

bssumed that the panels were subjected to in-plane 

dol'ormations only. Any tendency for the panels to deform 

Out of plane was considered to be restricted by the high 

In-plane stiffness of the floor slabs. Studies to 
Include these secondary effects are desirable. 
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7. It would be desirable to consider the influence 

of warping of the floor slabs on the distribution of 

vertical stresses in the various panels. 

8. It is a common practice with high-rise buildings 

to provide a deep beam at the first floor level which is 

supported on widely spaced columns. This will provide 

large unobstructed open spaces at the ground floor level. 

The problem of stress diffusion from a large number of 

columns at the upper levels to a few at ground level 

through this beam has to be tackled for the design of the 

beam. 

9. The problem of differential heating of the opposite 

faces of the structure and its likely effect on the stress 

distribution should be examined. 

10. The problem of the dynamics of framed-tube and 

bundled-tube structures should be investigated. Formulating 

the problem in terms of displacement variables, a free 

vibration study to give the dynamic characteristics of 

the structure may be made. 

9.3 CONCLUSIONS 

Simplified procedures have been presented for the 

analyses of framed-tube structures with a rigid base 

subjected to lateral forces and torsional moments. By 

replacing the discrete structure by an equivalent 

orthotropic tube, and making simplifying assumptions 

regarding the stress distributions in the structure, 

simple closed solutions have been obtained. Design 

curves have been presented for three standard load cases 
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in order to simplify the numerical computations and to 

allow a rapid assessment of the stress levels and degree 

of shear lag which occur in any particular configuration. 

it is found that the same design curves may be used both 

for bending and torsional actions. 

Although three standard load cases have been 

considered, it is a straightforward matter to extend the 

solutions to any other load cases since the second order 

governing equation has been expressed in terms of the 

applied moment M or torque T. 

The effects of variable corner column stiffness 

and the ratio of column width to spandrel beam thickness 

on the optimisation of framed-tube structures have been 

considered. 

In the particular cases of uniformly distributed 

load and torque formulae have been derived to evaluate the a 

maximum drift and rotation at the top of the structure. 

The same procedures may be used for other standard load 

cases. 

The structural behaviour of a framed-tube structure 

with an elastic base and with different stiffness regions 

has been considered. The governing differential equation 

in each case remains the same; only the boundary 

conditions are found to differ. 

Investigations of the distribution' of vertical 

stresses in the framed-tube structure subjected to vertical 

forces have been carried out. On the basis of numerical 

examples with spandrel beams of different stiffnesses it 



232 

has been found that the flexibility of spandrel beams has 

little effect on the distribution of stresses in the 

panels. 

A more general analysis of framed-tube structure 

subjected to lateral forces has also been presented. This 

has resulted in simultaneous differential equations of the 

second order which have been solved for the different 

load cases. 

A theoretical study of the bundled-tube structure 

subjected to lateral loads has been made. Both simple 

and more general analyses have been presented for bundled- 

tube structure consisting of two and nine modular tubes. 

In the latter case a simple procedure based on a 

iterative method has been suggested. The governing 

differential equations are similar to the framed-tube 

structures. 

An experimental investigation of the structural 

behaviour of framed-tube and bundled-tube structures has 

been carried out and the results of the investigation 

included in the thesis. Reasonable agreement between 

theory and experiment has been found. 
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