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Abstract 

Context: Prediction of the maintainability of classes in object-oriented systems is a significant 

factor for software success; however, it is a challenging task. Although prior object-oriented 

software maintainability literature acknowledges the role of machine learning techniques as 

valuable predictors of potential change, the most suitable technique that consistently achieves 

high accuracy remains undetermined and there is no clear indication of which techniques are 

more appropriate.  

Objective: This thesis aims to empirically investigate the capability of ensemble models to 

provide an increased prediction accuracy, compared with individual models, by applying them 

on several software maintainability datasets using different base models and analysing the 

impact of parameter tuning.   

Method: In the first part of this thesis, a systematic review of studies related to the prediction 

of the maintainability of object-oriented software systems using machine learning techniques 

is presented. In the remaining parts of this thesis, three empirical studies were performed to 

evaluate and compare different homogeneous and heterogeneous ensemble models against sets 

of individual models for predicting software maintainability of object-oriented systems at the 

class level. These models were employed on 14 datasets that were extracted from the 

maintenance of object-oriented software systems. 

Results: The systematic literature review determined 56 relevant studies and indicated that the 

application of ensemble models is relatively rare, thus there is a need to perform studies using 

these models as well as others to an extensive variety of datasets. The results obtained from 

three empirical studies indicate that the proposed ensemble models yield improved prediction 

accuracy over most of the individual models. This improvement was significant only in the 

third empirical study, along with a few cases in the second empirical study. In most cases, k-

nearest neighbours or support vector regression achieved the best prediction accuracy among 

individual models; moreover, these models as a base model in bagging and additive regression 

outperformed other prediction models, along with random forest.   
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Conclusion: The main finding is that ensemble models are effective for predicting software 

maintainability and they are more accurate than some individual models; their performance 

may be improved by using large datasets, or parameter tuning. Also, ensemble models improve 

the performance of weaker base models. 
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Chapter 1. Introduction 

Software quality assurance (SQA) is defined as a group of activities that guarantee that a 

software meets a certain quality level [6]. Quality is mainly affected by its attributes, which 

are divided into two groups: external and internal attributes. Internal attributes, such as class 

cohesion, are directly measured from the software, whereas external attributes, such as 

maintainability, need to be measured indirectly, and their prediction often relies on internal 

attributes [7]. Software maintainability is an essential attribute in evaluating SQA, and it is 

defined as the simplicity to make the modification of a software system in order to upgrade 

the performance, adapt to changes in the environment or to edit faults [8]. This definition tries 

to capture how easy it was for the developer to make a change in the software product. 

However, the information about the ease of change is a challenging task to get unless this 

information was observed by engineers during the maintenance process, such as time, effort, 

number of modules investigated. Therefore, proxy measures that compute the number of 

changes made in the classes (i.e., change maintenance effort measure) or whether or not a 

change has been made in the classes (i.e., change-proneness measure) are typically used to 

resolve this issue. These measurements (i.e., dependent variable) are considered a perfect 

predictor of software maintainability and have a powerful relationship with other metrics (i.e., 

independent variables) that capture the concept of maintainability [9]. Studies have 

acknowledged various types of software maintenance measurements: change maintenance 

effort [7, 9-18], change-proneness [16], adaptive maintenance effort, which calculates the 

effort spent on each phase of the adaptive maintenance process [19], corrective maintenance 

effort, which calculates the effort spent on each phase of the corrective maintenance process 

[20], maintainability index (MI), which is a single value of a composite metric that computes 

a function from of four metrics: cyclomatic complexity, percentage line of comments, Halsted 

volume and lines of code [21], and maintenance time, which calculates the time to implement 

the maintenance tasks [22].  
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This thesis has adopted change maintenance effort and change-proneness measures to predict 

software maintainability. Change maintenance effort is a well-known software maintainability 

measure that calculates the number of modifications made per class during the maintenance 

period  [7, 9-18]. A larger number of changes requires higher maintenance effort, which 

implies a lower level of maintainability. Change-proneness is another software maintainability 

measure [16, 23], which is a dependent variable to indicate that changes (e.g., inserting, 

removing or editing) have been made in a given class. This dependent variable is a Boolean 

value that includes two values: TRUE if the change was made on the class or FALSE if the 

change was not made on the class, regardless of the type and number of changes [5]. A lower 

number of TRUE values or a lower number of change-proneness refers to better 

maintainability, that is, it requires low maintenance effort. 

  Maintenance is defined as “the process of modifying a software system or component 

after delivery to correct faults, improve performance or other attributes, or adapt to an 

environment” [8]. Software maintenance consumes the largest amount of cost, time and effort 

during the software development life cycle [9]. Jones reported that maintenance consumes 

approximately 75% of the total project cost, and the cost of maintaining the source code is ten 

times higher than the cost of developing it [24].  

  Controlling costs, time and effort are the significant components for ensuring SQA. 

These are performed by determining appropriate measures: as T. DeMarco [25] stated, “you 

cannot control what you cannot measure”. Software metrics are quantitative measures that can 

be employed to evaluate the quality of the software. In particular, object-oriented (OO) metrics 

are used to measure aspects of the source code of software systems (e.g., cohesion, size and 

inheritance depth). Consequently, several studies have employed a variety of OO metrics to 

evaluate the concept of software maintainability, such as Chidamber and Kemerer (C&K) [26] 

and Li and Henry (L&H) metrics [9]. For example, the L&H metrics can be utilised as 

predictors of software maintenance effort, as they have exhibited a strong relationship with the 

number of changes in the source code [9-11, 13].  

OO systems are structured around objects and classes that have different characteristics 

(i.e., encapsulation, coupling and inheritance). These systems are written in various 

programming languages such as Java, C++ and C#. Several OO systems are available in open-

source projects (e.g.,  GitHub [27] or SourceForge [28]) and are commonly used by various 



 

3 

 

organisations. With the growing use of OO systems, organisations need to further develop and 

change systems, which in turn leads to an increase in their complexity [29], and consequently 

concerns regarding their effective maintenance. 

Prediction is a core part of estimation, which is a crucial aspect of project planning [30] 

and involves the determination of a number of factors including duration, staff, size, costs and 

effort [20]. Prediction mainly depends on historical internal and external quality attributes 

from completed projects. The correlation between internal attributes, "independent variables", 

and external attributes, "dependent variables", is a recognised challenge for software 

maintainability prediction [7]. Considerable attention has been given to predicting software 

maintainability using machine learning techniques. Accurate predictions are increasingly 

important in software project management tasks: allocating developers, identifying  resources, 

supporting decision-making, evaluating costs across different projects and performing 

maintenance processes [20]. This prediction can assist in gaining insights on likely future 

maintenance, and can help decrease the total cost and overall effort of the software project 

[31]. However, building an accurate prediction model is difficult to achieve. Several empirical 

studies have been performed to investigate various types of individual machine learning 

models, including neural networks [10], Bayesian networks [11], linear regression [32], 

multiple additive regression trees [13] and K-means clustering [33]. However, the prediction 

accuracy of these individual models is disappointing and does not meet the criteria suggested 

by MacDonnell and Kitchenham et al. [34, 35]. These criteria include the mean magnitude of 

relative error (MMRE) and Pred(q), which is the proportion of instances in the dataset in which 

the MRE is less than or equal to a defined value (q) [35]. These measures should be Pred(.30) 

≥0.70 or Pred(.25) ≥0.75 or/and MMRE ≤ 0.25. The explanation and equations of these 

measures are provided in Section 3.5.1. 

To improve the accuracy of individual models, an ensemble machine learning model is 

introduced. This ensemble model is created from individual models in a heterogeneous 

(integrating various types of individual models) or homogenous (integrating the same type of 

individual models) manner. One of the main advantages of the ensemble models is to reduce 

the prediction variance that is a common factor in machine learning models [36]. Ensemble 

models aim to control the variance factor by integrating several individual models and 
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producing high prediction accuracy. This integration helps ensemble models to capture the 

advantages of multiple individual models.  

  Researchers and software practitioners have realised the benefits of ensemble models 

and applied them in various areas of software engineering problems. Several studies have 

explored the application of ensemble models in fault prediction problems, such as Random 

Forest (RF) [37-39], voting feature intervals [40], combined defect predictor [41], bagging 

[42], stacking [43], and adaptive selection of classifiers [44], and have recorded high accuracy. 

More specifically, the study by Mısırlı et al. indicated that the ensemble models provide a 

significant improvement in terms of locating software defects [40]. In addition, an empirical 

study of cross-project defect prediction was employed combined defect predictor on 10 open-

source software systems. The findings of the study evidenced that the combined defect 

predictor outperformed other individual models [41]. The study by Zhang et al. also 

investigated cross-project defect prediction using various ensemble models and revealed that 

bagging ensemble model achieved high accuracy [42]. The paper by Petri et al. used stacking 

ensembles to predict software defect and found that this model attained good performance 

[43]. One of the reasons for the success of stacking over other models is that stacking combines 

several types of individual models. Moreover, adaptive selection of classifier was proposed 

and compared with five individual models in the context of predicting defect proneness [44].  

The results obtained from this study indicated that the proposed ensemble model performed 

better than the other five individual models. Previous studies have also stated the success of 

using ensemble models to predict effort estimation using techniques, for example: bagging 

[45] and ensembles of linear methods [46]. Among several ensemble models implemented in 

studies of software engineering field, a number of these studies emphasised that RF 

outperforms other prediction models and produced a high improvement in the prediction 

accuracy [37, 38, 47, 48]. Ensemble models have also been used to predict software 

maintainability and provided high prediction accuracy (e.g., bagging  [16], majority voting 

[23] and RF [48]). Based on the findings obtained in this discussion, the ensemble models 

yield improved the prediction accuracy over individual models, and have been shown to be 

useful models in several studies of software engineering field. However, the use of ensemble 

models for predicting software maintainability is relatively limited compared to the use of 



 

5 

 

these models in other software engineering field.  These findings motivate us to use ensemble 

models (and RF, bagging and stacking in particular) in this thesis. 

  The imbalanced class problem exists when the quantity of one class in the dataset 

(True) is far lower than the quantity of another class in the same dataset (False). This problem 

causes machine learning models to bias their predictions towards majority classes and ignore 

minority classes. As a result, machine learning models gain high prediction accuracy based on 

the majority class instead of both classes. To resolve this issue, sampling techniques have been 

used in various fields including telecommunications management [49], emerging patterns [50], 

medical diagnosis [51], and text categorisation [52]. Moreover, the research community in 

software engineering disciplines has made significant efforts to address this issue using various 

sampling techniques. For instance, the synthetic minority over-sampling technique (SMOTE) 

in refactoring prediction [53], random under-sampling in defect prediction [54] and condensed 

nearer neighbour in maintainability prediction [55]. 

  In this thesis, the application of ensemble models for predicting software 

maintainability is investigated and recommendations for the proper use of these models are 

provided. This investigation is performed by using various sizes of datasets and several base 

models, along with an exploration of the impact of parameter tuning.  Therefore, a systematic 

literature review (SLR) for software maintainability prediction using machine learning 

techniques is conducted in Chapter 2 to determine maintainability measurements, metrics, 

datasets, evaluation measures and prediction models in the current studies, along with their 

gaps. Additionally, three empirical studies are performed in Chapters 4, 5 and 6 to construct a 

range of advanced machine learning models (i.e., homogenous and heterogeneous ensemble 

models) from existing individual models to predict software maintainability at the class level. 

These models employed a number of representative datasets for software maintainability either 

from open source datasets hosted in PRedictOr Models In Software Engineering (PROMISE)  

[56] (for example) or dataset extraction from existing open-source projects proposed in 

repository projects (e.g., GitHub [27] or SourceForge [28]). 

1.1. Problem Statement 

Several research attempts have been made to construct different machine learning techniques 

for predicting software maintainability. However, creating an accurate model to predict 
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software maintainability is a challenging task to accomplish, and to date, there is no evidence 

in the current literature on which models are appropriate. Therefore, the goal of this thesis is 

to employ ensemble models, which might resolve the problem, and improve their prediction 

accuracy over individual models. Another goal is to apply these models to a wide variety of 

software maintainability datasets to validate the results. 

1.2. Motivation for the Thesis  

Early prediction of software maintenance using machine learning models is important in 

helping software project managers to control resources, establish the maintenance process, 

improve design or coding, evaluate productivity, and compare costs across different projects 

[20]. In addition, it helps to achieve SQA, decreasing the failure and future maintenance effort 

of the software project [11]. Furthermore, prediction software maintainability enables the 

support of decision-making, by scheduling future maintenance operations, and the selection of 

developers, assigning more experienced developers to classes with high maintenance 

requirements. To date, there are limited studies to determine an accurate and suitable model to 

predict software maintainability. Therefore, the motivation of this thesis is to empirically 

compare and evaluate the application of ensemble models to obtain more consistent and 

accurate prediction results by reducing variance. 

1.3. Contributions 

The investigation of software maintainability prediction using ensemble techniques provides 

a number of contributions. First, it enables the empirical exploration of the positive impact of 

ensemble models (heterogeneous and homogeneous) by using different types of base models, 

and assesses the extent to which these ensemble models provide an improvement in the 

prediction accuracy over individual models in the context of software maintainability. Second, 

it enables the comparison between the proposed ensemble models with previous studies 

conducted on the most popular software maintainability datasets to determine whether these 

models achieve higher accuracy than that obtained in previous studies. Third, it enables the 

critical validation of the proposed ensemble models by applying these models to several sizes 

of datasets of software maintainability extracted from open-source software projects or 
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gathered from public repositories. Fourth, it enables the investigation of the impact of 

parameter tuning on ensemble models. 

1.4. Research Objectives 

The fundamental objective of this thesis is to provide the ability to accurately predict software 

maintainability to software project managers. This objective is achieved by applying ensemble 

techniques on datasets with different sizes and using various base models, along with exploring 

the impact of parameter tuning. More specific objectives are associated with the following 

three empirical studies: 

1.4.1 Objectives of the first empirical study  

• Investigate the capability of ensemble models to predict change maintenance effort 

using well-established datasets [9]; 

• Identify the model that achieves the highest accuracy prediction and compare with the 

best model in selected studies that operated on the same datasets; 

• Explore the impact of parameter tuning of software maintainability prediction models 

using the caret package in R. 

1.4.2 Objectives of the second empirical study  

• Study the ability of ensemble models to predict change maintenance effort accurately 

using more recent and larger datasets [57]; 

• Compare and evaluate the proposed models with the selected models using the Auto- 

Waikato environment for knowledge analysis (WEKA) tool. 

1.4.3 Objectives of the third empirical study  

• Explore the influence of the ensemble model, feature selection (FS), and sampling 

techniques in predicting change-proneness using newest and largest datasets [58]; 

• Evaluate the effect of the tuning Mtry parameter, which is the number of variables 

randomly sampled for splitting in RF using a grid search. 
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1.4.4 Research questions 

The previous objectives can be achieved by providing an appropriate answer for the following 

research questions (RQs): 

RQ1) How effective are individual models at predicting software maintainability? 

RQ2) How do ensemble models perform in the context of predicting change maintenance 

efforts using well-established datasets when compared to the individual models? 

RQ3) How do ensemble models perform in the context of predicting change maintenance 

efforts using more recent and larger datasets when compared to the individual models? 

RQ4) How do ensemble models perform in the context of predicting change-proneness using 

the newest and largest datasets when compared to the individual models? 

1.5. Scope of Work 

The scope of the work includes five primary aspects: maintainability measurements, metrics, 

datasets, evaluation measures and prediction models. Their basic concepts and specific 

utilisation are described, as well as an overview of related studies. 

1.5.1 Maintainability measurement 

Maintainability is a dependent variable that may be determined by a wide variety of 

independent variables. The ISO/IEC 25010 standard [59] defined a software quality model as 

a collection of attributes that include efficiency, usability, suitability, compatibility, security, 

reliability, portability and maintainability. Therefore, maintainability is an essential attribute 

of software quality and is recognised as one of the most challenging measurements due to the 

problem of predicting activity in the future [60]. Software maintainability is described as the 

ability of a software system to be easily modified to develop, correct, adapt to changes in the 

environment, or meet particular requirements [8]. This description indicates that software 

maintainability relies on various aspects of software modification (i.e., adaptation, correction, 

improvement or prevention). Furthermore, the ISO/IEC 25010 standard categorizes software 

maintainability into five major sub-characteristics: reusability, to identify the level of the assets 

that can be used to construct other systems; modularity, to identify the level of component 

independence and the extent to which changes to one component  impact on the rest of the 
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system; analysability, to identify the ease to analyse and investigate (for example) the 

consequence of changes or diagnose problems in the software;  testability, to identify the 

degree to which test criteria for a system can be established and tests to meet the criteria 

developed; and modifiability, to identify the degree to which it is possible to modify the 

software product without degrading its quality. This thesis predicts software maintainability 

using this definition : “the ease with which a software system or component can be modified 

to correct faults, improve performance or other attributes, or adapt to a changed environment” 

[8]. Change maintenance efforts measure is used in the first and second empirical studies, and 

change-proneness measures is performed in the third empirical study. 

1.5.2 Metrics 

Metrics are independent variables that capture the element of software maintainability. Most 

of these metrics focus on the quality features of a class and measure specific parts of software 

products in these systems, such as inheritance, cohesion and data abstraction. Prior software 

maintainability studies utilised a wide variety of OO metrics: C&K [26], Oman and 

Hagemeister [61], L&H [9], Coleman et al.  [62], Welker and Oman [63], Genero and Piattini 

et al. [64], Misra [21], and Yuming and Baowen [32]. These studies confirmed a relationship 

between OO metrics and software maintainability. However, this relationship is considered 

nonlinear, complicated, and of low accuracy [10]. Several of these metrics have been validated 

only in a small number of studies, whereas some have been proposed but never used.  

  OO metrics, which primarily include the C&K  [26] and L&H metrics [9], have been 

widely used owing to their strong relationship with software maintainability [10, 11, 13, 14, 

23]. C&K includes six OO metrics: DIT, WMC, NOC, CBO, RFC and LCOM (abbreviations 

and detailed definition of these metrics are provided in Table 2.6 in Chapter 2). L&H metrics 

[9] involve all C&K metrics except CBO and also include further metrics: MPC, DAC, NOM, 

SIZE1, SIZE2 (abbreviations, and detailed definitions of these metrics are presented in Table 

2.6 in Chapter 2). This thesis employs L&H metrics [9] in the first empirical study, C&K and 

other OO metrics in the second empirical study [57] and several OO metrics in the third 

empirical studies [58], where these metrics were extracted from open-source systems and can 

be used to capture the element of software maintainability. 
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1.5.3 Datasets 

Datasets comprise several metrics that include independent and dependent variables. The 

datasets are divided into a testing set to evaluate a prediction model and a training set to 

construct the model [65]. Alternatively, N-fold cross-validation is used to compare and 

evaluate prediction models by equally dividing the dataset into ten folds. One of these folds is 

used to test the model, and the remainder is used to train the model, and this process is iterated 

N times with different folds [66]. Moreover, the datasets include three major types: a public 

dataset, which is available to use (i.e., Quality Evaluation System (QUES) and User Interface 

Management System (UIMS) [9]); a partial dataset, which is extracted from available open-

source software but unavailable for public use, as the researcher does not provide the dataset 

to the public (i.e., datasets extracted from 148 open-source systems [32]); and a private dataset, 

which is extracted from a private system and unavailable to use (i.e., datasets extracted from 

private projects [20]). This thesis initially uses the QUES and UIMS datasets, which have been 

widely used for predicting software maintainability (i.e., CHANGE metric proposed in [9], 

making the results comparable and repeatable [9]. In addition, more recent, larger, and public 

datasets, namely bug prediction datasets, are investigated to validate and support the previous 

result [57]. Finally, this thesis uses the newest datasets, namely refactoring datasets, published 

in 2018 [58]. 

1.5.4 Evaluation measures 

The evaluation of prediction models is a vital part of any machine learning problem to compare 

performance between several models and measure the accuracy of the model in predicting 

software maintainability. Several evaluation measurements have been proposed in the 

literature to assess prediction models in software engineering problems [67]. Usually, 

regression problems use residuals or prediction errors [68], whereas classification problems 

utilise confusion matrices [69]. Some of the most frequently used evaluation measurements 

have become de facto standards to measure the prediction accuracy of regression problems, 

namely MMRE, Pred(q) [35], mean absolute error (MAE), and standardised accuracy (SA). 

The formulas and issues related to these measures are provided in Section 3.5.1. Additionally, 

the area under curve (AUC), considered the most frequently used evaluation measure for the 

classification problem in software quality prediction, is performed to compare and evaluate 
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the performance of prediction models for the classification problem [4]. AUC is dependent on 

the receiver operating characteristic (ROC) curve that plots the false positive rate (FPR) on the 

x-axis against the true positive rate (TPR) on the y-axis at different threshold settings [70]. 

Furthermore, baseline measurements can be used to evaluate the performance of the predictors 

with the dependent variable (e.g., sample mean  [71] or sample median [72]). MMRE, Pred(q), 

MAE, SA, AUC and baseline measures are used in this thesis to evaluate and compare OO 

software maintainability prediction models. 

1.5.5 Prediction models 

Several types of individual machine learning models, such as neural networks [10], Bayesian 

networks [11], linear regression [32], multiple additive regression trees [13], K-means 

clustering [33], SVR [73] and MLP [14] have been built to predict software maintainability. 

However, despite the large number of studies and models created, only a limited number of 

these achieved a reasonable level of predictive accuracy, but failed to meet the criteria of an 

accurate prediction model, which is Pred(.30) ≥0.70 [34] or Pred(.25) ≥0.75 or/and MMRE ≤ 

0.25 [67]. Furthermore, determining the best technique among individual models is difficult 

because the performance of these techniques relies on the dataset used. Therefore, it is clear 

that there is a considerable need to advance the performance of the individual models, which 

can be achieved by building ensemble models. As mentioned previously in Section 1, 

ensemble models have been successfully utilised in various areas of software engineering to 

decrease variance, which leads to improved prediction accuracy. The ensemble model may be 

heterogeneous, merging various types of individual models (i.e., software maintainability 

evaluation model based on multiple classifiers combination [74]), or homogenous, merging 

the same types of individual models (i.e., weighted voting, majority voting and hard instance 

[23]). This thesis evaluates and compares the application of bagging, additive regression and 

RF as examples of homogenous ensemble models, and stacking and Average Probability 

Ensemble (APE) as examples of heterogeneous ensemble models. Additionally, a range of 

individual models are used to predict software maintainability: regression tree (RT), multilayer 

perceptron (MLP), m5rules, k-nearest neighbours (KNN), support vector regression (SVR), 

naive Bayes (NB) and support vector machine (SVM). The description of the individual and 

ensemble models is presented in Sections 3.1 and 3.2, respectively. 
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1.6. Thesis Organisation 

The remainder of this thesis is organised as follows: 

Chapter 2 provides an SLR of machine learning models for software maintainability 

prediction. 

Chapter 3 describes the research methodology and experimental design for the three empirical 

studies. 

Chapter 4 presents the first empirical study, which employed various ensemble techniques on 

QUES and UIMS datasets to predict OO software maintainability (CHANGE metric). In 

addition, the impact of tuning parameters using the caret package is explored. 

Chapter 5 reports the second empirical study, which used more recent and larger datasets, 

namely the bug prediction datasets and applied data pre-processing techniques on these 

datasets to improve their quality and to be suitable for software maintainability prediction. 

Furthermore, Auto-WEKA tools are used to determine the best prediction models. 

Chapter 6 explores the effectiveness of the ensemble model, FS and sampling techniques in 

predicting change-proneness. The machine learning models in this chapter are applied to seven 

datasets recently extracted from open-source software systems, namely refactoring datasets. 

Additionally, the impact of tuning the Mtry parameter, which is the number of variables 

randomly sampled for splitting in an RF, is investigated in this chapter. 

Chapter 7 concludes this thesis and summarises the main contributions, research limitations 

and some directions for future work. 
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Chapter 2. A Systematic Literature Review of 
Machine Learning Models for Software 
Maintainability Prediction 

This chapter reports on a SLR of relevant journals and conference proceedings papers that 

focus on the topic of software maintainability prediction. This review investigates a set of RQs 

to comprehensively summarize, analyse and discuss various viewpoints: software 

maintainability measurements, metrics, datasets, evaluation measures, individual models and 

ensemble models. The search in this review was focused on the most common computer 

science digital database libraries between 1991 until 2018 and 56 relevant studies were 

surveyed in 35 journals and 21 conferences proceedings. 

2.1. Introduction 

The primary objective of this review is to investigate the current state of software 

maintainability prediction to discover the progress made, limitations and challenges, along 

with future research requirements. To the best of my knowledge, this is the first SLR of 

software maintainability prediction for OO systems that comprehensively evaluates a wide 

variety of important journal and conference proceedings with respect to specific defined 

research question. This review differs from the previous review studies [31, 75-79] because it 

includes a higher number of relevant journal and conference proceedings in the software 

maintainability field. Furthermore, a different analysis on the selected primary studies was 

applied and more additional detailed analysis of each paper was provided. Previous review 

studies focused on non-OO systems [77-79], or considered only fifteen studies [31], or 

concentrated on a single aspect such as the measurement of software maintainability, the 

models employed or the metrics implemented [75, 76]. In contrast, this study is classified the 

concept of software maintainability according to three dimensions: the measurement of 

maintainability (dependent variable), the metrics considered (independent variables) and the 

models employed. This study has applied the research method for conducting a SLR proposed 

by Kitchenham [80], and has analysed comprehensively each selected study. Therefore, I have 
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confidence my SLR is both novel and hope that software engineering researchers and 

practitioners will find it to be a useful resource. The key contributions of this Chapter are: 

• This is the first SLR in the field of software maintainability prediction using 

machine learning techniques; 

• This SLR is more extensive than previous review studies in software 

maintainability prediction and investigates a broader range of RQs that cover 

various viewpoints: software maintainability measurements, metrics, datasets, 

evaluation measures, individual models and ensemble models; 

• Although a number of studies have used machine learning techniques, few have 

explored ensemble models and only one of the investigated models met the 

model accuracy criteria. So, there is scope for further research in the software 

maintainability prediction field. 

2.2. Method 

The SLR is a commonly and widely applied method in the software engineering field [80]. 

The review presented here aims to identify, evaluate and interpret all available research 

relevant to predicting software maintainability using machine learning models. This SLR is 

based on the quality reporting guidelines as proposed by Kitchenham for performing a SLR in 

software engineering [80], and also takes on board subsequent lessons learned and advice [81]. 

Three primary stages are established and adjusted to include appropriate steps, namely, 

planning, conducting and reporting the review. The planning stage involves the following 

steps: determining the needs for a systematic review, which was discussed in the introduction; 

evolving an appropriate review protocol to eliminate the possibility of researcher bias. The 

conducting stage involves the following steps: formulating RQs to focus on the central issues 

of this review; developing the search process to conduct search activities; identifying selection 

criteria to select appropriate studies; examining quality assessment (QA) to evaluate selected 

studies in terms of quality; applying data extraction to document the information obtained from 

the studies; performing data synthesis to accumulate and summarise the results. The final 

reporting stage involves only one step: presenting results and discussions to answer each 

research question. This process is illustrated in Figure 2.1. 
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2.2.1 Review protocol 

The review protocol aims to direct the implementation of the review and minimise the 

possibility of researcher bias. The critical elements of this review protocol include RQs, the 

search process, inclusion and exclusion criteria, QA, data extraction and finally data synthesis. 

Furthermore, the review protocol was iteratively developed and evaluated during the 

conducting and reporting stages. Details of the protocol are explained in the following sections 

(2.2.2-2.2.7).  

2.2.2 Research questions for SLR 

The RQs were introduced to specify the research boundaries. They were formulated with the 

assistance of the (PICOC) criteria [80] which recognize RQs from four viewpoints as follows: 

• Population: OO system, software system, application software, software project. 

• Intervention: Software maintainability prediction, predicting software maintenance 

effort, change proneness, techniques, methods, models, process and product metrics, 

dataset. 

Figure 2.1: The framework of SLR. 
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• Comparison: N/A. 

• Outcomes: Accuracy prediction of software maintainability, building good prediction 

models. 

• Context: empirical or experimental studies in academia and industry, large and small 

size of the datasets. 

The primary objective of this SLR is to collect and analyse appropriate evidence to 

answer the RQs for SLR. The motivation of this review is to answer a set of seven RQs to 

obtain insights into significant aspects of the research direction, including advancing my 

knowledge of software maintainability prediction for OO systems and identifying the 

limitations of research so as to define further research directions. The RQs and their motivation 

are documented in Table 2.1 below.  
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Table 2.1: Research questions for SLR and their motivation. 
ID Research question Main motivation 

RQ1 What are the definitions of software maintainability?  Identify different software maintainability definitions. 

RQ1.1 How can the software maintainability be measured 

(dependent variable)? 

Recognize the software maintainability measurements.  

RQ2 What type of OO metrics have been proposed to measure 

software maintainability? 

Identify OO proposed metrics that are commonly being used 

in software maintainability. 

RQ2.1 What are the metrics used (independent variable)? Determine various OO metrics. 

RQ2.2 What is the level (e.g., class level, method level) of these 

metrics? 

Identify the level of OO metrics. 

RQ3 What software maintainability datasets in the literature 

have been used to build prediction models? 

Determine various datasets commonly being used in the the 

software maintainability domain. 

RQ3.1 What are the types of software maintainability datasets 

(e.g., public datasets, private datasets)? 

Recognize the type of these datasets. 

RQ3.2 What tools are used to extract metrics from open source 

projects? 

Identify different tools to extract OO metrics. 

RQ3.3 What software programming languages are used to write 

system code? 

Determine various software programming languages 

commonly being used to collect OO metrics. 

RQ3.4 What are the number of classes in the software system?  Identify the number of classes in the software system 

RQ4 What are the evaluation measures used to assess the 

performance of software maintainability prediction 

models? 

Explore evaluation measures commonly being used in each 

software maintainability datasets. 

RQ4.1 What approach (e.g., cross-validation, holdout) is used to 

evaluate the performance of software maintainability 

prediction models? 

Identify different validation approaches applied on software 

maintainability prediction models. 

RQ5 What type of machine learning problem (e.g., 

classification and regression) software maintainability 

fall into? 

Identify the type of machine learning problem. 

RQ5.1 What are the categories of machine learning problem 

(e.g., supervised, unsupervised and semi-supervised)? 

Determine various categories of machine learning problem. 

RQ6 What are the individual prediction models (e.g., neural 

network, linear regression) used to predict software 

maintainability? 

Investigate the individual prediction models commonly being 

used in software maintainability. 

RQ6.1 What are the best performing individual prediction 

models? 

Identify the best performing individual prediction models in 

each study. 

RQ7 What ensemble prediction models (e.g., bagging, 

boosting) are used to predict software maintainability? 

Investigate the ensemble prediction models commonly being 

used in software maintainability. 

RQ7.1 What type of ensemble prediction models were 

performed to predict software maintainability? 

Determine different type of ensemble prediction models. 

RQ7.2 Do the ensemble models outperform the individual 

prediction models? 

Investigate whether ensemble models represent an 

improvement over the performance over the individual 

prediction models. 
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2.2.3 Search process 

The search process must be focused on a way that allows the identified RQs to be accurately 

investigated and includes four steps: choosing the digital libraries, identifying additional 

search sources, selecting the interval time of the published articles, and defining search 

keywords. The search was applied on five sources of the most popular and largest computer 

science online digital libraries that publish peer-reviewed articles: 

• IEEE Xplore (ieeexplore.ieee.org) 

• ACM Digital Library (dl.acm.org) 

• Springer (springerlink.com) 

• Elsevier (sciencedirect.com) 

• Wiley online library (onlinelibrary.wiley.com) 

Furthermore, manual research was applied to include relevant journal and conference 

proceedings in the software maintainability field. These journals and conferences were 

selected particularly since they involve empirical studies or literature reviews, and they are 

well-established and highly relevant software engineering publications. The selected journals 

and conferences are presented in Table 2.2 and the information of this table is collected from 

Web of Science (mjl.clarivate.com). The search was limited to articles published in the interval 

from 1991 to 2018. The search was restricted in this time interval since machine learning 

started to be applied to problems of this nature in the 1990s [82] and investigations into 

software maintenance began in earnest in1985 [31]. Furthermore, research into software 

maintainability expanded dramatically with the usage of OO systems in 1990s [83] and no 

studies relevant to the identified RQs were found to exist before these dates.  
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Table 2.2: Selected journals and conferences. 

Source Acronym 
Number of 

Studies 
Published by 

Impact 

factor on 5 

years 

Quarter 

category 

IEEE Transactions on Software Engineering TSE 8 IEEE 3.92 Q 1 

Empirical Software Engineering EMSE 20 Springer 3.49 Q 1 

Information and Software Technology IST 11 Elsevier 2.76 Q 1 

Journal of Systems and Software JSS 14 Elsevier 2.40 Q 1 

IEEE Software IEEE SW 3 IEEE 2.50 Q 1 

Soft Computing SC 5 Elsevier 2.20 Q 2 

Software Quality Journal SQJ 6 Springer 1.90 Q 2 

Journal of Software Maintenance and 
Evolution: Research and Practice 

JSME 6 Wiley 1.21 Q 2 

IET Software IST 2 IEEE 0.97 Q 3 

International Journal of System Assurance 

Engineering and Management 

IJSAEM 4 Springer 0.94 Q3 

ACM SIGSOFT Software Engineering ASSE 3 ACM 0.45 Q4 

Conferences H-index 

International Conference on Software 

Maintenance and Evolution 

ICSME 4 IEEE 29 

International Conference on Software 
Engineering 

ICSE 7 IEEE 68 

International Conference on Predictive 

Models and Data Analytics in Software 
Engineering 

PROMISE 1 ACM NA 

 

A list of search strings was created by integrating appropriate synonyms and alternative 

terms with the Boolean operator (AND has the effect of narrowing and limiting the search, 

while OR serves to broaden and expand the search) and the truncation symbol (*) which is 

used to identify words with a particular beginning (for example predict* will match with 

predict, prediction predicting and predicted) [84].  

The following search terms were formulated in this SLR: (software maintainability OR 

maintenance effort) AND (predict* OR forecast* OR estimate*) AND (machine learning OR 

data mining OR artificial intelligence OR application OR Bayesian network OR neural 

network OR Regression OR support vector machine) AND (method OR model OR technique 

OR approach) AND (metric OR measure*). 

The role of machine learning techniques has emerged as a recommended technique in 

several research fields, and these have often proven to be better than other techniques (e.g., 

human evaluation or statistical methods) [85]. The fact that worth mention is that some 

machine learning techniques based on statistical methods (e.g., NB) and they considered in 

this study. However, some studies were selected that do not use machine learning techniques 

because these studies answer some of my RQs. Nevertheless, this chapter focuses on a 

systematic summarisation of machine learning techniques used in software maintainability 

prediction and collects the empirical evidence from employing these techniques.  
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The endnote system was used to store and organize search results and a spreadsheet was used 

to create a table of data extracted from each selected paper. The initial search applied the search 

terms on each selected database as well as the journal and conference proceedings to include 

the full document. This procedure returned thousands of irrelevant studies, so it was decided 

to limit the search on the document title, abstract and content type (a conference or journal 

publication). Several duplicate papers were found in these databases which were subsequently 

removed. 

 Additional studies were determined by referring to the references of identified relevant 

studies. After collecting studies from the primary search, the relevant studies were selected by 

scanning the title and abstract. Further investigation was performed to determine appropriate 

studies by reading the full text. The candidate studies were selected if they meet the criteria in 

Section 2.2.4. Finally, the selected studies were identified after applying the QA criteria. The 

progress of the search process is presented in Figure 2.2 and shows the number of articles 

identified at each stage of the selection and filtering process.  The steps were iterated until final 

agreement was reached. The SLR was completed at the end of July 2018 and 56 suitable studies 

were finally identified. 
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Number of studies determined by 

each selected database: 

• IEEE eXplore (91) 

• ACM digital library (41) 

• Springer Link (31) 

• Elsevier (51) 

• Wiley online library (30) 

 

 

 

Number of studies determined by 

another source: 

• Journal (82) 

• Conference proceedings 

(12) 

• Relevant studies in the 

references (44) 

 

Start 

Start 

Number of studies selected after removing 

duplication and irrelevant studies (187) 

Number of studies selected after screenings 

title and abstract (139) 

Number of studies selected after reading full 

text (102) 

 

Number of studies passed our inclusion and 

exclusion criteria (66) 

Number of studies passed our quality 

assessment (56)  

End 

Figure 2.2: Process of primary studies selection. 
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2.2.4 Inclusion and exclusion criteria 

The results from the previous steps yielded several irrelevant studies, so inclusion and 

exclusion criteria are defined in order to filer these out. The inclusion and exclusion criteria 

used in this SLR are outlined below: 

1. Inclusion Criteria: 

• Studies focus on software maintainability prediction and answer any of 

the RQs in this review. 

• Studies are applied on OO systems. 

• Studies consider machine learning techniques. 

• Studies are written in the English language. 

• Studies are published in either a journal or conference proceedings. 

• Studies are peer reviewed articles. 

• Studies report on comparisons between model predictions. 

• Studies are the most recent and comprehensive (in the case where 

studies were repeated). 

2. Exclusion Criteria 

• Studies do not focus on software maintainability or answer the RQs in 

this review. 

• Studies were applied on non-OO systems, such as service-oriented, 

aspect-oriented software, web applications or functional systems. 

• Studies consider specific aspects of software maintainability, such as 

code smells, defects, or fault proneness. These studies were excluded 

because they did not predict any of software maintainability 

measurements (i.e., dependent variable). 

• Studies are not written in English language. 

• Studies do not include the full text. 

• Studies fall outside the defined time frame i.e. from 1991 to 2018. 

• Conference papers in the case where studies were published as both 

conference and journal versions. 
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Based on the criteria above, sixty-six studies were finally selected. Twenty-seven irrelevant 

studies were rejected that either did not answer the RQs or consider specific aspects of software 

maintainability. Five studies were rejected that focused on non-OO systems, and four 

conference papers [61, 86-88]were rejected because more recent journal versions of the work 

have been published. 

2.2.5 Quality assessment 

The QA stage is performed to evaluate each study identified in the previous step. The QA 

follows the defined quality checklist as proposed by Kitchenham [80]. The main objective of 

the QA is to evaluate studies and select studies that answer the RQs and to support more 

detailed analysis of inclusion and exclusion criteria. The QA questions are specified below: 

• QA1: Does the study define a main research objective or problem? 

• QA2: Does the study define software maintainability? 

• QA3: Does the study determine the type of software maintainability 

measurement (dependent variable)? 

• QA4: Does the study employ OO software metrics (independent variables)? 

• QA5: Does the study indicate the source of the datasets?  

• QA6: Does the study use a suitable tool for the extraction of the datasets? 

• QA7: Does the study identify the programing language of the systems being 

analysed? 

• QA8: Does the study identify the number of classes in software system? 

• QA9: Does the study make the dataset publicly available? 

• QA10: Does the study use appropriate evaluation measures? 

• QA11: Does the study use suitable cross validation techniques? 

• QA12: Does the study justify the prediction techniques?  

• QA13: Does the study apply prediction models and identify the best performing 

model? 

• QA14: Does the study present the results and findings clearly? 

• QA15: Does the study identify research limitations or challenges? 

The scoring procedure of the QA questions is constructed as a following: 
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• 1 represents Yes. 

• 0.5 represents Partly. 

• 0 represents No. 

The scores rank the papers into four categories: excellent (13.5 ≤ score ≤ 15), good (9.5 ≤ score 

≤ 13), fair (5 ≤ score ≤ 9), and fail (0 ≤ score ≤ 4.5). From applying the above QA criteria, ten 

studies fail in this QA. Finally, fifty-six primary studies were selected to conduct this SLR. 

2.2.6 Data extraction 

The data extraction step is performed to extract data from each selected primary study with the 

aim of collecting data that answers the RQs. Seven main properties were classified in Table 

2.3 with respect to the RQs requirements. 

Table 2.3: Data Extraction properties with their research question. 
Properties Research question 

Software maintainability measurement RQ1, RQ1.1 

Software maintainability metrics. RQ2, RQ2.1, RQ2.2 

Software maintainability datasets. RQ3, RQ3.1, RQ3.2, RQ3.3, RQ3.4 

Software maintainability evaluation measures RQ4, RQ 4.1 

Machine learning problem to predict software maintainability. RQ5, RQ5.1 

Software maintainability individual models. RQ6, RQ6.1 

Software maintainability ensemble models. RQ7, RQ7.1, RQ7.2 

2.2.7 Data synthesis 

Data synthesis is applied to extract both quantitative data and qualitative data that forms a body 

of evidence from the selected studies that address issues related to the RQs. The results are 

presented in the form of tables, pie charts, clustered bar charts, scatter charts and bar charts. 

These visualisations enable me to conduct a comparative analysis between selected studies and 

improve the quality of presentation.  

2.3. Results 

This section summarises the results obtained from selected primary studies and includes details 

about the search results, a visualisation of publication years and sources, and following on 

from this an overview of the QA outcomes. 
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2.3.1 Selected primary studies 

In this SLR, fifty-six primary studies were selected to compare and evaluate the studies in the 

software maintainability prediction domain, and are summarised in Table A.1 in Appendix A. 

This table provides a brief description of each selected study and contains the following 

attributes: study ID; reference; the title of the publication; the authors of the articles (first 

author and co-author); the publication year; place published; publication name and publication 

type (journal or conference). 

2.3.2 Publications years 

The publication years of selected primary studies are between the year 1991 and 2018 and 

Figure 2.3 shows the numbers of studies published during these years. After 1993 L&H 

provided the QUES and UIMS datasets as an appendix to their paper, which motivated 

researchers to investigate prediction techniques on this dataset. Moreover, there is an 

indication of increased publications after 2005 when the PROMISE repository was launched 

[56], but in this year most of the datasets in the PROMISE repository were for software defect 

prediction and none for software maintainability. After 2005, the researchers may be 

recognised the importance and benefits of public datasets, which make the empirical study 

comparable and repeatable [9]. As a result, S55 was published relevant datasets of software 

maintainability prediction in the PROMISE repository and several studies (i.e., S25, S26, S30, 

S36, S38, S46, S47, S49 and S52) were used QUES and UIMS datasets, which published as 

an appendix in S2. 
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2.3.3 Publication sources 

Of the 56 primary studies selected 35 appeared in journals and 21 in conferences. The most 

popular journal for papers associated with software maintainability prediction is the Journal of  

Systems and Software, followed by Information and Software Technology, then IEEE 

Transactions on Software Engineering. Figure 2.4 illustrates the number of selected primary 

studies in each journal. 

 

Figure 2.3: Number of selected studies over the years. 
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Figure 2.5 shows the number of selected primary studies grouped by place of publication (i.e. 

digital library database). It can be seen that the most selected primary studies are chosen from 

the IEEE digital library, followed by Elsevier.  

2.3.4 Quality assessment result 

The selected primary studies were evaluated according to the QA questions described in 

section 2.2.5 and present the results of this analysis in Table A.2 in Appendix A. This table 

shows that twelve of the selected studies obtained an excellent rating, thirty-two a good rating, 

followed by twelve which obtained a fair rating. However, ten studies were excluded that 

recorded a poor rating. 

2.4. Discussion 

This section aims to break down the analysis of the results based upon the RQs identified in 

Section 2.2.2. Each of the questions is considered in turn and the findings from all selected 

papers are considered to identify problems, solutions and to analyse the experimental results. 

Then, a comparison of the whole topic is conducted to comprehensively understand the topic 

and determine any limitations.  
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28 

 

The first two questions consider software maintainability measurements (RQ1) and software 

maintainability metrics (RQ2) and the key differences between these are listed in Table 2.4 

below. 

Table 2.4: The differences between software maintainability measurements and metrics. 
Software maintainability measurements Software maintainability metrics 

External attribute Internal attribute 

Dependent variable Independent variable 

Measured indirectly Measured directly 

Examines the software in an environment Examines only the software 

Difficult to extract Easily extracted 

Measured after or during execution Measured without execution 

2.4.1 Software maintainability measurement 

In this section, the findings in relation to the following RQs are discussed:  

RQ1: What are the definitions of software maintainability? and RQ1.1: How can the software 

maintainability be measured (dependent variable)? 

As software maintainability is not something that can be measured directly, my motivation 

was to gain insight into the different software maintainability definitions and measures that are 

being employed.  

A. Software maintainability definitions. 

Software maintainability is defined in the IEEE Standard Glossary of Software Engineering 

Terminology [8] as “the ease with which a software system or component can be modified to 

correct faults, improve performance or other attributes, or adapt to a changed environment”. 

This definition implies that software maintainability depends on various aspects of software 

modification (i.e., correction, improvement, adaptation or prevention). Moreover, 

maintainability is one substantial attribute proposed ([59]) of the set in the software quality 

model that involves: maintainability, efficiency, suitability, usability, reliability, security, 

portability and compatibility. However, several selected studies (e.g., S2, S16, S18) revealed 

that software maintainability is considered as one of the most challenging measurements of 

the software quality attributes, because there are several measurements and not all of them can 

be used to predict future activities. Some types of software maintainability (e.g., CHANGE 

metric, MI and change proneness) can be used as an indirect measure (i.e., dependent variable) 

based on an extensive variety of metrics (i.e., independent variables) and machine learning 

prediction models can be applied to make a prediction. On the other hand, other types of 
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software maintainability can be measured directly by observation during the maintenance 

process and record factors such as time, effort, or numbers of modules investigated. To explore 

these issues, different types of software maintenance measurements are presented and which 

type can be used as dependent variables to make a prediction and capture an element of 

maintainability. 

B. Software maintainability measurement. 

The key challenge with software maintainability measurement is that maintainability cannot 

be measured directly. Therefore, predictive models are based on indirect measures. Measuring 

software maintainability relies on a set of metrics that may be combined in a software 

maintainability function. The following Eq. (2.1) is a general software maintainability function 

that performs to collect metrics from A1 to An [89]: 

M = F (A1, A2, … , An)                                (2.1) 

The most obvious difficulty from the above function is to identify the appropriate metrics 

that can be measured from the source code directly. Various ways can be used to measure 

software maintainability, because there are different proxy definitions of maintainability. 

However, there is not any commonly agreed approach [89].  

The selected primary studies for this SLR included nine types of software maintainability 

measurements (see Table 2.5). For each type of measurement, more details of the definition, a 

general form of the equation, value and interpretation of the value are presented. Among these 

software maintainability measurements shown in Table 2.5, maintainability is measured by 

counting the number of changes made in the code. L&H [9] define change metrics that capture 

the element of maintainability by counting the number of changes made in the source code, 

where the change could be insertion or deletion. This measurement is performed by several 

studies as shown in Table 2.5. Another measure of the software maintainability is based upon 

corrective maintenance. Lucia [20] calculated maintainability effort using four metrics that 

count the size and the number of tasks in the system under maintenance and are combined to 

produce the actual effort metric (dependent variable). Adaptive maintenance effort is used by 

three studies in Table 2.5 and is based on the effort (time) involved in adding, understanding 

and deleting in the source code in the system. The study by Oman and Hagemeister [90] 

proposes the MI,  a composite metric calculated from software complexity and quality metrics. 

Various selected primary studies have used this measurement as presented in Table 2.5. The 
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change proneness maintainability measure is employed by two selected primary studies [16, 

23]  as a part of their experiment, and takes the form of  a Boolean variable to indicate if a 

change is made during maintenance, while the independent variables are the C&K metrics 

[26]. Three selected primary studies compute time effort to perform maintenance tasks, while 

only one selected primary study calculated the cost of maintenance tasks based on the time 

consumed to execute these tasks. The main goal of these studies was to determine maintenance 

time or cost directly rather than construct a new formula or compare the current system with 

other systems. Some studies describe software maintainability rather than providing a formula. 

This description may be classified depending on software maintainability attributes or 

components. Finally, four selected primary studies used other software maintainability 

measurements. The explanation of the metrics used in the maintainability equation in Table 

2.5 appears in Section 2.4.2. 

Table 2.5: Summary for software maintainability measurement. 

Study ID 
Type of 

maintenance 

Maintainability 

definition 

Maintainability 

equation 

Measurement 

value 
Maintainability interpretation 

S2, S20,  
S25, S26,  

S30, S32,  

S35, S36,  
S38, S39,  

S42, S43,  

S44, S45,  
S46, S47,  

S49, S50,  

S51, S52 

Change 
maintenance 

effort 

CHANGE, which is 
dependent metric, is 

computed according to 

the number of lines 
changed in a class 

where insertion or 

deletion are counted as 
1, and modification of 

the contents is counted 

as 2 

CHANGE = F 
(WMC, DIT, 

NOC, RFC, 

LCOM, MPC, 
DAC, NOM, 

SIZE1, SIZE2), 

the description of 
these metrics 

proposed in Table 

2.6 

Integer Maintainability is interpreted as 
being inversely proportional to 

the number of changes made: a 

high value of change indicates 
low maintainability, while a low 

number represents high 

maintainability. 

S18 Corrective 
maintenance 

Corrective 
maintenance effort 

computes the effort 

spent on each phase of 
the corrective 

maintenance process 

(analyse, implement, 
produce, define, 

design). 

Corrective 
maintenance 

effort= b1 NA + 

b2 NB + b3 NC + 
b4 Size 

 

Time (person-
hours) 

A high number of corrective 
maintenance effort indicates low 

maintainability, while a low 

number of corrective 
maintenance effort represents 

high maintainability. 

S12, S19, 
S22 

Adaptive 
maintenance 

effort 

Adaptive maintenance 
effort computes the 

effort spent on each 

phase of the adaptive 
maintenance process 

(adding, 

understanding, 
deleting, modification, 

change). 

Maintainability 
Effam= Eff add+ 

Effund+ Effdel. 

Time (hours or 
months) 

A high number of adaptive 
maintenance effort indicates low 

maintainability, while a low 

number of adaptive maintenance 
effort represents high 

maintainability. 

S5, S6, S8, 
S21, S28, 

S29, S33, 

S48, S54, 
S55 

 

Maintenance 
evaluation by 

maintainability 

index 

The maintainability 
index, which is 

dependent metric, is a 

single value of a 
composite metric that 

compute the function 

of four metrics: lines 
of code (lnLOC), 

cyclomatic complexity 

(CC), percentage line 
of comments (COM) 

Maintainability 
Index 

= 171 − 5.2× ln 

(HV) − 0.23∗ CC 

− 16.2× lnLOC + 

50× sin 

√2.4 × COM 

 
 

 

Decimal 
number 

between 0 and 

1. 

A number above 0.85 represents 
high maintainability, between 

0.85 and 0.65 indicates medium 

maintainability, below 0.65 
represents low maintainability 
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and Halsted volume 

(HV). 

S47, S56 Maintenance 

evaluation by 
change 

proneness 

Change proneness, 

which is dependent 
metric, is a Boolean 

variable indicating a 

change (addition, 
deletion or 

modification) has been 

made on a class. 

Change Proneness 

= F (WMC, 
LCOM, CBO, 

DIT, RFC, NOC) 

IF (class change) 
Change 

proneness= 

TRUE 
ELSE 

Change 

proneness= 
FALSE 

Boolean 

Variable TRUE 
or FALSE 

Maintainability change 

proneness is TRUE if the change 
occurs in class or FALSE if the 

change does not occur.  

S7, S17, 

S37 

Maintenance 

time 

Compute the time to 

perform maintenance 

tasks (including 
understanding, 

developing, and 

modifying the 

program) 

NA Time (hours) The greater the amount of time 

spent, the lower the 

maintainability. 

S9 Maintenance 

cost 

Compute three types 

of the costs: testing 
(MMT), modifying 

(MMM) and 

understanding (MMU) 

Maintenance Cos 

t = MMT + MMM 
+ MMU 

Time (person-

hours) 

Maintainability is directly related 

to maintenance cost. 

S10, S11, 

S14, S15, 

S27, S31 

Maintenance 

categorisation 

according to 
maintenance 

attributes 

Categorise 

maintenance 

according to 
maintenance 

attributes: 

changeability, 
stability, analysability, 

maintainability and 

testability 

Each study used a 

different equation 

NA NA 

S1, S13, 
S16, S53 

Maintenance 
categorisation 

according to 

maintenance 

components 

Categorise 
maintenance 

according to 

maintenance 

components: 

corrective, adaptive 

and perfective 

Each study used a 
different equation 

NA NA 

S3, S24, 

S34, S40 

Other 

measurements 

NA Each study used a 

different equation 

NA NA 

 

It is apparent from Table 2.5 that there are several types of software maintenance 

measurements, these types can be divided into indirect measures and direct measures: 

1. Indirect measures: As mentioned early, Software maintainability is defined as the ease 

with which a software system may be modified to correct faults, improve the 

performance, or adapt to changes in the environment [8]. This definition captures how 

easy it was for the developer to modify the software product. However, the information 

about the ease of change is a very difficult task to achieve and typically unavailable in 

the historical datasets. To resolve this issue, the proxy measures were used to calculate 

the number of changes made in the classes or whether or not a change has been made 

in the classes. There are three types that can be used as dependent variables to capture 
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the element of maintainability, which are the CHANGE metric (S2, S20, S25, S26, 

S30, S32, S35, S36, S38, S39, S42, S43, S44, S45, S46, S47, S49, S50, S51 and S52), 

the MI (S5, S6, S8, S21, S28, S29, S33, S48, S54 and S55) and change proneness (S47 

and S56). CHANGE metric is more about the numbers of change that is likely to be 

made to a class, MI is a single value of a composite metric, change proneness is a 

Boolean variable indicating a change (addition, deletion or modification) has been 

made on a class, whereas maintainability refers to the ease with which maintenance 

changes can be made and implemented. These measurements have proven to be a good 

indicator in predicting software maintainability in several selected primary studies in 

Table 2.5 and have strong relationships with other metrics (independent variables) [9]. 

Therefore, these measurements can be used as dependent variables to predict software 

maintainability. 

2. Direct measures: the remaining types of software maintenance measurements are 

considered direct measures that are measured software during the maintenance process. 

These types include corrective maintenance in S18, adaptive maintenance effort in S12, 

S19 and S22, maintenance time in S7, S17 and S37 and maintenance cost in S9.  

Moreover, Table 2.5 illustrates that relatively few software maintainability 

measurements are present in the current literature, and this finding is directly in line with 

previous studies [91]. 

Figure 2.6 illustrates the number of selected studies employing the different 

maintainability measures. From this figure, it can be seen that by far the most popular software 

maintainability measurement is change maintenance effort that used by twenty selected 

primary studies which may be attributable to the availability of QUES and UIMS datasets that 

use this measurement as the dependent variable. MI is recognised as the second most common 

measurement, being used by ten studies.  
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2.4.2 Software maintainability metrics 

In this section, the following research questions are addressed: 

RQ2: What type of OO metrics have been proposed to measure software maintainability, 

RQ2.1: What metrics are used (independent variable)? and RQ2.2: What is the level of these 

metrics? 

Software metrics play the most significant role in building a predictive model of software 

maintainability. OO software metrics are divided into two broad categories: product metrics 

to measure software maintainability that are based on the quality of software product (e.g., 

number of lines in source code) and process metrics to measure software maintenance that are 

based on the quality of software processes (e.g., number of hours to change code) [9]. 

In addition, software metrics can be categorized into those based on internal attributes 

that directly measure features of OO software such as inheritance or class cohesion, and 

external attributes that indirectly measure features of the software environment such as the 

Change metric that capture elements of maintainability from sets of internal attributes [7]. 

Furthermore, metrics can be categorised into different levels: method, class, and 

application. Method level is used mainly with traditional metrics that involve complexity and 

size metrics, such as Halstead metrics [92] and McCabe metrics [93]. Class level is used 

commonly and include those proposed by C&K [26] and L&H [9]. C&K presented a 

Figure 2.6: The number of selected studies in each software maintenance type. 
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theoretical work to define a set of software metrics for OO systems based on sound 

measurement theory. They defined six metrics as a base suite for OO designs, namely, DIT, 

WMC, NOC, CBO, RFC and LCOM (these abbreviations are expanded in Table 2.6). L&H 

constructed a model to predict maintenance effort based on 11 OO metrics, five metrics of 

which came from the C&K set (they excluded CBO) and six more proposed by themselves: 

MPC, ADT, NOM, LOC, SIZE1, SIZE2 (also expanded in Table 2.6) and the CHANGE 

metric, which is the dependent variable and based on the number of changes made in the source 

code. Application level metrics are extracted from the application as a whole e.g. error-prone 

subprograms [94] or total number of modules in each application [95]. 

There were too many different metrics used in selected primary studies, and it is so 

difficult to describe all these metrics. Therefore, I decided to present the description of metrics 

used in software maintenance type (Table 2.5). Table 2.6 presents the description of the metrics 

used to predict maintainability in my selected primary studies, grouped according to type of 

maintenance. 

What stands out in Table 2.6 is the high number of selected primary studies that used the 

L&H metrics (20 studies). These studies reported evidence of a strong relationship between 

OO metrics and software maintainability. However, some studies performing FS techniques 

have not clearly specified the best OO metrics for software maintainability prediction. 

Moreover, the total number of selected primary studies that used the MI metrics, which are 

widely accepted in industry [96], is half that of the L&H metrics. It would seem likely that the 

high number of studies using the L&H metrics is due to the availability of QUES and UIMS 

datasets that include these metrics, while studies using the MI metrics may be due to the 

availability of tools to extract and measure these metrics. 
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Table 2.6: Summary of metrics used in different maintenance types. 
Type of maintenance Study ID Metrics Description 

Change maintenance effort S2, S20, S25, S26, S30, S32, 

S35, S36, S38, S39, S42, S43, 

S44, S45, S46, S47, S49, S50, 

S51, S52 

L&H metrics 

DIT Depth of inheritance tree 

NOC Number of children 

MPC Message-passing coupling 

RFC Response for a class 

LCOM Lack of cohesion in methods 

DAC Data abstraction coupling 

WMC Weighted methods per class 

NOM Number of methods 

SIZE1 Lines of code 

SIZE2 Number of properties 

Corrective maintenance S18 NA Number of tasks requiring software modification 

NB Number of tasks requiring fixing of data 

misalignment 

NC Number of other tasks 

N Number of the total tasks (N=NA+NB+NC) 

SIZE Size of the system to be maintained  

Adaptive maintenance effort S12, S19, S22 Eff add Effort for addition 

Effund Effort for understanding 

Effdel Effort for deletion 

Maintenance evaluation by 

maintainability index 

S5, S6, S8, S21, S28, S29, S33, 
S48, S54, S55 

 

HV Halstead volume metric 

CC  Cyclomatic complexity metric 

LOC Counted as a line of code 

COM A percentage of comment lines 

Maintenance evaluation by 

change proneness 

S47, S56 C&K metrics 

DIT Depth of inheritance tree 

WMC Weighted methods per class 

 NOC Number of children 

CBO Coupling between object classes 

RFC Response for a class  

LCOM Lack of cohesion in methods 

Maintenance time S7, S17, S37 IL Interaction level  

IS Interface size 

OAC Operation argument complexity 

ID Inheritance depth 

Maintenance cost S9 MMT Man-months to understanding 

MMM Man-months to modifying  

MMU Man-months to testing 

 

Table 2.7 provides a summary of the metrics used to predict maintainability in my 

selected primary studies, grouped according to type (product/process) along with an indication 

of the level at which the measurement is captured.  
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From Table 2.7, it can be seen that the majority of the selected primary studies used class level 

product metrics (related to the fact that most of the studies are attempting to predict classes 

changed in the source code). The table also shows that a large number of selected primary 

studies used process level metrics to predict application level maintainability, with product 

metrics only featuring in a small number of studies for this category of change.  

Table 2.7: Summary of software maintainability metrics. 
Metrics type Metrics level Study ID 

Product metrics 

Class level 

S2, S4, S7, S10, S11, S14, S20, S25, S26, 
S27, S30, S32, S36, S38, S39, S40, S42, 

S43, S46, S47, S49, S50, S52, S56 

Application level S3 

Class level, method level 
S5, S6, S8, S12, S16, S21, S28, S29, S33, 

S41, S44, S48, S54, S55 

Class level and application level S45, S51 

Process metrics 

Application level S13, S17, S18, S22, S24, S31, S34, S37 

Application level, class level, S15, S19 

Product and process metrics Application level S9, S35 

 

Figure 2.7 provides a visualisation of the data in Table 2.7, and aggregates the total 

number of selected primary studies using both metric type and metric level, and clearly 

illustrates the popularity of employing product metrics for class-level predictions, and process 

metrics for application level predictions. 
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Figure 2.8 presents the distribution of metrics of selected primary studies. 79% of the 

studies used product metrics and 17% of the studies used process metrics. Moreover, 4% of 

the studies integrated both product and process metrics. The evidence from this result suggests 

that product metrics are the majority of metrics used in software maintainability. 

 
Figure 2.8: The distribution of metrics. 

Figure 2.7: The number of studies using metrics type and metrics level. 
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2.4.3 Software maintainability datasets 

This section seeks to answer the following questions: 

RQ3: What are the software maintainability datasets in the literature that were used to build 

prediction models? RQ3.1: What is the type of software maintainability datasets? RQ3.2: 

What tools are used to extract metrics from open source projects? RQ3.3: What programming 

languages are used to collect metrics? RQ3.4: What is the number of classes in the software 

system? 

A dataset is a combination of related sets of the data that may be used to perform machine 

learning models, and it is considered the foundation of building prediction models. For the 

model building the dataset is divided into a training set, which is used as input to train model, 

and a testing set, which is used as input to evaluate the model [65]. 

A. Datasets used 

The datasets used in the selected primary studies may be divided into three main types: 

• Public dataset: The dataset is available as appendix or table in published paper or in 

a publicly accessible repository, such as the Promise repositories in S23. In 2018, 

Hegedus et al. in S55 provided their datasets via the PROMISE repository: one of the 

first regarded as suitable for software maintainability prediction [58].  These datasets 

were built from extracted OO metrics from seven open-source systems and include a 

calculated MI. Their contribution provides encouragement to the researcher 

community to develop more research in software maintainability prediction. 

• Partial dataset: The dataset is not available, but has been extracted from open source 

software project repositories such as GitHub [27] or SourceForge [28].  

• Private dataset: The dataset is not available and has been extracted from a private 

software system. 

Table 2.8 illustrates a summary of different types of the datasets used in the selected 

primary studies. What can be clearly seen in Table 2.8 is most selected primary studies make 

use of two public datasets: QUES and UIMS proposed by L&H [9]. These datasets are derived 

from systems written in Classic-Ada as the OO programming language. A further notable 

finding is that most of the selected primary studies have been conducted using private datasets, 

as opposed to public or partial datasets, which makes many empirical studies of software 

maintainability prediction not repeatable. 
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Table 2.8: Summary of different types of dataset. 
Public datasets 

Study ID Datasets name Dataset Source Dataset size Dataset link 

S2, S20, S25, S26, 
S30, S36, S38, S46, 

S47, S49, S52 

QUES 
Commercial software products 

(Quality Evaluation System) 
71 classes 

Provided as an 

appendix in [9]. 
UIMS 

Commercial software products 
(User Interface System) 

39 classes 

S11 UML class diagram Bank information systems 27 classes 
Provided as an 

appendix in [97]. 

S13 Bank Bank information systems 55 classes 
Proposed as a table 

in [95] 

S34 Controlled experiment Academic course 24 classes 
Proposed as an 

appendix in [98]. 

S53 

Spring, Edition, RxJava, 
Restlet, Hadoop, Camel, 

Kotlin, Elasticsearch, 

Hbase Drools, OrientDB 

Open source system in GitHub 

[27] 
1151 classes 

https://zenodo.org/r

ecord/835534#.W12
3H9IzY2x 

S55 
Titan, mcMMO, junit, 

oryx, mct, antlr4, mapdb 
Open source system in GitHub 

[27] 
10,844 classes 

https://zenodo.org/r

ecord/581651#.W12

9Y9IzY2w 

Partial dataset 

Study ID Dataset Source 

S27, S29, S33, S39, S41, S47, S50, S54 Open source system in SourceForge [28] 

S21 Industrial software 

S28, S35, S40, S44, S45, S48, S51, S56 Other open source projects 

Private dataset 

Study ID Dataset Source 

S1, S3, S4, S5, S6, S7, S8, S9, S10, S12, S16, 

S17, S18, S19, S22, S24, S31, S32, S37, S42, 
S43 

Private projects 

 

Figure 2.9 illustrates the number of selected primary studies in each dataset type. From 

the chart below which clearly illustrates the difference between the number of studies using 

private datasets compared with other types of datasets. However, there are new public datasets 

proposed in S53 and S55 that may encourage researchers to apply their models to predict 

software maintainability. 
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B. dataset size 

The dataset size may be classified into three main groups: small, where the number of classes 

less than 100, medium, where the number of classes less than 500, and large, where the number 

of classes is more than 500. Figure 2.10 provides the number of datasets classified by the size 

of the dataset. This result shows that selected primary studies were mostly performed on the 

larger sized datasets, which improves the validity of prediction models.  
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Figure 2.9: The number of studies used each type of the dataset. 
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C. Programming language 

Most of the datasets were extracted from systems written in Java, Classic-Ada, C#, or C++. 

Figure 2.11 presents the distribution of the programming language in each selected primary 

studies. Java is the most popular language used in the studies which may be due to the 

availability of open-source systems written in Java. 

 

D. Tools used for data extraction 

The variables in the datasets were extracted from software source by using specific tools. Table 

2.9 presents the tools used for extracting the independent variables of the selected primary 

studies. The dependent variables were typically collected from comparing the first and the last 

versions of source software (either manually or by using a tool).  

As can be seen from Table 2.9, there is a broader range of tools available for Java which 

may be a reflection of the popularity of the language as illustrated in Figure 2.11. Extraction 

tools that work with C# are used less frequently. Some of the extraction tools can work with 

more than one language. 
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Figure 2.11: The distribution of programming language in each study. 
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Table 2.9: The tool extraction independent metrics. 
Programming 

language 
Study ID Tool name 

Classic-Ada 
S2, S20, S25, S26, S30, 

S36, S38, S46, S47, S49, S52 
Classic-Ada metric analyser 

C S6 HPMAS prior to perfective maintenance modification 

C++ 

S4, S15 An automated data collection tool 

S12 Log file 

S21 Krakatau metrics professional 

C and C++ 

S5, S8, S11, S13 
S17, S31, S34, S37 

Survey questionnaire 

S35 Resource standard metrics 

S45 Logiscope software static analysis tool. 

C++ and Java S27, S41, S44 CCCC 

Java and C# S27, S41 OOMeter 

C# S44, S41 Visual studio 

C, C++ and Java S10 Reconfigurable automated metrics for OO software 

Java 

S16 KLOCwork tool 

S27, S41, S43, 

S46, S48, S50, S56 
C&K java metric (CKJM) tool 

S51 

ObjectAid UML explorer 

JHawk tool 

Classycle 

S54 COINS tool 

S55 SourceMeter static code analysis too 

S56 Defect collection and reporting system (DCRS) tool 

S27, S41 
Analyst4j 

Dependency finder 

S28, S51, S41 JDepend 

S27, S28, S41 Understand for Java 

S41 Java coding standard checker 

 

Table 2.10 shows the tools used to identify the changes that have taken place (although 

several of the studies did not mention the tool used to collect the data). 

Table 2.10: The tools for dependent metrics extraction. 

2.4.4 Evaluation measures 

This section addresses the following questions:  

RQ4: What are the evaluation measures used to assess the performance of software 

maintainability prediction models? RQ4.1: What are the validation approaches used to 

evaluate the performance of software maintainability prediction models? 

Study ID Tool name Software maintainability type 

S11 Fuzzy prototypical knowledge discovery Categorise maintainability into easy, 
medium or difficult maintain 

S16 Distributed software development (DSD) Categorise maintenance activities as 

perfective, adaptive or corrective 

S39, S51 Version control system (VCS) Track source code changes 

S43 Eclipse compare plug-in Compare changes 

S45 Static code analysis tools Calculate the code change history 

S50 Beyond compare Compare changes between two 

versions of software 

S55 Quality gate source audit Calculate relative maintainability 
index, similarly to the commonly 

maintainability index measurement 
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Various evaluation measures have been used in software maintainability prediction to evaluate 

and compare the accuracy of model performance. The appropriate evaluation measure is 

usually based on problem type: regression, classification, or clustering.  The evaluation 

measures identified in the selected studies are reported in Table 2.11 which also provides the 

definition and equation for each measure.  

From Table 2.11, key findings emerge: the most popular prediction accuracy measures 

used for regression problems after R-squared are those based on the magnitude of relative error 

(MRE, and MMRE) [67] and (Pred) [11]. However, prior studies have pointed out that several 

evaluation measures (e.g., MMRE) have bias and instability issues in their results [99, 100]. 

To resolve these issues, a baseline or benchmark is recommended to compare and evaluate the 

performance of the prediction models [99, 100]. For classification problems, the most 

commonly used evaluation measures are recall and precision, followed by accuracy. However, 

the previous study stated that the accuracy measure provides misleading results with the 

problem of the imbalanced dataset because it tends to measure towards the majority class [55]. 

In the selected primary studies, only one study (S56) used accuracy with the imbalanced 

dataset. However, S56 resolved the problem of imbalanced dataset by using a threshold of 

50% for balance values. 

Table 2.11: Summary of evaluation measures used. 
Evaluation measures for Regression problems 

Study ID Name Acronym Definition Equation 

S18, S25, S26, 

S29, S34, S38, 

S44, S47, S54 

Magnitude of 

relative error  

MRE The absolute difference 

between the actual value and 

predicted values divided by 
the actual value 

MRE = |actual value – predicted value| / 

actual value 

S25, S26, S30, 

S34, S38, S49, 

S38, S44, S47, 
S54 

Mean magnitude 

of relative error 

MMRE It is the mean of MRE. 

MMRE = 1/n ∑ 𝑀𝑅𝐸

𝑖=𝑛

𝑖=1

 

S18, S25, S26, 

S30, S34, S38, 
S42, S44, S47, 

S54 

Pred(q) PRED It calculates the proportion of 

instances in the dataset where 
the MRE is less than or equal 

a specified value (q). The q is 

defined value, k is the 
number of states where MRE 

is less than or equal to q, and 

n is the whole number of 

views in the dataset. 

Pred(q) = k/n 

S20, S33, S38 Mean square error MSE It measures the average of 

the squares of the differences 

between the actual (𝑌𝑖) and 

predicted (Ý𝑖) values. 

MSE = 1/n ∑   (𝑌𝑖 − Ý𝑖)𝑖=𝑛
𝑖=1

2 

S26, S29 Absolute relative 

error  

ARE The Ab. Res. is the absolute 

value of residual, which is 

the difference between the 
actual value and predicted   

Ab.Res = |actual value – predicted value| 

S32, S42, S46, 

S52 

Mean absolute 

relative error  

MARE It is the mean of the ARE MARE = 1/n ∑  𝐴𝑅𝐸 𝑖=𝑛
𝑖=1  
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S20, S36, S46, 

S49, S50, S52 

Mean absolute 

error  

   

MAE 

It is the average of absolute 

values of the difference 

between 𝑋′𝑖 and 𝑋 𝑖  , where 

𝑋′𝑖 is the predicted value and 

𝑋 𝑖  is the actual value 

MAE = 1/n ∑  (| 𝑋′𝑖 − 𝑋 𝑖 | ) 𝑖=𝑛
𝑖=1  

S46, S50 Root mean square 
error  

RMSE It is the square root between 
the square of predicted value 

and the actual divided by 

number of observations in 

the dataset, where 𝑋′𝑖 is the 

predicted value and 𝑋 𝑖  is the 

actual value 

RMSE= 
√( 𝑋′𝑖 −𝑋 𝑖)2

𝑛
 

S46, S52 Standard error of 

the mean 

SEM It is the standard deviation 

divided by root of the 

number of observations in 
the dataset. 

SEM = SD/ √𝑛 

S2, S5, S8, S12, 

S16, S17, S18, 

S19, S20, S21, 
S24, S29, S31, 

S32, S33, S34, 

S36, S48, S51 

R square R2 It presents the proportion of 

the variance of the dependent 

variable that is explained by 
the model. 

R-squared = 1- (explained variance / total 

variance), where explained variation is the 

sum of squares of the residuals (i.e. actuals-
predicted) and total variation is the residuals 

with respect to the average (i.e. actuals – 

average) [101].  

Evaluation measures for Classification problems 

Study ID Name Acronym Definition Equation 

S37, S45, S53, 

S56 

Accuracy  It is the number of true 

predictions over all types of 
predictions. 

Accuracy = (TP + TN) / (TP + TN + FP + 

FN) 

S37, S40, S43, 

S53, S56 

Recall   It is a proportion of actual 

positives that are correctly 
determined. 

 

Recall = TP / TP + FN 

S37, S40, S43, 

S53, S56 

Precision  It is capability of a model to 

correctly identify relevant 
instances. 

Precision = TP / TP + FP 

S37, S39, S56 F-Measure   It integrates precision and 

recall/sensitivity in one 
equation. 

F-Measure = 2 * Precision * Recall / 

Precision + Recall 

S56 Specificity  It is a proportion of actual 

negative that are rightly 

determined. 

Specificity = TN/ TN+ FP 

S39, S40, S43, 

S47 

Area under curve 

of ROC curve 

AUC It is a plot of two parameters: 

the true positive rate and 

false positive rate. 

 

Evaluation measures for Clustering problems 

Study ID Name Definition Equation 

S11, S31 Mean cluster It calculates how 

close the clustering 

(nearest clustering) 
is to the 

preidentified 
classes (e.g., low, 

medium and high 

maintainability) by 
average of all cross-

cluster pairs, where 

ai = (a1+a2+ …..+an) 

Mean= 1/n ∑  (𝑎 𝑖 )𝑖=𝑛
𝑖=1  

     **TN: True negatives, FP: False Positive, FN: False Negative, TP: True Positive. 
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Figure 2.12 shows the number evaluation measures in each machine learning problem used by 

selected primary studies. R-squared is the most frequently used evaluation measure for 

regression problems (19 studies), followed by MMRE and PRED (10 studies). For the 

classification problem Recall and Precision were applied by 5 studies. In the clustering 

problem, only one evaluation measure was employed.     

 

  Validation is used to evaluate the performance of a trained model on previously unseen 

data [65]. There are three major validation types used in the selected primary studies: k-fold 

cross-validation, leave-one-out and holdout. Leave-one-out is considered the most extreme 

way to perform cross-validation by using all instances. Both methods (i.e. k-fold cross-

validation and Leave-one-out) has an advantage over the hold-out to make predictions on all 

datasets. For this reason, the main advantage of k-fold cross-validation and leave-one-out is to 

decrease variance and has lower variation than the hold-out method. Also, k-fold cross 

validation has a particular advantage over hold out, which every row in the dataset presents in 

the training and test set at least once. However, hold-out only needs one run, so it spends lower 

time than other methods. Table 2.12 illustrates the validation types used by the selected 

primary studies. A fact that worth mentioning is that this table contains fewer than half of the 

selected primary studies, the remainder of the studies measured software maintainability 

0

2

4

6

8

10

12

14

16

18

20
A

R
E

R
M

S
E

S
E

M

M
S

E

M
A

R
E

M
A

E

M
R

E

M
M

R
E

P
R

E
D

R
2

S
p

e
ci

fi
ci

ty

F
-M

ea
su

r
e

A
cc

u
r
a
c
y

 R
O

C
 c

u
rv

e

R
ec

a
ll

P
re

c
is

io
n

M
ea

n

Regression Classification Clustering

N
u

m
b

er
  

o
f 

st
u

d
ie

s

Evaluation measures 

Figure 2.12: The distribution of evaluation measures used by selected primary 

studies. 
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directly without applying prediction models. Therefore, they did not need to validate the 

model’s performance.   

Table 2.12: Summary of validation types. 
Study ID Validation Types Definition 

S20, S37, S39, S40, S45, S46, S47, S49, S52, S53, 

S54, S56 

K-fold cross-

validation 

The dataset is divided randomly into K folds (or 

partitions) of the same size, where one-fold is used to 

test the model and the remaining k-1are used as training 
data. The process is repeated k times to select a new 

different fold at each iteration. The overall performance 

is based on the average over the k test folds. 

S18, S26, S29, S30 Leave-one-out  It is a logical extreme version of k-fold cross validation 

where k is equal to the size of the data set. One 

observation of the total dataset is removed, and the 
model is constructed with the remaining dataset and 

tested in the removed observation. It then repeats the 

process by deleting a new different observation and so 
on for the whole data set. 

S4, S17, S19, S25, S32, S36, S38, S42, S44 Holdout It partitions dataset into two sets, where one partition is 

used for training the model and another partition for 

testing. 

 

2.4.5 Machine learning problem category. 

This section addresses following RQs: RQ5: What type of machine learning was performed 

in the software maintainability domain? RQ5.1: What are the categories of machine learning 

problem explored?  

Machine learning approaches may be divided into three main groups: supervised, 

unsupervised and semi-supervised. Supervised learning encompasses two machine learning 

problem types: regression and classification, while unsupervised learning comprises clustering 

and association. The semi-supervised is a combination of supervised and unsupervised. The 

regression problem predicts a continuous number, where the classification predicts a category 

of two or more types. Clustering groups data together based upon attributes and distance 

measures, whereas association detects rules that explain a large amount of the data. Moreover, 

supervised learning builds machine learning models to predict output data from the input data, 

where the input data has a label. Unsupervised learning builds models from unlabelled input 

data. Semi-supervised learning builds models to predict output data from input data, where 

some data items have a label [65]. Table 2.13 shows the summary of machine learning 

problems used by the selected primary studies. As mentioned in the explanation of Table 2.12, 

most of the selected primary studies used direct measures to evaluate software during the 

maintenance process without performing any machine learning problems. 
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Table 2.13: Summary of machine learning problems. 
Study ID Machine learning approach Machine learning problem type 

S20, S25, S26, S29, S30, S38, 

S42, S44, S45, S46, S47, S48, S49, S50, S52, S54 Supervised 
Regression  

S37, S39, S40, S43, S47, S53, S56 Classification 

S11, S31, S32 Unsupervised Clustering 

2.4.6 Individual prediction models 

This section explores different individual prediction models used in the selected primary 

studies of software maintainability prediction and identifies the superior model in each study. 

This section addresses the following questions: RQ6: What are the individual prediction 

models used to predict software maintainability? RQ6.1: Which are the best performing 

individual prediction models? 

Table 2.14 presents a summary of the studies that have used individual models to predict 

software maintainability, along with the best accuracy prediction model over the most 

evaluation measures. The selection of the best model relies on the evaluation measures that 

compare and evaluate the prediction accuracy of the individual prediction models used in each 

study. According to these measures, the best model is selected as a recommendation model in 

each selected study. Again as indicated in Table 2.12 and Table 2.13, Table 2.14 includes a 

subset of selected primary studies, since only these studies used indirect measures to predict 

software maintainability and apply machine learning models.  

Table 2.14 is reported only the best model performance regardless of which evaluation 

measurements were used. As shown in Table 2.14, several selected primary studies have 

different recommended individual models to predict software maintainability. However, two 

studies have reported that SVR outperforms other selected models.   
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Table 2.14: Summary of individual prediction models used with the best model in each study. 
Study ID Individual prediction models The best accuracy prediction model 

S11 FDP FDP 

S20 WNN and GRNN  GRNN 

S25 BN, RT, MLR (Backward elimination) and MLR (Stepwise selection) BN 

S26  MARS, MLR, SVR, ANN and RT MARS 

S29 LR LR 

S30 TreeNet, MARS, MLR, SVR, ANN, and RT TreeNet 

S31 K-means clustering K-means cluster 

S32 SVM SVM 

S36 MLP, WNN and GRNN MLP 

S37 LR, DT, CART, BFTree and LEGAL-Tree DT 

S38 FL, BN and MARS  FL  

S39 Multivariate model Multivariate model 

S42 FF3LBPN, GRNN and GMDH GMDH 

S44 BPN, KN, FFNN, GRNN KN  

S45 SVR, MLP, IBk, M5Rules, KStar, GP, AR, REPTree, M5P, RF, RSS, IR, 

PLS classifier, GS, DS, PR, CR, RBD, LMS, LR, Decision table, LWL, 
RBFNN  

SVR 

 

S46 Neuro-GA Approach Neuro-GA Approach 

S48 MLR based on stepwise selection and backward elimination methods Stepwise selection 

S49 FLANN, GA, PSO, CSA, FLANN-GA, FLANN-PSO, FLANN-CSA  FLANN-GA 

S50 GA, Decision Table, RBFNN, BN and SMO GA 

S52 Neuro-Fuzzy approach Neuro-Fuzzy approach 

S54 MLR, MLP, SVR, M5P and RT. SVR 

 

** FDP: Fuzzy Deformable Prototypes, WNN: Ward neural network, GRNN: General regression neural network, BN: Bayesian 
network, RT: Regression tree, MLR: multiple linear regression, MARS: Multiple adaptive regression splines, SVR: Support vector 

regression, ANN: Artificial Neural Network, LR: Linear regression, TreeNet: Multiple additive regression trees, SVM: Support vector 

machine, MLP: Multilayer Perceptron, GRNN: general regression neural network, LR: logistic regression, DT: decision tree, CART: 
Classification and Regression Trees, FL: fuzzy logic-based, FF3LBPN:Forward 3-Layer Back Propagation Network, , GMDH: Group 

Method of Data Handling, BPN: Back Propagation Network, KN: Kohonen Network, FFNN: Feed Forward Neural Network, GP: 

Gaussian processes, AR: Additive regression, RF: Random forest, RSS: Random subspace, IR: Isotonic regression, GS: Grid search, 
DS: Decision stump, PR: Pace regression, CR: Conjunctive rule, RBD: Regression by discretization,  LMS: LeastMedSq, LWL: locally 

weighted learning, FLANN: functional link artificial neural network, GA: Genetic algorithm, PSO: Particle swarm optimization, CSA: 

clonal selection algorithm, RBFNN: Radial Basis Function Neural Network, SMO: Sequential Minimal Optimization. 

 

The results for an accurate prediction model are recognized if they meet the criteria of 

Pred(.30) ≥ 0.70 [34] or Pred(.25) ≥ 0.75 or/and MMRE ≤ 0.25 [35]. Even though the 

suggested criteria are based on relatively old references [34, 35], recent studies have employed 

these criteria to evaluate prediction accuracy in the software engineering domain [102-104]. 

Also, several selected primary studies have used these criteria, such as S25, S26, S30, S38 and 

S54. However, S35 suggested that it is a challenging task to meet these criteria.  

  Table 2.15 presents the performance of the MMRE value for some selected primary 

studies; Boldface values in the table indicates the best results. However, several studies in 

Table 2.14 did not use MMRE or had not performed a regression problem, so I could not 

evaluate their performance against the criteria. The results in this table indicates that FLANN-

GA: functional link artificial neural network - genetic algorithm in S49 is the only model that 

meets the criteria of MMRE in UIMS datasets, while FL model in QUES dataset in S38 and 

Neuro-Fuzzy approach in S52 are close to meeting the criteria to build an accurate effort 

prediction model. 
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Table 2.15: Performance of MMRE value for some selected primary studies. 

Dataset name Study ID 
The best accuracy 

prediction model 
MMRE 

QUES S25 Stepwise selection 0.39 

S26 MARS 0.32 

S30 MARS 0.32 

S38 FL model 0.27 

S46 Neuro-GA Approach 0.37 

S49 FLANN-GA 0.32 

S52 Neuro-Fuzzy approach 0.33 

UIMS S25 Bayesian network 0.97 

S26 SVR 1.86 

S30 TreeNet 1.57 

S38 FL model 0.53 

S46 Neuro-GA Approach 0.31 

S49 FLANN-GA 0.24 

S52 Neuro-Fuzzy approach 0.28 

Five open source Java software 
systems 

S44 KN Mean MMRE: 0.44 for model 1. 

Mean MMRE: 0.32 for model 2. 

 

Twenty-six open source Java 

software systems 

S54 SVR Mean MMRE: 0.91 

 

The number of individual prediction models that has been used in selected primary 

studies is illustrated in Figure 2.13 (fifty-three in total). From the fifty-three models shown in 

Figure 2.13, the five most frequently employed individual models are MLR, SVR, GRNN, RT 

and FLANN. MLR is the most frequently used individual model for software maintainability 

(six studies). 
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Figure 2.13: Individual prediction models used in selected primary studies. 
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2.4.7 Ensemble prediction models 

This section investigates various ensemble prediction models used in the studies and compares 

the ensemble model performance against individual models. The aims of this section are to 

answer the following questions: RQ7: What type of ensemble prediction models were 

employed to predict software maintainability? And RQ7.1: Are the ensemble models able to 

improve over the performance of the individual prediction models? 

An ensemble model is a combination several individual models designed to improve on 

the accuracy prediction of individual models. They can be classified into two major types: 

homogenous that uses the same type of individual models, and heterogenous that uses different 

types of individual models [105]. Moreover, the ensemble models can be categorized into 

linear ensembles, which combine the outputs of the base model in a linear manner (e.g., 

weighted averaging, averaging) and nonlinear ensembles, which combine the outputs of the 

base model in a nonlinear manner (e.g., decision tree forest) [106]. Five main selected primary 

studies employed ensemble models to predict software maintainability. These studies 

emphasised the positive impact of ensemble methods in predicting software maintainability 

compared with individual prediction models. Table 2.16 summarises the ensemble prediction 

models used. 

As shown in Table 2.16 below, different types of ensemble models have been compared 

with individual prediction models. The ensemble prediction models in selected primary studies 

(i.e. S40, S43, S47, S53 and S56) improved the performance of individual models and 

increased their accuracy prediction over individual prediction models. Even though the 

ensemble models reported a superior result over individual prediction models, a limited 

number of selected primary studies applied the ensemble models to predict software 

maintainability (which may be due to the fact that ensemble models are relatively new [107]). 

 

 

 

 



 

51 

 

Table 2.16: Summary of the ensemble prediction models. 

 

The number of ensemble prediction models used in selected primary studies is shown in 

Figure 2.14 (ten in total). The number of homogeneous ensemble models used exceeds the 

heterogeneous ones. Furthermore, the linear ensemble is the most frequently used 

heterogeneous model, and RF and AdaBoost are the most frequently used homogeneous 

models. 

Study 

ID 
Ensemble Type 

Ensemble 

name 
Base models Combination rules The best model 

Does the 

ensemble 

model improve 

the 

performance of 
the base 

model?   

S40 Heterogeneous 
SMEM-

MCC 
ISMEM, DT, BPN, 

SMO 

NA 
Ensemble model 

(SMEM-MCC) 

 

Yes 

S43 Homogeneous RF 

Naïve Bayes, Bayes 

Network, Logistic, 
Multilayer 

Perceptron 

Averaging 
Ensemble model 

(RF) 
Yes 

S47 

Heterogeneous 

Linear 

ensemble 

MLP, RBF, SVM, 

M5P 

Averaging, weighted 

averaging and best in 

training 

Ensemble model 

Yes 

Homogeneous 

Bagging 

and 

AdaBoost 

MLP, RBF, SVM, 

DT 
Averaging Yes 

Heterogeneous 

Linear 

ensemble 

and Non-

linear 

SVM, MLP, logistic 

regression, genetic 

programming, K-

means 

Best in training, 
majority voting and 

decision tree forest 
Yes 

S53 Homogeneous 

RF and 

AdaBoost 
J48 Averaging 

Ensemble model 

(AdaBoost) 
Yes 

S56 Homogeneous 

MVEC, 
WVEC, 

HIEC, 

WVHIEC 

Seven individual 

particle swarm 

optimization (PSO) 

Majority voting, 

weighted voting and 

hard instance 

Ensemble model 

(HIEC and 

WVHIEC) 

Yes 

** SMEM-MCC: Software Maintainability Evaluation Model based on Multiple Classifiers Combination, RF: Random forest, Bagging: 

Bootstrap aggregating, AdaBoost: Adaptive Boosting, MVEC: Majority Voting Ensemble Classifier, WVEC: Weighted Voting Ensemble 

Classifier, HIEC: Hard Instance Ensemble Classifier, WVHIEC: Weighted Voting Hard Instance Ensemble Classifier. 
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2.5. Conclusion of Systematic Literature Review 

This literature review aimed to identify and analyse the measurements, metrics, datasets, 

evaluation measures, machine learning problems, individual prediction models and ensemble 

prediction models employed in the field of software maintainability prediction. An extensive 

search was conducted in five online digital libraries to select peer-reviewed articles that 

publish in either journals or conferences. Fifty-six studies have been selected between 1991 

and 2018, and seven main questions have been answered from each selected primary study. 

This literature review has been performed as a SLR to evaluate all relevant research evidence 

and identify the available studies in the field of software maintainability prediction, with the 

purpose to answer certain RQs.  

The main answer for each research question in this literature review is reported in (Figure 

A.1 in Appendix A). This figure provides the mind of software maintainability prediction and 

highlights the most important answers. This visualisation enables us to break down the 

complex problem of software maintainability prediction into several solutions according to the 

RQs. As a result, this mind map integrates a whole literature review into one organised picture 

to respond to the RQs as the following: 
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Figure 2.14: Ensemble prediction models used in selected primary studies. 
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• There are ten software maintainability measurements used in selected primary studies: 

CHANGE maintenance effort, corrective maintenance, adaptive maintenance effort, 

maintenance evaluation by MI, maintenance evaluation by change proneness, 

maintenance time, maintenance cost, maintenance attributes, maintenance components 

and other measurements. 

• There are three main types of software maintainability metrics used in selected primary 

studies: product metrics, process metrics, and product metrics combined with process 

metrics. 

• There are three main types of software maintainability datasets used in selected primary 

studies: public datasets, partial datasets and private datasets. 

• The software maintainability evaluation measures are grouped by machine learning 

problem: regression problem-based models include MRE, MMRE, PRED, MSE, ARE, 

MARE, MAE, RMSE, SEM and R2, classification problems include Accuracy, Recall, 

Precision, F-Measure, Specificity and ROC curve, and cluster problems include the 

mean. 

• Machine learning models to predict software maintainability involve two main 

categories: supervised learning for regression and classification, and unsupervised for 

clustering. 

• Fifty-three individual models were constructed by selected primary studies. 

• Ten ensemble models were created by selected primary studies (seven homogeneous 

ensemble models and three heterogeneous ensemble models). 

Most notably, this is the first study to my knowledge that provides a SLR in software 

maintainability prediction. Therefore, I have confidence my proposed study will be a novel 

and hopefully valuable contribution to the area of software maintainability prediction. The 

findings obtained in this study can be used by the researchers to provide an overall overview 

of this area. The main findings derived from this SLR are: 

• Relatively few studies have been conducted in software maintainability prediction 

compared with other software quality attributes such as defect prediction or fault 

prediction. 
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• Different types of software maintainability measurements were investigated that 

roughly equate to ten types. The change maintenance effort was the most common 

measurement used by 20 studies, followed by the MI, which is used by ten studies. 

• Studies of software maintainability metrics were generally categorized into three types: 

product metrics, process metrics and product and process metrics. These types were 

applied on different levels: class level, method level and application level. Most studies 

used product metrics along with class level measurements (forty studies), followed by 

product metrics with method level measurements (fourteen studies), and finally process 

metrics with application level measures (ten studies). Overall, the total distribution of 

software maintainability metrics is as follows. 79% of studies used product metrics, 

17% of studies used process metrics, while only 4% of studies used product and process 

metrics.     

• The L&H metrics are utilised by twenty studies, and these studies confirmed the 

evidence of the power relationship between OO metrics and software maintainability. 

Ten studies used the MI metrics. 

• Studies of software maintainability datasets were broadly divided into three types: 

public, private and partial. The most commonly used was private datasets (more than 

twenty studies). 

• UIMS and QUES datasets were the most frequently used (eleven studies). Regarding 

the size of the datasets, the result reveal that most studies used either medium or large 

sized datasets, which improves the validity of prediction models. 

• 36% of the datasets were collected from Java systems, most likely as a consequence of 

the availability of open-source systems written in Java. 

• Even though there were several extraction tools used to collect metrics, most of these 

tools were designed for Java. However, some of these tools can work with more than 

one programming language. 

• The evaluation measures are selected usually based on problem type: regression, 

classification or clustering. R-squared is the most repeatedly used in regression 

problem by nineteen studies, followed by MMRE and PRED (ten studies). Recall and 
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Precision were applied many times in the classification problem. In the clustering 

problem, only one evaluation measure was employed.   

• Three primary validation types used in studies are k-fold cross-validation (48%), leave-

one-out (36%) and holdout.  

• The most popular machine learning problems were regression problems (62% of the 

total selected primary studies). 27% of the studies were related to classification 

problems, and only 11% of these studies were related to clustering problems. 

• Some individual models achieved predictions that were close to meeting the criteria of 

an accurate prediction model, which are Pred(.30) ≥ 0.70 [34] or Pred(.25) ≥ 0.75 

or/and MMRE ≤ 0.25 [35], namely FL model in S38 and Neuro-Fuzzy approach in 

S52. FLANN-GA in S49 is the only model that meets the MMRE criteria. 

• MLR, FLANN, RT, GRNN and SVR were the most frequently employed individual 

models in software maintainability prediction, with more than four studies using these 

models. 

• Ensemble models were used by five (16%) of the selected primary studies (i.e. S40, 

S43, S47, S53 and S56), compared to more than three-quarters of the studies which 

used individual models. However, all the ensemble models used in studies yield 

improved accuracy over the individual models. 

• Ten ensemble prediction models were applied to predict software maintainability 

(seven homogeneous ensemble models and three heterogeneous ensemble models). 

• The linear ensemble was the most frequently used heterogeneous model, while RF and 

AdaBoost were the most frequently used homogeneous models. 

The findings of this SLR revealed the following guidelines for the researchers in 

software maintainability prediction for future work: 

• There is a need for more investigations to be carried out in the area of software 

maintainability prediction using machine learning techniques, as only 26 studies from 

the selected primary one using machine learning techniques. 
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• Only one model meets the model accuracy criteria mentioned earlier (MMRE ≤ 0.25), 

so further studies are needed to empirically explore and aim to improve the 

performance of machine learning techniques. 

• Selected primary studies have reported the success of using ensemble models to 

improve the performance of the prediction accuracy by reducing variance (see Table 

2.16). However, there is no clear indication of which techniques are more suitable to 

predict software maintainability accurately and provide more consistent results. Also, 

a limited number of ensemble models (ten in total) were explored by five selected 

primary studies. Hence, this limitation is not enough to draw a satisfactory conclusion.  

• The QUES and UIMS datasets are publicly available and used by most of the selected 

primary studies (ten studies) but are small datasets and quite old. There is a need to a 

larger number of more recent and more substantial datasets to become publicly 

available to encourage an increase in the number of experimental studies of machine 

learning techniques. 

The next chapter proposes the methodology of this thesis to present an overview of the 

technical background used in the empirical studies in Chapter 4, Chapter 5 and Chapter 6. 
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Chapter 3. Methodology for Empirical Studies in 
Software Maintainability Prediction 

This chapter describes the methodology for empirical studies in software maintainability 

prediction using ensemble techniques. The methodology of this thesis is based on three 

empirical studies proposed in the next three chapters to answer the RQs in Chapter 1. The 

methodology focuses specifically on empirical studies because in software engineering they 

are important in supporting decision-making in organisations and improving software 

development [108].  

The first empirical study in Chapter 4 uses the UIMS and QUES datasets [9], which are 

the most frequently used, as seen in the SLR of Chapter 2, and this helps to compare and 

evaluate the investigated prediction models in this chapter with previous studies. The second 

empirical study in Chapter 5 utilises the bug prediction datasets [57], which are larger and 

more recent than the UIMS and QUES datasets. The third empirical study in Chapter 6 

employs refactoring datasets [58]; according to Chapter 2, these datasets are the newest 

datasets for software maintainability prediction. To validate the results, statistical tests and 

effect size measurements were performed in all empirical studies. In addition, to improve the 

results, the impact of the parameters tuning is explored. The reason for selecting each element 

in this methodology is provided in each section below, whereas the research method and 

experimental dataset setup are provided in the next three chapters separately. 

The design of this methodology is based on the findings obtained in Chapter 2. 

Therefore, this thesis particularly focuses on the study of the prediction of software 

maintainability, as there were relatively few activities in the area of software maintainability 

prediction compared with other software quality attributes. Additionally, ensemble models 

demonstrate increased prediction accuracy over individual models, and can be useful in 

predicting software maintainability. However, as their application in selected primary studies 

is limited, they should be applied, as well as other models, to an extensive variety of datasets 

to improve the accuracy and consistency of results. Furthermore, according to Chapter 2, there 

is a requirement to use publicly available datasets for prediction software maintainability to 
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make the predictive models refutable, confirmable and repeatable [109]. In addition, product 

metrics at the class level are the majority of metrics used in selected primary studies (see Figure 

2.7); therefore, these metrics were used as the predictors for software maintainability in this 

thesis. Finally, there is a demand to predict change proneness, which is used by limited selected 

primary studies in Chapter 2. 

In this chapter, the individual prediction models used in the empirical studies are 

described. The ensemble prediction models are also detailed, followed by a description of 

automatic parameter tuning. A brief overview of the datasets used in the empirical studies and 

prediction accuracy measures, along with baseline, criteria, statistical tests, and effect size 

measurement are presented. The validation technique performed to create the models and the 

tools used to implement and analyse the empirical studies are provided.  

3.1. Individual Prediction Models 

In general, the choice of individual models was based on popularity, good performance, and 

selection from different categories. In addition, each individual model has its own advantage. 

The models selected are commonly used for regression problems. Some of these models, such 

as RT, KNN, and SVR, are listed amongst the best ten data mining models [110]. RT is an 

unstable model because even small changes in the training set may lead to considerable 

changes in the model's prediction [111], and it has the ability to create correlated features. 

However, these selection features are not based on the effect of the independent variables on 

the dependent variable [112]. MLP is a simple neural network configuration that can 

effectively manage datasets that are not linearly separable; however, it requires long execution 

and cannot predict the minimum time to stop [113]. KNN is simple to perform and easy to 

understand, but it does not work properly if the datasets have outliers, noise, or missing values 

neighbours [114]. M5Rules is categorised from the tree and has some strengths and 

weaknesses, but it has demonstrated better performance than other tree models. M5Rules 

produces a series of M5 trees that contain sets of leaves or rules, and the best rule is maintained 

from each tree, whereas other trees, such as M5P, create only an individual decision tree [115]. 

SVR determines the preferable hyperplane without dependence on the dimensionality of the 

input space and has demonstrated superior performance with excellent accuracy prediction. 
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However, it does not work well with large datasets because it requires a long time to execute  

[116, 117].   

Regarding classification problems, the most frequently observed individual models (i.e., 

NB, SVM and KNN) in Table 6.1, which summaries of FS, datasets and prediction models in 

software quality prediction were used. Additionally, these models are among the best five 

models for classification problems [118]. NB can estimate the parameters and a model from a 

smaller proportion of the dataset, and then, it produces means and variances of the variables 

for each class. Nevertheless, it assumes all features as independent from each other [119].  

  Each one of the individual models proposed has its advantages and drawbacks. 

However, there is no obvious evidence of which models are more suitable to predict software 

maintainability accurately. With the goal of improving prediction accuracy, this thesis used 

RT, MLP, KNN, M5Rules and SVR in Chapter 4 and Chapter 5, along with NB, SVM and 

KNN in Chapter 6 as the individual models to predict software maintainability. These models 

were created in the three empirical studies in this thesis using WEKA [120], and their 

parameters were initialised by applying the default values because this procedure was observed 

in several studies in software maintainability in WEKA [12, 13, 16, 47, 121]. In the empirical 

studies, these models were used as the base in the ensemble model. Individual prediction 

models from different categories were used with the aim of creating an effective stacking 

ensemble model [122]. In addition to the default parameter values used as a main method, the 

impact of automatically parameters tuning was assessed as a sub-section in each empirical 

study. Table 3.1 presents a summary of individual prediction models with their category and 

name in WEKA. 

Table 3.1: Summary of selected individual prediction models. 
Model Name Model Acronym Category in WEKA Name in WEKA 

Regression Tree RT Trees REPTree 

Multilayer Perceptron MLP Functions MultilayerPerceptron 

K-Nearest Neighbors KNN Lazy  IBK 

M5Rules M5Rules Rules M5Rules 

Support Vector Regression SVR Functions SMOreg 

Support Vector Machine SVM Functions SMO 

Naive Bayes NB Bayes NaiveBayes 
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3.1.1 Regression tree 

RT is constructed using the binary recursive partitioning process. This is a repetitive process 

that recursively divides a dataset into partitions or branches by selecting at each stage the 

independent variables that have the lowest minimum sum of the squared deviations from the 

mean of the two separate partitions. RT measures the prediction error by calculating the 

squared difference between the predicted and actual values [112].  This process continues to 

divide nodes until the total sum of squared deviations from the average is equal to zero, which 

is called the terminal node [112].  

3.1.2 Multilayer perceptron  

MLP is an artificial neural network that includes input and output layers, along with hidden 

layers. Each layer comprises one or several nodes (neurons) that connect with each other by a 

specific weight. The hidden layers combine input data, which is a set of features, by utilising 

a linear combination [123]. The hidden layer converts the value from the previous layer (input 

layer) by using a weighted linear summation, whereas the output layer collects the value from 

the previous layer (hidden layer). The activation function of the hidden layer enables the 

capture of relationship between inputs and outputs and resolves the nonlinearity problem 

between them. Also, this function transfers weighted input to output. MLP uses the 

backpropagation algorithm to construct a neural model from historical training data [123]. One 

of the main characteristics of the backpropagation algorithm is to estimate the error rate in the 

output nodes and predict the results. This estimation performs by computing the total loss and 

determining the possibility of the loss into each node. Consequently, this algorithm changes 

the connected weights between the input and output by decreasing the loss between them and 

assigning lower weights to the nodes with higher error and vice versa [123].  

3.1.3 K-Nearest neighbours 

KNN, also called instance-based learning, is constructed by choosing the closest neighbours 

in the training data to predict the target data. First, the KNN algorithm stores all training 

instances by applying a linear transformation to normalise the values in the range from 0 to 1. 

In sequence, the algorithm categorises data by selecting the majority class of the k closest 
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neighbours or the nearest training instance. This process typically uses the Euclidean (or other 

specified) distance measure to determine the closest neighbours [114].  

3.1.4 M5Rules 

M5Rules is built by generating a series of M5 trees, which is a decision tree designed to predict 

numerical values for regression problems [124]. The M5 tree includes groups of leaves or rules 

using a separate-and-conquer strategy. This is an iterative process that constructs a model tree 

by utilising the M5 algorithm and selecting the best leaf to transform into a rule. Initially, the 

M5 algorithm constructs a tree by partitioning the data based on the values of the predictive 

attributes [115]. In sequence, the M5 algorithm calculates a linear model for each node by 

computing the average of the absolute difference between the actual and predicted values of 

every observations in the training set [115]. This process typically continues until all instances 

have one or more rules. M5Rules has a regression model in its nodes to predict the value, 

whereas the RT has only a constant fitted mean. Therefore, as M5Rules slightly differs from 

RT, they can be used to make a different prediction [115]. 

3.1.5 Support vector machine 

SVM is designed to solve classification problems and is considered a category of generalised 

linear classifiers. SVM converts the original dataset training to a higher dimension using 

nonlinear mapping [125]. Then, it creates a linear optimal separating hyperplane to separate 

the dataset into two classes. Furthermore, there are two lines that create a maximal margin 

hyperplane, whose instances define the boundary line. Sequential minimal optimisation was 

used in Weka as the SVM implementation, and it has several features, such as the ability to 

manage very large datasets and faster model creation for sparse datasets and linear SVM [126]. 

Additionally, it can manage complex nonlinear decision boundaries and is less prone to 

overfitting than other models. These features help SVM reduce prediction error and improve 

overall prediction accuracy [125].  

3.1.6 Support vector regression  

SVR is a specific class of SVM designed to solve regression problems. SVR has all the major 

features of SVM used for the classification problem. Both algorithms aim to decrease 
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prediction error, increase the maximal margin, and build the hyperplane in the high-

dimensional space. Additionally, two lines create a margin, namely boundary lines. SVR is 

implemented by initiating an Ɛ -insensitive region around the function (i.e., Ɛ-tube). Initially, 

SVR defines a symmetrical loss function (i.e., Ɛ-insensitive loss function) to be reduced. Then, 

it determines the narrowest tube that includes most of the training instances. SVR is considered 

an optimisation problem because it addresses the convex optimisation using numerical 

optimisation algorithms [116, 117].  

3.1.7 Naive Bayes 

NB is a probabilistic algorithm that relies on Bayes’ theorem to predict the class for each row. 

NB applies independence assumptions, which consider features to be independent of each 

other. This algorithm uses estimator classes, and this estimation is performed using the 

maximum likelihood method [119]. 

3.2. Ensemble Prediction Models 

Ensemble prediction models aim to overcome the deficiencies of individual models (typically 

variance and instability) by combining a set of models to generate a final prediction. Typically, 

such a model can be of two types: homogeneous and heterogeneous. Homogeneous models 

combine individual models of the same type (e.g., bagging), whereas heterogeneous models 

combine individual models of different types (e.g., stacking). The combination rule depends 

on the problem type and can either be weighted averaging (regression problem) or majority 

voting (classification problem) [105]. The advantages of the ensemble prediction model are an 

increase in accuracy prediction compared to individual models and prevention of overfitting. 

Figure 3.1 illustrates the homogeneous and heterogeneous ensemble prediction model 

structures.   
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 There are three main steps in creating an ensemble prediction model. First, several base 

models are created in sequential or parallel styles based on the ensemble type [105]. Second, 

all individual models are integrated using the combination rule [105]. If the output of 

individual models has equal weight, a simple average is performed to combine the models. 

Alternatively, if the output of individual models has different weights, the individual models 

accumulate their weight and assign the highest weight to the lowest root-mean-square error of 

the individual [105]. Third, the output of the previous combination is integrated to perform the 

ensemble combination [105, 127]. With respect to the design of the ensemble arbitrator, the 

ensemble model includes two types of classification: non-linear and linear ensemble models. 

In the linear ensemble, the arbitrator integrates the outputs of the base models in a linear 

method (e.g., averaging or weighted averaging), whereas in the non-linear ensemble, the 

arbitrator integrates the outputs of the base models in a non-linear method (e.g., MLP), thus 

this method does not require assumptions for collecting inputs [106]. Table 3.2 provides a 

comparison between the homogeneous and heterogeneous ensemble models.  

  

 

 

Figure 3.1: Structure of homogeneous and heterogeneous ensemble prediction 

models. 
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Table 3.2: Similarities and Differences between homogeneous and heterogeneous ensemble models. 

 

In this thesis, the most popular and well-known ensemble models were selected, namely 

bagging [128], additive regression [129], stacking [130], APE [131], and RF [132]. RF was 

the most commonly used ensemble model in the SLR in Chapter 2 and Table 6.1 in Chapter 6, 

which summaries FS, datasets and prediction models in software quality prediction, followed 

by bagging in the SLR in Chapter 2. Additionally, RF produced the best performance in 

change-proneness prediction [47] and software fault prediction [37], along with APE in 

software fault prediction [131]. 

3.2.1 Bootstrap aggregating (Bagging)  

Bagging is an ensemble technique that enhances the prediction accuracy of a model by creating 

separate models of the same type. Initially, the bagging algorithm builds the individual models, 

which have an equal weight by randomly sampling subsets of the training set iteratively with 

replacement. The bagging algorithm collects the results of these models by using voting with 

a classification problem and averaging with a regression problem [128]. The bagging 

algorithm improves the performance of unstable models such as RT[133], thus two types of 

trees were investigated when applying bagging. Moreover, bagging is recommended for use 

in small-sized training sets such as QUES and UIMS datasets to decrease the variance between 

the base models that cause the unstable model problem [133]. The following three major 

parameters must be determined in this algorithm: 

 Homogeneous  Heterogeneous 

Similarities 
• Combine several base models. 

• Aim to increase accuracy prediction of individual models. 

Differences 

Uses the same model type. Uses different model types to improve 

prediction accuracy. 

Uses different training data to obtain a 

different model. 

Uses the same training data. 

Uses the same FS method as a part of 

the homogeneous ensemble method. 

Uses various FS methods as a part of 

different base models combined in the 

heterogeneous ensemble model. 
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• Base model: the individual model to be used in the bagging algorithm; 

• Ensemble size: the number of individual models to be created in the bagging algorithm; 

• Training set size: the size of the dataset used to construct the individual models [128]. 

3.2.2 Additive regression 

Additive regression is an ensemble technique to increase the performance of a base regression 

model of the same type. This technique is considered a specific case of gradient boosting, as 

it begins with an empty ensemble and then augments an initial model with subsequent models 

that aim to correct the residuals (i.e., errors) in the predictions of the previous model (or 

models) using least-squares at each repetition. In each repetition, the ensemble model creates 

a model to the errors remaining using the model of the prior repetition. A part of the training 

data in each iteration is randomly selected without replacement, for later use as a complete 

sample [129]. Therefore, additive regression is created by adding the prediction of all models 

together, which leads to a more accurate model. Additive regression decreases the shrinkage 

parameter, which manages the shrinkage rate (learning rate) of the procedure (this parameter 

ranges from 0 to 1, where small values indicate better performance [134]), and avoids 

overfitting. However, it increases the learning time [129, 135]. The following three major 

parameters must be identified in this algorithm:  

• Base model: the individual model used as the base model in the additive regression 

algorithm; 

• Shrinkage rate: shrinkage rate or learning rate is a method to decelerate the learning 

model by performing a weighting factor. This rate should be minimised to improve 

performance and avoid overfitting; 

• Ensemble size: the number of repetitions in the additive regression algorithm[129, 

135]. 

3.2.3 Random forest 

RF is an ensemble model that builds a forest of numerous unpruned decision trees from the 

training dataset. Then, it uses the mode of the classes of the individual trees on the testing 

dataset to make a prediction. RF is called random because a random sample of the training 

data is selected with repetition and forest because it involves several decision trees. Applying 
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this random selection of features leads to more error rates than in the AdaBoost [136]. 

However, the RF is better in terms of managing noisy data [132]. Moreover, this algorithm 

performs bagging on features based on majority voting and selects the dependent variables that 

have the highest votes [132]. In this study, RF integrates algorithms of the same types (i.e., 

decision trees), thus it can be classified as a homogenous ensemble model. The default 

parameters in Weka were applied, in which Weka creates a forest of several decision trees as 

the base models and initialises a forest to 100 tree instances [137]. RF depends on four 

parameters: the number of trees to construct, the subsample size common to each tree, the tree 

depth, and the number of variables randomly sampled for splitting [138]. 

3.2.4 Stacking 

Stacking is an ensemble technique that improves prediction accuracy and decreases variance 

by integrating several models of different types. Stacking works effectively when the base 

models have significantly varied categories, such as a combination of neural network, tree-

based, and support vector models. The stacking algorithm starts by applying an entire training 

set to train different model types. Each model at this level produces predictions with specific 

features. In addition, a meta-model is trained on these predictions to generate the final 

prediction in a second-level model [130]. Based on the stacking features suggested in the 

literature [139], linear regression was used as the combination method and RT, MLP, KNN, 

M5Rules and SVR as the base models. The remaining parameters were initialised by applying 

the default values in WEKA. The following four major parameters must be determined in this 

algorithm: 

• Base model: the individual models to be used in the stacking algorithm; 

• Meta model: the ensemble model that combines the results of the individual models; 

• Ensemble size: the number of individual models in the stacking algorithm [130]. 

3.2.5 Average probability ensemble 

APE is a type of heterogeneous ensemble technique that integrates a group of models from 

different types and produces a single output. This technique takes advantage of several 

individual models to remove prediction errors and improve accuracy prediction. The APE 
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calculates the average for all base models (i.e., individual models) and provides the result as a 

single output [131, 140].  

3.3. Parameters tuning 

Parameters tuning technique is the process of changing the parameter settings that control the 

features of the machine learning models, such as the size of each bag in RF or the number of 

nearest neighbours in KNN [141]. This process aims to improve performance and reach 

optimal results. However, limited studies in software quality prediction have investigated the 

impact of parameter tuning [142], and no studies discussed in the SLR in Chapter 2 have used 

parameter tuning. A possible explanation for this limitation might be that parameter tuning 

requires considerable time and effort. For example, tuning all the parameters of KNN requires 

at least 17000 different configurations [143]. To resolve this issue, parameter tuning is 

proposed to evaluate and compare various parameter configurations and select the best 

configurations that achieve the highest prediction accuracy. Therefore, three different methods 

of automatic parameter tuning were evaluated. The following subsections present a description 

of these methods. 

3.3.1 Caret package 

Caret, which is an abbreviation for classification and regression training, is a package available 

in R to create prediction models and automatically tune their parameters [144]. Various 

features have been developed and included in caret package, such as data pre-processing, data 

splitting, feature importance, feature selection, parallel processing, visualisation and model 

tuning [145]. In this thesis, visualisation was used to present the correlation between metrics 

in the datasets in Section 4.4.5 and Section 5.4.5 and model tuning was performed to 

investigate the impact of parameter tuning in Section 4.5.3 and Section 6.5.5, whereas other 

features of caret package were not used in this thesis. Caret package is one of the more practical 

ways of performing parameter tuning due to its ability to evaluate the impact of parameters, 

select an optimal model and estimate the prediction accuracy of models [145]. In particular, 

this package evaluates and compares several combinations of parameter tuning and chooses 

the optimised setting that performs with the highest prediction accuracy [141]. The caret 
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package creates and predicts models by removing the syntactical differences between several 

functions. Among these functions, the train control function evaluates the performance of a 

trained model using validation methods [144]. In this study, ten-fold cross validation was 

performed (i.e., CV in the caret package). Therefore, parameter tuning is based on the training 

sets, which are divided into a test set and a training set in the validation method. Additionally, 

the train function selects the method (i.e., prediction models) and metrics (i.e., evaluation 

measurements). The values of the parameters tuning in each prediction models were 

automatically selected by using a grid of tuning parameters. The grid size by default is 3p, 

where p is the number of parameters tuning in a given model [146]. For instance, two 

parameters (gamma and lambda) are included in regularized discriminant analysis model, so 

the grid size in this model generates nine combinations of these two parameters [146]. 

Therefore, the parameter space in caret is not explored exhaustively. Also, the types of 

parameter are chosen automatically using default types proposed in the caret package. For 

example, Caret tries different values of the nearest neighbours (K) parameter in KNN; then, it 

selects the optimal model that records the highest prediction accuracy. Similarly, caret 

performs a combination of two parameters tuning in SVM, namely the scale function and the 

cost value to control radial basis function and the complexity of the boundary, respectively 

[147]. However, the values and types of parameters can be manually identified inside the train 

function. In this thesis, the individual models and the ensemble models that used these 

individual models as the base model are tuned automatically using the caret package. All 

prediction models in Chapter 4 were created again using the caret package to compare their 

performance with the default values created by WEKA. Furthermore, all prediction models 

except RT require other packages, along with caret. For example, the RWeka package is used 

with caret to initialise the base model parameter inside the ensemble model [148]. Table 3.3 

lists the packages and methods used to create the prediction models in Chapter 4. In this table, 

all the models (i.e., base and ensemble models) and all packages (including models RWeka 

package) are created and tuned by R. 
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Table 3.3: Overview of packages and methods used to create prediction models. 
Prediction 

model 
Package Methods Base model parameter in ensemble model 

RT caret rpart NA 

MLP 
caret, RSNNS 

and Rcpp 
mlp NA 

KNN caret, kknn knn NA 

M5Rules 

caret, rJava, 

RWeka and 

RWekajars 

M5Rules NA 

SVR caret, e1071 svmLinear2 NA 

Bagging 

caret, rJava, 

RWeka and 

RWekajars 

weka/classifiers/meta/Bagging 
RT:weka.classifiers.trees.REPTree 

MLP:weka.classifiers.functions.MultilayerPerceptron 

KNN:weka.classifiers.lazy.IBk 

M5Rules:weka.classifiers.rules.M5Rules 

SVR:weka.classifiers.functions.SMOreg 

Additive 

regression 

caret, rJava, 

RWeka and 

RWekajars 

weka/classifiers/meta/AdditiveRegression 

Stacking 
caret and 

caretEnsemble 
caretList 

algorithmList=( rpart, mlp, knn, M5Rules, 

svmLinear2 ) 

3.3.2 Auto-WEKA 

Auto-WEKA, used in Chapter 5, is an automatic tool that implements several types of machine 

learning models with different integrated selected features and tuning parameters in WEKA 

[149, 150]. This tool tries different hyperparameter settings and selected features for several 

models and provides the best model performance using the Bayesian optimisation method 

[149, 150]. Recently, Auto-WEKA was combined with WEKA as a package and was 

constructed to perform regression algorithms, performance metrics and parallel runs [149]. 

3.3.3 Grid search 

In Chapter 6, parameter tuning is performed on RF using a grid search with ten-fold cross-

validation. Grid search is the process of exploring the search space of the hyperparameter 

values with the specification of parameter pairs and evaluation measurement (e.g., AUC). This 

process is iterated via ten-fold cross-validation until the optimal hyperparameters are 

determined, which results in the highest prediction accuracy [151]. Grid search is created  

using the tunegrid function in R, along with the randomForest, mlbench, and caret packages 

to build the RF model. RF depends on four parameters: the number of trees to construct, the 

subsample size common to each tree, the tree depth, and the number of variables randomly 
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sampled for splitting [138]. However, only the last parameter was tuned (i.e., the number of 

variables randomly sampled for splitting), using Mtry variable in R. The rationale for focusing 

on just the Mtry parameter is because there is no clear indication or theory of which value of 

this parameter is more appropriate under most circumstances [138]. Therefore, the grid search 

used in Chapter 6 is considered a linear search, in which the vector of candidate values ranges 

from 1 to 15. These values were initialised because there is no recommendation to select the 

number Mtry parameter [138]. 

3.4. Datasets 

This thesis used sets of three types of datasets that are publicly available and suitable for 

software maintainability prediction. Public datasets were selected to the empirical studies to 

enable comparison and reproducibility, which helps to improve research in the software 

engineering area. In this thesis, appropriate independent variables (metrics) were selected to 

predict software maintainability along with the dependent variable (maintainability). The 

details of the selected variables are explained in the experimental data setup in Chapters 4, 5, 

and 6, and the general overview of these datasets is provided in the next sections. 

3.4.1 Change maintenance efforts 

In Chapter 4, change maintenance efforts datasets (i.e., QUES and UIMS), proposed as an 

appendix in [9], were used. These datasets include the CHANGE metric collected from three 

years of software maintenance [9]. The QUES and UIMS datasets are publicly available, 

accurately validated, and widely used in software maintainability prediction studies [7, 11-13, 

16, 18, 88, 152]. Therefore, they were selected to enable comparison with previous studies and 

contribute to the field of OO software maintainability prediction. Classic-Ada is an OO 

programming language developed by Software Productivity Solutions, Inc. QUES and UIMS 

are software systems written using the Classic-Ada language. Moreover, a Classic-Ada metric 

analyser tool was used to extract metrics and build datasets from these systems [9]. Class-level 

metric data of 71 and 39 classes were collected for the QUES and UIMS datasets, respectively. 

Table 3.4 lists the definitions and descriptions of the OO metrics selected in this study.  
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Table 3.4: Definitions and description of L&H metrics [9]. 
Independent 

variable 

Definition Description 

DIT Depth of inheritance tree This metric determines the depth of a class in the hierarchy by calculating the 

length of the path from the root class, and the root class is zero in the class 
hierarchy. 

NOC Number of children This metric calculates the total number of child classes that inherit directly 

from a given class. 

MPC Message-passing coupling This metric calculates the total number of messages sent out from a class.  

RFC Response for a class This metric calculates the sum of the total number of local methods, along 

with the number of methods called by local methods in the class  

LCOM Lack of cohesion in methods This metric calculates the total number of disjoint sets of local methods via at 

least one instanced variable and one member of the disjoint set, whereas the 
disjoint sets are a group of sets that do not intersect with each other [9]. 

DAC Data abstraction coupling This metric calculates the total number of abstract data types that are 

instances of another class declared within a class. 

WMC Weighted methods per class This metric calculates the total number of McCabe’s cyclomatic complexity 
of all methods in a class. 

NOM Number of methods This metric calculates the total number of local methods defined in a class. 

SIZE1 Lines of code This metric calculates the total number of semicolons in a class. 

SIZE2 Number of properties This metric calculates the total number of attributes and local methods defined 
in a class. 

3.4.2 Bug prediction datasets 

In Chapter 5, five datasets publicly available, primarily designed to support the problem of 

bug prediction, were used. These datasets were extracted from five open-source software 

systems: Eclipse JDT Core (997 classes), Eclipse PDE UI (1,562 classes), Equinox framework 

(439 classes), Lucene (691 classes) and Mylyn (2,196 classes) [57]. They were collected at the 

class level and included a collection of several metrics, bug changes, and version information 

about the system [57]. These datasets are composed of the data collected from the CVS change 

log at biweekly intervals, and include classified post-release defect counts extracted from each 

class in the system, along with a collection of 17 source code metrics (OO and CK metrics) 

and 15 metrics calculated from CVS change log data for each class in the system [153]. These 

datasets (initially proposed in 2010) have been primarily used in software defect prediction 

studies [154, 155]. However, no previous study has investigated these datasets for the 

prediction of software maintainability. Table 3.5 lists a brief description of each metric 

(independent variable) used in this study.   
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Table 3.5: Summary of class level source code metrics [57]. 

CK metrics 

LCOM Lack of cohesion in methods 

NOC Number of children 

DIT Depth of inheritance tree 

CBO Coupling between objects 

RFC Response for class 

WMC Weighted method count 

OO metrics 

NOMI Number of methods inherited 

NOPM Number of public methods 

LOC Number of lines of code 

NOPRA Number of private attributes 

NOA Number of attributes 

FanIn Number of other classes that reference the class 

NOPRM Number of private methods 

NOM Number of methods 

NOAI Number of attributes inherited 

NOPA Number of public attributes 

FanOut Number of other classes referenced by the class 

3.4.3 Refactoring datasets 

In Chapter 6, seven publicly available datasets published in [58] and collected from class level 

were used, namely antlr4 (436 classes), junit (657 classes), MapDB (439 classes), mcMMO 

(301 classes), mct (2162 classes), oryx (536 classes), and titan (1486 classes). The datasets 

were initially collected to investigate the impact of code refactoring (changes made to the 

structure of the internal source code which don’t affect the functionality or external behaviour 

of the code [53]) on maintainability, and the original datasets contain source code metrics 

including refactoring metrics, along with a score for maintainability at both method and class 

levels [58]. These datasets were collected from a total of 37 subsequent releases of systems 

from seven open-source Java systems located in GitHub [27] and were combined into one 

manually validated dataset for each of the seven systems [58]. To the best of the author’s 

knowledge, these datasets are considered the newest datasets in software maintainability 

prediction and have not been utilised in previous studies to predict change-proneness.  Table 
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3.6 lists the metrics used as independent variables and their category, and the description of 

their abbreviations is provided in Table C. 1 in Appendix C. 

  

Table 3.6: Metrics used as independent variables and their categories [156]. 
Category Metrics 

Cohesion LCOM5 

Complexity NL, NLE and WMC 

Coupling CBO, CBOI, NII, NOI and RFC 

Documentation AD, CD, CLOC, DLOC, PDA, PUA, TCD and TCLOC 

Inheritance DIT, NOA, NOC, NOD and NOP 

Size LOC, LLOC, NA, NG, NLA, NLG, NLM, NLPA, NLPM, NLS, NM, NPA, NPM, NS, NOS, TLOC, TLLOC, 

TNA, TNG, TNLA, TNLG, TNLM, TNLPA, TNLPM, TNLS, TNM, TNPA, TNPM, TNS and TNOS 

Code duplication CCL, CCO, CC, CI, CLC, CLLC, LDC and LLDC 

Warning  WarningBlocker, WarningCritical, WarningInfo, WarningMajor and WarningMinor 

Rules Android, Basic, Brace, Clone implementation, Clone metric, Code size, Cohesion metric, Comment, 

Complexity metric, Controversial, Coupling metric, Coupling, Design, Documentation metric, Empty code, 

Finalizer, Import statement, Inheritance metric, J2EE, JUnit, Jakarta commons logging, Java logging, 

JavaBean, MigratingToJUnit4, Migration, Migration13, Migration14, Migration15, Naming, Optimization, 

Security code guideline, Size metric, Strict exception, String and StringBuffer, Type resolution, Unnecessary 

and Unused Code and Vulnerability 

Refactoring  REMOVE_PARAMETER, ADD_PARAMETER, REPLACE_MAGIC_NUMBER_WITH_CONSTANT, 

REMOVE_ASSIGNMENT_TO_PARAMETERS, INTRODUCE_EXPLAINING_VARIABLE, 

INLINE_TEMP, REMOVE_CONTROL_FLAG, CONSOLIDATE_COND_EXPRESSION, 

CONSOLIDATE_DUPLICATE_COND_FRAGMENTS, 

REPLACE_NESTED_COND_WITH_GUARD_CLAUSES, INLINE_METHOD, EXTRACT_METHOD, 

REPLACE_EXCEPTION_WITH_TEST, INTRODUCE_ASSERTION, RENAME_METHOD, 

REPLACE_METHOD_WITH_METHOD_OBJECT, MOVE_METHOD, HIDE_METHOD, 

INTRODUCE_NULL_OBJECT, INTRODUCE_LOCAL_EXTENSION, EXTRACT_SUPERCLASS, 

EXTRACT_INTERFACE and MOVE_FIELD 

3.5. Prediction Accuracy Measures 

This section presents the prediction accuracy measures used in the empirical studies, which 

include measures for regression and classification problems. 

3.5.1 Measures for the regression problem 

Prediction accuracy measures are applied to evaluate and compare OO software 

maintainability prediction models. These measures are adopted from the standard measures; 

generally, in the scope of regression problems and specifically in the field of OO software 

maintainability prediction, the following evaluation measures are used. 
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MRE [35] is calculated by the absolute difference between actual and predicted values, and 

further dividing the difference by the actual values, as seen in Eq. (3.1). 

𝑀𝑅𝐸 =
|actual value−predicted value|

actual value
                                                                          (3.1) 

MMRE is the mean of MRE, where n represents the number of observations over a 

dataset, as seen in Eq. (3.2). 

𝑀𝑀𝑅𝐸 =
1

𝑛
∑ 𝑀𝑅𝐸𝑖=𝑛

𝑖=1                                                                       (3.2) 

  Pred [67] is the proportion of all the instances in the dataset where the MRE is less than 

or equal to a specified value, usually 25% or 30%, as recommended in software effort 

prediction studies [34, 67]. The pred value is calculated as shown in Eq. (3.3). 

           𝑃𝑟𝑒𝑑(𝑞) =
𝑘

𝑛
                                                                                    (3.3) 

  where 𝑞 is a defined value, k is the number of instances where the MRE is smaller than 

or equal to q, and n is the number of instances in the whole dataset.   

MAE [65] is the average of the absolute values of the difference between 𝑋′𝑖 and 𝑋 𝑖 , 

where 𝑋′𝑖 is the predicted value and 𝑋𝑖  is the actual value, as seen in Eq. (3.4). 

MAE = 1/n ∑  (| 𝑋′𝑖 − 𝑋 𝑖 | ) 𝑖=𝑛
𝑖=1                                                                      (3.4) 

SA [99] is proposed based on the mean absolute residual (MAR), as seen in Eq. (3.5).  

               𝑆𝐴𝑝𝑖 = 1 − 
𝑀𝐴𝑅𝑝𝑖

𝑀𝐴𝑅𝑝0̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 × 100                                                                               (3.5) 

𝑀𝐴𝑅𝑝𝑖 is the mean absolute residual of the prediction model, and 𝑀𝐴𝑅𝑝0
̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean value 

of random guessing. This random guessing is repeated a considerable number of times; 

Shepperd and MacDonell [99] suggested 1000 runs. However, they stated that a considerable 

number of random guessing would produce the same result as using the sample mean [99]. 

Therefore,  𝑀𝐴𝑅𝑝0
̅̅ ̅̅ ̅̅ ̅̅ ̅ was computed from the baseline, presented in Section 3.5.3. 

These measures have emerged as the de facto common accuracy measures, namely 

MMRE, Pred (q) and MAE. According to Chapter 2, MMRE and Pred (q) were used by ten 

selected primary studies, whereas MAE was used in six studies. Moreover, MMRE and Pred 

(q) measures are usually applied in empirical software engineering studies [20, 157] and were 

employed in past [71], recent [18], and several other studies on software maintainability 

prediction [7, 11-13, 16]. However, MMRE has a bias issue towards models that provide 

underestimated results; it is also an unreliable measure and does not always determine the most 

accurate model [158, 159].  
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Although Pred(q) is based on the MRE measure, it is considered reliable and less sensitive to 

the variance and outliers of MRE values [160]. However, Kitchenham et al. stated that MMRE 

and Pred evaluate only the spread and the kurtosis of the residuals’ values (i.e., predicted 

divided by actual values). Hence, they also recommended evaluating the central location and 

skewness of these values [35]. Korte and Port reported that the spread and kurtosis parameters 

are logical and good indicators for the prediction accuracy [160]. To date, there are no 

commonly accepted alternative measurements to measure software effort. To overcome these 

limitations, researchers have suggested further measurements, such as creating a baseline of 

the predicted values [99], visualising the boxplots of the residuals [35, 161] and performing 

statistical tests based on the residuals and effect size [100]. MAE is also suggested to be used 

because it is unbiased and does not depend on ratios, as the MMRE [99]. However, MAE is 

based on residuals, which are not standardised, thus it is difficult to explain and evaluate 

among several datasets [99]. SA was suggested as a response to this issue, as it depends on 

MAR, which is the same as MAE [99]. All these suggestions are considered in the empirical 

studies in Chapters 4 and 5. 

3.5.2 Measure for the classification problem 

Many measures have been puplished in the literature to estimate the prediction accuracy of 

models in software engineering problems [67]. In Chapter 6, only one prediction accuracy 

measure, AUC, is performed to compare and evaluate the performance of prediction models, 

and it ranges from 0 to 1. AUC is based on the ROC that graphs the FPR on the x-axis against 

the TPR on the y-axis at various threshold settings [70].   

  Eq. (3.6) calculates the value of AUC [70], where i represents observations, 

(1 − 𝛽) represents (TPR) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , 𝛼 represents (FPR ) =

𝐹𝑃

𝐹𝑃+𝑇𝑁
  , and these values are 

extracted from the confusion matrix presented in Table 3.7. 

𝐴𝑈𝐶 =  ∑ {( 1 − 𝛽𝑖  . ∆𝛼) +
1

2
[∆(1 − 𝛽). ∆𝛼]}𝑖                                         (3.6) 

where ∆(1 − 𝛽) indicates ( 1 − 𝛽𝑖 ) −  ( 1 − 𝛽𝑖−1 ), and ∆𝛼 indicates 𝛼𝑖  − 𝛼𝑖−1. 

 According to a systematic review of FS techniques [4], AUC was the main and most 

frequently used evaluation measure for classification problems in software quality prediction. 



 

76 

 

In addition, it is considered well-known and commonly employed in software maintainability 

prediction [48, 74, 162], along with change-proneness prediction [16].  

 

Table 3.7: Confusion matrix [163]. 
 PREDICTED CLASS (NO) PREDICTED CLASS (YES) 

ACTUAL CLASS (NO) 

 
True negatives (TN) False Positive (FP) 

ACTUAL CLASS (YES) False Negative (FN) True Positive (TP) 

 

3.5.3 Baseline 

The baseline measure is used as a benchmark to evaluate the performance of the predictors 

with the dependent variable only (e.g., CHANGE metric or change-proneness) that disregards 

other independent variables. The ZeroR model, which is implemented to determine a baseline, 

relies on the mean of the predicted values for the regression problem or majority category (i.e., 

the mode values) for the classification problem [164]. Therefore, this model is performed as a 

reference to investigate the improvements of the prediction models, but it does not contribute 

to the prediction values [165]. Several studies used the baseline [35, 72, 166, 167], which relies 

on either the mean [167], median [72], boxplots for the residuals [35, 161], or the ZeroR model 

[71, 166]. Fernández-Delgado et al. performed 179 classifiers on 121 datasets and used ZeroR 

as a percentage of the majority class in the classification problem to evaluate the classifiers 

[166].  

In this thesis, baseline is used in the empirical studies to predict the mean value for the 

regression problem in Chapters 4 and 5. The majority classes for the classification problem in 

Chapter 6 and the boxplots of the residuals, which are based on actual predicted values, are 

used as further measures to evaluate the predicted models. Overall, the use of all these 

measurements (i.e., MMRE, Pred(q), MAE, SA and AUC) as evaluation measures, along with 

the baseline and the boxplots ensures an increase in conclusion stability and avoids choosing 

inferior models [100, 168]. 

3.5.4 Criteria 

The suggested criteria to build an accurate effort prediction model for regression problems are 

Pred(0.30) ≥ 0.70 [34] or Pred(0.25) ≥ 0.75 or/and MMRE ≤ 0.25 [67]. However, if the 

prediction models do not meet the proposed criteria, the prediction model is still acceptable 
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because it is hard to construct an accurate model for software maintainability prediction that 

satisfies these criteria [20]. Although the suggested criteria were proposed in old studies [34, 

35], several recent studies are still being performed to evaluate prediction accuracy in the 

software engineering problem [102-104]. In terms of classification problems, AUC extends 

from 0 to 1, a higher value indicates better results and 1 is the optimal result (a perfect 

classifier). Additionally, 0.5 indicates no discrimination, a value from 0.7 to 0.8 indicates an 

acceptable result, a value from 0.8 to 0.9 is recognised as excellent, and any values higher than 

0.9 are considered outstanding results [169]. 

3.5.5 Statistical tests and effect size 

The test of significance is used to validate the results according to a defined hypothesis. The 

one-way analysis of variance (ANOVA) F test [170] was carried out using the residuals in 

Chapters 4 and 5 and AUC values in Chapter 6. ANOVA was selected because there were 

more than one pair of variables analysed. This test was performed to investigate whether the 

group population means (i.e., performance of the prediction models) were significantly 

different between each individual model and ensemble models. Factor A indicates the 

prediction models, grouped by each individual model, and ensemble models. For example, the 

prediction accuracy difference (better or worse) was analysed to evaluate whether it was 

significant between RT as the individual model and bagging, additive regression, stacking and 

APE as the base model. ANOVA evaluates the relevance of the evidence against the null 

hypothesis. The null hypothesis (H0) states that there is no statistically significant difference 

in all the group population means, whereas the alternative hypothesis (H1) states that there is 

a statistically significant difference in at least one pair of means. When H0 is rejected, H1 is 

accepted. A statistically significant result for the ANOVA experiment is typically defined as 

α = 0.05, and the p-value was evaluated and compared with this defined value. If the p-value 

is smaller than α, H0 is rejected. Consequently, a smaller p-value obtained by the results 

provides evidence against H0. However, a larger p-value is not evidence that H0 is true, which 

may sometimes happen due to the data analysed.   

Therefore, to further understand the strength of a result, the effect size is also used, which 

is considered an essential component for understanding the results of empirical studies [171]. 

Among the various effect sizes introduced in the literature, eta-squared (η2) was selected 
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because it is a suitable measure for ANOVA [171]. Cohen proposed the standard 

classifications of the effect sizes, which are small (≈0.01), medium (≈0.06), and large (≈0.14) 

[172]. Eq. (3.6) computes the value of η2. 

              η2 =
𝑺𝑺𝐞𝐟𝐟𝐞𝐜𝐭 

𝑺𝑺𝐭𝐨𝐭𝐚𝐥 
                                                                 (3.7) 

SSeffect is the sum of squares of the effect, and SStotal is the total sum of squares [171]. 

Additionally, if H0 is rejected, multiple comparisons are applied using a plot chart of Tukey’s 

confidence intervals [170] to identify which pairs of Factor A are significantly different. If a 

confidence interval does not include 0, then the pair is significantly different. 

3.6. Validation 

An essential rule in building machine learning models is not to test against the datasets used 

in training [142]. Therefore, the ten-fold cross-validation method is employed in all the 

empirical studies in Chapters 4, 5, and 6 to build and predict models. This method is widely 

used across different machine learning problems. Furthermore, most selected primary studies 

(i.e., 48%) in Chapter 2 performed k-fold cross-validation. It separates the whole dataset into 

ten equal folds, where one fold is utilised to train, and the remaining are utilised for testing. 

This procedure was repeated ten times to select different folds for the test. Finally, the results 

of the iterations were averaged. Ten-fold cross-validation decreases the variance by averaging 

the validation accuracy for all ten partitions. Therefore, the final accuracy is less sensitive and 

has lower variation than that provided by other validation methods, such as the single hold-out 

method. The main advantage of this approach is the estimation of accurate performance [66, 

125]. Figure 3.2 presents the ten-fold cross-validation implementation. 
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3.7. Tools 

Two tools were used, namely WEKA and R, to produce the results of the empirical studies. 

These tools are open source and freely available, and this motivates researchers to conduct 

research and replicate results. The description of these tools is presented in the following 

subsections. 

3.7.1 WEKA 

WEKA is a Java-based suite of machine learning software [120]. It has a collection of Java 

class libraries that implement several machine learning techniques. WEKA is an open source 

software that includes several features with a provision for data preparation, regression, 

classification,  association rules, clustering and visualisation [120]. The empirical studies in 

this thesis use this tool to build and evaluate OO software maintainability prediction models 

by using default parameters. 

3.7.2 R 

R is a language for graphics and statistical computing that includes a different collection of 

statistical and graphical techniques for the analysis and visualisation of data [173]. It is a free 

Figure 3.2: Ten- fold cross-validation. 
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tool created by Ihaka and Gentleman and developed by the R Development Core Team [174]. 

The empirical studies in this thesis use this tool to visualise the correlation of the datasets and 

to investigate the impact of parameter tuning in Chapters 4 and 6. 

3.8. Summary 

This chapter presents the research methodology applied to predict software maintainability 

using ensemble techniques. The basic concepts of the prediction models, which include both 

individual and ensemble models, were provided. Subsequently, different methods of parameter 

tuning were introduced. An explanation of the prediction accuracy measures was 

demonstrated, with baseline and criteria used for comparison. Then, the validation used to 

build and predict models was determined. Finally, the tools used to perform the empirical 

studies were identified. The proposed research methodology provides the foundation for 

conducting empirical studies in this thesis. The next three chapters will show the application 

of this methodology in three different empirical studies, including various datasets, and a 

description of the experimental data setup. 
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Chapter 4. First Empirical Study: Ensemble 
Techniques to Predict Change 
Maintenance Effort Using Well-
Established Datasets 

This chapter empirically evaluates the performance of homogeneous (i.e., bagging and additive 

regression) and heterogeneous (i.e., stacking) ensemble models against a range of individual 

models (i.e., RT, MLP, M5Rules, KNN, SVR) when applied to the QUES and UIMS datasets 

that extracted from OO systems [9]. The primary objective is to investigate the capability of 

ensemble models to increase or decrease prediction accuracy over individual models. 

Furthermore, another objective is to identify the model that achieves the highest prediction 

accuracy and compare it with previous studies that operated on the same datasets. In addition, 

this chapter aims to investigate the impact of parameter tuning of the software maintainability 

prediction models using the caret package in R. 

4.1. Introduction 

Various software maintenance measurements have been used in selected primary studies in 

Chapter 2. The most critical observation is that most of these studies used the change 

maintenance effort measurement for predicting software maintainability, which uses the 

CHANGE metric as a dependent variable to capture the elements of software maintainability 

[9]. Therefore, this chapter used the CHANGE metric as the most selected in primary studies 

in Chapter 2, which measures maintainability of OO systems by calculating the total number 

of lines added and removed in each class during the maintenance process. The higher the 

number of CHANGE metrics, the higher the maintenance effort and the lower the 

maintainability [7, 11-13, 15-18, 88, 152]. Furthermore, Chapter 2 stated that several selected 

primary studies focused on employing machine learning on the QUES and UIMS datasets that 

include ten independent metrics (i.e., L&H metrics), along with one dependent metric (i.e., 

CHANGE metric). Although the QUES and UIMS datasets are old (i.e., since 1993) and small 

(i.e., contain 71 and 39 classes, respectively), they were used to make the prediction models 
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repeatable and comparable [9]. The present chapter makes several noteworthy contributions 

as follows: 

• This empirical study used well-established datasets and provided additional evidence 

which indicates that the homogeneous models improved prediction accuracy compared 

to most investigated individual models in both datasets, whereas the heterogeneous 

model improved prediction accuracy compared to most investigated individual models 

in the QUES dataset only; 

•  This empirical study compared the best proposed model with the best model in the 

selected studies and found that KNN as the individual model, or as the base model in 

additive regression, achieved the best prediction accuracy not only amongst all 

investigated models in both datasets but also against the best model in the selected 

previous studies in the QUES dataset; 

• This is the first study exploring the influence of parameter tuning in the QUES and 

UIMS datasets.  

4.2. Motivation  

For the purposes of comparison and to gain advantages of replicability, the potential papers 

are selected, which considered in the review according to the following selection criteria: a) 

Papers must be published with at least one of the major computer science libraries: IEEE, 

Elsevier, ACM, or Springer. b) Papers should aim to predict software maintainability of OO 

systems. c) The study in the paper must utilize machine learning models; either individual or 

ensemble.  d) The study in the paper must be applied to both QUES and UIMS datasets. e) The 

study in the paper must present MMRE as an evaluation measure to enable effective 

comparisons because MMRE measure was used frequently in Chapter 2 more than other 

measures, such as MAE (see Table 2.11). Criteria (d) and (e) tend to be very restrictive criteria; 

however, I provide these since the performance of the models differ with different datasets 

[16] and with different evaluation measures as well [159], and without them the results will be 

difficult to compare and generalise. Table 4.1 summarises the selected papers which meet these 

criteria. All these papers created machine learning models to predict software maintainability 

using default parameters. 
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Table 4.1: Summary of selected paper using machine learning models to predict software maintainability. 

ID Author Year Ref Prediction model 
The best prediction 

model 

S1 Koten and Gray 2006 [11] 
Bayesian network, Regression tree, 

Backward elimination, Step-wise selection 
Bayesian network 

S2 Zhou and Leung 2007 [12] MARS, MLR, SVR ANN and RT MARS 

S3 Elish and Elish 2009 [13] TreeNet, MARS, MLR, SVR, ANN, and RT TreeNet 

S4 
Aljamaan and Elish et 

al. 
2013 [88] MLP, RBF, SVM, M5P and ensemble model Ensemble model 

S5 Ahmed and Al-Jamimi 2013 [7] 
FL model, BN model, MARS model 

FL model 

S6 Kumar and Rath 2015 [152] Hybrid Neural Network Hybrid Neural Network 

S7 
Elish and Aljamaan et 

al. 
2015 [16] 

MLP, RBF, SVM, M5P and multi-model 

ensembles 
Multi-model ensembles 

S8 Kumara and Naikb et al. 2015 [175] Neuro-Genetic Neuro-Genetic 

S9 Kumar and Rath 2017 [18] Neuro-Fuzzy approach Neuro-Fuzzy approach 

 

  A key observation from the aforementioned in Table 4.1 is that the utilisation of 

individual machine learning models has been investigated in several studies to predict software 

maintainability accurately. Even though a wide range of techniques have been employed by 

previous studies, there is no consistent best model emerging from their results.  Therefore, a 

much more meaningful comparison of these studies with the prediction models are provided 

to determine the best model using the MMRE evaluation measure.  

Ensemble models have been applied across a wide range of software engineering 

problem domains such as fault prediction to increase accuracy prediction over individual 

models [176]. However, as mentioned in Chapter 2, less attention has been given to the usage 

of ensemble models in the software maintainability domain. Additionally, the most obvious 

shortcoming in Table 4.1 is that a model that achieves consistently high software 

maintainability prediction accuracy fails to emerge. These studies used a wide variety of 

individual models, along with heterogenous ensemble models in two of the studies. No 

homogeneous ensemble models were used in any study.  

Parameters tuning have been proposed in software quality prediction studies to improve 

the performance of machine learning models [141, 142, 166]. However, very few studies have 

investigated the impact of tuning parameters (e.g., only 20% of the papers in the defect 
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prediction literature) [142]. Recently, investigators have examined the effects of caret package 

in R, which automatically tunes parameters and requires minimal researcher knowledge [166]. 

Their results demonstrated a very effective improvement of the prediction accuracy of models 

with tuning parameters [166]. Additionally, a recent study acknowledged that the use of the 

caret package in R in prediction models provided results 40% better than using default 

parameter settings [141].  

4.3. Research Method 

The primary objective of this chapter is to evaluate the performance of ensemble models to 

predict software maintainability as compared to individual models. A secondary objective is 

to determine the model with the best prediction performance among the investigated models 

and compare it with the best prediction models in the previous selected studies in Table 4.1. A 

third objective is to investigate the impact of the parameters tuning of the software 

maintainability prediction models using the caret package in R. To perform these objectives, 

the following RQs for the first empirical study are provided: 

RQ4.1) How effective are individual models at predicting change maintenance effort? 

RQ4.2) How do homogenous ensemble models perform in the context of predicting change 

maintenance effort when compared to the individual models? 

RQ4.3) How do heterogeneous ensemble models perform in the context of predicting change 

maintenance effort when compared to the individual models?  

RQ4.4) Which prediction models (the best-proposed model in this empirical study or the best-

model in the selected studies) provide the best prediction accuracy? 

RQ4.5) What are the effects of parameter tuning on the performance of the prediction models? 

  The overall process of the empirical study is shown in Figure 4.1. This figure illustrates 

three main experiments to compare model performance. These models are used on two well-

known public datasets collected from OO system maintenance: QUES and UIMS. The first 

experiment was conducted to select the best individual model performance among a set of 

commonly used regression models, i.e., RT, MLP, KNN, M5Rules, and SVR. The second 

experiment assessed the performance of homogenous ensemble models (bagging and additive 

regression) in comparison to individual models. The third experiment evaluated the 

performance of a heterogeneous ensemble model (stacking) against both the individual models 
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and the homogenous ensemble models in the second experiment. Finally, a comparison was 

performed between the best prediction model from this empirical study and those from 

previous selected studies. Finally, the impact of the parameters tuning of the proposed models 

is investigated using the caret package in R. 

 

Figure 4.1: The process of the first empirical study. 
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The framework of the empirical study is illustrated in Figure 4.2 below. 

4.4. Experimental Data Setup 

The following subsections identify the fundamental elements for the experimental setup: 

maintainability, metrics, and data pre-processing. 

4.4.1 Dependent variable: maintainability 

In this study, maintainability is defined by the CHANGE metric, which calculates the total 

number of lines added and deleted in each class during maintenance period [9]. This metric 

can be ‘addition’ or ‘deletion’ or ‘content changes’. ‘Addition’ or ‘deletion’ are counted as 1, 

whereas any ‘content change’ is counted as 2 [12]. Therefore, classes that have many changed 

lines are considered to have a low maintainability value, i.e., require high maintenance effort, 

whereas those with few changed lines are considered to have high maintainability value, i.e., 

require little maintenance effort. Eq. (4.1) presents a functional relationship between software 

maintainability and OO metrics that will present in next section. 

Figure 4.2: Framework of the first empirical study. 
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Software maintainability = Change metric = f (DIT, NOC, MPC, RFC, LCOM, DAC, 

WMC, NOM, SIZE1, SIZE2)        (4.1) 

4.4.2 Independent variables: metrics 

Metrics are independent variable measures that aim to capture the concept of software 

maintainability. This study uses L&H metrics [9] that have been used widely owing to their 

strong relationship with software maintainability [10-13, 21, 73]. These metrics include ten 

independent variables to measure specific parts of the system and one dependent variable to 

capture the concept of software maintainability. The definitions and descriptions of the OO 

metrics was provided in Table 3.4 in Section 3.4.1. 

4.4.3 Datasets pre-processing 

The datasets were assessed according to recommended pre-processing techniques [125]. The 

fundamental advantage of QUES and UIMS datasets is that they do not involve any missing 

values and incomplete or noisy cases, reflecting their high quality. For this reason, the data 

cleaning technique was not required to apply. Furthermore, both datasets have a small number 

of records, (39 for UIMS and 71 for QUES); therefore, it was not necessary to apply any data 

reduction or FS techniques. Previous studies [7, 11-13, 15-18, 88, 152] indicate that these 

datasets have been used without the application of any pre-processing techniques. 

4.4.4 Descriptive statistics 

The primary objective of preliminary statistical analyses is to characterise the datasets (range 

and distribution of values) and also determine the relationship between independent variables 

(OO metrics) and the dependent variable (CHANGE metric). Figure 4.3 and Figure 4.4 present 

boxplots of metrics in QUES and UIMS datasets, respectively. 

As shown in these figures, NOM and SIZE2 have approximately the same median, mean 

and Stdev in both datasets, which suggests that the systems are of approximately equal size in 

terms of numbers of classes and methods. In contrast, the median and mean of SIZE1 in QUES 

have considerably higher values than those in UIMS. The most notable metric is that NOC has 

a zero value for all the data in QUES dataset. Consequently, there is no inheritance in the 

QUES dataset, and NOC values have no influence on predicting maintainability. However, 
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NOC was not removed from QUES dataset, since several studies used this metric  [7, 11-13, 

15-18, 88, 152]. Furthermore, DIT and DAC metrics have small values for the median and 

mean in both datasets, which indicates that an inherited class and data abstraction are rarely 

used in both systems. The CHANGE metric in the QUES dataset has a higher median and 

mean compared with the UIMS dataset, and this variation indicates that more maintenance has 

been performed in the QUES than in the UIMS dataset. Moreover, RFC and MPC in QUES 

dataset have a greater median and mean compared to UIMS dataset, thereby emphasising that 

the coupling between classes in QUES dataset is higher than that in UIMS dataset. However, 

LCOM has similar medians and means in both datasets, indicating that both datasets have the 

same cohesion. Finally, this table indicates that UIMS and QUES datasets have different 

characteristics. Consequently, this finding agrees with a previous finding that the 

characteristics of the UIMS dataset differ distinctly from those of QUES dataset, so the 

datasets are recognised as heterogeneous; therefore, a software maintainability prediction 

model is constructed separately for each dataset [7, 11-13, 15-18, 88, 152].  

 
Figure 4.3: Boxplots of metrics in QUES dataset. 
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4.4.5 Correlation between metrics in the datasets 

The Pearson correlation, which is the well-known statistics [125] measures the strength of a 

linear relationship between two variables. This correlation is either a strong positive 

correlation (i.e. the value close to +1) or a strong negative correlation (i.e. the value close to -

1); also it can be uncorrelated (i.e. the value equal to zero) [177]. Furthermore, the sign of 

correlation coefficient determines the direction of the relationship between variables, which is 

either a positive relationship (+) or a negative relationship (-). The positive relationship occurs 

when the source code metrics increases, the change metric increases, and vice versa [48]. 

According to Hopkins [125], these values may be interpreted as follows: any value equal to 0 

is trivial, 0.1 is small, 0.3 is moderate, 0.5 is large, 0.7 is very large, 0.9 is nearly perfect, and 

1 is perfect.  

Table 4.2 lists the results of Pearson’s correlation for each metric in QUES and UIMS 

datasets. This table is divided into  two triangular matrices: the upper right triangular matrix 

represents the correlations between the metrics in the UIMS dataset, whereas the lower left 

triangular matrix represents the correlations between the metrics in QUES dataset. The results 

obtained from Table 4.2 highlights the correlations between the metrics in the UIMS and 

QUES datasets. This result provides evidence of a strong relationship between almost all 

metrics except DIT and NOC with the CHANGE metric. Furthermore, there are strong 

Figure 4.4: Boxplots of metrics in UIMS dataset. 
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correlations between some metrics with each other (e.g., Size2 with NOM (0.98) and Size1 

with WMC (0.96)).   

Table 4.2: Correlations between the metrics in UIMS (upper right triangle) and QUES (lower lift 

triangle). 
 DIT NOC MPC RFC LCOM DAC WMC NOM SIZE2 SIZE1 CHANGE 

DIT 1 -.47 0.05 -0.22 -0.19 -0.43 -0.22 -0.35 -0.40 -0.18 -0.33 

NOC NA 1 .03 0.20 0.12 0.32 0.22 0.23 0.26 0.17 0.47 

MPC 0.01 NA 1 0.74 0.50 0.43 0.62 0.54 0.55 0.67 0.60 

RFC 0.10 NA 0.33 1 0.79 0.62 0.90 0.93 0.89 0.90 0.79 

LCOM 0.12 NA -.10 0.82 1 0.36 0.79 0.75 0.67 0.81 0.66 

DAC 0.39 NA 0.01 0.63 0.56 1 0.44 0.75 0.86 0.51 0.72 

WMC -.13 NA 0.13 0.73 0.57 0.57 1 0.83 0.76 0.96 0.77 

NOM 0.12 NA -0.11 0.81 0.88 0.80 0.70 1 0.98 0.87 0.75 

SIZE2 0.20 NA -0.08 0.80 0.83 0.88 0.68 0.98 1 0.81 0.78 

SIZE1 0.01 NA 0.37 0.79 0.53 0.63 0.89 0.69 0.70 1 0.75 

CHANGE -0.08 NA 0.46 0.38 0.04 0.08 0.42 0.14 0.14 0.63 1 

 

A visualization of correlation between metrics on QUES and UIMS datasets is shown in 

Figure 4.5. The scale in this figure shows how the colour maps to the strengths of the 

relationship. The value from 1 represents a strong positive correlation, whereas the values at -

1 indicate a strong negative correlation. It is evident from Figure 4.5  that most metrics have 

light blue colour, with more dark blue in UIMS than in QUES which indicates that most 

metrics have a moderate to large positive correlation. It is noteworthy that metrics were not 

eliminated because one of the objectives of this chapter is to compare this study with previous 

studies and most previous studies used all metrics without performing FS [7, 11-13, 15-18, 88, 

152]. Also, previous studies did not indicate that the datasets suffer from any problems, such 

as high dimensional, irrelevant or redundant features that require applying FS [7, 11-13, 15-

18, 88, 152]. Additionally, these metrics have been validated and shown as a good predictor 

of software maintainability [9].  
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4.5. Results and Analysis  

This section provides the results and analysis of the empirical study conducted. First, the 

performance of the investigated models was compared: individual models (RT, MLP, KNN, 

M5Rules, SVR), homogeneous ensemble model (bagging and additive regression), and 

heterogeneous ensemble model (stacking) applied on the QUES and UIMS datasets. In 

addition, the statistical tests to explore the difference between individual and ensemble models 

for each dataset were applied. Then, the best performing model was compared with the best 

model in the selected previous studies. Finally, the impact of parameter tuning of the ensemble 

models was investigated.   

4.5.1 Results of the first empirical study 

Table 4.3 and Table 4.9 present the results of the prediction accuracy measures obtained by 

applying prediction models on QUES and UIMS, respectively. Boldface values (highlighted 

in light green) in the table indicate the best results for each experiment and boldface with 

underline (highlighted in dark green) refer to the best results in all experiments that are the 

lowest (MMRE and MAE) or the highest (Pred(.25), Pred(.30), and SA) depending on the 

measure.   

Figure 4.5: The correlation between metrics. 
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Moreover, this section provides the statistical tests of the first empirical study using one-way 

ANOVA, as proposed in Section 3.5.5 (see Table 4.4, Table 4.5, Table 4.6, Table 4.7 and 

Table 4.8 for QUES dataset and Table 4.10, Table 4.11, Table 4.12, Table 4.13 and Table 4.14 

for UIMS dataset). ANOVA was performed using the residuals values of the prediction models 

to investigate whether the performance difference between the group population means is 

significant or not. Factor A refers to each individual model, along with these individual models 

as the base models in the ensemble models. For example, Factor A in Table 4.4 includes the 

results of the residual values for RT as the individual model and as the base model in bagging, 

additive regression, and stacking. 

A. Results of QUES dataset 

First, Table 4.3 summarises the results of the prediction models on the QUES dataset. The 

baseline measure in this table depends on the dependent variable only (i.e., CHANGE metric) 

and calculates the mean value of this variable. The results of the baseline show that all the 

prediction models have better results than the baseline. For example, the MMRE of the 

baseline is equal to 0.99, and all the prediction models have values lower than this. 

  Among the individual models, KNN achieved the best result in all accuracy prediction 

measurements. SVR was the second best model in all accuracy prediction measurements 

except Pred(.25), which recorded the highest values (0.42) in RT, whereas SVR recorded 

(0.41). Because of the minor difference between SVR and RT, SVR was considered the 

second-best individual model. This finding is consistent with another study which states that 

KNN improved the prediction accuracy compared to other models [178]. In addition, previous 

study stated that SVR achieved high prediction accuracy and considered a strong model [179].  

After building a bagging ensemble on each individual model, it clear that this model 

improved the accuracy prediction for only MLP, M5Rules and SVR. Although bagging had a 

negative impact on KNN, KNN outperformed all other models in all accuracy predictions. 

However, bagging had a minor impact on the accuracy prediction of SVR. According to the 

statistical tests presented below, there were no significant differences in terms of the residual 

values among all the individual and bagging ensemble models. 

It was evident that the additive regression ensemble model improved the accuracy 

prediction of individual models except RT and did not impact KNN; KNN showed the same 

result with this model and as an individual model. Additionally, as mentioned in the bagging 
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case, KNN as the base model in the additive regression model outperformed all other base 

models in all accuracy predictions; SVR was the second best after KNN. Finally, it was evident 

that the prediction accuracy of additive regression ensemble models in most cases was better 

than that of bagging ensemble models.  

  The stacking ensemble model improved the performance of individual models, except 

KNN. Moreover, it performed better than both bagging and additive regression on all their 

base models except KNN. Stacking improves accuracy prediction if the individual models are 

chosen from various categories such as RT from tree and KNN from lazy, as was performed 

in this experiment. Finally, the prediction accuracy of heterogeneous (stacking) ensemble 

models, in general, was better than that of homogeneous (bagging and additive regression) 

ensemble models.   

KNN as an individual model or as the base model in additive regression is the only model 

that was close to meeting the criteria of an accurate prediction mentioned in Chapter 3 because 

it achieved an MMRE value of 0.26, and the criterion for MMRE is MMRE ≤ 0.25 [67]. Pred 

values of 0.65 and 0.68 were obtained for Pred(.25) and Pred(.30), respectively, and the criteria 

for Pred are: Pred(.30) ≥ 0.70 or Pred (.25) ≥ 0.75 [34]. 

Table 4.3: Performance of the prediction models for the QUES dataset. 
QUES Dataset MMRE Pred(.25) Pred(.30) MAE SA 

Baseline 0.99 0.30 0.32 32.71 0 

Individual models  

RT 0.45 0.42 0.48 26.24 19.79 

MLP 0.50 0.30 0.42 28.71 12.22 

KNN 0.26 0.65 0.68 19.75 38.85 

M5Rules 0.49 0.39 0.41 23.39 27.45 

SVR 0.38 0.41 0.52 20.33 37.86 

Homogeneous ensemble model – Bagging  

RT 0.48 0.37 0.41 22.61 30.87 

MLP 0.39 0.48 0.56 19.89 39.21 

KNN 0.30 0.51 0.58 19.04 41.80 

M5Rules 0.45 0.37 0.45 28.72 32.23 

SVR 0.38 0.44 0.54 20.42 37.59 

Homogeneous ensemble model – Additive Regression  

RT 0.47 0.39 0.44 26.23 19.80 

MLP 0.52 0.35 0.45 28.43 13.07 

KNN 0.26 0.65 0.68 19.75 39.63 

M5Rules 0.47 0.42 0.45 23.85 27.07 

SVR 0.35 0.48 0.54 19.85 39.32 

Heterogeneous ensemble model – Stacking  

Stacking (RT, MLP, KNN, 

M5Rules, SVR) 

0.32 0.48 0.54 19.80 

 

39.47 

Dark green: represents the best results in all experiments. 
Light green: represents the best results for each experiment. 

 



 

94 

 

Second, Table 4.4, Table 4.5, Table 4.6, Table 4.7 and Table 4.8  list one-way ANOVA results 

in the QUES dataset using the residual values for RT, MLP, KNN, M5Rules, and SVR and 

ensemble models, respectively. From these tables, the results of the p-values were higher than 

the defined value (α = 0.05). Therefore, H0 is accepted and all the group population means 

(Factor A) are the same in all tables. This indicates that the performance of the individual and 

ensemble models in terms of the residual values was not significantly different from each other 

for Factor A. Furthermore, the results of the eta-squared reveal that the effect sizes in all tables 

are small because all the eta-squared values are close to 0.01, which is considered small 

according to the standard classifications published in [180]. 

Table 4.4: One-way ANOVA for RT and ensemble models in QUES dataset using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 2076.45 3.00 692.15 1.27 0.29 0.01 

Error 153018.62 280.00 546.50    

Total 155095.07 283.00     

 
Table 4.5: One-way ANOVA for MLP and ensemble models in QUES dataset using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 5413.90 3.00 1804.63 2.54 0.06 0.03 

Error 198690.89 280.00 709.61    

Total 204104.79 283.00     

 
Table 4.6: One-way ANOVA for KNN and ensemble models in QUES dataset using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 28.27 3.00 9.42 0.01 1.00 0.00 

Error 196680.56 280.00 702.43    

Total 196708.84 283.00     

 
Table 4.7: One-way ANOVA for M5Rules and ensemble models in QUES dataset using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 700.86 3.00 233.62 0.54 0.65 0.01 

Error 120132.87 280.00 429.05    

Total 120833.72 283.00     

 

Table 4.8: One-way ANOVA for SVR  and ensemble models in QUES dataset using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 21.46 3.00 7.15 0.02 1.00 0.00 

Error 121832.52 280.00 435.12    

Total 121853.99 283.00     

 

  Figure 4.6 and Figure 4.7 illustrate a bar chart of the Pred values (Pred(.25) and Pred 

(.30), respectively) to compare the investigated models for the QUES dataset. A higher score 

indicates a better performance, and the proposed criteria for Pred was Pred(.30) ≥ 0.70 or Pred 

(.25) ≥ 0.75 [34]. The results in the figures provide confirmatory evidence that bagging 
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increased the performance of Pred values over all individual models except RT, KNN and the 

Pred(.25) value for M5Rules. Additive regression increased this performance over all 

individual models except RT. KNN, when used as an individual or the base model in additive 

regression, achieved the best accuracy prediction, reaching approximately 70. The stacking 

ensemble model also increased the performance of Pred values over all the individual models; 

however, it reported lower values than KNN. The statistical tests indicate that the improvement 

of the ensemble models over the individual models was not significantly different. 
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Figure 4.6: Pred(.25) of prediction models for QUES dataset. 
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Figure 4.8 presents a boxplot of MRE for the visual comparison of different prediction models 

based on the MMRE values. Ten-fold cross-validation was used, and the number of observations 

was equal to the size of the dataset, which was 71 residuals values for the QUES. The mean 

value is indicated by an ‘X’ and the upper and lower lines of the box represent ‘whiskers’, 

where the middle horizontal line across the box represents the middle quartile. The impact of 

applying both homogeneous and heterogeneous ensemble models on various individual 

models is shown in the figure. The results indicate that most ensemble models improved the 

accuracy prediction of individual models because they had the smallest whiskers, the 

narrowest box, and the lowest MMRE value compared with individual models. KNN as an 

individual model or as the base model in additive regression outperformed all other prediction 

models. It was followed by KNN as the base model for bagging and then stacking. 

Additionally, the results of the statistical tests reveal that the improvement in all ensemble 

models was not significantly different from that in the individual models. 
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Figure 4.9 compares the results obtained from the residuals of the prediction models for 

the QUES dataset. The MAE value is defined by an ‘X’; the lower score of MAE, the small 

whiskers, and the tight box indicate a better performance. First, all the prediction models 

achieved better prediction accuracy than the baseline. Second, the ensemble models improved 

the prediction accuracy over all the individual models except for M5Rules as the base model 

in bagging and additive regression, and SVR as the base model in bagging, whereas KNN as 

the individual model reached the same result as KNN as the base model in additive regression. 

Third, KNN as the base model in bagging was the best model, followed by KNN as an 

individual model or as the base model in additive regression and then stacking. Furthermore, 

none of these improvements obtained by the ensembles were significantly different. 

Figure 4.8: Boxplots of MRE for prediction models in QUES dataset. 

|_____| |_____| |_____| |_____|  |_____| |_| 
    RT           MLP         KNN     M5Rules     SVR       Stacking 
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Figure 4.10 illustrates the plots of the predicted and the actual values, along with , a 

baseline for each prediction model investigated in the QUES dataset. The main idea of these 

plots is to present the behaviour of the prediction models in term of the overestimated and 

underestimated observations from the actual values rather than the performance of the models 

(e.g., MMRE and Pred). Thus, these graphs depend on the requirements of the project 

managers, if they need to overestimate, and thus lose control, or underestimate, and thus lose 

quality. Therefore, these plots were interpreted by the project managers as follow:  

• Overestimation is the number of observations that the predicted values are higher 

than the actual values. 

• Underestimation is the number of observations that the predicted values are 

lower than the actual values.  

The actual values include 71 observations of the dependent variable (CHANGE) sorted 

in ascending order. The baseline represents the mean of the actual values, whereas the 

Figure 4.9: Boxplots of the residuals for prediction models in QUES dataset. 

    |__||_____||_____||_____||_____||_____| |_| 
Baseline     RT          MLP      KNN     M5Rules    SVR    Stacking 



 

99 

 

predicted values represent the observations by each prediction model. This figure indicates the 

following findings. First, most observations of predicted values for each prediction model were 

higher than actual values, which means that these prediction models have more overestimated 

observations than underestimated ones. Second, KNN as an individual model or as the base 

model in additive regression tended to have equally overestimated and underestimated 

observations and remained relatively steady compared to other models. Third, the predicted 

values were spread around the baseline (equal to approximately 64), which means that the 

prediction models added value and made changes in the observations. Additionally, the mean 

of the prediction value is typically lower than the value of the baseline except for some models 

such as RT and M5Rules, which have a minor increase over the baseline, ranging from 64.5 

to 66.0. 
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    Figure 4.10.A: Plots of predicted and actual values for RT in the QUES dataset. 

 

 

    Figure 4.10.B: Plots of predicted and actual values for MLP in the QUES dataset. 
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    Figure 4.10.C: Plots of predicted and actual values for KNN in the QUES dataset. 

 

 

 

      Figure 4.10.D: Plots of predicted and actual values for M5Rules in the QUES dataset. 
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      Figure 4.10.E: Plots of predicted and actual values for SVR in the QUES dataset. 

Figure 4.10: Plots of predicted and actual values for prediction models in the QUES dataset. 

 

B. Results of UIMS dataset 

Table 4.9 lists the results of the experiment on the UIMS dataset, reported similarly as the 

QUES findings. The results show that all the prediction models have better results than the 

baseline. For example, the MMRE of the baseline is equal to 5.43, where all the prediction 

models have results lower than this value. 

Among the individual models, KNN, as in the QUES dataset, outperformed other 

prediction models in all prediction accuracy measures except MAE, which achieved the best 

results by MLP. M5Rules was the second best among all prediction accuracy measures, except 

MAE.  

In terms of MMRE and MAE, application of the bagging ensemble model on each 

individual model clearly indicated that this model improved the performance of MMRE and 

MAE measures for all the individual models. However, it either decreased the performance of 

the Pred values of all individual models or produced the same results. It seems possible that 

these results are due to the spread of the residual boxplots of MRE increasing after applying 

this ensemble (see Figure 4.13). However, it is usual to obtain contradictory results in 

empirical studies of the software engineering field [99]. Furthermore, this model decreased the 

performance of some prediction accuracy measures (i.e., KNN and M5Rules). Although the 

bagging ensemble model using KNN produced the highest accuracy prediction compared to 

other models in terms of MMRE value, it had a negative impact on KNN itself. These results 
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are consistent with a prior study, which showed that bagging ensemble models have higher 

potential to contribute to more accurate predictions than individual models [107].  

Additive regression increased most prediction accuracy measures for all the individual 

models except MLP. As mentioned during the analysis of the QUES dataset, the additive 

regression ensemble model produced the same accuracy prediction for KNN as an individual 

model. KNN, as the base model in additive regression, provided superior improvement in most 

prediction accuracy measurements, followed by M5Rules and SVR. This result indicates that 

KNN as either the base model in additive regression or as an individual model, achieved the 

best accuracy prediction, which is consistent with the findings for the QUES dataset. In 

conclusion, the prediction accuracy of additive regression ensemble models in most cases was 

better than that of bagging ensemble models.   

A stacking ensemble model did not increase the performance of individual models in the 

UIMS dataset with the exception of the RT model. However, the performance of stacking in 

the UIMS dataset was lower than that in the QUES dataset. This occurs because the QUES 

and UIMS datasets have different characteristics, as mentioned in Section 4.4.4. Moreover, 

stacking failed to satisfy the criteria for accurate prediction, as mentioned in Chapter 3. 

Additionally, stacking showed worse results compared to the homogeneous ensemble model. 

In conclusion, the prediction accuracy of homogeneous (bagging and additive regression) 

ensemble models was generally better than that of heterogeneous (stacking) ensemble models. 

None of the prediction models applied on UIMS fulfilled the criteria of prediction accuracy 

described in Chapter 3.   
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Table 4.9: Performance of the prediction models for the UIMS dataset. 
UIMS Dataset MMRE Pred (.25) Pred (.30) MAE SA 

Baseline 5.43 0.13 0.13 40.71 0 

Individual models  

RT 4.52 0.18 0.21 41.74 -2.52 

MLP 1.32 0.31 0.31 23.39 42.54 

KNN 0.74 0.41 0.41 23.41 42.50 

M5Rules 1.24 0.36 0.38 26.64 34.57 

SVR 1.84 0.28 0.33 26.63 34.58 

Homogeneous ensemble model – Bagging  

RT 3.08 0.13 0.21 31.63 22.31 

MLP 1.17 0.26 0.31 20.10 50.63 

KNN 0.83 0.26 0.33 20.80 48.91 

M5Rules 1.31 0.21 0.26 21.65 46.82 

SVR 1.65 0.21 0.26 24.79 39.12 

Homogeneous ensemble model – Additive Regression  

RT 4.56 0.21 0.23 42.14 -3.51 

MLP 1.87 0.23 0.28 26.66 34.51 

KNN 0.74 0.41 0.41 23.41 42.50 

M5Rules 1.16 0.33 0.36 27.23 33.12 

SVR 1.20 0.33 0.36 24.57 39.65 

Heterogeneous ensemble model – Stacking  

(RT, MLP, KNN, 

M5Rules, SVR) 

2.45 0.23 0.23 33.51 

 

17.68 

Dark green: represents the best results in all experiments. 
Light green: represents the best results for each experiment. 

 

  Table 4.10, Table 4.11, Table 4.12, Table 4.13 and Table 4.14 show one-way ANOVA 

results for the UIMS dataset using the residuals values for RT, MLP, KNN, M5Rules and SVR 

and ensemble models, respectively. These results indicate that the p-values were higher than 

the defined value (α = 0.05). Then, H0 is accepted and all the group population means (Factor 

A) are the same in all tables. Therefore, the performance of individual and ensemble models 

in terms of residual values was not significantly different from each other for Factor A. 

Additionally, the results of the eta-squared indicate that the effect sizes in all tables are small 

because all the eta-squared values are close to 0.01, which is considered small according to the 

standard classifications published in [180]. 

Table 4.10: One-way ANOVA for RT and ensemble models in UIMS dataset using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 3494.67 3.00 1164.89 0.58 0.63 0.01 

Error 304355.14 152.00 2002.34    

Total 307849.81 155.00     

 
Table 4.11: One-way ANOVA for MLP and ensemble models in UIMS dataset using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 3841.22 3.00 1280.41 1.23 0.30 0.02 

Error 158728.81 152.00 1044.27    

Total 162570.02 155.00     
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Table 4.12: One-way ANOVA for KNN and ensemble models in UIMS dataset using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 3699.69 3.00 1233.23 0.92 0.43 0.02 

Error 204486.42 152.00 1345.31    

Total 208186.11 155.00     

 

Table 4.13: One-way ANOVA for M5Rules and ensemble models in UIMS dataset using the residuals . 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 2768.62 3.00 922.87 0.69 0.56 0.01 

Error 203993.82 152.00 1342.06    

Total 206762.45 155.00     

 
Table 4.14: One-way ANOVA for SVR and ensemble models in UIMS dataset using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 2059.56 3.00 686.52 0.59 0.62 0.01 

Error 176247.08 152.00 1159.52      

Total 178306.64 155.00        

 

  Figure 4.11 and Figure 4.12 illustrate a bar chart of the Pred values (Pred (.25) and 

Pred (.30)) to compare prediction models for the UIMS dataset. It is evident that a bagging 

ensemble had a negative or little impact on all the individual models. The additive regression 

ensemble model produced superior Pred values in RT and SVR only, whereas stacking 

improved the Pred values of RT only. Similar to the findings for the QUES dataset, no 

difference was found between KNN as an individual model and as the base model in additive 

regression; however, both achieved the best Pred value of 0.41. They were followed by 

M5Rules as an individual model and as the base model in additive regression. As mentioned 

previously in the QUES dataset, there was no difference in the performance between the 

ensemble and the individual models (see Table 4.10, Table 4.11, Table 4.12, Table 4.13, Table 

4.14).  
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  Figure 4.13 shows the residual boxplots of MRE to enable a comparison between 

prediction models in terms of the MMRE value that is specified by an ‘X’. After applying 

bagging ensemble models, there is an obvious tendency for the mean (i.e., MMRE) to decrease. 

Ten-fold cross-validation was performed, and the number of observations is similar to the size 

of the dataset, which is 39 residuals values for the UIMS dataset. The spread increases after 

applying this ensemble model to all individual models, except for KNN and M5Rules. The 
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Figure 4.11: Pred(.25) of prediction models for UIMS dataset. 
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Figure 4.12: Pred(.30) of prediction models for UIMS dataset. 
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impact of applying additive regression ensemble models on M5Rules and SVR is evident as 

they have the smallest whiskers, the narrowest box, and the lowest MMRE value. Additive 

regression decreased the accuracy prediction of RT and MLP, whereas it produced the same 

accuracy prediction in KNN. Stacking reported the lowest accuracy prediction compared to all 

individual models except RT. Overall, KNN as an individual model or as the base model in 

additive regression outperformed all other prediction models, followed by KNN as the base 

model for bagging. According to Table 4.10, Table 4.11, Table 4.12, Table 4.13, Table 4.14, 

the performance between the ensemble and the individual models was not significantly 

different. 

 

  Figure 4.14 summarises the comparison between the residuals of prediction models for 

the UIMS dataset. The MAE value is defined by an ‘X’; a lower score refers to better 

performance, along with the small whiskers and the tight box. It can be observed that all the 

prediction models were better than the baseline in terms of MAE, except RT, as the individual 

model and as the base model in additive regression. Additionally, bagging ensemble models 

Figure 4.13: Boxplots of MRE for prediction models in UIMS dataset. 

|_____| |_____| |_____| |_____|  |_____||_| 
    RT           MLP         KNN     M5Rules     SVR       Stacking 



 

108 

 

increased the prediction accuracy over all the individual models, whereas additive regression 

and stacking only improved the SVR and RT, respectively. Finally, MLP and KNN as the base 

models in bagging and as individual models achieved the best prediction accuracy, whereas 

KNN as an individual model recorded the same result as the base model in additive regression 

(23.41). Moreover, Table 4.10, Table 4.11, Table 4.12, Table 4.13, Table 4.14 indicate that 

there were no significant differences between the ensemble and individual models. 

 

 

Figure 4.15 presents the plots of the actual values, a baseline, and the predicted values 

for each prediction model for the UIMS dataset. The actual values include 39 observations of 

the dependent variable (CHANGE) sorted in ascending order. The baseline indicates the mean 

of the actual values, whereas the predicted values indicate the observations attained by each 

prediction model. The findings obtained from this figure reveal the following. First, most 

Figure 4.14: Boxplots of the residuals for prediction models in UIMS dataset. 

    |__||_____||_____||_____||_____||_____| |_| 
Baseline     RT          MLP      KNN     M5Rules    SVR    Stacking 
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observations of predicted values for each prediction model were higher than actual values, 

which indicates that these prediction models have more overestimated observations than 

underestimated ones. Second, the KNN as an individual model or as the base model in additive 

regression tended to have equal overestimated and underestimated observations and remained 

relatively steady compared to other models, which is a conclusion similar to that reached for 

the QUES dataset. Third, the predicted values are spread around the baseline (equal to 

approximately 42), which means that the prediction models added value and made changes to 

the observations. Fourth, the stacking model had several underestimated observations and 

several observations under the baseline. This finding may be interpreted as the reason for the 

low accuracy prediction in stacking compared to other models. Additionally, the mean of the 

prediction values was typically lower than the value of the baseline, except for a few models 

that had a minor increase over the baseline, for example, bagging with MLP as the base model 

and additive regression with RT as the base model, ranging from 42.5 to 46.0. 

 

 

 

       Figure 4.15.A: Plots of predicted and actual values for RT in UIMS dataset. 
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       Figure 4.15.B: Plots of predicted and actual values for MLP in UIMS dataset. 

 

 

  

    Figure 4.15.C: Plots of predicted and actual values for KNN in UIMS dataset. 
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     Figure 4.15.D: Plots of predicted and actual values for M5Rules in UIMS dataset. 
 

 

 

   Figure 4.15.E: Plots of predicted and actual values for SVR in UIMS dataset. 

 
Figure 4.15: Plots of predicted and actual values for prediction models in UIMS dataset. 

4.5.2 Comparison of the best investigated model with the best model in 

selected studies 

The best model performance in this empirical study was evaluated and compared in terms of 

MMRE with the best model determined by selected previous studies in Table 4.1. Table 4.15 

presents the performance of MMRE obtained by the best model determined in previous 

selected studies and the proposed model for the QUES and UIMS datasets. Boldface values in 

the table indicate the best results (i.e., the lowest MMR). This table demonstrates that the 
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proposed model, that is, KNN as an individual model or as the base model in additive 

regression, achieved the best MMRE value against all selected previous studies for the QUES 

dataset and proved to be the 7th best model in the UIMS dataset. Only MMRE was considered, 

as most of the studies used this measure, and other measures (e.g., Pred) were not used in some 

studies. 

Table 4.15: Performance of MMRE obtained by previous selected studies and proposed work for the 

QUES and UIMS datasets. 
ID Prediction model QUES UIMS 

S1 Bayesian network 

Regression tree 

Backward elimination 

Step-wise selection 

0.45 

0.49 

0.40 

0.39 

0.97 

1.53 

2.58 

2.47 

S2 MARS 

MLR 

SVR 

ANN  

RT 

0.32 

0.42 

0.43 

0.59 

0.58 

1.86 

2.70 

1.68 

1.95 

4.95 

S3 TreeNet  

MARS  

MLR  

SVR  

ANN  

RT  

0.42  

0.32 

0.42 

0.43 

0.59 

0.58 

1.57  

1.86  

2.70  

1.68  

1.95  

4.95  

S4 MLP  

RBF  

SVM  

M5P 

Ensemble model 

0.71 

0.96 

0.44 

0.54 

0.41 

1.39 

3.23 

1.64 

1.67 

0.97 

S5 FL model  

BN model 

MARS model 

0.27 

0.45 

0.32 

0.53 

0.97 

1.86 

S6 Hybrid neural network - A1  

Hybrid neural network - A2  

Hybrid neural network – A3 

0.37 

0.35 

0.38 

0.31 

0.47 

0.18 

S7 MLP  

RBF  

SVM  

M5P 

Ensemble model(AVG) 

Ensemble model (WT) 

Ensemble model (BT) 

0.71 

0.96 

0.44 

0.54 

0.58  

0.49 

0.41 

1.39 

3.23 

1.64 

1.67 

1.46  

1.21  

0.97 

S8 Neuro-GA 0.37 0.31 

S9 Neuro-fuzzy approach 0.33 0.28 

Proposed 

model (this 

study) 

Additive regression (KNN) 0.26 0.74 
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Figure 4.16 summarises the comparison of the MMRE values between the best model in the 

previous selected studies and the best model in this proposed work for the QUES dataset. The 

superior MMRE value (0.26) was obtained for the proposed model: KNN as an individual 

model or as the base model in additive regression, followed by the FL model in S5 (0.27) and 

the MARS model (0.32) in S2, S3 and S5. Notably, only the present model nearly meets the 

criteria of accurate prediction that states that MMRE should be equal to or lower than 0.25  

[67]. 

 

Figure 4.17 illustrates the comparison of the MMRE values between the best model in 

the previous selected studies and the best model in this proposed work for the UIMS dataset. 

The main finding is that the hybrid neural network – A3 has an MMRE value of (0.18) in S6, 

whereas the neuro-fuzzy approach has an MMRE value of (0.28) in S9. The proposed model 

proved to be the 7th best model compared with those in the previous selected studies. However, 

only the hybrid neural network, namely, A3 fulfils the criteria for accurate prediction that states 

that MMRE should be equal to or lower than 0.25 [67]. 
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Figure 4.16: MMRE values obtained by the best model in the previous selected studies and the best 

model for the QUES dataset. 
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4.5.3 Impact of the parameters tuning using caret 

Considering the values of MMRE and MAE for the default and tuned parameters with respect 

to each prediction model, Table 4.16 and Table 4.17 demonstrate the impact of parameter 

tuning on the QUES and UIMS datasets, respectively. From these tables, it may be observed 

that the prediction accuracy was improved for most prediction models with parameter tuning 

(i.e., 22 Yes out of 32 prediction models). However, most individual models with default 

parameters performed better than individual models with parameter tuning (i.e., 3 Yes out of 

10 individual models). Additionally, ensemble models were more sensitive to their parameter 

settings in terms of improvement than individual models. With respect to parameter tuning, 

the prediction accuracy of the ensemble models in most cases was better than that of the 

individual models. The most interesting finding was that KNN as the base model in the additive 

regression with parameter tuning achieved the best prediction accuracy in both datasets. 

Finally, the results obtained from Table 4.16 and Table 4.17 show that parameter tuning 

improved the prediction accuracy of most models with default parameters, and this 

improvement is clearly observed in the ensemble models. 
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Figure 4.17: MMRE values obtained by the best model in the previous selected studies and the best 

model for the UIMS dataset. 
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Table 4.16: Impact of the parameters tuning on QUES dataset. 

Prediction model 

MMRE MAE Does the parameters tuning 

improve the performance of 

the default parameters 

model? 

Default 

parameters 

Parameters 

tuning 

Default 

parameters 

Parameters 

tuning 

Individual models 

RT 0.45 0.68 26.24 30.64 No 

MLP 0.50 1.19 28.71 40.54 No 

KNN 0.26 0.43 19.75 24.29 No 

M5Rules 0.49 0.55 23.39 25.12 No 

SVR 0.38 0.27 20.33 20.17 Yes 

Homogeneous ensemble model – Bagging 

RT 0.48 0.30 22.61 14.96 Yes 

MLP 0.39 0.20 19.89 11.11 Yes 

KNN 0.30 0.10 19.04 7.19 Yes 

M5Rules 0.45 0.46 28.72 17.96 Conflicting results 

SVR 0.38 0.30 20.42 17.16 Yes 

Homogeneous ensemble model – Additive regression 

RT 0.47 0.47 26.23 16.23 Yes 

MLP 0.52 0.21 28.43 8.54 Yes 

KNN 0.26 0.00 19.75 0.00 Yes 

M5Rules 0.47 0.74 23.85 41.89 No 

SVR 0.35 0.29 19.85 15.46 Yes 

Heterogeneous ensemble model – Stacking 

Stacking 0.32 0.42 
19.80 

 
17.80 

 
Conflicting results 

 

Table 4.17: Impact of the parameters tuning on UIMS dataset. 

Prediction model 

MMRE MAE Does the parameters tuning 

improve the performance of the 

default parameters model? 

Default 

parameters 

Parameters 

tuning 

Default 

parameters 

Parameters 

tuning 

Individual models 

RT 4.52 1.20 41.74 28.98 Yes 

MLP 1.32 2.85 23.39 43.43 No 

KNN 0.74 1.20 23.41 26.51 No 

M5Rules 1.24 1.11 26.64 27.87 Conflicting results 

SVR 1.84 0.98 26.63 25.33 Yes 

Homogeneous ensemble model – Bagging 

RT 3.08 1.97 31.63 19.91 Yes 

MLP 1.17 0.65 20.10 10.81 Yes 

KNN 0.83 0.19 20.80 7.36 Yes 

M5Rules 1.31 1.17 21.65 16.19 Yes 

SVR 1.65 1.30 24.79 17.34 Yes 

Homogeneous ensemble model – Additive regression 

RT 4.56 0.40 42.14 10.37 Yes 

MLP 1.87 1.08 26.66 7.45 Yes 

KNN 0.74 0.01 23.41 0.26 Yes 

M5Rules 1.16 1.08 27.23 15.39 Yes 

SVR 1.20 0.66 24.57 11.90 Yes 

Heterogeneous ensemble model – Stacking 

Stacking 2.45 0.63 33.51 19.64 Yes 

 

4.5.4 Discussion and answers to research questions for the first empirical 

study 

This section discusses and answers RQs for the first empirical study. 
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RQ4.1) How effective are individual models at predicting change maintenance effort? 

KNN produced superior results for most accuracy prediction measurements in both the QUES 

and UIMS datasets. Moreover, KNN as an individual model or as the base model in additive 

regression achieved the best accuracy prediction among all investigated models in both 

datasets, and neither homogeneous nor heterogeneous models improved its prediction 

accuracy. Additionally, this model in the QUES dataset is the only model that nearly fulfils 

the criteria of accurate prediction proposed in Chapter 3. These results provide substantial 

evidence of the effectiveness of KNN in the prediction of software maintainability. This 

evidence is in agreement with the findings of Chen and Shah [178], which state the success of 

KNN in predicting either regression or classification problems. KNN is considered stable 

model that implements simply. Also, KNN performs well with small datasets [181], such as 

QUES and UIMS datasets. 

RQ4.2) How do homogenous ensemble models perform in the context of predicting 

change maintenance effort when compared to the individual models? 

Bagging improved the prediction accuracy over almost all individual models except RT in the 

QUES dataset, M5Rules in the UIMS dataset, and KNN in both datasets. The findings of the 

statistical tests indicate that there were no significant differences in terms of the residual values 

among all the individual models and bagging ensemble models, and the effect sizes were small. 

These findings are also consistent with a previous study, thereby indicating that the bagging 

ensemble models have high potential for producing more accurate predictions than individual 

models [107]. The notable improvement of prediction accuracy in individual models verified 

that the bagging ensemble model effectively improves performance when applied to datasets 

with a limited amount of data (i.e., QUES and UIMS contain 71 and 39 classes, respectively) 

[133]. However, this was not observed in two datasets. Bagging aims to decrease variance by 

randomly selecting different training sets with replacement [128]. For this reason, applying 

bagging to stable models (e.g., KNN) has little value as their output results in few changes in 

the training data from sampling [128, 182]. However, KNN becomes unstable for a small 

number of nearest neighbours (K) [183], and Caprile et al. reported that this number should be 

higher than one [184]. In addition, KNN is considered a simple model and performs well with 

small datasets. In contrast, RT is unstable and suffers from variance; therefore, bagging 

improves the prediction accuracy of RT in the UIMS dataset [128]. Additionally, bagging had 
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a minor influence on SVR; this result agrees with the previous literature, showing that an 

ensemble model had little improvement on SVM [179].  

  The additive regression ensemble model had a positive impact on the prediction 

accuracy for most individual models except RT in the QUES dataset and MLP in the UIMS 

dataset, and no significant differences in terms of residual values and effect sizes were small. 

The additive regression ensemble model had no impact on KNN in either dataset. A possible 

explanation for this is that KNN is an instance-based rather than model-based approach. 

Additive regression starts with a null ensemble and sequentially adds the KNN predictions. 

The second and subsequent models are aimed at predicting the residuals (errors), and if no 

instances able to predict these residuals are found, KNN will be unable to make any 

improvements to the initial predictions. Overall, KNN as the individual model or the base 

model in additive regression was the best model to predict software maintainability. A similar 

conclusion was reached by Zahara et al., who stated that KNN was the best model to predict 

reusability evaluation of OO software components [185].  

RQ4.3) How do heterogeneous ensemble models perform in the context of predicting 

change maintenance effort when compared to the individual models?  

The stacking ensemble model improved the prediction accuracy over all the individual models 

except KNN in the QUES dataset. The results obtained by statistical tests reported no 

significant difference between the individual models and the stacking ensemble model, and 

the effect sizes were small. This finding is in agreement with those of other studies, and it 

suggests that stacking achieved a better result when selecting a collection of several models 

from different types [122]. The relative advantage of stacking is to combine five individual 

models from different types and gain the strengths and weaknesses of this combination. A 

potential explanation for this result may be the low performance of other individual models 

(RT, MLP, M5Rules and SVR). For this reason, the performance of the stacking ensemble 

model was worse than that of KNN, but better than that of the other models. However, stacking 

decreased the accuracy prediction of all the individual models except RT in the UIMS dataset. 

Another possible explanation for this is that RT produced lower prediction accuracy. For this 

reason, when RT was integrated with other models in stacking, a lower prediction accuracy 

was reported. When comparing the results of stacking ensemble models with those of previous 
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studies that used different ensemble models, the prediction accuracy of ensemble models was 

different for various datasets [16].  

RQ4.4) Which prediction models (the best-proposed model in this empirical study or the 

best-model in the selected studies) provide the best prediction accuracy? 

KNN as an individual model or the base model in additive regression exhibited the best 

performance compared with previous selected studies. In addition, it nearly met the criterion 

of accurate prediction (i.e., MMRE ≤ 0.25 [67]) in QUES dataset. With respect to the tuning 

parameters, KNN as the base model in additive regression outperformed all models in this 

empirical study. 

RQ4.5) What are the effects of parameter tuning on the performance of the prediction 

models? 

The parameter tuning increased the prediction accuracy over most of the investigated models 

with default parameters. This is consistent with what has been found in previous studies 

indicating that parameter tuning using the caret package in R enhanced the performance of the 

machine learning models [141, 166]. However, ensemble models were more influenced by 

parameter tuning than the individual models. In addition, the prediction accuracy of ensemble 

models with parameter tuning was better than that of all the individual models. Therefore, it is 

recommended to create ensemble models with parameter tuning to increase the performance 

of software maintainability. Further work needs to be done to use a statistical test to investigate 

the performance difference between the individual and ensemble models using parameter 

tuning. 

4.6. Threats to Validity 

The threats to validity usually appear in any empirical software engineering study that uses 

open-source software projects [186]. The following threats to validity exist in this empirical 

study: 

4.6.1 Threats to external validity 

External validity indicates a limited generalisation of the results outside the empirical study 

settings [186], and is based on the dependent variable used in this empirical study. A well-
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known and common dependent variable (i.e., change metric) applied in several studies [7, 11-

13, 15-18, 88, 152, 175]  was used. A higher value of this metric indicates a higher maintenance 

effort or lower maintainability. The CHANGE metric is related to the number of changes that 

are likely to be made to a class, whereas maintainability refers to the ease to implement 

maintenance changes. The change metric has proven to be a perfect indicator in predicting the 

maintenance effort and has strong relationships with other metrics (independent variables) [9]. 

Therefore, the dependent variable is acceptable and there is no threat to external validity. 

4.6.2 Threats to internal validity 

Internal validity is the capability to present the results with different experimental variables 

[187]. To avoid these threats, datasets that have already been investigated in the literature were 

used [7, 11-13, 15-18, 88, 152, 175]. However, these datasets include only two types (i.e., 

QUES and UIMS) and contain a limited number of classes. Consequently, this limitation may 

negatively affect the performance of the prediction models. Moreover, these datasets were 

extracted from real-world systems that were designed in the ADA language, which limits the 

depiction of all software systems. To control these threats, this study can be extended by 

considering more recent and large datasets that are collected from various open-source 

systems. Additionally, further research can investigate real-world systems designed by other 

programming languages (e.g., C++, Java, C or C#). 

4.6.3 Threats to the construct validity 

Construct validity measures the relationship between the dependent and independent variables 

[188]. To prevent these threats, ten metrics that have been widely performed and validated by 

previous studies as predictors for software maintainability were applied [7, 11-13, 15-18, 88, 

152, 175]. However, machine learning models were employed without applying FS 

techniques. These techniques help to determine the best subset metrics to accurately predict 

software maintainability. Regarding parameter tuning, the caret package in R, which 

automatically applies parameter tuning in each model, was used. However, the performance 

of these models may improve with the manual application of parameter tuning in each model. 

For example, a specific number for the K parameter in the KNN model was defined. Thus, in 

a future work, automated and manual parameter tuning will be compared. In addition, the 
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performance difference between individual and ensemble models using parameter tuning will 

be explored. 

4.6.4 Threats to the conclusion validity 

Conclusion validity relates to the statistical relationship between the results and the output of 

the experiment, which impacts the capability to reach the right conclusion [187]. Ten-fold 

cross-validation was used to prevent the threat of conclusion validity. This method aims to 

decrease biased results by selecting ten different tests from the dataset. However, the present 

results were compared with those of previous selected studies in Table 4.1, and some of them, 

namely, S2, S3, S5, S6 and S9 did not use ten-fold cross-validation. Therefore, there exists a 

conclusion validity threat that the results may not be entirely comparable. Moreover, the 

ANOVA test was used in this empirical study to explore if there are any statistically significant 

differences between the means of four groups (i.e., individual model and this individual model 

as the base model in bagging, additive regression and stacking). This empirical study includes 

more than two pairs (i.e., four groups) and continuous datasets; therefore, a parametric test 

(ANOVA) is appropriate to implement, which has an advantage to produce more reliable 

results than non-parametric statistical test. However, the parametric statistical test, requiring 

some assumptions (e.g., normally distributed and independent observations in the datasets). 

Although these assumptions are fulfilled, and this method is based on only ten runs. As a result, 

there is a threat to conclusion validity. 

4.7. Conclusion of the first empirical study 

Prior studies have documented the effectiveness of machine learning models in predicting 

software maintainability of the OO system. However, these studies used a wide variety of 

individual models and had limited focus on ensemble models. Moreover, the prediction 

accuracy of their models was low according to the proposed criteria.  

  This chapter empirically evaluated the application of homogeneous (bagging and 

additive regression) and heterogeneous (stacking) ensemble models in predicting software 

maintainability of OO systems and investigated their accuracy prediction over individual 
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models (RT, MLP, M5Rules, KNN and SVR). All these models were run on the QUES and 

UIMS datasets that were obtained from two different OO systems.  

The results obtained from both datasets provides several insights as follows: 

• Among the individual models, KNN achieved the best prediction accuracy in both 

datasets. It seems possible that these results are due to the small size of the datasets, as 

KNN performs well with smaller datasets [181]; 

• Although bagging improved the prediction accuracy over all individual models except 

RT and KNN on the QUES dataset and KNN and M5Rules on the UIMS dataset, the 

differences were not statistically significant between bagging and individual models, 

and the effect sizes were small. The potential reason for the improvement is that 

bagging reduced variance by randomly selecting different training sets with 

replacement [128]. However, bagging did not improve the prediction accuracy of stable 

models, such as KNN or strong models, such as SVR;   

• The additive regression ensemble model also increased the prediction accuracy over 

all individual models except RT on the QUES dataset and MLP on the UIMS dataset. 

Again, there were no significant differences between additive regression and individual 

models, and the effect sizes were small; 

•  The stacking ensemble model increased the prediction accuracy of the individual 

models in the QUES dataset because these individual models produced low prediction 

accuracy and when they were integrated together, stacking became better than these 

models. However, stacking decreased the prediction accuracy of all individual models 

except RT on the UIMS dataset because RT did not perform well as the individual 

models, and when it was integrated with other models in stacking, it reduced the 

performance of stacking. Regarding the statistical tests, the differences were not 

statistically significant between the group population means (i.e., individual and 

stacking models) in both datasets, and the effect sizes were small; 

• Although there were no significant differences, the homogeneous ensemble model 

exhibited better performance results than the heterogeneous ensemble model on UIMS 

and QUES datasets. Additive regression showed superior prediction accuracy 

compared to the bagging ensemble model in both datasets;  
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• KNN as the individual model or as the base model in the additive regression ensemble 

model achieved the best prediction accuracy compared to all the investigated models. 

In terms of the proposed criteria and when compared to selected previous studies, this 

model showed the best improvement in the QUES dataset, whereas it proved to be the 

7th best model in the UIMS dataset; 

• The parameter tuning improved the prediction accuracy of the ensemble models but 

not that of the individual models in most cases. KNN as the base model in additive 

regression in the parameter tuning achieved the best prediction accuracy.  

These findings extend the current knowledge regarding the capability of ensemble 

models to improve the prediction accuracy of individual models. However, there were no 

significant differences between the individual and ensemble models. It is difficult to explain 

this result, but it might be related to the limited size of the dataset. To resolve this issue, this 

empirical study can be extended by using more recent and larger datasets for software 

maintainability prediction. Therefore, the next chapter will replicate this empirical study across 

various large representative datasets extracted from open-source software systems with 

various programming languages. This replication will allow further investigation on the impact 

of advanced machine learning models (homogenous and heterogeneous ensemble models) 

over existing individual models to predict software maintainability. 
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Chapter 5. Second Empirical Study: Ensemble 
Techniques to Predict Change 
Maintenance Effort Using More Recent 
and Larger Datasets 

In this chapter, the impact of the same prediction models used in Chapter 4 is empirically 

investigated in the context of predicting change maintenance effort of OO systems, along with 

one more heterogeneous ensemble model, namely APE. These models are applied on five 

different datasets (i.e., bug prediction datasets [57]) extracted from real-world software 

systems. This chapter aims to further explore the application of ensemble models on more 

recent and larger datasets, and to compare and evaluate the proposed models with the selected 

models using the Auto-WEKA tool. 

5.1. Introduction 

The performance of machine learning techniques is closely related to the size and 

characteristics of the dataset on which they are trained and tested. As mentioned in Chapter 4, 

considerable uncertainty still exists in relation to the interpretation of machine learning 

techniques applied to the problem of software maintainability because most of them were built 

and evaluated on relatively limited and old datasets [7, 11-13, 15-18, 88, 152, 175], namely 

QUES and UIMS datasets [9], and few studies used ensemble models [16, 88]. Additionally, 

there is no clear evidence of which models provide high prediction accuracy. In Chapter 4, the 

impact of ensemble models using these datasets was empirically evaluated and obtained, and 

the results indicated improved accuracy over individual models. However, Chapter 4 used the 

aforementioned old and small datasets that contained only a few rows. Consequently, there is 

a clear need to explore the performance on more recent and larger datasets. 

Data pre-processing techniques are essential for the production of high-quality datasets 

and have a positive impact on building accurate prediction models [189]. Prior studies have 

employed a wide variety of data pre-processing techniques on different software quality 

datasets (e.g., NASA datasets) to achieve reliable model prediction [190-195]. These studies 
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emphasised that the implementation of an accurate model relies on high-quality datasets. The 

datasets were used in this chapter collected for the purposes of the bug prediction. However, 

these datasets include metrics that suitable to predict change maintenance effort. Therefore, 

pre-processing techniques are performed on the bug prediction datasets [57] to achieve the 

following objectives: 

• Select appropriate source code metrics (independent variables) as predictors of 

software maintainability; 

• Determine the CHANGE metric (dependent variable) by calculating the number of 

lines changed (added or deleted) per class during the maintenance period; 

• Evaluate the quality of the bug prediction datasets and convert them into software 

maintainability prediction datasets using pre-processing techniques. 

To build an accurate maintainability prediction model, prior studies have applied several 

types of machine learning models with configurations manually set (i.e., parameter tuning 

[196] or selected features [18]). However, this approach requires considerable time and effort. 

This study demonstrates the application of Auto-WEKA as a new, rapid, and automated tool 

to identify the best accurate prediction model among sets of models, with different parameters 

and features, using Bayesian optimisation [149, 150]. 

The main contributions of this chapter as follows: 

• Pre-processing was applied on the bug prediction datasets to convert and ensure their 

suitability for software maintainability prediction; 

• Recent, large public datasets that have not been applied before in the prediction of 

software maintainability, were used; 

• This empirical study investigated the capabilities of both homogeneous and 

heterogeneous ensemble models and found that the evaluated ensemble models 

increased the prediction accuracy over most of the individual models. Also, there were 

significant differences between some of the individual and heterogeneous ensemble 

models. In the homogeneous ensemble models, the performance of bagging was better 

than additive regression, whereas in the heterogeneous ensemble models, APE 

achieved better prediction accuracy than stacking. However, in most cases, neither 

homogeneous nor heterogeneous ensemble models increased the performance of SVR 

and KNN; 
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• The Auto-WEKA tool was used. To the author’s knowledge, no previous work used 

this tool to predict software maintainability. 

5.2. Motivation 

Several studies have investigated different pre-processing techniques for software quality 

datasets [190-195]. However, these pre-processing techniques depend on the different 

problems posed by particular datasets. Although most of the pre-processing techniques are 

performed using a specific algorithm, some of the pre-processing techniques are manually 

implemented, such as integrating attributes from multiple sources or aggregating two 

attributes. Table 5.1 presents previous studies that applied preprocessing techniques on a 

software quality dataset. Many of these studies used public datasets from NASA or the 

PROMISE repository [190-194], and only one study extracted a dataset from an open-source 

system [195]. It should be mentioned that creating software quality datasets, such as defect 

datasets, is a challenging and time-consuming task [191, 192] 

Table 5.1: Summary of previous studies that applied pre-processing techniques on the software quality 

datasets. 
Author Ref Dataset name Dataset Problem Pre-processing techniques to fix problem 

Sunghun Kim et 

al. (2011) 
[195] 

Defect dataset from 

SWT and Debug 

projects in Eclipse 3.4 
system 

Data noise Algorithm to detect and eliminate noises 

David Gray et 

al. (2011) 
[191] NASA datasets 

Repeated data, noise, 

incorrect data 
Meticulously documented data cleansing process 

David Gray et 
al. (2012) 

[192] NASA datasets 
Repeated data, noise, 

incorrect data 
Data cleansing process to prepare dataset for 

binary classification and remove noise 

Martin 

Shepperd et al. 

(2013) 

[193] NASA datasets 

Implausible, duplicate 

instances, missing and 

conflicting values 

Algorithm used to transform and preprocess the 
data 

Jean Petri ´c et 

al.(2016) 
[190] NASA datasets Inconsistent data Introduce integrity checks for cleaning dataset 

Baljinder 
Ghotra et al. 

(2017) 

[194] 
18 datasets from 

NASA and 

PROMISE 

Low classification 
accuracy and 

misclassification rates 

FS techniques 

 

The most apparent gap from previous studies in Table 5.1 is that no studies performed 

pre-processing techniques on the software maintainability dataset. This may be due to the 

limited availability of public datasets for software maintainability prediction [5]. There is 

limited research in the software maintainability prediction area [13], whereas defect prediction 

is a relatively popular research field in software engineering [195].  

Although the use of parameters tuning is recommended by Fu et al. [142] to improve the 

performance of the prediction model, a limited number of studies have applied this approach 
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for software maintainability prediction. For example, a study by Dahiya et al. [196] applied a 

genetic algorithm to optimise the parameters of a fuzzy logic-based maintainability metrics 

system. Moreover, research studies have investigated FS as an alternative method to improve 

the prediction accuracy. Kumar and Rath enhanced the performance of the software 

maintainability prediction model using one method of FS, namely rough set analysis [18], 

whereas Reddy and Ojha [83] used sets of seven FS: best first, linear forward selection, greedy 

stepwise, evolutionary search, genetic algorithm, PSO, and Tabu search. However, tuning 

parameters and selecting features require several attempts and significant effort to obtain 

optimal results. Therefore, Auto-WEKA has been recently proposed to resolve this problem 

and to provide mechanisms for both tuning parameters and selecting features [149, 150]. 

Finally, the main motivation of this chapter is to use recent, large, and high-quality datasets 

that are suitable for the software maintainability prediction, investigate the application of 

several ensemble models on these datasets to determine the best model to predict software 

maintainability, and compare the results with models selected by Auto-WEKA tools. 

5.3. Research Method 

This chapter aims to increase the prediction accuracy of software maintainability in OO 

systems by exploring the impact of ensemble models (homogeneous and heterogeneous). The 

second empirical study consists of two studies, namely 5.A and 5.B. RQs for the second 

empirical Study 5.A are provided as follows: 

RQ5.A.1) What are the suitable metrics (independent variables) in the bug prediction datasets 

to predict software maintainability? 

RQ5.A.2) How can the dependent variable calculate the CHANGE metric from the bug 

prediction datasets? 

RQ5.A.3) How to evaluate the quality of the bug prediction datasets using preprocessing 

techniques? 

RQ5.A.4) How much can prediction models increase or decrease the performance compared 

to a baseline (i.e., ZeroR)? 

RQ5.A.5) How effective are individual models at predicting change maintenance effort? 

RQ5.A.6) How do homogenous ensemble models perform in the context of predicting change 

maintenance effort when compared to individual models? 
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RQ5.A.7) How do heterogeneous ensemble models perform in the context of predicting 

change maintenance effort when compared to individual models? 

Figure 5.1 depicts an overview of the research method performed to predict software 

maintainability of OO systems. This method consists of the following steps.  

Step 1. Evaluate the bug prediction datasets [57] extracted from Java systems to determine 

suitable metrics. The potentially selected datasets contain several changes to fix maintenance 

issues. These datasets were collected on the first released version and multiple updated 

versions of the systems. 

Step 2. Extract source code metrics (independent variables) from the bug prediction datasets: 

the result from this step are the C&K [26] and OO metrics. These metrics are extracted using 

various tools, including infusion, Moose and Churrasco [57].  

Step 3. Calculate the change metric (dependent variable): the result from this step is performed 

by manually summing two metrics from the bug prediction datasets, namely lines added until 

and lines removed until. These metrics are calculated between subsequent versions by 

evaluating system log files, counting the number of lines changed in each class (insertion or 

deletion were counted as 1), and modifications (inserting and deleting were counted as 2). 

Step 4. Create the datasets by combining the source code metrics from Step 2 with the change 

metric from Step 3 into one file. The number of records in the dataset was equal to the number 

of classes in the selected system.  

Step 5. Divide datasets into ten sets using ten-fold cross-validation: the dataset is divided into 

a training set to create machine learning models and a test set to evaluate the performance of 

machine learning models.  

Step 6. Construct sets of individual models: these models are selected from different categories 

(see Table 3.1). 

Step 7. Construct ensemble models from these individual models. The ensemble models 

include two main types: homogeneous (i.e., bagging and additive regression) and 

heterogeneous ensemble models (i.e., stacking and APE). 
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Step 8. Predict software maintainability: the output of the previous steps is evaluated and 

compared to identify the most accurate prediction model. 

 

Four main experiments were performed to answer these RQs for Study 5.A as described 

below: 

Experiment 1 (RQ5.A.4). The ZeroR model was applied to each dataset to determine a 

baseline; then, it was used as a benchmark to compare the performance of the prediction 

models. 

Figure 5.1: Framework of the research method. 
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Experiment 2 (RQ5.A.5). Sets of individual models (i.e., RT, MLP, KNN, M5rules and SVR) 

were built, and the best one for predicting software maintainability in each dataset was 

identified. 

Experiment 3 (RQ5.A.6). Homogeneous ensemble models (i.e., bagging and additive 

regression) were constructed and the results were compared with the performance of individual 

models. 

Experiment 4 (RQ5.A.7). Heterogeneous ensemble models (i.e., stacking and APE) were 

constructed and the results were compared with the performance of individual models. 

This chapter also aims to use the Auto-WEKA tool to identify the best model to predict 

software maintainability by applying it to previous datasets. To achieve the highest prediction 

accuracy, this tool tries several models with different tuning parameters and selected features.  

The second part of the empirical study is performed to respond to the following RQs for 

Study 5.B: 

RQ5.B.1) What is the best model selected by Auto-WEKA to predict software maintainability 

in each dataset? 

RQ5.B.2) How many configurations are attempted to select the best model? 

RQ5.B.3) What are the tuning parameter settings in the selected model? 

RQ5.B.4) What are the selected features in the selected model? 

RQ5.B.5) What are the MAE and MMRE values for the selected models? 

RQ5.B.6) What is the performance of the model selected by Auto-WEKA compared with that 

of the baseline (i.e., ZeroR)? 

RQ5.B.7) What is the performance of the model selected by Auto-WEKA compared with that 

of performance of the best model in Study 5.A? 

5.4. Experimental Data Setup 

The following subsections provide information about details of the data pre-processing, and 

an explanation of dependent and independent variables used for the software maintainability 

datasets. Furthermore, they present the descriptive statistics and correlation between the 

metrics in the datasets. 
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5.4.1 Data pre-processing 

This section aims to apply data pre-processing techniques to bug prediction datasets to produce 

a new and high-quality version of these datasets suitable for software maintainability 

prediction. Therefore, this section aims to answer RQ5.A.1, RQ5.A.2 and RQ5.A.3 for Study 

5.A. 

The bug prediction datasets have several irrelevant metrics and do not provide a direct 

measure for software maintainability (i.e., CHANGE metric). Additionally, they may contain 

some issues, such as incomplete, missing values, outliers or inconsistencies that negatively 

affect the data quality and prediction models. Therefore, data pre-processing is introduced to 

create a new version of the bug prediction datasets. The data pre-processing techniques include 

the following steps [125]: 

• Data reduction: established to decrease the data size by employing aggregation, 

eliminating redundant features, selecting attribute subsets or clustering; 

• Data integration: applied to integrate data from various sources into a separate 

coherent source. This technique is established to remove redundant data (where the 

same attribute appears again under a different name) and inconsistent naming (where 

the same attribute values appear under different names); 

• Data cleaning: applied to clean noise, missing values and inconsistencies of data; 

• Data transformation: performed to improve the accuracy and efficiency of data 

mining by transformation of the data. This technique is designed to aggregate, 

generalise or normalise the data. 

Figure 5.2 depicts the framework of the pre-processing techniques used in Study 5.A. 

First, the original version of the bug prediction datasets [57] was evaluated. Second, sets of 

four primary pre-processing techniques were applied in the order proposed in [125]: data 

reduction, data integration, data cleaning and data transformation. Finally, a new version of 

the high-quality datasets was produced. 
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A. Evaluate the bug prediction datasets 

This chapter uses the bug prediction datasets proposed by Marco Ambros et al. [57]. The 

original version of the bug prediction datasets includes five datasets extracted from open-

source software systems. These datasets collected changes during a 3-year maintenance period 

and consist of 439 and 2,196 classes with the same number of files and metrics.  Table 5.2 

presents a summary of bug prediction datasets [57]. Each dataset includes eight files: 

biweekly-ck-values, biweekly-oo-values, bug-metrics, change-metrics, churn, complexity-

code-change, entropy and single-version-ck-oo. However, several of these files are 

inappropriate and include irrelevant metrics for software maintainability prediction. Thus, pre-

processing techniques were applied to determine suitable metrics (independent variables) to 

predict software maintainability (RQ5.A.1) and to calculate the CHANGE metric (dependent 

variable) to capture the element of maintainability (RQ5.A.2). In addition, these techniques 

aim to evaluate the quality of the bug prediction datasets and produce a new version of the 

dataset (i.e., software maintainability prediction datasets) (RQ5.A.3). 

 

 

 

 

Figure 5.2: Framework of data pre-processing. 
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Table 5.2: Summary of the bug prediction datasets [57]. 

Dataset name Time period # Class #Versions #Transactions 

#Features in 

single-version-

ck-oo 

#Features 

in change-

metrics 

Eclipse JDT Core 
1.1.2005 - 

6.17.2008 
997 91 9,135 22 20 

Eclipse PDE UI 
1.1.2005 - 

9.11.2008 
1562 97 5,026 22 20 

Equinox framework 
1.1.2005 - 

6.25.2008 
439 91 1,616 22 20 

Lucene 
1.1.2005 - 

10.8.2008 
691 99 1,715 22 20 

Mylyn 
1.17.2005 - 

3.17.2009 
2196 98 9,189 22 20 

 

B. Data reduction 

The primary objective of data reduction is to decrease the size of the dataset by either removing 

or aggregating variables [125]. The bug prediction datasets have problems that require data 

reduction: the datasets have several unnecessary files and irrelevant metrics (independent 

variables) for the software maintainability prediction, and have not clearly defined the 

CHANGE metric (dependent variable) to predict software maintainability. Therefore, three 

methods were applied to address these problems. First, six unnecessary files of software 

maintainability were manually removed: biweekly-ck-values, biweekly-oo-values, bug-

metrics, churn, complexity-code-change and entropy, and only single-version-ck-oo and 

change-metrics files remained. Second, five bug metrics were manually removed from the 

single-version-ck-oo file, namely bugs, nonTrivialBugs, majorBugs, criticalBugs and 

highPriorityBugs, because these metrics are not related to software maintainability. As a result, 

the remaining 17 metrics (i.e., OO and CK) may be performed as predictors for software 

maintainability (independent variable); the description of these metrics is provided in Section 

5.4.3. Third, all metrics were removed from the change-metrics file except two: lines added 

until and lines removed until, as these metrics are necessary to calculate the CHANGE metric 

value. Fourth, lines added until and lines removed until were aggregated into the CHANGE 

metric (dependent variable), which captures the element of interest of software maintainability. 

The results from applying data reduction are two files: the single-version-ck-oo file, which has 

17 metrics (independent variables), and a change-metrics file that has the CHANGE metric 

(dependent variable), calculated by aggregating lines added until and lines removed until 

metrics. 
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C. Data integration 

Data integration aims to integrate data from many sources into a single coherent source [125]. 

This pre-processing technique assists in preventing inconsistencies and redundancies in the 

datasets. The results of the datasets from previous pre-processing techniques include two files: 

the single-version-ck-oo file, which has 17 metrics (independent variables), and a change-

metrics file that has the CHANGE metric (dependent variable). These two files were combined 

into a single file with 17 OO and CK metrics (independent variables) and only one CHANGE 

metric (dependent variable) for software maintainability prediction datasets. 

D. Data cleaning 

The primary objective of data cleaning is to detect and remove missing, noisy, and outlier 

values from the dataset source [125]. The results of the datasets from the previous pre-

processing techniques are one file with 17 OO and CK metrics (independent variables) and 

one CHANGE metric (dependent variable). First, these datasets were evaluated in terms of 

missing data, but none was found due to accurate data collection. Second, the software 

maintainability prediction datasets were assessed in terms of outliers by applying the Inter 

Quartile Range (IQR) filter in WEKA. This filter divides the dataset into three quartiles: first 

quartile (Q1), which is the centre value between the median and the lowest value of the dataset 

that divides the lowest 25% of the dataset from the highest 75%; second quartile (Q2), which 

is the middle value that divides the dataset into halves; and third quartile (Q3), which is the 

middle value between the highest and the median values of the dataset that divides the highest 

25% of the dataset from the lowest 75%  [197]. The IQR filter relies on interquartile ranges, 

which recognise any value outside the interval as outliers, (Q1−x(Q3−Q1), Q3+x(Q3−Q1)) 

[197], where x is a constant number. IQR is the difference between third and first quartiles 

(IQR=Q3−Q1) [197]. Consequently, this filter identifies the outliers by creating a new 

attribute, namely the outlier index. Third, the Removewithvalues filter was applied in WEKA 

to remove outliers in the datasets. The parameter values in this filter were changed as follows: 

the outlier index was inserted in the attribute index to determine the outlier attribute, which 

was inserted in the nominal index to determine outlier values. Finally, the result from applying 

data cleaning is that the software maintainability prediction datasets are free from outliers. 

Figure 5.3 shows the proportion of outliers removed during data cleaning. 

 

https://en.wikipedia.org/wiki/Median
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E. Data transformation 

The main objective of data transformation is to convert data into format suitable for mining by 

smoothing, aggregation or normalisation. As the software maintainability prediction datasets 

do not have any issues requiring data transformation, applying these steps to the datasets is not 

necessary [125]. 

Table 5.3 presents summary results from applying pre-processing techniques on the bug 

prediction datasets. The final version after applying these techniques is called software 

maintainability prediction datasets. This version can be downloaded using the following link: 

https://zenodo.org/record/4256386#.X6aMzogzY2w 
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Figure 5.3: Proportion of outliers removed during data cleaning. 
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Table 5.3: Summary result of pre-processing techniques. 
Pre-processing 

techniques 
Problem Method Result 

Data reduction 

The datasets contain 

several unnecessary files 
of software 

maintainability 

Manually delete six unnecessary 

files from the bug prediction 

datasets. 

The datasets have only two files: single-

version-ck-oo and change-metrics 

The datasets contain 

several irrelevant metrics 
of software 

maintainability 

Manually delete five bug metrics 
from the single-version-CK-OO file 

and delete all metrics from the 

change-metrics file except two 

metrics. 

The datasets have only two files: single-
version-CK-OO, which has 17 CK and OO 

metrics, and change-metrics, which has two 

lines added until and lines removed until 

metrics 

The datasets need to 
identify dependent 

metric (CHANGE) 

Calculate dependent metric 

(CHANGE) by aggregating lines 

added until and lines removed until 

metrics. 

The datasets have only two files: single-

version-CK-OO, which has 17 CK and OO 

metrics, and change-metrics, with only one 

metric: CHANGE 

Data integration 

The datasets include two 

separate files, one 
contains independent 

variables and the other 

the dependent variable. 

Combine two files into a single file 
and modify the name of the file to 

software maintainability prediction. 

The datasets have only one file (software 

maintainability prediction datasets) that has 
17 OO and CK metrics (independent 

variables) and one CHANGE metric 

(dependent variable) 

Data cleaning 
The datasets contain 

outliers 

Apply InterQuartileRange filter to 
identify outliers, then perform 

removewithvalues filter to remove 

outliers. 

The software maintainability prediction 

datasets do not have outliers or missing 

values. 

Data 

transformation 

The datasets do not 

require data 

transformation 

NA NA 

5.4.2 Dependent variable: maintainability. 

Maintainability is a dependent variable that may be identified from several independent 

variables (metrics). In this study, maintainability is defined as the number of changes made in 

the class during the maintenance process. These changes are determined by calculating the 

number of added or deleted lines in each class during the maintenance period [10, 11, 13, 14] 

and correspond to the CHANGE metric described by L&H [9]. A higher value of CHANGE 

refers to higher maintenance effort, which implies lower maintainability. In the software 

maintainability prediction datasets, the dependent variable (CHANGE) was calculated by 

summing lines added until and lines removed until metrics, which indicate the lines added to 

or removed from the classes during the maintenance period, respectively [57]. The descriptive 

statistics of the CHANGE metric after removing outliers for each dataset of the software 

maintainability prediction datasets are shown in Table 5.4. 
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Table 5.4: Descriptive statistics for the CHANGE metric. 
Dataset name # Classes Min. Mean Median Max. Standard deviation 

Eclipse JDT Core 695 0 825.25 366 31245 2013.10 

Eclipse PDE UI 1209 0 230.41 100 6824 424.56 

Equinox Framework 276 0 242.59 56 5684 520.87 

Lucene 532 0 106.97 19 3089 247.50 

Mylyn 1573 0 110.80 29 9000 316.04 

 

Figure 5.4 illustrates the residual boxplots of the CHANGE metric for each dataset of 

the software maintainability prediction datasets. This diagram depicts the first quartile (Q1), 

median, third quartile (Q3), and whiskers values. The line across the middle of the solid body 

of the boxes indicates the median value, which is the middle 50% of the data (between Q1 and 

Q3). Q1 and Q3, which are inside the solid body of the boxes, present values of 25% and 75% 

of the data, whereas the vertical lines (“whiskers”) represent the spread of values that fall 

within 1.5 times the inter-quartile range [197]. From the data in Figure 5.4, it is apparent that 

the median value of CHANGE in Eclipse JDT Core is higher than that of the other datasets, 

indicating that Eclipse JDT Core has the highest maintenance effort, which implies the lowest 

maintainability. In contrast, the median value of CHANGE in Lucene is lower compared to 

other datasets, which indicates that Lucene has the lowest maintenance effort, which implies 

the highest maintainability. 

 

Figure 5.4: Boxplots of CHANGE metric. 
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5.4.3 Independent variable: metrics 

The independent variables consist of 17 source code metrics that include 6 CK metrics [26] 

and 11 OO metrics. The details of the extraction of these metrics were described by Ambros 

et al. [57]. A brief description of each metric (independent variable) used in this chapter is 

presented in Table 3.5 in Section 3.4.2.  

5.4.4 Descriptive statistics 

Table B.1 in the Appendix compares the descriptive statistics, namely min, max, median, mean 

and Stdev for all the metrics (CK and OO metrics) across all software maintainability datasets. 

The results obtained from this table can be summarised as follows: 

1. LOC metrics, which refers to lines of code, range from 0 to 2475; 

2. In all datasets, the median value of the NOC metrics is zero. This implies that 

there are very few sub-classes in all datasets; 

3. The mean values of the NOA metric in all datasets range from 3.0 to 4.9, which 

indicates that the average number of attributes is relatively close; 

4. The mean values of DIT range from 1.22 to 2.59, which refers to all the datasets 

with almost the same depth of inheritance tree; 

5. The median of NOPRM and NOPA in all datasets has zero values. This 

suggests that the number of private methods and the number of public attributes 

are very low; 

6. The median value of the coupling metric (i.e., RFC) in Eclipse JDT Core and 

Eclipse PDE UI is higher than those in other datasets;  

7. The median value of the number of methods (i.e., NOM metric) in all datasets 

ranged from 4 to 7. This refers to the number of methods that are almost similar 

in all systems;  

8. The remaining metrics have a different number of median values. Accordingly, 

it is challenging to conclude the overall results. 

Overall, there are no zero values for each metric in all datasets. Therefore, all metrics 

are considered relevant to measure software maintainability. Briand et al. [198] demonstrated 

that metrics that have zero values for all descriptive statistics should be removed from the 

analysis because they have no potential to be good predictors. 
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5.4.5 Correlation between metrics in the datasets 

Figure 5.5 shows Pearson’s correlation between source code metrics (independent variables), 

along with the change metric (dependent variable). From the summary data across software 

maintainability datasets in Figure 5.4, it seems that there are no red coloured circles, which 

implies no negative correlation between metrics. In addition, there are several weak positive 

linear correlations between metrics (e.g., LCOM with CBO), and this indicates that it is not 

necessary to eliminate any metrics because they all measure different elements of the code. 

Furthermore, there are multiple white circles that refer to uncorrelated metrics (e.g., NOC with 

other metrics). However, there are few strong positive linear correlations between some 

metrics, such as RFC and LOC in Eclipse JDT Core dataset and NOA and NOPA in Eclipse 

PDE UI dataset, but they were not removed. These results suggest that most of the metrics in 

software maintainability datasets are uncorrelated, and the characteristic of these datasets are 

different, hence maintainability prediction models are constructed for each dataset separately. 
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Figure 5.5.A: Correlation between source code metrics in the 

Eclipse JDT Core dataset. 
Figure 5.5.B: Correlation between source code metrics in the 

Eclipse PDE UI dataset. 

Figure 5.5.C: Correlation between source code metrics in the 

Equinox Framework dataset.                      
Figure 5.5.D: Correlation between source code metrics in the 

Lucene dataset.  

Figure 5.5.E: Correlation between source code metrics in the Mylyn dataset.  

Figure 5.5: Correlation between source code metrics in the software maintainability datasets. 

5.5. Results and Analyses 

In this section, the results and analyses performed in Study 5.A are presented, which includes 

four experiments, each one addressing one research question. The prediction models were built 

using WEKA tools presented in Chapter 3 and the default values in their parameters [120]. In 

sequence, the results of the statistical tests are provided. Furthermore, this section presents the 

results and analyses performed in Study 2.B using the Auto-WEKA tool, described in Section 

3.3.2. 
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Moreover, this section provides a one-way ANOVA test to examine H0, which states that all 

the group population means are equal, and H1, which states that at least one pair of means is 

different. Factor A includes the residuals values of the prediction models, grouped by each 

individual model used as the base model in the ensemble models. Therefore, 25 tables (5 

individual models × 5 datasets) are produced to compare the performance among the five 

prediction models (one individual model and four individual models as the base model in 

bagging, additive regression, stacking and APE). 

5.5.1 Comparison between prediction models 

To visualise the data distribution using quartiles, Figure 5.6 shows a boxplot of MRE for every 

prediction model investigated. This visualisation is based on the MMRE value, which refers 

to “X”. The prediction model, which has the lowest MMRE value, the narrowest box and the 

smallest range is considered preferable. In Figure 5.6, there are clear cases of decrease in the 

MMRE values indicated by “X” in the diagram, and reduction in the boxes spread, which are 

considered to have high prediction accuracy. These cases are summarised across all datasets 

in general as follows: 

• SVR as an individual model or a base model in bagging and additive regression 

outperformed all other prediction models, followed by KNN. It seems that SVR and 

KNN performed very similarly because they had smaller box and lower IQR; 

• Bagging ensemble models substantially increased the accuracy over RT and MLP. 

However, these models slightly improved the accuracy of M5Rules and had a minor or 

negative impact on KNN and SVR; 

• Applying bagging ensemble models to the base models positively influenced the 

overall prediction accuracy compared to additive regression ensemble models; 

• The prediction accuracy of APE ensemble models was better than that of stacking 

ensemble models. 



 

141 

 

 

 

Figure 5.6.A: Boxplot of the MRE for prediction models on the Eclipse JDT Core dataset. 

Figure 5.6.B: Boxplot of MRE for prediction models on the Eclipse PDE UI dataset. 

|_____||______||_____||_____||_____||_| |_| 
 RT                 MLP         KNN             M5Rules     SVR           Stacking  APE 

|_____||______||_____||_____||_____||_| |_| 
 RT           MLP         KNN     M5Rules SVR   Stacking APE 
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Figure 5.6.C: Boxplot of MRE for prediction models on the Equinox Framework dataset. 

Figure 5.6.D: Boxplot of MRE for prediction models on the Lucene dataset. 

|_____||______||_____||______||______||_| |_| 
 RT           MLP         KNN     M5Rules SVR   Stacking APE 

|_____||______||_____||______||_____||_| |_| 
 RT           MLP         KNN     M5Rules SVR   Stacking APE 
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Figure 5.6: Boxplot of MRE for prediction models on all datasets. 

 

Figure 5.7 compares the results obtained from the boxplot of the residuals for the 

prediction models across all datasets. The MAE value is defined by an ‘X’; a lower score, 

small whiskers, and narrow box refer to better performance. The following are the most evident 

findings from this figure: 

• The prediction models performed better than the ZeroR model in almost all situations; 

• The Mylyn dataset achieved the highest total prediction accuracy compared with other 

datasets; this result may be explained by the fact that this dataset was extracted from a 

large system that includes 2,196 classes;  

• The ensemble models yield enhanced prediction accuracy over most of the investigated 

individual models. However, the statistical tests will be futher investigated, as the 

difference between the ensemble and individual models may not be significant; 

• SVR as the individual model or the base model in bagging and additive regression 

outperformed other prediction models and recorded the highest prediction accuracy 

across all datasets. 

Figure 5.6.E: Boxplot of MRE for prediction models on the Mylyn dataset. 

|_____||______||______||_____||_____| |_| |_| 
 RT              MLP              KNN               M5Rules     SVR         Stacking APE 
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Figure 5.7.A: Box plot of the residuals for prediction models on the Eclipse JDT Core dataset. 

Figure 5.7.B: Box plot of the residuals for prediction models on the Eclipse PDE UI dataset. 

    |__||_____||_____||_____||_____||____||_| |_| 
Baseline          RT             MLP         KNN        M5Rules         SVR    Stacking APE 

    |__||_____||_____||_____||____||____| |_| |_| 
Baseline         RT             MLP           KNN     M5Rules   SVR    Stacking APE 
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Figure 5.7.C: Box plot of the residuals for prediction models on the Equinox Framework dataset. 

Figure 5.7.D: Box plot of the residuals for prediction models on the Lucene dataset. 

    |__||_____||_____||_____||_____||_____||_| |_| 
Baseline        RT             MLP           KNN          M5Rules    SVR    Stacking APE 

    |__||_____||_____||_____||_____||_____| |_| |_| 
Baseline         RT               MLP         KNN        M5Rules     SVR    Stacking APE 
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Figure 5.7: Boxplot of the residuals for prediction models on all datasets. 

 

  Figure 5.8 shows a histogram of the Pred (.25) values to compare the accuracy 

prediction between models. The higher the value in this diagram, the better the performance 

achieved by the prediction model, and the model accuracy criteria mentioned earlier are 

Pred(.30) ≥ 0.70 or Pred (.25) ≥ 0.75 [34]. From Figure 5.8,  the following observations are 

made:     

• KNN as an individual model or a base model in bagging and additive regression 

outperformed all other prediction models across the datasets. The potential reason why 

KNN produced better performance than SVM in term of Pred is that KNN predicts by 

selecting the closest neighbours of the instances in the training set, whereas the 

calculation of Pred is based on the proportion of all the instances in the dataset where 

the MRE is less than or equal to 25 or 30. Consequently, it is easy to determine these 

instances from the prediction of KNN. However, this difference may not be significant; 

• APE achieved the best prediction accuracy with KNN in the Eclipse JDT Core dataset, 

the second best in Eclipse PDE UI and Mylyn datasets, and the third best in the 

remaining datasets. 

 

Figure 5.7.E: Box plot of the residuals for prediction models on the Mylyn dataset. 

      |__||_____||_____||_____||_____||____||_| |_| 
Baseline       RT            MLP              KNN         M5Rules   SVR    Stacking APE 
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Figure 5.8: Pred(.25) for each prediction model on all datasets. 
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Figure 5.8.E: Pred(.25) for each prediction model on the Mylyn 

dataset. 

Figure 5.8.C: Pred(.25) for each prediction model on the 

Equinox Framework dataset. 
Figure 5.8.D: Pred(.25) for each prediction model on the Lucene 

dataset. 

Figure 5.8.B: Pred(.25) for each prediction model on the Eclipse 

PDE UI dataset. 
Figure 5.8.A: Pred(.25) for each prediction model on the Eclipse 

JDT Core dataset. 
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Figure 5.9 presents a histogram of the Pred (.30) values to compare the accuracy prediction 

between models. The higher the value in this diagram, the better the accuracy achieved by the 

prediction model. From Figure 5.9, the following observations are made:   

• APE and KNN as a base model in bagging achieved the best prediction accuracy 

compared to all prediction models in Eclipse JDT Core, followed by KNN as an 

individual model or base model in the additive regression ensemble model; 

•  KNN as an individual model or a base model in bagging and additive regression 

outperformed all other prediction models in the accuracy prediction of the remaining 

datasets; 

• M5Rules as a base model in bagging and SVR as a base model in additive regression 

produced the highest prediction accuracy in the Eclipse PDE UI dataset, which is the 

same result as KNN. 
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Figure 5.9: Pred(.30) for each prediction model on all datasets. 
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Figure 5.9.A: Pred(.30) for each prediction model on the 

Eclipse JDT Core dataset. 
Figure 5.9.B: Pred(.30) for each prediction model on the 

Eclipse PDE UI dataset. 

Figure 5.9.C: Pred(.30) for each prediction model on Equinox 

Framework dataset. 
Figure 5.9.D: Pred(.30) for each prediction model on the 

Lucene dataset. 

Figure 5.9.E: Pred(.30) for each prediction model on the Mylyn 

dataset. 
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Table 5.5, Table 5.6, Table 5.7 and Table 5.8 present the MMRE, MAE and SA values 

achieved by each prediction models for the software maintainability prediction datasets. Bold 

values (highlighted in light green) in the tables show the best results among each experiment 

in each dataset, whereas bold together with underlined values (highlighted in dark green) 

indicate the best results among each experiment in all datasets. The lowest MMRE and MAE 

and highest SA refer to the best results depending on the measure. 

A. Experiment 1: comparison between prediction models and baseline, RQ5.A.4 

ZeroR depends on the dependent variable only (i.e., CHANGE metric) and predicts the mean 

value of this metric. It is implemented to determine a baseline and is used as a benchmark to 

evaluate the performance of the prediction models. When we compare the results of ZeroR in 

Table 5.5 against the results of the prediction models in Table 5.6, Table 5.7 and Table 5.8, all 

machine learning models performed better than the ZeroR model, except in the case of MLP 

as the individual model and as the base model in additive regression in the Mylyn dataset. 

Moreover, other models (i.e., stacking in Eclipse PDE UI and Equinox Framework datasets) 

produce the same performance as the ZeroR model.  

Table 5.5: Baseline models and their corresponding MMRE, MAE and SA values. 

Model 
Eclipse JDT Core Eclipse PDE UI Equinox Framework Lucene Mylyn 

MMRE 

ZeroR 

13.79 6.12 5.58 15.18 5.92 

MAE 

823.90 223.46 282.04 127.15 127.67 

SA 

0 0 0 0 0 

Dark green: represents the best results in all experiments. 

 

B. Experiment 2: comparison between individual models, RQ5.A.5 

As shown in Table 5.6, the results of the five individual models indicate that SVR 

outperformed the individual models in the prediction accuracy for all datasets except the 

Eclipse JDT Core dataset, which achieved the best result using KNN (indicated by the bold 

values), followed by SVR. Furthermore, the performance of SVR in the Eclipse PDE UI 

dataset is better than all prediction models across the software maintainability datasets in 

Experiment 2 (i.e., bold and underlined values), with a value of 1.47. However, MLP attained 

negative values in SA measurement in the Equinox Framework and Lucene datasets, indicating 

that their results were worse than the baseline and did not produce meaningful predictions in 

this empirical study [99]. However, the MLP performed better than the baseline in the 

remaining datasets. 
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Table 5.6: Individual models and their corresponding MMRE, MAE and SA values. 

Individual models 
MMRE 

Eclipse JDT Core Eclipse PDE UI Equinox Framework Lucene Mylyn 

RT 10.15 5.79 4.96 13.96 5.40 

MLP 8.93 3.22 4.08 19.59 4.45 

KNN 4.04 2.35 5.18 10.71 2.28 

M5Rules 5.88 2.26 5.41 11.30 3.39 

SVR 4.24 1.47 3.13 5.19 1.83 

 MAE 

RT 746.59 216.23 230.00 119.08 123.95 

MLP 801.51 191.24 441.03 157.47 118.49 

KNN 678.86 197.03 238.36 114.69 111.61 

M5Rules 683.62 168.44 243.79 108.30 102.94 

SVR 533.78 151.41 200.33 96.17 90.30 

 SA 

RT 9.38 3.24 18.45 6.35 2.91 

MLP 2.72 14.42 -56.37 -23.84 7.19 

KNN 18.88 14.14 22.52 10.26 18.56 

M5Rules 17.03 24.62 13.56 14.83 19.37 

SVR 35.21 32.24 28.97 24.36 29.27 

Dark green: represents the best results in all experiments. 

Light green: represents the best results for each experiment. 

 

C. Experiment 3: comparison between homogeneous ensemble models, RQ5.A.6  

• Bagging 

After applying homogeneous ensemble models (i.e., bagging) on each individual model, as 

shown in Table 5.7, the bagging ensemble model increased the prediction accuracy over most 

of the individual models. SVR as a base model in the bagging ensemble produced the highest 

accuracy in all software maintainability datasets (i.e., bold values), and achieved the best result 

in the Eclipse PDE UI dataset, reaching 1.46 (i.e., bold values underlined). However, the 

positive influence of the bagging ensemble on SVR is considered low, as the change is only 

0.01 (0.68%) in the Eclipse PDE UI dataset and 0.08 (2.62%) in the Equinox Framework, and 

in the remaining datasets the performance of SVR decreased. However, the bagging ensemble 

model increased the prediction accuracy of RT, M5Rules, and MLP more than the KNN and 

SVR models. Overall, the bagging ensemble model increased the performance of all the 

individual models except SVR and KNN in the Eclipse JDT Core and Mylyn datasets, and 

SVR as the base model in bagging achieved the best results. 

• Additive regression 

Table 5.7 shows the results after employing homogeneous ensemble models (i.e., additive 

regression) on each individual model. It is apparent from these results that the additive 

regression ensemble model improved the prediction accuracy over most of the individual 

models. SVR as a base model in the additive regression ensemble achieved the best accuracy 

prediction in all software maintainability datasets except for the Eclipse JDT Core dataset, 
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where the best result was achieved by KNN (as indicated by the bold values). Furthermore, 

SVR in the Eclipse PDE UI dataset outperformed all other models across the software 

maintainability datasets in Experiment 3 (bold values with underline), reaching 1.46. This 

result is slightly better compared to that of the SVR as the individual model, which was 1.47. 

Interestingly, additive regression had a positive influence on MLP across all datasets, whereas 

it had a negative influence on RT and SVR in the Equinox Framework and Lucene datasets. 

Nevertheless, additive regression had no impact on the performance of KNN across all datasets 

and performed the same result as the KNN individual models. Finally, the additive regression 

ensemble models increased the accuracy prediction over most individual models, or produced 

results similar to the individual models, as is the case of KNN. Regarding SA measurement, 

all homogeneous ensemble models outperformed the baseline except MLP in the Equinox 

Framework and Lucene datasets, which recorded negative values. Similarly, MLP as the 

individual model achieved similar values in these datasets. 
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Table 5.7: Homogeneous ensemble models and their corresponding MMRE, MAE and SA values. 

Bagging Models 
MMRE 

Eclipse JDT Core Eclipse PDE UI Equinox Framework Lucene Mylyn 

RT 9.08 4.20 4.79 12.56 4.01 

MLP 7.00 2.98 4.71 15.69 3.23 

KNN 4.43 2.21 4.73 8.99 2.39 

M5Rules 5.69 2.26 4.25 10.67 3.22 

SVR 4.25 1.46 3.05 5.53 1.86 

 MAE 

RT 662.77 188.29 211.23 110.58 107.26 

MLP 624.67 195.80 297.15 139.09 100.89 

KNN 573.45 177.46 204.27 107.70 96.72 

M5Rules 608.98 169.25 212.29 115.03 102.71 

SVR 522.94 150.35 195.08 93.86 90.93 

 SA 

RT 19.56 15.74 25.11 13.04 15.99 

MLP 24.18 12.38 -5.36 -9.39 20.98 

KNN 30.40 20.62 28.43 15.30 24.37 

M5Rules 26.08 24.26 24.73 9.54 19.55 

SVR 36.53 32.72 30.83 26.19 28.77 

Additive 

regression models 
MMRE 

RT 9.70 5.79 5.55 14.00 5.39 

MLP 8.60 3.14 4.00 19.28 4.32 

KNN 4.06 2.35 5.18 10.71 2.28 

M5Rules 5.69 2.37 4.95 11.02 3.32 

SVR 4.15 1.46 3.28 5.23 1.78 

 MAE 

RT 743.77 216.23 232.12 118.62 122.97 

MLP 790.43 197.40 418.33 155.71 116.67 

KNN 678.86 197.03 238.36 114.69 111.61 

M5Rules 672.06 177.20 252.74 114.10 102.77 

SVR 515.58 151.18 204.67 95.68 89.67 

 SA 

RT 9.72 3.24 17.70 6.71 3.68 

MLP 4.06 11.66 -48.32 -22.46 8.61 

KNN 18.88 14.14 22.52 10.26 18.56 

M5Rules 18.43 20.70 10.39 10.27 19.50 

SVR 37.42 32.35 27.43 24.76 29.77 

Dark green: represents the best results in all experiments. 
Light green: represents the best results for each experiment. 

 

D. Experiment 4: comparison between heterogeneous ensemble models, RQ5.A.7  

• Stacking  

In Table 5.8, the heterogeneous ensemble model (i.e., stacking) combined five individual 

models (i.e., RT, MLP, KNN, M5Rules and SVR) and used linear regression as a metamodel 

to integrate their outputs. The results reveal that the stacking performance did not improve 

compared to that of the five individual models. Stacking increased the performance of RT and 

MLP in three datasets (i.e., Eclipse JDT Core, Lucene and Mylyn), and showed a slight 

decrease in performance in the remaining individual models across datasets. Stacking achieved 

the highest prediction accuracy in Mylyn, followed by the Equinox Framework dataset, 

achieving 3.78 and 5.58, respectively. Additionally, stacking performed well in terms of SA 
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measurement; however, it recorded zero values in the Eclipse PDE UI and Equinox Framework 

datasets, which indicates no improvement over the baseline in these datasets. 

• APE  

Another heterogeneous ensemble model shown in Table 5.8, namely APE, was performed by 

considering the average of the five individual models (i.e., RT, MLP, KNN, M5Rules and 

SVR), thus, it provides a single output value [140]. The findings demonstrate that the APE 

advanced the prediction accuracy of RT and MLP in all datasets except the Equinox 

Framework. It also improved the prediction accuracy of M5Rules in three datasets (i.e., 

Equinox Framework, Lucene and Mylyn). However, APE achieved a lower prediction 

accuracy than SVR in all datasets as well as a lower prediction accuracy than KNN in all 

datasets except the Equinox Framework. The finding of APE confirms previous finding of 

stacking that produced a lower performance because it integrated the good and bad 

performance of the individual models. APE achieved the highest prediction accuracy in the 

Eclipse PDE UI, followed by the Mylyn dataset, reaching 2.83 and 3.14, respectively. 

  Finally, the most evident finding from previous tables is that bagging achieved better 

performance than additive regression, whereas APE achieved better performance than 

stacking. Furthermore, the prediction models, which were performed on large datasets (i.e., 

Eclipse PDE UI and Mylyn), achieved better prediction accuracy than the same prediction 

models performed on small datasets, ranging from 276 to 695. This suggests that such 

prediction models are robust for large datasets. Furthermore, in most cases, SVR as an 

individual model or a base model in bagging and additive regression is the best choice to 

predict software maintainability.  

Table 5.8: Heterogeneous ensemble models and their corresponding MMRE, MAE and SA values. 

Stacking models 

(RT, MLP, KNN, 

M5Rules, SVR) 

 

Eclipse JDT Core Eclipse PDE UI Equinox Framework Lucene Mylyn 

MMRE 

5.99 6.12 5.58 12.02 3.78 

MAE 

644.21 223.46 282.04 115.51 111.81 

SA 

21.81 0 0 9.16 12.42 

APE models 

(RT, MLP, KNN, 

M5Rules, SVR) 

MMRE 

6.03 2.83 4.11 11.7 3.14 

MAE 

590.91 161.82 231.21 109.48 96.60 

SA 

28.28 27.59 19.79 13.90 24.33 

Dark green: represents the best results in all experiments. 

Light green: represents the best results for each experiment. 
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One-way ANOVA results for different datasets using the residual values for RT, MLP, KNN, 

M5Rules, and SVR and ensemble models are listed as follows: Table 5.9 to Table 5.13 for 

Eclipse JDT Core dataset; Table 5.14 to Table 5.18 for Eclipse PDE UI dataset; Table 5.19 to 

Table 5.23 for Equinox Framework dataset; Table 5.24 to Table 5.28 for Lucene dataset; Table 

5.29 to Table 5.33 for Mylyn dataset. 

The results obtained from these tables indicate that, in most cases, the performance of 

the prediction models was not significantly different in terms of the residual values from each 

other for Factor A because their p-values are larger than the significance level (α = 0.05),  so 

H0 is accepted. However, the p-values in the Eclipse PDE UI dataset (see tables from Table 

5.14 to Table 5.18) and other tables (Table 5.20, Table 5.25,  

Table 5.29 and Table 5.30) are lower than the significance level. Therefore, the 

performance of the prediction models in these tables was significantly different in terms of the 

residual values from each other for Factor A, and H0 is rejected and H1 is accepted, meaning 

that for Factor A, at least two group means significantly differ from each other. According to 

the standard classifications of Cohen proposed in Section 3.5.5, the results of eta-squared 

indicate that the effect sizes were small in all tables [180].  

Table 5.9: One-way ANOVA for RT and ensemble models in the Eclipse JDT Core dataset using the 

residuals. 

Source Sum of Squares 
Degrees of 

Freedom 

Mean 

Square 
F P-value Eta-Squared 

Factor A 12501422.11 4.00 3125355.53 0.92 0.45 0.00 

Error 11774121071.13 3470.00 3393118.46    

Total 11786622493.24 3474.00     

 
Table 5.10: One-way ANOVA for MLP and ensemble models in the Eclipse JDT Core dataset using the 

residuals. 

Source Sum of Squares 
Degrees of 

Freedom 

Mean 

Square 
F P-value Eta-Squared 

Factor A 26898330.99 4.00 6724582.75 1.02 0.39 0.00 

Error 22834275291.33 3470.00 6580482.79    

Total 22861173622.32 3474.00     

 
Table 5.11: One-way ANOVA for KNN and ensemble models in the Eclipse JDT Core dataset using the 

residuals. 

Source Sum of Squares 
Degrees of 

Freedom 

Mean 

Square 
F P-value Eta-Squared 

Factor A 5467853.84 4.00 1366963.46 0.40 0.81 0.00 

Error 11712791648.27 3470.00 3375444.28    

Total 11718259502.10 3474.00     
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Table 5.12: One-way ANOVA for M5Rules and ensemble models in the Eclipse JDT Core dataset using 

the residuals. 

Source Sum of Squares 
Degrees of 

Freedom 

Mean 

Square 
F P-value Eta-Squared 

Factor A 4391944.36 4.00 1097986.09 0.33 0.86 0.00 

Error 11579332739.53 3470.00 3336983.50    

Total 11583724683.88 3474.00     

 
Table 5.13: One-way ANOVA for SVR and ensemble models in the Eclipse JDT Core dataset using the 

residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 8388497.23 4.00 2097124.31 0.82 0.51 0.00 

Error 8921762704.87 3470.00 2571113.17    

Total 8930151202.10 3474.00     

  

Table 5.14: One-way ANOVA for RT and ensemble models in the Eclipse PDE UI dataset using the 

residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 3221762.01 4.00 805440.50 6.88 0.00 0.00 

Error 706719092.59 6040.00 117006.47    

Total 709940854.59 6044.00     

 

Table 5.15: One-way ANOVA for MLP and ensemble models in the Eclipse PDE UI dataset using the 

residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 2328640.49 4.00 582160.12 3.57 0.01 0.00 

Error 984602758.75 6040.00 163013.70    

Total 986931399.24 6044.00     

 
Table 5.16: One-way ANOVA for KNN and ensemble models in the Eclipse PDE UI dataset using the 

residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 2511471.04 4.00 627867.76 5.18 0.00 0.00 

Error 732218899.51 6040.00 121228.29    

Total 734730370.55 6044.00     

 
Table 5.17: One-way ANOVA for M5Rules and ensemble models in the Eclipse PDE UI dataset using the 

residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 2994170.89 4.00 748542.72 6.10 0.00 0.00 

Error 741644965.84 6040.00 122788.90    

Total 744639136.73 6044.00     

 
Table 5.18: One-way ANOVA for SVR and ensemble models in the Eclipse PDE UI dataset using the 

residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 4815664.03 4.00 1203916.01 11.49 0.00 0.01 

Error 632989845.26 6040.00 104799.64    

Total 637805509.29 6044.00     
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Table 5.19: One-way ANOVA for RT and ensemble models in the Equinox Framework dataset using the 

residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 772577.21 4.00 193144.30 1.08 0.36 0.00 

Error 245045622.90 1375.00 178215.00    

Total 245818200.11 1379.00     

 
Table 5.20: One-way ANOVA for MLP and ensemble models in the Equinox Framework dataset using 

the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 9160880.15 4.00 2290220.04 2.94 0.02 0.01 

Error 1072285162.54 1375.00 779843.75    

Total 1081446042.69 1379.00     

 
Table 5.21: One-way ANOVA for KNN and ensemble models in the Equinox Framework dataset using 

the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 1039249.78 4.00 259812.44 1.21 0.30 0.00 

Error 294068457.62 1375.00 213867.97    

Total 295107707.40 1379.00     

 

Table 5.22: One-way ANOVA for M5Rules and ensemble models in the Equinox Framework dataset 

using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 743122.31 4.00 185780.58 1.00 0.41 0.00 

Error 255494191.82 1375.00 185813.96    

Total 256237314.13 1379.00     

 
Table 5.23: One-way ANOVA for SVR and ensemble models in the Equinox Framework dataset using 

the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 1430312.90 4.00 357578.22 1.94 0.10 0.01 

Error 253852788.18 1375.00 184620.21    

Total 255283101.07 1379.00     

 

Table 5.24: One-way ANOVA for RT and ensemble models in the Lucene dataset using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 42242.60 4.00 10560.65 0.26 0.90 0.00 

Error 108220661.59 2655.00 40761.08    

Total 108262904.20 2659.00     

 
Table 5.25: One-way ANOVA for MLP and ensemble models in the Lucene dataset using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 1053595.89 4.00 263398.97 2.47 0.04 0.00 

Error 282988904.28 2655.00 106587.16    

Total 284042500.17 2659.00     

 
Table 5.26: One-way ANOVA for KNN and ensemble models in the Lucene dataset using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 24425.70 4.00 6106.42 0.12 0.97 0.00 

Error 131135243.95 2655.00 49391.81    

Total 131159669.65 2659.00     
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Table 5.27: One-way ANOVA for M5Rules and ensemble models in the Lucene dataset using the 

residuals values. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 23797.49 4.00 5949.37 0.11 0.98 0.00 

Error 137478923.08 2655.00 51781.14    

Total 137502720.57 2659.00     

Table 5.28: One-way ANOVA for SVR and ensemble models in the Lucene dataset using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 201463.28 4.00 50365.82 1.25 0.29 0.00 

Error 106913813.36 2655.00 40268.86    

Total 107115276.63 2659.00     

 

Table 5.29: One-way ANOVA for RT and ensemble models in the Mylyn dataset using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 820433.52 4.00 205108.38 3.22 0.01 0.00 

Error 500539699.16 7860.00 63681.90    

Total 501360132.68 7864.00     

 
Table 5.30: One-way ANOVA for MLP and ensemble models in the Mylyn dataset using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 591892.35 4.00 147973.09 2.65 0.03 0.00 

Error 438668440.81 7860.00 55810.23    

Total 439260333.16 7864.00     

 
Table 5.31: One-way ANOVA for KNN and ensemble models in the Mylyn dataset using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 253506.93 4.00 63376.73 0.98 0.41 0.00 

Error 506131215.02 7860.00 64393.28    

Total 506384721.95 7864.00     

 
Table 5.32: One-way ANOVA for M5Rules and ensemble models in the Mylyn dataset using the 

residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 185713.32 4.00 46428.33 0.79 0.53 0.00 

Error 459562662.82 7860.00 58468.53    

Total 459748376.14 7864.00     

 
Table 5.33: One-way ANOVA for SVR and ensemble models in the Mylyn dataset using the residuals. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-value Eta-Squared 

Factor A 548317.21 4.00 137079.30 2.35 0.05 0.00 

Error 458132781.24 7860.00 58286.61    

Total 458681098.45 7864.00     

 

Multiple pairwise comparison tests for Factor A were also conducted to determine which 

pairs were significantly different from each other. This test was performed using Tukey’s 

confidence intervals [170] for tables that rejected H0 (from Table 5.14 to Table 5.18, along 

with Table 5.20, Table 5.25, Table 5.29 and Table 5.30). The comparison results are presented 

in Figure 5.10, which involves nine subfigures. Figure 5.10 reveals that if a confidence interval 
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does not include 0, then the pair is significantly different and H0 is rejected. The following 

cases show the pairs that significantly differ from each other: 

• (RT – APE) and (RT – APE) pairs were significantly different, as shown in Figure 

5.10.A, whereas APE performed better than these models in the Eclipse PDE UI 

dataset; 

• (Stacking – APE) pair was significantly different in the Eclipse PDE UI dataset (see 

Figures 5.10.A, 5.10.B, 5.10.C, 5.10.D and 5.10.E), whereas APE outperformed 

stacking in the Eclipse PDE UI dataset; 

• (MLP – APE) pair was significantly different, as shown in Figure 5.10.F, whereas APE 

was better than MLP in the Equinox Framework dataset; 

• Although the P-values in Table 5.20 and Table 5.30 were lower than the significance 

level (α = 0.05), there were no significant differences between each pair (see Figure 

5.10.G and Figure 5.10.I). 

• (SVR – Stacking), (Additive regression (SVR) – Stacking), (Bagging (SVR) – 

Stacking) pairs were significantly different, as seen in Figure 5.10.E, in which stacking 

performed worse than these models in the Eclipse PDE UI dataset; 

• (RT – APE) and (Additive regression (RT) – APE) pairs were significantly different, 

as seen in Figure 5.10.H, in which APE was better than RT and additive regression 

(RT) in the Mylyn dataset. 
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Figure 5.10.A: Multiple comparisons for RT and ensemble models in the Eclipse PDE UI dataset using the residuals. 
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Figure 5.10.B: Multiple comparisons for MLP and ensemble models in the Eclipse PDE UI dataset using the residuals. 
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Figure 5.10.C: Multiple comparisons for KNN and ensemble models in the Eclipse PDE UI dataset using the residuals. 

M5rules - Bagging(M5rules)

M5rules - Additive 

Regression(M5rules)

M5rules - Stacking

M5rules - APE
Bagging(M5rules) -

Additive 

Regression(M5rules)Bagging(M5rules) -

Stacking

Bagging(M5rules) - APE
Additive 

Regression(M5rules) -

Stacking Additive 

Regression(M5rules) - APE

Stacking - APE

-150.00 -100.00 -50.00 0.00 50.00 100.00 150.00

Confidence Intervals

Tukey's Confidence Intervals

Figure 5.10.D: Multiple comparisons for M5Rules and ensemble models in the Eclipse PDE UI dataset using the residuals. 
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Figure 5.10.E: Multiple comparisons for SVR and ensemble models in the Eclipse PDE UI dataset using the residuals. 
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Figure 5.10.F: Multiple comparisons for MLP and ensemble models in the Equinox Framework dataset using the residuals. 
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Figure 5.10.G: Multiple comparisons for MLP and ensemble models in the Lucene dataset using the residuals. 
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Figure 5.10.H: Multiple comparisons for RT and ensemble models in the Mylyn dataset using the residuals. 
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Figure 5.10: Multiple comparisons for prediction models using the residuals. 
 

5.5.2 Determining the best prediction accuracy using Auto-WEKA 

The development of an accurate prediction model may involve attempting several types of 

machine learning models with different configurations, including tuning parameters and 

selected features. However, this is a difficult and time-consuming task to implement. In this 

section, a new, rapid and automated tool was used to identify the best prediction accuracy of a 

software maintainability model, namely Auto-WEKA, applied to sets of different models with 

various configurations. Auto-WEKA is applied to previous datasets to select the best model, 

along with the best choice features and parameters. The MMRE and MAE values were used 

to evaluate the accuracy of the predictive models, along with the ZeroR model, to compare 

selected model performance with the baseline. 

Table 5.34 provides the results of the best-selected model, along with the number of 

attempted configurations, selected features and tuning parameters. The null in the selected 

features refers to the selection of the entire dataset without applying the selected features. This 

table answers RQ5.B.1, RQ5.B.2, RQ5.B.3 and RQ5.B.4, and reveals several findings. First, 

two individual models were selected as the best prediction accuracy models, namely SMOreg 

in Eclipse JDT Core, which is an SVR model, and KStar in the Equinox Framework, which is 
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Figure 5.10.I: Multiple comparisons for MLP and ensemble models in the Mylyn dataset using the residuals. 
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an instance-based model. Second, two meta-models (i.e., ensembles) were chosen as the best 

prediction accuracy models, namely RandomSubSpace in Eclipse PDE UI, which creates a 

decision tree-based model, and RandomForest in Lucene and Mylyn, which creates a forest of 

random trees. Third, the number of attempted configurations ranged from 134 to 428. Fourth, 

each selected model had specifically defined tuning parameters, whereas the selected features 

were applied only for the Equinox Framework and Lucene to determine the BestFirst filter for 

attribute search and the CfsSubsetEval filter for attribute evaluation. 

  Table 5.34: Best model selected by Auto-WEKA in each dataset. 

Dataset ID 

Best-selected 

model / Number 

of configurations 

attempted 

Configurations 

Selected 

features 
Tuning parameters 

Eclipse JDT 

Core 
SMOreg / 295  

Null [-C, 1.3565252749701955, -N, 0, -I, 

weka.classifiers.functions.supportVector.RegSMOImproved, -K, 

weka.classifiers.functions.supportVector.NormalizedPolyKernel -E 
2.8518299249980115 -L] 

Eclipse PDE UI RandomSubSpace 

/ 134  

Null [-I, 53, -P, 0.37299422237345936, -S, 1, -W, 

weka.classifiers.functions.MultilayerPerceptron, --, -L, 
0.6520314185757002, -M, 0.6694968982868784, -B, -H, i, -R, -D, -S, 1] 

Equinox 

Framework 

KStar / 428  Attribute 

search: 
BestFirst 

attribute 

evaluation: 
CfsSubsetEva

l 

[-B, 38, -M, n] 

Lucene RandomForest / 

321  

Attribute 

search: 
BestFirst 

attribute 

evaluation: 
CfsSubsetEva

l 

[-I, 96, -K, 1, -depth, 12] 

Mylyn RandomForest / 
162  

Null [-I, 136, -K, 7, -depth, 14] 

 

Table 5.35 presents the results of the MMRE and MAE values to determine the 

prediction accuracy achieved by the best-selected model, along with the baseline (i.e., ZeroR). 

This table responds to RQ5.B.5 and RQ5.B.6, and it is apparent that the selected models 

performed better than the baseline. In addition, there was a large difference between the 

MMRE values for the selected models and the MMRE values for ZeroR. Interestingly, the 

selected model in the Equinox Framework achieved the best accuracy prediction, with a 

change of 89.78%. 

Finally, the results in Table 5.35 were compared with the best prediction model in Table 

5.6, Table 5.7 and Table 5.8 to answer RQ5.B.7. The results indicate that all the models 
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selected by the Auto-WEKA tool outperformed the best model prediction except for KNN and 

SVR in Eclipse JDT Core and Lucene, respectively.  

Table 5.35: MMRE and MAE values for the selected models and ZeroR models. 

Datasets ID 

MAE for the 

best-selected 

model 

MMAE for 

ZeroR 

MMRE for the 

best-selected 

model 

MMRE for 

ZeroR 

% of change between 

MMRE values 

Eclipse JDT 
Core 

638.37 823.90 6.36 13.79 53.88% 

Eclipse PDE 

UI 
185.25 223.46 0.79 6.12 87.09% 

Equinox 
Framework 

35.54 282.04 0.57 5.58 89.78% 

Lucene 50.43 127.15 5.21 15.18 65.68% 

Mylyn 46.24 127.67 1.54 5.92 73.99% 

 

Figure 5.11 shows a histogram of the MMRE value to compare the prediction accuracy 

between the models selected by Auto-WEKA, the best model in the previous section and the 

ZeroR models, and answer RQ5.B.5 and RQ5.B.6. The low value of this diagram indicates 

better accuracy achieved by the prediction model. The results obtained from Figure 5.11 

indicate the positive impact of using the Auto-WEKA tool to select the best model in 

prediction software maintainability. This yields an improvement over the baseline (i.e., ZeroR) 

in the range of 53.88% to 89.78%. The best-selected model by Auto-WEKA in the Equinox 

Framework dataset achieved the best result (lowest MMRE value), followed by the best-

selected model by Auto-WEKA in the Eclipse PDE UI and Lucene datasets. Additionally, all 

the models selected by the Auto-WEKA tool performed better than the best model prediction 

in the previous section except for KNN and SVR in Eclipse JDT Core and Lucene, 

respectively.   
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Figure 5.12 illustrates the residual boxplots of the MRE values for the selected and 

ZeroR models in each dataset. In Figure 5.12, there is a clear tendency of a decrease in the 

MMRE value indicated by “X” in the diagram, after applying the Auto-WEKA tool to all 

datasets. Moreover, each selected model had a reduction in the box spread. The results 

obtained from this figure indicated the positive impact of employing the Auto-WEKA tool on 

all datasets. This yields an improvement between 53.88% and 89.78%, which is considered a 

high performance in the software maintainability prediction. 

 

Figure 5.12: Box plot of MRE for selected and ZeroR models in each dataset. 
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Figure 5.11: MMRE value for selected and ZeroR models in each dataset. 
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5.5.3 Discussion and answers to research questions for the second empirical 

study 

This section presents the details of the discussion and answers RQs for the second empirical 

study, which involves two studies, namely 5.A and 5.B. First, the following RQs for Study 5.A 

are answered and discussed. 

RQ5.A.1) What are the suitable metrics (independent variables) in the bug prediction 

datasets to predict software maintainability? 

In the data reduction step, five bug metrics from the single-version-ck-oo file were removed. 

Consequently, 17 metrics were used as predictors for software maintainability (i.e., 

independent variables), including 6 CK metrics [26] and 11 OO metrics (see Table 3.5). The 

metrics were not removed for the following reasons:  

• In most cases, in most cases, there was no perfect correlation between two independent 

variables (see Figure 5.5). 

• In few cases, some of the metrics exhibited perfect correlation, but it is not a common 

problem in all datasets. For example, NOA and NOPA were perfectly correlated in the 

Eclipse PDE UI dataset (dark blue circle), but not in the remaining datasets.  

• Almost all metrics have the same correlated with the dependent variable, which are 

considered good predictor. 

RQ5.A.2) How can the dependent variable calculate the CHANGE metric from the bug 

prediction datasets? 

The CHANGE metric was calculated in two steps of the data preprocessing techniques, namely 

data reduction and data integration. In the data reduction, all metrics were excluded from the 

change-metrics file except two fundamental metrics, namely lines added until and lines 

removed until. Then, these metrics were integrated to compute the CHANGE metric, which is 

similar to the CHANGE metric proposed by L&H [9]. In the data integration, two files (i.e., 

single-version-ck-oo and change-metrics files) were integrated into one file, namely software 

maintainability datasets.  

RQ5.A.3) How to improve quality of the software maintainability prediction datasets 

using preprocessing techniques? 

The previous two data pre-processing techniques aim to choose suitable source code metrics 

(independent variables) from the bug prediction datasets and identify the CHANGE metric 
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(dependent variable). As a result, a new version of the bug prediction datasets was produced, 

called the software maintainability datasets, which includes 17 OO and CK metrics 

(independent variables) and only one CHANGE metric (dependent variable). The objective of 

the other data pre-processing techniques (i.e., data cleaning and data transformation) is to 

improve the quality of the software maintainability datasets. According to the data cleaning 

step, the software maintainability datasets only required the removal of outliers to eliminate 

variance, and these datasets did not include any noisy or missing values. This is in line with 

previous studies that used the original version of the bug prediction datasets without finding 

any missing values problem [154, 155, 199]. Regarding the data transformation step, previous 

studies performed a pre-processing algorithm to resolve the duplicate instances problems [193] 

or the normalisation technique to rescale the large range in the datasets [53]. However, these 

problems were not observed in the software maintainability datasets. Therefore, as the 

application of all four data pre-processing techniques on the datasets is not mandatory, the 

transformation step was not necessary [125].  

Finally, the findings of applying the data pre-processing techniques suggest that these 

techniques are very useful for providing a new version of the datasets that can be used for other 

purposes or to solve problems of the datasets. The findings obtained are compatible with those 

of previous studies, in which data pre-processing techniques were applied on software quality 

datasets [190-194]. 

RQ5.A.4) How much can prediction models increase or decrease the performance 

compared to a baseline (i.e. ZeroR)? 

All the prediction models increased their performance over the baseline, except in rare cases. 

Additionally, the prediction accuracy of the baseline is considered very low. For example, the 

result of MMRE ranges from 5.58 to 15.18, and this range was very far from acceptable 

considering the specified criteria MMRE ≤ 0.25 [67]. However, if the prediction model is less 

accurate than ZeroR or if ZeroR has a bad result, this may indicate that the prediction is 

difficult to achieve [200].  

RQ5.A.5)How effective are individual models at predicting change maintenance effort? 

SVR was the best individual model for predicting software maintainability. In most cases, 

neither homogeneous ensemble models (i.e., bagging and additive regression) or 

heterogeneous ensemble models (i.e., stacking and APE) improved the prediction accuracy of 
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SVR. According to the results obtained from statistical test, the differences between SVR and 

other prediction models were not significant. However, there was significantly different 

between SVR and stacking in Eclipse PDE UI dataset (see Figure 5.10.E). The present findings 

seem to be consistent with other research, which found that SVR achieved the highest 

performance for predicting software maintainability across 26 datasets [83]. The findings of 

this research indicates that SVR can increase prediction accuracy and perform excellent 

generalisation [117].  

RQ5.A.6) How do homogenous ensemble models perform in the context of predicting 

change maintenance effort when compared to the individual models? 

The bagging ensemble model improved the performance over most of the individual models. 

The results of the statistical tests indicate that there were no significant differences among all 

the individual models and bagging ensemble models, and the effect sizes were small. This 

finding is in line with findings reported in a previous study [1], and leads to a similar 

conclusion, confirming the effectiveness of using bagging ensemble models for predicting 

software maintainability. Although SVR as the base model in bagging outperformed the 

prediction accuracy of other base models, the bagging ensemble model had a minor impact or 

no impact on SVR. This result may be explained by the fact that bagging requires an unstable 

base model, such as SVR. Also, this seems consistent with previous research indicating that 

SVM may be considered a strong model whose performance is not always improved with 

ensemble models, and that SVM as the base model in bagging provided the best prediction 

accuracy compared with other prediction models [179]. In contrast, the bagging ensemble 

model had a considerable impact on RT and a minor impact on SVR and KNN. The detailed 

analysis shows that the bagging ensemble model improves the prediction accuracy of unstable 

models, such as RT in all datasets, but lower improvements are observed with more stable 

models, such as SVR and KNN in some datasets. This finding supports that of Breiman [128], 

who recommended using bagging with unstable models and also confirms the results of 

previous research, showing that applying bagging on KNN is not recommended because the 

output has few changes in the training data via sampling [182]. However, KNN becomes 

unstable if the number of nearest neighbours (K) has a small value [183] higher than one, as 

stated by Caprile et al. [184].  
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The results obtained from applying the additive regression ensemble model are consistent with 

the bagging ensemble model, whereas the additive regression ensemble increased the 

prediction accuracy over most of the individual models and achieved the best result with the 

SVR base model. However, the positive impact of applying the bagging ensemble model to 

the individual models was better than that of the additive regression, and the opposite result 

was reached in the first empirical study. Again, there were no significant differences in terms 

of the residual values between additive regression and the individual models, and the effect 

sizes were small. Additionally, additive regression did not influence KNN, and the same was 

observed in the first empirical study. A possible explanation for this finding is that additive 

regression begins with an empty ensemble and inserts KNN models sequentially. However, 

KNN calculates the nearest neighbour in the training datasets, and the first result of KNN is 

equal to further results. The prediction of additive regression is performed by inserting the 

predictions of each KNN model. For this reason, additive regression at each iteration produces 

the same results as KNN, which is the same as KNN as an individual model. Therefore, 

additive regression does not build the ensemble model from the KNN base model because it 

is unable to find an instance that can serve as an accurate prediction of the error. According to 

multiple comparison results, there were no significant differences between individual models 

and homogeneous ensemble models (see Figure 5.10). 

RQ5.A.7) How do heterogeneous ensemble models perform in the context of predicting 

change maintenance effort when compared to the individual models? 

Stacking ensemble models increased the performance of RT and MLP, whereas they decreased 

the performance over the remaining individual models. The results obtained by the statistical 

tests indicated that there were no significant differences between the individual models and 

the stacking ensemble model, and the effect sizes were small, except in the case of SVR in the 

Eclipse PDE UI dataset, which performed better than stacking. This finding was consistent 

with that in Chapter 4, in which stacking only improved the predictive accuracy of the models 

that did not perform well individually. Although stacking was built from the diverse individual 

models and applied on larger datasets, it did not yield a significant improvement. 

Consequently, the experimental results indicate that in some cases the stacking ensemble 

models were not better than the individual models.   
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APE improved the prediction accuracy over RT and MLP, and it had a minor or negative 

impact in terms of the prediction accuracy in the remaining individual models. These results 

are in accordance with those observed in the stacking ensemble models; however, overall,  

APE outperformed stacking. Regarding the statistical tests and effect size results, in most 

cases, there were no significant differences between individual models and APE ensemble 

models. However, APE outperformed and differed significantly from RT in the Eclipse PDE 

UI and Mylyn datasets, along with the MLP in the Equinox Framework dataset. Furthermore, 

there were significant differences between stacking and APE in the Eclipse PDE UI dataset. 

However, the results of stacking and APE are not very encouraging, and it is difficult to 

compare their results with previous studies because these ensemble models are less widely 

used than popular ensemble models, such as bagging and boosting [107]. A possible 

explanation for is that these heterogeneous ensemble models require more base models to 

perform effectively [201]. For example, previous studies revealed that the proposed 

heterogeneous ensemble models substantially improved the performance of individual models; 

however, they used six base models in stacking [202] and seven in APE [131]. Another 

possible explanation for this is that these previous studies used different combinations of base 

models. For instance, APE was integrated with RF, stochastic gradient descent, gradient 

boosting, logistic regression, W-SVMs, Bernoulli naive Bayes, and multinomial naive Bayes 

[131], whereas stacking was integrated with MLP, radial basis function, pruned model tree, 

M5Rules, linear regression model and SVM [202]. Additionally, prior studies indicated that 

RT and MLP produced poor results in predicting software maintainability [13, 48]; therefore, 

stacking and APE performed better than these models. 

  Nevertheless, conflicting results between the MMRE and MAE and Pred values were 

obtained, which is considered a common problem in the empirical studies of software 

engineering [99]. The observations of the prediction accuracy using Pred values showed that 

APE and KNN as individual models or as base models in bagging and additive regression in 

most cases achieved the highest Pred values (see Figure 5.8  and Figure 5.9). This observation 

is supported by the work of Laradji et al., which shows that APE achieved a high prediction 

accuracy [131]. The second observation from these figures seems to be consistent with other 

research that reported the success of KNN in prediction models [178]. However, none of the 

implemented models in the second empirical study met the model accuracy criteria mentioned 
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in Chapter 3 (MMRE ≤ 0.25 and/or Pred(.30) ≥ 0.70 or Pred(.25) ≥0.75) [34, 67]. This 

limitation is in agreement with De Lucia et al. [20], who reported that constructing accurate 

effort prediction models to meet the accepted criteria is very challenging [20].  

Second, I provide the appropriate answers and discussion to address the following RQ 

for the study 5.B: 

RQ5.B.1) What is the best-selected model by Auto-WEKA to predict software 

maintainability in each dataset? 

The best-selected model by Auto-WEKA was different in each dataset except RF, which was 

selected as the best model in the Lucene and Mylyn datasets. By comparing this result with 

prior studies of software maintainability prediction [47, 48], it can be concluded that RF was 

the best model in two datasets to predict software maintainability. Therefore, the use of RF to 

predict software maintainability will be investigated in the next empirical study. However, 

KStar, SVM, and RandomSubSpace achieved the best prediction accuracy in the Equinox 

Framework, Eclipse JDT Core and Eclipse PDE UI datasets, respectively. This is consistent 

with what was found in a previous study showing that the performance of the prediction 

models of software maintainability was different for different datasets [16].  

RQ5.B.2) How many configurations are attempted to select the best model? 

Several configurations were performed to select the best model, rangng from 134 to 428. This 

result highlights the effectiveness of Auto-WEKA in producing a desired model and saving 

time and effort.  

RQ5.B.3) What are the parameter tuning settings in the selected model? 

Auto-WEKA provided various settings for the tuning parameter in each dataset (see Table 

5.34). This finding confirms the usefulness of Auto-WEKA in saving time and effort. 

RQ5.B.4) What are the selected features in the selected model? 

Two types of FS, namely the BestFirst filter for attribute search and the CfsSubsetEval filter 

for attribute evaluation, are performed on Equinox Framework and Lucene datasets. One of 

the limitations of Auto-WEKA package is that it does not provide the metrics that were chosen 

by selected feature methods. However, metrics can be selected using “Select attributes” tab in 

Weka tool; therefore, FS techniques will be explored in the next chapter using Weka tool. 

RQ5.B.5) What are the MAE and MMRE values for the selected models? 
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The results of the MAE and MMRE values are provided in Table 5.35. The results of the 

experiment clearly indicate the high performance of the models selected by Auto-WEKA. 

RQ5.B.6) What is the performance of the selected model by Auto-WEKA compared with 

the performance of the baseline (i.e., ZeroR)? 

All the selected models increased the performance over the baseline, with the percentage of 

change between MMRE values ranging from 53.88% to 89.78%. This indicates the positive 

impact of using Auto-WEKA to improve prediction accuracy. Based on these findings, Auto-

WEKA is recommended as a useful tool to determine the best model for software 

maintainability prediction. 

RQ5.B.7) What is the performance of the selected model by Auto-WEKA compared with 

the performance of the best model in the study 5.A? 

The models selected by the Auto-WEKA tool achieved better prediction accuracy than the 

investigated models in Study 5.A, except for KNN and SVR in Eclipse JDT Core and Lucene, 

respectively. These findings further support the strong effect of KNN and SVR, as these 

models sometimes achieved higher prediction accuracy than the ensemble model and the best 

selected models by Auto-WEKA. This thesis calculated the statistical test only for individual 

and ensemble models using their default parameters because this thesis focuses on the default 

parameter of machine learning models. In future work, a statistical test can be performed to 

explore the performance difference between the model selected by Auto-WEKA and the best 

model in Study 5.A 

5.6.  Threats to Validity 

This section examines the different threats that may influence the results of this study. These 

threats commonly occur in any empirical study of software engineering that uses open-source 

software projects [186] and should be considered. The proposed empirical study may face the 

following threats: 

• The bug prediction datasets were extracted from Java systems [57]. As each 

programming language has unique features and systems vary in their characteristics, 

these are not representative of all software systems. Further studies should be 

performed to investigate machine learning models with other programming languages 

and a more extensive range of systems; 
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• The datasets (i.e., bug prediction datasets [57]) used in this empirical study are publicly 

available. However, no previous studies used these datasets for software 

maintainability, which makes comparisons of this study with other studies impossible; 

• In this work, the CHANGE metric is used as a dependent variable, as it is well-known 

and commonly used in prior studies [7, 11-13, 15-18, 88, 152, 175] to indicate the 

amount of change in a class during the maintenance process or, in other words, to 

indicate maintainability. A higher number of changes refers to higher maintenance 

effort or low maintainability. Maintainability implies the ease to make and 

accommodate maintenance changes, and the CHANGE metric is more related to the 

amount of change that is likely to be made to a class. The CHANGE metric is calculated 

by summing two metrics: lines added until and lines removed until, which refer to the 

lines added to or removed from the classes during the maintenance period, respectively 

[57]. The main advantage of this metric is that it has strong relationships with other 

metrics (independent variables); hence, it can be used as an indicator for predicting the 

maintenance effort [9]. Therefore, there is no threat in the dependent variable because 

the CHANGE metric is acceptable for predicting the maintenance effort; 

• The performance of the ensemble models varies with different datasets. Therefore, it 

is not possible to validate the capability of these ensembles using only five datasets, 

and this might be a recognised threat; 

• In this work, only 17 metrics proposed in the bug prediction were used, including 6 CK 

metrics [26] and 11 OO metrics. CK metrics are commonly used and widely accepted 

in software maintainability prediction [16, 23]. In contrast, OO metrics are limited in 

the software maintainability prediction, and this may be considered a threat. 

Additionally, these metrics are used together for the first time to predict software 

maintainability, and there are several metrics published in the literature, which might 

be better predictors for software maintainability; 

• The Auto-WEKA tool is used to select the best prediction models by combining 

different FS and tuning parameters in WEKA [149, 150]. However, KNN and SVR in 

Eclipse JDT Core and Lucene, respectively, performed better than the best selected 

model by Auto-WEKA, and this is considered a threat in this tool; 
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• In this study, ANOVA test was performed to test hypotheses about significant 

differences between the means of more than two groups, which are five groups in this 

empirical study: individual model and this individual model as the base model in 

bagging, additive regression, stacking and APE. One advantage of a parametric 

statistical test (ANOVA) over non-parametric statistical test is that it produces more 

effective results with both continuous and nonnormally datasets. ANOVA test assumes 

that the data in the groups are the same standard deviations and normally distributed, 

along with independent samples. Despite the apparent assumption were accepted and 

ANOVA test is suitable for this empirical study, only ten runs were used, which may 

have impacted the results. 

5.7. Conclusion of the second empirical study 

In Study 5.A, preprocessing techniques were performed on new and large datasets (i.e., bug 

prediction datasets) collected from five real-world open-source software systems (Eclipse JDT 

Core, Eclipse PDE UI, Equinox framework, Mylyn and Lucene) with the objective of 

producing high-quality datasets that are appropriate for software maintainability prediction. 

This chapter also empirically evaluated and compared the application of homogeneous 

(bagging and additive regression) and heterogeneous ensemble models (stacking and APE) 

with five individual models (RT, MLP, KNN, M5Rules and SVR) to predict software 

maintainability in OO systems. A new version of the high-quality datasets (i.e., software 

maintainability prediction) suitable for software maintainability prediction was provided. The 

experimental results indicate the following: 

• Most of the proposed machine learning models improved the accuracy predictions over 

the baseline (i.e., ZeroR model); 

• SVR achieved the best prediction accuracy among individual models, followed by 

KNN. These findings are in agreement with previous studies showing the excellent 

performance of SVR and KNN [117, 178]; 

• Although homogeneous ensemble models improved the accuracy prediction over most 

individual models, there were no significant differences between the homogeneous 

ensemble models and individual models, and the effect sizes were small;  
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• In some cases, the bagging ensemble model had a minor or negative impact on the 

prediction accuracy over SVR and KNN. This result may be explained by the fact that 

bagging improved the performance of unstable base models (e.g., RT), whereas it 

decreased the performance of stable models (e.g., KNN);   

• As in the previous chapter, applying an additive regression ensemble model to KNN 

produced the same results as that of the KNN of the individual models because it is an 

instance-based rather than model-based approach, and additive regression was unable 

to improve the initial predictions of KNN. In contrast, the prediction accuracy of 

bagging ensemble models was better than that of additive regression ensemble models 

in this chapter and in Chapter 4; 

• Stacking ensemble models increased the prediction accuracy over RT and MLP, but 

there was no significant difference between stacking and these models, and the effect 

sizes were small. This observation further supports the finding in the previous chapter, 

in which stacking only increased the performance of the individual models that did not 

perform well; 

• APE increased the prediction accuracy over RT, MLP, and M5Rules, but there were 

no significant differences between these models and APE. However, APE 

outperformed and differed significantly from RT in the Eclipse PDE UI and Mylyn 

datasets, along with the MLP in the Equinox Framework dataset. APE enhanced the 

performance of all individual models using the Pred value and achieved the best, 

second-best, or third-best performance compared to other investigated models;  

• The prediction accuracy of APE ensemble models was better than that of stacking 

ensemble models, and there were significant differences between stacking and APE in 

the Eclipse PDE UI dataset. 

The findings of the current study suggest that ensemble models can improve the 

prediction accuracy of some individual models (i.e., RT, MLP and M5Rules), but there were 

no significant differences between individual models and ensemble models, except for a few 

cases in heterogeneous ensemble models. SVR and KNN as individual models or as a base 

model in bagging and additive regression is a recommended technique for software 

maintainability prediction, followed by APE. Additionally, the prediction models applied on 
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large datasets (i.e., Eclipse PDE UI and Mylyn) have higher accuracy prediction compared 

with those applied on small datasets. 

In Study 5.B, the recently developed Auto-WEKA tool was demonstrated to the problem 

of identifying the best prediction accuracy model for software maintainability prediction 

among various machine learning models with different configurations for tuning parameters 

and selected features.  

The final result provided the best-selected models in each dataset, which are SMOreg in 

Eclipse JDT Core dataset, RandomSubSpace in Eclipse PDE UI dataset, KStar in Equinox 

Framework dataset, and RandomForet in Lucene and Mylyn datasets. The results obtained in 

the study indicate that using the Auto-WEKA tool can considerably influence the performance 

of software maintainability prediction models. The results indicate that all the selected models 

using the Auto-WEKA tool outperformed the best model prediction in Study 5.A, except KNN 

and SVR in Eclipse JDT Core and Lucene, respectively.  

The next chapter will further investigate and analyse recent and large datasets for 

software maintainability. In addition, it will explore the extent to which FS and sampling 

techniques can assist in meeting accurate predictions. Moreover, other types of machine 

learning models will be constructed for the classification problem to predict change-proneness. 
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Chapter 6. Third Empirical Study: Ensemble 
Techniques to Predict Change-
Proneness Using Newest and Largest 
Datasets 

This chapter aims to investigate the performance of the ensemble model, FS and sampling 

techniques on prediction change-proneness using four scenarios: (a) datasets without FS and 

sampling techniques, (b) datasets with FS and without sampling, (c) datasets without FS and 

with sampling and (d) datasets with FS and sampling. For this purpose, two types of filter-

based feature-ranking techniques, namely Relief and Pearson correlation coefficient, were 

combined using the ensemble concept to determine the best metrics by averaging their ranks 

and selecting the best ten metrics. The sampling techniques (i.e., SMOTE, SpreadSubsample 

and randomize) were also combined to solve the imbalance dataset problem. Moreover, three 

individual models (NB, SVM, KNN) and one ensemble model (RF) were employed to predict 

change-proneness. These models were applied on seven publicly available datasets (i.e., 

refactoring datasets) extracted from open-source software systems [58]. The performance of 

the predicted models was compared and evaluated using the AUC. In the previous empirical 

study, the impact of parameter tuning using Auto-weka was explored; however, the best 

prediction model in the second empirical study performed better than the selected model by 

Auto-weka in two datasets. Therefore, this chapter uses a new method to evaluate the impact 

of the tuning Mtry parameter, which is the number of variables randomly sampled for splitting 

in RF using the grid search. 

6.1. Introduction 

Change-proneness is a dependent variable that indicates whether a change was performed in a 

given class (e.g., inserting, removing or editing) and can capture the element of 

maintainability. This Boolean variable has the value TRUE if a change was made on the class 

(regardless of the type or number of changes) or FALSE if no change was made [5]. A lower 

number of TRUE values in a system, or a lower value of change-proneness, indicates better 
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maintainability, i.e., requires lower maintenance effort. Koru and Tian stated that change-

proneness is an essential external quality attribute that can decrease the costs of maintenance 

and increase the quality of source code [203]. Metrics have a powerful correlation with change-

proneness and can be utilised to measure the internal features of software systems as 

independent variables, such as cohesion, complexity, and inheritance [203]. However, the 

number of metrics used in the literature to predict change-proneness is considered limited 

[204].  

Ensemble concepts, which combine several outputs instead of a single output, have been 

performed in the machine learning problem to improve the final results. This concept can be 

applied in the machine learning models [16, 23], FS [205] and sampling techniques [206]. 

However, there are few studies predicting change-proneness using ensemble models [5], and 

no other study that uses ensemble FS and sampling techniques.  

The key contributions of this chapter are: 

• The capability of the ensemble model (RF) in the prediction of change-proneness 

was evaluated using four different scenarios. To the best of the author’s 

knowledge, this is the first study to investigate aspects like the ensemble model, 

ensemble FS and ensemble sampling techniques in predicting change-proneness. 

The most important finding was that RF provided a significant improvement over 

other prediction models and obtained the highest value of AUC in all scenarios;  

• Study using recent and varied datasets, two of which are large and contain more 

than 1000 classes (i.e., mct and titan). No previous studies were found using these 

datasets to predict change-proneness; 

• The impact of Mtry parameter tuning in RF was explored using grid search. 

6.2. Motivation 

Many research studies have explored the utilisation of prediction models in software 

maintainability. Most of these studies have predicted change maintenance effort using 

CHANGE metric [7, 10-18] and MI [32, 83], but little progress has been made in predicting 

change-proneness in software maintainability [16, 23]. 
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FS techniques have received increased attention in recent years owing to their ability to 

improve prediction accuracy and decrease the time to create the model. Additionally, perhaps 

the main advantage of FS is to identify the best subset attributes (i.e., independent variables) 

to predict the target attribute (i.e., dependent variable). In the literature related to software 

quality prediction, a range of various FS and prediction models have been used to predict 

software quality (i.e., defect, change metric, MI and change-proneness).  Table 6.1 shows a 

summary of the selected studies in the systematic review of FS techniques [4] along with the 

datasets, prediction models and type of prediction. The ensemble method, which combines the 

output of several FS methods, was used in four selected studies (S4, S8, S9 and S15). 

According to the systematic review of FS techniques [4], three selected studies (i.e., S8, S9 

and S15) indicated that the ensemble method produced a better prediction accuracy compared 

to single FS. 

  Class imbalance occurs when one class of the dataset has a small number of instances 

compared to the others. This is another problem of the dataset because machine learning 

models which fail to account fort his end up predicting only from the majority class and 

ignoring the minority class. Various sampling techniques may be used to resolve this problem 

by adjusting the class distribution. These techniques are generally classified into three types: 

oversampling to increase the observations of the minority class (e.g., SMOTE [53] and 

UPSAMPLE [206]); under sampling to decrease the observations of the majority class (e.g., 

SpreadSubsample [50] and Random under sampling [207]); and ensemble sampling to 

combine the results of over and under sampling (e.g, SMOTE and bootstrap sampling [208]). 

Even though ensemble sampling techniques have been proven to increase the prediction 

accuracy, their application in software quality prediction is also relatively rare [206]. These 

sampling techniques were applied in various fields (e.g., telecommunications management 

[49], emerging patterns [50], medical diagnosis [51] and text categorisation [52]). Moreover, 

several studies in defect prediction have used multiple techniques to resolve the class 

imbalance problem, such as SMOTE [209] data resampling with boosting [210], random under 

sampling [54], threshold moving [211], resampling with adapt online change classification 

[212], random under sampling [207] and a roughly balanced bagging model [213]. However, 

the application of these techniques in studies of software maintainability prediction is limited 

(e.g., nearer neighbour [55]).  
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RF achieved the highest prediction accuracy compared with other prediction models to predict 

software change [47] and fault [37]. Although several studies have used RF with default 

parameter settings [37, 47, 131, 214], there is no theoretical justification to apply these default 

values [138]. As the performance of RF depends on parameter values, it is necessary to 

investigate RF tuning based on the parameters [138]. Therefore, the impact of Mtry parameter 

tuning in RF using the grid search was investigated in this study. 

Table 6.1: Summary of FS, datasets and prediction models in software quality prediction. 
Study 

ID 
Ref FS method Dataset Prediction model 

Type of 

prediction 

S1 [215] 
Filter and wrapper method inside 

two classifiers: NB and DT 

Public dataset from 

PROMISE software project 
repository 

NB and DT Defect 

S2 [216] 
Filter and wrapper method inside 

two classifiers: NB and DT 

Public dataset from 

PROMISE software project 
repository 

IB1 and DT Defect 

S3 [37] Correlation-based feature selection 

Public dataset from 

PROMISE software project 
repository 

AIRS, CLONALG, 
Immunos, RF, DT, NB 

Defect 

S4 [217] 

Ensemble FS: automatic hybrid 

search, rough sets, Kolmogorov-

Smirnov and probabilistic search 

Public datasets extracted from 

telecommunications 

software systems 

KNN, MLP, SVM, NB 
and LR 

Defect 

S5 [218] 
Wrapper method inside support 

vector machine 

Public datasets extracted from 

telecommunications 

software systems 

SVM, NB, MLP, KNN 
and LR 

Defect 

S6 [214] 
DT induction, Relief and SVM of 

FS 

Public dataset from 
PROMISE software project 

repository 

18 classifiers: NB, DT, 
KNN, SVM, MLP, LR, 

RF et al. 

Defect 

S7 [219] 

information gain, Chi-square (χ2), 
two types of Relief (RF and RFW) 

, gain ratio and symmetrical 

uncertainty  

Public dataset from 

PROMISE software project 
repository 

KNN and SVM Defect 

S8 [220] 

Ensemble FS: gain ratio, 
Kolmogorov–Smirnov 

statistic, chi-square, Relief 

algorithm, information gain, 
symmetrical uncertainty, 

exhaustive, heuristic and 

automatic hybrid searches 

Public datasets extracted from 

telecommunications 
software systems 

NB, MLP, SVM, LR 

and KNN 
Defect 

S9 [221] 

Ensemble FS: Relief, information 

gain, gain ratio, chi-square and 

symmetrical uncertainty 

Public dataset from 

PROMISE software project 

repository 

NB, MLP, KNN and 
LR. 

Defect 

S10 [222] 
Information 

gain, Relief, gain ratio, chi-square, 

and symmetrical uncertainty 

Public datasets extracted from 
telecommunications software 

systems 

NB, MLP, KNN, SVM 
and LR 

Defect 

S11 [223] F-score 
Public dataset from 

PROMISE software project 

repository 

LSTSVM, DT, NN, 

SVM, KNN and NB 
Defect 

S12 [224] 

Bayesian networks and K2 search 
algorithm, CfsSubsetEval and 

BestFirst search method, Relief 

and Ranker attribute evaluation 
method 

Public dataset from 

PROMISE software project 

repository 

NB Defect 

S13 [131] 

Greedy forward selection, 

correlation-based method with its 

two variants: Pearson’s correlation 
and Fisher’s criterion 

Public dataset from 
PROMISE software project 

repository 

Gradient boosting, LR, 

APE, RF, stochastic 

gradient descent, 
multinomial NB, 

Bernoulli NB, regular 

and weighted support 
vector machines 

Defect 

S14 [18] 
Rough set analysis with K-means 

clustering 

Public datasets extracted from 

two commercial software 

Hybrid neural network 

and fuzzy logic 
approach 

Change 

maintenance 
effort 
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products and published as an 

appendix [9] 

S15 [83] 

Ensemble FS: BestFirst, linear 

forward selection, greedy 
stepwise, evolutionary search, 

genetic algorithm, PSO, tabu 

search 

Partial datasets extracted 
from 20 systems available in 

sourceforge.net 

MLR, MLP, SVR and 

M5P regression tree 

Maintainability 

index 

S16 [23] Correlation-based FS 
Partial dataset extracted from 

android application packages 

MVEC, WVEC, HIEC, 
WVHIEC and seven 

individual particle 

swarm optimizations 

Change-

proneness 

** NB: Naive Bayes, DT: Decision Tree, IB: aninstance–base classifier, RF: Random Forests, AIRS: Artificial Immune Recognition 

Systems, KNN: K Nearest Neighbors, SVM: Support vector machine, SVR: Support vector regression, MLP: Multilayer perceptron, LR: 

Logistic Regression, MLR: Multi Linear Regression, LSTSVM: Linear Twin Support Vector Machine,  NN: Neural Network, CLONALG 

: Clonal selection algorithm, MVEC: Majority Voting Ensemble Classifier, WVEC: Weighted Voting Ensemble Classifier, HIEC: Hard 
Instance Ensemble Classifier, WVHIEC: Weighted Voting Hard Instance Ensemble Classifier. 

 

 

The lessons learned from previous studies discussed above and selected primary studies 

in Chapter 2 are as follows: 

• Relatively few studies have been performed in prediction change-proneness 

compared with other software maintainability measurements such as change 

maintenance effort and MI; 

• Several machine learning models have been employed in regression problems, 

whereas less work has been performed in classification problems;  

• A limited number of metrics have been used as predictors of change-proneness; 

• Although ensemble models have yielded improved prediction accuracy over 

individual models, limited studies used these models to predict change-proneness 

(e.g., bagging and boosting in [16] (S47 in selected primary studies in Chapter 

2) and majority voting, weighted voting and hard instance ensemble [23] (S56 in 

selected primary studies in Chapter 2)); 

• There is clear evidence of the lack of adequate research on the use of FS and 

sampling in change-proneness, and no application of the ensemble concept in 

these techniques in change-proneness was found;  

• Despite several uses of FS proposed in Table 6.1, only one study used FS to 

predict change-proneness. This study used partial datasets, which are not publicly 

available, but they were collected from open-source software systems; 

• The systematic review [4] indicated that the FS techniques used in Table 6.1 

achieved better prediction accuracy than using all features (i.e., without applying 
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FS). Moreover, the use of ensemble FS outperformed other FS methods in three 

studies (i.e., S8, S9 and S15); 

• RF was the most frequently used in the systematic review of FS techniques [4] 

and achieved the best prediction accuracy in previous studies [37, 47], Thus, 

there is a real need to perform RF in this chapter and investigate the influence of 

Mtry parameter tuning using the grid search. 

To fill the gaps in these previous studies, the empirical study was designed to predict 

change-proneness using three individual models and one ensemble model. These models are 

the most frequently applied in Table 6.1. Additionally, ensemble FS techniques were used, 

including Relief and Pearson’s correlation, which are the most popular FS techniques used in    

Table 6.1. To make the predictive models refutable, confirmable and repeatable, recent public 

datasets published in [58] and available on the PROMISE Repository [109] were used. 

6.3. Research Method 

The research method is defined by the research objectives, RQs and research framework to 

address the problem of predicting change-proneness accurately. The primary objective of this 

chapter is to evaluate the impact of ensemble models (RF), ensemble FS (Relief and Pearson’s 

correlation coefficient) and ensemble sampling techniques (SMOTE, SpreadSubsample and 

randomize) on the performance of the prediction of change-proneness. The interaction between 

feature selection and sampling is examined via the following four scenario:  

First scenario: datasets without FS and sampling techniques. 

Second scenario: datasets with FS and without sampling techniques. 

Third scenario: datasets without FS and with sampling techniques. 

Fourth scenario: datasets with FS and sampling techniques.  

Table 6.2 illustrates the scenarios explored in the empirical study. 

Table 6.2: Scenarios in the empirical study. 
 FS techniques Sampling techniques 

First scenario No No 

Second scenario Yes No 

Third scenario No Yes 

Fourth scenario Yes Yes 
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These scenarios were studied because the datasets present two problems: (I) high 

dimensionality, which includes irrelevant and redundant features, and (II) imbalanced classes. 

This poses a difficulty regarding which model to apply first: the FS for the high dimensionality 

or sampling techniques for the imbalanced classes. Furthermore, these scenarios help to 

evaluate and compare the impact of ensemble FS and sampling techniques separately in the 

second and third scenarios and together in the fourth scenario. Three data analysis steps are 

performed before conducting these scenarios: (I) removal of empty values attributes; (II) 

removal of redundant attributes, which are perfectly correlated with the dependent variable; 

(III) removal of attributes that have a strong correlation with other attributes. Moreover, there 

are three further steps after applying data analysis methods, namely normalisation, ensemble 

FS and ensemble sampling techniques (see Figure 6.2). 

The fourth scenario is designed to resolve both problems (high dimensionality and class 

imbalance) and to avoid biased results from the sampling techniques. Therefore, the ensemble 

FS was applied using two filter-based feature ranking techniques, Relief and Pearson’s 

correlation coefficient, to the fourth set of differently sampled data purely for the purpose of 

performing FS techniques. The sampled data includes datasets without sampling, datasets with 

SMOTE sampling, datasets with SMOTE and SpreadSubsample with the parameter set to 1, 

and datasets with SMOTE and SpreadSubsample with the parameter set to 2.1, and these 

parameters define the distribution spread ratio between the minority and majority classes as 

50:50 and 35:65. Then, the average of the feature ranking techniques across above-mentioned 

sampled data was computed. Finally, the best ten features with the highest ranking from the 

Figure 6.1: Framework of the fourth scenario. 
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datasets in the third scenario were selected (i.e., datasets without FS and with sampling 

techniques, namely SMOTE, SpreadSubsample with 2.1 ratio and randomize). Figure 6.1 

illustrates the framework of the fourth scenario. 

The five RQs were focused to accomplish the objectives of this chapter: 

RQ6.1) What is the impact of ensemble FS techniques on the performance of prediction 

models? 

RQ6.2) What is the impact of ensemble sampling techniques on the performance of prediction 

models? 

RQ6.3) What is the impact of applying both ensemble FS and sampling techniques on the 

performance of prediction models? 

RQ6.4) How effective are individual models and how do ensemble models perform when 

compared to the individual models in the context of predicting change-proneness? 

RQ6.5) What is the impact of the Mtry parameter tuning in RF?  

Figure 6.2 shows the framework of the research method, which contains several steps: 

Step 1. Loading of seven datasets (i.e., oryx, junit, antlr4, mcMMO, MapDB, mct and titan) 

that were manually validated by Hegedűs et al. [58] to analyse refactorings through several 

subsequent system releases [58]. These datasets were extracted from seven open-source Java 

systems in GitHub [27], and  include 125 source code metrics that form the independent 

variables and one metric called Refact_Sum that is used as the dependent variable to reflect 

change-proneness and capture the element of maintainability. The datasets are described in 

Section 3.4.3; 

Step 2. Analysis of the datasets to eliminate the metrics that contain empty values, direct 

relationships with the dependent variable, or are redundant metrics (strongly correlated with 

each other). This step is part of the feature selection process performed before all scenarios 

mentioned in Table 6.2 using manual analysis, descriptive statistics and Spearman correlation;  

Step 3. Application of normalization to the set values of the dataset between 0 and 1; 

Step 4. Execution of ensemble FS using the Relief and Pearson’s correlation coefficients, 

calculation of the average of these techniques, and selection of the best ten metrics (features) 

from each dataset;  

Step 5. Execution of ensemble sampling techniques, namely SMOTE, to perform 

oversampling by increasing the number of minority classes, and SpreadSubsample to perform 
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under sampling by decreasing the number of majority classes, and randomization to randomly 

rearrange the instances. The main reason for applying this randomization is to avoid overfitting 

in ten-fold cross-validation because the SMOTE technique inserts additional instances (True 

values) at the end of the dataset; 

Step 6. Execution of four different scenarios across seven datasets: First scenario (i.e., Steps 

1, 2 and 3), Second scenario (i.e., Steps 1, 2, 3 and 4), Third scenario (i.e., Steps 1, 2, 3 and 

5) and Fourth scenario (i.e., Steps 1, 2, 3, 4 and 5) (see Figure 6.2).  

Step 7. Division of all previous datasets into ten sets using ten-fold cross-validation. The 

datasets were divided into training sets to build prediction models and test sets to compare the 

performance of prediction models using AUC; 

Step 8. Construction of prediction models, which encompass three individual models (NB, 

SVM and KNN) and one ensemble model (RF); 

Step 9. Prediction of change-proneness by evaluation and comparison of the results of four 

prediction models across four scenarios to determine the most accurate prediction model using 

AUC as the measure of comparison. 



 

188 

 

 

6.4. Experimental Data Setup 

The following subsections present the evaluation of the datasets performed in this empirical 

study, along with the explanation of the dependent and independent variables. They also 

provide details about the dataset analysis using descriptive statistics and Spearman correlation. 

Finally, they show the data pre-processing that includes normalization, FS and sampling.  

6.4.1 Evaluation of refactoring datasets   

In this chapter, seven publicly available datasets proposed in [44], called refactoring datasets, 

were performed. However, only the class metrics that contain 125 independent variables, and 

Figure 6.2: Framework of the research method. 
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one dependent variable (i.e., Refact_Sum), defined as the total number of refactoring changes 

that occurred, were used. Refact_Sum was used as an indicator for change-proneness and 

assumes the values True or False, making this a classification problem.  

Additionally, the relative maintainability index  attribute was removed from the datasets  

and not used as a dependent variable because it is a relative attribute derived from a set of 

source code metrics [58], some of  which appear as independent variables. As this index is 

derived from metric values, rather than being directly based on observations of maintenance 

effort, it does not accurately reflect the maintenance effort; in addition, as a dependent variable, 

a machine learning model would just learn the function that defines the relative maintainability 

index [58]. The explanation of independent and dependent variables will be presented in the 

next two sections. Table 6.3 provides a summary of the datasets used in this chapter, including 

dataset name, number of classes, number of releases, time interval and URL [58]. The new 

version of these datasets after removing the refactoring variables and relative maintainability 

index and after converting Refact_Sum to Change_Prone is provided in the following link: 

https://zenodo.org/record/4266681#.X6rMvmgzY2w 

 
Table 6.3: Summary of the datasets. 

Dataset name # Classes # Release Time interval URL 

antlr4 436 5 21/01/2013–22/01/2015 https://github.com/antlr/antlr4 

junit 657 8 13/04/2012–28/12/2014 https://github.com/junit-team/junit 

MapDB 439 6 01/04/2013–20/06/2015 https://github.com/jankotek/MapDB 

mcMMO 301 5 24/06/2012–29/03/2014 https://github.com/mcMMO-Dev/mcMMO 

mct 2162 3 30/06/2012–27/09/2013 https://github.com/nasa/mct 

oryx 536 4 11/11/2013–10/06/2015 https://github.com/cloudera/oryx 

titan 1486 6 07/09/2012–13/02/2015 https://github.com/thinkaurelius/titan 

6.4.2 Dependent variable: change-proneness 

Change-proneness is a dependent variable that reflects changes performed in a given class 

(e.g., inserting, removing or editing) and can capture the element of maintainability. This 

Boolean variable has the values TRUE if the change was made on the class or FALSE if no 

change was made, regardless of the types and number of changes. The Refact_Sum attribute 

contains the total number of source code refactoring operations that have been applied in each 

class a certain observation period. This attribute was treated as Boolean by assigning TRUE if 

the sum of refactoring contained any number or FALSE if the sum of refactoring was zero. 

Table 6.4 lists the number of True and False values in the change-proneness attribute (i.e., 

dependent variable). This table indicates the differences between the number of True and False 

https://zenodo.org/record/4266681#.X6rMvmgzY2w
https://github.com/antlr/antlr4
https://github.com/junit-team/junit
https://github.com/jankotek/MapDB
https://github.com/mcMMO-Dev/mcMMO
https://github.com/nasa/mct
https://github.com/cloudera/oryx
https://github.com/thinkaurelius/titan
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values, which makes the class of dependent variable highly imbalanced. To the best of the 

author’s knowledge, there is no standard approach to classify the difference between the 

number of True and False values. Therefore, this difference was categorized into small, 

medium and large according to the percentage of True values in the datasets: values less than 

1% correspond to a large difference, values less than 2% refer to a medium difference and 

values out of these ranges indicate a small difference. The percentage of True values in Table 

6.4  is considered very small, ranging from 0.69% to 5.28%. 

Table 6.4: Number of True and False values in the change-proneness attribute. 
Dataset 

name 
# Instances 

# True 

value 

% True 

value 
# False value 

% False 

value 

Category of difference 

between True and False 

antlr4 436 23 5.28% 413 94.72% Small 

junit 657 9 1.37% 648 98.63% Medium 

MapDB 439 4 0.91% 435 99.09% Large 

mcMMO 301 4 1.33% 297 98.67% Medium 

mct 2162 15 0.69% 2147 99.31% Large 

oryx 536 15 2.80% 521 97.20% Small 

titan 1486 13 0.87% 1473 99.13% Large 

6.4.3 Independent variables: source code metrics 

The independent variables include 125 metrics, which can be grouped into ten categories as 

follows: cohesion, complexity, coupling, documentation, inheritance, size, code duplication, 

warning, rules and refactoring. All the independent variables are numeric and were collected 

using the SourceMeter static code analysis tool [156]. Hegedűs et al. describe how they 

extracted these metrics [58], and their explanation is also listed on the tool’s website [156]. 

The metrics used as independent variables in this chapter and their category are provided in 

Table 3.6 in Section 3.4.3. 

6.4.4  Datasets analysis 

The primary objective of the dataset analysis is to remove the metrics that are directly related 

to the dependent variable, correlated with each other, or with zero values. This stage is 

performed using the following techniques: manual evaluation, descriptive statistics and 

Spearman correlation. First, 23 refactoring metrics mentioned in Table 3.6 were removed from 

the independent variables. These are related to specific refactoring changes that have taken 



 

191 

 

place and are not relevant for the prediction of change proneness and would also prejudice the 

outcome of the study as they identify when a change has been made. 

Second, metrics with zero values in the results of descriptive statistics were removed 

(see Table 6.5), because they cannot be used as predictors for target variable, as recommended 

by Briand et al. [198]. From Table 6.5, 21 metrics were removed from some of the datasets, 

and 7 metrics were removed from all datasets.  

Table 6.5: Metrics with zero values that were removed using descriptive statistics 

 

Third, a Spearman correlation, which is a well-known statistical measurement to 

compute the strength (i.e., strong or weak) and direction (i.e., positive or negative) of the 

relationship between two variables, was performed [225]. This correlation was used to remove 

redundant variables and prevent multicollinearity that occurs when one independent variable 

in a prediction model can be predicted from other independent variables with a high accuracy 

[226]. This FS technique was applied before building any prediction model to avoid skewed 

or misleading results. Variables with a correlation coefficient of +1.0, +0.9, -1.0 or -0.9 were 

eliminated; however, no negative correlations were found in these datasets. Table 6.6 presents 

the results of the strong correlations and shows the attributes that were removed using 

Spearman correlation. The results of this table indicate that 35, 32, 31, 37, 33, 32 and 38 

metrics were removed from antl4, junit, MapDB, mcMMO, mct, oryx and titan, respectively. 

Furthermore, the CC metric had a strong correlation with CCL, CCO, CI, CLC, CLLC, LDC, 

Metrics 
Datasets 

antl4 junit MapDB mcMMO mct oryx titan 

WarningBlocker * * * *  * * 

Android Rules * * * * * * * 

Brace Rules      *  

Clone Implementation Rules  * * *    

Code Size Rules * * * * * * * 

Comment Rules * * * * * * * 

Complexity Metric Rules   *      

Coupling Rules * * * * * * * 

Empty Code Rules *       

Finalizer Rules * * * *  * * 

Import Statement Rules    *  *  

J2EE Rules   * *  *  

Jakarta Commons Logging Rules  * *     

JavaBean Rules  *  * *   

MigratingToJUnit4 Rules * * * * * * * 

Migration Rules *   *  * * 

Migration13 Rules * * * * * * * 

Migration14 Rules * * * * * * * 

Migration15 Rules * * * * * * * 

Security Code Guideline Rules    *    

Vulnerability Rules * * * *  * * 
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LLDC and Clone Metric Rules in all datasets and NL and NLE were also strongly correlated 

in all datasets. 

Table 6.6: Strong correlation metrics using Spearman correlation. 
Strong correlation  metrics with 1 or 0.90 values Datasets 

Metrics retained Metrics removed antl4 junit MapDB mcMMO mct oryx titan 

CC CCL ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

CCO ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

CI ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

CLC ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

CLLC ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

LDC ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

LLDC ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Clone Metric Rules ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

NL NLE ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

WMC TNOS ✓       

TNLM ✓       

TLLOC ✓     ✓  

TLOC ✓     ✓  

NOS ✓      ✓ 

RFC ✓       

LLOC ✓    ✓ ✓ ✓ 

LOC ✓    ✓ ✓ ✓ 

NLM ✓ ✓   ✓  ✓ 

NOD   ✓     

NLS   ✓     

TNPM    ✓    

Complexity Metric Rules    ✓    

String and StringBuffer Rules    ✓    

RFC AD       ✓ 

PDA       ✓ 

AD DLOC  ✓ ✓  ✓ ✓  

PDA  ✓ ✓  ✓ ✓  

TNOS    ✓    

TNPA    ✓    

CD TCD ✓ ✓ ✓  ✓ ✓ ✓ 

CLOC  ✓ ✓  ✓ ✓ ✓ 

TCLOC  ✓ ✓  ✓ ✓  

TNLS    ✓    

TNS    ✓    

DLOC PDA    ✓    

TCLOC       ✓ 

TCD TCLOC    ✓    

CLOC DLOC ✓       

TCLOC ✓       

PUA NLPM ✓       

TNLPM ✓       

Documentation Metric Rules ✓       

DIT NOA ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

NOP  ✓ ✓ ✓ ✓ ✓ ✓ 

NOC CBO ✓       

NOD  ✓  ✓ ✓ ✓ ✓ 

LLOC LOC  ✓ ✓     

NOS  ✓ ✓ ✓  ✓  

TLLOC  ✓ ✓    ✓ 

TLOC  ✓ ✓    ✓ 

TNOS   ✓   ✓ ✓ 

NPA    ✓    

TNLPA    ✓    

NLPA    ✓    

LOC TLLOC    ✓    

TLOC    ✓    

NA TNA  ✓  ✓ ✓ ✓ ✓ 

NG TNG ✓  ✓ ✓  ✓  

NLG    ✓    
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Table 6.7 shows the number of metrics removed at each data analysis stage and reveals 

that the number of independent variables remaining was 54, 55, 57, 48, 60, 55 and 52 in antl4, 

junit, MapDB, mcMMO, mct, oryx and titan datasets, respectively. 

Table 6.7: Number of metrics removed in each data analysis technique. 

Analysis 

technique 
Description of metrics removed 

Datasets 
antl4 junit MapDB mcMMO mct oryx titan 

Number of metrics removed 

Manual 

analysis 
Remove refactoring metrics that are 

directly related to the dependent variable 23 23 23 23 23 23 23 

Descriptive 

statistics 
Remove metrics with zero values 13 15 14 17 9 15 12 

Spearman 

correlation 

Remove metrics with a strong correlation 
with others 35 32 31 37 33 32 38 

 

  The descriptive static of these metrics after applying data analysis are presented in 

Table C.2, Table C.3, Table C.4, Table C.5, Table C.6, Table C.7 and Table C.8 in Appendix 

C. The minimum values are zero or one in all datasets. In contrast, the maximum values are 

575 in CLOC metric in antlr4 dataset, 662 in TNM metric in junit dataset, 11272 in LLOC 

metric in MapDB dataset, 1160 in LOC metric in mcMMO dataset, 1390 in WarningInfo 

metric in mct dataset, 179 in NII metric in oryx dataset and 1104 in WarningMinor metric in 

titan dataset. Thus, there was a considerable difference between the maximum and minimum 

NLA TNLA ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

NLG TNLG  ✓    ✓ ✓ 

NLM NLPM  ✓ ✓  ✓  ✓ 

NM    ✓    

TNLM   ✓ ✓ ✓ ✓ ✓ 

NLPA TNLPA ✓     ✓ ✓ 

NPA  ✓      

NLPM NII ✓       

NLS ✓       

TNLPM  ✓  ✓ ✓ ✓  

NLS TNLS  ✓   ✓ ✓ ✓ 

NS   ✓ ✓    

NPM TNPM  ✓   ✓   

TNLM TNM    ✓    

NM NPM ✓  ✓  ✓  ✓ 

TNM ✓  ✓  ✓ ✓ ✓ 

TNPM ✓      ✓ 

TNLS TNS   ✓     

NPA TNPA       ✓ 

NOS TLLOC     ✓   

TLOC     ✓   

TNOS     ✓   

NS TNS  ✓     ✓ 

WarningInfo TNS ✓       

Documentation Metric Rules  ✓      

Design Rules    ✓    

Vulnerability Rules     ✓   

Brace Rules       ✓ 

WarningMajor Unnecessary and Unused Code 
Rules' 

      ✓ 
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values in all datasets. For this reason, normalization was applied, which will be described in 

the next section. Another important finding was that the average values of WarningInfo metrics 

were high in all datasets, ranging from 8 to 15. The remaining metrics have different values of 

descriptive static, which suggests that the datasets have varying characteristics. 

6.4.5 Data pre-processing 

Data pre-processing is a fundamental data mining technique performed to resolve issues 

related to the datasets, such as incorrect, missing, imbalanced and inconsistent data [125]. The 

datasets used in this chapter had several problems that required the application of some of the 

data pre-processing techniques. Initially, as the values of the independent variables had a 

different range, a normalization was applied to set their range from 0 to 1. Second, as the 

datasets are considered high dimensional because they contain several independent variables 

(i.e., 125 metrics), sets of FS were implemented to determine relevant features. Finally, as the 

classes in the dependent variable (i.e., change-proneness) were clearly imbalanced, as 

presented in Table 6.4; sampling techniques were applied to balance datasets. These techniques 

are described in the next sections. 

A. Normalization 

Normalization is a common technique employed when the values of numeric data have very 

different scales. It is also essential for the application of some machine learning models that 

use scale-sensitive distance metrics, such as KNN which uses Euclidean distance to identify 

the nearest neighbours.  In this study, the datasets were linearly rescaled using the Min-Max 

normalization to normalize all numeric values in the datasets to the interval  [0, 1]  [125]. 

B. Feature selection 

Spearman correlation was applied in the data analysis step to avoid multicollinearity, and this 

was necessary for all scenarios. In this section, FS was performed in the second and fourth 

scenarios as a further step to improve the quality of the dataset as it still contained numerous 

features. Additionally, FS is considered one of the critical steps in data pre-processing, and it 

helps to address two general types of problems in the dataset [125]: irrelevant, which refers to 

features that do not have any effect on the target features, and redundant, which refers to two 

or more independent variables with the same role [227]. In addition, these techniques have 

been used to increase prediction accuracy, reduce the model building time, and identify the 
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most vital features that affect the target attribute (e.g., change-proneness or fault-proneness, 

etc.). There are four basic methods currently adopted in research on FS: (1) the filter method, 

which determines the features without building machine learning models using heuristically 

identified relevant knowledge [228]; (2) the wrapper method, which combines features into a 

prediction model to choose relevant features [229]; (3) the embedded method, which applies 

FS as a part of the modelling process and does not divide the model from the FS part [230]; 

and (4) the ensemble method, which integrates the output of several FS techniques (e.g., 

Pearson’s correlation coefficient and best first techniques) based on a defined combination 

(e.g., the highest ranking and the best subsets features) [205]. Although the ensemble FS 

method has proven to be an excellent method to improve the prediction accuracy compared 

with other individual methods, a limited number of studies have applied this method in 

software quality prediction [4]. 

In this chapter, the ensemble method was used to determine the best features using two 

types of filter-based feature ranking techniques, namely Relief and Pearson’s correlation 

coefficient. These techniques were chosen mainly because they are the most frequently 

performed in the selected primary studies mentioned in Table 6.1. First, these techniques were 

applied on the datasets that assign a score to each feature; then, the average score of two filter-

based feature ranking techniques was calculated. Second, the best ten features that record the 

highest scores were selected. There is no clear evidence in the literature of a suitable number 

of features to select [207]; the number of features chosen was determined by previous studies 

either by identifying the number of features [222] or employing a cut-off value [118]. In most 

cases, these features had the same cut-off value (0.1). These techniques were applied using 

WEKA and the parameters were set as the default values. A brief description of the FS 

techniques used in this study is provided below. 

1. Relief 

Relief is one of the filter-based feature ranking techniques provided by Kira and Rendell [231]. 

The rank of features is computed in Relief by specifying a zero value to all feature weights. 

Then, Relief assigns a score of feature value by determining differences between the nearest 

pairs of instances. Relief compares a randomly selected instance with another instance in the 

same class (nearest hit), where the feature score decreases, and with another instance from a 

different class (nearest miss), where the feature score increases. Relief is performed by 
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searching nearest misses and hits and calculating their average to assign the weights of each 

feature. Finally, all the feature weights are modified to have a specific score. The Relief 

extends from Relief algorithm, which resolves multiclass and noise problems in the datasets 

[231]. 

2. Pearson’s Correlation Coefficient 

The Pearson’s correlation coefficient technique chooses metrics that have a high correlation 

with the target attribute [232]. This technique is implemented by calculating the correlation 

coefficient between independent and dependent variables. Pearson’s correlation is based on 

the covariance of two variables divided by the output of their standard deviation. According 

to the value obtained, the correlation can be classified into strong positive, with a value near 

to +1, strong negative, with a value near to -1, and uncorrelated, with a value equal to zero 

[177]. The relationship between variables can also be classified into positive (+), in which the 

variables are directly proportional, and negative (-), in which the variables are inversely 

proportional [48].  

C. Sampling 

The class imbalance occurs in the classification problem as the classes (True and False values) 

in the dependent variable (change-proneness) are not approximately similar in their 

distribution and one class has a very small minority. In this study, all the datasets have a very 

small minority of True values (see Table 6.4). Classes imbalance is considered a serious 

problem that leads to bias prediction model towards the majority class because a prediction 

model tends to increase prediction accuracy by disregarding the minority class and learning 

from the majority class [50].  

To resolve the class imbalance problem, sampling techniques are introduced, including 

oversampling to increase the observations of the minority class and under sampling to decrease 

the observations of the majority class. The main advantage of oversampling is to maintain all 

the observations of both the majority and minority classes, but this may result in overfitting. 

In contrast, as under sampling eliminates some observations, essential information may be 

removed. However, there is no clear indication of the best technique [233]. 

Therefore, ensemble sampling techniques were performed in this study to resolve the 

class imbalance problem and improve the overall performance. Sets of three sampling 

techniques that involve SMOTE for oversampling, SpreadSubsample for under sampling, and 
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randomize for mixing the order of the instances were applied. Ensemble sampling integrates 

the results of over and under sampling, in which SMOTE inserts more True values and 

SpreadSubsample removes some False values. A brief explanation of the sampling techniques 

used in this study is presented in the following sections. 

1. SMOTE 

SMOTE is an oversampling technique that increases the number of observations in the 

minority class. SMOTE generates synthetic objects based on the nearest neighbour of each 

sample in the minority class. This synthetic object is computed using the variation between 

samples of the feature space under consideration for each dependent variable and its nearest 

neighbour. After that, this variation is multiplied by a random number between 0 and 1. 

Therefore, the new observations are produced by integrating both features of the dependent 

variable and its neighbours and the observations are not duplicated from the existing 

observations in the minority class. This procedure effectively increases the observations of the 

minority class and creates comprehensive samples [50, 234]. The number of observations is 

based on the SMOTE percentage, which is a multiple of 100 and should not exceed 300, as 

recommended in [235]. Although previous studies used different percentages for SMOTE 

[234, 236], to the best of the author’s knowledge, there is no standard approach for defining 

the SMOTE percentage in the literature. Therefore, this parameter was adjusted to 100%, 

200% or 300% based on the category of difference between True and False mentioned in Table 

6.4, in which 100% was used for small, 200% for medium and 300% for large. However, the 

same ratio of SpredSubsample was used, which creates datasets with the same percentage of 

True and False values. Table 6.10 in in Section 6.5.2 includes results of SMOTE and more 

details about the selection of the percentage. 

2. SpreadSubsample 

The SpreadSubsample is an under sampling technique that decreases the number of 

observations in the majority class by generating a random subsample from the dataset. The 

SpreadSubsample identifies the class distribution by randomly eliminating observations from 

the majority class. This distribution is calculated using a Spread value, which is a parameter 

for the maximum class distribution spread between the minority and majority classes [50]. 

This parameter was set to 2.1, which indicates that the distribution spread ratio between the 
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minority and majority classes is 35:65. In the fourth scenario, this parameter was set to 1, 

which refers to a uniform distribution, thus the classes were balanced for FS only. 

3. Randomize 

The SMOTE technique inserts more instances (True values) at the end of the dataset, and this 

leads to overfitting in ten-fold cross-validation. For this reason, the randomization was applied 

to change the order of the instances [237]. 

Table 6.8 illustrates the parameters used in Weka for sampling techniques. As shown in 

this table, all the parameters are default values in Weka except the percentage in SMOTE, 

which is modified to 200 or 300 according to the difference between True and False, and the 

default value is 100. Additionally, the distribution spread in SpreadSubsample is changed to 

1.0 or 2.1 (the default value is 0.0). 

Table 6.8: Parameters used in Weka for sampling techniques. 
Sampling techniques Parameters 

SMOTE 

-C 0 -K 5 -P 100.0 -S 1 

-C 0 -K 5 -P 200.0 -S 1 

-C 0 -K 5 -P 300.0 -S 1 

SpreadSubsample 
-M 1.0 -X 0.0 -S 1 

-M 2.1 -X 0.0 -S 1 

Randomize -S42 

6.5. Results and Analyses 

This section discusses the results obtained. Initially, the results of the application of ensemble 

FS and ensemble sampling are presented. In sequence, the prediction accuracy of four 

prediction models in terms of AUC across four different scenarios are compared and evaluated, 

and the best prediction models are determined. Finally, the results are validated using tests of 

significance. 

6.5.1 Results of feature selection 

Relief and Pearson’s correlation coefficient techniques in the ensemble FS evaluate each 

feature or metric and assign a rank to them. Thus, the average of these techniques was 

calculated and the best ten metrics across seven datasets that impact on change-proneness were 

selected, which are provided in Table 6.9. The overall results demonstrate that different metrics 

subsets were obtained from each dataset, and that the maximum number of metrics selected in 
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each dataset was three, namely PUA, WarningInfo, WarningMajor, JUnit Rules, String and 

StringBuffer Rules, RFC, Cohesion Metric Rules and WarningMinor.  

 Table 6.9: Best ten metrics using ensemble FS method. 

6.5.2 Results of sampling 

Sets of three sampling techniques were employed, namely SMOTE, SpreadSubsample and 

randomize, and their results were integrated using an ensemble concept. The main reason to 

use these techniques is to resolve the class imbalance problem in the dependent variable 

(change-proneness). First, SMOTE was applied to increase the number of instances in the 

minority class. Different percentages were set for SMOTE to present the amount of 

Metrics 
Datasets 

antl4 junit MapDB mcMMO mct oryx titan 

CC ✓ ✓      

LCOM5 ✓     ✓  

PUA ✓ ✓    ✓  

NM ✓       

WarningInfo ✓ ✓     ✓ 

WarningMajor ✓  ✓  ✓   

Clone Metric Rules ✓       

JUnit Rules ✓  ✓    ✓ 

String and StringBuffer Rules ✓    ✓  ✓ 

Type Resolution Rules ✓       

NOI  ✓   ✓   

RFC  ✓   ✓  ✓ 

LLOC  ✓ ✓     

TNM  ✓      

TNOS  ✓      

WarningCritical       ✓ 

Cohesion Metric Rules  ✓  ✓  ✓  

Type Resolution Rules  ✓      

WarningMinor   ✓ ✓   ✓ 

Basic Rules   ✓ ✓    

Complexity Metric Rules   ✓  ✓   

Controversial Rules   ✓     

Migration Rules   ✓     

Naming Rules   ✓  ✓   

Strict Exception Rules   ✓     

NL    ✓ ✓   

CBOI    ✓    

NII    ✓    

NA    ✓    

NLA    ✓    

Empty Code Rules    ✓   ✓ 

Strict Exception Rules    ✓    

CBO     ✓   

Coupling Metric Rules     ✓   

Optimization Rules     ✓   

AD      ✓  

CD      ✓  

NLG      ✓  

NLM      ✓  

NLPM      ✓  

NPM      ✓  

Documentation Metric Rules      ✓ ✓ 

TNLPM       ✓ 

Size Metric Rules       ✓ 
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oversampling, and these percentages depend on the category of difference between True and 

False values mentioned in Table 6.4. Table 6.10 provides the number of True and False values 

before and after applying SMOTE, along with their percentages. 

Table 6.10: Results before and after applying SMOTE. 
 Before applying SMOTE 

% of 

SMOTE 

After applying SMOTE 

Dataset 

name 

# 

Classes 

# True 

value 

% 

True 

value 

# False 

value 

% 

False 

value 

# 

Classes 

# True 

value 

% 

True 

value 

# False 

value 

% 

False 

value 

antlr4 436 23 5.28% 413 94.72% %100 459 46 10.02 413 89.98 

junit 657 9 1.37% 648 98.63% %200 675 27 4 648 96 

MapDB 439 4 0.91% 435 99.09% %300 451 16 3.55 435 96.45 

mcMMO 301 4 1.33% 297 98.67% %200 309 12 3.88 297 96.12 

mct 2162 15 0.69% 2147 99.31% %300 2207 60 2.72 2147 97.28 

oryx 536 15 2.80% 521 97.20% %100 551 30 5.44 521 94.56 

titan 1486 13 0.87% 1473 99.13% %300 1525 52 3.41 1473 96.59 

 

The values in Table 6.10 indicate that after performing SMOTE, the classes in the 

dependent variable were still imbalanced. Although the classes in Table 6.10 were still 

imbalanced, the differences between the number of True and False values decreased compared 

with the differences in Table 6.4. In sequence, the SpreadSubsample technique was applied to 

decrease the number of instances in the majority class. The Spread value (default parameter) 

was changed from zero to 2.1, which indicates that the maximum ratio between the majority 

and minority classes is 35:65. The results of this technique are presented in Table 6.11. 

Table 6.11: Results before and after applying SpreadSubsample. 
 Before applying SpreadSubsample After applying SpreadSubsample 

Dataset 

name 
# Classes 

# True 

value 

%True 

value 

# 

False 

value 

% 

False 

value 

# Classes 

# 

True 

value 

%True 

value 

# False 

value 

% False 

value 

antlr4 459 46 10.02 413 89.98 142 46 32.39 96 67.61 

junit 675 27 4.00 648 96.00 83 27 32.53 56 67.47 

MapDB 451 16 3.55 435 96.45 49 16 32.65 33 67.35 

mcMMO 309 12 3.88 297 96.12 37 12 32.43 25 67.57 

mct 2207 60 2.72 2147 97.28 186 60 32.26 126 67.74 

oryx 551 30 5.44 521 94.56 93 30 32.26 63 67.74 

titan 1525 52 3.41 1473 96.59 161 52 32.30 109 67.70 

 

Finally, applying SMOTE inserts additional classes (rows) at the end of each dataset, 

which leads to overfitting in ten-fold cross-validation. Thus, randomization was performed to 

rearrange the rows and avoid the overfitting problem.   
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6.5.3 Results of prediction models 

In this section, the results of the empirical study are presented and analysed. Four prediction 

models involving three individual models (i.e., NB, SVM and KNN) and one ensemble model 

(RF) were employed on seven datasets. Each prediction model was constructed using four 

different datasets extracted from the four scenarios analysed (see Table 6.2). Therefore, the 

total number of prediction models was 112: 7 datasets × 4 scenarios × 4 prediction models.   

  Figure 6.3 shows the box plots of the AUC of each prediction model across the seven 

datasets for the four scenarios (see Table 6.2). The mean value of the AUC values is indicated 

by an “X”, the upper and lower lines of the box represent the first and third quartiles, and the 

middle horizontal line across the box represents the middle quartile. The prediction model 

which has the highest “X” values and the spread of the box is considered to be preferable. It is 

important to mention that because of the way that the scenarios were constructed, the test sets 

used for evaluating sampling methods in the third and fourth scenarios were different from 

those used for the non-sampling methods in the first and second scenarios. For this reason, the 

comparison between these two distinct groups of scenarios (first and second, versus third and 

fourth) has not been carried out as it would be invalid. It is observed in Figure 6.3 that RF 

attained the highest prediction accuracy in all four scenarios. Additionally, RF improved the 

prediction accuracy in the mct dataset over other datasets, reaching 0.86 and 0.82 values in the 

third and fourth scenarios, respectively. This finding further supports the concept that RF 

provides the best prediction accuracy for large datasets, as the mct dataset has a higher number 

of instances compared to other datasets [37] (2162 in the first and second scenarios and 186 in 

the third and fourth scenarios). Indeed, RF reaches good prediction accuracy with respect to 

the individual models. 
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Figure 6.3.A: Box plot of the AUC values for prediction models on the first scenario. 

Figure 6.3.B: Box plot of the AUC values for prediction models on the second scenario. 
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Figure 6.3: Box plot of the AUC values for prediction models on the scenarios analysed. 

 

 

Figure 6.3.C: Box plot of the AUC values for prediction models on the third scenario. 

Figure 6.3.D: Box plot of the AUC values for prediction models on the fourth scenario. 
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Table 6.12, Table 6.13, Table 6.14 and Table 6.15 present the results of AUC for prediction 

models across seven datasets in the first, second, third and fourth scenarios, respectively. The 

prediction accuracy in terms of AUC measurement was evaluated, and the results of each 

scenario were presented separately considering the following aspects. First, the performance 

of the investigated prediction model was compared with the baseline, which is based on the 

dependent variable only (i.e., change-proneness) and predicts the mode value of this variable. 

Second, the best model in each dataset was identified (the highest AUC), and indicated by 

Boldface values (highlighted in light green) in the tables. Third, the best model in all datasets 

was identified and using Boldface with underlined values (highlighted in dark green in this 

table. Finally, the best model to predict change-proneness was determined.   

A. Baseline 

A baseline is provided in Table 6.12, Table 6.13, Table 6.14 and Table 6.15 for all scenarios. 

All the investigated models except NB in junit dataset in the first scenario (Table 6.12) 

achieved better prediction accuracy than the baseline. Consequently, these models have higher 

AUC values than those in the baseline model (i.e., ZeroR). 

B. First scenario: datasets without FS or sampling 

Table 6.12 provides the results of AUC values for prediction models in seven datasets in the 

first scenario. These results indicate that RF outperformed all other prediction models, as RF 

provided higher AUC values in all datasets except antlr4, in which NB achieved a slightly 

better prediction accuracy (only 0.03 higher). KNN achieved the best performance among 

individual models and was the second-best prediction model. From Table 6.12 the highest 

value of AUC in the first scenario was 0.89, obtained by the RF in the mct dataset.  

Table 6.12: AUC values for performance evaluation of prediction models across seven datasets in the 

first scenario. 
Models Change-proneness dataset 

 antlr4 junit MapDB mcMMO mct oryx titan 

ZeroR 0.45 0.44 0.19 0.19 0.41 0.41 0.41 

NB 0.73 0.43 0.38 0.29 0.88 0.58 0.74 

SVM 0.51 0.5 0.5 0.49 0.5 0.5 0.5 

KNN 0.57 0.6 0.69 0.65 0.69 0.65 0.7 

RF 0.7 0.73 0.79 0.79 0.89 0.81 0.81 

Dark green: represents the best results in all datasets. 
Light green: represents the best results for each dataset. 

 

C. Second scenario: datasets with FS and without sampling 

Table 6.13 presents the AUC values for prediction models across seven datasets in the second 

scenario. This scenario presents the prediction accuracy using ensemble FS mentioned in 
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Section 6.4.5. Comparing the performance of the second scenario in Table 6.13 with that of 

the first scenario (without FS and sampling techniques) in Table 6.12, it is clear that FS 

improved the prediction accuracy in NB and KNN models except for one case (KNN in 

MapDB). In contrast, no impact was observed on SVM and RF compared to other prediction 

models. Additionally, FS produced either the same or an inferior performance to RF compared 

to the scenario without applying FS, except in antlr4 and junit. Although FS had no effect on 

RF, there was a clear competition between RF and NB to obtain the best prediction model in 

each dataset. Therefore, NB performed better than other individual models in terms of 

prediction accuracy, and achieved the best AUC value (0.92) in the mct dataset, which is 

considered outstanding according to the published criteria [169]. 

Table 6.13: AUC values for performance evaluation of prediction models across seven datasets in the 

second scenario. 
Models Change-proneness dataset 

 antlr4 junit MapDB mcMMO mct oryx titan 

ZeroR 0.45 0.44 0.19 0.19 0.41 0.41 0.41 

NB 0.77 0.77 0.65 0.7 0.92 0.7 0.8 

SVM 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

KNN 0.66 0.73 0.62 0.66 0.72 0.74 0.71 

RF 0.81 0.75 0.7 0.7 0.89 0.8 0.8 

Dark green: represents the best results in all datasets. 

Light green: represents the best results for each dataset. 

 

D. Third scenario: datasets without FS and with sampling  

Table 6.14 shows the AUC values for prediction models across seven datasets in the third 

scenario. This scenario provides the prediction accuracy using ensemble sampling techniques 

mentioned in Section 6.4.5. From Table 6.14, it is evident that the AUC values were extremely 

high. This good performance was achieved because the datasets were modified with sampling 

techniques proposed in Section 6.5.2 without applying FS. However, some features were 

excluded after applying data analysis in Section 6.4.4. The most interesting finding from this 

scenario was that applying ensemble sampling techniques on the datasets that exclude 

improper features (i.e., features that have zero values and correlated with each other) in Section 

6.4.4 is enough to reach a high prediction accuracy. The results of this scenario provide 

valuable insights into the positive influence of sampling techniques to improve the prediction 

accuracy of prediction models. However, the most evident result is that sampling techniques 

in the third scenario had a considerable impact on SVM, as seen in Table 6.14 had a great 

impact on SVM. The result of SVM in the first and second scenarios was 0.5, which indicates 

no discrimination according to the published criteria [169]. Furthermore, RF achieved the best 
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prediction accuracy in all datasets except in mcMMO, and the optimal AUC value (0.99) was 

obtained for the mct dataset. KNN was the second-best prediction model and outperformed 

other individual models.  

Table 6.14: AUC values for performance evaluation of prediction models across seven datasets in the 

third scenario. 
Models Change-proneness dataset 

 antlr4 junit MapDB mcMMO mct oryx titan 

ZeroR 0.46 0.44 0.46 0.38 0.49 0.48 0.48 

NB 0.73 0.80 0.73 0.99 0.92 0.82 0.81 

SVM 0.64 0.74 0.64 0.98 0.93 0.83 0.72 

KNN 0.81 0.88 0.81 0.91 0.98 0.9 0.93 

RF 0.89 0.92 0.89 0.98 0.99 0.92 0.97 

Dark green: represents the best results in all datasets. 
Light green: represents the best results for each dataset. 

 

E. Fourth scenario: datasets with both FS and sampling 

Table 6.15 provides the results of AUC values for prediction models across seven datasets in 

the fourth scenario. This scenario lists the prediction accuracy using both the FS and sampling 

techniques mentioned in Section 6.4.5, and the method used in this scenario is mentioned in 

section 6.3.  The main difference between the fourth and third scenarios is the use of different 

metrics, but they used the same sampling method.  Overall, the results of the fourth scenario 

indicate a good prediction accuracy in most cases. However, the results in this scenario are 

worse than previous scenario. This suggests that applying both ensemble FS and sampling 

techniques decreased the prediction accuracy and using only sampling techniques was 

adequate to achieve high prediction accuracy. Again, RF outperformed the other prediction 

models in all datasets (except NB in mcMMO dataset) with AUC values ranging from 0.85 to 

0.98, which is recognised as a good result. As in the first and second scenarios, KNN also was 

the second-best prediction model and performed better than other individual models. 

Table 6.15: Performance of AUC for prediction models across seven datasets in the fourth scenario. 
Models Change-proneness dataset 

 antlr4 junit MapDB mcMMO mct oryx titan 

ZeroR 0.46 0.43 0.39 0.38 0.49 0.48 0.48 

NB 0.51 0.79 0.84 0.99 0.94 0.73 0.8 

SVM 0.51 0.65 0.82 0.91 0.81 0.52 0.59 

KNN 0.71 0.78 0.78 0.84 0.91 0.78 0.77 

RF 0.85 0.85 0.95 0.96 0.98 0.85 0.9 

Dark green: represents the best results in all datasets. 
Light green: represents the best results for each dataset. 

 

  Figure 6.4 illustrates the AUC results obtained from each prediction model across 

seven datasets in four scenarios, in which the higher AUC value indicates the better result. The 

comparison of the models indicates that the results of the third scenario provide valuable 
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insights into the positive influence of ensemble sampling techniques to improve the prediction 

accuracy of prediction models. The basic findings are consistent with research showing that 

the sampling techniques improved the overall performance [53, 206]. Regarding the overall 

results of the datasets, mcMMO and mct datasets achieved the highest prediction accuracy in 

both third and fourth scenarios. 

 

 

These findings are further supported by Figure C.1, Figure C.2, Figure C.3 and Figure 

C.4 in Appendix C, which provide graphs for multiple ROC curves for prediction models in 

the first, second, third and fourth scenarios, respectively. The highest curve, which is very 

close to 1, refers to the best results (e.g., RF in mct dataset in Figure C.3), whereas the lowest 

curve, which is very close to 0, refers to the worst results (e.g., ZeroR in mct dataset in Figure 

C.1). 

6.5.4 Statistical tests of the third empirical study 

ANOVA was applied to address RQ6.4 by comparing all prediction models across four 

scenarios using AUC. Factor A in ANOVA experiment is the prediction model (NB, SVM, 

KNN and RF). Table 6.16 shows one-way ANOVA results for prediction models using AUC. 

The significance level was defined as α = 0.05 and the p-values in the tables were evaluated; 

Figure 6.4: Ranking of the AUC values for prediction models on the scenarios 

analysed. 
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therefore, H0 was rejected because all p-values in the tables were lower than 0.05. According 

to the standard classifications of Cohen proposed in Section 3.5.5, the results of eta-squared 

reveal that the effect size was large [180]. 

Table 6.16: One-way ANOVA results for prediction models using AUC. 

Source 
Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F P-Value Eta-Squared 

Factor A 0.78 3.00 0.26 13.95 0.00 0.28 

Error 2.02 108.00 0.02    

Total 2.80 111.00     

 

Additionally, multiple comparisons were performed using Tukey’s confidence intervals 

[170] (see Figure 6.5). In the chart, it is possible to identify which pairs of Factor A (prediction 

models) significantly differ across scenarios. If a confidence interval does not include 0, then 

the pair is significantly different. The results obtained from Figure 6.5 indicates that there were 

significant differences between ensemble models (RF) and all individual models (NB, SVM 

and KNN). Similarly, there were significant differences between NB–SVM and SVM–KNN. 

 

6.5.5 Impact of parameter tuning for random forests.  

The results of the parameters tuning of the individual models in Chapter 4 indicated that the 

default parameters outperformed the tuning parameters. Therefore, only the impact of the Mtry 

parameter tuning in RF using the grid search method proposed in Section 3.3.3 was explored. 

In Table 6.17, the performance of AUC for RF with default parameters was compared with 

that of Mtry parameter tuning. Boldface values in the table highlight the best results among 

each dataset in each scenario, whereas AUC-T refers to the AUC for parameter tuning and 

AUC-D refers to the AUC for default parameters. The comparison of the results indicated that 

NB - SVM

NB - KNN

NB - RF

SVM -

KNN

SVM - RF

KNN - RF

-0.4000 -0.3000 -0.2000 -0.1000 0.0000 0.1000 0.2000 0.3000

Confidence Intervals

Tukey's Confidence Intervals

Figure 6.5: Multiple comparisons for prediction 

models using AUC. 
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AUC-T outperformed AUC-D across all datasets in all scenarios, except mct dataset in the 

third scenario, which achieved the same result of AUC-D (0.99). AUC-T reached the optimal 

result (1.00) in the mcMMO dataset in the third scenario, and the average of AUC-T in all 

datasets in this scenario provided the highest prediction accuracy. Additionally, the grid search 

method provided different Mtry values for different datasets, which indicates that this method 

is an alternative to save time and effort instead of trying different parameters manually. The 

percentage of change between the average AUC-T and AUC-D across all datasets was 10.13%, 

8.97%, 3.19% and 2.20% in the first, second, third and fourth scenarios, respectively. This 

indicates that tuning Mtry parameter in RF had a positive influence in each scenario. However, 

this influence was higher in the original datasets (e.g., without FS or sampling in the first 

scenario) and were lower in the edited datasets (e.g., with FS and sampling in the fourth 

scenario). Additionally, there is a good agreement between the findings in this section and 

those in the previous section, in which the third scenario achieved considerable performance. 

This scenario used metrics proposed in Table C.2, Table C.3, Table C.4, Table C.5, Table C.6, 

Table C.7 and Table C.8 in Appendix C without applying FS. The present findings seem to be 

consistent with prior research that used the same datasets to predict refactoring and found that 

using sampled instead of unsampled datasets improves the prediction accuracy [53, 206].  

Table 6.17: AUC values for performance evaluation of RF with default and Mtry parameter tuning. 
Scenario First  Second  Third  Fourth 

 Mtry AUC-T AUC-D Mtry AUC-T AUC-D Mtry AUC-T AUC-D Mtry AUC-T AUC-D 

antlr4 3 0.81 0.7 2 0.84 0.81 6 0.94 0.89 1 0.87 0.85 

junit 15 0.84 0.73 3 0.81 0.75 5 0.95 0.92 5 0.89 0.85 

MapDB 2 0.90 0.79 10 0.72 0.7 8 0.96 0.89 2 0.98 0.95 

mcMMO 11 0.89 0.79 2 0.89 0.7 6 1.00 0.98 5 0.98 0.96 

mct 2 0.96 0.89 4 0.96 0.89 1 0.99 0.99 14 0.99 0.98 

oryx 8 0.82 0.81 1 0.85 0.8 6 0.94 0.92 14 0.90 0.85 

titan 8 0.90 0.81 6 0.85 0.8 15 0.99 0.97 2 0.93 0.9 

Average NA 0.87 0.79 NA 0.85 0.78 NA 0.97 0.94 NA 0.93 0.91 

% of 

change 
NA 10.13% NA 8.97% NA 3.19% NA 2.20% 

6.5.6 Discussion and answers to research questions for the third empirical 

study 

This section provides the discussion of the results presented above; and answers the RQs for 

the third empirical study. 

RQ6.1) What is the impact of ensemble FS techniques on the performance of prediction 

models? 
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Ensemble FS techniques in the second scenario improved the prediction accuracy of NB and 

KNN models. Analysing the likely reasons behind this finding, firstly, NB is called naïve 

because it creates conditional assumption, which are independent from the features [238]. 

Second, using the Euclidean measure, KNN determines the closest neighbours, which are also 

independent from the features [114]. Therefore, these models may have performed well with 

FS techniques because they do not perform attribute selection [220]. 

However, ensemble FS techniques had no clear impact on the overall performance of 

SVM and RF. This result may be described by the fact that SVM algorithm includes the C 

parameter that selects the number of features, and the kernel function creates a suitable feature 

space [125]. Regarding the RF result, this occurs because RF has multiple decision trees that 

apply the same concept of FS using a top-down greedy search algorithm to choose the best 

feature at each step [239]. Therefore, SVM and RF algorithms already perform the FS concept 

during their creation. Additionally, RF includes many decision trees, which perform 

adequately with imbalanced dataset because they tend to build several tests to recognise the 

difference between the minority and majority classes [240]. For this reason, RF achieved the 

best prediction accuracy in the second scenario. 

RQ6.2) What is the impact of ensemble sampling techniques on the performance of 

prediction models? 

The machine learning models with ensemble sampling techniques achieved good performance. 

Again, RF achieved the best results of AUC values across all the datasets except mcMMO. 

These findings may help us to conclude that the performing ensemble sampling techniques 

and removing inappropriate features in the data analysis step without applying ensemble FS is 

sufficient to predict change proneness accurately. This is consistent with what has been found 

in a series of recent studies [53, 206] that used several types of sampling techniques: SMOTE 

[53], UPSAMPLE, SMOTE and RUSBoost [206], and emphasises the effect of these 

techniques to increase the performance of the prediction models. 

Interestingly, ensemble sampling techniques in this particular case increased the 

prediction accuracy of SVM and RF. This supports the findings in the previous question 

indicating that SVM and RF algorithms perform FS during their creation. Consequently, these 

algorithms have a better response to sampling techniques compared to FS techniques.  
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RQ6.3) What is the impact of applying both ensemble FS and sampling techniques on 

the performance of prediction models? 

Applying both ensemble FS and sampling techniques improved the performance of the 

prediction models, and RF achieved the best performance across all datasets except mcMMO.   

These findings corroborate the ideas of Kumar and Sureka, who used the same datasets to 

predict refactoring and performed principal component analysis and SMOTE techniques to 

extract the best features and resolve the imbalanced data problem [53]. Their results indicated 

that the prediction accuracy with the SMOTE technique was better than that without SMOTE, 

and the prediction accuracy of all metrics was better than that with FS. A possible explanation 

for these results may be the lack of adequate datasets, and the rank of the best ten features 

selected is considered low (the average ranking of best ten metrics ranges from 0.1 to 0.6), 

whereas the difference before and after applying sampling techniques is high (see Table 6.10 

and Table 6.11). 

RQ6.4) How effective are individual models and how do ensemble models perform when 

compared to the individual models in the context of predicting change-proneness? 

KNN achieved the best prediction accuracy among most cases. RF outperformed other 

individual models and achieved the best result in terms of average AUC value (see Figure 6.4) 

across all scenarios. The results of the ANOVA test reveal that there were significant 

differences between RF and all individual models (see Figure 6.5). In addition, the results of 

the effect size were large (see Table 6.16). Therefore, applying ensemble sampling techniques 

on RF produced the highest accuracy to predict change-proneness. This finding is in 

accordance with previous studies, in which RF provided the best performance to predict 

change-proneness [47], software fault [37] and CHANGE metric [48]. 

RQ6.5) What is the impact of the Mtry parameter tuning in RF? 

Mtry parameter tuning in RF using grid search method, along with RF, mlbench and caret 

packages improved prediction accuracy. This improvement increased in the original datasets 

(e.g., without FS or sampling) and decreased in the edited datasets (e.g., with FS and sampling 

in the fourth scenario). The findings of this RQ are consistent with those of Fernández-Delgado 

et al. who stated that RF created using caret package in R was the best model among 179 

models applied on 121 original datasets [166]. Furthermore, the Mtry parameter differed from 

various datasets, and this difference was behind the study showing that there are no suggestions 
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to choose the specific number of the Mtry parameter [138]. In addition, this supports the use 

of automatic parameters tuning to simply and effectively improve performance [141, 142]. 

Based on these findings, it is recommended to tune Mtry parameter automatically to save time 

and efforts and improve the results. In future work, a statistical test will be used to investigate 

the performance difference between RF without and with parameter tunning.  

6.6. Threats to Validity 

The threats to validity usually are present in any experimental software engineering study that 

utilises open-source software projects [186]. This section describes the threats to validity that 

include four different types: external, conclusion, internal and constructed. Additionally, this 

section provides explanations on how they were solved. 

6.6.1 External validity 

Publicly available datasets extracted from open source software systems were used to enable 

reproducibility and comparison with other empirical studies that used the same datasets. 

Therefore, there is no threat in the datasets. However, these datasets were collected from Java 

systems, which restricts the generalisation of the findings to all programming languages (e.g., 

C++ and C#). 

6.6.2 Conclusion validity 

Conclusion validity relates to the statistical relationship between the results and the output of 

the experiment, which impacts on the capability to reach the right conclusion [187]. To avoid 

the threat of conclusion validity, ten-fold cross-validation was performed to reduce potentially 

biased results by selecting tests from the entire dataset. This validation was repeated ten times 

to generate statistically reliable results and avoid the conclusion threat. Finally, the conclusions 

were based on parametric statistical tests (i.e., ANOVA test), which is suitable for three or 

more groups (i.e., NB, KNN, SVM and RF). ANOVA requires some assumptions, such as 

normal distribution for the datasets and independent observations. However, these 

assumptions were met and one of the main advantages of the parametric statistical test over 

non-parametric statistical test is to provide more reliable results with both nonnormally and 
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continuous datasets. Hence, the threat to conclusion validity maybe exists due to using a 

parametric statistical test. This test also includes ten runs, which may have affected the results. 

6.6.3 Internal validity 

To prevent the threat of internal validity, the effectiveness of ensemble FS and sampling 

techniques employed to improve the accuracy of prediction models was explored. 

Furthermore, four scenarios were constructed to evaluate the performance of these techniques. 

Additionally, the four most frequently used models in Table 6.1 that were appropriate for 

classification problems were built. Weka, which is a well-known and common tool, was used 

to select features and build prediction models [120]. Therefore, there are no threats to internal 

validity. 

6.6.4 Construct validity 

In this study, 125 metrics manually validated and extracted from class-level were employed to 

capture several features of the software product [58]. Some of these metrics were eliminated 

before conducting empirical study (see Section 6.4.4) and some of them were removed by 

applying ensemble FS in Section 6.4.5. However, several of these metrics were used for the 

first time to predict change-proneness. Therefore, they present a threat to construct validity of 

these metrics. Furthermore, other validity concerns related to the dependent variable (i.e., 

change-proneness), which is a Boolean variable that reflects changes of refactorings (i.e., 

changes of the structure of the internal source code without affecting the functionality of source 

code [53]). As a result, the changes made in the systems may not be representative of all 

maintenance changes that could be made. The prediction of change-proneness variable has 

been investigated in several studies and it is considered as good indicator [16, 23, 47, 204, 

241-247]. This study did not recognise the types of changes (i.e., adaptive, corrective, 

preventive or perfective). Therefore, this is also a threat to construct validity of the dependent 

variable. However, change-proneness is used as recommended by [203] because limited 

studies considered the types of the change proneness [47]. Regarding parameters tuning, only 

the grid search was applied to tune the Mtry parameter in RF. However, the prediction accuracy 

of RF may increase by tuning other parameters, such as the number of trees to grow. Additional 
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studies to more completely investigate the key tenets of other parameters in RF are required, 

along with tuning of parameters on other models (i.e., SVM, KNN and NB).     

6.7. Conclusion of the third empirical study 

Ensemble FS and sampling techniques can improve the prediction accuracy of machine 

learning models. However, the application of these techniques on software maintainability is 

limited. In this chapter, three individual models (NB, SVM and KNN) and one ensemble model 

(RF) were applied on seven publicly available datasets. The effectiveness of ensemble FS (i.e., 

Relief and Pearson’s correlation coefficient) and ensemble sampling techniques (i.e., SMOTE, 

SpreadSubsample and randomize) on the performance of prediction change-proneness was 

evaluated and compared.   

This chapter presents several insights based on comprehensive experimentation and 

analyses: 

• The results obtained from this chapter provide evidence of the positive impact of 

ensemble FS in improving the performance of the prediction models (KNN and NB) 

that are FS method independent. Nevertheless, ensemble FS techniques had no clear 

effect on the overall performance of SVM and RF because these models have FS 

techniques as a part of the model’s creation; 

• A considerable improvement in performance was achieved by applying ensemble 

sampling methods on all prediction models, and there was a clear improvement in SVM 

and RF; 

• Across all scenarios, the ensemble model (RF) achieved the best performance in 

predicting change-proneness compared to other models and there were significant 

differences between RF and all individual models. In addition, the effect size was large. 

A possible explanation of the good performance of RF in both high dimensional and 

imbalanced datasets is that RF performs FS through the creation of several decision 

trees; 

• The experimental results in this empirical study presented that the performance of the 

ensemble models for predicting change-proneness was significantly improved and the 

effect size was large in all prediction models. In contrast to earlier findings in the first 
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and second empirical studies, where there were no significant differences between 

individual and ensemble models except few cases in heterogeneous ensemble models 

in the second empirical. A possible explanation is that this empirical study used larger 

datasets than those used in the first and second empirical studies; 

• The Mtry parameter tuning in RF improved the performance compared to the use of 

the RF default parameters. The observed increase in the prediction accuracy of RF after 

applying parameter tuning is because the grid search selects the best value of the Mtry 

parameter (which determines the number of features randomly sampled at each split) 

in each dataset that provides the highest prediction accuracy. The results observed in 

this study reflect those of a previous study that examined the effect of caret package 

and found that RF was the best prediction model among 179 models analysed [166]. 
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Chapter 7. Conclusion and Contributions 

This chapter concludes this thesis and summarises the research results of the previous chapters. 

This chapter provides the answers to the RQs proposed in Chapter 1, describes the key 

contributions and recommendations for practitioners, and presents limitations and some 

directions and opportunities for future work. 

7.1. Conclusion of the thesis 

Chapter 2 systematically reviews 56 studies in 35 journals and 21 conference proceedings 

related to the prediction of maintainability of OO software systems using machine learning 

techniques. The review uses the standard SLR method applied to the most common computer 

science digital database libraries from January 1991 to July 2018. In the process of reviewing 

these studies, the fundamental research gaps and directions of research were determined in the 

methodology section to formalise three empirical studies in Chapters 4, 5, and 6. Thus, this 

thesis compared and evaluated the effectiveness of homogeneous (i.e., bagging, additive 

regression and RF) and heterogeneous (i.e., stacking and APE) ensemble models and sets of 

individual models (i.e., RT, MLP, M5Rules, KNN, SVR, SVM and NB) for predicting 

software maintainability of OO systems. These models were applied in various public datasets 

extracted from class level and collected after several years of OO system maintenance. To 

validate the investigated models in these empirical studies, statistical tests and effect size 

measurements were performed. In addition, the impact of parameter tuning was explored using 

caret package, Auto-WEKA and grid search in Chapters 4, 5 and 6, respectively.  

The main aim of all empirical studies conducted was to improve the prediction accuracy 

and achieve more consistent results in the prediction of software maintainability in OO systems 

by applying ensemble models on different datasets and using several base models, as the core 

idea of the ensemble models is to improve the prediction accuracy over individual models. The 

creation of a highly accurate prediction of software maintainability was challenging because 

the relationships between software quality attributes and their metrics are often complicated, 

nonlinear and lead to a reduction in the accuracy of prediction models [10]. In contrast, the 
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key to predict software maintainability is the determination of software maintenance 

measurements, which are notoriously difficult to capture because of the problems in estimating 

the effort associated with the maintenance task. 

The overall empirical results in this thesis indicate that ensemble models produced better 

prediction accuracy than most of the individual models; however, the results are different in 

various datasets and the base model. In most cases, KNN or SVR recorded the highest 

prediction accuracy compared to other individual models; moreover, these models as base 

models in bagging and additive regression achieved the best prediction accuracy, along with 

RF. 

The following are the most important findings from each empirical study: 

In the first empirical study: 

• There were no significant differences between the ensemble and individual models and 

the effect sizes were small; 

• KNN as the individual model or as the base model in additive regression ensemble 

model attained the best performance across all investigated models; 

• The parameter tuning increased the prediction accuracy of ensemble models and did 

not increase the prediction accuracy of the individual models in most cases.  

In the second empirical study: 

• No significant differences have been found between the ensemble and individual 

models except few cases in the heterogeneous ensemble models and the effect sizes 

were small; 

• SVR and KNN as an individual model, or sometimes as a base model in bagging and 

additive regression achieved the best accuracy to predict software maintainability, 

followed by APE; 

• The selected models by Auto-WEKA tool performed better than the best model 

prediction in study 5.A except KNN and SVR in Eclipse JDT Core and Lucene, 

respectively. 

In the third empirical study: 

• RF performed significantly better than other individual models as well as the effect 

size was large; 

• RF achieved the best prediction accuracy across all scenarios; 
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• Tuning the Mtry parameter in RF outperformed using the default parameters of RF. 

7.2. Answers to Research Questions 

This section answers RQs predetermined in the first chapter using evidence collected from the 

empirical studies. 

RQ1) How effective are individual models at predicting software maintainability? 

Answer: The performance of the individual models differed for each dataset. In most cases, 

KNN achieved the best prediction accuracy among individual models, followed by SVR. Also, 

SVR and M5Rules in some cases achieved the best performance in addition to KNN, whereas 

KNN and NB recorded the second-best prediction accuracy in some cases. Therefore, the 

overall results of individual models indicate that KNN was better than other individual models 

in most cases, followed by SVR.  

RQ2) How do ensemble models perform in the context of predicting change maintenance 

efforts using well-established datasets when compared to the individual models? 

Answer: Although ensemble models improved the prediction accuracy over all individual 

models except for a few cases, the differences were not statistically significant, and the effect 

sizes were small. KNN as the individual model or as the base model in additive regression 

attained the best prediction accuracy compared to all investigated models. Regarding 

parameter tuning, these parameters increased the prediction accuracy of the ensemble models 

and did not increase the prediction accuracy of the individual models in most cases. KNN as 

the base model in additive regression in the parameter tuning provided the best prediction 

accuracy. 

RQ3) How do ensemble models perform in the context of predicting change maintenance 

efforts using more recent and larger datasets when compared to the individual models? 

Answer: There were no significant differences between individual and ensemble models, 

except for a few cases in the heterogeneous ensemble models, and the effect sizes were small. 

The homogeneous ensemble models increased the prediction accuracy over most of the 

individual models, in which SVR as an individual model or a base model in bagging or additive 

regression outperformed all other prediction models. However, the heterogeneous ensemble 

models had a considerable impact on RT and a minor or no impact on KNN and SVR. 

Regarding parameter tuning, all the selected models using the Auto-WEKA tool performed 
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better than the best model prediction in the empirical study except KNN and SVR in Eclipse 

JDT Core and Lucene, respectively. 

RQ4) How do ensemble models perform in the context of predicting change-proneness 

using the newest and largest datasets when compared to the individual models? 

Answer: The results indicate that RF outperformed other individual models and obtained the 

highest value of the average of AUC. In addition, there were significant differences between 

individual and ensemble models, and the effect size was large. With respect to parameter 

tuning, the Mtry parameter tuning in RF increased the performance when using the default 

parameters of RF. 

7.3. Contribution 

This thesis provides knowledge and empirical evidence in both the machine learning and 

software maintainability fields. The fundamental contributions are as follows: 

• Based on the findings obtained from the SLR, there is relatively little activity in the 

area of software maintainability prediction compared with other software quality 

attributes. The CHANGE metric was the most commonly used software measurement 

(dependent variable) employed in the selected primary studies, and most of them used 

class-level product metrics as the independent variables. Several private datasets were 

used in the selected studies, and there is a considerable need to publicly publish 

datasets. Most studies focused on regression problems and performed k-fold cross-

validation. Although ensemble models used in selected primary studies improved the 

prediction accuracy over individual prediction models, their application is relatively 

rare compared with the individual prediction models applied in the majority of studies; 

• Among several types of software maintenance measurements, the CHANGE metric, 

MI and change proneness are considered indirect measures and can be used as 

dependent variables to capture the element of maintainability. This thesis used the most 

common measurement performed in the selected primary studies (i.e., CHANGE 

metric), along with the rarest measurement (i.e., change proneness); 

• Class level product metrics (i.e., L&H, C&K and other OO source-code metrics) used 

in this thesis as independent variables emerged as reliable and powerful predictors for 
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software maintainability (dependent variable). Additionally, these metrics are directly 

calculated on different parts of the software systems and can be used as early predictors 

to reduce cost, utilise resources and control future maintenance efforts; 

• Although there are few public datasets for software maintainability, preprocessing 

techniques were applied to public software quality datasets (i.e., bug prediction 

datasets [57] and refactoring dataset [58]) to produce new versions of these datasets 

appropriate for software maintainability prediction; 

• The findings of ensemble models, in general, show that the proposed ensemble models 

yield improved prediction accuracy over most of the individual models; moreover, the 

improvement was significant and the effect size was large only in Chapter 6, in which 

a larger number and size of the datasets was used; 

• The proposed ensemble models in Chapters 4 and 5 were also found to be useful in 

predicting software maintainability. Also, there were no significant differences 

between the individual and ensemble models, and the effect sizes were small except 

for a few cases in Chapter 5; 

• Although the results of the investigation of ensemble models in the three empirical 

studies show that these models are effective in predicting software maintainability and 

increasing the prediction accuracy over most of the individual models, in some cases, 

neither homogeneous nor heterogeneous ensemble models improved the prediction 

accuracy over SVR and KNN; 

• The prediction accuracy of homogeneous ensemble models outperformed the 

heterogeneous ensemble models in some datasets, and the opposite occurred in other 

datasets. Moreover, additive regression exhibited better prediction accuracy compared 

to the bagging ensemble model in Chapter 4 and the opposite occurred in Chapter 5. 

KNN and SVR as an individual model or a base model in bagging or additive 

regression achieved the best prediction accuracy in Chapters 4 and 5, respectively, 

whereas RF achieved the best prediction accuracy in Chapter 6. Therefore, the 

prediction accuracy of ensemble models is different in various datasets and varies with 

the base model; 

• KNN as a base model in additive regression in Chapters 4 and 5 produced the same 

result as the individual KNN models. Furthermore, KNN produced the highest 
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prediction accuracy compared to individual models in this thesis in most cases, and 

other prediction models that were implemented by selected previous studies for the 

QUES dataset in Chapter 4. In addition, for the QUES dataset, this model is the only 

model that nearly fulfils the criteria of accurate prediction proposed in Chapter 3. 

Additionally, KNN as the base model in the additive regression with tuning parameters 

achieved the best prediction accuracy and reached the optimal result (0) in terms of 

MMRE and MAE values; 

• In Chapter 4, the parameter tuning using the caret package in most cases had a positive 

impact on the ensemble models and a negative impact on the individual models. In 

addition, the performance of the ensemble models with respect to the parameter tuning 

outperformed that of the individual models. In Chapter 5, the models selected by the 

Auto-WEKA tool performed better than the best model prediction in the second 

empirical study except for KNN and SVR in the Eclipse JDT Core and Lucene datasets, 

respectively. In Chapter 6, the Mtry parameter tuning in RF using grid search improved 

the prediction accuracy in all scenarios. However, the positive impact of this tuning 

was higher in the original datasets (e.g., without FS or sampling in the first scenario) 

and lower in the edited datasets (e.g., with FS and sampling in the fourth scenario);   

• The results of the method used in Chapter 6 reveal that the ensemble FS and sampling 

techniques yield improved prediction accuracy over most of the investigated models. 

To the best of the author's knowledge, the implementation of these techniques has 

never been documented before in the area of software maintainability. 

7.4. Recommendations for Practitioners 

This section presents different critical results and provides various recommendations on the 

adequate use of the ensemble models to predict software maintainability as follows: 

Size of the datasets: The first empirical study in Chapter 4 used relatively limited datasets, 

whereas the second empirical study in Chapter 5 used more recent and larger datasets. The 

results of the statistical tests in these studies showed no significant differences between 

individual and ensemble models, and the effect size was small except for a few cases in the 

heterogeneous ensemble models in the second empirical study. In contrast, the third empirical 

study in Chapter 6 employed the largest datasets compared with the datasets used in the 
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previous empirical studies, and the results indicate that there were significant differences 

between individual and ensemble models, and the effect size was large. Therefore, the size of 

the datasets should be large enough to create adequate ensemble models. 

Base model: Most ensemble models investigated did not improve strong models (e.g., KNN 

and SVR). Hence, the ensemble models are more useful in improving the performance of 

weaker base models. 

Parameter tuning: The parameter tuning of the ensemble models using the caret package in 

Chapter 4, along with grid search in Chapter 6, improved the prediction accuracy of the 

ensemble models and achieved better performance than the individual models. Consequently, 

parameter tuning must be performed on the ensemble models to improve the prediction 

accuracy.  

One of the primary concerns of software practitioners is to improve software 

maintainability [248]. Predicting software maintainability accurately is a fundamental 

requirement for practitioners to save time, cost and effort of the maintenance of software. 

Therefore, the previous findings have produced several important recommendations for 

practitioners as follow: 

1. The selection of the prediction model plays an important role to produce high 

prediction accuracy of software maintainability. It is recommended to select strong 

individual models (e.g., KNN or SVM) for regression problem and RF for 

classification problem. 

2. Data pre-processing techniques are essential in improving prediction accuracy.  

However, the choice of these techniques depends on the nature of the datasets. Due to 

this fact, I recommend that datasets be investigated carefully and then suitable pre-

processing techniques selected depending on the nature and characteristics of the 

dataset, such as resampling for imbalanced datasets or FS for high dimensionality 

datasets. 

3. Consideration of parameter tuning is recommended to increase the performance of 

machine learning models. 
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7.5. Limitations and Possible Future Work 

Several future work directions can be implemented to overcome the limitations in this thesis, 

as follows: 

More software maintainability measurements: A fundamental ingredient of software 

maintainability prediction is the identification of the dependent variable to be predicted. A 

limitation of this thesis is that it only predicted the CHANGE metric and change proneness. 

Although the prediction of the number of changes in a certain class (CHANGE metric) is 

harder than predicting whether or not a change has been made in the class (change proneness), 

it provides more precise information [249]. To strike a balance between ease of prediction and 

more precise information, possible future research could be to predict a ranking or 

categorisation of software maintainability (change proneness) into small, medium, and high.  

Exhaustive exploration of the parameter space: A limitation of this thesis is that it only 

evaluated a limited proportion of the parameter space. Researchers can address this limitation 

by doing a systematic extensive exploration of parameter tuning. This exploration will help to 

figure out to what extent the parameter space affects the prediction accuracy of machine 

learning models in software maintainability prediction. Also, it will help to identify which 

machine learning models are more sensitive to parameter tuning. 

Additional datasets: The most important limitation of this thesis is that it used a limited set 

of public datasets. This limitation can be addressed by creating and publishing additional 

datasets that can be used by researchers. For example, datasets can be extracted from open-

source software systems using various tools such as Analyst4j, CCCC and C&K Java Metrics 

as proposed in [250]. Moreover, other datasets can be created from real-world systems in 

industry.   

Different OO programming languages: Another limitation related to the datasets is that the 

datasets used in this thesis were extracted from systems written in Ada (i.e., QUES and UIMS 

datasets [9]), or Java (i.e., bug prediction datasets [57] and refactoring dataset [58]). Therefore, 

further research needs to be done using datasets extracted from different OO programming 

languages, such as C++, JavaScript, C#, PHP and Python (even though some of these are not 

“pure” OO languages). This will enable the exploration of additional features and 

characteristics of software systems. 
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Additional ensemble models: A weakness of this thesis is that it only evaluated and compared 

the application of three homogenous (i.e., bagging, additive regression and RF), and two 

heterogeneous ensemble models (i.e., stacking and APE). Additional research is required to 

investigate other homogeneous and heterogeneous ensemble models (e.g., boosting, voting 

and linear ensemble) with additional base models (e.g., radial basis function network, linear 

regression and logistic regression). 

Improved prediction accuracy: A major limitation of this thesis is that only a few models 

meet the prediction accuracy criteria proposed in Section 3.5.4. More work needs to be done 

to improve prediction accuracy using resampling or FS techniques and also looking at the 

application of other homogenous or heterogeneous ensemble models are mentioned above. 
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Appendix A 

This Appendix presents Table A.1, Table A.2 and Figure A.1, which belong to Chapter 2. 
 

Table A.1: Selected primary studies. 
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Object-Oriented Metrics that Predict 
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Li and Henry 1993 Elsevier Journal of Systems and Software Journal 
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Briand et al. 1993 IEEE Conference on Software Maintenance Conference 

S4 [26] A Metrics Suite for Object Oriented Design 
Chidamber and 

Kemerer 
1994 IEEE 

IEEE Transactions on Software 

Engineering 
Journal 

S5 [90] 
Construction and Testing of Polynomials 

Predicting Software Maintainability 

Oman and 

Hagemeister 
1994 Elsevier Journal of Systems and Software Journal 

S6 [62] 
Using Metrics to Evaluate Software System 

Maintainability 
Coleman et al. 1994 ACM DL Computer Journal 

S7 [252] 
Evaluating Inheritance Depth on the 

Maintainability of Object-Oriented Software 
Daly et al. 1996 

Springer 

link 
Empirical Software Engineering Journal 

S8 [63] 

Development and Application of an 

Automated Source Code Maintainability 
Index 

Welker et al. 1997 

Wiley 

online 
library 

Journal of Software Maintenance: Re-

search and Practice 
Journal 

S9 [253] 
A Method for Estimating Maintenance Cost 

in a Software Project: A Case Study 

Granja-Alvarez and 
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1997 

Wiley 

online 
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Journal of Software Maintenance: 

Research and Practice 
Journal 
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Reusability and Maintainability Metrics for 

Object-Oriented Software 
Lee and Chang 2000 ACM DL 

38th Annual on Southeast Regional 

Conference 
Conference 

S11 [97] 
Using Metrics to Predict Object-Oriented 
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Genero et al. 2001 ACM DL 

13th International Conference on 
Advanced Information Systems 

Engineering 

Conference 
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Estimation and Prediction Metrics for 
Adaptive Maintenance Effort of Object-
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Fioravanti and Nesi 2001 IEEE 
IEEE Transactions on Software 

Engineering 
Journal 
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Using Code Metrics to Predict Maintenance 

of Legacy Programs: A Case Study 
Polo et al. 2001 IEEE 

Proceedings IEEE International 

Conference on Software Maintenance.  
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Wiley 

online 
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Aggarwal et al. 2002 IEEE 
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Yuming Zhou and 
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Conference 
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A Comparative Study of MI Tools: Defining 
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Sarwar et al. 2008 IEEE 

IEEE International Multitopic 
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Conference 

S29 [32] 
Predicting the Maintainability of Open 

Source Software Using Design Metrics 

Yuming and 

Baowen 
2008 

Springer 

link 

Wuhan University Journal of Natural 

Sciences 
Journal 

S30 [13] 

Application of TreeNet in Predicting Object-

Oriented Software Maintainability: A 

Comparative Study 

Elish and Elish 2009 IEEE 
Software Maintenance and 

Reengineering 
Conference 

S31 [33] 

An Empirical Analysis of the Impact of 

Software Development Problem Factors on 
Software Maintainability 

Chen and Huang 2009 Elsevier Journal of Systems and Software Journal 

S32 [73] 

Applications of Support Vector Mathine and 

Unsupervised Learning for Predicting 
Maintainability Using Object-Oriented 

Metrics 

Jin and Liu 2010 IEEE 

Second International Conference on 

MultiMedia and Information 

Technology 

Conference 

S33 [259] 
Determination of Maintainability Index for 

Object-Oriented Systems 
Kaur and Singh 2011 ACM DL 

ACM SIGSOFT Software 

Engineering Notes 
Journal 

S34 [98] 
A Controlled Experiment in Assessing and 

Estimating Software Maintenance Tasks 
Nguyen et al. 2011 Elsevier Information and Software Technology Journal 

S35 [260] 

Assessing Programming Language Impact on 

Development and Maintenance: A Study on 
C and C++ 

Bhattacharya and 

Neamtiu 
2011 ACM DL 

33rd International Conference on 

Software Engineering 
Conference 

S36 [14] 

Maintainability Prediction of Object-Oriented 

Software System by Multilayer Perceptron 
model 

Dubey et al. 2012 ACM DL 
ACM SIGSOFT Software 

Engineering Notes 
Journal 

S37 [121] 
Predicting Software Maintenance Effort 

through Evolutionary-Based Decision Trees 
Basgalupp et al. 2012 ACM DL 

27th Annual ACM Symposium on 

Applied Computing 
Conference 

S38 [7] 
Machine Learning Approaches for Predicting 
Software Maintainability: A Fuzzy-Based 

Transparent Model 

Ahmed and Al-

Jamimi 
2013 IEEE IET Software Journal 

S39 [162] 
Object-Oriented Class Maintainability 

Prediction Using Internal Quality Attributes 
Al Dallal 2013 Elsevier Information and Software Technology Journal 

S40 [74] 

A New Software Maintainability Evaluation 

Model Based on Multiple Classifiers 

Combination 

Ye et al. 2013 IEEE 

International Conference on Quality, 

Reliability, Risk, Maintenance, and 

Safety Engineering 

Conference 
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Tool for Generating Code Metrics for C# 
Source Code using Abstract Syntax Tree 

Technique 

Singh et al. 2013 ACM DL 
ACM SIGSOFT Software 

Engineering Notes 
Journal 

S42 [15] 
Application of Group Method of Data 
Handling Model for Software Maintainability 

Prediction Using Object-Oriented Systems 

Malhotra and Chug 2014 
Springer 

link 

International Journal of System 
Assurance Engineering and 

Management 

Journal 

S43 [48] 
Software Maintainability Prediction by Data 
Mining of Software Code Metrics 

Kaur et al. 2014 IEEE 
International Conference on Data 
Mining and Intelligent Computing 

Conference 

S44 [262] 

A Metric Suite for Predicting Software 

Maintainability in Data Intensive 

Applications 

Malhotra and Chug 2014 
Springer 
link 

Transactions on Engineering 
Technologies 

Conference 

S45 [263] 
SMPLearner: Learning to Predict Software 

Maintainability 
Zhang et al. 2014 

Springer 

link 
Automated Software Engineering Journal 

S46 [175] 

Validating the Effectiveness of Object-

Oriented Metrics for Predicting 
Maintainability 

Kumara et al. 2015 Elsevier Procedia Computer Science Conference 

S47 [16] 

Three Empirical Studies on Predicting 

Software Maintainability Using Ensemble 
Methods 

Elish et al. 2015 
Springer 

link 
Soft Computing Journal 



 

243 

 

S48 [264] 
A Proposed New Model for Maintainability 

Index of Open Source Software 
Kaur et al. 2015 IEEE 

International Conference on 

Reliability, Infocom Technologies and 

Optimization 

Conference 

S49 [17] 
Hybrid Functional Link Artificial Neural 
Network Approach for Predicting 

Maintainability of Object-Oriented Software 

Kumar and Rath 2016 Elsevier Journal of Systems and Software Journal 

S50 [265] 

An Empirical Investigation of Evolutionary 

Algorithm for Software Maintainability 
Prediction 

Jain et al. 2016 IEEE 

IEEE Students Conference on 

Electrical, Electronics and Computer 
Science 
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S51 [266] 
Using Indirect Coupling Metrics to Predict 

Package Maintainability and Testability 
Almugrin et al. 2016 Elsevier Journal of Systems and Software Journal 

S52 [18] 
Software Maintainability Prediction Using 
Hybrid Neural Network and Fuzzy Logic 

Approach with Parallel Computing Concept 

Kumar and Rath 2017 
Springer 

link 

International Journal of System 
Assurance Engineering and 

Management 

Journal 

S53 [267] 
Boosting Automatic Commit Classification 
into Maintenance Activities by Utilizing 

Source Code Changes 

Levin and Yehudai 2017 ACM DL 
13th International Conference on 
Predictive Models and Data Analytics 

in Software Engineering 
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S54 [83] 
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Reddy and Ojha 2017 
Springer 

link 
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S55 [58] 

Empirical Evaluation of Software 

Maintainability Based on a Manually 
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Péter Hegedus et al. 2018 Elsevier Information and Software Technology Journal 

S56 [23] 

Particle Swarm Optimization-Based 

Ensemble Learning for Software Change 
Prediction 

Malhotraa and 
Khanna 

2018 Elsevier Information and Software Technology Journal 
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Table A.2: Quality assessment result. 

S
tu

d
y

 ID
 

QA 

1 

QA 

2 

QA 

3 

QA 

4 

QA 

5 

QA 

6 

QA 

7 

QA 

8 

QA 

9 

QA 

10 

QA 

11 

QA 

12 

QA 

13 

QA 

14 

QA 

15 

Total 

score 
Rating 

S1 Y Y Y Y Y Y Y P N N N P N P Y 9 Fair 

S2 Y Y Y Y Y Y Y Y Y Y Y Y P Y N 13.5 Excellent 

S3 Y Y Y Y Y Y P N N N N N N Y P 8 Fair 

S4 Y N N Y Y Y Y Y N N N Y N Y Y 9 Fair 

S5 Y Y Y Y Y Y Y P N N N P Y Y N 10 Good 

S6 Y Y Y Y Y Y Y Y N N N N N Y Y 10 Good 

S7 Y Y Y Y Y Y Y Y N Y N P N Y Y 11.5 Good 

S8 Y Y Y Y Y Y N P N Y N P P Y Y 10.5 Good 

S9 Y Y Y Y P N Y P N N N P N Y P 8 Fair 

S10 Y Y Y Y Y Y Y N N N N N N Y Y 9 Fair 

S11 Y Y Y Y Y Y Y P Y N N Y Y Y Y 12.5 Good 

S12 Y Y Y Y Y Y Y Y N Y N Y P Y Y 12.5 Good 

S13 Y Y Y Y Y Y Y Y Y Y N P P Y Y 13 Good 

S14 Y Y Y Y N N N N N N N N N Y Y 6 Fair 

S15 Y Y Y Y N Y N N N N N P P Y P 7.5 Fair 

S16 Y Y Y Y Y Y Y Y N Y N P P Y P 11.5 Good 

S17 Y Y Y Y Y Y N Y N Y Y Y N Y Y 12 Good 

S18 Y Y Y Y Y Y P P N Y Y Y P Y Y 12.5 Good 

S19 Y Y Y Y Y N N N N Y Y P P Y Y 10 Good 

S20 P Y Y Y Y Y Y Y Y Y Y Y Y P N 12.5 Good 

S21 Y Y Y Y Y Y Y Y P Y N P P Y P 13 Good 

S22 Y Y Y Y Y N Y N N N N N N Y Y 8 Fair 

S23 Y N N Y Y Y Y Y Y N N N N Y N 8 Fair 

S24 P Y Y Y Y N N N N Y N P P Y P 7.5 Fair 

S25 P Y Y Y Y Y Y Y Y Y Y Y Y Y N 13.5 Excellent 

S26 P Y Y Y Y Y Y Y Y Y Y Y Y Y Y 14.5 Excellent 

S27 Y Y Y Y Y Y Y Y P N N N N Y Y 10.5 Good 

S28 Y Y Y Y N Y N Y P N N N N Y Y 8.5 Fair 

S29 Y Y Y Y Y N Y Y P Y Y Y P Y N 12 Good 

S30 P Y Y Y Y Y Y Y Y Y Y Y Y Y P 14 Excellent 

S31 Y Y Y Y Y Y N Y N Y N Y Y Y Y 12 Good 

S32 Y Y Y Y Y N Y Y N Y Y Y P P N 11 Good 

S33 Y Y Y Y Y N Y Y P Y N Y P Y N 11 Good 

S34 Y Y Y Y Y Y Y Y Y Y N Y Y Y Y 14 Excellent 

S35 Y N P Y Y Y Y Y P Y N N N Y Y 10 Good 

S36 N Y Y Y Y Y Y Y Y Y Y Y Y P P 13 Good 

S37 Y Y Y Y Y Y N Y N Y Y Y Y Y N 12 Good 

S38 N Y Y Y Y Y Y Y Y Y Y Y Y N P 12.5 Good 

S39 Y Y Y Y Y Y Y Y P Y Y P P Y Y 13.5 Excellent 

S40 N Y Y Y P N Y Y P Y Y Y Y P N 10.5 Good 

S41 P N N Y Y Y Y Y P N N N N N P 6 Fair 

S42 Y N Y Y Y N Y Y N Y Y Y Y Y Y 12 Good 

S43 Y Y Y Y N Y Y Y N Y N Y Y Y P 11.5 Good 

S44 Y Y Y Y Y Y Y Y P Y Y Y Y Y Y 14.5 Excellent 

S45 Y Y Y Y Y Y Y Y P Y Y Y Y Y Y 14.5 Excellent 

S46 N Y Y Y Y Y Y Y Y Y Y Y P P P 12.5 Good 

S47 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 15 Good 

S48 P Y Y Y Y Y Y Y P Y N Y Y P Y 12.5 Good 

S49 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 15 Excellent 

S50 N Y Y Y Y Y Y Y P Y N Y Y P N 11 Good 

S51 Y Y Y Y Y Y Y N P Y N N N Y Y 10.5 Good 

S52 Y Y Y Y Y Y Y Y Y Y Y Y P Y P 14 Excellent 

S53 P Y Y N Y P Y Y Y Y Y Y P Y P 12 Good 

S54 Y Y Y Y Y Y Y Y P Y Y Y Y Y Y 13.5 Excellent 

S55 Y Y Y Y Y Y Y Y Y Y N P N Y Y 12.5 Good 

S56 Y Y Y Y Y Y Y N P Y Y Y Y Y Y 13.5 Excellent 
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Figure A.1: The mind map of software maintainability prediction. 
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Appendix B 

This Appendix provides Table B.1, which refers to Chapter 5. 
Table B.1: Descriptive static of software maintainability prediction datasets. 
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an
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Appendix C 

Appendix C presents the abbreviation of metrics used in chapter 6. Also, appendix C shows 

Table C.2, Table C.3, Table C.4, Table C.5, Table C.6, Table C.7 and Table C.8, which are 

descriptive static of the datasets used in Chapter 6. Further, this Appendix provides multiple 

ROC curves for datasets applied in Chapter 6. 

Table C. 1: The abbreviation of metrics. 
Metrics name Abbreviation Metrics name Abbreviation 

Lack of Cohesion in Methods 5 LCOM5 Number of Local Attributes NLA 

Nesting Level NL Number of Local Getters NLG 

Nesting Level Else-If NLE Number of Local Methods NLM 

Weighted Methods per Class WMC Number of Local Public Attributes NLPA 

Coupling Between Object classes CBO Number of Local Public Methods NLPM 

Coupling Between Object classes Inverse CBOI Number of Local Setters NLS 

Number of Incoming Invocations NII Number of Methods NM 

Number of Outgoing Invocations NOI Number of Public Attributes NPA 

Response set For Class RFC Number of Public Methods NPM 

API Documentation AD Number of Setters NS 

Comment Density CD Number of Statements NOS 

Comment Lines of Code CLOC Total Lines of Code TLOC 

Documentation Lines of Code DLOC Total Logical Lines of Code TLLOC 

Public Documented API PDA Total Number of Attributes TNA 

Public Undocumented API PUA Total Number of Getters TNG 

Total Comment Density TCD Total Number of Local Attributes TNLA 

Total Comment Lines of Code TCLOC Total Number of Local Getters TNLG 

Depth of Inheritance Tree DIT Total Number of Local Methods TNLM 

Number of Ancestors NOA Total Number of Local Public Attributes TNLPA 

Number of Children NOC Total Number of Local Public Methods TNLPM 

Number of Descendants NOD Total Number of Local Setters TNLS 

Number of Parents NOP Total Number of Methods TNM 

Lines of Code LOC Total Number of Public Attributes TNPA 

Logical Lines of Code LLOC Total Number of Public Methods TNPM 

Number of Attributes NA Total Number of Setters TNS 

Number of Getters NG Total Number of Statements TNOS 

Clone Classes CCL Clone Line Coverage CLC 

Clone Complexity CCO Clone Logical Line Coverage CLLC 

Clone Coverage CC Lines of Duplicated Code LDC 

Clone Instances CI Logical Lines of Duplicated Code LLDC 
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Table C.2: Descriptive static of antl4 dataset. 

Metrics Minimum Maximum Mean Stdev Median 

CC 
0.00 1.00 0.05 0.16 0.00 

LCOM5 
0.00 78.00 1.57 4.86 1.00 

NL 
0.00 10.00 1.07 1.60 0.00 

WMC 
0.00 216.00 14.74 26.47 5.00 

CBOI 
0.00 79.00 4.61 9.07 1.00 

NOI 
0.00 78.00 4.78 8.68 1.00 

AD 
0.00 1.00 0.21 0.25 0.12 

CD 
0.00 0.75 0.13 0.15 0.09 

CLOC 
0.00 575.00 16.74 50.23 2.00 

PDA 
0.00 25.00 1.43 2.71 1.00 

PUA 
0.00 91.00 5.91 8.25 3.00 

DIT 
0.00 6.00 1.35 1.38 1.00 

NOC 
0.00 33.00 0.57 2.18 0.00 

NOD 
0.00 104.00 1.10 6.32 0.00 

NOP 
0.00 3.00 0.69 0.55 1.00 

NA 
0.00 67.00 7.09 7.14 5.00 

NG 
0.00 28.00 3.44 4.92 2.00 

NLA 
0.00 59.00 2.45 4.88 1.00 

NLG 
0.00 28.00 1.22 3.01 0.00 

NLPA 
0.00 34.00 1.50 3.45 0.00 

NM 
0.00 139.00 17.36 19.43 9.50 

NPA 
0.00 37.00 5.31 6.14 4.00 

NS 
0.00 11.00 0.77 1.78 0.00 

TNA 
0.00 152.00 7.77 9.94 6.00 

TNLG 
0.00 28.00 1.33 3.28 0.00 

TNLS 
0.00 11.00 0.26 1.02 0.00 

TNPA 
0.00 53.00 5.61 6.67 4.00 

WarningCritical 
0.00 11.00 0.23 0.95 0.00 

WarningInfo 
0.00 371.00 28.52 47.24 12.00 

WarningMajor 
0.00 246.00 3.11 14.58 0.00 

WarningMinor 
0.00 212.00 12.00 25.35 2.00 

Basic Rules 
0.00 2.00 0.04 0.23 0.00 

Brace Rules 
0.00 56.00 2.51 7.06 0.00 

Clone Implementation Rules 
0.00 1.00 0.00 0.05 0.00 

Cohesion Metric Rules 
0.00 3.00 0.29 0.53 0.00 

Complexity Metric Rules 
0.00 13.00 0.38 1.52 0.00 

Controversial Rules 
0.00 14.00 0.35 1.36 0.00 

Coupling Metric Rules 
0.00 7.00 0.28 0.76 0.00 

Design Rules 
0.00 109.00 5.93 14.16 1.00 

Import Statement Rules 
0.00 3.00 0.02 0.20 0.00 

Inheritance Metric Rules 
0.00 2.00 0.05 0.24 0.00 
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J2EE Rules 
0.00 1.00 0.00 0.05 0.00 

JUnit Rules 
0.00 92.00 2.32 10.03 0.00 

Jakarta Commons Logging Rules 
0.00 4.00 0.01 0.19 0.00 

Java Logging Rules 
0.00 38.00 0.39 2.85 0.00 

JavaBean Rules 
0.00 1.00 0.00 0.05 0.00 

Naming Rules 
0.00 91.00 0.99 5.24 0.00 

Optimization Rules 
0.00 17.00 0.21 1.06 0.00 

Security Code Guideline Rules 
0.00 3.00 0.04 0.26 0.00 

Size Metric Rules 
0.00 71.00 3.94 5.44 4.00 

Strict Exception Rules 
0.00 10.00 0.11 0.62 0.00 

String and StringBuffer Rules 
0.00 26.00 0.78 2.96 0.00 

Type Resolution Rules 
0.00 92.00 1.41 6.78 0.00 

Unnecessary and Unused Code Rules 
0.00 55.00 0.22 2.77 0.00 

 

Table C.3: Descriptive static of junit dataset. 

Metrics Minimum Maximum Mean Stdev Median 

CC 0.00 1.00 0.02 0.14 0.00 

LCOM5 0.00 63.00 1.74 3.15 1.00 

NL 0.00 5.00 0.30 0.73 0.00 

WMC 0.00 87.00 4.36 7.95 2.00 

CBO 0.00 68.00 3.80 4.50 3.00 

CBOI 0.00 124.00 2.74 8.33 1.00 

NII 0.00 392.00 3.03 19.35 0.00 

NOI 0.00 34.00 2.31 4.34 1.00 

RFC 0.00 87.00 5.71 8.68 3.00 

AD 0.00 1.00 0.11 0.27 0.00 

CD 0.00 0.81 0.07 0.17 0.00 

PUA 0.00 62.00 3.12 3.83 2.00 

DIT 0.00 5.00 0.64 0.97 0.00 

NOC 0.00 71.00 0.34 2.99 0.00 

LLOC 1.00 371.00 19.01 29.86 9.00 

NA 0.00 9.00 0.94 1.37 0.00 

NG 0.00 9.00 0.56 1.43 0.00 

NLA 0.00 8.00 0.63 1.14 0.00 

NLG 0.00 9.00 0.25 0.95 0.00 

NLPA 0.00 6.00 0.16 0.53 0.00 

NLS 0.00 3.00 0.04 0.24 0.00 

NM 0.00 80.00 11.60 18.71 3.00 

NPM 0.00 75.00 9.44 16.26 2.00 

NS 0.00 4.00 0.31 0.75 0.00 

TNG 0.00 17.00 0.76 1.92 0.00 
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TNLM 0.00 99.00 4.60 7.85 2.00 

TNLPA 0.00 17.00 0.27 1.09 0.00 

TNM 0.00 662.00 17.35 42.10 3.00 

TNOS 0.00 181.00 8.42 17.53 2.00 

TNPA 0.00 17.00 0.30 1.11 0.00 

WarningCritical 0.00 11.00 0.11 0.72 0.00 

WarningInfo 0.00 325.00 15.28 24.32 8.00 

WarningMajor 0.00 85.00 1.61 4.26 1.00 

WarningMinor 0.00 173.00 4.67 11.04 1.00 

Basic Rules 0.00 5.00 0.03 0.29 0.00 

Brace Rules 0.00 28.00 0.81 2.96 0.00 

Cohesion Metric Rules 0.00 23.00 0.54 1.29 0.00 

Controversial Rules 0.00 5.00 0.13 0.57 0.00 

Coupling Metric Rules 0.00 2.00 0.05 0.23 0.00 

Design Rules 0.00 108.00 1.95 5.54 1.00 

Empty Code Rules 0.00 5.00 0.04 0.30 0.00 

Import Statement Rules 0.00 7.00 0.02 0.28 0.00 

Inheritance Metric Rules 0.00 3.00 0.05 0.25 0.00 

J2EE Rules 0.00 4.00 0.01 0.17 0.00 

JUnit Rules 0.00 89.00 1.75 6.58 0.00 

Java Logging Rules 0.00 3.00 0.01 0.15 0.00 

Migration Rules 0.00 8.00 0.04 0.46 0.00 

Naming Rules 0.00 18.00 0.50 1.80 0.00 

Optimization Rules 0.00 30.00 0.39 1.63 0.00 

Security Code Guideline Rules 0.00 1.00 0.00 0.07 0.00 

Size Metric Rules 0.00 48.00 1.28 3.71 0.00 

Strict Exception Rules 0.00 14.00 0.33 1.11 0.00 

String and StringBuffer Rules 0.00 4.00 0.05 0.32 0.00 

Type Resolution Rules 0.00 28.00 0.33 1.40 0.00 

Unnecessary and Unused Code Rules 0.00 2.00 0.02 0.13 0.00 

 

Table C.4: Descriptive static of MapDB dataset. 

Metrics Minimum Maximum Mean Stdev Median 

CC 
0.00 1.00 0.12 0.27 0.00 

LCOM5 
0.00 22.00 2.07 2.49 1.00 

NL 
0.00 29.00 1.33 2.07 1.00 

WMC 
0.00 1525.00 23.40 93.92 4.00 

CBO 
0.00 40.00 3.74 4.70 2.00 

CBOI 
0.00 111.00 2.94 9.79 0.00 

NII 
0.00 284.00 5.40 23.10 0.00 

NOI 
0.00 54.00 5.74 9.00 2.00 
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RFC 
0.00 156.00 13.58 20.97 6.00 

AD 
0.00 1.00 0.15 0.27 0.00 

CD 
0.00 0.95 0.10 0.16 0.02 

PUA 
0.00 152.00 5.78 10.99 3.00 

DIT 
0.00 4.00 0.52 0.71 0.00 

NOC 
0.00 11.00 0.22 1.00 0.00 

LLOC 
2.00 11272.00 119.63 634.97 22.00 

NA 
0.00 77.00 5.97 10.64 2.00 

NG 
0.00 19.00 0.77 2.19 0.00 

NLA 
0.00 34.00 2.14 4.49 0.00 

NLG 
0.00 19.00 0.43 1.50 0.00 

NLM 
0.00 156.00 7.85 15.01 3.00 

NLPA 
0.00 18.00 0.21 1.35 0.00 

NM 
0.00 156.00 12.89 21.53 3.00 

NPA 
0.00 18.00 2.35 5.20 0.00 

TNA 
0.00 255.00 8.81 18.37 2.00 

TNLG 
0.00 31.00 0.62 2.29 0.00 

TNLPA 
0.00 235.00 0.92 11.56 0.00 

TNLPM 
0.00 208.00 8.90 19.59 3.00 

TNLS 
0.00 6.00 0.14 0.57 0.00 

TNPA 
0.00 252.00 3.73 13.55 0.00 

TNPM 
0.00 252.00 14.88 28.98 3.00 

WarningCritical 
0.00 92.00 1.17 7.10 0.00 

WarningInfo 
0.00 1516.00 40.84 109.93 13.00 

WarningMajor 
0.00 153.00 2.27 10.61 0.00 

WarningMinor 
0.00 4541.00 36.20 246.20 4.00 

Basic Rules 
0.00 925.00 3.43 48.22 0.00 

Brace Rules 
0.00 270.00 6.07 19.52 0.00 

Cohesion Metric Rules 
0.00 10.00 0.55 1.04 0.00 

Complexity Metric Rules 
0.00 45.00 0.81 3.57 0.00 

Controversial Rules 
0.00 123.00 1.93 7.63 0.00 

Coupling Metric Rules 
0.00 18.00 0.26 1.18 0.00 

Design Rules 
0.00 71.00 2.81 7.59 1.00 

Documentation Metric Rules 
0.00 587.00 22.70 45.75 9.00 

Empty Code Rules 
0.00 22.00 0.27 1.73 0.00 

Import Statement Rules 
0.00 9.00 0.04 0.48 0.00 

Inheritance Metric Rules 
0.00 2.00 0.02 0.16 0.00 

JUnit Rules 
0.00 2320.00 16.55 131.09 0.00 

Java Logging Rules 
0.00 10.00 0.17 0.86 0.00 

JavaBean Rules 
0.00 4.00 0.07 0.32 0.00 

Migration Rules 
0.00 980.00 3.71 51.19 0.00 

Naming Rules 
0.00 179.00 2.01 11.07 0.00 

Optimization Rules 
0.00 20.00 0.34 1.54 0.00 
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Security Code Guideline Rules 
0.00 9.00 0.08 0.58 0.00 

Size Metric Rules 
0.00 202.00 3.19 12.12 0.00 

Strict Exception Rules 
0.00 176.00 1.64 12.21 0.00 

String and StringBuffer Rules 
0.00 22.00 0.28 1.54 0.00 

Type Resolution Rules 
0.00 23.00 0.34 2.05 0.00 

Unnecessary and Unused Code Rules 
0.00 941.00 3.29 49.06 0.00 

 

Table C.5: Descriptive static of mcMMO dataset. 

Metrics Minimum Maximum Mean Stdev Median 

CC 0.00 1.00 0.12 0.27 0.00 

LCOM5 0.00 138.00 2.03 8.25 1.00 

NL 0.00 7.00 1.50 1.62 1.00 

WMC 0.00 261.00 19.07 31.35 8.00 

CBO 0.00 48.00 4.76 6.11 3.00 

CBOI 0.00 101.00 4.00 11.84 1.00 

NII 0.00 250.00 6.80 25.67 1.00 

NOI 0.00 86.00 8.10 12.14 4.00 

RFC 1.00 200.00 15.94 22.41 9.00 

AD 0.00 0.97 0.12 0.24 0.00 

CD 0.00 0.70 0.08 0.13 0.00 

CLOC 0.00 355.00 10.97 30.89 0.00 

DLOC 0.00 355.00 9.21 29.35 0.00 

PUA 1.00 181.00 5.49 14.26 3.00 

TCD 0.00 0.70 0.08 0.13 0.00 

DIT 0.00 2.00 0.37 0.51 0.00 

NOC 0.00 13.00 0.23 1.31 0.00 

LLOC 3.00 917.00 64.69 95.16 32.00 

LOC 3.00 1160.00 90.96 136.45 42.00 

NA 0.00 36.00 4.55 6.07 3.00 

NG 0.00 197.00 3.14 13.85 0.00 

NLA 0.00 32.00 2.82 4.88 1.00 

NLM 0.00 199.00 7.84 17.23 4.00 

NLPM 0.00 197.00 6.08 16.92 2.00 

NLS 0.00 15.00 0.47 1.60 0.00 

NPM 0.00 201.00 6.87 17.33 2.00 

TNLG 0.00 197.00 3.30 14.74 0.00 

WarningCritical 0.00 15.00 0.42 1.44 0.00 

WarningInfo 2.00 381.00 25.71 42.10 15.00 

WarningMajor 0.00 39.00 0.77 3.13 0.00 

WarningMinor 0.00 62.00 5.66 9.15 2.00 

Basic Rules 0.00 3.00 0.07 0.36 0.00 
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Brace Rules 0.00 2.00 0.02 0.17 0.00 

Cohesion Metric Rules 0.00 1.00 0.27 0.45 0.00 

Controversial Rules 0.00 4.00 0.07 0.41 0.00 

Coupling Metric Rules 0.00 8.00 0.35 1.09 0.00 

Documentation Metric Rules 1.00 367.00 17.35 32.35 9.00 

Empty Code Rules 0.00 2.00 0.03 0.18 0.00 

Inheritance Metric Rules 0.00 1.00 0.01 0.08 0.00 

JUnit Rules 0.00 6.00 0.02 0.35 0.00 

Jakarta Commons Logging Rules 0.00 4.00 0.05 0.43 0.00 

Java Logging Rules 0.00 8.00 0.11 0.72 0.00 

Naming Rules 0.00 55.00 0.50 3.41 0.00 

Optimization Rules 0.00 18.00 0.17 1.14 0.00 

Size Metric Rules 0.00 33.00 1.88 3.70 0.00 

Strict Exception Rules 0.00 10.00 0.14 0.79 0.00 

Type Resolution Rules 0.00 14.00 0.19 1.00 0.00 

Unnecessary and Unused Code Rules 0.00 2.00 0.02 0.19 0.00 

 

Table C.6: Descriptive static of mct dataset. 

Metrics Minimum Maximum Mean Stdev Median 

CC 0.00 1.00 0.19 0.36 0.00 

LCOM5 0.00 60.00 1.37 2.42 1.00 

NL 0.00 18.00 0.95 1.47 0.00 

WMC 0.00 413.00 9.31 19.98 3.00 

CBO 0.00 56.00 3.86 5.07 2.00 

CBOI 0.00 409.00 2.92 13.75 1.00 

NII 0.00 503.00 3.89 18.84 0.00 

NOI 0.00 199.00 4.92 10.50 1.00 

RFC 0.00 246.00 10.02 17.18 4.00 

AD 0.00 1.00 0.16 0.32 0.00 

CD 0.00 0.82 0.10 0.17 0.00 

PUA 0.00 100.00 3.88 6.64 2.00 

DIT 0.00 5.00 0.60 0.91 0.00 

NOC 0.00 65.00 0.27 2.63 0.00 

NA 0.00 124.00 5.07 8.75 2.00 

NG 0.00 60.00 3.58 7.68 0.00 

NLA 0.00 124.00 2.51 6.27 1.00 

NLG 0.00 45.00 1.18 3.50 0.00 

NLPA 0.00 122.00 0.31 3.95 0.00 

NLS 0.00 51.00 0.53 2.71 0.00 

NM 0.00 175.00 12.78 22.32 4.00 

NOS 0.00 896.00 26.93 65.45 6.50 
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NPA 0.00 122.00 0.78 4.15 0.00 

NS 0.00 51.00 1.39 3.82 0.00 

TNG 0.00 1099.00 5.64 26.62 1.00 

TNLG 0.00 50.00 1.50 4.25 0.00 

TNLPA 0.00 163.00 0.47 5.52 0.00 

TNPA 0.00 163.00 1.04 5.69 0.00 

TNS 0.00 409.00 2.12 10.09 0.00 

WarningBlocker 0.00 1.00 0.00 0.02 0.00 

WarningCritical 0.00 22.00 0.24 1.37 0.00 

WarningInfo 0.00 1390.00 24.99 52.73 12.00 

WarningMajor 0.00 37.00 0.71 2.42 0.00 

WarningMinor 0.00 318.00 4.59 15.05 1.00 

Basic Rules 0.00 22.00 0.14 1.11 0.00 

Brace Rules 0.00 42.00 0.65 2.83 0.00 

Clone Implementation Rules 0.00 2.00 0.01 0.10 0.00 

Cohesion Metric Rules 0.00 8.00 0.33 0.67 0.00 

Complexity Metric Rules 0.00 14.00 0.23 1.05 0.00 

Controversial Rules 0.00 58.00 0.39 2.01 0.00 

Coupling Metric Rules 0.00 16.00 0.24 0.94 0.00 

Design Rules 0.00 138.00 1.90 5.90 0.00 

Documentation Metric Rules 0.00 311.00 13.96 22.15 7.00 

Empty Code Rules 0.00 6.00 0.03 0.23 0.00 

Finalizer Rules 0.00 1.00 0.00 0.03 0.00 

Import Statement Rules 0.00 64.00 0.06 1.48 0.00 

Inheritance Metric Rules 0.00 49.00 0.09 1.09 0.00 

J2EE Rules 0.00 2.00 0.00 0.08 0.00 

JUnit Rules 0.00 286.00 1.27 10.54 0.00 

Jakarta Commons Logging Rules 0.00 12.00 0.05 0.52 0.00 

Java Logging Rules 0.00 17.00 0.06 0.57 0.00 

Migration Rules 0.00 4.00 0.01 0.14 0.00 

Naming Rules 0.00 133.00 0.36 3.13 0.00 

Optimization Rules 0.00 20.00 0.21 1.09 0.00 

Security Code Guideline Rules 0.00 4.00 0.02 0.20 0.00 

Size Metric Rules 0.00 364.00 2.26 9.10 0.00 

Strict Exception Rules 0.00 11.00 0.09 0.56 0.00 

String and StringBuffer Rules 0.00 35.00 0.14 1.03 0.00 

Type Resolution Rules 0.00 12.00 0.13 0.75 0.00 

Unnecessary and Unused Code Rules 0.00 14.00 0.06 0.43 0.00 
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Table C.7: Descriptive static of oryx dataset. 
Metrics Minimum Maximum Mean Stdev Median 

CC 0.00 1.00 0.07 0.19 0.00 

LCOM5 0.00 10.00 1.37 1.16 1.00 

NL 0.00 13.00 1.33 1.48 1.00 

WMC 1.00 121.00 8.93 12.02 5.00 

CBO 0.00 38.00 4.04 4.12 3.00 

CBOI 0.00 77.00 3.47 7.78 1.00 

NII 0.00 179.00 4.33 12.94 1.00 

NOI 0.00 66.00 5.25 6.73 3.00 

RFC 1.00 104.00 9.75 9.14 7.00 

AD 0.00 1.00 0.27 0.34 0.11 

CD 0.00 0.60 0.12 0.14 0.07 

PUA 0.00 26.00 3.26 3.51 2.00 

DIT 0.00 5.00 0.75 0.95 1.00 

NOC 0.00 64.00 0.41 3.13 0.00 

NA 0.00 17.00 3.74 3.51 3.00 

NG 0.00 14.00 2.04 2.59 1.00 

NLA 0.00 15.00 1.73 2.28 1.00 

NLG 0.00 14.00 0.88 1.95 0.00 

NLM 1.00 50.00 4.50 4.83 3.00 

NLPA 0.00 10.00 0.07 0.54 0.00 

NLPM 0.00 46.00 3.43 4.28 2.00 

NLS 0.00 4.00 0.05 0.31 0.00 

NM 1.00 60.00 10.14 9.43 7.00 

NPA 0.00 10.00 0.29 0.86 0.00 

NPM 0.00 54.00 5.13 4.81 4.00 

NS 0.00 4.00 0.37 0.84 0.00 

TNPA 0.00 10.00 0.30 0.88 0.00 

TNPM 0.00 63.00 5.57 5.82 4.00 

TNS 0.00 4.00 0.38 0.85 0.00 

WarningCritical 0.00 1.00 0.01 0.07 0.00 

WarningInfo 0.00 160.00 15.70 18.21 10.00 

WarningMajor 0.00 25.00 0.56 1.77 0.00 

WarningMinor 0.00 90.00 3.02 7.40 1.00 

Basic Rules 0.00 1.00 0.01 0.11 0.00 

Clone Implementation Rules 0.00 1.00 0.00 0.04 0.00 

Cohesion Metric Rules 0.00 3.00 0.24 0.47 0.00 

Complexity Metric Rules 0.00 9.00 0.25 0.96 0.00 

Controversial Rules 0.00 7.00 0.19 0.67 0.00 

Coupling Metric Rules 0.00 10.00 0.18 0.67 0.00 

Design Rules 0.00 12.00 0.79 1.40 0.00 

Documentation Metric Rules 0.00 115.00 11.62 11.69 8.00 
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Empty Code Rules 0.00 1.00 0.00 0.06 0.00 

Inheritance Metric Rules 0.00 2.00 0.01 0.14 0.00 

JUnit Rules 0.00 89.00 1.64 7.21 0.00 

Jakarta Commons Logging Rules 0.00 2.00 0.02 0.15 0.00 

Java Logging Rules 0.00 1.00 0.01 0.09 0.00 

JavaBean Rules 0.00 1.00 0.07 0.25 0.00 

Naming Rules 0.00 21.00 0.42 1.44 0.00 

Optimization Rules 0.00 2.00 0.02 0.18 0.00 

Security Code Guideline Rules 0.00 7.00 0.08 0.46 0.00 

Size Metric Rules 0.00 12.00 0.69 1.42 0.00 

Strict Exception Rules 0.00 5.00 0.03 0.26 0.00 

String and StringBuffer Rules 0.00 4.00 0.05 0.30 0.00 

Type Resolution Rules 0.00 23.00 0.26 1.52 0.00 

Unnecessary and Unused Code Rules 0.00 1.00 0.00 0.04 0.00 

 

Table C.8: Descriptive static of titan dataset. 

Metrics Minimum Maximum Mean Stdev Median 

CC 0.00 1.00 0.05 0.18 0.00 

LCOM5 0.00 60.00 2.65 3.97 1.00 

NL 0.00 10.00 1.15 1.59 1.00 

WMC 0.00 323.00 10.11 19.73 4.00 

CBO 0.00 124.00 3.15 6.85 1.00 

CBOI 0.00 160.00 1.52 6.03 0.00 

NII 0.00 47.00 0.95 3.66 0.00 

NOI 0.00 223.00 1.66 10.77 0.00 

RFC 0.00 299.00 6.69 15.96 3.00 

CD 0.00 0.96 0.10 0.14 0.04 

DLOC 0.00 539.00 5.64 21.58 0.00 

PUA 0.00 80.00 4.45 5.66 3.00 

DIT 0.00 9.00 0.73 1.23 0.00 

NOC 0.00 36.00 0.23 1.29 0.00 

NA 0.00 160.00 3.76 7.16 2.00 

NG 0.00 44.00 2.37 5.40 0.00 

NLA 0.00 160.00 2.12 5.78 1.00 

NLG 0.00 35.00 1.13 2.78 0.00 

NLPA 0.00 139.00 0.47 4.16 0.00 

NLS 0.00 15.00 0.18 0.80 0.00 

NM 0.00 123.00 10.74 17.98 4.00 

NPA 0.00 139.00 1.31 5.08 0.00 

NS 0.00 15.00 0.37 1.21 0.00 

TNG 0.00 76.00 2.61 5.96 0.00 
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TNLPM 0.00 93.00 5.20 8.28 3.00 

WarningCritical 0.00 75.00 0.17 2.08 0.00 

WarningInfo 0.00 428.00 20.35 30.89 10.00 

WarningMajor 0.00 391.00 6.61 18.08 1.00 

WarningMinor 0.00 1104.00 7.15 32.65 1.00 

Basic Rules' 0.00 71.00 0.11 1.88 0.00 

Clone Implementation Rules 0.00 2.00 0.00 0.07 0.00 

Cohesion Metric Rules 0.00 19.00 0.60 0.87 0.00 

Complexity Metric Rules 0.00 17.00 0.32 1.28 0.00 

Controversial Rules 0.00 27.00 0.31 1.34 0.00 

Coupling Metric Rules 0.00 24.00 0.14 0.96 0.00 

Design Rules 0.00 40.00 1.26 3.10 0.00 

Documentation Metric Rules 0.00 265.00 15.46 22.13 9.00 

Empty Code Rules 0.00 71.00 0.08 1.87 0.00 

Import Statement Rules 0.00 92.00 0.17 2.66 0.00 

Inheritance Metric Rules 0.00 3.00 0.10 0.43 0.00 

J2EE Rules 0.00 3.00 0.01 0.17 0.00 

JUnit Rules 0.00 945.00 2.73 27.04 0.00 

Jakarta Commons Logging Rules 0.00 11.00 0.06 0.53 0.00 

Java Logging Rules 0.00 6.00 0.03 0.28 0.00 

JavaBean Rules 0.00 1.00 0.00 0.03 0.00 

Naming Rules 0.00 14.00 0.40 1.12 0.00 

Optimization Rules 0.00 11.00 0.12 0.57 0.00 

Security Code Guideline Rules 0.00 4.00 0.03 0.23 0.00 

Size Metric Rules 0.00 67.00 1.64 3.92 0.00 

Strict Exception Rules 0.00 10.00 0.12 0.61 0.00 

String and StringBuffer Rules 0.00 67.00 0.21 2.13 0.00 

Type Resolution Rules 0.00 17.00 0.23 1.16 0.00 

 

 

 

 

 

 



 

258 

 

 

(antl4 dataset) 
 

(junit dataset)  

 

 

(MapDB dataset) 

× Zaro (class: FALSE) 

+ SVM (class: FALSE) 

 NB (class: FALSE) 
◊ KNN (class: FALSE) 

 RF (class: FALSE) 

 

×  SVM (class: FALSE) 

+  ZeroR (class: FALSE) 

 KNN (class: FALSE) 
◊   NB (class: FALSE) 

 RF (class: FALSE) 

 

×  NB (class: FALSE) 

+  ZeroR (class: FALSE) 
 KNN (class: FALSE) 

◊   SVM (class: FALSE) 

 RF (class: FALSE) 

 



 

259 

 

 

(mcMMO dataset)  

 (mct dataset)  
 

(oryx dataset) 

×  ZeroR (class: FALSE) 
+  KNN (class: FALSE) 

 NB (class: FALSE) 

◊   SVM (class: FALSE) 
 RF (class: FALSE) 

 

×  ZeroR (class: FALSE) 

+  SVM (class: FALSE) 
 KNN (class: FALSE) 

◊   NB (class: FALSE) 

 RF (class: FALSE) 

 

×  ZeroR (class: FALSE) 
+  NB (class: FALSE) 

 KNN (class: FALSE) 

◊   SVM (class: FALSE) 
 RF (class: FALSE) 

 



 

260 

 

 

(titan dataset) 
Figure C.1: Multiple ROC curves for prediction models in the first scenario. 
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(titan dataset)  
Figure C.2: Multiple ROC curves for prediction models in the second scenario. 
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(titan dataset)  
Figure C.3: Multiple ROC curves for prediction models in the third scenario. 
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(titan dataset) 

 

Figure C.4: Multiple ROC curves for prediction models in the fourth scenario. 
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