

Investigating the Use of Ensemble

Techniques in Predicting Object-Oriented

Software Maintainability

By

Hadeel Abdullah Alsolai

A thesis submitted as partial fulfilment of the requirement of

Doctor of Philosophy

 Faculty of Science, Computer and Information Sciences

University of Strathclyde

Glasgow, United Kingdom

August 2020

i

Declaration

This thesis is the result of the author’s original research. It has been composed by the author

and has not been previously submitted for examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United Kingdom

Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due

acknowledgement must always be made of the use of any material contained in, or derived

from, this thesis.

Signed:

Date: 17-08-2020

ii

Abstract

Context: Prediction of the maintainability of classes in object-oriented systems is a significant

factor for software success; however, it is a challenging task. Although prior object-oriented

software maintainability literature acknowledges the role of machine learning techniques as

valuable predictors of potential change, the most suitable technique that consistently achieves

high accuracy remains undetermined and there is no clear indication of which techniques are

more appropriate.

Objective: This thesis aims to empirically investigate the capability of ensemble models to

provide an increased prediction accuracy, compared with individual models, by applying them

on several software maintainability datasets using different base models and analysing the

impact of parameter tuning.

Method: In the first part of this thesis, a systematic review of studies related to the prediction

of the maintainability of object-oriented software systems using machine learning techniques

is presented. In the remaining parts of this thesis, three empirical studies were performed to

evaluate and compare different homogeneous and heterogeneous ensemble models against sets

of individual models for predicting software maintainability of object-oriented systems at the

class level. These models were employed on 14 datasets that were extracted from the

maintenance of object-oriented software systems.

Results: The systematic literature review determined 56 relevant studies and indicated that the

application of ensemble models is relatively rare, thus there is a need to perform studies using

these models as well as others to an extensive variety of datasets. The results obtained from

three empirical studies indicate that the proposed ensemble models yield improved prediction

accuracy over most of the individual models. This improvement was significant only in the

third empirical study, along with a few cases in the second empirical study. In most cases, k-

nearest neighbours or support vector regression achieved the best prediction accuracy among

individual models; moreover, these models as a base model in bagging and additive regression

outperformed other prediction models, along with random forest.

iii

Conclusion: The main finding is that ensemble models are effective for predicting software

maintainability and they are more accurate than some individual models; their performance

may be improved by using large datasets, or parameter tuning. Also, ensemble models improve

the performance of weaker base models.

iv

List of Publication

In the process of writing this thesis, five publications have been published as follows:

1. H. Alsolai, "Predicting Software Maintainability in Object-Oriented Systems Using

Ensemble Techniques," in IEEE International Conference on Software Maintenance

and Evolution, Madrid, Spain, 2018. (Reference number: [1], and appeared in Chapter

4).

2. H. Alsolai and M. Roper, "Application of Ensemble Techniques in Predicting Object-

Oriented Software Maintainability," in the Proceedings of the Evaluation and

Assessment on Software Engineering, Copenhagen, Denmark, 2019. (Reference

number:[2], and appeared in Chapter 1).

3. H. Alsolai and M. Roper, " Determining the Best Prediction Accuracy of Software

Maintainability Models Using Auto-WEKA, " in the Proceedings of the International

Conference on Computing, Riyadh, Saudi Arabia, 2019. (Reference number:[3], and

appeared in Chapter 5).

4. H. Alsolai and M. Roper, "A Systematic Review of Feature Selection Techniques in

Software Quality Prediction," in the International Conference on Electrical and

Computing Technologies and Applications, Ras Al Khaimah, UAE, 2019. (Reference

number:[4], and appeared in Chapter 6).

5. H. Alsolai and M. Roper, "A Systematic Literature Review of Machine Learning

Techniques for Software Maintainability Prediction," in Information and Software

Technology Journal, vol. 119, p. 106214, 2020. (Reference number: [5], and appeared

in Chapter 2).

v

Acknowledgment

In the name of Allah, the most Gracious and the most Merciful. First and foremost, praise is

to Almighty Allah for his countless mercy and ultimate grace in my life. I thank God for giving

me the strength and ability to accomplish this thesis.

I would like to extend my thanks and appreciation to my principal supervisor, Professor.

Marc Roper, for careful guidance, advice, and helpful feedback. Under his dedicated

supervision, I have learned how to be an independent researcher and creative scientist, and this

will support my academic career.

I gratefully acknowledge Princess Nourah Bint Abdulrahman University, Riyadh, Saudi

Arabia for sponsoring my PhD study and supporting my publications. In addition, an

exceptional thanks to University of Strathclyde, Glasgow, United Kingdom, for providing

several software products and useful courses during my PhD research.

Moreover, I would like to thank and express my deep and sincere gratitude to my parents

(Abdullah and Badriah) for their endless love, encouragement and support. Thank you both

for your continuous care, determination, and motivation throughout my life and even more

during my PhD study. My gratitude also goes to my sisters (Leen and Reema) and brothers

(Hatim, Nawaf and Faisal) who made this thesis an enjoyable and unforgettable experience. I

would like to express my heartfelt gratitude to my lovely kids (my son Ibrahim and my

daughter Jumaan), who shared and interacted with my postgraduate study from my pregnancy

period until this moment. Being a mother has been one of the greatest gifts in my life.

Finally, I have written the last words of my thesis during a very tough and anxious time

in the quarantine due to the COVID-19 outbreak. I am incredibly grateful for the massive

efforts that have been made by health care workers around the world for saving the lives of

patients. I sincerely hope that the Coronavirus pandemic will soon be over, and I wish everyone

is staying safe and healthy.

vi

Table of Contents

Declaration .. i

Abstract ii

List of Publication .. iv

Acknowledgment ... v

Table of Contents ... vi

List of Figures ... xi

List of Tables .. xiii

List of Acronyms ... xvii

Chapter 1. Introduction ... 1

1.1. Problem Statement .. 5

1.2. Motivation for the Thesis .. 6

1.3. Contributions ... 6

1.4. Research Objectives .. 7
1.4.1 Objectives of the first empirical study ... 7
1.4.2 Objectives of the second empirical study .. 7
1.4.3 Objectives of the third empirical study .. 7
1.4.4 Research questions ... 8

1.5. Scope of Work ... 8
1.5.1 Maintainability measurement ... 8
1.5.2 Metrics ... 9
1.5.3 Datasets .. 10
1.5.4 Evaluation measures .. 10
1.5.5 Prediction models .. 11

1.6. Thesis Organisation .. 12

Chapter 2. A Systematic Literature Review of Machine Learning Models for Software

Maintainability Prediction ... 13

2.1. Introduction ... 13

2.2. Method ... 14
2.2.1 Review protocol ... 15
2.2.2 Research questions for SLR ... 15

vii

2.2.3 Search process .. 18
2.2.4 Inclusion and exclusion criteria ... 22
2.2.5 Quality assessment ... 23
2.2.6 Data extraction ... 24
2.2.7 Data synthesis .. 24

2.3. Results ... 24
2.3.1 Selected primary studies .. 25
2.3.2 Publications years .. 25
2.3.3 Publication sources .. 26
2.3.4 Quality assessment result ... 27

2.4. Discussion ... 27
2.4.1 Software maintainability measurement .. 28
2.4.2 Software maintainability metrics ... 33
2.4.3 Software maintainability datasets .. 38
2.4.4 Evaluation measures .. 42
2.4.5 Machine learning problem category. ... 46
2.4.6 Individual prediction models ... 47
2.4.7 Ensemble prediction models .. 50

2.5. Conclusion of Systematic Literature Review ... 52

Chapter 3. Methodology for Empirical Studies in Software Maintainability Prediction

 57

3.1. Individual Prediction Models .. 58
3.1.1 Regression tree ... 60
3.1.2 Multilayer perceptron... 60
3.1.3 K-Nearest neighbours .. 60
3.1.4 M5Rules ... 61
3.1.5 Support vector machine ... 61
3.1.6 Support vector regression .. 61
3.1.7 Naive Bayes ... 62

3.2. Ensemble Prediction Models ... 62
3.2.1 Bootstrap aggregating (Bagging) ... 64
3.2.2 Additive regression .. 65
3.2.3 Random forest .. 65
3.2.4 Stacking ... 66
3.2.5 Average probability ensemble ... 66

3.3. Parameters tuning ... 67
3.3.1 Caret package ... 67
3.3.2 Auto-WEKA .. 69
3.3.3 Grid search ... 69

3.4. Datasets ... 70
3.4.1 Change maintenance efforts ... 70
3.4.2 Bug prediction datasets .. 71
3.4.3 Refactoring datasets ... 72

3.5. Prediction Accuracy Measures ... 73
3.5.1 Measures for the regression problem ... 73

viii

3.5.2 Measure for the classification problem .. 75
3.5.3 Baseline .. 76
3.5.4 Criteria ... 76
3.5.5 Statistical tests and effect size .. 77

3.6. Validation .. 78

3.7. Tools .. 79
3.7.1 WEKA ... 79
3.7.2 R ... 79

3.8. Summary .. 80

Chapter 4. First Empirical Study: Ensemble Techniques to Predict Change

Maintenance Effort Using Well-Established Datasets ... 81

4.1. Introduction ... 81

4.2. Motivation ... 82

4.3. Research Method ... 84

4.4. Experimental Data Setup .. 86
4.4.1 Dependent variable: maintainability .. 86
4.4.2 Independent variables: metrics .. 87
4.4.3 Datasets pre-processing ... 87
4.4.4 Descriptive statistics .. 87
4.4.5 Correlation between metrics in the datasets ... 89

4.5. Results and Analysis .. 91
4.5.1 Results of the first empirical study .. 91
4.5.2 Comparison of the best investigated model with the best model in selected studies111
4.5.3 Impact of the parameters tuning using caret .. 114
4.5.4 Discussion and answers to research questions for the first empirical study 115

4.6. Threats to Validity ... 118
4.6.1 Threats to external validity .. 118
4.6.2 Threats to internal validity ... 119
4.6.3 Threats to the construct validity ... 119
4.6.4 Threats to the conclusion validity .. 120

4.7. Conclusion of the first empirical study ... 120

Chapter 5. Second Empirical Study: Ensemble Techniques to Predict Change

Maintenance Effort Using More Recent and Larger Datasets 123

5.1. Introduction ... 123

5.2. Motivation ... 125

5.3. Research Method ... 126

5.4. Experimental Data Setup .. 129
5.4.1 Data pre-processing ... 130
5.4.2 Dependent variable: maintainability. ... 135
5.4.3 Independent variable: metrics .. 137
5.4.4 Descriptive statistics .. 137

ix

5.4.5 Correlation between metrics in the datasets ... 138

5.5. Results and Analyses ... 139
5.5.1 Comparison between prediction models .. 140
5.5.2 Determining the best prediction accuracy using Auto-WEKA 164
5.5.3 Discussion and answers to research questions for the second empirical study 168

5.6. Threats to Validity ... 174

5.7. Conclusion of the second empirical study ... 176

Chapter 6. Third Empirical Study: Ensemble Techniques to Predict Change-Proneness

Using Newest and Largest Datasets ... 179

6.1. Introduction ... 179

6.2. Motivation ... 180

6.3. Research Method ... 184

6.4. Experimental Data Setup .. 188
6.4.1 Evaluation of refactoring datasets .. 188
6.4.2 Dependent variable: change-proneness .. 189
6.4.3 Independent variables: source code metrics ... 190
6.4.4 Datasets analysis .. 190
6.4.5 Data pre-processing ... 194

6.5. Results and Analyses ... 198
6.5.1 Results of feature selection .. 198
6.5.2 Results of sampling .. 199
6.5.3 Results of prediction models .. 201
6.5.4 Statistical tests of the third empirical study ... 207
6.5.5 Impact of parameter tuning for random forests. .. 208
6.5.6 Discussion and answers to research questions for the third empirical study 209

6.6. Threats to Validity ... 212
6.6.1 External validity ... 212
6.6.2 Conclusion validity .. 212
6.6.3 Internal validity .. 213
6.6.4 Construct validity ... 213

6.7. Conclusion of the third empirical study .. 214

Chapter 7. Conclusion and Contributions .. 216

7.1. Conclusion of the thesis .. 216

7.2. Answers to Research Questions .. 218

7.3. Contribution .. 219

7.4. Recommendations for Practitioners .. 221

7.5. Limitations and Possible Future Work ... 223

References 225

x

Appendix A .. 241

Appendix B .. 246

Appendix C .. 247

xi

List of Figures

Figure 2.1: The framework of SLR. .. 15

Figure 2.2: Process of primary studies selection. .. 21
Figure 2.3: Number of selected studies over the years. .. 26
Figure 2.4: The number of studies in each journal. ... 26
Figure 2.5: The number of selected studies in each digital library database. 27
Figure 2.6: The number of selected studies in each software maintenance type. 33

Figure 2.7: The number of studies using metrics type and metrics level. 37

Figure 2.8: The distribution of metrics. .. 37

Figure 2.9: The number of studies used each type of the dataset. .. 40
Figure 2.10: The number of datasets classified by the size of the dataset. 40
Figure 2.11: The distribution of programming language in each study. 41
Figure 2.12: The distribution of evaluation measures used by selected primary studies. 45

Figure 2.13: Individual prediction models used in selected primary studies. 49
Figure 2.14: Ensemble prediction models used in selected primary studies. 52

Figure 3.1: Structure of homogeneous and heterogeneous ensemble prediction models. 63
Figure 3.2: Ten- fold cross-validation. .. 79
Figure 4.1: The process of the first empirical study. ... 85

Figure 4.2: Framework of the first empirical study. ... 86
Figure 4.3: Boxplots of metrics in QUES dataset. .. 88

Figure 4.4: Boxplots of metrics in UIMS dataset. .. 89

Figure 4.5: The correlation between metrics. .. 91

Figure 4.6: Pred(.25) of prediction models for QUES dataset. ... 95
Figure 4.7: Pred(.30) of prediction models for QUES dataset. ... 95

Figure 4.8: Boxplots of MRE for prediction models in QUES dataset. 97
Figure 4.9: Boxplots of the residuals for prediction models in QUES dataset. 98
Figure 4.10: Plots of predicted and actual values for prediction models in the QUES dataset.

 ... 102
Figure 4.11: Pred(.25) of prediction models for UIMS dataset. ... 106
Figure 4.12: Pred(.30) of prediction models for UIMS dataset. ... 106
Figure 4.13: Boxplots of MRE for prediction models in UIMS dataset. 107

Figure 4.14: Boxplots of the residuals for prediction models in UIMS dataset. 108
Figure 4.15: Plots of predicted and actual values for prediction models in UIMS dataset. .. 111
Figure 4.16: MMRE values obtained by the best model in the previous selected studies and

the best model for the QUES dataset. ... 113
Figure 4.17: MMRE values obtained by the best model in the previous selected studies and

the best model for the UIMS dataset. .. 114
Figure 5.1: Framework of the research method. ... 128

Figure 5.2: Framework of data pre-processing. .. 131
Figure 5.3: Proportion of outliers removed during data cleaning. .. 134
Figure 5.4: Boxplots of CHANGE metric. .. 136

xii

Figure 5.5: Correlation between source code metrics in the software maintainability datasets.

 ... 139
Figure 5.6: Boxplot of MRE for prediction models on all datasets. 143
Figure 5.7: Boxplot of the residuals for prediction models on all datasets. 146
Figure 5.8: Pred(.25) for each prediction model on all datasets. .. 147
Figure 5.9: Pred(.30) for each prediction model on all datasets. .. 149

Figure 5.10: Multiple comparisons for prediction models using the residuals. 164
Figure 5.11: MMRE value for selected and ZeroR models in each dataset. 167
Figure 5.12: Box plot of MRE for selected and ZeroR models in each dataset. 167
Figure 6.1: Framework of the fourth scenario. ... 185
Figure 6.2: Framework of the research method. ... 188

Figure 6.3: Box plot of the AUC values for prediction models on the scenarios analysed. . 203
Figure 6.4: Ranking of the AUC values for prediction models on the scenarios analysed. .. 207

Figure 6.5: Multiple comparisons for prediction models using AUC. 208

xiii

List of Tables

Table 2.1: Research questions for SLR and their motivation. .. 17

Table 2.2: Selected journals and conferences. .. 19
Table 2.3: Data Extraction properties with their research question. 24
Table 2.4: The differences between software maintainability measurements and metrics. 28
Table 2.5: Summary for software maintainability measurement. ... 30
Table 2.6: Summary of metrics used in different maintenance types. 35

Table 2.7: Summary of software maintainability metrics. .. 36

Table 2.8: Summary of different types of dataset. .. 39

Table 2.9: The tool extraction independent metrics. ... 42
Table 2.10: The tools for dependent metrics extraction. ... 42
Table 2.11: Summary of evaluation measures used. ... 43
Table 2.12: Summary of validation types. .. 46

Table 2.13: Summary of machine learning problems. .. 47
Table 2.14: Summary of individual prediction models used with the best model in each

study. ... 48
Table 2.15: Performance of MMRE value for some selected primary studies. 49
Table 2.16: Summary of the ensemble prediction models. ... 51

Table 3.1: Summary of selected individual prediction models. .. 59
Table 3.2: Similarities and Differences between homogeneous and heterogeneous ensemble

models. .. 64

Table 3.3: Overview of packages and methods used to create prediction models. 69

Table 3.4: Definitions and description of L&H metrics [9]. ... 71
Table 3.5: Summary of class level source code metrics [57]. ... 72

Table 3.6: Metrics used as independent variables and their categories [156]. 73
Table 3.7: Confusion matrix [163]. ... 76
Table 4.1: Summary of selected paper using machine learning models to predict software

maintainability. .. 83
Table 4.2: Correlations between the metrics in UIMS (upper right triangle) and QUES (lower

lift triangle). ... 90
Table 4.3: Performance of the prediction models for the QUES dataset. 93

Table 4.4: One-way ANOVA for RT and ensemble models in QUES dataset using the

residuals. .. 94
Table 4.5: One-way ANOVA for MLP and ensemble models in QUES dataset using the

residuals. .. 94
Table 4.6: One-way ANOVA for KNN and ensemble models in QUES dataset using the

residuals. .. 94
Table 4.7: One-way ANOVA for M5Rules and ensemble models in QUES dataset using the

residuals. .. 94
Table 4.8: One-way ANOVA for SVR and ensemble models in QUES dataset using the

residuals. .. 94

Table 4.9: Performance of the prediction models for the UIMS dataset............................... 104

xiv

Table 4.10: One-way ANOVA for RT and ensemble models in UIMS dataset using the

residuals. .. 104
Table 4.11: One-way ANOVA for MLP and ensemble models in UIMS dataset using the

residuals. .. 104
Table 4.12: One-way ANOVA for KNN and ensemble models in UIMS dataset using the

residuals. .. 105

Table 4.13: One-way ANOVA for M5Rules and ensemble models in UIMS dataset using the

residuals 105
Table 4.14: One-way ANOVA for SVR and ensemble models in UIMS dataset using the

residuals. .. 105
Table 4.15: Performance of MMRE obtained by previous selected studies and proposed work

for the QUES and UIMS datasets. .. 112
Table 4.16: Impact of the parameters tuning on QUES dataset. ... 115

Table 4.17: Impact of the parameters tuning on UIMS dataset. ... 115
Table 5.1: Summary of previous studies that applied pre-processing techniques on the

software quality datasets. .. 125
Table 5.2: Summary of the bug prediction datasets [57]. ... 132

Table 5.3: Summary result of pre-processing techniques. .. 135
Table 5.4: Descriptive statistics for the CHANGE metric. ... 136
Table 5.5: Baseline models and their corresponding MMRE, MAE and SA values. 150

Table 5.6: Individual models and their corresponding MMRE, MAE and SA values. 151
Table 5.7: Homogeneous ensemble models and their corresponding MMRE, MAE and SA

values. .. 153
Table 5.8: Heterogeneous ensemble models and their corresponding MMRE, MAE and SA

values. .. 154

Table 5.9: One-way ANOVA for RT and ensemble models in the Eclipse JDT Core dataset

using the residuals. .. 155
Table 5.10: One-way ANOVA for MLP and ensemble models in the Eclipse JDT Core

dataset using the residuals. .. 155

Table 5.11: One-way ANOVA for KNN and ensemble models in the Eclipse JDT Core

dataset using the residuals. .. 155

Table 5.12: One-way ANOVA for M5Rules and ensemble models in the Eclipse JDT Core

dataset using the residuals. .. 156
Table 5.13: One-way ANOVA for SVR and ensemble models in the Eclipse JDT Core

dataset using the residuals. .. 156

Table 5.14: One-way ANOVA for RT and ensemble models in the Eclipse PDE UI dataset

using the residuals. .. 156
Table 5.15: One-way ANOVA for MLP and ensemble models in the Eclipse PDE UI dataset

using the residuals. .. 156
Table 5.16: One-way ANOVA for KNN and ensemble models in the Eclipse PDE UI dataset

using the residuals. .. 156
Table 5.17: One-way ANOVA for M5Rules and ensemble models in the Eclipse PDE UI

dataset using the residuals. .. 156
Table 5.18: One-way ANOVA for SVR and ensemble models in the Eclipse PDE UI dataset

using the residuals. .. 156
Table 5.19: One-way ANOVA for RT and ensemble models in the Equinox Framework

dataset using the residuals. .. 157

xv

Table 5.20: One-way ANOVA for MLP and ensemble models in the Equinox Framework

dataset using the residuals. .. 157
Table 5.21: One-way ANOVA for KNN and ensemble models in the Equinox Framework

dataset using the residuals. .. 157
Table 5.22: One-way ANOVA for M5Rules and ensemble models in the Equinox

Framework dataset using the residuals. .. 157

Table 5.23: One-way ANOVA for SVR and ensemble models in the Equinox Framework

dataset using the residuals. .. 157
Table 5.24: One-way ANOVA for RT and ensemble models in the Lucene dataset using the

residuals. .. 157
Table 5.25: One-way ANOVA for MLP and ensemble models in the Lucene dataset using

the residuals. .. 157
Table 5.26: One-way ANOVA for KNN and ensemble models in the Lucene dataset using

the residuals. .. 157
Table 5.27: One-way ANOVA for M5Rules and ensemble models in the Lucene dataset

using the residuals values. ... 158
Table 5.28: One-way ANOVA for SVR and ensemble models in the Lucene dataset using the

residuals. .. 158
Table 5.29: One-way ANOVA for RT and ensemble models in the Mylyn dataset using the

residuals. .. 158

Table 5.30: One-way ANOVA for MLP and ensemble models in the Mylyn dataset using the

residuals. .. 158

Table 5.31: One-way ANOVA for KNN and ensemble models in the Mylyn dataset using the

residuals. .. 158
Table 5.32: One-way ANOVA for M5Rules and ensemble models in the Mylyn dataset using

the residuals. .. 158

Table 5.33: One-way ANOVA for SVR and ensemble models in the Mylyn dataset using the

residuals. .. 158
Table 5.34: Best model selected by Auto-WEKA in each dataset. 165

Table 5.35: MMRE and MAE values for the selected models and ZeroR models. 166
Table 6.1: Summary of FS, datasets and prediction models in software quality prediction. 182

Table 6.2: Scenarios in the empirical study. ... 184
Table 6.3: Summary of the datasets. ... 189
Table 6.4: Number of True and False values in the change-proneness attribute. 190
Table 6.5: Metrics with zero values that were removed using descriptive statistics 191

Table 6.6: Strong correlation metrics using Spearman correlation. 192
Table 6.7: Number of metrics removed in each data analysis technique. 193
Table 6.8: Parameters used in Weka for sampling techniques. ... 198

Table 6.9: Best ten metrics using ensemble FS method. ... 199
Table 6.10: Results before and after applying SMOTE. ... 200
Table 6.11: Results before and after applying SpreadSubsample. .. 200
Table 6.12: AUC values for performance evaluation of prediction models across seven

datasets in the first scenario. ... 204
Table 6.13: AUC values for performance evaluation of prediction models across seven

datasets in the second scenario. ... 205
Table 6.14: AUC values for performance evaluation of prediction models across seven

datasets in the third scenario. .. 206

xvi

Table 6.15: Performance of AUC for prediction models across seven datasets in the fourth

scenario. .. 206
Table 6.16: One-way ANOVA results for prediction models using AUC. 208
Table 6.17: AUC values for performance evaluation of RF with default and Mtry parameter

tuning. .. 209

xvii

List of Acronyms

Acronym Definition

ANOVA Analysis of Variance

APE Average Probability Ensemble

AUC Area Under Curve

C&K Chidamber and Kemerer

FPR False Positive Rate

FS Feature Selection

IQR Inter Quartile Range

KNN K-Nearest Neighbours

L&H Li and Henry

MAE Mean Absolute Error

MAR Mean Absolute Residual

MI Maintainability Index

MLP Multilayer Perceptron

MMRE Mean Magnitude of Relative Error

MRE Magnitude of Relative Error

NB Naive Bayes

OO Object-Oriented

PROMISE PRedictOr Models In Software Engineering

QA Quality Assessment

QUES QUality Evaluation System

RF Random Forest

RQs Research Questions

RT Regression Tree

SA Standardised Accuracy

SLR Systematic Literature Review

SMOTE Synthetic Minority Over-sampling Technique

SQA Software Quality Assurance

Stdev Standard deviation

SVM Support Vector Machine

SVR Support Vector Regression

TPR True Positive Rate

UIMS User Interface Management System

WEKA Waikato Environment for Knowledge Analysis

1

Chapter 1. Introduction

Software quality assurance (SQA) is defined as a group of activities that guarantee that a

software meets a certain quality level [6]. Quality is mainly affected by its attributes, which

are divided into two groups: external and internal attributes. Internal attributes, such as class

cohesion, are directly measured from the software, whereas external attributes, such as

maintainability, need to be measured indirectly, and their prediction often relies on internal

attributes [7]. Software maintainability is an essential attribute in evaluating SQA, and it is

defined as the simplicity to make the modification of a software system in order to upgrade

the performance, adapt to changes in the environment or to edit faults [8]. This definition tries

to capture how easy it was for the developer to make a change in the software product.

However, the information about the ease of change is a challenging task to get unless this

information was observed by engineers during the maintenance process, such as time, effort,

number of modules investigated. Therefore, proxy measures that compute the number of

changes made in the classes (i.e., change maintenance effort measure) or whether or not a

change has been made in the classes (i.e., change-proneness measure) are typically used to

resolve this issue. These measurements (i.e., dependent variable) are considered a perfect

predictor of software maintainability and have a powerful relationship with other metrics (i.e.,

independent variables) that capture the concept of maintainability [9]. Studies have

acknowledged various types of software maintenance measurements: change maintenance

effort [7, 9-18], change-proneness [16], adaptive maintenance effort, which calculates the

effort spent on each phase of the adaptive maintenance process [19], corrective maintenance

effort, which calculates the effort spent on each phase of the corrective maintenance process

[20], maintainability index (MI), which is a single value of a composite metric that computes

a function from of four metrics: cyclomatic complexity, percentage line of comments, Halsted

volume and lines of code [21], and maintenance time, which calculates the time to implement

the maintenance tasks [22].

2

This thesis has adopted change maintenance effort and change-proneness measures to predict

software maintainability. Change maintenance effort is a well-known software maintainability

measure that calculates the number of modifications made per class during the maintenance

period [7, 9-18]. A larger number of changes requires higher maintenance effort, which

implies a lower level of maintainability. Change-proneness is another software maintainability

measure [16, 23], which is a dependent variable to indicate that changes (e.g., inserting,

removing or editing) have been made in a given class. This dependent variable is a Boolean

value that includes two values: TRUE if the change was made on the class or FALSE if the

change was not made on the class, regardless of the type and number of changes [5]. A lower

number of TRUE values or a lower number of change-proneness refers to better

maintainability, that is, it requires low maintenance effort.

 Maintenance is defined as “the process of modifying a software system or component

after delivery to correct faults, improve performance or other attributes, or adapt to an

environment” [8]. Software maintenance consumes the largest amount of cost, time and effort

during the software development life cycle [9]. Jones reported that maintenance consumes

approximately 75% of the total project cost, and the cost of maintaining the source code is ten

times higher than the cost of developing it [24].

 Controlling costs, time and effort are the significant components for ensuring SQA.

These are performed by determining appropriate measures: as T. DeMarco [25] stated, “you

cannot control what you cannot measure”. Software metrics are quantitative measures that can

be employed to evaluate the quality of the software. In particular, object-oriented (OO) metrics

are used to measure aspects of the source code of software systems (e.g., cohesion, size and

inheritance depth). Consequently, several studies have employed a variety of OO metrics to

evaluate the concept of software maintainability, such as Chidamber and Kemerer (C&K) [26]

and Li and Henry (L&H) metrics [9]. For example, the L&H metrics can be utilised as

predictors of software maintenance effort, as they have exhibited a strong relationship with the

number of changes in the source code [9-11, 13].

OO systems are structured around objects and classes that have different characteristics

(i.e., encapsulation, coupling and inheritance). These systems are written in various

programming languages such as Java, C++ and C#. Several OO systems are available in open-

source projects (e.g., GitHub [27] or SourceForge [28]) and are commonly used by various

3

organisations. With the growing use of OO systems, organisations need to further develop and

change systems, which in turn leads to an increase in their complexity [29], and consequently

concerns regarding their effective maintenance.

Prediction is a core part of estimation, which is a crucial aspect of project planning [30]

and involves the determination of a number of factors including duration, staff, size, costs and

effort [20]. Prediction mainly depends on historical internal and external quality attributes

from completed projects. The correlation between internal attributes, "independent variables",

and external attributes, "dependent variables", is a recognised challenge for software

maintainability prediction [7]. Considerable attention has been given to predicting software

maintainability using machine learning techniques. Accurate predictions are increasingly

important in software project management tasks: allocating developers, identifying resources,

supporting decision-making, evaluating costs across different projects and performing

maintenance processes [20]. This prediction can assist in gaining insights on likely future

maintenance, and can help decrease the total cost and overall effort of the software project

[31]. However, building an accurate prediction model is difficult to achieve. Several empirical

studies have been performed to investigate various types of individual machine learning

models, including neural networks [10], Bayesian networks [11], linear regression [32],

multiple additive regression trees [13] and K-means clustering [33]. However, the prediction

accuracy of these individual models is disappointing and does not meet the criteria suggested

by MacDonnell and Kitchenham et al. [34, 35]. These criteria include the mean magnitude of

relative error (MMRE) and Pred(q), which is the proportion of instances in the dataset in which

the MRE is less than or equal to a defined value (q) [35]. These measures should be Pred(.30)

≥0.70 or Pred(.25) ≥0.75 or/and MMRE ≤ 0.25. The explanation and equations of these

measures are provided in Section 3.5.1.

To improve the accuracy of individual models, an ensemble machine learning model is

introduced. This ensemble model is created from individual models in a heterogeneous

(integrating various types of individual models) or homogenous (integrating the same type of

individual models) manner. One of the main advantages of the ensemble models is to reduce

the prediction variance that is a common factor in machine learning models [36]. Ensemble

models aim to control the variance factor by integrating several individual models and

4

producing high prediction accuracy. This integration helps ensemble models to capture the

advantages of multiple individual models.

 Researchers and software practitioners have realised the benefits of ensemble models

and applied them in various areas of software engineering problems. Several studies have

explored the application of ensemble models in fault prediction problems, such as Random

Forest (RF) [37-39], voting feature intervals [40], combined defect predictor [41], bagging

[42], stacking [43], and adaptive selection of classifiers [44], and have recorded high accuracy.

More specifically, the study by Mısırlı et al. indicated that the ensemble models provide a

significant improvement in terms of locating software defects [40]. In addition, an empirical

study of cross-project defect prediction was employed combined defect predictor on 10 open-

source software systems. The findings of the study evidenced that the combined defect

predictor outperformed other individual models [41]. The study by Zhang et al. also

investigated cross-project defect prediction using various ensemble models and revealed that

bagging ensemble model achieved high accuracy [42]. The paper by Petri et al. used stacking

ensembles to predict software defect and found that this model attained good performance

[43]. One of the reasons for the success of stacking over other models is that stacking combines

several types of individual models. Moreover, adaptive selection of classifier was proposed

and compared with five individual models in the context of predicting defect proneness [44].

The results obtained from this study indicated that the proposed ensemble model performed

better than the other five individual models. Previous studies have also stated the success of

using ensemble models to predict effort estimation using techniques, for example: bagging

[45] and ensembles of linear methods [46]. Among several ensemble models implemented in

studies of software engineering field, a number of these studies emphasised that RF

outperforms other prediction models and produced a high improvement in the prediction

accuracy [37, 38, 47, 48]. Ensemble models have also been used to predict software

maintainability and provided high prediction accuracy (e.g., bagging [16], majority voting

[23] and RF [48]). Based on the findings obtained in this discussion, the ensemble models

yield improved the prediction accuracy over individual models, and have been shown to be

useful models in several studies of software engineering field. However, the use of ensemble

models for predicting software maintainability is relatively limited compared to the use of

5

these models in other software engineering field. These findings motivate us to use ensemble

models (and RF, bagging and stacking in particular) in this thesis.

 The imbalanced class problem exists when the quantity of one class in the dataset

(True) is far lower than the quantity of another class in the same dataset (False). This problem

causes machine learning models to bias their predictions towards majority classes and ignore

minority classes. As a result, machine learning models gain high prediction accuracy based on

the majority class instead of both classes. To resolve this issue, sampling techniques have been

used in various fields including telecommunications management [49], emerging patterns [50],

medical diagnosis [51], and text categorisation [52]. Moreover, the research community in

software engineering disciplines has made significant efforts to address this issue using various

sampling techniques. For instance, the synthetic minority over-sampling technique (SMOTE)

in refactoring prediction [53], random under-sampling in defect prediction [54] and condensed

nearer neighbour in maintainability prediction [55].

 In this thesis, the application of ensemble models for predicting software

maintainability is investigated and recommendations for the proper use of these models are

provided. This investigation is performed by using various sizes of datasets and several base

models, along with an exploration of the impact of parameter tuning. Therefore, a systematic

literature review (SLR) for software maintainability prediction using machine learning

techniques is conducted in Chapter 2 to determine maintainability measurements, metrics,

datasets, evaluation measures and prediction models in the current studies, along with their

gaps. Additionally, three empirical studies are performed in Chapters 4, 5 and 6 to construct a

range of advanced machine learning models (i.e., homogenous and heterogeneous ensemble

models) from existing individual models to predict software maintainability at the class level.

These models employed a number of representative datasets for software maintainability either

from open source datasets hosted in PRedictOr Models In Software Engineering (PROMISE)

[56] (for example) or dataset extraction from existing open-source projects proposed in

repository projects (e.g., GitHub [27] or SourceForge [28]).

1.1. Problem Statement

Several research attempts have been made to construct different machine learning techniques

for predicting software maintainability. However, creating an accurate model to predict

6

software maintainability is a challenging task to accomplish, and to date, there is no evidence

in the current literature on which models are appropriate. Therefore, the goal of this thesis is

to employ ensemble models, which might resolve the problem, and improve their prediction

accuracy over individual models. Another goal is to apply these models to a wide variety of

software maintainability datasets to validate the results.

1.2. Motivation for the Thesis

Early prediction of software maintenance using machine learning models is important in

helping software project managers to control resources, establish the maintenance process,

improve design or coding, evaluate productivity, and compare costs across different projects

[20]. In addition, it helps to achieve SQA, decreasing the failure and future maintenance effort

of the software project [11]. Furthermore, prediction software maintainability enables the

support of decision-making, by scheduling future maintenance operations, and the selection of

developers, assigning more experienced developers to classes with high maintenance

requirements. To date, there are limited studies to determine an accurate and suitable model to

predict software maintainability. Therefore, the motivation of this thesis is to empirically

compare and evaluate the application of ensemble models to obtain more consistent and

accurate prediction results by reducing variance.

1.3. Contributions

The investigation of software maintainability prediction using ensemble techniques provides

a number of contributions. First, it enables the empirical exploration of the positive impact of

ensemble models (heterogeneous and homogeneous) by using different types of base models,

and assesses the extent to which these ensemble models provide an improvement in the

prediction accuracy over individual models in the context of software maintainability. Second,

it enables the comparison between the proposed ensemble models with previous studies

conducted on the most popular software maintainability datasets to determine whether these

models achieve higher accuracy than that obtained in previous studies. Third, it enables the

critical validation of the proposed ensemble models by applying these models to several sizes

of datasets of software maintainability extracted from open-source software projects or

7

gathered from public repositories. Fourth, it enables the investigation of the impact of

parameter tuning on ensemble models.

1.4. Research Objectives

The fundamental objective of this thesis is to provide the ability to accurately predict software

maintainability to software project managers. This objective is achieved by applying ensemble

techniques on datasets with different sizes and using various base models, along with exploring

the impact of parameter tuning. More specific objectives are associated with the following

three empirical studies:

1.4.1 Objectives of the first empirical study

• Investigate the capability of ensemble models to predict change maintenance effort

using well-established datasets [9];

• Identify the model that achieves the highest accuracy prediction and compare with the

best model in selected studies that operated on the same datasets;

• Explore the impact of parameter tuning of software maintainability prediction models

using the caret package in R.

1.4.2 Objectives of the second empirical study

• Study the ability of ensemble models to predict change maintenance effort accurately

using more recent and larger datasets [57];

• Compare and evaluate the proposed models with the selected models using the Auto-

Waikato environment for knowledge analysis (WEKA) tool.

1.4.3 Objectives of the third empirical study

• Explore the influence of the ensemble model, feature selection (FS), and sampling

techniques in predicting change-proneness using newest and largest datasets [58];

• Evaluate the effect of the tuning Mtry parameter, which is the number of variables

randomly sampled for splitting in RF using a grid search.

8

1.4.4 Research questions

The previous objectives can be achieved by providing an appropriate answer for the following

research questions (RQs):

RQ1) How effective are individual models at predicting software maintainability?

RQ2) How do ensemble models perform in the context of predicting change maintenance

efforts using well-established datasets when compared to the individual models?

RQ3) How do ensemble models perform in the context of predicting change maintenance

efforts using more recent and larger datasets when compared to the individual models?

RQ4) How do ensemble models perform in the context of predicting change-proneness using

the newest and largest datasets when compared to the individual models?

1.5. Scope of Work

The scope of the work includes five primary aspects: maintainability measurements, metrics,

datasets, evaluation measures and prediction models. Their basic concepts and specific

utilisation are described, as well as an overview of related studies.

1.5.1 Maintainability measurement

Maintainability is a dependent variable that may be determined by a wide variety of

independent variables. The ISO/IEC 25010 standard [59] defined a software quality model as

a collection of attributes that include efficiency, usability, suitability, compatibility, security,

reliability, portability and maintainability. Therefore, maintainability is an essential attribute

of software quality and is recognised as one of the most challenging measurements due to the

problem of predicting activity in the future [60]. Software maintainability is described as the

ability of a software system to be easily modified to develop, correct, adapt to changes in the

environment, or meet particular requirements [8]. This description indicates that software

maintainability relies on various aspects of software modification (i.e., adaptation, correction,

improvement or prevention). Furthermore, the ISO/IEC 25010 standard categorizes software

maintainability into five major sub-characteristics: reusability, to identify the level of the assets

that can be used to construct other systems; modularity, to identify the level of component

independence and the extent to which changes to one component impact on the rest of the

9

system; analysability, to identify the ease to analyse and investigate (for example) the

consequence of changes or diagnose problems in the software; testability, to identify the

degree to which test criteria for a system can be established and tests to meet the criteria

developed; and modifiability, to identify the degree to which it is possible to modify the

software product without degrading its quality. This thesis predicts software maintainability

using this definition : “the ease with which a software system or component can be modified

to correct faults, improve performance or other attributes, or adapt to a changed environment”

[8]. Change maintenance efforts measure is used in the first and second empirical studies, and

change-proneness measures is performed in the third empirical study.

1.5.2 Metrics

Metrics are independent variables that capture the element of software maintainability. Most

of these metrics focus on the quality features of a class and measure specific parts of software

products in these systems, such as inheritance, cohesion and data abstraction. Prior software

maintainability studies utilised a wide variety of OO metrics: C&K [26], Oman and

Hagemeister [61], L&H [9], Coleman et al. [62], Welker and Oman [63], Genero and Piattini

et al. [64], Misra [21], and Yuming and Baowen [32]. These studies confirmed a relationship

between OO metrics and software maintainability. However, this relationship is considered

nonlinear, complicated, and of low accuracy [10]. Several of these metrics have been validated

only in a small number of studies, whereas some have been proposed but never used.

 OO metrics, which primarily include the C&K [26] and L&H metrics [9], have been

widely used owing to their strong relationship with software maintainability [10, 11, 13, 14,

23]. C&K includes six OO metrics: DIT, WMC, NOC, CBO, RFC and LCOM (abbreviations

and detailed definition of these metrics are provided in Table 2.6 in Chapter 2). L&H metrics

[9] involve all C&K metrics except CBO and also include further metrics: MPC, DAC, NOM,

SIZE1, SIZE2 (abbreviations, and detailed definitions of these metrics are presented in Table

2.6 in Chapter 2). This thesis employs L&H metrics [9] in the first empirical study, C&K and

other OO metrics in the second empirical study [57] and several OO metrics in the third

empirical studies [58], where these metrics were extracted from open-source systems and can

be used to capture the element of software maintainability.

10

1.5.3 Datasets

Datasets comprise several metrics that include independent and dependent variables. The

datasets are divided into a testing set to evaluate a prediction model and a training set to

construct the model [65]. Alternatively, N-fold cross-validation is used to compare and

evaluate prediction models by equally dividing the dataset into ten folds. One of these folds is

used to test the model, and the remainder is used to train the model, and this process is iterated

N times with different folds [66]. Moreover, the datasets include three major types: a public

dataset, which is available to use (i.e., Quality Evaluation System (QUES) and User Interface

Management System (UIMS) [9]); a partial dataset, which is extracted from available open-

source software but unavailable for public use, as the researcher does not provide the dataset

to the public (i.e., datasets extracted from 148 open-source systems [32]); and a private dataset,

which is extracted from a private system and unavailable to use (i.e., datasets extracted from

private projects [20]). This thesis initially uses the QUES and UIMS datasets, which have been

widely used for predicting software maintainability (i.e., CHANGE metric proposed in [9],

making the results comparable and repeatable [9]. In addition, more recent, larger, and public

datasets, namely bug prediction datasets, are investigated to validate and support the previous

result [57]. Finally, this thesis uses the newest datasets, namely refactoring datasets, published

in 2018 [58].

1.5.4 Evaluation measures

The evaluation of prediction models is a vital part of any machine learning problem to compare

performance between several models and measure the accuracy of the model in predicting

software maintainability. Several evaluation measurements have been proposed in the

literature to assess prediction models in software engineering problems [67]. Usually,

regression problems use residuals or prediction errors [68], whereas classification problems

utilise confusion matrices [69]. Some of the most frequently used evaluation measurements

have become de facto standards to measure the prediction accuracy of regression problems,

namely MMRE, Pred(q) [35], mean absolute error (MAE), and standardised accuracy (SA).

The formulas and issues related to these measures are provided in Section 3.5.1. Additionally,

the area under curve (AUC), considered the most frequently used evaluation measure for the

classification problem in software quality prediction, is performed to compare and evaluate

11

the performance of prediction models for the classification problem [4]. AUC is dependent on

the receiver operating characteristic (ROC) curve that plots the false positive rate (FPR) on the

x-axis against the true positive rate (TPR) on the y-axis at different threshold settings [70].

Furthermore, baseline measurements can be used to evaluate the performance of the predictors

with the dependent variable (e.g., sample mean [71] or sample median [72]). MMRE, Pred(q),

MAE, SA, AUC and baseline measures are used in this thesis to evaluate and compare OO

software maintainability prediction models.

1.5.5 Prediction models

Several types of individual machine learning models, such as neural networks [10], Bayesian

networks [11], linear regression [32], multiple additive regression trees [13], K-means

clustering [33], SVR [73] and MLP [14] have been built to predict software maintainability.

However, despite the large number of studies and models created, only a limited number of

these achieved a reasonable level of predictive accuracy, but failed to meet the criteria of an

accurate prediction model, which is Pred(.30) ≥0.70 [34] or Pred(.25) ≥0.75 or/and MMRE ≤

0.25 [67]. Furthermore, determining the best technique among individual models is difficult

because the performance of these techniques relies on the dataset used. Therefore, it is clear

that there is a considerable need to advance the performance of the individual models, which

can be achieved by building ensemble models. As mentioned previously in Section 1,

ensemble models have been successfully utilised in various areas of software engineering to

decrease variance, which leads to improved prediction accuracy. The ensemble model may be

heterogeneous, merging various types of individual models (i.e., software maintainability

evaluation model based on multiple classifiers combination [74]), or homogenous, merging

the same types of individual models (i.e., weighted voting, majority voting and hard instance

[23]). This thesis evaluates and compares the application of bagging, additive regression and

RF as examples of homogenous ensemble models, and stacking and Average Probability

Ensemble (APE) as examples of heterogeneous ensemble models. Additionally, a range of

individual models are used to predict software maintainability: regression tree (RT), multilayer

perceptron (MLP), m5rules, k-nearest neighbours (KNN), support vector regression (SVR),

naive Bayes (NB) and support vector machine (SVM). The description of the individual and

ensemble models is presented in Sections 3.1 and 3.2, respectively.

12

1.6. Thesis Organisation

The remainder of this thesis is organised as follows:

Chapter 2 provides an SLR of machine learning models for software maintainability

prediction.

Chapter 3 describes the research methodology and experimental design for the three empirical

studies.

Chapter 4 presents the first empirical study, which employed various ensemble techniques on

QUES and UIMS datasets to predict OO software maintainability (CHANGE metric). In

addition, the impact of tuning parameters using the caret package is explored.

Chapter 5 reports the second empirical study, which used more recent and larger datasets,

namely the bug prediction datasets and applied data pre-processing techniques on these

datasets to improve their quality and to be suitable for software maintainability prediction.

Furthermore, Auto-WEKA tools are used to determine the best prediction models.

Chapter 6 explores the effectiveness of the ensemble model, FS and sampling techniques in

predicting change-proneness. The machine learning models in this chapter are applied to seven

datasets recently extracted from open-source software systems, namely refactoring datasets.

Additionally, the impact of tuning the Mtry parameter, which is the number of variables

randomly sampled for splitting in an RF, is investigated in this chapter.

Chapter 7 concludes this thesis and summarises the main contributions, research limitations

and some directions for future work.

13

Chapter 2. A Systematic Literature Review of
Machine Learning Models for Software
Maintainability Prediction

This chapter reports on a SLR of relevant journals and conference proceedings papers that

focus on the topic of software maintainability prediction. This review investigates a set of RQs

to comprehensively summarize, analyse and discuss various viewpoints: software

maintainability measurements, metrics, datasets, evaluation measures, individual models and

ensemble models. The search in this review was focused on the most common computer

science digital database libraries between 1991 until 2018 and 56 relevant studies were

surveyed in 35 journals and 21 conferences proceedings.

2.1. Introduction

The primary objective of this review is to investigate the current state of software

maintainability prediction to discover the progress made, limitations and challenges, along

with future research requirements. To the best of my knowledge, this is the first SLR of

software maintainability prediction for OO systems that comprehensively evaluates a wide

variety of important journal and conference proceedings with respect to specific defined

research question. This review differs from the previous review studies [31, 75-79] because it

includes a higher number of relevant journal and conference proceedings in the software

maintainability field. Furthermore, a different analysis on the selected primary studies was

applied and more additional detailed analysis of each paper was provided. Previous review

studies focused on non-OO systems [77-79], or considered only fifteen studies [31], or

concentrated on a single aspect such as the measurement of software maintainability, the

models employed or the metrics implemented [75, 76]. In contrast, this study is classified the

concept of software maintainability according to three dimensions: the measurement of

maintainability (dependent variable), the metrics considered (independent variables) and the

models employed. This study has applied the research method for conducting a SLR proposed

by Kitchenham [80], and has analysed comprehensively each selected study. Therefore, I have

14

confidence my SLR is both novel and hope that software engineering researchers and

practitioners will find it to be a useful resource. The key contributions of this Chapter are:

• This is the first SLR in the field of software maintainability prediction using

machine learning techniques;

• This SLR is more extensive than previous review studies in software

maintainability prediction and investigates a broader range of RQs that cover

various viewpoints: software maintainability measurements, metrics, datasets,

evaluation measures, individual models and ensemble models;

• Although a number of studies have used machine learning techniques, few have

explored ensemble models and only one of the investigated models met the

model accuracy criteria. So, there is scope for further research in the software

maintainability prediction field.

2.2. Method

The SLR is a commonly and widely applied method in the software engineering field [80].

The review presented here aims to identify, evaluate and interpret all available research

relevant to predicting software maintainability using machine learning models. This SLR is

based on the quality reporting guidelines as proposed by Kitchenham for performing a SLR in

software engineering [80], and also takes on board subsequent lessons learned and advice [81].

Three primary stages are established and adjusted to include appropriate steps, namely,

planning, conducting and reporting the review. The planning stage involves the following

steps: determining the needs for a systematic review, which was discussed in the introduction;

evolving an appropriate review protocol to eliminate the possibility of researcher bias. The

conducting stage involves the following steps: formulating RQs to focus on the central issues

of this review; developing the search process to conduct search activities; identifying selection

criteria to select appropriate studies; examining quality assessment (QA) to evaluate selected

studies in terms of quality; applying data extraction to document the information obtained from

the studies; performing data synthesis to accumulate and summarise the results. The final

reporting stage involves only one step: presenting results and discussions to answer each

research question. This process is illustrated in Figure 2.1.

15

2.2.1 Review protocol

The review protocol aims to direct the implementation of the review and minimise the

possibility of researcher bias. The critical elements of this review protocol include RQs, the

search process, inclusion and exclusion criteria, QA, data extraction and finally data synthesis.

Furthermore, the review protocol was iteratively developed and evaluated during the

conducting and reporting stages. Details of the protocol are explained in the following sections

(2.2.2-2.2.7).

2.2.2 Research questions for SLR

The RQs were introduced to specify the research boundaries. They were formulated with the

assistance of the (PICOC) criteria [80] which recognize RQs from four viewpoints as follows:

• Population: OO system, software system, application software, software project.

• Intervention: Software maintainability prediction, predicting software maintenance

effort, change proneness, techniques, methods, models, process and product metrics,

dataset.

Figure 2.1: The framework of SLR.

16

• Comparison: N/A.

• Outcomes: Accuracy prediction of software maintainability, building good prediction

models.

• Context: empirical or experimental studies in academia and industry, large and small

size of the datasets.

The primary objective of this SLR is to collect and analyse appropriate evidence to

answer the RQs for SLR. The motivation of this review is to answer a set of seven RQs to

obtain insights into significant aspects of the research direction, including advancing my

knowledge of software maintainability prediction for OO systems and identifying the

limitations of research so as to define further research directions. The RQs and their motivation

are documented in Table 2.1 below.

17

Table 2.1: Research questions for SLR and their motivation.
ID Research question Main motivation

RQ1 What are the definitions of software maintainability? Identify different software maintainability definitions.

RQ1.1 How can the software maintainability be measured

(dependent variable)?

Recognize the software maintainability measurements.

RQ2 What type of OO metrics have been proposed to measure

software maintainability?

Identify OO proposed metrics that are commonly being used

in software maintainability.

RQ2.1 What are the metrics used (independent variable)? Determine various OO metrics.

RQ2.2 What is the level (e.g., class level, method level) of these

metrics?

Identify the level of OO metrics.

RQ3 What software maintainability datasets in the literature

have been used to build prediction models?

Determine various datasets commonly being used in the the

software maintainability domain.

RQ3.1 What are the types of software maintainability datasets

(e.g., public datasets, private datasets)?

Recognize the type of these datasets.

RQ3.2 What tools are used to extract metrics from open source

projects?

Identify different tools to extract OO metrics.

RQ3.3 What software programming languages are used to write

system code?

Determine various software programming languages

commonly being used to collect OO metrics.

RQ3.4 What are the number of classes in the software system? Identify the number of classes in the software system

RQ4 What are the evaluation measures used to assess the

performance of software maintainability prediction

models?

Explore evaluation measures commonly being used in each

software maintainability datasets.

RQ4.1 What approach (e.g., cross-validation, holdout) is used to

evaluate the performance of software maintainability

prediction models?

Identify different validation approaches applied on software

maintainability prediction models.

RQ5 What type of machine learning problem (e.g.,

classification and regression) software maintainability

fall into?

Identify the type of machine learning problem.

RQ5.1 What are the categories of machine learning problem

(e.g., supervised, unsupervised and semi-supervised)?

Determine various categories of machine learning problem.

RQ6 What are the individual prediction models (e.g., neural

network, linear regression) used to predict software

maintainability?

Investigate the individual prediction models commonly being

used in software maintainability.

RQ6.1 What are the best performing individual prediction

models?

Identify the best performing individual prediction models in

each study.

RQ7 What ensemble prediction models (e.g., bagging,

boosting) are used to predict software maintainability?

Investigate the ensemble prediction models commonly being

used in software maintainability.

RQ7.1 What type of ensemble prediction models were

performed to predict software maintainability?

Determine different type of ensemble prediction models.

RQ7.2 Do the ensemble models outperform the individual

prediction models?

Investigate whether ensemble models represent an

improvement over the performance over the individual

prediction models.

18

2.2.3 Search process

The search process must be focused on a way that allows the identified RQs to be accurately

investigated and includes four steps: choosing the digital libraries, identifying additional

search sources, selecting the interval time of the published articles, and defining search

keywords. The search was applied on five sources of the most popular and largest computer

science online digital libraries that publish peer-reviewed articles:

• IEEE Xplore (ieeexplore.ieee.org)

• ACM Digital Library (dl.acm.org)

• Springer (springerlink.com)

• Elsevier (sciencedirect.com)

• Wiley online library (onlinelibrary.wiley.com)

Furthermore, manual research was applied to include relevant journal and conference

proceedings in the software maintainability field. These journals and conferences were

selected particularly since they involve empirical studies or literature reviews, and they are

well-established and highly relevant software engineering publications. The selected journals

and conferences are presented in Table 2.2 and the information of this table is collected from

Web of Science (mjl.clarivate.com). The search was limited to articles published in the interval

from 1991 to 2018. The search was restricted in this time interval since machine learning

started to be applied to problems of this nature in the 1990s [82] and investigations into

software maintenance began in earnest in1985 [31]. Furthermore, research into software

maintainability expanded dramatically with the usage of OO systems in 1990s [83] and no

studies relevant to the identified RQs were found to exist before these dates.

19

Table 2.2: Selected journals and conferences.

Source Acronym
Number of

Studies
Published by

Impact

factor on 5

years

Quarter

category

IEEE Transactions on Software Engineering TSE 8 IEEE 3.92 Q 1

Empirical Software Engineering EMSE 20 Springer 3.49 Q 1

Information and Software Technology IST 11 Elsevier 2.76 Q 1

Journal of Systems and Software JSS 14 Elsevier 2.40 Q 1

IEEE Software IEEE SW 3 IEEE 2.50 Q 1

Soft Computing SC 5 Elsevier 2.20 Q 2

Software Quality Journal SQJ 6 Springer 1.90 Q 2

Journal of Software Maintenance and
Evolution: Research and Practice

JSME 6 Wiley 1.21 Q 2

IET Software IST 2 IEEE 0.97 Q 3

International Journal of System Assurance

Engineering and Management

IJSAEM 4 Springer 0.94 Q3

ACM SIGSOFT Software Engineering ASSE 3 ACM 0.45 Q4

Conferences H-index

International Conference on Software

Maintenance and Evolution

ICSME 4 IEEE 29

International Conference on Software
Engineering

ICSE 7 IEEE 68

International Conference on Predictive

Models and Data Analytics in Software
Engineering

PROMISE 1 ACM NA

A list of search strings was created by integrating appropriate synonyms and alternative

terms with the Boolean operator (AND has the effect of narrowing and limiting the search,

while OR serves to broaden and expand the search) and the truncation symbol (*) which is

used to identify words with a particular beginning (for example predict* will match with

predict, prediction predicting and predicted) [84].

The following search terms were formulated in this SLR: (software maintainability OR

maintenance effort) AND (predict* OR forecast* OR estimate*) AND (machine learning OR

data mining OR artificial intelligence OR application OR Bayesian network OR neural

network OR Regression OR support vector machine) AND (method OR model OR technique

OR approach) AND (metric OR measure*).

The role of machine learning techniques has emerged as a recommended technique in

several research fields, and these have often proven to be better than other techniques (e.g.,

human evaluation or statistical methods) [85]. The fact that worth mention is that some

machine learning techniques based on statistical methods (e.g., NB) and they considered in

this study. However, some studies were selected that do not use machine learning techniques

because these studies answer some of my RQs. Nevertheless, this chapter focuses on a

systematic summarisation of machine learning techniques used in software maintainability

prediction and collects the empirical evidence from employing these techniques.

20

The endnote system was used to store and organize search results and a spreadsheet was used

to create a table of data extracted from each selected paper. The initial search applied the search

terms on each selected database as well as the journal and conference proceedings to include

the full document. This procedure returned thousands of irrelevant studies, so it was decided

to limit the search on the document title, abstract and content type (a conference or journal

publication). Several duplicate papers were found in these databases which were subsequently

removed.

 Additional studies were determined by referring to the references of identified relevant

studies. After collecting studies from the primary search, the relevant studies were selected by

scanning the title and abstract. Further investigation was performed to determine appropriate

studies by reading the full text. The candidate studies were selected if they meet the criteria in

Section 2.2.4. Finally, the selected studies were identified after applying the QA criteria. The

progress of the search process is presented in Figure 2.2 and shows the number of articles

identified at each stage of the selection and filtering process. The steps were iterated until final

agreement was reached. The SLR was completed at the end of July 2018 and 56 suitable studies

were finally identified.

21

Number of studies determined by

each selected database:

• IEEE eXplore (91)

• ACM digital library (41)

• Springer Link (31)

• Elsevier (51)

• Wiley online library (30)

Number of studies determined by

another source:

• Journal (82)

• Conference proceedings

(12)

• Relevant studies in the

references (44)

Start

Start

Number of studies selected after removing

duplication and irrelevant studies (187)

Number of studies selected after screenings

title and abstract (139)

Number of studies selected after reading full

text (102)

Number of studies passed our inclusion and

exclusion criteria (66)

Number of studies passed our quality

assessment (56)

End

Figure 2.2: Process of primary studies selection.

22

2.2.4 Inclusion and exclusion criteria

The results from the previous steps yielded several irrelevant studies, so inclusion and

exclusion criteria are defined in order to filer these out. The inclusion and exclusion criteria

used in this SLR are outlined below:

1. Inclusion Criteria:

• Studies focus on software maintainability prediction and answer any of

the RQs in this review.

• Studies are applied on OO systems.

• Studies consider machine learning techniques.

• Studies are written in the English language.

• Studies are published in either a journal or conference proceedings.

• Studies are peer reviewed articles.

• Studies report on comparisons between model predictions.

• Studies are the most recent and comprehensive (in the case where

studies were repeated).

2. Exclusion Criteria

• Studies do not focus on software maintainability or answer the RQs in

this review.

• Studies were applied on non-OO systems, such as service-oriented,

aspect-oriented software, web applications or functional systems.

• Studies consider specific aspects of software maintainability, such as

code smells, defects, or fault proneness. These studies were excluded

because they did not predict any of software maintainability

measurements (i.e., dependent variable).

• Studies are not written in English language.

• Studies do not include the full text.

• Studies fall outside the defined time frame i.e. from 1991 to 2018.

• Conference papers in the case where studies were published as both

conference and journal versions.

23

Based on the criteria above, sixty-six studies were finally selected. Twenty-seven irrelevant

studies were rejected that either did not answer the RQs or consider specific aspects of software

maintainability. Five studies were rejected that focused on non-OO systems, and four

conference papers [61, 86-88]were rejected because more recent journal versions of the work

have been published.

2.2.5 Quality assessment

The QA stage is performed to evaluate each study identified in the previous step. The QA

follows the defined quality checklist as proposed by Kitchenham [80]. The main objective of

the QA is to evaluate studies and select studies that answer the RQs and to support more

detailed analysis of inclusion and exclusion criteria. The QA questions are specified below:

• QA1: Does the study define a main research objective or problem?

• QA2: Does the study define software maintainability?

• QA3: Does the study determine the type of software maintainability

measurement (dependent variable)?

• QA4: Does the study employ OO software metrics (independent variables)?

• QA5: Does the study indicate the source of the datasets?

• QA6: Does the study use a suitable tool for the extraction of the datasets?

• QA7: Does the study identify the programing language of the systems being

analysed?

• QA8: Does the study identify the number of classes in software system?

• QA9: Does the study make the dataset publicly available?

• QA10: Does the study use appropriate evaluation measures?

• QA11: Does the study use suitable cross validation techniques?

• QA12: Does the study justify the prediction techniques?

• QA13: Does the study apply prediction models and identify the best performing

model?

• QA14: Does the study present the results and findings clearly?

• QA15: Does the study identify research limitations or challenges?

The scoring procedure of the QA questions is constructed as a following:

24

• 1 represents Yes.

• 0.5 represents Partly.

• 0 represents No.

The scores rank the papers into four categories: excellent (13.5 ≤ score ≤ 15), good (9.5 ≤ score

≤ 13), fair (5 ≤ score ≤ 9), and fail (0 ≤ score ≤ 4.5). From applying the above QA criteria, ten

studies fail in this QA. Finally, fifty-six primary studies were selected to conduct this SLR.

2.2.6 Data extraction

The data extraction step is performed to extract data from each selected primary study with the

aim of collecting data that answers the RQs. Seven main properties were classified in Table

2.3 with respect to the RQs requirements.

Table 2.3: Data Extraction properties with their research question.
Properties Research question

Software maintainability measurement RQ1, RQ1.1

Software maintainability metrics. RQ2, RQ2.1, RQ2.2

Software maintainability datasets. RQ3, RQ3.1, RQ3.2, RQ3.3, RQ3.4

Software maintainability evaluation measures RQ4, RQ 4.1

Machine learning problem to predict software maintainability. RQ5, RQ5.1

Software maintainability individual models. RQ6, RQ6.1

Software maintainability ensemble models. RQ7, RQ7.1, RQ7.2

2.2.7 Data synthesis

Data synthesis is applied to extract both quantitative data and qualitative data that forms a body

of evidence from the selected studies that address issues related to the RQs. The results are

presented in the form of tables, pie charts, clustered bar charts, scatter charts and bar charts.

These visualisations enable me to conduct a comparative analysis between selected studies and

improve the quality of presentation.

2.3. Results

This section summarises the results obtained from selected primary studies and includes details

about the search results, a visualisation of publication years and sources, and following on

from this an overview of the QA outcomes.

25

2.3.1 Selected primary studies

In this SLR, fifty-six primary studies were selected to compare and evaluate the studies in the

software maintainability prediction domain, and are summarised in Table A.1 in Appendix A.

This table provides a brief description of each selected study and contains the following

attributes: study ID; reference; the title of the publication; the authors of the articles (first

author and co-author); the publication year; place published; publication name and publication

type (journal or conference).

2.3.2 Publications years

The publication years of selected primary studies are between the year 1991 and 2018 and

Figure 2.3 shows the numbers of studies published during these years. After 1993 L&H

provided the QUES and UIMS datasets as an appendix to their paper, which motivated

researchers to investigate prediction techniques on this dataset. Moreover, there is an

indication of increased publications after 2005 when the PROMISE repository was launched

[56], but in this year most of the datasets in the PROMISE repository were for software defect

prediction and none for software maintainability. After 2005, the researchers may be

recognised the importance and benefits of public datasets, which make the empirical study

comparable and repeatable [9]. As a result, S55 was published relevant datasets of software

maintainability prediction in the PROMISE repository and several studies (i.e., S25, S26, S30,

S36, S38, S46, S47, S49 and S52) were used QUES and UIMS datasets, which published as

an appendix in S2.

26

2.3.3 Publication sources

Of the 56 primary studies selected 35 appeared in journals and 21 in conferences. The most

popular journal for papers associated with software maintainability prediction is the Journal of

Systems and Software, followed by Information and Software Technology, then IEEE

Transactions on Software Engineering. Figure 2.4 illustrates the number of selected primary

studies in each journal.

Figure 2.3: Number of selected studies over the years.

0 1 2 3 4 5 6 7 8

Empirical Software Engineering

IEEE Software

Soft Computing

Software Quality Journal

 IET Software

International Journal of System Assurance Engineering and Management

Journal of Software Maintenance: Research and Practice

ACM SIGSOFT Software Engineering

Other Journals

IEEE Transactions on Software Engineering

Information and SoftwareTechnology

Journal of Systems and Software

Number of Publications

J
o
u

rn
a
l

N
a
m

es

Figure 2.4: The number of studies in each journal.

27

Figure 2.5 shows the number of selected primary studies grouped by place of publication (i.e.

digital library database). It can be seen that the most selected primary studies are chosen from

the IEEE digital library, followed by Elsevier.

2.3.4 Quality assessment result

The selected primary studies were evaluated according to the QA questions described in

section 2.2.5 and present the results of this analysis in Table A.2 in Appendix A. This table

shows that twelve of the selected studies obtained an excellent rating, thirty-two a good rating,

followed by twelve which obtained a fair rating. However, ten studies were excluded that

recorded a poor rating.

2.4. Discussion

This section aims to break down the analysis of the results based upon the RQs identified in

Section 2.2.2. Each of the questions is considered in turn and the findings from all selected

papers are considered to identify problems, solutions and to analyse the experimental results.

Then, a comparison of the whole topic is conducted to comprehensively understand the topic

and determine any limitations.

0

2

4

6

8

10

12

14

16

18

20

IEEE Elsevier ACM digital

library

Springer Link Wiley online

library

N
u

m
b

er
 o

f
se

le
ct

ed
 s

tu
d

ie
s

Place published

Figure 2.5: The number of selected studies in each digital library database.

28

The first two questions consider software maintainability measurements (RQ1) and software

maintainability metrics (RQ2) and the key differences between these are listed in Table 2.4

below.

Table 2.4: The differences between software maintainability measurements and metrics.
Software maintainability measurements Software maintainability metrics

External attribute Internal attribute

Dependent variable Independent variable

Measured indirectly Measured directly

Examines the software in an environment Examines only the software

Difficult to extract Easily extracted

Measured after or during execution Measured without execution

2.4.1 Software maintainability measurement

In this section, the findings in relation to the following RQs are discussed:

RQ1: What are the definitions of software maintainability? and RQ1.1: How can the software

maintainability be measured (dependent variable)?

As software maintainability is not something that can be measured directly, my motivation

was to gain insight into the different software maintainability definitions and measures that are

being employed.

A. Software maintainability definitions.

Software maintainability is defined in the IEEE Standard Glossary of Software Engineering

Terminology [8] as “the ease with which a software system or component can be modified to

correct faults, improve performance or other attributes, or adapt to a changed environment”.

This definition implies that software maintainability depends on various aspects of software

modification (i.e., correction, improvement, adaptation or prevention). Moreover,

maintainability is one substantial attribute proposed ([59]) of the set in the software quality

model that involves: maintainability, efficiency, suitability, usability, reliability, security,

portability and compatibility. However, several selected studies (e.g., S2, S16, S18) revealed

that software maintainability is considered as one of the most challenging measurements of

the software quality attributes, because there are several measurements and not all of them can

be used to predict future activities. Some types of software maintainability (e.g., CHANGE

metric, MI and change proneness) can be used as an indirect measure (i.e., dependent variable)

based on an extensive variety of metrics (i.e., independent variables) and machine learning

prediction models can be applied to make a prediction. On the other hand, other types of

29

software maintainability can be measured directly by observation during the maintenance

process and record factors such as time, effort, or numbers of modules investigated. To explore

these issues, different types of software maintenance measurements are presented and which

type can be used as dependent variables to make a prediction and capture an element of

maintainability.

B. Software maintainability measurement.

The key challenge with software maintainability measurement is that maintainability cannot

be measured directly. Therefore, predictive models are based on indirect measures. Measuring

software maintainability relies on a set of metrics that may be combined in a software

maintainability function. The following Eq. (2.1) is a general software maintainability function

that performs to collect metrics from A1 to An [89]:

M = F (A1, A2, … , An) (2.1)

The most obvious difficulty from the above function is to identify the appropriate metrics

that can be measured from the source code directly. Various ways can be used to measure

software maintainability, because there are different proxy definitions of maintainability.

However, there is not any commonly agreed approach [89].

The selected primary studies for this SLR included nine types of software maintainability

measurements (see Table 2.5). For each type of measurement, more details of the definition, a

general form of the equation, value and interpretation of the value are presented. Among these

software maintainability measurements shown in Table 2.5, maintainability is measured by

counting the number of changes made in the code. L&H [9] define change metrics that capture

the element of maintainability by counting the number of changes made in the source code,

where the change could be insertion or deletion. This measurement is performed by several

studies as shown in Table 2.5. Another measure of the software maintainability is based upon

corrective maintenance. Lucia [20] calculated maintainability effort using four metrics that

count the size and the number of tasks in the system under maintenance and are combined to

produce the actual effort metric (dependent variable). Adaptive maintenance effort is used by

three studies in Table 2.5 and is based on the effort (time) involved in adding, understanding

and deleting in the source code in the system. The study by Oman and Hagemeister [90]

proposes the MI, a composite metric calculated from software complexity and quality metrics.

Various selected primary studies have used this measurement as presented in Table 2.5. The

30

change proneness maintainability measure is employed by two selected primary studies [16,

23] as a part of their experiment, and takes the form of a Boolean variable to indicate if a

change is made during maintenance, while the independent variables are the C&K metrics

[26]. Three selected primary studies compute time effort to perform maintenance tasks, while

only one selected primary study calculated the cost of maintenance tasks based on the time

consumed to execute these tasks. The main goal of these studies was to determine maintenance

time or cost directly rather than construct a new formula or compare the current system with

other systems. Some studies describe software maintainability rather than providing a formula.

This description may be classified depending on software maintainability attributes or

components. Finally, four selected primary studies used other software maintainability

measurements. The explanation of the metrics used in the maintainability equation in Table

2.5 appears in Section 2.4.2.

Table 2.5: Summary for software maintainability measurement.

Study ID
Type of

maintenance

Maintainability

definition

Maintainability

equation

Measurement

value
Maintainability interpretation

S2, S20,
S25, S26,

S30, S32,

S35, S36,
S38, S39,

S42, S43,

S44, S45,
S46, S47,

S49, S50,

S51, S52

Change
maintenance

effort

CHANGE, which is
dependent metric, is

computed according to

the number of lines
changed in a class

where insertion or

deletion are counted as
1, and modification of

the contents is counted

as 2

CHANGE = F
(WMC, DIT,

NOC, RFC,

LCOM, MPC,
DAC, NOM,

SIZE1, SIZE2),

the description of
these metrics

proposed in Table

2.6

Integer Maintainability is interpreted as
being inversely proportional to

the number of changes made: a

high value of change indicates
low maintainability, while a low

number represents high

maintainability.

S18 Corrective
maintenance

Corrective
maintenance effort

computes the effort

spent on each phase of
the corrective

maintenance process

(analyse, implement,
produce, define,

design).

Corrective
maintenance

effort= b1 NA +

b2 NB + b3 NC +
b4 Size

Time (person-
hours)

A high number of corrective
maintenance effort indicates low

maintainability, while a low

number of corrective
maintenance effort represents

high maintainability.

S12, S19,
S22

Adaptive
maintenance

effort

Adaptive maintenance
effort computes the

effort spent on each

phase of the adaptive
maintenance process

(adding,

understanding,
deleting, modification,

change).

Maintainability
Effam= Eff add+

Effund+ Effdel.

Time (hours or
months)

A high number of adaptive
maintenance effort indicates low

maintainability, while a low

number of adaptive maintenance
effort represents high

maintainability.

S5, S6, S8,
S21, S28,

S29, S33,

S48, S54,
S55

Maintenance
evaluation by

maintainability

index

The maintainability
index, which is

dependent metric, is a

single value of a
composite metric that

compute the function

of four metrics: lines
of code (lnLOC),

cyclomatic complexity

(CC), percentage line
of comments (COM)

Maintainability
Index

= 171 − 5.2× ln

(HV) − 0.23∗ CC

− 16.2× lnLOC +

50× sin

√2.4 × COM

Decimal
number

between 0 and

1.

A number above 0.85 represents
high maintainability, between

0.85 and 0.65 indicates medium

maintainability, below 0.65
represents low maintainability

31

and Halsted volume

(HV).

S47, S56 Maintenance

evaluation by
change

proneness

Change proneness,

which is dependent
metric, is a Boolean

variable indicating a

change (addition,
deletion or

modification) has been

made on a class.

Change Proneness

= F (WMC,
LCOM, CBO,

DIT, RFC, NOC)

IF (class change)
Change

proneness=

TRUE
ELSE

Change

proneness=
FALSE

Boolean

Variable TRUE
or FALSE

Maintainability change

proneness is TRUE if the change
occurs in class or FALSE if the

change does not occur.

S7, S17,

S37

Maintenance

time

Compute the time to

perform maintenance

tasks (including
understanding,

developing, and

modifying the

program)

NA Time (hours) The greater the amount of time

spent, the lower the

maintainability.

S9 Maintenance

cost

Compute three types

of the costs: testing
(MMT), modifying

(MMM) and

understanding (MMU)

Maintenance Cos

t = MMT + MMM
+ MMU

Time (person-

hours)

Maintainability is directly related

to maintenance cost.

S10, S11,

S14, S15,

S27, S31

Maintenance

categorisation

according to
maintenance

attributes

Categorise

maintenance

according to
maintenance

attributes:

changeability,
stability, analysability,

maintainability and

testability

Each study used a

different equation

NA NA

S1, S13,
S16, S53

Maintenance
categorisation

according to

maintenance

components

Categorise
maintenance

according to

maintenance

components:

corrective, adaptive

and perfective

Each study used a
different equation

NA NA

S3, S24,

S34, S40

Other

measurements

NA Each study used a

different equation

NA NA

It is apparent from Table 2.5 that there are several types of software maintenance

measurements, these types can be divided into indirect measures and direct measures:

1. Indirect measures: As mentioned early, Software maintainability is defined as the ease

with which a software system may be modified to correct faults, improve the

performance, or adapt to changes in the environment [8]. This definition captures how

easy it was for the developer to modify the software product. However, the information

about the ease of change is a very difficult task to achieve and typically unavailable in

the historical datasets. To resolve this issue, the proxy measures were used to calculate

the number of changes made in the classes or whether or not a change has been made

in the classes. There are three types that can be used as dependent variables to capture

32

the element of maintainability, which are the CHANGE metric (S2, S20, S25, S26,

S30, S32, S35, S36, S38, S39, S42, S43, S44, S45, S46, S47, S49, S50, S51 and S52),

the MI (S5, S6, S8, S21, S28, S29, S33, S48, S54 and S55) and change proneness (S47

and S56). CHANGE metric is more about the numbers of change that is likely to be

made to a class, MI is a single value of a composite metric, change proneness is a

Boolean variable indicating a change (addition, deletion or modification) has been

made on a class, whereas maintainability refers to the ease with which maintenance

changes can be made and implemented. These measurements have proven to be a good

indicator in predicting software maintainability in several selected primary studies in

Table 2.5 and have strong relationships with other metrics (independent variables) [9].

Therefore, these measurements can be used as dependent variables to predict software

maintainability.

2. Direct measures: the remaining types of software maintenance measurements are

considered direct measures that are measured software during the maintenance process.

These types include corrective maintenance in S18, adaptive maintenance effort in S12,

S19 and S22, maintenance time in S7, S17 and S37 and maintenance cost in S9.

Moreover, Table 2.5 illustrates that relatively few software maintainability

measurements are present in the current literature, and this finding is directly in line with

previous studies [91].

Figure 2.6 illustrates the number of selected studies employing the different

maintainability measures. From this figure, it can be seen that by far the most popular software

maintainability measurement is change maintenance effort that used by twenty selected

primary studies which may be attributable to the availability of QUES and UIMS datasets that

use this measurement as the dependent variable. MI is recognised as the second most common

measurement, being used by ten studies.

33

2.4.2 Software maintainability metrics

In this section, the following research questions are addressed:

RQ2: What type of OO metrics have been proposed to measure software maintainability,

RQ2.1: What metrics are used (independent variable)? and RQ2.2: What is the level of these

metrics?

Software metrics play the most significant role in building a predictive model of software

maintainability. OO software metrics are divided into two broad categories: product metrics

to measure software maintainability that are based on the quality of software product (e.g.,

number of lines in source code) and process metrics to measure software maintenance that are

based on the quality of software processes (e.g., number of hours to change code) [9].

In addition, software metrics can be categorized into those based on internal attributes

that directly measure features of OO software such as inheritance or class cohesion, and

external attributes that indirectly measure features of the software environment such as the

Change metric that capture elements of maintainability from sets of internal attributes [7].

Furthermore, metrics can be categorised into different levels: method, class, and

application. Method level is used mainly with traditional metrics that involve complexity and

size metrics, such as Halstead metrics [92] and McCabe metrics [93]. Class level is used

commonly and include those proposed by C&K [26] and L&H [9]. C&K presented a

Figure 2.6: The number of selected studies in each software maintenance type.

34

theoretical work to define a set of software metrics for OO systems based on sound

measurement theory. They defined six metrics as a base suite for OO designs, namely, DIT,

WMC, NOC, CBO, RFC and LCOM (these abbreviations are expanded in Table 2.6). L&H

constructed a model to predict maintenance effort based on 11 OO metrics, five metrics of

which came from the C&K set (they excluded CBO) and six more proposed by themselves:

MPC, ADT, NOM, LOC, SIZE1, SIZE2 (also expanded in Table 2.6) and the CHANGE

metric, which is the dependent variable and based on the number of changes made in the source

code. Application level metrics are extracted from the application as a whole e.g. error-prone

subprograms [94] or total number of modules in each application [95].

There were too many different metrics used in selected primary studies, and it is so

difficult to describe all these metrics. Therefore, I decided to present the description of metrics

used in software maintenance type (Table 2.5). Table 2.6 presents the description of the metrics

used to predict maintainability in my selected primary studies, grouped according to type of

maintenance.

What stands out in Table 2.6 is the high number of selected primary studies that used the

L&H metrics (20 studies). These studies reported evidence of a strong relationship between

OO metrics and software maintainability. However, some studies performing FS techniques

have not clearly specified the best OO metrics for software maintainability prediction.

Moreover, the total number of selected primary studies that used the MI metrics, which are

widely accepted in industry [96], is half that of the L&H metrics. It would seem likely that the

high number of studies using the L&H metrics is due to the availability of QUES and UIMS

datasets that include these metrics, while studies using the MI metrics may be due to the

availability of tools to extract and measure these metrics.

35

Table 2.6: Summary of metrics used in different maintenance types.
Type of maintenance Study ID Metrics Description

Change maintenance effort S2, S20, S25, S26, S30, S32,

S35, S36, S38, S39, S42, S43,

S44, S45, S46, S47, S49, S50,

S51, S52

L&H metrics

DIT Depth of inheritance tree

NOC Number of children

MPC Message-passing coupling

RFC Response for a class

LCOM Lack of cohesion in methods

DAC Data abstraction coupling

WMC Weighted methods per class

NOM Number of methods

SIZE1 Lines of code

SIZE2 Number of properties

Corrective maintenance S18 NA Number of tasks requiring software modification

NB Number of tasks requiring fixing of data

misalignment

NC Number of other tasks

N Number of the total tasks (N=NA+NB+NC)

SIZE Size of the system to be maintained

Adaptive maintenance effort S12, S19, S22 Eff add Effort for addition

Effund Effort for understanding

Effdel Effort for deletion

Maintenance evaluation by

maintainability index

S5, S6, S8, S21, S28, S29, S33,
S48, S54, S55

HV Halstead volume metric

CC Cyclomatic complexity metric

LOC Counted as a line of code

COM A percentage of comment lines

Maintenance evaluation by

change proneness

S47, S56 C&K metrics

DIT Depth of inheritance tree

WMC Weighted methods per class

 NOC Number of children

CBO Coupling between object classes

RFC Response for a class

LCOM Lack of cohesion in methods

Maintenance time S7, S17, S37 IL Interaction level

IS Interface size

OAC Operation argument complexity

ID Inheritance depth

Maintenance cost S9 MMT Man-months to understanding

MMM Man-months to modifying

MMU Man-months to testing

Table 2.7 provides a summary of the metrics used to predict maintainability in my

selected primary studies, grouped according to type (product/process) along with an indication

of the level at which the measurement is captured.

36

From Table 2.7, it can be seen that the majority of the selected primary studies used class level

product metrics (related to the fact that most of the studies are attempting to predict classes

changed in the source code). The table also shows that a large number of selected primary

studies used process level metrics to predict application level maintainability, with product

metrics only featuring in a small number of studies for this category of change.

Table 2.7: Summary of software maintainability metrics.
Metrics type Metrics level Study ID

Product metrics

Class level

S2, S4, S7, S10, S11, S14, S20, S25, S26,
S27, S30, S32, S36, S38, S39, S40, S42,

S43, S46, S47, S49, S50, S52, S56

Application level S3

Class level, method level
S5, S6, S8, S12, S16, S21, S28, S29, S33,

S41, S44, S48, S54, S55

Class level and application level S45, S51

Process metrics

Application level S13, S17, S18, S22, S24, S31, S34, S37

Application level, class level, S15, S19

Product and process metrics Application level S9, S35

Figure 2.7 provides a visualisation of the data in Table 2.7, and aggregates the total

number of selected primary studies using both metric type and metric level, and clearly

illustrates the popularity of employing product metrics for class-level predictions, and process

metrics for application level predictions.

37

Figure 2.8 presents the distribution of metrics of selected primary studies. 79% of the

studies used product metrics and 17% of the studies used process metrics. Moreover, 4% of

the studies integrated both product and process metrics. The evidence from this result suggests

that product metrics are the majority of metrics used in software maintainability.

Figure 2.8: The distribution of metrics.

Figure 2.7: The number of studies using metrics type and metrics level.

38

2.4.3 Software maintainability datasets

This section seeks to answer the following questions:

RQ3: What are the software maintainability datasets in the literature that were used to build

prediction models? RQ3.1: What is the type of software maintainability datasets? RQ3.2:

What tools are used to extract metrics from open source projects? RQ3.3: What programming

languages are used to collect metrics? RQ3.4: What is the number of classes in the software

system?

A dataset is a combination of related sets of the data that may be used to perform machine

learning models, and it is considered the foundation of building prediction models. For the

model building the dataset is divided into a training set, which is used as input to train model,

and a testing set, which is used as input to evaluate the model [65].

A. Datasets used

The datasets used in the selected primary studies may be divided into three main types:

• Public dataset: The dataset is available as appendix or table in published paper or in

a publicly accessible repository, such as the Promise repositories in S23. In 2018,

Hegedus et al. in S55 provided their datasets via the PROMISE repository: one of the

first regarded as suitable for software maintainability prediction [58]. These datasets

were built from extracted OO metrics from seven open-source systems and include a

calculated MI. Their contribution provides encouragement to the researcher

community to develop more research in software maintainability prediction.

• Partial dataset: The dataset is not available, but has been extracted from open source

software project repositories such as GitHub [27] or SourceForge [28].

• Private dataset: The dataset is not available and has been extracted from a private

software system.

Table 2.8 illustrates a summary of different types of the datasets used in the selected

primary studies. What can be clearly seen in Table 2.8 is most selected primary studies make

use of two public datasets: QUES and UIMS proposed by L&H [9]. These datasets are derived

from systems written in Classic-Ada as the OO programming language. A further notable

finding is that most of the selected primary studies have been conducted using private datasets,

as opposed to public or partial datasets, which makes many empirical studies of software

maintainability prediction not repeatable.

39

Table 2.8: Summary of different types of dataset.
Public datasets

Study ID Datasets name Dataset Source Dataset size Dataset link

S2, S20, S25, S26,
S30, S36, S38, S46,

S47, S49, S52

QUES
Commercial software products

(Quality Evaluation System)
71 classes

Provided as an

appendix in [9].
UIMS

Commercial software products
(User Interface System)

39 classes

S11 UML class diagram Bank information systems 27 classes
Provided as an

appendix in [97].

S13 Bank Bank information systems 55 classes
Proposed as a table

in [95]

S34 Controlled experiment Academic course 24 classes
Proposed as an

appendix in [98].

S53

Spring, Edition, RxJava,
Restlet, Hadoop, Camel,

Kotlin, Elasticsearch,

Hbase Drools, OrientDB

Open source system in GitHub

[27]
1151 classes

https://zenodo.org/r

ecord/835534#.W12
3H9IzY2x

S55
Titan, mcMMO, junit,

oryx, mct, antlr4, mapdb
Open source system in GitHub

[27]
10,844 classes

https://zenodo.org/r

ecord/581651#.W12

9Y9IzY2w

Partial dataset

Study ID Dataset Source

S27, S29, S33, S39, S41, S47, S50, S54 Open source system in SourceForge [28]

S21 Industrial software

S28, S35, S40, S44, S45, S48, S51, S56 Other open source projects

Private dataset

Study ID Dataset Source

S1, S3, S4, S5, S6, S7, S8, S9, S10, S12, S16,

S17, S18, S19, S22, S24, S31, S32, S37, S42,
S43

Private projects

Figure 2.9 illustrates the number of selected primary studies in each dataset type. From

the chart below which clearly illustrates the difference between the number of studies using

private datasets compared with other types of datasets. However, there are new public datasets

proposed in S53 and S55 that may encourage researchers to apply their models to predict

software maintainability.

40

B. dataset size

The dataset size may be classified into three main groups: small, where the number of classes

less than 100, medium, where the number of classes less than 500, and large, where the number

of classes is more than 500. Figure 2.10 provides the number of datasets classified by the size

of the dataset. This result shows that selected primary studies were mostly performed on the

larger sized datasets, which improves the validity of prediction models.

0

5

10

15

20

N
u

m
b

er
 o

f
st

u
d

ie
s

Dataset type

Private dataset Partial dataset Public dataset

Figure 2.9: The number of studies used each type of the dataset.

0

2

4

6

8

10

12

14

16

Small Medium Large Unknown

N
u

m
b

er

st
u

d
ie

s

Dataset size

Figure 2.10: The number of datasets classified by the size of the dataset.

41

C. Programming language

Most of the datasets were extracted from systems written in Java, Classic-Ada, C#, or C++.

Figure 2.11 presents the distribution of the programming language in each selected primary

studies. Java is the most popular language used in the studies which may be due to the

availability of open-source systems written in Java.

D. Tools used for data extraction

The variables in the datasets were extracted from software source by using specific tools. Table

2.9 presents the tools used for extracting the independent variables of the selected primary

studies. The dependent variables were typically collected from comparing the first and the last

versions of source software (either manually or by using a tool).

As can be seen from Table 2.9, there is a broader range of tools available for Java which

may be a reflection of the popularity of the language as illustrated in Figure 2.11. Extraction

tools that work with C# are used less frequently. Some of the extraction tools can work with

more than one language.

0

2

4

6

8

10

12

14

16

N
u

m
b

er
 o

f
st

u
d

ie
s

Programing languages

Java Classic-ADA C++ C#

Figure 2.11: The distribution of programming language in each study.

42

Table 2.9: The tool extraction independent metrics.
Programming

language
Study ID Tool name

Classic-Ada
S2, S20, S25, S26, S30,

S36, S38, S46, S47, S49, S52
Classic-Ada metric analyser

C S6 HPMAS prior to perfective maintenance modification

C++

S4, S15 An automated data collection tool

S12 Log file

S21 Krakatau metrics professional

C and C++

S5, S8, S11, S13
S17, S31, S34, S37

Survey questionnaire

S35 Resource standard metrics

S45 Logiscope software static analysis tool.

C++ and Java S27, S41, S44 CCCC

Java and C# S27, S41 OOMeter

C# S44, S41 Visual studio

C, C++ and Java S10 Reconfigurable automated metrics for OO software

Java

S16 KLOCwork tool

S27, S41, S43,

S46, S48, S50, S56
C&K java metric (CKJM) tool

S51

ObjectAid UML explorer

JHawk tool

Classycle

S54 COINS tool

S55 SourceMeter static code analysis too

S56 Defect collection and reporting system (DCRS) tool

S27, S41
Analyst4j

Dependency finder

S28, S51, S41 JDepend

S27, S28, S41 Understand for Java

S41 Java coding standard checker

Table 2.10 shows the tools used to identify the changes that have taken place (although

several of the studies did not mention the tool used to collect the data).

Table 2.10: The tools for dependent metrics extraction.

2.4.4 Evaluation measures

This section addresses the following questions:

RQ4: What are the evaluation measures used to assess the performance of software

maintainability prediction models? RQ4.1: What are the validation approaches used to

evaluate the performance of software maintainability prediction models?

Study ID Tool name Software maintainability type

S11 Fuzzy prototypical knowledge discovery Categorise maintainability into easy,
medium or difficult maintain

S16 Distributed software development (DSD) Categorise maintenance activities as

perfective, adaptive or corrective

S39, S51 Version control system (VCS) Track source code changes

S43 Eclipse compare plug-in Compare changes

S45 Static code analysis tools Calculate the code change history

S50 Beyond compare Compare changes between two

versions of software

S55 Quality gate source audit Calculate relative maintainability
index, similarly to the commonly

maintainability index measurement

43

Various evaluation measures have been used in software maintainability prediction to evaluate

and compare the accuracy of model performance. The appropriate evaluation measure is

usually based on problem type: regression, classification, or clustering. The evaluation

measures identified in the selected studies are reported in Table 2.11 which also provides the

definition and equation for each measure.

From Table 2.11, key findings emerge: the most popular prediction accuracy measures

used for regression problems after R-squared are those based on the magnitude of relative error

(MRE, and MMRE) [67] and (Pred) [11]. However, prior studies have pointed out that several

evaluation measures (e.g., MMRE) have bias and instability issues in their results [99, 100].

To resolve these issues, a baseline or benchmark is recommended to compare and evaluate the

performance of the prediction models [99, 100]. For classification problems, the most

commonly used evaluation measures are recall and precision, followed by accuracy. However,

the previous study stated that the accuracy measure provides misleading results with the

problem of the imbalanced dataset because it tends to measure towards the majority class [55].

In the selected primary studies, only one study (S56) used accuracy with the imbalanced

dataset. However, S56 resolved the problem of imbalanced dataset by using a threshold of

50% for balance values.

Table 2.11: Summary of evaluation measures used.
Evaluation measures for Regression problems

Study ID Name Acronym Definition Equation

S18, S25, S26,

S29, S34, S38,

S44, S47, S54

Magnitude of

relative error

MRE The absolute difference

between the actual value and

predicted values divided by
the actual value

MRE = |actual value – predicted value| /

actual value

S25, S26, S30,

S34, S38, S49,

S38, S44, S47,
S54

Mean magnitude

of relative error

MMRE It is the mean of MRE.

MMRE = 1/n ∑ 𝑀𝑅𝐸

𝑖=𝑛

𝑖=1

S18, S25, S26,

S30, S34, S38,
S42, S44, S47,

S54

Pred(q) PRED It calculates the proportion of

instances in the dataset where
the MRE is less than or equal

a specified value (q). The q is

defined value, k is the
number of states where MRE

is less than or equal to q, and

n is the whole number of

views in the dataset.

Pred(q) = k/n

S20, S33, S38 Mean square error MSE It measures the average of

the squares of the differences

between the actual (𝑌𝑖) and

predicted (Ý𝑖) values.

MSE = 1/n ∑ (𝑌𝑖 − Ý𝑖)𝑖=𝑛
𝑖=1

2

S26, S29 Absolute relative

error

ARE The Ab. Res. is the absolute

value of residual, which is

the difference between the
actual value and predicted

Ab.Res = |actual value – predicted value|

S32, S42, S46,

S52

Mean absolute

relative error

MARE It is the mean of the ARE MARE = 1/n ∑ 𝐴𝑅𝐸 𝑖=𝑛
𝑖=1

44

S20, S36, S46,

S49, S50, S52

Mean absolute

error

MAE

It is the average of absolute

values of the difference

between 𝑋′𝑖 and 𝑋 𝑖 , where

𝑋′𝑖 is the predicted value and

𝑋 𝑖 is the actual value

MAE = 1/n ∑ (| 𝑋′𝑖 − 𝑋 𝑖 |) 𝑖=𝑛
𝑖=1

S46, S50 Root mean square
error

RMSE It is the square root between
the square of predicted value

and the actual divided by

number of observations in

the dataset, where 𝑋′𝑖 is the

predicted value and 𝑋 𝑖 is the

actual value

RMSE=
√(𝑋′𝑖 −𝑋 𝑖)2

𝑛

S46, S52 Standard error of

the mean

SEM It is the standard deviation

divided by root of the

number of observations in
the dataset.

SEM = SD/ √𝑛

S2, S5, S8, S12,

S16, S17, S18,

S19, S20, S21,
S24, S29, S31,

S32, S33, S34,

S36, S48, S51

R square R2 It presents the proportion of

the variance of the dependent

variable that is explained by
the model.

R-squared = 1- (explained variance / total

variance), where explained variation is the

sum of squares of the residuals (i.e. actuals-
predicted) and total variation is the residuals

with respect to the average (i.e. actuals –

average) [101].

Evaluation measures for Classification problems

Study ID Name Acronym Definition Equation

S37, S45, S53,

S56

Accuracy It is the number of true

predictions over all types of
predictions.

Accuracy = (TP + TN) / (TP + TN + FP +

FN)

S37, S40, S43,

S53, S56

Recall It is a proportion of actual

positives that are correctly
determined.

Recall = TP / TP + FN

S37, S40, S43,

S53, S56

Precision It is capability of a model to

correctly identify relevant
instances.

Precision = TP / TP + FP

S37, S39, S56 F-Measure It integrates precision and

recall/sensitivity in one
equation.

F-Measure = 2 * Precision * Recall /

Precision + Recall

S56 Specificity It is a proportion of actual

negative that are rightly

determined.

Specificity = TN/ TN+ FP

S39, S40, S43,

S47

Area under curve

of ROC curve

AUC It is a plot of two parameters:

the true positive rate and

false positive rate.

Evaluation measures for Clustering problems

Study ID Name Definition Equation

S11, S31 Mean cluster It calculates how

close the clustering

(nearest clustering)
is to the

preidentified
classes (e.g., low,

medium and high

maintainability) by
average of all cross-

cluster pairs, where

ai = (a1+a2+ …..+an)

Mean= 1/n ∑ (𝑎 𝑖)𝑖=𝑛
𝑖=1

 **TN: True negatives, FP: False Positive, FN: False Negative, TP: True Positive.

45

Figure 2.12 shows the number evaluation measures in each machine learning problem used by

selected primary studies. R-squared is the most frequently used evaluation measure for

regression problems (19 studies), followed by MMRE and PRED (10 studies). For the

classification problem Recall and Precision were applied by 5 studies. In the clustering

problem, only one evaluation measure was employed.

 Validation is used to evaluate the performance of a trained model on previously unseen

data [65]. There are three major validation types used in the selected primary studies: k-fold

cross-validation, leave-one-out and holdout. Leave-one-out is considered the most extreme

way to perform cross-validation by using all instances. Both methods (i.e. k-fold cross-

validation and Leave-one-out) has an advantage over the hold-out to make predictions on all

datasets. For this reason, the main advantage of k-fold cross-validation and leave-one-out is to

decrease variance and has lower variation than the hold-out method. Also, k-fold cross

validation has a particular advantage over hold out, which every row in the dataset presents in

the training and test set at least once. However, hold-out only needs one run, so it spends lower

time than other methods. Table 2.12 illustrates the validation types used by the selected

primary studies. A fact that worth mentioning is that this table contains fewer than half of the

selected primary studies, the remainder of the studies measured software maintainability

0

2

4

6

8

10

12

14

16

18

20
A

R
E

R
M

S
E

S
E

M

M
S

E

M
A

R
E

M
A

E

M
R

E

M
M

R
E

P
R

E
D

R
2

S
p

e
ci

fi
ci

ty

F
-M

ea
su

r
e

A
cc

u
r
a
c
y

 R
O

C
 c

u
rv

e

R
ec

a
ll

P
re

c
is

io
n

M
ea

n

Regression Classification Clustering

N
u

m
b

er

o
f

st
u

d
ie

s

Evaluation measures

Figure 2.12: The distribution of evaluation measures used by selected primary

studies.

46

directly without applying prediction models. Therefore, they did not need to validate the

model’s performance.

Table 2.12: Summary of validation types.
Study ID Validation Types Definition

S20, S37, S39, S40, S45, S46, S47, S49, S52, S53,

S54, S56

K-fold cross-

validation

The dataset is divided randomly into K folds (or

partitions) of the same size, where one-fold is used to

test the model and the remaining k-1are used as training
data. The process is repeated k times to select a new

different fold at each iteration. The overall performance

is based on the average over the k test folds.

S18, S26, S29, S30 Leave-one-out It is a logical extreme version of k-fold cross validation

where k is equal to the size of the data set. One

observation of the total dataset is removed, and the
model is constructed with the remaining dataset and

tested in the removed observation. It then repeats the

process by deleting a new different observation and so
on for the whole data set.

S4, S17, S19, S25, S32, S36, S38, S42, S44 Holdout It partitions dataset into two sets, where one partition is

used for training the model and another partition for

testing.

2.4.5 Machine learning problem category.

This section addresses following RQs: RQ5: What type of machine learning was performed

in the software maintainability domain? RQ5.1: What are the categories of machine learning

problem explored?

Machine learning approaches may be divided into three main groups: supervised,

unsupervised and semi-supervised. Supervised learning encompasses two machine learning

problem types: regression and classification, while unsupervised learning comprises clustering

and association. The semi-supervised is a combination of supervised and unsupervised. The

regression problem predicts a continuous number, where the classification predicts a category

of two or more types. Clustering groups data together based upon attributes and distance

measures, whereas association detects rules that explain a large amount of the data. Moreover,

supervised learning builds machine learning models to predict output data from the input data,

where the input data has a label. Unsupervised learning builds models from unlabelled input

data. Semi-supervised learning builds models to predict output data from input data, where

some data items have a label [65]. Table 2.13 shows the summary of machine learning

problems used by the selected primary studies. As mentioned in the explanation of Table 2.12,

most of the selected primary studies used direct measures to evaluate software during the

maintenance process without performing any machine learning problems.

47

Table 2.13: Summary of machine learning problems.
Study ID Machine learning approach Machine learning problem type

S20, S25, S26, S29, S30, S38,

S42, S44, S45, S46, S47, S48, S49, S50, S52, S54 Supervised
Regression

S37, S39, S40, S43, S47, S53, S56 Classification

S11, S31, S32 Unsupervised Clustering

2.4.6 Individual prediction models

This section explores different individual prediction models used in the selected primary

studies of software maintainability prediction and identifies the superior model in each study.

This section addresses the following questions: RQ6: What are the individual prediction

models used to predict software maintainability? RQ6.1: Which are the best performing

individual prediction models?

Table 2.14 presents a summary of the studies that have used individual models to predict

software maintainability, along with the best accuracy prediction model over the most

evaluation measures. The selection of the best model relies on the evaluation measures that

compare and evaluate the prediction accuracy of the individual prediction models used in each

study. According to these measures, the best model is selected as a recommendation model in

each selected study. Again as indicated in Table 2.12 and Table 2.13, Table 2.14 includes a

subset of selected primary studies, since only these studies used indirect measures to predict

software maintainability and apply machine learning models.

Table 2.14 is reported only the best model performance regardless of which evaluation

measurements were used. As shown in Table 2.14, several selected primary studies have

different recommended individual models to predict software maintainability. However, two

studies have reported that SVR outperforms other selected models.

48

Table 2.14: Summary of individual prediction models used with the best model in each study.
Study ID Individual prediction models The best accuracy prediction model

S11 FDP FDP

S20 WNN and GRNN GRNN

S25 BN, RT, MLR (Backward elimination) and MLR (Stepwise selection) BN

S26 MARS, MLR, SVR, ANN and RT MARS

S29 LR LR

S30 TreeNet, MARS, MLR, SVR, ANN, and RT TreeNet

S31 K-means clustering K-means cluster

S32 SVM SVM

S36 MLP, WNN and GRNN MLP

S37 LR, DT, CART, BFTree and LEGAL-Tree DT

S38 FL, BN and MARS FL

S39 Multivariate model Multivariate model

S42 FF3LBPN, GRNN and GMDH GMDH

S44 BPN, KN, FFNN, GRNN KN

S45 SVR, MLP, IBk, M5Rules, KStar, GP, AR, REPTree, M5P, RF, RSS, IR,

PLS classifier, GS, DS, PR, CR, RBD, LMS, LR, Decision table, LWL,
RBFNN

SVR

S46 Neuro-GA Approach Neuro-GA Approach

S48 MLR based on stepwise selection and backward elimination methods Stepwise selection

S49 FLANN, GA, PSO, CSA, FLANN-GA, FLANN-PSO, FLANN-CSA FLANN-GA

S50 GA, Decision Table, RBFNN, BN and SMO GA

S52 Neuro-Fuzzy approach Neuro-Fuzzy approach

S54 MLR, MLP, SVR, M5P and RT. SVR

** FDP: Fuzzy Deformable Prototypes, WNN: Ward neural network, GRNN: General regression neural network, BN: Bayesian
network, RT: Regression tree, MLR: multiple linear regression, MARS: Multiple adaptive regression splines, SVR: Support vector

regression, ANN: Artificial Neural Network, LR: Linear regression, TreeNet: Multiple additive regression trees, SVM: Support vector

machine, MLP: Multilayer Perceptron, GRNN: general regression neural network, LR: logistic regression, DT: decision tree, CART:
Classification and Regression Trees, FL: fuzzy logic-based, FF3LBPN:Forward 3-Layer Back Propagation Network, , GMDH: Group

Method of Data Handling, BPN: Back Propagation Network, KN: Kohonen Network, FFNN: Feed Forward Neural Network, GP:

Gaussian processes, AR: Additive regression, RF: Random forest, RSS: Random subspace, IR: Isotonic regression, GS: Grid search,
DS: Decision stump, PR: Pace regression, CR: Conjunctive rule, RBD: Regression by discretization, LMS: LeastMedSq, LWL: locally

weighted learning, FLANN: functional link artificial neural network, GA: Genetic algorithm, PSO: Particle swarm optimization, CSA:

clonal selection algorithm, RBFNN: Radial Basis Function Neural Network, SMO: Sequential Minimal Optimization.

The results for an accurate prediction model are recognized if they meet the criteria of

Pred(.30) ≥ 0.70 [34] or Pred(.25) ≥ 0.75 or/and MMRE ≤ 0.25 [35]. Even though the

suggested criteria are based on relatively old references [34, 35], recent studies have employed

these criteria to evaluate prediction accuracy in the software engineering domain [102-104].

Also, several selected primary studies have used these criteria, such as S25, S26, S30, S38 and

S54. However, S35 suggested that it is a challenging task to meet these criteria.

 Table 2.15 presents the performance of the MMRE value for some selected primary

studies; Boldface values in the table indicates the best results. However, several studies in

Table 2.14 did not use MMRE or had not performed a regression problem, so I could not

evaluate their performance against the criteria. The results in this table indicates that FLANN-

GA: functional link artificial neural network - genetic algorithm in S49 is the only model that

meets the criteria of MMRE in UIMS datasets, while FL model in QUES dataset in S38 and

Neuro-Fuzzy approach in S52 are close to meeting the criteria to build an accurate effort

prediction model.

49

Table 2.15: Performance of MMRE value for some selected primary studies.

Dataset name Study ID
The best accuracy

prediction model
MMRE

QUES S25 Stepwise selection 0.39

S26 MARS 0.32

S30 MARS 0.32

S38 FL model 0.27

S46 Neuro-GA Approach 0.37

S49 FLANN-GA 0.32

S52 Neuro-Fuzzy approach 0.33

UIMS S25 Bayesian network 0.97

S26 SVR 1.86

S30 TreeNet 1.57

S38 FL model 0.53

S46 Neuro-GA Approach 0.31

S49 FLANN-GA 0.24

S52 Neuro-Fuzzy approach 0.28

Five open source Java software
systems

S44 KN Mean MMRE: 0.44 for model 1.

Mean MMRE: 0.32 for model 2.

Twenty-six open source Java

software systems

S54 SVR Mean MMRE: 0.91

The number of individual prediction models that has been used in selected primary

studies is illustrated in Figure 2.13 (fifty-three in total). From the fifty-three models shown in

Figure 2.13, the five most frequently employed individual models are MLR, SVR, GRNN, RT

and FLANN. MLR is the most frequently used individual model for software maintainability

(six studies).

0

1

2

3

4

5

6

7

M
L

R

S
V

R

 G
R

N
N R
T

F
L

A
N

N

B
N

M
A

R
S

L
R

M
L

P

W
N

N

A
N

N

D
T

M
5
P

D
e
c
is

io
n

 t
a
b

le

R
B

F
N

N

G
A

F
D

P

T
r
e
e
N

e
t

K
-m

e
a
n

s
c
lu

st
e
r
in

g

S
V

M

C
A

R
T

B
F

T
r
e
e

L
E

G
A

L
-T

re
e

F
L

M
A

R
S

M
u

lt
iv

a
r
ia

te
 m

o
d

e
l

F
F

3
L

B
P

N

G
M

D
H

B
P

N

K
N

Ib
k

K
st

a
r

G
P

A
R

R
F

R
S

S

IR

P
L

S
 c

la
ss

if
ie

r

G
S

D
S

P
R

C
R

R
B

D

L
M

S

L
W

L

N
e
u

r
o

-G
A

P
S

O

C
S

A

F
L

A
N

N
-G

A

F
L

A
N

N
-P

S
O

F
L

A
N

N
-C

S
A

S
M

O

N
e
u

r
o

-F
u

z
z
y
 a

p
p

ro
a
c
h

N
u

m
b

er
 o

f
st

u
d

ie
s

Individual prediction models

Figure 2.13: Individual prediction models used in selected primary studies.

50

2.4.7 Ensemble prediction models

This section investigates various ensemble prediction models used in the studies and compares

the ensemble model performance against individual models. The aims of this section are to

answer the following questions: RQ7: What type of ensemble prediction models were

employed to predict software maintainability? And RQ7.1: Are the ensemble models able to

improve over the performance of the individual prediction models?

An ensemble model is a combination several individual models designed to improve on

the accuracy prediction of individual models. They can be classified into two major types:

homogenous that uses the same type of individual models, and heterogenous that uses different

types of individual models [105]. Moreover, the ensemble models can be categorized into

linear ensembles, which combine the outputs of the base model in a linear manner (e.g.,

weighted averaging, averaging) and nonlinear ensembles, which combine the outputs of the

base model in a nonlinear manner (e.g., decision tree forest) [106]. Five main selected primary

studies employed ensemble models to predict software maintainability. These studies

emphasised the positive impact of ensemble methods in predicting software maintainability

compared with individual prediction models. Table 2.16 summarises the ensemble prediction

models used.

As shown in Table 2.16 below, different types of ensemble models have been compared

with individual prediction models. The ensemble prediction models in selected primary studies

(i.e. S40, S43, S47, S53 and S56) improved the performance of individual models and

increased their accuracy prediction over individual prediction models. Even though the

ensemble models reported a superior result over individual prediction models, a limited

number of selected primary studies applied the ensemble models to predict software

maintainability (which may be due to the fact that ensemble models are relatively new [107]).

51

Table 2.16: Summary of the ensemble prediction models.

The number of ensemble prediction models used in selected primary studies is shown in

Figure 2.14 (ten in total). The number of homogeneous ensemble models used exceeds the

heterogeneous ones. Furthermore, the linear ensemble is the most frequently used

heterogeneous model, and RF and AdaBoost are the most frequently used homogeneous

models.

Study

ID
Ensemble Type

Ensemble

name
Base models Combination rules The best model

Does the

ensemble

model improve

the

performance of
the base

model?

S40 Heterogeneous
SMEM-

MCC
ISMEM, DT, BPN,

SMO

NA
Ensemble model

(SMEM-MCC)

Yes

S43 Homogeneous RF

Naïve Bayes, Bayes

Network, Logistic,
Multilayer

Perceptron

Averaging
Ensemble model

(RF)
Yes

S47

Heterogeneous

Linear

ensemble

MLP, RBF, SVM,

M5P

Averaging, weighted

averaging and best in

training

Ensemble model

Yes

Homogeneous

Bagging

and

AdaBoost

MLP, RBF, SVM,

DT
Averaging Yes

Heterogeneous

Linear

ensemble

and Non-

linear

SVM, MLP, logistic

regression, genetic

programming, K-

means

Best in training,
majority voting and

decision tree forest
Yes

S53 Homogeneous

RF and

AdaBoost
J48 Averaging

Ensemble model

(AdaBoost)
Yes

S56 Homogeneous

MVEC,
WVEC,

HIEC,

WVHIEC

Seven individual

particle swarm

optimization (PSO)

Majority voting,

weighted voting and

hard instance

Ensemble model

(HIEC and

WVHIEC)

Yes

** SMEM-MCC: Software Maintainability Evaluation Model based on Multiple Classifiers Combination, RF: Random forest, Bagging:

Bootstrap aggregating, AdaBoost: Adaptive Boosting, MVEC: Majority Voting Ensemble Classifier, WVEC: Weighted Voting Ensemble

Classifier, HIEC: Hard Instance Ensemble Classifier, WVHIEC: Weighted Voting Hard Instance Ensemble Classifier.

52

2.5. Conclusion of Systematic Literature Review

This literature review aimed to identify and analyse the measurements, metrics, datasets,

evaluation measures, machine learning problems, individual prediction models and ensemble

prediction models employed in the field of software maintainability prediction. An extensive

search was conducted in five online digital libraries to select peer-reviewed articles that

publish in either journals or conferences. Fifty-six studies have been selected between 1991

and 2018, and seven main questions have been answered from each selected primary study.

This literature review has been performed as a SLR to evaluate all relevant research evidence

and identify the available studies in the field of software maintainability prediction, with the

purpose to answer certain RQs.

The main answer for each research question in this literature review is reported in (Figure

A.1 in Appendix A). This figure provides the mind of software maintainability prediction and

highlights the most important answers. This visualisation enables us to break down the

complex problem of software maintainability prediction into several solutions according to the

RQs. As a result, this mind map integrates a whole literature review into one organised picture

to respond to the RQs as the following:

0

1

2

3

S
M

E
M

-M
C

C

N
o

n
-l

in
ea

r
en

se
m

b
le

L
in

ea
r
 e

n
se

m
b

le

 H
IE

C

W
V

H
IE

C

M
V

E
C

 W
V

E
C

B
a

g
g

in
g R
F

A
d

a
B

o
o
st

Heterogeneous Homogeneous

N
u

m
b

er
 o

f
st

u
d

ie
s

Ensemble prediction models

Figure 2.14: Ensemble prediction models used in selected primary studies.

53

• There are ten software maintainability measurements used in selected primary studies:

CHANGE maintenance effort, corrective maintenance, adaptive maintenance effort,

maintenance evaluation by MI, maintenance evaluation by change proneness,

maintenance time, maintenance cost, maintenance attributes, maintenance components

and other measurements.

• There are three main types of software maintainability metrics used in selected primary

studies: product metrics, process metrics, and product metrics combined with process

metrics.

• There are three main types of software maintainability datasets used in selected primary

studies: public datasets, partial datasets and private datasets.

• The software maintainability evaluation measures are grouped by machine learning

problem: regression problem-based models include MRE, MMRE, PRED, MSE, ARE,

MARE, MAE, RMSE, SEM and R2, classification problems include Accuracy, Recall,

Precision, F-Measure, Specificity and ROC curve, and cluster problems include the

mean.

• Machine learning models to predict software maintainability involve two main

categories: supervised learning for regression and classification, and unsupervised for

clustering.

• Fifty-three individual models were constructed by selected primary studies.

• Ten ensemble models were created by selected primary studies (seven homogeneous

ensemble models and three heterogeneous ensemble models).

Most notably, this is the first study to my knowledge that provides a SLR in software

maintainability prediction. Therefore, I have confidence my proposed study will be a novel

and hopefully valuable contribution to the area of software maintainability prediction. The

findings obtained in this study can be used by the researchers to provide an overall overview

of this area. The main findings derived from this SLR are:

• Relatively few studies have been conducted in software maintainability prediction

compared with other software quality attributes such as defect prediction or fault

prediction.

54

• Different types of software maintainability measurements were investigated that

roughly equate to ten types. The change maintenance effort was the most common

measurement used by 20 studies, followed by the MI, which is used by ten studies.

• Studies of software maintainability metrics were generally categorized into three types:

product metrics, process metrics and product and process metrics. These types were

applied on different levels: class level, method level and application level. Most studies

used product metrics along with class level measurements (forty studies), followed by

product metrics with method level measurements (fourteen studies), and finally process

metrics with application level measures (ten studies). Overall, the total distribution of

software maintainability metrics is as follows. 79% of studies used product metrics,

17% of studies used process metrics, while only 4% of studies used product and process

metrics.

• The L&H metrics are utilised by twenty studies, and these studies confirmed the

evidence of the power relationship between OO metrics and software maintainability.

Ten studies used the MI metrics.

• Studies of software maintainability datasets were broadly divided into three types:

public, private and partial. The most commonly used was private datasets (more than

twenty studies).

• UIMS and QUES datasets were the most frequently used (eleven studies). Regarding

the size of the datasets, the result reveal that most studies used either medium or large

sized datasets, which improves the validity of prediction models.

• 36% of the datasets were collected from Java systems, most likely as a consequence of

the availability of open-source systems written in Java.

• Even though there were several extraction tools used to collect metrics, most of these

tools were designed for Java. However, some of these tools can work with more than

one programming language.

• The evaluation measures are selected usually based on problem type: regression,

classification or clustering. R-squared is the most repeatedly used in regression

problem by nineteen studies, followed by MMRE and PRED (ten studies). Recall and

55

Precision were applied many times in the classification problem. In the clustering

problem, only one evaluation measure was employed.

• Three primary validation types used in studies are k-fold cross-validation (48%), leave-

one-out (36%) and holdout.

• The most popular machine learning problems were regression problems (62% of the

total selected primary studies). 27% of the studies were related to classification

problems, and only 11% of these studies were related to clustering problems.

• Some individual models achieved predictions that were close to meeting the criteria of

an accurate prediction model, which are Pred(.30) ≥ 0.70 [34] or Pred(.25) ≥ 0.75

or/and MMRE ≤ 0.25 [35], namely FL model in S38 and Neuro-Fuzzy approach in

S52. FLANN-GA in S49 is the only model that meets the MMRE criteria.

• MLR, FLANN, RT, GRNN and SVR were the most frequently employed individual

models in software maintainability prediction, with more than four studies using these

models.

• Ensemble models were used by five (16%) of the selected primary studies (i.e. S40,

S43, S47, S53 and S56), compared to more than three-quarters of the studies which

used individual models. However, all the ensemble models used in studies yield

improved accuracy over the individual models.

• Ten ensemble prediction models were applied to predict software maintainability

(seven homogeneous ensemble models and three heterogeneous ensemble models).

• The linear ensemble was the most frequently used heterogeneous model, while RF and

AdaBoost were the most frequently used homogeneous models.

The findings of this SLR revealed the following guidelines for the researchers in

software maintainability prediction for future work:

• There is a need for more investigations to be carried out in the area of software

maintainability prediction using machine learning techniques, as only 26 studies from

the selected primary one using machine learning techniques.

56

• Only one model meets the model accuracy criteria mentioned earlier (MMRE ≤ 0.25),

so further studies are needed to empirically explore and aim to improve the

performance of machine learning techniques.

• Selected primary studies have reported the success of using ensemble models to

improve the performance of the prediction accuracy by reducing variance (see Table

2.16). However, there is no clear indication of which techniques are more suitable to

predict software maintainability accurately and provide more consistent results. Also,

a limited number of ensemble models (ten in total) were explored by five selected

primary studies. Hence, this limitation is not enough to draw a satisfactory conclusion.

• The QUES and UIMS datasets are publicly available and used by most of the selected

primary studies (ten studies) but are small datasets and quite old. There is a need to a

larger number of more recent and more substantial datasets to become publicly

available to encourage an increase in the number of experimental studies of machine

learning techniques.

The next chapter proposes the methodology of this thesis to present an overview of the

technical background used in the empirical studies in Chapter 4, Chapter 5 and Chapter 6.

57

Chapter 3. Methodology for Empirical Studies in
Software Maintainability Prediction

This chapter describes the methodology for empirical studies in software maintainability

prediction using ensemble techniques. The methodology of this thesis is based on three

empirical studies proposed in the next three chapters to answer the RQs in Chapter 1. The

methodology focuses specifically on empirical studies because in software engineering they

are important in supporting decision-making in organisations and improving software

development [108].

The first empirical study in Chapter 4 uses the UIMS and QUES datasets [9], which are

the most frequently used, as seen in the SLR of Chapter 2, and this helps to compare and

evaluate the investigated prediction models in this chapter with previous studies. The second

empirical study in Chapter 5 utilises the bug prediction datasets [57], which are larger and

more recent than the UIMS and QUES datasets. The third empirical study in Chapter 6

employs refactoring datasets [58]; according to Chapter 2, these datasets are the newest

datasets for software maintainability prediction. To validate the results, statistical tests and

effect size measurements were performed in all empirical studies. In addition, to improve the

results, the impact of the parameters tuning is explored. The reason for selecting each element

in this methodology is provided in each section below, whereas the research method and

experimental dataset setup are provided in the next three chapters separately.

The design of this methodology is based on the findings obtained in Chapter 2.

Therefore, this thesis particularly focuses on the study of the prediction of software

maintainability, as there were relatively few activities in the area of software maintainability

prediction compared with other software quality attributes. Additionally, ensemble models

demonstrate increased prediction accuracy over individual models, and can be useful in

predicting software maintainability. However, as their application in selected primary studies

is limited, they should be applied, as well as other models, to an extensive variety of datasets

to improve the accuracy and consistency of results. Furthermore, according to Chapter 2, there

is a requirement to use publicly available datasets for prediction software maintainability to

58

make the predictive models refutable, confirmable and repeatable [109]. In addition, product

metrics at the class level are the majority of metrics used in selected primary studies (see Figure

2.7); therefore, these metrics were used as the predictors for software maintainability in this

thesis. Finally, there is a demand to predict change proneness, which is used by limited selected

primary studies in Chapter 2.

In this chapter, the individual prediction models used in the empirical studies are

described. The ensemble prediction models are also detailed, followed by a description of

automatic parameter tuning. A brief overview of the datasets used in the empirical studies and

prediction accuracy measures, along with baseline, criteria, statistical tests, and effect size

measurement are presented. The validation technique performed to create the models and the

tools used to implement and analyse the empirical studies are provided.

3.1. Individual Prediction Models

In general, the choice of individual models was based on popularity, good performance, and

selection from different categories. In addition, each individual model has its own advantage.

The models selected are commonly used for regression problems. Some of these models, such

as RT, KNN, and SVR, are listed amongst the best ten data mining models [110]. RT is an

unstable model because even small changes in the training set may lead to considerable

changes in the model's prediction [111], and it has the ability to create correlated features.

However, these selection features are not based on the effect of the independent variables on

the dependent variable [112]. MLP is a simple neural network configuration that can

effectively manage datasets that are not linearly separable; however, it requires long execution

and cannot predict the minimum time to stop [113]. KNN is simple to perform and easy to

understand, but it does not work properly if the datasets have outliers, noise, or missing values

neighbours [114]. M5Rules is categorised from the tree and has some strengths and

weaknesses, but it has demonstrated better performance than other tree models. M5Rules

produces a series of M5 trees that contain sets of leaves or rules, and the best rule is maintained

from each tree, whereas other trees, such as M5P, create only an individual decision tree [115].

SVR determines the preferable hyperplane without dependence on the dimensionality of the

input space and has demonstrated superior performance with excellent accuracy prediction.

59

However, it does not work well with large datasets because it requires a long time to execute

[116, 117].

Regarding classification problems, the most frequently observed individual models (i.e.,

NB, SVM and KNN) in Table 6.1, which summaries of FS, datasets and prediction models in

software quality prediction were used. Additionally, these models are among the best five

models for classification problems [118]. NB can estimate the parameters and a model from a

smaller proportion of the dataset, and then, it produces means and variances of the variables

for each class. Nevertheless, it assumes all features as independent from each other [119].

 Each one of the individual models proposed has its advantages and drawbacks.

However, there is no obvious evidence of which models are more suitable to predict software

maintainability accurately. With the goal of improving prediction accuracy, this thesis used

RT, MLP, KNN, M5Rules and SVR in Chapter 4 and Chapter 5, along with NB, SVM and

KNN in Chapter 6 as the individual models to predict software maintainability. These models

were created in the three empirical studies in this thesis using WEKA [120], and their

parameters were initialised by applying the default values because this procedure was observed

in several studies in software maintainability in WEKA [12, 13, 16, 47, 121]. In the empirical

studies, these models were used as the base in the ensemble model. Individual prediction

models from different categories were used with the aim of creating an effective stacking

ensemble model [122]. In addition to the default parameter values used as a main method, the

impact of automatically parameters tuning was assessed as a sub-section in each empirical

study. Table 3.1 presents a summary of individual prediction models with their category and

name in WEKA.

Table 3.1: Summary of selected individual prediction models.
Model Name Model Acronym Category in WEKA Name in WEKA

Regression Tree RT Trees REPTree

Multilayer Perceptron MLP Functions MultilayerPerceptron

K-Nearest Neighbors KNN Lazy IBK

M5Rules M5Rules Rules M5Rules

Support Vector Regression SVR Functions SMOreg

Support Vector Machine SVM Functions SMO

Naive Bayes NB Bayes NaiveBayes

60

3.1.1 Regression tree

RT is constructed using the binary recursive partitioning process. This is a repetitive process

that recursively divides a dataset into partitions or branches by selecting at each stage the

independent variables that have the lowest minimum sum of the squared deviations from the

mean of the two separate partitions. RT measures the prediction error by calculating the

squared difference between the predicted and actual values [112]. This process continues to

divide nodes until the total sum of squared deviations from the average is equal to zero, which

is called the terminal node [112].

3.1.2 Multilayer perceptron

MLP is an artificial neural network that includes input and output layers, along with hidden

layers. Each layer comprises one or several nodes (neurons) that connect with each other by a

specific weight. The hidden layers combine input data, which is a set of features, by utilising

a linear combination [123]. The hidden layer converts the value from the previous layer (input

layer) by using a weighted linear summation, whereas the output layer collects the value from

the previous layer (hidden layer). The activation function of the hidden layer enables the

capture of relationship between inputs and outputs and resolves the nonlinearity problem

between them. Also, this function transfers weighted input to output. MLP uses the

backpropagation algorithm to construct a neural model from historical training data [123]. One

of the main characteristics of the backpropagation algorithm is to estimate the error rate in the

output nodes and predict the results. This estimation performs by computing the total loss and

determining the possibility of the loss into each node. Consequently, this algorithm changes

the connected weights between the input and output by decreasing the loss between them and

assigning lower weights to the nodes with higher error and vice versa [123].

3.1.3 K-Nearest neighbours

KNN, also called instance-based learning, is constructed by choosing the closest neighbours

in the training data to predict the target data. First, the KNN algorithm stores all training

instances by applying a linear transformation to normalise the values in the range from 0 to 1.

In sequence, the algorithm categorises data by selecting the majority class of the k closest

61

neighbours or the nearest training instance. This process typically uses the Euclidean (or other

specified) distance measure to determine the closest neighbours [114].

3.1.4 M5Rules

M5Rules is built by generating a series of M5 trees, which is a decision tree designed to predict

numerical values for regression problems [124]. The M5 tree includes groups of leaves or rules

using a separate-and-conquer strategy. This is an iterative process that constructs a model tree

by utilising the M5 algorithm and selecting the best leaf to transform into a rule. Initially, the

M5 algorithm constructs a tree by partitioning the data based on the values of the predictive

attributes [115]. In sequence, the M5 algorithm calculates a linear model for each node by

computing the average of the absolute difference between the actual and predicted values of

every observations in the training set [115]. This process typically continues until all instances

have one or more rules. M5Rules has a regression model in its nodes to predict the value,

whereas the RT has only a constant fitted mean. Therefore, as M5Rules slightly differs from

RT, they can be used to make a different prediction [115].

3.1.5 Support vector machine

SVM is designed to solve classification problems and is considered a category of generalised

linear classifiers. SVM converts the original dataset training to a higher dimension using

nonlinear mapping [125]. Then, it creates a linear optimal separating hyperplane to separate

the dataset into two classes. Furthermore, there are two lines that create a maximal margin

hyperplane, whose instances define the boundary line. Sequential minimal optimisation was

used in Weka as the SVM implementation, and it has several features, such as the ability to

manage very large datasets and faster model creation for sparse datasets and linear SVM [126].

Additionally, it can manage complex nonlinear decision boundaries and is less prone to

overfitting than other models. These features help SVM reduce prediction error and improve

overall prediction accuracy [125].

3.1.6 Support vector regression

SVR is a specific class of SVM designed to solve regression problems. SVR has all the major

features of SVM used for the classification problem. Both algorithms aim to decrease

62

prediction error, increase the maximal margin, and build the hyperplane in the high-

dimensional space. Additionally, two lines create a margin, namely boundary lines. SVR is

implemented by initiating an Ɛ -insensitive region around the function (i.e., Ɛ-tube). Initially,

SVR defines a symmetrical loss function (i.e., Ɛ-insensitive loss function) to be reduced. Then,

it determines the narrowest tube that includes most of the training instances. SVR is considered

an optimisation problem because it addresses the convex optimisation using numerical

optimisation algorithms [116, 117].

3.1.7 Naive Bayes

NB is a probabilistic algorithm that relies on Bayes’ theorem to predict the class for each row.

NB applies independence assumptions, which consider features to be independent of each

other. This algorithm uses estimator classes, and this estimation is performed using the

maximum likelihood method [119].

3.2. Ensemble Prediction Models

Ensemble prediction models aim to overcome the deficiencies of individual models (typically

variance and instability) by combining a set of models to generate a final prediction. Typically,

such a model can be of two types: homogeneous and heterogeneous. Homogeneous models

combine individual models of the same type (e.g., bagging), whereas heterogeneous models

combine individual models of different types (e.g., stacking). The combination rule depends

on the problem type and can either be weighted averaging (regression problem) or majority

voting (classification problem) [105]. The advantages of the ensemble prediction model are an

increase in accuracy prediction compared to individual models and prevention of overfitting.

Figure 3.1 illustrates the homogeneous and heterogeneous ensemble prediction model

structures.

63

 There are three main steps in creating an ensemble prediction model. First, several base

models are created in sequential or parallel styles based on the ensemble type [105]. Second,

all individual models are integrated using the combination rule [105]. If the output of

individual models has equal weight, a simple average is performed to combine the models.

Alternatively, if the output of individual models has different weights, the individual models

accumulate their weight and assign the highest weight to the lowest root-mean-square error of

the individual [105]. Third, the output of the previous combination is integrated to perform the

ensemble combination [105, 127]. With respect to the design of the ensemble arbitrator, the

ensemble model includes two types of classification: non-linear and linear ensemble models.

In the linear ensemble, the arbitrator integrates the outputs of the base models in a linear

method (e.g., averaging or weighted averaging), whereas in the non-linear ensemble, the

arbitrator integrates the outputs of the base models in a non-linear method (e.g., MLP), thus

this method does not require assumptions for collecting inputs [106]. Table 3.2 provides a

comparison between the homogeneous and heterogeneous ensemble models.

Figure 3.1: Structure of homogeneous and heterogeneous ensemble prediction

models.

64

Table 3.2: Similarities and Differences between homogeneous and heterogeneous ensemble models.

In this thesis, the most popular and well-known ensemble models were selected, namely

bagging [128], additive regression [129], stacking [130], APE [131], and RF [132]. RF was

the most commonly used ensemble model in the SLR in Chapter 2 and Table 6.1 in Chapter 6,

which summaries FS, datasets and prediction models in software quality prediction, followed

by bagging in the SLR in Chapter 2. Additionally, RF produced the best performance in

change-proneness prediction [47] and software fault prediction [37], along with APE in

software fault prediction [131].

3.2.1 Bootstrap aggregating (Bagging)

Bagging is an ensemble technique that enhances the prediction accuracy of a model by creating

separate models of the same type. Initially, the bagging algorithm builds the individual models,

which have an equal weight by randomly sampling subsets of the training set iteratively with

replacement. The bagging algorithm collects the results of these models by using voting with

a classification problem and averaging with a regression problem [128]. The bagging

algorithm improves the performance of unstable models such as RT[133], thus two types of

trees were investigated when applying bagging. Moreover, bagging is recommended for use

in small-sized training sets such as QUES and UIMS datasets to decrease the variance between

the base models that cause the unstable model problem [133]. The following three major

parameters must be determined in this algorithm:

 Homogeneous Heterogeneous

Similarities
• Combine several base models.

• Aim to increase accuracy prediction of individual models.

Differences

Uses the same model type. Uses different model types to improve

prediction accuracy.

Uses different training data to obtain a

different model.

Uses the same training data.

Uses the same FS method as a part of

the homogeneous ensemble method.

Uses various FS methods as a part of

different base models combined in the

heterogeneous ensemble model.

65

• Base model: the individual model to be used in the bagging algorithm;

• Ensemble size: the number of individual models to be created in the bagging algorithm;

• Training set size: the size of the dataset used to construct the individual models [128].

3.2.2 Additive regression

Additive regression is an ensemble technique to increase the performance of a base regression

model of the same type. This technique is considered a specific case of gradient boosting, as

it begins with an empty ensemble and then augments an initial model with subsequent models

that aim to correct the residuals (i.e., errors) in the predictions of the previous model (or

models) using least-squares at each repetition. In each repetition, the ensemble model creates

a model to the errors remaining using the model of the prior repetition. A part of the training

data in each iteration is randomly selected without replacement, for later use as a complete

sample [129]. Therefore, additive regression is created by adding the prediction of all models

together, which leads to a more accurate model. Additive regression decreases the shrinkage

parameter, which manages the shrinkage rate (learning rate) of the procedure (this parameter

ranges from 0 to 1, where small values indicate better performance [134]), and avoids

overfitting. However, it increases the learning time [129, 135]. The following three major

parameters must be identified in this algorithm:

• Base model: the individual model used as the base model in the additive regression

algorithm;

• Shrinkage rate: shrinkage rate or learning rate is a method to decelerate the learning

model by performing a weighting factor. This rate should be minimised to improve

performance and avoid overfitting;

• Ensemble size: the number of repetitions in the additive regression algorithm[129,

135].

3.2.3 Random forest

RF is an ensemble model that builds a forest of numerous unpruned decision trees from the

training dataset. Then, it uses the mode of the classes of the individual trees on the testing

dataset to make a prediction. RF is called random because a random sample of the training

data is selected with repetition and forest because it involves several decision trees. Applying

66

this random selection of features leads to more error rates than in the AdaBoost [136].

However, the RF is better in terms of managing noisy data [132]. Moreover, this algorithm

performs bagging on features based on majority voting and selects the dependent variables that

have the highest votes [132]. In this study, RF integrates algorithms of the same types (i.e.,

decision trees), thus it can be classified as a homogenous ensemble model. The default

parameters in Weka were applied, in which Weka creates a forest of several decision trees as

the base models and initialises a forest to 100 tree instances [137]. RF depends on four

parameters: the number of trees to construct, the subsample size common to each tree, the tree

depth, and the number of variables randomly sampled for splitting [138].

3.2.4 Stacking

Stacking is an ensemble technique that improves prediction accuracy and decreases variance

by integrating several models of different types. Stacking works effectively when the base

models have significantly varied categories, such as a combination of neural network, tree-

based, and support vector models. The stacking algorithm starts by applying an entire training

set to train different model types. Each model at this level produces predictions with specific

features. In addition, a meta-model is trained on these predictions to generate the final

prediction in a second-level model [130]. Based on the stacking features suggested in the

literature [139], linear regression was used as the combination method and RT, MLP, KNN,

M5Rules and SVR as the base models. The remaining parameters were initialised by applying

the default values in WEKA. The following four major parameters must be determined in this

algorithm:

• Base model: the individual models to be used in the stacking algorithm;

• Meta model: the ensemble model that combines the results of the individual models;

• Ensemble size: the number of individual models in the stacking algorithm [130].

3.2.5 Average probability ensemble

APE is a type of heterogeneous ensemble technique that integrates a group of models from

different types and produces a single output. This technique takes advantage of several

individual models to remove prediction errors and improve accuracy prediction. The APE

67

calculates the average for all base models (i.e., individual models) and provides the result as a

single output [131, 140].

3.3. Parameters tuning

Parameters tuning technique is the process of changing the parameter settings that control the

features of the machine learning models, such as the size of each bag in RF or the number of

nearest neighbours in KNN [141]. This process aims to improve performance and reach

optimal results. However, limited studies in software quality prediction have investigated the

impact of parameter tuning [142], and no studies discussed in the SLR in Chapter 2 have used

parameter tuning. A possible explanation for this limitation might be that parameter tuning

requires considerable time and effort. For example, tuning all the parameters of KNN requires

at least 17000 different configurations [143]. To resolve this issue, parameter tuning is

proposed to evaluate and compare various parameter configurations and select the best

configurations that achieve the highest prediction accuracy. Therefore, three different methods

of automatic parameter tuning were evaluated. The following subsections present a description

of these methods.

3.3.1 Caret package

Caret, which is an abbreviation for classification and regression training, is a package available

in R to create prediction models and automatically tune their parameters [144]. Various

features have been developed and included in caret package, such as data pre-processing, data

splitting, feature importance, feature selection, parallel processing, visualisation and model

tuning [145]. In this thesis, visualisation was used to present the correlation between metrics

in the datasets in Section 4.4.5 and Section 5.4.5 and model tuning was performed to

investigate the impact of parameter tuning in Section 4.5.3 and Section 6.5.5, whereas other

features of caret package were not used in this thesis. Caret package is one of the more practical

ways of performing parameter tuning due to its ability to evaluate the impact of parameters,

select an optimal model and estimate the prediction accuracy of models [145]. In particular,

this package evaluates and compares several combinations of parameter tuning and chooses

the optimised setting that performs with the highest prediction accuracy [141]. The caret

68

package creates and predicts models by removing the syntactical differences between several

functions. Among these functions, the train control function evaluates the performance of a

trained model using validation methods [144]. In this study, ten-fold cross validation was

performed (i.e., CV in the caret package). Therefore, parameter tuning is based on the training

sets, which are divided into a test set and a training set in the validation method. Additionally,

the train function selects the method (i.e., prediction models) and metrics (i.e., evaluation

measurements). The values of the parameters tuning in each prediction models were

automatically selected by using a grid of tuning parameters. The grid size by default is 3p,

where p is the number of parameters tuning in a given model [146]. For instance, two

parameters (gamma and lambda) are included in regularized discriminant analysis model, so

the grid size in this model generates nine combinations of these two parameters [146].

Therefore, the parameter space in caret is not explored exhaustively. Also, the types of

parameter are chosen automatically using default types proposed in the caret package. For

example, Caret tries different values of the nearest neighbours (K) parameter in KNN; then, it

selects the optimal model that records the highest prediction accuracy. Similarly, caret

performs a combination of two parameters tuning in SVM, namely the scale function and the

cost value to control radial basis function and the complexity of the boundary, respectively

[147]. However, the values and types of parameters can be manually identified inside the train

function. In this thesis, the individual models and the ensemble models that used these

individual models as the base model are tuned automatically using the caret package. All

prediction models in Chapter 4 were created again using the caret package to compare their

performance with the default values created by WEKA. Furthermore, all prediction models

except RT require other packages, along with caret. For example, the RWeka package is used

with caret to initialise the base model parameter inside the ensemble model [148]. Table 3.3

lists the packages and methods used to create the prediction models in Chapter 4. In this table,

all the models (i.e., base and ensemble models) and all packages (including models RWeka

package) are created and tuned by R.

69

Table 3.3: Overview of packages and methods used to create prediction models.
Prediction

model
Package Methods Base model parameter in ensemble model

RT caret rpart NA

MLP
caret, RSNNS

and Rcpp
mlp NA

KNN caret, kknn knn NA

M5Rules

caret, rJava,

RWeka and

RWekajars

M5Rules NA

SVR caret, e1071 svmLinear2 NA

Bagging

caret, rJava,

RWeka and

RWekajars

weka/classifiers/meta/Bagging
RT:weka.classifiers.trees.REPTree

MLP:weka.classifiers.functions.MultilayerPerceptron

KNN:weka.classifiers.lazy.IBk

M5Rules:weka.classifiers.rules.M5Rules

SVR:weka.classifiers.functions.SMOreg

Additive

regression

caret, rJava,

RWeka and

RWekajars

weka/classifiers/meta/AdditiveRegression

Stacking
caret and

caretEnsemble
caretList

algorithmList=(rpart, mlp, knn, M5Rules,

svmLinear2)

3.3.2 Auto-WEKA

Auto-WEKA, used in Chapter 5, is an automatic tool that implements several types of machine

learning models with different integrated selected features and tuning parameters in WEKA

[149, 150]. This tool tries different hyperparameter settings and selected features for several

models and provides the best model performance using the Bayesian optimisation method

[149, 150]. Recently, Auto-WEKA was combined with WEKA as a package and was

constructed to perform regression algorithms, performance metrics and parallel runs [149].

3.3.3 Grid search

In Chapter 6, parameter tuning is performed on RF using a grid search with ten-fold cross-

validation. Grid search is the process of exploring the search space of the hyperparameter

values with the specification of parameter pairs and evaluation measurement (e.g., AUC). This

process is iterated via ten-fold cross-validation until the optimal hyperparameters are

determined, which results in the highest prediction accuracy [151]. Grid search is created

using the tunegrid function in R, along with the randomForest, mlbench, and caret packages

to build the RF model. RF depends on four parameters: the number of trees to construct, the

subsample size common to each tree, the tree depth, and the number of variables randomly

70

sampled for splitting [138]. However, only the last parameter was tuned (i.e., the number of

variables randomly sampled for splitting), using Mtry variable in R. The rationale for focusing

on just the Mtry parameter is because there is no clear indication or theory of which value of

this parameter is more appropriate under most circumstances [138]. Therefore, the grid search

used in Chapter 6 is considered a linear search, in which the vector of candidate values ranges

from 1 to 15. These values were initialised because there is no recommendation to select the

number Mtry parameter [138].

3.4. Datasets

This thesis used sets of three types of datasets that are publicly available and suitable for

software maintainability prediction. Public datasets were selected to the empirical studies to

enable comparison and reproducibility, which helps to improve research in the software

engineering area. In this thesis, appropriate independent variables (metrics) were selected to

predict software maintainability along with the dependent variable (maintainability). The

details of the selected variables are explained in the experimental data setup in Chapters 4, 5,

and 6, and the general overview of these datasets is provided in the next sections.

3.4.1 Change maintenance efforts

In Chapter 4, change maintenance efforts datasets (i.e., QUES and UIMS), proposed as an

appendix in [9], were used. These datasets include the CHANGE metric collected from three

years of software maintenance [9]. The QUES and UIMS datasets are publicly available,

accurately validated, and widely used in software maintainability prediction studies [7, 11-13,

16, 18, 88, 152]. Therefore, they were selected to enable comparison with previous studies and

contribute to the field of OO software maintainability prediction. Classic-Ada is an OO

programming language developed by Software Productivity Solutions, Inc. QUES and UIMS

are software systems written using the Classic-Ada language. Moreover, a Classic-Ada metric

analyser tool was used to extract metrics and build datasets from these systems [9]. Class-level

metric data of 71 and 39 classes were collected for the QUES and UIMS datasets, respectively.

Table 3.4 lists the definitions and descriptions of the OO metrics selected in this study.

71

Table 3.4: Definitions and description of L&H metrics [9].
Independent

variable

Definition Description

DIT Depth of inheritance tree This metric determines the depth of a class in the hierarchy by calculating the

length of the path from the root class, and the root class is zero in the class
hierarchy.

NOC Number of children This metric calculates the total number of child classes that inherit directly

from a given class.

MPC Message-passing coupling This metric calculates the total number of messages sent out from a class.

RFC Response for a class This metric calculates the sum of the total number of local methods, along

with the number of methods called by local methods in the class

LCOM Lack of cohesion in methods This metric calculates the total number of disjoint sets of local methods via at

least one instanced variable and one member of the disjoint set, whereas the
disjoint sets are a group of sets that do not intersect with each other [9].

DAC Data abstraction coupling This metric calculates the total number of abstract data types that are

instances of another class declared within a class.

WMC Weighted methods per class This metric calculates the total number of McCabe’s cyclomatic complexity
of all methods in a class.

NOM Number of methods This metric calculates the total number of local methods defined in a class.

SIZE1 Lines of code This metric calculates the total number of semicolons in a class.

SIZE2 Number of properties This metric calculates the total number of attributes and local methods defined
in a class.

3.4.2 Bug prediction datasets

In Chapter 5, five datasets publicly available, primarily designed to support the problem of

bug prediction, were used. These datasets were extracted from five open-source software

systems: Eclipse JDT Core (997 classes), Eclipse PDE UI (1,562 classes), Equinox framework

(439 classes), Lucene (691 classes) and Mylyn (2,196 classes) [57]. They were collected at the

class level and included a collection of several metrics, bug changes, and version information

about the system [57]. These datasets are composed of the data collected from the CVS change

log at biweekly intervals, and include classified post-release defect counts extracted from each

class in the system, along with a collection of 17 source code metrics (OO and CK metrics)

and 15 metrics calculated from CVS change log data for each class in the system [153]. These

datasets (initially proposed in 2010) have been primarily used in software defect prediction

studies [154, 155]. However, no previous study has investigated these datasets for the

prediction of software maintainability. Table 3.5 lists a brief description of each metric

(independent variable) used in this study.

72

Table 3.5: Summary of class level source code metrics [57].

CK metrics

LCOM Lack of cohesion in methods

NOC Number of children

DIT Depth of inheritance tree

CBO Coupling between objects

RFC Response for class

WMC Weighted method count

OO metrics

NOMI Number of methods inherited

NOPM Number of public methods

LOC Number of lines of code

NOPRA Number of private attributes

NOA Number of attributes

FanIn Number of other classes that reference the class

NOPRM Number of private methods

NOM Number of methods

NOAI Number of attributes inherited

NOPA Number of public attributes

FanOut Number of other classes referenced by the class

3.4.3 Refactoring datasets

In Chapter 6, seven publicly available datasets published in [58] and collected from class level

were used, namely antlr4 (436 classes), junit (657 classes), MapDB (439 classes), mcMMO

(301 classes), mct (2162 classes), oryx (536 classes), and titan (1486 classes). The datasets

were initially collected to investigate the impact of code refactoring (changes made to the

structure of the internal source code which don’t affect the functionality or external behaviour

of the code [53]) on maintainability, and the original datasets contain source code metrics

including refactoring metrics, along with a score for maintainability at both method and class

levels [58]. These datasets were collected from a total of 37 subsequent releases of systems

from seven open-source Java systems located in GitHub [27] and were combined into one

manually validated dataset for each of the seven systems [58]. To the best of the author’s

knowledge, these datasets are considered the newest datasets in software maintainability

prediction and have not been utilised in previous studies to predict change-proneness. Table

73

3.6 lists the metrics used as independent variables and their category, and the description of

their abbreviations is provided in Table C. 1 in Appendix C.

Table 3.6: Metrics used as independent variables and their categories [156].
Category Metrics

Cohesion LCOM5

Complexity NL, NLE and WMC

Coupling CBO, CBOI, NII, NOI and RFC

Documentation AD, CD, CLOC, DLOC, PDA, PUA, TCD and TCLOC

Inheritance DIT, NOA, NOC, NOD and NOP

Size LOC, LLOC, NA, NG, NLA, NLG, NLM, NLPA, NLPM, NLS, NM, NPA, NPM, NS, NOS, TLOC, TLLOC,

TNA, TNG, TNLA, TNLG, TNLM, TNLPA, TNLPM, TNLS, TNM, TNPA, TNPM, TNS and TNOS

Code duplication CCL, CCO, CC, CI, CLC, CLLC, LDC and LLDC

Warning WarningBlocker, WarningCritical, WarningInfo, WarningMajor and WarningMinor

Rules Android, Basic, Brace, Clone implementation, Clone metric, Code size, Cohesion metric, Comment,

Complexity metric, Controversial, Coupling metric, Coupling, Design, Documentation metric, Empty code,

Finalizer, Import statement, Inheritance metric, J2EE, JUnit, Jakarta commons logging, Java logging,

JavaBean, MigratingToJUnit4, Migration, Migration13, Migration14, Migration15, Naming, Optimization,

Security code guideline, Size metric, Strict exception, String and StringBuffer, Type resolution, Unnecessary

and Unused Code and Vulnerability

Refactoring REMOVE_PARAMETER, ADD_PARAMETER, REPLACE_MAGIC_NUMBER_WITH_CONSTANT,

REMOVE_ASSIGNMENT_TO_PARAMETERS, INTRODUCE_EXPLAINING_VARIABLE,

INLINE_TEMP, REMOVE_CONTROL_FLAG, CONSOLIDATE_COND_EXPRESSION,

CONSOLIDATE_DUPLICATE_COND_FRAGMENTS,

REPLACE_NESTED_COND_WITH_GUARD_CLAUSES, INLINE_METHOD, EXTRACT_METHOD,

REPLACE_EXCEPTION_WITH_TEST, INTRODUCE_ASSERTION, RENAME_METHOD,

REPLACE_METHOD_WITH_METHOD_OBJECT, MOVE_METHOD, HIDE_METHOD,

INTRODUCE_NULL_OBJECT, INTRODUCE_LOCAL_EXTENSION, EXTRACT_SUPERCLASS,

EXTRACT_INTERFACE and MOVE_FIELD

3.5. Prediction Accuracy Measures

This section presents the prediction accuracy measures used in the empirical studies, which

include measures for regression and classification problems.

3.5.1 Measures for the regression problem

Prediction accuracy measures are applied to evaluate and compare OO software

maintainability prediction models. These measures are adopted from the standard measures;

generally, in the scope of regression problems and specifically in the field of OO software

maintainability prediction, the following evaluation measures are used.

74

MRE [35] is calculated by the absolute difference between actual and predicted values, and

further dividing the difference by the actual values, as seen in Eq. (3.1).

𝑀𝑅𝐸 =
|actual value−predicted value|

actual value
 (3.1)

MMRE is the mean of MRE, where n represents the number of observations over a

dataset, as seen in Eq. (3.2).

𝑀𝑀𝑅𝐸 =
1

𝑛
∑ 𝑀𝑅𝐸𝑖=𝑛

𝑖=1 (3.2)

 Pred [67] is the proportion of all the instances in the dataset where the MRE is less than

or equal to a specified value, usually 25% or 30%, as recommended in software effort

prediction studies [34, 67]. The pred value is calculated as shown in Eq. (3.3).

 𝑃𝑟𝑒𝑑(𝑞) =
𝑘

𝑛
 (3.3)

 where 𝑞 is a defined value, k is the number of instances where the MRE is smaller than

or equal to q, and n is the number of instances in the whole dataset.

MAE [65] is the average of the absolute values of the difference between 𝑋′𝑖 and 𝑋 𝑖 ,

where 𝑋′𝑖 is the predicted value and 𝑋𝑖 is the actual value, as seen in Eq. (3.4).

MAE = 1/n ∑ (| 𝑋′𝑖 − 𝑋 𝑖 |) 𝑖=𝑛
𝑖=1 (3.4)

SA [99] is proposed based on the mean absolute residual (MAR), as seen in Eq. (3.5).

 𝑆𝐴𝑝𝑖 = 1 −
𝑀𝐴𝑅𝑝𝑖

𝑀𝐴𝑅𝑝0̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 × 100 (3.5)

𝑀𝐴𝑅𝑝𝑖 is the mean absolute residual of the prediction model, and 𝑀𝐴𝑅𝑝0
̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean value

of random guessing. This random guessing is repeated a considerable number of times;

Shepperd and MacDonell [99] suggested 1000 runs. However, they stated that a considerable

number of random guessing would produce the same result as using the sample mean [99].

Therefore, 𝑀𝐴𝑅𝑝0
̅̅ ̅̅ ̅̅ ̅̅ ̅ was computed from the baseline, presented in Section 3.5.3.

These measures have emerged as the de facto common accuracy measures, namely

MMRE, Pred (q) and MAE. According to Chapter 2, MMRE and Pred (q) were used by ten

selected primary studies, whereas MAE was used in six studies. Moreover, MMRE and Pred

(q) measures are usually applied in empirical software engineering studies [20, 157] and were

employed in past [71], recent [18], and several other studies on software maintainability

prediction [7, 11-13, 16]. However, MMRE has a bias issue towards models that provide

underestimated results; it is also an unreliable measure and does not always determine the most

accurate model [158, 159].

75

Although Pred(q) is based on the MRE measure, it is considered reliable and less sensitive to

the variance and outliers of MRE values [160]. However, Kitchenham et al. stated that MMRE

and Pred evaluate only the spread and the kurtosis of the residuals’ values (i.e., predicted

divided by actual values). Hence, they also recommended evaluating the central location and

skewness of these values [35]. Korte and Port reported that the spread and kurtosis parameters

are logical and good indicators for the prediction accuracy [160]. To date, there are no

commonly accepted alternative measurements to measure software effort. To overcome these

limitations, researchers have suggested further measurements, such as creating a baseline of

the predicted values [99], visualising the boxplots of the residuals [35, 161] and performing

statistical tests based on the residuals and effect size [100]. MAE is also suggested to be used

because it is unbiased and does not depend on ratios, as the MMRE [99]. However, MAE is

based on residuals, which are not standardised, thus it is difficult to explain and evaluate

among several datasets [99]. SA was suggested as a response to this issue, as it depends on

MAR, which is the same as MAE [99]. All these suggestions are considered in the empirical

studies in Chapters 4 and 5.

3.5.2 Measure for the classification problem

Many measures have been puplished in the literature to estimate the prediction accuracy of

models in software engineering problems [67]. In Chapter 6, only one prediction accuracy

measure, AUC, is performed to compare and evaluate the performance of prediction models,

and it ranges from 0 to 1. AUC is based on the ROC that graphs the FPR on the x-axis against

the TPR on the y-axis at various threshold settings [70].

 Eq. (3.6) calculates the value of AUC [70], where i represents observations,

(1 − 𝛽) represents (TPR) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , 𝛼 represents (FPR) =

𝐹𝑃

𝐹𝑃+𝑇𝑁
 , and these values are

extracted from the confusion matrix presented in Table 3.7.

𝐴𝑈𝐶 = ∑ {(1 − 𝛽𝑖 . ∆𝛼) +
1

2
[∆(1 − 𝛽). ∆𝛼]}𝑖 (3.6)

where ∆(1 − 𝛽) indicates (1 − 𝛽𝑖) − (1 − 𝛽𝑖−1), and ∆𝛼 indicates 𝛼𝑖 − 𝛼𝑖−1.

 According to a systematic review of FS techniques [4], AUC was the main and most

frequently used evaluation measure for classification problems in software quality prediction.

76

In addition, it is considered well-known and commonly employed in software maintainability

prediction [48, 74, 162], along with change-proneness prediction [16].

Table 3.7: Confusion matrix [163].
 PREDICTED CLASS (NO) PREDICTED CLASS (YES)

ACTUAL CLASS (NO)

True negatives (TN) False Positive (FP)

ACTUAL CLASS (YES) False Negative (FN) True Positive (TP)

3.5.3 Baseline

The baseline measure is used as a benchmark to evaluate the performance of the predictors

with the dependent variable only (e.g., CHANGE metric or change-proneness) that disregards

other independent variables. The ZeroR model, which is implemented to determine a baseline,

relies on the mean of the predicted values for the regression problem or majority category (i.e.,

the mode values) for the classification problem [164]. Therefore, this model is performed as a

reference to investigate the improvements of the prediction models, but it does not contribute

to the prediction values [165]. Several studies used the baseline [35, 72, 166, 167], which relies

on either the mean [167], median [72], boxplots for the residuals [35, 161], or the ZeroR model

[71, 166]. Fernández-Delgado et al. performed 179 classifiers on 121 datasets and used ZeroR

as a percentage of the majority class in the classification problem to evaluate the classifiers

[166].

In this thesis, baseline is used in the empirical studies to predict the mean value for the

regression problem in Chapters 4 and 5. The majority classes for the classification problem in

Chapter 6 and the boxplots of the residuals, which are based on actual predicted values, are

used as further measures to evaluate the predicted models. Overall, the use of all these

measurements (i.e., MMRE, Pred(q), MAE, SA and AUC) as evaluation measures, along with

the baseline and the boxplots ensures an increase in conclusion stability and avoids choosing

inferior models [100, 168].

3.5.4 Criteria

The suggested criteria to build an accurate effort prediction model for regression problems are

Pred(0.30) ≥ 0.70 [34] or Pred(0.25) ≥ 0.75 or/and MMRE ≤ 0.25 [67]. However, if the

prediction models do not meet the proposed criteria, the prediction model is still acceptable

77

because it is hard to construct an accurate model for software maintainability prediction that

satisfies these criteria [20]. Although the suggested criteria were proposed in old studies [34,

35], several recent studies are still being performed to evaluate prediction accuracy in the

software engineering problem [102-104]. In terms of classification problems, AUC extends

from 0 to 1, a higher value indicates better results and 1 is the optimal result (a perfect

classifier). Additionally, 0.5 indicates no discrimination, a value from 0.7 to 0.8 indicates an

acceptable result, a value from 0.8 to 0.9 is recognised as excellent, and any values higher than

0.9 are considered outstanding results [169].

3.5.5 Statistical tests and effect size

The test of significance is used to validate the results according to a defined hypothesis. The

one-way analysis of variance (ANOVA) F test [170] was carried out using the residuals in

Chapters 4 and 5 and AUC values in Chapter 6. ANOVA was selected because there were

more than one pair of variables analysed. This test was performed to investigate whether the

group population means (i.e., performance of the prediction models) were significantly

different between each individual model and ensemble models. Factor A indicates the

prediction models, grouped by each individual model, and ensemble models. For example, the

prediction accuracy difference (better or worse) was analysed to evaluate whether it was

significant between RT as the individual model and bagging, additive regression, stacking and

APE as the base model. ANOVA evaluates the relevance of the evidence against the null

hypothesis. The null hypothesis (H0) states that there is no statistically significant difference

in all the group population means, whereas the alternative hypothesis (H1) states that there is

a statistically significant difference in at least one pair of means. When H0 is rejected, H1 is

accepted. A statistically significant result for the ANOVA experiment is typically defined as

α = 0.05, and the p-value was evaluated and compared with this defined value. If the p-value

is smaller than α, H0 is rejected. Consequently, a smaller p-value obtained by the results

provides evidence against H0. However, a larger p-value is not evidence that H0 is true, which

may sometimes happen due to the data analysed.

Therefore, to further understand the strength of a result, the effect size is also used, which

is considered an essential component for understanding the results of empirical studies [171].

Among the various effect sizes introduced in the literature, eta-squared (η2) was selected

78

because it is a suitable measure for ANOVA [171]. Cohen proposed the standard

classifications of the effect sizes, which are small (≈0.01), medium (≈0.06), and large (≈0.14)

[172]. Eq. (3.6) computes the value of η2.

 η2 =
𝑺𝑺𝐞𝐟𝐟𝐞𝐜𝐭

𝑺𝑺𝐭𝐨𝐭𝐚𝐥
 (3.7)

SSeffect is the sum of squares of the effect, and SStotal is the total sum of squares [171].

Additionally, if H0 is rejected, multiple comparisons are applied using a plot chart of Tukey’s

confidence intervals [170] to identify which pairs of Factor A are significantly different. If a

confidence interval does not include 0, then the pair is significantly different.

3.6. Validation

An essential rule in building machine learning models is not to test against the datasets used

in training [142]. Therefore, the ten-fold cross-validation method is employed in all the

empirical studies in Chapters 4, 5, and 6 to build and predict models. This method is widely

used across different machine learning problems. Furthermore, most selected primary studies

(i.e., 48%) in Chapter 2 performed k-fold cross-validation. It separates the whole dataset into

ten equal folds, where one fold is utilised to train, and the remaining are utilised for testing.

This procedure was repeated ten times to select different folds for the test. Finally, the results

of the iterations were averaged. Ten-fold cross-validation decreases the variance by averaging

the validation accuracy for all ten partitions. Therefore, the final accuracy is less sensitive and

has lower variation than that provided by other validation methods, such as the single hold-out

method. The main advantage of this approach is the estimation of accurate performance [66,

125]. Figure 3.2 presents the ten-fold cross-validation implementation.

79

3.7. Tools

Two tools were used, namely WEKA and R, to produce the results of the empirical studies.

These tools are open source and freely available, and this motivates researchers to conduct

research and replicate results. The description of these tools is presented in the following

subsections.

3.7.1 WEKA

WEKA is a Java-based suite of machine learning software [120]. It has a collection of Java

class libraries that implement several machine learning techniques. WEKA is an open source

software that includes several features with a provision for data preparation, regression,

classification, association rules, clustering and visualisation [120]. The empirical studies in

this thesis use this tool to build and evaluate OO software maintainability prediction models

by using default parameters.

3.7.2 R

R is a language for graphics and statistical computing that includes a different collection of

statistical and graphical techniques for the analysis and visualisation of data [173]. It is a free

Figure 3.2: Ten- fold cross-validation.

80

tool created by Ihaka and Gentleman and developed by the R Development Core Team [174].

The empirical studies in this thesis use this tool to visualise the correlation of the datasets and

to investigate the impact of parameter tuning in Chapters 4 and 6.

3.8. Summary

This chapter presents the research methodology applied to predict software maintainability

using ensemble techniques. The basic concepts of the prediction models, which include both

individual and ensemble models, were provided. Subsequently, different methods of parameter

tuning were introduced. An explanation of the prediction accuracy measures was

demonstrated, with baseline and criteria used for comparison. Then, the validation used to

build and predict models was determined. Finally, the tools used to perform the empirical

studies were identified. The proposed research methodology provides the foundation for

conducting empirical studies in this thesis. The next three chapters will show the application

of this methodology in three different empirical studies, including various datasets, and a

description of the experimental data setup.

81

Chapter 4. First Empirical Study: Ensemble
Techniques to Predict Change
Maintenance Effort Using Well-
Established Datasets

This chapter empirically evaluates the performance of homogeneous (i.e., bagging and additive

regression) and heterogeneous (i.e., stacking) ensemble models against a range of individual

models (i.e., RT, MLP, M5Rules, KNN, SVR) when applied to the QUES and UIMS datasets

that extracted from OO systems [9]. The primary objective is to investigate the capability of

ensemble models to increase or decrease prediction accuracy over individual models.

Furthermore, another objective is to identify the model that achieves the highest prediction

accuracy and compare it with previous studies that operated on the same datasets. In addition,

this chapter aims to investigate the impact of parameter tuning of the software maintainability

prediction models using the caret package in R.

4.1. Introduction

Various software maintenance measurements have been used in selected primary studies in

Chapter 2. The most critical observation is that most of these studies used the change

maintenance effort measurement for predicting software maintainability, which uses the

CHANGE metric as a dependent variable to capture the elements of software maintainability

[9]. Therefore, this chapter used the CHANGE metric as the most selected in primary studies

in Chapter 2, which measures maintainability of OO systems by calculating the total number

of lines added and removed in each class during the maintenance process. The higher the

number of CHANGE metrics, the higher the maintenance effort and the lower the

maintainability [7, 11-13, 15-18, 88, 152]. Furthermore, Chapter 2 stated that several selected

primary studies focused on employing machine learning on the QUES and UIMS datasets that

include ten independent metrics (i.e., L&H metrics), along with one dependent metric (i.e.,

CHANGE metric). Although the QUES and UIMS datasets are old (i.e., since 1993) and small

(i.e., contain 71 and 39 classes, respectively), they were used to make the prediction models

82

repeatable and comparable [9]. The present chapter makes several noteworthy contributions

as follows:

• This empirical study used well-established datasets and provided additional evidence

which indicates that the homogeneous models improved prediction accuracy compared

to most investigated individual models in both datasets, whereas the heterogeneous

model improved prediction accuracy compared to most investigated individual models

in the QUES dataset only;

• This empirical study compared the best proposed model with the best model in the

selected studies and found that KNN as the individual model, or as the base model in

additive regression, achieved the best prediction accuracy not only amongst all

investigated models in both datasets but also against the best model in the selected

previous studies in the QUES dataset;

• This is the first study exploring the influence of parameter tuning in the QUES and

UIMS datasets.

4.2. Motivation

For the purposes of comparison and to gain advantages of replicability, the potential papers

are selected, which considered in the review according to the following selection criteria: a)

Papers must be published with at least one of the major computer science libraries: IEEE,

Elsevier, ACM, or Springer. b) Papers should aim to predict software maintainability of OO

systems. c) The study in the paper must utilize machine learning models; either individual or

ensemble. d) The study in the paper must be applied to both QUES and UIMS datasets. e) The

study in the paper must present MMRE as an evaluation measure to enable effective

comparisons because MMRE measure was used frequently in Chapter 2 more than other

measures, such as MAE (see Table 2.11). Criteria (d) and (e) tend to be very restrictive criteria;

however, I provide these since the performance of the models differ with different datasets

[16] and with different evaluation measures as well [159], and without them the results will be

difficult to compare and generalise. Table 4.1 summarises the selected papers which meet these

criteria. All these papers created machine learning models to predict software maintainability

using default parameters.

83

Table 4.1: Summary of selected paper using machine learning models to predict software maintainability.

ID Author Year Ref Prediction model
The best prediction

model

S1 Koten and Gray 2006 [11]
Bayesian network, Regression tree,

Backward elimination, Step-wise selection
Bayesian network

S2 Zhou and Leung 2007 [12] MARS, MLR, SVR ANN and RT MARS

S3 Elish and Elish 2009 [13] TreeNet, MARS, MLR, SVR, ANN, and RT TreeNet

S4
Aljamaan and Elish et

al.
2013 [88] MLP, RBF, SVM, M5P and ensemble model Ensemble model

S5 Ahmed and Al-Jamimi 2013 [7]
FL model, BN model, MARS model

FL model

S6 Kumar and Rath 2015 [152] Hybrid Neural Network Hybrid Neural Network

S7
Elish and Aljamaan et

al.
2015 [16]

MLP, RBF, SVM, M5P and multi-model

ensembles
Multi-model ensembles

S8 Kumara and Naikb et al. 2015 [175] Neuro-Genetic Neuro-Genetic

S9 Kumar and Rath 2017 [18] Neuro-Fuzzy approach Neuro-Fuzzy approach

 A key observation from the aforementioned in Table 4.1 is that the utilisation of

individual machine learning models has been investigated in several studies to predict software

maintainability accurately. Even though a wide range of techniques have been employed by

previous studies, there is no consistent best model emerging from their results. Therefore, a

much more meaningful comparison of these studies with the prediction models are provided

to determine the best model using the MMRE evaluation measure.

Ensemble models have been applied across a wide range of software engineering

problem domains such as fault prediction to increase accuracy prediction over individual

models [176]. However, as mentioned in Chapter 2, less attention has been given to the usage

of ensemble models in the software maintainability domain. Additionally, the most obvious

shortcoming in Table 4.1 is that a model that achieves consistently high software

maintainability prediction accuracy fails to emerge. These studies used a wide variety of

individual models, along with heterogenous ensemble models in two of the studies. No

homogeneous ensemble models were used in any study.

Parameters tuning have been proposed in software quality prediction studies to improve

the performance of machine learning models [141, 142, 166]. However, very few studies have

investigated the impact of tuning parameters (e.g., only 20% of the papers in the defect

84

prediction literature) [142]. Recently, investigators have examined the effects of caret package

in R, which automatically tunes parameters and requires minimal researcher knowledge [166].

Their results demonstrated a very effective improvement of the prediction accuracy of models

with tuning parameters [166]. Additionally, a recent study acknowledged that the use of the

caret package in R in prediction models provided results 40% better than using default

parameter settings [141].

4.3. Research Method

The primary objective of this chapter is to evaluate the performance of ensemble models to

predict software maintainability as compared to individual models. A secondary objective is

to determine the model with the best prediction performance among the investigated models

and compare it with the best prediction models in the previous selected studies in Table 4.1. A

third objective is to investigate the impact of the parameters tuning of the software

maintainability prediction models using the caret package in R. To perform these objectives,

the following RQs for the first empirical study are provided:

RQ4.1) How effective are individual models at predicting change maintenance effort?

RQ4.2) How do homogenous ensemble models perform in the context of predicting change

maintenance effort when compared to the individual models?

RQ4.3) How do heterogeneous ensemble models perform in the context of predicting change

maintenance effort when compared to the individual models?

RQ4.4) Which prediction models (the best-proposed model in this empirical study or the best-

model in the selected studies) provide the best prediction accuracy?

RQ4.5) What are the effects of parameter tuning on the performance of the prediction models?

 The overall process of the empirical study is shown in Figure 4.1. This figure illustrates

three main experiments to compare model performance. These models are used on two well-

known public datasets collected from OO system maintenance: QUES and UIMS. The first

experiment was conducted to select the best individual model performance among a set of

commonly used regression models, i.e., RT, MLP, KNN, M5Rules, and SVR. The second

experiment assessed the performance of homogenous ensemble models (bagging and additive

regression) in comparison to individual models. The third experiment evaluated the

performance of a heterogeneous ensemble model (stacking) against both the individual models

85

and the homogenous ensemble models in the second experiment. Finally, a comparison was

performed between the best prediction model from this empirical study and those from

previous selected studies. Finally, the impact of the parameters tuning of the proposed models

is investigated using the caret package in R.

Figure 4.1: The process of the first empirical study.

• Compare the
performance of
individual models

Identify the best
individual model

performance.

• Compare the
performance
between
homogenous
ensemble and
individual models

Identify the best
homogenous

ensemble model
performance.

• Compare the
performance
between
heterogeneous
ensemble model
and individual

models

Identify the best
ensemble model

performance.

• Compare the
performance of
our proposed
model with
previous studies

Identify the best
model performance

86

The framework of the empirical study is illustrated in Figure 4.2 below.

4.4. Experimental Data Setup

The following subsections identify the fundamental elements for the experimental setup:

maintainability, metrics, and data pre-processing.

4.4.1 Dependent variable: maintainability

In this study, maintainability is defined by the CHANGE metric, which calculates the total

number of lines added and deleted in each class during maintenance period [9]. This metric

can be ‘addition’ or ‘deletion’ or ‘content changes’. ‘Addition’ or ‘deletion’ are counted as 1,

whereas any ‘content change’ is counted as 2 [12]. Therefore, classes that have many changed

lines are considered to have a low maintainability value, i.e., require high maintenance effort,

whereas those with few changed lines are considered to have high maintainability value, i.e.,

require little maintenance effort. Eq. (4.1) presents a functional relationship between software

maintainability and OO metrics that will present in next section.

Figure 4.2: Framework of the first empirical study.

87

Software maintainability = Change metric = f (DIT, NOC, MPC, RFC, LCOM, DAC,

WMC, NOM, SIZE1, SIZE2) (4.1)

4.4.2 Independent variables: metrics

Metrics are independent variable measures that aim to capture the concept of software

maintainability. This study uses L&H metrics [9] that have been used widely owing to their

strong relationship with software maintainability [10-13, 21, 73]. These metrics include ten

independent variables to measure specific parts of the system and one dependent variable to

capture the concept of software maintainability. The definitions and descriptions of the OO

metrics was provided in Table 3.4 in Section 3.4.1.

4.4.3 Datasets pre-processing

The datasets were assessed according to recommended pre-processing techniques [125]. The

fundamental advantage of QUES and UIMS datasets is that they do not involve any missing

values and incomplete or noisy cases, reflecting their high quality. For this reason, the data

cleaning technique was not required to apply. Furthermore, both datasets have a small number

of records, (39 for UIMS and 71 for QUES); therefore, it was not necessary to apply any data

reduction or FS techniques. Previous studies [7, 11-13, 15-18, 88, 152] indicate that these

datasets have been used without the application of any pre-processing techniques.

4.4.4 Descriptive statistics

The primary objective of preliminary statistical analyses is to characterise the datasets (range

and distribution of values) and also determine the relationship between independent variables

(OO metrics) and the dependent variable (CHANGE metric). Figure 4.3 and Figure 4.4 present

boxplots of metrics in QUES and UIMS datasets, respectively.

As shown in these figures, NOM and SIZE2 have approximately the same median, mean

and Stdev in both datasets, which suggests that the systems are of approximately equal size in

terms of numbers of classes and methods. In contrast, the median and mean of SIZE1 in QUES

have considerably higher values than those in UIMS. The most notable metric is that NOC has

a zero value for all the data in QUES dataset. Consequently, there is no inheritance in the

QUES dataset, and NOC values have no influence on predicting maintainability. However,

88

NOC was not removed from QUES dataset, since several studies used this metric [7, 11-13,

15-18, 88, 152]. Furthermore, DIT and DAC metrics have small values for the median and

mean in both datasets, which indicates that an inherited class and data abstraction are rarely

used in both systems. The CHANGE metric in the QUES dataset has a higher median and

mean compared with the UIMS dataset, and this variation indicates that more maintenance has

been performed in the QUES than in the UIMS dataset. Moreover, RFC and MPC in QUES

dataset have a greater median and mean compared to UIMS dataset, thereby emphasising that

the coupling between classes in QUES dataset is higher than that in UIMS dataset. However,

LCOM has similar medians and means in both datasets, indicating that both datasets have the

same cohesion. Finally, this table indicates that UIMS and QUES datasets have different

characteristics. Consequently, this finding agrees with a previous finding that the

characteristics of the UIMS dataset differ distinctly from those of QUES dataset, so the

datasets are recognised as heterogeneous; therefore, a software maintainability prediction

model is constructed separately for each dataset [7, 11-13, 15-18, 88, 152].

Figure 4.3: Boxplots of metrics in QUES dataset.

89

4.4.5 Correlation between metrics in the datasets

The Pearson correlation, which is the well-known statistics [125] measures the strength of a

linear relationship between two variables. This correlation is either a strong positive

correlation (i.e. the value close to +1) or a strong negative correlation (i.e. the value close to -

1); also it can be uncorrelated (i.e. the value equal to zero) [177]. Furthermore, the sign of

correlation coefficient determines the direction of the relationship between variables, which is

either a positive relationship (+) or a negative relationship (-). The positive relationship occurs

when the source code metrics increases, the change metric increases, and vice versa [48].

According to Hopkins [125], these values may be interpreted as follows: any value equal to 0

is trivial, 0.1 is small, 0.3 is moderate, 0.5 is large, 0.7 is very large, 0.9 is nearly perfect, and

1 is perfect.

Table 4.2 lists the results of Pearson’s correlation for each metric in QUES and UIMS

datasets. This table is divided into two triangular matrices: the upper right triangular matrix

represents the correlations between the metrics in the UIMS dataset, whereas the lower left

triangular matrix represents the correlations between the metrics in QUES dataset. The results

obtained from Table 4.2 highlights the correlations between the metrics in the UIMS and

QUES datasets. This result provides evidence of a strong relationship between almost all

metrics except DIT and NOC with the CHANGE metric. Furthermore, there are strong

Figure 4.4: Boxplots of metrics in UIMS dataset.

90

correlations between some metrics with each other (e.g., Size2 with NOM (0.98) and Size1

with WMC (0.96)).

Table 4.2: Correlations between the metrics in UIMS (upper right triangle) and QUES (lower lift

triangle).
 DIT NOC MPC RFC LCOM DAC WMC NOM SIZE2 SIZE1 CHANGE

DIT 1 -.47 0.05 -0.22 -0.19 -0.43 -0.22 -0.35 -0.40 -0.18 -0.33

NOC NA 1 .03 0.20 0.12 0.32 0.22 0.23 0.26 0.17 0.47

MPC 0.01 NA 1 0.74 0.50 0.43 0.62 0.54 0.55 0.67 0.60

RFC 0.10 NA 0.33 1 0.79 0.62 0.90 0.93 0.89 0.90 0.79

LCOM 0.12 NA -.10 0.82 1 0.36 0.79 0.75 0.67 0.81 0.66

DAC 0.39 NA 0.01 0.63 0.56 1 0.44 0.75 0.86 0.51 0.72

WMC -.13 NA 0.13 0.73 0.57 0.57 1 0.83 0.76 0.96 0.77

NOM 0.12 NA -0.11 0.81 0.88 0.80 0.70 1 0.98 0.87 0.75

SIZE2 0.20 NA -0.08 0.80 0.83 0.88 0.68 0.98 1 0.81 0.78

SIZE1 0.01 NA 0.37 0.79 0.53 0.63 0.89 0.69 0.70 1 0.75

CHANGE -0.08 NA 0.46 0.38 0.04 0.08 0.42 0.14 0.14 0.63 1

A visualization of correlation between metrics on QUES and UIMS datasets is shown in

Figure 4.5. The scale in this figure shows how the colour maps to the strengths of the

relationship. The value from 1 represents a strong positive correlation, whereas the values at -

1 indicate a strong negative correlation. It is evident from Figure 4.5 that most metrics have

light blue colour, with more dark blue in UIMS than in QUES which indicates that most

metrics have a moderate to large positive correlation. It is noteworthy that metrics were not

eliminated because one of the objectives of this chapter is to compare this study with previous

studies and most previous studies used all metrics without performing FS [7, 11-13, 15-18, 88,

152]. Also, previous studies did not indicate that the datasets suffer from any problems, such

as high dimensional, irrelevant or redundant features that require applying FS [7, 11-13, 15-

18, 88, 152]. Additionally, these metrics have been validated and shown as a good predictor

of software maintainability [9].

91

4.5. Results and Analysis

This section provides the results and analysis of the empirical study conducted. First, the

performance of the investigated models was compared: individual models (RT, MLP, KNN,

M5Rules, SVR), homogeneous ensemble model (bagging and additive regression), and

heterogeneous ensemble model (stacking) applied on the QUES and UIMS datasets. In

addition, the statistical tests to explore the difference between individual and ensemble models

for each dataset were applied. Then, the best performing model was compared with the best

model in the selected previous studies. Finally, the impact of parameter tuning of the ensemble

models was investigated.

4.5.1 Results of the first empirical study

Table 4.3 and Table 4.9 present the results of the prediction accuracy measures obtained by

applying prediction models on QUES and UIMS, respectively. Boldface values (highlighted

in light green) in the table indicate the best results for each experiment and boldface with

underline (highlighted in dark green) refer to the best results in all experiments that are the

lowest (MMRE and MAE) or the highest (Pred(.25), Pred(.30), and SA) depending on the

measure.

Figure 4.5: The correlation between metrics.

92

Moreover, this section provides the statistical tests of the first empirical study using one-way

ANOVA, as proposed in Section 3.5.5 (see Table 4.4, Table 4.5, Table 4.6, Table 4.7 and

Table 4.8 for QUES dataset and Table 4.10, Table 4.11, Table 4.12, Table 4.13 and Table 4.14

for UIMS dataset). ANOVA was performed using the residuals values of the prediction models

to investigate whether the performance difference between the group population means is

significant or not. Factor A refers to each individual model, along with these individual models

as the base models in the ensemble models. For example, Factor A in Table 4.4 includes the

results of the residual values for RT as the individual model and as the base model in bagging,

additive regression, and stacking.

A. Results of QUES dataset

First, Table 4.3 summarises the results of the prediction models on the QUES dataset. The

baseline measure in this table depends on the dependent variable only (i.e., CHANGE metric)

and calculates the mean value of this variable. The results of the baseline show that all the

prediction models have better results than the baseline. For example, the MMRE of the

baseline is equal to 0.99, and all the prediction models have values lower than this.

 Among the individual models, KNN achieved the best result in all accuracy prediction

measurements. SVR was the second best model in all accuracy prediction measurements

except Pred(.25), which recorded the highest values (0.42) in RT, whereas SVR recorded

(0.41). Because of the minor difference between SVR and RT, SVR was considered the

second-best individual model. This finding is consistent with another study which states that

KNN improved the prediction accuracy compared to other models [178]. In addition, previous

study stated that SVR achieved high prediction accuracy and considered a strong model [179].

After building a bagging ensemble on each individual model, it clear that this model

improved the accuracy prediction for only MLP, M5Rules and SVR. Although bagging had a

negative impact on KNN, KNN outperformed all other models in all accuracy predictions.

However, bagging had a minor impact on the accuracy prediction of SVR. According to the

statistical tests presented below, there were no significant differences in terms of the residual

values among all the individual and bagging ensemble models.

It was evident that the additive regression ensemble model improved the accuracy

prediction of individual models except RT and did not impact KNN; KNN showed the same

result with this model and as an individual model. Additionally, as mentioned in the bagging

93

case, KNN as the base model in the additive regression model outperformed all other base

models in all accuracy predictions; SVR was the second best after KNN. Finally, it was evident

that the prediction accuracy of additive regression ensemble models in most cases was better

than that of bagging ensemble models.

 The stacking ensemble model improved the performance of individual models, except

KNN. Moreover, it performed better than both bagging and additive regression on all their

base models except KNN. Stacking improves accuracy prediction if the individual models are

chosen from various categories such as RT from tree and KNN from lazy, as was performed

in this experiment. Finally, the prediction accuracy of heterogeneous (stacking) ensemble

models, in general, was better than that of homogeneous (bagging and additive regression)

ensemble models.

KNN as an individual model or as the base model in additive regression is the only model

that was close to meeting the criteria of an accurate prediction mentioned in Chapter 3 because

it achieved an MMRE value of 0.26, and the criterion for MMRE is MMRE ≤ 0.25 [67]. Pred

values of 0.65 and 0.68 were obtained for Pred(.25) and Pred(.30), respectively, and the criteria

for Pred are: Pred(.30) ≥ 0.70 or Pred (.25) ≥ 0.75 [34].

Table 4.3: Performance of the prediction models for the QUES dataset.
QUES Dataset MMRE Pred(.25) Pred(.30) MAE SA

Baseline 0.99 0.30 0.32 32.71 0

Individual models

RT 0.45 0.42 0.48 26.24 19.79

MLP 0.50 0.30 0.42 28.71 12.22

KNN 0.26 0.65 0.68 19.75 38.85

M5Rules 0.49 0.39 0.41 23.39 27.45

SVR 0.38 0.41 0.52 20.33 37.86

Homogeneous ensemble model – Bagging

RT 0.48 0.37 0.41 22.61 30.87

MLP 0.39 0.48 0.56 19.89 39.21

KNN 0.30 0.51 0.58 19.04 41.80

M5Rules 0.45 0.37 0.45 28.72 32.23

SVR 0.38 0.44 0.54 20.42 37.59

Homogeneous ensemble model – Additive Regression

RT 0.47 0.39 0.44 26.23 19.80

MLP 0.52 0.35 0.45 28.43 13.07

KNN 0.26 0.65 0.68 19.75 39.63

M5Rules 0.47 0.42 0.45 23.85 27.07

SVR 0.35 0.48 0.54 19.85 39.32

Heterogeneous ensemble model – Stacking

Stacking (RT, MLP, KNN,

M5Rules, SVR)

0.32 0.48 0.54 19.80

39.47

Dark green: represents the best results in all experiments.
Light green: represents the best results for each experiment.

94

Second, Table 4.4, Table 4.5, Table 4.6, Table 4.7 and Table 4.8 list one-way ANOVA results

in the QUES dataset using the residual values for RT, MLP, KNN, M5Rules, and SVR and

ensemble models, respectively. From these tables, the results of the p-values were higher than

the defined value (α = 0.05). Therefore, H0 is accepted and all the group population means

(Factor A) are the same in all tables. This indicates that the performance of the individual and

ensemble models in terms of the residual values was not significantly different from each other

for Factor A. Furthermore, the results of the eta-squared reveal that the effect sizes in all tables

are small because all the eta-squared values are close to 0.01, which is considered small

according to the standard classifications published in [180].

Table 4.4: One-way ANOVA for RT and ensemble models in QUES dataset using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 2076.45 3.00 692.15 1.27 0.29 0.01

Error 153018.62 280.00 546.50

Total 155095.07 283.00

Table 4.5: One-way ANOVA for MLP and ensemble models in QUES dataset using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 5413.90 3.00 1804.63 2.54 0.06 0.03

Error 198690.89 280.00 709.61

Total 204104.79 283.00

Table 4.6: One-way ANOVA for KNN and ensemble models in QUES dataset using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 28.27 3.00 9.42 0.01 1.00 0.00

Error 196680.56 280.00 702.43

Total 196708.84 283.00

Table 4.7: One-way ANOVA for M5Rules and ensemble models in QUES dataset using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 700.86 3.00 233.62 0.54 0.65 0.01

Error 120132.87 280.00 429.05

Total 120833.72 283.00

Table 4.8: One-way ANOVA for SVR and ensemble models in QUES dataset using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 21.46 3.00 7.15 0.02 1.00 0.00

Error 121832.52 280.00 435.12

Total 121853.99 283.00

 Figure 4.6 and Figure 4.7 illustrate a bar chart of the Pred values (Pred(.25) and Pred

(.30), respectively) to compare the investigated models for the QUES dataset. A higher score

indicates a better performance, and the proposed criteria for Pred was Pred(.30) ≥ 0.70 or Pred

(.25) ≥ 0.75 [34]. The results in the figures provide confirmatory evidence that bagging

95

increased the performance of Pred values over all individual models except RT, KNN and the

Pred(.25) value for M5Rules. Additive regression increased this performance over all

individual models except RT. KNN, when used as an individual or the base model in additive

regression, achieved the best accuracy prediction, reaching approximately 70. The stacking

ensemble model also increased the performance of Pred values over all the individual models;

however, it reported lower values than KNN. The statistical tests indicate that the improvement

of the ensemble models over the individual models was not significantly different.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RT MLP KNN M5Rules SVR

P
re

d
(.

2
5

)

Prediction models

Individual model Bagging Additive regression Stacking

Figure 4.6: Pred(.25) of prediction models for QUES dataset.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RT MLP KNN M5Rules SVR

P
re

d
(.

3
0

)

Prediction models

Individual model Bagging Additive regression Stacking

Figure 4.7: Pred(.30) of prediction models for QUES dataset.

96

Figure 4.8 presents a boxplot of MRE for the visual comparison of different prediction models

based on the MMRE values. Ten-fold cross-validation was used, and the number of observations

was equal to the size of the dataset, which was 71 residuals values for the QUES. The mean

value is indicated by an ‘X’ and the upper and lower lines of the box represent ‘whiskers’,

where the middle horizontal line across the box represents the middle quartile. The impact of

applying both homogeneous and heterogeneous ensemble models on various individual

models is shown in the figure. The results indicate that most ensemble models improved the

accuracy prediction of individual models because they had the smallest whiskers, the

narrowest box, and the lowest MMRE value compared with individual models. KNN as an

individual model or as the base model in additive regression outperformed all other prediction

models. It was followed by KNN as the base model for bagging and then stacking.

Additionally, the results of the statistical tests reveal that the improvement in all ensemble

models was not significantly different from that in the individual models.

97

Figure 4.9 compares the results obtained from the residuals of the prediction models for

the QUES dataset. The MAE value is defined by an ‘X’; the lower score of MAE, the small

whiskers, and the tight box indicate a better performance. First, all the prediction models

achieved better prediction accuracy than the baseline. Second, the ensemble models improved

the prediction accuracy over all the individual models except for M5Rules as the base model

in bagging and additive regression, and SVR as the base model in bagging, whereas KNN as

the individual model reached the same result as KNN as the base model in additive regression.

Third, KNN as the base model in bagging was the best model, followed by KNN as an

individual model or as the base model in additive regression and then stacking. Furthermore,

none of these improvements obtained by the ensembles were significantly different.

Figure 4.8: Boxplots of MRE for prediction models in QUES dataset.

|_____| |_____| |_____| |_____| |_____| |_|
 RT MLP KNN M5Rules SVR Stacking

98

Figure 4.10 illustrates the plots of the predicted and the actual values, along with , a

baseline for each prediction model investigated in the QUES dataset. The main idea of these

plots is to present the behaviour of the prediction models in term of the overestimated and

underestimated observations from the actual values rather than the performance of the models

(e.g., MMRE and Pred). Thus, these graphs depend on the requirements of the project

managers, if they need to overestimate, and thus lose control, or underestimate, and thus lose

quality. Therefore, these plots were interpreted by the project managers as follow:

• Overestimation is the number of observations that the predicted values are higher

than the actual values.

• Underestimation is the number of observations that the predicted values are

lower than the actual values.

The actual values include 71 observations of the dependent variable (CHANGE) sorted

in ascending order. The baseline represents the mean of the actual values, whereas the

Figure 4.9: Boxplots of the residuals for prediction models in QUES dataset.

 |__||_____||_____||_____||_____||_____| |_|
Baseline RT MLP KNN M5Rules SVR Stacking

99

predicted values represent the observations by each prediction model. This figure indicates the

following findings. First, most observations of predicted values for each prediction model were

higher than actual values, which means that these prediction models have more overestimated

observations than underestimated ones. Second, KNN as an individual model or as the base

model in additive regression tended to have equally overestimated and underestimated

observations and remained relatively steady compared to other models. Third, the predicted

values were spread around the baseline (equal to approximately 64), which means that the

prediction models added value and made changes in the observations. Additionally, the mean

of the prediction value is typically lower than the value of the baseline except for some models

such as RT and M5Rules, which have a minor increase over the baseline, ranging from 64.5

to 66.0.

100

 Figure 4.10.A: Plots of predicted and actual values for RT in the QUES dataset.

 Figure 4.10.B: Plots of predicted and actual values for MLP in the QUES dataset.

0

50

100

150

200

250

0 10 20 30 40 50 60 70

Actual Baseline

Predicted-RT Predicted-Bagging(RT)

Predicted-Additive regression(RT) Predicted-Stacking

0

50

100

150

200

250

0 10 20 30 40 50 60 70

Actual Baseline

Predicted-MLP Predicted-Bagging(MLP)

Predicted-Additive regression (MLP) Predicted-Stacking

101

 Figure 4.10.C: Plots of predicted and actual values for KNN in the QUES dataset.

 Figure 4.10.D: Plots of predicted and actual values for M5Rules in the QUES dataset.

0

50

100

150

200

250

0 10 20 30 40 50 60 70

Actual Baseline

Predicted-KNN Predicted-Bagging(KNN)

Predicted-Additive Regression(KNN) Predicted-Stacking

0

50

100

150

200

250

0 10 20 30 40 50 60 70

Actual Baseline

Predicted-M5Rules Predicted-Bagging(M5Rules)

Predicted-Additive regression(M5Rules) Predicted-Stacking

102

 Figure 4.10.E: Plots of predicted and actual values for SVR in the QUES dataset.

Figure 4.10: Plots of predicted and actual values for prediction models in the QUES dataset.

B. Results of UIMS dataset

Table 4.9 lists the results of the experiment on the UIMS dataset, reported similarly as the

QUES findings. The results show that all the prediction models have better results than the

baseline. For example, the MMRE of the baseline is equal to 5.43, where all the prediction

models have results lower than this value.

Among the individual models, KNN, as in the QUES dataset, outperformed other

prediction models in all prediction accuracy measures except MAE, which achieved the best

results by MLP. M5Rules was the second best among all prediction accuracy measures, except

MAE.

In terms of MMRE and MAE, application of the bagging ensemble model on each

individual model clearly indicated that this model improved the performance of MMRE and

MAE measures for all the individual models. However, it either decreased the performance of

the Pred values of all individual models or produced the same results. It seems possible that

these results are due to the spread of the residual boxplots of MRE increasing after applying

this ensemble (see Figure 4.13). However, it is usual to obtain contradictory results in

empirical studies of the software engineering field [99]. Furthermore, this model decreased the

performance of some prediction accuracy measures (i.e., KNN and M5Rules). Although the

bagging ensemble model using KNN produced the highest accuracy prediction compared to

other models in terms of MMRE value, it had a negative impact on KNN itself. These results

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

Actual Baseline

Predicted-SVR Predicted-Bagging(SVR)

Predicted-Additive regression(SVR) Predicted-Stacking

103

are consistent with a prior study, which showed that bagging ensemble models have higher

potential to contribute to more accurate predictions than individual models [107].

Additive regression increased most prediction accuracy measures for all the individual

models except MLP. As mentioned during the analysis of the QUES dataset, the additive

regression ensemble model produced the same accuracy prediction for KNN as an individual

model. KNN, as the base model in additive regression, provided superior improvement in most

prediction accuracy measurements, followed by M5Rules and SVR. This result indicates that

KNN as either the base model in additive regression or as an individual model, achieved the

best accuracy prediction, which is consistent with the findings for the QUES dataset. In

conclusion, the prediction accuracy of additive regression ensemble models in most cases was

better than that of bagging ensemble models.

A stacking ensemble model did not increase the performance of individual models in the

UIMS dataset with the exception of the RT model. However, the performance of stacking in

the UIMS dataset was lower than that in the QUES dataset. This occurs because the QUES

and UIMS datasets have different characteristics, as mentioned in Section 4.4.4. Moreover,

stacking failed to satisfy the criteria for accurate prediction, as mentioned in Chapter 3.

Additionally, stacking showed worse results compared to the homogeneous ensemble model.

In conclusion, the prediction accuracy of homogeneous (bagging and additive regression)

ensemble models was generally better than that of heterogeneous (stacking) ensemble models.

None of the prediction models applied on UIMS fulfilled the criteria of prediction accuracy

described in Chapter 3.

104

Table 4.9: Performance of the prediction models for the UIMS dataset.
UIMS Dataset MMRE Pred (.25) Pred (.30) MAE SA

Baseline 5.43 0.13 0.13 40.71 0

Individual models

RT 4.52 0.18 0.21 41.74 -2.52

MLP 1.32 0.31 0.31 23.39 42.54

KNN 0.74 0.41 0.41 23.41 42.50

M5Rules 1.24 0.36 0.38 26.64 34.57

SVR 1.84 0.28 0.33 26.63 34.58

Homogeneous ensemble model – Bagging

RT 3.08 0.13 0.21 31.63 22.31

MLP 1.17 0.26 0.31 20.10 50.63

KNN 0.83 0.26 0.33 20.80 48.91

M5Rules 1.31 0.21 0.26 21.65 46.82

SVR 1.65 0.21 0.26 24.79 39.12

Homogeneous ensemble model – Additive Regression

RT 4.56 0.21 0.23 42.14 -3.51

MLP 1.87 0.23 0.28 26.66 34.51

KNN 0.74 0.41 0.41 23.41 42.50

M5Rules 1.16 0.33 0.36 27.23 33.12

SVR 1.20 0.33 0.36 24.57 39.65

Heterogeneous ensemble model – Stacking

(RT, MLP, KNN,

M5Rules, SVR)

2.45 0.23 0.23 33.51

17.68

Dark green: represents the best results in all experiments.
Light green: represents the best results for each experiment.

 Table 4.10, Table 4.11, Table 4.12, Table 4.13 and Table 4.14 show one-way ANOVA

results for the UIMS dataset using the residuals values for RT, MLP, KNN, M5Rules and SVR

and ensemble models, respectively. These results indicate that the p-values were higher than

the defined value (α = 0.05). Then, H0 is accepted and all the group population means (Factor

A) are the same in all tables. Therefore, the performance of individual and ensemble models

in terms of residual values was not significantly different from each other for Factor A.

Additionally, the results of the eta-squared indicate that the effect sizes in all tables are small

because all the eta-squared values are close to 0.01, which is considered small according to the

standard classifications published in [180].

Table 4.10: One-way ANOVA for RT and ensemble models in UIMS dataset using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 3494.67 3.00 1164.89 0.58 0.63 0.01

Error 304355.14 152.00 2002.34

Total 307849.81 155.00

Table 4.11: One-way ANOVA for MLP and ensemble models in UIMS dataset using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 3841.22 3.00 1280.41 1.23 0.30 0.02

Error 158728.81 152.00 1044.27

Total 162570.02 155.00

105

Table 4.12: One-way ANOVA for KNN and ensemble models in UIMS dataset using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 3699.69 3.00 1233.23 0.92 0.43 0.02

Error 204486.42 152.00 1345.31

Total 208186.11 155.00

Table 4.13: One-way ANOVA for M5Rules and ensemble models in UIMS dataset using the residuals .

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 2768.62 3.00 922.87 0.69 0.56 0.01

Error 203993.82 152.00 1342.06

Total 206762.45 155.00

Table 4.14: One-way ANOVA for SVR and ensemble models in UIMS dataset using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 2059.56 3.00 686.52 0.59 0.62 0.01

Error 176247.08 152.00 1159.52

Total 178306.64 155.00

 Figure 4.11 and Figure 4.12 illustrate a bar chart of the Pred values (Pred (.25) and

Pred (.30)) to compare prediction models for the UIMS dataset. It is evident that a bagging

ensemble had a negative or little impact on all the individual models. The additive regression

ensemble model produced superior Pred values in RT and SVR only, whereas stacking

improved the Pred values of RT only. Similar to the findings for the QUES dataset, no

difference was found between KNN as an individual model and as the base model in additive

regression; however, both achieved the best Pred value of 0.41. They were followed by

M5Rules as an individual model and as the base model in additive regression. As mentioned

previously in the QUES dataset, there was no difference in the performance between the

ensemble and the individual models (see Table 4.10, Table 4.11, Table 4.12, Table 4.13, Table

4.14).

106

 Figure 4.13 shows the residual boxplots of MRE to enable a comparison between

prediction models in terms of the MMRE value that is specified by an ‘X’. After applying

bagging ensemble models, there is an obvious tendency for the mean (i.e., MMRE) to decrease.

Ten-fold cross-validation was performed, and the number of observations is similar to the size

of the dataset, which is 39 residuals values for the UIMS dataset. The spread increases after

applying this ensemble model to all individual models, except for KNN and M5Rules. The

0

0.1

0.2

0.3

0.4

0.5

RT MLP KNN M5Rules SVR

P
re

d
(.

2
5

)

Prediction models

Individual model Bagging Additive regression Stacking

Figure 4.11: Pred(.25) of prediction models for UIMS dataset.

0

0.1

0.2

0.3

0.4

0.5

RT MLP KNN M5Rules SVR

P
re

d
(.

3
0

)

Prediction models

Individual model Bagging Additive regression Stacking

Figure 4.12: Pred(.30) of prediction models for UIMS dataset.

107

impact of applying additive regression ensemble models on M5Rules and SVR is evident as

they have the smallest whiskers, the narrowest box, and the lowest MMRE value. Additive

regression decreased the accuracy prediction of RT and MLP, whereas it produced the same

accuracy prediction in KNN. Stacking reported the lowest accuracy prediction compared to all

individual models except RT. Overall, KNN as an individual model or as the base model in

additive regression outperformed all other prediction models, followed by KNN as the base

model for bagging. According to Table 4.10, Table 4.11, Table 4.12, Table 4.13, Table 4.14,

the performance between the ensemble and the individual models was not significantly

different.

 Figure 4.14 summarises the comparison between the residuals of prediction models for

the UIMS dataset. The MAE value is defined by an ‘X’; a lower score refers to better

performance, along with the small whiskers and the tight box. It can be observed that all the

prediction models were better than the baseline in terms of MAE, except RT, as the individual

model and as the base model in additive regression. Additionally, bagging ensemble models

Figure 4.13: Boxplots of MRE for prediction models in UIMS dataset.

|_____| |_____| |_____| |_____| |_____||_|
 RT MLP KNN M5Rules SVR Stacking

108

increased the prediction accuracy over all the individual models, whereas additive regression

and stacking only improved the SVR and RT, respectively. Finally, MLP and KNN as the base

models in bagging and as individual models achieved the best prediction accuracy, whereas

KNN as an individual model recorded the same result as the base model in additive regression

(23.41). Moreover, Table 4.10, Table 4.11, Table 4.12, Table 4.13, Table 4.14 indicate that

there were no significant differences between the ensemble and individual models.

Figure 4.15 presents the plots of the actual values, a baseline, and the predicted values

for each prediction model for the UIMS dataset. The actual values include 39 observations of

the dependent variable (CHANGE) sorted in ascending order. The baseline indicates the mean

of the actual values, whereas the predicted values indicate the observations attained by each

prediction model. The findings obtained from this figure reveal the following. First, most

Figure 4.14: Boxplots of the residuals for prediction models in UIMS dataset.

 |__||_____||_____||_____||_____||_____| |_|
Baseline RT MLP KNN M5Rules SVR Stacking

109

observations of predicted values for each prediction model were higher than actual values,

which indicates that these prediction models have more overestimated observations than

underestimated ones. Second, the KNN as an individual model or as the base model in additive

regression tended to have equal overestimated and underestimated observations and remained

relatively steady compared to other models, which is a conclusion similar to that reached for

the QUES dataset. Third, the predicted values are spread around the baseline (equal to

approximately 42), which means that the prediction models added value and made changes to

the observations. Fourth, the stacking model had several underestimated observations and

several observations under the baseline. This finding may be interpreted as the reason for the

low accuracy prediction in stacking compared to other models. Additionally, the mean of the

prediction values was typically lower than the value of the baseline, except for a few models

that had a minor increase over the baseline, for example, bagging with MLP as the base model

and additive regression with RT as the base model, ranging from 42.5 to 46.0.

 Figure 4.15.A: Plots of predicted and actual values for RT in UIMS dataset.

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

Actual Baseline

Predicted-RT Predicted-Bagging(RT)

Predicted-Additive regression(RT) Predicted-Stacking

110

 Figure 4.15.B: Plots of predicted and actual values for MLP in UIMS dataset.

 Figure 4.15.C: Plots of predicted and actual values for KNN in UIMS dataset.

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

Actual Baseline

Predicted-MLP Predicted-Bagging(MLP)

Predicted-Additive regression(MLP) Predicted-Stacking

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

Actual Baseline

Predicted-KNN Predicted-Bagging(KNN)

Predicted-Additive regression(KNN) Predicted-Stacking

111

 Figure 4.15.D: Plots of predicted and actual values for M5Rules in UIMS dataset.

 Figure 4.15.E: Plots of predicted and actual values for SVR in UIMS dataset.

Figure 4.15: Plots of predicted and actual values for prediction models in UIMS dataset.

4.5.2 Comparison of the best investigated model with the best model in

selected studies

The best model performance in this empirical study was evaluated and compared in terms of

MMRE with the best model determined by selected previous studies in Table 4.1. Table 4.15

presents the performance of MMRE obtained by the best model determined in previous

selected studies and the proposed model for the QUES and UIMS datasets. Boldface values in

the table indicate the best results (i.e., the lowest MMR). This table demonstrates that the

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

Actual Baseline

Predicted-M5Rules Predicted-Bagging(M5Rules)

Predicted-Additive regression (M5Rules) Predicted-Stacking

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

Actual Baseline

Predicted-SVR Predicted-Bagging(SVR)

Predicted-Additive regression (SVR) Predicted-Stacking

112

proposed model, that is, KNN as an individual model or as the base model in additive

regression, achieved the best MMRE value against all selected previous studies for the QUES

dataset and proved to be the 7th best model in the UIMS dataset. Only MMRE was considered,

as most of the studies used this measure, and other measures (e.g., Pred) were not used in some

studies.

Table 4.15: Performance of MMRE obtained by previous selected studies and proposed work for the

QUES and UIMS datasets.
ID Prediction model QUES UIMS

S1 Bayesian network

Regression tree

Backward elimination

Step-wise selection

0.45

0.49

0.40

0.39

0.97

1.53

2.58

2.47

S2 MARS

MLR

SVR

ANN

RT

0.32

0.42

0.43

0.59

0.58

1.86

2.70

1.68

1.95

4.95

S3 TreeNet

MARS

MLR

SVR

ANN

RT

0.42

0.32

0.42

0.43

0.59

0.58

1.57

1.86

2.70

1.68

1.95

4.95

S4 MLP

RBF

SVM

M5P

Ensemble model

0.71

0.96

0.44

0.54

0.41

1.39

3.23

1.64

1.67

0.97

S5 FL model

BN model

MARS model

0.27

0.45

0.32

0.53

0.97

1.86

S6 Hybrid neural network - A1

Hybrid neural network - A2

Hybrid neural network – A3

0.37

0.35

0.38

0.31

0.47

0.18

S7 MLP

RBF

SVM

M5P

Ensemble model(AVG)

Ensemble model (WT)

Ensemble model (BT)

0.71

0.96

0.44

0.54

0.58

0.49

0.41

1.39

3.23

1.64

1.67

1.46

1.21

0.97

S8 Neuro-GA 0.37 0.31

S9 Neuro-fuzzy approach 0.33 0.28

Proposed

model (this

study)

Additive regression (KNN) 0.26 0.74

113

Figure 4.16 summarises the comparison of the MMRE values between the best model in the

previous selected studies and the best model in this proposed work for the QUES dataset. The

superior MMRE value (0.26) was obtained for the proposed model: KNN as an individual

model or as the base model in additive regression, followed by the FL model in S5 (0.27) and

the MARS model (0.32) in S2, S3 and S5. Notably, only the present model nearly meets the

criteria of accurate prediction that states that MMRE should be equal to or lower than 0.25

[67].

Figure 4.17 illustrates the comparison of the MMRE values between the best model in

the previous selected studies and the best model in this proposed work for the UIMS dataset.

The main finding is that the hybrid neural network – A3 has an MMRE value of (0.18) in S6,

whereas the neuro-fuzzy approach has an MMRE value of (0.28) in S9. The proposed model

proved to be the 7th best model compared with those in the previous selected studies. However,

only the hybrid neural network, namely, A3 fulfils the criteria for accurate prediction that states

that MMRE should be equal to or lower than 0.25 [67].

0

0.2

0.4

0.6

0.8

1

1.2

B
a

y
es

ia
n

 n
et

w
o
r
k

R
e
g

re
ss

io
n

 t
r
e
e

B
a

c
k

w
a

r
d

 e
li

m
in

a
ti

o
n

S
te

p
-w

is
e
 s

e
le

c
ti

o
n

M
A

R
S

M
L

R

S
V

R

A
N

N R
T

T
r
e
e
N

e
t

M
A

R
S

M
L

R

S
V

R

A
N

N

R
T

M
L

P

R
B

F

S
V

M

M
5

P

E
n

se
m

b
le

 m
o

d
e
l

F
L

 m
o
d

e
l

B
N

 m
o

d
el

M
A

R
S

 m
o

d
e
l

H
y

b
r
id

 N
e
u

r
a

l
N

et
w

o
r
k

 -
 A

1

H
y

b
r
id

 N
e
u

r
a

l
N

et
w

o
r
k

 -
 A

2

H
y

b
r
id

 N
e
u

r
a

l
N

et
w

o
r
k

 -
 A

3

M
L

P

R
B

F

S
V

M

M
5

P

E
n

se
m

b
le

 m
o

d
e
l(

A
V

G
)

E
n

se
m

b
le

 m
o

d
e
l

(W
T

)

E
n

se
m

b
le

 m
o

d
e
l

(B
T

)

N
e
u

r
o

-G
A

N
e
u

r
o

-F
u

z
zy

 a
p

p
r
o

a
c
h

 K
N

N
-A

d
d

it
iv

e
 r

e
g
r
e
ss

io
n

S1 S2 S3 S4 S5 S6 S7 S8 S9 Our

model

M
M

R
E

 v
a
lu

e

Prediction model

Figure 4.16: MMRE values obtained by the best model in the previous selected studies and the best

model for the QUES dataset.

114

4.5.3 Impact of the parameters tuning using caret

Considering the values of MMRE and MAE for the default and tuned parameters with respect

to each prediction model, Table 4.16 and Table 4.17 demonstrate the impact of parameter

tuning on the QUES and UIMS datasets, respectively. From these tables, it may be observed

that the prediction accuracy was improved for most prediction models with parameter tuning

(i.e., 22 Yes out of 32 prediction models). However, most individual models with default

parameters performed better than individual models with parameter tuning (i.e., 3 Yes out of

10 individual models). Additionally, ensemble models were more sensitive to their parameter

settings in terms of improvement than individual models. With respect to parameter tuning,

the prediction accuracy of the ensemble models in most cases was better than that of the

individual models. The most interesting finding was that KNN as the base model in the additive

regression with parameter tuning achieved the best prediction accuracy in both datasets.

Finally, the results obtained from Table 4.16 and Table 4.17 show that parameter tuning

improved the prediction accuracy of most models with default parameters, and this

improvement is clearly observed in the ensemble models.

0
1
2
3
4
5
6

B
a

y
es

ia
n

 n
et

w
o
r
k

R
e
g

re
ss

io
n

 t
r
e
e

B
a

c
k

w
a

r
d

 e
li

m
in

a
ti

o
n

S
te

p
-w

is
e
 s

e
le

c
ti

o
n

M
A

R
S

M
L

R

S
V

R

A
N

N R
T

T
r
e
e
N

e
t

M
A

R
S

M
L

R

S
V

R

A
N

N

R
T

M
L

P

R
B

F

S
V

M

M
5

P

E
n

se
m

b
le

 m
o

d
e
l

F
L

 m
o
d

e
l

B
N

 m
o

d
el

M
A

R
S

 m
o

d
e
l

H
y

b
r
id

 N
e
u

r
a

l
N

et
w

o
r
k

 -
 A

1

H
y

b
r
id

 N
e
u

r
a

l
N

et
w

o
r
k

 -
 A

2

H
y

b
r
id

 N
e
u

r
a

l
N

et
w

o
r
k

 -
 A

3

M
L

P

R
B

F

S
V

M

M
5

P

E
n

se
m

b
le

 m
o

d
e
l(

A
V

G
)

E
n

se
m

b
le

 m
o

d
e
l

(W
T

)

E
n

se
m

b
le

 m
o

d
e
l

(B
T

)

N
e
u

r
o

-G
A

N
e
u

r
o

-F
u

z
zy

 a
p

p
r
o

a
c
h

A
d

d
it

iv
e
 r

e
g

r
es

si
o
n

(K
N

N
)

S1 S2 S3 S4 S5 S6 S7 S8 S9 Our

model

M
M

R
E

 v
a
lu

e

Prediction model

Figure 4.17: MMRE values obtained by the best model in the previous selected studies and the best

model for the UIMS dataset.

115

Table 4.16: Impact of the parameters tuning on QUES dataset.

Prediction model

MMRE MAE Does the parameters tuning

improve the performance of

the default parameters

model?

Default

parameters

Parameters

tuning

Default

parameters

Parameters

tuning

Individual models

RT 0.45 0.68 26.24 30.64 No

MLP 0.50 1.19 28.71 40.54 No

KNN 0.26 0.43 19.75 24.29 No

M5Rules 0.49 0.55 23.39 25.12 No

SVR 0.38 0.27 20.33 20.17 Yes

Homogeneous ensemble model – Bagging

RT 0.48 0.30 22.61 14.96 Yes

MLP 0.39 0.20 19.89 11.11 Yes

KNN 0.30 0.10 19.04 7.19 Yes

M5Rules 0.45 0.46 28.72 17.96 Conflicting results

SVR 0.38 0.30 20.42 17.16 Yes

Homogeneous ensemble model – Additive regression

RT 0.47 0.47 26.23 16.23 Yes

MLP 0.52 0.21 28.43 8.54 Yes

KNN 0.26 0.00 19.75 0.00 Yes

M5Rules 0.47 0.74 23.85 41.89 No

SVR 0.35 0.29 19.85 15.46 Yes

Heterogeneous ensemble model – Stacking

Stacking 0.32 0.42
19.80

17.80

Conflicting results

Table 4.17: Impact of the parameters tuning on UIMS dataset.

Prediction model

MMRE MAE Does the parameters tuning

improve the performance of the

default parameters model?

Default

parameters

Parameters

tuning

Default

parameters

Parameters

tuning

Individual models

RT 4.52 1.20 41.74 28.98 Yes

MLP 1.32 2.85 23.39 43.43 No

KNN 0.74 1.20 23.41 26.51 No

M5Rules 1.24 1.11 26.64 27.87 Conflicting results

SVR 1.84 0.98 26.63 25.33 Yes

Homogeneous ensemble model – Bagging

RT 3.08 1.97 31.63 19.91 Yes

MLP 1.17 0.65 20.10 10.81 Yes

KNN 0.83 0.19 20.80 7.36 Yes

M5Rules 1.31 1.17 21.65 16.19 Yes

SVR 1.65 1.30 24.79 17.34 Yes

Homogeneous ensemble model – Additive regression

RT 4.56 0.40 42.14 10.37 Yes

MLP 1.87 1.08 26.66 7.45 Yes

KNN 0.74 0.01 23.41 0.26 Yes

M5Rules 1.16 1.08 27.23 15.39 Yes

SVR 1.20 0.66 24.57 11.90 Yes

Heterogeneous ensemble model – Stacking

Stacking 2.45 0.63 33.51 19.64 Yes

4.5.4 Discussion and answers to research questions for the first empirical

study

This section discusses and answers RQs for the first empirical study.

116

RQ4.1) How effective are individual models at predicting change maintenance effort?

KNN produced superior results for most accuracy prediction measurements in both the QUES

and UIMS datasets. Moreover, KNN as an individual model or as the base model in additive

regression achieved the best accuracy prediction among all investigated models in both

datasets, and neither homogeneous nor heterogeneous models improved its prediction

accuracy. Additionally, this model in the QUES dataset is the only model that nearly fulfils

the criteria of accurate prediction proposed in Chapter 3. These results provide substantial

evidence of the effectiveness of KNN in the prediction of software maintainability. This

evidence is in agreement with the findings of Chen and Shah [178], which state the success of

KNN in predicting either regression or classification problems. KNN is considered stable

model that implements simply. Also, KNN performs well with small datasets [181], such as

QUES and UIMS datasets.

RQ4.2) How do homogenous ensemble models perform in the context of predicting

change maintenance effort when compared to the individual models?

Bagging improved the prediction accuracy over almost all individual models except RT in the

QUES dataset, M5Rules in the UIMS dataset, and KNN in both datasets. The findings of the

statistical tests indicate that there were no significant differences in terms of the residual values

among all the individual models and bagging ensemble models, and the effect sizes were small.

These findings are also consistent with a previous study, thereby indicating that the bagging

ensemble models have high potential for producing more accurate predictions than individual

models [107]. The notable improvement of prediction accuracy in individual models verified

that the bagging ensemble model effectively improves performance when applied to datasets

with a limited amount of data (i.e., QUES and UIMS contain 71 and 39 classes, respectively)

[133]. However, this was not observed in two datasets. Bagging aims to decrease variance by

randomly selecting different training sets with replacement [128]. For this reason, applying

bagging to stable models (e.g., KNN) has little value as their output results in few changes in

the training data from sampling [128, 182]. However, KNN becomes unstable for a small

number of nearest neighbours (K) [183], and Caprile et al. reported that this number should be

higher than one [184]. In addition, KNN is considered a simple model and performs well with

small datasets. In contrast, RT is unstable and suffers from variance; therefore, bagging

improves the prediction accuracy of RT in the UIMS dataset [128]. Additionally, bagging had

117

a minor influence on SVR; this result agrees with the previous literature, showing that an

ensemble model had little improvement on SVM [179].

 The additive regression ensemble model had a positive impact on the prediction

accuracy for most individual models except RT in the QUES dataset and MLP in the UIMS

dataset, and no significant differences in terms of residual values and effect sizes were small.

The additive regression ensemble model had no impact on KNN in either dataset. A possible

explanation for this is that KNN is an instance-based rather than model-based approach.

Additive regression starts with a null ensemble and sequentially adds the KNN predictions.

The second and subsequent models are aimed at predicting the residuals (errors), and if no

instances able to predict these residuals are found, KNN will be unable to make any

improvements to the initial predictions. Overall, KNN as the individual model or the base

model in additive regression was the best model to predict software maintainability. A similar

conclusion was reached by Zahara et al., who stated that KNN was the best model to predict

reusability evaluation of OO software components [185].

RQ4.3) How do heterogeneous ensemble models perform in the context of predicting

change maintenance effort when compared to the individual models?

The stacking ensemble model improved the prediction accuracy over all the individual models

except KNN in the QUES dataset. The results obtained by statistical tests reported no

significant difference between the individual models and the stacking ensemble model, and

the effect sizes were small. This finding is in agreement with those of other studies, and it

suggests that stacking achieved a better result when selecting a collection of several models

from different types [122]. The relative advantage of stacking is to combine five individual

models from different types and gain the strengths and weaknesses of this combination. A

potential explanation for this result may be the low performance of other individual models

(RT, MLP, M5Rules and SVR). For this reason, the performance of the stacking ensemble

model was worse than that of KNN, but better than that of the other models. However, stacking

decreased the accuracy prediction of all the individual models except RT in the UIMS dataset.

Another possible explanation for this is that RT produced lower prediction accuracy. For this

reason, when RT was integrated with other models in stacking, a lower prediction accuracy

was reported. When comparing the results of stacking ensemble models with those of previous

118

studies that used different ensemble models, the prediction accuracy of ensemble models was

different for various datasets [16].

RQ4.4) Which prediction models (the best-proposed model in this empirical study or the

best-model in the selected studies) provide the best prediction accuracy?

KNN as an individual model or the base model in additive regression exhibited the best

performance compared with previous selected studies. In addition, it nearly met the criterion

of accurate prediction (i.e., MMRE ≤ 0.25 [67]) in QUES dataset. With respect to the tuning

parameters, KNN as the base model in additive regression outperformed all models in this

empirical study.

RQ4.5) What are the effects of parameter tuning on the performance of the prediction

models?

The parameter tuning increased the prediction accuracy over most of the investigated models

with default parameters. This is consistent with what has been found in previous studies

indicating that parameter tuning using the caret package in R enhanced the performance of the

machine learning models [141, 166]. However, ensemble models were more influenced by

parameter tuning than the individual models. In addition, the prediction accuracy of ensemble

models with parameter tuning was better than that of all the individual models. Therefore, it is

recommended to create ensemble models with parameter tuning to increase the performance

of software maintainability. Further work needs to be done to use a statistical test to investigate

the performance difference between the individual and ensemble models using parameter

tuning.

4.6. Threats to Validity

The threats to validity usually appear in any empirical software engineering study that uses

open-source software projects [186]. The following threats to validity exist in this empirical

study:

4.6.1 Threats to external validity

External validity indicates a limited generalisation of the results outside the empirical study

settings [186], and is based on the dependent variable used in this empirical study. A well-

119

known and common dependent variable (i.e., change metric) applied in several studies [7, 11-

13, 15-18, 88, 152, 175] was used. A higher value of this metric indicates a higher maintenance

effort or lower maintainability. The CHANGE metric is related to the number of changes that

are likely to be made to a class, whereas maintainability refers to the ease to implement

maintenance changes. The change metric has proven to be a perfect indicator in predicting the

maintenance effort and has strong relationships with other metrics (independent variables) [9].

Therefore, the dependent variable is acceptable and there is no threat to external validity.

4.6.2 Threats to internal validity

Internal validity is the capability to present the results with different experimental variables

[187]. To avoid these threats, datasets that have already been investigated in the literature were

used [7, 11-13, 15-18, 88, 152, 175]. However, these datasets include only two types (i.e.,

QUES and UIMS) and contain a limited number of classes. Consequently, this limitation may

negatively affect the performance of the prediction models. Moreover, these datasets were

extracted from real-world systems that were designed in the ADA language, which limits the

depiction of all software systems. To control these threats, this study can be extended by

considering more recent and large datasets that are collected from various open-source

systems. Additionally, further research can investigate real-world systems designed by other

programming languages (e.g., C++, Java, C or C#).

4.6.3 Threats to the construct validity

Construct validity measures the relationship between the dependent and independent variables

[188]. To prevent these threats, ten metrics that have been widely performed and validated by

previous studies as predictors for software maintainability were applied [7, 11-13, 15-18, 88,

152, 175]. However, machine learning models were employed without applying FS

techniques. These techniques help to determine the best subset metrics to accurately predict

software maintainability. Regarding parameter tuning, the caret package in R, which

automatically applies parameter tuning in each model, was used. However, the performance

of these models may improve with the manual application of parameter tuning in each model.

For example, a specific number for the K parameter in the KNN model was defined. Thus, in

a future work, automated and manual parameter tuning will be compared. In addition, the

120

performance difference between individual and ensemble models using parameter tuning will

be explored.

4.6.4 Threats to the conclusion validity

Conclusion validity relates to the statistical relationship between the results and the output of

the experiment, which impacts the capability to reach the right conclusion [187]. Ten-fold

cross-validation was used to prevent the threat of conclusion validity. This method aims to

decrease biased results by selecting ten different tests from the dataset. However, the present

results were compared with those of previous selected studies in Table 4.1, and some of them,

namely, S2, S3, S5, S6 and S9 did not use ten-fold cross-validation. Therefore, there exists a

conclusion validity threat that the results may not be entirely comparable. Moreover, the

ANOVA test was used in this empirical study to explore if there are any statistically significant

differences between the means of four groups (i.e., individual model and this individual model

as the base model in bagging, additive regression and stacking). This empirical study includes

more than two pairs (i.e., four groups) and continuous datasets; therefore, a parametric test

(ANOVA) is appropriate to implement, which has an advantage to produce more reliable

results than non-parametric statistical test. However, the parametric statistical test, requiring

some assumptions (e.g., normally distributed and independent observations in the datasets).

Although these assumptions are fulfilled, and this method is based on only ten runs. As a result,

there is a threat to conclusion validity.

4.7. Conclusion of the first empirical study

Prior studies have documented the effectiveness of machine learning models in predicting

software maintainability of the OO system. However, these studies used a wide variety of

individual models and had limited focus on ensemble models. Moreover, the prediction

accuracy of their models was low according to the proposed criteria.

 This chapter empirically evaluated the application of homogeneous (bagging and

additive regression) and heterogeneous (stacking) ensemble models in predicting software

maintainability of OO systems and investigated their accuracy prediction over individual

121

models (RT, MLP, M5Rules, KNN and SVR). All these models were run on the QUES and

UIMS datasets that were obtained from two different OO systems.

The results obtained from both datasets provides several insights as follows:

• Among the individual models, KNN achieved the best prediction accuracy in both

datasets. It seems possible that these results are due to the small size of the datasets, as

KNN performs well with smaller datasets [181];

• Although bagging improved the prediction accuracy over all individual models except

RT and KNN on the QUES dataset and KNN and M5Rules on the UIMS dataset, the

differences were not statistically significant between bagging and individual models,

and the effect sizes were small. The potential reason for the improvement is that

bagging reduced variance by randomly selecting different training sets with

replacement [128]. However, bagging did not improve the prediction accuracy of stable

models, such as KNN or strong models, such as SVR;

• The additive regression ensemble model also increased the prediction accuracy over

all individual models except RT on the QUES dataset and MLP on the UIMS dataset.

Again, there were no significant differences between additive regression and individual

models, and the effect sizes were small;

• The stacking ensemble model increased the prediction accuracy of the individual

models in the QUES dataset because these individual models produced low prediction

accuracy and when they were integrated together, stacking became better than these

models. However, stacking decreased the prediction accuracy of all individual models

except RT on the UIMS dataset because RT did not perform well as the individual

models, and when it was integrated with other models in stacking, it reduced the

performance of stacking. Regarding the statistical tests, the differences were not

statistically significant between the group population means (i.e., individual and

stacking models) in both datasets, and the effect sizes were small;

• Although there were no significant differences, the homogeneous ensemble model

exhibited better performance results than the heterogeneous ensemble model on UIMS

and QUES datasets. Additive regression showed superior prediction accuracy

compared to the bagging ensemble model in both datasets;

122

• KNN as the individual model or as the base model in the additive regression ensemble

model achieved the best prediction accuracy compared to all the investigated models.

In terms of the proposed criteria and when compared to selected previous studies, this

model showed the best improvement in the QUES dataset, whereas it proved to be the

7th best model in the UIMS dataset;

• The parameter tuning improved the prediction accuracy of the ensemble models but

not that of the individual models in most cases. KNN as the base model in additive

regression in the parameter tuning achieved the best prediction accuracy.

These findings extend the current knowledge regarding the capability of ensemble

models to improve the prediction accuracy of individual models. However, there were no

significant differences between the individual and ensemble models. It is difficult to explain

this result, but it might be related to the limited size of the dataset. To resolve this issue, this

empirical study can be extended by using more recent and larger datasets for software

maintainability prediction. Therefore, the next chapter will replicate this empirical study across

various large representative datasets extracted from open-source software systems with

various programming languages. This replication will allow further investigation on the impact

of advanced machine learning models (homogenous and heterogeneous ensemble models)

over existing individual models to predict software maintainability.

123

Chapter 5. Second Empirical Study: Ensemble
Techniques to Predict Change
Maintenance Effort Using More Recent
and Larger Datasets

In this chapter, the impact of the same prediction models used in Chapter 4 is empirically

investigated in the context of predicting change maintenance effort of OO systems, along with

one more heterogeneous ensemble model, namely APE. These models are applied on five

different datasets (i.e., bug prediction datasets [57]) extracted from real-world software

systems. This chapter aims to further explore the application of ensemble models on more

recent and larger datasets, and to compare and evaluate the proposed models with the selected

models using the Auto-WEKA tool.

5.1. Introduction

The performance of machine learning techniques is closely related to the size and

characteristics of the dataset on which they are trained and tested. As mentioned in Chapter 4,

considerable uncertainty still exists in relation to the interpretation of machine learning

techniques applied to the problem of software maintainability because most of them were built

and evaluated on relatively limited and old datasets [7, 11-13, 15-18, 88, 152, 175], namely

QUES and UIMS datasets [9], and few studies used ensemble models [16, 88]. Additionally,

there is no clear evidence of which models provide high prediction accuracy. In Chapter 4, the

impact of ensemble models using these datasets was empirically evaluated and obtained, and

the results indicated improved accuracy over individual models. However, Chapter 4 used the

aforementioned old and small datasets that contained only a few rows. Consequently, there is

a clear need to explore the performance on more recent and larger datasets.

Data pre-processing techniques are essential for the production of high-quality datasets

and have a positive impact on building accurate prediction models [189]. Prior studies have

employed a wide variety of data pre-processing techniques on different software quality

datasets (e.g., NASA datasets) to achieve reliable model prediction [190-195]. These studies

124

emphasised that the implementation of an accurate model relies on high-quality datasets. The

datasets were used in this chapter collected for the purposes of the bug prediction. However,

these datasets include metrics that suitable to predict change maintenance effort. Therefore,

pre-processing techniques are performed on the bug prediction datasets [57] to achieve the

following objectives:

• Select appropriate source code metrics (independent variables) as predictors of

software maintainability;

• Determine the CHANGE metric (dependent variable) by calculating the number of

lines changed (added or deleted) per class during the maintenance period;

• Evaluate the quality of the bug prediction datasets and convert them into software

maintainability prediction datasets using pre-processing techniques.

To build an accurate maintainability prediction model, prior studies have applied several

types of machine learning models with configurations manually set (i.e., parameter tuning

[196] or selected features [18]). However, this approach requires considerable time and effort.

This study demonstrates the application of Auto-WEKA as a new, rapid, and automated tool

to identify the best accurate prediction model among sets of models, with different parameters

and features, using Bayesian optimisation [149, 150].

The main contributions of this chapter as follows:

• Pre-processing was applied on the bug prediction datasets to convert and ensure their

suitability for software maintainability prediction;

• Recent, large public datasets that have not been applied before in the prediction of

software maintainability, were used;

• This empirical study investigated the capabilities of both homogeneous and

heterogeneous ensemble models and found that the evaluated ensemble models

increased the prediction accuracy over most of the individual models. Also, there were

significant differences between some of the individual and heterogeneous ensemble

models. In the homogeneous ensemble models, the performance of bagging was better

than additive regression, whereas in the heterogeneous ensemble models, APE

achieved better prediction accuracy than stacking. However, in most cases, neither

homogeneous nor heterogeneous ensemble models increased the performance of SVR

and KNN;

125

• The Auto-WEKA tool was used. To the author’s knowledge, no previous work used

this tool to predict software maintainability.

5.2. Motivation

Several studies have investigated different pre-processing techniques for software quality

datasets [190-195]. However, these pre-processing techniques depend on the different

problems posed by particular datasets. Although most of the pre-processing techniques are

performed using a specific algorithm, some of the pre-processing techniques are manually

implemented, such as integrating attributes from multiple sources or aggregating two

attributes. Table 5.1 presents previous studies that applied preprocessing techniques on a

software quality dataset. Many of these studies used public datasets from NASA or the

PROMISE repository [190-194], and only one study extracted a dataset from an open-source

system [195]. It should be mentioned that creating software quality datasets, such as defect

datasets, is a challenging and time-consuming task [191, 192]

Table 5.1: Summary of previous studies that applied pre-processing techniques on the software quality

datasets.
Author Ref Dataset name Dataset Problem Pre-processing techniques to fix problem

Sunghun Kim et

al. (2011)
[195]

Defect dataset from

SWT and Debug

projects in Eclipse 3.4
system

Data noise Algorithm to detect and eliminate noises

David Gray et

al. (2011)
[191] NASA datasets

Repeated data, noise,

incorrect data
Meticulously documented data cleansing process

David Gray et
al. (2012)

[192] NASA datasets
Repeated data, noise,

incorrect data
Data cleansing process to prepare dataset for

binary classification and remove noise

Martin

Shepperd et al.

(2013)

[193] NASA datasets

Implausible, duplicate

instances, missing and

conflicting values

Algorithm used to transform and preprocess the
data

Jean Petri ´c et

al.(2016)
[190] NASA datasets Inconsistent data Introduce integrity checks for cleaning dataset

Baljinder
Ghotra et al.

(2017)

[194]
18 datasets from

NASA and

PROMISE

Low classification
accuracy and

misclassification rates

FS techniques

The most apparent gap from previous studies in Table 5.1 is that no studies performed

pre-processing techniques on the software maintainability dataset. This may be due to the

limited availability of public datasets for software maintainability prediction [5]. There is

limited research in the software maintainability prediction area [13], whereas defect prediction

is a relatively popular research field in software engineering [195].

Although the use of parameters tuning is recommended by Fu et al. [142] to improve the

performance of the prediction model, a limited number of studies have applied this approach

126

for software maintainability prediction. For example, a study by Dahiya et al. [196] applied a

genetic algorithm to optimise the parameters of a fuzzy logic-based maintainability metrics

system. Moreover, research studies have investigated FS as an alternative method to improve

the prediction accuracy. Kumar and Rath enhanced the performance of the software

maintainability prediction model using one method of FS, namely rough set analysis [18],

whereas Reddy and Ojha [83] used sets of seven FS: best first, linear forward selection, greedy

stepwise, evolutionary search, genetic algorithm, PSO, and Tabu search. However, tuning

parameters and selecting features require several attempts and significant effort to obtain

optimal results. Therefore, Auto-WEKA has been recently proposed to resolve this problem

and to provide mechanisms for both tuning parameters and selecting features [149, 150].

Finally, the main motivation of this chapter is to use recent, large, and high-quality datasets

that are suitable for the software maintainability prediction, investigate the application of

several ensemble models on these datasets to determine the best model to predict software

maintainability, and compare the results with models selected by Auto-WEKA tools.

5.3. Research Method

This chapter aims to increase the prediction accuracy of software maintainability in OO

systems by exploring the impact of ensemble models (homogeneous and heterogeneous). The

second empirical study consists of two studies, namely 5.A and 5.B. RQs for the second

empirical Study 5.A are provided as follows:

RQ5.A.1) What are the suitable metrics (independent variables) in the bug prediction datasets

to predict software maintainability?

RQ5.A.2) How can the dependent variable calculate the CHANGE metric from the bug

prediction datasets?

RQ5.A.3) How to evaluate the quality of the bug prediction datasets using preprocessing

techniques?

RQ5.A.4) How much can prediction models increase or decrease the performance compared

to a baseline (i.e., ZeroR)?

RQ5.A.5) How effective are individual models at predicting change maintenance effort?

RQ5.A.6) How do homogenous ensemble models perform in the context of predicting change

maintenance effort when compared to individual models?

127

RQ5.A.7) How do heterogeneous ensemble models perform in the context of predicting

change maintenance effort when compared to individual models?

Figure 5.1 depicts an overview of the research method performed to predict software

maintainability of OO systems. This method consists of the following steps.

Step 1. Evaluate the bug prediction datasets [57] extracted from Java systems to determine

suitable metrics. The potentially selected datasets contain several changes to fix maintenance

issues. These datasets were collected on the first released version and multiple updated

versions of the systems.

Step 2. Extract source code metrics (independent variables) from the bug prediction datasets:

the result from this step are the C&K [26] and OO metrics. These metrics are extracted using

various tools, including infusion, Moose and Churrasco [57].

Step 3. Calculate the change metric (dependent variable): the result from this step is performed

by manually summing two metrics from the bug prediction datasets, namely lines added until

and lines removed until. These metrics are calculated between subsequent versions by

evaluating system log files, counting the number of lines changed in each class (insertion or

deletion were counted as 1), and modifications (inserting and deleting were counted as 2).

Step 4. Create the datasets by combining the source code metrics from Step 2 with the change

metric from Step 3 into one file. The number of records in the dataset was equal to the number

of classes in the selected system.

Step 5. Divide datasets into ten sets using ten-fold cross-validation: the dataset is divided into

a training set to create machine learning models and a test set to evaluate the performance of

machine learning models.

Step 6. Construct sets of individual models: these models are selected from different categories

(see Table 3.1).

Step 7. Construct ensemble models from these individual models. The ensemble models

include two main types: homogeneous (i.e., bagging and additive regression) and

heterogeneous ensemble models (i.e., stacking and APE).

128

Step 8. Predict software maintainability: the output of the previous steps is evaluated and

compared to identify the most accurate prediction model.

Four main experiments were performed to answer these RQs for Study 5.A as described

below:

Experiment 1 (RQ5.A.4). The ZeroR model was applied to each dataset to determine a

baseline; then, it was used as a benchmark to compare the performance of the prediction

models.

Figure 5.1: Framework of the research method.

129

Experiment 2 (RQ5.A.5). Sets of individual models (i.e., RT, MLP, KNN, M5rules and SVR)

were built, and the best one for predicting software maintainability in each dataset was

identified.

Experiment 3 (RQ5.A.6). Homogeneous ensemble models (i.e., bagging and additive

regression) were constructed and the results were compared with the performance of individual

models.

Experiment 4 (RQ5.A.7). Heterogeneous ensemble models (i.e., stacking and APE) were

constructed and the results were compared with the performance of individual models.

This chapter also aims to use the Auto-WEKA tool to identify the best model to predict

software maintainability by applying it to previous datasets. To achieve the highest prediction

accuracy, this tool tries several models with different tuning parameters and selected features.

The second part of the empirical study is performed to respond to the following RQs for

Study 5.B:

RQ5.B.1) What is the best model selected by Auto-WEKA to predict software maintainability

in each dataset?

RQ5.B.2) How many configurations are attempted to select the best model?

RQ5.B.3) What are the tuning parameter settings in the selected model?

RQ5.B.4) What are the selected features in the selected model?

RQ5.B.5) What are the MAE and MMRE values for the selected models?

RQ5.B.6) What is the performance of the model selected by Auto-WEKA compared with that

of the baseline (i.e., ZeroR)?

RQ5.B.7) What is the performance of the model selected by Auto-WEKA compared with that

of performance of the best model in Study 5.A?

5.4. Experimental Data Setup

The following subsections provide information about details of the data pre-processing, and

an explanation of dependent and independent variables used for the software maintainability

datasets. Furthermore, they present the descriptive statistics and correlation between the

metrics in the datasets.

130

5.4.1 Data pre-processing

This section aims to apply data pre-processing techniques to bug prediction datasets to produce

a new and high-quality version of these datasets suitable for software maintainability

prediction. Therefore, this section aims to answer RQ5.A.1, RQ5.A.2 and RQ5.A.3 for Study

5.A.

The bug prediction datasets have several irrelevant metrics and do not provide a direct

measure for software maintainability (i.e., CHANGE metric). Additionally, they may contain

some issues, such as incomplete, missing values, outliers or inconsistencies that negatively

affect the data quality and prediction models. Therefore, data pre-processing is introduced to

create a new version of the bug prediction datasets. The data pre-processing techniques include

the following steps [125]:

• Data reduction: established to decrease the data size by employing aggregation,

eliminating redundant features, selecting attribute subsets or clustering;

• Data integration: applied to integrate data from various sources into a separate

coherent source. This technique is established to remove redundant data (where the

same attribute appears again under a different name) and inconsistent naming (where

the same attribute values appear under different names);

• Data cleaning: applied to clean noise, missing values and inconsistencies of data;

• Data transformation: performed to improve the accuracy and efficiency of data

mining by transformation of the data. This technique is designed to aggregate,

generalise or normalise the data.

Figure 5.2 depicts the framework of the pre-processing techniques used in Study 5.A.

First, the original version of the bug prediction datasets [57] was evaluated. Second, sets of

four primary pre-processing techniques were applied in the order proposed in [125]: data

reduction, data integration, data cleaning and data transformation. Finally, a new version of

the high-quality datasets was produced.

131

A. Evaluate the bug prediction datasets

This chapter uses the bug prediction datasets proposed by Marco Ambros et al. [57]. The

original version of the bug prediction datasets includes five datasets extracted from open-

source software systems. These datasets collected changes during a 3-year maintenance period

and consist of 439 and 2,196 classes with the same number of files and metrics. Table 5.2

presents a summary of bug prediction datasets [57]. Each dataset includes eight files:

biweekly-ck-values, biweekly-oo-values, bug-metrics, change-metrics, churn, complexity-

code-change, entropy and single-version-ck-oo. However, several of these files are

inappropriate and include irrelevant metrics for software maintainability prediction. Thus, pre-

processing techniques were applied to determine suitable metrics (independent variables) to

predict software maintainability (RQ5.A.1) and to calculate the CHANGE metric (dependent

variable) to capture the element of maintainability (RQ5.A.2). In addition, these techniques

aim to evaluate the quality of the bug prediction datasets and produce a new version of the

dataset (i.e., software maintainability prediction datasets) (RQ5.A.3).

Figure 5.2: Framework of data pre-processing.

132

Table 5.2: Summary of the bug prediction datasets [57].

Dataset name Time period # Class #Versions #Transactions

#Features in

single-version-

ck-oo

#Features

in change-

metrics

Eclipse JDT Core
1.1.2005 -

6.17.2008
997 91 9,135 22 20

Eclipse PDE UI
1.1.2005 -

9.11.2008
1562 97 5,026 22 20

Equinox framework
1.1.2005 -

6.25.2008
439 91 1,616 22 20

Lucene
1.1.2005 -

10.8.2008
691 99 1,715 22 20

Mylyn
1.17.2005 -

3.17.2009
2196 98 9,189 22 20

B. Data reduction

The primary objective of data reduction is to decrease the size of the dataset by either removing

or aggregating variables [125]. The bug prediction datasets have problems that require data

reduction: the datasets have several unnecessary files and irrelevant metrics (independent

variables) for the software maintainability prediction, and have not clearly defined the

CHANGE metric (dependent variable) to predict software maintainability. Therefore, three

methods were applied to address these problems. First, six unnecessary files of software

maintainability were manually removed: biweekly-ck-values, biweekly-oo-values, bug-

metrics, churn, complexity-code-change and entropy, and only single-version-ck-oo and

change-metrics files remained. Second, five bug metrics were manually removed from the

single-version-ck-oo file, namely bugs, nonTrivialBugs, majorBugs, criticalBugs and

highPriorityBugs, because these metrics are not related to software maintainability. As a result,

the remaining 17 metrics (i.e., OO and CK) may be performed as predictors for software

maintainability (independent variable); the description of these metrics is provided in Section

5.4.3. Third, all metrics were removed from the change-metrics file except two: lines added

until and lines removed until, as these metrics are necessary to calculate the CHANGE metric

value. Fourth, lines added until and lines removed until were aggregated into the CHANGE

metric (dependent variable), which captures the element of interest of software maintainability.

The results from applying data reduction are two files: the single-version-ck-oo file, which has

17 metrics (independent variables), and a change-metrics file that has the CHANGE metric

(dependent variable), calculated by aggregating lines added until and lines removed until

metrics.

133

C. Data integration

Data integration aims to integrate data from many sources into a single coherent source [125].

This pre-processing technique assists in preventing inconsistencies and redundancies in the

datasets. The results of the datasets from previous pre-processing techniques include two files:

the single-version-ck-oo file, which has 17 metrics (independent variables), and a change-

metrics file that has the CHANGE metric (dependent variable). These two files were combined

into a single file with 17 OO and CK metrics (independent variables) and only one CHANGE

metric (dependent variable) for software maintainability prediction datasets.

D. Data cleaning

The primary objective of data cleaning is to detect and remove missing, noisy, and outlier

values from the dataset source [125]. The results of the datasets from the previous pre-

processing techniques are one file with 17 OO and CK metrics (independent variables) and

one CHANGE metric (dependent variable). First, these datasets were evaluated in terms of

missing data, but none was found due to accurate data collection. Second, the software

maintainability prediction datasets were assessed in terms of outliers by applying the Inter

Quartile Range (IQR) filter in WEKA. This filter divides the dataset into three quartiles: first

quartile (Q1), which is the centre value between the median and the lowest value of the dataset

that divides the lowest 25% of the dataset from the highest 75%; second quartile (Q2), which

is the middle value that divides the dataset into halves; and third quartile (Q3), which is the

middle value between the highest and the median values of the dataset that divides the highest

25% of the dataset from the lowest 75% [197]. The IQR filter relies on interquartile ranges,

which recognise any value outside the interval as outliers, (Q1−x(Q3−Q1), Q3+x(Q3−Q1))

[197], where x is a constant number. IQR is the difference between third and first quartiles

(IQR=Q3−Q1) [197]. Consequently, this filter identifies the outliers by creating a new

attribute, namely the outlier index. Third, the Removewithvalues filter was applied in WEKA

to remove outliers in the datasets. The parameter values in this filter were changed as follows:

the outlier index was inserted in the attribute index to determine the outlier attribute, which

was inserted in the nominal index to determine outlier values. Finally, the result from applying

data cleaning is that the software maintainability prediction datasets are free from outliers.

Figure 5.3 shows the proportion of outliers removed during data cleaning.

https://en.wikipedia.org/wiki/Median

134

E. Data transformation

The main objective of data transformation is to convert data into format suitable for mining by

smoothing, aggregation or normalisation. As the software maintainability prediction datasets

do not have any issues requiring data transformation, applying these steps to the datasets is not

necessary [125].

Table 5.3 presents summary results from applying pre-processing techniques on the bug

prediction datasets. The final version after applying these techniques is called software

maintainability prediction datasets. This version can be downloaded using the following link:

https://zenodo.org/record/4256386#.X6aMzogzY2w

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Eclipse JDT Core Eclipse PDE UI Equinox

Framework

Lucene Mylyn

Number of classes in the new version of the dataset Number of outliers removed

Figure 5.3: Proportion of outliers removed during data cleaning.

135

Table 5.3: Summary result of pre-processing techniques.
Pre-processing

techniques
Problem Method Result

Data reduction

The datasets contain

several unnecessary files
of software

maintainability

Manually delete six unnecessary

files from the bug prediction

datasets.

The datasets have only two files: single-

version-ck-oo and change-metrics

The datasets contain

several irrelevant metrics
of software

maintainability

Manually delete five bug metrics
from the single-version-CK-OO file

and delete all metrics from the

change-metrics file except two

metrics.

The datasets have only two files: single-
version-CK-OO, which has 17 CK and OO

metrics, and change-metrics, which has two

lines added until and lines removed until

metrics

The datasets need to
identify dependent

metric (CHANGE)

Calculate dependent metric

(CHANGE) by aggregating lines

added until and lines removed until

metrics.

The datasets have only two files: single-

version-CK-OO, which has 17 CK and OO

metrics, and change-metrics, with only one

metric: CHANGE

Data integration

The datasets include two

separate files, one
contains independent

variables and the other

the dependent variable.

Combine two files into a single file
and modify the name of the file to

software maintainability prediction.

The datasets have only one file (software

maintainability prediction datasets) that has
17 OO and CK metrics (independent

variables) and one CHANGE metric

(dependent variable)

Data cleaning
The datasets contain

outliers

Apply InterQuartileRange filter to
identify outliers, then perform

removewithvalues filter to remove

outliers.

The software maintainability prediction

datasets do not have outliers or missing

values.

Data

transformation

The datasets do not

require data

transformation

NA NA

5.4.2 Dependent variable: maintainability.

Maintainability is a dependent variable that may be identified from several independent

variables (metrics). In this study, maintainability is defined as the number of changes made in

the class during the maintenance process. These changes are determined by calculating the

number of added or deleted lines in each class during the maintenance period [10, 11, 13, 14]

and correspond to the CHANGE metric described by L&H [9]. A higher value of CHANGE

refers to higher maintenance effort, which implies lower maintainability. In the software

maintainability prediction datasets, the dependent variable (CHANGE) was calculated by

summing lines added until and lines removed until metrics, which indicate the lines added to

or removed from the classes during the maintenance period, respectively [57]. The descriptive

statistics of the CHANGE metric after removing outliers for each dataset of the software

maintainability prediction datasets are shown in Table 5.4.

136

Table 5.4: Descriptive statistics for the CHANGE metric.
Dataset name # Classes Min. Mean Median Max. Standard deviation

Eclipse JDT Core 695 0 825.25 366 31245 2013.10

Eclipse PDE UI 1209 0 230.41 100 6824 424.56

Equinox Framework 276 0 242.59 56 5684 520.87

Lucene 532 0 106.97 19 3089 247.50

Mylyn 1573 0 110.80 29 9000 316.04

Figure 5.4 illustrates the residual boxplots of the CHANGE metric for each dataset of

the software maintainability prediction datasets. This diagram depicts the first quartile (Q1),

median, third quartile (Q3), and whiskers values. The line across the middle of the solid body

of the boxes indicates the median value, which is the middle 50% of the data (between Q1 and

Q3). Q1 and Q3, which are inside the solid body of the boxes, present values of 25% and 75%

of the data, whereas the vertical lines (“whiskers”) represent the spread of values that fall

within 1.5 times the inter-quartile range [197]. From the data in Figure 5.4, it is apparent that

the median value of CHANGE in Eclipse JDT Core is higher than that of the other datasets,

indicating that Eclipse JDT Core has the highest maintenance effort, which implies the lowest

maintainability. In contrast, the median value of CHANGE in Lucene is lower compared to

other datasets, which indicates that Lucene has the lowest maintenance effort, which implies

the highest maintainability.

Figure 5.4: Boxplots of CHANGE metric.

137

5.4.3 Independent variable: metrics

The independent variables consist of 17 source code metrics that include 6 CK metrics [26]

and 11 OO metrics. The details of the extraction of these metrics were described by Ambros

et al. [57]. A brief description of each metric (independent variable) used in this chapter is

presented in Table 3.5 in Section 3.4.2.

5.4.4 Descriptive statistics

Table B.1 in the Appendix compares the descriptive statistics, namely min, max, median, mean

and Stdev for all the metrics (CK and OO metrics) across all software maintainability datasets.

The results obtained from this table can be summarised as follows:

1. LOC metrics, which refers to lines of code, range from 0 to 2475;

2. In all datasets, the median value of the NOC metrics is zero. This implies that

there are very few sub-classes in all datasets;

3. The mean values of the NOA metric in all datasets range from 3.0 to 4.9, which

indicates that the average number of attributes is relatively close;

4. The mean values of DIT range from 1.22 to 2.59, which refers to all the datasets

with almost the same depth of inheritance tree;

5. The median of NOPRM and NOPA in all datasets has zero values. This

suggests that the number of private methods and the number of public attributes

are very low;

6. The median value of the coupling metric (i.e., RFC) in Eclipse JDT Core and

Eclipse PDE UI is higher than those in other datasets;

7. The median value of the number of methods (i.e., NOM metric) in all datasets

ranged from 4 to 7. This refers to the number of methods that are almost similar

in all systems;

8. The remaining metrics have a different number of median values. Accordingly,

it is challenging to conclude the overall results.

Overall, there are no zero values for each metric in all datasets. Therefore, all metrics

are considered relevant to measure software maintainability. Briand et al. [198] demonstrated

that metrics that have zero values for all descriptive statistics should be removed from the

analysis because they have no potential to be good predictors.

138

5.4.5 Correlation between metrics in the datasets

Figure 5.5 shows Pearson’s correlation between source code metrics (independent variables),

along with the change metric (dependent variable). From the summary data across software

maintainability datasets in Figure 5.4, it seems that there are no red coloured circles, which

implies no negative correlation between metrics. In addition, there are several weak positive

linear correlations between metrics (e.g., LCOM with CBO), and this indicates that it is not

necessary to eliminate any metrics because they all measure different elements of the code.

Furthermore, there are multiple white circles that refer to uncorrelated metrics (e.g., NOC with

other metrics). However, there are few strong positive linear correlations between some

metrics, such as RFC and LOC in Eclipse JDT Core dataset and NOA and NOPA in Eclipse

PDE UI dataset, but they were not removed. These results suggest that most of the metrics in

software maintainability datasets are uncorrelated, and the characteristic of these datasets are

different, hence maintainability prediction models are constructed for each dataset separately.

139

Figure 5.5.A: Correlation between source code metrics in the

Eclipse JDT Core dataset.
Figure 5.5.B: Correlation between source code metrics in the

Eclipse PDE UI dataset.

Figure 5.5.C: Correlation between source code metrics in the

Equinox Framework dataset.
Figure 5.5.D: Correlation between source code metrics in the

Lucene dataset.

Figure 5.5.E: Correlation between source code metrics in the Mylyn dataset.

Figure 5.5: Correlation between source code metrics in the software maintainability datasets.

5.5. Results and Analyses

In this section, the results and analyses performed in Study 5.A are presented, which includes

four experiments, each one addressing one research question. The prediction models were built

using WEKA tools presented in Chapter 3 and the default values in their parameters [120]. In

sequence, the results of the statistical tests are provided. Furthermore, this section presents the

results and analyses performed in Study 2.B using the Auto-WEKA tool, described in Section

3.3.2.

140

Moreover, this section provides a one-way ANOVA test to examine H0, which states that all

the group population means are equal, and H1, which states that at least one pair of means is

different. Factor A includes the residuals values of the prediction models, grouped by each

individual model used as the base model in the ensemble models. Therefore, 25 tables (5

individual models × 5 datasets) are produced to compare the performance among the five

prediction models (one individual model and four individual models as the base model in

bagging, additive regression, stacking and APE).

5.5.1 Comparison between prediction models

To visualise the data distribution using quartiles, Figure 5.6 shows a boxplot of MRE for every

prediction model investigated. This visualisation is based on the MMRE value, which refers

to “X”. The prediction model, which has the lowest MMRE value, the narrowest box and the

smallest range is considered preferable. In Figure 5.6, there are clear cases of decrease in the

MMRE values indicated by “X” in the diagram, and reduction in the boxes spread, which are

considered to have high prediction accuracy. These cases are summarised across all datasets

in general as follows:

• SVR as an individual model or a base model in bagging and additive regression

outperformed all other prediction models, followed by KNN. It seems that SVR and

KNN performed very similarly because they had smaller box and lower IQR;

• Bagging ensemble models substantially increased the accuracy over RT and MLP.

However, these models slightly improved the accuracy of M5Rules and had a minor or

negative impact on KNN and SVR;

• Applying bagging ensemble models to the base models positively influenced the

overall prediction accuracy compared to additive regression ensemble models;

• The prediction accuracy of APE ensemble models was better than that of stacking

ensemble models.

141

Figure 5.6.A: Boxplot of the MRE for prediction models on the Eclipse JDT Core dataset.

Figure 5.6.B: Boxplot of MRE for prediction models on the Eclipse PDE UI dataset.

|_____||______||_____||_____||_____||_| |_|
 RT MLP KNN M5Rules SVR Stacking APE

|_____||______||_____||_____||_____||_| |_|
 RT MLP KNN M5Rules SVR Stacking APE

142

Figure 5.6.C: Boxplot of MRE for prediction models on the Equinox Framework dataset.

Figure 5.6.D: Boxplot of MRE for prediction models on the Lucene dataset.

|_____||______||_____||______||______||_| |_|
 RT MLP KNN M5Rules SVR Stacking APE

|_____||______||_____||______||_____||_| |_|
 RT MLP KNN M5Rules SVR Stacking APE

143

Figure 5.6: Boxplot of MRE for prediction models on all datasets.

Figure 5.7 compares the results obtained from the boxplot of the residuals for the

prediction models across all datasets. The MAE value is defined by an ‘X’; a lower score,

small whiskers, and narrow box refer to better performance. The following are the most evident

findings from this figure:

• The prediction models performed better than the ZeroR model in almost all situations;

• The Mylyn dataset achieved the highest total prediction accuracy compared with other

datasets; this result may be explained by the fact that this dataset was extracted from a

large system that includes 2,196 classes;

• The ensemble models yield enhanced prediction accuracy over most of the investigated

individual models. However, the statistical tests will be futher investigated, as the

difference between the ensemble and individual models may not be significant;

• SVR as the individual model or the base model in bagging and additive regression

outperformed other prediction models and recorded the highest prediction accuracy

across all datasets.

Figure 5.6.E: Boxplot of MRE for prediction models on the Mylyn dataset.

|_____||______||______||_____||_____| |_| |_|
 RT MLP KNN M5Rules SVR Stacking APE

144

Figure 5.7.A: Box plot of the residuals for prediction models on the Eclipse JDT Core dataset.

Figure 5.7.B: Box plot of the residuals for prediction models on the Eclipse PDE UI dataset.

 |__||_____||_____||_____||_____||____||_| |_|
Baseline RT MLP KNN M5Rules SVR Stacking APE

 |__||_____||_____||_____||____||____| |_| |_|
Baseline RT MLP KNN M5Rules SVR Stacking APE

145

Figure 5.7.C: Box plot of the residuals for prediction models on the Equinox Framework dataset.

Figure 5.7.D: Box plot of the residuals for prediction models on the Lucene dataset.

 |__||_____||_____||_____||_____||_____||_| |_|
Baseline RT MLP KNN M5Rules SVR Stacking APE

 |__||_____||_____||_____||_____||_____| |_| |_|
Baseline RT MLP KNN M5Rules SVR Stacking APE

146

Figure 5.7: Boxplot of the residuals for prediction models on all datasets.

 Figure 5.8 shows a histogram of the Pred (.25) values to compare the accuracy

prediction between models. The higher the value in this diagram, the better the performance

achieved by the prediction model, and the model accuracy criteria mentioned earlier are

Pred(.30) ≥ 0.70 or Pred (.25) ≥ 0.75 [34]. From Figure 5.8, the following observations are

made:

• KNN as an individual model or a base model in bagging and additive regression

outperformed all other prediction models across the datasets. The potential reason why

KNN produced better performance than SVM in term of Pred is that KNN predicts by

selecting the closest neighbours of the instances in the training set, whereas the

calculation of Pred is based on the proportion of all the instances in the dataset where

the MRE is less than or equal to 25 or 30. Consequently, it is easy to determine these

instances from the prediction of KNN. However, this difference may not be significant;

• APE achieved the best prediction accuracy with KNN in the Eclipse JDT Core dataset,

the second best in Eclipse PDE UI and Mylyn datasets, and the third best in the

remaining datasets.

Figure 5.7.E: Box plot of the residuals for prediction models on the Mylyn dataset.

 |__||_____||_____||_____||_____||____||_| |_|
Baseline RT MLP KNN M5Rules SVR Stacking APE

147

Figure 5.8: Pred(.25) for each prediction model on all datasets.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

RT MLP KNN M5Rules SVR

P
re

d
(.

2
5
)

Prediction models

Individual model Bagging Additive regression Stacking APE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

RT MLP KNN M5Rules SVR

P
re

d
(.

2
5
)

Prediction models

Individual model Bagging Additive regression Stacking APE

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

RT MLP KNN M5Rules SVR

P
re

d
(.

2
5
)

Prediction models

Individual model Bagging Additive regression Stacking APE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

RT MLP KNN M5Rules SVR

P
re

d
(.

2
5
)

Prediction models

Individual model Bagging Additive regression Stacking APE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

RT MLP KNN M5Rules SVR

P
re

d
(.

2
5
)

Prediction models

Individual model Bagging Additive regression Stacking APE

Figure 5.8.E: Pred(.25) for each prediction model on the Mylyn

dataset.

Figure 5.8.C: Pred(.25) for each prediction model on the

Equinox Framework dataset.
Figure 5.8.D: Pred(.25) for each prediction model on the Lucene

dataset.

Figure 5.8.B: Pred(.25) for each prediction model on the Eclipse

PDE UI dataset.
Figure 5.8.A: Pred(.25) for each prediction model on the Eclipse

JDT Core dataset.

148

Figure 5.9 presents a histogram of the Pred (.30) values to compare the accuracy prediction

between models. The higher the value in this diagram, the better the accuracy achieved by the

prediction model. From Figure 5.9, the following observations are made:

• APE and KNN as a base model in bagging achieved the best prediction accuracy

compared to all prediction models in Eclipse JDT Core, followed by KNN as an

individual model or base model in the additive regression ensemble model;

• KNN as an individual model or a base model in bagging and additive regression

outperformed all other prediction models in the accuracy prediction of the remaining

datasets;

• M5Rules as a base model in bagging and SVR as a base model in additive regression

produced the highest prediction accuracy in the Eclipse PDE UI dataset, which is the

same result as KNN.

149

Figure 5.9: Pred(.30) for each prediction model on all datasets.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

RT MLP KNN M5Rules SVR

P
re

d
(.

3
0
)

Prediction models

Individual model Bagging Additive regression Stacking APE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

RT MLP KNN M5Rules SVR

P
re

d
(.

3
0
)

Prediction models

Individual model Bagging Additive regression Stacking APE

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

RT MLP KNN M5Rules SVR

P
re

d
(.

3
0
)

Prediction models

Individual model Bagging Additive regression Stacking APE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

RT MLP KNN M5Rules SVR

P
re

d
(.

3
0
)

Prediction models

Individual model Bagging Additive regression Stacking APE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

RT MLP KNN M5Rules SVR

P
re

d
(.

3
0
)

Prediction models

Individual model Bagging Additive regression Stacking APE

Figure 5.9.A: Pred(.30) for each prediction model on the

Eclipse JDT Core dataset.
Figure 5.9.B: Pred(.30) for each prediction model on the

Eclipse PDE UI dataset.

Figure 5.9.C: Pred(.30) for each prediction model on Equinox

Framework dataset.
Figure 5.9.D: Pred(.30) for each prediction model on the

Lucene dataset.

Figure 5.9.E: Pred(.30) for each prediction model on the Mylyn

dataset.

150

Table 5.5, Table 5.6, Table 5.7 and Table 5.8 present the MMRE, MAE and SA values

achieved by each prediction models for the software maintainability prediction datasets. Bold

values (highlighted in light green) in the tables show the best results among each experiment

in each dataset, whereas bold together with underlined values (highlighted in dark green)

indicate the best results among each experiment in all datasets. The lowest MMRE and MAE

and highest SA refer to the best results depending on the measure.

A. Experiment 1: comparison between prediction models and baseline, RQ5.A.4

ZeroR depends on the dependent variable only (i.e., CHANGE metric) and predicts the mean

value of this metric. It is implemented to determine a baseline and is used as a benchmark to

evaluate the performance of the prediction models. When we compare the results of ZeroR in

Table 5.5 against the results of the prediction models in Table 5.6, Table 5.7 and Table 5.8, all

machine learning models performed better than the ZeroR model, except in the case of MLP

as the individual model and as the base model in additive regression in the Mylyn dataset.

Moreover, other models (i.e., stacking in Eclipse PDE UI and Equinox Framework datasets)

produce the same performance as the ZeroR model.

Table 5.5: Baseline models and their corresponding MMRE, MAE and SA values.

Model
Eclipse JDT Core Eclipse PDE UI Equinox Framework Lucene Mylyn

MMRE

ZeroR

13.79 6.12 5.58 15.18 5.92

MAE

823.90 223.46 282.04 127.15 127.67

SA

0 0 0 0 0

Dark green: represents the best results in all experiments.

B. Experiment 2: comparison between individual models, RQ5.A.5

As shown in Table 5.6, the results of the five individual models indicate that SVR

outperformed the individual models in the prediction accuracy for all datasets except the

Eclipse JDT Core dataset, which achieved the best result using KNN (indicated by the bold

values), followed by SVR. Furthermore, the performance of SVR in the Eclipse PDE UI

dataset is better than all prediction models across the software maintainability datasets in

Experiment 2 (i.e., bold and underlined values), with a value of 1.47. However, MLP attained

negative values in SA measurement in the Equinox Framework and Lucene datasets, indicating

that their results were worse than the baseline and did not produce meaningful predictions in

this empirical study [99]. However, the MLP performed better than the baseline in the

remaining datasets.

151

Table 5.6: Individual models and their corresponding MMRE, MAE and SA values.

Individual models
MMRE

Eclipse JDT Core Eclipse PDE UI Equinox Framework Lucene Mylyn

RT 10.15 5.79 4.96 13.96 5.40

MLP 8.93 3.22 4.08 19.59 4.45

KNN 4.04 2.35 5.18 10.71 2.28

M5Rules 5.88 2.26 5.41 11.30 3.39

SVR 4.24 1.47 3.13 5.19 1.83

 MAE

RT 746.59 216.23 230.00 119.08 123.95

MLP 801.51 191.24 441.03 157.47 118.49

KNN 678.86 197.03 238.36 114.69 111.61

M5Rules 683.62 168.44 243.79 108.30 102.94

SVR 533.78 151.41 200.33 96.17 90.30

 SA

RT 9.38 3.24 18.45 6.35 2.91

MLP 2.72 14.42 -56.37 -23.84 7.19

KNN 18.88 14.14 22.52 10.26 18.56

M5Rules 17.03 24.62 13.56 14.83 19.37

SVR 35.21 32.24 28.97 24.36 29.27

Dark green: represents the best results in all experiments.

Light green: represents the best results for each experiment.

C. Experiment 3: comparison between homogeneous ensemble models, RQ5.A.6

• Bagging

After applying homogeneous ensemble models (i.e., bagging) on each individual model, as

shown in Table 5.7, the bagging ensemble model increased the prediction accuracy over most

of the individual models. SVR as a base model in the bagging ensemble produced the highest

accuracy in all software maintainability datasets (i.e., bold values), and achieved the best result

in the Eclipse PDE UI dataset, reaching 1.46 (i.e., bold values underlined). However, the

positive influence of the bagging ensemble on SVR is considered low, as the change is only

0.01 (0.68%) in the Eclipse PDE UI dataset and 0.08 (2.62%) in the Equinox Framework, and

in the remaining datasets the performance of SVR decreased. However, the bagging ensemble

model increased the prediction accuracy of RT, M5Rules, and MLP more than the KNN and

SVR models. Overall, the bagging ensemble model increased the performance of all the

individual models except SVR and KNN in the Eclipse JDT Core and Mylyn datasets, and

SVR as the base model in bagging achieved the best results.

• Additive regression

Table 5.7 shows the results after employing homogeneous ensemble models (i.e., additive

regression) on each individual model. It is apparent from these results that the additive

regression ensemble model improved the prediction accuracy over most of the individual

models. SVR as a base model in the additive regression ensemble achieved the best accuracy

prediction in all software maintainability datasets except for the Eclipse JDT Core dataset,

152

where the best result was achieved by KNN (as indicated by the bold values). Furthermore,

SVR in the Eclipse PDE UI dataset outperformed all other models across the software

maintainability datasets in Experiment 3 (bold values with underline), reaching 1.46. This

result is slightly better compared to that of the SVR as the individual model, which was 1.47.

Interestingly, additive regression had a positive influence on MLP across all datasets, whereas

it had a negative influence on RT and SVR in the Equinox Framework and Lucene datasets.

Nevertheless, additive regression had no impact on the performance of KNN across all datasets

and performed the same result as the KNN individual models. Finally, the additive regression

ensemble models increased the accuracy prediction over most individual models, or produced

results similar to the individual models, as is the case of KNN. Regarding SA measurement,

all homogeneous ensemble models outperformed the baseline except MLP in the Equinox

Framework and Lucene datasets, which recorded negative values. Similarly, MLP as the

individual model achieved similar values in these datasets.

153

Table 5.7: Homogeneous ensemble models and their corresponding MMRE, MAE and SA values.

Bagging Models
MMRE

Eclipse JDT Core Eclipse PDE UI Equinox Framework Lucene Mylyn

RT 9.08 4.20 4.79 12.56 4.01

MLP 7.00 2.98 4.71 15.69 3.23

KNN 4.43 2.21 4.73 8.99 2.39

M5Rules 5.69 2.26 4.25 10.67 3.22

SVR 4.25 1.46 3.05 5.53 1.86

 MAE

RT 662.77 188.29 211.23 110.58 107.26

MLP 624.67 195.80 297.15 139.09 100.89

KNN 573.45 177.46 204.27 107.70 96.72

M5Rules 608.98 169.25 212.29 115.03 102.71

SVR 522.94 150.35 195.08 93.86 90.93

 SA

RT 19.56 15.74 25.11 13.04 15.99

MLP 24.18 12.38 -5.36 -9.39 20.98

KNN 30.40 20.62 28.43 15.30 24.37

M5Rules 26.08 24.26 24.73 9.54 19.55

SVR 36.53 32.72 30.83 26.19 28.77

Additive

regression models
MMRE

RT 9.70 5.79 5.55 14.00 5.39

MLP 8.60 3.14 4.00 19.28 4.32

KNN 4.06 2.35 5.18 10.71 2.28

M5Rules 5.69 2.37 4.95 11.02 3.32

SVR 4.15 1.46 3.28 5.23 1.78

 MAE

RT 743.77 216.23 232.12 118.62 122.97

MLP 790.43 197.40 418.33 155.71 116.67

KNN 678.86 197.03 238.36 114.69 111.61

M5Rules 672.06 177.20 252.74 114.10 102.77

SVR 515.58 151.18 204.67 95.68 89.67

 SA

RT 9.72 3.24 17.70 6.71 3.68

MLP 4.06 11.66 -48.32 -22.46 8.61

KNN 18.88 14.14 22.52 10.26 18.56

M5Rules 18.43 20.70 10.39 10.27 19.50

SVR 37.42 32.35 27.43 24.76 29.77

Dark green: represents the best results in all experiments.
Light green: represents the best results for each experiment.

D. Experiment 4: comparison between heterogeneous ensemble models, RQ5.A.7

• Stacking

In Table 5.8, the heterogeneous ensemble model (i.e., stacking) combined five individual

models (i.e., RT, MLP, KNN, M5Rules and SVR) and used linear regression as a metamodel

to integrate their outputs. The results reveal that the stacking performance did not improve

compared to that of the five individual models. Stacking increased the performance of RT and

MLP in three datasets (i.e., Eclipse JDT Core, Lucene and Mylyn), and showed a slight

decrease in performance in the remaining individual models across datasets. Stacking achieved

the highest prediction accuracy in Mylyn, followed by the Equinox Framework dataset,

achieving 3.78 and 5.58, respectively. Additionally, stacking performed well in terms of SA

154

measurement; however, it recorded zero values in the Eclipse PDE UI and Equinox Framework

datasets, which indicates no improvement over the baseline in these datasets.

• APE

Another heterogeneous ensemble model shown in Table 5.8, namely APE, was performed by

considering the average of the five individual models (i.e., RT, MLP, KNN, M5Rules and

SVR), thus, it provides a single output value [140]. The findings demonstrate that the APE

advanced the prediction accuracy of RT and MLP in all datasets except the Equinox

Framework. It also improved the prediction accuracy of M5Rules in three datasets (i.e.,

Equinox Framework, Lucene and Mylyn). However, APE achieved a lower prediction

accuracy than SVR in all datasets as well as a lower prediction accuracy than KNN in all

datasets except the Equinox Framework. The finding of APE confirms previous finding of

stacking that produced a lower performance because it integrated the good and bad

performance of the individual models. APE achieved the highest prediction accuracy in the

Eclipse PDE UI, followed by the Mylyn dataset, reaching 2.83 and 3.14, respectively.

 Finally, the most evident finding from previous tables is that bagging achieved better

performance than additive regression, whereas APE achieved better performance than

stacking. Furthermore, the prediction models, which were performed on large datasets (i.e.,

Eclipse PDE UI and Mylyn), achieved better prediction accuracy than the same prediction

models performed on small datasets, ranging from 276 to 695. This suggests that such

prediction models are robust for large datasets. Furthermore, in most cases, SVR as an

individual model or a base model in bagging and additive regression is the best choice to

predict software maintainability.

Table 5.8: Heterogeneous ensemble models and their corresponding MMRE, MAE and SA values.

Stacking models

(RT, MLP, KNN,

M5Rules, SVR)

Eclipse JDT Core Eclipse PDE UI Equinox Framework Lucene Mylyn

MMRE

5.99 6.12 5.58 12.02 3.78

MAE

644.21 223.46 282.04 115.51 111.81

SA

21.81 0 0 9.16 12.42

APE models

(RT, MLP, KNN,

M5Rules, SVR)

MMRE

6.03 2.83 4.11 11.7 3.14

MAE

590.91 161.82 231.21 109.48 96.60

SA

28.28 27.59 19.79 13.90 24.33

Dark green: represents the best results in all experiments.

Light green: represents the best results for each experiment.

155

One-way ANOVA results for different datasets using the residual values for RT, MLP, KNN,

M5Rules, and SVR and ensemble models are listed as follows: Table 5.9 to Table 5.13 for

Eclipse JDT Core dataset; Table 5.14 to Table 5.18 for Eclipse PDE UI dataset; Table 5.19 to

Table 5.23 for Equinox Framework dataset; Table 5.24 to Table 5.28 for Lucene dataset; Table

5.29 to Table 5.33 for Mylyn dataset.

The results obtained from these tables indicate that, in most cases, the performance of

the prediction models was not significantly different in terms of the residual values from each

other for Factor A because their p-values are larger than the significance level (α = 0.05), so

H0 is accepted. However, the p-values in the Eclipse PDE UI dataset (see tables from Table

5.14 to Table 5.18) and other tables (Table 5.20, Table 5.25,

Table 5.29 and Table 5.30) are lower than the significance level. Therefore, the

performance of the prediction models in these tables was significantly different in terms of the

residual values from each other for Factor A, and H0 is rejected and H1 is accepted, meaning

that for Factor A, at least two group means significantly differ from each other. According to

the standard classifications of Cohen proposed in Section 3.5.5, the results of eta-squared

indicate that the effect sizes were small in all tables [180].

Table 5.9: One-way ANOVA for RT and ensemble models in the Eclipse JDT Core dataset using the

residuals.

Source Sum of Squares
Degrees of

Freedom

Mean

Square
F P-value Eta-Squared

Factor A 12501422.11 4.00 3125355.53 0.92 0.45 0.00

Error 11774121071.13 3470.00 3393118.46

Total 11786622493.24 3474.00

Table 5.10: One-way ANOVA for MLP and ensemble models in the Eclipse JDT Core dataset using the

residuals.

Source Sum of Squares
Degrees of

Freedom

Mean

Square
F P-value Eta-Squared

Factor A 26898330.99 4.00 6724582.75 1.02 0.39 0.00

Error 22834275291.33 3470.00 6580482.79

Total 22861173622.32 3474.00

Table 5.11: One-way ANOVA for KNN and ensemble models in the Eclipse JDT Core dataset using the

residuals.

Source Sum of Squares
Degrees of

Freedom

Mean

Square
F P-value Eta-Squared

Factor A 5467853.84 4.00 1366963.46 0.40 0.81 0.00

Error 11712791648.27 3470.00 3375444.28

Total 11718259502.10 3474.00

156

Table 5.12: One-way ANOVA for M5Rules and ensemble models in the Eclipse JDT Core dataset using

the residuals.

Source Sum of Squares
Degrees of

Freedom

Mean

Square
F P-value Eta-Squared

Factor A 4391944.36 4.00 1097986.09 0.33 0.86 0.00

Error 11579332739.53 3470.00 3336983.50

Total 11583724683.88 3474.00

Table 5.13: One-way ANOVA for SVR and ensemble models in the Eclipse JDT Core dataset using the

residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 8388497.23 4.00 2097124.31 0.82 0.51 0.00

Error 8921762704.87 3470.00 2571113.17

Total 8930151202.10 3474.00

Table 5.14: One-way ANOVA for RT and ensemble models in the Eclipse PDE UI dataset using the

residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 3221762.01 4.00 805440.50 6.88 0.00 0.00

Error 706719092.59 6040.00 117006.47

Total 709940854.59 6044.00

Table 5.15: One-way ANOVA for MLP and ensemble models in the Eclipse PDE UI dataset using the

residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 2328640.49 4.00 582160.12 3.57 0.01 0.00

Error 984602758.75 6040.00 163013.70

Total 986931399.24 6044.00

Table 5.16: One-way ANOVA for KNN and ensemble models in the Eclipse PDE UI dataset using the

residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 2511471.04 4.00 627867.76 5.18 0.00 0.00

Error 732218899.51 6040.00 121228.29

Total 734730370.55 6044.00

Table 5.17: One-way ANOVA for M5Rules and ensemble models in the Eclipse PDE UI dataset using the

residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 2994170.89 4.00 748542.72 6.10 0.00 0.00

Error 741644965.84 6040.00 122788.90

Total 744639136.73 6044.00

Table 5.18: One-way ANOVA for SVR and ensemble models in the Eclipse PDE UI dataset using the

residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 4815664.03 4.00 1203916.01 11.49 0.00 0.01

Error 632989845.26 6040.00 104799.64

Total 637805509.29 6044.00

157

Table 5.19: One-way ANOVA for RT and ensemble models in the Equinox Framework dataset using the

residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 772577.21 4.00 193144.30 1.08 0.36 0.00

Error 245045622.90 1375.00 178215.00

Total 245818200.11 1379.00

Table 5.20: One-way ANOVA for MLP and ensemble models in the Equinox Framework dataset using

the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 9160880.15 4.00 2290220.04 2.94 0.02 0.01

Error 1072285162.54 1375.00 779843.75

Total 1081446042.69 1379.00

Table 5.21: One-way ANOVA for KNN and ensemble models in the Equinox Framework dataset using

the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 1039249.78 4.00 259812.44 1.21 0.30 0.00

Error 294068457.62 1375.00 213867.97

Total 295107707.40 1379.00

Table 5.22: One-way ANOVA for M5Rules and ensemble models in the Equinox Framework dataset

using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 743122.31 4.00 185780.58 1.00 0.41 0.00

Error 255494191.82 1375.00 185813.96

Total 256237314.13 1379.00

Table 5.23: One-way ANOVA for SVR and ensemble models in the Equinox Framework dataset using

the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 1430312.90 4.00 357578.22 1.94 0.10 0.01

Error 253852788.18 1375.00 184620.21

Total 255283101.07 1379.00

Table 5.24: One-way ANOVA for RT and ensemble models in the Lucene dataset using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 42242.60 4.00 10560.65 0.26 0.90 0.00

Error 108220661.59 2655.00 40761.08

Total 108262904.20 2659.00

Table 5.25: One-way ANOVA for MLP and ensemble models in the Lucene dataset using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 1053595.89 4.00 263398.97 2.47 0.04 0.00

Error 282988904.28 2655.00 106587.16

Total 284042500.17 2659.00

Table 5.26: One-way ANOVA for KNN and ensemble models in the Lucene dataset using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 24425.70 4.00 6106.42 0.12 0.97 0.00

Error 131135243.95 2655.00 49391.81

Total 131159669.65 2659.00

158

Table 5.27: One-way ANOVA for M5Rules and ensemble models in the Lucene dataset using the

residuals values.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 23797.49 4.00 5949.37 0.11 0.98 0.00

Error 137478923.08 2655.00 51781.14

Total 137502720.57 2659.00

Table 5.28: One-way ANOVA for SVR and ensemble models in the Lucene dataset using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 201463.28 4.00 50365.82 1.25 0.29 0.00

Error 106913813.36 2655.00 40268.86

Total 107115276.63 2659.00

Table 5.29: One-way ANOVA for RT and ensemble models in the Mylyn dataset using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 820433.52 4.00 205108.38 3.22 0.01 0.00

Error 500539699.16 7860.00 63681.90

Total 501360132.68 7864.00

Table 5.30: One-way ANOVA for MLP and ensemble models in the Mylyn dataset using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 591892.35 4.00 147973.09 2.65 0.03 0.00

Error 438668440.81 7860.00 55810.23

Total 439260333.16 7864.00

Table 5.31: One-way ANOVA for KNN and ensemble models in the Mylyn dataset using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 253506.93 4.00 63376.73 0.98 0.41 0.00

Error 506131215.02 7860.00 64393.28

Total 506384721.95 7864.00

Table 5.32: One-way ANOVA for M5Rules and ensemble models in the Mylyn dataset using the

residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 185713.32 4.00 46428.33 0.79 0.53 0.00

Error 459562662.82 7860.00 58468.53

Total 459748376.14 7864.00

Table 5.33: One-way ANOVA for SVR and ensemble models in the Mylyn dataset using the residuals.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-value Eta-Squared

Factor A 548317.21 4.00 137079.30 2.35 0.05 0.00

Error 458132781.24 7860.00 58286.61

Total 458681098.45 7864.00

Multiple pairwise comparison tests for Factor A were also conducted to determine which

pairs were significantly different from each other. This test was performed using Tukey’s

confidence intervals [170] for tables that rejected H0 (from Table 5.14 to Table 5.18, along

with Table 5.20, Table 5.25, Table 5.29 and Table 5.30). The comparison results are presented

in Figure 5.10, which involves nine subfigures. Figure 5.10 reveals that if a confidence interval

159

does not include 0, then the pair is significantly different and H0 is rejected. The following

cases show the pairs that significantly differ from each other:

• (RT – APE) and (RT – APE) pairs were significantly different, as shown in Figure

5.10.A, whereas APE performed better than these models in the Eclipse PDE UI

dataset;

• (Stacking – APE) pair was significantly different in the Eclipse PDE UI dataset (see

Figures 5.10.A, 5.10.B, 5.10.C, 5.10.D and 5.10.E), whereas APE outperformed

stacking in the Eclipse PDE UI dataset;

• (MLP – APE) pair was significantly different, as shown in Figure 5.10.F, whereas APE

was better than MLP in the Equinox Framework dataset;

• Although the P-values in Table 5.20 and Table 5.30 were lower than the significance

level (α = 0.05), there were no significant differences between each pair (see Figure

5.10.G and Figure 5.10.I).

• (SVR – Stacking), (Additive regression (SVR) – Stacking), (Bagging (SVR) –

Stacking) pairs were significantly different, as seen in Figure 5.10.E, in which stacking

performed worse than these models in the Eclipse PDE UI dataset;

• (RT – APE) and (Additive regression (RT) – APE) pairs were significantly different,

as seen in Figure 5.10.H, in which APE was better than RT and additive regression

(RT) in the Mylyn dataset.

160

RT - Bagging (RT)

RT - Additive

Regression(RT)

RT - Stacking

RT - APE

Bagging (RT) - Additive

Regression(RT)

Bagging (RT) - Stacking

Bagging (RT) - APE

Additive Regression(RT) -

Stacking
Additive Regression(RT) - APE

Stacking - APE

-100.00 -80.00 -60.00 -40.00 -20.00 0.00 20.00 40.00 60.00 80.00 100.00 120.00

Confidence Intervals

Tukey's Confidence Intervals

Figure 5.10.A: Multiple comparisons for RT and ensemble models in the Eclipse PDE UI dataset using the residuals.

MLP - Bagging (MLP)

MLP - Additive

Regression(MLP)

MLP - Stacking

MLP - APE

Bagging (MLP) - Additive

Regression(MLP)

Bagging (MLP) - Stacking

Bagging (MLP) - APE

Additive Regression(MLP)

- Stacking
Additive Regression(MLP)

- APE

Stacking - APE

-100.00 -50.00 0.00 50.00 100.00 150.00

Confidence Intervals

Tukey's Confidence Intervals

Figure 5.10.B: Multiple comparisons for MLP and ensemble models in the Eclipse PDE UI dataset using the residuals.

161

KNN - Bagging (KNN)

KNN - Additive

Regression(KNN)

KNN - Stacking

KNN - APE

Bagging (KNN) - Additive

Regression(KNN)

Bagging (KNN) - Stacking

Bagging (KNN) - APE

Additive Regression(KNN)

- Stacking
Additive Regression(KNN)

- APE

Stacking - APE

-100.00 -50.00 0.00 50.00 100.00 150.00

Confidence Intervals

Tukey's Confidence Intervals

Figure 5.10.C: Multiple comparisons for KNN and ensemble models in the Eclipse PDE UI dataset using the residuals.

M5rules - Bagging(M5rules)

M5rules - Additive

Regression(M5rules)

M5rules - Stacking

M5rules - APE
Bagging(M5rules) -

Additive

Regression(M5rules)Bagging(M5rules) -

Stacking

Bagging(M5rules) - APE
Additive

Regression(M5rules) -

Stacking Additive

Regression(M5rules) - APE

Stacking - APE

-150.00 -100.00 -50.00 0.00 50.00 100.00 150.00

Confidence Intervals

Tukey's Confidence Intervals

Figure 5.10.D: Multiple comparisons for M5Rules and ensemble models in the Eclipse PDE UI dataset using the residuals.

162

SVR - Bagging(SVR)

SVR - Additive

Regression(SVR)

SVR - Stacking

SVR - APE

Bagging(SVR) - Additive

Regression(SVR)

Bagging(SVR) - Stacking

Bagging(SVR) - APE

Additive Regression(SVR)

- Stacking
Additive Regression(SVR)

- APE

Stacking - APE

-150.00 -100.00 -50.00 0.00 50.00 100.00 150.00

Confidence Intervals

Tukey's Confidence Intervals

Figure 5.10.E: Multiple comparisons for SVR and ensemble models in the Eclipse PDE UI dataset using the residuals.

MLP - Bagging (MLP)

MLP - Additive

Regression(MLP)

MLP - Stacking

MLP - APE

Bagging (MLP) - Additive

Regression(MLP)

Bagging (MLP) - Stacking

Bagging (MLP) - APE
Additive Regression(MLP) - Stacking

Additive Regression(MLP) - APE

Stacking - APE

-400.0 -300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0

Confidence Intervals

Tukey's Confidence Intervals

Figure 5.10.F: Multiple comparisons for MLP and ensemble models in the Equinox Framework dataset using the residuals.

163

MLP - Bagging (MLP)

MLP - Additive

Regression(MLP)

MLP - Stacking

MLP - APE

Bagging (MLP) - Additive

Regression(MLP)

Bagging (MLP) - Stacking

Bagging (MLP) - APE

Additive Regression(MLP) - Stacking

Additive Regression(MLP) - APE

Stacking - APE

-80.00 -60.00 -40.00 -20.00 0.00 20.00 40.00 60.00 80.00 100.00 120.00

Confidence Intervals

Tukey's Confidence Intervals

Figure 5.10.G: Multiple comparisons for MLP and ensemble models in the Lucene dataset using the residuals.

RT - Bagging (RT)

RT - Additive

Regression(RT)

RT - Stacking

RT - APE

Bagging (RT) - Additive

Regression(RT)

Bagging (RT) - Stacking

Bagging (RT) - APE

Additive Regression(RT) - Stacking

Additive Regression(RT) - APE

Stacking - APE

-60.00 -40.00 -20.00 0.00 20.00 40.00 60.00

Confidence Intervals

Tukey's Confidence Intervals

Figure 5.10.H: Multiple comparisons for RT and ensemble models in the Mylyn dataset using the residuals.

164

Figure 5.10: Multiple comparisons for prediction models using the residuals.

5.5.2 Determining the best prediction accuracy using Auto-WEKA

The development of an accurate prediction model may involve attempting several types of

machine learning models with different configurations, including tuning parameters and

selected features. However, this is a difficult and time-consuming task to implement. In this

section, a new, rapid and automated tool was used to identify the best prediction accuracy of a

software maintainability model, namely Auto-WEKA, applied to sets of different models with

various configurations. Auto-WEKA is applied to previous datasets to select the best model,

along with the best choice features and parameters. The MMRE and MAE values were used

to evaluate the accuracy of the predictive models, along with the ZeroR model, to compare

selected model performance with the baseline.

Table 5.34 provides the results of the best-selected model, along with the number of

attempted configurations, selected features and tuning parameters. The null in the selected

features refers to the selection of the entire dataset without applying the selected features. This

table answers RQ5.B.1, RQ5.B.2, RQ5.B.3 and RQ5.B.4, and reveals several findings. First,

two individual models were selected as the best prediction accuracy models, namely SMOreg

in Eclipse JDT Core, which is an SVR model, and KStar in the Equinox Framework, which is

MLP - Bagging (MLP)

MLP - Additive Regression(MLP)

MLP - Stacking

MLP - APE

Bagging (MLP) - Additive …

Bagging (MLP) - Stacking

Bagging (MLP) - APE

Additive Regression(MLP - Stacking

Additive Regression(MLP) - APE

Stacking - APE

-50.00 -40.00 -30.00 -20.00 -10.00 0.00 10.00 20.00 30.00 40.00 50.00

Confidence Intervals

Tukey's Confidence Intervals

Figure 5.10.I: Multiple comparisons for MLP and ensemble models in the Mylyn dataset using the residuals.

165

an instance-based model. Second, two meta-models (i.e., ensembles) were chosen as the best

prediction accuracy models, namely RandomSubSpace in Eclipse PDE UI, which creates a

decision tree-based model, and RandomForest in Lucene and Mylyn, which creates a forest of

random trees. Third, the number of attempted configurations ranged from 134 to 428. Fourth,

each selected model had specifically defined tuning parameters, whereas the selected features

were applied only for the Equinox Framework and Lucene to determine the BestFirst filter for

attribute search and the CfsSubsetEval filter for attribute evaluation.

 Table 5.34: Best model selected by Auto-WEKA in each dataset.

Dataset ID

Best-selected

model / Number

of configurations

attempted

Configurations

Selected

features
Tuning parameters

Eclipse JDT

Core
SMOreg / 295

Null [-C, 1.3565252749701955, -N, 0, -I,

weka.classifiers.functions.supportVector.RegSMOImproved, -K,

weka.classifiers.functions.supportVector.NormalizedPolyKernel -E
2.8518299249980115 -L]

Eclipse PDE UI RandomSubSpace

/ 134

Null [-I, 53, -P, 0.37299422237345936, -S, 1, -W,

weka.classifiers.functions.MultilayerPerceptron, --, -L,
0.6520314185757002, -M, 0.6694968982868784, -B, -H, i, -R, -D, -S, 1]

Equinox

Framework

KStar / 428 Attribute

search:
BestFirst

attribute

evaluation:
CfsSubsetEva

l

[-B, 38, -M, n]

Lucene RandomForest /

321

Attribute

search:
BestFirst

attribute

evaluation:
CfsSubsetEva

l

[-I, 96, -K, 1, -depth, 12]

Mylyn RandomForest /
162

Null [-I, 136, -K, 7, -depth, 14]

Table 5.35 presents the results of the MMRE and MAE values to determine the

prediction accuracy achieved by the best-selected model, along with the baseline (i.e., ZeroR).

This table responds to RQ5.B.5 and RQ5.B.6, and it is apparent that the selected models

performed better than the baseline. In addition, there was a large difference between the

MMRE values for the selected models and the MMRE values for ZeroR. Interestingly, the

selected model in the Equinox Framework achieved the best accuracy prediction, with a

change of 89.78%.

Finally, the results in Table 5.35 were compared with the best prediction model in Table

5.6, Table 5.7 and Table 5.8 to answer RQ5.B.7. The results indicate that all the models

166

selected by the Auto-WEKA tool outperformed the best model prediction except for KNN and

SVR in Eclipse JDT Core and Lucene, respectively.

Table 5.35: MMRE and MAE values for the selected models and ZeroR models.

Datasets ID

MAE for the

best-selected

model

MMAE for

ZeroR

MMRE for the

best-selected

model

MMRE for

ZeroR

% of change between

MMRE values

Eclipse JDT
Core

638.37 823.90 6.36 13.79 53.88%

Eclipse PDE

UI
185.25 223.46 0.79 6.12 87.09%

Equinox
Framework

35.54 282.04 0.57 5.58 89.78%

Lucene 50.43 127.15 5.21 15.18 65.68%

Mylyn 46.24 127.67 1.54 5.92 73.99%

Figure 5.11 shows a histogram of the MMRE value to compare the prediction accuracy

between the models selected by Auto-WEKA, the best model in the previous section and the

ZeroR models, and answer RQ5.B.5 and RQ5.B.6. The low value of this diagram indicates

better accuracy achieved by the prediction model. The results obtained from Figure 5.11

indicate the positive impact of using the Auto-WEKA tool to select the best model in

prediction software maintainability. This yields an improvement over the baseline (i.e., ZeroR)

in the range of 53.88% to 89.78%. The best-selected model by Auto-WEKA in the Equinox

Framework dataset achieved the best result (lowest MMRE value), followed by the best-

selected model by Auto-WEKA in the Eclipse PDE UI and Lucene datasets. Additionally, all

the models selected by the Auto-WEKA tool performed better than the best model prediction

in the previous section except for KNN and SVR in Eclipse JDT Core and Lucene,

respectively.

167

Figure 5.12 illustrates the residual boxplots of the MRE values for the selected and

ZeroR models in each dataset. In Figure 5.12, there is a clear tendency of a decrease in the

MMRE value indicated by “X” in the diagram, after applying the Auto-WEKA tool to all

datasets. Moreover, each selected model had a reduction in the box spread. The results

obtained from this figure indicated the positive impact of employing the Auto-WEKA tool on

all datasets. This yields an improvement between 53.88% and 89.78%, which is considered a

high performance in the software maintainability prediction.

Figure 5.12: Box plot of MRE for selected and ZeroR models in each dataset.

0

2

4

6

8

10

12

14

16

Eclipse JDT

Core

Eclipse PDE UI Equinox

Framework

Lucene Mylyn

M
M

R
E

 v
a

lu
es

Datasets

MMRE for the selected model by Auto-weka

The best model in previous section

MMRE for ZeroR

Figure 5.11: MMRE value for selected and ZeroR models in each dataset.

168

5.5.3 Discussion and answers to research questions for the second empirical

study

This section presents the details of the discussion and answers RQs for the second empirical

study, which involves two studies, namely 5.A and 5.B. First, the following RQs for Study 5.A

are answered and discussed.

RQ5.A.1) What are the suitable metrics (independent variables) in the bug prediction

datasets to predict software maintainability?

In the data reduction step, five bug metrics from the single-version-ck-oo file were removed.

Consequently, 17 metrics were used as predictors for software maintainability (i.e.,

independent variables), including 6 CK metrics [26] and 11 OO metrics (see Table 3.5). The

metrics were not removed for the following reasons:

• In most cases, in most cases, there was no perfect correlation between two independent

variables (see Figure 5.5).

• In few cases, some of the metrics exhibited perfect correlation, but it is not a common

problem in all datasets. For example, NOA and NOPA were perfectly correlated in the

Eclipse PDE UI dataset (dark blue circle), but not in the remaining datasets.

• Almost all metrics have the same correlated with the dependent variable, which are

considered good predictor.

RQ5.A.2) How can the dependent variable calculate the CHANGE metric from the bug

prediction datasets?

The CHANGE metric was calculated in two steps of the data preprocessing techniques, namely

data reduction and data integration. In the data reduction, all metrics were excluded from the

change-metrics file except two fundamental metrics, namely lines added until and lines

removed until. Then, these metrics were integrated to compute the CHANGE metric, which is

similar to the CHANGE metric proposed by L&H [9]. In the data integration, two files (i.e.,

single-version-ck-oo and change-metrics files) were integrated into one file, namely software

maintainability datasets.

RQ5.A.3) How to improve quality of the software maintainability prediction datasets

using preprocessing techniques?

The previous two data pre-processing techniques aim to choose suitable source code metrics

(independent variables) from the bug prediction datasets and identify the CHANGE metric

169

(dependent variable). As a result, a new version of the bug prediction datasets was produced,

called the software maintainability datasets, which includes 17 OO and CK metrics

(independent variables) and only one CHANGE metric (dependent variable). The objective of

the other data pre-processing techniques (i.e., data cleaning and data transformation) is to

improve the quality of the software maintainability datasets. According to the data cleaning

step, the software maintainability datasets only required the removal of outliers to eliminate

variance, and these datasets did not include any noisy or missing values. This is in line with

previous studies that used the original version of the bug prediction datasets without finding

any missing values problem [154, 155, 199]. Regarding the data transformation step, previous

studies performed a pre-processing algorithm to resolve the duplicate instances problems [193]

or the normalisation technique to rescale the large range in the datasets [53]. However, these

problems were not observed in the software maintainability datasets. Therefore, as the

application of all four data pre-processing techniques on the datasets is not mandatory, the

transformation step was not necessary [125].

Finally, the findings of applying the data pre-processing techniques suggest that these

techniques are very useful for providing a new version of the datasets that can be used for other

purposes or to solve problems of the datasets. The findings obtained are compatible with those

of previous studies, in which data pre-processing techniques were applied on software quality

datasets [190-194].

RQ5.A.4) How much can prediction models increase or decrease the performance

compared to a baseline (i.e. ZeroR)?

All the prediction models increased their performance over the baseline, except in rare cases.

Additionally, the prediction accuracy of the baseline is considered very low. For example, the

result of MMRE ranges from 5.58 to 15.18, and this range was very far from acceptable

considering the specified criteria MMRE ≤ 0.25 [67]. However, if the prediction model is less

accurate than ZeroR or if ZeroR has a bad result, this may indicate that the prediction is

difficult to achieve [200].

RQ5.A.5)How effective are individual models at predicting change maintenance effort?

SVR was the best individual model for predicting software maintainability. In most cases,

neither homogeneous ensemble models (i.e., bagging and additive regression) or

heterogeneous ensemble models (i.e., stacking and APE) improved the prediction accuracy of

170

SVR. According to the results obtained from statistical test, the differences between SVR and

other prediction models were not significant. However, there was significantly different

between SVR and stacking in Eclipse PDE UI dataset (see Figure 5.10.E). The present findings

seem to be consistent with other research, which found that SVR achieved the highest

performance for predicting software maintainability across 26 datasets [83]. The findings of

this research indicates that SVR can increase prediction accuracy and perform excellent

generalisation [117].

RQ5.A.6) How do homogenous ensemble models perform in the context of predicting

change maintenance effort when compared to the individual models?

The bagging ensemble model improved the performance over most of the individual models.

The results of the statistical tests indicate that there were no significant differences among all

the individual models and bagging ensemble models, and the effect sizes were small. This

finding is in line with findings reported in a previous study [1], and leads to a similar

conclusion, confirming the effectiveness of using bagging ensemble models for predicting

software maintainability. Although SVR as the base model in bagging outperformed the

prediction accuracy of other base models, the bagging ensemble model had a minor impact or

no impact on SVR. This result may be explained by the fact that bagging requires an unstable

base model, such as SVR. Also, this seems consistent with previous research indicating that

SVM may be considered a strong model whose performance is not always improved with

ensemble models, and that SVM as the base model in bagging provided the best prediction

accuracy compared with other prediction models [179]. In contrast, the bagging ensemble

model had a considerable impact on RT and a minor impact on SVR and KNN. The detailed

analysis shows that the bagging ensemble model improves the prediction accuracy of unstable

models, such as RT in all datasets, but lower improvements are observed with more stable

models, such as SVR and KNN in some datasets. This finding supports that of Breiman [128],

who recommended using bagging with unstable models and also confirms the results of

previous research, showing that applying bagging on KNN is not recommended because the

output has few changes in the training data via sampling [182]. However, KNN becomes

unstable if the number of nearest neighbours (K) has a small value [183] higher than one, as

stated by Caprile et al. [184].

171

The results obtained from applying the additive regression ensemble model are consistent with

the bagging ensemble model, whereas the additive regression ensemble increased the

prediction accuracy over most of the individual models and achieved the best result with the

SVR base model. However, the positive impact of applying the bagging ensemble model to

the individual models was better than that of the additive regression, and the opposite result

was reached in the first empirical study. Again, there were no significant differences in terms

of the residual values between additive regression and the individual models, and the effect

sizes were small. Additionally, additive regression did not influence KNN, and the same was

observed in the first empirical study. A possible explanation for this finding is that additive

regression begins with an empty ensemble and inserts KNN models sequentially. However,

KNN calculates the nearest neighbour in the training datasets, and the first result of KNN is

equal to further results. The prediction of additive regression is performed by inserting the

predictions of each KNN model. For this reason, additive regression at each iteration produces

the same results as KNN, which is the same as KNN as an individual model. Therefore,

additive regression does not build the ensemble model from the KNN base model because it

is unable to find an instance that can serve as an accurate prediction of the error. According to

multiple comparison results, there were no significant differences between individual models

and homogeneous ensemble models (see Figure 5.10).

RQ5.A.7) How do heterogeneous ensemble models perform in the context of predicting

change maintenance effort when compared to the individual models?

Stacking ensemble models increased the performance of RT and MLP, whereas they decreased

the performance over the remaining individual models. The results obtained by the statistical

tests indicated that there were no significant differences between the individual models and

the stacking ensemble model, and the effect sizes were small, except in the case of SVR in the

Eclipse PDE UI dataset, which performed better than stacking. This finding was consistent

with that in Chapter 4, in which stacking only improved the predictive accuracy of the models

that did not perform well individually. Although stacking was built from the diverse individual

models and applied on larger datasets, it did not yield a significant improvement.

Consequently, the experimental results indicate that in some cases the stacking ensemble

models were not better than the individual models.

172

APE improved the prediction accuracy over RT and MLP, and it had a minor or negative

impact in terms of the prediction accuracy in the remaining individual models. These results

are in accordance with those observed in the stacking ensemble models; however, overall,

APE outperformed stacking. Regarding the statistical tests and effect size results, in most

cases, there were no significant differences between individual models and APE ensemble

models. However, APE outperformed and differed significantly from RT in the Eclipse PDE

UI and Mylyn datasets, along with the MLP in the Equinox Framework dataset. Furthermore,

there were significant differences between stacking and APE in the Eclipse PDE UI dataset.

However, the results of stacking and APE are not very encouraging, and it is difficult to

compare their results with previous studies because these ensemble models are less widely

used than popular ensemble models, such as bagging and boosting [107]. A possible

explanation for is that these heterogeneous ensemble models require more base models to

perform effectively [201]. For example, previous studies revealed that the proposed

heterogeneous ensemble models substantially improved the performance of individual models;

however, they used six base models in stacking [202] and seven in APE [131]. Another

possible explanation for this is that these previous studies used different combinations of base

models. For instance, APE was integrated with RF, stochastic gradient descent, gradient

boosting, logistic regression, W-SVMs, Bernoulli naive Bayes, and multinomial naive Bayes

[131], whereas stacking was integrated with MLP, radial basis function, pruned model tree,

M5Rules, linear regression model and SVM [202]. Additionally, prior studies indicated that

RT and MLP produced poor results in predicting software maintainability [13, 48]; therefore,

stacking and APE performed better than these models.

 Nevertheless, conflicting results between the MMRE and MAE and Pred values were

obtained, which is considered a common problem in the empirical studies of software

engineering [99]. The observations of the prediction accuracy using Pred values showed that

APE and KNN as individual models or as base models in bagging and additive regression in

most cases achieved the highest Pred values (see Figure 5.8 and Figure 5.9). This observation

is supported by the work of Laradji et al., which shows that APE achieved a high prediction

accuracy [131]. The second observation from these figures seems to be consistent with other

research that reported the success of KNN in prediction models [178]. However, none of the

implemented models in the second empirical study met the model accuracy criteria mentioned

173

in Chapter 3 (MMRE ≤ 0.25 and/or Pred(.30) ≥ 0.70 or Pred(.25) ≥0.75) [34, 67]. This

limitation is in agreement with De Lucia et al. [20], who reported that constructing accurate

effort prediction models to meet the accepted criteria is very challenging [20].

Second, I provide the appropriate answers and discussion to address the following RQ

for the study 5.B:

RQ5.B.1) What is the best-selected model by Auto-WEKA to predict software

maintainability in each dataset?

The best-selected model by Auto-WEKA was different in each dataset except RF, which was

selected as the best model in the Lucene and Mylyn datasets. By comparing this result with

prior studies of software maintainability prediction [47, 48], it can be concluded that RF was

the best model in two datasets to predict software maintainability. Therefore, the use of RF to

predict software maintainability will be investigated in the next empirical study. However,

KStar, SVM, and RandomSubSpace achieved the best prediction accuracy in the Equinox

Framework, Eclipse JDT Core and Eclipse PDE UI datasets, respectively. This is consistent

with what was found in a previous study showing that the performance of the prediction

models of software maintainability was different for different datasets [16].

RQ5.B.2) How many configurations are attempted to select the best model?

Several configurations were performed to select the best model, rangng from 134 to 428. This

result highlights the effectiveness of Auto-WEKA in producing a desired model and saving

time and effort.

RQ5.B.3) What are the parameter tuning settings in the selected model?

Auto-WEKA provided various settings for the tuning parameter in each dataset (see Table

5.34). This finding confirms the usefulness of Auto-WEKA in saving time and effort.

RQ5.B.4) What are the selected features in the selected model?

Two types of FS, namely the BestFirst filter for attribute search and the CfsSubsetEval filter

for attribute evaluation, are performed on Equinox Framework and Lucene datasets. One of

the limitations of Auto-WEKA package is that it does not provide the metrics that were chosen

by selected feature methods. However, metrics can be selected using “Select attributes” tab in

Weka tool; therefore, FS techniques will be explored in the next chapter using Weka tool.

RQ5.B.5) What are the MAE and MMRE values for the selected models?

174

The results of the MAE and MMRE values are provided in Table 5.35. The results of the

experiment clearly indicate the high performance of the models selected by Auto-WEKA.

RQ5.B.6) What is the performance of the selected model by Auto-WEKA compared with

the performance of the baseline (i.e., ZeroR)?

All the selected models increased the performance over the baseline, with the percentage of

change between MMRE values ranging from 53.88% to 89.78%. This indicates the positive

impact of using Auto-WEKA to improve prediction accuracy. Based on these findings, Auto-

WEKA is recommended as a useful tool to determine the best model for software

maintainability prediction.

RQ5.B.7) What is the performance of the selected model by Auto-WEKA compared with

the performance of the best model in the study 5.A?

The models selected by the Auto-WEKA tool achieved better prediction accuracy than the

investigated models in Study 5.A, except for KNN and SVR in Eclipse JDT Core and Lucene,

respectively. These findings further support the strong effect of KNN and SVR, as these

models sometimes achieved higher prediction accuracy than the ensemble model and the best

selected models by Auto-WEKA. This thesis calculated the statistical test only for individual

and ensemble models using their default parameters because this thesis focuses on the default

parameter of machine learning models. In future work, a statistical test can be performed to

explore the performance difference between the model selected by Auto-WEKA and the best

model in Study 5.A

5.6. Threats to Validity

This section examines the different threats that may influence the results of this study. These

threats commonly occur in any empirical study of software engineering that uses open-source

software projects [186] and should be considered. The proposed empirical study may face the

following threats:

• The bug prediction datasets were extracted from Java systems [57]. As each

programming language has unique features and systems vary in their characteristics,

these are not representative of all software systems. Further studies should be

performed to investigate machine learning models with other programming languages

and a more extensive range of systems;

175

• The datasets (i.e., bug prediction datasets [57]) used in this empirical study are publicly

available. However, no previous studies used these datasets for software

maintainability, which makes comparisons of this study with other studies impossible;

• In this work, the CHANGE metric is used as a dependent variable, as it is well-known

and commonly used in prior studies [7, 11-13, 15-18, 88, 152, 175] to indicate the

amount of change in a class during the maintenance process or, in other words, to

indicate maintainability. A higher number of changes refers to higher maintenance

effort or low maintainability. Maintainability implies the ease to make and

accommodate maintenance changes, and the CHANGE metric is more related to the

amount of change that is likely to be made to a class. The CHANGE metric is calculated

by summing two metrics: lines added until and lines removed until, which refer to the

lines added to or removed from the classes during the maintenance period, respectively

[57]. The main advantage of this metric is that it has strong relationships with other

metrics (independent variables); hence, it can be used as an indicator for predicting the

maintenance effort [9]. Therefore, there is no threat in the dependent variable because

the CHANGE metric is acceptable for predicting the maintenance effort;

• The performance of the ensemble models varies with different datasets. Therefore, it

is not possible to validate the capability of these ensembles using only five datasets,

and this might be a recognised threat;

• In this work, only 17 metrics proposed in the bug prediction were used, including 6 CK

metrics [26] and 11 OO metrics. CK metrics are commonly used and widely accepted

in software maintainability prediction [16, 23]. In contrast, OO metrics are limited in

the software maintainability prediction, and this may be considered a threat.

Additionally, these metrics are used together for the first time to predict software

maintainability, and there are several metrics published in the literature, which might

be better predictors for software maintainability;

• The Auto-WEKA tool is used to select the best prediction models by combining

different FS and tuning parameters in WEKA [149, 150]. However, KNN and SVR in

Eclipse JDT Core and Lucene, respectively, performed better than the best selected

model by Auto-WEKA, and this is considered a threat in this tool;

176

• In this study, ANOVA test was performed to test hypotheses about significant

differences between the means of more than two groups, which are five groups in this

empirical study: individual model and this individual model as the base model in

bagging, additive regression, stacking and APE. One advantage of a parametric

statistical test (ANOVA) over non-parametric statistical test is that it produces more

effective results with both continuous and nonnormally datasets. ANOVA test assumes

that the data in the groups are the same standard deviations and normally distributed,

along with independent samples. Despite the apparent assumption were accepted and

ANOVA test is suitable for this empirical study, only ten runs were used, which may

have impacted the results.

5.7. Conclusion of the second empirical study

In Study 5.A, preprocessing techniques were performed on new and large datasets (i.e., bug

prediction datasets) collected from five real-world open-source software systems (Eclipse JDT

Core, Eclipse PDE UI, Equinox framework, Mylyn and Lucene) with the objective of

producing high-quality datasets that are appropriate for software maintainability prediction.

This chapter also empirically evaluated and compared the application of homogeneous

(bagging and additive regression) and heterogeneous ensemble models (stacking and APE)

with five individual models (RT, MLP, KNN, M5Rules and SVR) to predict software

maintainability in OO systems. A new version of the high-quality datasets (i.e., software

maintainability prediction) suitable for software maintainability prediction was provided. The

experimental results indicate the following:

• Most of the proposed machine learning models improved the accuracy predictions over

the baseline (i.e., ZeroR model);

• SVR achieved the best prediction accuracy among individual models, followed by

KNN. These findings are in agreement with previous studies showing the excellent

performance of SVR and KNN [117, 178];

• Although homogeneous ensemble models improved the accuracy prediction over most

individual models, there were no significant differences between the homogeneous

ensemble models and individual models, and the effect sizes were small;

177

• In some cases, the bagging ensemble model had a minor or negative impact on the

prediction accuracy over SVR and KNN. This result may be explained by the fact that

bagging improved the performance of unstable base models (e.g., RT), whereas it

decreased the performance of stable models (e.g., KNN);

• As in the previous chapter, applying an additive regression ensemble model to KNN

produced the same results as that of the KNN of the individual models because it is an

instance-based rather than model-based approach, and additive regression was unable

to improve the initial predictions of KNN. In contrast, the prediction accuracy of

bagging ensemble models was better than that of additive regression ensemble models

in this chapter and in Chapter 4;

• Stacking ensemble models increased the prediction accuracy over RT and MLP, but

there was no significant difference between stacking and these models, and the effect

sizes were small. This observation further supports the finding in the previous chapter,

in which stacking only increased the performance of the individual models that did not

perform well;

• APE increased the prediction accuracy over RT, MLP, and M5Rules, but there were

no significant differences between these models and APE. However, APE

outperformed and differed significantly from RT in the Eclipse PDE UI and Mylyn

datasets, along with the MLP in the Equinox Framework dataset. APE enhanced the

performance of all individual models using the Pred value and achieved the best,

second-best, or third-best performance compared to other investigated models;

• The prediction accuracy of APE ensemble models was better than that of stacking

ensemble models, and there were significant differences between stacking and APE in

the Eclipse PDE UI dataset.

The findings of the current study suggest that ensemble models can improve the

prediction accuracy of some individual models (i.e., RT, MLP and M5Rules), but there were

no significant differences between individual models and ensemble models, except for a few

cases in heterogeneous ensemble models. SVR and KNN as individual models or as a base

model in bagging and additive regression is a recommended technique for software

maintainability prediction, followed by APE. Additionally, the prediction models applied on

178

large datasets (i.e., Eclipse PDE UI and Mylyn) have higher accuracy prediction compared

with those applied on small datasets.

In Study 5.B, the recently developed Auto-WEKA tool was demonstrated to the problem

of identifying the best prediction accuracy model for software maintainability prediction

among various machine learning models with different configurations for tuning parameters

and selected features.

The final result provided the best-selected models in each dataset, which are SMOreg in

Eclipse JDT Core dataset, RandomSubSpace in Eclipse PDE UI dataset, KStar in Equinox

Framework dataset, and RandomForet in Lucene and Mylyn datasets. The results obtained in

the study indicate that using the Auto-WEKA tool can considerably influence the performance

of software maintainability prediction models. The results indicate that all the selected models

using the Auto-WEKA tool outperformed the best model prediction in Study 5.A, except KNN

and SVR in Eclipse JDT Core and Lucene, respectively.

The next chapter will further investigate and analyse recent and large datasets for

software maintainability. In addition, it will explore the extent to which FS and sampling

techniques can assist in meeting accurate predictions. Moreover, other types of machine

learning models will be constructed for the classification problem to predict change-proneness.

179

Chapter 6. Third Empirical Study: Ensemble
Techniques to Predict Change-
Proneness Using Newest and Largest
Datasets

This chapter aims to investigate the performance of the ensemble model, FS and sampling

techniques on prediction change-proneness using four scenarios: (a) datasets without FS and

sampling techniques, (b) datasets with FS and without sampling, (c) datasets without FS and

with sampling and (d) datasets with FS and sampling. For this purpose, two types of filter-

based feature-ranking techniques, namely Relief and Pearson correlation coefficient, were

combined using the ensemble concept to determine the best metrics by averaging their ranks

and selecting the best ten metrics. The sampling techniques (i.e., SMOTE, SpreadSubsample

and randomize) were also combined to solve the imbalance dataset problem. Moreover, three

individual models (NB, SVM, KNN) and one ensemble model (RF) were employed to predict

change-proneness. These models were applied on seven publicly available datasets (i.e.,

refactoring datasets) extracted from open-source software systems [58]. The performance of

the predicted models was compared and evaluated using the AUC. In the previous empirical

study, the impact of parameter tuning using Auto-weka was explored; however, the best

prediction model in the second empirical study performed better than the selected model by

Auto-weka in two datasets. Therefore, this chapter uses a new method to evaluate the impact

of the tuning Mtry parameter, which is the number of variables randomly sampled for splitting

in RF using the grid search.

6.1. Introduction

Change-proneness is a dependent variable that indicates whether a change was performed in a

given class (e.g., inserting, removing or editing) and can capture the element of

maintainability. This Boolean variable has the value TRUE if a change was made on the class

(regardless of the type or number of changes) or FALSE if no change was made [5]. A lower

number of TRUE values in a system, or a lower value of change-proneness, indicates better

180

maintainability, i.e., requires lower maintenance effort. Koru and Tian stated that change-

proneness is an essential external quality attribute that can decrease the costs of maintenance

and increase the quality of source code [203]. Metrics have a powerful correlation with change-

proneness and can be utilised to measure the internal features of software systems as

independent variables, such as cohesion, complexity, and inheritance [203]. However, the

number of metrics used in the literature to predict change-proneness is considered limited

[204].

Ensemble concepts, which combine several outputs instead of a single output, have been

performed in the machine learning problem to improve the final results. This concept can be

applied in the machine learning models [16, 23], FS [205] and sampling techniques [206].

However, there are few studies predicting change-proneness using ensemble models [5], and

no other study that uses ensemble FS and sampling techniques.

The key contributions of this chapter are:

• The capability of the ensemble model (RF) in the prediction of change-proneness

was evaluated using four different scenarios. To the best of the author’s

knowledge, this is the first study to investigate aspects like the ensemble model,

ensemble FS and ensemble sampling techniques in predicting change-proneness.

The most important finding was that RF provided a significant improvement over

other prediction models and obtained the highest value of AUC in all scenarios;

• Study using recent and varied datasets, two of which are large and contain more

than 1000 classes (i.e., mct and titan). No previous studies were found using these

datasets to predict change-proneness;

• The impact of Mtry parameter tuning in RF was explored using grid search.

6.2. Motivation

Many research studies have explored the utilisation of prediction models in software

maintainability. Most of these studies have predicted change maintenance effort using

CHANGE metric [7, 10-18] and MI [32, 83], but little progress has been made in predicting

change-proneness in software maintainability [16, 23].

181

FS techniques have received increased attention in recent years owing to their ability to

improve prediction accuracy and decrease the time to create the model. Additionally, perhaps

the main advantage of FS is to identify the best subset attributes (i.e., independent variables)

to predict the target attribute (i.e., dependent variable). In the literature related to software

quality prediction, a range of various FS and prediction models have been used to predict

software quality (i.e., defect, change metric, MI and change-proneness). Table 6.1 shows a

summary of the selected studies in the systematic review of FS techniques [4] along with the

datasets, prediction models and type of prediction. The ensemble method, which combines the

output of several FS methods, was used in four selected studies (S4, S8, S9 and S15).

According to the systematic review of FS techniques [4], three selected studies (i.e., S8, S9

and S15) indicated that the ensemble method produced a better prediction accuracy compared

to single FS.

 Class imbalance occurs when one class of the dataset has a small number of instances

compared to the others. This is another problem of the dataset because machine learning

models which fail to account fort his end up predicting only from the majority class and

ignoring the minority class. Various sampling techniques may be used to resolve this problem

by adjusting the class distribution. These techniques are generally classified into three types:

oversampling to increase the observations of the minority class (e.g., SMOTE [53] and

UPSAMPLE [206]); under sampling to decrease the observations of the majority class (e.g.,

SpreadSubsample [50] and Random under sampling [207]); and ensemble sampling to

combine the results of over and under sampling (e.g, SMOTE and bootstrap sampling [208]).

Even though ensemble sampling techniques have been proven to increase the prediction

accuracy, their application in software quality prediction is also relatively rare [206]. These

sampling techniques were applied in various fields (e.g., telecommunications management

[49], emerging patterns [50], medical diagnosis [51] and text categorisation [52]). Moreover,

several studies in defect prediction have used multiple techniques to resolve the class

imbalance problem, such as SMOTE [209] data resampling with boosting [210], random under

sampling [54], threshold moving [211], resampling with adapt online change classification

[212], random under sampling [207] and a roughly balanced bagging model [213]. However,

the application of these techniques in studies of software maintainability prediction is limited

(e.g., nearer neighbour [55]).

182

RF achieved the highest prediction accuracy compared with other prediction models to predict

software change [47] and fault [37]. Although several studies have used RF with default

parameter settings [37, 47, 131, 214], there is no theoretical justification to apply these default

values [138]. As the performance of RF depends on parameter values, it is necessary to

investigate RF tuning based on the parameters [138]. Therefore, the impact of Mtry parameter

tuning in RF using the grid search was investigated in this study.

Table 6.1: Summary of FS, datasets and prediction models in software quality prediction.
Study

ID
Ref FS method Dataset Prediction model

Type of

prediction

S1 [215]
Filter and wrapper method inside

two classifiers: NB and DT

Public dataset from

PROMISE software project
repository

NB and DT Defect

S2 [216]
Filter and wrapper method inside

two classifiers: NB and DT

Public dataset from

PROMISE software project
repository

IB1 and DT Defect

S3 [37] Correlation-based feature selection

Public dataset from

PROMISE software project
repository

AIRS, CLONALG,
Immunos, RF, DT, NB

Defect

S4 [217]

Ensemble FS: automatic hybrid

search, rough sets, Kolmogorov-

Smirnov and probabilistic search

Public datasets extracted from

telecommunications

software systems

KNN, MLP, SVM, NB
and LR

Defect

S5 [218]
Wrapper method inside support

vector machine

Public datasets extracted from

telecommunications

software systems

SVM, NB, MLP, KNN
and LR

Defect

S6 [214]
DT induction, Relief and SVM of

FS

Public dataset from
PROMISE software project

repository

18 classifiers: NB, DT,
KNN, SVM, MLP, LR,

RF et al.

Defect

S7 [219]

information gain, Chi-square (χ2),
two types of Relief (RF and RFW)

, gain ratio and symmetrical

uncertainty

Public dataset from

PROMISE software project
repository

KNN and SVM Defect

S8 [220]

Ensemble FS: gain ratio,
Kolmogorov–Smirnov

statistic, chi-square, Relief

algorithm, information gain,
symmetrical uncertainty,

exhaustive, heuristic and

automatic hybrid searches

Public datasets extracted from

telecommunications
software systems

NB, MLP, SVM, LR

and KNN
Defect

S9 [221]

Ensemble FS: Relief, information

gain, gain ratio, chi-square and

symmetrical uncertainty

Public dataset from

PROMISE software project

repository

NB, MLP, KNN and
LR.

Defect

S10 [222]
Information

gain, Relief, gain ratio, chi-square,

and symmetrical uncertainty

Public datasets extracted from
telecommunications software

systems

NB, MLP, KNN, SVM
and LR

Defect

S11 [223] F-score
Public dataset from

PROMISE software project

repository

LSTSVM, DT, NN,

SVM, KNN and NB
Defect

S12 [224]

Bayesian networks and K2 search
algorithm, CfsSubsetEval and

BestFirst search method, Relief

and Ranker attribute evaluation
method

Public dataset from

PROMISE software project

repository

NB Defect

S13 [131]

Greedy forward selection,

correlation-based method with its

two variants: Pearson’s correlation
and Fisher’s criterion

Public dataset from
PROMISE software project

repository

Gradient boosting, LR,

APE, RF, stochastic

gradient descent,
multinomial NB,

Bernoulli NB, regular

and weighted support
vector machines

Defect

S14 [18]
Rough set analysis with K-means

clustering

Public datasets extracted from

two commercial software

Hybrid neural network

and fuzzy logic
approach

Change

maintenance
effort

183

products and published as an

appendix [9]

S15 [83]

Ensemble FS: BestFirst, linear

forward selection, greedy
stepwise, evolutionary search,

genetic algorithm, PSO, tabu

search

Partial datasets extracted
from 20 systems available in

sourceforge.net

MLR, MLP, SVR and

M5P regression tree

Maintainability

index

S16 [23] Correlation-based FS
Partial dataset extracted from

android application packages

MVEC, WVEC, HIEC,
WVHIEC and seven

individual particle

swarm optimizations

Change-

proneness

** NB: Naive Bayes, DT: Decision Tree, IB: aninstance–base classifier, RF: Random Forests, AIRS: Artificial Immune Recognition

Systems, KNN: K Nearest Neighbors, SVM: Support vector machine, SVR: Support vector regression, MLP: Multilayer perceptron, LR:

Logistic Regression, MLR: Multi Linear Regression, LSTSVM: Linear Twin Support Vector Machine, NN: Neural Network, CLONALG

: Clonal selection algorithm, MVEC: Majority Voting Ensemble Classifier, WVEC: Weighted Voting Ensemble Classifier, HIEC: Hard
Instance Ensemble Classifier, WVHIEC: Weighted Voting Hard Instance Ensemble Classifier.

The lessons learned from previous studies discussed above and selected primary studies

in Chapter 2 are as follows:

• Relatively few studies have been performed in prediction change-proneness

compared with other software maintainability measurements such as change

maintenance effort and MI;

• Several machine learning models have been employed in regression problems,

whereas less work has been performed in classification problems;

• A limited number of metrics have been used as predictors of change-proneness;

• Although ensemble models have yielded improved prediction accuracy over

individual models, limited studies used these models to predict change-proneness

(e.g., bagging and boosting in [16] (S47 in selected primary studies in Chapter

2) and majority voting, weighted voting and hard instance ensemble [23] (S56 in

selected primary studies in Chapter 2));

• There is clear evidence of the lack of adequate research on the use of FS and

sampling in change-proneness, and no application of the ensemble concept in

these techniques in change-proneness was found;

• Despite several uses of FS proposed in Table 6.1, only one study used FS to

predict change-proneness. This study used partial datasets, which are not publicly

available, but they were collected from open-source software systems;

• The systematic review [4] indicated that the FS techniques used in Table 6.1

achieved better prediction accuracy than using all features (i.e., without applying

184

FS). Moreover, the use of ensemble FS outperformed other FS methods in three

studies (i.e., S8, S9 and S15);

• RF was the most frequently used in the systematic review of FS techniques [4]

and achieved the best prediction accuracy in previous studies [37, 47], Thus,

there is a real need to perform RF in this chapter and investigate the influence of

Mtry parameter tuning using the grid search.

To fill the gaps in these previous studies, the empirical study was designed to predict

change-proneness using three individual models and one ensemble model. These models are

the most frequently applied in Table 6.1. Additionally, ensemble FS techniques were used,

including Relief and Pearson’s correlation, which are the most popular FS techniques used in

Table 6.1. To make the predictive models refutable, confirmable and repeatable, recent public

datasets published in [58] and available on the PROMISE Repository [109] were used.

6.3. Research Method

The research method is defined by the research objectives, RQs and research framework to

address the problem of predicting change-proneness accurately. The primary objective of this

chapter is to evaluate the impact of ensemble models (RF), ensemble FS (Relief and Pearson’s

correlation coefficient) and ensemble sampling techniques (SMOTE, SpreadSubsample and

randomize) on the performance of the prediction of change-proneness. The interaction between

feature selection and sampling is examined via the following four scenario:

First scenario: datasets without FS and sampling techniques.

Second scenario: datasets with FS and without sampling techniques.

Third scenario: datasets without FS and with sampling techniques.

Fourth scenario: datasets with FS and sampling techniques.

Table 6.2 illustrates the scenarios explored in the empirical study.

Table 6.2: Scenarios in the empirical study.
 FS techniques Sampling techniques

First scenario No No

Second scenario Yes No

Third scenario No Yes

Fourth scenario Yes Yes

185

These scenarios were studied because the datasets present two problems: (I) high

dimensionality, which includes irrelevant and redundant features, and (II) imbalanced classes.

This poses a difficulty regarding which model to apply first: the FS for the high dimensionality

or sampling techniques for the imbalanced classes. Furthermore, these scenarios help to

evaluate and compare the impact of ensemble FS and sampling techniques separately in the

second and third scenarios and together in the fourth scenario. Three data analysis steps are

performed before conducting these scenarios: (I) removal of empty values attributes; (II)

removal of redundant attributes, which are perfectly correlated with the dependent variable;

(III) removal of attributes that have a strong correlation with other attributes. Moreover, there

are three further steps after applying data analysis methods, namely normalisation, ensemble

FS and ensemble sampling techniques (see Figure 6.2).

The fourth scenario is designed to resolve both problems (high dimensionality and class

imbalance) and to avoid biased results from the sampling techniques. Therefore, the ensemble

FS was applied using two filter-based feature ranking techniques, Relief and Pearson’s

correlation coefficient, to the fourth set of differently sampled data purely for the purpose of

performing FS techniques. The sampled data includes datasets without sampling, datasets with

SMOTE sampling, datasets with SMOTE and SpreadSubsample with the parameter set to 1,

and datasets with SMOTE and SpreadSubsample with the parameter set to 2.1, and these

parameters define the distribution spread ratio between the minority and majority classes as

50:50 and 35:65. Then, the average of the feature ranking techniques across above-mentioned

sampled data was computed. Finally, the best ten features with the highest ranking from the

Figure 6.1: Framework of the fourth scenario.

186

datasets in the third scenario were selected (i.e., datasets without FS and with sampling

techniques, namely SMOTE, SpreadSubsample with 2.1 ratio and randomize). Figure 6.1

illustrates the framework of the fourth scenario.

The five RQs were focused to accomplish the objectives of this chapter:

RQ6.1) What is the impact of ensemble FS techniques on the performance of prediction

models?

RQ6.2) What is the impact of ensemble sampling techniques on the performance of prediction

models?

RQ6.3) What is the impact of applying both ensemble FS and sampling techniques on the

performance of prediction models?

RQ6.4) How effective are individual models and how do ensemble models perform when

compared to the individual models in the context of predicting change-proneness?

RQ6.5) What is the impact of the Mtry parameter tuning in RF?

Figure 6.2 shows the framework of the research method, which contains several steps:

Step 1. Loading of seven datasets (i.e., oryx, junit, antlr4, mcMMO, MapDB, mct and titan)

that were manually validated by Hegedűs et al. [58] to analyse refactorings through several

subsequent system releases [58]. These datasets were extracted from seven open-source Java

systems in GitHub [27], and include 125 source code metrics that form the independent

variables and one metric called Refact_Sum that is used as the dependent variable to reflect

change-proneness and capture the element of maintainability. The datasets are described in

Section 3.4.3;

Step 2. Analysis of the datasets to eliminate the metrics that contain empty values, direct

relationships with the dependent variable, or are redundant metrics (strongly correlated with

each other). This step is part of the feature selection process performed before all scenarios

mentioned in Table 6.2 using manual analysis, descriptive statistics and Spearman correlation;

Step 3. Application of normalization to the set values of the dataset between 0 and 1;

Step 4. Execution of ensemble FS using the Relief and Pearson’s correlation coefficients,

calculation of the average of these techniques, and selection of the best ten metrics (features)

from each dataset;

Step 5. Execution of ensemble sampling techniques, namely SMOTE, to perform

oversampling by increasing the number of minority classes, and SpreadSubsample to perform

187

under sampling by decreasing the number of majority classes, and randomization to randomly

rearrange the instances. The main reason for applying this randomization is to avoid overfitting

in ten-fold cross-validation because the SMOTE technique inserts additional instances (True

values) at the end of the dataset;

Step 6. Execution of four different scenarios across seven datasets: First scenario (i.e., Steps

1, 2 and 3), Second scenario (i.e., Steps 1, 2, 3 and 4), Third scenario (i.e., Steps 1, 2, 3 and

5) and Fourth scenario (i.e., Steps 1, 2, 3, 4 and 5) (see Figure 6.2).

Step 7. Division of all previous datasets into ten sets using ten-fold cross-validation. The

datasets were divided into training sets to build prediction models and test sets to compare the

performance of prediction models using AUC;

Step 8. Construction of prediction models, which encompass three individual models (NB,

SVM and KNN) and one ensemble model (RF);

Step 9. Prediction of change-proneness by evaluation and comparison of the results of four

prediction models across four scenarios to determine the most accurate prediction model using

AUC as the measure of comparison.

188

6.4. Experimental Data Setup

The following subsections present the evaluation of the datasets performed in this empirical

study, along with the explanation of the dependent and independent variables. They also

provide details about the dataset analysis using descriptive statistics and Spearman correlation.

Finally, they show the data pre-processing that includes normalization, FS and sampling.

6.4.1 Evaluation of refactoring datasets

In this chapter, seven publicly available datasets proposed in [44], called refactoring datasets,

were performed. However, only the class metrics that contain 125 independent variables, and

Figure 6.2: Framework of the research method.

189

one dependent variable (i.e., Refact_Sum), defined as the total number of refactoring changes

that occurred, were used. Refact_Sum was used as an indicator for change-proneness and

assumes the values True or False, making this a classification problem.

Additionally, the relative maintainability index attribute was removed from the datasets

and not used as a dependent variable because it is a relative attribute derived from a set of

source code metrics [58], some of which appear as independent variables. As this index is

derived from metric values, rather than being directly based on observations of maintenance

effort, it does not accurately reflect the maintenance effort; in addition, as a dependent variable,

a machine learning model would just learn the function that defines the relative maintainability

index [58]. The explanation of independent and dependent variables will be presented in the

next two sections. Table 6.3 provides a summary of the datasets used in this chapter, including

dataset name, number of classes, number of releases, time interval and URL [58]. The new

version of these datasets after removing the refactoring variables and relative maintainability

index and after converting Refact_Sum to Change_Prone is provided in the following link:

https://zenodo.org/record/4266681#.X6rMvmgzY2w

Table 6.3: Summary of the datasets.

Dataset name # Classes # Release Time interval URL

antlr4 436 5 21/01/2013–22/01/2015 https://github.com/antlr/antlr4

junit 657 8 13/04/2012–28/12/2014 https://github.com/junit-team/junit

MapDB 439 6 01/04/2013–20/06/2015 https://github.com/jankotek/MapDB

mcMMO 301 5 24/06/2012–29/03/2014 https://github.com/mcMMO-Dev/mcMMO

mct 2162 3 30/06/2012–27/09/2013 https://github.com/nasa/mct

oryx 536 4 11/11/2013–10/06/2015 https://github.com/cloudera/oryx

titan 1486 6 07/09/2012–13/02/2015 https://github.com/thinkaurelius/titan

6.4.2 Dependent variable: change-proneness

Change-proneness is a dependent variable that reflects changes performed in a given class

(e.g., inserting, removing or editing) and can capture the element of maintainability. This

Boolean variable has the values TRUE if the change was made on the class or FALSE if no

change was made, regardless of the types and number of changes. The Refact_Sum attribute

contains the total number of source code refactoring operations that have been applied in each

class a certain observation period. This attribute was treated as Boolean by assigning TRUE if

the sum of refactoring contained any number or FALSE if the sum of refactoring was zero.

Table 6.4 lists the number of True and False values in the change-proneness attribute (i.e.,

dependent variable). This table indicates the differences between the number of True and False

https://zenodo.org/record/4266681#.X6rMvmgzY2w
https://github.com/antlr/antlr4
https://github.com/junit-team/junit
https://github.com/jankotek/MapDB
https://github.com/mcMMO-Dev/mcMMO
https://github.com/nasa/mct
https://github.com/cloudera/oryx
https://github.com/thinkaurelius/titan

190

values, which makes the class of dependent variable highly imbalanced. To the best of the

author’s knowledge, there is no standard approach to classify the difference between the

number of True and False values. Therefore, this difference was categorized into small,

medium and large according to the percentage of True values in the datasets: values less than

1% correspond to a large difference, values less than 2% refer to a medium difference and

values out of these ranges indicate a small difference. The percentage of True values in Table

6.4 is considered very small, ranging from 0.69% to 5.28%.

Table 6.4: Number of True and False values in the change-proneness attribute.
Dataset

name
Instances

True

value

% True

value
False value

% False

value

Category of difference

between True and False

antlr4 436 23 5.28% 413 94.72% Small

junit 657 9 1.37% 648 98.63% Medium

MapDB 439 4 0.91% 435 99.09% Large

mcMMO 301 4 1.33% 297 98.67% Medium

mct 2162 15 0.69% 2147 99.31% Large

oryx 536 15 2.80% 521 97.20% Small

titan 1486 13 0.87% 1473 99.13% Large

6.4.3 Independent variables: source code metrics

The independent variables include 125 metrics, which can be grouped into ten categories as

follows: cohesion, complexity, coupling, documentation, inheritance, size, code duplication,

warning, rules and refactoring. All the independent variables are numeric and were collected

using the SourceMeter static code analysis tool [156]. Hegedűs et al. describe how they

extracted these metrics [58], and their explanation is also listed on the tool’s website [156].

The metrics used as independent variables in this chapter and their category are provided in

Table 3.6 in Section 3.4.3.

6.4.4 Datasets analysis

The primary objective of the dataset analysis is to remove the metrics that are directly related

to the dependent variable, correlated with each other, or with zero values. This stage is

performed using the following techniques: manual evaluation, descriptive statistics and

Spearman correlation. First, 23 refactoring metrics mentioned in Table 3.6 were removed from

the independent variables. These are related to specific refactoring changes that have taken

191

place and are not relevant for the prediction of change proneness and would also prejudice the

outcome of the study as they identify when a change has been made.

Second, metrics with zero values in the results of descriptive statistics were removed

(see Table 6.5), because they cannot be used as predictors for target variable, as recommended

by Briand et al. [198]. From Table 6.5, 21 metrics were removed from some of the datasets,

and 7 metrics were removed from all datasets.

Table 6.5: Metrics with zero values that were removed using descriptive statistics

Third, a Spearman correlation, which is a well-known statistical measurement to

compute the strength (i.e., strong or weak) and direction (i.e., positive or negative) of the

relationship between two variables, was performed [225]. This correlation was used to remove

redundant variables and prevent multicollinearity that occurs when one independent variable

in a prediction model can be predicted from other independent variables with a high accuracy

[226]. This FS technique was applied before building any prediction model to avoid skewed

or misleading results. Variables with a correlation coefficient of +1.0, +0.9, -1.0 or -0.9 were

eliminated; however, no negative correlations were found in these datasets. Table 6.6 presents

the results of the strong correlations and shows the attributes that were removed using

Spearman correlation. The results of this table indicate that 35, 32, 31, 37, 33, 32 and 38

metrics were removed from antl4, junit, MapDB, mcMMO, mct, oryx and titan, respectively.

Furthermore, the CC metric had a strong correlation with CCL, CCO, CI, CLC, CLLC, LDC,

Metrics
Datasets

antl4 junit MapDB mcMMO mct oryx titan

WarningBlocker * * * * * *

Android Rules * * * * * * *

Brace Rules *

Clone Implementation Rules * * *

Code Size Rules * * * * * * *

Comment Rules * * * * * * *

Complexity Metric Rules *

Coupling Rules * * * * * * *

Empty Code Rules *

Finalizer Rules * * * * * *

Import Statement Rules * *

J2EE Rules * * *

Jakarta Commons Logging Rules * *

JavaBean Rules * * *

MigratingToJUnit4 Rules * * * * * * *

Migration Rules * * * *

Migration13 Rules * * * * * * *

Migration14 Rules * * * * * * *

Migration15 Rules * * * * * * *

Security Code Guideline Rules *

Vulnerability Rules * * * * * *

192

LLDC and Clone Metric Rules in all datasets and NL and NLE were also strongly correlated

in all datasets.

Table 6.6: Strong correlation metrics using Spearman correlation.
Strong correlation metrics with 1 or 0.90 values Datasets

Metrics retained Metrics removed antl4 junit MapDB mcMMO mct oryx titan

CC CCL ✓ ✓ ✓ ✓ ✓ ✓ ✓

CCO ✓ ✓ ✓ ✓ ✓ ✓ ✓

CI ✓ ✓ ✓ ✓ ✓ ✓ ✓

CLC ✓ ✓ ✓ ✓ ✓ ✓ ✓

CLLC ✓ ✓ ✓ ✓ ✓ ✓ ✓

LDC ✓ ✓ ✓ ✓ ✓ ✓ ✓

LLDC ✓ ✓ ✓ ✓ ✓ ✓ ✓

Clone Metric Rules ✓ ✓ ✓ ✓ ✓ ✓ ✓

NL NLE ✓ ✓ ✓ ✓ ✓ ✓ ✓

WMC TNOS ✓

TNLM ✓

TLLOC ✓ ✓

TLOC ✓ ✓

NOS ✓ ✓

RFC ✓

LLOC ✓ ✓ ✓ ✓

LOC ✓ ✓ ✓ ✓

NLM ✓ ✓ ✓ ✓

NOD ✓

NLS ✓

TNPM ✓

Complexity Metric Rules ✓

String and StringBuffer Rules ✓

RFC AD ✓

PDA ✓

AD DLOC ✓ ✓ ✓ ✓

PDA ✓ ✓ ✓ ✓

TNOS ✓

TNPA ✓

CD TCD ✓ ✓ ✓ ✓ ✓ ✓

CLOC ✓ ✓ ✓ ✓ ✓

TCLOC ✓ ✓ ✓ ✓

TNLS ✓

TNS ✓

DLOC PDA ✓

TCLOC ✓

TCD TCLOC ✓

CLOC DLOC ✓

TCLOC ✓

PUA NLPM ✓

TNLPM ✓

Documentation Metric Rules ✓

DIT NOA ✓ ✓ ✓ ✓ ✓ ✓ ✓

NOP ✓ ✓ ✓ ✓ ✓ ✓

NOC CBO ✓

NOD ✓ ✓ ✓ ✓ ✓

LLOC LOC ✓ ✓

NOS ✓ ✓ ✓ ✓

TLLOC ✓ ✓ ✓

TLOC ✓ ✓ ✓

TNOS ✓ ✓ ✓

NPA ✓

TNLPA ✓

NLPA ✓

LOC TLLOC ✓

TLOC ✓

NA TNA ✓ ✓ ✓ ✓ ✓

NG TNG ✓ ✓ ✓ ✓

NLG ✓

193

Table 6.7 shows the number of metrics removed at each data analysis stage and reveals

that the number of independent variables remaining was 54, 55, 57, 48, 60, 55 and 52 in antl4,

junit, MapDB, mcMMO, mct, oryx and titan datasets, respectively.

Table 6.7: Number of metrics removed in each data analysis technique.

Analysis

technique
Description of metrics removed

Datasets
antl4 junit MapDB mcMMO mct oryx titan

Number of metrics removed

Manual

analysis
Remove refactoring metrics that are

directly related to the dependent variable 23 23 23 23 23 23 23

Descriptive

statistics
Remove metrics with zero values 13 15 14 17 9 15 12

Spearman

correlation

Remove metrics with a strong correlation
with others 35 32 31 37 33 32 38

 The descriptive static of these metrics after applying data analysis are presented in

Table C.2, Table C.3, Table C.4, Table C.5, Table C.6, Table C.7 and Table C.8 in Appendix

C. The minimum values are zero or one in all datasets. In contrast, the maximum values are

575 in CLOC metric in antlr4 dataset, 662 in TNM metric in junit dataset, 11272 in LLOC

metric in MapDB dataset, 1160 in LOC metric in mcMMO dataset, 1390 in WarningInfo

metric in mct dataset, 179 in NII metric in oryx dataset and 1104 in WarningMinor metric in

titan dataset. Thus, there was a considerable difference between the maximum and minimum

NLA TNLA ✓ ✓ ✓ ✓ ✓ ✓ ✓

NLG TNLG ✓ ✓ ✓

NLM NLPM ✓ ✓ ✓ ✓

NM ✓

TNLM ✓ ✓ ✓ ✓ ✓

NLPA TNLPA ✓ ✓ ✓

NPA ✓

NLPM NII ✓

NLS ✓

TNLPM ✓ ✓ ✓ ✓

NLS TNLS ✓ ✓ ✓ ✓

NS ✓ ✓

NPM TNPM ✓ ✓

TNLM TNM ✓

NM NPM ✓ ✓ ✓ ✓

TNM ✓ ✓ ✓ ✓ ✓

TNPM ✓ ✓

TNLS TNS ✓

NPA TNPA ✓

NOS TLLOC ✓

TLOC ✓

TNOS ✓

NS TNS ✓ ✓

WarningInfo TNS ✓

Documentation Metric Rules ✓

Design Rules ✓

Vulnerability Rules ✓

Brace Rules ✓

WarningMajor Unnecessary and Unused Code
Rules'

 ✓

194

values in all datasets. For this reason, normalization was applied, which will be described in

the next section. Another important finding was that the average values of WarningInfo metrics

were high in all datasets, ranging from 8 to 15. The remaining metrics have different values of

descriptive static, which suggests that the datasets have varying characteristics.

6.4.5 Data pre-processing

Data pre-processing is a fundamental data mining technique performed to resolve issues

related to the datasets, such as incorrect, missing, imbalanced and inconsistent data [125]. The

datasets used in this chapter had several problems that required the application of some of the

data pre-processing techniques. Initially, as the values of the independent variables had a

different range, a normalization was applied to set their range from 0 to 1. Second, as the

datasets are considered high dimensional because they contain several independent variables

(i.e., 125 metrics), sets of FS were implemented to determine relevant features. Finally, as the

classes in the dependent variable (i.e., change-proneness) were clearly imbalanced, as

presented in Table 6.4; sampling techniques were applied to balance datasets. These techniques

are described in the next sections.

A. Normalization

Normalization is a common technique employed when the values of numeric data have very

different scales. It is also essential for the application of some machine learning models that

use scale-sensitive distance metrics, such as KNN which uses Euclidean distance to identify

the nearest neighbours. In this study, the datasets were linearly rescaled using the Min-Max

normalization to normalize all numeric values in the datasets to the interval [0, 1] [125].

B. Feature selection

Spearman correlation was applied in the data analysis step to avoid multicollinearity, and this

was necessary for all scenarios. In this section, FS was performed in the second and fourth

scenarios as a further step to improve the quality of the dataset as it still contained numerous

features. Additionally, FS is considered one of the critical steps in data pre-processing, and it

helps to address two general types of problems in the dataset [125]: irrelevant, which refers to

features that do not have any effect on the target features, and redundant, which refers to two

or more independent variables with the same role [227]. In addition, these techniques have

been used to increase prediction accuracy, reduce the model building time, and identify the

195

most vital features that affect the target attribute (e.g., change-proneness or fault-proneness,

etc.). There are four basic methods currently adopted in research on FS: (1) the filter method,

which determines the features without building machine learning models using heuristically

identified relevant knowledge [228]; (2) the wrapper method, which combines features into a

prediction model to choose relevant features [229]; (3) the embedded method, which applies

FS as a part of the modelling process and does not divide the model from the FS part [230];

and (4) the ensemble method, which integrates the output of several FS techniques (e.g.,

Pearson’s correlation coefficient and best first techniques) based on a defined combination

(e.g., the highest ranking and the best subsets features) [205]. Although the ensemble FS

method has proven to be an excellent method to improve the prediction accuracy compared

with other individual methods, a limited number of studies have applied this method in

software quality prediction [4].

In this chapter, the ensemble method was used to determine the best features using two

types of filter-based feature ranking techniques, namely Relief and Pearson’s correlation

coefficient. These techniques were chosen mainly because they are the most frequently

performed in the selected primary studies mentioned in Table 6.1. First, these techniques were

applied on the datasets that assign a score to each feature; then, the average score of two filter-

based feature ranking techniques was calculated. Second, the best ten features that record the

highest scores were selected. There is no clear evidence in the literature of a suitable number

of features to select [207]; the number of features chosen was determined by previous studies

either by identifying the number of features [222] or employing a cut-off value [118]. In most

cases, these features had the same cut-off value (0.1). These techniques were applied using

WEKA and the parameters were set as the default values. A brief description of the FS

techniques used in this study is provided below.

1. Relief

Relief is one of the filter-based feature ranking techniques provided by Kira and Rendell [231].

The rank of features is computed in Relief by specifying a zero value to all feature weights.

Then, Relief assigns a score of feature value by determining differences between the nearest

pairs of instances. Relief compares a randomly selected instance with another instance in the

same class (nearest hit), where the feature score decreases, and with another instance from a

different class (nearest miss), where the feature score increases. Relief is performed by

196

searching nearest misses and hits and calculating their average to assign the weights of each

feature. Finally, all the feature weights are modified to have a specific score. The Relief

extends from Relief algorithm, which resolves multiclass and noise problems in the datasets

[231].

2. Pearson’s Correlation Coefficient

The Pearson’s correlation coefficient technique chooses metrics that have a high correlation

with the target attribute [232]. This technique is implemented by calculating the correlation

coefficient between independent and dependent variables. Pearson’s correlation is based on

the covariance of two variables divided by the output of their standard deviation. According

to the value obtained, the correlation can be classified into strong positive, with a value near

to +1, strong negative, with a value near to -1, and uncorrelated, with a value equal to zero

[177]. The relationship between variables can also be classified into positive (+), in which the

variables are directly proportional, and negative (-), in which the variables are inversely

proportional [48].

C. Sampling

The class imbalance occurs in the classification problem as the classes (True and False values)

in the dependent variable (change-proneness) are not approximately similar in their

distribution and one class has a very small minority. In this study, all the datasets have a very

small minority of True values (see Table 6.4). Classes imbalance is considered a serious

problem that leads to bias prediction model towards the majority class because a prediction

model tends to increase prediction accuracy by disregarding the minority class and learning

from the majority class [50].

To resolve the class imbalance problem, sampling techniques are introduced, including

oversampling to increase the observations of the minority class and under sampling to decrease

the observations of the majority class. The main advantage of oversampling is to maintain all

the observations of both the majority and minority classes, but this may result in overfitting.

In contrast, as under sampling eliminates some observations, essential information may be

removed. However, there is no clear indication of the best technique [233].

Therefore, ensemble sampling techniques were performed in this study to resolve the

class imbalance problem and improve the overall performance. Sets of three sampling

techniques that involve SMOTE for oversampling, SpreadSubsample for under sampling, and

197

randomize for mixing the order of the instances were applied. Ensemble sampling integrates

the results of over and under sampling, in which SMOTE inserts more True values and

SpreadSubsample removes some False values. A brief explanation of the sampling techniques

used in this study is presented in the following sections.

1. SMOTE

SMOTE is an oversampling technique that increases the number of observations in the

minority class. SMOTE generates synthetic objects based on the nearest neighbour of each

sample in the minority class. This synthetic object is computed using the variation between

samples of the feature space under consideration for each dependent variable and its nearest

neighbour. After that, this variation is multiplied by a random number between 0 and 1.

Therefore, the new observations are produced by integrating both features of the dependent

variable and its neighbours and the observations are not duplicated from the existing

observations in the minority class. This procedure effectively increases the observations of the

minority class and creates comprehensive samples [50, 234]. The number of observations is

based on the SMOTE percentage, which is a multiple of 100 and should not exceed 300, as

recommended in [235]. Although previous studies used different percentages for SMOTE

[234, 236], to the best of the author’s knowledge, there is no standard approach for defining

the SMOTE percentage in the literature. Therefore, this parameter was adjusted to 100%,

200% or 300% based on the category of difference between True and False mentioned in Table

6.4, in which 100% was used for small, 200% for medium and 300% for large. However, the

same ratio of SpredSubsample was used, which creates datasets with the same percentage of

True and False values. Table 6.10 in in Section 6.5.2 includes results of SMOTE and more

details about the selection of the percentage.

2. SpreadSubsample

The SpreadSubsample is an under sampling technique that decreases the number of

observations in the majority class by generating a random subsample from the dataset. The

SpreadSubsample identifies the class distribution by randomly eliminating observations from

the majority class. This distribution is calculated using a Spread value, which is a parameter

for the maximum class distribution spread between the minority and majority classes [50].

This parameter was set to 2.1, which indicates that the distribution spread ratio between the

198

minority and majority classes is 35:65. In the fourth scenario, this parameter was set to 1,

which refers to a uniform distribution, thus the classes were balanced for FS only.

3. Randomize

The SMOTE technique inserts more instances (True values) at the end of the dataset, and this

leads to overfitting in ten-fold cross-validation. For this reason, the randomization was applied

to change the order of the instances [237].

Table 6.8 illustrates the parameters used in Weka for sampling techniques. As shown in

this table, all the parameters are default values in Weka except the percentage in SMOTE,

which is modified to 200 or 300 according to the difference between True and False, and the

default value is 100. Additionally, the distribution spread in SpreadSubsample is changed to

1.0 or 2.1 (the default value is 0.0).

Table 6.8: Parameters used in Weka for sampling techniques.
Sampling techniques Parameters

SMOTE

-C 0 -K 5 -P 100.0 -S 1

-C 0 -K 5 -P 200.0 -S 1

-C 0 -K 5 -P 300.0 -S 1

SpreadSubsample
-M 1.0 -X 0.0 -S 1

-M 2.1 -X 0.0 -S 1

Randomize -S42

6.5. Results and Analyses

This section discusses the results obtained. Initially, the results of the application of ensemble

FS and ensemble sampling are presented. In sequence, the prediction accuracy of four

prediction models in terms of AUC across four different scenarios are compared and evaluated,

and the best prediction models are determined. Finally, the results are validated using tests of

significance.

6.5.1 Results of feature selection

Relief and Pearson’s correlation coefficient techniques in the ensemble FS evaluate each

feature or metric and assign a rank to them. Thus, the average of these techniques was

calculated and the best ten metrics across seven datasets that impact on change-proneness were

selected, which are provided in Table 6.9. The overall results demonstrate that different metrics

subsets were obtained from each dataset, and that the maximum number of metrics selected in

199

each dataset was three, namely PUA, WarningInfo, WarningMajor, JUnit Rules, String and

StringBuffer Rules, RFC, Cohesion Metric Rules and WarningMinor.

 Table 6.9: Best ten metrics using ensemble FS method.

6.5.2 Results of sampling

Sets of three sampling techniques were employed, namely SMOTE, SpreadSubsample and

randomize, and their results were integrated using an ensemble concept. The main reason to

use these techniques is to resolve the class imbalance problem in the dependent variable

(change-proneness). First, SMOTE was applied to increase the number of instances in the

minority class. Different percentages were set for SMOTE to present the amount of

Metrics
Datasets

antl4 junit MapDB mcMMO mct oryx titan

CC ✓ ✓

LCOM5 ✓ ✓

PUA ✓ ✓ ✓

NM ✓

WarningInfo ✓ ✓ ✓

WarningMajor ✓ ✓ ✓

Clone Metric Rules ✓

JUnit Rules ✓ ✓ ✓

String and StringBuffer Rules ✓ ✓ ✓

Type Resolution Rules ✓

NOI ✓ ✓

RFC ✓ ✓ ✓

LLOC ✓ ✓

TNM ✓

TNOS ✓

WarningCritical ✓

Cohesion Metric Rules ✓ ✓ ✓

Type Resolution Rules ✓

WarningMinor ✓ ✓ ✓

Basic Rules ✓ ✓

Complexity Metric Rules ✓ ✓

Controversial Rules ✓

Migration Rules ✓

Naming Rules ✓ ✓

Strict Exception Rules ✓

NL ✓ ✓

CBOI ✓

NII ✓

NA ✓

NLA ✓

Empty Code Rules ✓ ✓

Strict Exception Rules ✓

CBO ✓

Coupling Metric Rules ✓

Optimization Rules ✓

AD ✓

CD ✓

NLG ✓

NLM ✓

NLPM ✓

NPM ✓

Documentation Metric Rules ✓ ✓

TNLPM ✓

Size Metric Rules ✓

200

oversampling, and these percentages depend on the category of difference between True and

False values mentioned in Table 6.4. Table 6.10 provides the number of True and False values

before and after applying SMOTE, along with their percentages.

Table 6.10: Results before and after applying SMOTE.
 Before applying SMOTE

% of

SMOTE

After applying SMOTE

Dataset

name

Classes

True

value

%

True

value

False

value

%

False

value

Classes

True

value

%

True

value

False

value

%

False

value

antlr4 436 23 5.28% 413 94.72% %100 459 46 10.02 413 89.98

junit 657 9 1.37% 648 98.63% %200 675 27 4 648 96

MapDB 439 4 0.91% 435 99.09% %300 451 16 3.55 435 96.45

mcMMO 301 4 1.33% 297 98.67% %200 309 12 3.88 297 96.12

mct 2162 15 0.69% 2147 99.31% %300 2207 60 2.72 2147 97.28

oryx 536 15 2.80% 521 97.20% %100 551 30 5.44 521 94.56

titan 1486 13 0.87% 1473 99.13% %300 1525 52 3.41 1473 96.59

The values in Table 6.10 indicate that after performing SMOTE, the classes in the

dependent variable were still imbalanced. Although the classes in Table 6.10 were still

imbalanced, the differences between the number of True and False values decreased compared

with the differences in Table 6.4. In sequence, the SpreadSubsample technique was applied to

decrease the number of instances in the majority class. The Spread value (default parameter)

was changed from zero to 2.1, which indicates that the maximum ratio between the majority

and minority classes is 35:65. The results of this technique are presented in Table 6.11.

Table 6.11: Results before and after applying SpreadSubsample.
 Before applying SpreadSubsample After applying SpreadSubsample

Dataset

name
Classes

True

value

%True

value

False

value

%

False

value

Classes

True

value

%True

value

False

value

% False

value

antlr4 459 46 10.02 413 89.98 142 46 32.39 96 67.61

junit 675 27 4.00 648 96.00 83 27 32.53 56 67.47

MapDB 451 16 3.55 435 96.45 49 16 32.65 33 67.35

mcMMO 309 12 3.88 297 96.12 37 12 32.43 25 67.57

mct 2207 60 2.72 2147 97.28 186 60 32.26 126 67.74

oryx 551 30 5.44 521 94.56 93 30 32.26 63 67.74

titan 1525 52 3.41 1473 96.59 161 52 32.30 109 67.70

Finally, applying SMOTE inserts additional classes (rows) at the end of each dataset,

which leads to overfitting in ten-fold cross-validation. Thus, randomization was performed to

rearrange the rows and avoid the overfitting problem.

201

6.5.3 Results of prediction models

In this section, the results of the empirical study are presented and analysed. Four prediction

models involving three individual models (i.e., NB, SVM and KNN) and one ensemble model

(RF) were employed on seven datasets. Each prediction model was constructed using four

different datasets extracted from the four scenarios analysed (see Table 6.2). Therefore, the

total number of prediction models was 112: 7 datasets × 4 scenarios × 4 prediction models.

 Figure 6.3 shows the box plots of the AUC of each prediction model across the seven

datasets for the four scenarios (see Table 6.2). The mean value of the AUC values is indicated

by an “X”, the upper and lower lines of the box represent the first and third quartiles, and the

middle horizontal line across the box represents the middle quartile. The prediction model

which has the highest “X” values and the spread of the box is considered to be preferable. It is

important to mention that because of the way that the scenarios were constructed, the test sets

used for evaluating sampling methods in the third and fourth scenarios were different from

those used for the non-sampling methods in the first and second scenarios. For this reason, the

comparison between these two distinct groups of scenarios (first and second, versus third and

fourth) has not been carried out as it would be invalid. It is observed in Figure 6.3 that RF

attained the highest prediction accuracy in all four scenarios. Additionally, RF improved the

prediction accuracy in the mct dataset over other datasets, reaching 0.86 and 0.82 values in the

third and fourth scenarios, respectively. This finding further supports the concept that RF

provides the best prediction accuracy for large datasets, as the mct dataset has a higher number

of instances compared to other datasets [37] (2162 in the first and second scenarios and 186 in

the third and fourth scenarios). Indeed, RF reaches good prediction accuracy with respect to

the individual models.

202

Figure 6.3.A: Box plot of the AUC values for prediction models on the first scenario.

Figure 6.3.B: Box plot of the AUC values for prediction models on the second scenario.

203

Figure 6.3: Box plot of the AUC values for prediction models on the scenarios analysed.

Figure 6.3.C: Box plot of the AUC values for prediction models on the third scenario.

Figure 6.3.D: Box plot of the AUC values for prediction models on the fourth scenario.

204

Table 6.12, Table 6.13, Table 6.14 and Table 6.15 present the results of AUC for prediction

models across seven datasets in the first, second, third and fourth scenarios, respectively. The

prediction accuracy in terms of AUC measurement was evaluated, and the results of each

scenario were presented separately considering the following aspects. First, the performance

of the investigated prediction model was compared with the baseline, which is based on the

dependent variable only (i.e., change-proneness) and predicts the mode value of this variable.

Second, the best model in each dataset was identified (the highest AUC), and indicated by

Boldface values (highlighted in light green) in the tables. Third, the best model in all datasets

was identified and using Boldface with underlined values (highlighted in dark green in this

table. Finally, the best model to predict change-proneness was determined.

A. Baseline

A baseline is provided in Table 6.12, Table 6.13, Table 6.14 and Table 6.15 for all scenarios.

All the investigated models except NB in junit dataset in the first scenario (Table 6.12)

achieved better prediction accuracy than the baseline. Consequently, these models have higher

AUC values than those in the baseline model (i.e., ZeroR).

B. First scenario: datasets without FS or sampling

Table 6.12 provides the results of AUC values for prediction models in seven datasets in the

first scenario. These results indicate that RF outperformed all other prediction models, as RF

provided higher AUC values in all datasets except antlr4, in which NB achieved a slightly

better prediction accuracy (only 0.03 higher). KNN achieved the best performance among

individual models and was the second-best prediction model. From Table 6.12 the highest

value of AUC in the first scenario was 0.89, obtained by the RF in the mct dataset.

Table 6.12: AUC values for performance evaluation of prediction models across seven datasets in the

first scenario.
Models Change-proneness dataset

 antlr4 junit MapDB mcMMO mct oryx titan

ZeroR 0.45 0.44 0.19 0.19 0.41 0.41 0.41

NB 0.73 0.43 0.38 0.29 0.88 0.58 0.74

SVM 0.51 0.5 0.5 0.49 0.5 0.5 0.5

KNN 0.57 0.6 0.69 0.65 0.69 0.65 0.7

RF 0.7 0.73 0.79 0.79 0.89 0.81 0.81

Dark green: represents the best results in all datasets.
Light green: represents the best results for each dataset.

C. Second scenario: datasets with FS and without sampling

Table 6.13 presents the AUC values for prediction models across seven datasets in the second

scenario. This scenario presents the prediction accuracy using ensemble FS mentioned in

205

Section 6.4.5. Comparing the performance of the second scenario in Table 6.13 with that of

the first scenario (without FS and sampling techniques) in Table 6.12, it is clear that FS

improved the prediction accuracy in NB and KNN models except for one case (KNN in

MapDB). In contrast, no impact was observed on SVM and RF compared to other prediction

models. Additionally, FS produced either the same or an inferior performance to RF compared

to the scenario without applying FS, except in antlr4 and junit. Although FS had no effect on

RF, there was a clear competition between RF and NB to obtain the best prediction model in

each dataset. Therefore, NB performed better than other individual models in terms of

prediction accuracy, and achieved the best AUC value (0.92) in the mct dataset, which is

considered outstanding according to the published criteria [169].

Table 6.13: AUC values for performance evaluation of prediction models across seven datasets in the

second scenario.
Models Change-proneness dataset

 antlr4 junit MapDB mcMMO mct oryx titan

ZeroR 0.45 0.44 0.19 0.19 0.41 0.41 0.41

NB 0.77 0.77 0.65 0.7 0.92 0.7 0.8

SVM 0.5 0.5 0.5 0.5 0.5 0.5 0.5

KNN 0.66 0.73 0.62 0.66 0.72 0.74 0.71

RF 0.81 0.75 0.7 0.7 0.89 0.8 0.8

Dark green: represents the best results in all datasets.

Light green: represents the best results for each dataset.

D. Third scenario: datasets without FS and with sampling

Table 6.14 shows the AUC values for prediction models across seven datasets in the third

scenario. This scenario provides the prediction accuracy using ensemble sampling techniques

mentioned in Section 6.4.5. From Table 6.14, it is evident that the AUC values were extremely

high. This good performance was achieved because the datasets were modified with sampling

techniques proposed in Section 6.5.2 without applying FS. However, some features were

excluded after applying data analysis in Section 6.4.4. The most interesting finding from this

scenario was that applying ensemble sampling techniques on the datasets that exclude

improper features (i.e., features that have zero values and correlated with each other) in Section

6.4.4 is enough to reach a high prediction accuracy. The results of this scenario provide

valuable insights into the positive influence of sampling techniques to improve the prediction

accuracy of prediction models. However, the most evident result is that sampling techniques

in the third scenario had a considerable impact on SVM, as seen in Table 6.14 had a great

impact on SVM. The result of SVM in the first and second scenarios was 0.5, which indicates

no discrimination according to the published criteria [169]. Furthermore, RF achieved the best

206

prediction accuracy in all datasets except in mcMMO, and the optimal AUC value (0.99) was

obtained for the mct dataset. KNN was the second-best prediction model and outperformed

other individual models.

Table 6.14: AUC values for performance evaluation of prediction models across seven datasets in the

third scenario.
Models Change-proneness dataset

 antlr4 junit MapDB mcMMO mct oryx titan

ZeroR 0.46 0.44 0.46 0.38 0.49 0.48 0.48

NB 0.73 0.80 0.73 0.99 0.92 0.82 0.81

SVM 0.64 0.74 0.64 0.98 0.93 0.83 0.72

KNN 0.81 0.88 0.81 0.91 0.98 0.9 0.93

RF 0.89 0.92 0.89 0.98 0.99 0.92 0.97

Dark green: represents the best results in all datasets.
Light green: represents the best results for each dataset.

E. Fourth scenario: datasets with both FS and sampling

Table 6.15 provides the results of AUC values for prediction models across seven datasets in

the fourth scenario. This scenario lists the prediction accuracy using both the FS and sampling

techniques mentioned in Section 6.4.5, and the method used in this scenario is mentioned in

section 6.3. The main difference between the fourth and third scenarios is the use of different

metrics, but they used the same sampling method. Overall, the results of the fourth scenario

indicate a good prediction accuracy in most cases. However, the results in this scenario are

worse than previous scenario. This suggests that applying both ensemble FS and sampling

techniques decreased the prediction accuracy and using only sampling techniques was

adequate to achieve high prediction accuracy. Again, RF outperformed the other prediction

models in all datasets (except NB in mcMMO dataset) with AUC values ranging from 0.85 to

0.98, which is recognised as a good result. As in the first and second scenarios, KNN also was

the second-best prediction model and performed better than other individual models.

Table 6.15: Performance of AUC for prediction models across seven datasets in the fourth scenario.
Models Change-proneness dataset

 antlr4 junit MapDB mcMMO mct oryx titan

ZeroR 0.46 0.43 0.39 0.38 0.49 0.48 0.48

NB 0.51 0.79 0.84 0.99 0.94 0.73 0.8

SVM 0.51 0.65 0.82 0.91 0.81 0.52 0.59

KNN 0.71 0.78 0.78 0.84 0.91 0.78 0.77

RF 0.85 0.85 0.95 0.96 0.98 0.85 0.9

Dark green: represents the best results in all datasets.
Light green: represents the best results for each dataset.

 Figure 6.4 illustrates the AUC results obtained from each prediction model across

seven datasets in four scenarios, in which the higher AUC value indicates the better result. The

comparison of the models indicates that the results of the third scenario provide valuable

207

insights into the positive influence of ensemble sampling techniques to improve the prediction

accuracy of prediction models. The basic findings are consistent with research showing that

the sampling techniques improved the overall performance [53, 206]. Regarding the overall

results of the datasets, mcMMO and mct datasets achieved the highest prediction accuracy in

both third and fourth scenarios.

These findings are further supported by Figure C.1, Figure C.2, Figure C.3 and Figure

C.4 in Appendix C, which provide graphs for multiple ROC curves for prediction models in

the first, second, third and fourth scenarios, respectively. The highest curve, which is very

close to 1, refers to the best results (e.g., RF in mct dataset in Figure C.3), whereas the lowest

curve, which is very close to 0, refers to the worst results (e.g., ZeroR in mct dataset in Figure

C.1).

6.5.4 Statistical tests of the third empirical study

ANOVA was applied to address RQ6.4 by comparing all prediction models across four

scenarios using AUC. Factor A in ANOVA experiment is the prediction model (NB, SVM,

KNN and RF). Table 6.16 shows one-way ANOVA results for prediction models using AUC.

The significance level was defined as α = 0.05 and the p-values in the tables were evaluated;

Figure 6.4: Ranking of the AUC values for prediction models on the scenarios

analysed.

208

therefore, H0 was rejected because all p-values in the tables were lower than 0.05. According

to the standard classifications of Cohen proposed in Section 3.5.5, the results of eta-squared

reveal that the effect size was large [180].

Table 6.16: One-way ANOVA results for prediction models using AUC.

Source
Sum of

Squares

Degrees of

Freedom
Mean Square F P-Value Eta-Squared

Factor A 0.78 3.00 0.26 13.95 0.00 0.28

Error 2.02 108.00 0.02

Total 2.80 111.00

Additionally, multiple comparisons were performed using Tukey’s confidence intervals

[170] (see Figure 6.5). In the chart, it is possible to identify which pairs of Factor A (prediction

models) significantly differ across scenarios. If a confidence interval does not include 0, then

the pair is significantly different. The results obtained from Figure 6.5 indicates that there were

significant differences between ensemble models (RF) and all individual models (NB, SVM

and KNN). Similarly, there were significant differences between NB–SVM and SVM–KNN.

6.5.5 Impact of parameter tuning for random forests.

The results of the parameters tuning of the individual models in Chapter 4 indicated that the

default parameters outperformed the tuning parameters. Therefore, only the impact of the Mtry

parameter tuning in RF using the grid search method proposed in Section 3.3.3 was explored.

In Table 6.17, the performance of AUC for RF with default parameters was compared with

that of Mtry parameter tuning. Boldface values in the table highlight the best results among

each dataset in each scenario, whereas AUC-T refers to the AUC for parameter tuning and

AUC-D refers to the AUC for default parameters. The comparison of the results indicated that

NB - SVM

NB - KNN

NB - RF

SVM -

KNN

SVM - RF

KNN - RF

-0.4000 -0.3000 -0.2000 -0.1000 0.0000 0.1000 0.2000 0.3000

Confidence Intervals

Tukey's Confidence Intervals

Figure 6.5: Multiple comparisons for prediction

models using AUC.

209

AUC-T outperformed AUC-D across all datasets in all scenarios, except mct dataset in the

third scenario, which achieved the same result of AUC-D (0.99). AUC-T reached the optimal

result (1.00) in the mcMMO dataset in the third scenario, and the average of AUC-T in all

datasets in this scenario provided the highest prediction accuracy. Additionally, the grid search

method provided different Mtry values for different datasets, which indicates that this method

is an alternative to save time and effort instead of trying different parameters manually. The

percentage of change between the average AUC-T and AUC-D across all datasets was 10.13%,

8.97%, 3.19% and 2.20% in the first, second, third and fourth scenarios, respectively. This

indicates that tuning Mtry parameter in RF had a positive influence in each scenario. However,

this influence was higher in the original datasets (e.g., without FS or sampling in the first

scenario) and were lower in the edited datasets (e.g., with FS and sampling in the fourth

scenario). Additionally, there is a good agreement between the findings in this section and

those in the previous section, in which the third scenario achieved considerable performance.

This scenario used metrics proposed in Table C.2, Table C.3, Table C.4, Table C.5, Table C.6,

Table C.7 and Table C.8 in Appendix C without applying FS. The present findings seem to be

consistent with prior research that used the same datasets to predict refactoring and found that

using sampled instead of unsampled datasets improves the prediction accuracy [53, 206].

Table 6.17: AUC values for performance evaluation of RF with default and Mtry parameter tuning.
Scenario First Second Third Fourth

 Mtry AUC-T AUC-D Mtry AUC-T AUC-D Mtry AUC-T AUC-D Mtry AUC-T AUC-D

antlr4 3 0.81 0.7 2 0.84 0.81 6 0.94 0.89 1 0.87 0.85

junit 15 0.84 0.73 3 0.81 0.75 5 0.95 0.92 5 0.89 0.85

MapDB 2 0.90 0.79 10 0.72 0.7 8 0.96 0.89 2 0.98 0.95

mcMMO 11 0.89 0.79 2 0.89 0.7 6 1.00 0.98 5 0.98 0.96

mct 2 0.96 0.89 4 0.96 0.89 1 0.99 0.99 14 0.99 0.98

oryx 8 0.82 0.81 1 0.85 0.8 6 0.94 0.92 14 0.90 0.85

titan 8 0.90 0.81 6 0.85 0.8 15 0.99 0.97 2 0.93 0.9

Average NA 0.87 0.79 NA 0.85 0.78 NA 0.97 0.94 NA 0.93 0.91

% of

change
NA 10.13% NA 8.97% NA 3.19% NA 2.20%

6.5.6 Discussion and answers to research questions for the third empirical

study

This section provides the discussion of the results presented above; and answers the RQs for

the third empirical study.

RQ6.1) What is the impact of ensemble FS techniques on the performance of prediction

models?

210

Ensemble FS techniques in the second scenario improved the prediction accuracy of NB and

KNN models. Analysing the likely reasons behind this finding, firstly, NB is called naïve

because it creates conditional assumption, which are independent from the features [238].

Second, using the Euclidean measure, KNN determines the closest neighbours, which are also

independent from the features [114]. Therefore, these models may have performed well with

FS techniques because they do not perform attribute selection [220].

However, ensemble FS techniques had no clear impact on the overall performance of

SVM and RF. This result may be described by the fact that SVM algorithm includes the C

parameter that selects the number of features, and the kernel function creates a suitable feature

space [125]. Regarding the RF result, this occurs because RF has multiple decision trees that

apply the same concept of FS using a top-down greedy search algorithm to choose the best

feature at each step [239]. Therefore, SVM and RF algorithms already perform the FS concept

during their creation. Additionally, RF includes many decision trees, which perform

adequately with imbalanced dataset because they tend to build several tests to recognise the

difference between the minority and majority classes [240]. For this reason, RF achieved the

best prediction accuracy in the second scenario.

RQ6.2) What is the impact of ensemble sampling techniques on the performance of

prediction models?

The machine learning models with ensemble sampling techniques achieved good performance.

Again, RF achieved the best results of AUC values across all the datasets except mcMMO.

These findings may help us to conclude that the performing ensemble sampling techniques

and removing inappropriate features in the data analysis step without applying ensemble FS is

sufficient to predict change proneness accurately. This is consistent with what has been found

in a series of recent studies [53, 206] that used several types of sampling techniques: SMOTE

[53], UPSAMPLE, SMOTE and RUSBoost [206], and emphasises the effect of these

techniques to increase the performance of the prediction models.

Interestingly, ensemble sampling techniques in this particular case increased the

prediction accuracy of SVM and RF. This supports the findings in the previous question

indicating that SVM and RF algorithms perform FS during their creation. Consequently, these

algorithms have a better response to sampling techniques compared to FS techniques.

211

RQ6.3) What is the impact of applying both ensemble FS and sampling techniques on

the performance of prediction models?

Applying both ensemble FS and sampling techniques improved the performance of the

prediction models, and RF achieved the best performance across all datasets except mcMMO.

These findings corroborate the ideas of Kumar and Sureka, who used the same datasets to

predict refactoring and performed principal component analysis and SMOTE techniques to

extract the best features and resolve the imbalanced data problem [53]. Their results indicated

that the prediction accuracy with the SMOTE technique was better than that without SMOTE,

and the prediction accuracy of all metrics was better than that with FS. A possible explanation

for these results may be the lack of adequate datasets, and the rank of the best ten features

selected is considered low (the average ranking of best ten metrics ranges from 0.1 to 0.6),

whereas the difference before and after applying sampling techniques is high (see Table 6.10

and Table 6.11).

RQ6.4) How effective are individual models and how do ensemble models perform when

compared to the individual models in the context of predicting change-proneness?

KNN achieved the best prediction accuracy among most cases. RF outperformed other

individual models and achieved the best result in terms of average AUC value (see Figure 6.4)

across all scenarios. The results of the ANOVA test reveal that there were significant

differences between RF and all individual models (see Figure 6.5). In addition, the results of

the effect size were large (see Table 6.16). Therefore, applying ensemble sampling techniques

on RF produced the highest accuracy to predict change-proneness. This finding is in

accordance with previous studies, in which RF provided the best performance to predict

change-proneness [47], software fault [37] and CHANGE metric [48].

RQ6.5) What is the impact of the Mtry parameter tuning in RF?

Mtry parameter tuning in RF using grid search method, along with RF, mlbench and caret

packages improved prediction accuracy. This improvement increased in the original datasets

(e.g., without FS or sampling) and decreased in the edited datasets (e.g., with FS and sampling

in the fourth scenario). The findings of this RQ are consistent with those of Fernández-Delgado

et al. who stated that RF created using caret package in R was the best model among 179

models applied on 121 original datasets [166]. Furthermore, the Mtry parameter differed from

various datasets, and this difference was behind the study showing that there are no suggestions

212

to choose the specific number of the Mtry parameter [138]. In addition, this supports the use

of automatic parameters tuning to simply and effectively improve performance [141, 142].

Based on these findings, it is recommended to tune Mtry parameter automatically to save time

and efforts and improve the results. In future work, a statistical test will be used to investigate

the performance difference between RF without and with parameter tunning.

6.6. Threats to Validity

The threats to validity usually are present in any experimental software engineering study that

utilises open-source software projects [186]. This section describes the threats to validity that

include four different types: external, conclusion, internal and constructed. Additionally, this

section provides explanations on how they were solved.

6.6.1 External validity

Publicly available datasets extracted from open source software systems were used to enable

reproducibility and comparison with other empirical studies that used the same datasets.

Therefore, there is no threat in the datasets. However, these datasets were collected from Java

systems, which restricts the generalisation of the findings to all programming languages (e.g.,

C++ and C#).

6.6.2 Conclusion validity

Conclusion validity relates to the statistical relationship between the results and the output of

the experiment, which impacts on the capability to reach the right conclusion [187]. To avoid

the threat of conclusion validity, ten-fold cross-validation was performed to reduce potentially

biased results by selecting tests from the entire dataset. This validation was repeated ten times

to generate statistically reliable results and avoid the conclusion threat. Finally, the conclusions

were based on parametric statistical tests (i.e., ANOVA test), which is suitable for three or

more groups (i.e., NB, KNN, SVM and RF). ANOVA requires some assumptions, such as

normal distribution for the datasets and independent observations. However, these

assumptions were met and one of the main advantages of the parametric statistical test over

non-parametric statistical test is to provide more reliable results with both nonnormally and

213

continuous datasets. Hence, the threat to conclusion validity maybe exists due to using a

parametric statistical test. This test also includes ten runs, which may have affected the results.

6.6.3 Internal validity

To prevent the threat of internal validity, the effectiveness of ensemble FS and sampling

techniques employed to improve the accuracy of prediction models was explored.

Furthermore, four scenarios were constructed to evaluate the performance of these techniques.

Additionally, the four most frequently used models in Table 6.1 that were appropriate for

classification problems were built. Weka, which is a well-known and common tool, was used

to select features and build prediction models [120]. Therefore, there are no threats to internal

validity.

6.6.4 Construct validity

In this study, 125 metrics manually validated and extracted from class-level were employed to

capture several features of the software product [58]. Some of these metrics were eliminated

before conducting empirical study (see Section 6.4.4) and some of them were removed by

applying ensemble FS in Section 6.4.5. However, several of these metrics were used for the

first time to predict change-proneness. Therefore, they present a threat to construct validity of

these metrics. Furthermore, other validity concerns related to the dependent variable (i.e.,

change-proneness), which is a Boolean variable that reflects changes of refactorings (i.e.,

changes of the structure of the internal source code without affecting the functionality of source

code [53]). As a result, the changes made in the systems may not be representative of all

maintenance changes that could be made. The prediction of change-proneness variable has

been investigated in several studies and it is considered as good indicator [16, 23, 47, 204,

241-247]. This study did not recognise the types of changes (i.e., adaptive, corrective,

preventive or perfective). Therefore, this is also a threat to construct validity of the dependent

variable. However, change-proneness is used as recommended by [203] because limited

studies considered the types of the change proneness [47]. Regarding parameters tuning, only

the grid search was applied to tune the Mtry parameter in RF. However, the prediction accuracy

of RF may increase by tuning other parameters, such as the number of trees to grow. Additional

214

studies to more completely investigate the key tenets of other parameters in RF are required,

along with tuning of parameters on other models (i.e., SVM, KNN and NB).

6.7. Conclusion of the third empirical study

Ensemble FS and sampling techniques can improve the prediction accuracy of machine

learning models. However, the application of these techniques on software maintainability is

limited. In this chapter, three individual models (NB, SVM and KNN) and one ensemble model

(RF) were applied on seven publicly available datasets. The effectiveness of ensemble FS (i.e.,

Relief and Pearson’s correlation coefficient) and ensemble sampling techniques (i.e., SMOTE,

SpreadSubsample and randomize) on the performance of prediction change-proneness was

evaluated and compared.

This chapter presents several insights based on comprehensive experimentation and

analyses:

• The results obtained from this chapter provide evidence of the positive impact of

ensemble FS in improving the performance of the prediction models (KNN and NB)

that are FS method independent. Nevertheless, ensemble FS techniques had no clear

effect on the overall performance of SVM and RF because these models have FS

techniques as a part of the model’s creation;

• A considerable improvement in performance was achieved by applying ensemble

sampling methods on all prediction models, and there was a clear improvement in SVM

and RF;

• Across all scenarios, the ensemble model (RF) achieved the best performance in

predicting change-proneness compared to other models and there were significant

differences between RF and all individual models. In addition, the effect size was large.

A possible explanation of the good performance of RF in both high dimensional and

imbalanced datasets is that RF performs FS through the creation of several decision

trees;

• The experimental results in this empirical study presented that the performance of the

ensemble models for predicting change-proneness was significantly improved and the

effect size was large in all prediction models. In contrast to earlier findings in the first

215

and second empirical studies, where there were no significant differences between

individual and ensemble models except few cases in heterogeneous ensemble models

in the second empirical. A possible explanation is that this empirical study used larger

datasets than those used in the first and second empirical studies;

• The Mtry parameter tuning in RF improved the performance compared to the use of

the RF default parameters. The observed increase in the prediction accuracy of RF after

applying parameter tuning is because the grid search selects the best value of the Mtry

parameter (which determines the number of features randomly sampled at each split)

in each dataset that provides the highest prediction accuracy. The results observed in

this study reflect those of a previous study that examined the effect of caret package

and found that RF was the best prediction model among 179 models analysed [166].

216

Chapter 7. Conclusion and Contributions

This chapter concludes this thesis and summarises the research results of the previous chapters.

This chapter provides the answers to the RQs proposed in Chapter 1, describes the key

contributions and recommendations for practitioners, and presents limitations and some

directions and opportunities for future work.

7.1. Conclusion of the thesis

Chapter 2 systematically reviews 56 studies in 35 journals and 21 conference proceedings

related to the prediction of maintainability of OO software systems using machine learning

techniques. The review uses the standard SLR method applied to the most common computer

science digital database libraries from January 1991 to July 2018. In the process of reviewing

these studies, the fundamental research gaps and directions of research were determined in the

methodology section to formalise three empirical studies in Chapters 4, 5, and 6. Thus, this

thesis compared and evaluated the effectiveness of homogeneous (i.e., bagging, additive

regression and RF) and heterogeneous (i.e., stacking and APE) ensemble models and sets of

individual models (i.e., RT, MLP, M5Rules, KNN, SVR, SVM and NB) for predicting

software maintainability of OO systems. These models were applied in various public datasets

extracted from class level and collected after several years of OO system maintenance. To

validate the investigated models in these empirical studies, statistical tests and effect size

measurements were performed. In addition, the impact of parameter tuning was explored using

caret package, Auto-WEKA and grid search in Chapters 4, 5 and 6, respectively.

The main aim of all empirical studies conducted was to improve the prediction accuracy

and achieve more consistent results in the prediction of software maintainability in OO systems

by applying ensemble models on different datasets and using several base models, as the core

idea of the ensemble models is to improve the prediction accuracy over individual models. The

creation of a highly accurate prediction of software maintainability was challenging because

the relationships between software quality attributes and their metrics are often complicated,

nonlinear and lead to a reduction in the accuracy of prediction models [10]. In contrast, the

217

key to predict software maintainability is the determination of software maintenance

measurements, which are notoriously difficult to capture because of the problems in estimating

the effort associated with the maintenance task.

The overall empirical results in this thesis indicate that ensemble models produced better

prediction accuracy than most of the individual models; however, the results are different in

various datasets and the base model. In most cases, KNN or SVR recorded the highest

prediction accuracy compared to other individual models; moreover, these models as base

models in bagging and additive regression achieved the best prediction accuracy, along with

RF.

The following are the most important findings from each empirical study:

In the first empirical study:

• There were no significant differences between the ensemble and individual models and

the effect sizes were small;

• KNN as the individual model or as the base model in additive regression ensemble

model attained the best performance across all investigated models;

• The parameter tuning increased the prediction accuracy of ensemble models and did

not increase the prediction accuracy of the individual models in most cases.

In the second empirical study:

• No significant differences have been found between the ensemble and individual

models except few cases in the heterogeneous ensemble models and the effect sizes

were small;

• SVR and KNN as an individual model, or sometimes as a base model in bagging and

additive regression achieved the best accuracy to predict software maintainability,

followed by APE;

• The selected models by Auto-WEKA tool performed better than the best model

prediction in study 5.A except KNN and SVR in Eclipse JDT Core and Lucene,

respectively.

In the third empirical study:

• RF performed significantly better than other individual models as well as the effect

size was large;

• RF achieved the best prediction accuracy across all scenarios;

218

• Tuning the Mtry parameter in RF outperformed using the default parameters of RF.

7.2. Answers to Research Questions

This section answers RQs predetermined in the first chapter using evidence collected from the

empirical studies.

RQ1) How effective are individual models at predicting software maintainability?

Answer: The performance of the individual models differed for each dataset. In most cases,

KNN achieved the best prediction accuracy among individual models, followed by SVR. Also,

SVR and M5Rules in some cases achieved the best performance in addition to KNN, whereas

KNN and NB recorded the second-best prediction accuracy in some cases. Therefore, the

overall results of individual models indicate that KNN was better than other individual models

in most cases, followed by SVR.

RQ2) How do ensemble models perform in the context of predicting change maintenance

efforts using well-established datasets when compared to the individual models?

Answer: Although ensemble models improved the prediction accuracy over all individual

models except for a few cases, the differences were not statistically significant, and the effect

sizes were small. KNN as the individual model or as the base model in additive regression

attained the best prediction accuracy compared to all investigated models. Regarding

parameter tuning, these parameters increased the prediction accuracy of the ensemble models

and did not increase the prediction accuracy of the individual models in most cases. KNN as

the base model in additive regression in the parameter tuning provided the best prediction

accuracy.

RQ3) How do ensemble models perform in the context of predicting change maintenance

efforts using more recent and larger datasets when compared to the individual models?

Answer: There were no significant differences between individual and ensemble models,

except for a few cases in the heterogeneous ensemble models, and the effect sizes were small.

The homogeneous ensemble models increased the prediction accuracy over most of the

individual models, in which SVR as an individual model or a base model in bagging or additive

regression outperformed all other prediction models. However, the heterogeneous ensemble

models had a considerable impact on RT and a minor or no impact on KNN and SVR.

Regarding parameter tuning, all the selected models using the Auto-WEKA tool performed

219

better than the best model prediction in the empirical study except KNN and SVR in Eclipse

JDT Core and Lucene, respectively.

RQ4) How do ensemble models perform in the context of predicting change-proneness

using the newest and largest datasets when compared to the individual models?

Answer: The results indicate that RF outperformed other individual models and obtained the

highest value of the average of AUC. In addition, there were significant differences between

individual and ensemble models, and the effect size was large. With respect to parameter

tuning, the Mtry parameter tuning in RF increased the performance when using the default

parameters of RF.

7.3. Contribution

This thesis provides knowledge and empirical evidence in both the machine learning and

software maintainability fields. The fundamental contributions are as follows:

• Based on the findings obtained from the SLR, there is relatively little activity in the

area of software maintainability prediction compared with other software quality

attributes. The CHANGE metric was the most commonly used software measurement

(dependent variable) employed in the selected primary studies, and most of them used

class-level product metrics as the independent variables. Several private datasets were

used in the selected studies, and there is a considerable need to publicly publish

datasets. Most studies focused on regression problems and performed k-fold cross-

validation. Although ensemble models used in selected primary studies improved the

prediction accuracy over individual prediction models, their application is relatively

rare compared with the individual prediction models applied in the majority of studies;

• Among several types of software maintenance measurements, the CHANGE metric,

MI and change proneness are considered indirect measures and can be used as

dependent variables to capture the element of maintainability. This thesis used the most

common measurement performed in the selected primary studies (i.e., CHANGE

metric), along with the rarest measurement (i.e., change proneness);

• Class level product metrics (i.e., L&H, C&K and other OO source-code metrics) used

in this thesis as independent variables emerged as reliable and powerful predictors for

220

software maintainability (dependent variable). Additionally, these metrics are directly

calculated on different parts of the software systems and can be used as early predictors

to reduce cost, utilise resources and control future maintenance efforts;

• Although there are few public datasets for software maintainability, preprocessing

techniques were applied to public software quality datasets (i.e., bug prediction

datasets [57] and refactoring dataset [58]) to produce new versions of these datasets

appropriate for software maintainability prediction;

• The findings of ensemble models, in general, show that the proposed ensemble models

yield improved prediction accuracy over most of the individual models; moreover, the

improvement was significant and the effect size was large only in Chapter 6, in which

a larger number and size of the datasets was used;

• The proposed ensemble models in Chapters 4 and 5 were also found to be useful in

predicting software maintainability. Also, there were no significant differences

between the individual and ensemble models, and the effect sizes were small except

for a few cases in Chapter 5;

• Although the results of the investigation of ensemble models in the three empirical

studies show that these models are effective in predicting software maintainability and

increasing the prediction accuracy over most of the individual models, in some cases,

neither homogeneous nor heterogeneous ensemble models improved the prediction

accuracy over SVR and KNN;

• The prediction accuracy of homogeneous ensemble models outperformed the

heterogeneous ensemble models in some datasets, and the opposite occurred in other

datasets. Moreover, additive regression exhibited better prediction accuracy compared

to the bagging ensemble model in Chapter 4 and the opposite occurred in Chapter 5.

KNN and SVR as an individual model or a base model in bagging or additive

regression achieved the best prediction accuracy in Chapters 4 and 5, respectively,

whereas RF achieved the best prediction accuracy in Chapter 6. Therefore, the

prediction accuracy of ensemble models is different in various datasets and varies with

the base model;

• KNN as a base model in additive regression in Chapters 4 and 5 produced the same

result as the individual KNN models. Furthermore, KNN produced the highest

221

prediction accuracy compared to individual models in this thesis in most cases, and

other prediction models that were implemented by selected previous studies for the

QUES dataset in Chapter 4. In addition, for the QUES dataset, this model is the only

model that nearly fulfils the criteria of accurate prediction proposed in Chapter 3.

Additionally, KNN as the base model in the additive regression with tuning parameters

achieved the best prediction accuracy and reached the optimal result (0) in terms of

MMRE and MAE values;

• In Chapter 4, the parameter tuning using the caret package in most cases had a positive

impact on the ensemble models and a negative impact on the individual models. In

addition, the performance of the ensemble models with respect to the parameter tuning

outperformed that of the individual models. In Chapter 5, the models selected by the

Auto-WEKA tool performed better than the best model prediction in the second

empirical study except for KNN and SVR in the Eclipse JDT Core and Lucene datasets,

respectively. In Chapter 6, the Mtry parameter tuning in RF using grid search improved

the prediction accuracy in all scenarios. However, the positive impact of this tuning

was higher in the original datasets (e.g., without FS or sampling in the first scenario)

and lower in the edited datasets (e.g., with FS and sampling in the fourth scenario);

• The results of the method used in Chapter 6 reveal that the ensemble FS and sampling

techniques yield improved prediction accuracy over most of the investigated models.

To the best of the author's knowledge, the implementation of these techniques has

never been documented before in the area of software maintainability.

7.4. Recommendations for Practitioners

This section presents different critical results and provides various recommendations on the

adequate use of the ensemble models to predict software maintainability as follows:

Size of the datasets: The first empirical study in Chapter 4 used relatively limited datasets,

whereas the second empirical study in Chapter 5 used more recent and larger datasets. The

results of the statistical tests in these studies showed no significant differences between

individual and ensemble models, and the effect size was small except for a few cases in the

heterogeneous ensemble models in the second empirical study. In contrast, the third empirical

study in Chapter 6 employed the largest datasets compared with the datasets used in the

222

previous empirical studies, and the results indicate that there were significant differences

between individual and ensemble models, and the effect size was large. Therefore, the size of

the datasets should be large enough to create adequate ensemble models.

Base model: Most ensemble models investigated did not improve strong models (e.g., KNN

and SVR). Hence, the ensemble models are more useful in improving the performance of

weaker base models.

Parameter tuning: The parameter tuning of the ensemble models using the caret package in

Chapter 4, along with grid search in Chapter 6, improved the prediction accuracy of the

ensemble models and achieved better performance than the individual models. Consequently,

parameter tuning must be performed on the ensemble models to improve the prediction

accuracy.

One of the primary concerns of software practitioners is to improve software

maintainability [248]. Predicting software maintainability accurately is a fundamental

requirement for practitioners to save time, cost and effort of the maintenance of software.

Therefore, the previous findings have produced several important recommendations for

practitioners as follow:

1. The selection of the prediction model plays an important role to produce high

prediction accuracy of software maintainability. It is recommended to select strong

individual models (e.g., KNN or SVM) for regression problem and RF for

classification problem.

2. Data pre-processing techniques are essential in improving prediction accuracy.

However, the choice of these techniques depends on the nature of the datasets. Due to

this fact, I recommend that datasets be investigated carefully and then suitable pre-

processing techniques selected depending on the nature and characteristics of the

dataset, such as resampling for imbalanced datasets or FS for high dimensionality

datasets.

3. Consideration of parameter tuning is recommended to increase the performance of

machine learning models.

223

7.5. Limitations and Possible Future Work

Several future work directions can be implemented to overcome the limitations in this thesis,

as follows:

More software maintainability measurements: A fundamental ingredient of software

maintainability prediction is the identification of the dependent variable to be predicted. A

limitation of this thesis is that it only predicted the CHANGE metric and change proneness.

Although the prediction of the number of changes in a certain class (CHANGE metric) is

harder than predicting whether or not a change has been made in the class (change proneness),

it provides more precise information [249]. To strike a balance between ease of prediction and

more precise information, possible future research could be to predict a ranking or

categorisation of software maintainability (change proneness) into small, medium, and high.

Exhaustive exploration of the parameter space: A limitation of this thesis is that it only

evaluated a limited proportion of the parameter space. Researchers can address this limitation

by doing a systematic extensive exploration of parameter tuning. This exploration will help to

figure out to what extent the parameter space affects the prediction accuracy of machine

learning models in software maintainability prediction. Also, it will help to identify which

machine learning models are more sensitive to parameter tuning.

Additional datasets: The most important limitation of this thesis is that it used a limited set

of public datasets. This limitation can be addressed by creating and publishing additional

datasets that can be used by researchers. For example, datasets can be extracted from open-

source software systems using various tools such as Analyst4j, CCCC and C&K Java Metrics

as proposed in [250]. Moreover, other datasets can be created from real-world systems in

industry.

Different OO programming languages: Another limitation related to the datasets is that the

datasets used in this thesis were extracted from systems written in Ada (i.e., QUES and UIMS

datasets [9]), or Java (i.e., bug prediction datasets [57] and refactoring dataset [58]). Therefore,

further research needs to be done using datasets extracted from different OO programming

languages, such as C++, JavaScript, C#, PHP and Python (even though some of these are not

“pure” OO languages). This will enable the exploration of additional features and

characteristics of software systems.

224

Additional ensemble models: A weakness of this thesis is that it only evaluated and compared

the application of three homogenous (i.e., bagging, additive regression and RF), and two

heterogeneous ensemble models (i.e., stacking and APE). Additional research is required to

investigate other homogeneous and heterogeneous ensemble models (e.g., boosting, voting

and linear ensemble) with additional base models (e.g., radial basis function network, linear

regression and logistic regression).

Improved prediction accuracy: A major limitation of this thesis is that only a few models

meet the prediction accuracy criteria proposed in Section 3.5.4. More work needs to be done

to improve prediction accuracy using resampling or FS techniques and also looking at the

application of other homogenous or heterogeneous ensemble models are mentioned above.

References 225

References

[1] H. Alsolai, "Predicting Software Maintainability in Object-Oriented Systems Using

Ensemble Techniques," in International Conference on Software Maintenance and

Evolution, 2018, pp. 716-721.

[2] H. Alsolai and M. Roper, "Application of Ensemble Techniques in Predicting Object-

Oriented Software Maintainability," in Proceedings of the Evaluation and Assessment

on Software Engineering, 2019, pp. 370-373.

[3] H. Alsolai and M. Roper, "Determining the Best Prediction Accuracy of Software

Maintainability Models Using Auto-WEKA," in International Conference on

Computing, 2019, pp. 60-70.

[4] H. Alsolai and M. Roper, "A Systematic Review of Feature Selection Techniques in

Software Quality Prediction," in International Conference on Electrical and

Computing Technologies and Applications, 2019, pp. 1-5.

[5] H. Alsolai and M. Roper, "A Systematic Literature Review of Machine Learning

Techniques for Software Maintainability Prediction," Information and Software

Technology, vol. 119, p. 106214, 2020.

[6] N. E. Fenton and M. Neil, "A Critique of Software Defect Prediction Models," IEEE

Transactions on Software Engineering, vol. 25, no. 5, pp. 675-689, 1999.

[7] M. A. Ahmed and H. A. Al-Jamimi, "Machine Learning Approaches for Predicting

Software Maintainability: A Fuzzy-Based Transparent Model," IET Software, vol. 7,

no. 6, pp. 317-326, 2013.

[8] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12,

1990, p. 84.

[9] W. Li and S. Henry, "Object-Oriented Metrics that Predict Maintainability," The

Journal of Systems and Software, vol. 23, no. 2, pp. 111-122, 1993.

[10] M. M. T. Thwin and T.-S. Quah, "Application of Neural Networks for Software Quality

Prediction Using Object-Oriented Metrics," Journal of Systems and Software, vol. 76,

no. 2, pp. 147-156, 2005.

[11] C. van Koten and A. R. Gray, "An Application of Bayesian Network for Predicting

Object-Oriented Software Maintainability," Information and Software Technology,

vol. 48, no. 1, pp. 59-67, 2006.

[12] Y. Zhou and H. Leung, "Predicting Object-Oriented Software Maintainability Using

Multivariate Adaptive Regression Splines," Journal of Systems and Software, vol. 80,

no. 8, pp. 1349-1361, 2007.

[13] M. O. Elish and K. O. Elish, "Application of TreeNet in Predicting Object-Oriented

Software Maintainability: A Comparative Study," in European Conference on

Software Maintenance and Reengineering, 2009, pp. 69-78.

[14] S. K. Dubey, A. Rana, and Y. Dash, "Maintainability Prediction of Object-Oriented

Software System by Multilayer Perceptron Model," ACM SIGSOFT Software

Engineering Notes, vol. 37, no. 5, pp. 1-4, 2012.

References 226

[15] R. Malhotra and A. Chug, "Application of Group Method of Data Handling Model for

Software Maintainability Prediction Using Object Oriented Systems," International

Journal of System Assurance Engineering and Management, vol. 5, no. 2, pp. 165-173,

2014.

[16] M. O. Elish, H. Aljamaan, and I. Ahmad, "Three Empirical Studies on Predicting

Software Maintainability Using Ensemble Methods," Soft Computing, vol. 19, no. 9,

pp. 2511-2524, 2015.

[17] L. Kumar and S. K. Rath, "Hybrid Functional Link Artificial Neural Network

Approach for Predicting Maintainability of Object-Oriented Software," Journal of

Systems and Software, vol. 121, pp. 170-190, 2016.

[18] L. Kumar and S. K. Rath, "Software Maintainability Prediction Using Hybrid Neural

Network and Fuzzy Logic Approach with Parallel Computing Concept," International

Journal of System Assurance Engineering and Management, vol. 8, no. 2, pp. 1487-

1502, 2017.

[19] F. Fioravanti and P. Nesi, "Estimation and Prediction Metrics for Adaptive

Maintenance Effort of Object-Oriented Systems," IEEE Transactions on Software

Engineering, vol. 27, no. 12, pp. 1062-1084, 2001.

[20] A. De Lucia, E. Pompella, and S. Stefanucci, "Assessing Effort Estimation Models for

Corrective Maintenance Through Empirical Studies," Information and Software

Technology, vol. 47, no. 1, pp. 3-15, 2005.

[21] S. C. Misra, "Modeling Design/Coding Factors That Drive Maintainability of Software

Systems," Software Quality Journal, vol. 13, no. 3, pp. 297-320, 2005.

[22] R. K. Bandi, V. K. Vaishnavi, and D. E. Turk, "Predicting Maintenance Performance

Using Object-Oriented Design Complexity Metrics," IEEE Transactions on Software

Engineering, vol. 29, no. 1, pp. 77-87, 2003.

[23] R. Malhotra and M. Khanna, "Particle Swarm Optimization-Based Ensemble Learning

for Software Change Prediction," Information and Software Technology, vol. 102, pp.

65-84, 2018.

[24] C. Jones, "The Economics of Software Maintenance in the Twenty First Century,"

Performance Engineering to Enhance the Maintenance, pp. 1-19, 2006.

[25] T. DeMarco, Controlling Software Projects: Management, Measurement, and

Estimates. Prentice Hall, 1986, p. 304.

[26] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object Oriented Design,"

IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476-493, 1994.

[27] "Github - The Largest Open Source Community in The World." https://github.com/

(accessed 2017).

[28] "SourceForge -The Complete Open-Source Software Platform."

http://www.sourceforge.net (accessed 2017).

[29] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski, "Metrics

and Laws of Software Evolution-The Nineties View," in International Software

Metrics Symposium, 5-7 Nov. 1997 1997, pp. 20-32.

[30] M. Jorgensen and M. Shepperd, "A Systematic Review of Software Development Cost

Estimation Studies," IEEE Transactions on Software Engineering, vol. 33, no. 1, pp.

33-53, 2007.

[31] M. Riaz, E. Mendes, and E. Tempero, "A Systematic Review of Software

Maintainability Prediction and Metrics," in International Symposium on Empirical

Software Engineering and Measurement, 2009, pp. 367-377.

https://github.com/
http://www.sourceforge.net/

References 227

[32] Y. Zhou and B. Xu, "Predicting The Maintainability of Open Source Software Using

Design Metrics," Wuhan University Journal of Natural Sciences, vol. 13, no. 1, pp. 14-

20, 2008.

[33] J.-C. Chen and S.-J. Huang, "An Empirical Analysis of The Impact of Software

Development Problem Factors on Software Maintainability," Journal of Systems and

Software, vol. 82, no. 6, pp. 981-992, 2009.

[34] S. G. MacDonell, "Establishing Relationships Between Specification Size and

Software Process Effort in CASE Environments," Information and Software

Technology, vol. 39, no. 1, pp. 35-45, 1997.

[35] B. A. Kitchenham, L. M. Pickard, S. G. MacDonell, and M. J. Shepperd, "What

Accuracy Statistics Really Measure," IEE Proceedings - Software, vol. 148, no. 3, pp.

81-85, 2001.

[36] N. Ueda and R. Nakano, "Generalization Error of Ensemble Estimators," in

Proceedings of International Conference on Neural Networks 1996, vol. 1, pp. 90-95

[37] C. Catal and B. Diri, "Investigating the Effect of Dataset Size, Metrics Sets, and Feature

Selection Techniques on Software Fault Prediction Problem," Information Sciences,

vol. 179, no. 8, pp. 1040-1058, 2009.

[38] T. Wang, W. Li, H. Shi, and Z. Liu, "Software defect prediction based on classifiers

ensemble," Journal of Information & Computational Science, vol. 8, no. 16, pp. 4241-

4254, 2011.

[39] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, "Benchmarking classification

models for software defect prediction: A proposed framework and novel findings,"

IEEE Transactions on Software Engineering, vol. 34, no. 4, pp. 485-496, 2008.

[40] A. T. Mısırlı, A. B. Bener, and B. Turhan, "An Industrial Case Study of Classifier

Ensembles for Locating Software Defects," Software Quality Journal, vol. 19, no. 3,

pp. 515-536, 2011.

[41] A. Panichella, R. Oliveto, and A. De Lucia, "Cross-Project Defect Prediction Models:

L'union fait la force," in Software Maintenance, Reengineering and Reverse

Engineering, 2014, pp. 164-173.

[42] Y. Zhang, D. Lo, X. Xia, and J. Sun, "An Empirical Study of Classifier Combination

for Cross-Project Defect Prediction," in Annual Computer Software and Applications

Conference, 2015, pp. 264-269.

[43] J. Petri, D. Bowes, T. Hall, B. Christianson, and N. Baddoo, "Building an Ensemble

for Software Defect Prediction Based on Diversity Selection," in International

Symposium on Empirical Software Engineering and Measurement, 2016, pp. 1-10.

[44] D. D. Nucci, F. Palomba, R. Oliveto, and A. D. Lucia, "Dynamic Selection of

Classifiers in Bug Prediction: An Adaptive Method," IEEE Transactions on Emerging

Topics in Computational Intelligence, vol. 1, no. 3, pp. 202-212, 2017.

[45] L. L. Minku and X. Yao, "Ensembles and Locality: Insight on Improving Software

Effort Estimation," Information and Software Technology, vol. 55, no. 8, pp. 1512-

1528, 2013.

[46] M. Azzeh, A. B. Nassif, and L. L. Minku, "An Empirical Evaluation of Ensemble

Adjustment Methods for Analogy-Based Effort Estimation," Journal of Systems and

Software, vol. 103, pp. 36-52, 2015.

[47] G. Catolino and F. Ferrucci, "An extensive evaluation of ensemble techniques for

software change prediction," Journal of Software: Evolution and Process, vol. 31, no.

9, pp. 1-15, 2019.

References 228

[48] A. Kaur, K. Kaur, and K. Pathak, "Software Maintainability Prediction by Data

Mining of Software Code Metrics," in International Conference on Data Mining and

Intelligent Computing, 2014, pp. 1-6.

[49] K. J. Ezawa, M. Singh, and S. W. Norton, "Learning Goal Oriented Bayesian

Networks for Telecommunications Risk Management," in International Conference on

Machine Learning, 1996, pp. 139-147.

[50] O. Loyola-González, M. García-Borroto, M. A. Medina-Pérez, J. F. Martínez-

Trinidad, J. A. Carrasco-Ochoa, and G. De Ita, "An Empirical Study of Oversampling

and Undersampling Methods for Lcmine An Emerging Pattern Based Classifier," in

Mexican Conference on Pattern Recognition, 2013, pp. 264-273.

[51] K.-J. Wang, B. Makond, K.-H. Chen, and K.-M. Wang, "A Hybrid Classifier

Combining SMOTE with PSO to Estimate 5-Year Survivability of Breast Cancer

Patients," Applied Soft Computing, vol. 20, pp. 15-24, 2014.

[52] S. Dumais, J. Platt, D. Heckerman, and M. Sahami, "Inductive Learning Algorithms

and Representations for Text Categorization," in International Conference on

Information and knowledge management, 1998, pp. 148-155.

[53] L. Kumar and A. Sureka, "Application of LSSVM and SMOTE on Seven Open Source

Projects for Predicting Refactoring at Class Level," in Asia-Pacific Software

Engineering Conference, 2017, pp. 90-99.

[54] T. M. Khoshgoftaar, K. Gao, and N. Seliya, "Attribute Selection and Imbalanced Data:

Problems in Software Defect Prediction," in International Conference on Tools with

Artificial Intelligence, 2010, vol. 1, pp. 137-144.

[55] R. Malhotra and K. Lata, "An empirical study on predictability of software

maintainability using imbalanced data," Software Quality Journal, 2020, doi:

10.1007/s11219-020-09525-y.

[56] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, and B. Turhan, The

promise repository of empirical software engineering data. 2012.

[57] M. D. Ambros, M. Lanza, and R. Robbes, "An Extensive Comparison of Bug

Prediction Approaches," in IEEE Working Conference on Mining Software

Repositories, 2-3 May 2010 2010, pp. 31-41.

[58] P. Hegedűs, I. Kádár, R. Ferenc, and T. Gyimóthy, "Empirical Evaluation of Software

Maintainability Based on a Manually Validated Refactoring Dataset," Information and

Software Technology, vol. 95, pp. 313-327, 2018.

[59] I. Iso, "Iec25010: 2011 Systems and Software Engineering–Systems and Software

Quality Requirements and Evaluation (Square)–System and Software Quality

Models," International Organization for Standardization, vol. 34, p. 2910, 2011.

[60] M. Dagpinar and J. H. Jahnke, "Predicting Maintainability with Object-Oriented

Metrics -An Empirical Comparison," in Working Conference on Reverse Engineering,

2003, pp. 155-164.

[61] P. Oman and J. Hagemeister, "Metrics for Assessing A Software System's

Maintainability," in Proceedings Conference on Software Maintenance, 1992, pp. 337-

344.

[62] D. Coleman, D. Ash, B. Lowther, and P. Oman, "Using Metrics to Evaluate Software

System Maintainability," Computer, vol. 27, no. 8, pp. 44-49, 1994.

[63] K. D. Welker, P. W. Oman, and G. G. Atkinson, "Development and Application of an

Automated Source Code Maintainability Index," Journal of Software Maintenance:

Research and Practice, vol. 9, no. 3, pp. 127-159, 1997.

References 229

[64] M. Genero, M. Piattini, E. Manso, and G. Cantone, "Building UML Class Diagram

Maintainability Prediction Models Based on Early Metrics," in International Workshop

on Enterprise Networking and Computing in Healthcare Industry, 2004, pp. 263-275.

[65] C. Sammut and G. Webb, Encyclopedia of Machine Learning. Springer Science &

Business Media, 2011, p. 1031.

[66] R. Kohavi, "A Study of Cross-Validation and Bootstrap for Accuracy Estimation and

Model Selection," in International Joint Conference on Artificial Intelligence, 1995,

vol. 14, no. 2, pp. 1137-1143.

[67] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering Metrics and

Models. Benjamin-Cummings Publishing Co., Inc., 1986, p. 396.

[68] F. Mosteller and J. W. Tukey, Data analysis and regression: a second course in

statistics. Pearson, 1977, p. 588.

[69] T. Fawcett, "An Introduction to ROC Analysis," Pattern recognition letters, vol. 27,

no. 8, pp. 861-874, 2006.

[70] A. P. Bradley, "The Use of The Area Under The ROC Curve in The Evaluation of

Machine Learning Algorithms," Pattern recognition, vol. 30, no. 7, pp. 1145-1159,

1997.

[71] M. Jorgensen, "Experience with the Accuracy of Software Maintenance Task Effort

Prediction Models," IEEE Transactions on Software Engineering, vol. 21, no. 8, pp.

674-681, 1995.

[72] E. Mendes and B. Kitchenham, "Further Comparison of Cross-Company and Within-

Company Effort Estimation Models for Web Applications," in International

Symposium on Software Metrics, 2004, pp. 348-357.

[73] C. Jin and J.-A. Liu, "Applications of Support Vector Mathine and Unsupervised

Learning for Predicting Maintainability Using Object-Oriented Metrics," in

International Conference on Multimedia and Information Technology, 2010, vol. 1,

pp. 24-27.

[74] F. Ye, X. Zhu, and Y. Wang, "A New Software Maintainability Evaluation Model

Based on Multiple Classifiers Combination," in International Conference on Quality,

Reliability, Risk, Maintenance, and Safety Engineering, 2013, pp. 1588-1591.

[75] A. Shafiabady, M. N. r. Mahrin, and M. Samadi, "Investigation of Software

Maintainability Prediction Models," in International Conference on Advanced

Communication Technology, 2016, pp. 783-786.

[76] R. Kumar and N. Dhanda, "Maintainability Quantification of Object Oriented Design:

A Revisit," International Journal, vol. 4, no. 12, pp. 461-466, 2014.

[77] G. Tiwari and A. Sharma, "Maintainability Techniques for Software Development

Approaches–A Systematic Survey," IJCA Special Issue on Issues and Challenges in

Networking, Intelligence and Computing Technologies, vol. ICNICT, no. 4, pp. 28-31,

2012.

[78] R. Burrows, A. Garcia, and F. Taïani, "Coupling Metrics for Aspect-Oriented

Programming: A Systematic Review of Maintainability Studies," in International

Conference on Evaluation of Novel Approaches to Software Engineering, 2008, pp.

277-290.

[79] M. Riaz, "Maintainability Prediction of Relational Database-Driven Applications: A

Systematic Review," in International Conference on Evaluation & Assessment in

Software Engineering, 2012, pp. 263-272.

References 230

[80] B. Kitchenham, "Procedures for Performing Systematic Reviews," Keele, UK, Keele

University, vol. 33, no. 2004, pp. 1-26, 2004.

[81] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, "Lessons from

Applying the Systematic Literature Review Process within the Software Engineering

Domain," Journal of Systems and Software, vol. 80, no. 4, pp. 571-583, 2007.

[82] R. Malhotra, "A Systematic Review of Machine Learning Techniques for Software

Fault Prediction," Applied Soft Computing, vol. 27, pp. 504-518, 2015.

[83] B. R. Reddy and A. Ojha, "Performance of Maintainability Index Prediction Models:

A Feature Selection Based Study," Evolving Systems, vol. 10, no. 2, pp. 179-204, 2019.

[84] A. Liberati et al., "The PRISMA Statement for Reporting Systematic Reviews and

Meta-Analyses of Studies that Evaluate Healthcare Interventions: Explanation and

Elaboration," Annals of internal medicine, vol. 151, no. 4, pp. 65-94, 2009.

[85] D. Zhang and J. J. Tsai, "Machine Learning and Software Engineering," Software

Quality Journal, vol. 11, no. 2, pp. 87-119, 2003.

[86] I. Kádár, P. Hegedus, R. Ferenc, and T. Gyimóthy, "A Code Refactoring Dataset and

Its Assessment Regarding Software Maintainability," in International Conference on

Software Analysis, Evolution, and Reengineering 2016, vol. 1, pp. 599-603.

[87] S. R. Chidamber and C. F. Kemerer, "Towards a Metrics Suite for Object Oriented

Design," in Conference proceedings on Object-Oriented Programming Systems,

Languages, and Applications, 1991, pp. 197–211.

[88] H. Aljamaan, M. O. Elish, and I. Ahmad, "An Ensemble of Computational Intelligence

Models for Software Maintenance Effort Prediction," in International Work-

Conference on Artificial Neural Networks, 2013, pp. 592-603.

[89] R. Land, "Measurements of Software Maintainability," in Proceedings of ARTES

Graduate Student Conference, 2002, pp. 1-7.

[90] P. Oman and J. Hagemeister, "Construction and Testing of Polynomials Predicting

Software Maintainability," Journal of Systems and Software, vol. 24, no. 3, pp. 251-

266, 1994.

[91] K. K. Aggarwal, Y. Singh, and J. K. Chhabra, "An Integrated Measure of Software

Maintainability," in Annual Reliability and Maintainability Symposium, 2002, pp. 235-

241.

[92] M. H. Halstead, Elements of Software Science (Operating and programming systems

series). Elsevier, 1977, p. 127.

[93] T. J. McCabe, "A Complexity Measure," IEEE Transactions on Software Engineering,

vol. SE-2, no. 4, pp. 308-320, 1976.

[94] L. C. Briand, S. Morasca, and V. R. Basili, "Measuring and Assessing Maintainability

at the end of High Level Design," in Conference on Software Maintenance, 1993, pp.

88-87.

[95] M. Polo, M. Piattini, and F. Ruiz, "Using Code Metrics to Predict Maintenance of

Legacy Programs: A Case Study," in International Conference on Software

Maintenance, 2001, pp. 202-208.

[96] M. I. Sarwar, W. Tanveer, I. Sarwar, and W. Mahmood, "A Comparative Study of MI

tools: Defining the Roadmap to MI Tools Standardization," in International Multitopic

Conference, 2008, pp. 379-385.

[97] M. Genero, J. Olivas, M. Piattini, and F. Romero, "Using Metrics to Predict OO

Information Systems Maintainability," in International Conference on Advanced

Information Systems Engineering, 2001, pp. 388-401.

References 231

[98] V. Nguyen, B. Boehm, and P. Danphitsanuphan, "A Controlled Experiment in

Assessing and Estimating Software Maintenance Tasks," Information and Software

Technology, vol. 53, no. 6, pp. 682-691, 2011.

[99] M. Shepperd and S. MacDonell, "Evaluating Prediction Systems in Software Project

Estimation," Information and Software Technology, vol. 54, no. 8, pp. 820-827, 2012.

[100] T. Menzies and M. Shepperd, "Special Issue on Repeatable Results in Software

Engineering Prediction," Empirical Software Engineering, vol. 17, pp. 1-17, 2012.

[101] "Coefficient of Determination."

https://en.wikipedia.org/wiki/Coefficient_of_determination (accessed 2019).

[102] S. Basri, N. Kama, H. M. Sarkan, S. Adli, and F. Haneem, "An Algorithmic-Based

Change Effort Estimation Model for Software Development," in Asia-Pacific Software

Engineering Conference, 2016, pp. 177-184.

[103] S. K. Sehra, Y. S. Brar, N. Kaur, and G. Kaur, "Optimization of COCOMO Parameters

Using TLBO Algorithm," International Journal of Computational Intelligence

Research, vol. 13, no. 4, pp. 525-535, 2017.

[104] A. Srivastava, S. Singh, and S. Q. Abbas, "Performance Measure of the Proposed Cost

Estimation Model: Advance Use Case Point Method," in Soft Computing: Theories and

Applications, 2019, pp. 223-233.

[105] M. O. Elish, T. Helmy, and M. I. Hussain, "Empirical Study of Homogeneous and

Heterogeneous Ensemble Models for Software Development Effort Estimation,"

Mathematical Problems in Engineering, vol. 2013, pp. 1-21, 2013.

[106] N. Raj Kiran and V. Ravi, "Software Reliability Prediction by Soft Computing

Techniques," Journal of Systems and Software, vol. 81, no. 4, pp. 576-583, 2008.

[107] D. Opitz and R. Maclin, "Popular Ensemble Methods: An Empirical Study," Journal

of Artificial Intelligence Research, vol. 11, pp. 169-198, 1999.

[108] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,

"Empirical Strategies," in Experimentation in Software Engineering, 2012, pp. 9-36.

[109] B. Cukic, "Guest Editor's Introduction: The Promise of Public Software Engineering

Data Repositories," IEEE Software, vol. 22, no. 6, pp. 20-22, 2005.

[110] X. Wu et al., "Top 10 Algorithms in Data Mining," Knowledge and Information

Systems, vol. 14, no. 1, pp. 1-37, 2008.

[111] R.-H. Li and G. G. Belford, "Instability of Decision Tree Classification Algorithms,"

in International Conference on Knowledge Discovery and Data Mining, 2002, pp. 570-

575.

[112] W.-Y. Loh, "Classification and Regression Trees," Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, vol. 1, no. 1, pp. 14-23, 2011.

[113] J. Tang, C. Deng, and G. B. Huang, "Extreme Learning Machine for Multilayer

Perceptron," IEEE Transactions on Neural Networks and Learning Systems, vol. 27,

no. 4, pp. 809-821, 2016.

[114] D. W. Aha, D. Kibler, and M. K. Albert, "Instance-Based Learning Algorithms,"

Machine Learning, vol. 6, no. 1, pp. 37-66, 1991.

[115] G. Holmes, M. Hall, and E. Prank, "Generating Rule Sets from Model Trees," in

Australasian Joint Conference on Artificial Intelligence, 1999, pp. 1-12.

[116] S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy, "Improvements

to the SMO algorithm for SVM regression," IEEE Transactions on Neural Networks,

vol. 11, no. 5, pp. 1188-1193, 2000.

https://en.wikipedia.org/wiki/Coefficient_of_determination

References 232

[117] M. Awad and R. Khanna, "Support Vector Regression," in Efficient Learning

Machines: Theories, Concepts, and Applications for Engineers and System Designers,

2015, pp. 67-80.

[118] J. Brownlee, Machine Learning Mastery with Weka. Ebook, 2019, p. 248.

[119] G. H. John and P. Langley, "Estimating Continuous Distributions in Bayesian

Classifiers," in Proceedings of the conference on Uncertainty in artificial intelligence,

1995, pp. 338–345.

[120] I. H. Witten, E. Frank, L. E. Trigg, M. A. Hall, G. Holmes, and S. J. Cunningham,

"Weka: Practical Machine Learning Tools and Techniques with Java

Implementations," Hamilton, New Zealand: University of Waikato, Department of

Computer Science., 1999.

[121] M. P. Basgalupp, R. C. Barros, and D. D. Ruiz, "Predicting Software Maintenance

Effort Through Evolutionary-Based Decision Trees," in Annual ACM Symposium on

Applied Computing, 2012, pp. 1209-1214.

[122] S. Džeroski and B. Ženko, "Is Combining Classifiers with Stacking Better than

Selecting the Best One?," Machine Learning, vol. 54, no. 3, pp. 255-273, 2004.

[123] J. B. Bradley, Neural networks: A comprehensive foundation. Prentice Hall, 1994, p.

842.

[124] J. R. Quinlan, "Learning with continuous classes," in Australian joint conference on

artificial intelligence, 1992, vol. 92, pp. 343-348.

[125] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques. Elsevier, 2011,

p. 744.

[126] Z. Zhi-Qiang, Y. Hong-Bin, X. Hua-Rong, X. Yan-Qi, and G. Ji, "Fast Training

Support Vector Machines Using Parallel Sequential Minimal Optimization," in

International Conference on Intelligent System and Knowledge Engineering, 2008,

vol. 1, pp. 997-1001.

[127] B. Seijo-Pardo, I. Porto-Díaz, V. Bolón-Canedo, and A. Alonso-Betanzos, "Ensemble

Feature Selection: Homogeneous and Heterogeneous Approaches," Knowledge-Based

Systems, vol. 118, pp. 124-139, 2017.

[128] L. Breiman, "Bagging Predictors," Machine Learning, vol. 24, no. 2, pp. 123-140,

1996.

[129] J. H. Friedman, "Stochastic Gradient Boosting," Computational Statistics & Data

Analysis, vol. 38, no. 4, pp. 367-378, 2002.

[130] D. H. Wolpert, "Stacked generalization," Neural networks, vol. 5, no. 2, pp. 241-259,

1992.

[131] I. H. Laradji, M. Alshayeb, and L. Ghouti, "Software Defect Prediction Using

Ensemble Learning on Selected Features," Information and Software Technology, vol.

58, pp. 388-402, 2015.

[132] L. Breiman, "Random Forests," Machine learning, vol. 45, no. 1, pp. 5-32, 2001.

[133] M. Skurichina and R. P. Duin, "Bagging for Linear Classifiers," Pattern Recognition,

vol. 31, no. 7, pp. 909-930, 1998.

[134] J. H. Friedman, "Greedy Function Approximation: A Gradient Boosting Machine,"

Annals of statistics, pp. 1189-1232, 2001.

[135] J. Friedman, T. Hastie, and R. Tibshirani, "Additive Logistic Regression: A Statistical

View of Boosting (With Discussion and A Rejoinder by the Authors)," The Annals of

Statistics, vol. 28, no. 2, pp. 337-407, 2000.

References 233

[136] Y. Freund and R. E. Schapire, "Experiments With A New Boosting Algorithm," in

International Conference on International Conference on Machine Learning, 1996, pp.

148–156.

[137] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, "The

WEKA Data Mining Software: An Update," ACM SIGKDD explorations newsletter,

vol. 11, no. 1, pp. 10-18, 2009.

[138] E. Scornet, "Tuning Parameters in Random Forests," ESAIM: Proceedings and

Surveys, vol. 60, pp. 144-162, 2017.

[139] K. M. Ting and I. H. Witten, "Issues in Stacked Generalization," Journal of Artificial

Intelligence Research, vol. 10, pp. 271-289, 1999.

[140] S. Amari, The Handbook of Brain Theory and Neural Networks. MIT press, 2003.

[141] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto, "Automated

Parameter Optimization of Classification Techniques for Defect Prediction Models,"

in International Conference on Software Engineering 2016, pp. 321-332.

[142] W. Fu, T. Menzies, and X. Shen, "Tuning for Software Analytics: Is it Really

Necessary?," Information and Software Technology, vol. 76, pp. 135-146, 2016.

[143] E. Kocaguneli, T. Menzies, A. Bener, and J. W. Keung, "Exploiting the Essential

Assumptions of Analogy-Based Effort Estimation," IEEE Transactions on Software

Engineering, vol. 38, no. 2, pp. 425-438, 2011.

[144] M. Kuhn, "Caret: Classification and Regression Training," Astrophysics Source Code

Library, p. ascl: 1505.003, 2015.

[145] J. Brownlee. "Caret R Package for Applied Predictive Modeling."

https://machinelearningmastery.com/caret-r-package-for-applied-predictive-

modeling/ (accessed 2020).

[146] "Model Training and Tuning." https://topepo.github.io/caret/model-training-and-

tuning.html (accessed 2020).

[147] M. Kuhn, "Building Predictive Models in R Using the Caret Package," Journal of

statistical software, vol. 28, no. 5, pp. 1-26, 2008.

[148] K. Hornik, C. Buchta, and A. Zeileis, "Open-Source Machine Learning: R Meets

Weka," Computational Statistics, vol. 24, no. 2, pp. 225-232, 2009.

[149] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown, "Auto-WEKA

2.0: Automatic Model Selection and Hyperparameter Optimization in WEKA," The

Journal of Machine Learning Research, vol. 18, no. 1, pp. 826-830, 2017.

[150] L. Kotthoff, C. Thornton, and F. Hutter, "User Guide for Auto-WEKA Version 2.3,"

Dept. Comput. Sci., Univ. British Columbia, BETA lab, Vancouver, BC, Canada, Tech.

Rep, vol. 2, pp. 1-15, 2017.

[151] H. Osman, M. Ghafari, and O. Nierstrasz, "Hyperparameter Optimization to Improve

Bug Prediction Accuracy," in Workshop on Machine Learning Techniques for

Software Quality Evaluation 2017, pp. 33-38.

[152] L. Kumar and S. Rath, "Predicting Object-Oriented Software Maintainability using

Hybrid Neural Network with Parallel Computing Concept," in India Software

Engineering Conference, 2015 2015, pp. 100-109.

[153] M. D'Ambros, M. Lanza, and R. Robbes. "Bug Prediction Dataset."

http://bug.inf.usi.ch/index.php (accessed 2018).

[154] J. Yang and H. Qian, "Defect Prediction on Unlabeled Datasets by Using

Unsupervised Clustering," in International Conference on High Performance

https://machinelearningmastery.com/caret-r-package-for-applied-predictive-modeling/
https://machinelearningmastery.com/caret-r-package-for-applied-predictive-modeling/
https://topepo.github.io/caret/model-training-and-tuning.html
https://topepo.github.io/caret/model-training-and-tuning.html
http://bug.inf.usi.ch/index.php

References 234

Computing and Communications; International Conference on Smart City;

International Conference on Data Science and Systems 2016, pp. 465-472.

[155] A. Boucher and M. Badri, "Using Software Metrics Thresholds to Predict Fault-Prone

Classes in Object-Oriented Software," in International Conference on Applied

Computing and Information Technology, International Conference on Computational

Science, Intelligence and Applied Informatics, International Conference on Big Data,

Cloud Computing, Data Science and Engineering, 2016, pp. 169-176.

[156] "SourceMeter Static Code Analysis Tool."

https://www.sourcemeter.com/resources/java/ (accessed 2019).

[157] B. Kitchenham, S. L. Pfleeger, B. McColl, and S. Eagan, "An Empirical Study of

Maintenance and Development Estimation Accuracy," Journal of Systems and

Software, vol. 64, no. 1, pp. 57-77, 2002.

[158] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, "A Simulation Study of the

Model Evaluation Criterion MMRE," IEEE Transactions on Software Engineering,

vol. 29, no. 11, pp. 985-995, 2003.

[159] I. Myrtveit, E. Stensrud, and M. Shepperd, "Reliability and Validity in Comparative

Studies of Software Prediction Models," IEEE Transactions on Software Engineering,

vol. 31, no. 5, pp. 380-391, 2005.

[160] M. Korte and D. Port, "Confidence in Software Cost Estimation Results Based on

MMRE and PRED," in International Workshop on Predictor Models in Software

Engineering, 2008, pp. 63-70.

[161] L. Pickard, B. Kitchenham, and S. Linkman, "An Investigation of Analysis

Techniques for Software Datasets," in International Software Metrics Symposium,

1999, pp. 130-142.

[162] J. Al Dallal, "Object-Oriented Class Maintainability Prediction Using Internal Quality

Attributes," Information and Software Technology, vol. 55, no. 11, pp. 2028-2048,

2013.

[163] "Simple guide to confusion matrix terminology." https://www.dataschool.io/simple-

guide-to-confusion-matrix-terminology/ (accessed 2020).

[164] S. B. Aher and L. Lobo, "Data Mining in Educational System Using Weka," in

International Conference on Emerging Technology Trends, 2011, vol. 3, pp. 20-25.

[165] A. Venkatesh and S. G. Jacob, "Prediction of Credit-Card Defaulters: A Comparative

Study on Performance of Classifiers," International Journal of Computer Applications,

vol. 145, no. 7, pp. 36-41, 2016.

[166] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, "Do we need hundreds

of classifiers to solve real world classification problems?," The Journal of Machine

Learning Research, vol. 15, no. 1, pp. 3133-3181, 2014.

[167] J. Bi and K. P. Bennett, "Regression Error Characteristic Curves," in International

Conference on Machine Learning, 2003, pp. 43-50.

[168] I. Myrtveit and E. Stensrud, "Validity and Reliability of Evaluation Procedures in

Comparative Studies of Effort Prediction Models," Empirical Software Engineering,

vol. 17, pp. 23-33, 2012.

[169] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied Logistic Regression.

John Wiley & Sons, 2013, p. 528.

[170] M. L. Berenson, D. M. Levine, and M. Goldstein, Intermediate Statistical Methods and

Applications: A Computer Package Approach. Prentice-Hall, Inc., 1983, p. 579.

https://www.sourcemeter.com/resources/java/
https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/
https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/

References 235

[171] D. Lakens, "Calculating and Reporting Effect Sizes to Facilitate Cumulative Science:

A Practical Primer for T-Tests and ANOVAs," (in English), Frontiers in Psychology,

vol. 4, no. 863, 2013.

[172] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. 2013, p. 599.

[173] N. Zumel and J. Mount, Practical Data Science with R. Manning Publications Co.,

2014, p. 416.

[174] R. Ihaka and R. Gentleman, "R: A Language for Data Analysis and Graphics," Journal

of Computational and Graphical Statistics, vol. 5, no. 3, pp. 299-314, 1996.

[175] L. Kumar, D. K. Naik, and S. K. Rath, "Validating the Effectiveness of Object-Oriented

Metrics for Predicting Maintainability," Procedia Computer Science, vol. 57, pp. 798-

806, 2015.

[176] C. W. Yohannese, T. Li, M. Simfukwe, and F. Khurshid, "Ensembles Based Combined

Learning for Improved Software Fault Prediction: A Comparative Study," in

International Conference on Intelligent Systems and Knowledge Engineering 2017, pp.

1-6.

[177] J. Benesty, J. Chen, Y. Huang, and I. Cohen, "Pearson Correlation Coefficient," in

Noise Reduction in Speech Processing: Springer, 2009, pp. 1-4.

[178] G. H. Chen and D. Shah, "Explaining the Success of Nearest Neighbor Methods in

Prediction," Foundations and Trends® in Machine Learning, vol. 10, no. 5-6, pp. 337-

588, 2018.

[179] S.-j. Wang, A. Mathew, Y. Chen, L.-f. Xi, L. Ma, and J. Lee, "Empirical Analysis of

Support Vector Machine Ensemble Classifiers," Expert Systems with Applications, vol.

36, no. 3, pp. 6466-6476, 2009.

[180] J. Cohen, "A Power Primer," Psychological Bulletin, vol. 112, no. 1, p. 155, 1992.

[181] D. Soni. "Introduction to k-Nearest-Neighbors."

https://towardsdatascience.com/introduction-to-k-nearest-neighbors-3b534bb11d26

(accessed 2020).

[182] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical Machine

Learning Tools and Techniques. Elsevier 2016, p. 664.

[183] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, "When Is “Nearest Neighbor”

Meaningful?," in International conference on database theory, 1999, pp. 217-235.

[184] B. Caprile, S. Merler, C. Furlanello, and G. Jurman, "Exact Bagging with K-Nearest

Neighbour Classifiers," in International Workshop on Multiple Classifier Systems,

2004, pp. 72-81.

[185] S. I. Zahara, M. Ilyas, and T. Zia, "A Study of Comparative Analysis of Regression

Algorithms for Reusability Evaluation of Object Oriented Based Software

Components," in International Conference on Open Source Systems and Technologies,

2013, pp. 75-80, doi: 10.1109/ICOSST.2013.6720609.

[186] H. K. Wright, M. Kim, and D. E. Perry, "Validity Concerns in Software Engineering

Research," in Proceedings of the FSE/SDP Workshop on Future of Software

Engineering Research, 2010, pp. 411-414.

[187] T. M. Khoshgoftaar, N. Seliya, and N. Sundaresh, "An Empirical Study of Predicting

Software Faults with Case-Based Reasoning," Software Quality Journal, vol. 14, no.

2, pp. 85-111, 2006.

[188] G. J. Pai and J. B. Dugan, "Empirical Analysis of Software Fault Content and Fault

Proneness Using Bayesian Methods," IEEE Transactions on Software Engineering,

vol. 33, no. 10, pp. 675-686, 2007.

https://towardsdatascience.com/introduction-to-k-nearest-neighbors-3b534bb11d26

References 236

[189] D. Pyle, Data Preparation for Data Mining. Morgan Kaufmann, 1999, p. 560.

[190] J. Petrić, D. Bowes, T. Hall, B. Christianson, and N. Baddoo, "The jinx on the NASA

Software Defect Data Sets," in International Conference on Evaluation and

Assessment in Software Engineering, 2016, pp. 1-5.

[191] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, "The Misuse of the NASA

Metrics Data Program Data Sets for Automated Software Defect Prediction," in Annual

Conference on Evaluation & Assessment in Software Engineering, 2011, pp. 96-103.

[192] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, "Reflections on the NASA

MDP Data Sets," IET software, vol. 6, no. 6, pp. 549-558, 2012.

[193] M. Shepperd, Q. Song, Z. Sun, and C. Mair, "Data Quality: Some Comments on the

Nasa Software Defect Datasets," IEEE Transactions on Software Engineering, vol. 39,

no. 9, pp. 1208-1215, 2013.

[194] B. Ghotra, S. McIntosh, and A. E. Hassan, "A Large-Scale Study of the Impact of

Feature Selection Techniques on Defect Classification Models," in International

Conference on Mining Software Repositories, 2017, pp. 146-157.

[195] S. Kim, H. Zhang, R. Wu, and L. Gong, "Dealing with Noise in Defect Prediction," in

International Conference on Software Engineering, 2011, pp. 481-490.

[196] S. S. Dahiya, J. K. Chhabra, and S. Kumar, "Use of Genetic Algorithm for Software

Maintainability Metrics' Conditioning," in International Conference on Advanced

Computing and Communications, 2007, pp. 87-92.

[197] "Quartile." https://en.wikipedia.org/wiki/Quartile (accessed 2020).

[198] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter, "Exploring the Relationships

Between Design Measures and Software Quality in Object-Oriented Systems," Journal

of Systems and Software, vol. 51, no. 3, pp. 245-273, 2000.

[199] A. Boucher and M. Badri, "Predicting Fault-Prone Classes in Object-Oriented

Software: An Adaptation of an Unsupervised Hybrid SOM Algorithm," in

International Conference on Software Quality, Reliability and Security, 2017, pp. 306-

317.

[200] J. Brownlee. "How To Get Baseline Results And Why They Matter."

https://machinelearningmastery.com/how-to-get-baseline-results-and-why-they-

matter/ (accessed 2017).

[201] E. LeDell, "Scalable Ensemble Learning and Computationally Efficient Variance

Estimation," UC Berkeley, 2015.

[202] M. Graczyk, T. Lasota, B. Trawiński, and K. Trawiński, "Comparison of Bagging,

Boosting and Stacking Ensembles Applied to Real Estate Appraisal," in Asian

Conference on Intelligent Information and Database Systems, 2010, pp. 340-350.

[203] A. G. Koru and J. Tian, "Comparing High-Change Modules and Modules with the

Highest Measurement Values in Two Large-Scale Open-Source Products," IEEE

Transactions on Software Engineering, vol. 31, no. 8, pp. 625-642, 2005.

[204] H. Lu, Y. Zhou, B. Xu, H. Leung, and L. Chen, "The Ability of Object-Oriented

Metrics to Predict Change-Proneness: A Meta-Analysis," Empirical software

engineering, vol. 17, no. 3, pp. 200-242, 2012.

[205] V. Bolón-Canedo and A. Alonso-Betanzos, "Ensembles for Feature Selection: A

Review and Future Trends," Information Fusion, vol. 52, pp. 1-12, 2019.

[206] L. Kumar, S. M. Satapathy, and L. B. Murthy, "Method Level Refactoring Prediction

on Five Open Source Java Projects using Machine Learning Techniques," in India

Software Engineering Conference, 2019, pp. 1-10.

https://en.wikipedia.org/wiki/Quartile
https://machinelearningmastery.com/how-to-get-baseline-results-and-why-they-matter/
https://machinelearningmastery.com/how-to-get-baseline-results-and-why-they-matter/

References 237

[207] T. M. Khoshgoftaar, K. Gao, A. Napolitano, and R. Wald, "A Comparative Study of

Iterative and Non-Iterative Feature Selection Techniques for Software Defect

Prediction," Information Systems Frontiers, vol. 16, no. 5, pp. 801-822, 2014.

[208] Y. Liu, A. An, and X. Huang, "Boosting Prediction Accuracy on Imbalanced Datasets

with SVM Ensembles," 2006, pp. 107-118.

[209] L. Pelayo and S. Dick, "Applying Novel Resampling Strategies To Software Defect

Prediction," in Annual Meeting of the North American Fuzzy Information Processing

Society, 2007, pp. 69-72.

[210] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, "Problems with Precision: A

Response to "Comments on 'Data Mining Static Code Attributes to Learn Defect

Predictors'"," IEEE Transactions on Software Engineering, vol. 33, no. 9, pp. 637-640,

2007.

[211] S. Wang and X. Yao, "Using class imbalance learning for software defect prediction,"

IEEE Transactions on Reliability, vol. 62, no. 2, pp. 434-443, 2013.

[212] M. Tan, L. Tan, S. Dara, and C. Mayeux, "Online Defect Prediction for Imbalanced

Data," in International Conference on Software Engineering, 2015, vol. 2, pp. 99-108.

[213] N. Seliya, T. M. Khoshgoftaar, and J. V. Hulse, "Predicting Faults in High Assurance

Software," in International Symposium on High Assurance Systems Engineering, 2010,

pp. 26-34.

[214] N. Gayatri, S. Nickolas, A. Reddy, S. Reddy, and A. Nickolas, "Feature Selection

Using Decision Tree Induction in Class Level Metrics Dataset for Software Defect

Predictions," in Proceedings of the World Congress on Engineering and Computer

Science, 2010, vol. 1, pp. 124-129.

[215] D. Rodríguez, R. Ruiz, J. Cuadrado-Gallego, and J. Aguilar-Ruiz, "Detecting Fault

Modules Applying Feature Selection to Classifiers," in International Conference on

Information Reuse and Integration, 2007, pp. 667-672.

[216] D. Rodriguez, R. Ruiz, J. Cuadrado-Gallego, J. Aguilar-Ruiz, and M. Garre, "Attribute

Selection in Software Engineering Datasets for Detecting Fault Modules," in

Conference on Software Engineering and Advanced Applications, 2007, pp. 418-423.

[217] K. Gao, T. M. Khoshgoftaar, and H. Wang, "An Empirical Investigation of Filter

Attribute Selection Techniques for Software Quality Classification," in International

Conference on Information Reuse & Integration, 2009, pp. 272-277.

[218] T. M. Khoshgoftaar and K. Gao, "Feature Selection With Imbalanced Data for

Software Defect Prediction," in International Conference on Machine Learning and

Applications, 2009, pp. 235-240.

[219] T. M. Khoshgoftaar, K. Gao, and N. Seliya, "Attribute Selection and Imbalanced Data:

Problems in Software Defect Prediction," in International Conference on Tools with

Artificial Intelligence, 2010, vol. 1, pp. 137-144.

[220] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, "Choosing Software Metrics for

Defect Prediction: An Investigation on Feature Selection Techniques," Software:

Practice and Experience, vol. 41, no. 5, pp. 579-606, 2011.

[221] H. Wang, T. M. Khoshgoftaar, and A. Napolitano, "Software Measurement Data

Reduction Using Ensemble Techniques," Neurocomputing, vol. 92, pp. 124-132, 2012.

[222] K. Gao, T. M. Khoshgoftaar, and R. Wald, "Combining Feature Selection and

Ensemble Learning for Software Quality Estimation," in International Florida

Artificial Intelligence Research Society Conference, 2014, pp. 47-52.

References 238

[223] S. Agarwal and D. Tomar, "A Feature Selection Based Model for Software Defect

Prediction," International Journal of Advanced Science and Technology, vol. 65, pp.

39-58, 2014.

[224] A. Okutan and O. T. Yıldız, "Software Defect Prediction Using Bayesian Networks,"

Empirical Software Engineering, vol. 19, no. 1, pp. 154-181, 2014.

[225] G. W. Corder and D. I. Foreman, Nonparametric Statistics: A Step-by-Step Approach.

Wiley, 2014, p. 288.

[226] W. Badr. "Why Feature Correlation Matters …. A Lot!"

https://towardsdatascience.com/why-feature-correlation-matters-a-lot-847e8ba439c4

(accessed 2020).

[227] D. A. Bell and H. Wang, "A Formalism for Relevance and its Application in Feature

Subset Selection," Machine Learning, vol. 41, no. 2, pp. 175-195, 2000.

[228] C. H. Ooi, M. Chetty, and S. W. Teng, "Differential Prioritization in Feature Selection

and Classifier Aggregation for Multiclass Microarray Datasets," Data Mining and

Knowledge Discovery, vol. 14, no. 3, pp. 329-366, 2007.

[229] G. H. John, R. Kohavi, and K. Pfleger, "Irrelevant Features and the Subset Selection

Problem," in Machine Learning Proceedings: Elsevier, 1994, pp. 121-129.

[230] T. N. Lal, O. Chapelle, J. Weston, and A. Elisseeff, "Embedded Methods," in Feature

Extraction: Springer, 2006, pp. 137-165.

[231] K. Kira and L. A. Rendell, "A Practical Approach to Feature Selection," in Machine

Learning Proceedings: Morgan Kaufmann, 1992, pp. 249-256.

[232] M. A. Hall, "Correlation-based Feature Selection for Discrete and Numeric Class

Machine Learning," in International Conference on Machine Learning, 2000, pp. 359–

366.

[233] N. V. Chawla, "Data Mining for Imbalanced Datasets: An Overview," in Data Mining

and Knowledge Discovery Handbook: Springer, 2009, pp. 875-886.

[234] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: Synthetic

Minority Over-Sampling Technique," Journal of Artificial Intelligence Research, vol.

16, pp. 321-357, 2002.

[235] "SMOTE." https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-

reference/smote (accessed 14-03-2020).

[236] M. Alghamdi, M. Al-Mallah, S. Keteyian, C. Brawner, J. Ehrman, and S. Sakr,

"Predicting Diabetes Mellitus Using SMOTE and Ensemble Machine Learning

Approach: The Henry Ford ExercIse Testing (FIT) Project," PloS one, vol. 12, no. 7,

2017.

[237] L. Trigg. "Class Randomize." http://weka.sourceforge.net/doc.stable-3-

8/weka/filters/unsupervised/instance/Randomize.html (accessed 01/12/2019).

[238] G. H. John and P. Langley, "Estimating Continuous Distributions in Bayesian

Classifiers," in Conference on Uncertainty in Artificial Intelligence, 1995, pp. 338–

345.

[239] H. He and E. A. Garcia, "Learning from Imbalanced Data," IEEE Transactions on

Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263-1284, 2009.

[240] G. E. Batista, R. C. Prati, and M. C. Monard, "A Study of the Behavior of Several

Methods for Balancing Machine Learning Training Data," ACM SIGKDD

Explorations Newsletter, vol. 6, no. 1, pp. 20-29, 2004.

https://towardsdatascience.com/why-feature-correlation-matters-a-lot-847e8ba439c4
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/smote
http://weka.sourceforge.net/doc.stable-3-8/weka/filters/unsupervised/instance/Randomize.html
http://weka.sourceforge.net/doc.stable-3-8/weka/filters/unsupervised/instance/Randomize.html

References 239

[241] M. O. Elish and M. Al‐Rahman Al‐Khiaty, "A suite of metrics for quantifying

historical changes to predict future change‐prone classes in object‐oriented software,"

Journal of Software: Evolution and Process, vol. 25, no. 5, pp. 407-437, 2013.

[242] S. Eski and F. Buzluca, "An empirical study on object-oriented metrics and software

evolution in order to reduce testing costs by predicting change-prone classes," in

International Conference on Software Testing, Verification and Validation Workshops,

2011, pp. 566-571.

[243] A. Peer and R. Malhotra, "Application of adaptive neuro-fuzzy inference system for

predicting software change proneness," in International Conference on Advances in

Computing, Communications and Informatics 2013: IEEE, pp. 2026-2031.

[244] A. Peer and R. Malhotra, "Application of adaptive neuro-fuzzy inference system for

predicting software change proneness," in International Conference on Advances in

Computing, Communications and Informatics (ICACCI), 2013: IEEE, pp. 2026-2031.

[245] R. Malhotra and M. Khanna, "Inter Project Validation for Change Proneness Prediction

using Object Oriented Metrics," Software engineering: An International Journal, vol.

3, no. 1, pp. 21-31, 2013.

[246] R. Malhotra and M. Khanna, "Investigation of relationship between object-oriented

metrics and change proneness," International Journal of Machine Learning and

Cybernetics, vol. 4, no. 4, pp. 273-286, 2013.

[247] L. Kumar, S. K. Rath, and A. Sureka, "Empirical analysis on effectiveness of source

code metrics for predicting change-proneness," in Proceedings of the 10th Innovations

in Software Engineering Conference, 2017, pp. 4-14.

[248] R. Malhotra and K. Lata, "An Empirical Study to Investigate The Impact of Data

Resampling Techniques on The Performance of Class Maintainability Prediction

Models," Neurocomputing, 2020, doi: https://doi.org/10.1016/j.neucom.2020.01.120.

[249] L. L. Minku, "Which Machine Learning Method Do You Need?," in Perspectives on

Data Science for Software Engineering: Elsevier, 2016, pp. 155-159.

[250] L. R, L. J, and L. W, "Comparing Software Metrics Tools," in International

Symposium on Software Testing and Analysis, 2008, pp. 131-142.

[251] G. K. Gill and C. F. Kemerer, "Cyclomatic Complexity Density and Software

Maintenance Productivity," IEEE Transactions on Software Engineering, vol. 17, no.

12, pp. 1284-1288, 1991.

[252] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood, "Evaluating Inheritance Depth

on the Maintainability of Object-Oriented Software," Empirical Software Engineering,

vol. 1, no. 2, pp. 109-132, 1996.

[253] J. C. Granja‐Alvarez and M. J. Barranco‐García, "A Method for Estimating

Maintenance Cost in a Software Project: A Case Study," Journal of Software

Maintenance: Research and Practice, vol. 9, no. 3, pp. 161-175, 1997.

[254] Y. Lee and K. H. Chang, "Reusability and Maintainability Metrics for Object-Oriented

Software," in Proceedings of the Annual on Southeast Regional Conference, 2000, pp.

88-94.

[255] F. T. Sheldon, K. Jerath, and H. Chung, "Metrics for Maintainability of Class

Inheritance Hierarchies," Journal of Software Maintenance, vol. 14, no. 3, pp. 147-

160, 2002.

[256] J. H. Hayes, S. C. Patel, and L. Zhao, "A Metrics-Based Software Maintenance Effort

Model," in European Conference on Software Maintenance and Reengineering, 2004,

pp. 254-258.

https://doi.org/10.1016/j.neucom.2020.01.120

References 240

[257] J. S. Lim, S. R. Jeong, and S. R. Schach, "An Empirical Investigation of the Impact of

the Object-Oriented Paradigm on the Maintainability of Real-World Mission-Critical

Software," Journal of Systems and Software, vol. 77, no. 2, pp. 131-138, 2005.

[258] J. H. Hayes and L. Zhao, "Maintainability Prediction: a Regression Analysis of

Measures of Evolving Systems," in International Conference on Software

Maintenance, 2005, pp. 601-604.

[259] K. Kaur and H. Singh, "Determination of Maintainability Index for Object Oriented

Systems," ACM SIGSOFT Software Engineering Notes, vol. 36, no. 2, pp. 1-6, 2011.

[260] P. Bhattacharya and I. Neamtiu, "Assessing Programming Language Impact on

Development and Maintenance: A Study on C and C++," in International Conference

on Software Engineering, 2011, pp. 171-180.

[261] P. Singh, S. Singh, and J. Kaur, "Tool for Generating Code Metrics for C# Source Code

Using Abstract Syntax Tree Technique," ACM SIGSOFT Software Engineering Notes,

vol. 38, no. 5, pp. 1-6, 2013.

[262] R. Malhotra and A. Chug, "A Metric Suite for Predicting Software Maintainability in

Data Intensive Applications," 2014, in Transactions on Engineering Technologies, pp.

161-175.

[263] W. Zhang, L. Huang, V. Ng, and J. Ge, "SMPLearner: Learning to Predict Software

Maintainability," Automated Software Engineering, vol. 22, no. 1, pp. 111-141, 2015.

[264] A. Kaur, K. Kaur, and K. Pathak, "A Proposed New Model for Maintainability Index

of Open Source Software," in International Conference on Reliability, Infocom

Technologies and Optimization, 2014, pp. 1-6.

[265] A. Jain, S. Tarwani, and A. Chug, "An Empirical Investigation of Evolutionary

Algorithm for Software Maintainability Prediction," in Students' Conference on

Electrical, Electronics and Computer Science, 2016, pp. 1-6.

[266] S. Almugrin, W. Albattah, and A. Melton, "Using Indirect Coupling Metrics to Predict

Package Maintainability and Testability," Journal of Systems and Software, vol. 121,

pp. 298-310, 2016.

[267] S. Levin and A. Yehudai, "Boosting Automatic Commit Classification Into

Maintenance Activities By Utilizing Source Code Changes," in International

Conference on Predictive Models and Data Analytics in Software Engineering, 2017,

pp. 97-106.

241

Appendix A

This Appendix presents Table A.1, Table A.2 and Figure A.1, which belong to Chapter 2.

Table A.1: Selected primary studies.

Study ID Ref Topic Author Year
Place

published
Publication name Type

S1 [251]
Cyclomatic Complexity Density and

Software Maintenance Productivity
Gill and Kemerer 1991 IEEE

IEEE Transactions on Software

Engineering
Journal

S2 [9]
Object-Oriented Metrics that Predict

Maintainability
Li and Henry 1993 Elsevier Journal of Systems and Software Journal

S3 [94]
Measuring and Assessing Maintainability at

the End of High Level Design
Briand et al. 1993 IEEE Conference on Software Maintenance Conference

S4 [26] A Metrics Suite for Object Oriented Design
Chidamber and

Kemerer
1994 IEEE

IEEE Transactions on Software

Engineering
Journal

S5 [90]
Construction and Testing of Polynomials

Predicting Software Maintainability

Oman and

Hagemeister
1994 Elsevier Journal of Systems and Software Journal

S6 [62]
Using Metrics to Evaluate Software System

Maintainability
Coleman et al. 1994 ACM DL Computer Journal

S7 [252]
Evaluating Inheritance Depth on the

Maintainability of Object-Oriented Software
Daly et al. 1996

Springer

link
Empirical Software Engineering Journal

S8 [63]

Development and Application of an

Automated Source Code Maintainability
Index

Welker et al. 1997

Wiley

online
library

Journal of Software Maintenance: Re-

search and Practice
Journal

S9 [253]
A Method for Estimating Maintenance Cost

in a Software Project: A Case Study

Granja-Alvarez and

Barranco‐García
1997

Wiley

online
library

Journal of Software Maintenance:

Research and Practice
Journal

S10 [254]
Reusability and Maintainability Metrics for

Object-Oriented Software
Lee and Chang 2000 ACM DL

38th Annual on Southeast Regional

Conference
Conference

S11 [97]
Using Metrics to Predict Object-Oriented

Information Systems Maintainability
Genero et al. 2001 ACM DL

13th International Conference on
Advanced Information Systems

Engineering

Conference

S12 [19]
Estimation and Prediction Metrics for
Adaptive Maintenance Effort of Object-

Oriented Systems

Fioravanti and Nesi 2001 IEEE
IEEE Transactions on Software

Engineering
Journal

S13 [95]
Using Code Metrics to Predict Maintenance

of Legacy Programs: A Case Study
Polo et al. 2001 IEEE

Proceedings IEEE International

Conference on Software Maintenance.
Conference

S14 [255]
Metrics for Maintainability of Class
Inheritance Hierarchies

Sheldon et al. 2002

Wiley

online

library

Journal of Software Maintenance: Re-
search and Practice

Journal

S15 [91]
An Integrated Measure of Software
Maintainability

Aggarwal et al. 2002 IEEE
Annual Reliability and
Maintainability Symposium.

Conference

S16 [60]
Predicting Maintainability with Object-

Oriented Metrics - An Empirical Comparison

Dagpinar and

Jahnke
2003 IEEE

10th Working Conference on Reverse

Engineering.
Conference

S17 [22]
Predicting Maintenance Performance Using
Object-Oriented Design Complexity Metrics

Bandi et al. 2003 IEEE
IEEE Transactions on Software
Engineering

Journal

S18 [20]

Assessing Effort Estimation Models for

Corrective Maintenance Through Empirical
Studies

De Luciaa et al. 2004 Elsevier Information and Software Technology Journal

S19 [256]
A Metrics-Based Software Maintenance

Effort Model
Hayes et al. 2004 IEEE

Eighth European Conference on

Software Maintenance and
Reengineering

Conference

S20 [10]

Application of Neural Networks for Software

Quality Prediction using Object-Oriented

Metrics

Thwin and Quah 2005 Elsevier Journal of Systems and Software Journal

S21 [21]
Modeling Design/Coding Factors That Drive

Maintainability of Software Systems
Misra 2005

Springer

link
Software Quality Journal Journal

S22 [257]
An Empirical Investigation of the Impact of

the Object-Oriented Paradigm on the
Lim et al. 2005 Elsevier Journal of Systems and Software Journal

242

Maintainability of Real-World Mission-

critical software

S23 [109]
The Promise of Public Software Engineering

Data Repositories
Cukic 2005 IEEE IEEE Software Journal

S24 [258]
Maintainability Prediction: A Regression
Analysis of Measures of Evolving Systems

Hayes and Zhao 2005 IEEE
IEEE International Conference on
Software Maintenance

Conference

S25 [11]

An Application of Bayesian Network for

Predicting Object-Oriented Software
Maintainability

Koten and Gray 2006 Elsevier Information and Software Technology Journal

S26 [12]

Predicting Object-Oriented Software

Maintainability Using Multivariate Adaptive

Regression Splines

Yuming Zhou and
Hareton Leung

2007 Elsevier Journal of Systems and Software Journal

S27 [250] Comparing Software Metrics Tools Lincke et al. 2008 ACM DL
International Symposium on Software

Testing and Analysis
Conference

S28 [96]
A Comparative Study of MI Tools: Defining

the Roadmap to MI Tools Standardization
Sarwar et al. 2008 IEEE

IEEE International Multitopic

Conference
Conference

S29 [32]
Predicting the Maintainability of Open

Source Software Using Design Metrics

Yuming and

Baowen
2008

Springer

link

Wuhan University Journal of Natural

Sciences
Journal

S30 [13]

Application of TreeNet in Predicting Object-

Oriented Software Maintainability: A

Comparative Study

Elish and Elish 2009 IEEE
Software Maintenance and

Reengineering
Conference

S31 [33]

An Empirical Analysis of the Impact of

Software Development Problem Factors on
Software Maintainability

Chen and Huang 2009 Elsevier Journal of Systems and Software Journal

S32 [73]

Applications of Support Vector Mathine and

Unsupervised Learning for Predicting
Maintainability Using Object-Oriented

Metrics

Jin and Liu 2010 IEEE

Second International Conference on

MultiMedia and Information

Technology

Conference

S33 [259]
Determination of Maintainability Index for

Object-Oriented Systems
Kaur and Singh 2011 ACM DL

ACM SIGSOFT Software

Engineering Notes
Journal

S34 [98]
A Controlled Experiment in Assessing and

Estimating Software Maintenance Tasks
Nguyen et al. 2011 Elsevier Information and Software Technology Journal

S35 [260]

Assessing Programming Language Impact on

Development and Maintenance: A Study on
C and C++

Bhattacharya and

Neamtiu
2011 ACM DL

33rd International Conference on

Software Engineering
Conference

S36 [14]

Maintainability Prediction of Object-Oriented

Software System by Multilayer Perceptron
model

Dubey et al. 2012 ACM DL
ACM SIGSOFT Software

Engineering Notes
Journal

S37 [121]
Predicting Software Maintenance Effort

through Evolutionary-Based Decision Trees
Basgalupp et al. 2012 ACM DL

27th Annual ACM Symposium on

Applied Computing
Conference

S38 [7]
Machine Learning Approaches for Predicting
Software Maintainability: A Fuzzy-Based

Transparent Model

Ahmed and Al-

Jamimi
2013 IEEE IET Software Journal

S39 [162]
Object-Oriented Class Maintainability

Prediction Using Internal Quality Attributes
Al Dallal 2013 Elsevier Information and Software Technology Journal

S40 [74]

A New Software Maintainability Evaluation

Model Based on Multiple Classifiers

Combination

Ye et al. 2013 IEEE

International Conference on Quality,

Reliability, Risk, Maintenance, and

Safety Engineering

Conference

S41 [261]
Tool for Generating Code Metrics for C#
Source Code using Abstract Syntax Tree

Technique

Singh et al. 2013 ACM DL
ACM SIGSOFT Software

Engineering Notes
Journal

S42 [15]
Application of Group Method of Data
Handling Model for Software Maintainability

Prediction Using Object-Oriented Systems

Malhotra and Chug 2014
Springer

link

International Journal of System
Assurance Engineering and

Management

Journal

S43 [48]
Software Maintainability Prediction by Data
Mining of Software Code Metrics

Kaur et al. 2014 IEEE
International Conference on Data
Mining and Intelligent Computing

Conference

S44 [262]

A Metric Suite for Predicting Software

Maintainability in Data Intensive

Applications

Malhotra and Chug 2014
Springer
link

Transactions on Engineering
Technologies

Conference

S45 [263]
SMPLearner: Learning to Predict Software

Maintainability
Zhang et al. 2014

Springer

link
Automated Software Engineering Journal

S46 [175]

Validating the Effectiveness of Object-

Oriented Metrics for Predicting
Maintainability

Kumara et al. 2015 Elsevier Procedia Computer Science Conference

S47 [16]

Three Empirical Studies on Predicting

Software Maintainability Using Ensemble
Methods

Elish et al. 2015
Springer

link
Soft Computing Journal

243

S48 [264]
A Proposed New Model for Maintainability

Index of Open Source Software
Kaur et al. 2015 IEEE

International Conference on

Reliability, Infocom Technologies and

Optimization

Conference

S49 [17]
Hybrid Functional Link Artificial Neural
Network Approach for Predicting

Maintainability of Object-Oriented Software

Kumar and Rath 2016 Elsevier Journal of Systems and Software Journal

S50 [265]

An Empirical Investigation of Evolutionary

Algorithm for Software Maintainability
Prediction

Jain et al. 2016 IEEE

IEEE Students Conference on

Electrical, Electronics and Computer
Science

Conference

S51 [266]
Using Indirect Coupling Metrics to Predict

Package Maintainability and Testability
Almugrin et al. 2016 Elsevier Journal of Systems and Software Journal

S52 [18]
Software Maintainability Prediction Using
Hybrid Neural Network and Fuzzy Logic

Approach with Parallel Computing Concept

Kumar and Rath 2017
Springer

link

International Journal of System
Assurance Engineering and

Management

Journal

S53 [267]
Boosting Automatic Commit Classification
into Maintenance Activities by Utilizing

Source Code Changes

Levin and Yehudai 2017 ACM DL
13th International Conference on
Predictive Models and Data Analytics

in Software Engineering

Conference

S54 [83]

Performance of Maintainability Index

Prediction Models: A Feature Selection
Based Study

Reddy and Ojha 2017
Springer

link
Evolving Systems Journal

S55 [58]

Empirical Evaluation of Software

Maintainability Based on a Manually
Validated Refactoring Dataset

Péter Hegedus et al. 2018 Elsevier Information and Software Technology Journal

S56 [23]

Particle Swarm Optimization-Based

Ensemble Learning for Software Change
Prediction

Malhotraa and
Khanna

2018 Elsevier Information and Software Technology Journal

244

Table A.2: Quality assessment result.

S
tu

d
y

 ID

QA

1

QA

2

QA

3

QA

4

QA

5

QA

6

QA

7

QA

8

QA

9

QA

10

QA

11

QA

12

QA

13

QA

14

QA

15

Total

score
Rating

S1 Y Y Y Y Y Y Y P N N N P N P Y 9 Fair

S2 Y Y Y Y Y Y Y Y Y Y Y Y P Y N 13.5 Excellent

S3 Y Y Y Y Y Y P N N N N N N Y P 8 Fair

S4 Y N N Y Y Y Y Y N N N Y N Y Y 9 Fair

S5 Y Y Y Y Y Y Y P N N N P Y Y N 10 Good

S6 Y Y Y Y Y Y Y Y N N N N N Y Y 10 Good

S7 Y Y Y Y Y Y Y Y N Y N P N Y Y 11.5 Good

S8 Y Y Y Y Y Y N P N Y N P P Y Y 10.5 Good

S9 Y Y Y Y P N Y P N N N P N Y P 8 Fair

S10 Y Y Y Y Y Y Y N N N N N N Y Y 9 Fair

S11 Y Y Y Y Y Y Y P Y N N Y Y Y Y 12.5 Good

S12 Y Y Y Y Y Y Y Y N Y N Y P Y Y 12.5 Good

S13 Y Y Y Y Y Y Y Y Y Y N P P Y Y 13 Good

S14 Y Y Y Y N N N N N N N N N Y Y 6 Fair

S15 Y Y Y Y N Y N N N N N P P Y P 7.5 Fair

S16 Y Y Y Y Y Y Y Y N Y N P P Y P 11.5 Good

S17 Y Y Y Y Y Y N Y N Y Y Y N Y Y 12 Good

S18 Y Y Y Y Y Y P P N Y Y Y P Y Y 12.5 Good

S19 Y Y Y Y Y N N N N Y Y P P Y Y 10 Good

S20 P Y Y Y Y Y Y Y Y Y Y Y Y P N 12.5 Good

S21 Y Y Y Y Y Y Y Y P Y N P P Y P 13 Good

S22 Y Y Y Y Y N Y N N N N N N Y Y 8 Fair

S23 Y N N Y Y Y Y Y Y N N N N Y N 8 Fair

S24 P Y Y Y Y N N N N Y N P P Y P 7.5 Fair

S25 P Y Y Y Y Y Y Y Y Y Y Y Y Y N 13.5 Excellent

S26 P Y Y Y Y Y Y Y Y Y Y Y Y Y Y 14.5 Excellent

S27 Y Y Y Y Y Y Y Y P N N N N Y Y 10.5 Good

S28 Y Y Y Y N Y N Y P N N N N Y Y 8.5 Fair

S29 Y Y Y Y Y N Y Y P Y Y Y P Y N 12 Good

S30 P Y Y Y Y Y Y Y Y Y Y Y Y Y P 14 Excellent

S31 Y Y Y Y Y Y N Y N Y N Y Y Y Y 12 Good

S32 Y Y Y Y Y N Y Y N Y Y Y P P N 11 Good

S33 Y Y Y Y Y N Y Y P Y N Y P Y N 11 Good

S34 Y Y Y Y Y Y Y Y Y Y N Y Y Y Y 14 Excellent

S35 Y N P Y Y Y Y Y P Y N N N Y Y 10 Good

S36 N Y Y Y Y Y Y Y Y Y Y Y Y P P 13 Good

S37 Y Y Y Y Y Y N Y N Y Y Y Y Y N 12 Good

S38 N Y Y Y Y Y Y Y Y Y Y Y Y N P 12.5 Good

S39 Y Y Y Y Y Y Y Y P Y Y P P Y Y 13.5 Excellent

S40 N Y Y Y P N Y Y P Y Y Y Y P N 10.5 Good

S41 P N N Y Y Y Y Y P N N N N N P 6 Fair

S42 Y N Y Y Y N Y Y N Y Y Y Y Y Y 12 Good

S43 Y Y Y Y N Y Y Y N Y N Y Y Y P 11.5 Good

S44 Y Y Y Y Y Y Y Y P Y Y Y Y Y Y 14.5 Excellent

S45 Y Y Y Y Y Y Y Y P Y Y Y Y Y Y 14.5 Excellent

S46 N Y Y Y Y Y Y Y Y Y Y Y P P P 12.5 Good

S47 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 15 Good

S48 P Y Y Y Y Y Y Y P Y N Y Y P Y 12.5 Good

S49 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 15 Excellent

S50 N Y Y Y Y Y Y Y P Y N Y Y P N 11 Good

S51 Y Y Y Y Y Y Y N P Y N N N Y Y 10.5 Good

S52 Y Y Y Y Y Y Y Y Y Y Y Y P Y P 14 Excellent

S53 P Y Y N Y P Y Y Y Y Y Y P Y P 12 Good

S54 Y Y Y Y Y Y Y Y P Y Y Y Y Y Y 13.5 Excellent

S55 Y Y Y Y Y Y Y Y Y Y N P N Y Y 12.5 Good

S56 Y Y Y Y Y Y Y N P Y Y Y Y Y Y 13.5 Excellent

245

Figure A.1: The mind map of software maintainability prediction.

246

Appendix B

This Appendix provides Table B.1, which refers to Chapter 5.
Table B.1: Descriptive static of software maintainability prediction datasets.

M
et

ri
cs

C
B

O

D
IT

F
an

In

F
an

O
u

t

L
C

O
M

N
O

C

N
O

A

N
O

A
I

L
O

C

N
O

M

N
O

M
I

N
O

P
R

A

N
O

P
R

M

N
O

P
A

N
O

P
M

R
F

C

W
M

C

Eclipse JDT Core

Min 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Max 114 8 102 61 7381 26 313 388 2475 122 255 35 38 312 74 1026 489

Median 5 2 1 3 21 0 3 12 56 7 31 0 0 0 4 21 15

Mean 7.42 2.59 2.86 4.8 56.7 0.489 4.93 74.4 89.2 8.31
44.3

2

1.2

06

0.46

8
1.65 5.33 34.4 23.6

Stdev 8.35 1.58 5.84 5.43
287.

7
1.889 18.88

121.

3
130 7.26

42.6

2

2.4

98

1.80

7

12.0

4
4.98 50.8 30.8

Eclipse PDE UI

Min 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Max 153 9 146 30 630 46 2169 158 724 36 523 15 21 2168 23 352 172

Median 5 2 1 3 15 0 1 0 41 6 8 1 0 0 3 20 10

Mean 7.42
2.12

2
2.55 4.97 33.7 0.556 4.9 3.12 62.47 7.03 24.6

1.8

68

1.11

3
2.3 4.51

29.9

7

15.0

4

Stdev 8.26
1.42

1
6.68 4.83 54.6 2.471 63.4 14 61.74 5.01 54.6

2.2

67

2.11

8
63 3.65

29.6

7

14.7

2

Equinox Framework

Min 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Max 29 3 27 24 703 6 138 74 456 38 111 14 14 137 38 196 126

Median 5 1 1 3 6 0 2 0 30 4 9 1 0 0 3 16 9

Mean 6.53
1.22

5
2.1 4.65 36.4 0.163 4.61 1.36 61.6 6.34

14.0

8

2.1

2
0.74 1.46 4.38 27.9 16.6

Stdev 6.49
0.46

7
3.3 5.22 72.4 0.702 11.49 6.05 78.7 6.24

13.9

8

3.1

2
1.84

10.2

3
4.58 35 20.7

Lucene

Min 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Max 179 5 174 16 1225 42 56 56 686 50 80 11 11 27 39 124 61

Median 5 2 1 3 6 0 2 0 31.5 4 16 0 0 0 3 13 7

Mean 7.3
1.82

3
3.82 3.52 17.9 0.67 3 1.09 45.8 5.05

20.1

8

1.4

34

0.31

8

0.76

5
3.85

19.2

8

10.3

5

Stdev 13.7
0.89

3
13.2 3.21 57.3 3 4.02 4.15 53.2 3.94

13.4

6

2.0

99
0.91

2.25

1
3.48

18.2

6

10.0

1

Mylyn

Min 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Max 229 5 223 58 2485 49 128 18 1144 71 226 68 23 127 52 470 199

Median 4 1 1 2 6 0 2 0 31 4 9 1 0 0 3 13 7

Mean 5.52
1.44

1
2.19 3.4 20.9 0.319 3.53

0.55

1
46.1 5.21

13.2

1

1.9

76

0.49

5
0.91

4.17

5

19.8

4
10

Stdev 9.68
0.72

4
8.61 4 88.2 1.708 8.49

1.83

6
60 4.45

15.9

6

2.8

99

1.21

8
7.3

3.82

2

24.0

2

11.2

8

247

Appendix C

Appendix C presents the abbreviation of metrics used in chapter 6. Also, appendix C shows

Table C.2, Table C.3, Table C.4, Table C.5, Table C.6, Table C.7 and Table C.8, which are

descriptive static of the datasets used in Chapter 6. Further, this Appendix provides multiple

ROC curves for datasets applied in Chapter 6.

Table C. 1: The abbreviation of metrics.
Metrics name Abbreviation Metrics name Abbreviation

Lack of Cohesion in Methods 5 LCOM5 Number of Local Attributes NLA

Nesting Level NL Number of Local Getters NLG

Nesting Level Else-If NLE Number of Local Methods NLM

Weighted Methods per Class WMC Number of Local Public Attributes NLPA

Coupling Between Object classes CBO Number of Local Public Methods NLPM

Coupling Between Object classes Inverse CBOI Number of Local Setters NLS

Number of Incoming Invocations NII Number of Methods NM

Number of Outgoing Invocations NOI Number of Public Attributes NPA

Response set For Class RFC Number of Public Methods NPM

API Documentation AD Number of Setters NS

Comment Density CD Number of Statements NOS

Comment Lines of Code CLOC Total Lines of Code TLOC

Documentation Lines of Code DLOC Total Logical Lines of Code TLLOC

Public Documented API PDA Total Number of Attributes TNA

Public Undocumented API PUA Total Number of Getters TNG

Total Comment Density TCD Total Number of Local Attributes TNLA

Total Comment Lines of Code TCLOC Total Number of Local Getters TNLG

Depth of Inheritance Tree DIT Total Number of Local Methods TNLM

Number of Ancestors NOA Total Number of Local Public Attributes TNLPA

Number of Children NOC Total Number of Local Public Methods TNLPM

Number of Descendants NOD Total Number of Local Setters TNLS

Number of Parents NOP Total Number of Methods TNM

Lines of Code LOC Total Number of Public Attributes TNPA

Logical Lines of Code LLOC Total Number of Public Methods TNPM

Number of Attributes NA Total Number of Setters TNS

Number of Getters NG Total Number of Statements TNOS

Clone Classes CCL Clone Line Coverage CLC

Clone Complexity CCO Clone Logical Line Coverage CLLC

Clone Coverage CC Lines of Duplicated Code LDC

Clone Instances CI Logical Lines of Duplicated Code LLDC

248

Table C.2: Descriptive static of antl4 dataset.

Metrics Minimum Maximum Mean Stdev Median

CC
0.00 1.00 0.05 0.16 0.00

LCOM5
0.00 78.00 1.57 4.86 1.00

NL
0.00 10.00 1.07 1.60 0.00

WMC
0.00 216.00 14.74 26.47 5.00

CBOI
0.00 79.00 4.61 9.07 1.00

NOI
0.00 78.00 4.78 8.68 1.00

AD
0.00 1.00 0.21 0.25 0.12

CD
0.00 0.75 0.13 0.15 0.09

CLOC
0.00 575.00 16.74 50.23 2.00

PDA
0.00 25.00 1.43 2.71 1.00

PUA
0.00 91.00 5.91 8.25 3.00

DIT
0.00 6.00 1.35 1.38 1.00

NOC
0.00 33.00 0.57 2.18 0.00

NOD
0.00 104.00 1.10 6.32 0.00

NOP
0.00 3.00 0.69 0.55 1.00

NA
0.00 67.00 7.09 7.14 5.00

NG
0.00 28.00 3.44 4.92 2.00

NLA
0.00 59.00 2.45 4.88 1.00

NLG
0.00 28.00 1.22 3.01 0.00

NLPA
0.00 34.00 1.50 3.45 0.00

NM
0.00 139.00 17.36 19.43 9.50

NPA
0.00 37.00 5.31 6.14 4.00

NS
0.00 11.00 0.77 1.78 0.00

TNA
0.00 152.00 7.77 9.94 6.00

TNLG
0.00 28.00 1.33 3.28 0.00

TNLS
0.00 11.00 0.26 1.02 0.00

TNPA
0.00 53.00 5.61 6.67 4.00

WarningCritical
0.00 11.00 0.23 0.95 0.00

WarningInfo
0.00 371.00 28.52 47.24 12.00

WarningMajor
0.00 246.00 3.11 14.58 0.00

WarningMinor
0.00 212.00 12.00 25.35 2.00

Basic Rules
0.00 2.00 0.04 0.23 0.00

Brace Rules
0.00 56.00 2.51 7.06 0.00

Clone Implementation Rules
0.00 1.00 0.00 0.05 0.00

Cohesion Metric Rules
0.00 3.00 0.29 0.53 0.00

Complexity Metric Rules
0.00 13.00 0.38 1.52 0.00

Controversial Rules
0.00 14.00 0.35 1.36 0.00

Coupling Metric Rules
0.00 7.00 0.28 0.76 0.00

Design Rules
0.00 109.00 5.93 14.16 1.00

Import Statement Rules
0.00 3.00 0.02 0.20 0.00

Inheritance Metric Rules
0.00 2.00 0.05 0.24 0.00

249

J2EE Rules
0.00 1.00 0.00 0.05 0.00

JUnit Rules
0.00 92.00 2.32 10.03 0.00

Jakarta Commons Logging Rules
0.00 4.00 0.01 0.19 0.00

Java Logging Rules
0.00 38.00 0.39 2.85 0.00

JavaBean Rules
0.00 1.00 0.00 0.05 0.00

Naming Rules
0.00 91.00 0.99 5.24 0.00

Optimization Rules
0.00 17.00 0.21 1.06 0.00

Security Code Guideline Rules
0.00 3.00 0.04 0.26 0.00

Size Metric Rules
0.00 71.00 3.94 5.44 4.00

Strict Exception Rules
0.00 10.00 0.11 0.62 0.00

String and StringBuffer Rules
0.00 26.00 0.78 2.96 0.00

Type Resolution Rules
0.00 92.00 1.41 6.78 0.00

Unnecessary and Unused Code Rules
0.00 55.00 0.22 2.77 0.00

Table C.3: Descriptive static of junit dataset.

Metrics Minimum Maximum Mean Stdev Median

CC 0.00 1.00 0.02 0.14 0.00

LCOM5 0.00 63.00 1.74 3.15 1.00

NL 0.00 5.00 0.30 0.73 0.00

WMC 0.00 87.00 4.36 7.95 2.00

CBO 0.00 68.00 3.80 4.50 3.00

CBOI 0.00 124.00 2.74 8.33 1.00

NII 0.00 392.00 3.03 19.35 0.00

NOI 0.00 34.00 2.31 4.34 1.00

RFC 0.00 87.00 5.71 8.68 3.00

AD 0.00 1.00 0.11 0.27 0.00

CD 0.00 0.81 0.07 0.17 0.00

PUA 0.00 62.00 3.12 3.83 2.00

DIT 0.00 5.00 0.64 0.97 0.00

NOC 0.00 71.00 0.34 2.99 0.00

LLOC 1.00 371.00 19.01 29.86 9.00

NA 0.00 9.00 0.94 1.37 0.00

NG 0.00 9.00 0.56 1.43 0.00

NLA 0.00 8.00 0.63 1.14 0.00

NLG 0.00 9.00 0.25 0.95 0.00

NLPA 0.00 6.00 0.16 0.53 0.00

NLS 0.00 3.00 0.04 0.24 0.00

NM 0.00 80.00 11.60 18.71 3.00

NPM 0.00 75.00 9.44 16.26 2.00

NS 0.00 4.00 0.31 0.75 0.00

TNG 0.00 17.00 0.76 1.92 0.00

250

TNLM 0.00 99.00 4.60 7.85 2.00

TNLPA 0.00 17.00 0.27 1.09 0.00

TNM 0.00 662.00 17.35 42.10 3.00

TNOS 0.00 181.00 8.42 17.53 2.00

TNPA 0.00 17.00 0.30 1.11 0.00

WarningCritical 0.00 11.00 0.11 0.72 0.00

WarningInfo 0.00 325.00 15.28 24.32 8.00

WarningMajor 0.00 85.00 1.61 4.26 1.00

WarningMinor 0.00 173.00 4.67 11.04 1.00

Basic Rules 0.00 5.00 0.03 0.29 0.00

Brace Rules 0.00 28.00 0.81 2.96 0.00

Cohesion Metric Rules 0.00 23.00 0.54 1.29 0.00

Controversial Rules 0.00 5.00 0.13 0.57 0.00

Coupling Metric Rules 0.00 2.00 0.05 0.23 0.00

Design Rules 0.00 108.00 1.95 5.54 1.00

Empty Code Rules 0.00 5.00 0.04 0.30 0.00

Import Statement Rules 0.00 7.00 0.02 0.28 0.00

Inheritance Metric Rules 0.00 3.00 0.05 0.25 0.00

J2EE Rules 0.00 4.00 0.01 0.17 0.00

JUnit Rules 0.00 89.00 1.75 6.58 0.00

Java Logging Rules 0.00 3.00 0.01 0.15 0.00

Migration Rules 0.00 8.00 0.04 0.46 0.00

Naming Rules 0.00 18.00 0.50 1.80 0.00

Optimization Rules 0.00 30.00 0.39 1.63 0.00

Security Code Guideline Rules 0.00 1.00 0.00 0.07 0.00

Size Metric Rules 0.00 48.00 1.28 3.71 0.00

Strict Exception Rules 0.00 14.00 0.33 1.11 0.00

String and StringBuffer Rules 0.00 4.00 0.05 0.32 0.00

Type Resolution Rules 0.00 28.00 0.33 1.40 0.00

Unnecessary and Unused Code Rules 0.00 2.00 0.02 0.13 0.00

Table C.4: Descriptive static of MapDB dataset.

Metrics Minimum Maximum Mean Stdev Median

CC
0.00 1.00 0.12 0.27 0.00

LCOM5
0.00 22.00 2.07 2.49 1.00

NL
0.00 29.00 1.33 2.07 1.00

WMC
0.00 1525.00 23.40 93.92 4.00

CBO
0.00 40.00 3.74 4.70 2.00

CBOI
0.00 111.00 2.94 9.79 0.00

NII
0.00 284.00 5.40 23.10 0.00

NOI
0.00 54.00 5.74 9.00 2.00

251

RFC
0.00 156.00 13.58 20.97 6.00

AD
0.00 1.00 0.15 0.27 0.00

CD
0.00 0.95 0.10 0.16 0.02

PUA
0.00 152.00 5.78 10.99 3.00

DIT
0.00 4.00 0.52 0.71 0.00

NOC
0.00 11.00 0.22 1.00 0.00

LLOC
2.00 11272.00 119.63 634.97 22.00

NA
0.00 77.00 5.97 10.64 2.00

NG
0.00 19.00 0.77 2.19 0.00

NLA
0.00 34.00 2.14 4.49 0.00

NLG
0.00 19.00 0.43 1.50 0.00

NLM
0.00 156.00 7.85 15.01 3.00

NLPA
0.00 18.00 0.21 1.35 0.00

NM
0.00 156.00 12.89 21.53 3.00

NPA
0.00 18.00 2.35 5.20 0.00

TNA
0.00 255.00 8.81 18.37 2.00

TNLG
0.00 31.00 0.62 2.29 0.00

TNLPA
0.00 235.00 0.92 11.56 0.00

TNLPM
0.00 208.00 8.90 19.59 3.00

TNLS
0.00 6.00 0.14 0.57 0.00

TNPA
0.00 252.00 3.73 13.55 0.00

TNPM
0.00 252.00 14.88 28.98 3.00

WarningCritical
0.00 92.00 1.17 7.10 0.00

WarningInfo
0.00 1516.00 40.84 109.93 13.00

WarningMajor
0.00 153.00 2.27 10.61 0.00

WarningMinor
0.00 4541.00 36.20 246.20 4.00

Basic Rules
0.00 925.00 3.43 48.22 0.00

Brace Rules
0.00 270.00 6.07 19.52 0.00

Cohesion Metric Rules
0.00 10.00 0.55 1.04 0.00

Complexity Metric Rules
0.00 45.00 0.81 3.57 0.00

Controversial Rules
0.00 123.00 1.93 7.63 0.00

Coupling Metric Rules
0.00 18.00 0.26 1.18 0.00

Design Rules
0.00 71.00 2.81 7.59 1.00

Documentation Metric Rules
0.00 587.00 22.70 45.75 9.00

Empty Code Rules
0.00 22.00 0.27 1.73 0.00

Import Statement Rules
0.00 9.00 0.04 0.48 0.00

Inheritance Metric Rules
0.00 2.00 0.02 0.16 0.00

JUnit Rules
0.00 2320.00 16.55 131.09 0.00

Java Logging Rules
0.00 10.00 0.17 0.86 0.00

JavaBean Rules
0.00 4.00 0.07 0.32 0.00

Migration Rules
0.00 980.00 3.71 51.19 0.00

Naming Rules
0.00 179.00 2.01 11.07 0.00

Optimization Rules
0.00 20.00 0.34 1.54 0.00

252

Security Code Guideline Rules
0.00 9.00 0.08 0.58 0.00

Size Metric Rules
0.00 202.00 3.19 12.12 0.00

Strict Exception Rules
0.00 176.00 1.64 12.21 0.00

String and StringBuffer Rules
0.00 22.00 0.28 1.54 0.00

Type Resolution Rules
0.00 23.00 0.34 2.05 0.00

Unnecessary and Unused Code Rules
0.00 941.00 3.29 49.06 0.00

Table C.5: Descriptive static of mcMMO dataset.

Metrics Minimum Maximum Mean Stdev Median

CC 0.00 1.00 0.12 0.27 0.00

LCOM5 0.00 138.00 2.03 8.25 1.00

NL 0.00 7.00 1.50 1.62 1.00

WMC 0.00 261.00 19.07 31.35 8.00

CBO 0.00 48.00 4.76 6.11 3.00

CBOI 0.00 101.00 4.00 11.84 1.00

NII 0.00 250.00 6.80 25.67 1.00

NOI 0.00 86.00 8.10 12.14 4.00

RFC 1.00 200.00 15.94 22.41 9.00

AD 0.00 0.97 0.12 0.24 0.00

CD 0.00 0.70 0.08 0.13 0.00

CLOC 0.00 355.00 10.97 30.89 0.00

DLOC 0.00 355.00 9.21 29.35 0.00

PUA 1.00 181.00 5.49 14.26 3.00

TCD 0.00 0.70 0.08 0.13 0.00

DIT 0.00 2.00 0.37 0.51 0.00

NOC 0.00 13.00 0.23 1.31 0.00

LLOC 3.00 917.00 64.69 95.16 32.00

LOC 3.00 1160.00 90.96 136.45 42.00

NA 0.00 36.00 4.55 6.07 3.00

NG 0.00 197.00 3.14 13.85 0.00

NLA 0.00 32.00 2.82 4.88 1.00

NLM 0.00 199.00 7.84 17.23 4.00

NLPM 0.00 197.00 6.08 16.92 2.00

NLS 0.00 15.00 0.47 1.60 0.00

NPM 0.00 201.00 6.87 17.33 2.00

TNLG 0.00 197.00 3.30 14.74 0.00

WarningCritical 0.00 15.00 0.42 1.44 0.00

WarningInfo 2.00 381.00 25.71 42.10 15.00

WarningMajor 0.00 39.00 0.77 3.13 0.00

WarningMinor 0.00 62.00 5.66 9.15 2.00

Basic Rules 0.00 3.00 0.07 0.36 0.00

253

Brace Rules 0.00 2.00 0.02 0.17 0.00

Cohesion Metric Rules 0.00 1.00 0.27 0.45 0.00

Controversial Rules 0.00 4.00 0.07 0.41 0.00

Coupling Metric Rules 0.00 8.00 0.35 1.09 0.00

Documentation Metric Rules 1.00 367.00 17.35 32.35 9.00

Empty Code Rules 0.00 2.00 0.03 0.18 0.00

Inheritance Metric Rules 0.00 1.00 0.01 0.08 0.00

JUnit Rules 0.00 6.00 0.02 0.35 0.00

Jakarta Commons Logging Rules 0.00 4.00 0.05 0.43 0.00

Java Logging Rules 0.00 8.00 0.11 0.72 0.00

Naming Rules 0.00 55.00 0.50 3.41 0.00

Optimization Rules 0.00 18.00 0.17 1.14 0.00

Size Metric Rules 0.00 33.00 1.88 3.70 0.00

Strict Exception Rules 0.00 10.00 0.14 0.79 0.00

Type Resolution Rules 0.00 14.00 0.19 1.00 0.00

Unnecessary and Unused Code Rules 0.00 2.00 0.02 0.19 0.00

Table C.6: Descriptive static of mct dataset.

Metrics Minimum Maximum Mean Stdev Median

CC 0.00 1.00 0.19 0.36 0.00

LCOM5 0.00 60.00 1.37 2.42 1.00

NL 0.00 18.00 0.95 1.47 0.00

WMC 0.00 413.00 9.31 19.98 3.00

CBO 0.00 56.00 3.86 5.07 2.00

CBOI 0.00 409.00 2.92 13.75 1.00

NII 0.00 503.00 3.89 18.84 0.00

NOI 0.00 199.00 4.92 10.50 1.00

RFC 0.00 246.00 10.02 17.18 4.00

AD 0.00 1.00 0.16 0.32 0.00

CD 0.00 0.82 0.10 0.17 0.00

PUA 0.00 100.00 3.88 6.64 2.00

DIT 0.00 5.00 0.60 0.91 0.00

NOC 0.00 65.00 0.27 2.63 0.00

NA 0.00 124.00 5.07 8.75 2.00

NG 0.00 60.00 3.58 7.68 0.00

NLA 0.00 124.00 2.51 6.27 1.00

NLG 0.00 45.00 1.18 3.50 0.00

NLPA 0.00 122.00 0.31 3.95 0.00

NLS 0.00 51.00 0.53 2.71 0.00

NM 0.00 175.00 12.78 22.32 4.00

NOS 0.00 896.00 26.93 65.45 6.50

254

NPA 0.00 122.00 0.78 4.15 0.00

NS 0.00 51.00 1.39 3.82 0.00

TNG 0.00 1099.00 5.64 26.62 1.00

TNLG 0.00 50.00 1.50 4.25 0.00

TNLPA 0.00 163.00 0.47 5.52 0.00

TNPA 0.00 163.00 1.04 5.69 0.00

TNS 0.00 409.00 2.12 10.09 0.00

WarningBlocker 0.00 1.00 0.00 0.02 0.00

WarningCritical 0.00 22.00 0.24 1.37 0.00

WarningInfo 0.00 1390.00 24.99 52.73 12.00

WarningMajor 0.00 37.00 0.71 2.42 0.00

WarningMinor 0.00 318.00 4.59 15.05 1.00

Basic Rules 0.00 22.00 0.14 1.11 0.00

Brace Rules 0.00 42.00 0.65 2.83 0.00

Clone Implementation Rules 0.00 2.00 0.01 0.10 0.00

Cohesion Metric Rules 0.00 8.00 0.33 0.67 0.00

Complexity Metric Rules 0.00 14.00 0.23 1.05 0.00

Controversial Rules 0.00 58.00 0.39 2.01 0.00

Coupling Metric Rules 0.00 16.00 0.24 0.94 0.00

Design Rules 0.00 138.00 1.90 5.90 0.00

Documentation Metric Rules 0.00 311.00 13.96 22.15 7.00

Empty Code Rules 0.00 6.00 0.03 0.23 0.00

Finalizer Rules 0.00 1.00 0.00 0.03 0.00

Import Statement Rules 0.00 64.00 0.06 1.48 0.00

Inheritance Metric Rules 0.00 49.00 0.09 1.09 0.00

J2EE Rules 0.00 2.00 0.00 0.08 0.00

JUnit Rules 0.00 286.00 1.27 10.54 0.00

Jakarta Commons Logging Rules 0.00 12.00 0.05 0.52 0.00

Java Logging Rules 0.00 17.00 0.06 0.57 0.00

Migration Rules 0.00 4.00 0.01 0.14 0.00

Naming Rules 0.00 133.00 0.36 3.13 0.00

Optimization Rules 0.00 20.00 0.21 1.09 0.00

Security Code Guideline Rules 0.00 4.00 0.02 0.20 0.00

Size Metric Rules 0.00 364.00 2.26 9.10 0.00

Strict Exception Rules 0.00 11.00 0.09 0.56 0.00

String and StringBuffer Rules 0.00 35.00 0.14 1.03 0.00

Type Resolution Rules 0.00 12.00 0.13 0.75 0.00

Unnecessary and Unused Code Rules 0.00 14.00 0.06 0.43 0.00

255

Table C.7: Descriptive static of oryx dataset.
Metrics Minimum Maximum Mean Stdev Median

CC 0.00 1.00 0.07 0.19 0.00

LCOM5 0.00 10.00 1.37 1.16 1.00

NL 0.00 13.00 1.33 1.48 1.00

WMC 1.00 121.00 8.93 12.02 5.00

CBO 0.00 38.00 4.04 4.12 3.00

CBOI 0.00 77.00 3.47 7.78 1.00

NII 0.00 179.00 4.33 12.94 1.00

NOI 0.00 66.00 5.25 6.73 3.00

RFC 1.00 104.00 9.75 9.14 7.00

AD 0.00 1.00 0.27 0.34 0.11

CD 0.00 0.60 0.12 0.14 0.07

PUA 0.00 26.00 3.26 3.51 2.00

DIT 0.00 5.00 0.75 0.95 1.00

NOC 0.00 64.00 0.41 3.13 0.00

NA 0.00 17.00 3.74 3.51 3.00

NG 0.00 14.00 2.04 2.59 1.00

NLA 0.00 15.00 1.73 2.28 1.00

NLG 0.00 14.00 0.88 1.95 0.00

NLM 1.00 50.00 4.50 4.83 3.00

NLPA 0.00 10.00 0.07 0.54 0.00

NLPM 0.00 46.00 3.43 4.28 2.00

NLS 0.00 4.00 0.05 0.31 0.00

NM 1.00 60.00 10.14 9.43 7.00

NPA 0.00 10.00 0.29 0.86 0.00

NPM 0.00 54.00 5.13 4.81 4.00

NS 0.00 4.00 0.37 0.84 0.00

TNPA 0.00 10.00 0.30 0.88 0.00

TNPM 0.00 63.00 5.57 5.82 4.00

TNS 0.00 4.00 0.38 0.85 0.00

WarningCritical 0.00 1.00 0.01 0.07 0.00

WarningInfo 0.00 160.00 15.70 18.21 10.00

WarningMajor 0.00 25.00 0.56 1.77 0.00

WarningMinor 0.00 90.00 3.02 7.40 1.00

Basic Rules 0.00 1.00 0.01 0.11 0.00

Clone Implementation Rules 0.00 1.00 0.00 0.04 0.00

Cohesion Metric Rules 0.00 3.00 0.24 0.47 0.00

Complexity Metric Rules 0.00 9.00 0.25 0.96 0.00

Controversial Rules 0.00 7.00 0.19 0.67 0.00

Coupling Metric Rules 0.00 10.00 0.18 0.67 0.00

Design Rules 0.00 12.00 0.79 1.40 0.00

Documentation Metric Rules 0.00 115.00 11.62 11.69 8.00

256

Empty Code Rules 0.00 1.00 0.00 0.06 0.00

Inheritance Metric Rules 0.00 2.00 0.01 0.14 0.00

JUnit Rules 0.00 89.00 1.64 7.21 0.00

Jakarta Commons Logging Rules 0.00 2.00 0.02 0.15 0.00

Java Logging Rules 0.00 1.00 0.01 0.09 0.00

JavaBean Rules 0.00 1.00 0.07 0.25 0.00

Naming Rules 0.00 21.00 0.42 1.44 0.00

Optimization Rules 0.00 2.00 0.02 0.18 0.00

Security Code Guideline Rules 0.00 7.00 0.08 0.46 0.00

Size Metric Rules 0.00 12.00 0.69 1.42 0.00

Strict Exception Rules 0.00 5.00 0.03 0.26 0.00

String and StringBuffer Rules 0.00 4.00 0.05 0.30 0.00

Type Resolution Rules 0.00 23.00 0.26 1.52 0.00

Unnecessary and Unused Code Rules 0.00 1.00 0.00 0.04 0.00

Table C.8: Descriptive static of titan dataset.

Metrics Minimum Maximum Mean Stdev Median

CC 0.00 1.00 0.05 0.18 0.00

LCOM5 0.00 60.00 2.65 3.97 1.00

NL 0.00 10.00 1.15 1.59 1.00

WMC 0.00 323.00 10.11 19.73 4.00

CBO 0.00 124.00 3.15 6.85 1.00

CBOI 0.00 160.00 1.52 6.03 0.00

NII 0.00 47.00 0.95 3.66 0.00

NOI 0.00 223.00 1.66 10.77 0.00

RFC 0.00 299.00 6.69 15.96 3.00

CD 0.00 0.96 0.10 0.14 0.04

DLOC 0.00 539.00 5.64 21.58 0.00

PUA 0.00 80.00 4.45 5.66 3.00

DIT 0.00 9.00 0.73 1.23 0.00

NOC 0.00 36.00 0.23 1.29 0.00

NA 0.00 160.00 3.76 7.16 2.00

NG 0.00 44.00 2.37 5.40 0.00

NLA 0.00 160.00 2.12 5.78 1.00

NLG 0.00 35.00 1.13 2.78 0.00

NLPA 0.00 139.00 0.47 4.16 0.00

NLS 0.00 15.00 0.18 0.80 0.00

NM 0.00 123.00 10.74 17.98 4.00

NPA 0.00 139.00 1.31 5.08 0.00

NS 0.00 15.00 0.37 1.21 0.00

TNG 0.00 76.00 2.61 5.96 0.00

257

TNLPM 0.00 93.00 5.20 8.28 3.00

WarningCritical 0.00 75.00 0.17 2.08 0.00

WarningInfo 0.00 428.00 20.35 30.89 10.00

WarningMajor 0.00 391.00 6.61 18.08 1.00

WarningMinor 0.00 1104.00 7.15 32.65 1.00

Basic Rules' 0.00 71.00 0.11 1.88 0.00

Clone Implementation Rules 0.00 2.00 0.00 0.07 0.00

Cohesion Metric Rules 0.00 19.00 0.60 0.87 0.00

Complexity Metric Rules 0.00 17.00 0.32 1.28 0.00

Controversial Rules 0.00 27.00 0.31 1.34 0.00

Coupling Metric Rules 0.00 24.00 0.14 0.96 0.00

Design Rules 0.00 40.00 1.26 3.10 0.00

Documentation Metric Rules 0.00 265.00 15.46 22.13 9.00

Empty Code Rules 0.00 71.00 0.08 1.87 0.00

Import Statement Rules 0.00 92.00 0.17 2.66 0.00

Inheritance Metric Rules 0.00 3.00 0.10 0.43 0.00

J2EE Rules 0.00 3.00 0.01 0.17 0.00

JUnit Rules 0.00 945.00 2.73 27.04 0.00

Jakarta Commons Logging Rules 0.00 11.00 0.06 0.53 0.00

Java Logging Rules 0.00 6.00 0.03 0.28 0.00

JavaBean Rules 0.00 1.00 0.00 0.03 0.00

Naming Rules 0.00 14.00 0.40 1.12 0.00

Optimization Rules 0.00 11.00 0.12 0.57 0.00

Security Code Guideline Rules 0.00 4.00 0.03 0.23 0.00

Size Metric Rules 0.00 67.00 1.64 3.92 0.00

Strict Exception Rules 0.00 10.00 0.12 0.61 0.00

String and StringBuffer Rules 0.00 67.00 0.21 2.13 0.00

Type Resolution Rules 0.00 17.00 0.23 1.16 0.00

258

(antl4 dataset)

(junit dataset)

(MapDB dataset)

× Zaro (class: FALSE)

+ SVM (class: FALSE)

 NB (class: FALSE)
◊ KNN (class: FALSE)

 RF (class: FALSE)

× SVM (class: FALSE)

+ ZeroR (class: FALSE)

 KNN (class: FALSE)
◊ NB (class: FALSE)

 RF (class: FALSE)

× NB (class: FALSE)

+ ZeroR (class: FALSE)
 KNN (class: FALSE)

◊ SVM (class: FALSE)

 RF (class: FALSE)

259

(mcMMO dataset)

 (mct dataset)

(oryx dataset)

× ZeroR (class: FALSE)
+ KNN (class: FALSE)

 NB (class: FALSE)

◊ SVM (class: FALSE)
 RF (class: FALSE)

× ZeroR (class: FALSE)

+ SVM (class: FALSE)
 KNN (class: FALSE)

◊ NB (class: FALSE)

 RF (class: FALSE)

× ZeroR (class: FALSE)
+ NB (class: FALSE)

 KNN (class: FALSE)

◊ SVM (class: FALSE)
 RF (class: FALSE)

260

(titan dataset)
Figure C.1: Multiple ROC curves for prediction models in the first scenario.

× ZeroR (class: FALSE)

+ NB (class: FALSE)

 SVM (class: FALSE)
◊ KNN (class: FALSE)

 RF (class: FALSE)

261

(antl4 dataset)

(junit dataset)

(MapDB dataset)

× ZeroR (class: FALSE)

+ KNN (class: FALSE)

 NB (class: FALSE)
◊ SVM (class: FALSE)

 RF (class: FALSE)

× ZeroR (class: FALSE)

+ NB (class: FALSE)
 KNN (class: FALSE)

◊ SVM (class: FALSE)

 RF (class: FALSE)

× ZeroR (class: FALSE)

+ NB (class: FALSE)
 SVM (class: FALSE)

◊ KNN (class: FALSE)

 RF (class: FALSE)

262

(mcMMO dataset)

(mct dataset)

(oryx dataset)

× NB (class: FALSE)
+ ZeroR (class: FALSE)

 SVM (class: FALSE)

◊ KNN (class: FALSE)
 RF (class: FALSE)

× NB (class: FALSE)

+ ZeroR (class: FALSE)
 KNN (class: FALSE)

◊ SVM (class: FALSE)

 RF (class: FALSE)

× ZeroR (class: FALSE)

+ NB (class: FALSE)

 KNN (class: FALSE)
◊ SVM (class: FALSE)

 RF (class: FALSE)

263

(titan dataset)
Figure C.2: Multiple ROC curves for prediction models in the second scenario.

× ZeroR (class: FALSE)
+ NB (class: FALSE)

 KNN (class: FALSE)

◊ SVM (class: FALSE)
 RF (class: FALSE)

264

(antl4 dataset)

(junit dataset)

(MapDB dataset)

× ZeroR (class: FALSE)
+ NB (class: FALSE)

 SVM (class: FALSE)

◊ KNN (class: FALSE)
 RF (class: FALSE)

× NB (class: FALSE)

+ ZeroR (class: FALSE)
 SVM (class: FALSE)

◊ KNN (class: FALSE)

 RF (class: FALSE)

× ZeroR (class: FALSE)

+ NB (class: FALSE)
 SVM (class: FALSE)

◊ KNN (class: FALSE)

 RF (class: FALSE)

265

(mcMMO dataset)

(mct dataset)

(oryx dataset)

× ZeroR (class: FALSE)

+ NB (class: FALSE)

 SVM (class: FALSE)
◊ KNN (class: FALSE)

 RF (class: FALSE)

× ZeroR (class: FALSE)
+ NB (class: FALSE)

 KNN (class: FALSE)

◊ SVM (class: FALSE)
 RF (class: FALSE)

× ZeroR (class: FALSE)

+ KNN (class: FALSE)
 SVM (class: FALSE)

◊ NB (class: FALSE)

 RF (class: FALSE)

266

(titan dataset)
Figure C.3: Multiple ROC curves for prediction models in the third scenario.

× NB (class: FALSE)
+ ZeroR (class: FALSE)

 KNN (class: FALSE)

◊ SVM (class: FALSE)
 RF (class: FALSE)

267

(antl4 dataset)

(junit dataset)

(MapDB dataset)

× ZeroR (class: FALSE)

+ NB (class: FALSE)
 KNN (class: FALSE)

◊ SVM (class: FALSE)

 RF (class: FALSE)

× ZeroR (class: FALSE)
+ SVM (class: FALSE)

 NB (class: FALSE)

◊ KNN (class: FALSE)
 RF (class: FALSE)

× ZeroR (class: FALSE)
+ NB (class: FALSE)

 RF (class: FALSE)

◊ KNN (class: FALSE)
 SVM (class: FALSE)

268

(mcMMO dataset)

(mct dataset)

(oryx dataset)

× NB (class: FALSE)

+ KNN (class: FALSE)
 RF (class: FALSE)

 ◊ ZeroR (class: FALSE)

 SVM (class: FALSE)

× ZeroR (class:

FALSE)
+ NB (class: FALSE)

 SVM (class: FALSE)

◊ KNN (class: FALSE)
 RF (class: FALSE)

× NB (class: FALSE)
+ ZeroR (class:

FALSE)

 KNN (class: FALSE)
◊ SVM (class: FALSE)

 RF (class: FALSE)

269

(titan dataset)

Figure C.4: Multiple ROC curves for prediction models in the fourth scenario.

× ZeroR (class: FALSE)
+ NB (class: FALSE)

 SVM (class: FALSE)

◊ KNN (class: FALSE)
 RF (class: FALSE)

