
University of Strathclyde
Department of Computer and Information Sciences

Problem Models for Rule Based
Planning

by
Alan Lindsay

A thesis presented in fulfilment of the requirements for the degree of

Doctor of Philosophy

2015

Declaration

This thesis is the result of the author’s original research. It has been com-
posed by the author and has not been previously submitted for examination
which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the
United Kingdom Copyright Acts as qualified by University of Strathclyde
Regulation 3.50. Due acknowledgement must always be made of the use
of any material contained in, or derived from, this thesis.

Signed:

Date:

Acknowledgements

Firstly, I would like to thank Candice Spencer, and my family: Caroline,
Norman and Michael Lindsay, for their love, patience and support.

Thanks to my supervisors, Maria Fox and Derek Long, for their deep
knowledge and for providing an excellent example of how research should
be conducted.

I acknowledge the support of my friends and colleagues at Strathclyde
University. Thanks to Alastair Andrew and Peter Gregory, for being clever
rocks. Thanks to Dave Bell, Tommy Thompson, David Pattison and the
wider planning group, for a spectrum of ideas and probing debate. I have
also been supported in various ways by the teaching and non-teaching staff
in the department, especially the system support team. Thanks to the dis-
ability service, past and present members, who not only employed me but
also became my extended family. And, thanks to the running club for
providing a necessary distraction, and a welcome source of achievable

challenges.

I would like to give special mention to my two examiners, Chris Reed and
John Levine, and the convenor, Mark Dunlop, who gave me an engag-
ing and thorough examination. I also acknowledge Ian Ruthven’s help in
organising my viva. And, of course, thanks to my proof-readers: Peter,
Alastair and Julie Porteous (and Dad).

Lastly, thanks to the IVE group at Teesside for putting up with me during
the final stages of my write-up.

CONTENTS

1 Introduction 1
1.1 Automated planning . 2

1.1.1 Automating the planning problem 3
1.2 Control knowledge . 4

1.2.1 A language for learning . 5
1.3 Structure of thesis . 5

2 Background 7
2.1 Modelling . 8

2.1.1 Modelling a planning problem 8
2.1.2 Remodelling . 15

2.2 Search and search control . 16
2.2.1 The search problem . 16
2.2.2 Control strategies in planning 20

2.3 Control knowledge . 23
2.3.1 Opportunities for exploiting control knowledge in planning . . 24
2.3.2 Representing control knowledge for search 24

2.4 Learning . 28
2.4.1 Local search . 28
2.4.2 Genetic algorithms . 29

2.5 Statement of thesis . 31

3 A framework for exploring problem models 32
3.1 A chain of language restrictions . 33
3.2 Co-execution . 35
3.3 Discussion . 37

i

CONTENTS

4 Control knowledge 38
4.1 Policies . 39

4.1.1 Generalised policy . 40
4.1.2 Domain conventions . 41
4.1.3 Instantiating the policy . 42

4.2 Computability of the policy mapping 43
4.2.1 Policy representation . 44
4.2.2 Relational control knowledge 45
4.2.3 Properties of the policy representation 46

4.3 Evaluation of the rule antecedent . 47
4.3.1 The current state . 48
4.3.2 Achieved goal context . 49
4.3.3 Planner specific context . 50
4.3.4 Rule language . 50

4.4 Alternative generalised policy representations 51
4.4.1 Conformant planning . 52
4.4.2 Partially ordered plan . 52

5 An enhanced problem model 54
5.1 Enhancing the problem model . 55

5.1.1 Special purpose solver . 55
5.1.2 The architecture . 57
5.1.3 Enhanced model description 59

5.2 Structures . 63
5.2.1 Traversal problems . 64
5.2.2 Structure building problems 66

5.3 Selecting meaningful chain steps . 67
5.4 Directed connectivity . 69

5.4.1 Connectivity . 69
5.4.2 Shortest path . 70
5.4.3 Constrained traversal: identifying the relevant closed nodes . . 74
5.4.4 Constrained traversal: interaction between traversers 76

5.5 Optimisation . 77
5.5.1 Graph relations . 78
5.5.2 Local heuristics . 84
5.5.3 Utilising global heuristics 86

ii

CONTENTS

5.6 Level of reasoning . 87
5.6.1 Level of interpretation . 88
5.6.2 Level of planner interaction 91

5.7 Conclusion . 93

6 Results concerning the enhanced language 96
6.1 Investigations in our framework . 97

6.1.1 Experimental setup . 97
6.2 Directed connectivity . 102

6.2.1 An analysis of the use of concepts of directed connectivity . . 102
6.2.2 Heuristically guided structure interactions 104
6.2.3 Conclusion . 112

6.3 Optimisation . 112
6.3.1 Supporting the policy in making comparisons 113
6.3.2 Global and local solver heuristics 116
6.3.3 Conclusion . 117

6.4 Level of reasoning . 118
6.4.1 Step by step macro application 118

6.5 Analysis of the architecture . 120
6.5.1 Generality of framework . 120

6.6 Summary . 123

7 Automating model enhancement 125
7.1 Automatic enhanced PDDL generation 126

7.1.1 Search space . 126
7.1.2 Domain analysis . 127
7.1.3 Generic types to the enhanced domain model 130
7.1.4 Conclusion . 132

7.2 A general model for generating structure interactions 133
7.2.1 Arbitrary length macro actions (ALMAs) 133
7.2.2 The ALMA directed connectivity solver 138
7.2.3 Target structure interactions 140
7.2.4 Discussion of ALMAs . 141

7.3 Automated vocabulary generation 143
7.3.1 Formulation of the problem 144
7.3.2 Example plans . 144

iii

CONTENTS

7.3.3 Generating language . 146
7.4 Identifying important subsequences 151

7.4.1 Targets . 152
7.4.2 Identification of targets . 153
7.4.3 Exploiting targets . 155

7.5 Bag expansion pruning . 157
7.5.1 Bag significance . 158

7.6 Discussion . 160
7.6.1 A summary of the ALMAGen approach 161
7.6.2 Exploiting domain analysis 162
7.6.3 Generating abstractions . 163
7.6.4 Learning domain vocabulary 166
7.6.5 Conclusion . 167

8 Automating policy acquisition 168
8.1 Learning policies . 169

8.1.1 Learning rules . 169
8.1.2 Learning rule based policies 171
8.1.3 Integrating rules with search 174

8.2 Learning rule based policies in optimisation problems 175
8.3 An appropriate fitness function for rule based policy (RBP) learning . 176

8.3.1 A fitness function for problem solving 177
8.3.2 Implementation . 180
8.3.3 Discussion . 180

8.4 A plan to policy translation . 183
8.4.1 A translation from plan to policy (M|Σ0) 183
8.4.2 An extended translation (M|Σi) 188
8.4.3 A rule for a 〈π〉Σi plan step 193
8.4.4 A worked example . 196
8.4.5 Discussion . 200

9 Results for learning and the enhanced language 204
9.1 Invoking a domain model, M|Σi . 204

9.1.1 Invoking an appropriate model from a solver library 204
9.1.2 Generating appropriate solvers for directed connectivity . . . 205

9.2 Arbitrary length macro actions . 211

iv

CONTENTS

9.2.1 Vocabulary computation . 211
9.2.2 Target and state significance 213
9.2.3 Alternative graph definitions 216
9.2.4 Discussion of the arbitrary length macro action (ALMA) solver 218

9.3 Learning parameters . 218
9.3.1 Learner setup . 218
9.3.2 Training data . 221

9.4 Validating M|Σi . 222
9.4.1 Learning from randomly initialised populations 222
9.4.2 Generated seeds . 226
9.4.3 Learning from seeds . 227
9.4.4 Fitness and performance . 232
9.4.5 Discussion of the learning approach 234

10 Contributions, future work and conclusion 238
10.1 Contributions . 238

10.1.1 Problem modelling . 238
10.1.2 Control knowledge representation and learning 239
10.1.3 Planning and search . 240

10.2 Future work . 241
10.2.1 ALMA . 241
10.2.2 Learning RBPs . 243

10.3 Conclusion . 243

A Planning domains 246

B Solver listings 248
B.1 The enhanced domain model . 248
B.2 The solver listings file . 249

C Step-by-step macro application vocabulary 251
C.1 Traversing through a cluster . 251

D Policies 253
D.1 Handwritten . 253

D.1.1 Blocksworld . 253
D.1.2 Depots . 254

v

CONTENTS

D.1.3 Driverlog . 254
D.1.4 Goldminer . 256
D.1.5 Grid . 257
D.1.6 Logistics . 258

D.2 ALMA . 261
D.2.1 Driverlog . 261
D.2.2 Goldminer . 262
D.2.3 Grid . 264

D.3 Partially bound rules . 265
D.3.1 Driverlog . 265
D.3.2 Goldminer . 266

D.4 Generated seeds . 269
D.4.1 Driverlog . 269
D.4.2 Goldminer . 270
D.4.3 Structure briefcase . 272

D.5 Learned . 274
D.5.1 Driverlog . 274
D.5.2 Goldminer . 277

E Further analysis 281
E.1 Quality of solutions . 281

E.1.1 Analysis of plan length . 281
E.1.2 Setup . 282
E.1.3 Expectations . 282
E.1.4 Results . 282

E.2 Combining information . 284
E.2.1 Transportation and resource management 284
E.2.2 Transportation and building 285

E.3 TLPlan rules . 286
E.3.1 Driverlog . 286
E.3.2 Blocksworld . 291
E.3.3 Conclusion . 294

E.4 Example output from ALMAgen . 294

F Individual presentation of the results 300
F.1 Handwritten RBPs results . 300

vi

CONTENTS

F.2 Heuristic guidance . 308
F.3 Step by step application . 311
F.4 Plots for planning with learned control knowledge 314

G Additional developments for arbitrary length macro actions 321
G.1 Heuristic guided target selection . 321

G.1.1 A template layer . 322
G.1.2 Evaluation . 323

G.2 Automating significance . 324
G.2.1 Target significance . 325

H Enhancing the problem model for structure building problems 327
H.1 Enriching the state with the well-placed predicate 327

H.1.1 Matching a graph in the goal 327
H.2 Arbitrary length macro action case study: structure building 330

H.2.1 Problem mapping . 330
H.2.2 Targets . 331
H.2.3 Use and limitations of the vocabulary 332

I A chain of language restrictions: further intuition 336
I.1 Vocabulary rich modelling and its restricted views 336

I.1.1 Vocabulary rich modelling 336
I.1.2 A restricted model . 339

I.2 A chain of language restrictions . 341
I.3 Policy transferral . 345

I.3.1 Transferring between M and Σ 345
I.3.2 Transferring between languages 347
I.3.3 Co-execution . 349

I.4 Proofs for state and action representation 352
I.5 Setting related work within our framework 353

I.5.1 Remodelling as a planning approach 353
I.5.2 Macro actions . 354
I.5.3 Support predicates . 356
I.5.4 Extra world concepts . 358
I.5.5 Decomposition . 359

Bibliography 361

vii

LIST OF FIGURES

2.1 A state transition system for a two location transportation problem with
one truck and one package. 9

2.2 The rules remove actions from the neighbouring edges of a node. This
reduces the branching factor. 25

2.3 The rules select the next action from the neighbouring edges. No
search is required. 26

2.4 Macro actions connect nodes several steps away from the current node. 26
2.5 Examples of genetic algorithm operators 30

3.1 An example set of language enhancing steps. In the original domain
model (Σ0), trucks move around a road map. In an example enhance-
ment layer (Σ1), the movement map can be abstracted so that the truck
can be moved to any location in a single decision. A further enhance-
ment (Σ2), provides an explicit representation of allocations of trucks
to package deliveries. 33

3.2 We will investigate stepping up from a limited language, Σ0, to a richer
language, Σi. This provides an enhanced planning environment. The
plan produced is relative to higher level concepts not expressed in Σ0.
The plan in the richer language can be interpreted and used as a plan
for the original problem. An effective method of interpreting the plan
relies on the execution of both models simultaneously. 36

4.1 An example of a generalised policy for a 2 block Blocksworld problem.
The figure illustrates (state,goal) pairs and the action mapped to by the
policy. 41

4.2 An example of instantiating a generalised policy for a particular 2
block Blocksworld problem. In this illustration the coloured blocks
represent variables and the numbered blocks provide an example of
particular problem constants. 42

viii

LIST OF FIGURES

4.3 An example transportation problem 44
4.4 Two examples of context information for Blocksworld. 48
4.5 Three blocks stacked on top of each other. The goal is to free the

bottom block. 49

5.1 The architecture. 57
5.2 The initialisation of the enhanced model. 58
5.3 The exploitation of solvers to compute the enhanced model. 58
5.4 Traverser with two targets marked in purple. 72
5.5 An example of clustering . 79
5.6 The concept of centrality in a graph 82

6.1 The rule conditions insist that a particular condition holds in the state,
such as a package being misplaced. The desired operator is selected;
however, the associated action is only partially guarded, or unguarded. 106

6.2 The robot has to shoot all of the surrounding rocks before it can move
to the next location. 107

6.3 Quality results for the partially bound policy on Driverlog problems . 108
6.4 Time results for the partially bound policy on Driverlog problems . . 109
6.5 The topology of the link predicate for problem 9. The partially bound

policy generates the path between s3 to s4 illustrated in red. An alter-
native optimal path is drawn in purple. 110

6.6 Quality results for the partially bound policy on Goldminer problems . 111
6.7 Time results for the partially bound policy on Goldminer problems . . 111
6.8 Quality results for the basic strategy and the strategies exploiting clus-

ters and a hub node . 114
6.9 Time results for the basic strategy and the strategies exploiting clusters

and a hub node . 115
6.10 Time results for the initialisation of JavaFF and our policy runs on Grid

problems . 122

7.1 Trucks transition between different located properties and packages
transition between being related to locations and trucks. 128

7.2 Pseudo-code for the expand node method of a best first search. 137
7.3 Discovered states using different bags of macro operators. 138

ix

LIST OF FIGURES

7.4 PExample, an example problem. The objects are named: robot, r; laser,
l; bomb, b; and the location in row, i, and column, j, is called li,j .
The goal is to pick up the gold. 145

7.5 〈πExample〉, an example plan for PExample. 145
7.6 The robot moves through a sequence of moves then fire move pairs. . 156
7.7 Two examples of states in the Goldminer domain. 158
7.8 Example of bag expansion using 7.8(a) state indexing; 7.8(b) the result

when using a projection; and 7.8(c) the expansion when exploring
once from each state that is distinct under the projection. 159

8.1 A series of transportation problems with any number of pairs of con-
nected nodes between column 1 and i. The pink package is at location
l0,i+2 and the blue package is at l1,i. Both should be delivered to l2,0. 175

8.2 For a given policy, πj and problem, Pi, πj is unrolled through states,
sij0, . . . , sijp. The distance to goal of each state is discovered either
from the cache, or by running hLM−cut from the state. 181

8.3 Initial state, goal and solution for a gripper problem. 184
8.4 The enhancements of a plan for a transportation problem. The plan is

expressed using the enhanced languages. 189
8.5 An abstraction of Goldminer solutions. Actions are labelled at the

locations they act on; the initial state is illustrated at the bottom and
the action sequence runs from bottom to top. Dotted lines indicate the
action acts on any number of nodes. 198

9.1 Time results for ALMA and handwritten strategies for Driverlog prob-
lems. 212

9.2 Time results for ALMA and handwritten strategies for Goldminer prob-
lems. 213

9.3 Time results for the state and target significance using both step-by-
step and macro application approaches for Goldminer bootstrap prob-
lems. 215

9.4 Time results for the state and target significance using both step-by-
step and macro application approaches for Traverser problems with
increasing sizes of maps. 215

9.5 Time results for the state and target significance using both step-by-
step and macro application approaches for Traverser problems with
increasing numbers of traversers. 216

x

LIST OF FIGURES

9.6 Quality results for a learned policy on Blocksworld problems 224
9.7 Time results for a learned policy on Blocksworld problems 225
9.8 Quality results for a learned-from-seeds policy and an ALMA based

policy on Driverlog problems . 229
9.9 Time results for a learned-from-seeds policy and an ALMA based pol-

icy on Driverlog problems . 230
9.10 Quality results for three policies with different fitness values on Driver-

log problems. 232
9.11 Time results for three policies with different fitness values on Driverlog

problems. 233
9.12 Number of random backup actions required for three policies with dif-

ferent fitness values on Driverlog problems. 233
9.13 The number of hLM−cut calls against policy evaluations during learn-

ing of Blocksworld RBPs . 234
9.14 The accumulated time for policy roll-out and planning in Blocksworld,

for both clock-time and within each thread. 235
9.15 Population plots for highest, average and lowest fitness in the first 18

iterations of the Driverlog run, before and after local search. 235
9.16 Population plots for highest, average and lowest fitness in the first 16

iterations of the unseeded Structured Briefcase run, before and after
local search. 236

9.17 Population plots for highest, average and lowest fitness in the seeded
Structured Briefcase run, before and after local search. 236

C.1 The use of the shortest path solver to select the next step can result in
looped execution . 252

E.1 Quality results for the optimal planner on Blocksworld problems . . . 283
E.2 Quality results for the optimal planner on Driverlog problems 283
E.3 Quality results for the optimal planner on Depots problems 284

F.1 Quality results for a handwritten policy on Blocksworld problems . . 301
F.2 Time results for a handwritten policy on Blocksworld problems 301
F.3 Quality results for a handwritten policy on Depots problems 302
F.4 Time results for a handwritten policy on Depots problems 302
F.5 Quality results for a handwritten policy on Driverlog problems 303
F.6 Time results for a handwritten policy on Driverlog problems 303

xi

LIST OF FIGURES

F.7 Quality results for a handwritten policy on Goldminer problems . . . 304
F.8 Time results for a handwritten policy on Goldminer problems 304
F.9 Quality results for a handwritten policy on Grid problems 305
F.10 Time results for a handwritten policy on Grid problems 305
F.11 Quality results for a handwritten policy on Gripper problems 306
F.12 Time results for a handwritten policy on Gripper problems 306
F.13 Quality results for a handwritten policy on Logistics problems 307
F.14 Time results for a handwritten policy on Logistics problems 307
F.15 Quality results for solver (L) and global (G) heuristics on Driverlog

problems . 308
F.16 Time results for solver (L) and global (G) heuristics on Driverlog prob-

lems . 308
F.17 Quality results for solver (L) and global (G) heuristics on Goldminer

problems . 309
F.18 Time results for for solver (L) and global (G) heuristics on Goldminer

problems . 309
F.19 Quality results for solver (L) and global (G) heuristics on Grid problems 310
F.20 Time results for solver (L) and global (G) heuristics on Grid problems 310
F.21 Quality results for the step by step and macro application approaches

on Driverlog problems . 311
F.22 Time results for the step by step and macro application approaches on

Driverlog problems . 311
F.23 Quality results for the step by step and macro application approaches

on Goldminer problems . 312
F.24 Time results for the step by step and macro application approaches on

Goldminer problems . 312
F.25 Quality results for the step by step and macro application approaches

on Grid problems. The plots show the means and standard deviations
for each problem over 3 runs. 313

F.26 Time results for the step by step and macro application approaches on
Grid problems. The plots show the means and standard deviations for
each problem over 3 runs. 313

F.27 Quality results for a learned policy on Blocksworld problems 314
F.28 Time results for a learned policy on Blocksworld problems 315
F.29 Quality results for a learned-from-seeds policy and an ALMA based

policy on Driverlog problems . 315

xii

LIST OF FIGURES

F.30 Time results for a learned-from-seeds policy and an ALMA based pol-
icy on Driverlog problems . 316

F.31 Quality results for a learned-from-seeds policy and an ALMA based
policy on Goldminer problems . 316

F.32 Time results for a learned-from-seeds policy and an ALMA based pol-
icy on Goldminer problems . 317

F.33 Quality results for a learned policy and a generated seed on Gripper
problems . 317

F.34 Time results for a learned policy and a generated seed on Gripper prob-
lems . 318

F.35 Quality results for learned and seeded policies on Structured Briefcase
problems . 318

F.36 Time results for learned and seeded policies on Structured Briefcase
problems . 319

F.37 Quality results for learned and seeded policies on Traverser problems 319
F.38 Time results for learned and seeded policies on Traverser problems . . 320

G.1 Time results for ALMA and handwritten strategies for Gird problems. 324

H.1 Example structure, with old-connections in black and below-connections
in purple. When white is put on green we examine the stack old-
connections and find that red is on black. 331

I.1 Propositions for two approaches to modelling a Blocksworld problem. 337
I.2 Actions for two approaches to modelling a Blocksworld problem. . . 338
I.3 Capturing M in a language acts like a filter, retaining the parts of the

model that can be expressed in the language and removing the parts
that cannot. 340

I.4 In relation to the described model M = M|Σ0 , there are two groups of
concepts that can be added into the model: concepts that abstract the
model and concepts that enhance the model. 343

I.5 The process of co-execution relies on the current state of both models
being known. There can be several transitions that have no effect at
the restricted level, however, progress the enhanced model’s state. The
enhanced model can translate the action that it applies into an action in
the restricted language. 350

xiii

LIST OF TABLES

6.1 Quality (Q), Time (T) and Coverage (C) results for FF (FF), Lama
(L) and Handwritten (H) . 104

6.2 Quality (Q), Time (T) and Coverage (C) results for Basic (B), solver
heuristics (Lh), global heuristic (Gh) and combined heuristics (LGh) . 117

6.3 Quality (Q), Time (T) and Coverage (C) results for Step by step (SbS)
and Macro (M) application approaches. 119

6.4 Quality (Q), Time (T) and Coverage (C) results for FF (FF), Lama
(L) and Handwritten (H) . 122

9.1 A summary of the properties of the generated ALMAs, detailing whether
the property holds with and without sequence breaking rules. The
properties are: target significance (TargetSig), directed connectivity (DC),
and appropriate for expressing a policy (π). In the policy column, in-

dividual target is used to indicate that solutions for certain goals can
be captured. The greyed result is a proposed results for traversing con-
strained by fuel. 208

9.2 A summary of the proposed properties for an extended collection of
problems. The table records whether certain properties holds with and
without sequence breaking rules. The properties are: target signifi-
cance (TargetSig), directed connectivity (DC), and appropriate for ex-
pressing a policy (π). In the policy column, individual target is used
to indicate that the solution for a specific goal can be captured. 217

9.3 Quality (Q), Time (T) and Coverage (C) results for FF (FF), Lama
(L), Handwritten (H) and a learned policy (πL) 224

9.4 Quality (Q), Time (T) and Coverage (C) results for Lama (L), Hand-
written (H) and a policy learned using seeds (πS) 228

xiv

Abstract

The effectiveness of rule-based policies as a search control mechanism in
planning has been demonstrated in several planners. A key benefit is that
a single policy captures the solution to a set of related planning problems.
However, it has been observed that a small number of weak rules, common
in learned control knowledge, can make a rule system ineffective. As a
result, research has focussed on approaches that improve the robustness of
exploiting (potentially weak) rules in search.

In this work we examine two aspects that can lead to weak rules: the lan-
guage that the rules are drawn from and the approach used to learn the
rules. The rules are often captured using the predicates and actions of the
problem models that the knowledge applies to. However, this language
is appropriate for expressing the constraints of the planning world, and
will not necessarily include the appropriate words required to express a
general solution. We present an approach to automatically invoke lan-
guage enhancements that are appropriate for the particular aspects of the
target problems. These enhancements support rules in problems that in-
clude structure interactions, such as graph traversal and block stacking;
and optimisation tasks, such as resource management.

There have been several approaches made to learning policies explored in
the literature. Learning policies requires a fitness function, which mea-
sures the quality of a policy. In previous approaches these have relied
on a collection of examples generated by a remote planner. However, we
have observed that this leads to weak guidance in domains where global
optimisation is required for an optimal solution (such as transportation do-
mains). In these domains we expect good, but not optimal action choices,
and this conflicts with the assumption that example states can be accu-
rately explained and ultimately leads to weak rules. Instead of measuring
performance from a set of remotely drawn example situations, we propose
using progress towards goal instead.

Our approach is evaluated using rule-based policies to control search in
problems from the benchmark planning domains. We demonstrate that
domain models can be automatically enhanced and that this enhanced lan-
guage can be exploited by both hand-written and learned policies allowing
them to effectively control search. The learning approach is evaluated by
learning policies for several of the enhanced domains and it is analysed
providing guidance for future work. A key contribution of this work is
demonstrating that both hand-written and learned rule-based policies can
be used to generate plans that have better quality than domain independent
planners. We also learn effective policies for several domains currently
untreated in the literature.

CHAPTER 1

INTRODUCTION

The purpose of abstraction is not to

be vague, but to create a new

semantic level in which one can be

absolutely precise.

The Humble Programmer (1972)

EDSGER DIJKSTRA

An important influence on the way that we express ourselves are the languages
that we are taught. These languages have been developed for hundreds of years and
are functional in allowing us to communicate anything from specific commands to our
dreams for the future, all in the context of a complex and dynamic environment.

There are many specialised vocabularies that have been developed that extend this
vocabulary in particular areas. Specialised words allow ideas that are too complex or
abstract to be expressed in a day to day vocabulary. For example, there are numerous
mathematical terms, such as the language of graph theory and in psychology there are
specialised vocabularies for expressing states of the brain and patterns of behaviours.
These vocabularies have been constructed so that communication in these fields can be
carried out concisely and with accuracy.

If we want to communicate a strategy for solving a group of problems then we
might rely on words that are specific to the type of problem. For example, a transporta-
tion problem involves redistributing packages amongst various locations. A solution
to this problem might refer to paths between locations; allocation of drivers; specialist

1

Chapter 1. Introduction

carrying capabilities; or distribution hubs. This vocabulary allows the strategy to be
described at a level that is abstracted from the language of a particular problem.

This thesis is concerned with selecting a suitable vocabulary for describing a strat-
egy for a problem. The problems that we investigate are planning problems and the
strategies are generalised policies that allow us to capture the solutions to groups of
planning problems.

1.1 Automated planning

Automated Planning is an area of Artificial Intelligence that explores automating the
process of planning, a function necessary for intelligent machines. Planning starts with
a desire for change in the world. The process of planning is then the deliberation of
actions that could be made in the world, based on the expected outcome of the actions
and the desired change or goal. Actions are selected and ordered, forming a strategy
for achieving the goal.

Humans are (arguably) inherently good at planning. It is seldom the case that we
will notice ourselves actively deliberating alternative action sequences and yet we often
achieve our final goals efficiently, especially as a task becomes more familiar. This is
surprising considering the complex nature of the problems that we often solve.

Consider that you have made your list of Christmas gifts and you want all of the
shopping out of the way. The list of gifts provides your goal; to achieve your goal you
must consider which shops to visit and in what order. You may decide to head out into
the high street and systematically search through every shop until you find the gifts.
However, it is likely that you have some idea of where you will find the items on the
list. You could form a plan of the shops you wish to visit and order them in such a way
as to maximise the chance of getting all of the goods in the shortest period of time.

There are many conflicting factors that we weigh up to select and order the shops
to visit. For example, the distance between shops is used to focus on particular groups
of shops that are reasonably close and also to make efficient paths between the shops
we do choose. However, the shape and size of the gifts might influence this path, as it
is often desirable to pick up large and heavy items towards the end of a shopping trip.
Also, we might use specific knowledge about the streets, such as how steep the streets
are or how likely we are to be stopped by someone doing a questionnaire. All these
considerations contribute to our final selection and ordering.

Making a plan like this is made possible through a developed understanding of ob-
jects and the environment. This allows us to decide when it is important to be accurate

2

Chapter 1. Introduction

and use all of the details that we know and when it is permissible to reason more ab-
stractly over the relationships in the world. The ability to change the level of context
is one of the reasons why we are so effective at planning.

1.1.1 Automating the planning problem

In order to solve a planning problem on a computer, we need two things: a formal de-
scription of the world in some language and a planning algorithm. The way a problem
is described can have implications on how useful the computed plans will be. This
description will provide the computer with its entire view of the world and so it is
crucial to provide all of the details that will be necessary for solving the problem. For
example, in the Christmas shopping problem, if we describe the shops and the items
that they sell, but fail to capture any of the spatial relationships between the shops, then
the planning algorithm has no way of knowing that one shop is close to another shop
in a particular shopping area. The computed plan could easily have you running back
and forth from one side of town to the other.

Describing a planning problem

The Planning Domain Description Language, PDDL (McDermott, 2000), the de-facto
standard description language in the field of Automated Planning, can capture many in-
teresting planning problems. One of the key elements of describing a planning problem
in this language is expressing the relationships that exist between objects in the world.
In PDDL the relationships are represented by logical propositions that are expressed
with a predicate symbol and constant symbols. In the previous shopping example a re-
lationship exists between the shops and the items they sell and this might be modelled
by the proposition (sells item shop) in the planning model, where sells is a
predicate symbol and item and shop are both object symbols. The propositions are
used to constrain the application of the actions that cause change to the environment.
For example, a buy-item action could be constrained by propositions such as (in
shopper shop) and (sells shop item).

When describing a planning problem, we must select a language to model the prob-
lem. The intention is to choose a language so that the dynamics of the world are cap-
tured concisely. This will depend on the expressivity of the modelling language. We
observe that this language is also used by the planner to reason about the planning
problem. However, there can be a distinction between the appropriate language for

3

Chapter 1. Introduction

expressing the dynamics of a problem and the language for making decisions about
appropriate actions.

Solving a planning problem

A naive strategy to solving a planning problem is to start with the initial world and ex-
plore any possible sequence of actions that is allowed by the action constraints. How-
ever, as the general planning problem is PSPACE-hard (Bylander, 1992), which means
that it can be as difficult to solve as any problem that is solvable in polynomial space,
this approach quickly becomes infeasible. Several strategies have been investigated
that start from the initial state and construct the plan forward until reaching a state
that satisfies the goal (e.g., Bonet and Geffner, 1998; Bacchus and Kabanza, 2000);
however, they introduce a variety of techniques to prioritise certain action choices over
others and in some cases remove action choices entirely. In this work we add to a body
of work that uses control knowledge to capture good action choices.

1.2 Control knowledge

Control knowledge is compiled information that provides some form of guidance. It
can be used to focus the planner towards certain courses of action (Veloso et al., 1995),
to capture solutions to sub-goals (Laird et al., 1986; Newton et al., 2007), or provide
an entire strategy for solving the planning problem (Khardon, 1999a; Bacchus and Ka-
banza, 2000). The TLPLAN system (Bacchus and Kabanza, 2000) has demonstrated
that the use of control knowledge in a planning framework is a highly effective ap-
proach to planning. The system provides a flexible solution to the planning problem.
It was the top performer and indeed one of the winners of the third planning compe-
tition (Long and Fox, 2003). It still provides unbeaten performance in terms of time
to form plans and also in terms of the quality of the plans it creates for many planning
problems.

The control knowledge used by TLPLAN in the competition was constructed by
hand. This is expensive as it must be written by someone who intimately understands
the dynamics of the domain and understands how to construct an effective control
knowledge system. Inspired by the strong performance of TLPLAN, many researchers
have investigated the possibilities of learning control knowledge. For these purposes
researchers have exploited Machine Learning techniques. Although these approaches
are generally computationally expensive, they have been used to solve individual plan-

4

Chapter 1. Introduction

ning problems (Westerberg and Levine, 2000), or improve their fitness (Gerevini et al.,
2003). However, an important aspect of the TLPLAN control knowledge is that it en-
codes control knowledge that is appropriate for the problem distribution of a particular
domain (a collection of related problems). This justifies expending the substantial re-
sources often required for Machine Learning approaches.

The key to expressing control knowledge for groups of problems is the language
that is used to express it. In particular, using vocabulary that captures the key con-
cepts in the problem precisely. Currently learning technology limits the languages that
can be used to learn control knowledge and as a result the correct words cannot be
constructed.

1.2.1 A language for learning

In this work we have developed a framework for extending the vocabulary of planning
problems. This allows decisions to be captured at an abstraction level that is appro-
priate for the action choices being made. The levels of abstraction are provided by
automatic problem enhancements.

Allowing similar mixed-level reasoning was achieved in control knowledge for
TLPLAN. The novelty in our approach is that the vocabulary is enhanced automati-
cally and the control knowledge is expressed in a very limited language. We extend
the current rule learning technologies and demonstrate that our vocabulary can be ex-
ploited by learned control knowledge.

1.3 Structure of thesis

The work is presented in 10 Chapters. Chapter 2 presents a background of problem
modelling and search for planning; as well as control knowledge and learning. The
chapter concludes with the statement of thesis. In Chapters 3 and 4, we set up the
main framework for the first part of the work. Chapter 3 presents the framework for
examining alternative problem models, and how we can use plans for these alternative
problem models as plans for the original problem. In Chapter 4, we define the con-
trol knowledge representation that we focus on in this work, including observations of
its particular limitations. In Chapter 5, the implementation of our framework is pre-
sented, we interpret the limitations of the control knowledge representation in terms of
our model enhancement approach and define a library of appropriate model enhance-
ments. We conclude this part of the work, in Chapter 6, by evaluating the system using

5

Chapter 1. Introduction

handwritten control knowledge.
The second part of the work (starting in Chapter 7), concerns automating parts of

the process. Chapter 7, begins by discussing our approach to automatically invoking
appropriate enhancements, from the enhancement library defined in Chapters 5 and 6,
for a specific planning domain. The chapter continues with our approach that gener-
ates appropriate elements for the library automatically. In Chapter 8, we move onto
the problem of learning control knowledge. We present the current approaches and
highlight a limitation in the common fitness function1. We present our alternative fit-
ness function that tackles these limitations. We conclude the chapter by presenting
a fast approach that generates incomplete control knowledge, which can be used for
seeding learning. Chapter 9, presents our evaluation of the system. We examine the
learned enhancements, the generated seeds and learned control knowledge. The learn-
ing approach is examined both from scratch and as a finishing step applied to the seed
control knowledge. The contributions, future work and conclusions are presented in
Chapter 10.

In the proceeding chapters we will use labelled definitions for named definitions.

1The fitness function provides a measure of the goodness of control knowledge.

6

CHAPTER 2

BACKGROUND

Planning is an important aspect of any intelligent agent. A large body of Automated
Planning research has grown since the initial stimulus in the sixties (Newell and Si-
mon, 1963). The introduction of regular international planning competitions (IPCs) in
1998 (McDermott, 2000) has been key in bringing the community together; provid-
ing inspiration and direction. Since then there has been substantial progress in plan-
ning: the development of a series of standardised languages for expressing planning
problems (McDermott, 2000; Fox and Long, 2003; Edelkamp and Hoffmann, 2004;
Gerevini and Long, 2005; Geffner, 2000); numerous approaches to solving planning
problems (Fabiani and Meiller, 2000; Kautz and Selman, 1996; Bonet and Geffner,
1998; Richter et al., 2008; Khardon, 1999a; Culberson and Schaeffer, 1998; Ghal-
lab et al., 2004); theoretic results in both complexity of problem solving (Bylander,
1992; Helmert, 2001) and the computation of heuristics (Hoffmann, 2005; Helmert
and Domshlak, 2010; Hoffmann, 2011).

This work investigates learning control knowledge that captures a strategy for solv-
ing sets of planning problems. In particular, we rely on previous work in planning,
search, control knowledge representation and machine learning. In this chapter we in-
troduce each of these aspects and point out some of the main bodies of research that
have led to the work described here. The main analyses of related works are distributed
amongst the following chapters. We conclude this chapter with the statement of thesis.

7

Chapter 2. Background

2.1 Modelling

Modelling is the process of capturing the dynamics of the problem space in a formal
representation. The planning problem has been modelled in various different ways
(PDDL (McDermott et al., 1998), SAS+ (Bäckström and Nebel, 1993), SAT (Kautz and
Selman, 1998), or CSP (Gregory et al., 2010)), each with its own properties. A model
should capture the important rules of the problem so that a solution to the modelled
problem corresponds to a solution to the real problem.

The model gives the planner access to the planning problem. However, the planner
might be unable to plan using the presented model. In particular, it might be appropri-
ate to remodel the problem and present the remodelled problem to the planner.

In this section we present some of the models that have been used to represent the
planning problem. We then discuss approaches to remodelling. Ghallab et al. (2004)
provide a more complete coverage of the adopted approaches of modelling planning
problems.

2.1.1 Modelling a planning problem

In this subsection we define a state transition system, a general model for planning.
We then present the specific proposition based representation adopted in this work.
We conclude by discussing some of the research that has investigated the modelling
process.

State transition systems

A state transition system (Dean and Wellman, 1991) is a general model for dynamic
systems. We use a restricted definition here as there are no events in the systems that
we are considering and action application is deterministic.

Definition 2.1.1 A state transition system is a triple, τ = (S,A, γ), where:

• S is a finite set of states;

• A is a finite set of actions;

• γ : S× A→ S is a mapping of states and actions to states.

An example of a state transition system is depicted in Figure 2.1. There are two
locations, a single truck and a single package. The truck can move between the two lo-
cations along the road between them and pickup or put down the package at its current

8

Chapter 2. Background

Drive1

Drive2

Drive5

Drive6

Drive3

Drive4

Pickup1 Dropoff1

Pickup2Dropoff2

State 1 State 2

State 3State 4

State 5 State 6

Figure 2.1: A state transition system for a two location transportation problem with
one truck and one package.

9

Chapter 2. Background

location. The set of states in this example is S = {State1,. . . , State6} and the set of ac-
tions is A = {Drive1, . . ., Drive6, Pickup1, Pickup2, Dropoff1,Dropoff2}.
The transition function, γ, is implied by the arcs that the actions describe.

A state system based planning problem

A state transition system, τ = (S,A, γ), can be used to capture the environment for a
planning problem. The actions in A represent actions in the planning problem and the
states in S represent the state of the environment. The transitions that can be made in
the environment are captured as γ.

Definition 2.1.2 A planning problem, P, can be described by the triple, 〈τ, i, g〉, where

τ is the planning environment, i ∈ S, is the initial state of the environment and g is a

goal formula that defines the objectives of the problem.

The purpose of a planner is to select a sequence of actions that transition from the
initial state to a state that satisfies the goal formula.

The state transition system, τTransport, depicted in Figure 2.1 can be interpreted
as a simple planning environment, PTransport. An example of a planning problem for
τTransport is described by the triple 〈τTransport, State1, package at second location 〉.
This is the problem with planning environment captured by τTransport, with State1 as
the initial state of τ and the goal of moving the package to the second location. A
solution to this problem is to apply the action Drive1 in state State1, Pickup1 in
State2, Drive4 in State3 and Dropoff2 in State4. This changes the state from State1

to State5 and in this new state the goal of moving the package to the second location is
achieved.

Set-theoretic planning

The states of τ can be interpreted with respect to a set of propositions. For example,
the proposition that the truck is at location1 in the states of τTransport is either true
or false. If the set of propositions is well chosen then the states of τ can be uniquely
identified by the propositions that the state entails. The set of propositions represent-
ing each package position: either (at package1 location1), (at package1

location2), or (in package1 truck1) and a proposition for each truck posi-
tion: (at truck1 location1) or (at truck1 location2), uniquely distin-
guish the states in the transition system, τTransport.

10

Chapter 2. Background

The actions change the state with the result that the propositions that hold (are true)
in the new state are different from those that held in the original state. For example,
the action between State1 and State2 transitions from State1, where the proposition that
the truck is at location1 holds and the proposition that the truck is at location2

does not hold, to State2, where the proposition that the truck is at location2 holds
and the proposition of the truck being at location1 does not hold.

The states of planning problems can be modelled by a collection of propositions
and the actions can be modelled as the add and delete rules that effect the necessary
additions and removals from the state to produce the new set of propositions that rep-
resent the new state. An action is represented by a triple:

• The name of the action. For example, (pickup package1 truck1

location1), represents the action that puts package1 into truck1 at
location1.

• The precondition that determines whether the action is applicable in the cur-
rent state. This is a set of propositions. The action is only applicable if all
the preconditions hold. For example, the applicability of the action, (pickup
package1 truck1 location1), may depend on two propositions: (at
truck1 location1) and (at package1 location1).

• The effects of the action, which are often separated into two sets: the add ef-
fects and the delete effects. As their names suggest the add effects are a set of
propositions that are added to the current state, and the delete effects are the
set of propositions that are removed from the current state. The pickup action
might remove the single proposition, (at package1 location1) and add
the proposition, (in package1 truck1).

We assume that any delete effects are part of the precondition (meaning there are no
conditional effects). From a given state there are potentially several actions that could
be selected. Applying each of these actions results in a changed state: precisely the
state that is represented by the set of propositions obtained by removing the delete ef-
fects from the current state and then adding the add effects. A possible PDDL encoding
of two PTransport actions is shown in Listings 2.1 and 2.2.

Listing 2.1: PDDL representation of the pickup action� �
(: a c t i o n p i ck up

: parameters (package 1 t r u c k 1 l o c a t i o n 1)

11

Chapter 2. Background

: p r e c o n d i t i o n (and (a t package 1 l o c a t i o n 1)
(a t t r u c k 1 l o c a t i o n 1))

: e f f e c t (and (not (a t package 1 l o c a t i o n 1))
(i n package 1 t r u c k 1)))
� �

Listing 2.2: PDDL representation of the drive action� �
(: a c t i o n d r i v e

: parameters (t r u c k 1 l o c a t i o n 1 l o c a t i o n 2)
: p r e c o n d i t i o n (a t t r u c k 1 l o c a t i o n 1)
: e f f e c t (and (not (a t t r u c k 1 l o c a t i o n 1))

(a t t r u c k 1 l o c a t i o n 2))
� �
The first action puts package1 into truck1 if they are both at location1. The

second action moves the truck between location1 and location2.
The goal of a planning problem in the set-theoretic representation is a set of propo-

sitions that need to be satisfied. Planning is the task of choosing a sequence of actions
that affect the world to transform the initial state into a state that contains the propo-
sitions of the goal. Using this representation means that the set of states, S, is implied
by all states that are reachable from i by applying any sequence of actions. Therefore,
it is not necessary that all the states are expressed up front; this can be important, as
the size of the state space can grow quickly.

Planning domains In practice, the description of a planning problem is separated
into two parts: the definition of the problem domain that defines the world and its
behaviours; and an explanation of the specific problem to be solved within that world.
The domain is a tuple,D = 〈O, P 〉, that defines the set of predicates, P , and operators,
O . The predicates define the predicate symbols that can be used in representing the
states of the world. The operators are a collection of parameterised actions, which
describe the possible behaviours in the world. These are parameterised actions that
describe the parameterised sets of predicates that define the precondition and effects,
similar to those defined above for propositions. A ground action is an operator whose
variables have been unified with world constants. In the transportation problem above
the predicates would be at and in and the operators would be Drive, Pickup and
Drop-off. The problem model is specified with a tuple, P = 〈O, si, g〉, with the set
of objects, O, and si and g as before. The reachable states can be enumerated starting
by applying all of the unifications of the operators that have satisfied preconditions to

12

Chapter 2. Background

the initial state and repeating this process from each discovered state.

Alternative plan representation

In plan-space planning a plan is a collection of action sequences represented as a set of
partially ordered operators with binding constraints. The nodes of the search space in
plan-space planning are not states of the world, but partially defined plans. The actions
are plan editing operations that affect the partial plans. The planning problem is then
the task of selecting appropriate plan modifying operators to transform a partial plan
into a complete plan. Control knowledge has been used in approaches to plan-space
planning. There are two main differences to planning problems modelled in these
representations: the information that is made explicit, and the operations supported by
the model. For a complete introduction refer to Ghallab et al. (2004).

Extensions to the language

PDDL (McDermott et al., 1998) is the standard modelling language used in planning
and has been developed for over twenty years. It became established after it was used
for the first IPC (McDermott, 2000) in 1998. Since then there have been several devel-
opments generally coinciding with subsequent IPCs (Fox and Long, 2003; Edelkamp
and Hoffmann, 2004; Gerevini and Long, 2005; Geffner, 2000). In this work we use
the original PDDL language (which is known as STRIPS, because it was inspired by the
language used by a planner, STRIPS (Fikes et al., 1972)).

Hierarchical task networks (HTNs) provide a more expressive language for mod-
elling planning problems (Erol et al., 1996), which models planning problem as a col-
lection of tasks that are identified using a network of hierarchical decompositions. The
goal of a problem is to complete a collection of partially ordered tasks. A collection of
methods describes how a task is decomposed into a partial order of subtasks. Subtasks
are recursively split until the subtask is an instance of an operator, as in the defini-
tion above. A solution is a list of instantiated operators that are consistent with the
methods and orderings and satisfy the target tasks. A benefit of using an HTN is that
it defines an explicit structure that explains how tasks are broken down and in some
problems this can make control knowledge easier to interpret. This is supported in the
exploitation of an HTN approach to several real-world problems (Nau et al., 2005).

Extensions to PDDL have provided increased expressivity; in particular, they have
been focussed so that certain aspects of problems can be modelled more completely.
Even so, in Dornhege et al. (2009), it is observed that it can be difficult to achieve

13

Chapter 2. Background

the necessary detail in PDDL. They present examples of real world problems where
important details must be abstracted in a PDDL model, resulting in a plan that is not
directly executable. The language, PDDL/M, developed in Dornhege et al. (2009),
closes the gap between the symbolic model and the real problem. PDDL/M computes
an enriched state by employing modules that more closely model the real world. The
modules are targeted and therefore more efficient and can communicate a view of the
real world supporting the planner in making more informed choices.

However, the convention remains to model the physics of the problems, and not
advice about solving them (McDermott, 2000). In this work we attempt to establish
problem models that provide a rich environment that supports planning. We are not
looking to present the solution to parts of the problem, as has been done in Fox and
Long (2001); Dornhege et al. (2009), or a complete solution, as in Bacchus and Ka-
banza (2000); Nau et al. (2003), but to develop the problem model so that more of
the implicit behaviours and properties are made explicit. The enhancements that we
investigate have no effect on the underlying transition system and are therefore not
conventionally modelled, even in richer languages. As such, the ideas developed in
this work are transferable to problems expressed in any language.

Domain model acquisition

Another line of research investigates inferring problem models by observing valid ac-
tion sequences (McCluskey et al., 2009; Cresswell et al., 2009; Cresswell and Gregory,
2011; Mehta et al., 2011). An advantage of using this technology is that a model can
be produced without requiring a modelling expert. However, it is likely that there are
many different ways of expressing a model that explains the action sequences. Ap-
proaches at guiding the model selection have included: user interaction (Mccluskey
et al., 2002), providing possible object states (McCluskey et al., 2009), or alternatively
a bias can be included in the model learner towards models that explain expected ac-
tion sequences (Cresswell and Gregory, 2011). However, the systems do not come up
with appropriate labels on their own and as more of the task is automated the inferred
models become less human-readable. An interesting aspect reported in Cresswell and
Gregory (2011), is that control knowledge is implicitly embedded in the domain mod-
els induced by their system.

14

Chapter 2. Background

2.1.2 Remodelling

Researchers have been motivated to investigate remodelling for several reasons. These
include decomposing the problem into sub-problems and rewording the problem lead-
ing to an increase in planner performance.

In Fox and Long (2001) it is observed that planning problems often include hard
sub-problems. For example, there are several problems that include variations of the
Travelling Salesman Problem; a known NP-hard problem (Garey and Johnson, 1979),
meaning it is intractable in general. These sub-problems are expressed as part of the
model and most approaches adopt a general search approach. It has been observed that
these problems have mature technology developed specifically for solving them (Fox
and Long, 2001). This has prompted research into decomposing the planning problem
so that appropriate technologies can be applied to hard sub-problems (Fox and Long,
2001; Dornhege et al., 2009).

There are some approaches to planning that reformulate the problem into other rep-
resentations so the problem can be solved using an alternative approach. For example,
the planning problem has been reformulated as a Boolean satisfiability problem (Kautz
and Selman, 1996, 1998), and a Model Checking problem (Edelkamp and Helmert,
2001). Although the details of these reformulations will often be tailored to target the
solver, the planning problem is equivalent.

Our work is related to approaches that have remodelled the problem model to sup-
port a particular planning approach. CONSTANCE (Gregory et al., 2010), is a planner
that translates the planning problem into a constraint satisfaction problem (CSP). As
part of this translation, the model is abstracted, so that the CSP is not equivalent to the
planning problem. The change leads to a problem that can be solved more efficiently
by the constraints solver and only a trivial rewording of the solution is required to
translate the CSP answer back into a plan. Moreover, various properties are retained,
such as plan-length optimality between models. This is similar to the form of remod-
elling that we examine in this work; however, in CONSTANCE the remodelling is to
reduce the redundancy in the search space, whereas in this work it is to support the
planner to make better choices.

There are other examples too: during search, areas of the search space may ap-
pear equivalent (Section 2.2). This can happen when the heuristic function does not
sufficiently discriminate between different states. One solution to this is to reword
the problem to provide more information about the states (e.g. Bacchus and Kabanza,
2000; Khardon, 1999a); another is to add bridges that jump to more interesting areas

15

Chapter 2. Background

of the search space (e.g. Coles and Smith, 2007). This is the topic of Chapter 3 and the
relevant related work is discussed there.

2.2 Search and search control

Searching is the process of exploring a search space in order to find a particular node.
The search space is a graph of related nodes. Each node links to a subset of the nodes in
the graph. Search starts at one node and progresses out to the node’s neighbours. There
are various strategies that can be used to explore the search space, such as breadth first,
depth first or best first search.

We can model the planning problem as a search problem. Plan-space planning
problems can be solved using search directly. Planning starts from a partial-solution
and there are a set of operations that generate its neighbourhood. The goal is to find a
node where the partial solution is a solution to the problem.

In state-space planning the search space is the planning environment. Each node
represents a state. However, the solution is an action sequence that transitions from the
initial state to a goal state. This means that the problem is not as simple as finding a
solution; we must also remember how we found the solution.

The size of the state-spaces of planning problems often prevents complete explo-
ration. Instead methods are applied to guide search towards promising areas of the
state space. Several approaches have been used in planning to achieve search control.
We begin this section by presenting some of the standard search techniques. We then
augment these approaches so that they are applicable to state-space planning problems.
Finally, we introduce some of the methods that are used in planning to provide search
control.

2.2.1 The search problem

In this subsection we briefly introduce the general search problem. For a more com-
plete survey of combinatorial search, refer to Aigner (1988) and for an instructive start
to algorithms for solving search problems refer to Skiena (2008).

We can encode the search space as a graph and model the search problem as a graph
traversal problem. This language is rich enough to capture the search problems that
will be encountered in this work. We begin by introducing some useful graph notation.
This can be safely skipped over by anyone familiar with the standard formalism.

16

Chapter 2. Background

Graph Theory

Graphs are mathematical structures that represent relationships between objects. Many
problems can be represented as graphs and as such there has been much interest in the
field of Graph Theory. Efficient algorithms have been developed for solving many
of the problems relating to graphs (for example, finding sets of objects that are “con-
nected” through relationships, and selecting short sequences of these relationships that
pass particular objects). In this subsection we introduce some of the graph related
concepts that are used in this thesis.

Graph representation A graph, G, can be represented by a pair, G = (V,E), where
V is a set of vertices and E is a set of edges. Edges are pairs of vertices, (v, w), such
that v ∈ V and w ∈ V . The neighbourhood, Γ, of a vertex, v, is the set of vertices
that are connected to v by a single edge: formally, Γ(v) = {w| (v, w) ∈ E}.

The number of vertices in the graph is called the order of the graph, n = |V |, and
the size of the graph is defined as the number of edges, m = |E|. The density of the
graph is the ratio of the number of edges in the graph to the total number of possible
edges if every pair of vertices was connected, δ(G) = m

n×(n−1)
. If δ(G) = 1 then all of

the possible edges of G are in E, and the graph is called complete.

Subgraphs The set of vertices, S (where S ⊆ V), defines a subgraph,GS = (S,ES),
of G = (V,E), such that ES ⊆ E and (u,w) ∈ ES =⇒ u ∈ S . v ∈ S. If δ(GS) = 1

then GS is called a clique of G.

Paths A path between two vertices u and v is described by the series of edges
(v0, v1), . . . , (vk−1, vk) ∈ E, such that v0 = u . vk = v. We use the shorthand
(u, . . . , v) ∈ E if there is a path between u and v. The distance between u and v is
the number of edges along the shortest path between u and v. If the edges of the graph
have uniform cost then this corresponds to the path with the fewest edges. If there are
paths between u and v for all u and v in V then the graph is connected.

Graph traversal

The search space can be encoded using vertices to represent nodes and edges to rep-
resent the connections between the nodes in the space. A graph traversal problem
involves traversing the graph in order to explore every node. This must be approached

17

Chapter 2. Background

systematically so that all connected nodes are discovered. Thus the search will even-
tually arrive at a satisfying node, or prove that none are reachable from the starting
node.

There are two basic approaches to solving this problem: breadth first and depth first
search. A single node is selected as the root of the search. When searching breadth
first, the search tree expands in layers. The first layer contains just the root vertex.
The second layer contains all of the neighbours of the root vertex. In general, the next
layer contains all of the vertices that are neighbours of a vertex in the current layer
and that have not been discovered in previous layers. Alternatively, depth first search
selects one of the neighbours of the root and follows it repeating the process at the
next vertex. Once the search finds a vertex with no neighbours, (or all neighbours have
been visited already,) then the search backtracks a level. The next edge is traversed and
the procedure repeated. Once all of the edges of a vertex have been explored, search
backtracks to the previous level. These searches are guaranteed to discover all of the
vertices that are connected to the root by a path.

Search control

In some problems it is possible to provide some guidance; directing search to likely
areas in the search space. For example, in a particular problem it might be possible
to distinguish between the neighbours of the current node and identify those that are
more likely to lead to more promising vertices. There are alternative search strategies
that can use this form of guidance to organise the way that the graph is explored.

The best first algorithm relies on a heuristic function, f(x), that provides an esti-
mate of the value of a vertex, x. At each step the algorithm selects the vertex, x, with
the best value, f(x), and expands its neighbours. The intuition of the algorithm is that
we should investigate better scoring nodes first as these should lead towards the target
in fewer steps. As nodes with high scores are explored search can return to nodes that
were ignored initially. In this way the completeness of best first algorithm is retained.

The best first search can be implemented using two lists: the open and closed lists.
The open list is initialised with the root node. A loop begins and the first action is to
remove the (heuristically) best node from the open list. If the node has not already
been expanded, then it is added to the closed list and is expanded. Its neighbours
are discovered and if one of these is the goal node then search stops. Otherwise all
neighbours are added to the open list. This is repeated until the list is empty. As
we always remove the best node in the open list, the nodes are processed in an order

18

Chapter 2. Background

dictated by the heuristic.

Listing 2.3: Pseudo-code for the best first search.� �
def s e a r c h (s t a r t N o d e) :

openNodes = new L i s t () ; openNodes . add (s t a r t N o d e)
whi le (not o p e n L i s t . i sEmpty ()) :

node = o p e n L i s t . removeBes t (f)
a d d T o C l o s e d L i s t (node)
i f (a l r e a d y P r o c e s s e d (node)) :

f o r nextNode in expandNode (node) :
i f (goalNode (node)) :

re turn node
o p e n L i s t . add (nextNode)
� �

The algorithm is presented in pseudo-code in Listing 2.3. It relies on implementa-
tions of several node type specific methods. The expandNode method returns all of
the neighbours of the node; the method addToClosedList updates the closed list
to reflect the node that is being processed. The method goalNode returns a Boolean
indicating if the node is the goal, and finally the alreadyProcessed method re-
turns a Boolean indicating whether the node should be processed. This last method
will usually be determined by whether the node has been processed already.

Search in planning

State-space planning is a search for a sequence of actions that when applied in order
affects the state of the world in such a way that the goal is satisfied. This corresponds
to a series of transitions from the initial state to a goal satisfying state in the planning
environment. Therefore the search problem is not only to discover a goal state, but also
to find a path from the initial state. The best first search algorithm can be extended to
solve the planning problem. This can be achieved by including more information in
the search nodes. Concretely, a node is a triple: n = (previousNode, a, s), such that
previousNode is the node that generated n, s is the current state, and a is the action
that progressed previousNode’s state to s. Given a goal node, the plan can be read off
backwards by following the previous nodes and collecting the associated actions.

The problem now involves a path as well as a particular node. This impacts on
the heuristic functions that are relevant for searching. Instead of simply considering
the quality of the node itself, we consider the quality in the context of the number of

19

Chapter 2. Background

steps that have been made to find the node. Thus the heuristic is altered to reduce the
length of the plan. The A* (Hart et al., 1968) algorithm computes the heuristic, h(n)

by adding the number of actions used to get to n, to the estimated number of actions
to the goal. If this never over-estimates and h(n) is used in a best first search, then this
algorithm is guaranteed to compute the optimal solution while expanding the fewest
nodes of the search space (Hart et al., 1968).

Another algorithm, which underlies several of the approaches used in planning,
is greedy search. At each node greedy search follows the neighbour with the best
heuristic score. The search makes a single probe, always following the best path with
respect to h. If it exhausts this branch without finding the goal then it stops and fails.

The greedy approach relies heavily on the selection of an accurate heuristic func-
tion. If such a function exists then a solution can be achieved very quickly. If the
function is not effective then the outcome will largely depend on the structure of the
problem: whether there are many goal states and how many dead ends exist. There are
many variations of greedy search that have been designed to combat areas of weakness
in the heuristic guidance.

2.2.2 Control strategies in planning

In Chapter 1, we introduced the problem of satisfying a Christmas list. The solution
to this problem is a list of steps that would lead to the collection of the items on the
shopping list. Simply discovering a state where this is true is not very useful. A key
consideration when searching through the possible shop combinations is whether the
discovered plan will take a long time to execute.

In a similar way, we are interested in searching for plans with low cost. In the
particular model we use in this work cost corresponds to the number of steps in the
plan. There is an area of research in Automated Planning that is focussed on finding
optimal plans for problems (plans with minimum cost)1. Optimal planners are limited
in the size of instances that they can solve. In this work we are concerned with good
but not necessarily optimal solutions. This allows us to tackle much larger problems.

In this subsection we provide some background of approaches to search control.
We introduce abstraction based planning, which is seldom now used, but is particularly
relevant to the ideas that support this work. For a more complete discussion of planning
approaches refer to Ghallab et al. (2004).

1There has been an optimal track in the IPC since 2004 (IPC, 2004)

20

Chapter 2. Background

Domain independent search

Our focus will be on the development in the period since the first IPC. However, it is
important to point a key work from before this period, called GRAPHPLAN (Blum
and Furst, 1997). GRAPHPLAN introduced a graph based representation for solving
planning problems that enabled subsequent important developments in the field. At the
time of the first IPC, GRAPHPLAN was the state of the art. As such, several entrants of
the first IPC were derived from GRAPHPLAN. STAN (Long and Fox, 1999) used an
efficient implementation of the GRAPHPLAN algorithm, along with invariants from
the domain analysis tool TIM (Fox and Long, 1998). This work led to HybridSTAN (Fox
and Long, 2001), which used an extended domain analysis to decompose the problem
model, allowing special treatment of sub-problems. There were two other approaches:
the SAT planner, Blackbox (Kautz and Selman, 1998) and HSP (Bonet and Geffner,
1998), a heuristic based planner. HSP introduced the idea of relaxing the problem
by removing the delete effects from actions and using the resulting relaxed model to
compute heuristic estimates. Heuristics based on this model are still in the state of the
art now.

The focus of the early IPCs was on being able to solve problems and reducing the
time it took for this to be achieved. This encouraged the use of greedy search ap-
proaches. The planner FF (Hoffmann and Nebel, 2001) entered the second IPC (Bac-
chus, 2001)1. It used an augmented greedy search that resorted to full search over areas
where the heuristic was uninformative. The heuristic itself was an improved version of
the HSP heuristic. FF also incorporated an approach at goal ordering (Koehler, 1998)
and a filtering technique. The filter involved selecting a subset of the neighbourhood
of a node called the helpful actions. This is defined below.

Helpful actions The relaxed problem is the problem remodelled so that the actions
do not have delete effects. The representation of a plan used in FF defines partially
ordered plans. A plan is a list of action sets: A0, . . . , An. The interpretation is that the
sets of actions are executed in order, but that the actions in a set can be executed in any
order. During heuristic computation FF generates a plan for the relaxed problem. This
is called the relaxed plan. One derivative of this plan is the helpful action set.

Definition 2.2.1 The helpful actions are any actions that are applicable in the current

state and achieve a precondition of any action in the second set, A1.2

1http://www.cs.toronto.edu/aips2000/
2This set includes actions with no effect; intuitively it contains any action that achieves a proposition

21

Chapter 2. Background

The helpful actions set is supposed to capture the actions that are likely to lead
to better states. At each node in search FF first computes the helpful action set and
evaluates each of these neighbours first. If none of these nodes improve the heuristic
value then it might consider the complete neighbourhood of the node.

Further developments There have also been several new heuristic functions. Land-
marks (Porteous et al., 2001), are actions that must be in a solution to the problem.
They have been exploited in the planner LAMA (Richter et al., 2008). The heuristic is
simply a count of the number of landmarks that have not been passed. LAMA uses this
landmark heuristic and the FF heuristic, using a round robin strategy. It is part of the
current state of the art.

Abstraction based planning

Abstraction based planners, such as ABSTRIPS (Sacerdoti, 1974) and AbNLP (Fox
and Long, 1995), define a hierarchy of planning models of increasing abstraction. A
plan is constructed for the problem at the most abstract level and this is then used
to constrain the planning process in lower levels. The bottom level corresponds to
the original model. The intuition behind this form of planning is that there might be
some important decisions, which control the shape of the solution and should be made
first. Once the main strategy is in place the planner can shift its focus to decisions that
will have a more local impact. In ABSTRIPS the abstraction is formed by removing
preconditions from the operators. This means that actions in the upper levels can be
applied without the correct propositions being established in the state. As the planner
focusses on lower levels, more of the preconditions of operators are represented and
require to be supported in order to define a valid plan. In AbNLP the operators in
higher levels define a set of partially ordered sub-goals; which are unpacked when
the planner switches focus to the next lower level of abstraction. Decomposing into
sub-goals, rather than operator sets allows more freedom in the selection of actions
that are appropriate to the given context. Similar ideas have been examined more
recently in Gregory et al. (2011). The hierarchy of models in that work was formed by
abstracting from individual propositions to groups of propositions.

that has to be achieved by the actions in A0.

22

Chapter 2. Background

Hand-tailored planners

The early IPCs also had a special track for hand-tailored planners. This attracted ap-
proaches that involved some level of customisation for a particular problem domain.
The type of tailoring varied from hand-written planners for TLPLAN (Bacchus and
Kabanza, 2000) and TALplanner (Doherty and Kvarnström, 2001), to operator decom-
positions for SHOP (Nau et al., 2003). These planners demonstrated that using control
knowledge is extremely effective.

This success inspired a body of work that investigated using control knowledge
in search. The key limitation with the approaches was that the knowledge was hand-
written. In fact, this track was discontinued after IPC-3 because it was unclear what
was being measured: the approach, or the hand-written control knowledge. The main
focus of later research was in control knowledge representations and learning ap-
proaches, although exploiting the control knowledge was obviously important. The
introduction of a learning track in the sixth IPC (Fern et al., 2011) indicates the level
of interest that built around learning control knowledge. Approaches to using control
knowledge in search are discussed in Section 2.3.

2.3 Control knowledge

Control knowledge is compiled information that provides some form of guidance.
There are various applications of control knowledge in planning including making
action selections, improving a heuristic estimate and as a method of extending the
problem model.

In this section we introduce several of the forms of control knowledge that have
been used with planning systems. Macro actions are one way of representing control
knowledge, and another is by using production rules. A common aspect of control
knowledge is that there is a condition on the application of the knowledge (similar to
an action precondition). Ensuring that these conditions can be stated appropriately is
a key consideration in this work. We will examine this in detail in Chapter 4. In this
section we look at the opportunities for exploiting control knowledge in search. We
introduce common representations and how these are combined to form knowledge
systems. We also discuss control knowledge acquisition.

23

Chapter 2. Background

2.3.1 Opportunities for exploiting control knowledge in planning

PRODIGY (Carbonell et al., 1991) and SOAR (Rosenbloom et al., 1985) are planners
that were used as test beds for investigating the use of control knowledge in search.
The intention in these systems was to “open search up” so that search decisions could
be observed and controlled. For example, control knowledge could influence whether
a regressive or forward-chaining step was made, or impact on the next sub-goal to
achieve, or the next action binding to make. Each decision point is an opportunity for
exploitation of control knowledge.

The decisions that have been made can provide guidance for future decisions; how-
ever, deciding when those decisions are relevant can be challenging. For example,
knowledge may only be appropriate in the context that a particular goal is selected.

There were many investigations of exploiting control knowledge carried out us-
ing these (and similar) frameworks. For example, learning control knowledge us-
ing explanation-based learning (Carbonell et al., 1991), learning action sequences for
achieving sub-goals (Laird et al., 1986), and automatically generating abstraction lay-
ers (Knoblock, 1990). Although now PRODIGY and SOAR are not competitive with the
state of the art, several of the developed ideas have been exploited successfully within
modern technology (de la Rosa et al., 2011; Jiménez et al., 2012).

2.3.2 Representing control knowledge for search

In this subsection we survey some of the main knowledge representations used in
search. We begin by introducing several general knowledge representations. We then
examine how rules systems have been formed and how this has affected the develop-
ment in the field.

Production rule systems

A production rule is a conditional proposition of the form:

if 〈antecedent〉 then 〈consequent〉.

The intended meaning is that the consequent is asserted if the antecedent is satisfied.
How the antecedent is evaluated and the form of the consequent depends on the type of
production rule. Each production rule can be used to capture a single piece of advice
or a single fact, and the antecedent dictates when that fact is true or when the advice is
applicable. For example, a rule that could be used to capture a guidance heuristic for
navigating a maze might be:

24

Chapter 2. Background

if 〈 at a junction 〉 then 〈 choose the leftmost branch 〉

There are several ways that rules can be used in search, including pruning and
selection rules.

Figure 2.2: The rules remove actions from the neighbouring edges of a node. This
reduces the branching factor.

Pruning rules For a particular node and its neighbourhood, a pruning control rule
removes nodes from the neighbourhood so that they do not need to be searched. In
Figure 2.2 the nodes with the crosses have been pruned from the search. As a result
the dotted nodes will not be examined either. Pruning rules have been used in various
planners, including PRODIGY and TLPLAN.

These rules have to be constructed carefully as not only will the planner not ex-
amine the pruned node, but it might miss the opportunity of examining the nodes that
connect to it. If the control knowledge is poor then good nodes can be pruned from the
search space and in extreme cases all paths to a goal state might be pruned.

Selection rules An alternative rule interpretation is called a selection rule, illustrated
in Figure 2.3. These rules select a single successor and have the effect of pruning all
alternatives to the single node that is selected. If the knowledge is of good quality then
a depth-first search with no backtracking can be used to lead straight to a goal (Bacchus
and Kabanza, 2000; Khardon, 1999a; Martin and Geffner, 2000; Fern et al., 2006).

There are benefits to each interpretation. These rules are appropriate if the decision
of what to do next can be made. In some situations this might be difficult and it might

25

Chapter 2. Background

Figure 2.3: The rules select the next action from the neighbouring edges. No search is
required.

instead be obvious what not to do. One difference is that pruning rules will remove
branches from the search space, whereas selection rules will not.

Figure 2.4: Macro actions connect nodes several steps away from the current node.

Macro actions Another form of control knowledge that has been provided to plan-
ners to assist search are macro actions. Macro actions are added transitions to the
state transition system that correspond to a concatenation of several of the original
state space actions. The draw-backs of adding macro actions is that they increase the

26

Chapter 2. Background

branching factor and can greatly increase the total number of actions in the state sys-
tem (Fikes et al., 1972). Planning problems often have very large state systems already
and so many approaches, such as pruning rules in TLPLAN, attempt to reduce the
choice. However, it has been demonstrated that carefully selected macro actions can
provide benefits to search (e.g. Newton et al., 2007; Coles and Smith, 2007).

Control knowledge systems

There are several representations of control knowledge utilised in PRODIGY. The origi-
nal system supports selection and pruning rules. It also allows ordering rules that allow
unsatisfied goals to be ordered. These are selection rules that act over goal choices. The
system has been extended in other work to support macro action and other forms of
abstraction, as described in Section 2.1. The complete collection of rules and macros
forms a control knowledge system. The aim in PRODIGY was that the system could
exploit knowledge where available; but it was not expected to be complete.

The use of control knowledge on its own to control search, instead of as a mecha-
nism for improving a planner, was made popular by the performance of TLPLAN (Bac-
chus and Kabanza, 2000), TALplanner (Kvarnström and Doherty, 2001) and SHOP (Nau
et al., 2003) in the early IPCs. One of the key aspects of these approaches was the use
of “rich languages” to express the control knowledge. The consequence is that the
rules used with these planners can concisely establish the important differences be-
tween states and select the correct behaviour. An alternative approach is presented
in Khardon (1999a) and implemented in L2ACT, which uses a collection of selection
rules in place of a planning strategy. The rule language used to capture the control
knowledge in L2ACT is limited.

Learning The reason for the limited language was that the control knowledge used
in L2ACT was learned automatically. Subsequent work investigated more expressive
languages (Martin and Geffner, 2000; Fern et al., 2006). The main aim was to dis-
cover a language that could express useful control knowledge; but limited enough that
the learning problem was feasible. The actual languages are discussed in detail in
Chapter 4 and approaches to learning control knowledge are used and developed in
Chapter 8.

It has been observed that it can be difficult to capture a perfect rule system. In
particular, there are often a few weak rules that lead to poor performance. This has led
to research that looks at reducing the impact of these weak rules (Yoon et al., 2006;

27

Chapter 2. Background

de la Rosa et al., 2008). This has been achieved in Yoon et al. (2006) by using the rules
to correct a weak domain independent heuristic. In de la Rosa et al. (2008) a different
form of rule is used that estimates the likelihood of an action being appropriate. These
estimates are used to guide a depth first search.

In this work, we take a step back. We observe that an important aspect of capturing
rules is the vocabulary that their conditions draw from. We argue that the weaknesses in
learned rule systems can often be attributed to the limited vocabulary that the rules are
drawn from. The vocabulary can prevent an effective strategy from being constructed,
even by hand.

2.4 Learning

Machine Learning is a vast topic that has become increasingly important in many
fields. In this study we focus on certain approaches to optimisation and search to
motivate the learning discussion later in this work. An optimisation problem over a
set (potentially infinite) of candidates, C, is defined in terms of a fitness function. A
fitness function maps from candidates to the reals, δ : Π 7→ R, such that a high value
of δ indicates a high fitness. The optimisation problem is the problem of finding a
candidate, c, that maximises the value, δ(c):

targetCandidate = {c ∈ C|∀c′ δ(c) ≥ δ(c′)}.

Whether a solution to this problem will be an effective candidate depends on the se-
lection of an appropriate fitness function. If the candidate space is small then it might
be feasible to enumerate each possibility and evaluate them in turn, retaining the can-
didate with the highest fitness. However, this is not always possible; in this section we
look at some alternative approaches to this problem.

2.4.1 Local search

Local search is an approach for solving optimisation problems. The approach involves
defining one or more neighbourhoods, each defining a set of nodes that are the neigh-
bours for a particular node. Search progresses by selecting a node from one of these
sets using one of several methods. For example, selecting the neighbour with the high-
est fitness is called the hill-climbing approach (comparable to greedy search). Search
terminates after a predetermined time, or once no improving step can be made. The

28

Chapter 2. Background

success of hill-climbing depends on the selection of the initial candidate and the inter-
action between the fitness landscape and the neighbourhoods. There are more involved
approaches aimed at escaping local minima, including restarting from random nodes,
and allowing periods of decreasing fitness.

2.4.2 Genetic algorithms

Genetic algorithms are stochastic search algorithms inspired by the natural reproduc-
tive cycle. The approach relies on a population of candidate solutions that are used to
seed the construction of the next generation of candidates. One of the key principles
at work is the survival of the fittest: better candidates are more likely to be selected
to create the next population. The expectation is that the overall solution quality will
improve. The measure of a candidate’s quality is provided by the fitness function.

An example problem has solution strings of length 4, for example, the strings 1001

and 0011. An example fitness function, f(x), might give a candidate, x, a score by
summing the number of ones in the string. The maximum reward in this problem
would be f(1111) = 4 and the minimum score of f(0000).

There are three operators that are used in constructing the new population from the
old population: selection, crossover and mutation.

• Selection is used to choose individual candidates from the current population
for reproduction. The selection strategy will normally bias towards selecting
stronger candidates from the current population.

• Crossover is an operation on two candidate solutions that produces two children.
The crossover point is selected at random. The first child is constructed by taking
the pattern of the first parent up to the crossover point and adding the pattern
of the second parent from the crossover point to the end. The second child is
constructed with the first part of the second parent and the last part of the first
parent. An example of the crossover operator is illustrated in Figure 2.5(a).

• Mutation is an operator that randomly changes single units of a solution. This
operator allows search to escape from local optima. An example mutation is
illustrated in Figure 2.5(b).

Crossover and Mutation operators are required to form valid solutions.
A simple genetic algorithm can be described by the following steps:

1. Construct the initial population by generating n random solutions.

29

Chapter 2. Background

11 01

Child 1

Parent 1 Parent 1

11 010110

1110
Child 2

0101

0110

Parent 2 Parent 2

(a) An example of crossover

0

0

0

10

10

1

01Mutation

Parent

Child

(b) An example
of mutation

Figure 2.5: Examples of genetic algorithm operators

2. Evaluate the initial population using the fitness function.

3. Continue the following steps until the new population is full.

• Select a pair of candidates.

• Apply the crossover operator to the candidates with probability, pc, (the
crossover probability). If crossover is applied then choose a random point
in the parents and construct the two offspring. If crossover is not applied
then the offspring are exact copies of the parents.

• Mutate the offspring with probability, pm (the mutation probability).

• Evaluate the offspring and place them in the new population.

4. Set the new population as the current population.

5. Jump back to step 3 and repeat until the stopping criteria is met. The stopping
criteria may be a threshold fitness, a convergence measure, or a maximum num-
ber of generations.

Although the basic algorithm is simple, genetic algorithms have received a lot of
attention and have been used successfully in many applications. Crossover allows
successful parts of solutions to be passed on into future populations and mutation in-
troduces new parts into the candidates by adding noise. The combination of crossover
and mutation help to keep the search out of local minima.

In this work we use an extension of the genetic algorithm called a genetic program;
each candidate in a population of a genetic program is a program (a control system in

30

Chapter 2. Background

this work), instead of a parameterisation. We rely on more sophisticated mutation and
crossover operators that act directly on the control system. These will be defined in
Chapter 8.

2.5 Statement of thesis

Control knowledge in planning is often captured using the predicates and actions of the
problem models that the knowledge applies to. The thesis that this work defends is that
it is possible to learn more effective control knowledge by selecting a richer problem
model encoding; that is, an encoding that makes explicit more of the relationships and
behaviours of the problem. We will show that this can provide the necessary support
for control knowledge expression. We demonstrate that there are certain forms of
problem structures where the appropriate model can be selected automatically.

In order to defend this thesis we will take the following steps:

• Develop a framework that allows us to explore alternative problem models.

• Analyse the interaction between the selected control knowledge representation
and the problem model, which is the source of the limitations of control knowl-
edge expression. Categorise the aspects of problem models that lead to the limi-
tations being lifted.

• Assess whether the problem models, which lift these limitations, lead to the
expression of effective control knowledge, with an aim of demonstrating the
feasibility of the approach.

• Investigate the automation of model selection. In particular, we seek a novel
method of selecting the model, which will provide the necessary support for
exploiting control knowledge in planning.

• Learn and evaluate control knowledge that exploits the selected model and ef-
fectively controls search.

31

CHAPTER 3

A FRAMEWORK FOR EXPLORING

PROBLEM MODELS

The process of stating a planning problem typically begins with a real world situation
that is abstracted and expressed in a standard language, such as STRIPS. The modeller
rejects many behaviours, interactions and concepts that are not required to express the
state-transition-system. The convention often followed is to capture what the planner
can do, but model no concepts that would give guidance as to what the planner should
do. This separates the representation of the model from control knowledge that is
relevant to that model (McDermott, 2000).

It is not surprising that planners appear to be sensitive to the model that is presented
to them (Hoffmann, 2005; Coles and Smith, 2007; Aler et al., 2000a; Khardon, 1999a;
Martin and Geffner, 2000). And as a consequence, many researchers have analysed the
benchmark planning models to identify where more information and more choice can
be provided to the planner. In heuristic search planning this has predominantly been
considered through joining actions together to allow a sequence of actions to be made
in a single choice (Iba, 1989; Coles and Smith, 2007; Botea et al., 2005a; Newton et al.,
2007). Alternatively, in rule based planning, the focus has been on enriching the states
with additional predicates to provide richer concepts for the rule conditions (Khardon,
1999a; Martin and Geffner, 2000).

In this chapter, we present a framework that supports our investigations of the bal-
ance between the concepts expressed in a problem model and the concepts that must be
constructed over these concepts in order to support control knowledge to make action
selection choices effectively. The motivation behind our approach is not to solve the

32

Chapter 3. A framework for exploring problem models

planning problem in part or in whole, but, instead, to support the planner as it solves
the planning problem. This framework will be demonstrated with a concrete imple-
mentation in Chapter 5 and a more detailed presentation can be found in Appendix I.

3.1 A chain of language restrictions

An important aspect of a model is the language, Σ, that is accepted, which determines
the propositions and actions that can be exploited by the planner. We assume that for
a particular planning problem, there exists a maximally rich model, M, which would
support any planner to plan effectively. Whereas M models many actions and proposi-
tions, we consider more limited languages, which provide a restricted view of M.

Definition 3.1.1 The restricted view of M for a language, Σ, is denoted M|Σ and is a

view of M where the part of M that is expressible in the language, Σ, is modelled.

The framework that we define in this chapter establishes a series of enhancement
steps from the described model (the model presented to the planner) towards M, a
notional model that is ideal for planning. In this work, we focus on enhancements that
are appropriate for forward chaining planners. From this perspective, there are two
sources of motivation behind an enhancement: to enrich the information provided to
the planner when making action choices; and to vary the level of the decisions that are
made: both by raising the level of reasoning through abstraction and lowering the level
of reasoning through enrichment.

(pickup P T1 L3)

Σ1

(allocate-truck P)Σ2

(move∗ T1 L1 L3)

(drop P T1 L4)

(drop P T1 L4)

(drop P T1 L4)

(move∗ T1 L1 L3) (move∗ T1 L3 L4)

(move∗ T1 L3 L4)(pickup P T1 L3)

(move T1 L2 L3) (pickup P T1 L3) (move T1 L3 L4)(move T1 L1 L2)Σ0

T1 T2 P

L1 L3 L4L2

Figure 3.1: An example set of language enhancing steps. In the original domain
model (Σ0), trucks move around a road map. In an example enhancement layer (Σ1),
the movement map can be abstracted so that the truck can be moved to any location in
a single decision. A further enhancement (Σ2), provides an explicit representation of
allocations of trucks to package deliveries.

33

Chapter 3. A framework for exploring problem models

In transportation problems, trucks move packages between their initial location and
alternative goal locations. Three plans are presented in Figure 3.1 that illustrate a pos-
sible sequence of enhancements towards an ideal model for planning in this problem.
In the described language, Σ0, the truck must move several steps to pickup a package.
However, from the point of view of a planner it might be more appropriate to choose
the destination of the truck, or equivalently, select a single action that moves to that
location. The enhanced language, Σ1, in Figure 3.1, presents an alternative represen-
tation of the plan that uses an abstracted move action (move∗). Of course, in order
for the planner to determine the best truck to move towards a package it may make
decisions over appropriate assignments of packages to trucks. This could be realised
through a set of allocation propositions and actions that make the allocations, as illus-
trated by the plan in the language, Σ2 in Figure 3.1. This is an example of making
decisions at a lower level.

The example illustrated in Figure 3.1, is an example chain of three steps, from the
described model language, M|Σ0 , to a richer model, M|Σ2 , which captures more of the
concepts from M. This chain is generalised by the definition of a chain of language

restrictions.

Definition 3.1.2 A chain of language restrictions, Σ0, . . . ,Σn, is a collection of lan-

guages that are ordered in terms of expressivity, with the most limited language (cor-

responding to the described model, Σ0) as the first element of the chain. In particular,

this is a chain of languages that exist between the language of the described model and

that of M.

An important factor is that we are ultimately interested in generating a solution
to the original described planning problem. It is quite possible to imagine enhancing
problem models with many alternative approaches to solving the problem. For exam-
ple, in transportation problems an alternative to delivering a package by truck is to take
a taxi and drop it off; but if this option is not in the described model then it provides
no assistance for creating a plan. Moreover it can lead to bridging states that are not
connected in the described model. In this work we limit our focus to a subset of chains
for which we can make certain guarantees over executability. In particular, we focus
on chain steps that provide one of three forms of enhancement steps from Σi to Σi+1:

• Abstract actions (macro actions) that combine one or more actions modelled in
Σi. For example, the composition of movement actions illustrate in Figure 3.1.

34

Chapter 3. A framework for exploring problem models

• Enriching (or derived) predicates (any computable Boolean function) that pro-
vide an additional interpretation on a state. For example, establishing clusters of
locations in a location map.

• Decision predicates and associated decision making actions, which allow deci-
sions to be made explicit in the state. For example, an allocation made between
a truck and a package, illustrated in Figure 3.1.

3.2 Co-execution

In this section we present a method of search, called co-execution, which is appropriate
for using forward chaining search in an enhanced model. The overall approach is
illustrated in Figure 3.2. A framework for enhancing the problem model through a
chain of language restrictions, Σ0, . . . ,Σn, to some language, Σi, was described in
Section 3.1. The planner acts in M|Σi allowing it to exploit the enhanced model. The
planner can select actions that cannot be directly applied in the described model, M|Σ0 .
The approach maintains the state of each model concurrently: each selected action is
interpreted into an appropriate behaviour for M|Σ0 .

In Section 3.1, we presented the three sorts of language enhancements that are
possible in our framework. Abstract actions and enriching predicates have been widely
used and are each trivial to interpret for the described model. An abstract action, a,
such that s′ = γΣi(s, a), can be substituted for any sequence, a0, . . . , am, such that
s′ = γΣ0(. . . (γ(s, a0) . . .), am). In the case of enriching predicates, the actions are
identical in each model; therefore a plan for some Σi is a plan in the described model.

The final case is the decision propositions and sets of connecting actions. The deci-
sion propositions are guaranteed to be distinct from previous propositions and therefore
these actions have no effect on the state of more restricted models. This leads to ac-
tions in the wff(Σi) being interpreted as either a sequence of actions (1 or more), or a
NO-OP (an action with empty effects and precondition) in wff(Σ0).

The subset of language restrictions we consider preserve important properties on
the states of the co-executed models. We present two theorems here; the proofs can be
found in Appendix I.4. The first theorem states that each of the states of the enhanced
models is represented by exactly one state in the described model. This means that it
is sufficient to maintain a single state in each model. The second theorem states that
transitions between states made by an enhanced action can be interpreted as a sequence
of actions in the described model.

35

Chapter 3. A framework for exploring problem models

Language Restricted View Restricted View

M|Σ0

E
nhancem

ent

R
estriction

C
o-E

xecution

Σn

Σ0

πΣn

πΣ0

Planning With a Plan for theProblem Descripton

M|Σ1 πΣ1

M|Σn

Interpretation

Σ1

Figure 3.2: We will investigate stepping up from a limited language, Σ0, to a richer
language, Σi. This provides an enhanced planning environment. The plan produced is
relative to higher level concepts not expressed in Σ0. The plan in the richer language
can be interpreted and used as a plan for the original problem. An effective method of
interpreting the plan relies on the execution of both models simultaneously.

These theorems rely on definitions of relatedness between the states and actions of
the described and enhanced models. A state in M|Σi is represented by a state in M|Σ0

if the states agree on each of the propositions in M|Σ0 .

Definition 3.2.1 (s(Σi)Rs
′(Σ0)) ⇐⇒ ∀p ∈ wff(Σ0) p ∈ s′ ⇐⇒ p ∈ s

An action, a, is represented by an action sequence, a′0, . . . , a
′
m, if for any states, s0

and s1 that a transitions between, a′0, . . . , a
′
m transitions between the two states, s′0 and

s′m, which represent s0 and s1.

Definition 3.2.2

a(Σi)Ra
′
1(Σ0), . . . , a′m(Σ0) ⇐⇒

(∀s0, s1 ∈ wff(Σi) s1 = γΣi(s0, a) =⇒
∀s′0 ∈ wff(Σ0)

(s0Rs
′
0 =⇒ s1RγΣ0(. . . (γΣ0(s′0, a

′
1) . . .), a′m)))

36

Chapter 3. A framework for exploring problem models

Theorem 3.2.1 For any state, s, expressible in Σi, there is a single state, s′, expressible

in Σ0, which represents s (sRs′).

Theorem 3.2.2 For any action, a ∈ wff(Σi), there exists an (possibly empty) action

sequence, a′0, . . . , a
′
m ∈ wff(Σ0), which represents a (aRa′0, . . . , a

′
m).

Theorem 3.2.2 ensures that any enhanced action from our framework can be inter-
preted as an action sequence in the described model and therefore represents a valid
sequence of actions for the original problem. As a consequence, the execution of a
plan expressed in a language, Σi, will be executed as a plan in Σ0. The architecture
that implements co-execution is presented in Section 5.1 and the model presented here
is further explored in Appendix I.

3.3 Discussion

In this chapter we have developed a framework for enhancing the problem model.
The models explored within this framework share properties with the described prob-
lem model, including action-sequence transferral under co-execution. In order to se-
cure this property we have made several restrictive assumptions over the chains of
languages that can be explored in the framework. However, this framework consol-
idates several of the previous approaches to model enhancements, including: macro
actions (Iba, 1989; Coles and Smith, 2007; Lindsay, 2012; Botea et al., 2005a; New-
ton et al., 2007; Gregory et al., 2010), which correspond to abstract actions; state
enrichments (Khardon, 1999a; Martin and Geffner, 2000; de la Rosa and McIlraith,
2011); and enhancing the model (Bacchus and Kabanza, 2000; Doherty and Kvarn-
ström, 2001), which are comparative to moving along a chain of language restrictions.
Enhanced languages have been used to express parts of the problem model (Dornhege
et al., 2009; Gregory et al., 2012), so that parts of the model are not represented in the
PDDL description. A key difference in these works is that the solution to the problem is
expressed for the enhanced model. This means that no interpretation is required. An-
other approach is to step along a chain in the opposite direction and restrict the view
of the problem model (Hoffmann et al., 2004; Fox and Long, 2001). When the prob-
lem can be decomposed this can allow the planner to tackle individual sub-problems in
isolation, which can lead to more efficient planning. These relationships are discussed
further in Section I.5 of the Appendices; we discuss the relationships between control
knowledge representations in Chapter 4, implementation of the model enhancements
in Chapter 5 and approaches to learning control knowledge in Chapter 8.

37

CHAPTER 4

CONTROL KNOWLEDGE

Capturing domain specific planners using control knowledge supports effective plan-
ning for individual problems (Bacchus and Kabanza, 2000; Winner and Veloso, 2007;
Fern et al., 2006). In particular, TLPLAN (Bacchus and Kabanza, 2000) provides an
effective framework, in terms of plan quality and planning time. A key benefit is
that each planner captures a solution that solves groups of problems. Each planner
can solve the problem distribution of a particular planning domain. In Bacchus and
Kabanza (2000); Doherty and Kvarnström (2001) each planner is captured by a rule
system. However, the languages used to express the rules are rich and they are hand-
written.

Ultimately, we are interested in learning the control knowledge; therefore we must
limit ourselves to the scope of current learning technologies. Research into using lim-
ited rule languages to express the rule systems has been fruitful (Khardon, 1999a;
Martin and Geffner, 2000; Fern et al., 2006; de la Rosa and McIlraith, 2011). These
languages are not rich enough to express the concepts necessary to support reasoning
in certain problems (Xu et al., 2007). However, we observe that the rules are expressed
using the vocabulary of the problem model. As the enhancement chain defined in
Chapter 3 controls this vocabulary, it also controls the words used to express the rules.

In this chapter we define a series of mappings, called policies, that capture plans
for progressively larger sets of planning problems. The most general policy is a gen-

eralised policy, which we will learn in this work. We introduce the rule based rep-
resentation that we adopt to capture generalised policies and we then compare this
representation to other methods from the literature.

38

Chapter 4. Control knowledge

4.1 Policies

A policy is a complete mapping from states to actions that is intended to direct exe-
cution towards the goal. A simple executive can be used to solve a problem with an
appropriate policy: it looks up the action for its current state and applies it, repeating
this loop until it reaches a goal state. Planning is then the problem of policy construc-
tion.

Definition 4.1.1 A policy π, is a total map, π: States→ Actions. A policy is intended

to achieve a single goal.

An appropriate policy will lead the executive by a short path through the state space
to a state satisfying the goal that the policy addresses. Application of a policy requires
no search and no intelligence on the part of the executive.

Similarly, we can define a partial policy if the mapping is not complete.

Definition 4.1.2 A partial policy π, is a partial map, π: States→ Actions. A partial

policy is intended to achieve a single goal.

A plan for a classical planning problem, P = 〈τ, sinit, g〉, can be seen as a partial
policy that determines actions for precisely the states on the trajectory from the initial
state to the goal.

Definition 4.1.3

π is a plan for problem, P, ⇐⇒
∃a1, . . . , an, s0, . . . , sn

∀i ∈ [0, . . . , n− 1] π(si) = ai+1 . si+1 = γ(si, ai+1)

sinit = s0 . sn |= g

Under the assumption that action application is deterministic, a plan for a particular
problem will always result in the same action sequence. Accordingly, if the initial state
is known then we can simply describe a plan as the sequence of actions. Where it is
important to distinguish, we will denote a plan, represented as a series of actions, as
< π >.

A usual application for a policy is as a solution to a problem with uncertainty,
such as those found in Robotics. In these problems the description of the state can be
incomplete and the outcome of an action can be uncertain. In this setting it is not clear

39

Chapter 4. Control knowledge

which states will be visited during execution and a solution must solve the problem
from any states that might be visited.

In this work we reason with a deterministic model of the planning problem. This
means a solution for a single problem can be captured in a single action sequence that
transforms the initial state to a goal satisfying state. However, in this work we are
interested in solving many problems using the same solution.

Martin and Geffner (2000) have defined a more general policy, called a generalised

policy, that can be used to express a strategy for solving all the problems of a planning
domain. In this setting, there is no uncertainty in action application or the state de-
scription, but there is uncertainty in the set of objects and in the initial state and goal.

The control knowledge that we learn in this work captures a variation of the gen-

eralised policy. In this section we describe the generalisation of the policy definition
that we use in this work.

4.1.1 Generalised policy

Most of the approaches that learn policies require the entire state space to be enumer-
ated. This becomes impractical for even moderately sized planning problems. Learn-
ing policies without enumerating the search space is possible (Boutilier et al., 1999).
However, as planning problems are described and solved individually, with changes to
the set of objects, the initial state and the goal, a new policy is usually required for each
problem. In situations with uncertainty this might be worth the learning cost, however,
our target is deterministic classical planning and the learning time cannot be justified.

In this work we do use a learning process that would be too expensive to consider
using for learning policies for a single goal. However, we define a variant on a policy
that can be used to describe the solutions for many goals. We use the observation that
planning problems from the same domain are likely to contain the same sorts of tasks
and we use a representation that supports exploiting these similarities in a compact
way.

A generalised policy is not specific to a particular goal: the action that is selected
by a generalised policy is not only dependent on the state, but also on the goal that is to
be achieved. It is defined for states and actions that belong to the well formed formula
of a language, Σ. In particular, Σ is a language on a chain of language restrictions,
Σ0, . . . ,Σn.

Definition 4.1.4 A generalised policy πΣ, for sets of states S ∈ wff(Σ) and actions

A ∈ wff(Σ), is a total map πΣ: S × Goals→A.

40

Chapter 4. Control knowledge

on tableput

onput

()
() ()

()
()

on tableput

onput

on tableput

on tableput()
→

→ × →
× →

× →× →
×

×

Figure 4.1: An example of a generalised policy for a 2 block Blocksworld problem.
The figure illustrates (state,goal) pairs and the action mapped to by the policy.

An example policy is illustrated in Figure 4.1. The pairs of states illustrate the
state and goal pairs and the associated action is the action mapped to by the policy. It
is important for this work to notice that Σ could be a rich language that expresses an
enhanced view of the states in the problem. This generalises definition 4.1.1 to any
possible goal expressible in the language.

4.1.2 Domain conventions

In many problems, the structure of initial states and of goals is limited by implicit
conventions attached to the domain. For example, in Blocksworld problems no blocks
ever start off in two places at the same time, although there is nothing to prevent this
in the syntax of the domain description. As a result of this constraint and because of
the behaviours of the objects in the domain, there are no reachable states with objects
in two places.

Logistics problems provide another example: there are always goals requiring
packages to be delivered to specific locations, however, there are no goals for vehi-
cles. This means that goals of packages being in trucks or planes and goals of either
of the vehicles being at locations are never posed for this domain. These constraints
mean that it is often possible to consider using a partial generalised policy.

Definition 4.1.5 A partial generalised policy πΣ, for sets of states S ∈ wff(Σ) and

actions A ∈ wff(Σ), is a partial map πΣ: S × Goals→A.

It is not only domain conventions that focus us on particular subsets of the goals.
For a particular problem, the goal is independent from the particular language used to
model the problem. In particular, we will only solve goals that can be expressed in Σ0.

41

Chapter 4. Control knowledge

This is appropriate because the enhancements are intended to support planning for the
described language.

4.1.3 Instantiating the policy

A generalised policy is intended to solve arbitrary problem instances in a planning
domain, exploiting explicit knowledge of the goals to direct the actions to achieve
them. However, it is not only defined for different initial states and goals in the same
state space. A specific problem instance will contain its own collection of particular
objects and therefore its own sets of states, goals and actions. A generalised policy
for a domain is therefore parameterised by object parameters and it is the appropriate
instantiation of these parameters that represents the generalised policy applicable to a
particular problem instance.

Definition 4.1.6 A parameterised partial generalised policy πΣ[O], for a particular

set of objects, O, sets of states S[O] ∈ wff(Σ) and actions A[O] ∈ wff(Σ), is a partial

map πΣ[O]: S[O]×G[O]→ A[O].

on tableput()
1 2 1

2 2 1 1

1
2

21 2

[,] () put

() on tableput

on table

×
×

→
→

× →

Figure 4.2: An example of instantiating a generalised policy for a particular 2 block
Blocksworld problem. In this illustration the coloured blocks represent variables and
the numbered blocks provide an example of particular problem constants.

This definition generalises the partial generalised policy to different state spaces.
Figure 4.2 illustrates how part of the mapping is bound to constants from a particular
problem instance. As these policies are defined for a language, Σ, the solution will
capture a solution to the problem in the states and actions in that particular restricted
view. In the context of a specific problem this can be used to identify a single action
sequence, or a plan. We observed in Chapter 3 that a consequence of Theorem 3.2.2
is that a plan for a language, Σi, on a chain of language restrictions, Σ0, . . . ,Σn, is

42

Chapter 4. Control knowledge

usable as a plan for Σ0 using co-execution. In Chapter 3, we considered the language
enhancements with respect to a particular problem. Planning domains define a set
of related problems that share operators and predicates and are commonly governed
by domain conventions. We therefore consider that the selection of an appropriate
language is made for the domain and each problem is enhanced using the same steps.
The definition is made with respect to an enhanced domain, while in practice each
problem is enhanced from the described model individually.

Our definition of a parameterised partial generalised policy generalises the defini-
tion of a generalised policy in (Khardon, 1999a) to a more general chain of language
enhancements. It is parameterised partial generalised policies that we learn in this
work and we refer to these as policies in the proceeding chapters.

4.2 Computability of the policy mapping

Parameterised partial generalised policies present an attractive formalism: the solution
to groups of problems are represented by a single policy. The challenge is how to
represent the policy in an efficient structure that can be manipulated by a computer
program. In related work (Khardon, 1999a; Martin and Geffner, 2000; Fern et al.,
2006; Levine and Humphreys, 2003) the mapping is divided into abstract situations.
The argument is that even though there are an infinite number of possible states, they
fall into a finite number of abstract situations. The key is that a single course of action
is appropriate in each of the concrete states represented by a single abstract situation.

In Khardon (1999a); Martin and Geffner (2000); Fern et al. (2006); Levine and
Humphreys (2003), each abstract situation and associated course of action is repre-
sented as a production rule. These individual production rules are combined to com-
pute the mapping for the policy. The key issue is capturing the antecedent and conse-
quent of each rule at an appropriate level of abstraction. If the rules are too specific
then they will be expensive to exploit (Minton, 1990). If they are too general then the
course of action will be ineffective for specific instances. The important point here is
capturing control knowledge at the most appropriate level.

In this section we introduce the rule based policy (RBP), our representation for
parameterised partial generalised policies. The rule antecedent evaluation context and
the antecedent language are defined. In the next section, we compare the representation
work to related work.

43

Chapter 4. Control knowledge

4.2.1 Policy representation

In this work we follow an approach to grouping the rules that has been applied in
similar work (e.g. Khardon, 1999a). The rules are ordered and put in a list. The first
rule that has a satisfied antecedent is selected and its consequent is interpreted as the
value of the rule system. We will sometimes use the expression rule firing to express
this selected rule. This ordering establishes a simple resolution mechanism, by placing
a priority ordering over the rules the rules earlier in the list get the first chance to
fire. This ordering impacts on the interpretation of later antecedents. In particular, the
antecedents of rules later in the list are evaluated only when antecedents of earlier rules
have not been satisfied.

There are several advantages of the rule representation. Rule systems are intuitive
for humans to construct and intuitive for us to interpret the knowledge stored in them.
Under certain assumptions, rules can be evaluated efficiently as part of planning. An-
other advantage is that the execution trace is observable: the reason for an action being
applied is given by the fired rule.

Truck

Location 3

Location 4Location 1

Location 2

(a) Example initial state

Truck

Location 3

Location 4Location 1

Location 2

(b) Example goal

Figure 4.3: An example transportation problem

We use a simple transportation problem, illustrated in Figure 4.3, to support the
definition of our representation. The problem involves a single transporter that can
move between any two locations in a single move. There are several packages that
must be picked up and delivered by the transporter.

One way of defining a policy is as the following list of rules:

1. if the package is not at its goal location then pickup the package.

2. if the truck is at the package’s goal location then drop off the package.

44

Chapter 4. Control knowledge

3. if the package is not at its goal location then move to the package’s location.

4. if the truck contains a package and is not at the package’s goal location then
move to the package’s destination.

5. if the truck is not at its goal location then move the truck there.

Early rules have priority and because of this the transporter will not move until all
pickups and drop offs are completed at the current location. Otherwise the rules would
have more precise antecedents. For example, before the truck moved to its goal then
we should be certain that all packages have been delivered.

In this work we use a context that combines the current state and the propositions
that hold in the goal. The antecedent of each rule is a conjunction of two formulas φ
and ψ. The interpretation is the evaluation of the conjunction φ ∧Gψ; φ is evaluated
in the current state and ψ is evaluated in the goal.

An example drop off rule (rule two in the policy above) has φ = (at truck

Glasgow) ∧ (in spoon truck), and ψ = (at spoon Glasgow). The an-
tecedent is satisfied if the truck is at Glasgow with the spoon in it and the goal is to
have the spoon at Glasgow. In general, this provides the context necessary for these
formulae to distinguish between every state and goal pair and therefore represent a
partial generalised policy.

4.2.2 Relational control knowledge

The definition of a policy in Definition 4.1.6 states that the policy is parameterised by
the problem objects. In practice, the efficient representation of a policy requires that
parameters be bound by need rather than as a single step a priori. This means that,
when represented as rules, a policy will be captured by a collection of parameterised
rules and a rule will be applied by determining a particular instantiation of the param-
eters that satisfies the rule condition, φ ∧Gψ. There is a single set of variables for the
antecedent and consequent of the rule. The formulae can therefore tightly constrain the
instantiations of the actions. For example, the move to drop off rule can be expressed
in the following way.� �

(: r u l e MoveBr ie fcaseToDropof f
: c o n d i t i o n (and (a t ? bc ? from) (i n ? o b j ? bc))
: goa lCondi t i on (and (a t ? o b j ? t o))
: a c t i o n m o v e b r i e f c a s e ? bc ? from ? t o)
� �

45

Chapter 4. Control knowledge

The formula, φ, asserts that a briefcase is at a location and that there is an object
in it. ψ asserts that the object has a goal and its location is the same as the destination
of the truck. The rule is applicable to a problem state if some briefcase, object and
locations exist in the problem’s constants so that the unified formulae are satisfied.
The rule captures the concept of moving to drop off a package at its goal.

Parameterised rules are far more powerful: instead of referring to individual ob-
jects, a rule condition can capture the important relational properties of the objects that
lead to a particular action selection. The rule representation presented here is equiva-
lent to those used in L2ACT (Khardon, 1999a) and L2PLAN (Levine and Humphreys,
2003).

We have chosen a limited language for φ and ψ. The formulae are simply con-
juncts of predicates. This allows us to study the effect of changing the problem model
language with limited interaction between the context and the rule language.

4.2.3 Properties of the policy representation

The rule language can capture the mapping of a restricted set of policies. There are
two limitations in particular: the antecedents of the rules rely on a finite number of
propositions; and there are only a finite number of abstract situations that can be treated
by a policy. In this section we define these as the set of finite representable propositions
and the finite distinguishing policies. We will use these properties to motivate the
investigation presented in Chapter 5.

Finite representable propositions

Definition 4.2.1 For a problem model language, Σ, and the rule language presented

in this chapter, a proposition, p, can only be modelled if there is a bounding parameter,

n, such that when the number of symbols in the formula φ ∧ Gψ is bound by n, the

proposition can be modelled in any problem. If this does not hold for p then it can only

be modelled in a subset of the problems. We call these propositions finite representable.

For example, in a Transportation problem, using a standard modelling convention,
determining whether a package can be reached by a truck in n steps requires n + 2

propositions. In a particular problem, a package could be any number of steps away
and therefore a bound cannot be placed on n to assert whether a package can be reached
by a truck. The reachability proposition is not finite representable in general. A propo-
sition such as three-steps-away is finite representable.

46

Chapter 4. Control knowledge

In our approach, the symbols in φ and ψ are predicates that are determined for a
particular domain model. For a particular binding, each predicate is instantiated and
represents a specific proposition. This means that we can model propositions that
rely on a fixed number of propositions (and therefore finite representable) in the well-
formed formulae of Σ and this number does not change with the problem. A similar
observation was made in Khardon (1999a).

Finite distinguishing

Definition 4.2.2 For a given problem model language and policy representation, a

policy is finite distinguishing if it only distinguishes between a finite number of ab-

stract situations. As a consequence, there is a number, n, that bounds the number of

partitions in the infinite number of states. This means that the correct behaviour for a

particular state can only be determined using a maximum of n rules.

In some problems the number of options will increase as the problem size grows
in size. As there can be an arbitrary number of options, comparing these alternatives
can require an arbitrary number of abstract situations. For example, in a transportation
problem, to select the next best place to move requires comparing each of the alter-
natives, and characterising the differences between these, such as distance, number of
packages, contribution to overall goals and so on, may require an arbitrary number of
abstract situations.

For a given domain, an RBP represents a policy using a set number of rules, which
each define the course of action for an abstract situation. This means that the states are
only partitioned into a finite number of partitions and the policy representation is finite
distinguishing.

4.3 Evaluation of the rule antecedent

There is a tight relationship between the rule condition language and the vocabulary
provided by the context. The context for the rule condition evaluation defines the
vocabulary that can be used to construct rule antecedents, or rule conditions as they are
more commonly named. The antecedent language defines the way that the words in the
context can be combined. As a consequence the context must include building blocks
such that all propositions that are necessary for making action selection decisions can
be modelled in the rule condition language. In particular, all approaches to capturing
generalised policies have included the goal as part of the context (Khardon, 1999a;

47

Chapter 4. Control knowledge

B

C

A

Current State:
(on B TABLE)
(on C A)
(clear B)
(clear C)
(HandEmpty)

Helpful
Actions:
Pickup B

Statics:

Open Goals:
(on B C)

State:
(on B TABLE)
(on C A)
(clear B)
(clear C)
(HandEmpty)

Goals:
(on B C)
(on C A)

(a) State and Goal
Context

B

C

A

Current State:
(on B TABLE)
(on C A)
(clear B)
(clear C)
(HandEmpty)

Helpful
Actions:
Pickup B

Statics:

Open Goals:
(on B C)

State:
(on B TABLE)
(on C A)
(clear B)
(clear C)
(HandEmpty)

Goals:
(on B C)
(on C A)

(b) Helpful Actions
Context

Figure 4.4: Two examples of context information for Blocksworld.

Martin and Geffner, 2000; Yoon et al., 2002; Levine and Humphreys, 2003). In this
subsection, we discuss how our representation compares with other approaches.

4.3.1 The current state

In the majority of the literature the current state is part of the context (e.g. Khardon,
1999a; Martin and Geffner, 2000; Fern et al., 2006; Levine and Humphreys, 2003).
This is intuitive as the decision of the best action to make at the current state will usu-
ally have some dependence on observations made over the relationships in the current
state.

In ROLLER (de la Rosa et al., 2008) the current state is not part of the context,
instead the context includes a subset of the applicable actions called the helpful action
set (defined in Chapter 2), the static literals from the problem and the open goals. The
helpful actions capture a local view of the relationship between the state and the goal.
As such the helpful actions and the static facts are seen as a substitute for the current
state. In Figure 4.4 the helpful action context is shown for a Blocksworld problem
alongside a more common context composed of the state and goal. The set of statics
for Blocksworld problems will provide no contextual advice between problems as it is
empty for any problem. Only those goals that are not satisfied in the current state are
available for reasoning.

48

Chapter 4. Control knowledge

When the state is used in the context the rule condition has to reason directly over
the rich problem structures, such as stacks of blocks in a Blocksworld problem. To
express these conditions we either rely on concepts being added to the description of
the state (Khardon, 1999a), or the rules must be expressed in a rich language (Martin
and Geffner, 2000). The use of the helpful action context in ROLLER avoids this issue
as an explicit representation of the state is not used. For example, in Blocksworld
problems, it is often necessary to reason over a stack of blocks, represented as several
on relationships. Consider three blocks in a stack A, B, C, with C at the bottom,
as illustrated in Figure 4.5. If the goal is simply to have block C clear then we must
first remove block, A, from block, B. In order to realise this requires that the planner
understands that block, A is on block, B and block, B is on block, C and that block,
B cannot be moved until it is clear. It is demonstrated that the helpful action context
is suitable for certain domains (de la Rosa et al., 2008). However, in domains with
resource management such as Zeno Travel and Logistics it is reported that the context
is not sufficient for action selection.

CC
B
A

(a) State

CC
B
A

(b)
Goal

Figure 4.5: Three blocks stacked on top of each other. The goal is to free the bottom
block.

4.3.2 Achieved goal context

In Yoon et al. (2002) the context is extended with derived propositions that model the
achieved goals. Concretely, an achieved goal proposition holds if the proposition is
true in the state and goal. These propositions are particularly useful for constructing
recursive propositions, such as the well-placed proposition for Blocksworld prob-
lems. A block is well-placed if it is in its goal position and all blocks underneath it
are well-placed. Due to the limited language we we have selected, this context can be

49

Chapter 4. Control knowledge

simulated for a proposition p, by including p in the conjunctions of φ and ψ.

4.3.3 Planner specific context

Other contexts have been used to support rule application in related areas. For example,
the actions in the relaxed plan along with their add and delete effects are included as
part of the context in Yoon et al. (2006). This is appropriate, as the rules are used to
improve a relaxed plan heuristic search. In particular, the aim is to compensate for the
weaknesses of the heuristic. It is demonstrated that these aspects of the context are
important in learning effective rules. This has also been used in Obtuse Wedge (Yoon
et al., 2007). One of the configurations of Obtuse Wedge uses an RBP as a probe to
generate the neighbours in a best-first search. In Yoon et al. (2008) the impact that this
context has on the planner and this is positive in most of the tested domains. Whether
it will have a similar impact on direct RBP application is unclear.

The rules in PRODIGY are also used to assist heuristic search. In Section 2.3 we
presented the decision points that can exploit control knowledge. The decisions that
are made at these decision points are included as part of the context. This allows
the choices that have been made to effect future decision making. In our approach
the language for communicating decisions is through action selection. However, in
Chapter 3 we observed that the ordering of action selections do not accurately reflect
the order that decisions are made. In order to make these selections we often have
to make choices that are relevant to future action selections. In Chapter 5 we will
investigate how recording these decisions in the enhanced model can save repeating
the decision process in subsequent steps.

4.3.4 Rule language

A common difference in rule representation is to combine the state and goal antecedent
formulae φ and ψ. The benefit of this change is that the antecedent is a single formula
that can include both goal and state propositions. The predicates of the goal proposi-
tions are relabelled so that a distinction can be made between propositions in the state
and propositions in the goal. Similar approaches are made for other extensions to the
context. However, our rule language restricts the two formula to conjunctions of the
propositions so the separation has no effect on expressivity. Similar relabelling is used
to include the achieved goal context (Yoon et al., 2002) and relaxed plan context (Yoon
et al., 2006).

50

Chapter 4. Control knowledge

Several of the state of the art rule learners use a concept language instead of a
predicate logic to express their rules. This was motivated by the observation that it is
often useful to reason about classes of objects when making action choices (Martin and
Geffner, 2000). The concept languages allow certain propositions to be derived from
the described state. For example, in the concept language used in Martin and Geffner
(2000) the blocks that in the goal are positioned above blocks that are currently well-
placed can be expressed as: (∀on∗g . ons = ong). It is demonstrated that effective rules
expressed in concept languages can be learned (Martin and Geffner, 2000; Yoon et al.,
2002).

However, the rules expressed in these languages can be difficult to understand.
This can make the control knowledge difficult to interpret and validate. For example, in
(Yoon et al., 2006) they are unable to provide any intuitions as to what knowledge their
rules describe. Also, there are certain types of propositions that cannot be expressed in
the languages (de la Rosa and McIlraith, 2011; Fern et al., 2004). In general, there is a
trade off between selecting a concise language and selecting a language that generalises
to a large set of domains. Our approach is to identify attributes of problem models that
are difficult to express in control knowledge and model them in an enhanced problem
model.

We want to investigate how the vocabulary available for expressing rule antecedents
influences the policies that we can represent. We have chosen a basic rule language so
that our results are not influenced by the use of the vocabulary. It has the benefit that
the rules are clear and understandable. It should also be noted that we do not lose any
power of expression by using this limited language. This is because that any propo-
sition that can be derived from the language, Σi, is expressible in some language, Σj ,
further along a chain of language restrictions.

4.4 Alternative generalised policy representations

There are alternative representations that lead to plans that are applicable in more than
a single problem. Of course a single sequence of actions can be a solution to a set of
problems that are strongly related. Approaches to solving MDPs generate policies as
defined in Definition 4.1.1, which can solve all of the problems that share a goal and
object set. Generalised policies have been represented in a program-like language in
LoopDISTILL (Winner and Veloso, 2007). In this subsection we discuss the relation-
ship between generalised policies and the plans generated in conformant planning and
plan-space planning.

51

Chapter 4. Control knowledge

4.4.1 Conformant planning

In conformant planning (e.g. Smith and Weld, 1998) the initial state is not fully defined.
This means that there is a set of potential initial states. As actions are applied to the
world there are a set of possible states. The problem is to discover a sequence of
actions that will achieve the goal for all of the possible initial state configurations.

This is related to the problem of capturing a policy: the problem has a single set
of objects and a specified goal and a policy can be used to solve the problem for any
initial state configuration. The generality of the problem sets solvable by a conformant
plan is equivalent to our original definition of a policy (Definition 4.1.1). In contrast a
generalised policy can solve problems with different sets of objects and different goals.

However, in conformant planning the initial state configuration is not known at
execution so a single plan has to work for any of the possible configurations. This
means that action selection must be done with care. Application of an action must be
safe in any of the states that are possible progressions from an initial state. In contrast
to this, when using a policy, the initial state must be known at execution so that the
action to apply can be looked up in the policy mapping.

Another difference is that in conformant planning the uncertainty in action appli-
cation is the result of actions with conditional effects combined with the uncertainty in
the state, whereas policies can be used with problems that have actions with any form
of uncertainty. In this work we focus on deterministic problems.

4.4.2 Partially ordered plan

The plans discovered by plan-space planning are partially constrained (Ghallab et al.,
2004). In particular, the actions in the plan might contain variables. These elements
are constrained so that any instantiation leads to a valid plan. However, they also add
some variability into the plan. This means that the same plan can be applied to several
problems, in the sense that more than one binding can be applied to the same plan.
However, this is reliant on particular relationships between the initial states and goals
of problems.

The main flexibility of partially ordered plans is in the actions selected to solve the
problem. Of course, this must be restricted so that the solution is constrained to ensure
that any instantiation of the plan is a solution plan. In the common representation a
fixed number of operators are selected that will appear in every instantiation of the
problem (e.g. Penberthy and Weld, 1992). This forces certain instantiation decisions
to be made and thus reduces the generality of the solution. A partial order plan can

52

Chapter 4. Control knowledge

generate different orderings of actions that cannot be captured by a policy formalism.
However, unlike the generalised policy, the number of actions is defined in the plan,
and the plan is intended to solve a single problem.

53

CHAPTER 5

AN ENHANCED PROBLEM MODEL

We have observed that the described model of the planning problem does not always
provide the necessary vocabulary for expressing general policies. In Chapter 3 we
proposed a rich planning model that would support planning. We defined a chain
of language restrictions that bridges the gap between the described model and this
ideal planning model. The mapping of our general policy (Chapter 4) is computed
using rules that are represented in the language of the problem. This means that as we
enhance the language of the problem the mapping computation is made more powerful.

The theoretical model provides a framework and in this chapter we show how this
can be used in practice via the selection of meaningful samples of possible chains. An
important step in this direction is to interpret the limitations of the RBP representa-
tion within the framework of language steps. The limitations lead to poorly specified
control knowledge in some domains. We identify the general problem classes that
characterise the benchmark domains that are effected. The limitations and problem
classes guide the selection of chains and we investigate chains that support RBPs in
these domains.

In this chapter, we develop an architecture that supports exploration of the chains
defined in Chapter 3: this architecture can be used to co-execute a policy in the en-
hanced model and the described model. We characterise the planning problems that
cannot be treated directly with the RBP. We identify three chain step properties and use
the problems to explore each, in order to develop a selection of appropriate planning
models.

54

Chapter 5. An enhanced problem model

5.1 Enhancing the problem model

In Chapter 3 we defined the steps in a chain of language restrictions and in this chapter
we will consider specific steps that we could make. It is the aim of this section to
present our architecture that allows these steps to be realised. More precisely, the
approach that we have taken to co-execute an RBP in an enhanced problem model and
the described model.

We begin by defining special purpose solvers, as these play a key role in enhancing
the language and interpreting the richer language in the vocabulary of the original
problem model. We continue by presenting the architecture and defining the extension
of PDDL that we use to express enhanced domain models.

5.1.1 Special purpose solver

A special purpose solver is an implementation of a step in a chain of language re-
strictions, Σ0, . . . ,Σn. Although the functions of solvers are arbitrary they adhere to
an interface that allows them to be treated uniformly. The solvers implement gen-
eral steps that are parameterised by a specific domain and problem. We present our
description for a parameterised special purpose solver.

Each solver, solveri, has a set of actions and propositions that it models: Asolveri

and Psolveri . Each solver also has a second set of propositions, ssolveri , that represents
the propositions modelled in the current state. Finally solvers implement an apply

function: applysolveri : AΣi 7→ A∗Σi−1
and an interpretation function, IΣi−1→Σi :

SΣi−1
7→ null. The interpretation function is used to initialise the internal state of the

solvers. The apply function applies an action to the solver’s part of the model and
then returns the translation as a finite length action sequence in the previous language
in the chain. This can also be the null action (⊥) if the change is not built from actions
in lower languages.

For convenience we wrap the default behaviour of the described model, M|Σ0 , as
the base solver, solver0. The solver models the actions and propositions that are mod-
elled in M|Σ0: Asolver0 = {a | a ∈ wff(Σ0)} and Psolver0 = {p | p ∈ wff(Σ0)}; the
current state, ssolver0 , is initialised as sinit, the initial state of M|Σ0 . The apply function
for solver0 simulates the model’s transition function and returns ⊥:� �
def applysolver0 (a) :
ssolver0 = γΣ0

(ssolver0 , a)

re turn ⊥
� �
This solver captures the behaviour of M|Σ0 .

55

Chapter 5. An enhanced problem model

We can derive the set of modelled actions and propositions after i steps through the
chain of language restrictions as the union of the previous sets with the sets modelled
by the solver:

Ai = Ai−1 ∪Asolveri;
Pi = Pi−1 ∪Psolveri .

Each solver models its set of propositions and the actions that it defines can effect
those propositions. If an action defined further along the chain changes the proposi-
tions then this is achieved through the language of this solver. To apply an action,
a(Σn), we apply the following recursive function:� �
def s t a t e C h a n g e (a(Σi)) :
a0, . . . , an(Σi−1) = applysolveri (a(Σi))

i f a0, . . . , an == ⊥ : re turn
f o r j = 0 . . . n :

s t a t e C h a n g e (aj(Σi−1))
� �
This function is passed an action, a, in some language, Σi. The associated solver is

used to apply the action, with the possible side-effect of creating a single, or a sequence
of actions expressible in the language, Σi−1. The action sequences are taken in turn
and each is applied through recursion. This is sufficient when a language step that
models an abstract action is formed of actions from the previous language and has no
side-effects, which is consistent with the framework developed in Section 3.1. As the
actions are composed from previous layers and solver0 always returns⊥, the loop will
complete if the apply functions complete.

The state of the current enhanced model is the union of the partial states modelled
by each of the solvers:

sC =
⋃n
i=0 ssolveri .

So far we have dealt with the progression of states. However, we have not men-
tioned how the initial state of the solvers is determined. Each solver has an interpreta-
tion function, IΣi−1→Σi , that takes as input a state in the previous language. The solver
uses this state to initialise the propositions that it models. In other words, compute the
set ssolveri .

Our chain definition means that enhanced propositions are either richer interpreta-
tions of states, or they are commitments to future decisions. The former case results
in a one-to-one mapping between states; the latter case implies a state where the com-
mitment has not been made. We observe that it is intuitive to select the state with no
commitments.

56

Chapter 5. An enhanced problem model

5.1.2 The architecture

Parse Initialisation
πΣn roll-out

ssolver0

ssolver1

ssolvern
...

...

solver1

M|Σ0

solvern

while (g 6⊂ ssolver0) :

Figure 5.1: The architecture.

In this subsection we present our architecture. The architecture can be split into
three phases: parsing the model, the initialisation of the models and policy roll-out,
illustrated in Figure 5.1. The model is expressed in terms of special purpose solvers
and their parameterisation for a particular domain. The language for expressing the
enhanced domain models is defined in subsection 5.1.3. The enhanced domain model
and problem models are parsed resulting in a list of solvers: solver0, . . . , solvern.
The solvers are initialised using the specific problem and then the policy is repeatedly
applied until the goal is achieved. In this subsection we explain the initialisation phase
and the policy roll-out process.

Initialisation

The initialisation of the system establishes the state of the two models: M|Σ0 and M|Σn .
The process is illustrated in Figure 5.2.

The model M|Σ0 is presented as part of the input to the planner and is used to
construct solver0 as described above.

The main aspect of this phase is initialising the solvers’ states. This is achieved by
incrementally enhancing the state. The ith solver can derive its state from a state in
Σi−1 and ssolver0 is defined as the initial state. Therefore, we can compute the states of
the solvers iteratively:

ssolver1 = IΣ0→Σ1(ssolver0), . . . , ssolvern = IΣn−1→Σn(
⋃n−1
i=0 ssolveri).

At each step the formula that was presented for computing the state is used on the
set of solvers initialised so far. This state is then interpreted by the next solver, which

57

Chapter 5. An enhanced problem model

IΣn−1→Σn(
⋃n−1
i=0 ssolveri)

IΣ0→Σ1(ssolver0)

...

...

solver1

solvern

ssolver0

ssolver1

ssolvern
...

M|Σ0 si

Figure 5.2: The initialisation of the enhanced model.

initialises its propositions in the context of this state. This process is complete when
all solvers are initialised. We now have the initial state in M|Σ0 and can construct the
initial state for M|Σn . We are ready to proceed with co-execution of the models.

Policy roll-out

At this stage we now begin the process of policy roll-out. The process is illustrated in
Figure 5.3.

ssolvern

M|Σ0

...

sC a

stateC
hange(a)

πΣn

ssolver0

ssolver1

M|Σn

⋃
ni=

0
s
so
lv
er
i

Figure 5.3: The exploitation of solvers to compute the enhanced model.

The current state is computed by combining the partial states of the solvers:

sC =
⋃n
i=0 ssolveri

The policy, πΣn , maps to an action, a(Σn). This action is then applied to the current
state using stateChange(a), as defined in subsection 5.1.1. As the stateChange

58

Chapter 5. An enhanced problem model

function propagates the action through the solvers, the action is interpreted for limited
languages. In particular, a solver that models propositions that are effected by the
action makes these changes themselves. As such the state of solver0 represents the
state of M|Σ0 . This means that when g ⊂ ssolver0 the problem is solved.

5.1.3 Enhanced model description

Dornhege et al. (2009) define an extension to the PDDL language called PDDL/M.
PDDL/M defines an interface for extending a problem model using special purpose
solvers. However, there are several conceptual differences between our work and
theirs. This means that we have developed an alternative language for integrating
solver based domain extensions.

There are two main difference between our work and the work in Dornhege et al.
(2009). The first is that in PDDL/M the solvers model a richer set of propositions and
action effects, whereas the solvers in this work model a richer set of propositions and
actions. This means that we have to extend the language so that we can define richer
actions instead of effects.

The second difference is that the solvers that are the focus of Dornhege et al. (2009)
introduce new information to the model. They are static procedures that behave largely
independently to the propositional state. In contrast, our solvers enhance the informa-
tion in the problem. They are parameterised and there can be several instances of the
same solver. As such the assumptions of static solver methods and a modular separa-
tion of the solvers are not appropriate.

In this subsection we define the extension to PDDL that we use to define enhanced
models. Our approach is split into two files: the first describes the enhanced domain
model; the second is the solver listings file that describes the solvers and modules that
provide the implementation of the domain enhancements. An example of these is listed
in the Appendix B. We examine how our approach resembles PDDL/M, and how and
why it deviates from it.

An extension to PDDL

We extend STRIPS with four declaration constructs: a declaration for each solver; a link
to a file defining the solvers; a declaration of the active predicates; and a declaration
for each of the active actions. A different approach is used in PDDL/M: a separate
modules section is used to define all of the extended language. Our language serves to

59

Chapter 5. An enhanced problem model

extend the model using syntax similar to the existing PDDL constructs. The language
for defining solvers is detailed in the following part.

Solver definitions There are two parts to the solver declarations. There is a path to
the listings file and there is a header for each solver used in the model. In particular,
if a solver is relied on to compute an active predicate or action then it should have a
solver heading in the model definition.

The path indicating where the solver listings file is located is declared using the
solverListings tag:
(: s o l v e r L i s t i n g s S o l v e r L i s t i n g F o l d e r / D r i v e r l o g L i s t i n g s)

Solver headers are declared using the solver tag and a type tag; they declare the
name and type of the solver. We require both of these as there can be several instances
of the same solver. This is an important difference from PDDL/M where there is a single
instance of each solver. For example, if there is a road and a path in a problem then we
have a single solver and make an instance for each structure. The same problem would
require separate solver descriptions in PDDL/M.

The name is the name that is used to reference the solver in following declarations.
The type is the type of solver. This is a link to the Java class that the solver is an
instance of.
(: s o l v e r G r a p h A b s t r a c t i o n 0

: type s o l v e r s . s o l v e r s . G r a p h A b s t r a c t i o n)

Active predicates play the role of communicating the value of propositions that
are modelled by the extended model. The active predicates are defined using an
activePredicates tag in a manner analogous to predicate definitions in PDDL.
Once an active predicate is defined it can be used in the conditions of actions. An
example of the syntax for active predicates is:
(: a c t i v e P r e d i c a t e s

(d r i v e− t r u c k c o n n e c t e d ? from − l o c a t i o n ? t o − l o c a t i o n)
(w a l k c o n n e c t e d ? from − l o c a t i o n ? t o − l o c a t i o n)
. . .

)

In Dornhege et al. (2009), active predicates are called condition checkers. They
are defined individually and declare the method that should be called to determine the
value of the condition. As our solvers are generated they register the predicates that
they determine.

60

Chapter 5. An enhanced problem model

Enhanced-actions are actions that are modelled in the extended model. Our syntax
follows PDDL for operators; except we use a separate activeAction tag, and the
effect is replaced with a reference to the solver that realises the effects of the action.
An abstraction of the drive-truck operator in Driverlog is presented here:

(: a c t i v e A c t i o n l o n g d r i v e− t r u c k
: parameters
(

? t r u c k − t r u c k
? loc−from − l o c a t i o n
? loc− to − l o c a t i o n
? d r i v e r − d r i v e r

)
: p r e c o n d i t i o n
(and

(d r i v e− t r u c k c o n n e c t e d ? loc−from ? loc− to)
(a t ? t r u c k ? loc−from)
(d r i v i n g ? d r i v e r ? t r u c k)

)
: e f f e c t A p p l i e r G r a p h A b s t r a c t i o n 0

)

In PDDL/M there are effect-applicators that model single action effects instead of
modelling the application of an action. They have a mixed semantics. Their primary
function is to make the prescribed change to the extended state. However, they can
also update the numeric fluents. Effect applicators can be used anywhere that an action
effect can be applied. However, in PDDL/M they are surrounded by square brackets.
An example of an effect-applicator in the PDDL/M syntax is shown below:
(: modules

(putDown ? p − package ? t − t r u c k
(p0)
(powerLevel ? o)
e f f e c t pu tDown@l ibTra j ec to ry . so)

)

After the predicate name and parameters there are values that are set by the solver.
In the example the value designated to p0 by the solver will become the new value
of powerLevel in the state. In this example there is only a single value set, but
there can be any number. This feedback declaration allows for a clear indication of the
values that can be changed by external actions. However, only numeric fluents can be
manipulated by the solvers in this way.

Our language is limited to propositions. However, the solvers can change the
propositions in the state and therefore could change numeric fluents if they existed.
However, due to the chains that we investigate, the changes would have to act on flu-
ents in the enriched model, or be the equivalent of the effect of an action in Σ0.

In our language we reference one of the defined solver instances. In PDDL/M a
function in a C library is referenced (for example, putDown@libTrajectory.so).

61

Chapter 5. An enhanced problem model

In both cases the reference indicates where to find the action applier.

A solver instantiation language

The solver instances relied on by a particular enhanced domain model are specified in
a separate file called the solver listings file. In this file solvers and the modules that
these solvers depend on are described. The first part of the listings provides a header
for each module; because the solver headers are part of the domain model, this means
that the name and type of each module and solver is declared up front. The following
part of the listings file describes each of the modules and solvers.

Module headers are defined in the same way as the solver headers, except using a
module tag.
(: module S t a t i c G r a p h M o d u l e 2

: type s o l v e r s . g r a p h a b s t r a c t i o n . S t a t i c G r a p h M o d u l e)
(: module S t a t i c G r a p h 1

: type s o l v e r s . g r a p h a b s t r a c t i o n . S t a t i c G r a p h)
(: module MoveAction0

: type s o l v e r s . g r a p h a b s t r a c t i o n . MoveAction)

The name is used to reference the module in the descriptions that follow. The type
is a reference to java class.

Solver and module descriptions parameterise the solvers and modules using the
solverDescription and moduleDescription tags. Each solver and module
has its own collection of parameters or attributes. These parameters take the form of
references to modules and descriptions using the module and description tags. The
modules provide specific implementations based on the domain properties. For exam-
ple, the module that specifies the graph implementation will provide the implementa-
tion for a static, turn-based or dynamic graph.
(: s o l v e r D e s c r i p t i o n G r a p h A b s t r a c t i o n 0

: Encoding (: module S t a t i c G r a p h M o d u l e 2)
)
(: m o d u l e D e s c r i p t i o n S t a t i c G r a p h M o d u l e 2

: Map (: module S t a t i c G r a p h 1)
: MoveAction (: module MoveAction0)
: E n a b l i n g P r e d i c a t e s

(: d e s c r i p t i o n (d r i v i n g ? d r i v e r ? t r u c k #))
)
(: m o d u l e D e s c r i p t i o n S t a t i c G r a p h 1

: MoveAction (: module MoveAction0)
: M a p P r e d i c a t e s

(: d e s c r i p t i o n (l i n k ? loc−from ? loc− to #))

62

Chapter 5. An enhanced problem model

)
(: m o d u l e D e s c r i p t i o n MoveAction0

: MoveAction (: d e s c r i p t i o n (d r i v e− t r u c k 0 1 2))
: L o c a t e d n e s s (: d e s c r i p t i o n (a t 0 1))

)

The solvers in PDDL/M are implemented as C libraries and the reference to solvers
are in fact a reference to the C library where the necessary implementation can be
found. In Dornhege et al. (2009) a standard interface is defined that must be imple-
mented by the libraries. We insist that attributes are either other modules or strings with
correctly nested brackets. We use the reflection API1 in Java. If a description or mod-
ule tag exists in the solver listings file then the implementing java class is expected
to have appropriate methods for accepting the parameters. A description method is
passed the attribute name and the description string. A module method is passed the
attribute name and a reference to the module.

This language provides a way of explicitly defining the steps along a chain of lan-
guage restrictions. In Chapter 7 we explain how these extended models can be gener-
ated automatically.

5.2 Structures

Structures are concepts that provide labels for sets of relationships that share certain
properties. These relations can exist between arbitrarily many objects. Structures will
not necessarily be made explicit in a model: a structure can be implied through a series
of transitions and their associated constraints. This leads us to use the term structure
interaction (SI) to refer to related behaviours that act over structures; for example,
iteration through the nodes of a structure. This definition will be made more precise in
later chapters.

In this work, we have focussed on the set of benchmark planning domains used
in the planning competitions. However, structures are important concepts in a wider
collection of domains: for example, it might be instructive to reason about structures
in General Game Playing (Genesereth et al., 2005). Although the discussion here will
assume that the planner has control on all changes in the world, the ideas could pro-
vide useful concepts in environments where this does not hold; for example, reasoning
over sequences of individual moves to predict a future position in a two player game.
In the planning benchmarks, the SIs fall into two groups: structure traversing, and

1http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/reflect/package-summary.html

63

Chapter 5. An enhanced problem model

structure building. Traversal problems involve moving an object between different lo-
cations. Structure building problems involve some notion of attachment of objects and
involve reorganising the objects so that they are attached in a different configuration.
Structures are particularly important in planning as they constrain the possible inter-
actions with the environment. This can cause dead end states, where the goal cannot
be reached, and impact on the number of actions required to transition between states,
which increases the importance of individual action choices in the context of overall
optimality. A structure can also force the planner to commit to a course of actions
many steps before the actions can be applied. In this section we define the traversal
and the building problems and present a selection of important derivatives of these that
generalise important trends in benchmark problems.

5.2.1 Traversal problems

Traversal problems involve moving an object through a constrained structure. This
is particularly important in modelling problems with spatial relationships. In these
problems traversers move between different locations on a map. An important aspect
is that the location of the traverser constrains the actions that the traverser can perform.
For example, in a transportation problem, a traverser picks up packages, but this can
only be done at its current location. The set of objects that can be moved by the move
action are called the traversers and denoted T. The set of positions that an object can
be located are called the locations and are denoted L. We define a function that maps
the traversers to their current location: position : T 7→ (L∪ ⊥) and refer to this as
the location of the traverser.

A key aspect of the traversal problem is the action that moves objects between
locations. The move action, (moveAction t l l′), has three parameters: the traverser,
t, the traverser’s current location, l, and the destination of the move, l′. In practice,
a move action could have more parameters; we represent these constraints through an
accessibility graph. The vertex set of the accessibility graph are the locations in L. The
edges of the graph represent the moves that can be made between the locations. We
construct this graph by applying move actions from the current state. An edge exists
in the graph if there is a move action that connects the locations and exists on a chain
of move actions from the current state.

64

Chapter 5. An enhanced problem model

(li, li+1) ∈ E ⇐⇒
((moveAction t l0 l1) . s1 = γ(s0, (moveAction t l0 l1)) .

. . . .

(moveAction t li li+1) . si+1 = γ(si, (moveAction t li li+1)) .

. . .)

The edges are defined for a particular traverser, t. We therefore have a a set of
graphs, Gs(t) = (V,E), for each state, s ∈ S. This graph identifies the locations that
can be reached by the traverser in the current state using the move action.

Transportation problems

A transportation problem is a traversal problem where the traversers are used to service
package deliveries. As a convention we relabel traversers that deliver packages as
transporters. We extend our language for traversal problems with a set of portables, P.
We augment the position function to map from portables or transporters to locations:

position : (P ∪ T) 7→ (L∪ ⊥).

Our model of transportation abstracts several elements found in transportation bench-
mark problems. A more comprehensive model has been developed in Helmert (2001).

Path opening problems

Path opening problems are traversal problems where a path must be established be-
tween the traverser and a specific target. In general establishing a path requires con-
sideration of the problems over general dynamic graphs. However, in this chapter we
focus on a particular subset of these problems that we call turn based graphs. This is
because the path opening problems in the benchmark domains can be explained within
this structure. We consider a more general set of problems in Chapter 7.

The traversal graph can be changed by opening actions. A solution requires a series
of graph manipulations that establish a path to the target. This process is complicated
by constraints on the opening action, such as proximity of the traverser to open a node
and nodes locked with keys. The nodes in the graphs can be open or closed; if a node
is closed then a traverser cannot traverse to that node. There is a transition graph that

65

Chapter 5. An enhanced problem model

defines the edges that can be traversed and there is an underlying graph that defines the
potential edges. In particular, if a node is open then the edges in the potential graph
are in the transition graph. A static graph to captures the potential accessibility graph
for a traverser, t.

Definition 5.2.1 The graph is static if for any state the edges in the accessibility graph

are the same:

∀s0, s1 ∈ S Gs0(t) = (Vs0 , Es0) . Gs1(t) = (Vs1 , Es1) . Es0 = Es1 .

As a consequence the graph can be computed once and used for any state. We use
SG(t) as the set of graphs for any state. A turn based graph is represented by a set
of static graphs, SG(t), and a mapping from vertices to the Booleans (closed/open),
os : L 7→ B. The interpretation of the mapping is that if os(l) = true then in state, s,
the node, l, is open, otherwise it is closed. If l is open then for traverser, t, every edge,
(l, l′) ∈ SG(t) is in Gs(t).

5.2.2 Structure building problems

Structure building problems involve connecting similar objects together to form a par-
ticular structure. A key concept when planning in a structure building problem is
whether the current structure is correct. In this part we define the important actions
and a graph that represents a state’s structure.

A structure building problem is characterised by an attach action, (attach o1 o2), and
a detach action, (detach o1 o2), each with two parameters: the objects being attached,
or the objects being separated. There is a single graph, Gs = (V,E), for every state in
this problem. V has a vertex for each attachable object and the edge set has an edge
between each attached pair of objects, (o0, o1) ∈ E. The aim in these problems is to
perform operations on the graph so that it matches a specific graph. In the benchmark
problems the structures are defined in goals; however, they could also exist as the
precondition to an action. In this work we are interested in structures that are defined
in the goal of the problem as these structures might be required to be of arbitrary size.
Structures required to satisfy action preconditions have only to be of fixed size. In this
work we consider a specific version of structure building problem called a stacking

problem.

66

Chapter 5. An enhanced problem model

Stacking problem

A stacking problem is a structure building problem that is constrained so that the struc-
tures act like stacks. There is the concept of the top object of a stack, which is the only
object that can be detached from the stack. An object can only be attached to another
object if it is on top of a stack. The initial state is constrained so that the maximum
number of incoming edges to each vertex is one and the maximum number of outgo-
ing edges is also one. The objects will be referred to as blocks, as is the case in the
Blocksworld domain. It has been observed in Yoon et al. (2002) that an important
property in stacking problems is the relationship between the state and the goal. A col-
lection of propositions is defined that represent the intersect of the state and the goal
propositions. If there is a path from a clear block down to a block on the table then the
block is well-placed.

5.3 Selecting meaningful chain steps

In Chapter 4, we observed that the policy representation was limited to finite repre-
sentable propositions and a finite number of abstract situations (finite distinguishing).
There are problems in planning, as we introduced in the previous section, that require
reasoning with problem specific structures, which are naturally constructed from an
arbitrary number of relationships. Researchers have investigated the issues of finite
representability in certain domains, by extending the rule language with the transi-
tive closure (Martin and Geffner, 2000; Fern et al., 2006). An alternative approach
was explored in Khardon (1999a); Levine and Humphreys (2003), where the problem
models were enhanced with recursive support predicates. These approaches have been
demonstrated on block stacking problems. However, it was observed in de la Rosa
and McIlraith (2011) that these features cannot provide guidance between alternative
reachable targets. For example, identifying a path between two locations.

In this work we will further the study of using RBPs over arbitrary structures. In
this section we interpret the limitations of the RBP representation as categories of chain
steps that can lift the limitations. The first two categories: identification and selection
between alternatives and optimising the selection between alternatives, are motivated
by the limitations we have observed in Chapter 4 and the observations made in the
literature (de la Rosa and McIlraith, 2011). We also investigate the effect of varying
the level that these enhancements are expressed, in order to understand how the level
of reasoning impacts on the support provided to the RBP.

67

Chapter 5. An enhanced problem model

Directed connectivity In order to solve structure based problems the planner must
be able to direct search through various SIs, including traversing a graph and stack-
ing blocks. In de la Rosa and McIlraith (2011) it was observed that the current rule
languages and evaluation contexts are not sufficient to make individual steps that con-
tribute to a single target. For example, selecting move actions that combine to reach
a specific node. Each step is made in isolation and therefore the RBP selects to move
towards one of the reachable locations from this state and a different location in the
next state. To direct search through SIs, the planner must be able to identify two pieces
of information: what are the possible SIs and how each of the possible SIs can be done.
This information we call the context of directed connectivity for a particular SI. This
context provides the options for the planner so that it can choose what should be done.
The first category that we explore are chain steps that establish directed connectivity
for specific types of SI.

Optimisation Of course, there could be many applicable SIs. The selection between
these alternatives can greatly effect the resulting plan length. For example, a trans-
portation problem requires sequences of move actions between locations; to select
these effectively requires the careful allocation of packages to trucks. The RBP can
only define a finite number of abstract situations, whereas there can be an arbitrary
number of structure configurations and each of these can imply a different ordering.
This motivates identifying characterising features of the SIs that can be used to distin-
guish good action choices. The second category we explore are the chains that provide
more information to distinguish between alternative SIs.

Level of reasoning In the final category we explore the alternative levels of reason-
ing. The framework accepts languages that span from languages that model actions
that break the planning process into individual decision steps, leading to much longer
plans, to languages that model actions that solve the problem in a single action. The
level of reasoning is an important aspect in expressing concise control knowledge. We
examine alternative chain steps for different levels of reasoning.

In the following sections we will examine each of these types of chain steps and
develop alternative models for lifting the limitations of the RBP representation. We
will evaluate the enhancements in Chapter 6 and further discuss the properties for each
of the alternatives we define.

68

Chapter 5. An enhanced problem model

5.4 Directed connectivity

Directed connectivity is a property that relates properties of a structure to the utility
of reasoning with the properties within search. In particular, we say that if a property
of a structure supports an RBP to identify the possible SIs on the structure, and action
those SIs then the property establishes directed connectivity for that SI. For example,
it has been shown that connectivity is sufficient to establish directed connectivity in
stacking problems (Martin and Geffner, 2000; Yoon et al., 2002), in terms of the SIs of
uncovering specific blocks. This is because any block can be uncovered by unstacking
from the top of its stack, which can be identified through connectivity. However, it is
not sufficient for determining the appropriate steps to perform graph traversals (de la
Rosa and McIlraith, 2011) and its derivative problems. We will typically refer directly
to the vocabulary that represents the property in the planning model. In this section we
examine directed connectivity in the context of the traversing and structure building
problems.

5.4.1 Connectivity

The concept of connectivity is important for identifying the possible SIs. The concept
of two nodes being connected in a graph is well defined: for a graph, G = (V,E),
u is connected to v if there exists a path from u to v; in other words, two nodes are
connected if they are linked by a series of edges. In directed graphs, the series of edges
must respect the direction of each edge. For convenience, we use (v0, . . . , vk) ∈ E to
denote that v0 is connected to vk.

We can define a step from Σi to Σi+1 with a set of propositions. These propositions
model the connectivity between pairs of nodes. For a particular state s ∈ wff(Σi) and
graph, G(s) = (V,E), we define the set of propositions:

∀u, v (u, . . . , v) ∈ E ⇐⇒
(∀s′ ∈ wff(Σi+1)

s′Rs =⇒ s′ |= (connected u v))

Use of connectivity

The transitive closure is effective for expressing rule systems for stacking problems, as
has been demonstrated in Martin and Geffner (2000); Fern et al. (2006).

69

Chapter 5. An enhanced problem model

Definition 5.4.1 The evaluation of the transitive closure, R∗, of a binary predicate, R,

holds for two arguments, x and y, if there exists a chain of R relationships, in some

context, X , that connect x and y.

The transitive closure can be represented as the connectivity property on the graph
with objects as the vertices and an edge for each instantiation of the predicate in the
state from the first argument to the second. If we consider a Blocksworld domain
where moving a block is achieved in a single action, then we can express a policy
using the connectivity propositions using the context of the on predicates in the state.
We consider the more common detach and attach representation in Appendix H.� �
(: r u l e PopBadTower1 (A B C D)

: c o n d i t i o n (and (on A B) (c l e a r A) (on∗ A D) (onTable D))
: goa lCondi t i on (and (on D C))
: a c t i o n moveToTable A B)

(: r u l e PopBadTower2 (A B C D E)
: c o n d i t i o n (and (on A B) (c l e a r A) (on∗ A D) (on C D))
: goa lCondi t i on (and (on C E) (not (on C D)))
: a c t i o n moveToTable A B)

(: r u l e PopBadTower3 (A B C D E)
: c o n d i t i o n (and (on A B) (c l e a r A) (on∗ A D) (on C D))
: goa lCondi t i on (and (on E D) (not (on C D)))
: a c t i o n moveToTable A B)

(: r u l e PushGoodTower1 (A B)
: c o n d i t i o n (and (onTab le A) (c l e a r A) (c l e a r B))
: goa lCondi t i on (and (on A B))
: a c t i o n moveFromTable A B)

(: r u l e PushGoodTower2 (A B C)
: c o n d i t i o n (and (on A C) (c l e a r A) (c l e a r B))
: goa lCondi t i on (and (on A B))
: a c t i o n moveFromBlock A B)
� �
In traversal problems connectivity can determine whether a particular traversal is

reachable. For example, if a transporter has no path between a package’s goal and its
goal then it should not be used to service the delivery.

5.4.2 Shortest path

In practice, the concept of connectivity will often fail to provide any guidance for
traversing in a graph. For example, if a traverser is to be moved between two locations
then it makes sense to move the traverser in the direction of the other location. All of
the locations that are in the same component as the target node will model the con-
nected property. The property provides no way to make incremental progress between
two points (de la Rosa and McIlraith, 2011), resulting in loops and failed execution.

70

Chapter 5. An enhanced problem model

The RBP requires guidance in expressing movement through a path of nodes.
Shortest paths are simple to compute and provide the optimal path between two nodes.
The shortest path between two nodes is a list of edges that connects two nodes and has
least weight. In this work edges have unit weight and so the shortest path is the path
with fewest edges.

Definition 5.4.2 The shortest path between u and v is defined for a graph,G = (V,E),

as:

path− length(v0, vk) = mink(v0, . . . , vk) ∈ E, where v0 = u . vk = v.

We can define a step from Σi to Σi+1 with a set of propositions. These propositions
model the next step on the shortest path between pairs of nodes. For a particular state
s ∈ wff(Σi) and graph G(s) = (V,E), we define the set of propositions:

∀u, v (u, . . . , v) ∈ E, l = path− length(u, v),

v0, . . . , vk (u, v0, . . . , vk, v) ∈ E, s′ ∈ wff(Σi+1)

(path− length(v0, v) + 1 = l . s′Rs) =⇒ s′ |= (shortestPath u v v0)

Use of shortest path

The most direct use of the shortest path propositions is moving a traverser through
the graph in a traversal problem. In these problems the traversers have destinations
and the planner should work to move the traversers towards these. The shortest path
propositions, derived from a traverser’s accessibility graph, indicate the best next step
to take in order to move the traverser from its current location towards its goal. It can
be used to define a single rule policy that solves any such traversal problem.� �
(: r u l e MoveToDes t ina t ion (T r a v e r Loc1 Loc2 Loc3)

: c o n d i t i o n (and (a t T r a v e r Loc1) (s h o r t e s t P a t h Loc1 Loc3 Loc2))
: goa lCondi t i on (and (a t T r a v e r Loc3))
: a c t i o n move T r a v e r Loc1 Loc2)
� �
Of course, this is the most basic traversal problem in a wide variety of problems

that involve moving traversers to specific locations. For example, in transportation
problems a traverser picks up and drops off various packages during a single problem.
A traverser might have several target locations to choose from at one time and this
approach will not be sufficient.

71

Chapter 5. An enhanced problem model

Guidance with multiple targets breaks down

Theorem 5.4.1 The shortest path propositions are not sufficient to support control

traversal through a graph in the context of multiple targets.

Proof We present a counter example to demonstrate that the shortest path propositions
are not sufficient. The problem is illustrated in Figure 5.4: there is a traverser, Trav
and four locations, LocA, LocB, LocC, LocD. Trav starts at LocB, which is
connected to LocC and LocA. The final edge connects LocA and LocD. The problem
involves moving to locations that have some property, aProperty, and performing an
operation; but we simply focus on the movement aspect of the problem. As aProperty

holds for locations LocC and LocD we have two targets that must be visited by Trav.

LocD

LocA

LocC

LocB

Figure 5.4: Traverser with two targets marked in purple.

We can use a similar rule to move traversers towards target locations.� �
(: r u l e MoveToDes t ina t ion (? t r a v e r ? l o c 1 ? l o c 2 ? l o c 3)

: c o n d i t i o n (and (a t ? t r a v e r ? l o c 1) (aProperty) ? l o c 3)
(s h o r t e s t P a t h ? l o c 1 ? l o c 3 ? l o c 2))

: a c t i o n move ? t r a v e r ? l o c 1 ? l o c 2)
� �
We observed in Section 4.2 that several bindings can satisfy a rule in the same

state. For example, this rule is satisfied by the bindings: (Trav,LocB,LocC,LocC) and
(Trav,LocB,LocD,LocA), giving rise to the set of actions: {(move Trav LocB LocC),

(move Trav LocB LocA)}. If we assume that we sort actions alphabetically and select
the first action then we select (move Trav LocB LocA).

In the next state Trav is at LocA. The rule is satisfied by the bindings:
(Trav,LocA,LocD,LocD) and (Trav,LocA,LocC,LocB), giving rise to the set of actions:
{(move Trav LocA LocD), (move Trav LocA LocB)}. Once sorted the first action is
(move Trav LocA LocB) that loops back to the original state. As this is a policy com-
putation we are trapped in the loop and execution never ends.

72

Chapter 5. An enhanced problem model

Traversal commitment A chain of move actions can be seen as committing to mov-
ing to a specific destination and then carrying out the series of moves required to reach
the location. Through making the commitment up front it can be used to orchestrate a
sequence of policy applications so that each step contributes to a single path to a chosen
target. As this approach makes explicit a specific target, the shortest path propositions
can be exploited to move the traverser to the target.

∀u (aProperty u) ⇐⇒
M|Σi+1

|= (setTarget t u)

The effect of applying the action (setTarget t u) is to set a proposition (target t u)

in the next state.
As we have noted the ordering explicit in the policy map representation might result

in a change in focus. As a result we require a mirroring set of actions that remove the
target from the state.

∀u (target t u) ⇐⇒
M|Σi+1

|= (removeTarget t u)

These actions provide the option to make the decision of the destination of a multi-
step move action before the first step is made.

This provides a general approach for several of the problems that exist over graph
structures in planning problems. For example, the selection of the next package for
a truck to pickup is made explicit and through this commitment the truck can make
progress towards a single package.

Macro actions An alternative is to abstract the graph completely by providing macro

move operations between all pairs of nodes in the graph, with corresponding linking
predicates. A single action would then move the traverser to its target. This has the
advantage that the selection of the target node is wrapped up in the decision to move
to a particular location.

We can define a step from Σi to Σi+1 with a set of actions. These action model
macro moves between all connected pairs of nodes. For a particular state s ∈ wff(Σi),
traverser, t, and associated graph Gs(t) = (V,E), we define the set of action:

73

Chapter 5. An enhanced problem model

∀u, v (u, . . . , v) ∈ E ⇐⇒
M|Σi+1

|= (long-move t u v)

The connection graph for traversal actions will support the planner making graph
traversals in static graphs and parts of dynamic graphs.

5.4.3 Constrained traversal: identifying the relevant closed nodes

In this subsection we look at the turn based graphs that we introduced in Section 5.2.
We have demonstrated how the states of the problem model can be enriched with con-
nected predicates that model whether a mover can traverse to a particular node. This
can be used to find the current connected component. Moreover, it can define the fron-
tier of blocked neighbours of the current component. The problem is that an antecedent
cannot determine the subset of this frontier that exist on a good path to the goal. In par-
ticular, if the mover is currently disconnected from an area of the map that it must visit
then a strategy is required to open a series of nodes that will establish a path between
the mover and its goal.

First blocked node

In several of the benchmark domains, the mover is required to be adjacent to open a
node. This is because the maps in problems often represent spatial relationships, where
blockages are often freed by the traverser. For example, to open a door you need to
be beside it and to unblock a pipe you need to be near the pipe. Of course, there are
many possible exceptions such as terminal operated doors. However, in many of these
problems the nodes can be unlocked from the mover’s current component towards the
goal location and this is sufficient for the benchmark domains. We focus on the closed
nodes that surround the mover’s current connected component.

Definition 5.4.3 The first blocked function is defined as a map from a function from

locations to the Booleans, a graph and two locations, to a set of locations:

FirstBlocked : (G× (L 7→ B)× L× L) 7→ 2L.

For a path opening problem, (SG(t), os), for a traverser, t, and state, s, the loca-
tions in the set, FirstBlocked(SG(t), os, l0, l1), indicate the locations that should be
opened to move t between l0 and l1.

74

Chapter 5. An enhanced problem model

We can define a step from Σi to Σi+1 with a set of propositions. These propositions
model the first blocked nodes of a graph. For a particular state, s ∈ wff(Σi), the
associated set of static graphs, SG, and open nodes function, os, we define the set of
propositions:

∀t ∈ T, l1 ∈ L (l0 = position(t) =⇒
∀blocked ∈ FirstBlocked(SG(t), os, l0, l1)

(∀s′ ∈ wff(Σi+1)

s′Rs =⇒ s′ |= (firstBlocked t l0 l1 blocked)))

Framework for exploiting metrics The computation of the first blocked mapping is
not trivial. In this general setting there is no information regarding the cost of opening
nodes; it is never easy to define what makes a good and bad plan and therefore which
nodes should be accepted as first blocked nodes. In place of a definite strategy, we will
present a definition of first blocked locations that relies on a metric. The metric is a
map from vertex sequences to the integers. We define the set of all vertex sequences:

OL = {v0, . . . |∀i vi ∈ L . (∀i, j (i 6= j) =⇒ vi 6= vj)}.

Therefore the metric is a mapping, metric : OL 7→ I.
We can define a set of sequences of nodes, tsequences, that form a path between l0

and l1 and are optimal with respect to the metric function:

tsequences(G, os, l0, l1) =

{v0, . . . , vn|
∀u0, . . . uk

metric(G, os, (l0, v0, . . . , vn, l1)) ≤metric(G, os, (l0, u0, . . . , uk, l1))}.

An implementation of the first blocked function, originally defined in Definition 5.4.3,
specifies the closed nodes on a sequence of nodes in tsequences that are closest to the
mover’s current location.

75

Chapter 5. An enhanced problem model

Definition 5.4.4

FirstBlocked(G, os, l0, l1) =

{vi|v0, . . . , vn ∈ tsequences(G, os, l0, l1) . min
i

(os(vi) = false)}

First blocked metrics Two general metrics are defined here. The first is the underly-

ing path metric that selects the sequences with the fewest steps in the underlying static
(potential) graph. This heuristic is fast to compute and is often effective as sequences
are often similarly blocked. However, it can perform badly if the shortest path in the
underlying graph is disproportionately blocked.

Definition 5.4.5 UnderlyingPath(G, os, (v0, . . . , vn)) =

n if v0, . . . , vn ∈ G
undefined, otherwise

A second metric is to select the path with the fewest blockages on it. This approach
works well when opening a blocked node requires substantial effort. This heuristic is
slower to compute. Of course this heuristic will favour very long paths if they have the
least number of blockages.

Definition 5.4.6 FewestOpenings(G, os, (v0, . . . , vn)) =

|{vi|os(vi) = false}| if v0, . . . , vn ∈ G
undefined, otherwise

In Section 7.2, we present a framework that will provide a more general approach
to tackling these problems, although at the cost of computation time.

5.4.4 Constrained traversal: interaction between traversers

There are problems where the traversal of objects cannot be considered independently
but where important SIs involve the coordination and movement of a collection of
traversing objects. The problems combine the movement aspect of traversal prob-
lems with the ordering aspect from block stacking problems. Investigations into land-
marks (Hoffmann et al., 2004) and goal orderings (Koehler, 1998) generalise the iden-
tification of suitable orderings for achieving goals in stacking problems. However, the
general problem of ordering sub-goals is as difficult as the planning problem (Koehler,
1998) so a complete solution is infeasible.

76

Chapter 5. An enhanced problem model

Problems with interacting traversers

The (n2 − 1)-Puzzle is a problem that involves an n × n grid, with (n2 − 1) tiles and
one blank square. A tile can be moved into the blank square, leaving a new blank
square behind. The goal is to rearrange the tiles to match a configuration presented
in the goal. (n2 − 1)-Puzzles can be framed as constraint satisfaction problems and
one possible approach would be to wrap the problem in a solver and use a constraints
solver. A scalable heuristic approach has been presented in Parberry (1995), where
the problem is solved using a divide and conquer strategy. This presents an alternative
to providing the solution to the planner; however, in order to support the planner in
choosing the next step to be made several problem specific language enhancements
would be necessary.

Sokoban is another grid based puzzle game that involves moving blocks into goal
positions by moving a man into an adjacent square and pushing the block from behind.
Some of the grid locations are closed, forming rooms and corridors. This problem
requires careful ordering and selection of moves as the blocks cannot co-locate with
the man or other blocks, making dead ends possible. As with the (n2 − 1)-Puzzle,
researchers have sought effective solutions to Sokoban problems in isolation. In Botea
et al. (2003) a decomposition approach is developed that first abstracts the grid into
corridors and rooms and then uses this level of abstraction to plan in a greatly reduced
space. This is an attractive approach as it is modular and an RBP would be an ap-
propriate planner for solving the resulting abstracted problem. However, as with the
approach for the (n2−1)-Puzzle, we would need to develop specific specialised solvers
for this domain. This highlights the important challenge in this work: the aim is to em-
power the planner, while enhancing the model with vocabulary that is inexpensive to
model and can be introduced in a general way. In order to achieve directed connectiv-
ity in these domains, the shared connectivity of the traversers must be considered. We
present a general model for modelling directed connectivity in Section 7.2.

5.5 Optimisation

In Section 5.4, we have developed a collection of chain steps that establish directed
connectivity in several problems. These problems commonly involve an optimisation
problem that requires these behaviours. For example, a transportation problem requires
sequences of move actions between locations; to select these effectively requires the
careful allocation of packages to trucks. This means that the planner must choose

77

Chapter 5. An enhanced problem model

amongst a number of alternatives that each appear equivalent. In this section we iden-
tify chains that provide information that distinguishes between different options. There
are two main alternatives that we explore for this problem: to provide the planner with
the information so that it can make the choice; and to take the actions selected by the
planner and use some method of selecting between them. The aim is to support the
planner in making local choices that contribute towards an effective global solution.

5.5.1 Graph relations

As the problems that we are considering are structure based, the optimisation problems
that act over those structures are effected by the relationships between the active nodes
of the structure; that is, the nodes with objects attached. General graph properties pro-
vide global properties of the nodes that can be exploited to improve the solution to
a problem. Communication network vulnerability has been analysed using the con-
cept of graph connectivity (Dekker and Colbert, 2004). Introducing a notion of weak
nodes/edges in the graph (or high-value nodes/edges from the attacker’s point of view)
would provide an important information source for a problem that involved construct-
ing a robust communications network. Similarly, centrality provides a valuation of
a node’s dominance over communication in the network (Freeman, 1977) that can be
used to select nodes for sharing resources. More generally, clustering of a graph can be
used to break the problem into the smaller parts and tasks can be completed within each
cluster. Providing these to the planner provides a new source of distinction between
alternative actions.

The potential in exploiting symmetries has also been investigated in planning (Fox
and Long, 1999). For example, object symmetries (groups of objects with the same re-
lationships in the initial state and goal) were identified and exploited in STAN (Fox and
Long, 1999). The approach used in STAN for symmetry exploitation would translate
to exploiting them in the rule matching part of our system and not the solvers. We dis-
cuss the implications of not using symmetry detection in our evaluation in Section 6.5.
Although we have exploited symmetry in the computation of some of our solvers (for
example, the static graph traversal and centrality solvers), we have not investigated
providing the information for the planner’s use. We would not expect that access to
object symmetries would support the planner to find better quality plans.

78

Chapter 5. An enhanced problem model

n2

n1

n4

n3

n9

n8

n7

n5 n6

(a) The graph

n2

n1

n4

n3

n9

n8

n7
C1

C3

C2

n5 n6

(b) The clustered graph

Figure 5.5: An example of clustering

Clustering

Divide and conquer is a general approach to algorithm design that involves breaking a
problem into a collection of similar problems that can be solved more easily. Through
breaking a graph into separate components an algorithm that worked over the whole
graph can be used to solve the same problem on a component of the graph, therefore
breaking the problem into smaller parts. Of course there may be aspects of the problem
that cannot be completely decomposed into components. However, spatial locatedness
(with respect to the graph) can provide some indication of the effort required to move
between different areas. Therefore we can assume that focussing on the problem within
one area before moving on to the next area, will prove an effective strategy in some
problems. In addition, the graph components can be used as a general indication of
closeness between two nodes.

The partitioning of a graph’s nodes into components can be provided by clustering.
A graph clustering problem, for a graph, G(s) = (V,E), is a partitioning of the graph
into subsets: C0, . . . , Ck. The intention is that vertices in a particular cluster, Ci, are
well connected. For example, the locations in a map can be clustered by locations
that are spatially close, or perhaps well connected by road. An example graph and a
possible clustering of its nodes are illustrated in Figure 5.5.

We can define a step from Σi to Σi+1 with a set of propositions. These propositions

79

Chapter 5. An enhanced problem model

model the clusters. For a particular state s ∈ wff(Σi) and graph G(s) = (V,E), with a
partitioning of the graph, C0, . . . , Ck, we define the set of propositions:

∀u, v (∃Cj u ∈ Cj . v ∈ Cj)
(∀s′ ∈ wff(Σi+1)

s′Rs =⇒ s′ |= (sameCluster u v))

We have chosen to link every pair of objects that are in the same cluster together
with a binary predicate, sameCluster. This allows us to express nodes in a cluster
in a single proposition. For example, if we move from u to v in a traversal problem,
the predicate (sameCluster u v) in a graph traversal action will limit the move to
the nodes in the cluster. Another approach would be to add an object for each cluster
and then use a binary predicate to link each object with its cluster object. This requires
fewer facts to represent and singleton clusters can be represented. However, it involves
adding extra objects into the problem and discovering whether two locations are in the
same cluster requires two predicates rather than one. Adding new types and objects is
out with the scope of our architecture and modelling single ideas in one predicate has
benefits for learning rules (Chapter 8).

We can use a standard approach to clustering; switching to more specific techniques
when the use of the graph is apparent.

Use of clusters We can demonstrate the use of clusters in the graph based transporta-
tion problem introduced above. In the control knowledge that we presented for this
domain the picking up and dropping off of packages were largely separate processes.
If the truck contained a package for its current location then it would remove it, how-
ever, the policy prioritised moving to locations where there were packages requiring
collection.

In this example we demonstrate that we can enhance this behaviour, allowing the
processes to be interleaved, focussing on picking up and then dropping off in smaller
areas. The traverser’s accessibilty graph can be clustered and the clusters can be used
to concentrate the focus of the traverser to nearby locations. Once the tasks in the
cluster have been serviced then the traverser will move on to a different cluster. An
example policy is as follows:

1. Pickup misplaced package

80

Chapter 5. An enhanced problem model

2. Drop-off package at destination

3. Move to pickup package in current cluster

4. Move to drop-off package in current cluster

5. Move to pickup package (in another cluster)

6. Move to drop-off package (in another cluster)

Hierarchical clusters The benefits of breaking the problem into areas of the graph
can be repeated by generating a hierarchy of clusterings. For example, the divide and
conquer approach for transportation problems presented above can be generalised to
several levels of abstraction. The limitations on the specialised solvers (cannot intro-
duce objects) and rule system (stateless) mean that this hierarchy must be fixed size.
For example, we could identify three levels of abstraction over the graph and a strategy
would specify the level of abstraction for each rule. However, this approach would not
support a general unfolding of a strategy over larger structures; but, it would support
changing the strategy for different abstraction levels.

Centrality

The centrality of a node in a graph is an important factor for several types of prob-
lem. In particular, problems that involve sharing resources. For example, in a package
routing problem the planner might attempt to reduce the load on central nodes that
are likely to have heavy traffic during peak periods. In transportation problems central
points are ideal for reallocating packages between trucks. The centrality might also
indicate the power of influence; for example, in a social network a central figure might
suggest a good person to know in order to gain influence (Freeman, 1977).

Graph centrality is an area of study in graph theory; however, more practical defini-
tions of centrality have been made that examine a node’s dominance in a network (Free-
man, 1977). The goal is to identify nodes in a graph that have a notion of centrality
with respect to the other nodes in the graph. There are certain graphs where the cen-
tral nodes are obvious, for example in the hub of a wheel, illustrated in Figure 5.6(b).
There are of course many graphs that do not suggest such clear examples of centrality.
There are various interpretations of what it means to be central to a graph. For example
a node could be central within a group of closely connected nodes, however, it is not
particularly central to the graph as a whole.

81

Chapter 5. An enhanced problem model

(a) No centre nodes (b) The red node is central to the graph

Figure 5.6: The concept of centrality in a graph

In the literature, it is common to give each node a score that represents its centrality
in the graph. This is not appropriate for our rule language. We could retain some of the
information by arranging the nodes as an ordered list, representing the list as a graph
structure. However, as we have observed, the rule language cannot reason effectively
with graph structures. We therefore represent the solution to the centrality problem of
a graph, G = (V,E), as a subgraph, CentralNodes ⊆ V .

We can define a step from Σi to Σi+1 with a set of propositions. These propositions
model the central nodes of a graph. For a particular state s ∈ wff(Σi) and graph
G = (V,E), with central nodes, CentralNodes, we define the set of propositions:

∀u ∈ CentralNodes

(∀s′ ∈ wff(Σi+1)

s′Rs =⇒ s′ |= (hub u))

Use of graph centrality We might consider using the central locations as hub nodes
in a transportation problem. In transportation problems packages are often gathered at
hubs so the packages can be redistributed for delivery. This requires rules to pickup the
packages, move the trucks to central locations, redistribution of the packages amongst
the trucks and then the movement of the trucks to the goal locations of the packages.

82

Chapter 5. An enhanced problem model

However, the central nodes cannot be used directly in this way. If the rule that moves
the truck to the hub location is positioned above the rule that moves the truck to the
package goal, then as soon as the truck moves away from the hub location the rule that
moves it towards the hub will be applicable again. There would be no way of signaling
that the stage has been completed.

A binary sub-goal-at predicate can be used to link the package with the next po-
sition that it should be placed at. The proposition is removed from the state when the
package is picked up from that location. This allows a solver to describe a sequence
of hub nodes between the package’s initial state and its goal destination. This enables
exploitation of both local hub locations and global hub locations, as would be expected
in a large transportation problem.

1. if the package is not at its goal location then pickup the package.

2. if the truck is at the package’s goal location then drop-off the package.

3. if the truck is at the package’s current sub-goal location then drop-off the pack-
age.

4. if the package is not at its goal location then long move to the package’s location.

5. if the truck contains a package and it has a sub-goal location then long move to
the package’s sub-goal.

6. if the truck contains a package and is not at the package’s goal location then long
move to the package’s destination.

7. if the truck is not at its goal location then long move the truck there.

To make this vocabulary more effective we could inform the hub node selection
with a process that can compute package flows through distribution centers. This
could employ a sophisticated solver to analyse the package locations and compute
an effective strategy. Approaches to hierarchical graph traversal algorithms, such as
HPA∗, and hierarchical abstraction approaches in planning (Gregory et al., 2011) have
demonstrated that planning problems can often be solved quickly at higher levels of
abstraction, but that the solutions can be informative for lower levels. The transporta-
tion aspect can be abstracted using clustering and a planner can be used to solve the
abstracted problem. The sub-goal predicates could then be informed by the locations
used for redistributing packages in the plan. This approach was implemented, how-
ever, the tested satisficing planners never redistributed the packages, leading to no hub

83

Chapter 5. An enhanced problem model

nodes. Even when we tackled the problem’s symmetry (which increases at the abstract
level) and abstracted the graph as much as possible, the resulting problem could not
be solved with an optimal planner in reasonable time. These extensions demonstrate
how specialised solvers become increasingly sophisticated as improved performance is
required in an isolated sub-problem. However, the main aim in this work is to provide
support, rather than making sophisticated specialised solvers.

5.5.2 Local heuristics

An alternative approach to supporting the policy in making selections appropriate to
the overall task, is to use heuristics to order the selections that are made by the rule
system. In the description of co-execution, in Chapter 3, we use a policy to choose
the next action. In practice, we observed in Chapter 4 that the RBP yields a set of
rules and a deterministic selection must be made. In the following part of this sec-
tion we take the view that these actions can be considered equivalent. We may have
enhanced the problem model with a series of steps that provide distinguishing vocab-
ulary (as described in the previous subsection), but at a certain point we have stopped
and the planner cannot distinguish between two actions. This choice between actions
provides an opportunity to exploit heuristic guidance. In the following subsections we
move away from supporting the planner in making its choices and instead investigate
selecting the best move from the alternatives it presents.

Nearest neighbour

The nearest neighbour heuristic has been exploited to great effect in the rules of TLPLAN

and in the traversal solver in HybridSTAN. Given a set of alternatives the nearest neigh-
bour heuristic favours the closest, for some metric. For example, given a collection of
move actions for a traverser, this heuristic would pick the location that required fewest
steps.

The shortest path solver can include in the state the distance between each pair of
points on the graph of each traverser. For example, (path-length ?t ?from ?to ?c),
encoding the path length, c, for each traverser and location pair. Our current rule rep-
resentation can only be parameterised from the problem objects and therefore cannot
reason with these propositions directly. However, the solver can use this information to
compare the alternative choices. In the case of the nearest neighbour, the path lengths
of each of the alternative moves is identified and the shortest paths are selected. The
communication with the solver is through the set of actions suggested by the planner.

84

Chapter 5. An enhanced problem model

These alternatives are controlled by the planner through action bindings. The solver
filters those actions that are not nearest neighbours and presents the remainder as the
action selection.

We can exploit the nearest neighbour in the implementation of the long-move
action; this provides an alternative called the nearest-long-move action. Each
action has the traverser and the from and to locations as parameters. The solver selects
the actions with the fewest steps between the from and to locations. This heuristic
selects between actions for different traversers.

Resource management

Resource management involves allocating resources to consumers or users. There are
many ways in which a resource can be used: a resource might be able to serve a single
consumer, for example, driving a truck; multiple consumers, for example, carrying
packages; and use of a resource might destroy it, for example a bomb. The difficulty in
making good resource allocation choices is that they depend on several factors; these
include constraints, such as a door can only be unlocked by a particular type of key,
and efficient use of resources.

Resource management is a general problem and is still an open area of research. A
general characterisation and specialised treatment of resources in planning problems
have been developed in (Dvorak and Barták, 2010). We have selected a specific situ-
ation where resource management is an important aspect of the problem. We demon-
strate how the vocabulary can be enhanced with resource management decisions in the
transportation problems illustrated in Long and Fox (2002). Given a suitable resource
management solver, a similar approach could be adopted in other forms of resource
management.

Resource allocation A resource management problem involves sets of resources, R,
and consumers, C. A resource allocation can be expressed as a pair: (r ∈ R, c ∈
C). We define a function that maps from a consumer to the resource allocated to the
consumer in the state, s: allocations : R 7→ (C∪ ⊥).

We can define a step from Σi to Σi+1 with a set of propositions. These propositions
model the allocation of resources to consumers. For a particular state s ∈ wff(Σi) and
function allocations, we define the set of propositions:

85

Chapter 5. An enhanced problem model

∀c ∈ C ∃r = allocations(c) ⇐⇒
(∀s′ ∈ wff(Σi+1)

s′Rs =⇒ s′ |= (allocated r c))

In this work we have experimented with several approaches to allocation and the
view that the solver provides of the allocations. We have tested this vocabulary for
packages using trucks and for trucks using drivers, over static traversal graphs. As well
as the allocated predicate presented above, we defined an alternative step that involved
actions that requested an allocation for certain objects. The state then contained a
proposition that encoded the allocation so that it was part of the rules’ context. This
approach has the disadvantage of requiring several rules, but allows the strategy more
flexibility over when allocations are made and which consumers require resources.

The static graph means that the number of actions necessary to traverse between
nodes is fixed and the resource allocation can be abstracted from the rest of the prob-
lem. This problem could be solved as an optimisation problem. In this work we use
modifications of a closest resource allocation approach: applying it once from the ini-
tial state; and applying it dynamically.

5.5.3 Utilising global heuristics

The approaches above are specific to certain aspects of the problem. However, general
purpose heuristics are now mature and effective for planning. Our framework supports
exploiting these heuristics, in case the preceding approaches fail to distinguish between
alternatives. Our approach to computing the heuristic is to use an estimate for distance
to goal in M|Σ0 . Each binding of the fired rule leads to an action. We calculate the
heuristic estimate for each of these actions and find the minimum value. A determin-
istic selection is made between the actions that have this minimum score. A benefit of
this is that it allows us to harness available domain independent heuristics.

We approximate the distance to goal as the heuristic estimate of the state of M|Σ0:

h(s) = h(s′|sRs′).

In our experiments we have used the implementation of hFF in the planner, JavaFF.
An important property of this approach is that actions that have no effect in M|Σ0 ,

have no effect on the heuristic estimate. This makes sense as we are interested in

86

Chapter 5. An enhanced problem model

reducing the number of steps in the described problem model. Of course the policy is
still used to filter the action choices. This means that when search is sitting at a local
minimum in the heuristic landscape then we will only enter a loop of making zero cost
enriched actions if the policy maps to these actions.

In contrast to our approach, Coles and Smith (2006); Fox and Long (2001); Dorn-
hege et al. (2009) use a heuristic estimate that incorporates estimates from the solvers.
A key difference in these works is that the target plan is expressed in the enriched lan-
guage. This means that taking into account the cost of the enriched actions is important
for estimating the quality of the solution.

In this section we have presented three alternative approaches to supporting the
planner in distinguishing between alternative options. The first achieves this through
providing more information so that the planner can make the choice; while the latter
two approaches take the set of possible choices from the planner and choose the best
one, based on some metric. In the local approach the decision is made using a heuristic
that is specific to the action being applied, while the global approach utilises a general
domain-independent heuristic. We compare the performance of these three approaches
in an experiment in Chapter 6.

5.6 Level of reasoning

In this section we examine how changing the level of reasoning supported by the mod-
elled vocabulary effects its use with an RBP. Alternative levels of reasoning were the
main focus in abstraction based planners (introduced in Section 2.2). In these ap-
proaches the layering was used to order the decisions; and selecting an appropriate
layering of the model would lead to more efficient planning. In our work, the order of
decision making is largely dictated by the forward chaining approach we adopt. All of
the levels are presented to the RBP at once and it can select the most appropriate level
for the current decision. An important difference, is that when an abstract action is
selected in AbNLP (Fox and Long, 1995) or ABSTRIPS (Sacerdoti, 1974), the planner
is involved in its refinement through the lower layers. In our approach, the planner del-
egates the refinement of abstract actions to the specialised solvers. As a consequence,
the important consideration regarding the appropriate level of reasoning, is the level of
control that the planner has over the instantiation of actions. We first examine chains
that provide vocabulary that supports the planner with interpreting the different lev-
els of the problem space. We examine the level of control that the planner can exert
over the support provided by the solver. We then look at the level of interaction of the

87

Chapter 5. An enhanced problem model

planner and how this effects the control of the planner.

5.6.1 Level of interpretation

Macro actions are a well studied approach that provides an alternative level of action
selection. We have presented the long move macro actions that abstracts the underlying
graph, performing a series of move actions as a single step. The planner can select the
final destination of the move; however, it cannot control how the traverser is moved
between the locations. The long move action provides a step at the level of interpreting
the problem as a traversal problem. In this section we present two sets of abstract
actions that interpret the problem at two higher levels. We examine the effect on the
planner’s control over the support.

Process level vocabulary

The semantic interpretation of a planning problem identifies various layers that are
not expressed in the problem model. For example, an important process during a
Blocksworld problem is to uncover a particular block, perhaps as a consequence of
it being misplaced. In transportation problems there are similar processes. For exam-
ple, there are two common processes required for each package: a truck must move
to the package’s location and then pick it up; and a truck that contains the package
must be moved to the package’s destination and the package removed. There may also
be a reallocation of packages between the trucks that involves an arranged meeting at
a central point. The problem model can be enhanced with actions that wrap up the
actions that achieve these tasks. The planner can then reason about package delivery
in terms of high level concepts. We have focussed on the transportation elements of
collect, gather and drop-off.

Collect The purpose of a collect action is to move a truck to the destination of a
package and pick it up. The collect action can be constructed using primitive actions
from the transportation sub-problem. The collect action will produce a series of move
actions that progressively move the truck closer to the package. Once the truck is at the
same location as the package, it should then use a pickup action. The action selection
can be defined as the recursive application of the following function, until the package
is in the truck.

88

Chapter 5. An enhanced problem model

collect t(T) p(P) ≡

put p in t at l, if t and p are at l

move t towards p, if p and t are located.

As was the case with the move actions, the number of actions applied by a single
collect action will depend on the relationship between the position of the truck and
package. This means that the action cannot be parameterised by the nodes that the
truck will move through. Moreover we will not be able to guarantee the variables that
will be used in the next action as there are two different types of action that could
be being applied. We parameterise the collect action with the truck and package pa-
rameters. The movement towards the package relies on the long-move action defined
previously. The long-move action is parameterised using the current location of the
truck and package. The parameters for the pickup action can be bound with the truck
and package objects; a unification of the other variables is selected arbitrarily. We can
make this vocabulary more powerful by constraining the transporter and package pairs
with the allocated propositions from the resource manager and by exploiting the near-
est long move actions. The precondition is extended with the predicate (allocated
t p) and the repeated action application becomes:

collect t(T) p(P) =

pickup t p l, (at t l) . (at p l)

nearest-long-move t l l′, (at t l) . (at p l′)

end, if p is in t.

Deliver

We can use a similar approach to capture a delivery action. The truck must contain
the package. The action will move the truck towards the destination of the package
and then remove the package at its goal. This behaviour is captured in the following
function:

Deliver t(T) p(P) =

drop-off t p l, (at t l) . (goal(at p l)) . (in p t)

nearest-long-move t l l′, (at t l) . (goal(at p l′)) . (in p t)

end, if p is at its goal.

Gather There is an optional gathering process in transportation problems where the
packages are gathered at hub locations and allocated to different transporters. The
gather action relies on the package sub-goal-at predicate that we defined in Subsec-
tion 5.5.1. If a transporter contains a package with a sub-goal then the gather action

89

Chapter 5. An enhanced problem model

will move the truck to the hub location and drop off the package. This can be captured
in the function:

Gather t(T) p(P) =

drop-off t p l, (at t l) . (sub-goal-at p l) . (in p t)

nearest-long-move t l l′, (at t l) . (sub-goal-at p l′) . (in p t)

end, (at p l) . (sub-goal-at p l)

Exploiting the raised level A solution to the transportation problem that exploits
this vocabulary can be expressed in three rules:

1. Collect package;

2. Gather package;

3. Deliver package.

This example highlights the impact of abstracting the level of reasoning. The ben-
efit is that we can express a solution to a hard combinatorial problem in three lines.
However, we have sacrificed some of the control over how the solution is constructed.

A transportation action

In this subsection we consider raising the level of the vocabulary further. The highest
level of interpretation of a problem is a single action that solves the problem. This
action provides a direct solution to a hard problem. The computation of the vocabulary
is, of course, as complex as solving the planning problem (which is what it is doing).
In Blocksworld this action would unstack and re-stack blocks to match the goal state
and in a transportation problem unrolling the action would involve a series of package
deliveries that achieved all the goals. Of course, these problems can be embedded
within a larger context. For example, the Depot domain combines both transportation
and structure building sub-problems. Therefore it is interesting to consider this step
and the control it provides to the policy when solving such a problem.

We use the example of a transportation step. The transportation step can solve a
transportation problem with a single step and a single rule:

1. MakeTransportationStep.

This abstract action provides the option for the policy to solve the sub-problem or
do something else. This presents several issues: the definition of the transportation

90

Chapter 5. An enhanced problem model

problem; and the interactions between this problem and other parts of the problem.
If the problem contains a perfectly isolated transportation problem, with the package
destinations in the goal, and little interaction with other parts of the system then this
action might be a useful support. However, consider a path opening problem that
included doors that were locked by (n2 − 1)-Puzzles. Although the (n2 − 1)-Puzzle
can be solved in complete isolation, the requirement of the door being open is a result
of the larger context and would not be directly recognisable in the context of a (n2−1)-
Puzzle solver. From the path opening perspective, the (n2 − 1)-Puzzle interferes with
the solver’s solution to the problem and as a result the solver would fail to model the
vocabulary; or solve the (n2 − 1)-Puzzle in a general and inefficient manner.

One of the advantages of the single transportation action is that we can exploit
special solving technologies without the solution being skewed by the ordering re-
quirements of the policy representation. On the rare occasion that the problem can be
effectively decomposed into isolated sub-problems this form of high-level action pro-
vides an efficient method of combining solutions for several solvers. However, as the
level of an action is made more abstract, the RBP is given less control over the specific
actions that make up the solution. In cases where the sub-problems cannot be decom-
posed, a lower-level vocabulary provides a more appropriate context that supports the
RBP in selecting the next action.

5.6.2 Level of planner interaction

Macro actions provide a raised level of reasoning that can allow the planner to make
decisions at an appropriate level. The problem with macro actions is that the policy
is not applied at the intermediate nodes in the path. One of the benefits of the RBP
is that because it is stateless, it has no previous aims and as a result it can react to
opportunities. In some cases, a useful action could be applied at an intermediate state
that will be visited during a macro application. As macro actions are applied in a single
step this opportunity is lost. For example, the current state in a transportation problem
might bind with a rule for moving a truck towards a misplaced package. As the macro
action is applied the truck is located at a set of locations. If there is a package in the
truck that has the goal of one of these positions then it would make sense for the truck
to deliver the package before moving. In particular, a rule that delivers the package
might be higher priority than the rule that was moving the truck towards the pickup
location. However, the sequence of actions is applied without further use of the policy
and the truck must return to the location to deliver the package. We have shown in this

91

Chapter 5. An enhanced problem model

section two steps that provide the planner with even less control. In this subsection
we present an alternative approach to making these chain steps that provides the raised
level for action selection, while maintaining the reactive properties of the rule system.

Step by step macro application

The step by step application approach (SbS) is an alternative interpretation of a macro
action. When an abstract action is mapped to by the policy, the action is replaced by
the first action in the abstract action sequence. This effects a single move in the di-
rection indicated by the abstract action. The policy can then be reapplied at all of the
intermediate nodes, typically regenerating the abstract action to carry along the same
path, but being given the opportunity to exploit an opportunity when it arises. This
builds on our observation that it is useful to reason about moving to targets, but weak-
ens our previous approach so that the planner does not commit to actually reaching
the target. Instead the planner makes a loose commitment to complete a task and then
makes steps towards completing the task. However, if a higher priority rule becomes
applicable then we might not return to complete the task. This incremental approach
to abstract action application provides the benefit of the raised level for reasoning pro-
vided by the abstract actions, while allowing the priority of the rule system to dictate
the decision made at every state of the plan.

In Subsection 5.4.2 we presented vocabulary for selecting the target node in a graph
traversal. The SbS provides a general approach for selecting the desired target and it
reduces the number of bookkeeping actions necessary. The intention behind several ap-
plications of compatible macro actions is interpreted as a request to continue unrolling
the macro action and the specific target itself remains implicit. On the first application
an action sequence is identified and the first of that sequence is applied. Subsequent
applications of the abstract action continue applying the actions from this sequence.
The selection of a different action breaks the weak commitment and the approach will
be restarted.

A specific chain step that can be made with this application approach is to combine
the abstract graph traversal action with the nearest-neighbour heuristic described in 5.5.
The heuristic selects an abstract action that corresponds to the shortest path on the
underlying graph. As a step is made in the direction of the target then even if there were
more than one action with equal distance then this will not be the case for the second
application. We call these actions nearest long move actions. In Subsection 4.2.1,
we presented a policy for a simple transportation problem. This can be extended to

92

Chapter 5. An enhanced problem model

problems where deliveries are made over graph structures. We can use the nearest long
move actions to capture a policy for this domain.

1. if the package is not at its goal location then pickup the package.

2. if the truck is at the package’s goal location then drop off the package.

3. if the package is not at its goal location then nearest long move to the package’s
location.

4. if the truck contains a package and is not at the package’s goal location then
nearest long move to the package’s destination.

5. if the truck is not at its goal location then nearest long move the truck there.

The use of the SbS with this policy means that each long move is unrolled step
by step. For example, if a truck is at a location with no package tasks, then it will
be moved to pickup a misplaced package (if one exists). A step will be made in the
direction of the nearest misplaced package and the policy mapping will be computed
for the new state. If the truck contains a package and passes its goal then the package
will be dropped off, as that rule is higher priority than the moving rule.

The weak commitment implicit in the SbS effects the way that some of the vocab-
ulary defined in this chapter can be used. For example, traversing to a node within
a cluster cannot be handled with the shortest-path vocabulary. Appendix C describes
these issues in more detail.

In this section we have explored several chain steps that provide differing levels
of control to the planner. The SbS is a method that places some control back with
the planner. A key aspect, is that the control knowledge captured by the policy can
be exploited at each plan state. The SbS combines the raised level, provided through
macro application, with the reactive aspects of the control knowledge representation.

5.7 Conclusion

In Chapter 3 a general framework was defined that can be used to support a decision
making planner through search. The specific planning approach used in this work and
its main properties were presented in Chapter 4. We have identified a collection of
problems that are not currently dealt with in the literature and explored the space of
chain steps that address these problems. In this chapter we have explored the space

93

Chapter 5. An enhanced problem model

in three dimensions, which span directed connectivity, optimisation, and level of rea-
soning. We have identified concrete chain steps that are relevant to the planner. In
Chapter 6 we will conduct several experiments to analyse the impact of the approach.
However, at this stage there are several observations that we can make with respect to
enhancing the models of problems. The main contributions of this chapter are sum-
marised here.

• Arbitrary length chain of move actions. This will be generalised in Chapter 7;

• An associated derived predicate: enables reasoning through an arbitrary se-
quence of move actions;

• Decision predicates: making choices explicit up front so that simple rules can
act effectively within optimisation problems;

• A framework that provides two levels of heuristic guidance for supporting a rule-
system in action selection;

• SbSs (Subsection 5.4.2): that combine selecting a target with making a single
move in that direction. They combine the efficient priority based decision pro-
cess of generalised policies with the benefit of the raised reasoning level of macro
actions.

During the project, we investigated using chains with set and unset actions as this
seemed to be an intuitive model for controlling commitment predicates. For exam-
ple, we modelled an allocate-resource action, which made an allocation for
the specified consumer and a proposition that represented the allocation being added
to the enriched state. However, when we progressed on to learning the policies, we
found that the rule learners struggled to discover sets of rules that exhibit the coordina-
tion necessary to exploit the vocabulary. In certain realisations of these concepts, the
propositions change implicitly between states; therefore making explicit propositions
in the state requires careful management in the solvers. An alternative is to model
the vocabulary using a set of derived predicates and evaluate them as needed. This
approach led to a simplification in the implementation of the solvers.

The raised language of macro actions is appropriate and effective for making deci-
sions over arbitrary sized structures. There are situations where it can be guaranteed
that if the first step of a macro action is made then the subsequent steps should be made
as well, such as tunnel macro actions (Coles and Smith, 2008). However, in general

94

Chapter 5. An enhanced problem model

planning at this abstract level impacts on the rule system’s control over the plan and
can result in less efficient plans. We have presented the SbS as an alternative that does
not force the planner to fully commit to an action sequence. We have combined the
benefits of the lifted level of reasoning, while continuing to exploit the benefits of a
reactive planning approach.

Our system supports a three step approach for binding the rules of an RBP: first the
rule system is queried and identifies a set of actions that are indistinguishable based on
the control knowledge; second, a local heuristic specific to the solver is used to narrow
down the choice; and third, a global heuristic is used to select the best alternative for
the problem as a whole. The ideal situation would be that the model expressed a view
that allowed the rules to distinguish more carefully between cases.

The chain of language restriction steps explored in this chapter have helped us to
develop effective strategies for several types of domain and this will be demonstrated
in Chapter 6.

95

CHAPTER 6

RESULTS CONCERNING THE

ENHANCED LANGUAGE

In this chapter we investigate the framework that we have developed and the support
provided by the chains presented in Chapter 5. The question that we seek to answer is:

Does the enhanced model that we have developed in the previous chap-
ters provide the necessary vocabulary so that RBPs expressed in a limited
language can control search through problems with SIs?

We begin by exploring each type of chain step to analyse those most appropriate
for enhancing the domain model. We assess the use of directed connectivity, optimi-
sation, heuristics and the improvement in quality provided by the SbS. This analysis
feeds into an analysis of the appropriateness of the vocabulary, with respect to how
generally it can be applied and, in the appendices we explore the quality of the gen-
erated plans (Section E.1), and the effectiveness of combining words from different
solvers (Section E.2). In Appendix E.3 we compare our control knowledge directly
with the control knowledge used with TLPLAN. In this chapter the rule systems have
been defined by hand and only provide an indication of the potential quality of a policy
given the language. We begin with an overview of the setup, the problem sets, the
planners and the solvers used in the following investigation.

96

Chapter 6. Results concerning the enhanced language

6.1 Investigations in our framework

Our main strategy for analysing our framework is to use it in a variety of planning
situations. In particular, we use our framework to solve problems from the standard
benchmark problem sets and compare the number of problems solved, the time taken
to generate these solutions and the quality of the solutions with the results for other
approaches. In this section we detail the setup used for our empirical analyses.

6.1.1 Experimental setup

Our experiments are performed on an Intel Core i5-2500 CPU, clock speed: 3.30GHz.
The CPU time was capped at 30 minutes in line with common practice in the IPC. In
addition, the maximum memory usage was set at 3Gb.

The quality and time results are plotted on line graphs or presented in a table. For
the graphs, a line is plotted for each planner or policy. This indicates its score in terms
of quality or time. Quality is reported using the number of steps required to solve
the problem. The time graphs plot the length of time that was required to solve the
problem. These lines are plotted on logarithmic-scaled graphs.

We continue in this subsection by introducing the planners, the specialised solvers
and the problems that we use in our experiments. The discussion on the functionality
of the solvers was presented in Chapter 5.

Planners

The planners used in this section include several configurations of our system as well
as domain independent planners. We use our architecture to execute the policies. Each
policy is used to generate a set of actions and a selection strategy then identifies a
single action that is applied to the state. If the set is empty then a backup strategy is
used to propose an action. The policies can be found in Appendices D.1, D.2 and D.3.
We compare our approach to two domain independent planners, LAMA (Richter et al.,
2008) and FF (Hoffmann and Nebel, 2001). These planners are considered in the state
of the art and have performed well over the years in the IPCs.

We present the general properties of the planners, such as the version and/or con-
figuration used here. More specific details will be presented with the appropriate part
of the investigation.

97

Chapter 6. Results concerning the enhanced language

Lama The version of Lama that won the 2008 IPC (Fern et al., 2008). We configured
the planner to return the first solution. This is interesting because we are comparing to
policies that direct the executive through the search space with little search.

FF The planner MetricFF. This planner is based on an efficient implementation of
the FF planning system.

JavaFF A Java implementation of FF created as a teaching tool (Coles et al., 2008).
We have developed part of our system in the JavaFF framework and it is informative to
plot its performance.

RBP We have implemented the framework presented in Chapter 5, which allows
an enhanced problem model to be defined and used in planning. We have used the
JavaFF (Coles et al., 2008) code base, with new search options for applying policies
in search. An extension that connects TIM (Fox and Long, 1998) was implemented
using the JNI API1. The implementation of our architecture uses direct links between a
solver and the delegates that are required in its computation. For example, the resource
management solver requests evaluations of path-length predicates from the graph
abstraction solver directly, rather than these being enumerated in the state. The domain
analysis required to identify dependent types can use the existence of solvers as part
of the criteria for determining a generic type. For example, the existence of a resource
management aspect to the problem is predicated on the existence of a traversal generic
type. The relationship between the solvers is therefore explicit and exploited. This
aspect of the work is further explained in Section 7.1.

The inputs to this system are a settings file, which provides the location of the
enhanced domain model, the problem listing and an RBP, as well as the parameters
for the planner. The default configuration does not use a heuristic. Testing whether a
rule is applicable to a state is a difficult problem in itself. The positive rule conditions,
for both goal and state, are bound for each matching predicate in the goal or state
respectively. This generates the possible sets for some variables. During this process
we select the predicate with the fewest unseen variables. We found that this is more
effective than statically determining the predicate order based on example states. The
selection strategy between the set of actions mapped to by the RBP is to sort the action
strings alphanumerically and select the first action. If the policy is undefined then the
backup strategy gathers all applicable actions and uses the same selection strategy. The

1http://docs.oracle.com/javase/7/docs/technotes/guides/jni/

98

Chapter 6. Results concerning the enhanced language

intention is that the free-search can move the search to a state that has a mapping in
the policy. We use cycle-checking, which prevents search from revisiting states. Any
alterations to these settings used are described in the appropriate sections.

Specialised solvers

In Chapter 5 we have presented various chain steps. Our policies have been expressed
using the vocabulary in these enhanced models. We describe the specialised solvers in
our experiments.

Graph abstraction The graph abstraction solver is used to abstract over chains of
move traverser actions. For each graph, the solver enhances the problem model in
two ways. A connected predicate is added using the naming convention (moveAc-

tionName connected ?t - T ?from-loc - L ?to-loc - L). An instantiation of this
predicate holds for any traverser and locations where the traverser can move between
the two locations. The predicate is implemented as a derived predicate. The dynamic
solver is limited to model this proposition where ?from-loc is the traverser’s current
location. An operator is added using the naming convention (moveActionName move

?t - T ?from-loc - L ?to-loc - L). This action is applicable for parameters if the con-
nected predicate holds for the parameters and the traverser is at location, ?from-to. We
have implemented an extension to the Floyd-Warshall’s all pairs shortest path algo-
rithm (Floyd, 1962), which computes the shortest paths between nodes. If the graph is
static then the edges are computed by evaluating the static formula in the initial state of
the problem. This is not a reachability analysis, as it analyses each potential edge. As a
result the solver can deal with traverser’s leaving the graph and returning in a different
place, as discussed in Long and Fox (2002). This is computed once before search. For
dynamic graphs a reachability expansion is made using the traversal action. In turn
based graphs, this is recomputed whenever an opening action has been applied since
the last invocation of the language, whereas for other dynamic graphs it is refreshed at
each state. This distinction had little impact on planning time in practice.

This solver implements the following optional functionality:

• Nearest blocked location: A predicate of the form (nearest-blocked ?from-

loc - L ?to-loc - L ?nearestBlocked - L) that holds for the nearest blocked loca-
tion between two locations. The static predicates are identified from the move
action operator (as described in Fox and Long (2001)). The path between ?from-

loc and ?to-loc is stepped through and the first blocked location is identified.

99

Chapter 6. Results concerning the enhanced language

• Clusters: A predicate of the form (ClusteredPair GraphAbstractionID

?loc1 - L ?loc2 - L) that holds of pairs of locations in the same cluster. An action
is modelled, (NavigateCluster GraphAbstractionID ?t - T ?from-

loc - L ?to-loc - L) that moves the traverser towards ?to-loc on a path through the
cluster, as described in Appendix C. This action is only applicable for locations
that are in the same cluster. The clustering approach builds hierarchical layers
by selecting map nodes and abstracting them as a single node in the next layer
(as described in Gregory et al. (2011)).

• Hubs: A predicate of the form (nextSubtask solverCount ?consumer

?resource ?node) that holds for the next drop off position for the consumer with
the resource. The betweenness of a node is a count of the number of shortest
paths that the node is on (Bavelas, 1950). We select a single node with the
highest betweenness score and use it as the hub.

Resource management The resource management solver makes resource alloca-
tions and provides the results in a derived predicate

(Bound GraphAbstractionInterfaceID ?c - C ?r - R).

The predicate holds if the resource has been allocated to the consumer. The imple-
mented solver selects the nearest traverser for a given consumer (either package in
transportation, or truck in for driven traverser problems). The location of the traversers
are identified using the locatedness predicate in the state. Portables can be connected
to locations and transporters through a chain of static propositions, as is the case in
Depots and Gripper.

Well-placed predicate This solver controls the functionality of the
well-placed predicate. The naming convention for the predicate is

(well placed stackedPredicateName ?b - B).

The predicate holds for a block if it is well-placed.

Located key door selector This solver selects the next node in the graph that should
be opened. The result in this computation is provided in a predicate

(doorToOpen SolverID ?loc - L).

100

Chapter 6. Results concerning the enhanced language

The relaxed model is created and a relaxed plan is generated from the initial state. We
use the problem goal in this experiment, though the vocabulary could be generalised,
to allow a sub-goal to be used to control the computation of the vocabulary. The solver
identifies the next door that is opened in the relaxed plan and uses this to evaluate
the predicate. The solver analyses the actions that have been applied since its last
application and if these are relevant (for example, the pickup action) then the solver
compares them to the relaxed plan. If at some point the actions are not consistent then
a new relaxed plan is generated.

Not equal The not equal predicate is a solver that provides functionality for a single
predicate. The naming convention is (!= ?o1 - O ?o2 - O). The predicate holds for
two objects that are not the same.

Problem sets

We have selected a collection of the domains from previous planning competitions
that have interesting structures. Where possible we have used problem sets from the
IPCs. However, in some cases, there were not enough problems, or problems of big
enough sizes. In these cases we have attempted to use the competition generators.
There are two cases where we have adapted the generator. The domains are described
in Appendix A.

Blocksworld We have generated a larger range of problem using the generator from
the 2000 IPC (Bacchus, 2000). These problems range from 10 to 90 blocks problems
in steps of 10 and 5 problems of size where generated.

Driverlog The 20 problems generated for the 2002 IPC (Long and Fox, 2003).

Goldminer The 30 target problems generated for the first learning track of the IPC (Fern
et al., 2008). We have adapted the domain to remove implicit preconditions and so that
the robot is an object. For a given problem, the applicable actions are equivalent in any
reachable state in these models.

Logistics The 28 problems from track 1 of the second planning competition (Bac-
chus, 2000). Problem 18 is unsolvable.

101

Chapter 6. Results concerning the enhanced language

Gripper A selection of generated problems from 300 to 775 balls. All of the balls
start in one room and must be moved to the other room.

Grid A set of 20 problems created using an updated version of the competition gen-
erator. The generator was altered to produce typed problems and problems that require
the robot to be at a specific position (rather than the keys). This changes these problems
from transportation problems to traversal problems.

Depots The 22 problems generated for the 2002 IPC (Long and Fox, 2003).

6.2 Directed connectivity

It has been observed that certain concepts of structures cannot be expressed in our rule
language and other languages used in learning systems. We have analysed the domains
and identified certain SIs that are necessary for a reasoned action selection. We have
developed chain steps that introduce the necessary vocabulary into the problem mod-
els, supporting an RBP in reasoning about the possible SIs and the steps necessary to
act towards a specific SI. We present two experiments to support this work. The first
examines whether the vocabulary can be exploited to form RBPs that capture effec-
tive control for problems with SIs. The second experiment substitutes the presented
framework with heuristic guidance. This simulates approaches that have learned con-
trol knowledge to improve heuristic guidance. We investigate whether our framework
can be replaced with the guidance of a heuristic.

6.2.1 An analysis of the use of concepts of directed connectivity

We focus on key domains from each of the main forms of SI we have examined in
Chapter 5. In this subsection we analyse the performance of RBPs on problems with
SIs. In particular, problems that the policy could not provide guidance in without the
developed framework.

Setup

We use the setup as described in Section 6.1. The three representative domains are:
Blocksworld, Driverlog and Goldminer, providing examples of stacking, transporta-
tion and traversal problems. For each domain we have generated solver listing and
enhanced domain model files, as described in Section 5.1. We have handwritten an

102

Chapter 6. Results concerning the enhanced language

RBP for each domain, which exploits the vocabulary modelled in an enhanced domain.
Directed connectivity is established for these domains through the use of specialised
solvers: in Blocksworld, the well-placed predicate supports reasoning over cor-
rect sequences for stack construction; in Driverlog, a graph abstraction solver supports
reasoning over graph traversals; and in Goldminer, a graph solver with the optional
nearest-blocked predicate supports reasoning about opening paths. Each prob-
lem was solved using co-execution and the enhanced model.

On start-up the enhanced domain is constructed. The solver listing and enhanced
domain model files are parsed; the enhanced domain model file details the required
solvers; and the solver listing file details the parameters (Section 5.1). For example, in
Driverlog, the enhanced model includes a graph abstraction solver and this is parame-
terised specifically for the domain, with properties such as the map is static and that at
acts as the locatedness predicate. The appropriate solvers are instantiated and param-
eterised and then their initialisation functions are used to generate the corresponding
initial state in the enhanced model. This state can then be used for matching with the
rules of the RBP. For example, in the Driverlog RBP, the move to pickup misplaced

package rule relies on the long drive-truck action. This vocabulary supports di-
rected connectivity for traversing trucks in the road map. The policy maps to an action
and the appropriate solver is used to apply its effect on the enhanced state, or interpret
the action for a lower language. The resulting action sequence is followed through
the solvers until it has no effect. We have solved each of the problems, using the en-
hanced domains to test our system, and using the original domains with the domain
independent planners.

Expectation of results

There are two aspects of the vocabulary provided in directed connectivity steps. The
first is the reachability of certain SIs, which is important in determining what the next
course of action should be. For example in Goldminer, the robot should move straight
to the gold and pick it up if its path is clear. This relies on determining whether the
gold can be reached. The second aspect provides a mechanism for moving towards
the achievement of a specified SI. We demonstrate in Subsection 6.2.2 that even with
a heuristic, selecting the correct actions to perform an SI is not always possible, and
is improbable through blind search. If our policies can solve as many problems as the
domain independent planner in a particular domain then we have successfully demon-
strated that our policy can effectively control search in that domain. As these problems

103

Chapter 6. Results concerning the enhanced language

all have underlying structures then we will have demonstrated the exploitation of our
enhanced model.

Results

A compacted version of the results of the experiment are presented in Table 6.1. The
plan quality, in plan steps; the time taken, in seconds; and the number of problems
solved, are plotted for FF, LAMA and the handwritten policy for the Blocksworld,
Driverlog and Goldminer domains. The counts are summed over all solved instances.
Where a planner covers more instances for a domain this entry is made bold; otherwise
the best quality and time score are indicated in bold.

Table 6.1: Quality (Q), Time (T) and Coverage (C) results for FF (FF), Lama (L)
and Handwritten (H)

Domain FFQ FFT FFC LQ LT LC HQ HT HC

Blocksworld 290 0.32 7 8766 966.46 39 7140 27.411 45
Driverlog 617 19.04 17 1120 45.76 20 934 9.88 20
Goldminer 642 403.76 25 824 519.46 28 814 22.187 30

The results in Table 6.1 demonstrate that our approach leads to complete coverage
in the three domains. In Blocksworld and Goldminer we solve more problems than
the domain independent planners. These results confirm that the use of directed con-
nectivity is an important step in developing a language for expressing effective control
knowledge. The quality of the solutions compares favourably in each domain.

6.2.2 Heuristically guided structure interactions

In this section we consider an alternative approach to controlling search over structures.
In many planning algorithms, domain independent heuristics are key to generating
plans. It is not surprising that previous approaches to directing search over graphs
have delegated the task to the general purpose heuristic (Yoon et al., 2006; de la Rosa
et al., 2008). It is interesting to investigate replacing our specialised vocabulary by
allowing the decisions to be delegated to a heuristic. The framework that we developed
in Subsection 5.1.2 supports using a heuristic to make the selection from the actions
that the rules suggest. Our approach is to develop partially bound policies and rely on
the heuristic selection process to choose from between these actions. In this section
we present our approach to investigating it in our framework; and the results of our
investigation.

104

Chapter 6. Results concerning the enhanced language

Delegating to the heuristic

In this subsection we present our approach that delegates aspects of search control to
the heuristic. First, we consider creating appropriate policies and we then discuss how
the heuristic is used to select the action.

We can partially bind the rules with the information that we can express in the rule
language. Partially bound rules will bind to a larger set of actions. A key property is
whether the condition language is sufficient to determine the appropriate action. This
property depends on the particular problem.

If the rule language is not sufficient to determine the appropriateness of the operator
then it might fire when its operator is not appropriate for the current state. For example,
in a Grid problem a robot could hold a key and be at the same location as another key.
A proposition that determines whether the key in the hand is appropriate to progress
towards the goal cannot be represented in the language. Similarly, it cannot represent
a proposition to determine the appropriateness of the key at the current location, or
in fact any other key in the map. This means that there are several distinct operators
and not enough information to distinguish between. However, our rule representation
insists on a single rule firing at each state and therefore a single operator. As a result
one of these operators must be ordered first and will be fired in states where it is not
appropriate.

The partially bound rule is used to generate a set of actions. Our architecture
compares these actions using a heuristic. We follow other work by adopting the relaxed
plan graph heuristic as the comparator (Fern et al., 2006; de la Rosa et al., 2008; de la
Rosa and McIlraith, 2011). In this way the selection of the binding of the operator is
delegated to the heuristic. An important limitation is that the set of actions is limited
to the operator of the fired rule. In particular, the selected action is the action in the set
generated from the fired rule that has the highest heuristic value. If there is not a useful
action in the generated set then search will not progress. Therefore it is important that
the rule language is sufficient to determine the correct operator.

The policies

In this section we look to define policies with partially bound parameters. We have
decided to investigate this in the Driverlog and Goldminer domains. These domains
are appropriate because each has an underlying structure and to some extent the rule
language is sufficient to determine the correct course of action. Another benefit of
these domains is that the structure interaction in each problem is different.

105

Chapter 6. Results concerning the enhanced language

In this subsection we describe some of the important design decisions for the rules
in the policy. Some of the rules can be kept because they have no interaction, or trivial
interaction with the map. Other rules will have more involved interaction. We first
identify the specific classes of relationships in the state that suggest that an operator is
appropriate. We then use the operator as the rule operator. The final step is to partially
bind any parameters if a suitable binding can be determined. We discuss our policies
individually; the policies are provided in Appendix D.1.

Driverlog In Driverlog problems there are several stages: allocating drivers to trucks;
picking up packages; dropping off packages; driving trucks home; walking drivers
home. Of course some of these stages can be interleaved, such as picking and drop-
ping off packages. Each of these stages requires traversal of a graph. However, as
we have demonstrated we cannot construct the necessary antecedent directly from the
state description.

However, we can recognise that we want to walk a driver or drive a truck and
present all of the possible walks or drives as options. For example, the fact that there
are packages to be delivered can be identified. In this context we can assert that a truck
should be moved. We cannot provide any guidance to prioritise any particular truck, or
move in any particular direction. We then rely on a general heuristic to make sensible
choices.

Chapter 1. An Enriched Problem Model

Language Enrichment
The Chapter should be arranged in two parts: the structure part and the resource allocation
part.
The structure part will start with a proof that the transitive closure cannot be captured in gen-
eral using a propositional rule based policy. We will then demonstrate how this prevents rea-
soning in various structures and provide examples from planning domains.
This part will continue with more detailed discussion of how these problems are solved in
other work. This will examine three approaches: support predicates, language extensions and
extended domain models.
We will present our approach for extending the problem model. This will focus on how the
information will be used and the importance of contextual information in selecting the most
useful assistance.

Interesting table: All driverlog problems solved using: shortest path; heuristic shortest path;
nearest-neighbour shortest path. This last one is just a heuristic shortest path, however, it is
implemented within the solver framework.

• The speed gain in using the solver based optimisation.

• The similar quality.

• Using a general heuristic is far better when combining solvers.

• Need to implement the select path, follow path.

(define (policy driverlog policy)
(:domain driverlog)
(:requirements :typing)

(:rule Drive misplaced package
:parameters (?driver - driver ?l - location ?obj - obj
?to - location ?truck - truck ?from - location)

:stateCondition (and (at ?truck ?from) (at ?obj ?l)
(driving ?driver ?truck)
(link ?from ?to))

:goalCondition (and (not (at ?obj ?l)))
:action (drive-truck ?truck ?from ?to ?driver)

)
(:rule Drive package in truck

:parameters (?driver - driver ?l - location ?obj - obj
?to - location ?truck - truck ?from - location)

:stateCondition (and (at ?truck ?from) (in ?obj ?truck)
(driving ?driver ?truck)
(link ?from ?to))

:goalCondition (and (at ?obj ?l))
:action (drive-truck ?truck ?from ?to ?driver)

)
)

1.1 Heuristic guidance
In many planning algorithms, domain dependent heuristics are key to generating plans.
It is interesting to consider how we could use heuristic guidance as a replacement for

3

Figure 6.1: The rule conditions insist that a particular condition holds in the state,
such as a package being misplaced. The desired operator is selected; however, the
associated action is only partially guarded, or unguarded.

106

Chapter 6. Results concerning the enhanced language

In the case of dropping off packages, we can do slightly better. We know the trucks
that have packages in them and so can limit the heuristic to consider moving only these
trucks. In this way we provide as much help as we can; however, we understand that
we are in no position to understand how to reason over the structure. Figure 6.1 shows
the rules for picking up and dropping off packages. The important aspect of these
rules is that the variables used for establishing a particular class in the state are mostly
separated from the variables used for the rule action precondition.

Goldminer The Goldminer problems have a similar series of identifiable stages: get
laser; shoot through to one away from the gold; get bomb; blow up gold square; pickup
gold. However, the shoot through to one away from the gold stage requires interweav-
ing of fire laser and move actions. The class indicating the correct use of these rules is
the same for both of these rules. This introduces an ordering problem. The key issue
is that the preconditions of each action will often be true after the first application.

$

B

Chapter 1. An Enriched Problem Model

Language Enrichment
The Chapter should be arranged in two parts: the structure part and the resource allocation
part.
The structure part will start with a proof that the transitive closure cannot be captured in gen-
eral using a propositional rule based policy. We will then demonstrate how this prevents rea-
soning in various structures and provide examples from planning domains.
This part will continue with more detailed discussion of how these problems are solved in
other work. This will examine three approaches: support predicates, language extensions and
extended domain models.
We will present our approach for extending the problem model. This will focus on how the
information will be used and the importance of contextual information in selecting the most
useful assistance.

Interesting table: All driverlog problems solved using: shortest path; heuristic shortest path;
nearest-neighbour shortest path. This last one is just a heuristic shortest path, however, it is
implemented within the solver framework.

• The speed gain in using the solver based optimisation.

• The similar quality.

• Using a general heuristic is far better when combining solvers.

• Need to implement the select path, follow path.

(define (policy goldminer-policy)
(:domain goldminer)
(:requirements :typing)

(:rule Clear rock
:parameters (?l1 - loc ?l - laser ?l2 - loc
?l3 - loc ?r - robot)

:stateCondition (and (at ?r ?l1) (rock-at ?l3)
(at-gold ?l2) (holds ?l ?r)
(connected ?l1 ?l3))

:goalCondition (and (holds-gold ?r))
:action (fire-laser ?r ?l ?l1 ?l3)

)
(:rule Move with laser

:parameters (?l1 - loc ?l - laser ?l2 - loc
?l3 - loc ?r - robot)

:stateCondition (and (at ?r ?l1) (at-gold ?l2)
(holds ?l ?r) (connected ?l1 ?l3)
(clear ?l3))

:goalCondition (and (holds-gold ?r))
:action (move ?r ?l1 ?l3)

)
)

1.1 Heuristic guidance
In many planning algorithms, domain dependent heuristics are key to generating plans.
It is interesting to consider how we could use heuristic guidance as a replacement for

3

Figure 6.2: The robot has to shoot all of the surrounding rocks before it can move to
the next location.

For example, if the robot blows up the rock at a location, then there will often
be another location next to the robot with rock at it. If the robot moves between two
locations then there is often another location that is clear to move into (for example, the
location it just moved from). If the move action is ordered first then the robot will enter
a loop moving through a cycle of locations. The fire action will never be considered.
If the fire action is ordered first then the robot will continue to blow up rock around

107

Chapter 6. Results concerning the enhanced language

it until all rock is gone, or an earlier rule fires. This means that we will create a three
wide path towards the gold, this is illustrated in Figure 6.2. Although not particularly
efficient, it allows the potential for a successful execution.

The investigation

We have handwritten partially-bound policies for the Driverlog and Goldminer do-
mains. In this subsection we investigate whether the relaxed plan heuristic compen-
sates for the weakness in the control knowledge. In particular, can the heuristic provide
effective guidance over structures. Our experiment uses the partially-bound policies to
guide search on the benchmark problem sets. There are two aspects that we use to
inform our conclusions. The first is whether the problems are solved by this configu-
ration. The second is the quality of the plans; in particular, the quality of the plan steps
during interactions with structures.

The experiments are set up as we described for the expressivity results. For pur-
poses of comparison we have plotted the results for several policy configurations and
JavaFF. JavaFF is included because the heuristic computation relies on the JavaFF

system. It is therefore an appropriate planner to use in comparison. We present our
findings in the Driverlog and Goldminer domains.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y(

S
te

ps
)

PFile

Handwritten
Hand+H

Hand-RM+H
PartialBound

JavaFF

Figure 6.3: Quality results for the partially bound policy on Driverlog problems

108

Chapter 6. Results concerning the enhanced language

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
s)

PFile

Handwritten
Hand+H

Hand-RM+H
PartialBound

JavaFF
1 mins

Figure 6.4: Time results for the partially bound policy on Driverlog problems

Driverlog The results of the experiment are presented for quality in Figure 6.3 and
time in Figure 6.4. We have plotted results for several policies:

• Handwritten: the handwritten policy as described above.

• Hand+H: This is the same as Handwritten except we use the heuristic to order
the actions. This plot demonstrates the effect on time that using the heuristic to
order the actions.

• Hand-RM+H: This is the Hand+H, except we do not use the resource manage-
ment solver to make resource allocations. This plot demonstrates the quality of
the plan if resource allocations are delegated to the heuristic.

• PartialBound: The policy described in the text above.

As can be seen from the results, the heuristic guidance succeeds to solve problems
in the Driverlog problems. However, the plans are longer and take longer to compute.
It appears that the planner is not receiving the same level of guidance over structures.
In plotting these policies we can understand where the decrease in quality and increase
in time are coming from. It is expected that the time should increase for two reasons.
Firstly, because the rules bind to more actions there are more heuristic computations;
and secondly, because the plan length is longer.

109

Chapter 6. Results concerning the enhanced language

We have plotted the handwritten policy without the resource management; this
makes the execution reliant on the heuristic providing the resource allocation. The
difference between this policy and the partially bound policy is the use of vocabulary
for reasoning over graphs, provided through the graph abstraction solver. The fact
that the partially bound policy computes longer plans suggests that the paths that are
generated are worse than the paths generated by the specialised solver.

s0

s1

s2

s3

s4

Figure 6.5: The topology of the link predicate for problem 9. The partially bound
policy generates the path between s3 to s4 illustrated in red. An alternative optimal
path is drawn in purple.

The quality results indicate that the general heuristic is not providing the same
quality of control as the specialised solver provides. In particular, the paths that the
traversers are led through can be sub-optimal. For example, in the solution to problem
9, the generated plan moves a traverser through three steps when the locations were
connected; the path is illustrated in Figure 6.5.

Goldminer The results of the experiment are presented for quality in Figure 6.6 and
time in Figure 6.7. We have plotted results for several policies:

• Handwritten: the handwritten policy as described above.

• Hand+H: This is the same as Handwritten except we use the heuristic to order
the actions. This plot demonstrates the effect on time that using the heuristic to
order the actions.

• PartialBound: The policy described in the text above.

110

Chapter 6. Results concerning the enhanced language

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 5 10 15 20 25 30

Q
ua

lit
y(

S
te

ps
)

PFile

Handwritten
Hand+H

PartialBound

Figure 6.6: Quality results for the partially bound policy on Goldminer problems

 0.1

 1

 10

 100

 0 5 10 15 20 25 30

T
im

e(
s)

PFile

Handwritten
Hand+H

PartialBound
1 mins

Figure 6.7: Time results for the partially bound policy on Goldminer problems

111

Chapter 6. Results concerning the enhanced language

The graphs show that the partially bound policy fails on several Goldminer prob-
lems. Where the execution manages to solve the problem the solutions are longer and
take longer to generate. The increased solution length is partly due to the partially
bound policy allowing a three-wide path to be made. However, this is not the only
cause: the path back to pick up the bomb revisits all the locations created during the
journey to the gold.

Both the increased journey back to the bomb and the cause of failed search is due
to the choice of heuristic. This is made clear by the failure of JavaFF in solving any
problems. This is because the relaxed plan heuristic ignores delete effects. This means
that the relaxed plan will move to the gold square using the laser (or bomb) and pick
up the gold. Firing the laser at the gold square does not destroy the gold in the relaxed
problem. At any state along this path, returning to pick up the bomb makes no sense at
all. This results in a fight between the heuristic and the cycle detection. The heuristic
promotes moving back towards the gold in any state.

The problem is increased by the three wide path that has been made with the laser
during the shoot through to one away from the gold stage. The robot is moved to
locations that are as close to the gold as possible and this can result in the search
getting stuck.

6.2.3 Conclusion

In this section we have presented two empirical analyses that support establishing di-
rected connectivity in problems with SIs. We have provided evidence that the enhanced
vocabulary provides effective support to the RBP, leading to effective planning in SI
problems. We have investigated replacing the special purpose solvers by delegating
the decisions to a general heuristic. This is not the first time that a general heuristic
has been used to provide control where determining the appropriate interaction with a
structure cannot be realised in the rule language (Yoon et al., 2006; de la Rosa et al.,
2008; de la Rosa and McIlraith, 2011). The reported plan qualities of these approaches
are poor for problems with maps. We have supported this by showing that our solvers
greatly improve on the solutions found using the relaxed plan graph heuristic.

6.3 Optimisation

In this section we test the two approaches to optimisation that were presented in Sec-
tion 5.5. First of all we analyse the impact of introducing graph properties to support

112

Chapter 6. Results concerning the enhanced language

the rule system in distinguishing between alternatives. We then investigate the three
tier optimisation framework that allows two types of heuristic to be exploited. The
main focus in this section is on plan quality. We anticipate that providing more infor-
mation can be exploited in strategies to improve quality and that using heuristic over
arbitrary choice will result in better quality solutions as well.

6.3.1 Supporting the policy in making comparisons

In Section 5.5 we discussed various graph properties that could provide useful informa-
tion for solving planning problems. We use a similar setup to the previous experiment,
and introduce a clustering solver and a centrality solver. The information they provide
can be used to support strategies that require sharing resources, or exploiting closeness.
We investigate their impact in problems from the Driverlog domain.

Setup

We have used the setup presented above to compare three different strategies. We have
selected the Driverlog domain for this experiment as the problems feature issues of
resource allocation and graph traversal. We use the problem set from the 2002 IPC.
We have hand-written three policies for the domain that exploit the available features.
The first policy captures a basic handwritten strategy that favours picking up packages
over delivering them. The second strategy utilises clusters. The graph is clustered
and these clusters are used as zones. The strategy favours picking up packages and
then dropping them off within its current zone. It will then move a truck to pickup a
package in another zone. There is nothing to ensure that these zones will be close. The
final strategy uses a hub node. The graph clusters are used so that the use of hubs is
decided at an abstract level. If the path from a package position through the hub is not
much more than the path directly to its goal then that package will be routed through
the hub. For those packages that are passing through the hub, the solver also computes
an appropriate truck for delivering packages to the hub. In each strategy the long move
action is used and the actions are applied as macro actions.

Expectations

The basic strategy moves towards misplaced packages using macro actions. Resource
management and the selection of the next target are products of the rule bindings and
the alpha-numeric ordering. This should lead to long plans; the lack of sophistication

113

Chapter 6. Results concerning the enhanced language

may result in shorter planning time. The clustering approach breaks down the prob-
lem; this means that pickups and drop-offs are made for nearby locations together.
Of course, packages might be found later that must be delivered to locations already
visited and the trucks might retrace their steps. The use of hubs will result in more
structured plans. However, the improvement in quality will depend on whether the
cost of transferring packages is compensated for by more efficient allocation during
the delivery and collection tasks.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y(

S
te

ps
)

PFile

Basic
Clusters

Hubs

Figure 6.8: Quality results for the basic strategy and the strategies exploiting clusters
and a hub node

Results The results, presented in Figures 6.8 and 6.9 plot a basic strategy against two
more sophisticated strategies, which introduce a more structured approach to solving
the problem. The graphs suggest that the use of the hub node does not lead to shorter
plans and that basic strategy can be used to compute plans more quickly.

The more sophisticated strategies do not result in largely different plan quality.
The use of a single hub location seems to make the strategy much worse. The bench-
mark Driverlog problems have densely connected truck and driver graphs (Gregory and
Lindsay, 2007). This means that the impact of making random choices over the next
package to select, or the best truck to drive, is greatly reduced. In fact the quality of the
plans for the basic strategy only start to lose in comparison with the TLPLAN quality

114

Chapter 6. Results concerning the enhanced language

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
s)

PFile

Basic
Clusters

Hubs
1 mins

Figure 6.9: Time results for the basic strategy and the strategies exploiting clusters and
a hub node

in the last few problems. It also suggests that the added cost of bringing a package to
a central location and swapping it is not worthwhile. The increased time can partly be
explained by an external process that is used to compute the weakly connected compo-
nents of a graph. There are also more rules with more predicates, increasing binding
utility.

There are several aspects of this experiment that could be contributing to the weak
performance. The clustering solver was quite naive. The approach to clustering was
to grow clusters with their neighbours until the clusters were a certain size. This could
have resulted in weak clusters. We only identify a single hub and use a multiplying
factor to bias towards using the hub node. Another factor has been the strategies that
we developed that used the features; perhaps another strategy would have worked.

The conclusion of this experiment is that including extra words into the model
will be reflected by better performance. We would need to develop our solvers further
in order to confirm the benefit of clusters and hubs in this domain. However, it is
an important result that we have made information that we thought would be useful
explicit in the problem model and it appears this is not the case. In the case of directed
connectivity we can identify the behaviours that are necessary to compute a plan; but,
identifying propositions that could lead to a more effective strategy requires much

115

Chapter 6. Results concerning the enhanced language

more thought and effort. We will therefore focus on using heuristics for processes of
optimisation.

6.3.2 Global and local solver heuristics

In Section 5.5 we developed a tiered approach for exploiting heuristics. There are two
important roles that heuristics play. The knowledge engineer will select some view of
the model, M|Σi and any decisions that cannot be biased with the vocabulary express-
ible in this language is left to a deterministic decision process. In this subsection we
analyse whether exploiting heuristics leads to improved selection in these cases.

Setup

The same framework is used as above. We analyse the performance of four configura-
tions on problems from the Driverlog, Goldminer and Grid domains. For each domain
we use the similar policies, however, the settings are changed. The settings are as fol-
lows: no heuristics (Basic); solver heuristics (+Lh), which are nearest neighbour and
resource management; global heuristic (+Gh), which was the relaxed planning graph
heuristic in JavaFF; and both heuristics (+LGh). In Driverlog problems the strategy
uses resource management to allocate trucks to packages and drivers to trucks; near-
est neighbour heuristic determines the next allocated package to pick up and if there
are none then it selects the next to be dropped off. In Goldminer and Grid problems,
moving in the graph uses the nearest neighbour heuristic. To switch on and off the
Resource Management aspect of the Driverlog RBP requires two separate solutions.
This is because the heuristic is encoded as a derived predicate and therefore features in
the rule conditions. These predicates are the only difference in the policies used.

Expectations

We have shown above that the approach with no heuristics is effective in Driverlog. We
are therefore more conservative with our expectations in the quality improvement made
by the heuristics. The solver heuristics adopted in Driverlog are appropriate and should
provide some assistance. The relaxed plan heuristic is not particularly effective in the
Goldminer domain, as discussed in Section 6.2.2 and we would expect few alternatives
to be provided by the rule system. The solver used for Grid, is based on the relaxed plan
already and this consistency could lead to better quality plans. In terms of time, the
JavaFF heuristic is expensive to initialise and compute. This initialisation is required

116

Chapter 6. Results concerning the enhanced language

for the solver used in Grid. The nearest neighbour and resource management heuristics
are cheap to compute in these domains.

Results

Table 6.2: Quality (Q), Time (T) and Coverage (C) results for Basic (B), solver heuris-
tics (Lh), global heuristic (Gh) and combined heuristics (LGh)

Domain BQ BT BC LhQ LhT LhC GhQ GhT GhC LGhQ LGhT LGhC

Driverlog 960 10.044 20 930 9.661 20 953 61.811 20 912 42.656 20
Goldminer 814 24.61 30 814 24.573 30 814 41.603 30 814 41.203 30
Grid 289 131.745 20 267 125.891 20 261 191.642 20 259 182.19 20

The results, presented in Table 6.2, suggest that the combination of both heuristic
types lead to the best quality plans over each of the problem sets. In Driverlog it
appears that the local heuristics have more impact, whereas in Grid the global heuristic
is more effective. The quality in the Goldminer problems are the same; this is because
the nearest closed node heuristic used to establish directed connectivity identifies the
best path to the target. In Driverlog (Figure F.15 in Appendix F.2), we expected that the
difference in quality between the solutions would increase as the graph size increased.
However, this trend is not apparent in the results. The graphs for Driverlog and Grid
suggest that most of the difference between the different approaches is made over a
small number of problems. For example, in Grid there are two problems where the
basic solution have considerably worse quality. The reason for this in Driverlog, could
be due to the densely connected graphs; whereas in Grid it might be because there are
few situations where two keys of the same shape can be reached in the same state.

The use of the JavaFF heuristic leads to longer planning times; however, more
efficient implementations of the heuristic exist. These results confirm that heuristics
can usefully select between the alternatives mapped to by the policy. The complete
graphs can be found in Appendix F.2.

6.3.3 Conclusion

The analyses in this section have examined the problem of controlling global optimal-
ity through local choices. Using properties of the interactions in the model that provide
more distinction between states is an important option. However, identifying appropri-
ate properties is an involved process, which requires an understanding of the domain,
specific problem distribution and RBP representation. It is therefore more appropriate

117

Chapter 6. Results concerning the enhanced language

in the context of a single domain, when specific insights can be exploited. The consis-
tency of local heuristics with global optimality is not certain. However, the heuristics
that we have selected in the analysis contributed to the planner finding better plans. We
conclude that using an RBP to filter the successor actions and using heuristics to select
between the alternatives is an effective approach for planning.

6.4 Level of reasoning

The level of reasoning is a key aspect of this work. However, our investigation into
process and full solution level actions in Subsection 5.6.1 concluded that the RBP
can provide less guidance in how the plans are constructed. Examining how these
behaviours can interact could be an interesting line of research, in drawing together
specialised solvers that are already developed. However, the RBP was given very little
control in order to bring strategies together. In this section we focus on the step by step
macro application approach, which provides the RBP with a greater level of control
and could be used to bring together these process like solvers.

6.4.1 Step by step macro application

In this subsection we compare the SbS with the macro application approach. The
motivation behind the SbS was to allow the RBP’s priority ordering to be maintained
at each plan step. In this section we analyse the impact that this approach has on the
plan quality and planning time. Our main aim is to understand the trade-off between
the reduced number of policy mappings incurred when applying macro actions in a
single step and the quality gain through exploiting opportunities facilitated by using
SbS.

Setup

We use the framework that we have developed above. We solve the problems from
the Driverlog, Goldminer and Grid domains using the same policies in each configu-
ration. In the first configuration we adopt the SbS and in the second we use the macro
application approach (Macro). The policies are the same as those used for Section 6.5
and include solver heuristics. It should be noted that more care is required when con-
structing rules that select macros using SbS. The rule system will be evaluated on each
intermediate step and during this path some of the initial conditions might not hold. For

118

Chapter 6. Results concerning the enhanced language

example, in the case of a pickup-drop macro for a Blocksworld problem a condition for
a rule might include the condition (attached-to ?A ?B), but this condition will
not match in the state where the block is being held. We have run the Grid experiments
three times, as the solver is sensitive to the generated relaxed plan, which can effect
the plan quality.

Expectations

We expect that SbS will lead to better quality plans in domains where the forced or-
dering of rules is an undesired artefact in the control knowledge. For example, in
Driverlog, the choice of moving to pick up or drop off a package depends on the situ-
ation and cannot be determined up front. In domains where the next best steps can be
identified in the rule language then this mediating step is unnecessary and is unlikely to
lead to improved quality. We expect that the macro application will generally be faster,
as it is likely that the policy mapping will be computed in fewer states. For example,
in Goldminer directed connectivity with the nearest neighbour, provide the necessary
vocabulary to determine the next target. We would expect that the use of macros will
improve the time and have little effect on the quality of the solutions in this domain.

Results

Table 6.3: Quality (Q), Time (T) and Coverage (C) results for Step by step (SbS) and
Macro (M) application approaches.

Domain SbSQ SbST SbSC MQ MT MC

Driverlog 922 10.732 20 930 9.135 20
Goldminer 814 26.235 30 814 23.929 30
Grid 816 348.77 18 792 259.36 18

The results of our experiment are consistent with our expectations in Driverlog and
Goldminer. The evaluation of the RBP at each state leads SbS to take longer to gen-
erate plans for Goldminer and Driverlog. The quality results, presented in Table 6.3,
illustrate that the quality of plans for Driverlog problems were better when using SbS.
The size of this improvement is quite small. In particular, there is no obvious increase
in improvement as the problem size increases (graphs in Appendices, Section F.3). We
are only able to drop off packages when a truck that contains a package is located at the
package’s goal location. The results suggest that this condition is not often satisfied.

119

Chapter 6. Results concerning the enhanced language

The planner has no control over the path selected to move between targets. Of course,
as the graph size increases, the chances of passing a package will reduce. Combining
the SbS with clusters would extend the opportunities that were exploited.

The results in Grid are more surprising. The time results are consistent with our
expectations. However, the improved quality of the solution in the macro settings
was not expected. The reason behind this is that our solver generates a relaxed plan
at each state and extracts the first target in the plan. As a result, during planning
using SbS, the plan might change several times as the robot is moved towards a target.
Through applying the macro directly this indecision is prevented. In Section 5.4 we
demonstrated that macro actions provided one approach to solving the problem of
setting a target for traversal. In conclusion, we have demonstrated that using the SbS
can lead to shorter plans. However, the improvement is quite small; moreover the time
results when using macro actions are better. We consider that both of these approaches
provide strong performance, although note that it can be easier to construct control
knowledge when using the macro application approach.

6.5 Analysis of the architecture

In this section we analyse handwritten rule-systems expressed over the vocabularies
that were developed in Chapter 5 and using the previous results to guide their devel-
opment. The main aim is to demonstrate that the framework can solve problems in
several domains. If our rule systems can demonstrate effective control across a variety
of benchmark domains this will indicate that our framework is a practical approach to
planning. We consider how the solvers have been used in combination in Section E.2
of the appendices.

6.5.1 Generality of framework

In this subsection we investigate the generality of our approach. We have not used
our approach to solve problems from all available domains. Instead we have selected
a range of domains that demonstrate specific aspects of the framework. Five of these
domains have traversing or building sub-problems. To these we have added the Logis-
tics domain, which requires the use of a more general language enhancement; and the
Gripper domain, which demonstrates a limitation of the rule based policy approach.

We have handwritten policies for each of the seven domains (these are presented
in Appendix D.1). Using the approach that we have explained we have used these

120

Chapter 6. Results concerning the enhanced language

policies and two state of the art domain independent planners to solve the benchmark
sets. To avoid bloating the main text, we present a summation of the results and direct
the reader to a complete presentation of the graphs in Appendix F.

Expectation of results

We have proposed that one of the key limitations of our rule language is that it cannot
express certain concepts of structures. We have developed an approach to enhancing
the problem model with certain words that provide a view of these structures. In this
experiment we investigate whether we can exploit these words and express effective
control in our limited rule language.

A main focus of research in domain independent planning has been on increasing
the coverage of the planners. We use LAMA and FF to compare to our policy. These
planners have demonstrated impressive performances in the number of problems they
solve over several IPCs. These planners exploit sophisticated heuristics that have been
evolved through several generations of research. These planners provide a high bar to
compare the coverage of our solutions.

Our aim in this experiment is to compare our policies to these planners in terms of
coverage. If our policies can solve as many problems as these planners in a particular
domain then we have successfully demonstrated that our policy can effectively control
search in that domain. In particular, if that domain has an underlying structure then we
have demonstrated the exploitation of our enhanced model.

Results

A compacted version of the results of the experiment are presented in Table 6.4. The
plan quality, in plan steps; the time taken, in seconds; and the number of problems
solved, are plotted for FF, LAMA and the handwritten policy on a range of domains.
The counts are accumulative over all solved instances. Where a planner covers more
instances for a domain this entry is made bold; otherwise the best quality and time
score are indicated in bold.

The results in Table 6.4 demonstrate that our approach is suitable for a wide range
of domains. In general our coverage in the tested domains is very good. In some
domains we solve several more problems than the domain independent planners. The
domains that we perform best in are those with structures in them. These are the
domains that we cannot express control knowledge for without support. This confirms
that the language steps that we defined in Chapter 5 are appropriate.

121

Chapter 6. Results concerning the enhanced language

Table 6.4: Quality (Q), Time (T) and Coverage (C) results for FF (FF), Lama (L)
and Handwritten (H)

Domain FFQ FFT FFC LQ LT LC HQ HT HC

Blocksworld 290 0.32 7 8766 966.46 39 7140 27.411 45
Depots 968 19.46 20 1102 1103.9 20 895 8.194 22
Driverlog 617 19.04 17 1120 45.76 20 934 9.88 20
Goldminer 642 403.76 25 824 519.46 28 814 22.187 30
Grid 288 6.64 20 297 230.54 20 281 123.54 18
Gripper 32240 524.54 20 32240 101.18 20 32240 622.024 20
Logistics 1112 0.02 27 1119 0.2 27 1095 9.384 27

We solve more problems than FF in four domains and more problems than LAMA

in three. Grid is the only domain that we solve fewer problems. The performance of
our solution in the Grid domain is not surprising. It is the only domain that we allow
the instantiation of the action operators. Figure 6.10 demonstrates that JavaFF is not
able to complete this operation in the two problems that we do not solve. However,
our general coverage and when combined with the speed and quality of the solutions,
these results demonstrate that the rules can exploit the necessary information.

 0.1

 1

 10

 100

 0 5 10 15 20

Ti
m

e(
s)

PFile

Handwritten
Initialising

1 mins

Figure 6.10: Time results for the initialisation of JavaFF and our policy runs on Grid
problems

The two domains that we compare least well are Gripper and Logistics. There are
no examples of the SIs that we have focussed on in these domains. In Logistics we

122

Chapter 6. Results concerning the enhanced language

use a not-equal solver to express control knowledge; in Gripper we do not use any
additional information. These domains are included to examine other properties of our
architecture.

In most problems the number of combinations of objects that satisfies the rules are
relatively small. However, in Gripper there are many symmetric objects. These gener-
ate a lot of combinations and during search we generate the same options many times.
This is one of the reasons that most modern planners (including FF and LAMA) ground
all actions up front, although approaches to detecting and exploiting symmetries have
been investigated (Fox and Long, 1999). When generating combinations that satisfy
a rule from the state and goal, we aim to generate all possible combinations. This al-
lows us to feed all of the possible actions to an ordering process. In the benchmark
problems, instances with very high numbers of symmetric objects (for example, 750)
are unique to the Gripper domain. We conclude that our approach is less effective at
dealing with symmetry than FF and LAMA prove to be in this domain; however, the
problems have very long plans (up to 2325 steps) and it is an important result that our
approach generated a solution to every problem. Moreover, our implementation is in
Java and not optimised to the level of FF and LAMA.

6.6 Summary

In this chapter we have investigated our framework. We have demonstrated that it
supports effective planning with strong results in terms of coverage, speed and qual-
ity. In the Appendices, Section E.1, a comparison is made between the quality of our
plans and those of TLPLAN and an optimal planner, hLM−cut. The main question that
we set out to answer in this chapter was whether control knowledge exploited in our
framework could control search in domains with rich structures. We demonstrated
that our solution was able to solve more problems than state of the art domain inde-
pendent planners; that the time of solving the problems was often less; and that the
quality of the plans was comparable. These results were gathered for domains with
different structures, requiring different SIs. In one sense the results are not surprising:
we are comparing hand crafted domain dependent strategies with domain independent
techniques. However, we have used a limited language to express our strategies. In
particular, our rules are conjuncts of the modelled propositions. As well as this, most
of the strategies have not used search. This means that the chains that we have de-
veloped in Chapter 5 provide the necessary information for expressing strategies that
generalise to the problems of a domain.

123

Chapter 6. Results concerning the enhanced language

We have examined several of the options that we presented in Chapter 5 regarding
the vocabulary chains. We investigated SbS and discovered that in problems with
structures, the quality of the plans could be improved for an increase in the planning
time; however, as the structure size increased, the chance of exploiting an opportunity
decreased. The results also confirmed that the use of SbS can require more care when
expressing solvers and RBPs. We have observed that improving specialised solvers to
improve efficiency is a time consuming process, requiring much trial and error. As an
alternative, we investigated the use of heuristics and observed that the quality can be
improved using both local and global heuristics, with respect to particular solvers. We
have also demonstrated that vocabulary modelling directed connectivity supported the
RBPs through SIs. This is an important result and clarifies the appropriate combination
of heuristics and language enhancements. In the Appendices, Section E.3, we compare
our control system for Driverlog and Blocksworld directly with TLPLAN. The captured
control knowledge is similar in Blocksworld, whereas more sophisticated in Driverlog.
However, the quality comparison, presented in Section E.1, indicate that the quality of
solutions generated are comparable. This suggests the main difference is the efficiency
of utilising the control knowledge and illustrates the benefit that alternative encoding
methods can provide. In this section we demonstrated that the chains that we have
investigated provide some of the features utilised in the TLPLAN solution; for example,
level of reasoning and compiled preconditions.

We have investigated our framework using several criteria and it has performed
well in each of our experiments. We conclude that the presented framework supports
effective control in domains with rich structures. We observe that we should model
vocabulary at as low a level of reasoning that still establishes directed connectivity,
to maximise the level of control the planner has on the vocabulary. In Chapter 7 we
investigate the problem of invoking an appropriate vocabulary automatically. As part
of this we investigate identifying new chain steps automatically and the results in this
chapter lead us to focus this study to vocabulary that establishes directed connectivity
for particular SIs.

124

CHAPTER 7

AUTOMATING MODEL

ENHANCEMENT

In Chapter 5 we proposed several chains of language restrictions that accept actions
and propositions that are effective for expressing general policies for problems with
specific structures. We have developed a modelling language that allows us to define
enhanced models. However, this requires each domain to be examined and the ap-
propriate language enhancements to be identified. This is time consuming to do by
hand.

In Section 5.3 we identified SIs as an underlying cause of the limitations of our
planning approach. We observed in Chapter 6 that enhancing the problem model with
vocabulary modelling directed connectivity could support RBP execution during SIs.
In this chapter we investigate whether the appropriate problem model can be selected
automatically. The first part is to automatically determine whether a particular SI exists
in a problem. We use the technique developed in Fox and Long (2001), which relies
on capturing the criteria that determines the existence of SIs. We demonstrate that this
approach can be automatically extended to invoke appropriate language enhancements,
reducing the effort for exploiting the language in the future. This aspect of the work is
reported in Lindsay et al. (2008, 2009).

The solvers that we used for the experiments in Chapter 6 are heavily parame-
terised. The extension to invoke language enhancements involves carefully interrogat-
ing the problem model to identify the appropriate values for the parameters. A problem
of more consequence is that the solutions required for each parameter set can be subtly
different. The second task is therefore to automatically generate solvers that model an

125

Chapter 7. Automating model enhancement

appropriate vocabulary for establishing directed connectivity in a particular domain.
We present a general model for expressing SIs that generalises the directed connectiv-
ity solvers for transportation, path opening and stacking problems that were defined in
Chapter 5. We then present the problem of parameter selection for its enclosing solver
and explain how the solver is parameterised for traversal and stacking problems. This
aspect of the work is reported in Lindsay (2012).

In this chapter we investigate automating the tasks of solver selection and solver
generation.

7.1 Automatic enhanced PDDL generation

We have presented a language for enhanced problem models. This is in the form of
a more general description model that explains the behaviour of a group of problems.
Each time we consider a new domain model the appropriate solvers must be identified
and those solvers must be parameterised. This is time consuming to do by hand and
requires understanding of the domain and solvers.

Domain analysis has been developed that uncovers properties of groups of plan-
ning problems (Fox and Long, 1998, 2001). In HybridSTAN (Fox and Long, 2001),
behaviours called generic types are defined across planning domains, providing a new
semantic layer for comparing object function in planning problems. This approach
has been exploited to invoke appropriate heuristics (Fox and Long, 2001) and con-
trol knowledge (Murray, 2002; Murray et al., 2003) We apply the approach used in
HybridSTAN to select appropriate domain models automatically.

In this section we describe the mechanism that supports our mapping from a do-
main and problem model to solvers and finally an enhanced problem model. We begin
by discussing the search space; we introduce the domain analysis technology that we
exploit; and then we present how the mappings are realised.

7.1.1 Search space

The search space that we explore in this section is the space of chains of language
restrictions, Σ0, . . . ,Σn (Definition 3.1.2). In particular, we are interested in selecting
those features or chain steps that best support expressing concise control knowledge
for action selection, which is related to the problem of feature selection (Blum and
Langley, 1997; Kohavi and John, 1997; Guyon, 2003). In de la Rosa and McIlraith
(2011) a subset of the chains are defined explicitly and explored in a beam search.

126

Chapter 7. Automating model enhancement

In this section we limit our focus on individual chain steps defined by the solvers we
have implemented and define the appropriate model as the collection of the appropriate
chain steps.

7.1.2 Domain analysis

TIM is a domain analysis tool that uncovers certain implicit properties of a domain
model. This analysis can be extended to identify generic sub-problems (Fox and Long,
2001), such as transportation and resource management. For a full explanation of how
this analysis is carried out please refer to Fox and Long (1998, 2001).

Properties in TIM

TIM uncovers a collection of finite state machines that define how the objects in a
problem can move between different sets of abstracted relationships. This is achieved
by analysing the effect of each parameter of an operator to establish how the opera-
tor changes the relationships of the object that instantiates the parameter. The objects
are then partitioned into types based on the parameters that they could bind with and
therefore the relationships they can pass between. Although the TIM analysis is cre-
ated from a single benchmark problem, it is common that the identified structures are
appropriate for a large number of the benchmark problems. A key aspect of TIM is
that it establishes an abstracted layer that captures the generic behaviours of the ob-
jects, while also identifying various invariants that are frequently the result of domain
conventions.

A property, (p,i) is a pair, with predicate, p, and integer, i, that represents one
of an object’s relationships. For a proposition of an object, p is the predicate of the
proposition and i is the parameter position of the object in that proposition. Properties
are grouped into property states, which capture the properties that are held together.
A property space is a set of states with the rules that govern the state changes for a
particular object behaviour. For example, in Figure 7.1, the package property space
illustrates that packages can transition between in and at relationships. The space
also has a list of objects that belong to the space (for example, the set of all packages
in the problem). An object can exist in more than one property space and each mem-
bership can be interpreted as a behaviour. An important aspect is that a proposition of
an object that has an associated property in a property space, is closed under the rules
of that space.

127

Chapter 7. Automating model enhancement

in

at

at

Package Truck

Figure 7.1: Trucks transition between different located properties and packages transi-
tion between being related to locations and trucks.

Two example property spaces are illustrated in Figure 7.1. Packages can transi-
tion from being in trucks to being at locations. Moreover the illustrated property
space has the interpretation that a package must be either at exactly one location or
in exactly one truck. In the Briefcase domain, the at and in properties have index 0

(at0). Trucks can transition from being at one location to being at another location.
The truck property space captures the invariant that a truck will always be at exactly
one location. These invariant are typical of transportation domains, however, they are
commonly not explicit in the model. Therefore domain analysis provides a method
of making explicit some of the domain conventions and also uncovering the various
behaviours encoded in the model.

Generic types

The analysis in TIM partitions the potential transitions of an object into different be-
haviours (Long and Fox, 2002). This behavioural level has provided a useful language
for describing generic behaviours that exist in several domains (Long and Fox, 2002).
A key benefit of this level of analysis is that certain sub-problems can be identified at
the generic behaviour level and specialised solutions can be exploited at the specific in-
stance level. For example, through improving weak heuristics (Coles and Smith, 2006),
or inducing specialised heuristics (Fox and Long, 2001) or control knowledge (Murray,
2002; Murray et al., 2003).

The key to the success of these approaches is that there is a clear description of
when the solution is appropriate for the current problem. This description is cap-
tured by a set of criteria, called a fingerprint, which establishes the requirements of the
generic type (Long and Fox, 2002). A problem model that satisfies the criteria exhibits
the associated generic type. Having a well defined fingerprint is particularly impor-

128

Chapter 7. Automating model enhancement

tant in Fox and Long (2001), where the problem model is decomposed and Murray
(2002); Murray et al. (2003), where pruning rules are used: each of these approaches
can cause the problem to become unsolvable if applied inappropriately. In Coles and
Smith (2006), inappropriate use will result in a weaker heuristic. In our approach it
could result in enhancements to the problem that are not useful; however, using the
vocabulary is decided by the control knowledge engineer, or through a learning pro-
cess, which is informed by performance. We do not explore here whether relaxing the
definition of a fingerprint leads to wider utility of the solvers.

The transportation problem fingerprint In Long and Fox (2002), a network of
roles related to the transportation problem are identified. The graph traversal behaviour
underlies the transportation behaviours. A graph traversing behaviour is characterised
by a property space with a singleton state and a single self-transition on that state (illus-
trated in Figure 7.1). This is an object that transitions between different instantiations
of the same predicate. The objects that belong to this space are labelled traversers
(these are referred to as mobiles in Long and Fox (2002)) and these play a role in path
opening and transportation problems. The single property represents the locatedness
predicate that relates the objects of the property space to the set of locations. The
variations of these relationships are explored in Long and Fox (2002).

A transportation problem requires a traverser that acts as the transporter. Certain
objects, called transportable objects, can be attached to this traverser and moved to
other locations (perhaps attached through a chain of static propositions, such as those
representing an arm). Transportable objects are characterised by a property space with
two states that are linked to each other in both directions (illustrated in Figure 7.1).
One state includes a property that links the object to a traverser and the other state
has a property that links the object to a location. The actions associated with the links
between the states must require that a traverser is located at the location that is being
picked up from, or dropped off to. These objects are called portables.

We have used fingerprints for traversal problems and stacking problems. These
were used to identify the appropriate language for the experiments in Section 6.5. The
analysis in Chapter 6 required various parameterisations of the solvers, such as whether
the graph is static or dynamic can be identified from the domain (Long and Fox, 2000).
However, we also introduced several solvers whose appropriateness for a domain will
depend on the specific problem distribution. For example, whether identifying hubs
or clusters is an important concept in the particular domain. We have associated these
with a fingerprint, so that they are provided as alternative vocabulary (for example,

129

Chapter 7. Automating model enhancement

clustering is invoked when a transportation fingerprint matches). The reason is that
these elements are related to optimising the solution, which requires identifying prop-
erties that are specific to the relationships in individual problems, rather than general
structural aspects that indicate properties of directed connectivity. In Section G.2 of
the appendices, we will examine a specific form of solver parameterisation that uses
an empirical method reliant on training data that could be extended to identify a wider
range of parameter values. This could be used to determine the appropriateness of
clustering by identifying whether the graphs in the training data were suitable for clus-
tering. A more general method would be to provide the vocabulary and let a rule
learner select those that are appropriate in practice. We will explore learning RBPs in
Chapter 8.

7.1.3 Generic types to the enhanced domain model

In Chapter 5 we defined language enhancements for several sub-problems, including
traversal problems and transportation problems. We have demonstrated in this section
that these sub-problems can be identified using fingerprints. Our approach is to iden-
tify generic behaviours and, where they exist, invoke the associated vocabulary. For
example, if there is a transportation sub-problem identified then the problem model is
enhanced with the vocabulary that we have selected for transportation problems. In
this subsection we explain how the solvers are invoked and explain how we write out
the generated problem as a solver listings file and an enhanced domain model file.
Thus completing the loop and facilitating automatic generation of a suitable model
language.

Parameterising the solvers

We defined solvers in Subsection 5.1.1 as a collection of functions. However, in prac-
tice the computation of those functions relies on a collection of parameters. This allows
the use of solvers for many different instantiations of the generic behaviour. For exam-
ple, we have implemented a single graph traversal solver. This solver is parameterised
by a particular graph module that is selected based on whether the graph is static, dy-
namic or turn-based (Section 5.2). Identification of static graphs is presented in Long
and Fox (2000). Turn-based graphs are identified by examining the move action: if
a proposition that is not a locatedness proposition is changed by the move action and
that proposition enables future move actions then the graph is not turned based. For
example, a domain where fuel is consumed during traversal is not turned based.

130

Chapter 7. Automating model enhancement

The identification of sub-problems is used to invoke the relevant specialised solvers.
The identification process also includes identifying the correct parameterisation of the
solver for the particular problem. In the solvers that we have constructed, each re-
quired parameter is identifiable with a simple extension of the programs that identify
the fingerprints. This is intuitive: a fingerprint distinguishes between problems that
the language is suitable for and those that it is not. In order to determine this it re-
quires to analyse the aspects of the problem that the solver works with. For example,
the algorithm used to establish a traversing object uncovers the relevant parameters
of the located predicate and move action that correspond to the traverser and location
arguments. These are precisely the facts necessary for parameterising the move action
module that is required by the graph abstraction solver. An extract of the solver listings
file for the Driverlog domain is presented in Listings 7.1.

Listing 7.1: Extract from solver listings output for Driverlog domain� �
(: module MoveAction0

: t y p e s o l v e r s . e n c o d i n g . g r a p h a b s t r a c t i o n . moveac t ion . MoveAction
)
(: moduleDescr ipt ion MoveAction0

: MoveAction (: d e s c r i p t i o n (d r i v e− t r u c k 0 1 2))
: L o c a t e d n e s s (: d e s c r i p t i o n (a t 0 1))

)
� �
Writing out solvers

The enhanced domain model requires two files to be created: the enhanced domain
model and the solvers listings file. The syntax of these files has been described in
Subsection 5.1.3. The enhanced model is partly created using the original domain
model. The domain predicates, types and action listings are the same. We query
each solver instance for its active predicates and active actions. Each predicate gets
an entry in the active predicates list and a new active action entry is made for each
action. The solvers that we have constructed have functions for creating appropriate
action and predicate names. For example, in Driverlog, the base action drive-truck has
a corresponding active action called long drive-truck. The associated condition
is called drive-truck connected.

The solvers listings file is built by querying each solver instance for a list of the de-
scription strings and modules that parameterise it. Any modules that are depended on
are then recursively queried for their descriptions and module dependencies. Suitable
entries are made with a tag that describes the parameter and a string. For a descrip-
tion, the string is the description string. For modules, the name of the module is used

131

Chapter 7. Automating model enhancement

instead. As we explained in 5.1.3, the type of the solver or module is the Java class
that implements its behaviour. The description and module entries combine to fully
parameterise the solvers.

7.1.4 Conclusion

In this section we defined a search space for an appropriate problem modelling lan-
guage. Our approach to selecting chains from this space is based on identifying specific
patterns called fingerprints in the problem model. Each language enhancement has an
associated fingerprint. If the problem satisfies the fingerprint then the problem struc-
ture suggests that the associated enhancing step will be appropriate. An advantage of
using a formal approach to matching features is that all labelling is ignored that might
otherwise lead to the domain expert failing to recognise the underlying structure (Long
and Fox, 2000). For example, the Mystery domain from the 2002 IPC (Long and Fox,
2003) encodes a transportation problem using alternative labels: the locatedness pred-
icate is craves and the traverser argument has type emotion and the locations have
type food. The domain satisfies the traversal fingerprint and therefore the traversal
vocabulary is invoked.

This approach could be used with several existing approaches to introduce the re-
quired model enhancements, such as the well-placed predicate, which was manu-
ally selected in Khardon (1999a); Levine and Humphreys (2003). An aspect of future
work might investigate using a similar approach to determine an appropriate language
bias for approaches that rely on rich rule languages, such as Martin and Geffner (2000);
Fern et al. (2006), or for those that explore the set of language restriction chains, such
as de la Rosa and McIlraith (2011).

We have presented an approach for generating enhanced domain models automat-
ically. The approach is suited to the structure based enhancements that we have in-
vestigated in this work. If a fingerprint is matched in a problem then the associated
solver can be used with the problem. The information necessary to parameterise the
solver is extracted at this matching stage. This process means that a domain expert is
not required to select the appropriate solvers and parameters.

132

Chapter 7. Automating model enhancement

7.2 A general model for generating structure interac-
tions

In Chapter 5 we developed several chain steps and in Chapter 6 we demonstrated that
these steps were appropriate for providing directed connectivity in several planning
problems with underlying structures. During the process of developing these solvers
we observed that domains with apparently similar structures required different solu-
tions. For example, in Goldminer problems directed connectivity was established
through identifying the nearest closed node in the direction of a target, whereas in
Grid problems the solver calculated a route through the locked doors to the goal. The
generic type hierarchy in Long and Fox (2002) identifies fourteen types for Transporta-
tion problems. A single problem can incorporate several of these types contributing to
a large number of possible interacting types. In order to provide the necessary sup-
port for the RBP we have developed several solutions to cover different combinations
of types from this hierarchy (Chapter5). In general this process requires a knowledge
engineer to do a lot of work. The solvers can be parameterised in any way and can
be computed in any way. We require a more structured approach if we are going to
generate specialised solutions. Our focus in the remainder of this chapter is to reduce
the effort of enhancing the problem model.

We return to two observations that were made in Chapters 5 and 6: that SIs underlie
the limitations of the rule language and that we should focus on providing concepts of
directed connectivity. Combining these observations we conclude that the next step is
to develop a model that provides a general approach for defining directed connectivity
for SI. An SI is a sequence of actions that act on successive nodes of a structure,
contributing towards a single target. We observe that the actions that are applied at each
node are often the same or slightly changed. In this section we use this observation to
define a bag of macros, similar to the sets of macros defined in Botea et al. (2007). We
then identify an alternative exploration technique that is more appropriate for use with
an RBP.

7.2.1 Arbitrary length macro actions (ALMAs)

Macro actions can encode important subsequences that combine to form a complete
behaviour. For example, in Blocksworld problems an unstack and stack combi-
nation can be modelled as a single move-block macro action. The problems that
were identified in Section 5.2 require that similar tasks are performed on an arbitrary

133

Chapter 7. Automating model enhancement

set of the nodes of a structure. For example, in traversing a graph we might move be-
tween connected nodes; and in Blocksworld we might uncover a block by repeatedly
unstacking blocks that are sitting on top of it. Our model for generating SIs combines
these ideas, by generating similar sequences of actions over the nodes in a structure.
We first formalise the macro operator and then present our ALMA model.

Macro operator

In Section 2.3 we defined macro actions, which allow the planner to consider a se-
quence of related actions as a single unit. This can allow the planner to direct search
to the goal with fewer decisions. A macro operator is a sequence of operators:

Definition 7.2.1 A macro operator, mop, is a set of variables, Vmop = {v0, . . . , vm};
and an ordered list of operators, op0, . . . , opn over the variables in Vmop.

A substitution, Θ = {c0 ← v0, . . . , cn ← vn}, ∀ j ∈ [0, . . . , n] vj ∈ Vmop, replaces
the variables in the macro with problem constants. Application of a macro operator is
valid for a given substitution and state, if the action sequence after substitution can be
applied to the state. We can define the set of valid bindings to the variables of a macro
operator, mop, for a given problem and from a specific state, s0.

Definition 7.2.2

MacroBindingsmop(s0) = {Θ|
∃s1, . . . , sn+1, a0 = Θ(op0), . . . , an = Θ(opn)

∀i ∈ [0, . . . , n] si+1 = γ(si, ai)}

The set of valid actions is constructed by making the substitutions to the macro
operator.

Definition 7.2.3

MacroActionsmop(s0) = {a0, . . . , an|
∃Θ ∈MacroBindingsmop(s0), ∀i ∈ [0, . . . , n] Θ(opi) = ai}

Bags of macro operators

The use of macro actions is effective because in many problems short sequences of
actions combine to perform a single task. Analysis of the plans generated for problems

134

Chapter 7. Automating model enhancement

over structures indicate that when acting on a structure we often perform similar tasks
on each of a series of nodes. Although the precise details of these tasks might vary, the
target of each task is the same, such as moving an object to an adjacent node with the
target of moving the object to a particular node.

We gather the behaviours that are relevant for a particular SI together into collec-
tions. We represent each of the behaviours as a macro action and group the macros
relevant for a particular SI into a set. As an example, consider the target of moving
a robot in Goldminer from its current location, l1, to a different location, l2. In this
example, we assume that the robot is carrying a laser and that the gold is not important.
At each individual node we can focus on three possible moves: move the robot into an
open square; shoot at soft-rock and move into the square; and shoot at hard-rock and
move into the square. Alternative action choices, such as putting the laser down, are
not important to the current target. These three moves are each a single task and can
be represented by macro operators. We can define a set that gathers these behaviours.

• (move ?robby ?l1 ?l2);

• (fire-soft ?robby ?laser ?l1 ?l2), (move ?robby ?l1 ?l2);

• (fire-hard ?robby ?laser ?l1 ?l2), (move ?robby ?l1 ?l2).

The two fire actions share variables with the subsequent move actions. This means
that the operators perform a single task of moving the robot to an adjacent square, per-
haps opening the square first. In general we can construct sets of macros that support
all of the behaviours that we may require at a particular node. If this is done in the
context of a particular target, then we can often reduce the possible action sequences
to a useful subset. For example, in the Goldminer problem we did not consider drop-
ping off the laser or picking up the bomb. The fixed length of these macros mean that
these sequences are not sufficient to flatten the arbitrary graph structures that we are
interested in; however, we are now equipped with a bag of possible behaviours that can
be considered at each node. Such a bag of behaviours is a useful building block when
considering SIs. The next step is to chain these behaviours together.

Generating SIs from macro bags

Sets of macro operators have been used in previous work (Botea et al., 2007; Newton
and Levine, 2010). In these works a single set was defined, which grouped together
macros that assisted the planner in reaching the goal. In Botea et al. (2007) no attempt

135

Chapter 7. Automating model enhancement

was made to gather macros that would act together, whereas in Newton and Levine
(2010) the collaboration of the macros is measured and optimised. In Botea et al.
(2007), macro actions are sequenced into arbitrary length action sequences. The mo-
tivation is to make as much progress as possible towards the goal while computing as
few heuristic estimates as possible. The expansion of the macro bags generates a single
greedy action sequence. We also consider linking macros together, however, the moti-
vation behind chaining the actions together is to discover the SIs that can be performed.
We therefore consider expanding a much larger number of action sequences.

Focusing application towards specific SIs The set of macro operators provides a
collection of action sequences that can be used at each node. In order to establish di-
rected connectivity our aim is to determine the SIs that can be reached by repeatedly
applying instantiations of the macro operators in the bag. However, we are interested
in focusing this expansion so that it is restricted to a single SI. This means that it is
important that we can impose constraints on variable bindings from one macro oper-
ator to another. For example, in order to move an object between nodes in traversal
problems the moving object parameter of the move actions can be bound to the same
object. We therefore introduce a language for joining the macro operators together.

We define a set of binding constraints, Bmop0,mop1 , between each pair of macro
operators. This set is appropriate for a macro operator, mop1, sequenced directly after
a macro action, mop0. The constraints take the form (v = v′), v ∈ Vmop0 and v′ ∈
Vmop1 . The interpretation of the constraint (v = v′), is that v and v′ are unified with the
same constant. We define a bag of macro operators as a set of macros that are related
through binding constraints.

Definition 7.2.4 A bag of macro operators is a set: macroBag = mop0, . . . ,mopn

over distinct variable sets: ∀i, j ∈ [0, . . . , n] i 6= j =⇒ ∀v ∈ Vmopi v 6∈ Vmopj ,

and the binding constraints, Bmopi,mopj , between each pair of macro operators.

Our example set of macro actions for nodes of a Goldminer problem can be re-
stricted to focus them towards a single sequence. The binding constraints would en-
force that the moves were acted on the same robot and that the destination location
of a move action matched the start of the next move. We call this bag of actions the
fireMoveBag and will refer back to it later.

Enumerating the SIs We can think of exploring sequences of macro actions as cal-
culating the connectivity of a graph. The nodes are states and the edges are macro

136

Chapter 7. Automating model enhancement

actions. The edge weights are a count of the number of actions in the macro. The con-
nectivity from an initial node can be computed using a best first search (Chapter 2):
using a count of the number of actions used so far and choosing the lowest count next.
The nodes are tuples: Node = (state, mop, Θ, previous, depth), where mop is the cur-
rent macro operator; Θ is the binding for the macro; previous is the previous node; and
depth is the number of actions in sequence. A node is expanded by applying all macro
actions that can be instantiated from the macro operators in the bag of macro operators,
macroBag. The pseudo-code for this method is presented in Figure 7.2.� �
def expandNode (n) :

nex tNodes = Set<Node>()
f o r mop = op0, . . . , opm ∈macroBag :

f o r Θ in MacroBindingsmop(n.state) :
a0 = Θ(op0), . . . , am = Θ(opm)
s t a t e = n . s t a t e (a0, . . . , am)
d e p t h = n . d e p t h + (m + 1)
nextNode = Node (s t a t e ,mop ,Θ , n , d e p t h)
i f (∀(v0 = v1) ∈ Bn.mop,mop n.Θ(v0) = Θ(v1)) :

nex tNodes . add (nextNode)
re turn nextNodes
� �

Figure 7.2: Pseudo-code for the expand node method of a best first search.

For each binding the macro action is computed and the resultant state is found
by applying the action sequence to the current node’s state. The depth is found by
adding the current node’s depth to the length of the macro. Finally, the link between
the previous node’s substitution and the new node’s substitution is validated against
the binding constraints. Each pair of variables that are made equal in the binding
constraints should unify with the same constant in the substitutions. If this is the case
the node is returned.

The states that can be explored will depend on the actions in the bag. An example
Goldminer problem state is illustrated in Figure 7.3(a). We can use the move opera-
tor as a single step macro operator and define a bag, moveOnlyBag, with the move
macro as its only contents. The explored states are all states that can be reached using
sequences of move actions. This is the states that are connected to the robot’s current
location by a chain of open locations. Figure 7.3(b) illustrates a state found through a
sequence of two move actions. If we allow the macros in the bag fireMoveBag (de-
fined above) then we can open locations as well as move into them. This means that
exploration reaches states with the robot at nearly all of the locations. The only excep-
tion is the square with the gold at it. This square cannot be traversed to as the bag does
not include the required fire-laser action. Figure 7.3(c) illustrates a state found

137

Chapter 7. Automating model enhancement

B

B

B

B

$

$$

$

(a) Current state

B B

B

l_0 l_1 l_n

B

$

$ $

$

(b) Discovered state using
moveOnlyBag

B

B

B

B

$

$$

$

(c) Discovered state using
fireMoveBag

Figure 7.3: Discovered states using different bags of macro operators.

through interleaving fire and move actions.
When used as intended this search will generate all of the possible SIs for the

specified bag of behaviours. The search is started with a single node, n0 = (s0, null,
null, null, 0). The search terminates when the open list is empty and at the end of
search the set of SIs are captured by the tuples in the closed list.

7.2.2 The ALMA directed connectivity solver

This exploration can be wrapped up in a specialised solver, enhancing the problem
model with the concepts of directed connectivity for a particular SI. Each specialised
solver models a connected predicate and an operator; the modelling of this vocabulary
is controlled by the associated bag of macros. The predicate models the reachability
of the target from the current state. Depending on the macro application approach, the
operator is instantiated to either the actions necessary to complete the parameterised
SI, or the first action towards achieving this target.

The vocabulary is parameterised by variables determined by the type of SI. A map-
ping is required from a node to the parameterisation of the vocabulary. These pa-
rameters define the control that the RBP has on the performed SI. For example, in
a traversal problem the important information can be represented by three facts: the
moving object, and the locations it moved between. The mapping for a traversal prob-
lem identifies these parameters from the search node. This extraction provides a set
of targets, each with the form, (moverP,fromP,toP). For traversal actions, we extract
this information from the first node, n1 = (s1,mop1,Θ1,n0,i1) and the last node, nm =
(sm,mopm,Θm,nm−1,im). We define a target tuple, (mover,from,to) as:

138

Chapter 7. Automating model enhancement

• mover = Θ1(mop1[−1](moverP));

• from = Θ1(mop1[−1](fromP));

• to = Θm(mopm[−1](toP)).

We use square brackets to index into the macro action list and negative numbers to
indicate that the indexing is from the end of the list. The consequence of this mapping
is that the RBP can identify those locations that are reachable using the bag expansion
and move the traverser to one of these locations as required.

In structure building problems the targets will be different. For example, in
Blocksworld we can define the macro operator that unstacks a block and puts it on
the table. This can be used to unstack blocks that are on top of blocks that do not
satisfy the goal. unearthBlock is the sequence: (unstack a b), (putdown a).
This can be used in a bag and allows chains of on relationships to be broken up. The
target for this action might be the block that was uncovered by a detach action (Ap-
pendix H).

For a given mapping from nodes to parameters, we define the set TargetSetmop(s0)

as the set of target tuples derived from every node in the closed list. In our example
Goldminer problem the two bags, moveOnlyBag and fireMoveBag would lead to two
different sets of targets. We assume for the problem illustrated above that the robot is
called robby and the nodes of the grid are named li,j , with row i and column j.

The target set for moveOnlyBag would be:

• (robby l0,0 l1,0) • (robby l0,0 l2,0) • (robby l0,0 l0,0)

The target set for fireMoveBag would be:

• (robby l0,0 l1,0)

• (robby l0,0 l0,1)

• (robby l0,0 l2,0)

• (robby l0,0 l0,0)

• (robby l0,0 l1,1)

• (robby l0,0 l0,2)

• (robby l0,0 l1,2)

• (robby l0,0 l2,1)

For each of the two bags moveOnlyBag and fireMoveBag we get a predicate and
action. For the initial state used in the continuing example, the predicate moveOnly-
Bagconnected and fireMoveBagconnected would hold for each of the target tuples in the
respective sets listed above. Similarly, the actions moveOnlyBagmove and fireMove-
Bagmove with one of these targets would make the appropriate move towards achieving
that target, depending on the approach.

139

Chapter 7. Automating model enhancement

It should be noted that to exploit this vocabulary using the SbS the bag must be ex-
tended with each suffix of the macros in the bag (at least for the first macro application,
although we did not make this distinction). This allows the ALMA to be applicable at
each step as the executive steps through the actions.

7.2.3 Target structure interactions

The vocabulary can be parameterised by a fixed and finite number of values. This
means that the communication from the RBP will be limited to a finite number of world
constants. The search as presented distinguishes between all of the possible arbitrary
length action sequences (possibly exponential with respect to a particular problem) as
distinct SIs, whereas many of them achieve the same target sets. We are providing
alternatives for an RBP that can only characterise the arbitrary length sequences using
a fixed number of parameters. We therefore introduce a subset of the possible SIs
called target SIs, by making the following assumptions:

• A state is sufficient to distinguish between SIs.

• A state is sufficient to determine the set of macros that can be applied. Or in
other words, the binding constraints are equally restrictive between any macros.

The first restriction means that our control over the actions that are used in an SI is
restricted to the careful selection of the macros in a bag. We do not control the selection
of those macro actions in order to achieve a specific SI. This would have implications
for planning with preferences over the plan sequence (Gerevini and Long, 2005) and
can also lead to dead-ends in certain domains. For example, in Goldminer the bomb is
a resource that can only be used once and is intended to be used to free the square with
the gold. If the detonate-bomb action is part of a bag that is used for an earlier SI
then the bomb might be used, leading to a dead-end. The second restriction adds to
the first by making it explicit that if we are not interested in the actions that are used
to perform an SI then the expansion of a particular macro action should not lead to
different constraints on following actions. This is not required by the approach, but
simplifies its description and is sufficient in the explored cases.

In the case of target SIs, we can maintain a limited set of visited tuples. Instead of
comparing a node with the nodes in the closed list to determine if we should expand
the node, we compare the node’s state to those of the visited states.

140

Chapter 7. Automating model enhancement

Listing 7.2: Pseudo-code for the add to already processed method for use with a best
first search.� �
def a l r e a d y P r o c e s s e d (n) :

f o r c losedNode in c l o s e d L i s t :
i f c losedNode . s t a t e . e q u a l s (n . s t a t e) :

re turn t r u e
re turn f a l s e
� �
The change is reflected in Listing 7.2. Once a state is found at a certain layer of

search, we do not expand any new nodes that reach the same state. Under the above
restrictions an alternative branch will not allow any different states to be explored. We
identify a further property in Section 7.5, where we look for an efficient method of
searching for targets.

7.2.4 Discussion of ALMAs

In this section we have presented a directed connectivity solver for a wide range of SIs.
A benefit to the ALMA representation is that we can conveniently parameterise the
computation of the solver by defining a set of macro actions and their associated bind-
ing constraints. For example, if we parameterise the solver with the drive-truck
action from Driverlog and include a binding between the truck parameters of succes-
sive macros then we define a solver that can discover sequences of actions that move
any truck in a Driverlog problem between any two positions in the link map. Using
the fireMoveBag defined above, the same solver expands sequences of move actions
that can require fire-laser actions to open nodes before moving. This provides a
convenient method of defining a powerful abstraction layer for empowering an RBP.
In this part, we compare our work to the related works.

Establishing an abstract layer

An ALMA is an abstract operator, similar to those exploited in AbNLP (Fox and Long,
1995). In each case we can set goals that require an arbitrary length action sequence
and in each case a finite number of constraints can be set to determine how the next
layer is generated. In AbNLP the abstraction hierarchy has multiple layers, whereas
ALMAs exploit recursion in a single abstraction layer. We discuss a hierarchical im-
plementation of the ALMA solver in Section G.1 of the appendices. ALMAs exploit
SI templates, which provide a sensible method of structuring the expansion and have
benefits in terms of filtering as presented in Section 7.5.

141

Chapter 7. Automating model enhancement

The motivation behind the ALMA is similar to the expansion domain, provided
as part of the TLPLAN planner (Bacchus and Ady, 2003), and also to HTN method
decomposition. In TLPLAN, the domain model can be expressed using macro operators
that are used during planning. An expansion domain allows the macro operators to
be expanded in a separate world, so that the plan can be presented in the original
language. This has been used to define arbitrary macro actions for truck and driver
graph traversal in the Driverlog control knowledge. Operators and not macros are used
in the expansion domain (for example, walk and drive actions). The motivation
behind HTNs is that tasks are naturally broken down into smaller tasks. Establishing
the raised level of SIs is similar to defining a method decomposition that recursively
expands an SI into a combination of macros and each macro as an application of the
domain level operators.

Expansion of the space

An aspect of our rule representation is that in order to determine an applicable rule, the
rules that are not applicable must be proven false (no binding in the state and goal).
If a condition for a rule includes a predicate modelled by an ALMAs then this can
require that each of the possible SIs are identified. In addition, an RBP can use the
vocabulary in several rules. One reward of expanding the whole space is that it only
needs to happen once per state. In Section 7.5, we examine a property of certain SIs
that means that we can decrease the number of states that must be visited to determine
the reachable SIs.

In Botea et al. (2007) the macro bag is used to generate a single macro action at
each search node. The motivation behind the generation of these action sequences
is to make as much headway towards the goal as is possible, cheaply, from a single
expansion. A similar idea was explored in Lipovetzky and Geffner (2011), where a
probe is generated in the direction of the goal from each state. Our motivation is
different. We aim to identify all of the targets that can be reached using the actions in
the bag so that the RBP can select the next target. Once this selection is made then
the approach of Botea et al. (2007) would be appropriate. In particular, if a cheap
method of establishing the available targets is available then this approach could be
applied to expand the bags to the specified target. For example, in the Driverlog control
knowledge, used with TLPLAN, the transitive closure on the link predicate is used to
identify all of the locations that the truck could visit.

142

Chapter 7. Automating model enhancement

7.3 Automated vocabulary generation

In this and the following sections we consider the problem of generating a parame-
terisation of an ALMA solver. The space of targets reachable in the expansion of an
ALMA is determined by the set of macro actions. The selection of an appropriate set
of macro actions will lead to an ALMA solver that models vocabulary that is suitable
for controlling SIs in the target domain. In Botea et al. (2007); Newton and Levine
(2010), sets of macro actions were learned and the approach in Botea et al. (2007)
is particularly relevant as the macro actions chain together to form arbitrary length
macros. In both cases the macros were selected using empirical optimisation, which
maximised the macros’ performance in collaboration (Newton and Levine, 2010), or
independently (Botea et al., 2007). We have used an alternative method, where SIs are
identified in example plans and generalised to form the ALMA parameterisation.

An SI is a single sequence of actions that contributes to achieve some target (or sub-
goal). In this section we consider how to extract these action sequences from example
plans. Researchers have analysed sub-goals in planning problems in the context of
decompositions (Fox and Long, 2001; Hoffmann et al., 2004; Koehler, 1998; Crosby
et al., 2013) and caching solution sequences (Laird et al., 1986; Coles and Smith,
2007). We examine extracting sequences for subtasks, however, without the context of
planner search information that is exploited in Laird et al. (1986) and Coles and Smith
(2007). An alternative approach for identifying the sequences in plans is proposed.

Our approach is inspired by the macro learning approach used in Botea et al. (2007)
and more fully discussed in Botea et al. (2005b). However, we take an alternative ap-
proach to extracting macros that exploits the domain analysis techniques presented in
Section 7.1. The approach splits the problem into two stages. First a series of se-
quences, or subplans that relate to a particular SI are extracted from a set of example
plans. The second stage processes the subplans and identifies a collection of macro
actions. As the input is lists of actions that are relevant for a particular SI, the aim of
this stage is to divide the sequence into the collections of actions that are observed at
a particular node. A related problem has been investigated for domain model acquisi-
tion (e.g. Cresswell and Gregory, 2011), where a collection of plans is characterised
and represented as a domain model. Our target representation is a set of macro opera-
tors, which lends itself to a simpler inference procedure.

143

Chapter 7. Automating model enhancement

7.3.1 Formulation of the problem

We formulate the problem of generating the reachable set of SIs in terms of the ALMA
representation presented in Section 7.2. We demonstrated that we can parameterise
the ALMA solver’s functionality with bags of macro actions and binding constraints.
The approach requires that the connections are made between the particular SI and the
ALMA expansion. However, we demonstrate that the connection can be expressed at
a level that is appropriate for general problem groups. In particular, we define the con-
nection for traversal problems, which includes transportation and path opening prob-
lems. We begin by defining our source of examples, the dependency graph and the
information that must be provided for each SI type. We then present our approach for
extracting sequences of actions that are related to achieving a particular target. The fi-
nal step is to demonstrate how these sequences can be used to parameterise an ALMA
solver.

7.3.2 Example plans

We use example plans to guide the action sequences that we consider. An important
step is to reduce the sequences to those that are applicable to states that will exist
during execution in conventional problem models. We admit that we cannot hope to
make any guarantees that the language enhancements will be appropriate for every
problem of a domain. In fact, we do not want to make such a vocabulary. The domain
conventions often greatly reduce the possible chains of actions. We want to exploit this
to ensure the number of macros remains as small as possible. This is achieved through
our use of example plans that provide a sample of expected behaviour. If the plans
are representative of the expected problem distribution then we expect our solution to
generalise to the problems of the distribution.

In this section we rely on examples in the form of problem plan pairs:

〈(〈π0〉,P0), . . . , (〈πn〉,Pn)〉.

An example problem, PExample, is illustrated in Figure 7.4 and an example plan,
〈πExample〉, for the problem is presented in Figure 7.5. We use the action sequence
representation for convenience.

The quality of the plans will have an effect on the efficiency of the vocabulary.
For example, if the plans use a method of enabling traversing that is less efficient than
an alternative then the macro actions will lead through similarly inefficient chains of
actions. However, if the plans include both good and bad chains then the proposed

144

Chapter 7. Automating model enhancement

B

$

Figure 7.4: PExample, an example problem. The objects are named: robot, r; laser, l;
bomb, b; and the location in row, i, and column, j, is called li,j . The goal is to pick
up the gold.

1. move r l00 l10

2. pickup r l l10

3. move r l10 l20

4. fire r l l20

l21

5. drop r l l20

6. move r l20 l10

7. pickup r b l10

8. move r l10 l20

9. move r l20 l21

10. blow r b l21

l22

11. move r l21 l22

12. pickupGold r
l22

Figure 7.5: 〈πExample〉, an example plan for PExample.

traversing actions will be similar to the good plans, but the computation of the appro-
priate sequences will be less efficient as it will expand sequences that include actions
from both the good and bad plans. In this work we do not investigate the effect of plan
quality on the vocabulary and assume that the plans are optimal.

Dependency graph

Intuitively an action, a, is dependent on a preceding action, a′, if the effect of a′ allows
a to be applied. A dependency graph, or solution graph as it is called in Botea et al.
(2005b), generalises this relationship: it describes the dependencies that exist between
actions in a specific sequence. In particular, the achievers of an action’s preconditions
are made explicit. As a consequence of representing the relationship as a graph, we
can examine the chains of actions that lead to the action becoming applicable.

A sequence of actions 〈π〉 = a0, . . . , an is an ordered list of actions that are appli-
cable in a problem model, P = 〈M|Σ, si, g〉. The vertex set contains all of the actions
(with suitable relabelling where duplicate actions exist in the list): V = {aj}. The
edge set connects the action that achieves a proposition with actions that require the
proposition to be applicable.

145

Chapter 7. Automating model enhancement

E = {ai → aj|∃p maxi(p ∈ Adds(ai) ∧ p ∈ Prec(aj) ∧ i < j)}.

If the proposition holds in si, or is not explained by the sequence then there will be
no associated edge.

Functions for SI types We assume that SIs can be associated with special actions
that actually effect the SI. For example, in a traversal problem, the move action moves
the traverser. For each of the SI types our approach requires a fingerprint (Section 7.1),
a set of SI action templates and a set of binding constraints that relate the variables
in the templates. There is a slight difference with the binding constraints defined in
Section 7.2. In this case we only have a partial structure and therefore the variable
constraints are restricted to the variables used in the partial structure. The binding
constraints are used to focus the generated language to particular SI sequences. The
binding constraints and the SI actions are defined at the level of generic types and are
therefore applicable to a collection of domains. We assume that the SI actions can be
identified, as these have been a key aspect of the fingerprints in both of the generic SI
problems that we have investigated. We discuss these requirements in Subsection 7.6.1.

The template for traversal domains is the single action template, (moveAction
?t ?l1 ?l2). The binding constraints restricts consecutive templates to move actions on
the same traverser and also ensure that the moved-to node of one move action is the
move-from node of the next move action. This template defines traversal problems as
sequences of move actions that act on the same traverser.

The templates for the uncover solver for structure building problems defines the
template: (detach ?b1 ?b2), (attach ?b1) and the binding constraints accepts
two templates where the variable ?b1 is bound to the same value as ?b2 in the pro-
ceeding detach action. This template defines uncovering problems as sequences
of detach and attach actions that act on the same stack of blocks. An alternative
template could be defined for the alternative representation with the atomic move block
action. These variations on the representation are identified during the fingerprint iden-
tification along with the relevant actions and therefore this information is available to
be exploited.

7.3.3 Generating language

We have observed that the graph of nodes that are reachable through isolated SIs can
be overly restrictive for planning with an RBP. For example, reachability in the sense
of move actions, defined in Section 5.2, is not sufficient. However, there are alternative

146

Chapter 7. Automating model enhancement

reachability graphs that incorporate enabling actions that can extend the scope of the
reachability analysis. We have introduced three sources that we use to identify the
possible ways that an SI can be enabled. Our approach first makes a partitioning of the
SI actions and then identifies the non-SI actions that enable the actions in the partitions.
This results in a collection of sequences for each type of SI. These sequences can be
broken down into a series of individual SI episodes. Each episode fulfills a single SI
template with the actions that are required to enable that interaction.

Structure interaction sequences

The first step is to isolate the SI actions of each plan. It is assumed that the actions
used to define the templates for an SI are SI actions. Any other action is removed from
the plan. The SI actions are then linked together into template sequences, which is an
ordered set of SI actions that match to a sequence of templates, such that each pair of
templates is compatible with the binding constraints. For example, consider a problem
with two traversers, A and B and a package, p, and action sequence:

(moveA),(pickupp,B),(moveB),(moveA)

The first step would be to reduce the sequence to SI templates: (moveA),(moveB),
(moveA). A possible template sequence in from this sequence is: (moveA),(moveA),
whereas, (moveA),(moveB), is not, because it invalidates the binding constraints.

Definition 7.3.1 A sequence covering is a partitioning of the SI actions into template

sequences that adheres to the following constraints:

• Each SI action belongs to exactly one partition.

• For every sequence template, at0 , . . . , atn , each of the actions are causally re-

lated to the final action, atn .

• The sequence is consistent with respect to the binding constraints.

• There are no partitions that include components that are causally related through

another partition.

• The partitions are maximal. There are no partitions that could be subsumed by

another partition.

147

Chapter 7. Automating model enhancement

The set of sequence coverings defines the alternative ways that the plan could be
sequenced given the binding constraints. In both traversal and unstacking problems
there is only one partition and therefore this set is easy to compute. In the next stage
we assume a partitioning is selected. Each of the coverings could be enumerated and
the vocabulary generated for each could be combined. Another approach would be
to test the alternative bags using learned control knowledge as a metric (de la Rosa
and McIlraith, 2011) and reserve the bag with the best performance. We have not
investigated this and leave characterising the structures that would lead to alternative
partitionings to future work.

Enablers of structure interaction sequences

The next step is to extend these sequences to discover the actions that enabled them
in the example plans. The pseudo-code for our extraction process is presented in List-
ing 7.3.

Listing 7.3: Pseudo-code for the extract sequences method and the node expansion
procedure for the BFS called the stunted dependency tree search.� �
I n p u t s :
〈π〉 = a0, . . . , an : a p lan
V a r i a b l e s :
RCG = (V,E) : t h e r e v e r s e d c a u s a l graph f o r t h e p lan
v i s i t e d I n d e x e s : boo lean a r r a y f o r marking p lan s t e p s
SC = (t0,0, . . . , t0,p), . . . , (tm,0, . . . , tm,p) i s a s e q u e n c e c o v e r i n g .
Outpu t :
s e q u e n c e s : a l i s t o f s e q u e n c e s .
def e x t r a c t S e q u e n c e s (〈π〉 ,) :
RCG = c r e a t e R e v e r s e d C a u s a l G r a p h (〈π〉)
SC = c r e a t e S e q u e n c e C o v e r i n g (〈π〉 , RCG)
o r d e r P a r t i t i o n s B y T h e i r F i n a l A c t i o n s (SC)
s e q u e n c e s = []
f o r (tk,0, . . . , tk,p) in SC :

p e r f o r m S t u n t e d D e p e n d e n c y T r e e S e a r c h (atk,p , (tk,0, . . . , tk,p))
sequence = o r d e r (g a t h e r A l l D i s c o v e r e d N o d e s ())
u p d a t e V i s i t e d I n d e x e s (sequence)
s e q u e n c e s . add ((tk,0, . . . , tk,p), sequence)

re turn s e q u e n c e s

def expandNode (n) :
n e i g h b o u r s = []
f o r n′ in RCG . g e t N e i g h b o u r s (n) :

i f ! v i s i t e d [n′] :
i f i s A n S I A c t i o n (n′)

& p a r t O f C u r r e n t T e m p l a t e P a r t i t i o n (n′) :
n e i g h b o u r s . add (n′)

e l s e :
n e i g h b o u r s . add (n′)

re turn n e i g h b o u r s
� �
The first stage is to compute a sequence covering, as described above. The parti-

148

Chapter 7. Automating model enhancement

tions are ordered by the highest plan index contained in the partition. For each partition
a search is carried out from the action in the partition with highest plan index. This
searches backwards gathering the enablers for the partition. The discovered nodes are
gathered and ordered, the visited nodes are updated and the sequence and its associated
template sequence are added to a set and ultimately returned.

A stunted breadth first search through the reversed causal graph is used to identify
the enablers of the target action. This expansion of a node during this search is pruned
in two ways: if an action has already been visited then it is not added as a neighbour;
and if the action is an SI action and is not part of the current partition then it is also
not considered. The former constraint assigns enablers to a single sequence. This is
a heuristic approach that assumes single motivation and was motivated by the obser-
vation that if two sequences always share the same enabling sequence in the example
plans then we assume that sequences in the future can share the same enabling se-
quence. The latter constraint acts to break the causal chain into separate sequences of
actions for each SI (as defined by the binding constraints and specific partition).

Chunking

ALMA solvers are parameterised by a collection of individual SI episodes. The action
sequences that are found using the extractSequences function can be broken
down into a single SI by breaking the sequence into chunks. Each template sequence
provides the outline of a specific SI episode. The templates can be used to split the
action sequence into a series of chunks, each that contain an atomic SI.

The actions in each sequence are ordered using their plan index. The sequence
is then partitioned by making a break after the completion of each SI template. For
example, the sequence move,move,open,move, will be broken down into the three
partitions: move|move|open,move. The final step is to replace the objects with
variables. This is done consistently so that equivalent macros are pruned.

This approach to chunking maintains the ordering observed in the training data.
As a result, interweaving between applying actions for sub-goals can lead to actions
being partitioned separately from their dependent actions. Consider a domain where
the opening of nodes is controlled by a remote terminal that are independent of the
traverser’s position. Plans for this domain might open several nodes together. Our ap-
proach would chunk the opening actions with the first SI episode. This can generate
bags that are less susceptible to the optimisation approach that we propose in Sec-
tion 7.5. A possible improvement would be to extract the partial order implicit in an

149

Chapter 7. Automating model enhancement

action sequence and compare the different possible chunks that could be constructed
from each linearisation. This would be useful future work, assuming that there are
interesting domains that would benefit from it. The presented extraction method is
sufficient for the benchmark domains that we have tested.

Chunking a Goldminer plan The Goldminer domain has a single traversal action,
move, that moves a robot between nodes of a grid. There is also only one robot
and therefore a single sequence. The sequence extraction gathers all of the actions
except the pickup gold action: all other actions are relevant for moving the robot to
the gold square. The sequence can be chunked by splitting it at each move action (the
completion of each Traversal template).

• (move r l00 l10)

• (pickup r l l10),(move r l10 l20)

• (fire r l l20 l21),(drop r l l20), (move r l20 l10)

• (pickup r b l10),(move r l10 l20)

• (move r l20 l21)

• (detonate r b l21 l22),(move r l21 l22)

Bags

Each of the raised actions is a macro operator. We can reduce these to a set of unique
macro operators. This defines a bag that we can use with an ALMA solver.

The above macros collapse into a bag:

• (move ?robby ?l1 ?l2);

• (pickup ?robby ?laser ?l1), (move ?robby ?l1 ?l2);

• (fire ?robby ?laser ?l1 ?l2), (drop ?robby ?laser ?l1), (move ?robby

?l1 ?l2);

• (blow ?robby ?bomb ?l1 ?l2), (move ?robby ?l1 ?l2);

As we use more plans to provide a more complete set of training data the bag will
expand. The result over several Goldminer examples is the bag, allMovesBag:

150

Chapter 7. Automating model enhancement

• (move ?robby ?l1 ?l2);

• (fire ?robby ?laser ?l1 ?l2), (move ?robby ?l1 ?l2);

• (fire ?robby ?laser ?l1 ?l2), (drop ?robby ?laser ?l1), (move ?robby

?l1 ?l2);

• (blow ?robby ?bomb ?l1 ?l2), (move ?robby ?l1 ?l2);

• (pickup ?robby ?laser ?l1), (move ?robby ?l1 ?l2);

• (pickup ?robby ?bomb ?l1), (move ?robby ?l1 ?l2);

• (pickup ?robby ?laser ?l1), (fire ?robby ?laser ?l1 ?l2), (move ?robby

?l1 ?l2);

• (pickup ?robby ?bomb ?l1), (blow ?robby ?bomb ?l1 ?l2), (move ?robby

?l1 ?l2);

• (drop ?robby ?laser ?l1),(move ?robby ?l1 ?l2).

This bag will lead to a solver that can perform many of the SIs possible in the state
space. More generally, this approach can be used to identify a collection of chunks that
can be combined to search through the space of SIs.

7.4 Identifying important subsequences

In Section 7.3, bags were generated by considering complete sequences of composable
SIs. The result is a comprehensive reachability graph that captures many of the pos-
sible SIs. There are two problems with this approach: modelling the propositions and
actions is often intractable; and there is little control over the sequence of actions used
to perform a specific SI. Closer inspection of the plans indicate that the sequences are
not always acting towards the same target. For example, in transportation problems
individual portables will each define their own targets. In this section we consider
splitting the SIs up to form smaller, more focussed macro bags. The benefit is that it is
part of a chain of steps that lead to a language enhancement that can be modelled; the
challenge is that we must choose how to split the SIs.

A similar problem has been addressed by researchers investigating approaches for
generating HTNs (Hogg et al., 2008; Ilghami et al., 2006; Yang et al., 2007). The first
step in Yang et al. (2007) involves partitioning a sequence of actions, and allocating

151

Chapter 7. Automating model enhancement

each partition to a task label. In Hogg et al. (2008) and Yang et al. (2007) the task
labels are identified for each plan in the training set, whereas in Ilghami et al. (2006)
the hierarchy is made explicit in the plan traces.

In this section we present a rule-based process that exploits domain analysis to
identify target actions. These rules can be seen as an approach for structuring the
training data, providing an alternative to labelling each plan, as has been done for
learning HTNs (Hogg et al., 2008; Ilghami et al., 2006; Yang et al., 2007). We use
this process to focus the bags so that they are appropriate for achieving a specific type
of target. This has two benefits: each bag will have a smaller search space; and the
actions will be more appropriate to the target.

7.4.1 Targets

The actions used to perform an SI can depend on the type of target. For example,
in Goldminer, the laser is used while opening locations on the path towards the gold,
whereas the bomb is used on the gold location. Breaking SI sequences into related
parts means that more of the structure of the example plans can be exploited. For
example, the example Goldminer plans will only use the bomb on the rocks that cover
the gold. If the allMovesBag is used then this information is lost and there will be no
way of the RBP communicating to the solver that it would like the bomb for a later
task. In this subsection we will present the definition and intuition for targets. In the
following subsections we present our approach for identifying targets and how those
targets are used.

Target actions

Actions that involve an object that interacts with structures can condition on that in-
teraction. An interesting subset of these actions provide the requirement of achieving
that interaction. These are the consumers that provide the reason for a particular SI.
An example of this, is when a traverser is moved through a series of locations to pick
up a package. The traverser must be at the location of the package to pick the package
up. We call these actions, which require a specific interaction between an object and a
structure, the target actions:

Definition 7.4.1 For a list of actions, a0, . . . , an, the target actions,

targetActions(a0, . . . , an) are a set of indexes: i0, . . . , im, such that each aij is a

target action.

152

Chapter 7. Automating model enhancement

The important aspect of the SI that was performed to enable the target action is
called the target. For the SIs that we consider in this work, we can define the target as
the completing action of an SI template, which supported (or achieved a precondition
of) the target action. For example, in a transportation problem a pickup action might be
a target action and the location of the package is the target. In this setting the target is a
traverser and location pair, with the interpretation that the traverser should be moved to
the location. In the following we do not distinguish between the target and the action
that achieves it.

7.4.2 Identification of targets

To determine whether a condition that tests an object’s current relationship with a
structure actually requires that specific relationship, requires some level of interpre-
tation over the action sequence. We present an approach that uses a set of rules to
identify the targets within a sequence. Each rule is associated with an SI so that it is
activated when appropriate. We focus on the traversal problem; we consider structure
building in Appendix H.

Context based targets

The nodes of structures can become significant during planning for various reasons.
The node can hold resources that are important for completing the task, for exam-
ple, the laser in Goldminer, an airport in Logistics, or a particular depot in a Depots
problem. This can be an outcome of the problem definition: through an explicit state-
ment in the goal requiring some relationship including the node to be established; or
as a consequence of the possible paths that can be made between the initial state and
any goal state (for example, landmarks). However, significance can also develop as a
dynamic response during planning. In a Transportation problem a transporter might
move a package to a location so that it can be picked up by a transporter that is already
making deliveries to a similar area. This location becomes an important hub-location
as a result of a specific allocation of packages to transporters and because of the rela-
tionship between the transporters’ relative positions and the package deliveries that are
being made.

We have experimented with heuristic approaches of selecting target actions, for
example, breaking at an action that adds a proposition that is either a goal, or that is
used later in the plan but is not used by actions in the current SI sequence. However,
such heuristic approaches are effected by arbitrary orderings in the plan, such as the

153

Chapter 7. Automating model enhancement

unnecessary connection or separation of production and consumption propositions.
There are many different forms of traversal problem and the appropriate definitions
of targets can be different and even contradictory across different problems. There is
scope for approximate approaches and this is important future work. In this work, we
exploit the existing domain analysis tool, TIM, and establish a mapping from generic
types to sequence breaking rules. In this part we formalise the target actions for each
of the three types of traversal problems that we have identified.

Graph traversal The main goal in traversal problems is to move an object between
different locations. For example, in Goldminer problems the robot should be moved to
the location with the gold. There are two more targets that can be important: losing or
achieving locatedness. This is when a traverser can be lifted from the graph. Identify-
ing where a traverser loses or acquires its locatedness requires analysing the actions to
determine whether the locatedness predicate is only added or removed.

In its most pure sense, a traversal goal is to have the traverser positioned at a spe-
cific node in the graph. However, this generalises to moving a traverser to achieve
goals in a more general setting. For example, in the Goldminer example above there
is no goal for the robot to be at a location. However, the robot must still move to a
specific location to pickup the gold and achieve the goal. We want to capture this idea
that goals can lead indirectly to target locations.

As a proxy for identifying these implicit sub-goals we use a rule that identifies
goal achieving actions that condition on the location of the traverser. These actions
are further analysed to determine whether the location and the goal variables share
the same variable partition. In theory a richer set of conditions could be identified,
however, this identifies the goal achieving actions in the benchmarks.

Transportation In transportation problems the traverser is moved to pickup and drop
off packages. Each pickup and drop off is an individual target that requires that the
traverser is moved. In some cases, the drop off will be to achieve a goal and is therefore
covered by the previous rules. However, there are situations where an object will be
dropped off at a non-goal location. For example, in Logistics problems an object could
be dropped off at an airport. The pickup and drop off actions are identified as part of
the fingerprint analysis. The action sequence is broken at any of these actions.

Path opening Path opening problems involve the traverser moving to locations to
open them and moving to pickup objects to enable opening locations. We propose two

154

Chapter 7. Automating model enhancement

rules: the first breaks the sequence if a new enabler is picked up; the second breaks
the sequence at the end of a sequence of opening actions. We do not break when an
enabling object is dropped off.

We define a sequence of opening actions as a series of opening actions that ends
when there is a change of enablers. Such a sequence may contain moves and other
enabling actions; however, the sequence is broken at the last opening action prior to
an enabler being dropped off (or picked up). This provides the potential to generalise
over chains of opening actions.

The transportation drop off rule is overwritten if an object is used as an enabler
while it is carried. However, the traverser rule is not. This means that the sequence
is broken if a package is used as an enabler and then dropped off at its goal; however,
it is not broken if it is dropped off at a non-goal location. This is consistent with our
assumption of single motivation.

In summary the rules that we use for traversal problems are:

1. Move to goal : a goal achieving action is enabled by move action

2. Lose or gain locatedness

3. Pickup object

4. Drop off package

5. End of an opening episode (where the current enablers were sufficient for the
traversal task)

7.4.3 Exploiting targets

The rules are used to alter the sequence covering partitioning defined in 7.3. The rules
are applied to each step of the plan in the context of each of the partitions. During
this process an ordered list of target actions is computed for each partition. The parti-
tions are then split into subsequences that each contribute towards one of these target
actions. This process is achieved for a particular target action and associated partition,
by searching through a reversed causal graph from the target action until the end of the
partition’s SI template is found. This action is made the last action in a new partition,
splitting the sequence into parts. The sequence extracting method is applied to these
smaller partitions. The result is a collection of smaller bags that are appropriate for
achieving specific targets.

155

Chapter 7. Automating model enhancement

A worked example

We use the example illustrated in Figure 7.4 to make the application of the rules more
clear. The purpose of Goldminer problems is to open up a path so that the robot can
pickup the gold. The only action that is not relevant to moving is the final pickup
action. There are usually four targets in Goldminer problems: pickup the laser; fire
to one location from the gold; pickup the bomb; pickup the gold. The problem in
Figure 7.4 can be solved with the following steps:

1. move r l00 l10

2. pickup r l l10
3

3. move r l10 l20

4. fire r l l20 l21
5

5. drop r l l20

6. move r l20 l10

7. pickup r b l10
3

8. move r l10 l20

9. move r l20 l21

10. blow r b l21 l22

11. move r l21 l22
1

12. pickupGold r l22

The target actions are marked in red with the breaking rule index in superscript.
Action 5 will be removed from its sequence as it does not enable anything in its se-
quence.

As the grid grows in size the number of actions between targets increases. For
example, the laser might be located four steps away from the robot’s starting location.
The length of these sequences are determined by the problem instance and are therefore
of arbitrary size. For example, Figure 7.6 illustrates the sequence of actions that move
the robot to reach a square away from the gold. The general form of the resulting
sequence is:

$

lj0 lj1

li0

... ljn

Figure 7.6: The robot moves through a sequence of moves then fire move pairs.

move r li0 l(i+1)0

. . .
move r l(j−1)0 lj0

fire r l lj0 lj1, move r lj0 lj1
. . .

fire r l lj(n−1) ljn, move r lj(n−1) ljn

156

Chapter 7. Automating model enhancement

This sequence is chunked into a single node SI.

(move r li0 l(i+1)0)
. . .

(move r l(j−1)0 lj0)
(fire r l lj0 lj1, move r lj0 lj1)

. . .
(fire r l lj(n−1) ljn, move r lj(n−1) ljn)

We have not distinguished between hard and soft rock in the actions above to
simplify the presentation. The process derives an equivalent bag to the fireMoveBag
that we defined in Subsection 7.2:

• (move ?robby ?l1 ?l2);

• (fire-soft ?robby ?laser ?l1 ?l2), (move ?robby ?l1 ?l2);

• (fire-hard ?robby ?laser ?l1 ?l2), (move ?robby ?l1 ?l2).

7.5 Bag expansion pruning

There is an important practical aspect that we have ignored. In particular, to evaluate
the reachability of SIs requires the expansion of a search space that can grow expo-
nentially with the nodes in the reachability graph. There are SI that define tractable
spaces. For example, traversal in various transportation problems does not require en-
abling actions. However, in other problems, for example in Goldminer problems, the
macros allow us to visit a large number of the states. Exploring this space is intractable
even for small grids.

We observe that many of the states that are discovered are equivalent with respect to
the parameters set by the RBP. In particular, the main task is to discover the targets that
are reachable, not which states are reachable. Therefore, pruning can be used during
the expansion, as long as the set of targets that are discovered is the same. In this
section we introduce the problem. We propose a solution framework and a criteria that
determines whether pruning retains completeness. However, it is not practical to assess
the criteria completely and an approximation approach is presented in Section G.2
of the appendices. Similar limitations have been addressed for approximate filtering
approaches by repeating the planning process on failure with the filter turned off (as in
FF).

157

Chapter 7. Automating model enhancement

7.5.1 Bag significance

The first observation that we make is that there are many accepted templates that are
equivalent in terms of the SI that they perform. For example, a traverser may move
between two points using many paths. The control afforded to the RBP is limited and
cannot characterise the particular SI. We therefore consider that two SIs are equivalent
if the targets are the same. An important extension to this is that if we know that
two states will lead to the same targets being discovered then only one of those states
need to be expanded. We are therefore interested in identify the part of the state that
is significant for allowing different SIs. This means that if the significant parts of two
states are the same then we only need to extend one of them, reducing the search space.

This is the problem of finding a suitable projection from a state into some reduced
space, such that those states that are equivalent under the projection extend to the same
targets. This property is naturally dependent on a specific macro bag. We consider a
projection as bag significant, if the projection is sufficient for any state of a domain.

(a) The robot’s position is the only
part of the state that is important in
determining the locations that can be
reached.

(b) With these sequences, the holding
laser proposition is important for en-
abling locations to be reached.

Figure 7.7: Two examples of states in the Goldminer domain.

To illustrate this concept we use the Goldminer examples, illustrated in Figure 7.7.
In Figure 7.7(a), the location of the robot is sufficient to determine whether the prob-
lem is solvable and solved. To move the robot to the middle location the robot must
destroy the rock. If it puts down the laser then the problem is still solvable: the robot
must simply pick the laser back up again. Once at the second location, the position of
the laser is irrelevant. In this example, a projection to the robot’s position would be
sufficient to determine the states that are reachable. However, in Figure 7.7(b) when
the robot moves to the middle location there are two distinct possibilities. If the laser
is in the robot’s hand then the rock can be destroyed and the robot can be moved to the
right-most location. If the laser has been left behind the goal cannot be achieved. In

158

Chapter 7. Automating model enhancement

particular, if search pruned the state with the laser in the robot’s hand then we would
lose the opportunity to move the robot to the right-most location. Therefore the propo-
sition that models whether the robot holds the laser provides necessary information
that splits the two exploration chains1.

A significance set based exploration

The search needs to be changed in order to perform the search pruning. This is achieved
by changing the alreadyProcessed function to search in the closed list for the
projected state as the current node (Listing 7.4). The pseudo-code relies on the func-
tion, project, which provides the projection of the state.

Listing 7.4: Pseudo-code for the already processed method in a best first search.� �
def a l r e a d y P r o c e s s e d (node) :

s i g N S t a t e = p r o j e c t (node . s t a t e)
f o r c losedNode in c l o s e d L i s t :

s i g C N S t a t e = p r o j e c t (c losedNode . s t a t e)
i f s i g C N S t a t e . e q u a l s (s i g N S t a t e) :

re turn t r u e
re turn f a l s e
� �
The search already pruned states that had been observed previously. These changes

mean that we now prune states if we have already observed the projection of the state.

(a) (b) (c)

Figure 7.8: Example of bag expansion using 7.8(a) state indexing; 7.8(b) the result
when using a projection; and 7.8(c) the expansion when exploring once from each
state that is distinct under the projection.

The benefit of using the projection based pruning is demonstrated in Figure 7.8.
The reachability graphs defined by ALMAs are potentially large (Figure 7.8(a)). How-

1The proposition that determines whether the laser is at the left-location provides just as much
information here. However, this proposition will not always be useful.

159

Chapter 7. Automating model enhancement

ever, when that space is projected to the set of propositions that are important in the
context then some of the states will be equivalent under the projection (Figure 7.8(b)).
We have observed that it is common in SI problems that sets of states extend to reach
the same set of targets. We exploit this by expanding a single state from each of the
equivalent projected states.

Exploration completeness

We consider that the process is still complete if the projection, q, leads to the same
targets being found for any state from any problem in the domain.

Definition 7.5.1 For a given bag of macros,mop; for the function TargetSetmop(s, j))

that computes the possible targets for the given state and projection, q; and where

TargetSetmop(s, I) is the set of targets using the identity projection, I , then q is bag

significant if the following property holds:

BagSignificant(q) ⇐⇒
∀P ∈ D

∀s P |= s

∀t (t ∈ TargetSetmop(s, I) ⇐⇒ t ∈ TargetSetmop(s, q))

The ideal situation is that any two states that extend to the same set of targets are
equivalent under the projection. We have selected to use the projection from states to
the target space. This is the minimal target space, as the states must be distinguished
by at least the achieved targets.

Definition 7.5.2 A bag of macros, mop, is target significant if the projection from

states to the target space is bag significant.

7.6 Discussion

In this chapter we have investigated the automatic inference of an appropriate domain
model for supporting an RBP in search. Through the use of domain analysis the un-
derlying SI problems can be inferred and appropriate language extensions can be in-
stantiated from a library. In practice we have found that this approach requires various
specialised solutions to be implemented, each with a limited scope. We have explored

160

Chapter 7. Automating model enhancement

this issue in the context of directed connectivity and proposed a generalised solution
for capturing directed connectivity vocabulary. This model (the ALMA) provides a
convenient method for expressing domain specific control knowledge. We have devel-
oped an approach that parameterises the ALMAs appropriately for a particular domain,
using example plans. In this section we discuss our approach, how the problem com-
pares to those tackled in the literature, and we discuss the contribution in terms of
previous work.

7.6.1 A summary of the ALMAGen approach

In summary, the definition of an SI requires the following elements:

• A fingerprint that identifies the key elements of the SI (Section 7.1).

• A set of templates that outline the valid SI episodes.

• A set of binding constraints between each pair of templates.

• A set of target identifying rules.

In this chapter we have provided a method of learning the parameters for an ALMA
solver. In particular, we have transferred the effort of developing a solution for specific
subtypes of SI problems to the problem of defining the elements stated above. We
provide a first step towards automating the process of learning specialised solvers. In
this subsection we discuss the required elements and the expected effort of providing
them.

Defining a fingerprint that makes an exact divide between domains that are suitable
for the language enhancement and those that are not could require careful analysis and
extensive testing or a formal proof. However, the language extensions are intended to
provide the pool of vocabulary that can be used to express the RBP. If the vocabulary is
not useful then it will not be used. The advantage of accurately defining the fingerprints
is to reduce the size of the vocabulary pool. We will discuss this in Chapter 8.

Analysing the SI is necessary to define a fingerprint and this level of understanding
requires knowledge of the common shapes that such interactions will take. Moreover
the identification of the important actions is likely to be vital for the fingerprint analy-
sis. This suggests that little added effort will be required to establish the templates and
binding constraints. In the two examples of SI that we have investigated there are only
one or two direct SI actions.

161

Chapter 7. Automating model enhancement

The last element is the set of rules that identifies the targets. This requires more
involvement. We analyse the impact that an under specified rule set will have on the
vocabulary in the Chapter 9. The main difference that the rules make is in the time it
takes to compute the vocabulary, however, it can lead to dead-ends in problems with
certain types of resource. This means that providing a method of identifying rules
is rewarding; however, we can hope to provide some useful vocabulary even with a
limited set of rules. Trial and error can be used, as the identified targets for the example
plans can guide the process. As a result, we have replaced the effort of defining a fully
parameterised solver implementation to the problem of identifying target actions. We
continue this discussion in Section 10.2.

We observed when implementing specialised solvers that a new domain would of-
ten require a new solution, or at least a new feature to our existing solution. This is not
surprising because the benchmark planning domains are intended to provide a diverse
spread of problems. However, it suggests that a default solution that works in the do-
mains with a particular SI with little extra effort would be a valuable resource. In this
section we have presented an approach that provides this general solution. Where effi-
ciency is important for a specific type of SI then a solution can be tailored and linked
in with a fingerprint, or the language presented in Section 5.1. In this way, effort is
focussed where it is necessary.

7.6.2 Exploiting domain analysis

There are several approaches that have exploited domain analysis. Many of these were
efficiency measures used to infer the type structure in problems (Fox and Long, 1998),
or state invariants (Fox and Long, 1998; Gerevini and Schubert, 1998). In Hoffmann
(2011) the domain is analysed in an attempt to uncover whether the relaxed planning
graph will be an effective heuristic. In Armano et al. (2003), the sets of precondi-
tions and add and delete effects of each operators were analysed in order to establish
chains of operators that were compatible for forming macro operators. Domain invari-
ants can then be exploited to constrain the variable bindings of these operator chains,
leading to effective macro operators (Armano et al., 2005). Our approach exploits a
deeper domain analysis; following the approach that was carried out for the planner,
HybridSTAN. HybridSTAN uses the analysis to identify appropriate decompositions
that can be applied to the problem model. The analysis has been used to select appro-
priate heuristics (Fox and Long, 2001), improve the estimate of the relaxed plan heuris-
tic (Coles and Smith, 2006) and for selecting appropriate control knowledge Murray

162

Chapter 7. Automating model enhancement

(2002); Murray et al. (2003).
In Botea et al. (2005a), the static propositions of problems are used to uncover

structural components. These components are used as support for making macro ac-
tions from sequences of actions that are enabled by the component. The intuition is
that actions that are enabled by some underlying structure are acting together and can
be packaged into a single option. The focus is on small finite sized components and
arbitrary graph structures are actively avoided. This approach can lead to macros that
capture the behaviour at each node of an SI; however, the planner would be responsible
for individually navigating the structure.

7.6.3 Generating abstractions

Our ALMA representation provides a convenient packaging for supporting RBPs in
SIs. The reachability graph is defined in terms of macro operations and we provide
two views of the structure: the reachable SIs and a greedy next step towards achieving
an SI. This establishes an important middle level of reasoning between the local targets
and the global RBP strategy. A key aspect is that by including all of the relevant factors
in the ALMA solver expansion space, we can solve challenging SI sub-problems. In
fact, exploiting ALMAs from an RBP can be interpreted as combining rule based and
hierarchical decomposition approaches, as proposed in Bacchus and Kabanza (2000).

In this chapter we have examined the problem of identifying hierarchical structure
in plan traces, which is related to problems in the field of grammar induction (De la
Higuera, 2010). For example, the identification of target nodes and chunks are related
to identifying valid expansions of non-terminal nodes in a grammar. In our approach,
we have exploited the rich structures uncovered by the domain analysis and this has
provided an alternative solution without the requirement of labelled plan traces. Ex-
amining how hierarchies can be generated from the plan traces directly, has been in-
vestigated for learning decomposition networks, in planning.

The process of learning a decomposition network can be split into two parts: the
identification of the hierarchy of tasks and the learning of appropriate methods for de-
composing those tasks. In Ilghami et al. (2006), the methods are learned for a hierarchy
of tasks, by building a set of methods incrementally as more task decompositions are
observed. This approach relies on hand-tailored training examples that specify the de-
composition tree of tasks. In Yang et al. (2007), the training data includes the ordered
tasks and the plan trace, however, the mapping between tasks and actions is not explicit.
The approach assumes no knowledge of the effects of actions. An approach based on

163

Chapter 7. Automating model enhancement

expectation-maximisation is used to cluster the actions around the most appropriate
task labels and these clusters are developed to form recursive method networks. This
is an alternative approach to sequencing that requires each plan in the training set to
be associated with the tasks that are completed by the plan. We provide an alternative,
where a set of rules are defined for a general class of problem (such as Transportation
problems) and an alternative representation to the labels are generated automatically
for each plan. Through using targets and because we do assume that the effects and
conditions of actions are explicit, we can extract the actions used to achieve the targets
using causality. Our approach for detecting generic types depends on the analysis of
the causal relationships between operators and therefore our approach relies on this
information. However, within a generative approach to discovering SIs, the use of
clustering could be used to determine sequences for use in ALMAs.

In Hogg et al. (2008), action sequences are used to incrementally build a hierarchy
of methods. This approach relies on a set of annotated tasks, which corresponds to the
description of targets, although we only consider a single layer decomposition. How-
ever, it is assumed that the methods will be used to generate the same length sequences
in the future: the method preconditions are constructed through regression, similar to
approaches for generating preconditions for macro actions. Our precondition cannot
be represented in predicate logic as it requires the transitive closure of the expanded
graph. The benefit of using regression is that the network is guaranteed to solve the
problems that were presented in the training data. In contrast, whether our generated
language is useful can depend on the interaction of subtasks.

There has been research investigating program-like languages as a representation
for solving sets of problems (Srivastava et al., 2008; Winner and Veloso, 2007). In
particular, loop structures support repetition of plan fragments on different object sets.
The main focus in these works is on capturing a pattern of behaviour and then applying
the pattern with unbounded collections of objects. The approaches used to uncover
these patterns are limited. In LoopDISTILL (Winner and Veloso, 2007), the sequence of
steps in each loop are identical and loops cannot be nested. For example, if a plan was
learned for the simple transportation problem then the plan might loop through picking
up a package, moving, then dropping off the package again. However, if the truck
moved to a location with two packages it would still only pick up one; if there were no
packages then the plan would fail. The set of loops identified in Srivastava et al. (2008)
do not necessarily consist of identical steps; however, the conditions are restricted and
only a subset of the non-nested loops are captured. These forms of looped behaviour
are generalised by the inherent form of recursion in the RBP representation. The main

164

Chapter 7. Automating model enhancement

challenge that we have addressed is not the problem of iterating through a series of
similar scenarios; instead it is the problem of directing the progression through those
iterations so that they contribute to a particular target. For example, moving the truck
a step towards a package.

There is a wealth of literature that has investigated generating model abstractions as
macro actions (Botea et al., 2007; Minton, 1985; Newton and Levine, 2010; Coles and
Smith, 2007; Iba, 1989; Minton, 1985). A common approach is to select macros from
a set of example plans, by ranking the candidates after using filtering approaches, mea-
suring the macros by performance and frequency of use (Botea et al., 2005b; Minton,
1985). In Newton and Levine (2010), a genetic algorithm is used to select macros
from the candidate space that improve the planning time. The motivation for these ap-
proaches is to select macro actions that positively effect the balance between branching
factor and search depth and is therefore a general approach for improving the planner’s
efficiency. In Iba (1989); Coles and Smith (2007), a more specific observation is used
to select macro actions. When the planner escapes a local minimum in the heuristic
landscape, the planner memorises the sequence that it generated so that the sequence
can be attempted in future local minima. We have also used observations to tackle
a weakness in our chosen planner, however, we are compensating for a limitation in
the planner, instead of improving efficiency through removing redundancies. In Botea
et al. (2007) an arbitrary action sequence is generated from a set of macro actions.
However, the approach used to generate the macro set is not optimised to discover
composable macro actions. The approach in CONSTANCE (Gregory et al., 2010) is to
identify a specific relationship between a subset of the actions in a problem and if it
exists, generate macro actions to generalise the actions. In this approach the planner
is forced to select targets, and therefore the model is not enhanced, but constrained.
Whereas we establish a general approach for providing enhancements, in CONSTANCE

a single relationship is focussed on, as this leads to a specific method of optimisa-
tion. Researchers have also investigated decomposing the problem into components.
In Crosby et al. (2013), planning problems are decomposed into private and shared
components. Planning in the private components can be conducted cheaply as the ac-
tions in these components cannot interfere with other parts of the problem. The shared
components require careful coordination as their actions impact on other components.
This work shares similar motivations. We are interested in separating the problem into
a collection of independent SIs that are managed by the RBP towards achieving the
high level goals.

165

Chapter 7. Automating model enhancement

7.6.4 Learning domain vocabulary

In Martin and Geffner (2000); Fern et al. (2006), the process of problem model selec-
tion and control knowledge generation is not split into two stages. Rich rule languages
are used and useful vocabulary is learned during the process of learning control knowl-
edge. As a consequence the vocabulary is specific to the domain and useful in rule
learning. Our approach generates specific vocabulary, however, there is no guarantee
that it can be used in learned control knowledge. We investigate this aspect empirically
in Chapter 9.

Our rules can represent concepts that cannot be represented in the rich rule lan-
guages. Although these concepts could be supported by enhancing the rule language,
this will make the learning problem larger. Our framework allows additional language
steps to be stored in a library and presented as an option when appropriate. The model
is only bloated with extra vocabulary when it is likely that it will be useful for express-
ing control in the domain.

An alternative approach was investigated in de la Rosa and McIlraith (2011). The
approach involves a beam search in the chain of state enriching languages, which only
includes additional predicates. A particular language bias was selected, which limits
the derived predicates considered. The authors select three operations that define the
neighbourhood of their search: the combining of two predicates; the abstraction of a
single variable of a predicate; and a transitive closure on a binary predicate with the
same typed arguments. The evaluation is carried out by learning a set of control knowl-
edge using the enriched language. As a result, the approach biases the exploration of
chains towards the weaknesses of the learning algorithm and the representation. In
contrast we have observed common features of a set of domains that suggest certain
weaknesses. We provide language enhancements that target those weaknesses directly.
Our vocabulary is generated for a particular purpose and therefore can be labelled ap-
propriately for that role, whereas the vocabulary in de la Rosa and McIlraith (2011)
is the result of various operations on arbitrary predicates and its function can be dif-
ficult to comprehend. These works both share similar aims, but each lead to different
language enhancements. An advantage to the approach in de la Rosa and McIlraith
(2011) is its general applicability. In contrast, our main advantage is the sophistication
of the strategies that are introduced through our language extensions. We leave using
these approaches in combination as future work.

The main advantage of our approach over previous work is that the solvers used to
enhance the problem models of a domain are selected specifically for the domain. The

166

Chapter 7. Automating model enhancement

analysis of the structure leads to a small pool of candidate enhancements.

7.6.5 Conclusion

Our intended application involves using the vocabulary in the expression of RBPs,
although we have experimented with exploiting ALMAs in heuristic search (Lindsay,
2012). In many cases, the rule language is expressive enough to select the class of
target that should be satisfied next. From the target an appropriate SI can be selected.
However, it can be impossible to identify the next interaction in the direction of this
target (as was discussed in Chapter 5). This is the reason for exploiting specialised
vocabulary. In this context, the main benefit of splitting the interaction into target
achieving sequences is that if the interaction is part of a larger problem then the rule
system has control at a lower level. The rule system manages the interactions between
the aspects of the problems.

In conclusion, we have presented a method of parameterising an ALMA. As a con-
sequence, we can generate appropriate vocabulary for expressing rule based policies
in structure based problems. The approach that we have proposed relies on the expan-
sion of a potentially exponential search space. We have proposed a filtering approach
that can greatly reduce the number of nodes and edges that must be explored. We
believe that the definition of the ALMA is an important contribution to work on de-
compositions for planning. In particular, the division of planning problems into smaller
components and the selection of appropriate control options within each component.
There are several limitations in our investigations. We will continue the discussion of
these in the future work, Section 10.2.

167

CHAPTER 8

AUTOMATING POLICY ACQUISITION

The final step in automating the process is to learn the RBPs themselves. Several
approaches have been applied to this problem and learned effective policies. However,
none of these approaches have learned policies that provide guidance through the SIs
that we have looked at in this work. As a consequence learning in these domains has
not been fully explored. In examining these problems we have discovered that the class
of fitness functions that have been developed to guide learning in previous approaches
is inappropriate for learning in these domains.

In Khardon (1999a), it is observed that the states that a forward chaining planner
acts on are a product of the decisions made in previous states. However, the training
data used in that work, and other related works (Martin and Geffner, 2000; Levine and
Humphreys, 2003; Yoon et al., 2002), is composed of a set of predetermined states.
This means that the condition of a rule is not only required to capture a correct choice,
but also model the behaviour of the planner used to generate the states. We define an
alternative fitness function that uses observations of the policy during planning so that
its fitness is related to its performance in solving problems.

The approach we present is computationally expensive. The learner applies plan-
ning as a black box and uses empirical analysis to direct search. This approach largely
ignores the rich structures implicit in the domain model. In Aler et al. (1998), the au-
thors investigate methods of incorporating knowledge into the learning process. The
authors observe the opportunity of using general learning approaches to complete and
refine existing knowledge. We use one of the presented approaches, which seeds the
initial population. There are approaches that investigate explaining action sequences
using several different representations (Boutilier et al., 2001; Hogg et al., 2008; Srivas-

168

Chapter 8. Automating policy acquisition

tava et al., 2011; Cresswell and Gregory, 2011), and we have used these approaches
for inspiration, to develop a process that generates a set of RBPs from a collection
of plans. This is realised through an extension of the ALMA generator presented in
Chapter 7. These RBPs demonstrate the use of the enhanced vocabulary and provide
building blocks for the learner to modify.

In this chapter we begin by presenting the RBP learning approaches. We identify
a limitation in the used fitness functions and then present the fitness function we have
developed to address this limitation. In the final section we present our RBP generation
process.

8.1 Learning policies

Learning rules has interested researchers for many years. We have introduced PRODIGY

and SOAR in Section 2.3, and these systems were used as test-beds for learning rules
for improving search performance. Other approaches have aimed to learn planners,
representing them as RBPs, or HTNs.

There are three main models that have been investigated for learning RBPs. The
first approaches build the policy from highest priority rule to lowest, continuing until
all of the training examples have been covered by the policy (Khardon, 1999a; Martin
and Geffner, 2000; Yoon et al., 2002). In Levine and Humphreys (2003); Galea et al.
(2009), learning a policy is modelled as an optimisation problem over the policy space.
It has been observed that weak rules in an RBP will greatly impact how effective it is
in practice (Xu et al., 2009). More recent approaches have aimed to reduce this impact
by incorporating the exploitation of rules within a general search strategy (Yoon et al.,
2006; de la Rosa et al., 2008). Recent reviews in the field provide the broader context
for our study: in Jiménez et al. (2012), the authors present an overview of planning
and learning, while in Kambhampati and Yoon (2010), the authors focus on the use
of explanation based learning. In Chapter 7, we analysed the literature surrounding
learning macro actions and HTNs. In this section, we focus on work related to learning
RBPs.

8.1.1 Learning rules

In Khardon (1999a); Martin and Geffner (2000); Yoon et al. (2002), a learning ap-
proach is used that extends Rivest’s decision list learner (Rivest, 1987). Rules are
selected incrementally from a set of candidates based on how they match with a train-

169

Chapter 8. Automating policy acquisition

ing set. As the RBP is resolved in priority order the training examples that have been
covered by rules can be removed from the training set. This process concludes when
the training set is empty and the rules cover all of the examples. In Khardon (1999a) it
is shown that a polynomial algorithm exists for learning RBPs, although this only par-
tially transfers: it holds for chains of state enriching languages, and abstracting actions
using the SbS.

Rule selection

The candidate rules are drawn from the action and predicate symbols of the domain
model and a limited set of variables. The possible predicates and actions can be enu-
merated by matching their parameters with any possible combination of the variables.
Any such predicate, p, generates several possible terms, for example, (not (p)) and
(goal (p)), depending on the rule language (we discussed the rule languages in Chap-
ter 4). In Khardon (1999a); Levine and Humphreys (2003); de la Rosa and McIlraith
(2011), the predicates of the domain model are extended with derived predicates. Our
approach also extends the action set with actions from the enhanced model.

The approach taken to identify the individual rules of the decision list differs be-
tween the approaches. In Khardon (1999a); Martin and Geffner (2000), all of the terms
(bounded by a maximum number of variables and predicates) are enumerated for each
action and one that covers a subset of the examples correctly is chosen. Of these,
the rule that covers most examples is selected. A collection of selection criteria were
explored in Khardon (1999b). An alternative approach was explored in Yoon et al.
(2002), where instead of enumerating all of the possible terms, the condition is incre-
mentally generated using greedy (or beam) search. Although this approach loses the
bounded completeness guarantees brought by enumeration, more complex conditions
can be discovered that would be beyond the scope of enumeration. An alternative ap-
proach is presented in de la Rosa and McIlraith (2011), where a dedicated library is
exploited to learn first order formulae to explain the training data. In Roller (de la Rosa
et al., 2008), the problem has been encoded as a set of classification problems. The
latter two approaches allow off-the-shelf technologies to be exploited.

Training data

The training data used in L2PLAN are sets of m pairs, 〈Pi, sci〉, with problem, Pi =

〈τi, initi, gi〉, and scoring function, sci : A 7→ {0, 1, 2}, defined for actions applicable
in state, initi. Each applicable action is mapped to 0, 1 or 2; this corresponds to the

170

Chapter 8. Automating policy acquisition

number of steps over optimal that the length of the best resulting plan after choosing
the action. We assume that the scoring functions are computed using optimal plans.
This distance is capped at two, whereas in principal this score could be infinite. Similar
training sets are used in Martin and Geffner (2000); Yoon et al. (2002), except in their
formulations no distinction is made between different sub-optimal solutions. In de la
Rosa et al. (2008); de la Rosa and McIlraith (2011), the actions are divided into pos-
itive examples (the optimal choices) and negative examples (otherwise). In Khardon
(1999a), a single plan is generated (the teacher’s solution) and the scoring function
rewards an action if it matches the plan action.

To make the training set for a domain, a set of problems is obtained using the
domain generator. A selection of parameters are used, so that the generated prob-
lems represent the problems of the domain, however, the possible parameters must be
relatively small so that optimal solutions can be generated. Optimal solutions are ex-
pected in most approaches (Martin and Geffner, 2000; Yoon et al., 2002; Levine and
Humphreys, 2003); in de la Rosa et al. (2008); de la Rosa and McIlraith (2011) an
approximation approach is used to discover near-optimal examples. Each problem,
P = 〈τ, i, g〉, is solved and each of the states, sj , visited along the generated plan
forms a new problem, Pj = 〈τ, sj, g〉, in the training set. For each of the applicable
actions, a, in each of the initial states of these problems, the mapping is computed by
comparing the plan length from the state after applying the optimal step, with the plan
length after applying the applicable action, a.

8.1.2 Learning rule based policies

Various approaches to learning policies have been investigated, including dynamic pro-
gramming (Boutilier et al., 2001), incremental covering of training data (Khardon,
1999a; Martin and Geffner, 2000), beam search (Yoon et al., 2002), and setting it as
an optimisation (Levine and Humphreys, 2003) or classification (de la Rosa et al.,
2008) problem. In Levine and Humphreys (2003), the problem of policy learning is
posed as an optimisation problem. A solution to this problem has been implemented in
L2PLAN. It was reported in Galea et al. (2009) that optimising over rule order leads to
RBPs that generate shorter plans than Rivest inspired algorithms. This has motivated
our selection of L2PLAN for learning RBPs in this work. We will now overview the
L2PLAN approach.

171

Chapter 8. Automating policy acquisition

L2PLAN: a policy learner

L2PLAN uses a genetic algorithm and local search hybrid approach to evolve genera-
tions of policy populations. We introduced genetic algorithms and local search in 2.4.
The initial population is generated randomly by sampling rules from the set of can-
didates described above for learning rules. Each subsequent population is made by
applying genetic program operators to policies in the previous population. Policies
are selected from the previous population using a selection process that favours better
policies, with respect to a given fitness function. The operators are randomly selected
with probabilities set as parameters. The fitness functions in L2PLAN includes evalu-
ating the policy using example states. A restricted local search is applied to each of the
candidates in the population. The algorithm pseudo-code is outlined, for a complete
presentation refer to Levine and Humphreys (2003); Galea et al. (2009).

� �
def L2Plan () :

p o p u l a t i o n = i n i t i a l i s e P o p u l a t i o n
n = l e n (p o p u l a t i o n)
whi le (c o n t i n u e C o n d i t i o n (p o p u l a t i o n)) :

n e w P o p u l a t i o n = []
f o r i in 1 . . n :

i f (random () < c r o s s o v e r L e v e l) :
π = makeCros sove rCh i ld (p o p u l a t i o n)

e l s e :
π = m a k e R e p l i c a t e d C h i l d (p o p u l a t i o n)

i f (random () < m u t a t i o n L e v e l) :
a p p l y M u t a t i o n O p e r a t o r (π)

n e w P o p u l a t i o n . add (π)

a p p l y L o c a l S e a r c h (n e w P o p u l a t i o n)
p o p u l a t i o n = n e w P o p u l a t i o n
� �

Fitness function

The fitness function value for a policy, (or a policy’s fitness,) is computed by applying
the policy to each of the initial states of the training data problems and looking up
the resulting action in the associated scoring function. These scores are inverted and
averaged so that the fitness score is between 0 and 1, where 0 indicates weak fitness
and 1 is the highest fitness. The fitness of a policy, π, can be computed using the
following formula.

δ(π) = 1
m

m∑
i=1

1
1 + sci(π(Pi))

172

Chapter 8. Automating policy acquisition

The aim of the L2PLAN algorithm is to solve an optimisation problem, as defined
in Section 2.4, where the target is to find a candidate, π, that maximises the value,
δ(π).

The genetic program operators

In Chapter 2.4, we introduced the crossover, mutation and selection operators for ge-
netic algorithms. L2PLAN also relies on a replicate operator that copies a policy from
the previous population to the next population. As the candidates of the populations
in L2PLAN are more structured, these operators have been specialised for this applica-
tion. RBPs have two basic levels: the rule level and the policy level, and each of these
is treated separately using a collection of mutator and crossover operators.

The motivation behind the crossover operator is to share partial solutions through-
out the population with the expectation that good blocks can benefit the population as
a whole. Each crossover operator takes two policies, selected from the population with
the selection operator and performs crossover using the following approaches:

• Rule list crossover: select a point in each policies’ rule list and create two new
policies. Each taking the first part of one policy and the second part of the other.

• Rule swap crossover: select a rule from each policy and swap them over.

• Same action condition swap: for two rules with the same associated action, per-
form crossover on the predicates in the rule condition.

Mutation makes a small change to the solution that is intended to prevent search
from getting stuck in local optima. L2PLAN uses 5 mutation operators, split into rule
and policy levels. The policy operators are:

• Rule addition/deletion: add or remove a rule from the policy.

The rule operators are:

• Add/remove a predicate from condition;

• Create a new condition for a rule.

The selection of candidates uses Tournament Selection 1, which heavily biases poli-
cies with higher fitness. The approach is parameterised by a value t that determines

1A generalisation of the approach proposed by Art Wetzel (unpublished) to n-ary tournaments was
used. The interested reader can refer to Mitchell (1998).

173

Chapter 8. Automating policy acquisition

the size of each tournament. A random sampling with replacement of t candidates is
selected and the fittest of these policies is selected. Large values of t will result in a
heavy selection bias towards policies with high fitness.

Local search

After a new population has been produced using replicate, crossover and mutation
operators, local search is applied to each policy. The local search procedure is param-
eterised by width and depth parameters that control how completely the approach is
applied. A set of neighbourhoods is used, allowing the space to be explored through
direct changes to the variables, types, conditions and rules.

In L2PLAN the neighbourhoods are required to generate single neighbours on de-
mand. The width parameter, w, determines the number of neighbours that are gener-
ated at each search step. Each of thesew candidates is evaluated and the best identified.
Search is stopped if none of the w generated neighbours improve the previous score.
The depth parameter, d, determines how many levels are explored during a single ap-
plication of local search, assuming continued improvement. The neighbourhoods that
were used in L2PLAN are the rule operators used for mutation.

8.1.3 Integrating rules with search

The negative impact caused by a small number of poorly specified rules has led re-
searchers investigating approaches that reduce their impact. Decision trees can be
learned that order the successor states of a depth first search (de la Rosa et al., 2008),
or first order formulae with modal operators used to prune successors in a similar set-
ting (de la Rosa and McIlraith, 2011). In Yoon et al. (2006); Xu et al. (2007, 2009),
learned rules are used to determine a corrective value that is used to reduce the weak-
nesses of the hFF heuristic. In Yoon et al. (2006) the rule sets are interpreted as sets
of weighted features and linear regression is used to learn the weightings that best ex-
plain the difference in heuristic estimate and real value of the distance to goal from
the states of a training set. Although we have developed a system that supports utilis-
ing control knowledge and domain independent heuristics, we do not experiment with
learning supported control knowledge. Instead we focus on learning RBPs that can
control search directly.

174

Chapter 8. Automating policy acquisition

8.2 Learning rule based policies in optimisation prob-
lems

In Khardon (1999a), it was observed that the states that a forward chaining planner
acts on are a product of the decisions made in previous states. However, in that work
RBPs were learned using state action pairs derived from a remote planner. The au-
thors argue that as the generated policies can often explain the examples then these
states are appropriate. Moreover, similar approaches have been used in subsequent re-
search and have demonstrated that the training data is suitable for learning in several
domains (Khardon, 1999a; Martin and Geffner, 2000; Yoon et al., 2002; Fern et al.,
2006; de la Rosa et al., 2008; de la Rosa and McIlraith, 2011). However, as soon as the

goals

i+ 2

0

1

2

0 1 i i+ 1

Figure 8.1: A series of transportation problems with any number of pairs of connected
nodes between column 1 and i. The pink package is at location l0,i+2 and the blue
package is at l1,i. Both should be delivered to l2,0.

learner is presented with a set of examples that cannot be explained with the language
bias and parameter restrictions then this approach becomes ineffective. In Chapter 5,
we discussed the limitation of RBPs in the context of optimisation problems. It is
hardly surprising that learning an RBP that can evaluate the relative benefits of various
actions is difficult. Consider the series of transportation problems suggested by Fig-
ure 8.1. In these problems the optimal solution involves picking up the pink package
then the blue package and delivering them to their goal. Each of the first i training
examples derived for this problem would give the highest score for moving towards
the pink package and the lowest score for moving in any other direction. This means
that a policy that could be used to solve this problem using a slightly longer strategy
(picking up the blue package first) would be penalised in each of these states. The con-
trol knowledge of TLPLAN used in the Driverlog domain during the 2002 IPC, relied
on a nearest neighbour heuristic (and the same strategy was used in HybridSTAN for

175

Chapter 8. Automating policy acquisition

the transportation specialised solver). In our example, the blue package is the nearest
neighbour in each of the first i + 1 steps. As a result, the strategy used by TLPLAN

would be severely penalised in the first i+ 1 states of this problem. This strategy con-
tributed towards TLPLAN winning the prize for hand-crafted planner at two IPCs, and
the current fitness functions would mark it as a poor strategy.

As a result the learner will often explain moving examples using a move action
with an empty condition, as the language bias is leading to penalised scores. It will
slowly cover more of the examples by utilising features that happen to isolate a single
example in the given problems. For example, a rule might be learned that determines
whether there is a package goal and driver goal at the same location as in one example
this happens to be a useful package to pickup first. Although this rule set, through a
mix of convenient action ordering and over-fitted conditions, might lead to high scores
on the training data, the resulting rules will not capture a strategy for solving problems.
As soon as the policy is used in a problem from a different distribution it will fail.

One of the problems is that the policy is represented in a limited language that
does not necessarily allow it to succinctly explain the examples. The learner attempts
to maximise the fitness of the solutions and this leads to over-fitted examples. The
landscape of the fitness function is not consistent with our expectations. Instead what
we would like is a fitness function that maximised the number of problems that can
be solved from start to finish and within this group of solutions look for those that
generally lead to shorter plans.

8.3 An appropriate fitness function for RBP learning

In previous work, the posed learning problem determined whether a chosen RBP rep-
resentation could capture the strategies implicit in a set of training data (Khardon,
1999a; Martin and Geffner, 2000; Yoon et al., 2002; de la Rosa et al., 2008; de la Rosa
and McIlraith, 2011). The intention was to determine whether the representation can
capture a strategy that leads an executive to the goal. However, when the training set
cannot be explained then using an RBP representation becomes ineffective (Xu et al.,
2009).

In this section we present a fitness function that evaluates the use of the RBPs in
search. The policies are rolled out on a set of problems and their choices at each state
are recorded and used to evaluate their performance. In this way the policy is evaluated
in the same context that it will be used and the states that it is tested on are a direct
result of its strategy. The learning effort is focussed on learning a policy that captures

176

Chapter 8. Automating policy acquisition

a strategy for solving problems. In this section we detail the features that we think are
important in determining success in policy execution; we describe our approach for
extracting the features; and present how we have implemented the fitness function.

8.3.1 A fitness function for problem solving

The aim of a fitness function is to map solutions to scores in such a way that the defined
partial ordering over the solution space is consistent with an expected ordering. It is
therefore our aim to establish what the expected ordering might be in the context of
RBPs and the analysis that must be carried out on each RBP in order to determine how
it compares with respect to alternatives.

The important factors for a planner are that it can solve problems and that it can
solve them in few steps. This introduces two competing ordering criteria:

• If a policy gets closer to solving a problem than another policy then it should be
considered a fitter policy.

• If a policy gets to a certain distance (steps in an optimal path) from the goal in
fewer steps, then it should be considered a fitter policy.

There are many more aspects that we could consider, such as planning time. How-
ever, we consider these two to be the fundamental considerations for planners. We
continue by defining the features and how the features are combined to compute an
ordering function. We assume a training set consisting of problems from some distri-
bution; we will discuss how we have generated this below.

Features

Each of the m problems in the training set is of the form, Pi = 〈initi, gi,Σi〉. A policy,
πj , unrolled through ω× optSoln(initi) transitions through ω× optSoln(initi) + 1

states, where optSoln(s) is the optimal plan length from s. Each of these states, sik,
can be posed as a problem, Pijk = 〈sijk, gi,Σi〉 and solved optimally to find the state’s
distance to goal, qijk. It is not expected that a learned policy will solve all problems
optimally and we include a parameter, ω, to control the number of steps that the policy
is unrolled. This parameter is used as a multiplier on the distance to goal of the initial
state of the problem, so that the number of states is related to the size of the problem.
The distance from goal measurements provide a trace of how the policy performed on
each problem. For a particular problem and policy we use two features: how close the

177

Chapter 8. Automating policy acquisition

policy managed to get to achieving the goal; and how many steps were made by the
policy that made progress towards the goal.

CPij = closestPointij = argmin
k
{qijk}

numberOfImprovingStepsij = |{(qijk, qij(k+1)|qijk > qij(k+1))}|

From these features we derive three measures over all problems: the first two sum
the features over the problem sets; the third measure sums the position of the closest
point over the problems.

closestPointScorej = 1− 1

n

∑
i

qij(CPij)

qij0
(8.1)

improvingStepsj =
1

n

∑
i

numberOfImprovingStepsij
MaxStepsi

(8.2)

earliestClosestPointj = 1− 1

n

∑
i

CPij
ω × qij0

(8.3)

The first measure promotes policies that move towards the goals of problems. The
second measure promotes policies that move towards the goal in more states, with the
intention that these policies may be represented by useful rules that are still developing.
The third measure supports those policies that achieve their closest state in fewer steps.
This should lead to a preference to policies that solve problems with fewer steps. The
form of measure (8.3) is appropriate for the way we combine the measures, however,
in other cases there might be a more appropriate form.

Combining features

In Aler et al. (2000b), the authors observe that setting weights between different aspects
of a fitness function is a challenging issue. The problem of combining measures can be
achieved using Pareto Optimality (Deb, 2001), which acts to maintain a population that
is spread across the different aspects. However, in this work we use a tiered approach,
as in Aler et al. (2000b), that relies on a complete ordering over the measures. To
compare two policies the measures are used in order, if the policies are equivalent
under the current measure then the next measure is used and so on. If the measure
is different then this ordering determines the order between the policies. This heavily

178

Chapter 8. Automating policy acquisition

biases the comparison between policies to earlier measures.
We would prefer a planner that can solve more problems and in general, we are

more interested in planning performance aspects than how the solution is represented.
We use closest point and earliest closest point scores as the first and second measures,
followed by the number of improving steps. The main priority is to search for a rule
that reaches as close to the goal as possible. After coverage the second aim is to find
a policy that moves towards the goal efficiently and measure (8.3) is suitable for this.
It was expected that the improving steps metric would encourage search to find useful
rules and therefore assist the primary aim, however, this was not observed in practice.

Inspired by the compacity and generality components used in Aler et al. (2001), we
added three additional tiers to the fitness function. These are intended to provide more
guidance to the learner in terms of the conciseness and application of the knowledge.
The following lists the complete fitness criteria used. For two policies the first criteria
that is different was used to determine the fitter policy.

• Comparison of closest points over training set

• Comparison of how many steps were required to reach the closest point

• Comparison of the number of improving steps selected by policy

• Comparison of number of extra parameters

• Comparison of number of conditions

• Comparison of number of rules

In each of the final three criteria smaller numbers are considered better.

Problem distribution

As we are unrolling the policy through several steps, we could use problems from the
problem generator. A good policy would have to exhibit effective problem solving in
order to score a high score. However, a weak policy will be evaluated on a sequence
of increasingly irrelevant steps. In fact, the policy will often fail after one or two steps
as generated rules are often not applicable to observed states. This approach forces an
ordering over how the parts of the solution are learned, as the policy would only be
evaluated on initial states.

To reduce this effect, we use a collection of problems that include states encoun-
tered during search. The process used is similar to the example generation for L2PLAN.

179

Chapter 8. Automating policy acquisition

The first stage is to generate a set of representative problems as described above. Each
of these are solved and each of the visited states is turned into a problem. The training
set is formed by taking the initial problems and adding a sample of the goal path prob-
lems. This training data allows the fitness function to be sensitive to improvements to
any part of the strategy.

8.3.2 Implementation

We have implemented the fitness function as an extension to L2PLAN. For each run a
folder structure is created with a problem folder for each of the m problems. Within
each of these folders there is a policy folder for each of the n policies as well as
the problem file associated with that problem folder. For an evaluation of q policies,
the policies are written out into the first q policy folders of each of the m problem
folders. The policies within a problem folder are unrolled on the associated problem.
This is realised as a collection of external commands to the program that was used
in Chapter 6 to evaluate the policies. These processes can be run in parallel. For a
particular problem and policy the unrolling process outputs the states visited during
the unroll into the policy folder. At this stage we read all of the generated states into
the main program. This allows us to maintain a cache of visited states. A list of the
states that have not been visited is created and hLM−cut is used to solve each of these
problems. Once again these can be parallelised, however, as hLM−cut relies on writing
temporary files, it is important to run this process from different folders. The resulting
output from hLM−cut is parsed and the length of the plan is cached along with the
associated state (and goal). This process is illustrated in Figure 8.2.

The main parameters of our system are the training data; the multiplicative factor,
ω, which determines the number of steps that the policy is unrolled; and the number of
seconds that an external processes was run before it was killed. Maintaining a lookup
table of previous solutions has led to far fewer planning steps. There are various mea-
surements that could be stored as information for removing entries from the table, such
as the number of iterations since last lookup and how long the plan took to compute.
However, during our experiments the cache was manageable.

8.3.3 Discussion

We have introduced a fitness function that addresses several issues in the L2PLAN

approach. The fitness function will guide search towards RBPs that direct search to-
wards the goal. In domains with SIs, exploiting the enhanced language is a convenient

180

Chapter 8. Automating policy acquisition

...

...

.

sij0 qij0

qijp

πjPi = 〈initi, gi,Σi〉

Lookup(sijk, gi)

U
nroll

π
j (P

i) sijp

Plan(〈sijk, gi,Σi〉)

Figure 8.2: For a given policy, πj and problem, Pi, πj is unrolled through states,
sij0, . . . , sijp. The distance to goal of each state is discovered either from the cache, or
by running hLM−cut from the state.

method of providing this guidance. Moreover, the addition of control knowledge rep-
resentation biasing features into the fitness function, as reported Aler et al. (2001),
promote using this vocabulary over carefully matching each visited state during roll-
out (that is, over fitting). In L2PLAN, each of the plans in the training data was created
by a planner distinct from the learned RBPs and the biases that underlie the computa-
tion of the enriched propositions. This can lead to conflict between the decision made
in the modelled vocabulary and the decisions implicit in the example plans. The train-
ing data can include other artefacts that are caused by the consistency of the planner
that was used to generate the data; similar observations are made in Xu et al. (2009).
These aspects can be addressed individually, however, our approach provides a unified
solution.

Genetic Algorithms have been used in planning to learn plans (Westerberg and
Levine, 2000), control knowledge (Aler et al., 2001), macro actions (Newton and
Levine, 2010) and RBPs (Levine and Humphreys, 2003). The fitness function in West-
erberg and Levine (2000) is used to learn plans, and attempts to maximise the number
of achieved goals and applicable actions in the plan, although similar fitness func-
tions have included other aspects, such as a count of unsupported facts (Gerevini et al.,
2003). For macro actions and control rules, the performance in planning has been used
to evaluate the knowledge. The key difference in these approaches is that the authors
assume a planner up front and seek to improve it. In Aler et al. (2001), the following
criteria are used to assess the rule set performance: the number of problems solved
by expanding fewer nodes than without the rules; the number of problems solved; to-

181

Chapter 8. Automating policy acquisition

tal number of nodes. These criteria provide little guidance for learning a complete
RBP. As noted above several criteria are included to guide the construction of efficient
knowledge. These include reducing the number of variables and the number of rules.
We extend our fitness function with similar properties in the evaluation. The criteria
in Newton and Levine (2010) uses the product of its measures, rather than using a pri-
ority ordering over them. The fitness function is focussed towards how long planning
takes, whereas in our approach we assume that an RBP that can solve problems in few
steps and is expressed concisely will plan efficiently. As we have observed, the fitness
function for learning RBPs uses example states generated by a planner and fails to
direct search to effective RBPs in the domains we consider in this work.

The main benefit of our approach is that the policy is evaluated on chains of states
that it discovers, rather than on predetermined states biased by a planner. The fitness
function guides the selection of policies to those that demonstrate better planning per-
formance. Another approach would be to measure the final state after rolling-out a
certain number of steps and this measurement could even be estimated using a heuris-
tic. For example, in Fern et al. (2004), a bounded policy roll-out is used to estimate the
fitness function score and if the policy fails to make the goal then a heuristic is used
to estimate the remaining distance. However, there is no guarantees that the final point
is the closest to the goal, allowing good parts to be missed by the fitness function and
introducing inconsistency between its policy ordering. The fitness function developed
here is informed by each decision made by the policy and therefore can provide low
level guidance. Using a sub-optimal planner or a heuristic estimate at each policy step
is potential related work.

The fitness function that we have defined is suitable for searching in solution space.
It is not appropriate for guiding search for individual rules, which is required for ap-
proaches that incrementally build policies. An alternative approach would be required
where the partial policy was evaluated, which would be more computationally expen-
sive. It has been observed that incrementally learning policies with vocabulary that
includes abstract actions results in exponential learning time Khardon (1999a), losing
the benefits of the Rivest style learning approach (Rivest, 1987). There are alternative
search strategies for solving optimisation problems that could exploit our fitness func-
tion. For example, local search and simulated annealing are effective approaches to
optimisation, which can be less computationally expensive.

182

Chapter 8. Automating policy acquisition

8.4 A plan to policy translation

The learning approach is general and is initialised on a collection of solutions that are
unlikely to capture much of the required structure. In Aler et al. (1998) the utility of
biasing the learning approach with existing knowledge is demonstrated. The authors
promote the idea of using evolutionary approaches to complete knowledge rather than
fully evolve it. We propose a translation of related plans into an RBP, with the ex-
pectation that the RBPs generated in this way will capture certain structures that are
exploitable in other planning problems. We first describe the relationships that exist be-
tween the RBP and a plan by establishing a mapping between a single action sequence
in Σ0. In the second step we use the enriched model to generalise the approach to a
set of plans. We focus on the enhancements provided by the ALMA solver and the re-
source management solver as demonstrations. We complete the section by considering
the limitations of the approach and how these could be addressed.

8.4.1 A translation from plan to policy (M|Σ0
)

There are fundamental differences between action sequences and rules. The actions
in a sequence are linked together through the shared use of world constants and an
underlying causal structure. In contrast, each rule is a separate formula, with its own
set of variables. The implication of this is that the condition of each rule must establish
the relationships of the sets of constants that can unify with its variables, while ensuring
that the current state in the world is appropriate for the rule to fire. The advantage of
this generality is that several plan steps can be represented by the same rule.

There are two main questions that a rule condition must imply: can the associated
action be applied? and should the associated action be applied? Approaches to macro
composition provide the solution for encoding an answer to the first question. The
latter question requires ensuring that there are incomplete sub-goals in the state. In
this subsection we develop a process for translating an individual plan step into a rule.

Training data

In this section we rely on a set of training examples, TD, where each example,
ei ∈ TD, is a problem and plan pair, (Pi(Σ0), 〈πi〉(Σ0)). We also use, a single
handed Gripper problem, PGripper, and solution, 〈πGripper〉, presented in Figure 8.3
to demonstrate the process. The problem involves one misplaced ball and a robot with
one gripper in the destination location, the goal is to move the ball home.

183

Chapter 8. Automating policy acquisition

Initial State

• in ball room1

• at herbert room2

• free gripper

• attached herbert gripper

Goal

• in ball room2

Plan

1. (move room2 room1 herbert)

2. (pickup ball room1
gripper herbert)

3. (move room1 room2 herbert)

4. (drop ball room2 gripper
herbert)

Figure 8.3: Initial state, goal and solution for a gripper problem.

Testing that the action sequence is modelled by the state

Composing actions is used so that macro actions can be expressed in PDDL (e.g. New-
ton et al., 2007). However, it can be used to construct a formula that accepts states
that will become goal states under the action sequence. These formulae can be trivially
generalised by replacing the constants with variables (an approach used to construct
macro operators).

The regression formula defines the propositions that hold before an action is ap-
plied and is computed by removing the add effects and adding the precondition:

rregr(a, s) = (s\Adds(a)) ∪ Prec(a)

The propositions that must hold to support the action sequence from action, ai, are
calculated by regressing the actions from the last action back down to the ith action,
starting with the goal propositions (the propositions that we know hold in the final
state):

φi =rregr(ai, (. . . rregr(an−1, g) . . .)

We label this φ to distinguish from the set of all propositions modelled by the state.
For example, in the Gripper example, the third set counting back from the end,

φgripper1 , is the set:

{(in ball room1)(at herbert room1)(attached herbert gripper)}

These propositions are modelled in a state if-and-only-if the state models the action
sequence. In this example, the three actions (pickup ball room1 gripper

184

Chapter 8. Automating policy acquisition

herbert), (move herbert room1 room2) and (drop ball room2

gripper herbert), rely on exactly the propositions defined by φgripper1 . Intu-
itively the condition, φi, captures the feasibility of using the last i steps of the action
sequence to reach the goal.

This can be used to create rules for picking up balls in the Gripper domain. The goal
of the problem is used to initialise the formula and the rule for step, i, uses the action
that was applied at that step. For example, the third rule can be derived as shown below.
The world constants have been generalised by replacing each new world constant with
a fresh variable of the same type. Renaming has been done for presentation.� �
(: r u l e G r i p p e r R u l e R e g r e s s e d S t a t e C o n d i t i o n

: c o n d i t i o n (and (i n ? b a l l ? r1) (a t ? rob ? r1) (a t t a c h e d ? rob ? g r i p p e r))
: goa lCondi t i on (and (i n ? b a l l ? r2))
: a c t i o n p i ck up ? b a l l ? r1 ? g r i p p e r ? rob)
� �

Testing that the action sequence should be applied

Although this rule captures a useful set of situations, its condition is too general. In
particular, the condition does not capture the reason to apply the action sequence. This
explanation comes from propositions that are not modelled in the current state, such
as goals that are not already achieved. For example, the rule could pick a ball up that
is at its goal already. The important distinction is ensuring that the sub-goals achieved
by the sequence are to be achieved in the current state. These propositions can be
expressed using negative conditions in the rule language.

Our approach to creating the negated propositions in the condition is to gather a
pool of candidate propositions that will be achieved at some point in the later steps of
the plan. The propositions are then tested and if they are not modelled in the current
state then they are used as negative conditions. From a particular step along the action
sequence, the pool of propositions is generated from the remainder of the action se-
quence. This pool is recursively gathered, adding the add effects and preconditions of
each action.

Potn = {g}
Poti = Adds(ai) ∪ Prec(ai) ∪Poti+1

The potential set, PotGripper1 , for the first step of the Gripper example is:

{(in ball room2) (holding ball gripper) (at herbert room2)
(attached herbert gripper) (in ball room1) (at herbert

room1)}

185

Chapter 8. Automating policy acquisition

Although the regression approach provides an important restricted view that deter-
mines the relevant propositions, it is important to use the complete state to evaluate
the potential negative conditions. As we have relied on before, the state after j steps is
computed as follows:

sj = γ(. . . (γ(sinit, a0), . . .), aj−1)

Poti, defines the set of propositions that will play a role in subsequent steps of
the plan. We test each proposition in the potential set, Poti, to determine whether
it holds in the current state, si. If it is not part of the current state then we consider
it an unachieved sub-goal and add it to the negative conditions. It should be noted
that if the regressed set was used for determining negative conditions then we could
add propositions that held in the current state; this would prevent the generated rule
applying to the current state. In the Gripper example, the negative condition is de-
termined by identifying whether the potential propositions (Potgripper1) are not in the
state (sgripper1).

negativeConditiongripper1 = Potgripper1\sgripper1
= {(in ball room2)(holding ball gripper)

(at herbert room2)}

The proposition, in ball room2, does not hold in the current state. If it did
hold then the action sequence that picks the ball up and moves it to the other room
would be inappropriate. The negative conditions identify the elements in the state that
are still to be achieved.

Maintaining the all-different property

A single collection of variables is generated for each rule by replacing each world
constant with a variable. Special treatment is required so that more than one variable
cannot be unified with the same constant and change the interpretation of the rule. The
problem models are extended with vocabulary to model the not-equal propositions
between objects. For each unordered pair of variables, (?v1, ?v2), the proposition, (!=
?v1 ?v2), can be added to the rule condition. In practice we only add propositions for
pairs that could unify with the same constant, that is, pairs of objects that have related
types. For example, a variable type ball and a variable of type robot cannot unify
with the same objects and the not-equal proposition would be redundant.

186

Chapter 8. Automating policy acquisition

Creating a rule

Each rule is constructed by combining the positive propositions and the all-different
propositions with the negative propositions and using the plan action and problem goal.
We have already given an example of this process above, but here we make the process
more concrete.

The state condition of the ith rule is constructed making a positive condition for
each of the propositions in φi and negated conditions for each proposition in
negativeConditionsi and replacing the constants with the appropriate variables.
Similarly, the goal propositions are derived by replacing the constants in the problem
goal with variables and the action is derived by replacing the constants in the plan
action. The complete set of variables is used to create not-equal predicates that are
added to the positive condition.

For example, in the Gripper problem the third rule is derived as follows:� �
(: r u l e G r i p p e r R u l e 1

: c o n d i t i o n (and (i n ? b a l l ? r1) (a t ? rob ? r1) (a t t a c h e d ? rob ? g r i p p e r)
(! = ? r1 ? r2)

(not (i n ? b a l l r2)) (not (h o l d i n g ? b a l l ? g r i p p e r)) (not (a t ? rob ? r2)))
: goa lCondi t i on (and (i n ? b a l l ? r2))
: a c t i o n p i ck up ? b a l l ? r1 ? g r i p p e r ? rob)
� �
This rule captures the important aspects necessary to determine whether the pickup

action should be used. The negative proposition (not (holding ?ball1 ?gripper))
is redundant 1 because states with the ball in the room are mutex with states with the
ball being held. Conditions like this could be detected and removed using a tool that
uncovers mutex relationships, such as TIM. Similarly, only one of (not (at ?rob

?r2)), (!= ?r1 ?r2) and (not (in ?ball ?r2)) is necessary. However, the rule
condition is satisfied in states where the rule is a useful choice and the redundancy in
this example is a product of its simple relationships.

Policy construction

The rule ordering is important because the rules are evaluated in order. We order the
rules in reverse order so that the first rule is the rule created from the final plan step.
The justification for this is that if we can apply the ith rule in the current state we
assume that in the next state the i+ 1th rule will be applicable and so on until the goal
is achieved. This is similar to the n-stage-to-go value function derived in the MDP

1Of course, there are states in the domain that model both propositions, however, not in the state
spaces that adhere to the domain conventions.

187

Chapter 8. Automating policy acquisition

literature (Boutilier et al., 2001; Gretton and Thiébaux, 2004). The approach learns a
set of rules that capture a particular sequence of actions and the propositions of a state
that are necessary for the application of the action sequence.

8.4.2 An extended translation (M|Σi
)

In the model presented in Chapter 3 there are three forms that enhancement steps take:
an action that abstracts an action sequence; a predicate that provides a richer interpre-
tation; and a set of decision based propositions and the actions that effect them. We
develop a process for extending the policy generation process to incorporate each of
these enhancement steps.

Listing 8.1: Pseudo-code for policy generation.� �
I n p u t s :
TD: t h e s e t o f plan , problem p a i r s (t r a i n i n g da ta)
F i e l d s :
planGroup : p l a n s t h a t are e q u i v a l e n t i n Σi
r e f P l a n : one p lan from t h e e q u i v a l e n t group
planMaps : mappings from each p lan t o t h e r e f e r e n c e p lan
Outpu t :
p o l i c i e s : a l i s t o f p o l i c i e s
def g e n e r a t e P o l i c y (TD) :

p l a n P a i r s = makeEnhancedPlans (TD)
c o m p a t i b l e P l a n G r o u p s = g a t h e r C o m p a t i b l e P l a n s (p l a n P a i r s)
p o l i c i e s = []
f o r planGroup in c o m p a t i b l e P l a n G r o u p s :

r e f P l a n = g e t F i r s t P l a n (p lanGroup)
planMaps = makeMappingsBetweenPlans (r e f P l a n .πΣi

, p lanGroup)
r u l e s = []
f o r x in [l e n (r e f P l a n .πΣi

) . . 1] :
r u l e s . append (makeRule (x))

πΣi
= P o l i c y (r u l e s)

p o l i c i e s . append (πΣi
)

re turn p o l i c i e s
� �
The pseudo-code for the process is presented in Listing 8.1. In the following parts

each of the functions will be explained. The algorithm builds on the approach for
individual plans in two ways: the plans are translated into the enhanced language
(makeEnhancedPlans(TD)); and the abstraction steps in enhancing the plan leads
to some plans being equivalent in Σi. The equivalent plans are grouped together, pro-
viding a more general context for selecting the condition and used to generate an RBP
in Σi. We discuss the process for use with the SbS and therefore with the expectation
that the policy will be applied at each state. In this subsection we describe how a plan
can be rewritten using the enhanced language and how the mappings are established.

188

Chapter 8. Automating policy acquisition

In the next subsection we present an extension of the process developed above that
implements the makeRule function in the listing.

Model enrichment

The first step (makeEnhancedPlans(TD)) requires that each of the examples in
TD is enhanced through a chain, Σ0, . . . ,Σn, to a language, Σi. This relies on addi-
tional behaviours from the special purpose solvers. In particular, the translation of a
plan sequence in Σj to an enhanced language, Σj+1. This translation is used to create
a plan in Σi by incrementally enhancing the plan is it is passed through the chain.

(pickup P T1 L3)

Σ1

(allocate-truck P)Σ2

(move∗ T1 L1 L3)

(drop P T1 L4)

(drop P T1 L4)

(drop P T1 L4)

(move∗ T1 L1 L3) (move∗ T1 L3 L4)

(move∗ T1 L3 L4)(pickup P T1 L3)

(move T1 L2 L3) (pickup P T1 L3) (move T1 L3 L4)(move T1 L1 L2)Σ0

T1 T2 P

L1 L3 L4L2

Figure 8.4: The enhancements of a plan for a transportation problem. The plan is
expressed using the enhanced languages.

In enhancement steps that provide an abstract action, the translated plan will re-
place the action sequence with the abstract action. For example, in the transporta-
tion problem illustrated in Figure 8.4, the step to Σ1 abstracts the move actions to
long-move actions (labelled move∗ for presentation). In enrichment steps that pro-
vide actions that make decisions then these actions are positioned at points where the
decision would have been made to explain the subsequent behaviour. In the example
transportation problem, the resource allocation is made at the beginning and leads to
Truck1 being used to deliver the package. There can be more than one rewording of
a plan; however, our ordered rewording leads to a single ordering (that is a solver can
only reword actions that are still part of the plan and cannot reword part of an action).
We use the notation, 〈π〉Σi , for a plan, 〈π〉, enhanced through i steps.

We assume that any interaction between an abstract action’s action sequence and

189

Chapter 8. Automating policy acquisition

another action can be explained by the policy, although this is not the case in general.
We also make the assumption that if goals are achieved as part of an abstract action
then this is ensured by the computation of the action or some property of the problem
structure; in particular, the generated rules will not uncover this structure.

Positioning of abstract actions There may be several places that the abstract action
can be positioned because of other threads of actions. We order abstract actions by
their final action, so that the sequence that finishes first in the plan is positioned earlier.
Typically, single actions maintain their position in the enhanced plan. However, if
they are ordered within a sequence then they are positioned after the sequence. For
example, in a Goldminer plan there is a sequence of moves on the way to pick up the
bomb. The laser is dropped during this sequence, but it is not part of the sequence. This
action is positioned after the sequence of moves in the resulting plan. This approach
is compatible with our rule ordering approach. It will lead to the drop laser rule being
positioned before the move sequence, which provides the opportunity for the policy to
map to this action during the selection of move steps.

The backbone plan Abstracting actions are underpinned by a sequence of actions
that can be expressed in Σ0; however, the enriched state actions have no associated
actions in Σ0. When a policy, expressed in a language, Σi, is unrolled then it will
progress through each of the actions in Σ0 and the enriching actions. For example, to
generate the example illustrated in Figure 8.4, a policy would map to the following
actions:

(allocate-truck P), (move T1 L1 L2), (move T1 L2 L3),
(pickup P T1 L3), (move T1 L3 L4), (drop P T1 L4)

We call the plan expressed in this way the plan backbone and denote it
backbone(〈π〉).

An action step’s context states The initial state of each training example can be
used to generate a corresponding Σi state and the backbone plan can be simulated
from the state using co-execution. We call the sequence of states that are visited dur-
ing this simulation the context states. The context states will provide the context for
determining the rule conditions. For a plan, 〈π〉, and the associated enhanced plan,
〈π〉Σi , and backbone, backbone(〈π〉), the context states of a step, a ∈ 〈π〉Σi , are
the states that are transitioned from by either a, or an action, a′ ∈ backbone(〈π〉)

190

Chapter 8. Automating policy acquisition

that was part of a sequence that was enhanced leading to a. For example, the context
states for (long-move T1 L1 T3) will include the states that (move T1 L1 L2)
and (move T1 L2 L3) were applied in, and therefore states with T1 at L1 and L2.
The context states for an abstract action do not need to be contiguous.

The Σi-equivalence property Rewriting the plans in Σi can abstract them to a level
above the specific plan steps. Although we would expect each training example in TD

to be unique, they might solve problems that only differ in the specific steps made. The
process of rewriting aims to uncover similarities between plans that seemed distinct
when expressed in Σ0.

We can use plans for two transportation problems as an example:

Plan, 〈πT1〉(Σ0)

1. (move T1 L1 L2)

2. (pickup P T1 L2)

3. (move T1 L2 L3)

4. (drop P T1 L3)

Plan, 〈πT2〉(Σ0)

1. (move T2 L1 L2)

2. (move T2 L2 L3)

3. (move T2 L3 L4)

4. (pickup P T2 L4)

5. (move T2 L4 L5)

6. (move T2 L5 L6)

7. (drop P T2 L6)

〈πT2〉 moves several more steps than 〈πT1〉, however, the tasks that are being
achieved as part of the plan are the same. This becomes clear when the two plans
are rewritten and compared at a level above the specific Σ0 actions.

191

Chapter 8. Automating policy acquisition

〈πT1〉Σ1

1. (long-move T1 L1 L2)

2. (pickup P T1 L2)

3. (long-move T1 L2 L3)

4. (drop P T1 L3)

〈πT2〉Σ1

1. (long-move T2 L1 L4)

2. (pickup P T2 L4)

3. (long-move T2 L4 L6)

4. (drop P T2 L6)

Definition 8.4.1 Two plans, 〈π1〉Σi and 〈π2〉Σi are equivalent under Σi-equivalence if

the sequence of action names are the same in each plan (Σi), goals are achieved by the

same plan index in each plan and there is a one-to-one mapping between the constants

that parameterise the actions.

This definition is used to gather groups of Σi-equivalent for the function,
gatherCompatiblePlans. The output is a partition of the training data.

Creating a mapping between plans The equivalence property is commutative and
therefore identifies groups of plans that only differ in the specific steps applied as part
of abstract actions. As a result a one-to-one mapping exists between the constants in
each pair of reworded plans in a group. This is defined for two reworded plans, 〈π0〉Σi
and 〈π1〉Σi , as:

m〈π0〉Σi ,〈π1〉Σi (pij) = qij , where

〈π0〉Σi = a0(p00 , . . . , p0m0
), . . . , an(pn0 , . . . , pnmn) and

〈π1〉Σi = a0(q00 , . . . , q0m0
), . . . , an(qn0 , . . . , qnmn)1

In our example, the mapping between 〈πT1〉Σ1 and 〈πT2〉Σ1 would capture the fol-
lowing mapping:

m〈πT1〉Σ1
,〈πT2〉Σ1

= {T1 7→ T2,P 7→ P,L1 7→ L1,L2 7→ L4,L3 7→ L6}

This step computes the function, makeMappingsBetweenPlans, in the pseudo-
code above. The mapping can be used to define the universe translation (UTranslation)

1In fact, we also include the goals into this mapping. This can matter in problems where goals are
already achieved and this part of the state would be otherwise ignored. In these situations we select a
mapping that satisfies the sequences and the goal formulae; for our approach this is sufficient.

192

Chapter 8. Automating policy acquisition

function that translates a set of propositions from one universe into another. For each
proposition, a proposition with the same predicate symbol is created. Each argument
of the new proposition is found by mapping the argument in the original proposition.
The proposition is added to the translated proposition set if there is a mapping for all of
the proposition’s arguments. If there is no mapping then the proposition is not included
in the state.

UTranslation〈π0〉,〈π1〉(s) = {ψ(q0, . . . , qn)|
ψ(p0, . . . , pn) ∈ s .
m〈π0〉,〈π1〉(p0) = q0 m〈π0〉,〈π1〉(pn) = qn}

8.4.3 A rule for a 〈π〉Σi
plan step

A group of Σi-equivalent plans is used to make a list of rules. A rule is created for
each step in the enhanced plan. The pseudo-code for the makeRule function is pre-
sented in Listing 8.2. We first explain how the conditions are generated from a set of
context states and potential propositions (Poti). Then we describe how the set, Poti,
is generated at each step.

Listing 8.2: Pseudo-code for rule generation.� �
I n p u t s :
x a 〈π〉Σi

p lan s t e p
F i e l d s :
planGroup : p l a n s t h a t are e q u i v a l e n t i n Σi
r e f P l a n : one p lan from t h e e q u i v a l e n t group
planMaps : mappings from each p lan t o t h e r e f e r e n c e p lan
Outpu t :
a r u l e f o r t h e p lan s t e p
def makeRule (x) :

Potx = g a t h e r P o t e n t i a l P r o p o s i t i o n s (x , r e f P l a n)
posCon = i d e n t i f y P o s i t i v e C o n d i t i o n s (Potx , x)
negCon = i d e n t i f y N e g a t i v e C o n d i t i o n s (Potx , x)
v a r s = g a t h e r V a r i a b l e s (posCon + negCon)
a l l D i f f = makeAl lD i f f (v a r s)
a c t i o n = r e f P l a n .πΣi

[x]
re turn Rule (posCon + a l l D i f f , negCon , a c t i o n)
� �

The rule condition

The motivation is still the same: we aim to identify when the action sequence can be
applied and when it should be applied. The context for making the decision has grown

193

Chapter 8. Automating policy acquisition

in two directions. The propositions used for the potential proposition pool, Poti, at step
i, include propositions from different language levels. These propositions are gathered
using the reference policy and are therefore using its constants. We will discuss how
this set is constructed below. We have already defined the set of context states for a
plan step and these provide the context that we use to validate each of the propositions
in Poti.

The pseudo-code for the approach to selecting the positive conditions is presented
in Listing 8.3. In order to confirm a positive condition the proposition is tested for
each of the plans in the group. If each of the plans validates the proposition then it is
included as a condition. To evaluate the proposition against a specific plan, the context

states for the particular plan step are generated for the plan. In the case of the positive
condition this is the regressed states, φ. The proposition is then evaluated in each of
those states. If it does not hold in a state then the proposition is not a positive condition.
The negative condition is computed using a similar approach, except the test ensures
that the proposition never holds in any of the example states. The computation of φ
and s, for the enhanced state, is discussed below.

Listing 8.3: Pseudo-code for selecting positive conditions.� �
I n p u t s :
x : a 〈π〉Σi

p lan s t e p
Potx : t h e p o t e n t i a l p r o p o s i t i o n poo l
F i e l d s :
planGroup : p l a n s t h a t are e q u i v a l e n t i n Σi
r e f P l a n : one p lan from t h e e q u i v a l e n t group
planMaps : mappings from each p lan t o t h e r e f e r e n c e p lan
Outpu t :
p o s i t i v e C o n d i t i o n : a s e t o f p r o p o s i t i o n s f o r t h e p o s i t i v e c o n d i t i o n
def i d e n t i f y P o s i t i v e C o n d i t i o n s (x , Potx) :

p o s i t i v e C o n d i t i o n = []
f o r p in Potx :

a lwaysSeen = True
f o r 〈π〉 ∈ planGroup :

i f not t e s t P r o p A l w a y s T r u e (p , 〈π〉 , x) :
a lwaysSeen = F a l s e

i f a lwaysSeen :
p o s i t i v e C o n d i t i o n . add (p)

re turn p o s i t i v e C o n d i t i o n

def t e s t P r o p A l w a y s T r u e (p , 〈π〉 , x) :
f o r j in g e t C o n t e x t S t a t e I n d e x e s (〈π〉 , x) :

i f not UTranslationrefPlan,〈π〉(p) in φj :
re turn F a l s e

re turn True
� �

Of course, the sets of example states are from a mixture of universes. However,
as the plans are Σi-equivalent there is a mapping, UTranslationπ0,π1(φj), for the

194

Chapter 8. Automating policy acquisition

language of π0 and π1, between sets of propositions. The proposition is translated
into the same universe as the current group plan and the proposition is evaluated in
that context. Mapping the proposition is more practical within our implementation, as
several of the enhancement steps, including the ALMA predicates, are implemented as
derived predicates and are therefore evaluated on demand.

Constructing the sets: s, φ and Pot

We rely on the propositions of Σ0 to provide a background that provides an estimate
of the necessary relationships that exist between propositions in richer languages. For
example, a truck might move through several locations to arrive at the location of a
package. The position of that package provides vital context in constructing the rule
condition for moving the truck. Whereas, the intermediary locations, which are ab-
stracted by the richer language, are irrelevant. We draw on a pool of Σi-equivalent
plans to provide a richer context, isolating a smaller condition, which hopefully in-
clude the propositions of more significance to the task. To this background we add
the propositions in richer languages. This relies on extending the construction of the
sets of propositions, s, φ and Pot, to include Σ0, decision representing, axiomatic and
abstract action condition predicates.

The states can be built up in steps as defined in Chapter 5. However, this is not
appropriate for the decision predicates, which require some special treatment that we
describe below. In this work we do not distinguish between s and φ for the enhanced
predicates. Each of the potential propositions is evaluated against the enhanced state.

Σ0 propositions The low level plan is used to gather Σ0 propositions; however, we
remove any propositions that rely on constants that are not in the mapping between
plans. This means that we retain as many propositions as possible, while removing
the propositions that would prevent the abstract actions from generalising SIs. φ is
computed in the same way as before.1

Abstract action preconditions We treat abstract action preconditions in a similar
manner to Σ0 predicates. A proposition, p, for abstract action, ak, is added into Potj ,
for j ≤ k. The preconditions of abstract actions are computed using derived predicates
(a formula over the state). To evaluate p the proposition is evaluated in the state in a
similar manner to during planning.

1This will be used to validate propositions with constants in the mapping, therefore pruning this set
is not necessary.

195

Chapter 8. Automating policy acquisition

Decision predicates These propositions represent decisions that have been made as
part of the action sequence. As a result, the planner will exploit the choice proposition,
p, between making the decision, aD and its removal, aR, at the point where the deci-
sion will play no further role. The proposition should be included into the potential
propositions at the point of removal: p ∈ Potj , for j ≤ R. In place of the normal
initialisation of the decision predicates, the states in between aD and aR, will include
the proposition, p. Therefore, the sets φj and sj will model p, for D ≤ j ≤ R.

Axioms Axioms are evaluated as a response to the state and are not impacted on by
the sequence. As a result, each axiom in Σi that uses parameters already in the condi-
tion should be included in the sets of potential predicates. This might be overwritten
by a particular solver, which selects the appropriate instantiations of the axioms for
each state. For example, the nearest-blocked predicate relates the local moves
to the goal of the move and therefore the furthest node in an opening episode (similar
to the rules presented in Section 7.4). For computation of φ, the predicate should be
evaluated in the state in order to determine whether it should be included as part of the
condition.

8.4.4 A worked example

In this subsection we describe how the ALMA generation process, presented in Chap-
ter 7, extends to construct the structures required for policy generation. We then anal-
yse specific rules that are generated by the system.

An ALMA step

The policy generation algorithm can be used with an ALMA language step, with a
small extension to the ALMA generation presented in Chapter 7. The same training
data set is used to first identify the sequences and generate ALMAs. The chunks, iden-
tified during the ALMA generation process, must be recorded, and associated with the
ALMA that is generated from them. This then provides a connection between the ab-
stract action and the underlying actions, necessary for the policy generation stage. The
original plan actions are replaced by the generated ALMA to define the enhanced plan,
〈π〉Σsi

. The context states are computed using the original plan actions and grouped
around the action that was applied in that state (or ALMA, if the action was in a chunk).
The policy generator uses the ALMA action and proposition in the construction of the

196

Chapter 8. Automating policy acquisition

policy. Due to the computation method of the proposition it requires a slightly modi-
fied treatment. However, as the process validates the propositions by evaluating them
in the state, this change is isolated to the state sets (Potj and sj)

ΣSI propositions The expansion based computation of the propositions means that
SIs can only be evaluated in the current state. This has two implications: an SI that is
enabled by part of the subsequent sequence, (for example, the move to goal part of a
Goldminer plan is enabled by the clear path towards goal part,) will not be applicable
in states before the preparation is complete; and the node that is the current focus of
the actor of the SI in the current state, (such as the current node of a traverser) is the
only node that can be tested for an SI.

As presented above, for a particular rule, a condition is proposed for each ALMA
that occurs later in the plan. Each potential (ALMA) condition is created using the
propositions modelled by the ALMA. The actor and the final constants are the same
as in the plan sequence; however, the initial constants are modified to be consistent
with the current state. For example, in a state of a traverser problem, a traverser, t,
might be at a location, l1, and the sequence might move the traverser from l2 to l3.
In this situation the condition t l1 l3 will be proposed. In many situations the from

parameter is redundant and, if it was not modelled, then this would be the behaviour.
For example, the stacking problem unstack ALMA only references the block to
be uncovered and makes not reference to the current configuration. The particular
structures of the problem and properties of the ALMA will determine whether this
condition remains relevant. The move to pickup gold demonstrates a situation where
this condition makes sense: to evaluate the move to pickup the gold condition the
solver will attempt to move the robot from its current location to the gold square. If
this action is applicable then this action should be selected immediately. Of course, in
the states before the path to the gold square is cleared then this action is not applicable
and provides the justification for the other actions.

A Goldminer rule

Figure 8.5, presents an overview of the possible plans for Goldminer. The SIs are
illustrated with dotted lines indicating that they can cover an arbitrary number of steps.
The Goldminer domain is particularly susceptible to our policy generation approach,
because the main challenge in the domain is the control of search through a collection
of SIs. The following rule was generated from several instantiations of the “move

197

Chapter 8. Automating policy acquisition

Move to pickup

Move towards gold

Move to pickup gold

Move to pickup

L1 L2 L3 L4 L5

Fire laser

Pickup laser

Pickup bomb
Drop laser

Pickup gold

B G

Figure 8.5: An abstraction of Goldminer solutions. Actions are labelled at the locations
they act on; the initial state is illustrated at the bottom and the action sequence runs
from bottom to top. Dotted lines indicate the action acts on any number of nodes.

towards goal” step. We will use it to demonstrate aspects of the generated policies.� �
(: r u l e Rule38

: parameters (? f2−3f − l o c ? robby − r o b o t ?bomb − bomb ? f0−0f − l o c ? l a s e r − l a s e r
? f2−1f − l o c ? f2−2f − l o c ? f r o m l o c − l o c)

: c o n d i t i o n (and
. . .
(f i r e− l a s e r−1−0 6 3 c o n n e c t e d ? robby ? f r o m l o c ? f2−1f) ; f i reMoveBag
(a t−gold ? f2−3f) (h o l d s ? l a s e r ? robby) ; c u r r e n t s t a t e
(c o n n e c t e d ? f2−2f ? f2−3f) (c o n n e c t e d ? f2−1f ? f2−2f) ; two s t e p s from go ld
(p i c k u p 6 4 c o n n e c t e d ? robby ? f r o m l o c ? f0−0f) (a t ?bomb ? f0−0f) ; c o u l d g e t bomb
(not (p i c k u p−g o l d 6 5 c o n n e c t e d ? robby ? f r o m l o c ? f2−3f)) ; ca nn o t reach t h e go ld
. . .)
: goa lCondi t i on (and (ho lds−gold ? robby))
: a c t i o n (f i re− laser−1−063 move robby f r o m l o c f2−1f)

)
� �
The predicates at-gold and holds demonstrate the use of Σ0 predicates to es-

tablish the background of the state. There are many other Σ0 predicates in the generated
rule that have been omitted for presentation. For example, the fact that the bomb is not
destroyed, and that the robot is not holding the gold. The rule also demonstrates the en-
hanced state being used to determine the predicates that are valid. On the path towards
the gold, the robot can move to the bomb. However, until the proposition clear ?f2-

2f (the robot can move to one step from the gold) then the rule that moves the robot to
the bomb will not fire. However, this proposition adds to the context of the situation.
If the bomb could not be reached then the intended action sequence would not apply
and there would be no benefit of continuing with the encoded strategy.

198

Chapter 8. Automating policy acquisition

In the abstracted example illustrated by Figure 8.5, it is evident that there are parts
of the problem that are the same in every plan and there are other parts where the
specifics vary between plans. For example, there are several dotted lines that indicate
that the underlying SIs act on a varying number of nodes and they could also vary in
the macros used. In these parts the mapping is only defined for the beginning and end
points and therefore the specifics of the underlying structure are left to the appropriate
abstract action conditions. Conversely, each plan requires the robot to establish a path
in the direction of the gold. In particular, the last step of this path should be two nodes
from the gold. The robot will then fire the last shot and go for the bomb. Uncovering
this “two-steps-from-gold” property is vital for directing the robot behaviour towards
the gold. As the relationships exist between endpoints in SIs, these nodes are part
of the mapping; it follows that these connected propositions are part of the condition
of any rule where they are preconditions in future actions. The rule presented above
captures this property and uses it to guide the opening of nodes in a path towards the
goal.

A transportation rule

In transportation problems we have considered the use of allocation actions that deter-
mine the transporter that will be used to service a package. We consider an example
state from 〈πT2〉Σ2 , in between the allocation being set by the allocate action and the
pickup action that confirms that it was used as the resource. In this example, the truck
is being moved towards this package. A condition that ensures the truck is allocated
to the package is included in the condition for rules that moves the truck to pickup the
package.� �
(: r u l e Rule3

: parameters (? package1 − o b j ? s4 − l o c a t i o n ? s9 − l o c a t i o n ? t r u c k 1 − t r u c k ? s2 −
l o c a t i o n ? f r o m− l o c a t i o n − l o c a t i o n)

: c o n d i t i o n (and (u n l o a d− t r u c k 5 2 c o n n e c t e d ? t r u c k 1 ? f r o m l o c a t i o n ? s2)
(a l l o c a t e d− t r u c k ? t r u c k 1 ? package1)
(a t ? package1 ? s4) (a t ? t r u c k 1 ? f r o m l o c a t i o n) (a t ? t r u c k 1 ? s9)
(l o a d− t r u c k 5 1 c o n n e c t e d ? t r u c k 1 ? f r o m l o c a t i o n ? s4) A l l D i f f
C o n n e c t i o n P r e d i c a t e s (not (a t ? package1 ? s2)) (not (a t ? t r u c k 1 ? s4))
(not (a t ? t r u c k 1 ? s2)) (not (i n ? package1 ? t r u c k 1)))

: goa lCondi t i on (and (a t ? package1 ? s2))
: a c t i o n (load− t ruck51 move ? t r u c k 1 ? f r o m l o c a t i o n ? s4)

)
C o n n e c t i o n P r e d i c a t e s = (l i n k ? s9 ? s4) (l i n k ? s4 ? s2)
A l l D i f f = (! = ? s9 ? s2) (! = ? s9 ? s4) (! = ? s2 ? s4)
� �

199

Chapter 8. Automating policy acquisition

This rule captures the necessary conditions that determine that the truck should
move towards a package: that the package is misplaced, the truck can move to its loca-
tion and the truck is allocated to the package. There are two limiting factors implicit in
this rule: the connection predicates and the specific truck located predicate. The reason
for these limitations is that this rule has been learned from one training example and
as a result has been over-fitted. We would expect in a training set that there would be
examples that require more than a single traversal. If that is the case then there will be
several source locations, preventing a single one becoming part of the condition and
the source and destination variables are not all connected and therefore the connected
predicate cannot become part of the condition.

As a comparison we can use a larger collection of training examples to generate the
rule. The resulting rule loses the conditions that limit the application of the abstract
actions. In particular, the specific located predicate for the current truck position and
the connected predicates are both missing.� �
(: r u l e Rule3

: parameters (? package1 − o b j ? s4 − l o c a t i o n ? s13 − l o c a t i o n ? t r u c k 1 − t r u c k ?
f r o m l o c a t i o n − l o c a t i o n)

: c o n d i t i o n (and (u n l o a d− t r u c k 5 2 c o n n e c t e d ? t r u c k 1 ? f r o m l o c a t i o n ? s13)
(a l l o c a t e d− t r u c k ? t r u c k 1 ? package1)
(a t ? package1 ? s4) (a t ? t r u c k 1 ? f r o m l o c a t i o n)
(l o a d− t r u c k 5 1 c o n n e c t e d ? t r u c k 1 ? f r o m l o c a t i o n ? s4)
(not (a t ? package1 ? s13)) (not (a t ? t r u c k 1 ? s4)) (not (i n ? package1 ? t r u c k 1)))

: goa lCondi t i on (and (a t ? package1 ? s13))
: a c t i o n (load− t ruck51 move t r u c k 1 f r o m l o c a t i o n s4)

)
A l l D i f f = (! = ? s13 ? s4)
� �

Through using more than one example, we identify the important predicates that
always exist and never exist. This allows us to retain the benefits of regression analysis
while reducing the effects of over-fitting.

8.4.5 Discussion

In this section we have presented an approach to generating an RBP from a selection
of example plans. The key benefit of this approach is that we use regression to extract
the reasoning behind action sequences and use a collection of examples to reduce the
number of unnecessary propositions used to construct the rule conditions, in an attempt
to identify the causal relationships that determine whether the rule is appropriate. The
aim is that the policies generated from a small selection of problems will possess char-
acteristic relationships for the domain that can bootstrap the learning process for more
general solutions.

200

Chapter 8. Automating policy acquisition

Generalising goal hierarchies

The Σ-equivalence mapping that we defined can be relaxed in two ways. The one-
to-one mapping between constants means that the plans each use the same collections
of objects in the same way. There is an opportunity to allow a surjective mapping
between plans, allowing a single constant in one plan to occupy various roles operated
by distinct constants in another plan. This would allow more plans to be considered
equivalent; however, the equivalence property would be ordered. Instead of the current
arbitrary selection of a reference plan, a specific plan with a maximal equivalence
set would be used. Part of this development would involve removing the not equal
propositions for those variables where there is evidence that the same constant can
play both roles.

The other relaxation involves plans that are similar, but miss some stages. For ex-
ample, the effects happen to have been achieved in the initial state, or as a compulsory
side-effect of earlier tasks. These plans could be incorporated into the evidence base
for creating rules from longer plans. Each plan could then be associated with a bit
string of the length of the complete plan that would indicate for each step whether the
plan included that part. A mapping from a particular reference plan would be required
for each stage and this plan would be used to generate the potential propositions. The
test of whether a proposition is supported would be made in the context of all plans
that include the particular plan step. These are two developments that could lead to
more general and robust policy generation.

The generated conditions

In the context of the ALMA step, the condition can be seen as two distinct parts: the
definition of a background that holds during the interaction that provides the reason
for the SI; and a deictic (Agre and Chapman, 1987) representation local to the SI itself
that identifies invariants local to the traversing object. The reason for the distinction
is as the focus moves through the structure the rule variables active in the SI will bind
with several constants whereas variables in the background are expected to bind with
the same constants as the policy is unrolled. For example, there could be an object
that is attached to a node, but plays no role in an SI under consideration. If it plays a
role in the stages after this particular SI then it should be included in the condition as
the background to making the SI. Only some of the nodes focussed on during an SI
will have this object attached, so it cannot be part of the local SI part of the condition.
The properties of nodes that are effected by the unfolding SI should not be singled

201

Chapter 8. Automating policy acquisition

out. Instead, the rule should characterise the important aspects of the parameters of
the ALMA and leave the associated vocabulary to assert properties of the underlying
relationships necessary to apply the SI.

The sequence breaking rules that we presented in Section 7.4 play an important
role in establishing effective decompositions. If an ALMA was generated from a se-
quence that achieved several sub-goals then the computation of the vocabulary will
not guarantee that these are achieved in subsequent applications. If the sequence is
broken at nodes that cannot be explained by the rule language then the RBP will not
provide the necessary search control. One example, is the approximation used as part
of the ALMA condition. There are potential approaches that could remove or reduce
the impact of the restrictions on evaluating ALMA predicates from the current state.
In Sebastia et al. (2006), a projection is made of what the state might be when a partic-
ular sub-problem is being tackled. A similar approach could be used to predict the state
that the SI will be made. The bags would be expanded from this state to provide an
estimate of their reachability. An alternative is to use the predicate as described above,
but reinforce it from other sources. For example, the static graph that underlies the
traverse actions can confirm that certain chains are not possible. The rules that govern
a package delivery could be reinforced with a condition that tested that there is a path
in the static graph between the goal of the package and the truck’s goal location. If a
static-graph abstraction solver was in the solver chain then the generated policy would
exhibit these predicates.

Generating conditions for control knowledge

Researchers have investigated defining conditions for control knowledge in several ar-
eas. The approaches of Hogg et al. (2008) for HTN method conditions and Newton
et al. (2007); Newton and Levine (2010) for macro operators, use the same regres-
sion based approach that we use in establishing whether the sequence can be applied.
The approach presented in Ilghami et al. (2006) exploits negative examples to main-
tain version spaces for each method condition for an HTN. Version spaces maintain
the possible explanations of the training data given positive and negative examples.
Assuming that an appropriate method of extracting negative examples exists, there is
some potential for adopting this approach in order to reduce the size of the conditions
in our rules.

A related problem has been investigated in the n-stage-to-go heuristic (Boutilier
et al., 2001). In this work a quantified goal formula is regressed and used to identify

202

Chapter 8. Automating policy acquisition

what would need to exist in the state in order for the goal to be reached in n steps. A key
restriction in this approach is the first order expansion of the state space grows quickly
and the function becomes intractable. This has been addressed in Gretton and Thiébaux
(2004), as training data is exploited to restrict the expansion. During this project we
investigated using a lifted regression from goal templates in an attempt to generate
more general rules. However, the quickly growing search space meant that restricting
the expanded sequences using observations from training data was inevitable. In order
to simplify the integration with the solvers we decided to start from the sequences (as
reported above).

In Srivastava et al. (2011), a generalised plan representation is adopted that can cap-
ture plans for arbitrary numbers of objects. Inherent looping and symmetry reduction
in our policy representation provide similar compression on plans to the representation
used in Srivastava et al. (2011). However, in Srivastava et al. (2010) the authors iden-
tify a restricted set of problems, which allows for termination to be guaranteed. Similar
guarantees have not been established for our rule representation. However, the policies
that we generate can solve a richer set of problems. For example, policies that solve
problems over arbitrary graph structures cannot be captured in the representation.

203

CHAPTER 9

RESULTS FOR LEARNING AND THE

ENHANCED LANGUAGE

In this chapter we present evidence that enhanced problem models can be automatically
instantiated and that these domain models can be exploited as part of learned control
knowledge. Where applicable the experiments in this chapter focus on the ALMA
representation: its efficiency, the automatic parameterisation of ALMA solvers, and
their exploitation within generated RBPs. The empirical analyses are carried out using
a similar setup as was used in Chapter 6, we detail the small changes below. First, we
analyse the generated ALMAs, then we present the parameters used for learning and
generating RBP and present results for RBPs learned using our approach.

9.1 Invoking a domain model, M|Σi
We have developed an approach for automatically enhancing a domain model with
concepts that relate to its structures. In this section we present the vocabulary that was
invoked for a selection of domains.

9.1.1 Invoking an appropriate model from a solver library

We used the automatic invocation of solvers from the solver library for the analysis in
Chapter 6 and we summarise the generated vocabularies in this subsection.

In several of the domains an appropriate domain model was invoked for expressing
effective RBPs. In Blocksworld and Depots, the stacking aspect was identified and

204

Chapter 9. Results for learning and the enhanced language

the well-placed predicate introduced. In Driverlog, Goldminer, Logistics, Grip-
per, Grid and Depots the graph traversal generic type was identified and the graph
abstraction solver invoked. In Goldminer and Grid the turn-based nature of the map
was identified, invoking the nearest blocked location solver. In Grid, the restricted re-
lationship between the opening resource and the opening action was identified and the
located key door selector solver was introduced.

In several of the domains, a graph abstraction solver step was made when the model
was sufficient for an RBP to effectively control search. The domain conventions mean
that, in these domains, the graphs are cliques and therefore connectedness is express-
ible in a finite number of predicates. An interesting line of future work is to extend
the scope of the target significance detection, as a general framework for invoking
specialised language. This could be used to further specialise the domain model by pa-
rameterising the solvers using observations from training data. For example, through
interrogating the graphs in the training data to determine their connectedness. An alter-
native is to propose the vocabulary and allow a general purpose rule learner to confirm
its use in practice. This is the approach that we take and report on below. The RBPs
used to generate the results presented in Chapter 6 were expressed for the invoked
domain models and the results demonstrate the appropriateness of the vocabulary.

9.1.2 Generating appropriate solvers for directed connectivity

We have proposed an algorithm for automatically specialising the solver for a particular
domain. We implemented the algorithm presented in Sections 7.3 and 7.4, making use
of certain optimisations that were appropriate for traversal problems. The sequence
coverings for SI-templates that each end in a traversal action are unique as distinct
traversal actions, or traversal actions controlling a different traverser are distinct se-
quences. We have generated training data for several domains that contain SIs and
have applied our approach. In this subsection we summarise the generated bags and
resulting vocabulary. We examine the difference using the algorithm with and without
sequence breaking rules, to provide an indication of the importance of breaking the se-
quences into parts. The generated bags are presented in the appendices in Section E.4,
and as an example, we present the results for Driverlog below. We present an analysis
of the approach for Structure Building problems in Appendix H.

205

Chapter 9. Results for learning and the enhanced language

Driverlog ALMAs

The Driverlog domain is a transportation domain with drivers, trucks and packages.
The trucks are driven and problems involve multiple traversers on two maps. The
competition problem generator was used to generate 25 problems. These problems
had a single truck, driver and package. Each problem had 15 truck locations and a
number of joining path locations depending on the generated path map. Goals were
generated for the truck, driver and package by the generator, which can include empty
goals for objects (this is more likely for the trucks and drivers). The targets identified in
Driverlog problems include picking up and dropping off packages and walking drivers
to trucks and to their goals.

No rules With no sequence breaking rules each of the agent threads is isolated and
the relevant actions for each agent are identified, as described in Section 7.1. The last
SI action of each sequence is used as the target and gives its name to the vocabulary.
The generated actions were walk51 move and drive-truck50 move. The bags
included the enablers for getting a driver into the truck for driving and getting out of a
truck for walking.

• (drive-truck truck0 location1 location2 driver3)

• (board-truck driver3 truck0 location1), (drive-truck truck0 loca-

tion1 location2 driver3)

• (walk driver0 location1 location2)

• (disembark-truck driver0 truck3 location1), (walk driver0 location1

location2)

Rule based sequencing When using the transportation rules, the bag generation pro-
cess identifies several bags, one for each of the target types identified. The name of
the ALMA is an extension of the target action, with a generic number ID and move
attached.

• (load-truck50 move ?truck ?loc-from ?loc-to)

• (drive-truck51 move ?truck ?loc-from ?loc-to)

• (disembark-truck53 move ?truck ?loc-from ?loc-to)

206

Chapter 9. Results for learning and the enhanced language

• (unload-truck54 move ?truck ?loc-from ?loc-to)

• (walk52 move ?driver ?loc-from ?loc-to)

• (board-truck55 move ?driver ?loc-from ?loc-to)

The targets for walking were a goal that was achieved by walking (locatedness of
the driver) and when the driver got into the truck. Similarly for the driving actions, the
truck was driven to a goal, the truck was driven to pickup and drop off packages and
the driver disembarked at their goal. The latter target is the result of the driver using a
goal-less truck to move to its goal. The actions can be interpreted as actions that move
to enable the target action; for example, move-to-enable-load-truck.

The generated bags In each case, the associated bags contained a singleton macro.
The bag for the truck ALMAs was:

• (drive-truck truck0 location1 location2 driver3)

The bag for driver ALMAs was:

• (walk driver0 location1 location2)

These ALMAs model vocabulary that are equivalent to the graph abstraction solvers
used in the experiments in Chapter 6, in the sense that the predicate holds for the same
arguments and the action will return the same output given the same choice.

The generated ALMA is included in the solver listings file. The listing created for
moving a truck to achieve the target of unloading a package is presented in Listing E.1.
The “@” symbol is used to separate actions in a chunk and the “#” symbol separates
chunks. This has proven a convenient representation when reading the output and when
defining ALMAs by hand.

Listing 9.1: Extract from solver listings output for generated ALMA for Driverlog
domain� �
(: s o l v e r D e s c r i p t i o n SequenceCha inSo lve r202

: Graph (: module DynamicGraphModule163)
)
(: moduleDescr ipt ion DynamicGraphModule163

: MoveAction (: module MoveAction1)
: Name (: d e s c r i p t i o n (un load− t ruck202))
: Sequences
(: d e s c r i p t i o n

(d r i v e− t r u c k t r u c k 0 − t r u c k l o c a t i o n 1 − l o c a t i o n
l o c a t i o n 2 − l o c a t i o n d r i v e r 3 − dr iver@ #))

: S i g n i f i c a n c e (: d e s c r i p t i o n (t r u e))
: S t r a t e g y (: d e s c r i p t i o n (f a l s e))

)
� �
207

Chapter 9. Results for learning and the enhanced language

A summary of the generated ALMAs

Table 9.1: A summary of the properties of the generated ALMAs, detailing whether
the property holds with and without sequence breaking rules. The properties are: target
significance (TargetSig), directed connectivity (DC), and appropriate for expressing a
policy (π). In the policy column, individual target is used to indicate that solutions for
certain goals can be captured. The greyed result is a proposed results for traversing
constrained by fuel.

Feature TargetSig DC π

Driverlog with/without with/without with/without
Logistics with/without without without
Goldminer with with/without with/without
Grid with without without
Rovers with/without with/without with/without
Fuel traverser no with/without individual targets

Table 9.1 summarises the generated ALMA bags. We have identified three features
from each bag generated either using sequence breaking rules (with) or not (without).
These are analysed in the following parts. The bags for Grid, Goldminer and Driverlog,
which are presented above, demonstrate that the enablers for SIs are identified. The
algorithm uncovers the necessary macros so that SIs can be made in the domains tested.
In the Logistics domain, the vocabulary over-fits one of the bags. In Logistics problem
distributions the truck always starts at a location and in the small problems we used to
generate the vocabulary there was only one location in each city. If the package needed
moved then it was picked up before the truck was moved. Otherwise the only packages
the truck picks up get delivered to the airport. As a result, the move-to-load action
is computed with a bag that does not include an action to move between an airport and
a location, or a location and another location.

• (drive-truck truck0 - truck location1 - location airport2 - airport
city3 - city)

Of course packages might need to be dropped off at either the airport or the location
and therefore the bag for unloading included either direction.

• (drive-truck truck0 - truck location1 - location airport2 - airport
city3 - city)

• (drive-truck truck0 - truck airport1 - airport location2 - location
city3 - city)

208

Chapter 9. Results for learning and the enhanced language

The difference between the bags demonstrates an advantage of using training data
to parameterise the solvers. Implicit control knowledge has also been observed in
inferred domain models (Cresswell and Gregory, 2011). In the following parts we
present our observations of the results in terms of directed connectivity, target signifi-
cance and completeness of the vocabulary.

Directed connectivity

Generating ALMA bags with no breaking rules will lead to vocabulary that establishes
directed connectivity in domains where the specified SI is appropriate. For example, a
single bag was generated for Grid, which included the macros that lead to picking up
and swapping keys, required to establish directed connectivity (dropping off a key was
never observed).

The resulting bags might not be sufficient to express an effective RBP. This is
because each SI is treated in isolation. For example, in a domain with fuel (either as
part of the map, or enabling the traverser), a path selected to achieve one particular SI
might consume the fuel stored at a location, which is essential for a later SI. Similar
observations can be made for other consumable resources where there is a property that
demands that SIs are considered together. This can cause dead ends in some domains.
The use of breaking rules addresses this problem through focussing the bags to specific
targets; however, this is not a complete solution.

If the breaking rules are not appropriate for the particular domain, they can lead to
abstract states that can only be partially protected. For example, in the Grid domain,
the rules will break the plans into sequences of opening doors with the same key. How-
ever, the rule language is not sufficient to characterise these states. In this domain the
bags will not establish directed connectivity. Goldminer is another turn-based graph
domain. The result when using no sequence breaking rules is similar to Grid. However,
in this domain the rules lead to targets that can be explained by the RBP rules. This
results in vocabulary that establishes directed connectivity. The algorithm identifies
equivalent macro bags for move to destroy hard and soft rock. These macros include
the actions necessary to fire at hard or soft rock, if it is there, and move.

• (fire-laser-1-0 robot0 laser3 loc1 loc2); (move robot0 loc1 loc2)

• (move robot0 loc1 loc2)

• (fire-laser-0-1 robot0 laser3 loc1 loc2); (move robot0 loc1 loc2)

209

Chapter 9. Results for learning and the enhanced language

This is the fireMoveBag, defined in Section 7.2 and is important for tunneling
towards the goal in Goldminer.

Target significance

If each individual SI step is isolated then the bag target significant expansion can be
used. For example, the fireMoveBag moves the robot into the location that it has
opened. In contrast, the following macro from the Grid bag opens a door so that it can
be traversed through at some later point.

• (unlock robot0 place1 place3 key4 shape5); (move robot0 place1 place2)

This is unlikely to lead to target significance, because there will typically be a
distinction between the locations that can be opened. There are specific examples
where a macro impacts on future actions and is part of a target significant bag. For
example, in the no rules setting the board;move macro sets up any movement. This
is a special case where the resource is necessary for all of the moves.

The use of breaking rules can lead to the generation of target significant language.
For example, a bag larger than the allMovesBag is generated for the Goldminer using
no breaking rules. However, the expansion of this bag includes sequences that switch
and consume resources. Splitting the sequences up leads to three smaller bags that are
each target significant.

• (detonate-bomb-1 robot0 bomb3 loc1 loc2); (move robot0 loc1 loc2)

• (move robot0 loc1 loc2)

The move-to-enable-pickup-gold bag, presented above, would not al-
ways be target significant. However, the example state spaces do not include any ex-
amples where the bomb was used unnecessarily. For example, the use of a bomb to
achieve the shortest path to a target, where a slightly longer path would have achieved
the same target without using the bomb.

Discussion

We have generated bags of macro actions for several domains. The bags generated
without the rule based sequence splitting are directed connectivity in each of the tested
domains. These bags provide vocabulary that can be used as part of a solution for
each of these domains. The intention behind using rules is to split the sequences into

210

Chapter 9. Results for learning and the enhanced language

sequences that can be explained by target significant bags. This has been demonstrated
in the rules for Goldminer and Grid. In Driverlog the rules break the sequences so that
board and disembark actions are targets. This separates the SI from other parts
of the strategy; as a result the control knowledge associated with driver allocations is
made explicit in the RBP. However, the rules can lead to bags that are not directed
connectivity.

The ALMA representation provides an alternative to implementing specialised so-
lutions. In Section 5.4, we presented vocabulary for several types of problems and
each of these can be expressed as an ALMA solver. In general, the computation of
the ALMA vocabulary is expensive, but we have demonstrated that in some cases the
splitting rules provide an alternative way of making the resulting language more ef-
ficient. The rules are specified at the generic type level, which allows the developed
approach to be used in many domains. In this work we have focussed on a collection
of single traverser, single map problems. However, we explore the use of the represen-
tation in stacking problems in the Appendices, and in other traverser problems from
the literature in the next section.

9.2 Arbitrary length macro actions

We will now investigate the efficiency of the generalised solver representation that we
have implemented in the ALMA solver. In this section we will analyse the cost of
computing the ALMA vocabulary. This is an important analysis for understanding
the trade-off between the ease of expression and its use in solving problems. We also
consider the use of the representation for a more general class of problems. In these
evaluations the nearest neighbour solver heuristic is used with the graph abstraction
and the ALMA solvers.

9.2.1 Vocabulary computation

The ALMA solvers provide a convenient representation for expressing control knowl-
edge. However, our current implementation for computing the vocabulary is expensive.
In this subsection we compare the use of the handwritten solvers that we evaluated
in Chapter 6, with the use of ALMA solvers. We have selected the Driverlog and
Goldminer domains for this analysis and present results for the hierarchical ALMA in
Section G.1 of the Appendices.

211

Chapter 9. Results for learning and the enhanced language

Setup

The reachability of the move actions are sufficient for reasoning in the Driverlog do-
main. The same strategy can use the solvers interchangeably, providing a direct com-
parison of efficiency. In Goldminer the ALMA solvers provide richer reachability
analyses and therefore the strategies are slightly different. For example, the strategy
can exploit the fireMoveBag in order to move towards the gold and does not require
the closest-blocked predicate. The projection to target space filtering was used
in the expansion of the bags and the strategies were handwritten.

Expectations

Our implementation of the ALMA solver tackles a more general problem and its ap-
proach is not optimised for particular bags. As a result we would expect an increase in
planning time.

Results

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18 20

Ti
m

e(
s)

PFile

Lama
Handwritten

ALMA

Figure 9.1: Time results for ALMA and handwritten strategies for Driverlog problems.

We have presented the time plots in Figures 9.1 and 9.2; the quality of the plans
are similar. In each case the time taken for the ALMA solutions are longer. The plots
for Goldminer demonstrate the trade-off provided by the ALMA vocabulary. The bags

212

Chapter 9. Results for learning and the enhanced language

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30

T
im

e(
s)

PFile

Lama
Handwritten

ALMA
1 mins

Figure 9.2: Time results for ALMA and handwritten strategies for Goldminer prob-
lems.

used by the strategy include opening actions, and therefore extend the reachability
analysis from the move action graph. There is an increase in planning time, however,
this is compensated for by the reduced effort in defining the solver. The Driverlog plots
demonstrate that as the map sizes and the number of traversers increase, the difference
between the two approaches increased. This growing difference is not observed in
Goldminer after problems 10 and 20, where the grid size increases. However, in Gold-
miner there are relatively few (one in these experiments) states where bag expansions
will cover large parts of the grid. It is promising that although we are using a general
solver, all of the problems in Driverlog (including several that are not solvable by FF)
are solved in less than 5 seconds and the longest Goldminer time was 2.1 seconds, in a
domain where FF only solves 2 problems.

9.2.2 Target and state significance

The target significance filtering technique, presented in Section 7.5, is one approach
that we have investigated that can reduce the complexity of the bag expansion problem.
This filtering approach expands the ALMA bags under the assumption that alternative
states for a specific target can be pruned. An ALMA can define a combinatorial search
space leading to a vocabulary that is intractable to compute. We now analyse the impact

213

Chapter 9. Results for learning and the enhanced language

that using this filtering technique has on the computation time of the vocabulary, using
planning time as a proxy. We have included runs using SbS, as this evaluates the policy
at each step, providing more evidence of the filtering effect.

Setup

In this analysis the Goldminer and Traverser domains are used. The Bootstrap and
Target Goldminer problems from the Learning Track of IPC-08 are used. For the
Traverser domain we have generated two training sets. In the first each problem has a
single traverser, but the number of locations is increased from 100 to 1500. The other
set has 100 locations and the number of traversers is increased from 1 to 50. Each run
is given a time-out of 10 minutes.

Expectations

The filtering approach should have little effect on the quality of a solution in these
domains. The bags for the Goldminer domain include a bag that can open locations
and move into them. The state space of this bag grows very quickly with the state
space. This filtering technique is applicable to this bag and therefore we would expect
an improvement in the time to solve problems. The move action in the bag of the
Traverser problem can only move the traverser between locations. As a result we
would not expect much of an improvement.

Results

The time plots for the Goldminer bootstrap problems are presented in Figure 9.3. As
we have observed in Chapter 6, the macro application approach leads to a reduction
in planning time. There are sharp increases in the state significance plots at problem
15. This coincides with an increase in the grid size from 3× 3 to 4× 4. This suggests
the approach is highly sensitive to the map size, which is in line with our expectations.
This is further supported by the fact that the state significance approaches were not
able to solve any of the target problems, which have larger grids (5× 5 to 7× 7). The
filtered approach solves each of the target problems in one or two seconds.

The time plots for problems that increase in the locations dimension are presented
in Figure 9.4 and for the number of traversers dimension in Figure 9.5. The plots
indicate a modest improvement for the filtered approach over unfiltered. There appears
to be a slow growth in the cost with increases in locations or traversers. This result
is perhaps not surprising, as the bookkeeping required to store visited states and the

214

Chapter 9. Results for learning and the enhanced language

 0.1

 1

 10

 100

 0 5 10 15 20 25 30

Ti
m

e(
s)

PFile

Target
SbSTarget

State
SbSState

1 mins

Figure 9.3: Time results for the state and target significance using both step-by-step
and macro application approaches for Goldminer bootstrap problems.

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30

Ti
m

e(
s)

PFile

Target
State

SbSTarget
SbSState

1 mins

Figure 9.4: Time results for the state and target significance using both step-by-step and
macro application approaches for Traverser problems with increasing sizes of maps.

215

Chapter 9. Results for learning and the enhanced language

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30

Ti
m

e(
s)

PFile

Target
State

SbSTarget
SbSState

1 mins

Figure 9.5: Time results for the state and target significance using both step-by-step
and macro application approaches for Traverser problems with increasing numbers of
traversers.

subsequent comparisons can be performed more efficiently. It can also be observed that
the final problems are not solved. This demonstrates the combination of the symmetry
issue that we discussed in the context of Gripper problems and the expansion cost of
determining the reachability graph for each traverser in every state.

These results support the use of the filtering technique when possible. Although
we have presented a complete formula for determining when it can be used, we do
not present an approach to evaluating this formula. Our use of this filtering approach
is therefore determined through an incomplete process and can therefore lead to an
incomplete reachability analysis.

9.2.3 Alternative graph definitions

In this part we discuss how the ALMA representation generalises to other traversal
problems. The results are summarised in Table 9.2. In Long and Fox (2002), two
generalisations of the traversal problem are noted as not being reducible to a single
traverser single map. One of these is traversal problem that involve more than one
move actions. The other is where there are more states in the traversal property space,
which means that the traverser can escape from being located. There are two variants of

216

Chapter 9. Results for learning and the enhanced language

Table 9.2: A summary of the proposed properties for an extended collection of prob-
lems. The table records whether certain properties holds with and without sequence
breaking rules. The properties are: target significance (TargetSig), directed connectiv-
ity (DC), and appropriate for expressing a policy (π). In the policy column, individual
target is used to indicate that the solution for a specific goal can be captured.

Feature TargetSig DC π

Blocking traversers no with/without individual targets
Joining maps with/without with/without with/without
Flying traversers with/without with/without with/without

this: when the traverser must resume the same location (ability of hovering) and when
the traverser can resume a different location (ability of flying). We also introduce
a third problem, which involves more than one traverser, which we call interfering

traverser problems. In these problems the map locations are blocked by traversers (and
other objects) and coordinating traverser movement is necessary. We will examine each
of these generalisation in the context of directed connectivity and target significance.

In interfering traverser problems, the movement of the traverser is dependent on
the position of other traversers (for example, in the Airport domain). A more relaxed
binding constraints could be used so that sequences of causally related move actions
were explored. In particular, we would not constrain the SIs to be chains of the same
traverser. The result would be bags that established directed connectivity in domains
such as Sokoban, (n2 − 1)-Puzzle, and the Airport domains. However, the vocabulary
would not be target significant and would involve expanding the state space to evaluate
each bag. Further work is required in order to investigate these problems in the con-
text of the achieved goal context, as these problems can involve dependent goals (for
example, squares in (n2 − 1)-Puzzle).

Alternatively, the movement of a traverser could be conducted using several move
actions. For example, in the Bulldozer domain (Long and Fox, 2002), the traversers
(mobiles) can traverse using the drive and cross actions. To establish a directed
connectivity solver over this network, the move actions that act on each of these struc-
tures would be required and the templates and binding constraints would be defined
between each move action. The presence of additional states in the traverser’s prop-
erty space can be treated for the cases identified. No special treatment is required for
the case where the traverser temporarily loses locatedness and regains it at the same
position. If the traverser’s locatedness can have changed then the same alteration as
for several move actions can be made. The macros will include the actions necessary

217

Chapter 9. Results for learning and the enhanced language

to change between the different graphs. The identification of these graphs is described
in Long and Fox (2002) and this analysis could be used to propose the collection of
templates, in the same way as for a single map. The combination of maps does not
indicate the loss of target significance. In this way an effective vocabulary would be
defined for these domains.

9.2.4 Discussion of the ALMA solver

The main benefit of the ALMA solver is that it greatly reduces the effort required
to define SIs solvers. In this section we have demonstrated the use and analysed the
efficiency of our ALMA solver. We have demonstrated that ALMAs can be used to
support RBPs through SIs in several domains. The difference between the plots for
handwritten and ALMAs based solutions provide some indication of the opportunity
for improvement, opening up many avenues of future work. We have provided support
that our representation is appropriate for expressing SIs vocabulary in many domains.
In situations where target significance and directed connectivity are not established, the
model can be extended so that heuristic guidance can be exploited within a more gen-
eral hierarchical framework of the solver (Appendix G.1). However, this framework
compensates for a more fundamental issue of the rule language that we have used. A
similar effect can be obtained using a disjunctive expression and the delegation of the
choice of bindings to the heuristic. This approach provides the most control to the
RBP.

9.3 Learning parameters

In this section we present the training data and L2PLAN parameters that were used to
learn RBPs. We used a Linux box with 18 Intel Xeon E5 CPUs, clock speed: 2.40GHz.
The learning setup and training data are detailed here.

9.3.1 Learner setup

In this work we use a parameter set that has been used in previous experiments us-
ing L2PLAN. These parameters are presented in Listing 9.2. The candidate selection
approach is aggressive as it is likely to pick from the higher scoring policies. This is
enforced through passing the best 5 policies as candidates for the next population. The
parameters for crossover and mutation have been established through experimentation

218

Chapter 9. Results for learning and the enhanced language

in previous work. It was outside the scope of this work to fully explore the learner and
its possible parameter sets.

GA parameters:

Candidate selection:

Tournament selection: Best of 50 choices

Population size: 100

Number of replicants: 5

Crossover rate: 0.7

Crossover elitism: false

Mutator parameters:

Mutation rate: 0.1

Rule mutation rate: 0.3

Initialisation parameters:

Min rule conditions: 3

Max rule conditions: 5

Listing 9.2: The used settings for L2PLAN

Local search

The general parameters that control the local search from L2PLAN, are the number of
neighbours of each policy that are generated, and the number of local search steps that
are made (given an improving policy was found). We used similar parameters from
previous experiments with L2PLAN; we present these in Listing 9.3.

Local search parameters:

Number of candidates: 10

Number of levels: 2

Listing 9.3: The used settings for the constrained local search

In previous work with L2PLAN, the neighbourhoods only effected the conditions,
however, we have introduced several neighbourhoods, inspired by Aler et al. (2001),
that open up the different aspects of the search space.

• Add a single predicate from a rule’s condition. This can be a goal predicate, a
negated predicate, both or neither.

219

Chapter 9. Results for learning and the enhanced language

• Remove a single predicate from a rule’s condition.

• Merge two variables. Selects two compatible variables in a rule and merges
them. The remaining variable takes the merged variable’s place in any predi-
cates.

• Spilt a variable into two. Selects some of the predicates of a variables and re-
places the original variable with a new variable.

• Replaces a rule in the policy with a rule from another policy.

• Adds a rule from another policy into a random point in the policy.

• Swaps two rules in policy.

• Lifts the type of a variable if its predicates allow.

• Lifts the type of a variable and deletes predicates to allow.

• Makes the type of a variable more specific.

There is an important relationship between the neighbourhoods and the fitness
function and we have found that these neighbours are effective in practice.

Fitness function

We used the fitness function developed in Section 8.2. If the policy does not suggest an
action then roll-out fails. Our tests indicated that using a random backup led to worse
learner performance. This could be because sequences of random backup actions can
add promising sequences on bad policies, guiding the learner to finding states that
happen to lead to better random sequences. The time-limit on running the planner
and unrolling each policy was set to 10 seconds. We limited roll-out to the length
of the optimal plan. However, we only counted abstract actions as a single step, and
therefore solutions could have arbitrary more actions. This further promoted using the
vocabulary and provided a method that scaled the size of the roll-out with the structure
sizes. As we have not experimented with enriching actions in this chapter, this is
consistent with evaluating the policy expressed in the enhanced language.

220

Chapter 9. Results for learning and the enhanced language

9.3.2 Training data

Sets of problems were generated for each domain. As we discussed in Chapter 8, the
problems used to learn had to be small so that hLM−cut could solve them, but exhibit
the important domain structures, to provide the opportunity for learned solutions to
generalise to larger problems. Following the methodology used for the learning track,
we created a small bootstrap collection of training data to learn the RBPs and a larger
set of target problems to validate the learned knowledge. Each of the problems in
the bootstrap problems were solved using an optimal planner and the states visited on
application of the resulting plans were sampled to form an example size of 50, for
Gripper and Traverser and 100 for each of the other domains. The smaller sets were
used in the two domains that have less structure to explain.

Blocksworld

The competition generator was used to generate 30 problems.

Driverlog

The competition problem generator was used to generate 30 problems. We used a
collection of parameter sets to generate these problems, although all of them were
small problems and were quickly solvable with hLM−cut. Goals were generated for the
truck, driver and package by the generator, which can include empty goals for objects
(this is more likely for the trucks and drivers).

Goldminer

The 30 bootstrap problems from the learning track of the 2008 IPC were used to learn
the policies. These problems have a single robot, bomb and laser and small grids (half
3 × 3 and the other half 4 × 4).

Gripper

For Gripper we used problems that required between 1 to 8 balls to be moved between
rooms.

221

Chapter 9. Results for learning and the enhanced language

Structured Briefcase

The Driverlog domain was modified by removing the drivers and the path map and
supporting predicates and actions. The Driverlog competition problem generator was
changed appropriately, maintaining all other properties. We used this generator to
create 30 problems for small parameter sets.

Traverser

The Driverlog domain file was altered by removing drivers, paths and the added driver
locations and packages. The resulting problems involved moving the trucks to goal
locations on a map. The generator was changed to reflect these changes. 20 problems
were generated with 1 or 2 trucks and between 10 and 20 locations.

9.4 Validating M|Σi
We have used the algorithm to generate several RBPs in two configurations. In the
first analysis we have run the learner from a randomly selected initial population. The
learned control knowledge was then used to solve the benchmark problems, using the
setup described in Chapter 6, except we ran the tests on an Intel Xeon E5 CPU, clock
speed: 2.40GHz, and limited the time to 10 minutes, in line with typical practice of the
learning competitions. The results provide support that the fitness function is suitable
for guiding search towards effective control knowledge. The second analysis seeds
the initial population with policies that were generated using the process described in
Chapter 8. This has allowed us to discover RBPs in domains with more complex struc-
ture. We demonstrate that as the fitness of the population increases, the performance
of the corresponding RBPs improves. To provide an overview we have summarised
the results in tables. The plots are presented in the Appendices, Section F.4. Although
the results in this section provide some evidence that the fitness function is appropriate
for guiding search, the main aim is to validate the developed models. In these evalua-
tions the nearest neighbour solver heuristic is used with the graph abstraction and the
ALMA solvers.

9.4.1 Learning from randomly initialised populations

We have selected the Blocksworld, Gripper, Structured Briefcase and Traverser do-
mains for testing the learning system. These domains are relatively small, but together

222

Chapter 9. Results for learning and the enhanced language

they test each of the aspects of the system that have been developed in this work. We
use two domains that are similar to domains used in experiments using L2PLAN to
validate our fitness function. The Traverser domain requires directed connectivity to
move traversers to their goals, which will require the extended vocabulary to be used.
The problems from the Structured Briefcase domain have more interesting structures
and require optimisation over package deliveries. We have selected this domain as
it draws together the requirements of directed connectivity that we have discussed in
Chapters 5 and 7, as well as the optimisation over these concepts that we discussed in
Chapter 8.

Setup

For each domain L2PLAN was used to generate a policy. We used 50 problems for
the Gripper and Traverser runs and 100 problems for the Blocksworld and Structured
Briefcase runs, as described in Section 9.3. We used a randomly generated initial popu-
lation of 100 policies in each case, and used the learner parameters as discussed above.
In the case of Blocksworld and Traverser an appropriate domain model was selected
from our solver library using domain analysis. A GraphAbstraction solver was
invoked for the Traverser domain and a BuildingStructure solver was invoked
for the Blocksworld domain. In the Gripper and Structured Briefcase domains, the lan-
guage was generated using the bag generation, evaluated in Section 9.1. The bags each
contained singleton move macro actions (with the appropriate label for the domain).
The learning time varied from 1 hour for an optimal policy in the Traverser domain, to
almost a week for a Structured Briefcase policy with 99% fitness.

Expectations

The learned policies have all achieved high fitness scores, which means they have
already demonstrated the ability to solve the planning problems for problems in the
training set. Of course these are small problems and we have used difficult problems
to evaluate the RBPs. The policies’ performances on the testing sets provides an in-
dication of how well the fitness function is informing search. A likely negative result
is if the policies’ over fit the training sets then they will provide patchy guidance lead-
ing to many backups and probable planning failure. An alternative is that the control
knowledge relies on properties of the training set, such as small maps that are more
amenable to random search.

223

Chapter 9. Results for learning and the enhanced language

Results

Table 9.3: Quality (Q), Time (T) and Coverage (C) results for FF (FF), Lama (L),
Handwritten (H) and a learned policy (πL)

Domain FFQ FFT FFC LQ LT LC HQ HT HC πLQ πLT πLC

Blocksworld 1744 24.86 17 12304 1820.9 39 7140 35.472 45 7100 41.682 45
Gripper 32240 50.98 20 32240 193.72 20 32240 803.954 20 32240 930.07 20
SBriefcase 2796 1450.73 15 3810 310.79 20 2717 71.601 20 2586 452.512 20
Traverser 1004 0.78 30 791 7.49 28 1004 14.576 30 1004 14.576 30

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35 40 45

Q
ua

lit
y(

S
te

ps
)

PFile

FF
Lama

Handwritten
Learned

Figure 9.6: Quality results for a learned policy on Blocksworld problems

The results presented in Table 9.3, demonstrate the success of the learned control
knowledge to control search in the domains. The learned RBPs solved all of the prob-
lems in each of the problem sets, whereas the domain independent planners (LAMA

and FF) solved all the problems in two of the four domains. In each of the domains,
the lengths of the plans generated by the learned policies were the same or shorter than
for both the domain independent planners and the handwritten policies. Figure 9.6, il-
lustrates this for the Blocksworld domain. In terms of time, both the learned and hand-
written RBPs perform worse in Gripper and Traverser domains. These are domains
with lots of symmetry, which can lead to inefficiency in the rule matching machinery,
as was discussed in Chapter 6. The time results in Blocksworld (Figure 9.7) for the
RBPs are better than LAMA and more consistent than for FF. In Structured Briefcase
the learned RBP, generated plans slower than LAMA; however, the handwritten RBP

224

Chapter 9. Results for learning and the enhanced language

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45

T
im

e(
s)

PFile

FF
Lama

Handwritten
Learned

1 mins

Figure 9.7: Time results for a learned policy on Blocksworld problems

generated plans quicker. The handwritten RBP exploited a more efficient solver, which
could be used with the learned policy (without changing the policy).

Traverser is a relatively simple domain, however, the final problem involves mov-
ing 50 traversers on a map of 100 locations. This demonstrates the validation of the
provided vocabulary by the policy learner and the successful exploitation of the en-
hanced model in learned control knowledge. The Gripper domain does not rely on any
extended vocabulary, however, it demonstrates the learner’s capability of discovering
solutions with several actions. The results for the Gripper domain (related to the Brief-
case domain) and the Blocksworld domain confirm that L2PLAN, using our alternative
fitness function, can learn solutions for the domains previously reported (Levine and
Humphreys, 2003; Galea et al., 2009). In Structured Briefcase our handwritten policy
orders package pickups before package drop-offs. The learned policy has these rules,
but also includes more specialised rules that allow drop-offs of packages to locations
with other packages at them (no conditions on these packages). The results indicate
that this leads to shorter plans on average. Structured Briefcase problems involve opti-
mising over package deliveries. From our experience, similar runs using the L2PLAN

fitness function (and many parameter settings) have not learned generalising control
knowledge in this domain. For example, we ran 15 runs of the L2PLAN, using the
learner parameters, the local search used in this work and the generality and concise-
ness aspects of the fitness function (as well as the standard L2PLAN fitness function).

225

Chapter 9. Results for learning and the enhanced language

We tested the learned policy with the highest fitness value (98%) from all the runs. It
solved all of the problems used to make the training set, requiring random backups
actions in only two problems. The policy solved none of the problems in the testing
set. Learning RBPs that control search over maps directly has not been reported pre-
viously. Moreover, the quality of the solutions generated is very high, demonstrating
that the selected planning model was appropriate for learning RBPs.

9.4.2 Generated seeds

In the following subsection we seed the learning process with RBPs generated us-
ing the process presented in Section 8.4. We limited the enhancements to the ALMA
solvers. In this part we summarise our observations of the generated policies. We have
generated seeds for Traversal, Gripper, Structured Briefcase, Goldminer and Driver-
log, using the same training data sets that we described in Section 9.1. We focus on
Structured Briefcase, Goldminer and Driverlog as the aspects of the other domains are
contained within these three. There were 6 seed policies generated for Goldminer, 4

for Structured Briefcase and 15 for Driverlog. We have included an example for these
domains in Appendix D.4.

Goldminer plans capture a single thread of activity, which moves the robot to-
wards the goal. We have noted above that the generated bags can be used to sup-
port an RBP to control search and in Section 8.4 that the important “two-steps-from-
gold” proposition is uncovered through the generation process. The rule includes
parts that establish aspects of the current state, such as the current locations of the
robot and gold: (at ?robby ?f2-0f), (at-gold ?f3-3f). Important requirements of
the later sequence are identified, for example, that the bomb is not destroyed, or that
the robot does not hold the laser: (not (holds ?laser ?robby)) (not (destroyed
?bomb)). These include conditions on predicates computed by ALMA solvers: (not
(pickup-gold67 connected ?robby ?f2-0f ?f3-3f)), where the current location
of the robot is the starting point. These examples are extracted from one of the final
rules from a generated policy. The complete policy is presented in Subsection D.4.2
of the appendix. The generated policies contain the important propositions and be-
haviours necessary to solve the problems in Goldminer. In fact, the seed presented in
the appendices can solve the problems in the testing set.

The generated policies for Structured Briefcase and Driverlog capture many of the
key aspects of the problem. For example, the control knowledge captures behaviours
such as moving to pickup a misplaced package, which is a key concept in these do-

226

Chapter 9. Results for learning and the enhanced language

mains. We noted that the one-to-one mapping used in the generation process is quite
restrictive and it does lead to separating solutions that could be used together. For ex-
ample, the proposition, (!= ?s8 ?s2), from Rule 14, the board-truck rule in the
seed policy, requires that the truck’s starting point, ?s2, is different from the package
goal, ?s8. This condition restricts the applicability of the rule with an unnecessary
proposition. The rules capture a single delivery, where delivery problems will often
require several deliveries to be made. In Structured Briefcase the changes that are re-
quired to generalise these rules are small. One change is to move the pickup and drop
off actions to have higher priorities. The heuristic to order the rules from the last plan
action to the first generates intuitive policies. Some of the first rules of the Driverlog
seeds move the driver home, and the condition on this requires a single package to be
home. The limited rule language require that this rule is moved to a lower priority than
the package deliveries.

The seeds that we generate provide an example of establishing directed connec-
tivity in a domain and can capture a complete solution for the problem. This is par-
ticularly effective in domains where the main change is in the specific SIs, such as
Goldminer. The process generates effective policies for the Goldminer, Traverser and
Gripper domains and examples of vocabulary use in important situations in the Struc-
tured Briefcase and Driverlog domains. The rules can be overly restrictive with respect
to variable bindings and can fail to generalise over sub-problems (such as multiple
package deliveries). These limitations are addressed in the following subsection.

9.4.3 Learning from seeds

We have selected two more challenging domains to evaluate the potential of the ap-
proaches that we have developed in this work. Driverlog and Goldminer are challeng-
ing domains for both domain independent and domain dependent approaches. In these
problems an effective strategy must reason about different SIs and how they integrate.
The Driverlog problems involve complex optimisation problems over the SIs. The
learned policies are presented in Appendix D.5. We also present the results of using
a seeded approach to learn a policy for the Structured Briefcase, so that this can be
compared with the randomly initialised approach reported above.

Setup

The policies were generated as described in the previous subsection. For each domain
L2PLAN was used to generate a policy. We used 100 example problems for each do-

227

Chapter 9. Results for learning and the enhanced language

main, as described in Sections 8.2 and 9.3.1. We used the seeds in the initial population
and filled the rest (up to 100 policies) with randomly generated policies. The learner
was parameterised as discussed above. The domain models were generated during the
generation of the policies and these models were used for learning. It is interesting
to note that the seeded run for Structured Briefcase reached 97% after 8 hours and
reached a plateau after 16 hours. The Driverlog run was stopped after ten iterations
of plateau with a score of 97% fitness, after 9 days. For Goldminer a policy of 99%

fitness was learned in around 40 hours.

Expectations

The previous section supports some confidence in the fitness function and the high
fitness scores over the training data indicate that the policies are able to plan in these
domains. We have provided some examples of using the vocabulary in the seeds pro-
vided. In Goldminer these examples should provide strong support. In Driverlog there
are many details that interact and will lead to the seeds being less informative. The
main source of uncertainty comes from the small training problems that had to be used
to allow the optimal planner to solve the problems within a reasonable time.

Results

Table 9.4: Quality (Q), Time (T) and Coverage (C) results for Lama (L), Handwritten
(H) and a policy learned using seeds (πS)

Domain FFC LQ LT LC HQ HT HC πSQ πST πSC

Driverlog 16 1117 103.22 20 930 9.308 20 1058 96.016 20
Goldminer 2 884 896.75 28 814 31.37 30 826 76.943 30
SBriefcase 15 3810 310.79 20 2717 71.601 20 2519 438.253 20

The results are presented in Table 9.4, along with the coverage figures for FF, and
the results for LAMA and the handwritten policies. The results indicate that the policies
have provided effective guidance in each of the domains. The learned RBPs solved all
of the problems in each of the problem sets, whereas LAMA did not solve all of the
Goldminer problems and FF did not solve all of the problems in any of the domains.
In each of the domains, the lengths of the plans generated by the learned policies
are typically the same or shorter than for LAMA and FF. The quality is better for
the handwritten policies in Driverlog and Goldminer and better for the learned policy
in Structured Briefcase. The quality results for Driverlog, presented in Figure 9.8,

228

Chapter 9. Results for learning and the enhanced language

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y(

S
te

ps
)

PFile

FF
Lama

Handwritten
ALMA

Seeded

Figure 9.8: Quality results for a learned-from-seeds policy and an ALMA based policy
on Driverlog problems

illustrate a small number of longer plans, which are discussed below. In terms of
time, the learned RBPs perform better than LAMA in Driverlog and Goldminer. The
slow generation of plans in Structured Briefcase is partly due to the use of the ALMA
solver. The learned RBPs are slower than the handwritten RBPs; however, these are
using more efficient solvers. For example, Figure 9.9 plots the time taken for the
handwritten policy using an ALMA solver (labelled ALMA) and this explains part of
the difference between the two lines.

There are no previous reports of learning effective unassisted RBPs for Driverlog
and Goldminer in the literature. The most related for Goldminer is reported in (de la
Rosa and McIlraith, 2011) and learns pruning rules. The authors observe that the ap-
proach provides no guidance through the SIs and as a result the quality of the solutions
is poor (relative to LAMA). For Driverlog, the use of an RBP as a probe within a best-
first search (using the relaxed plan heuristic) was reported in Yoon et al. (2008). The
final 5 problems were used as the testing set and their approach solved 4 of the prob-
lems. An average plan length of 177 steps was reported, where our average (over the
4 problems) was 112.25, and we are not using a global heuristic to guide our search.
Our approach also required considerably less time to generate plans.

In order to achieve these results, the learned policies must capture effective strate-

229

Chapter 9. Results for learning and the enhanced language

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
s)

PFile

FF
Lama

Handwritten
ALMA

Seeded
1 mins

Figure 9.9: Time results for a learned-from-seeds policy and an ALMA based policy
on Driverlog problems

gies for these domains. Moreover, as we have discussed, the learned policies must
exploit the enhanced domain model. The rule in Listing 9.4, opens a path towards the
gold, by establishing the “two steps to gold” proposition:

(at-gold ?f0-3f) (connected ?f0-2f ?f0-3f) (connected ?y ?f0-2f)

And also exploiting the FireMoveBag move action to select the necessary move
and open actions to form a path towards the gold.

Listing 9.4: Rule for opening a path to two steps from the gold.� �
(: r u l e
OpenPathTowardsGold : parameters (? x − l o c ?bomb − bomb ? y − l o c ? f0−2f − l o c ? l a s e r

− l a s e r ? f0−0f − l o c ? f0−3f − l o c ? r − r o b o t)
: c o n d i t i o n (and (h o l d s ? l a s e r ? r) (a t ?bomb ? f0−0f) (n o t− c l e a r ? f0−2f) (c o n n e c t e d ?

f0−2f ? f0−3f) (no−hard−rock ? f0−2f) (c l e a r ? f0−0f) (a t−gold ? f0−3f) (
no−hard−rock ? f0−3f) (a t ? r ? x) (n o t− c l e a r ? f0−3f) (no−gold ? f0−2f) (c o n n e c t e d
? y ? f0−2f) (so f t− rock−a t ? f0−2f) (so f t− rock−a t ? f0−3f) (not (a t ? l a s e r ? y)) (
not (arm−empty ? r)) (not (d e s t r o y e d ?bomb)) (not (a t ? r ? f0−2f)) (not (c l e a r ?
f0−2f)) (not (h o l d s ?bomb ? r)) (not (ho lds−gold ? r)) (not (c l e a r ? f0−3f)) (not
(no−gold ? f0−3f)) (not (no−soft−rock ? f0−2f)) (not (no−soft−rock ? f0−3f)) (not
(a t ? r ? y)) (not (a t ? r ? f0−3f)) (! = ? y ? f0−3f) (! = ? y ? f0−0f) (! = ? f0−2f ?
f0−0f) (! = ? f0−2f ? f0−3f) (F i r eMoveBag connec ted ? r ? x ? y) (MoveBag connected ?
r ? x ? f0−0f) (! = ? f0−0f ? f0−3f) (! = ? y ? f0−2f) (not (BombMoveBag connected ? r ?
x ? f0−3f)))

: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (FireMoveBag move ? r ? x ? y)

)
� �
230

Chapter 9. Results for learning and the enhanced language

Although this rule has a large antecedent, several of these are redundant and could
be removed in a post-process.

Through analysing the policies, it can be seen that they contain all of the rules
necessary for a complete strategy for solving the problems from the domains. It is im-
portant to note that the vocabulary available to the learner was automatically generated
and the policy is therefore using the ALMA solver, impacting on the planning time.
The plots in the Appendix, Section F.4 can be used to compare the learned policy with
the handwritten ALMA solution. The use of the ALMA solver does explain some of
the difference in the time results for the learned and handwritten solutions. However,
the control knowledge is not perfect. In particular, the Driverlog learned policy re-
sults include some points that relied on the random backup action. As an example, in
the first Driverlog problem, there are two packages, drivers and trucks, on a map with
3 truck locations. The problem requires that one truck is moved home and a driver
is moved to their goal (the packages are at their goals and the other objects do not
have goals). The most appropriate rule (from the learned policy) for this situation is
presented in Listing 9.5.

Listing 9.5: Rule with irrelevant conditions, for moving the driver to a misplaced truck� �
(: r u l e walkToBoardMisp lacedTruck

: parameters (? d r i v e r − d r i v e r ? t r u c k 1 − t r u c k ? package1 − o b j ? s4 − l o c a t i o n ?
loc−from − l o c a t i o n ? s14 − l o c a t i o n ? loc− to − l o c a t i o n ? s13 − l o c a t i o n ? s3 −
l o c a t i o n ? s7 − l o c a t i o n)

: c o n d i t i o n (and (a t ? package1 ? s13) (empty ? t r u c k 1) (a t ? package1 ? s7) (a t ? t r u c k 1
? loc− to) (a t ? d r i v e r ? loc−from) (not (i n ? package1 ? t r u c k 1)) (not (a t ? t r u c k 1 ?
s3)) (not (a t ? package1 ? s4)) (! = ? s13 ? s4) (! = ? s14 ? loc− to) (! = ? s7 ? loc− to)
(! = ? loc− to ? s4) (! = ? s3 ? s13) (l o n g w a l k c o n n e c t e d ? d r i v e r ? loc−from ? loc− to)
(not (l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? loc− to ? s4)))

: goa lCondi t i on (and (a t ? package1 ? s7) (a t ? t r u c k 1 ? s14) (not (a t ? d r i v e r ? loc− to))
)

: a c t i o n (long walk move ? d r i v e r ? loc−from ? loc− to)
)
� �

This rule demonstrates the use of the long walk move action to abstract the path
graph. This rule is appropriate for situations where a truck is misplaced and a driver
must be moved to drive it home. However, it has irrelevant conditions. This behaviour
is not a common requirement in the small training set problems and therefore this rule
might have been over-fitted. In the first state, the only package goal that can bind with
(at ?package1 ?s7), is ?loc-to, conflicting with (!= ?s7 ?loc-to). However, this rule
will cover many of the situations where moving towards a misplaced truck is necessary,
especially as the problem sizes increase. The number of backups required is presented
in Figure 9.12, which demonstrates that the number of backups required in bigger
problems is small. This is very promising, as the backups actions are randomly selected

231

Chapter 9. Results for learning and the enhanced language

and are unlikely to contribute towards the goal in these bigger problems, suggesting
that small changes of state are all that is required. This suggests that a larger training
set might lead to these rules being more precisely formed.

9.4.4 Fitness and performance

In the previous analyses we have plotted the scores for the policy with the highest
fitness that was found during learning. In this subsection we have used some of the
RBPs that were generated during learning to demonstrate the relationship between the
fitness function value and the performance of the associated RBP. We have used 3

policies, which were the best of a particular population, to solve the test problems. We
present the results for Driverlog, as there was more learning for this domain.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y(

S
te

ps
)

PFile

80%
90%
97%

Figure 9.10: Quality results for three policies with different fitness values on Driverlog
problems.

Figure 9.10 plots the quality, Figure 9.11 plots the time and Figure 9.12 plots the
number of random actions for the policies. The results provide a clear pattern that links
higher fitness values with improved planning performance.

232

Chapter 9. Results for learning and the enhanced language

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
s)

PFile

80%
90%
97%

1 mins

Figure 9.11: Time results for three policies with different fitness values on Driverlog
problems.

 0

 50

 100

 150

 200

 250

 300

 350

-5 0 5 10 15 20

B
ac

ku
ps

PFile

80%
90%
97%

Figure 9.12: Number of random backup actions required for three policies with differ-
ent fitness values on Driverlog problems.

233

Chapter 9. Results for learning and the enhanced language

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

C
ou

nt

Policies evaluated

Planner calls

Figure 9.13: The number of hLM−cut calls against policy evaluations during learning
of Blocksworld RBPs

9.4.5 Discussion of the learning approach

The learning approach that we have used in this work is expensive. The caching aspect
greatly reduces the number of calls to the planner and as a consequence reduces the
time taken for each iteration. We have found that the cache size grows quickly and then
grows slowly or settles. Figure 9.13, illustrates the relationship between the number
of policy evaluations and the number of planner calls during learning the Blocksworld
policy. The reducing number of planner calls was exhibited in each learner run. Our
main program was run with 1Gb of memory and it did not run out of memory.

The main bottleneck in our approach comes from rolling the policies out. This is
demonstrated by plotting the accumulated time used by the planner and policy roll-out
after each iteration. This is presented for the Blocksworld run in Figure 9.14. Similar
graphs were generated for each learner run and each shared the same relationships.
We implemented a framework to unroll policies within the learning system. However,
in order to reduce the amount of work required to maintain a learning and planning
version of each solver as the rest of the system was developed we determined to write
out the policies and compute their mappings in a separate process. This allowed us to
use the planning version in each case. While this has greatly increased the flexibility,
it has greatly increased the length of time to roll-out a policy.

234

Chapter 9. Results for learning and the enhanced language

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 10 20 30 40 50 60 70 80 90

tim
e

(m
s)

iteration

rollout clock time
rollout processor time

planning clock time
planning processor time

Figure 9.14: The accumulated time for policy roll-out and planning in Blocksworld,
for both clock-time and within each thread.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14 16 18

F
itn

es
s

(%
)

Iteration

highest
average

lowest
preLS-highest

preLS-average
preLS-lowest

Figure 9.15: Population plots for highest, average and lowest fitness in the first 18
iterations of the Driverlog run, before and after local search.

235

Chapter 9. Results for learning and the enhanced language

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

F
itn

es
s

(%
)

Iteration

highest
average

lowest
preLS-highest

preLS-average
preLS-lowest

Figure 9.16: Population plots for highest, average and lowest fitness in the first 16
iterations of the unseeded Structured Briefcase run, before and after local search.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

F
itn

es
s

(%
)

Iteration

highest
average

lowest
preLS-highest

preLS-average
preLS-lowest

Figure 9.17: Population plots for highest, average and lowest fitness in the seeded
Structured Briefcase run, before and after local search.

236

Chapter 9. Results for learning and the enhanced language

The plots of the first iterations of search in Driverlog, and for Structured Briefcase
starting from a random population and starting from a seeded population are presented
in Figures 9.15, 9.16 and 9.17, respectively. Although the unseeded Structured Brief-
case run grows quickly, it does not reach the seeded run’s iteration 5 score until iter-
ation 63. The first 15 iterations of the seeded run took 29 hours, whereas the same
number of iterations took almost 40 hours from fresh. Genetic algorithms are highly
stochastic processes and one run is certainly not sufficient to make any hard claims,
however, this does suggest that the seeding process has provided a useful starting point
in this domain. Future analysis is required to establish whether the seeding process
is providing a head start from the random initialisation, or actually impacting on the
solution space explored. It is interesting to note that many of the main improvements
seem to be made in the local search part of the program. Although it is impossible to
interpret the level of interaction between the approaches from this data, it does suggest
that a less intensive approach, such as simulated annealing might perform well with
the fitness function.

237

CHAPTER 10

CONTRIBUTIONS, FUTURE WORK

AND CONCLUSION

In the preceding chapters we have described the work that was carried out in order to
support the thesis. In this chapter we conclude by presenting the contributions of this
work; we identify the main areas of future work that have been motivated; and finally
present our conclusions.

10.1 Contributions

This thesis has investigated the limitations that prevent learned control knowledge from
directing search in planning problems. Our contributions lie in three main areas: prob-
lem modelling; control knowledge and its representation; and in planning and search.
In this section we identify the main contributions.

10.1.1 Problem modelling

In Chapter 3 we observed that a planning environment that modelled all of the im-
plied relationships between the objects and their behaviours would provide a suitable
context for action selection. The definition of this model has provided a conceptual
foundation that explains several works seeking an appropriate model for planning, in-
cluding macro actions and support predicates. We defined a series of language en-
hancing steps that span the divide between the described problem model and this rich
planning model. Although we agree with the view expressed in McDermott (2000),

238

Chapter 10. Contributions, future work and conclusion

that the planning model should not advise the planner, we have contributed an alter-
native viewpoint, where we argue that the planning model should be appropriate for
planning. To this end we have contributed a formal framework for exploring a general
collection of possible models.

In Chapter 5, we analysed the problem of modelling within the context of a spe-
cific type of planner: the rule based policy (RBP). As a product of this analysis we
identified several categories of model enhancing steps and believe it is likely that sim-
ilar categories will extend to other planning approaches that reason over the problem
states. We identified a library of model enhancing steps and in Chapter 6, we pre-
sented the results of an empirical analysis, which compared the alternative enhancing
steps from the library. This analysis is instructive for future approaches that look to
select planning models for RBPs and other related planning approaches.

We presented an alternative extension of PDDL to PDDL/M (Dornhege et al., 2009),
which allows an enhanced domain model to be defined and exploited during planning.
We have also extended the domain analysis performed in HybridSTAN to automatically
generate an appropriate domain model. The generated models were validated in the
evaluations presented in Chapters 6 and 9.

10.1.2 Control knowledge representation and learning

A contribution of this work to control knowledge representation is a general method for
describing structure interactions (SIs). This has provided an important enhancement
step in our framework, called an arbitrary length macro action (ALMA), which gen-
eralises the concept of directed connectivity (Chapter 5). In Chapter 7, we presented
an algorithm for automatically parameterising an ALMA solver, to specialise it for the
particular domain. The output of the algorithm are bags of macros for particular SI
situations in the target domain. These approaches contribute a process for automati-
cally invoking an enhanced domain model and more specifically contribute an method
for controlling search through SIs. In Chapter 9, we demonstrated that the generated
macro bags were appropriate for supporting RBP execution in an empirical analysis.
Through the use of a specialised solver we are able to automatically invoke appropriate
middle layers that are important for reasoning in a domain.

We have presented an algorithm for generating RBPs directly from example plans.
The generated rules exhibit many of the elements that would be expected in a final
solution. Moreover, we have extended the approach to the languages on a chain of
language restrictions, providing a new method of generating generalised plans. Our

239

Chapter 10. Contributions, future work and conclusion

approach establishes a connection between plans and RBPs that can now be developed
and strengthened.

During this work, we developed a framework for testing the learning approaches
reported in the literature. However, we encountered several limitations in these ap-
proaches. We have designed and implemented an alternative learning approach that
measures the performance of RBPs directly. We contribute a fitness function that or-
ders strategies based on their performance in controlling search. This is very promising
as there are many avenues for making its evaluation more efficient. We have provided
some support that genetic programming can be an effective tool for completing control
knowledge, in distinction from evolving it from random candidates. We have presented
an analysis of learned RBPs and have demonstrated that these policies provide effective
control in search. Perhaps the main contribution is that we have demonstrated effective
planning of learned RBPs in new domains, and the treatment of domain features that
have not been addressed in previous work. In particular, we have demonstrated RBP
planning in domains that combine problems of directed connectivity and optimisation.

10.1.3 Planning and search

We have made a theoretical contribution by establishing several properties of policy
transference between different encodings of a problem. We observed that there are is-
sues with using a policy for these enhanced models as a policy in the described model.
We have defined co-execution, which unrolls the policy in each model simultaneously.
In the subset of enhancements we have investigated, this will guarantee that the use of
a plan in the rich model can be co-executed as a plan in the described model. This pro-
vides a theoretical framework that draws together previous approaches for enhancing
problem models in planning, it supports our investigations into enhanced models, and
provides the motivation and rational for future work.

In Chapter 5, we developed an architecture, which supports co-executing an RBP
in the context of a chain of model enhancing solvers. This contributes an approach
for exploiting certain types of specialised solution as part of a solution to the plan-
ning problem. It has also contributed a general architecture for developing an appro-
priate planning model. Within this architecture we exploit ALMAs, and these con-
tribute a novel integration of hierarchical task network (HTN) and classical planning
approaches.

Our approach extends the applicability of RBPs in search. This is an important
result for the learning community; however, it also contributes to the wider planning

240

Chapter 10. Contributions, future work and conclusion

community. Tightly specified rule based planners are extremely effective. As the com-
munity targets larger problems with increasingly high expectations for plan quality rule
based approaches could return to prominence.

10.2 Future work

As is the case with any investigation with an interesting topic, we have uncovered many
questions and avenues for future work. The open research opportunities relate to the
ALMA representation and the generation of RBPs. In this section we identify some of
these avenues for future work.

10.2.1 ALMA

Separating the computation of the ALMA predicate and action could make evaluating
the vocabulary more efficient. The approach of Botea et al. (2007) demonstrates the ef-
fective expansion of a set of macros given a specific target (the goal). Indeed, there are
many approaches to solving this problem (as we can encode it as the planning prob-
lem), particularly, there are approaches that guarantee completeness (e.g. Hoffmann
and Nebel, 2001). The computation of the predicates requires that the reachability of
the space is established, however, it does not require the paths are discovered. We
expect that a compact expression of reachability could be more readily found than a
compact expression that generates the action sequences themselves. For example, in
Driverlog the nodes reachable by the trucks can be expressed with the transitive clo-
sure of the link predicate and in Goldminer the nodes that are discoverable by the
robot with a laser can be expressed by searching through the link predicate for nodes
that are either closed in specific ways or already open. These formulae would be much
faster to evaluate. However, there are several challenges. The reliance on heuristic se-
lection for optimisation problems means that plans for several targets may be required
so that the resulting states can be evaluated. The reachability formula might be difficult
to express, for example, establishing the reachability of the robot with a bomb requires
counting resources.

In the current interpretation, we consider the individual SIs as independent events,
whereas in practice there is often more structure involved. For example, in Goldminer
plans, the bomb will only ever be used to open the gold square. The chains that we have
used to generate the vocabulary exhibit these structures and our selected representation
generalises from these particular patterns. We consider that exploiting this structure by

241

Chapter 10. Contributions, future work and conclusion

using a richer representation, such as using LOCM2 (Cresswell and Gregory, 2011)
to generate a biased domain model, could have implications on the evaluation of the
vocabulary and also improve its relevance.

In de la Rosa and McIlraith (2011) an analysis of TLPLAN control knowledge has
led to a different approach and strong results. Combining the language enhancements
developed in our work with a richer rule language and the learned model enhancements
developed in de la Rosa and McIlraith (2011) is promising future work. In fact, in de la
Rosa and McIlraith (2011) the authors observe that the developed approach is limited
in situations that we have addressed in this work. In Appendix G.1 we consider a hier-
archical extension to the ALMA solver, which exploits guidance from the relaxed plan.
However, this framework constrains the use of the vocabulary, and requires an extra
solver and potentially arbitrary levels to make the approach general. An alternative is
to allow the RBP to map to the possible actions and allow a heuristic to select the best
perceived action. This would be possible in many cases by introducing disjunction
into the rule language. Promising future work includes developing our work for use
in TLPLAN and combining it with the approach presented in de la Rosa and McIlraith
(2011).

The scope of our investigation into automating solver generation is limited. We fo-
cus on sub-goals that can be solved largely in isolation. In particular, we focus on sub-
goals that can be represented with a finite number of propositions. The use of recursion
in the goal has been investigated using derived predicates in Khardon (1999a); Levine
and Humphreys (2003) (as well as in this work) and language extensions in Martin and
Geffner (2000); Fern et al. (2006). These approaches allow expressing some forms of
recursive relations over goals, but there are many that cannot be expressed. We believe
that the ALMA architecture can be extended to reason over completing goals. This
will only be realised efficiently where target significance is maintained, which is at
least sufficient for making good stacks in Blocksworld.

We posed the generation of vocabulary in the context of SIs, which was appropriate
in the context of the work. However, in this context we rely on analysis to uncover
specific features of a domain model. It would be interesting to pose this problem in a
more general setting: in terms of lifted action sequences and sub-goals. In this context
we could develop a representation that allowed analysis between different sequences
of lifted actions. This could allow us to utilise general learning technologies leading to
a more general solution.

242

Chapter 10. Contributions, future work and conclusion

10.2.2 Learning RBPs

In Chapter 8, we defined a fitness function that we used to learn RBPs for several
domains. It was our expectation that the continual use of an optimal planner would
dominate unrolling policies and as a result we settled on a naive coupling of the pol-
icy applier. It is likely that basic Software Engineering practices will lead to large
efficiency improvements. Our analysis of the fitness function in this work has been
limited and there are many properties that could be explored. These include the use
of a satisficing planner or heuristic estimate to evaluate the distance from goal, the
evaluation of the fitness features to establish the most effective combination, and the
inclusion of planning time in the fitness function. In Chapter 9, we observed that the lo-
cal search aspect of the learner was making many of the improvements. This suggests
that, to some extent, the fitness function is able to provide incremental guidance to the
learner. If this is the case, then a less expensive learning approach, such as Simulated
Annealing (Skiena, 2008), could be applied.

We have presented an approach that generates a RBP from example plans. We have
already discussed some approaches for lifting limitations in Chapter 8; however, estab-
lishing this connection outlines a more general area for future investigation. The RBP
provides an alternative representation for expressing generalised plans. The priority
ordering over the rules makes the mapping from plans to rules less direct. However,
the representation naturally captures iteration and priority, which can greatly simplify
the expression of certain types of strategy. There are also important related works on
regression, goal ordering and generating HTNs that can instruct work in this area.

10.3 Conclusion

In this section we will identify the steps taken to satisfy the outline and objective in
the statement of thesis. The purpose of this work was to investigate problem modelling
with the aim of supporting learned RBPs to effectively control search in planning prob-
lems. In Chapter 3, we defined a chain of steps between the described problem model
and the ideal model for making action choices, providing the framework for exploring
alternative models of a problem. In order to support exploration of an interesting se-
lection of chains we were required to formalise a method of policy execution that we
call co-execution, which provides a generalised approach for plan transferral between
models on a chain. In Chapter 5, we developed an architecture that provided an imple-
mentation for co-executing an RBP. We analysed the relationship between RBPs and

243

Chapter 10. Contributions, future work and conclusion

the problem model and identified three categories of chain steps: directed connectivity,
optimisation, and level of reasoning. We developed a library of model enhancements
from these categories and empirically evaluated the use of these steps in planning. We
observed that establishing directed connectivity over SIs was important for RBP ex-
pression, and using heuristics to compute optimisation steps was more practical than
identifying chain steps.

Our approach for automating the process of model selection is composed of two
parts: to uncover the SIs in the domain and to generate appropriate solvers for those
SIs. Each of the solvers in the library, developed in Chapter 5, was associated with a
type of SI. Using domain analysis the SIs in the domain have been uncovered and the
appropriate model enhancements from the library selected. In Chapter 6, we demon-
strated that the selected models are appropriate for supporting handwritten RBPs in
several domains. Moreover, we demonstrate that the model enhancements contribute
to faster planning that finds better quality plans, than when domain independent heuris-
tics are used, as in previous approaches. Through developing a novel knowledge rep-
resentation, called an ALMA, we have demonstrated that model enhancements that
establish directed connectivity over SIs can be specialised from plan samples. This has
greatly reduced the effort required in defining a general set of model enhancements.
This work contributes an approach to combining concepts from HTN planning within a
forward chaining, action selection planner. These aspects were described in Chapter 7.
In Chapter 9, we have evaluated the practical aspects of our ALMA representation and
we have examined properties of the generated model enhancements. The evaluation
demonstrates that the enhancements support the policies in effectively guiding search.

Unfortunately, the current learning approaches are not appropriate for generating
effective RBPs for the domains that we have examined. We observed a limitation in
the fitness functions being used to guide search and have presented an alternative fit-
ness function in Chapter 8, which uses search performance rather than action selection
to order the candidates. Our implementation could be largely improved; however, our
results are promising and suggest that less intensive search strategy (than genetic al-
gorithms) could be effective. We have investigated automatically generating policies
through generalised regression, in order to provide a starting point for the genetic al-
gorithm learning approach. The combination of these approaches was used to learn
RBPs that generated high quality plans for Driverlog and Goldminer problems (Chap-
ter 9). These solutions demonstrate the effective use of the enhanced problem models,
validating the automatically selected domain models.

We have presented the steps that we have taken in order to support the thesis. We

244

Chapter 10. Contributions, future work and conclusion

have investigated the relationship between the problem model and control knowledge
expressed over it. As part of this investigation we have demonstrated the direct con-
trol of learned RBPs in several domains that lie outwith the scope of previous work,
fulfilling our objective.

245

APPENDIX A

PLANNING DOMAINS

In this Appendix we present an overview of the domains used in this work. We will use
the problem types defined in Section 5.2. For more information of the origins of the
domains, consult the international planning competition (IPC) website (IPC, 2014).

Blocksworld The Blocksworld domain defines stacking problems, which involve a
table with unbounded capacity and some stacks of blocks. The goal is to rearrange
the stacks into a specific order. In this work we used the four operator variant, which
models a hand detaching and attaching the blocks from each other. This domain was
used in IPC-2. Identifying whether a stack is consistent with the goal is important for
these problems.

Briefcase The Briefcase domain is a simple transportation domain that used ADL
language features in PDDL (IPP, 1999). We use a STRIPS version, as used in Levine
and Humphreys (2003). The briefcase moves in a fully connected graph redistribut-
ing objects. We have extended this domain with a graph structure. We call this the
Structured Briefcase domain.

Depots The Depots domain combines transportation and stacking problem aspects.
Trucks move between depots carrying blocks. There are cranes at each depot that pick
blocks from the trucks and these are then put on one of the stacks at the depot. The goal
is to have certain stacks on top of specific crates. The locations are fully connected.
This domain was used in the third IPC.

246

Chapter A. Planning domains

Driverlog Driverlog is a transportation domain that involves delivering packages be-
tween locations. The trucks must be driven between locations. The trucks and drivers
move on different graphs. The graphs are defined as link and path propositions,
which define the connected edges in the graphs. There can be goals for drivers and
trucks. Plans will usually involve moving drivers to trucks, a series of package de-
liveries, the drivers driving the trucks home and then walking home themselves. This
domain was used in the third IPC.

Goldminer The Goldminer domain defines path opening problems. A robot is moved
on a grid of locations, which can be blocked by hard and soft rock. One location in the
map will have gold, and the goal is for the robot to access the gold. The laser will blow
through as many rocks as necessary, but it will also destroy the gold. The bomb can be
used once, and will clear rock without effecting the gold. This domain was used in the
first learning track of the IPC.

Grid The grid domain is a path opening and transportation domain, which involves
a robot on a grid of locations, some with locked doors. The problem involves picking
up the appropriate keys to unlock the doors and create a path through the locked doors.
Some of the keys have goal locations. This domain was used in the first IPC. We
adapted the problem so that it was a path traversal problem with a goal for the robot.

Gripper Gripper problems are transportation problems that involve moving balls
between two rooms. The transporter, a robot, has a limited number of arms, imposing
a capacity on the number of balls that can be carried. This domain was used in the first
IPC.

Logistics In the Logistics domain packages must be delivered between different
cities. The cities are connected by aeroplanes, whereas distribution within a city is
carried out by trucks. The locations and cities form cliques. This domain was used in
the first IPC.

Traverser This domain defines path traversal problems. The locations are connected
in a graph network and the goals involve moving traversers to their destinations. This
domain was made to provide a simple domain for demonstrating the use of the lan-
guage features.

247

APPENDIX B

SOLVER LISTINGS

In this appendix we present an enhanced domain model definition and the associated
solver listings generated using domain analysis, as described in Chapters 5 and 7.

B.1 The enhanced domain model

(d e f i n e (domain SBC)
(: requirements : t y p i n g : enhanced−domain−model)
(: t y p e s

o b j t r u c k − l o c a t a b l e
l o c a t a b l e l o c a t i o n − o b j e c t

)
(: s o l v e r L i s t i n g s S o l v e r L i s t i n g F o l d e r / S o l v e r L i s t i n g s 1 4 0 0 1 6 8 6 9 7 0 4 7)
(: s o l v e r G r a p h A b s t r a c t i o n 0

: type s o l v e r s . s o l v e r s . G r a p h A b s t r a c t i o n)
(: s o l v e r T r a n s p o r t e d O b j e c t 0

: type s o l v e r s . s o l v e r s . T r a n s p o r t e d O b j e c t B o u n d S o l v e r)

(: p r e d i c a t e s
(l i n k ? x − l o c a t i o n ? y − l o c a t i o n)
(i n ? ob j1 − o b j ? o b j − t r u c k)
(a t ? o b j − l o c a t a b l e ? l o c − l o c a t i o n)

)
(: a c t i v e P r e d i c a t e s

(d r i v e− t r u c k c o n n e c t e d ? loc−from − l o c a t i o n ? loc− to − l o c a t i o n)
(b o un d l oa d− t r u c k ? consumer − o b j ? r e s o u r c e − t r u c k)

)
(: a c t i v e A c t i o n l o n g d r i v e− t r u c k

: parameters
(

? t r u c k − t r u c k
? loc−from − l o c a t i o n
? loc− to − l o c a t i o n

)
: p r e c o n d i t i o n

(and (d r i v e− t r u c k c o n n e c t e d ? loc−from ? loc− to)
(a t ? t r u c k ? loc−from))

248

Chapter B. Solver listings

: e f f e c t A p p l i e r G r a p h A b s t r a c t i o n 0)

(: a c t i o n l o a d− t r u c k . . .)
(: a c t i o n un load− t r uck . . .)
(: a c t i o n d r i v e− t r u c k . . .)

)

The enhanced domain relies on actions and predicates modelled by two special pur-
pose solvers. The graph abstraction solver models the long driver-truck action,
which moves a truck to a target node (or a step in that direction) and the
drive-truck connected predicate, which holds for targets that can be reached
by the truck. The transported object solver models the (derived) predicate,
bound load-truck, which holds between pairs of packages and trucks if the truck
is allocated to the package.

B.2 The solver listings file

((: module S t a t i c G r a p h M o d u l e 2
: type s o l v e r s . e n c o d i n g . g r a p h a b s t r a c t i o n . S t a t i c G r a p h M o d u l e)

(: module S t a t i c G r a p h 1
: type s o l v e r s . e n c o d i n g . g r a p h a b s t r a c t i o n . g r a p h e n c o d i n g . S t a t i c G r a p h)

(: module MoveAction0
: type s o l v e r s . e n c o d i n g . g r a p h a b s t r a c t i o n . moveac t ion . MoveAction)

(: module Connec t ingCha in8
: type s o l v e r s . e n c o d i n g . r e sou rcemanagemen t . C o n n e c t i n g C h a i n E x p l o r e r)

(: module C a p a c i t y C o u n t e r 6
: type s o l v e r s . e n c o d i n g . r e sou rcemanagemen t . C a p a c i t y C o u n t e r)

(: module Connec t ingCha in7
: type s o l v e r s . e n c o d i n g . r e sou rcemanagemen t . C o n n e c t i n g C h a i n E x p l o r e r)

(: module C a p a c i t y C o u n t e r 5
: type s o l v e r s . e n c o d i n g . r e sou rcemanagemen t . C a p a c i t y C o u n t e r)

(: module MovingObjec tEn t ry3
: type j a v a f f . e n t r i e s . MovingObjec tEn t ry)

(: s o l v e r D e s c r i p t i o n G r a p h A b s t r a c t i o n 0
: Encoding (: module S t a t i c G r a p h M o d u l e 2)

)
(: moduleDescr ipt ion S t a t i c G r a p h M o d u l e 2

: Map (: module S t a t i c G r a p h 1)
: MoveAction (: module MoveAction0)
: E n a b l i n g P r e d i c a t e s (: d e s c r i p t i o n ())

)
(: moduleDescr ipt ion S t a t i c G r a p h 1

: MoveAction (: module MoveAction0)
: M a p P r e d i c a t e s (: d e s c r i p t i o n (l i n k ? loc−from ? loc− to #))

)
(: moduleDescr ipt ion MoveAction0

: MoveAction (: d e s c r i p t i o n (d r i v e− t r u c k 0 1 2))
: L o c a t e d n e s s (: d e s c r i p t i o n (a t 0 1))

)
(: s o l v e r D e s c r i p t i o n T r a n s p o r t e d O b j e c t 0

: MapConnection (: module Connec t ingCha in8)
: O b j e c t C o n n e c t i o n (: module Connec t ingCha in7)
: D i s t a n c e M e a s u r e (: module MovingObjec tEn t ry3)
: D e a l l o c a t i o n (: d e s c r i p t i o n (un load− t r uck 1 0))
: Rever sed (: d e s c r i p t i o n (f a l s e))

249

Chapter B. Solver listings

: A l l o c a t i o n (: d e s c r i p t i o n (l o a d− t r u c k 1 0))
)
(: moduleDescr ipt ion Connec t ingCha in8

: C a p a c i t y (: module C a p a c i t y C o u n t e r 6)
: Chain (: d e s c r i p t i o n ())
: C o n n e c t i o n (: d e s c r i p t i o n (a t 1 0))

)
(: moduleDescr ipt ion C a p a c i t y C o u n t e r 6

: D i r e c t (: d e s c r i p t i o n (t r u e))
: P r o p e r t i e s (: d e s c r i p t i o n ())
: I n f i n i t e C a p a c i t y (: d e s c r i p t i o n (t r u e))

)
(: moduleDescr ipt ion Connec t ingCha in7

: C a p a c i t y (: module C a p a c i t y C o u n t e r 5)
: Chain (: d e s c r i p t i o n ())
: C o n n e c t i o n (: d e s c r i p t i o n (i n 1 0))

)
(: moduleDescr ipt ion C a p a c i t y C o u n t e r 5

: D i r e c t (: d e s c r i p t i o n (t r u e))
: P r o p e r t i e s (: d e s c r i p t i o n ())
: I n f i n i t e C a p a c i t y (: d e s c r i p t i o n (t r u e))

)
(: moduleDescr ipt ion MovingObjec tEn t ry3

: Mov ingObjec tSo lve r (: module G r a p h A b s t r a c t i o n 0)
)
)

The description of the solver includes the definition of various modules that capture
the specific mapping for the particular domain. The graph abstraction solver is param-
eterised by a static graph module, which identifies the move action and the predicates
that enable movement (requirements of the traverser). A refinement of this module
identifies the conditions on moving (requirements of the map). The move action mod-
ule identifies the action name its the significant parameters (traverser, from position
and destination parameters) as well as the locatedness predicate and its significant pa-
rameters.

The transported object solver relies on a graph that is used to locate resources and
consumers. The important allocate and (potentially null) deallocate actions are defined
(for largely historic reasons) and whether the transported object is in fact the resource,
rather than the consumer. Several modules are used to identify the connections between
the transported object and the map or traverser and its capacity. A chain of static
predicates can link the transported object to the traverser (for example, the hand in
Gripper) or the map (for example, the crane in Depots).

250

APPENDIX C

STEP-BY-STEP MACRO APPLICATION

VOCABULARY

In this appendix we consider the step by step application approach (SbS) and how the
function of vocabulary can be adapted to support this approach. We demonstrate how
the original vocabulary is not appropriate and present an alternative chain step.

C.1 Traversing through a cluster

There is a problem when using the SbS and moving between locations in the same
cluster. For example, the use of a long move action between two nodes in a cluster will
not necessarily stay within the cluster. For example, if the shortest path between the
locations includes a location that belongs to a different cluster. The unrolling process
supporting the macro move action can also move outside the cluster. However, as
the policy is not applied at the intermediary nodes, the specific path chosen is less
important. This problem is illustrated in Figure C.1.

The state illustrated in the figure can cause an executive to enter a continuous loop.
In this example, the policy will map to an action with the intention of moving the truck
from n1 to n3 and this is translated into the ground action that moves the truck from
n1 to n2. In this case the current cluster of the truck’s location has now changed and
in this new state the policy will map to the action that intends to move the truck from
n2 to n4. However, a shortest path to this node is through n1. If the action is translated
to a move of the truck from n2 to n1 then execution will loop forever. The step by
SbS can fall into this trap. However, if there is a shortest path between the locations

251

Chapter C. Step-by-step macro application vocabulary

C1

C2

n2

n4

n1

n3

(a) The truck is moved out of the cluster on
its path to n3

C1

C2

n2

n4

n1

n3

(b) The truck is then moved back to the
starting node on its way to n4

Figure C.1: The use of the shortest path solver to select the next step can result in
looped execution

that continues in the same cluster then the shortest path propositions can be used with
a target node to direct search. This is achieved by guarding the move-to location with
the sameCluster proposition. The problem is that if there is not a shortest path that
remains within the cluster then this antecedent will not hold.

The step that we propose is to include an action that allows traversal within a clus-
ter. The cluster-move action takes a single step towards the target along a path that
is shortest of all paths that remained within the cluster. A language step can be defined
in a similar manner as before and the policy can be modified to use these actions.

252

APPENDIX D

POLICIES

In this appendix several of the policies used in the analyses are presented.

D.1 Handwritten

D.1.1 Blocksworld� �
(d e f i n e (p o l i c y b l o c k s w o r l d p o l i c y)

(: domain b l o c k s w o r l d)
(: r u l e s t a c k o n w e l l p l a c e d

: parameters (? ob ? underob − b l o c k)
: c o n d i t i o n (and (c l e a r ? underob) (h o l d i n g ? ob) (w e l l p l a c e d o n ? underob))
: goa lCondi t i on (and (on ? ob ? underob))
: a c t i o n (s t a c k ? ob ? underob)

)
(: r u l e p i c k u p t o p l a c e w e l l

: parameters (? ob ? underob − b l o c k)
: c o n d i t i o n (and (c l e a r ? ob) (on− t ab le ? ob) (arm−empty) (w e l l p l a c e d o n ? underob)

(c l e a r ? underob))
: goa lCondi t i on (and (on ? ob ? underob))
: a c t i o n (p i ck up ? ob)

)
(: r u l e putdown

: parameters (? ob − b l o c k)
: c o n d i t i o n (h o l d i n g ? ob)
: goa lCondi t i on (and)
: a c t i o n (putdown ? ob)

)
(: r u l e u n s t a c k f r o m b a d t o w e r

: parameters (? ob ? underob − b l o c k)
: c o n d i t i o n (and (on ? ob ? underob) (c l e a r ? ob) (arm−empty) (not (w e l l p l a c e d o n ? ob))

)
: goa lCondi t i on (and)
: a c t i o n (u n s t a c k ? ob ? underob)

)
)
� �

253

Chapter D. Policies

D.1.2 Depots� �
(d e f i n e (p o l i c y d e p o t s p o l i c y)

(: domain Depot)
(: r u l e s t a c k o n w e l l p l a c e d

: parameters (? ob j1 − c r a t e ? ob j2 − s u r f a c e ? l o c − p l a c e ? c r a n e − h o i s t)
: c o n d i t i o n (and (l i f t i n g ? c r a n e ? ob j1) (a t ? c r a n e ? l o c) (w e l l p l a c e d o n ? ob j2)

(a t ? ob j2 ? l o c) (c l e a r ? ob j2))
: goa lCondi t i on (and (on ? ob j1 ? ob j2))
: a c t i o n (d rop ? c r a n e ? ob j1 ? ob j2 ? l o c)

)
(: r u l e u n l o a d t o s t a c k w e l l

: parameters (? ob j1 − c r a t e ? ob j2 − s u r f a c e ? t r u c k − t r u c k ? l o c − p l a c e ? c r a n e −
h o i s t)

: c o n d i t i o n (and (i n ? ob j1 ? t r u c k) (a t ? t r u c k ? l o c) (a t ? c r a n e ? l o c) (
w e l l p l a c e d o n ? ob j2)

(a t ? ob j2 ? l o c) (a v a i l a b l e ? c r a n e) (c l e a r ? ob j2))
: goa lCondi t i on (and (on ? ob j1 ? ob j2))
: a c t i o n (un lo ad ? c r a n e ? ob j1 ? t r u c k ? l o c)

)
(: r u l e l o a d c r a n e w i t h m i s p l a c e d

: parameters (? ob j1 − c r a t e ? ob j2 − s u r f a c e ? t r u c k − t r u c k ? l o c − p l a c e ? c r a n e −
h o i s t)

: c o n d i t i o n (and (a t ? t r u c k ? l o c) (a t ? c r a n e ? l o c)
(a t ? ob j2 ? l o c) (l i f t i n g ? c r a n e ? ob j1))

: goa lCondi t i on (and (not (on ? ob j1 ? ob j2)))
: a c t i o n (load ? c r a n e ? ob j1 ? t r u c k ? l o c)

)
(: r u l e l i f t f r o m b a d t o w e r

: parameters (? ob j1 − c r a t e ? ob j2 − s u r f a c e ? t r u c k − t r u c k ? l o c − p l a c e ? c r a n e −
h o i s t)

: c o n d i t i o n (and (a t ? t r u c k ? l o c) (a t ? c r a n e ? l o c) (not (w e l l p l a c e d o n ? ob j1))
(a t ? ob j1 ? l o c) (a v a i l a b l e ? c r a n e) (c l e a r ? ob j1) (on ? ob j1 ? ob j2))

: goa lCondi t i on (and)
: a c t i o n (l i f t ? c r a n e ? ob j1 ? ob j2 ? l o c)

)
(: r u l e m o v e t o p i c k u p m i s p l a c e d

: parameters (? o b j − c r a t e ? t r u c k − t r u c k ? l o c 1 ? l o c 2 − p l a c e ? c r a n e − h o i s t)
: c o n d i t i o n (and (a t ? t r u c k ? l o c 2) (not (w e l l p l a c e d o n ? o b j))

(a t ? o b j ? l o c 1) (c l e a r ? o b j))
: goa lCondi t i on (and)
: a c t i o n (d r i v e ? t r u c k ? l o c 2 ? l o c 1)

)
(: r u l e m o v e t o p l a c e w e l l

: parameters (? ob j1 − c r a t e ? ob j2 − s u r f a c e ? t r u c k − t r u c k ? l o c 1 ? l o c 2 − p l a c e ?
c r a n e − h o i s t)

: c o n d i t i o n (and (i n ? ob j1 ? t r u c k) (a t ? t r u c k ? l o c 2) (w e l l p l a c e d o n ? ob j2)
(a t ? ob j2 ? l o c 1) (c l e a r ? ob j2))

: goa lCondi t i on (and (on ? ob j1 ? ob j2))
: a c t i o n (d r i v e ? t r u c k ? l o c 2 ? l o c 1)

)
)
� �
D.1.3 Driverlog� �
(d e f i n e (p o l i c y d r i v e r l o g p o l i c y)

(: domain d r i v e r l o g)
(: r u l e d r o p a t g o a l

: parameters (? o b j − o b j ? t r u c k − t r u c k ? l o c − l o c a t i o n)
: c o n d i t i o n (and (i n ? o b j ? t r u c k) (a t ? t r u c k ? l o c))
: goa lCondi t i on (and (a t ? o b j ? l o c))
: a c t i o n (un load− t r uck ? o b j ? t r u c k ? l o c)

)

254

Chapter D. Policies

(: r u l e p i c k u p m i s p l a c e d p a c k a g e
: parameters (? o b j − o b j ? t r u c k − t r u c k ? l o c − l o c a t i o n)
: c o n d i t i o n (and (a t ? o b j ? l o c) (a t ? t r u c k ? l o c) (Bound MovingObjec tEnt ry3 ? o b j ?

t r u c k))
: goa lCondi t i on (and (not (a t ? o b j ? l o c)))
: a c t i o n (l o a d− t r u c k ? o b j ? t r u c k ? l o c)

)
; ; i n t h e f o l l o w i n g , t h e t r u c k s are a l l o c a t e d t o packages
(: r u l e m o v e t o p i c k u p m i s p l a c e d

: parameters (? t r u c k − t r u c k ? from ? t o − l o c a t i o n ? d r i v e r − d r i v e r ? o b j − o b j)
: c o n d i t i o n (and (a t ? t r u c k ? from) (a t ? o b j ? t o) (Bound MovingObjec tEnt ry3 ? o b j ?

t r u c k) (d r i v i n g ? d r i v e r ? t r u c k))
: goa lCondi t i on (and (not (a t ? o b j ? t o)))
: a c t i o n (l o n g d r i v e− t r u c k ? t r u c k ? from ? t o ? d r i v e r)

)
(: r u l e d r i v e t o p a c k a g e g o a l

: parameters (? t r u c k − t r u c k ? from ? t o − l o c a t i o n ? d r i v e r − d r i v e r ? o b j − o b j)
: c o n d i t i o n (and (a t ? t r u c k ? from) (i n ? o b j ? t r u c k) (d r i v i n g ? d r i v e r ? t r u c k))
: goa lCondi t i on (and (a t ? o b j ? t o))
: a c t i o n (l o n g d r i v e− t r u c k ? t r u c k ? from ? t o ? d r i v e r)

)
(: r u l e d r i v e t o t r u c k g o a l

: parameters (? t r u c k − t r u c k ? from ? t o − l o c a t i o n ? d r i v e r − d r i v e r)
: c o n d i t i o n (and (a t ? t r u c k ? from) (d r i v i n g ? d r i v e r ? t r u c k))
: goa lCondi t i on (and (a t ? t r u c k ? t o) (not (a t ? t r u c k ? from)))
: a c t i o n (l o n g d r i v e− t r u c k ? t r u c k ? from ? t o ? d r i v e r)

)
; ; i n t h e f o l l o w i n g , d r i v e r s are a l l o c a t e d t o t r u c k s
(: r u l e b o a r d t r u c k a n d m i s p l a c e d p a c k a g e

: parameters (? o b j − o b j ? d r i v e r − d r i v e r ? l o c ? l − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? d r i v e r ? l o c) (Bound MovingObjec tEnt ry7 ? t r u c k ? d r i v e r) (a t ?

o b j ? l) (Bound MovingObjec tEnt ry3 ? o b j ? t r u c k) (a t ? t r u c k ? l o c))
: goa lCondi t i on (and (not (a t ? o b j ? l)))
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

)
(: r u l e b o a r d t r u c k c a r r y i n g p a c k a g e

: parameters (? o b j − o b j ? d r i v e r − d r i v e r ? l o c ? l − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? d r i v e r ? l o c) (a t ? t r u c k ? l o c) (Bound MovingObjec tEnt ry7 ?

t r u c k ? d r i v e r) (i n ? o b j ? t r u c k))
: goa lCondi t i on (and (a t ? o b j ? l))
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

)
(: r u l e b o a r d m i s p l a c e d t r u c k

: parameters (? d r i v e r − d r i v e r ? l o c ? l − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? d r i v e r ? l o c) (Bound MovingObjec tEnt ry7 ? t r u c k ? d r i v e r) (a t ?

t r u c k ? l o c))
: goa lCondi t i on (and (not (a t ? t r u c k ? l o c)) (a t ? t r u c k ? l))
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

)
(: r u l e w a l k t o b o a r d a n d m i s p l a c e d p a c k a g e

: parameters (? o b j − o b j ? d r i v e r − d r i v e r ? from ? t o ? l − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? d r i v e r ? from) (Bound MovingObjec tEnt ry7 ? t r u c k ? d r i v e r) (a t

? o b j ? l) (Bound MovingObjec tEnt ry3 ? o b j ? t r u c k) (a t ? t r u c k ? t o))
: goa lCondi t i on (and (not (a t ? o b j ? l)))
: a c t i o n (l o n g w a l k ? d r i v e r ? from ? t o)

)
(: r u l e w a l k t o b o a r d t r u c k c a r r y i n g p a c k a g e

: parameters (? o b j − o b j ? d r i v e r − d r i v e r ? from ? t o ? l − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? d r i v e r ? from) (Bound MovingObjec tEnt ry7 ? t r u c k ? d r i v e r) (i n

? o b j ? t r u c k) (a t ? t r u c k ? t o))
: goa lCondi t i on (and (a t ? o b j ? l))
: a c t i o n (l o n g w a l k ? d r i v e r ? from ? t o)

)
(: r u l e w a l k t o b o a r d m i s p l a c e d t r u c k

: parameters (? d r i v e r − d r i v e r ? from ? t o ? l − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? d r i v e r ? from) (Bound MovingObjec tEnt ry7 ? t r u c k ? d r i v e r) (a t

? t r u c k ? t o))

255

Chapter D. Policies

: goa lCondi t i on (and (not (a t ? t r u c k ? t o)) (a t ? t r u c k ? l))
: a c t i o n (l o n g w a l k ? d r i v e r ? from ? t o)

)
(: r u l e walk home

: parameters (? d r i v e r − d r i v e r ? from ? t o − l o c a t i o n)
: c o n d i t i o n (and (a t ? d r i v e r ? from))
: goa lCondi t i on (and (a t ? d r i v e r ? t o) (not (a t ? d r i v e r ? from)))
: a c t i o n (l o n g w a l k ? d r i v e r ? from ? t o)

)
(: r u l e d i sembark

: parameters (? d r i v e r − d r i v e r ? t r u c k − t r u c k ? l o c − l o c a t i o n)
: c o n d i t i o n (and (d r i v i n g ? d r i v e r ? t r u c k) (a t ? t r u c k ? l o c))
: goa lCondi t i on (and)
: a c t i o n (d i s embark− t r uck ? d r i v e r ? t r u c k ? l o c)

)
)
� �
D.1.4 Goldminer� �
(d e f i n e (p o l i c y g o l d m i n e r p o l i c y)
(: domain g o l d m i n e r)
(: r u l e p i c k u p g o l d

: parameters (? r − r o b o t ? g − go ld ? l 1 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (a t ? g ? l 1) (arm−empty ? r))
: goa lCondi t i on (and (h o l d s ? g ? r))
: a c t i o n (p i ck up ? r ? g ? l 1)

)
(: r u l e p i c k u p i f r e a d y f o r b o m b

: parameters (? r − r o b o t ? b − bomb ? g − go ld ? l 1 ? l 2 − l o c)
: c o n d i t i o n (and (b l o c k e d ? l 1 ? l 2) (a t ? g ? l 2) (n e a r e s t−b l o c k e d ? l 1 ? l 2 ? l 2)

(a t ? r ? l 1) (a t ? b ? l 1) (arm−empty ? r))
: goa lCondi t i on (and (h o l d s ? g ? r))
: a c t i o n (p i ck up ? r ? b ? l 1)

)
(: r u l e p i c k u p l a s e r i f g o l d b l o c k e d

: parameters (? r − r o b o t ? l − l a s e r ? g − go ld ? l 1 ? l 2 − l o c)
: c o n d i t i o n (and (b l o c k e d ? l 1 ? l 2) (a t ? g ? l 2) (a t ? r ? l 1) (a t ? l ? l 1) (arm−empty ? r

))
: goa lCondi t i on (and (h o l d s ? g ? r))
: a c t i o n (p i ck up ? r ? l ? l 1)

)
(: r u l e u n b l o c k a d j a c e n t t o g o a l

: parameters (? r − r o b o t ? g − go ld ? b − bomb ? l 1 ? l 2 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (b l o c k e d ? l 1 ? l 2) (n e a r e s t−b l o c k e d ? l 1 ? l 2 ? l 2)

(a t ? g ? l 2) (c o n n e c t e d ? l 1 ? l 2) (h o l d s ? b ? r))
: goa lCondi t i on (and (h o l d s ? g ? r))
: a c t i o n (detonate−bomb ? r ? b ? l 1 ? l 2)

)
(: r u l e p u t d o w n l a s e r t o p i c k u p b o m b

: parameters (? r − r o b o t ? g − go ld ? b − bomb ? l − l a s e r ? l 1 ? l 2 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (b l o c k e d ? l 1 ? l 2) (n e a r e s t−b l o c k e d ? l 1 ? l 2 ? l 2)

(a t ? g ? l 2) (h o l d s ? l ? r) (a t ? b ? l 1))
: goa lCondi t i on (and (h o l d s ? g ? r))
: a c t i o n (putdown ? r ? l ? l 1)

)
(: r u l e f i r e l a s e r t o w a r d s b o m b

: parameters (? r − r o b o t ? g − go ld ? b − bomb ? l − l a s e r ? l 1 ? l 2 ? l 3 ? l 4 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (b l o c k e d ? l 1 ? l 2) (n e a r e s t−b l o c k e d ? l 1 ? l 2 ? l 2)

(a t ? g ? l 2) (h o l d s ? l ? r) (b l o c k e d ? l 1 ? l 3) (n e a r e s t−b l o c k e d ? l 1 ? l 3 ? l 4
)

(a t ? b ? l 3) (c o n n e c t e d ? l 1 ? l 4))
: goa lCondi t i on (and (h o l d s ? g ? r))
: a c t i o n (f i r e− l a s e r ? r ? l ? l 1 ? l 4)

)

256

Chapter D. Policies

(: r u l e m o v e w i t h l a s e r t o w a r d s b o m b
: parameters (? r − r o b o t ? g − go ld ? b − bomb ? l − l a s e r ? l 1 ? l 2 ? l 3 ? l 4 ? l 5 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (b l o c k e d ? l 1 ? l 2) (n e a r e s t−b l o c k e d ? l 1 ? l 2 ? l 2)

(a t ? g ? l 2) (h o l d s ? l ? r) (b l o c k e d ? l 1 ? l 3) (n e a r e s t−b l o c k e d ? l 1 ? l 3 ? l 4
)

(a t ? b ? l 3) (c o n n e c t e d ? l 5 ? l 4))
: goa lCondi t i on (and (h o l d s ? g ? r))
: a c t i o n (move ? r ? l 1 ? l 5)

)
(: r u l e m o v e t o p i c k u p l a s e r

: parameters (? r − r o b o t ? g − go ld ? b − bomb ? l − l a s e r ? l 1 ? l 2 ? l 3 ? l 4 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (b l o c k e d ? l 1 ? l 2) (n e a r e s t−b l o c k e d ? l 1 ? l 2 ? l 2)

(a t ? g ? l 2) (arm−empty ? r) (b l o c k e d ? l 1 ? l 3)
(a t ? b ? l 3) (a t ? l ? l 4))

: goa lCondi t i on (and (h o l d s ? g ? r))
: a c t i o n (move ? r ? l 1 ? l 4)

)
(: r u l e move to p ickup bomb

: parameters (? r − r o b o t ? g − go ld ? b − bomb ? l 1 ? l 2 ? l 3 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (b l o c k e d ? l 1 ? l 2) (n e a r e s t−b l o c k e d ? l 1 ? l 2 ? l 2)

(a t ? g ? l 2) (a t ? b ? l 3))
: goa lCondi t i on (and (h o l d s ? g ? r))
: a c t i o n (move ? r ? l 1 ? l 3)

)
(: r u l e m o v e w i t h b o m b t o w a r d s g o l d

: parameters (? r − r o b o t ? g − go ld ? b − bomb ? l 1 ? l 2 ? l 3 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (b l o c k e d ? l 1 ? l 2) (n e a r e s t−b l o c k e d ? l 1 ? l 2 ? l 2)

(a t ? g ? l 2) (c o n n e c t e d ? l 3 ? l 2) (h o l d s ? b ? r))
: goa lCondi t i on (and (h o l d s ? g ? r))
: a c t i o n (move ? r ? l 1 ? l 3)

)
; ; Make a Path t o t h e Goal
(: r u l e f i r e l a s e r t o w a r d s g o l d

: parameters (? r − r o b o t ? g − go ld ? l − l a s e r ? l 1 ? l 2 ? l 3 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (b l o c k e d ? l 1 ? l 2) (n e a r e s t−b l o c k e d ? l 1 ? l 2 ? l 3)

(a t ? g ? l 2) (h o l d s ? l ? r) (c o n n e c t e d ? l 1 ? l 3))
: goa lCondi t i on (and (h o l d s ? g ? r))
: a c t i o n (f i r e− l a s e r ? r ? l ? l 1 ? l 3)

)
(: r u l e m o v e t o p i c k u p l a s e r

: parameters (? r − r o b o t ? g − go ld ? l − l a s e r ? l 1 ? l 2 ? l 3 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (b l o c k e d ? l 1 ? l 2) (a t ? g ? l 2)

(a t ? l ? l 3) (arm−empty ? r))
: goa lCondi t i on (and (h o l d s ? g ? r))
: a c t i o n (move ? r ? l 1 ? l 3)

)
(: r u l e m o v e w i t h l a s e r t o w a r d s g o l d

: parameters (? r − r o b o t ? g − go ld ? l − l a s e r ? l 1 ? l 2 ? l 3 ? l 4 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (b l o c k e d ? l 1 ? l 2) (n e a r e s t−b l o c k e d ? l 1 ? l 2 ? l 3)

(a t ? g ? l 2) (h o l d s ? l ? r) (c o n n e c t e d ? l 4 ? l 3))
: goa lCondi t i on (and (h o l d s ? g ? r))
: a c t i o n (move ? r ? l 1 ? l 4)

)
(: r u l e m o v e t o g o a l

: parameters (? r − r o b o t ? g − go ld ? l 1 ? l 2 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (a t ? g ? l 2))
: goa lCondi t i on (and (h o l d s ? g ? r))
: a c t i o n (move ? r ? l 1 ? l 2)

)
)
� �
D.1.5 Grid� �
(d e f i n e (p o l i c y g r i d p o l i c y)

257

Chapter D. Policies

(: domain g r i d)
(: r u l e m o v e t o g o a l

: parameters (? r − r o b o t ? l 1 ? l 2 − p l a c e)
: c o n d i t i o n (and (a t ? r ? l 1) (move connec ted ? r ? l 1 ? l 2))
: goa lCondi t i on (and (a t ? r ? l 2))
: a c t i o n (long move ? r ? l 1 ? l 2)

)
(: r u l e p i c k u p f i t t i n g k e y

: parameters (? r − r o b o t ? k − key ? l 1 ? l 2 − p l a c e ? s − shape)
: c o n d i t i o n (and (a t ? r ? l 1) (a t ? k ? l 1) (arm−empty ? r) (

doorToOpen Loca tedKeyDoorSe lec to r0 ? l 2)
(key−shape ? k ? s) (lock−shape ? l 2 ? s))

: goa lCondi t i on (and)
: a c t i o n (p i ck up ? r ? l 1 ? k)

)
(: r u l e u n l o c k u s e f u l d o o r

: parameters (? r − r o b o t ? k − key ? l 1 ? l 2 − p l a c e ? s − shape)
: c o n d i t i o n (and (a t ? r ? l 1) (h o l d i n g ? r ? k) (doorToOpen Loca tedKeyDoorSe lec to r0 ? l 2

)
(key−shape ? k ? s) (lock−shape ? l 2 ? s) (conn ? l 1 ? l 2))

: goa lCondi t i on (and)
: a c t i o n (un lo ck ? r ? l 1 ? l 2 ? k ? s)

)
(: r u l e m o v e t o o p e n u s e f u l d o o r

: parameters (? r − r o b o t ? k − key ? l 1 ? l 2 ? l 3 − p l a c e ? s − shape)
: c o n d i t i o n (and (a t ? r ? l 1) (h o l d i n g ? r ? k) (doorToOpen Loca tedKeyDoorSe lec to r0 ? l 2

)
(key−shape ? k ? s) (lock−shape ? l 2 ? s) (conn ? l 3 ? l 2))

: goa lCondi t i on (and)
: a c t i o n (long move ? r ? l 1 ? l 3)

)
(: r u l e d i s c a r d u n f i t t i n g k e y

: parameters (? r − r o b o t ? k − key ? l 1 ? l 2 − p l a c e ? s − shape)
: c o n d i t i o n (and (a t ? r ? l 1) (h o l d i n g ? r ? k) (doorToOpen Loca tedKeyDoorSe lec to r0 ? l 2

)
(key−shape ? k ? s) (not (lock−shape ? l 2 ? s)))

: goa lCondi t i on (and)
: a c t i o n (putdown ? r ? l 1 ? k)

)
(: r u l e m o v e t o p i c k u p f i t t i n g k e y

: parameters (? r − r o b o t ? k − key ? l 1 ? l 2 ? l 3 − p l a c e ? s − shape)
: c o n d i t i o n (and (a t ? r ? l 1) (a t ? k ? l 3) (doorToOpen Loca tedKeyDoorSe lec to r0 ? l 2)

(key−shape ? k ? s) (lock−shape ? l 2 ? s))
: goa lCondi t i on (and)
: a c t i o n (long move ? r ? l 1 ? l 3)

)
)
� �
D.1.6 Logistics� �
(d e f i n e (p o l i c y l o g i s i t c s p o l i c y)
(: domain l o g i s t i c s)
(: r u l e d r o p o f f a t g o a l

: parameters (? l o c − p l a c e ? t r u c k − t r u c k ? pkg − package)
: c o n d i t i o n (and (a t ? t r u c k ? l o c) (i n ? pkg ? t r u c k))
: goa lCondi t i on (and (a t ? pkg ? l o c))
: a c t i o n (un load− t r uck ? pkg ? t r u c k ? l o c)

)
(: r u l e p i c k u p m i s p l a c e d a t l o c a t i o n

: parameters (? p l a c e − p l a c e ? l o c − p l a c e ? l o c a t i o n − l o c a t i o n ? t r u c k − t r u c k ? pkg −
package ? c i t y − c i t y)

: c o n d i t i o n (and (a t ? t r u c k ? l o c) (a t ? t r u c k ? l o c a t i o n) (a t ? pkg ? l o c))
: goa lCondi t i on (and (a t ? pkg ? p l a c e) (not (a t ? pkg ? l o c))) ; seems t o make random . .
: a c t i o n (l o a d− t r u c k ? pkg ? t r u c k ? l o c)

258

Chapter D. Policies

)
(: r u l e l o a d l o c a l m i s p l a c e d

: parameters (? p l a c e ? l o c − p l a c e ? t r u c k − t r u c k ? pkg − package ? c i t y − c i t y)
: c o n d i t i o n (and (a t ? t r u c k ? l o c) (a t ? pkg ? l o c) (i n− c i t y ? p l a c e ? c i t y) (i n− c i t y ?

l o c ? c i t y))
: goa lCondi t i on (and (not (a t ? pkg ? l o c)) (a t ? pkg ? p l a c e))
: a c t i o n (l o a d− t r u c k ? pkg ? t r u c k ? l o c)

)
(: r u l e p i c k u p f o r o t h e r c i t y

: parameters (? l o c ? p l a c e − p l a c e ? a i r p l a n e − a i r p l a n e ? pkg − package ? c i t y − c i t y)
: c o n d i t i o n (and (a t ? pkg ? l o c) (a t ? a i r p l a n e ? l o c) (i n− c i t y ? p l a c e ? c i t y) (not (

i n− c i t y ? l o c ? c i t y)))
: goa lCondi t i on (and (a t ? pkg ? p l a c e))
: a c t i o n (l o a d− a i r p l a n e ? pkg ? a i r p l a n e ? l o c)

)
(: r u l e d r o p o f f i n r i g h t c i t y

: parameters (? l o c ? p l a c e − p l a c e ? a i r p l a n e − a i r p l a n e ? pkg − package ? c i t y − c i t y)
: c o n d i t i o n (and (i n ? pkg ? a i r p l a n e) (a t ? a i r p l a n e ? l o c) (i n− c i t y ? l o c ? c i t y) (

i n− c i t y ? p l a c e ? c i t y))
: goa lCondi t i on (and (a t ? pkg ? p l a c e))
: a c t i o n (u n l o a d− a i r p l a n e ? pkg ? a i r p l a n e ? l o c)

)
(: r u l e d r o p o f f a t a i r p o r t

: parameters (? a i r p o r t − a i r p o r t ? l o c ? p l a c e − p l a c e ? t r u c k − t r u c k ? pkg − package
? c i t y − c i t y)

: c o n d i t i o n (and (a t ? t r u c k ? a i r p o r t) (a t ? t r u c k ? l o c) (i n ? pkg ? t r u c k) (i n− c i t y ?
p l a c e ? c i t y) (not (i n− c i t y ? l o c ? c i t y)))

: goa lCondi t i on (and (a t ? pkg ? p l a c e))
: a c t i o n (un load− t r uck ? pkg ? t r u c k ? l o c)

)
(: r u l e d r i v e t o p i c k u p f r o m l o c a t i o n

: parameters (? p l a c e − p l a c e ? t r u c k − t r u c k ? c i t y − c i t y ? loc− to − p l a c e ? l o c a t i o n −
l o c a t i o n ? loc−from − p l a c e ? package − package)

: c o n d i t i o n (and (a t ? t r u c k ? loc−from) (a t ? t r u c k ? l o c a t i o n) (i n− c i t y ? loc−from ?
c i t y) (i n− c i t y ? loc− to ? c i t y) (a t ? package ? loc− to))

: goa lCondi t i on (and (not (a t ? package ? loc− to)) (a t ? package ? p l a c e))
: a c t i o n (d r i v e− t r u c k ? t r u c k ? loc−from ? loc− to ? c i t y)

)
(: r u l e d r i v e t o l o c a l p i c k u p

: parameters (? t r u c k − t r u c k ? c i t y − c i t y ? loc− to ? p l a c e − p l a c e ? loc−from − p l a c e
? package − package)

: c o n d i t i o n (and (a t ? t r u c k ? loc−from) (i n− c i t y ? loc−from ? c i t y) (i n− c i t y ? loc− to ?
c i t y) (i n− c i t y ? p l a c e ? c i t y) (a t ? package ? loc− to))

: goa lCondi t i on (and (not (a t ? package ? loc− to)) (a t ? package ? p l a c e))
: a c t i o n (d r i v e− t r u c k ? t r u c k ? loc−from ? loc− to ? c i t y)

)
(: r u l e d r i v e t o d r o p o f f a t a i r p o r t

: parameters (? t r u c k − t r u c k ? c i t y − c i t y ? loc− to ? p l a c e − p l a c e ? loc−from − p l a c e
? package − package ? a i r p o r t − a i r p o r t)

: c o n d i t i o n (and (a t ? t r u c k ? loc−from) (i n− c i t y ? loc−from ? c i t y) (i n− c i t y ? loc− to ?
c i t y) (i n ? package ? t r u c k) (not (i n− c i t y ? p l a c e ? c i t y)) (not (! = ? loc− to ?
a i r p o r t)))

: goa lCondi t i on (and (a t ? package ? p l a c e))
: a c t i o n (d r i v e− t r u c k ? t r u c k ? loc−from ? loc− to ? c i t y)

)
(: r u l e f l y t o p i c k u p

: parameters (? p l a c e − p l a c e ? c i t y − c i t y ? loc−from − a i r p o r t ? loc− to − a i r p o r t ?
package − package ? a i r p l a n e − a i r p l a n e)

: c o n d i t i o n (and (a t ? package ? loc− to) (a t ? a i r p l a n e ? loc−from) (i n− c i t y ? p l a c e ?
c i t y) (not (i n− c i t y ? loc− to ? c i t y)))

: goa lCondi t i on (and (a t ? package ? p l a c e))
: a c t i o n (f l y− a i r p l a n e ? a i r p l a n e ? loc−from ? loc− to)

)
(: r u l e f l y t o d r o p o f f

: parameters (? p l a c e − p l a c e ? c i t y − c i t y ? loc−from − a i r p o r t ? loc− to − a i r p o r t ?
package − package ? a i r p l a n e − a i r p l a n e)

259

Chapter D. Policies

: c o n d i t i o n (and (i n ? package ? a i r p l a n e) (a t ? a i r p l a n e ? loc−from) (i n− c i t y ? p l a c e ?
c i t y) (i n− c i t y ? loc− to ? c i t y))

: goa lCondi t i on (and (a t ? package ? p l a c e))
: a c t i o n (f l y− a i r p l a n e ? a i r p l a n e ? loc−from ? loc− to)

)
(: r u l e d r i v e t o l o c a l d r o p o f f

: parameters (? t r u c k − t r u c k ? c i t y − c i t y ? loc− to − p l a c e ? loc−from − p l a c e ?
package − package)

: c o n d i t i o n (and (a t ? t r u c k ? loc−from) (i n− c i t y ? loc−from ? c i t y) (i n− c i t y ? loc− to ?
c i t y) (i n ? package ? t r u c k))

: goa lCondi t i on (and (a t ? package ? loc− to))
: a c t i o n (d r i v e− t r u c k ? t r u c k ? loc−from ? loc− to ? c i t y)

)
)
� �

260

Chapter D. Policies

D.2 ALMA

D.2.1 Driverlog� �
(d e f i n e (p o l i c y d r i v e r l o g p o l i c y)

(: domain d r i v e r l o g)
; ; Unload t r u c k a t goa l
(: r u l e d r i v e r l o g r u l e 1

: parameters (? o b j − o b j ? t r u c k − t r u c k ? l o c − l o c a t i o n)
: c o n d i t i o n (and (i n ? o b j ? t r u c k) (a t ? t r u c k ? l o c))
: goa lCondi t i on (and (a t ? o b j ? l o c))
: a c t i o n (un load− t r uck ? o b j ? t r u c k ? l o c)

)
; ; Load m i s p l a c e d package
(: r u l e d r i v e r l o g r u l e 2

: parameters (? o b j − o b j ? t r u c k − t r u c k ? l o c − l o c a t i o n)
: c o n d i t i o n (and (a t ? o b j ? l o c) (a t ? t r u c k ? l o c))
: goa lCondi t i on (and (not (a t ? o b j ? l o c)))
: a c t i o n (l o a d− t r u c k ? o b j ? t r u c k ? l o c)

)
; ; Dr ive t r u c k t o p i c k u p a m i s p l a c e d package t h a t i t i s bound t o d e l i v e r
(: r u l e d r i v e r l o g r u l e 5

: parameters (? t r u c k − t r u c k ? from ? t o − l o c a t i o n ? d r i v e r − d r i v e r ? o b j − o b j)
: c o n d i t i o n (and (a t ? t r u c k ? from) (a t ? o b j ? t o) (d r i v e c o n n e c t e d ? t r u c k ? from ? t o

) (d r i v i n g ? d r i v e r ? t r u c k))
: goa lCondi t i on (and (not (a t ? o b j ? t o)))
: a c t i o n (d r i ve move ? t r u c k ? from ? t o)

)
; ; Dr ive t r u c k t o d r o p o f f a package a t i t s goa l l o c a t i o n
(: r u l e d r i v e r l o g r u l e 6

: parameters (? t r u c k − t r u c k ? from ? t o − l o c a t i o n ? d r i v e r − d r i v e r ? o b j − o b j)
: c o n d i t i o n (and (a t ? t r u c k ? from) (i n ? o b j ? t r u c k) (d r i v i n g ? d r i v e r ? t r u c k) (

d r i v e c o n n e c t e d ? t r u c k ? from ? t o))
: goa lCondi t i on (and (a t ? o b j ? t o))
: a c t i o n (d r i ve move ? t r u c k ? from ? t o)

)
; ; Dr ive t r u c k t o i t s goa l d e s t i n a t i o n
(: r u l e d r i v e r l o g r u l e 7

: parameters (? t r u c k − t r u c k ? from ? t o − l o c a t i o n ? d r i v e r − d r i v e r)
: c o n d i t i o n (and (a t ? t r u c k ? from) (d r i v i n g ? d r i v e r ? t r u c k) (d r i v e c o n n e c t e d ?

t r u c k ? from ? t o))
: goa lCondi t i on (and (a t ? t r u c k ? t o) (not (a t ? t r u c k ? from)))
: a c t i o n (d r i ve move ? t r u c k ? from ? t o)

)
; ; Board t h e d r i v e r on to t h e t r u c k i f i t i s bound t o d r i v e t h e t r u c k
(: r u l e d r i v e r l o g r u l e 8

: parameters (? o b j − o b j ? d r i v e r − d r i v e r ? l o c ? l − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? d r i v e r ? l o c) (a t ? o b j ? l) (empty ? t r u c k) (a t ? t r u c k ? l o c))
: goa lCondi t i on (and (not (a t ? o b j ? l)))
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

)
; ; Board t h e d r i v e r on to t h e t r u c k i f i t i s bound t o d r i v e t h e t r u c k
(: r u l e d r i v e r l o g r u l e 8

: parameters (? o b j − o b j ? d r i v e r − d r i v e r ? l o c ? l − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? d r i v e r ? l o c) (a t ? t r u c k ? l o c) (empty ? t r u c k) (i n ? o b j ? t r u c k)

)
: goa lCondi t i on (and (a t ? o b j ? l))
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

)
(: r u l e d r i v e r l o g r u l e 9

: parameters (? d r i v e r − d r i v e r ? l o c ? l − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? d r i v e r ? l o c) (empty ? t r u c k) (a t ? t r u c k ? l o c))
: goa lCondi t i on (and (not (a t ? t r u c k ? l o c)) (a t ? t r u c k ? l))
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

)
; ; Walk t h e d r i v e r t o a t r u c k t h a t i t i s bound t o d r i v e

261

Chapter D. Policies

(: r u l e d r i v e r l o g r u l e 1 0
: parameters (? o b j − o b j ? d r i v e r − d r i v e r ? from ? t o ? l − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? d r i v e r ? from) (empty ? t r u c k) (a t ? o b j ? l) (a t ? t r u c k ? t o) (

w a l k i n g c o n n e c t e d ? d r i v e r ? from ? t o))
: goa lCondi t i on (and (not (a t ? o b j ? l)))
: a c t i o n (walk ing move ? d r i v e r ? from ? t o)

)
; ; Walk t h e d r i v e r t o a t r u c k t h a t i t i s bound t o d r i v e
(: r u l e d r i v e r l o g r u l e 1 0

: parameters (? o b j − o b j ? d r i v e r − d r i v e r ? from ? t o ? l − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? d r i v e r ? from) (empty ? t r u c k) (w a l k i n g c o n n e c t e d ? d r i v e r ? from

? t o) (i n ? o b j ? t r u c k) (a t ? t r u c k ? t o))
: goa lCondi t i on (and (a t ? o b j ? l))
: a c t i o n (walk ing move ? d r i v e r ? from ? t o)

)
; ; Walk t h e d r i v e r t o a t r u c k t h a t i t i s bound t o d r i v e
(: r u l e d r i v e r l o g r u l e 1 1

: parameters (? d r i v e r − d r i v e r ? from ? t o ? l − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? d r i v e r ? from) (w a l k i n g c o n n e c t e d ? d r i v e r ? from ? t o) (empty ?

t r u c k) (a t ? t r u c k ? t o))
: goa lCondi t i on (and (not (a t ? t r u c k ? t o)) (a t ? t r u c k ? l))
: a c t i o n (walk ing move ? d r i v e r ? from ? t o)

)
; ; walk t h e d r i v e r t o i t s goa l l o c a t i o n
(: r u l e d r i v e r l o g r u l e 1 5

: parameters (? d r i v e r − d r i v e r ? from ? t o − l o c a t i o n)
: c o n d i t i o n (and (a t ? d r i v e r ? from) (w a l k i n g c o n n e c t e d ? d r i v e r ? from ? t o))
: goa lCondi t i on (and (a t ? d r i v e r ? t o) (not (a t ? d r i v e r ? from)))
: a c t i o n (walk ing move ? d r i v e r ? from ? t o)

)
(: r u l e d r i v e r l o g r u l e 1 6

: parameters (? d r i v e r − d r i v e r ? t r u c k − t r u c k ? l o c − l o c a t i o n)
: c o n d i t i o n (and (d r i v i n g ? d r i v e r ? t r u c k) (a t ? t r u c k ? l o c))
: goa lCondi t i on (and)
: a c t i o n (d i s embark− t r uck ? d r i v e r ? t r u c k ? l o c)

)
)
� �
D.2.2 Goldminer� �
(d e f i n e (p o l i c y g o l d m i n e r−p o l i c y)
(: domain g o l d m i n e r)
; ; P ickup Holdab le
(: r u l e g o l d m i n e r r u l e 1

: parameters (? r − r o b o t ? l 1 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (a t−gold ? l 1) (arm−empty ? r))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (p ickup−gold ? r ? l 1)

)
(: r u l e g o l d m i n e r r u l e 2

: parameters (? r − r o b o t ? b − bomb ? l 1 ? l 2 ? l 3 − l o c)
: c o n d i t i o n (and (not (o p e n c o n n e c t e d ? r ? l 1 ? l 2)) (a t−gold ? l 2) (o p e n c o n n e c t e d ? r

? l 1 ? l 3)
(c o n n e c t e d ? l 3 ? l 2) (a t ? r ? l 1) (a t ? b ? l 1) (arm−empty ? r))

: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (p i ck up ? r ? b ? l 1)

)
(: r u l e g o l d m i n e r r u l e 3

: parameters (? r − r o b o t ? l − l a s e r ? l 1 ? l 2 − l o c)
: c o n d i t i o n (and (not (o p e n c o n n e c t e d ? r ? l 1 ? l 2)) (a t−gold ? l 2) (a t ? r ? l 1) (a t ? l

? l 1) (arm−empty ? r))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (p i ck up ? r ? l ? l 1)

)

262

Chapter D. Policies

; ; B lockage A d j a c e n t t o Goal
(: r u l e g o l d m i n e r r u l e 4

: parameters (? r − r o b o t ? b − bomb ? l 1 ? l 2 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (not (o p e n c o n n e c t e d ? r ? l 1 ? l 2))

(a t−gold ? l 2) (c o n n e c t e d ? l 1 ? l 2) (h o l d s ? b ? r))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (detonate−bomb−1 ? r ? b ? l 1 ? l 2)

)
(: r u l e g o l d m i n e r r u l e 5

: parameters (? r − r o b o t ? b − bomb ? l − l a s e r ? l 1 ? l 2 ? l 3 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (not (o p e n c o n n e c t e d ? r ? l 1 ? l 2)) (o p e n c o n n e c t e d ? r ?

l 1 ? l 3)
(c o n n e c t e d ? l 3 ? l 2) (a t−gold ? l 2) (h o l d s ? l ? r) (a t ? b ? l 1))

: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (putdown ? r ? l ? l 1)

)
; ; Removed u n n e c e s s a r y r u l e s .
(: r u l e g o l d m i n e r r u l e 9

: parameters (? r − r o b o t ? b − bomb ? l 1 ? l 2 ? l 3 ? l 4 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (not (o p e n c o n n e c t e d ? r ? l 1 ? l 2)) (o p e n c o n n e c t e d ? r ?

l 1 ? l 4)
(c o n n e c t e d ? l 4 ? l 2) (a t−gold ? l 2) (a t ? b ? l 3) (o p e n c o n n e c t e d ? r ? l 1 ? l 3

))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (open move ? r ? l 1 ? l 3)

)
(: r u l e g o l d m i n e r r u l e 1 0

: parameters (? r − r o b o t ? b − bomb ? l 1 ? l 2 ? l 3 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (not (o p e n c o n n e c t e d ? r ? l 1 ? l 2)) (o p e n c o n n e c t e d ? r ?

l 1 ? l 3)
(a t−gold ? l 2) (c o n n e c t e d ? l 3 ? l 2) (h o l d s ? b ? r))

: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (open move ? r ? l 1 ? l 3)

)
; ; Make a Path t o t h e Goal
(: r u l e g o l d m i n e r r u l e 1 1 a

: parameters (? r − r o b o t ? l − l a s e r ? l 1 ? l 2 ? l 3 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (not (o p e n c o n n e c t e d ? r ? l 1 ? l 2)) (so f t− rock−a t ? l 3) (

no−hard−rock ? l 3)
(a t−gold ? l 2) (h o l d s ? l ? r) (c o n n e c t e d ? l 1 ? l 3) (c o n n e c t e d ? l 3 ? l 2))

: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (f i re− l aser−0−1 ? r ? l ? l 1 ? l 3)

)
(: r u l e g o l d m i n e r r u l e 1 1 b

: parameters (? r − r o b o t ? l − l a s e r ? l 1 ? l 2 ? l 3 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (not (o p e n c o n n e c t e d ? r ? l 1 ? l 2)) (no−soft−rock ? l 3) (

hard−rock−at ? l 3)
(a t−gold ? l 2) (h o l d s ? l ? r) (c o n n e c t e d ? l 1 ? l 3) (c o n n e c t e d ? l 3 ? l 2))

: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (f i re− l aser−1−0 ? r ? l ? l 1 ? l 3)

)
(: r u l e g o l d m i n e r r u l e 1 3

: parameters (? r − r o b o t ? l − l a s e r ? l 1 ? l 2 ? l 3 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (not (o p e n c o n n e c t e d ? r ? l 1 ? l 2)) (a t−gold ? l 2)

(a t ? l ? l 3) (arm−empty ? r) (o p e n c o n n e c t e d ? r ? l 1 ? l 3))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (open move ? r ? l 1 ? l 3)

)
(: r u l e g o l d m i n e r r u l e 1 4

: parameters (? r − r o b o t ? l 1 ? l 2 ? l 3 − l o c)
: c o n d i t i o n (and (a t−gold ? l 2) (c o n n e c t e d ? l 3 ? l 2) (l a s e r o p e n c o n n e c t e d ? r ? l 1 ? l 3)

)
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (l a s e r o p e n m o v e ? r ? l 1 ? l 3)

)
; ; Move t o Goal
(: r u l e g o l d m i n e r r u l e 1 5

263

Chapter D. Policies

: parameters (? r − r o b o t ? l 1 ? l 2 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (a t−gold ? l 2) (o p e n c o n n e c t e d ? r ? l 1 ? l 2))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (open move ? r ? l 1 ? l 2)

)
)
� �
D.2.3 Grid� �
(d e f i n e (p o l i c y g r i d p o l i c y)

(: domain g r i d)
(: r u l e d r i v e r l o g r u l e 1

: parameters (? t − r o b o t ? l 1 ? l 2 − p l a c e)
: c o n d i t i o n (and (a t ? t ? l 1) (unlockAndMove connected ? t ? l 1 ? l 2))
: goa lCondi t i on (and (a t ? t ? l 2))
: a c t i o n (unlockAndMove move ? t ? l 1 ? l 2)

)
)
� �

264

Chapter D. Policies

D.3 Partially bound rules

D.3.1 Driverlog� �
(d e f i n e (p o l i c y d r i v e r l o g p o l i c y)

(: domain d r i v e r l o g)
; ; Unload t r u c k a t goa l
(: r u l e d r i v e r l o g r u l e 1

: parameters (? o b j − o b j ? t r u c k − t r u c k ? l o c − l o c a t i o n)
: c o n d i t i o n (and (i n ? o b j ? t r u c k) (a t ? t r u c k ? l o c))
: goa lCondi t i on (and (a t ? o b j ? l o c))
: a c t i o n (un load− t r uck ? o b j ? t r u c k ? l o c)

)
; ; Load m i s p l a c e d package
(: r u l e d r i v e r l o g r u l e 2

: parameters (? o b j − o b j ? t r u c k − t r u c k ? l o c − l o c a t i o n)
: c o n d i t i o n (and (a t ? o b j ? l o c) (a t ? t r u c k ? l o c))
: goa lCondi t i on (and (not (a t ? o b j ? l o c)))
: a c t i o n (l o a d− t r u c k ? o b j ? t r u c k ? l o c)

)
; ; Dr ive t r u c k i f t h e r e i s a m i s p l a c e d package
(: r u l e d r i v e r l o g r u l e 5

: parameters (? t r u c k − t r u c k ? from ? t o ? l − l o c a t i o n ? d r i v e r − d r i v e r ? o b j − o b j)
: c o n d i t i o n (and (a t ? t r u c k ? from) (a t ? o b j ? l) (d r i v i n g ? d r i v e r ? t r u c k) (l i n k ?

from ? t o))
: goa lCondi t i on (and (not (a t ? o b j ? l)))
: a c t i o n (d r i v e− t r u c k ? t r u c k ? from ? t o ? d r i v e r)

)
; ; Dr ive t r u c k t o d r o p o f f a package a t i t s goa l l o c a t i o n
(: r u l e d r i v e r l o g r u l e 6

: parameters (? t r u c k − t r u c k ? l ? from ? t o − l o c a t i o n ? d r i v e r − d r i v e r ? o b j − o b j)
: c o n d i t i o n (and (a t ? t r u c k ? from) (i n ? o b j ? t r u c k) (d r i v i n g ? d r i v e r ? t r u c k) (l i n k

? from ? t o))
: goa lCondi t i on (and (a t ? o b j ? l))
: a c t i o n (d r i v e− t r u c k ? t r u c k ? from ? t o ? d r i v e r)

)
; ; Dr ive t r u c k t o i t s goa l d e s t i n a t i o n
(: r u l e d r i v e r l o g r u l e 7

: parameters (? t r u c k − t r u c k ? from ? t o ? l − l o c a t i o n ? d r i v e r − d r i v e r)
: c o n d i t i o n (and (a t ? t r u c k ? from) (d r i v i n g ? d r i v e r ? t r u c k) (l i n k ? from ? t o))
: goa lCondi t i on (and (not (a t ? t r u c k ? from)) (a t ? t r u c k ? l))
: a c t i o n (d r i v e− t r u c k ? t r u c k ? from ? t o ? d r i v e r)

)
; ; Board t h e d r i v e r on to t h e t r u c k i f i t i s bound t o d r i v e t h e t r u c k
(: r u l e d r i v e r l o g r u l e 8

: parameters (? o b j − o b j ? d r i v e r − d r i v e r ? l o c ? l − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? d r i v e r ? l o c) (a t ? o b j ? l) (a t ? t r u c k ? l o c))
: goa lCondi t i on (and (not (a t ? o b j ? l)))
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

)
; ; Board t h e d r i v e r on to t h e t r u c k i f i t i s bound t o d r i v e t h e t r u c k
(: r u l e d r i v e r l o g r u l e 8

: parameters (? o b j − o b j ? d r i v e r − d r i v e r ? l o c ? l − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? d r i v e r ? l o c) (a t ? t r u c k ? l o c) (i n ? o b j ? t r u c k))
: goa lCondi t i on (and (a t ? o b j ? l))
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

)
(: r u l e d r i v e r l o g r u l e 9

: parameters (? d r i v e r − d r i v e r ? l o c ? l − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? d r i v e r ? l o c) (a t ? t r u c k ? l o c))
: goa lCondi t i on (and (not (a t ? t r u c k ? l o c)) (a t ? t r u c k ? l))
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

)
; ; Walk t h e d r i v e r t o a t r u c k t h a t i t i s bound t o d r i v e
(: r u l e d r i v e r l o g r u l e 1 0

: parameters (? o b j − o b j ? d r i v e r − d r i v e r ? from ? t o ? l − l o c a t i o n ? t r u c k − t r u c k)

265

Chapter D. Policies

: c o n d i t i o n (and (a t ? d r i v e r ? from) (a t ? o b j ? l) (empty ? t r u c k) (p a t h ? from ? t o))
: goa lCondi t i on (and (not (a t ? o b j ? l)))
: a c t i o n (walk ? d r i v e r ? from ? t o)

)
; ; Walk t h e d r i v e r t o a t r u c k t h a t i t i s bound t o d r i v e
(: r u l e d r i v e r l o g r u l e 1 0

: parameters (? o b j − o b j ? d r i v e r − d r i v e r ? from ? t o ? l − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? d r i v e r ? from) (i n ? o b j ? t r u c k) (empty ? t r u c k) (p a t h ? from ? t o

))
: goa lCondi t i on (and (a t ? o b j ? l))
: a c t i o n (walk ? d r i v e r ? from ? t o)

)
(: r u l e d r i v e r l o g r u l e 1 6

: parameters (? o b j − o b j ? d r i v e r − d r i v e r ? t r u c k ? t 2 − t r u c k ? l o c ? l 2 − l o c a t i o n)
: c o n d i t i o n (and (d r i v i n g ? d r i v e r ? t r u c k) (a t ? t r u c k ? l o c) (empty ? t 2)

(i n ? o b j ? t 2))
: goa lCondi t i on (and (a t ? o b j ? l 2))
: a c t i o n (d i s embark− t r uck ? d r i v e r ? t r u c k ? l o c)

)
(: r u l e d r i v e r l o g r u l e 1 6 a

: parameters (? d r i v e r − d r i v e r ? t r u c k − t r u c k ? l o c ? l 2 − l o c a t i o n)
: c o n d i t i o n (and (d r i v i n g ? d r i v e r ? t r u c k) (a t ? t r u c k ? l o c))
: goa lCondi t i on (and (a t ? d r i v e r ? l 2) (a t ? t r u c k ? l o c))
: a c t i o n (d i s embark− t r uck ? d r i v e r ? t r u c k ? l o c)

)
(: r u l e d r i v e r l o g r u l e 1 6 b

: parameters (? d r i v e r − d r i v e r ? t r u c k − t r u c k ? l o c ? l 2 − l o c a t i o n)
: c o n d i t i o n (and (d r i v i n g ? d r i v e r ? t r u c k) (a t ? t r u c k ? l o c))
: goa lCondi t i on (and (a t ? d r i v e r ? l 2))
: a c t i o n (d i s embark− t r uck ? d r i v e r ? t r u c k ? l o c)

)
; ; Walk t h e d r i v e r t o a t r u c k t h a t i t i s bound t o d r i v e
(: r u l e d r i v e r l o g r u l e 1 1

: parameters (? d r i v e r − d r i v e r ? from ? t o ? l 1 ? l 2 − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? d r i v e r ? from) (empty ? t r u c k) (a t ? t r u c k ? l 1) (p a t h ? from ? t o

))
: goa lCondi t i on (and (not (a t ? t r u c k ? l 1)) (a t ? t r u c k ? l 2))
: a c t i o n (walk ? d r i v e r ? from ? t o)

)
(: r u l e d r i v e r l o g r u l e 1 6

: parameters (? d r i v e r − d r i v e r ? t r u c k ? t 2 − t r u c k ? l o c ? l 2 ? l 3 − l o c a t i o n)
: c o n d i t i o n (and (d r i v i n g ? d r i v e r ? t r u c k) (a t ? t r u c k ? l o c) (empty ? t 2)

(a t ? t 2 ? l 2))
: goa lCondi t i on (and (a t ? t 2 ? l 3) (not (a t ? t 2 ? l 2)))
: a c t i o n (d i s embark− t r uck ? d r i v e r ? t r u c k ? l o c)

)
; ; walk t h e d r i v e r t o i t s goa l l o c a t i o n
(: r u l e d r i v e r l o g r u l e 1 5

: parameters (? d r i v e r − d r i v e r ? l ? from ? t o − l o c a t i o n)
: c o n d i t i o n (and (a t ? d r i v e r ? from) (p a t h ? from ? t o))
: goa lCondi t i on (and (not (a t ? d r i v e r ? from)) (a t ? d r i v e r ? l))
: a c t i o n (walk ? d r i v e r ? from ? t o)

)
(: r u l e d r i v e r l o g r u l e 1 6

: parameters (? d r i v e r − d r i v e r ? t r u c k − t r u c k ? l o c − l o c a t i o n)
: c o n d i t i o n (and (d r i v i n g ? d r i v e r ? t r u c k) (a t ? t r u c k ? l o c))
: goa lCondi t i on (and)
: a c t i o n (d i s embark− t r uck ? d r i v e r ? t r u c k ? l o c)

)
)
� �
D.3.2 Goldminer� �
; ; T h i s p o l i c y r e l i e s on a h e u r i s t i c , by u s i n g unguarded move and f i r e a c t i o n s .

266

Chapter D. Policies

; ; Even a p e r f e c t h e u r i s t i c w i l l make a 3 wide pa th t o t h e bombable node ;
; ; t h i s i s because t h e move and f i r e a c t i o n s must be o r d e r e d and t h e a l t e r n a t i v e
; ; would be a f r e e walk , e nd i ng i n r e p e a t e d s t a t e .

(d e f i n e (p o l i c y g o l d m i n e r−p o l i c y)
(: domain g o l d m i n e r)
(: r u l e g o l d m i n e r r u l e 1

: parameters (? r − r o b o t ? l 1 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (a t−gold ? l 1) (arm−empty ? r))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (p ickup−gold ? r ? l 1)

)
; ; Move t o Goal
(: r u l e g o l d m i n e r r u l e 1 5

: parameters (? r − r o b o t ? l 1 ? l 2 ? l 3 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (a t−gold ? l 3) (c l e a r ? l 3) (c l e a r ? l 2) (c o n n e c t e d ? l 1 ? l 2

))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (move ? r ? l 1 ? l 2)

)
(: r u l e g o l d m i n e r r u l e 4

: parameters (? r − r o b o t ? b − bomb ? l 1 ? l 2 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (a t−gold ? l 2) (c o n n e c t e d ? l 1 ? l 2) (h o l d s ? b ? r) (

n o t− c l e a r ? l 2) (so f t− rock−a t ? l 2) (no−hard−rock ? l 2))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (detonate−bomb−1 ? r ? b ? l 1 ? l 2)

)
(: r u l e g o l d m i n e r r u l e 1 0

: parameters (? r − r o b o t ? b − bomb ? l 1 ? l 2 ? l 3 ? l 4 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (a t−gold ? l 2) (c o n n e c t e d ? l 3 ? l 2) (h o l d s ? b ? r)

(c l e a r ? l 3) (c o n n e c t e d ? l 1 ? l 4) (c l e a r ? l 4))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (move ? r ? l 1 ? l 4)

)
(: r u l e g o l d m i n e r r u l e 2

: parameters (? r − r o b o t ? b − bomb ? l 1 ? l 2 ? l 3 − l o c)
: c o n d i t i o n (and (a t−gold ? l 2) (a t ? r ? l 1) (a t ? b ? l 1) (arm−empty ? r) (c o n n e c t e d ? l 3

? l 2) (c l e a r ? l 3))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (p i ck up ? r ? b ? l 1)

)
(: r u l e g o l d m i n e r r u l e 9

: parameters (? r − r o b o t ? b − bomb ? l 1 ? l 2 ? l 3 ? l 4 ? l 5 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (c o n n e c t e d ? l 3 ? l 2) (c l e a r ? l 3)

(a t−gold ? l 2) (a t ? b ? l 4) (c o n n e c t e d ? l 1 ? l 5) (c l e a r ? l 5))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (move ? r ? l 1 ? l 5)

)
(: r u l e g o l d m i n e r r u l e 5

: parameters (? r − r o b o t ? b − bomb ? l − l a s e r ? l 1 ? l 2 ? l 3 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (c o n n e c t e d ? l 3 ? l 2) (c l e a r ? l 3)

(a t−gold ? l 2) (h o l d s ? l ? r) (a t ? b ? l 1))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (putdown ? r ? l ? l 1)

)
; ; Make a Path t o t h e Goal − t h e s e have t o be b e f o r e t h e move , or i t would move

f o r e v e r .
(: r u l e g o l d m i n e r r u l e 1 1 a

: parameters (? r − r o b o t ? l − l a s e r ? l 1 ? l 2 ? l 3 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (so f t− rock−a t ? l 3) (no−hard−rock ? l 3) (n o t− c l e a r ? l 3)

(a t−gold ? l 2) (h o l d s ? l ? r) (c o n n e c t e d ? l 1 ? l 3))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (f i re− l aser−0−1 ? r ? l ? l 1 ? l 3)

)
(: r u l e g o l d m i n e r r u l e 1 1 b

: parameters (? r − r o b o t ? l − l a s e r ? l 1 ? l 2 ? l 3 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (n o t− c l e a r ? l 3) (no−soft−rock ? l 3) (hard−rock−at ? l 3)

267

Chapter D. Policies

(a t−gold ? l 2) (h o l d s ? l ? r) (c o n n e c t e d ? l 1 ? l 3))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (f i re− l aser−1−0 ? r ? l ? l 1 ? l 3)

)
(: r u l e g o l d m i n e r r u l e 1 4

: parameters (? r − r o b o t ? l − l a s e r ? l 1 ? l 2 ? l 4 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (a t−gold ? l 2) (h o l d s ? l ? r) (c o n n e c t e d ? l 1 ? l 4) (c l e a r

? l 4))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (move ? r ? l 1 ? l 4)

)
(: r u l e g o l d m i n e r r u l e 3

: parameters (? r − r o b o t ? l − l a s e r ? l 1 ? l 2 − l o c)
: c o n d i t i o n (and (a t−gold ? l 2) (a t ? r ? l 1) (a t ? l ? l 1) (arm−empty ? r))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (p i ck up ? r ? l ? l 1)

)
(: r u l e g o l d m i n e r r u l e 1 3

: parameters (? r − r o b o t ? l − l a s e r ? l 1 ? l 2 ? l 3 ? l 4 − l o c)
: c o n d i t i o n (and (a t ? r ? l 1) (a t−gold ? l 2) (a t ? l ? l 3) (arm−empty ? r) (c o n n e c t e d ? l 1

? l 4) (c l e a r ? l 4))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (move ? r ? l 1 ? l 4)

)
)
� �

268

Chapter D. Policies

D.4 Generated seeds
In this section we present a selection of the policies generated by our policy generator.
Although in each case the vocabulary was generated automatically we have gathered
equivalent ALMAs and renamed them.

D.4.1 Driverlog� �
(d e f i n e (p o l i c y P o l i c y 1)

(: domain d r i v e r l o g)
(: r u l e Rule8

: parameters (? d r i v e r 1 − d r i v e r ? package1 − o b j ? s3 − l o c a t i o n ? t r u c k 1 − t r u c k ? s8
− l o c a t i o n)

: c o n d i t i o n (and (! = ? s8 ? s3) (a t ? t r u c k 1 ? s3) (a t ? package1 ? s8) (d r i v i n g ? d r i v e r 1
? t r u c k 1) (not (empty ? t r u c k 1)) (not (a t ? d r i v e r 1 ? s3)))

: goa lCondi t i on (and (a t ? package1 ? s8) (a t ? d r i v e r 1 ? s3))
: a c t i o n (d i s embark− t r uck d r i v e r 1 t r u c k 1 s3)

)
(: r u l e Rule9

: parameters (? d r i v e r 1 − d r i v e r ? package1 − o b j ? s3 − l o c a t i o n ? t r u c k 1 − t r u c k ? s8
− l o c a t i o n ? f r o m l o c a t i o n − l o c a t i o n)

: c o n d i t i o n (and (! = ? s8 ? s3) (a t ? package1 ? s8) (d r i v i n g ? d r i v e r 1 ? t r u c k 1) (a t ?
t r u c k 1 ? f r o m l o c a t i o n) (l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? f r o m l o c a t i o n ? s3) (not (
empty ? t r u c k 1)) (not (a t ? d r i v e r 1 ? s3)) (not (a t ? t r u c k 1 ? s3)))

: goa lCondi t i on (and (a t ? package1 ? s8) (a t ? d r i v e r 1 ? s3))
: a c t i o n (l o n g d r i v e m o v e t r u c k 1 f r o m l o c a t i o n s3)

)
(: r u l e Rule10

: parameters (? d r i v e r 1 − d r i v e r ? package1 − o b j ? s3 − l o c a t i o n ? s8 − l o c a t i o n ?
t r u c k 1 − t r u c k)

: c o n d i t i o n (and (a t ? t r u c k 1 ? s8) (! = ? s8 ? s3) (i n ? package1 ? t r u c k 1) (d r i v i n g ?
d r i v e r 1 ? t r u c k 1) (l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? s8 ? s3) (not (empty ? t r u c k 1)) (
not (a t ? package1 ? s8)) (not (a t ? d r i v e r 1 ? s3)) (not (a t ? t r u c k 1 ? s3)))

: goa lCondi t i on (and (a t ? package1 ? s8) (a t ? d r i v e r 1 ? s3))
: a c t i o n (un load− t r uck package1 t r u c k 1 s8)

)
(: r u l e Rule11

: parameters (? d r i v e r 1 − d r i v e r ? package1 − o b j ? s3 − l o c a t i o n ? s8 − l o c a t i o n ?
t r u c k 1 − t r u c k ? f r o m l o c a t i o n − l o c a t i o n)

: c o n d i t i o n (and (l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? f r o m l o c a t i o n ? s8) (! = ? s8 ? s3) (i n
? package1 ? t r u c k 1) (d r i v i n g ? d r i v e r 1 ? t r u c k 1) (a t ? t r u c k 1 ? f r o m l o c a t i o n) (
l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? f r o m l o c a t i o n ? s3) (not (empty ? t r u c k 1)) (not (a t

? package1 ? s8)) (not (a t ? d r i v e r 1 ? s3)) (not (a t ? t r u c k 1 ? s8)) (not (a t ?
t r u c k 1 ? s3)))

: goa lCondi t i on (and (a t ? package1 ? s8) (a t ? d r i v e r 1 ? s3))
: a c t i o n (l o n g d r i v e m o v e t r u c k 1 f r o m l o c a t i o n s8)

)
(: r u l e Rule12

: parameters (? d r i v e r 1 − d r i v e r ? package1 − o b j ? s3 − l o c a t i o n ? s14 − l o c a t i o n ? s8
− l o c a t i o n ? t r u c k 1 − t r u c k)

: c o n d i t i o n (and (! = ? s14 ? s3) (l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? s14 ? s8) (a t ? package1
? s14) (! = ? s8 ? s3) (! = ? s8 ? s14) (a t ? t r u c k 1 ? s14) (d r i v i n g ? d r i v e r 1 ? t r u c k 1)

(l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? s14 ? s3) (not (empty ? t r u c k 1)) (not (a t ?
package1 ? s8)) (not (a t ? d r i v e r 1 ? s3)) (not (a t ? t r u c k 1 ? s8)) (not (a t ? t r u c k 1
? s3)) (not (i n ? package1 ? t r u c k 1)))

: goa lCondi t i on (and (a t ? package1 ? s8) (a t ? d r i v e r 1 ? s3))
: a c t i o n (l o a d− t r u c k package1 t r u c k 1 s14)

)
(: r u l e Rule13

: parameters (? d r i v e r 1 − d r i v e r ? package1 − o b j ? s3 − l o c a t i o n ? s14 − l o c a t i o n ? s8
− l o c a t i o n ? t r u c k 1 − t r u c k ? f r o m l o c a t i o n − l o c a t i o n)

: c o n d i t i o n (and (l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? f r o m l o c a t i o n ? s8) (! = ? s14 ? s3) (a t
? package1 ? s14) (! = ? s8 ? s3) (d r i v i n g ? d r i v e r 1 ? t r u c k 1) (a t ? t r u c k 1 ?

269

Chapter D. Policies

f r o m l o c a t i o n) (l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? f r o m l o c a t i o n ? s14) (
l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? f r o m l o c a t i o n ? s3) (! = ? s14 ? s8) (not (empty ?
t r u c k 1)) (not (a t ? t r u c k 1 ? s14)) (not (a t ? package1 ? s8)) (not (a t ? d r i v e r 1 ? s3
)) (not (a t ? t r u c k 1 ? s8)) (not (i n ? package1 ? t r u c k 1)))

: goa lCondi t i on (and (a t ? package1 ? s8) (a t ? d r i v e r 1 ? s3))
: a c t i o n (l o n g d r i v e m o v e t r u c k 1 f r o m l o c a t i o n s14)

)
(: r u l e Rule14

: parameters (? package1 − o b j ? d r i v e r 1 − d r i v e r ? s3 − l o c a t i o n ? s14 − l o c a t i o n ? s8
− l o c a t i o n ? t r u c k 1 − t r u c k ? s2 − l o c a t i o n)

: c o n d i t i o n (and (empty ? t r u c k 1) (a t ? d r i v e r 1 ? s2) (! = ? s14 ? s3) (! = ? s3 ? s2) (a t ?
package1 ? s14) (! = ? s8 ? s3) (! = ? s14 ? s2) (! = ? s8 ? s14) (! = ? s8 ? s2) (a t ?
t r u c k 1 ? s2) (not (a t ? t r u c k 1 ? s14)) (not (d r i v i n g ? d r i v e r 1 ? t r u c k 1)) (not (a t ?
package1 ? s8)) (not (l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? s2 ? s3)) (not (a t ? d r i v e r 1 ?
s3)) (not (a t ? t r u c k 1 ? s8)) (not (l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? s2 ? s14)) (not
(a t ? t r u c k 1 ? s3)) (not (i n ? package1 ? t r u c k 1)) (not (l o n g d r i v e c o n n e c t e d ?
t r u c k 1 ? s2 ? s8)))

: goa lCondi t i on (and (a t ? package1 ? s8) (a t ? d r i v e r 1 ? s3))
: a c t i o n (boa rd− t ruck d r i v e r 1 t r u c k 1 s2)

)
)
� �
D.4.2 Goldminer� �
(d e f i n e (p o l i c y P o l i c y 4)

(: domain Goldminer)
(: r u l e Rule31

: parameters (? robby − r o b o t ? f2−2f − l o c)
: c o n d i t i o n (and (a t−gold ? f2−2f) (a t ? robby ? f2−2f) (arm−empty ? robby) (not (

no−gold ? f2−2f)) (not (ho lds−gold ? robby)))
: goa lCondi t i on (and (ho lds−gold ? robby))
: a c t i o n (p ickup−gold robby f2−2f)

)
(: r u l e Rule32

: parameters (? robby − r o b o t ? f2−1f − l o c ? f2−2f − l o c ? f r o m l o c − l o c)
: c o n d i t i o n (and (! = ? f2−2f ? f2−1f) (a t ? robby ? f r o m l o c) (bombmove connected ? robby

? f r o m l o c ? f2−2f) (c o n n e c t e d ? f2−1f ? f2−2f) (a t−gold ? f2−2f) (not (a t ? robby ?
f2−2f)) (not (no−gold ? f2−2f)) (not (ho lds−gold ? robby)))

: goa lCondi t i on (and (ho lds−gold ? robby))
: a c t i o n (bombmove move robby f r o m l o c f2−2f)

)
(: r u l e Rule33

: parameters (? robby − r o b o t ?bomb − bomb ? f2−0f − l o c ? f1−0f − l o c ? f2−1f − l o c ?
f2−2f − l o c ? f r o m l o c − l o c)

: c o n d i t i o n (and (! = ? f2−2f ? f2−1f) (! = ? f2−1f ? f2−0f) (c o n n e c t e d ? f2−1f ? f2−2f) (a t
?bomb ? f1−0f) (n o t− c l e a r ? f2−2f) (so f t− rock−a t ? f2−2f) (! = ? f2−2f ? f1−0f) (

a t−gold ? f2−2f) (c l e a r ? f2−0f) (c l e a r ? f2−1f) (! = ? f2−2f ? f2−0f) (! = ? f1−0f ?
f2−1f) (arm−empty ? robby) (no−hard−rock ? f2−2f) (a t ? robby ? f1−0f) (! = ? f1−0f ?
f2−0f) (c o n n e c t e d ? f2−0f ? f2−1f) (not (a t ? robby ? f2−2f)) (not (a t ? robby ?
f2−0f)) (not (bombmove connected ? robby ? f r o m l o c ? f2−2f)) (not (h o l d s ?bomb ?
robby)) (not (c l e a r ? f2−2f)) (not (no−soft−rock ? f2−2f)) (not (no−gold ? f2−2f))

(not (d e s t r o y e d ?bomb)) (not (ho lds−gold ? robby)) (not (a t ? robby ? f2−1f)))
: goa lCondi t i on (and (ho lds−gold ? robby))
: a c t i o n (p i ck up robby bomb f1−0f)

)
(: r u l e Rule34

: parameters (? robby − r o b o t ?bomb − bomb ? f2−0f − l o c ? f2−1f − l o c ? f1−0f − l o c ?
f2−2f − l o c ? f r o m l o c − l o c)

: c o n d i t i o n (and (c l e a r ? f1−0f) (! = ? f2−2f ? f2−1f) (a t ? robby ? f r o m l o c) (
l on gm o ve c on ne c t e d ? robby ? f r o m l o c ? f1−0f) (! = ? f2−1f ? f2−0f) (c o n n e c t e d ?
f2−1f ? f2−2f) (a t ?bomb ? f1−0f) (n o t− c l e a r ? f2−2f) (so f t− rock−a t ? f2−2f) (! = ?
f2−2f ? f1−0f) (a t−gold ? f2−2f) (c l e a r ? f2−0f) (c l e a r ? f2−1f) (! = ? f2−2f ? f2−0f)

(! = ? f1−0f ? f2−1f) (arm−empty ? robby) (no−hard−rock ? f2−2f) (! = ? f1−0f ? f2−0f)
(c o n n e c t e d ? f2−0f ? f2−1f) (not (a t ? robby ? f2−2f)) (not (bombmove connected ?

270

Chapter D. Policies

robby ? f r o m l o c ? f2−2f)) (not (h o l d s ?bomb ? robby)) (not (a t ? robby ? f1−0f)) (
not (c l e a r ? f2−2f)) (not (no−soft−rock ? f2−2f)) (not (no−gold ? f2−2f)) (not (
d e s t r o y e d ?bomb)) (not (ho lds−gold ? robby)) (not (a t ? robby ? f2−1f)))

: goa lCondi t i on (and (ho lds−gold ? robby))
: a c t i o n (longmove move robby f r o m l o c f1−0f)

)
(: r u l e Rule35

: parameters (? robby − r o b o t ?bomb − bomb ? l a s e r − l a s e r ? f2−0f − l o c ? f2−1f − l o c
? f1−0f − l o c ? f2−2f − l o c ? f r o m l o c − l o c)

: c o n d i t i o n (and (c l e a r ? f1−0f) (! = ? f2−2f ? f2−1f) (l o n gm ov e c on ne c t e d ? robby ?
f r o m l o c ? f1−0f) (! = ? f2−1f ? f2−0f) (c o n n e c t e d ? f2−1f ? f2−2f) (a t ?bomb ? f1−0f)

(n o t− c l e a r ? f2−2f) (h o l d s ? l a s e r ? robby) (so f t− rock−a t ? f2−2f) (! = ? f2−2f ?
f1−0f) (a t−gold ? f2−2f) (c l e a r ? f2−0f) (c l e a r ? f2−1f) (! = ? f2−2f ? f2−0f) (a t ?
robby ? f2−0f) (! = ? f1−0f ? f2−1f) (no−hard−rock ? f2−2f) (! = ? f1−0f ? f2−0f) (
c o n n e c t e d ? f2−0f ? f2−1f) (not (a t ? robby ? f2−2f)) (not (bombmove connected ?
robby ? f r o m l o c ? f2−2f)) (not (h o l d s ?bomb ? robby)) (not (arm−empty ? robby)) (
not (a t ? robby ? f1−0f)) (not (a t ? l a s e r ? f2−0f)) (not (c l e a r ? f2−2f)) (not (
no−gold ? f2−2f)) (not (no−soft−rock ? f2−2f)) (not (d e s t r o y e d ?bomb)) (not (
ho lds−gold ? robby)) (not (a t ? robby ? f2−1f)))

: goa lCondi t i on (and (ho lds−gold ? robby))
: a c t i o n (putdown robby l a s e r f2−0f)

)
(: r u l e Rule36

: parameters (? robby − r o b o t ?bomb − bomb ? l a s e r − l a s e r ? f2−0f − l o c ? f2−1f − l o c
? f1−0f − l o c ? f2−2f − l o c ? f r o m l o c − l o c)

: c o n d i t i o n (and (c l e a r ? f1−0f) (n o t− c l e a r ? f2−1f) (! = ? f2−2f ? f2−1f) (
l on gm o ve c on ne c t e d ? robby ? f r o m l o c ? f1−0f) (! = ? f2−1f ? f2−0f) (a t ?bomb ? f1−0f
) (c o n n e c t e d ? f2−1f ? f2−2f) (n o t− c l e a r ? f2−2f) (h o l d s ? l a s e r ? robby) (
so f t− rock−a t ? f2−2f) (! = ? f2−2f ? f1−0f) (a t−gold ? f2−2f) (c l e a r ? f2−0f) (
so f t− rock−a t ? f2−1f) (no−gold ? f2−1f) (! = ? f2−2f ? f2−0f) (a t ? robby ? f2−0f) (
no−hard−rock ? f2−1f) (! = ? f1−0f ? f2−1f) (no−hard−rock ? f2−2f) (! = ? f1−0f ? f2−0f
) (c o n n e c t e d ? f2−0f ? f2−1f) (not (a t ? robby ? f2−2f)) (not (bombmove connected ?
robby ? f r o m l o c ? f2−2f)) (not (h o l d s ?bomb ? robby)) (not (arm−empty ? robby)) (
not (a t ? robby ? f1−0f)) (not (a t ? l a s e r ? f2−0f)) (not (c l e a r ? f2−2f)) (not (
no−gold ? f2−2f)) (not (no−soft−rock ? f2−2f)) (not (d e s t r o y e d ?bomb)) (not (
ho lds−gold ? robby)) (not (a t ? robby ? f2−1f)) (not (no−soft−rock ? f2−1f)) (not (
c l e a r ? f2−1f)))

: goa lCondi t i on (and (ho lds−gold ? robby))
: a c t i o n (f i re− l aser−0−1 robby l a s e r f2−0f f2−1f)

)
(: r u l e Rule37

: parameters (? robby − r o b o t ?bomb − bomb ? l a s e r − l a s e r ? f2−0f − l o c ? f2−1f − l o c
? f1−0f − l o c ? f2−2f − l o c ? f r o m l o c − l o c)

: c o n d i t i o n (and (c l e a r ? f1−0f) (n o t− c l e a r ? f2−1f) (! = ? f2−2f ? f2−1f) (a t ? robby ?
f r o m l o c) (f i r e m o v e c o n n e c t e d ? robby ? f r o m l o c ? f2−0f) (l o n gm ov e c on ne c t e d ?
robby ? f r o m l o c ? f1−0f) (! = ? f2−1f ? f2−0f) (a t ?bomb ? f1−0f) (c o n n e c t e d ? f2−1f
? f2−2f) (n o t− c l e a r ? f2−2f) (h o l d s ? l a s e r ? robby) (so f t− rock−a t ? f2−2f) (! = ?
f2−2f ? f1−0f) (a t−gold ? f2−2f) (so f t− rock−a t ? f2−1f) (no−gold ? f2−1f) (! = ?
f2−2f ? f2−0f) (no−hard−rock ? f2−1f) (! = ? f1−0f ? f2−1f) (no−hard−rock ? f2−2f)
(! = ? f1−0f ? f2−0f) (c o n n e c t e d ? f2−0f ? f2−1f) (not (a t ? robby ? f2−0f)) (not (a t
? robby ? f2−2f)) (not (bombmove connected ? robby ? f r o m l o c ? f2−2f)) (not (h o l d s
?bomb ? robby)) (not (arm−empty ? robby)) (not (a t ? l a s e r ? f2−0f)) (not (c l e a r ?
f2−2f)) (not (no−gold ? f2−2f)) (not (no−soft−rock ? f2−2f)) (not (d e s t r o y e d ?
bomb)) (not (ho lds−gold ? robby)) (not (a t ? robby ? f2−1f)) (not (no−soft−rock ?
f2−1f)) (not (c l e a r ? f2−1f)))

: goa lCondi t i on (and (ho lds−gold ? robby))
: a c t i o n (f i r emove move robby f r o m l o c f2−0f)

)
(: r u l e Rule38

: parameters (? robby − r o b o t ?bomb − bomb ? l a s e r − l a s e r ? f2−0f − l o c ? f2−1f − l o c
? f1−0f − l o c ? f2−2f − l o c ? f r o m l o c − l o c)

: c o n d i t i o n (and (c l e a r ? f1−0f) (n o t− c l e a r ? f2−1f) (! = ? f2−2f ? f2−1f) (
l on gm o ve c on ne c t e d ? robby ? f r o m l o c ? f1−0f) (! = ? f2−1f ? f2−0f) (a t ?bomb ? f1−0f
) (c o n n e c t e d ? f2−1f ? f2−2f) (n o t− c l e a r ? f2−2f) (so f t− rock−a t ? f2−2f) (! = ? f2−2f

? f1−0f) (a t ? l a s e r ? f1−0f) (a t−gold ? f2−2f) (so f t− rock−a t ? f2−1f) (no−gold ?
f2−1f) (! = ? f2−2f ? f2−0f) (no−hard−rock ? f2−1f) (! = ? f1−0f ? f2−1f) (arm−empty ?
robby) (no−hard−rock ? f2−2f) (a t ? robby ? f1−0f) (! = ? f1−0f ? f2−0f) (c o n n e c t e d ?

271

Chapter D. Policies

f2−0f ? f2−1f) (not (a t ? robby ? f2−0f)) (not (a t ? robby ? f2−2f)) (not (
bombmove connected ? robby ? f r o m l o c ? f2−2f)) (not (h o l d s ?bomb ? robby)) (not (
a t ? l a s e r ? f2−0f)) (not (c l e a r ? f2−2f)) (not (h o l d s ? l a s e r ? robby)) (not (
no−gold ? f2−2f)) (not (no−soft−rock ? f2−2f)) (not (d e s t r o y e d ?bomb)) (not (
ho lds−gold ? robby)) (not (a t ? robby ? f2−1f)) (not (no−soft−rock ? f2−1f)) (not (
c l e a r ? f2−1f)))

: goa lCondi t i on (and (ho lds−gold ? robby))
: a c t i o n (p i ck up robby l a s e r f1−0f)

)
(: r u l e Rule39

: parameters (? robby − r o b o t ?bomb − bomb ? l a s e r − l a s e r ? f2−0f − l o c ? f2−1f − l o c
? f1−0f − l o c ? f2−2f − l o c ? f r o m l o c − l o c)

: c o n d i t i o n (and (c l e a r ? f1−0f) (n o t− c l e a r ? f2−1f) (! = ? f2−2f ? f2−1f) (a t ? robby ?
f r o m l o c) (l on g mo ve c on ne c t e d ? robby ? f r o m l o c ? f1−0f) (! = ? f2−1f ? f2−0f) (a t ?
bomb ? f1−0f) (c o n n e c t e d ? f2−1f ? f2−2f) (n o t− c l e a r ? f2−2f) (so f t− rock−a t ? f2−2f)

(! = ? f2−2f ? f1−0f) (a t ? l a s e r ? f1−0f) (a t−gold ? f2−2f) (so f t− rock−a t ? f2−1f) (
no−gold ? f2−1f) (l o n gm ov e c on ne c t e d ? robby ? f r o m l o c ? f1−0f) (! = ? f2−2f ? f2−0f)

(no−hard−rock ? f2−1f) (! = ? f1−0f ? f2−1f) (arm−empty ? robby) (no−hard−rock ?
f2−2f) (! = ? f1−0f ? f2−0f) (c o n n e c t e d ? f2−0f ? f2−1f) (not (a t ? robby ? f2−2f)) (
not (bombmove connected ? robby ? f r o m l o c ? f2−2f)) (not (h o l d s ?bomb ? robby)) (
not (a t ? robby ? f1−0f)) (not (a t ? l a s e r ? f2−0f)) (not (c l e a r ? f2−2f)) (not (
h o l d s ? l a s e r ? robby)) (not (no−gold ? f2−2f)) (not (no−soft−rock ? f2−2f)) (not (
d e s t r o y e d ?bomb)) (not (ho lds−gold ? robby)) (not (a t ? robby ? f2−1f)) (not (
no−soft−rock ? f2−1f)) (not (c l e a r ? f2−1f)))

: goa lCondi t i on (and (ho lds−gold ? robby))
: a c t i o n (longmove move robby f r o m l o c f1−0f)

)
)
� �
D.4.3 Structure briefcase� �
(d e f i n e (p o l i c y P o l i c y 3)

(: domain SBC)
(: r u l e Rule8

: parameters (? package1 − o b j ? t r u c k 1 − t r u c k ? s2 − l o c a t i o n)
: c o n d i t i o n (and (a t ? t r u c k 1 ? s2) (i n ? package1 ? t r u c k 1) (not (a t ? package1 ? s2)))
: goa lCondi t i on (and (a t ? package1 ? s2))
: a c t i o n (un load− t r uck package1 t r u c k 1 s2)

)
(: r u l e Rule9

: parameters (? package1 − o b j ? t r u c k 1 − t r u c k ? s2 − l o c a t i o n ? f r o m l o c a t i o n −
l o c a t i o n)

: c o n d i t i o n (and (a t ? t r u c k 1 ? f r o m l o c a t i o n) (i n ? package1 ? t r u c k 1) (
l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? f r o m l o c a t i o n ? s2) (not (a t ? package1 ? s2)) (not
(a t ? t r u c k 1 ? s2)))

: goa lCondi t i on (and (a t ? package1 ? s2))
: a c t i o n (l o n g d r i v e m o v e t r u c k 1 f r o m l o c a t i o n s2)

)
(: r u l e Rule10

: parameters (? package1 − o b j ? s4 − l o c a t i o n ? t r u c k 1 − t r u c k ? s2 − l o c a t i o n)
: c o n d i t i o n (and (a t ? package1 ? s4) (a t ? t r u c k 1 ? s4) (l o n g d r i v e c o n n e c t e d ? t r u c k 1 ?

s4 ? s2) (! = ? s2 ? s4) (not (a t ? package1 ? s2)) (not (a t ? t r u c k 1 ? s2)) (not (i n ?
package1 ? t r u c k 1)))

: goa lCondi t i on (and (a t ? package1 ? s2))
: a c t i o n (l o a d− t r u c k package1 t r u c k 1 s4)

)
(: r u l e Rule11

: parameters (? package1 − o b j ? s4 − l o c a t i o n ? t r u c k 1 − t r u c k ? s2 − l o c a t i o n ?
f r o m l o c a t i o n − l o c a t i o n)

: c o n d i t i o n (and (a t ? package1 ? s4) (a t ? t r u c k 1 ? f r o m l o c a t i o n) (
l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? f r o m l o c a t i o n ? s4) (! = ? s2 ? s4) (
l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? f r o m l o c a t i o n ? s2) (not (a t ? package1 ? s2)) (not
(a t ? t r u c k 1 ? s4)) (not (i n ? package1 ? t r u c k 1)))

: goa lCondi t i on (and (a t ? package1 ? s2))

272

Chapter D. Policies

: a c t i o n (l o n g d r i v e m o v e t r u c k 1 f r o m l o c a t i o n s4)
)
)
� �

273

Chapter D. Policies

D.5 Learned

We present the learned Driverlog and Goldminer policies, as these are the main contri-
butions from this work. Rule names have been changed by hand to assist comprehen-
sion.

D.5.1 Driverlog� �
(d e f i n e (p o l i c y a6119)
(: domain d r i v e r l o g)
(: r u l e load−misplaced−package

: parameters (? s4 − l o c a t i o n ? o b j − o b j ? t r u c k − t r u c k ? l o c − l o c a t i o n ? d r i v e r 1 −
d r i v e r)

: c o n d i t i o n (and (d r i v i n g ? d r i v e r 1 ? t r u c k) (a t ? o b j ? l o c) (a t ? t r u c k ? l o c) (not (i n
? o b j ? t r u c k)) (not (a t ? o b j ? s4)) (not (a t ? t r u c k ? s4)) (! = ? l o c ? s4))

: goa lCondi t i on (and (a t ? o b j ? s4))
: a c t i o n (l o a d− t r u c k ? o b j ? t r u c k ? l o c)

)
(: r u l e d i s e m b a r k A t D r i v e r G o a l−w i t h o u t F u l l C o n s i d e r a t i o n ; p a r t i a l l y p r o t e c t e d r u l e

: parameters (? d r i v e r − d r i v e r ? package1 − o b j ? s4 − l o c a t i o n ? Add t ruck1892 −
t r u c k ? t r u c k − t r u c k ? l o c − l o c a t i o n)

: c o n d i t i o n (and (a t ? t r u c k ? l o c) (d r i v i n g ? d r i v e r ? t r u c k) (a t ? package1 ? s4) (not (
empty ? t r u c k)) (not (a t ? d r i v e r ? l o c)) (not (d r i v i n g ? d r i v e r ? Add t ruck1892))
(! = ? l o c ? s4))

: goa lCondi t i on (and (a t ? package1 ? s4) (a t ? d r i v e r ? l o c) (not (a t ? t r u c k ? l o c)))
: a c t i o n (d i s embark− t r uck ? d r i v e r ? t r u c k ? l o c)

)
(: r u l e un loadAtGoa l

: parameters (? o b j − o b j ? s3 − l o c a t i o n ? t r u c k − t r u c k ? l o c − l o c a t i o n ? d r i v e r 1 −
d r i v e r)

: c o n d i t i o n (and (a t ? t r u c k ? l o c) (i n ? o b j ? t r u c k) (a t ? t r u c k ? l o c) (d r i v i n g ?
d r i v e r 1 ? t r u c k) (not (empty ? t r u c k)) (not (a t ? o b j ? l o c)) (! = ? s3 ? l o c))

: goa lCondi t i on (and (a t ? o b j ? l o c) (a t ? d r i v e r 1 ? s3))
: a c t i o n (un load− t r uck ? o b j ? t r u c k ? l o c)

)
(: r u l e moveToDropoff

: parameters (? package1 − o b j ? loc−from − l o c a t i o n ? loc− to − l o c a t i o n ? s3 −
l o c a t i o n ? t r u c k − t r u c k ? d r i v e r 1 − d r i v e r)

: c o n d i t i o n (and (a t ? t r u c k ? loc−from) (i n ? package1 ? t r u c k) (d r i v i n g ? d r i v e r 1 ?
t r u c k) (not (empty ? t r u c k)) (not (a t ? t r u c k ? loc− to)) (not (a t ? package1 ?
loc− to)) (not (a t ? d r i v e r 1 ? s3)) (l o n g d r i v e c o n n e c t e d ? t r u c k ? loc−from ? s3) (
l o n g d r i v e c o n n e c t e d ? t r u c k ? loc−from ? loc− to) (! = ? s3 ? loc− to))

: goa lCondi t i on (and (a t ? package1 ? loc− to) (a t ? d r i v e r 1 ? s3) (not (a t ? t r u c k ?
loc−from)) (not (a t ? t r u c k ? loc− to)))

: a c t i o n (l o n g d r i v e m o v e ? t r u c k ? loc−from ? loc− to)
)
(: r u l e w a l k D r i v e r T o O b j e c t I f P a t h C o n n e c t e d ; U n l i k e l y , because macro a p p l i c a t i o n

: parameters (? d r i v e r − d r i v e r ? loc−from − l o c a t i o n ? loc− to − l o c a t i o n ? a d d e d o b j 1
− o b j)

: c o n d i t i o n (and (a t ? a d d e d o b j 1 ? loc− to) (a t ? d r i v e r ? loc−from) (p a t h ? loc−from ?
loc− to))

: goa lCondi t i on (and)
: a c t i o n (walk ? d r i v e r ? loc−from ? loc− to)

)
(: r u l e b o a r d I f U n d e l i v e r e d P a c k a g e

: parameters (? d r i v e r − d r i v e r ? package1 − o b j ? s4 − l o c a t i o n ? s13 − l o c a t i o n ?
t r u c k − t r u c k ? s3 − l o c a t i o n ? l o c − l o c a t i o n)

: c o n d i t i o n (and (a t ? d r i v e r ? l o c) (a t ? t r u c k ? l o c) (empty ? t r u c k) (not (a t ? d r i v e r
? s3)) (not (a t ? package1 ? s4)) (! = ? s3 ? s13) (! = ? l o c ? s3) (! = ? l o c ? s4) (! = ?
l o c ? s13) (! = ? s13 ? s4))

: goa lCondi t i on (and (a t ? d r i v e r ? s3) (a t ? package1 ? s4))
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

274

Chapter D. Policies

)
(: r u l e walkToBoardMisp lacedTruck

: parameters (? d r i v e r − d r i v e r ? t r u c k 1 − t r u c k ? package1 − o b j ? s4 − l o c a t i o n ?
loc−from − l o c a t i o n ? s14 − l o c a t i o n ? loc− to − l o c a t i o n ? s13 − l o c a t i o n ? s3 −
l o c a t i o n ? s7 − l o c a t i o n)

: c o n d i t i o n (and (a t ? package1 ? s13) (empty ? t r u c k 1) (a t ? package1 ? s7) (a t ? t r u c k 1
? loc− to) (a t ? d r i v e r ? loc−from) (not (i n ? package1 ? t r u c k 1)) (not (a t ? t r u c k 1 ?
s3)) (not (a t ? package1 ? s4)) (! = ? s13 ? s4) (! = ? s14 ? loc− to) (! = ? s7 ? loc− to)
(! = ? loc− to ? s4) (! = ? s3 ? s13) (l o n g w a l k c o n n e c t e d ? d r i v e r ? loc−from ? loc− to)
(not (l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? loc− to ? s4)))

: goa lCondi t i on (and (a t ? package1 ? s7) (a t ? t r u c k 1 ? s14) (not (a t ? d r i v e r ? loc− to))
)

: a c t i o n (long walk move ? d r i v e r ? loc−from ? loc− to)
)
(: r u l e un loadAtGoa l

: parameters (? o b j − o b j ? t r u c k − t r u c k ? l o c − l o c a t i o n)
: c o n d i t i o n (and (a t ? t r u c k ? l o c) (i n ? o b j ? t r u c k))
: goa lCondi t i on (and (a t ? o b j ? l o c))
: a c t i o n (un load− t r uck ? o b j ? t r u c k ? l o c)

)
(: r u l e N o t−u n i f i a b l e

: parameters (? A d d l o c a t i o n 8 2 5 2 − l o c a t i o n ? A d d l o c a t i o n 8 2 5 3 − l o c a t i o n ? loc−from −
l o c a t i o n ? loc− to − l o c a t i o n ? t r u c k − t r u c k)

: c o n d i t i o n (and (a t ? t r u c k ? loc−from) (not (p a t h ? A d d l o c a t i o n 8 2 5 2 ? loc− to)) (not (
p a t h ? loc−from ? loc− to)) (l o n g d r i v e c o n n e c t e d ? t r u c k ? loc−from ? loc− to))

: goa lCondi t i on (and (a t ? t r u c k ? loc−from) (a t ? t r u c k ? A d d l o c a t i o n 8 2 5 3) (not (a t ?
t r u c k ? loc−from)))

: a c t i o n (l o n g d r i v e m o v e ? t r u c k ? loc−from ? loc− to)
)
(: r u l e DriveToPickupPackage

: parameters (? package1 − o b j ? s4 − l o c a t i o n ? loc−from − l o c a t i o n ? loc− to −
l o c a t i o n ? t r u c k − t r u c k ? s3 − l o c a t i o n ? d r i v e r 1 − d r i v e r)

: c o n d i t i o n (and (a t ? package1 ? loc− to) (a t ? t r u c k ? loc−from) (not (a t ? d r i v e r 1 ? s3)
) (not (a t ? package1 ? s4)) (! = ? s3 ? s4) (! = ? loc− to ? s4) (! = ? s3 ? loc− to) (
l o n g d r i v e c o n n e c t e d ? t r u c k ? loc−from ? loc− to))

: goa lCondi t i on (and (a t ? package1 ? s4))
: a c t i o n (l o n g d r i v e m o v e ? t r u c k ? loc−from ? loc− to)

)
(: r u l e D i s e m b a r k−a t D r i v e r g o a l ; an example o f where v e r s i o n s p a c e s would have h e l p e d .

: parameters (? d r i v e r − d r i v e r ? package1 − o b j ? s4 − l o c a t i o n ? t r u c k − t r u c k ? l o c −
l o c a t i o n)

: c o n d i t i o n (and (a t ? t r u c k ? l o c) (d r i v i n g ? d r i v e r ? t r u c k) (a t ? package1 ? s4) (not (
empty ? t r u c k)) (not (a t ? d r i v e r ? l o c)) (! = ? l o c ? s4))

: goa lCondi t i on (and (a t ? package1 ? s4) (a t ? d r i v e r ? l o c))
: a c t i o n (d i s embark− t r uck ? d r i v e r ? t r u c k ? l o c)

)
(: r u l e Unloadpackage ; aga in .

: parameters (? o b j − o b j ? t r u c k − t r u c k ? l o c − l o c a t i o n)
: c o n d i t i o n (and (a t ? t r u c k ? l o c) (i n ? o b j ? t r u c k) (not (! = ? t r u c k ? t r u c k)))
: goa lCondi t i on (and (a t ? o b j ? l o c))
: a c t i o n (un load− t r uck ? o b j ? t r u c k ? l o c)

)
(: r u l e moveToDropoff ; aga in

: parameters (? package1 − o b j ? loc−from − l o c a t i o n ? loc− to − l o c a t i o n ? s3 −
l o c a t i o n ? t r u c k − t r u c k ? d r i v e r 1 − d r i v e r)

: c o n d i t i o n (and (i n ? package1 ? t r u c k) (d r i v i n g ? d r i v e r 1 ? t r u c k) (a t ? t r u c k ?
loc−from) (not (a t ? package1 ? loc− to)) (not (a t ? d r i v e r 1 ? s3)) (
l o n g d r i v e c o n n e c t e d ? t r u c k ? loc−from ? loc− to))

: goa lCondi t i on (and (a t ? package1 ? loc− to) (a t ? d r i v e r 1 ? s3))
: a c t i o n (l o n g d r i v e m o v e ? t r u c k ? loc−from ? loc− to)

)
(: r u l e moveToDropoff ; aga in

: parameters (? package1 − o b j ? loc−from − l o c a t i o n ? loc− to − l o c a t i o n ? t r u c k −
t r u c k ? a d d e d t r u c k 0 − t r u c k ? d r i v e r 1 − d r i v e r)

: c o n d i t i o n (and (a t ? t r u c k ? loc−from) (d r i v i n g ? d r i v e r 1 ? t r u c k) (i n ? package1 ?
t r u c k) (not (empty ? a d d e d t r u c k 0)) (not (a t ? package1 ? loc− to)) (
l o n g d r i v e c o n n e c t e d ? t r u c k ? loc−from ? loc− to))

275

Chapter D. Policies

: goa lCondi t i on (and (a t ? package1 ? loc− to) (not (a t ? t r u c k ? loc− to)))
: a c t i o n (l o n g d r i v e m o v e ? t r u c k ? loc−from ? loc− to)

)
(: r u l e moveDriverToGoal

: parameters (? Add t ruck6600 − t r u c k ? t r u c k 1 − t r u c k ? d r i v e r − d r i v e r ? package1 −
o b j ? loc−from − l o c a t i o n ? s14 − l o c a t i o n ? loc− to − l o c a t i o n ? s7 − l o c a t i o n)

: c o n d i t i o n (and (a t ? t r u c k 1 ? s14) (a t ? d r i v e r ? loc−from) (a t ? d r i v e r ? loc−from) (a t
? package1 ? s7) (not (a t ? d r i v e r ? loc− to)) (l o n g w a l k c o n n e c t e d ? d r i v e r ?

loc−from ? loc− to) (! = ? s14 ? s7) (! = ? s7 ? loc− to))
: goa lCondi t i on (and (a t ? d r i v e r ? loc− to) (a t ? t r u c k 1 ? s14) (a t ? package1 ? s7) (a t ?

Add t ruck6600 ? loc−from))
: a c t i o n (long walk move ? d r i v e r ? loc−from ? loc− to)

)
(: r u l e Board I fMisp l acedDr ive rAndTruckHasGoa l ; n o t q u i t e . .

: parameters (? A d d l o c a t i o n 6 7 0 − l o c a t i o n ? d r i v e r − d r i v e r ? t r u c k − t r u c k ? l o c −
l o c a t i o n)

: c o n d i t i o n (and (empty ? t r u c k) (a t ? d r i v e r ? l o c) (a t ? t r u c k ? l o c) (not (d r i v i n g ?
d r i v e r ? t r u c k)))

: goa lCondi t i on (and (a t ? t r u c k ? A d d l o c a t i o n 6 7 0) (not (a t ? d r i v e r ? l o c)))
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

)
(: r u l e moveTruckHome

: parameters (? loc−from − l o c a t i o n ? loc− to − l o c a t i o n ? t r u c k − t r u c k)
: c o n d i t i o n (and (a t ? t r u c k ? loc−from) (l o n g d r i v e c o n n e c t e d ? t r u c k ? loc−from ?

loc− to))
: goa lCondi t i on (and (a t ? t r u c k ? loc− to))
: a c t i o n (l o n g d r i v e m o v e ? t r u c k ? loc−from ? loc− to)

)
(: r u l e N o t−u n i f i a b l e

: parameters (? d r i v e r − d r i v e r ? t r u c k − t r u c k ? l o c − l o c a t i o n)
: c o n d i t i o n (and (p a t h ? l o c ? l o c) (l i n k ? l o c ? l o c) (a t ? t r u c k ? l o c) (a t ? d r i v e r ? l o c

) (empty ? t r u c k) (! = ? t r u c k ? t r u c k))
: goa lCondi t i on (and)
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

)
(: r u l e N o t−u n i f i a b l e

: parameters (? d r i v e r − d r i v e r ? t r u c k − t r u c k ? l o c − l o c a t i o n)
: c o n d i t i o n (and (a t ? t r u c k ? l o c) (a t ? d r i v e r ? l o c) (empty ? t r u c k) (! = ? t r u c k ? t r u c k

))
: goa lCondi t i on (and)
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

)
(: r u l e moveDriverToGoal

: parameters (? t r u c k 1 − t r u c k ? d r i v e r − d r i v e r ? package1 − o b j ? loc−from − l o c a t i o n
? s14 − l o c a t i o n ? loc− to − l o c a t i o n ? s7 − l o c a t i o n)

: c o n d i t i o n (and (a t ? t r u c k 1 ? s14) (a t ? d r i v e r ? loc−from) (a t ? package1 ? s7) (not (
a t ? d r i v e r ? loc− to)) (l o n g w a l k c o n n e c t e d ? d r i v e r ? loc−from ? loc− to) (! = ? s14 ?
s7) (! = ? s7 ? loc− to))

: goa lCondi t i on (and (a t ? d r i v e r ? loc− to) (a t ? t r u c k 1 ? s14) (a t ? package1 ? s7))
: a c t i o n (long walk move ? d r i v e r ? loc−from ? loc− to)

)
(: r u l e d r i v e r T o A D r i v e r s G o a l

: parameters (? loc−from − l o c a t i o n ? A d d d r i v e r 6 9 6 8 − d r i v e r ? loc− to − l o c a t i o n ?
A d d l o c a t i o n 5 2 3 6 − l o c a t i o n ? Add t ruck5231 − t r u c k ? t r u c k − t r u c k)

: c o n d i t i o n (and (a t ? t r u c k ? loc−from) (not (empty ? t r u c k)) (not (p a t h ? loc−from ?
A d d l o c a t i o n 5 2 3 6)) (l o n g d r i v e c o n n e c t e d ? t r u c k ? loc−from ? loc− to))

: goa lCondi t i on (and (a t ? A d d d r i v e r 6 9 6 8 ? loc− to) (not (a t ? Add t ruck5231 ? loc− to))
(not (a t ? t r u c k ? loc−from)))

: a c t i o n (l o n g d r i v e m o v e ? t r u c k ? loc−from ? loc− to)
)
(: r u l e N o t−u n i f i a b l e

: parameters (? d r i v e r − d r i v e r ? t r u c k − t r u c k ? l o c − l o c a t i o n)
: c o n d i t i o n (and (a t ? t r u c k ? l o c) (a t ? d r i v e r ? l o c) (empty ? t r u c k) (! = ? t r u c k ? t r u c k

))
: goa lCondi t i on (and)
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

)

276

Chapter D. Policies

(: r u l e N o t−u n i f i a b l e
: parameters (? d r i v e r − d r i v e r ? t r u c k − t r u c k ? l o c − l o c a t i o n)
: c o n d i t i o n (and (p a t h ? l o c ? l o c) (l i n k ? l o c ? l o c) (a t ? t r u c k ? l o c) (a t ? d r i v e r ? l o c

) (empty ? t r u c k) (! = ? t r u c k ? t r u c k))
: goa lCondi t i on (and)
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

)
(: r u l e d i sembarkTruck

: parameters (? a d d e d l o c a t i o n 1 − l o c a t i o n ? d r i v e r − d r i v e r ? t r u c k − t r u c k ?
Add t ruck13886 − t r u c k ? l o c − l o c a t i o n)

: c o n d i t i o n (and (a t ? t r u c k ? l o c) (d r i v i n g ? d r i v e r ? t r u c k) (l o n g d r i v e c o n n e c t e d ?
Add t ruck13886 ? l o c ? a d d e d l o c a t i o n 1) (not (! = ? t r u c k ? t r u c k)))

: goa lCondi t i on (and)
: a c t i o n (d i s embark− t r uck ? d r i v e r ? t r u c k ? l o c)

)
(: r u l e N o t−u n i f i a b l e

: parameters (? d r i v e r − d r i v e r ? t r u c k − t r u c k ? l o c − l o c a t i o n)
: c o n d i t i o n (and (p a t h ? l o c ? l o c) (l i n k ? l o c ? l o c) (a t ? t r u c k ? l o c) (a t ? d r i v e r ? l o c

) (empty ? t r u c k) (! = ? t r u c k ? t r u c k))
: goa lCondi t i on (and)
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

)
(: r u l e Board

: parameters (? d r i v e r − d r i v e r ? A d d l o c a t i o n 1 2 6 8 5 − l o c a t i o n ? t r u c k − t r u c k ? l o c −
l o c a t i o n)

: c o n d i t i o n (and (a t ? t r u c k ? l o c) (a t ? d r i v e r ? l o c) (empty ? t r u c k) (not (p a t h ?
A d d l o c a t i o n 1 2 6 8 5 ? l o c)))

: goa lCondi t i on (and)
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

)
(: r u l e WalkToATruck

: parameters (? t r u c k 1 − t r u c k ? d r i v e r − d r i v e r ? package1 − o b j ? s4 − l o c a t i o n ?
loc−from − l o c a t i o n ? loc− to − l o c a t i o n ? s13 − l o c a t i o n ? s3 − l o c a t i o n)

: c o n d i t i o n (and (a t ? d r i v e r ? loc−from) (empty ? t r u c k 1) (a t ? t r u c k 1 ? loc− to) (not (
a t ? t r u c k 1 ? s4)) (not (a t ? t r u c k 1 ? s13)) (not (a t ? package1 ? s4)) (not (a t ?
t r u c k 1 ? s3)) (l o n g w a l k c o n n e c t e d ? d r i v e r ? loc−from ? loc− to) (! = ? s3 ? s13) (! =
? loc− to ? s3) (! = ? loc− to ? s4) (! = ? loc− to ? s13) (! = ? s13 ? s4) (not (
l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? loc− to ? s3)) (not (l o n g d r i v e c o n n e c t e d ? t r u c k 1 ?
loc− to ? s13)) (not (l o n g d r i v e c o n n e c t e d ? t r u c k 1 ? loc− to ? s4)))

: goa lCondi t i on (and (a t ? package1 ? s4))
: a c t i o n (long walk move ? d r i v e r ? loc−from ? loc− to)

)
(: r u l e Dr iveTruck

: parameters (? loc−from − l o c a t i o n ? loc− to − l o c a t i o n ? t r u c k − t r u c k ? a d d e d t r u c k 0
− t r u c k)

: c o n d i t i o n (and (a t ? t r u c k ? loc−from) (not (empty ? a d d e d t r u c k 0)) (
l o n g d r i v e c o n n e c t e d ? t r u c k ? loc−from ? loc− to))

: goa lCondi t i on (and)
: a c t i o n (l o n g d r i v e m o v e ? t r u c k ? loc−from ? loc− to)

)
(: r u l e Board

: parameters (? d r i v e r − d r i v e r ? A d d l o c a t i o n 2 3 4 4 − l o c a t i o n ? t r u c k − t r u c k ? l o c −
l o c a t i o n)

: c o n d i t i o n (and (empty ? t r u c k) (a t ? t r u c k ? l o c) (a t ? d r i v e r ? l o c) (not (p a t h ?
A d d l o c a t i o n 2 3 4 4 ? A d d l o c a t i o n 2 3 4 4)) (not (d r i v i n g ? d r i v e r ? t r u c k)))

: goa lCondi t i on (and)
: a c t i o n (boa rd− t ruck ? d r i v e r ? t r u c k ? l o c)

)
)
� �
D.5.2 Goldminer� �
(d e f i n e (p o l i c y a877)
(: domain g o l d m i n e r)

277

Chapter D. Policies

(: r u l e PickupGold
: parameters (? x − l o c ? r − r o b o t)
: c o n d i t i o n (and (a t−gold ? x) (arm−empty ? r) (a t ? r ? x) (not (ho lds−gold ? r)) (not (

no−gold ? x)))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (p ickup−gold ? r ? x)

)
(: r u l e MoveToGoldSquare

: parameters (? x − l o c ? y − l o c ? f0−2f − l o c ? r − r o b o t)
: c o n d i t i o n (and (a t ? r ? x) (a t−gold ? y) (c o n n e c t e d ? f0−2f ? y) (not (no−gold ? y)) (

not (a t ? r ? y)) (not (ho lds−gold ? r)) (! = ? f0−2f ? y) (BombMoveBag connected ? r
? x ? y))

: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (BombMoveBag move ? r ? x ? y)

)
(: r u l e EmptyHand ; Use p r o t e c t e d by p r e v i o u s r u l e

: parameters (? x − l o c ? y − l o c ? a d d e d r o b o t 0 − r o b o t ? b − bomb ? r − r o b o t)
: c o n d i t i o n (and (arm−empty ? r) (a t ? r ? x) (h o l d s ? b ? r) (c o n n e c t e d ? x ? y) (

so f t− rock−a t ? y) (no−hard−rock ? y) (n o t− c l e a r ? y))
: goa lCondi t i on (and (ho lds−gold ? a d d e d r o b o t 0))
: a c t i o n (detonate−bomb−1 ? r ? b ? x ? y)

)
(: r u l e PickupBomb ; l o c a t i o n n e x t t o go ld i s c l e a r

: parameters (? x − l o c ? f0−2f − l o c ? f0−3f − l o c ? h − bomb ? f0−1f − l o c ? r − r o b o t)
: c o n d i t i o n (and (a t ? h ? x) (a t−gold ? f0−3f) (n o t− c l e a r ? f0−3f) (c l e a r ? f0−1f) (

c l e a r ? f0−2f) (arm−empty ? r) (a t ? r ? x) (no−hard−rock ? f0−3f) (so f t− rock−a t ?
f0−3f) (c o n n e c t e d ? f0−2f ? f0−3f) (c o n n e c t e d ? f0−1f ? f0−2f) (not (no−gold ? f0−3f
)) (not (ho lds−gold ? r)) (not (a t ? r ? f0−2f)) (not (no−soft−rock ? f0−3f)) (not
(d e s t r o y e d ? h)) (not (a t ? r ? f0−1f)) (not (h o l d s ? h ? r)) (not (a t ? r ? f0−3f)) (
not (c l e a r ? f0−3f)) (! = ? f0−1f ? x) (! = ? f0−2f ? x) (! = ? f0−2f ? f0−3f) (! = ? x ?
f0−3f) (! = ? f0−1f ? f0−3f) (! = ? f0−1f ? f0−2f) (not (BombMoveBag connected ? r ? x
? f0−3f)))

: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (p i ck up ? r ? h ? x)

)
(: r u l e PutdownLaser ; s l i g h t l y ove r p r o t e c t e d by (n o t (a t ? r ? f0−0f))

: parameters (? x − l o c ?bomb − bomb ? f0−2f − l o c ? f0−0f − l o c ? h − l a s e r ? f0−3f −
l o c ? r − r o b o t)

: c o n d i t i o n (and (a t ? r ? x) (h o l d s ? h ? r) (c l e a r ? x) (a t−gold ? f0−3f) (c l e a r ? f0−0f)
(c o n n e c t e d ? f0−2f ? f0−3f) (c l e a r ? f0−2f) (so f t− rock−a t ? f0−3f) (c o n n e c t e d ? x ?

f0−2f) (a t ?bomb ? f0−0f) (n o t− c l e a r ? f0−3f) (no−hard−rock ? f0−3f) (not (c l e a r ?
f0−3f)) (not (h o l d s ?bomb ? r)) (not (a t ? r ? f0−2f)) (not (d e s t r o y e d ?bomb)) (
not (a t ? h ? x)) (not (no−gold ? f0−3f)) (not (a t ? r ? f0−0f)) (not (a t ? r ? f0−3f)
) (not (ho lds−gold ? r)) (not (no−soft−rock ? f0−3f)) (not (arm−empty ? r)) (! = ? x

? f0−3f) (! = ? x ? f0−2f) (MoveBag connected ? r ? x ? f0−0f) (! = ? f0−0f ? f0−3f) (! =
? f0−2f ? f0−3f) (! = ? x ? f0−0f) (! = ? f0−2f ? f0−0f) (not (BombMoveBag connected ?

r ? x ? f0−3f)))
: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (putdown ? r ? h ? x)

)
(: r u l e PickupBomb ; f o r s m a l l e r g r i d s

: parameters (? x − l o c ? f0−2f − l o c ? h − bomb ? f0−1f − l o c ? r − r o b o t)
: c o n d i t i o n (and (no−hard−rock ? f0−2f) (n o t− c l e a r ? f0−2f) (a t ? h ? x) (c o n n e c t e d ?

f0−1f ? f0−2f) (arm−empty ? r) (a t−gold ? f0−2f) (so f t− rock−a t ? f0−2f) (c o n n e c t e d
? x ? f0−1f) (c l e a r ? f0−1f) (a t ? r ? x) (not (a t ? r ? f0−2f)) (not (ho lds−gold ? r))

(not (no−gold ? f0−2f)) (not (no−soft−rock ? f0−2f)) (not (h o l d s ? h ? r)) (not (
c l e a r ? f0−2f)) (not (a t ? r ? f0−1f)) (not (d e s t r o y e d ? h)) (! = ? f0−1f ? x) (! = ?
f0−1f ? f0−2f) (! = ? f0−2f ? x) (not (BombMoveBag connected ? r ? x ? f0−2f)))

: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (p i ck up ? r ? h ? x)

)
(: r u l e F i r e G o l d A d j a c e n t S q u a r e

: parameters (? x − l o c ?bomb − bomb ? y − l o c ? f0−0f − l o c ? f0−3f − l o c ? l − l a s e r ?
r − r o b o t)

: c o n d i t i o n (and (c o n n e c t e d ? y ? f0−3f) (c l e a r ? x) (no−hard−rock ? f0−3f) (a t ? r ? x) (
h o l d s ? l ? r) (n o t− c l e a r ? f0−3f) (a t ?bomb ? f0−0f) (a t−gold ? f0−3f) (no−gold ? y)

(n o t− c l e a r ? y) (so f t− rock−a t ? y) (so f t− rock−a t ? f0−3f) (c l e a r ? f0−0f) (

278

Chapter D. Policies

c o n n e c t e d ? x ? y) (no−soft−rock ? x) (no−hard−rock ? y) (not (a t ? r ? f0−0f)) (not
(c l e a r ? y)) (not (ho lds−gold ? r)) (not (c l e a r ? f0−3f)) (not (a t ? r ? y)) (not (
arm−empty ? r)) (not (d e s t r o y e d ?bomb)) (not (a t ? r ? f0−3f)) (not (no−soft−rock
? y)) (not (no−gold ? f0−3f)) (not (h o l d s ?bomb ? r)) (not (no−soft−rock ? f0−3f))
(! = ? y ? f0−3f) (MoveBag connected ? r ? x ? f0−0f) (! = ? x ? f0−3f) (! = ? x ? f0−0f)
(! = ? x ? y) (! = ? f0−0f ? f0−3f) (! = ? y ? f0−0f) (not (BombMoveBag connected ? r ? x
? f0−3f)))

: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (f i re− l aser−0−1 ? r ? l ? x ? y)

)
(: r u l e MoveToPickupBomb

: parameters (? x − l o c ?bomb − bomb ? y − l o c ? f0−2f − l o c ? f0−3f − l o c ? f0−1f − l o c
? r − r o b o t)

: c o n d i t i o n (and (n o t− c l e a r ? f0−3f) (a t ? r ? x) (a t ?bomb ? y) (so f t− rock−a t ? f0−3f) (
c o n n e c t e d ? f0−1f ? f0−2f) (a t−gold ? f0−3f) (c o n n e c t e d ? f0−2f ? f0−3f) (c l e a r ?
f0−2f) (arm−empty ? r) (no−hard−rock ? f0−3f) (c l e a r ? y) (c l e a r ? f0−1f) (not (
d e s t r o y e d ?bomb)) (not (a t ? r ? y)) (not (no−soft−rock ? f0−3f)) (not (c l e a r ?
f0−3f)) (not (h o l d s ?bomb ? r)) (not (a t ? r ? f0−2f)) (not (ho lds−gold ? r)) (not
(no−gold ? f0−3f)) (not (a t ? r ? f0−3f)) (! = ? f0−1f ? y) (! = ? f0−2f ? y) (! = ? y ?
f0−3f) (MoveBag connected ? r ? x ? y) (! = ? f0−1f ? f0−3f) (! = ? f0−2f ? f0−3f) (! = ?
f0−1f ? f0−2f) (not (BombMoveBag connected ? r ? x ? f0−3f)))

: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (MoveBag move ? r ? x ? y)

)
(: r u l e P i c k u p L a s e r

: parameters (? x − l o c ?bomb − bomb ? f0−2f − l o c ? h − l a s e r ? f0−3f − l o c ? f0−1f −
l o c ? r − r o b o t)

: c o n d i t i o n (and (so f t− rock−a t ? f0−3f) (a t ?bomb ? x) (a t ? h ? x) (c o n n e c t e d ? f0−1f ?
f0−2f) (so f t− rock−a t ? f0−2f) (c l e a r ? x) (n o t− c l e a r ? f0−2f) (no−hard−rock ? f0−3f
) (a t ? r ? x) (a t−gold ? f0−3f) (c o n n e c t e d ? f0−2f ? f0−3f) (arm−empty ? r) (no−gold

? f0−2f) (n o t− c l e a r ? f0−3f) (no−hard−rock ? f0−2f) (not (c l e a r ? f0−3f)) (not (a t
? r ? f0−1f)) (not (c l e a r ? f0−2f)) (not (h o l d s ? h ? r)) (not (a t ? h ? f0−1f)) (not
(no−gold ? f0−3f)) (not (no−soft−rock ? f0−2f)) (not (h o l d s ?bomb ? r)) (not (a t

? r ? f0−3f)) (not (ho lds−gold ? r)) (not (no−soft−rock ? f0−3f)) (not (a t ? r ?
f0−2f)) (not (d e s t r o y e d ?bomb)) (! = ? f0−2f ? f0−3f) (! = ? f0−1f ? f0−2f) (
MoveBag connected ? r ? x ? x) (! = ? f0−2f ? x) (! = ? f0−1f ? x) (! = ? x ? f0−3f) (! = ?
f0−1f ? f0−3f) (not (BombMoveBag connected ? r ? x ? f0−3f)))

: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (p i ck up ? r ? h ? x)

)
(: r u l e OpenPathTowardsGold

: parameters (? x − l o c ?bomb − bomb ? y − l o c ? f0−2f − l o c ? l a s e r − l a s e r ? f0−0f −
l o c ? f0−3f − l o c ? r − r o b o t)

: c o n d i t i o n (and (h o l d s ? l a s e r ? r) (a t ?bomb ? f0−0f) (n o t− c l e a r ? f0−2f) (c o n n e c t e d ?
f0−2f ? f0−3f) (no−hard−rock ? f0−2f) (c l e a r ? f0−0f) (a t−gold ? f0−3f) (
no−hard−rock ? f0−3f) (a t ? r ? x) (n o t− c l e a r ? f0−3f) (no−gold ? f0−2f) (c o n n e c t e d
? y ? f0−2f) (so f t− rock−a t ? f0−2f) (so f t− rock−a t ? f0−3f) (not (a t ? l a s e r ? y)) (
not (arm−empty ? r)) (not (d e s t r o y e d ?bomb)) (not (a t ? r ? f0−2f)) (not (c l e a r ?
f0−2f)) (not (h o l d s ?bomb ? r)) (not (ho lds−gold ? r)) (not (c l e a r ? f0−3f)) (not
(no−gold ? f0−3f)) (not (no−soft−rock ? f0−2f)) (not (no−soft−rock ? f0−3f)) (not
(a t ? r ? y)) (not (a t ? r ? f0−3f)) (! = ? y ? f0−3f) (! = ? y ? f0−0f) (! = ? f0−2f ?
f0−0f) (! = ? f0−2f ? f0−3f) (F i r eMoveBag connec ted ? r ? x ? y) (MoveBag connected ?
r ? x ? f0−0f) (! = ? f0−0f ? f0−3f) (! = ? y ? f0−2f) (not (BombMoveBag connected ? r ?
x ? f0−3f)))

: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (FireMoveBag move ? r ? x ? y)

)
(: r u l e MoveToPickupLaser

: parameters (? x − l o c ?bomb − bomb ? y − l o c ? f0−2f − l o c ? l a s e r − l a s e r ? f0−3f −
l o c ? f0−1f − l o c ? r − r o b o t)

: c o n d i t i o n (and (n o t− c l e a r ? f0−3f) (c o n n e c t e d ? f0−1f ? f0−2f) (n o t− c l e a r ? f0−2f) (a t
? r ? x) (no−hard−rock ? f0−2f) (c o n n e c t e d ? f0−2f ? f0−3f) (no−gold ? f0−2f) (

a t−gold ? f0−3f) (a t ?bomb ? y) (so f t− rock−a t ? f0−3f) (a t ? l a s e r ? y) (c l e a r ? y) (
so f t− rock−a t ? f0−2f) (arm−empty ? r) (no−hard−rock ? f0−3f) (not (a t ? r ? f0−2f))
(not (no−gold ? f0−3f)) (not (a t ? l a s e r ? f0−1f)) (not (c l e a r ? f0−3f)) (not (
c l e a r ? f0−2f)) (not (no−soft−rock ? f0−3f)) (not (d e s t r o y e d ?bomb)) (not (h o l d s
?bomb ? r)) (not (no−soft−rock ? f0−2f)) (not (h o l d s ? l a s e r ? r)) (not (a t ? r ? y))

279

Chapter D. Policies

(not (a t ? r ? f0−3f)) (not (ho lds−gold ? r)) (! = ? f0−2f ? y) (MoveBag connected ?
r ? x ? y) (! = ? f0−1f ? y) (! = ? y ? f0−3f) (! = ? f0−1f ? f0−2f) (! = ? f0−1f ? f0−3f)
(! = ? f0−2f ? f0−3f) (not (BombMoveBag connected ? r ? x ? f0−3f)))

: goa lCondi t i on (and (ho lds−gold ? r))
: a c t i o n (MoveBag move ? r ? x ? y)

)
)
� �

280

APPENDIX E

FURTHER ANALYSIS

In this appendix we present some further analysis of our approach.

E.1 Quality of solutions

In this section we investigate the quality of the solutions that are generated using our
approach. We compare the plan quality of the solutions that we computed above
against an optimal planner, where it can solve the problem, and TLPLAN.

E.1.1 Analysis of plan length

A common conception of rule-based policy application is that a plan will be generated
quickly, but the quality might be poor. However, in Depots, in larger Driverlog, and
in particular Blocksworld problems, we solve the problems with better quality than
the domain independent planners. These results provide support that the rule-based
representation is an appropriate method of harnessing the specialised heuristics.

We use TLPLAN as the comparison planner in these three domains. High quality
control knowledge has been developed for TLPLAN and this presents the current upper
bound on quality when using control knowledge. Optimal plans have been generated
for some of the smaller instances of the problems. We can use this as an indication of
how well our policy is solving the problems.

281

Chapter E. Further analysis

E.1.2 Setup

We have selected three domains: Driverlog, Blocksworld and Depots for this compar-
ison. Driverlog and Blocksworld allow us to observe the use of solvers in problems
with different structures and Depots requires reasoning over two types of structure.

We use the same policies that we described above under the same constraints. We
have run the optimal planner hLM−cut (Helmert and Domshlak, 2009) on the problems.
This gives some indication of the quality of solutions for the smaller problems. As
the problems increase in complexity the planner cannot compute a plan in reasonable
time. We have used TLPLAN and the control knowledge used in the 2002 IPC as a
comparison. The control knowledge used has been well engineered and presents a
lower bound on performance.

E.1.3 Expectations

There is no expectation that the solutions we generate are optimal solutions. However,
we have demonstrated that the solution quality compares well to domain independent
planners. It seems therefore that we are providing relevant information in the enriched
model.

The Driverlog and Depots TLPLAN control knowledge systems are quite sophisti-
cated. As a consequence it is likely that we will perform less well in these domains.

E.1.4 Results

The quality results are presented in Figures E.1, E.2 and E.3. The results support
our previous findings, demonstrating that our enriched model is proving support for
expressing complete strategies.

For Blocksworld problems the results show that our plans are quite close to optimal
on the five problems that the optimal planner can solve. The quality results are identical
for our solution and TLPLAN.

The results in Driverlog demonstrate that both planners are generating suboptimal
plans. However, neither generate bad plans on the runs that the optimal planner can
solve the problems. In most of the problems the others planners are quite close, with
TLPLAN usually having the better plan when they are not the same. However, the
results in this domain are promising as they demonstrate that we are able to express a
complete strategy using a limited rule representation.

282

Chapter E. Further analysis

0

100

200

300

0 10 20 30 40
Pfile

Q
ua

lit
y

Planner

Handwritten

Hlmcut

TLPlan

Figure E.1: Quality results for the optimal planner on Blocksworld problems

0

50

100

5 10 15 20
Pfile

Q
ua

lit
y

Planner

Handwritten

Hlmcut

TLPlan

Figure E.2: Quality results for the optimal planner on Driverlog problems

283

Chapter E. Further analysis

0

25

50

75

100

0 5 10 15 20
Pfile

Q
ua

lit
y

Planner

Handwritten

Hlmcut

TLPlan

Figure E.3: Quality results for the optimal planner on Depots problems

In Depots our strategy produces shorter plans. This result is unexpected; however,
we are also using a handwritten strategy and solvers in these experiments.

We have demonstrated that we can produce quality solutions that are similar in
quality to solutions generated by TLPLAN in three domains. This supports the claim
that our architecture supports expressing effective control knowledge in a limited lan-
guage.

E.2 Combining information

In HybridSTAN (Fox and Long, 2001), the use of multiple solvers at the same time
would involve a specialised decomposition for the specific combination. An interesting
aspect of this work is that the solvers are used to provide information and the planner
can choose the information it finds useful. In this subsection, we reflect on the use of
multiple information sources in the strategies used in Chapter 6.

E.2.1 Transportation and resource management

The strategy that we used in Driverlog combined a strategy for traversal with a resource
management strategy. The results demonstrate that the heuristic for selecting the next

284

Chapter E. Further analysis

location for the truck interacted well with the resource management solver.
We note that the interaction might have been improved if we had made the open

transportation tasks more accessible. For example, if we had modelled an (open-task
?obj ?truck ?location) predicate that held of objects that were to be picked up or pack-
ages that needed dropped off. This would have provided more information that could
have been exploited in the traversal solver.

We observed that a potential problem with our hub and cluster might have been
that the solvers had little communication. For example, the allocation of packages was
not made in the context of the computed clusters. This suggests that when using two
sources of information to tackle a single aspect of the problem, for example, package
transportation, then it is important that the information sources provide a consistent
view of the world.

E.2.2 Transportation and building

The Depots domain combines a transportation problem with a distributed structure
building problem. The transportation aspect of the domain is trivial as the graph is a
clique. As a consequence there is no need of a transportation solver. However, if the
domain did support an underlying graph structure then a transportation solver could be
used to allocate trucks to packages.

However, there are several limitations. Our current transportation solver recognises
a package’s location if it is connected to a truck graph location by a static structure; for
example a crane. In Depots, this does not pose a problem because the package location
is made explicit in the model. However, in an alternative encoding this might not be
the case. In addition, there are implicit constraints on the goal location of packages.
This means that the resource allocation would not have access to the goal location of
the packages. This would make its allocations weaker.

In conclusion, our solvers are sufficient to solve problems that link transportation
and building structure problems. Our architecture allows the strategies to use the parts
of the solver’s information that can be modelled for the domain. This is an advantage in
the use of solvers as information sources. However, we might not be able to utilise the
full strength of the specialised solvers without some extensions. This is not surprising,
if the specialised solution is not written to cater for a problem then its information will
be less useful.

285

Chapter E. Further analysis

E.3 TLPlan rules

A main focus of this project has looked at reducing the gap between approaches that
learn control knowledge and handwritten methods. The handwritten control knowl-
edge used with TLPLAN is captured in a rich representation language, and encodes
sophisticated control strategies. We use a limited rule representation, which is compat-
ible with rule learning technologies (Levine and Humphreys, 2003). It is interesting to
compare the sophistication of the knowledge captured in these limited representations
with those captured in the rich representations used with TLPLAN. To this end, we
make a direct comparison between these control systems.

In this section we look more directly at individual control knowledge systems, with
the aim of evaluating the strengths and weaknesses of the architecture that we have
developed. We use two case studies in order to provide a more concrete comparison
between the approaches. In particular, we want to better understand to what extent
we have bridged the gap, what has been achieved in other works and what remains as
further work.

E.3.1 Driverlog

The TLPLAN system combines problem remodelling with both early decision making
and opportunistic strategies to form an effective system of control. We first describe
the control strategy and then compare it with our approach, focusing first on aspects
that achieve an efficient system and then on aspects of the strategy.

The Driverlog knowledge systems

We present an overview of the system used in TLPLAN1 and also the system that we
used as the Handwritten configuration in the above results.

The Driverlog control system is a complete system for the competition problem
generator. The knowledge is compiled into the domain operators. It has been designed
to prevent redundancy from taking place. In particular, the system can be used with a
depth first search and there is no need to check for repeated states.

We first present the idea behind the conditions that have been added to each action.
We do this at a high level to provide an overview of the control system. In the following
discussion we will describe some aspects in more detail. Please consult the control
knowledge source for more detail.

1This system was written by Fahiem Bacchus

286

Chapter E. Further analysis

It is important to notice that the walk action has been replaced and the drive-truck
action has been complimented by macro actions that move between each pair of con-
nected nodes in the respective maps.

Load-truck ?package ?truck ?loc if all of the following:

• there is a driver in the truck

• the package has a goal

• it is not at its goal

• the goal can be reached from its current location

Unload-truck ?package ?truck ?loc if all of the following:

• the package has a goal at the current location

Drive-truck ?truck ?from ?to ?driver if all of the following:

• there are no packages to put-in or take out

• if any of the following:

– there are packages to deliver

– all packages are en route and either ?to is the truck’s goal or ?truck has no
goal and ?to is ?driver’s goal, or there is a better driver for driving ?truck

at ?to

• the truck has not just moved

Macro-drive-truck ?truck ?from ?to ?driver is similar but there is not a constraint
that there is an edge (?from, ?to) in the map graph; instead the constraint is that the
nodes are connected. The closest (number of edges to satisfying node) of any satisfied
formulae in the disjunction are selected first.

Board-truck ?driver ?truck ?loc if all of the following:

• useful to drive ?truck

• ?driver is the best driver for the truck

287

Chapter E. Further analysis

Disembark-truck ?driver ?truck ?loc if any of the following:

• if all of the following:

– all packages are home

– ?truck is at home

– ?driver has a goal

– ?driver can walk home

• there is a better driver for the job

Macro-walk ?driver ?from ?to the closest of any of the following:

• if all of the following:

– there is a truck at ?to

– it is useful to drive the truck

– ?driver is the best driver for the truck

• if all of the following:

– all packages are home

– ?driver has a goal at ?to

Driverlog policy strategy Repeatedly apply an instance of the first applicable of the
following:

1. Drop-off package at goal

2. Pickup allocated misplaced package

3. Move to pickup allocated misplaced package

4. Move to drop-off package

5. Move truck home

6. Board truck if allocated driver and useful to drive-truck

7. Walk to board truck

8. Walk home

9. Disembark truck

288

Chapter E. Further analysis

Aspects leading to an efficient system

Although all parts of the knowledge system effect its efficiency there are specific tech-
niques that have been used that can be particularly important. One of these is that
the system provides a complete control system. This means that there is no need for
search. This is key to the efficiency of this system. We now explore some of the other
important aspects.

Generator functions The state has been enriched with a set of domain specific predi-
cates that carefully control the binding of operators. These predicates are used to group
together objects that can unify with a particular operator’s parameters. This reduces
the cost of unification as fewer false combinations are generated.

The binding of variables in TLPLAN is controlled by generator functions. These
functions are used to propose the set of possible bindings for the variables. The de-
scribed predicates can be used as generator functions. For example, in our work we
use the positive goal and state predicates in our rules as generators to populate the
variables. However, this can be costly as there will be many matchings between the
different variable bindings that do not unify.

An alternative is to maintain a raised state that indicates the combinations of ob-
jects that could be used to unify with a specific operator’s parameters. For example, in
the Driverlog system a can-do-load ?package ?truck ?loc predicate is maintained.
This predicate holds when at ?truck ?loc and at ?package ?loc both hold. The book-
keeping for these predicates is carefully carried out in each action that can effect them
using quantification.

There are several of these parameters; in fact there are only a handful of uses of the
predicates in the described model. It would be interesting to investigate the impact of
this raised state. Learning these predicates is a potential avenue of future work.

Compiled precondition The control knowledge is not expressed as control rules.
Instead it is compiled into the operator schema as additional preconditions. The control
is written so that any binding that satisfies the precondition is a useful action. It is
important that this condition has clauses for all possible requirements for the operator.
If the knowledge is expressed as control rules then states must be generated, matched
with rules and pruned. By compiling the knowledge into the action conditions the
states are never generated and there is no expensive matching process required.

Our rules use a similar form of compiled knowledge. However, there can be several

289

Chapter E. Further analysis

rules for the same the operator. This means that we can split the different cases over
several rules.

A feature of our representation is that we must order each use of an action. This
has an impact on the strategies that can be encoded. For example, we must order the
two rules move to pickup a package and move to drop off a package. If we prioritise
picking up packages then we will not consider actions that move to drop off a package
while there are packages that need picked up. In contrast the TLPLAN representation
gathers the applicable actions and uses the search strategy as its selection process. This
flexibility leads to the better quality of solutions observed in the results. In fact the
selection of the next move action is controlled by a specific heuristic that we discuss
below.

Level of language Abstracting graphs so that effective expressions can be used to
reason about interesting graph nodes is common to both approaches. These ideas are
key to each solution. In both approaches the walk and drive actions are abstracted
and allow the intended destination node to be reasoned with. This abstraction acts to
support rules that reason about moving to specific targets. This simplifies the rules and
allows heuristics to be exploited (discussed below).

We can model these abstractions and use SbS. This means that we can compensate
for the strict ordering on our rules. In TLPLAN these abstractions are modelled as
macro actions. This is because the rule language allows disjunction, so there is more
flexibility in determining the next best move. We have compared the step by step and
normal macro application approaches in Chapter 6.

Our definition of ALMAs (Subsection 7.2) generalises the abstraction layer devel-
oped in TLPLAN. In this domain a similar abstraction is defined.

Opportunity

The strategy used in the TLPLAN rules uses specific heuristics as part of the walk
and drive-truck macro expansions. The heuristic used is the nearest neighbour
ordering that we discussed in Subsection 5.4.2. We have examined the impact that
using this strategy has had on our strategy. However, its use in TLPLAN also supports
the exploitation of opportunity.

An opportunity is an action that is taken when it is convenient. The definition of
opportunity used in the system for Driverlog for TLPLAN can be inferred from the
control knowledge. An opportunity is defined in terms of a graph, G = (V,E), a current

290

Chapter E. Further analysis

distribution of graph traversers (we reuse the function, position) and a similar function
for tasks (taskLoc : A 7→ (L∪ ⊥)). This can be considered for drivers walking on
the path graph and trucks driving on the link graph. An opportunity is a useful action
that has a task location that is closer to a traverser than other useful actions.

The use of opportunity contrasts with making decisions up front. The TLPLAN

system combines the two strategies; making decisions up front where possible, but
leaving some choices to be made if a suitable situation arises. The choices that are
made up front are used to filter the actions that are considered useful.

On inspection of the move and walk macro conditions presented above it is clear
that there are several reasons why these actions can be used. Each of the possible
bindings to these actions suggest a task that can be performed at the destination. The
bindings for the destination parameter are explored by expanding iteratively around the
traversers’ current locations. If a destination satisfies the condition then the expansion
is stopped.

In this system this strategy allows opportunity to determine the order of the package
pickups and put downs. It is also used to determine whether drivers are swapped
between trucks. In particular, the system makes the decisions that are relatively easy to
make and uses opportunity to take care of the rest. The limited rule language (or limited
problem model language) means that we must select a specific use of the move action.
This acts as a selection process, for example selecting a convenient package to pickup,
but does not allow the use of the move to be selected by opportunity. One solution
would be to model an open transportation tasks predicate. This predicate would hold
for (package, location) pairs if a package had to be picked up or dropped-off at the
location. This suggests that there might be utility in including disjunctions in the rule
language (this is posed as future work).

We experimented using a limited form of opportunity in Section 5.5. In that ex-
periment we split the location map into clusters. This allows the impact of a strict
priority caused by rule ordering in our representation to be weakened. We enforced a
strict priority in a localised region. In this way we hoped to gain some of the benefits
that opportunistic strategies can bring. Unfortunately, the results did not support this
strategy.

E.3.2 Blocksworld

The TLPLAN system for Blocksworld described in Bacchus and Kabanza (2000) uses
pruning rules to constrain the explored states. These rules use the next modal, which

291

Chapter E. Further analysis

enforces constraints in the next state. We first describe the rules and then compare it
with our approach, focusing first on how our strategies differ and then the aspects of
the TLPLAN system that lead to a highly efficient system.

The blocksworld knowledge systems

We present an overview of the system described in Bacchus and Kabanza (2000) and
also the system that we used as the Handwritten configuration in Chapter 6.

The operators are the same as the described domain. The control knowledge is
encoded as pruning control rules. This contrasts with the approach that was used for
Driverlog. The flexible nature of the TLPLAN language has allowed the control knowl-
edge systems to be developed in the manner that suits the knowledge. However, as we
have seen in this chapter, similar coverage can be achieved when using a limited lan-
guage.

There are several defined predicates that are used in the definition of the rules. A
block, x, is a good tower, if it is clear (at the top of a tower) and x and all blocks below
x are well-placed. A block, x, is a bad tower if it is not a good tower. A block, x, has a
good tower above if either x is clear or the blocks on x are consistent with their goals.

For all clear blocks, x:

• If x is a good tower then in the next state it has a good tower above.

• If x is a bad tower then in the next state there is nothing on it.

• If x is on the table and the goal position of x, y, is a bad tower then in the next
state do not hold x.

• If x is a good tower and y is being held and has a goal of being on x then in the
next state y is on x.

The first three items are equivalent to the system presented in Bacchus and Kabanza
(2000). Steps were taken to improve the efficiency of the rule evaluation.

Blocksworld policy strategy Repeatedly apply an instance of the first applicable of
the following:

1. Stack x on y if y is well-placed and x is on y in the goal

2. Pickup x if y is well-placed and x is on y in the goal

292

Chapter E. Further analysis

3. Putdown x if holding x

4. Unstack x from y if x is not well-placed

Comparison of strategy

The well-placed predicate is a powerful concept in this domain. The inclusion
of it in our model provides the necessary vocabulary for capturing powerful control
knowledge. The main difference in our approach is that the TLPLAN control knowl-
edge prunes states while our control knowledge actively proposes actions.

The pruning rules tightly constrain the actions that can be applied. A good tower
cannot be dismantled, a bad tower cannot be added to. A block is not picked off the
table if its goal is not clear and if a block is held that has a good tower to be stacked on
then it will be put down there. This means that the actions that are left for the planner
will lead to a solution.

The strategies are very similar. In each case we allow any removal of blocks off of
bad towers and dropping of blocks where their goal is not clear and well-placed. We
favour picking up blocks from the table that can be put in on their goals. This means
that it is less likely that a block will be picked from a bad tower and put on the table,
because its goal is more likely to be prepared. Although this strategy is possible in
TLPLAN search, the rules do not enforce it.

Developments that improve efficiency

The control knowledge description has several options for the exact system that is used.
For example, the three rule strategy presented in Bacchus and Kabanza (2000) can be
used. There are also several levels of optimisation that have been made. For example, it
is reported that by factoring the three rule system, 30% can be saved in time and 40% in
memory. In addition 10% can be saved in time by using an if then else language feature
as a replacement for multiple evaluation of the good tower predicate. The system above
is also rearranged to improve its efficiency.

The improvements in efficiency made in this system have come from rearrange-
ments to equivalent formula. It would be interesting to consider rearranging rules that
could be used to affect this sort of improvement in a general setting. There are similar
issues with the creation of policy rule systems. Including time within the fitness func-
tion in the approach presented in Chapter 8, would be an interesting start. The ordering
of the rules effects how often certain predicates are evaluated and described predicates

293

Chapter E. Further analysis

can be used redundantly to shield some cases from the more expensive derived predi-
cate evaluation.

An interesting consequence of adding the final rule is that cycles cannot happen.
This saves some overhead in the search process. It is possible that this property could
be detected automatically. A further step that was taken for the 2002 competition was
to compile the knowledge into the preconditions, as was done in Driverlog1.

E.3.3 Conclusion

In this section we have compared our knowledge systems with those of TLPLAN. In
Blocksworld, the strategies used are largely similar. The TLPLAN control knowledge
is optimised using alternative language features. In Driverlog we concluded that the
rich language meant that the TLPLAN rules were capturing better control knowledge.
However, our approach does exhibit comparable quality results, as demonstrated in
Section E.1. It would be possible for us to extend the problem model with these fea-
tures. We have similar aspects of arranging control formula so that it can be evaluated
effectively; however, the nature of these are different in each approach.

We conclude that we have developed a framework that allows us to capture effective
control strategies. The compromise in limiting the frameworks to facilitate learning is
that we cannot express these strategies as efficiently as can be achieved using a richer
representation.

E.4 Example output from ALMAgen

We have proposed an algorithm for automatically specialising the solver for a particular
domain. We have generated training data for several domains that contain SIs and have
applied our approach. In this subsection we present the generated bags and resulting
vocabulary. We analyse the bags that are produced when no rules are used, to provide
an indication of the importance of breaking the sequences into parts. We present an
analysis of the approach for Structure Building problems in Appendix H.

Driverlog

The competition problem generator was used to generate 25 problems. These problems
had a single truck, driver and package. Each problem had 15 truck locations and a

1Both version of the system were written by Fahiem Bacchus

294

Chapter E. Further analysis

number of joining path locations depending on the generated path map. Goals were
generated for the truck, driver and package by the generator, which can include empty
goals for objects (this is more likely for the trucks and drivers).

The targets in Driverlog problems include picking up and dropping off packages
and moving to trucks and drivers to their goals.

No Sequencing For no sequencing we isolated each of the agent threads and gathered
the relevant actions, as described in Section 7.1. The last SI action of each sequence
is used as the target and gives its name to the vocabulary. The generated actions were
walk51 move and drive-truck50 move. The bags included the enablers for
getting a driver into the truck for driving and getting out of a truck for walking.

• (drive-truck truck0 location1 location2 driver3)

• (board-truck driver3 truck0 location1),(drive-truck truck0 location1

location2 driver3)

• (walk driver0 location1 location2)

• (disembark-truck driver0 truck3 location1),(walk driver0 location1

location2)

Rule based sequencing When using the transportation rules, the bag generation pro-
cess identifies several bags, one for each of the target types identified. The name of
the ALMA is an extension of the target action, with a generic number ID and move
attached.

• (load-truck50 move ?truck ?loc-from ?loc-to)

• (drive-truck51 move ?truck ?loc-from ?loc-to)

• (disembark-truck53 move ?truck ?loc-from ?loc-to)

• (unload-truck54 move ?truck ?loc-from ?loc-to)

• (walk52 move ?driver ?loc-from ?loc-to)

• (board-truck55 move ?driver ?loc-from ?loc-to)

295

Chapter E. Further analysis

The targets for walking were a goal that was achieved by walking (locatedness of
the driver) and when the driver got into the truck. Similarly for the driving actions, the
truck was driven to a goal, the truck was driven to pickup and drop-off packages and
the driver disembarked at their goal. The latter target is the result of the driver using a
goal-less truck to move to its goal.

In each case, the associated bags contained a singleton macro. The bag for truck
ALMAs was:

• (drive-truck truck0 location1 location2 driver3)

The bag for driver ALMAs was:

• (walk driver0 location1 location2)

These ALMAs model vocabulary that are equivalent to the graph abstraction solvers
used in the experiments in Chapter 6, in the sense that the predicate holds for the same
arguments and the action will return the same output given the same choice.

The generated ALMA is included in the solver listings file. The listing created for
moving a truck to achieve the target of unloading a package is presented in Listing E.1.
The “@” symbol is used to separate actions in a chunk and the “#” symbol separates
chunks. This has proven a convenient representation when reading the output and when
defining ALMAs by hand.

Listing E.1: Extract from solver listings output for generated ALMA for Driverlog
domain� �
(: s o l v e r D e s c r i p t i o n SequenceCha inSo lve r202

: Graph (: module DynamicGraphModule163)
)
(: moduleDescr ipt ion DynamicGraphModule163

: MoveAction (: module MoveAction1)
: Name (: d e s c r i p t i o n (un load− t ruck202))
: Sequences (: d e s c r i p t i o n (d r i v e− t r u c k t r u c k 0 − t r u c k l o c a t i o n 1 − l o c a t i o n

l o c a t i o n 2 − l o c a t i o n d r i v e r 3 − dr iver@ #))
: S i g n i f i c a n c e (: d e s c r i p t i o n (t r u e))
: S t r a t e g y (: d e s c r i p t i o n (f a l s e))

)
� �
Logistics

Logistics is a domain that requires the use of two maps. The graphs for each move
action in the problem sets are cliques, although this is not necessary. We generated a
collection of 5 problem using the competition generator, with one or two cities, with

296

Chapter E. Further analysis

a truck in each city. Each city had a location and an airport and there were a small
number of packages.

No sequencing The system generated two actions, fly-airplane50 move and
drive-truck51 move that explained the behaviour of the aeroplanes and truck
respectively. The associated bags for fly-airplane50 and drive-truck51 are
as follows:

• (fly-airplane airplane0 - airplane airport1 - airport airport2 -
airport

• (drive-truck truck0 - truck location1 - location airport2 - airport
city3 - city)

• (drive-truck truck0 - truck airport1 - airport location2 - location
city3 - city)

Rule based sequencing

• (unload-airplane52 move ?airplane ?loc-from ?loc-to)

• (load-truck51 move ?truck ?loc-from ?loc-to)

• (unload-truck50 move ?truck ?loc-from ?loc-to)

The associated bag for unload-airplane52 is the same as for fly-airplane50
above, and the bag for unload-truck50 was the same as drive-truck51.
However, there was a difference between the bags for loading and unloading. The
bag for load-truck51 is:

• (drive-truck truck0 - truck location1 - location airport2 - airport
city3 - city)

In Logistics problem distributions the truck always starts at a location and in the
small problems we used to generate the vocabulary there was only one location. If the
package needed moved then it was picked up before the truck was moved. Otherwise
the only packages the truck picks up get delivered to the airport. Of course packages
might need to be dropped off at either the airport or the location. The difference be-
tween the bags demonstrates an advantage of using training data to parameterise the
solvers. Implicit control knowledge has also been observed in inferred domain mod-
els (Cresswell and Gregory, 2011).

297

Chapter E. Further analysis

The generated language points out a limitation in our current approach. The prob-
lem models from the Logistics domain do not require enhancements to establish di-
rected connectivity. The model is sufficient for an RBP to effectively control search.
An interesting line of future work is to extend the scope of the target significance de-
tection, as a general framework for invoking specialised language.

Goldminer

The 30 bootstrap problems from the Learning track were used to generate the macro
bags. These problems have a single robot, bomb and laser and small grids (half 3 × 3
and the other half 4 × 4). When generating bags without the sequence splitting rules,
the system generates the allMovesBag, as defined in Section 7.3, with one extra pair
of macros:

• (pickup robot0 laser4 loc1)(fire-laser robot0 laser4 loc1 loc2); (putdown
robot0 laser4 loc); (pickup robot0 bomb3 loc1); (move robot0 loc1 loc2)

This macro is learned from small examples where only a single laser shot is required.
Rule based sequencing

• (fire-laser-0-151 move ?robot ?x ?y)

• (fire-laser-1-050 move ?robot ?x ?y)

• (pickup-gold53 move ?robot ?x ?y)

• (pickup52 move ?robot ?x ?y)

The bag for picking up the laser or bomb, was a singleton macro. This action is
used on two occasions, either when a path has been made to one step from the gold, or
at the beginning on the way to pick up the laser.

• (move robot0 loc1 loc2)

The listings for firing hard and soft rock define equivalent bags. These macros
include the actions necessary to fire at hard or soft rock if it is there and move.

• (fire-laser-1-0 robot0 laser3 loc1 loc2); (move robot0 loc1 loc2)

• (move robot0 loc1 loc2

• (fire-laser-0-1 robot0 laser3 loc1 loc2); (move robot0 loc1 loc2)

298

Chapter E. Further analysis

The bag for picking up gold contained two macros, one that gets rid of the final
(gold covering) rock.

• (detonate-bomb-1 robot0 bomb3 loc1 loc2); (move robot0 loc1 loc2)

• (move robot0 loc1 loc2)

These macro bags provide exactly the actions that are required so that an RBP
can control the robot to the gold. The final bag includes the detonate action, which
is appropriate as it is used in order to reach the gold and therefore access a target.
However, in the plans, the detonate action is only ever used on the last rock that sits on
the gold. This is a result of over-generalising the training data and is a result of our bag
exploration approach. In practice we have detected little impact from this and deem its
exploration outside of the scope of this project.

Rovers

A collection of 22 problems were generated using the generator from the third IPC.
Each problem has one camera, five waypoints, one rover-store, four modes,
two objectives and one rover. Without rules, the system generates a single
solver called navigate50 that is parameterised by the singleton macro: (navigate
rover0 waypoint1 waypoint2). In the rule based version, the same bag parameterises
five solvers that determine each of the targets identified in the Rovers domain. The
added action names are presented.

• (communicate image data53 move ?rover ?y ?z)

• (sample soil52 move ?rover ?y ?z)

• (communicate rock data50 move ?rover ?y ?z)

• (sample rock54 move ?rover ?y ?z)

• (communicate soil data51 move ?rover ?y ?z)

299

APPENDIX F

INDIVIDUAL PRESENTATION OF THE

RESULTS

In this appendix we present the graphs from the analyses in Chapters 6 and 9.

F.1 Handwritten RBPs results

Graphs from the evaluation in Chapter 6, of handwritten RBPs for a selection of plan-
ning domains. The approaches plotted in each graph are a handwritten RBP (Hand-
written), and the planners LAMA and FF.

300

Chapter F. Individual presentation of the results

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40 45

Q
ua

lit
y(

S
te

ps
)

PFile

FF
Handwritten

Lama

Figure F.1: Quality results for a handwritten policy on Blocksworld problems

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45

T
im

e(
s)

PFile

FF
Handwritten

Lama
1 mins

Figure F.2: Time results for a handwritten policy on Blocksworld problems

301

Chapter F. Individual presentation of the results

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25

Q
ua

lit
y(

S
te

ps
)

PFile

FF
Handwritten

Lama

Figure F.3: Quality results for a handwritten policy on Depots problems

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25

T
im

e(
s)

PFile

FF
Handwritten

Lama
1 mins

Figure F.4: Time results for a handwritten policy on Depots problems

302

Chapter F. Individual presentation of the results

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y(

S
te

ps
)

PFile

FF
Handwritten

Lama

Figure F.5: Quality results for a handwritten policy on Driverlog problems

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
s)

PFile

FF
Handwritten

Lama
1 mins

Figure F.6: Time results for a handwritten policy on Driverlog problems

303

Chapter F. Individual presentation of the results

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30

Q
ua

lit
y(

S
te

ps
)

PFile

FF
Handwritten

Lama

Figure F.7: Quality results for a handwritten policy on Goldminer problems

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45

T
im

e(
s)

PFile

FF
Handwritten

Lama
1 mins

Figure F.8: Time results for a handwritten policy on Goldminer problems

304

Chapter F. Individual presentation of the results

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y(

S
te

ps
)

PFile

FF
Handwritten

Lama

Figure F.9: Quality results for a handwritten policy on Grid problems

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
s)

PFile

FF
Handwritten

Lama
1 mins

Figure F.10: Time results for a handwritten policy on Grid problems

305

Chapter F. Individual presentation of the results

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y(

S
te

ps
)

PFile

FF
Handwritten

Lama

Figure F.11: Quality results for a handwritten policy on Gripper problems

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
s)

PFile

FF
Handwritten

Lama
1 mins

Figure F.12: Time results for a handwritten policy on Gripper problems

306

Chapter F. Individual presentation of the results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30

Q
ua

lit
y(

S
te

ps
)

PFile

FF
Handwritten

Lama

Figure F.13: Quality results for a handwritten policy on Logistics problems

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20 25 30

T
im

e(
s)

PFile

FF
Handwritten

Lama
1 mins

Figure F.14: Time results for a handwritten policy on Logistics problems

307

Chapter F. Individual presentation of the results

F.2 Heuristic guidance

Graphs from experiments in Subsection 6.3.2. Each plot is for no heuristics (Basic),
solver heuristics (+Lh), global heuristic (+Gh), and both heuristics (+LGh).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y(

S
te

ps
)

PFile

Basic
+Lh
+Gh

+LGh

Figure F.15: Quality results for solver (L) and global (G) heuristics on Driverlog prob-
lems

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
s)

PFile

Basic
+Lh
+Gh

+LGh
1 mins

308

Chapter F. Individual presentation of the results

Figure F.16: Time results for solver (L) and global (G) heuristics on Driverlog prob-
lems

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30

Q
ua

lit
y(

S
te

ps
)

PFile

Basic
+Lh
+Gh

+LGh

Figure F.17: Quality results for solver (L) and global (G) heuristics on Goldminer
problems

 0.1

 1

 10

 100

 0 5 10 15 20 25 30

T
im

e(
s)

PFile

Basic
+Lh
+Gh

+LGh
1 mins

Figure F.18: Time results for for solver (L) and global (G) heuristics on Goldminer
problems

309

Chapter F. Individual presentation of the results

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y(

S
te

ps
)

PFile

Basic
+Lh
+Gh

+LGh

Figure F.19: Quality results for solver (L) and global (G) heuristics on Grid problems

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
s)

PFile

Basic
+Lh
+Gh

+LGh
1 mins

Figure F.20: Time results for solver (L) and global (G) heuristics on Grid problems

310

Chapter F. Individual presentation of the results

F.3 Step by step application

Graphs from experiments in Section 6.4. Each plot is for step by step application (SbS)
and macro application (Macro) approaches.

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y(

S
te

ps
)

PFile

SbS
Macro

Figure F.21: Quality results for the step by step and macro application approaches on
Driverlog problems

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
s)

PFile

SbS
Macro
1 mins

311

Chapter F. Individual presentation of the results

Figure F.22: Time results for the step by step and macro application approaches on
Driverlog problems

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30

Q
ua

lit
y(

S
te

ps
)

PFile

SbS
Macro

Figure F.23: Quality results for the step by step and macro application approaches on
Goldminer problems

 0.1

 1

 10

 100

 0 5 10 15 20 25 30

T
im

e(
s)

PFile

SbS
Macro
1 mins

Figure F.24: Time results for the step by step and macro application approaches on
Goldminer problems

312

Chapter F. Individual presentation of the results

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y(

St
ep

s)

PFile

SbS
Macro

SbS SD
Macro SD

Figure F.25: Quality results for the step by step and macro application approaches on
Grid problems. The plots show the means and standard deviations for each problem
over 3 runs.

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18 20

Ti
m

e(
s)

PFile

SbS
Macro
1 mins

SbS SD
Macro SD

Figure F.26: Time results for the step by step and macro application approaches on
Grid problems. The plots show the means and standard deviations for each problem
over 3 runs.

313

Chapter F. Individual presentation of the results

F.4 Plots for planning with learned control knowledge

In this section we present the results of planning with learned control knowledge. The
runs were restricted to 6Gb of memory and 10 minutes of run time. We present the
quality and time plots for each of the domains we have tested. If the control knowledge
was learned starting from a randomly initialised population then the plot is labelled
Learned. In cases were the learning was seeded, the plot is labelled Seeded. These
plots also include the results for control knowledge that exploits the ALMA solver.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35 40 45

Q
ua

lit
y(

S
te

ps
)

PFile

FF
Lama

Handwritten
Learned

Figure F.27: Quality results for a learned policy on Blocksworld problems

314

Chapter F. Individual presentation of the results

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45

T
im

e(
s)

PFile

FF
Lama

Handwritten
Learned

1 mins

Figure F.28: Time results for a learned policy on Blocksworld problems

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y(

S
te

ps
)

PFile

FF
Lama

Handwritten
ALMA

Seeded

Figure F.29: Quality results for a learned-from-seeds policy and an ALMA based pol-
icy on Driverlog problems

315

Chapter F. Individual presentation of the results

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
s)

PFile

FF
Lama

Handwritten
ALMA

Seeded
1 mins

Figure F.30: Time results for a learned-from-seeds policy and an ALMA based policy
on Driverlog problems

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30

Q
ua

lit
y(

S
te

ps
)

PFile

FF
Lama

Handwritten
ALMA

Seeded
Seeded21

Figure F.31: Quality results for a learned-from-seeds policy and an ALMA based pol-
icy on Goldminer problems

316

Chapter F. Individual presentation of the results

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30

T
im

e(
s)

PFile

FF
Lama

Handwritten
ALMA

Seeded
Seeded21

1 mins

Figure F.32: Time results for a learned-from-seeds policy and an ALMA based policy
on Goldminer problems

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y(

S
te

ps
)

PFile

FF
Lama

Handwritten
ParallelLearned

Seed
MetricFF

Figure F.33: Quality results for a learned policy and a generated seed on Gripper prob-
lems

317

Chapter F. Individual presentation of the results

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
s)

PFile

FF
Lama

Handwritten
ParallelLearned

Seed
MetricFF

1 mins

Figure F.34: Time results for a learned policy and a generated seed on Gripper prob-
lems

 100

 120

 140

 160

 180

 200

 220

 240

 0 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y(

S
te

ps
)

PFile

FF
Lama

Handwritten
Learned
Seeded

Figure F.35: Quality results for learned and seeded policies on Structured Briefcase
problems

318

Chapter F. Individual presentation of the results

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
s)

PFile

FF
Lama

Handwritten
Learned
Seeded
1 mins

Figure F.36: Time results for learned and seeded policies on Structured Briefcase prob-
lems

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

Q
ua

lit
y(

S
te

ps
)

PFile

FF
Lama

Handwritten
Learned
Seeded

Figure F.37: Quality results for learned and seeded policies on Traverser problems

319

Chapter F. Individual presentation of the results

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30

T
im

e(
s)

PFile

FF
Lama

Handwritten
Learned
Seeded
1 mins

Figure F.38: Time results for learned and seeded policies on Traverser problems

320

APPENDIX G

ADDITIONAL DEVELOPMENTS FOR

ARBITRARY LENGTH MACRO

ACTIONS

In this appendix we explore two aspects of ALMAs. We have examined ALMAs as a
single layer abstraction, whereas in some cases, the causal structure between sub-goals
can be treated more efficiently by exploiting deeper hierarchies. In the first section we
present an extension, which supports a further abstraction layer.

In Chapter 7, we observed that the expansion of the search space, defined by an
ALMA, involved redundancy and we tackled this by exploiting a projection into a
reduced space. In the second section, we consider the problem of detecting when this
projection is appropriate for a given ALMA and domain.

G.1 Heuristic guided target selection

The ALMA provides a vocabulary for reasoning about moving to target nodes. How-
ever, we can observe in Grid, Sokoban and (n2-1)-Puzzle domains that targets can exist
in a hierarchy; for example, picking up a package; dropping off a key; or moving to the
traverser’s goal. The next layer of targets might contribute incrementally to reaching
the mover’s overall target. For example, moving to open a chain of blocked nodes that
lead to the mover’s target. We could simulate all the sequences in a similar manner
to the bags in the ALMA solver. However, this will be a large space that is likely to
grow quickly with the size of the problem. We have already tackled this problem in

321

Chapter G. Additional developments for arbitrary length macro actions

designing our Grid solver for the investigation in Chapter 6. We exploited a heuristic
to direct the selection of the next target. Specifically, we use the target SI as the goal
and compute the relaxed plan that achieves that goal. We identify the target nodes from
the relaxed plan and use these as a back bone for making ALMA expansions.

In this subsection we introduce the target layer. We continue by outlining the ap-
proach that is used to generate the next action for a set of possible raised SIs. We
conclude by presenting a comparison with the handwritten policy and LAMA.

G.1.1 A template layer

We extend the ALMA expansion by framing its expansion in a set of templates, which
resemble the macro actions in the bags of an ALMA. For example, a useful template
for the Grid domain can be defined:

move*,pickup,move*,unlock

In the situations we consider the targets are dependent and separate the ALMA
expansions from other template actions. In the ALMA definition SI templates distin-
guished the SIs within a macro action. In the raised level we distinguish guided targets,
which are actions that will be guided by the relaxed plan. We make the constraints ex-
plicit by constructing a template layer that captures the constraints between the guided
target and contributing targets. There may not be an instantiation of the list of actions
in a template that is applicable. Instead these can be thought of as targets that we will
aim search towards. These targets are related to landmarks (Porteous et al., 2001; Hoff-
mann et al., 2004). However, we do not claim that our targets are necessary actions
that any plan will use. Instead, we use these intermediary targets to provide guidance
towards the final target. The final outcome is a specialised HTN for the particular SI,
with the opportunity of optimising its computation.

A template is a list of lifted actions, Top = b0, . . . , bm, with a set of shared variables,
Vb0,...,bm . A bag of templates is a set TargetTemplates = {Top0 , . . . , Topn}.

Expanding templates

The aim is to use the relaxed plan to guide the selection of a chain of targets. We
generate a total order relaxed plan by selecting any ordering of the action layers. We
then generate the possible bindings of the raised templates that are consistent with the
relaxed plan. For consistency we say the bindings of the template are satisfied and
the guided actions in the template are represented in the relaxed plan. As a heuristic

322

Chapter G. Additional developments for arbitrary length macro actions

approximation, we use the first action in the relaxed plan that matches with the final
template action.

We use the following approach to iteratively generate the possible template instanti-
ations, from the guided action backwards. The ith template layer is made by extending
a template from the previous layer. For a sequence of i− 1 in the previous layer, gen-
erated from the template, Top, we unroll the template a step back. The next action will
be partially bound, due to the shared variables in Top. The next layer consists of all
valid instantiations of the loose variables. This process can be repeated.

The sequences are extended from the end of the target template sequences. This
layered expansion adds a bias to the search that favours sequences that expand fewer
layers. This means that we only unroll the templates if an executable action is not
found. The search looks for an action that is closest to the end of a template and
within those actions, the action that requires the fewest steps. For example, in the Grid
template above, a step that moved towards opening a door would be preferred over a
step that would move towards a key.

To determine if a target is applicable, the bag is expanded (once per bag for each
state) as was discussed in Chapter 7. The potential targets are identified from the partial
binding of the template. The guided action is then tested for applicability in each of the
states associated with the potential targets during the ALMA expansion. If the target
is applicable then the number of steps used in the expansion is used as a heuristic,
selecting the nearest.

In the Grid domain the templates relate the collection of keys with the opening of
doors. If a door can be opened then this is the first behaviour that is implemented. If
this cannot be achieved then the template will be unrolled and previous behaviour, such
as moving the robot to the door, will be applied. In Sokoban and (n2-1)-Puzzle, the
relaxed plan could be used to coordinate the movement of the blocks and tiles. Further
work would be required to determine whether the relaxed plan can provide the same
guarantees in these domains.

G.1.2 Evaluation

We have implemented this hierarchical approach as a wrapper round the ALMA solver.
We present the time plot in Figure G.1. The plot demonstrates that the approach can be
used successfully to solve problems in the Grid domain; however, it is not as efficient as
the handwritten approach or LAMA. One inefficiency is caused through the expansion
of each possible template. There is an opportunity to focus this towards the steps in

323

Chapter G. Additional developments for arbitrary length macro actions

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
s)

PFile

Lama
Handwritten

ALMA
1 mins

Figure G.1: Time results for ALMA and handwritten strategies for Gird problems.

the relaxed plan. For example, using a directed expansion of the bags, as was used
in Botea et al. (2007) (this has been discussed in Chapter 7). A difference between the
handwritten solution and the ALMA hierarchy, is that in the handwritten solution we
analyse the actions that have been applied to determine whether the reachability could
have changed.

In Chapter 5, it was observed that the use of a heuristic was an appropriate alter-
native for developing specialised solutions for optimising solutions. This has several
advantages as the RBP has control over search when possible. An alternative to the
approach presented here would be to extend the rule language with disjunctions and
allow the RBP to delegate to the heuristic when it could not provide the guidance.

G.2 Automating significance

In this section we consider the problem of determining when it is appropriate to use
a projection with an ALMA, or in other words, when a projection is bag significant.
What we would like to be able to determine is what are the possible sequences of state
changes that the sequences could have brought about. In particular, we would like
to examine the stages that a group of objects progress through given the sequences.
Identifying whether a subset of a state is achievable using a set of actions is as difficult

324

Chapter G. Additional developments for arbitrary length macro actions

as the planning problem and is therefore equivalent to the problem that we are trying
to solve. We observe that we are not interested in parts of the state that are potentially
significant; instead, parts of the state that are significant in practice. This has led us to
explore an approximate solution.

G.2.1 Target significance

To evaluate the property completely involves every possible problem. We test the sig-
nificance property using a set, TP , of n example problems. If these example situations
represent the problems of the domain then we expect that a projection that is target sig-
nificant in these problems will be target significant in every problem. We have selected
a single projection to test: the projection to the space of targets. This is the minimal
target space, as the states must be distinguished by at least the target. If the bags in-
clude actions that exchange resources for use at future nodes then this projection will
not be target significant. However, it is effective for problems that involve collections
of independent local actions on each node. Such as opening a door before entering a
room.

Under target significance, expansion of the macro bags requires polynomial time
in the number of reachable targets and actions. For each vertex in the reachable targets
graph, an expansion of the bags is made by instantiating the bag’s macros, if we assume
a small constant for the maximum bag size then this is polynomial in the number of
actions. Each vertex is only expanded once, and the use of target significance cannot
lead to discovering more targets. It is expected that the macros and binding constraints
will lead to an expansion of a greatly reduced action set. If target significance is not
appropriate then the reached targets could be a smaller set than the targets reachable
by the macro bags.

We determine whether the target projection is significant for the macro bags over
the training examples. If it is then the bag is called target significant:

Definition G.2.1

TDTargetSignificant(TP , q) ⇐⇒
∀P = (si, g) ∈ TP

∀t (t ∈ TargetSetmop(s, I) ⇐⇒ t ∈ TargetSetmop(s, q))

We have not conducted an exploration of the potential projections, q. Instead we
have examined one in particular: the projection to the targets. If this projection is target

325

Chapter G. Additional developments for arbitrary length macro actions

significant then the state is filtered to indicate the achieved target, otherwise the whole
state is used.

We have found that evaluating the target significance of a bag can be an expensive
process on medium sized problems (of Goldminer). As a result we use a bounded
search. For each example we search using a maximum of m macros applications. If
the same set is found using both approaches then we predict that the target is sufficient.
This approximation still seems to perform well in practice. We do not evaluate this part
of the system in this work.

326

APPENDIX H

ENHANCING THE PROBLEM MODEL

FOR STRUCTURE BUILDING

PROBLEMS

In this work we have focussed on the traversing SI as it has received least treatment
in the literature. In this appendix we demonstrate the use of our approach in structure
building problems.

H.1 Enriching the state with the well-placed pred-
icate

In this section we define the well-placed predicate and demonstrate how it is ex-
ploited in our framework.

H.1.1 Matching a graph in the goal

The common representation of Blocksworld has a hand that moves blocks between
stacks. Similarly, blocks are moved using cranes in the Depot domain. This inter-
mediary step means that when using our rule language the connected predicate with
the state context is not sufficient to express an RBP. One approach would be to model
macro actions that combine pickup and drop off actions and therefore establish a level
of reasoning equivalent to the three operator version (Hoffmann, 2005). In Martin

327

Chapter H. Enhancing the problem model for structure building problems

and Geffner (2000) a concept language is used and it is demonstrated that control in
Blocksworld can be supported with the use of the transitive closure over the on pred-
icate in the goal. In Yoon et al. (2002), a combined context (presented in Section 4.2)
is used and the transitive closure in this context successfully directs search. An al-
ternative approach is to enhance stacking problem models with the well-placed
predicate (Bacchus and Kabanza, 2000; Khardon, 1999a; Martin and Geffner, 2000).

The well-placed predicate

The well-placed predicate can be modelled using the following formulae. For a
particular variable, x, the first formula ensures that there are no blocks on top of x. The
second formula recursively checks for x and each block under x that it is either not on
anything and should not be on anything; or that if it is on a block, then if either block
has a goal then it is with the other block.

wellPlaced(x) ⇐⇒
(∀y ¬(on y x) . wellPlacedUnder(x))

wellPlacedUnder(x) ⇐⇒
[∀y ¬(on x y) . ∀y ¬(gon x y)] ∨
[∃y (on x y) .

(∀ z(gon x z) z = y) .

(∀ z(gon z y) z = x) .

wellPlacedUnder(y)]

Enhancing the language

We can define a step from Σi to Σi+1 with a set of propositions. These propositions
model the well-placed predicate. For a particular state, s ∈ wff(Σi), and graph,
G(s) = (V,E), we define the set of propositions:

328

Chapter H. Enhancing the problem model for structure building problems

∀u wellPlaced(u)

(∀s′ ∈ wff(Σi+1)

s′Rs =⇒ s′ |= (wellPlaced u))

Use of language

This language can be used to express control knowledge for stacking problems. We
demonstrate its use in a policy for the Blocksworld problem. A policy for Depot ap-
pears in Appendix D.1.

There are four rules necessary to capture a strategy for Blocksworld. The first rule
stacks a block on to its goal block if the goal block is well-placed. A block is picked
off the table if its goal block is well-placed. The third rule puts a held block on the
table. Implicitly this will only happen when its goal is not well-placed: either not clear,
or there is a block under it that is not well-placed. The last rule lifts a block from a
stack that is not correct.

� �
(d e f i n e (p o l i c y b l o c k s w o r l d p o l i c y)

(: domain b l o c k s w o r l d)
(: r u l e s t a c k

: parameters (? ob ? underob − b l o c k)
: c o n d i t i o n (and (c l e a r ? underob) (h o l d i n g ? ob) (w e l l p l a c e d ? underob))
: goa lCondi t i on (and (on ? ob ? underob))
: a c t i o n (s t a c k ? ob ? underob)

)
(: r u l e p i ck up

: parameters (? ob ? underob − b l o c k)
: c o n d i t i o n (and (c l e a r ? ob) (on− t ab le ? ob) (arm−empty)

(w e l l p l a c e d ? underob) (c l e a r ? underob))
: goa lCondi t i on (and (on ? ob ? underob))
: a c t i o n (p i ck up ? ob)

)
(: r u l e putdown

: parameters (? ob − b l o c k)
: c o n d i t i o n (h o l d i n g ? ob)
: goa lCondi t i on (and)
: a c t i o n (putdown ? ob)

)
(: r u l e u n s t a c k

: parameters (? ob ? underob − b l o c k)
: c o n d i t i o n (and (on ? ob ? underob) (c l e a r ? ob) (arm−empty)

(not (w e l l p l a c e d ? ob)))
: goa lCondi t i on (and)
: a c t i o n (u n s t a c k ? ob ? underob)

)
)
� �

329

Chapter H. Enhancing the problem model for structure building problems

H.2 Arbitrary length macro action case study: struc-
ture building

In this section we generate ALMAs for structure building problems. We follow the
system that we developed in Chapter 7 for traversal problems. In this appendix we
focus on sequences of actions that will clear a particular block in a stack. The first
step is to create the mapping between structure building problems and our arbitrary
macro action representation. A set of target identifying rules is defined, this was first
presented in (Lindsay, 2012); the resulting bags are presented for the Blocksworld
domain; we conclude by discussing the use of the language and by discussing the
limitations of our SI based ALMA representation in this form of problem.

H.2.1 Problem mapping

The most common structure building problem in planning is the stacking problem. We
have limited our study to this form of structure building problem. The structures that
are acted on in these problems are stacks and the planner is limited to interacting with
the structures from its top element. We assume there is a storage space with sufficient
room, for example a table.

A necessary sequence acted on these stacks is uncovering a block from a structure.
Uncovering blocks requires a chain of actions that iteratively removes blocks from a
structure. Each of these removal steps might require several actions: if the movement
of a block is separated into distinct actions, or if the actions need enabled.

The definition of an ALMA requires the macro bag and the bindings between the
macros. The macro bag is defined separately for each domain and target type. The
other parameters can be generated from the uncovering problem in the context of a
structure building problem.

We assume that any macro that forms part of an uncovering solution will detach a
block and attach the block somewhere. Therefore the SI template will have the form
. . . ,(detach o1 o2),. . . ,(attach o1 o3). The binding constraints, Bmop0,mop1 , for macro,
mop0 , used directly before macro, mop1 , enforces that (o2(Vmop0) = o1(Vmop1)). This
means that blocks are removed from the same stack.

The target of these problems is the block that is uncovered. This is the block that
was detached from in the macro; o2, in the previous example.

330

Chapter H. Enhancing the problem model for structure building problems

H.2.2 Targets

The target for an uncovering block problem is that a particular block is free to be
picked-up. We assume that there are plans that can be used to extract example se-
quences. One interpretation of the rule would be that every unstack action satisfies a
target: because we lift the block, clearing the block below. However, it is more power-
ful to identify potentially longer sequences of actions. In particular, we identify where
blocks were cleared and then used. We follow a similar process to the one used for
structure traversal (in Section 7.4).

The relevant actions are extracted: selecting those actions that enable the removal
step actions (for example the pickup and put-on-table actions in Blocksworld), in a
similar method as for traversal actions. This leaves a backbone of actions relevant to
structure building. We then break this thread up into sequences by identifying when
an important block has been cleared. We use a structure to determine whether a block
was an important target.

Figure H.1: Example structure, with old-connections in black and below-connections
in purple. When white is put on green we examine the stack old-connections and find
that red is on black.

The structure updates two distinct sets of connections that record the previous stack
of a moved block. When a block is detached from a stack a below-connection is made
with each block underneath it. When the block is attached to a new stack an old-

connection is made with its old stack. If a moved block is already connected then we
do not update the connections. If it has been attached to an intermediary stack then this
could have been achieved using the table. We use this structure to determine whether
uncovering a particular block was the target.

We define the following rule to divide the thread of stack interactions into se-
quences:

1. A block, b, is a target if: b is being attached; b will not be removed; and each
of the blocks that have old-connections to b’s stack are in the final state not in
stacks above blocks that are below-connected to b.

This last property states that if a block was underneath b and will be underneath
a block that has been moved from b’s stack then it was the reason that b was moved.
Therefore unstacking b was not a target. This allows us to break the thread into single
sequences that achieve important targets.

331

Chapter H. Enhancing the problem model for structure building problems

Macro bags: the blocksworld domain

We have simulated the process by hand and an example of the bag that might be com-
puted is, unearthBag:

• (unstack b1 b2), (putdown b1);

• (unstack b1 b2), (stack b1 b3).

This bag is perhaps more interesting than it might appear at first glance. The se-
quences that we have derived the language from might include examples of stacking
blocks on top of each other. Assuming reasonable sample sequences then blocks will
not be put onto a tower that would be dismantled later. Our vocabulary does not cap-
ture this important distinction. In allowing the stack action in the bag above we missed
the opportunity to restrict the solver’s options to sensible sequences.

The consequence of this is that the use of our vocabulary could lead to a cycle. For
example, if there are two blocks to be uncovered, b1 and b2 and each is in a stack: b1
is clear and b2 has a single block bp on top. A solution to uncovering b2 is to pickup
the block and stack it on top of b1. Subsequently a solution to uncovering the newly
covered b1 is to stack the block back on b2, causing the loop. However, we demonstrate
in the next section that we can overcome this potential problem in the rules.

H.2.3 Use and limitations of the vocabulary

The system that we have developed for using ALMA comes with the assumption that
any expansion of the macro bags that leads to an achieved target is equivalent. This
means that the control of the states that are visited during the macro action expansion
for a particular target are limited to the selection of the macro actions in the bag and
the binding constraints between them. However, if we use SbS, we can use the rules to
control the actions that are being executed.

We assume the ALMA that we have developed enhances the problem model with
the reachability condition, (can unearth ?b) and the action, (unearth ?b). The
unearth macro action can be used to unstack bad towers. An example of a policy for
the Blocksworld domain that unearths blocks that must be clear in the goal is presented
here:

� �
(d e f i n e (p o l i c y AMA unear th block)
(: domain b l o c k s w o r l d)
(: r u l e u n e a r t h b l o c k

: parameters (? b ? onBlock − b l o c k)

332

Chapter H. Enhancing the problem model for structure building problems

: c o n d i t i o n (and (on ? onBlock ? b))
: goa lCondi t i on (and (c l e a r ? b))
: a c t i o n (u n e a r t h ? b)

)
(: r u l e d i s c a r d b l o c k

: parameters (? b ? h e l d − b l o c k)
: c o n d i t i o n (and (h o l d i n g ? h e l d))
: goa lCondi t i on (and (c l e a r ? b))
: a c t i o n (putdown ? h e l d)

)
� �
This policy demonstrates that even though the vocabulary might not be perfect for

the situation, we will sometimes be able to compensate in the rule system and make
use of it nonetheless. We discussed this in the future work Section 10.2.

In the context of the goals set in the benchmark planning problems this action
has limited use. In these problems we are often required to create towers of blocks.
However, the construction of these towers relies on building on good-towers, which
is a recursive property. If the bottom of a stack is made explicit in the goal then we
could use rule ordering and iterative composition of towers and form a strategy for
constructing good towers. We assume this is modelled by a predicate (goalBottom
?b).

� �
(d e f i n e (p o l i c y AMA unear th block)
(: domain b l o c k s w o r l d)
; ;
; ; t h e c a s e s t h a t l e a d t o u n e a r t h i n g a b l o c k
; ;
(: r u l e u n e a r t h w r o n g a b o v e

: parameters (? b1 ? b2 ? onBlock − b l o c k)
: c o n d i t i o n (and (c a n u n e a r t h ? b1) (on ? onBlock ? b1))
: goa lCondi t i on (and (on ? b2 ? b1) (not (on ? onBlock ? b1)))
: a c t i o n (u n e a r t h ? b1)

)
(: r u l e u n e a r t h w r o n g b e l o w

: parameters (? b1 ? b2 ? unde rBlock − b l o c k)
: c o n d i t i o n (and (c a n u n e a r t h ? b1) (on ? b1 ? unde rBlock))
: goa lCondi t i on (and (on ? b1 ? b2) (not (on ? b1 ? unde rBlock)))
: a c t i o n (u n e a r t h ? b1)

)
; once u n e a r t h e d t h i s b l o c k needs remove t o o
(: r u l e remove wrong below

: parameters (? b1 ? b2 ? unde rBlock − b l o c k)
: c o n d i t i o n (and (c a n u n e a r t h ? b1) (on ? b1 ? unde rBlock))
: goa lCondi t i on (and (on ? b1 ? b2) (not (on ? b1 ? unde rBlock)))
: a c t i o n (u n s t a c k ? b1 ? unde rB lock)

)
(: r u l e u n e a r t h b l o c k

: parameters (? b ? gonBlock − b l o c k)
: c o n d i t i o n (and (c a n u n e a r t h ? b) (onTable ? b))
: goa lCondi t i on (and (on ? b ? gonBlock))
: a c t i o n (u n e a r t h ? b)

)
; ;
; ; t h e putdown r u l e s d u r i n g an u n e a r t h
; ;
(: r u l e pu tdown wi th wrong above

: parameters (? h e l d ? b1 ? b2 ? onBlock − b l o c k)

333

Chapter H. Enhancing the problem model for structure building problems

: c o n d i t i o n (and (c a n u n e a r t h ? b1) (on ? onBlock ? b1) (h o l d i n g ? h e l d))
: goa lCondi t i on (and (on ? b2 ? b1) (not (on ? onBlock ? b1)))
: a c t i o n (putdown ? h e l d)

)
(: r u l e pu tdown wi th wrong be low

: parameters (? h e l d ? b1 ? b2 ? unde rBlock − b l o c k)
: c o n d i t i o n (and (c a n u n e a r t h ? b1) (on ? b1 ? unde rBlock) (h o l d i n g ? h e l d))
: goa lCondi t i on (and (on ? b1 ? b2) (not (on ? b1 ? unde rBlock)))
: a c t i o n (putdown ? h e l d)

)
(: r u l e p u t d o w n w i t h c o v e r e d t a b l e b e l o w

: parameters (? h e l d ? b ? gonBlock − b l o c k)
: c o n d i t i o n (and (c a n u n e a r t h ? b) (onTable ? b) (h o l d i n g ? h e l d))
: goa lCondi t i on (and (on ? b ? gonBlock))
: a c t i o n (putdown ? h e l d)

)
; ;
; ; r e b u i l d f i r s t l a y e r
; ;
(: r u l e p u t d o w n f i r s t l a y e r

: parameters (? b1 ? b2 − b l o c k)
: c o n d i t i o n (and (onTab le ? b2) (c l e a r ? b2) (h o l d i n g ? b1) (goa lBot tom ? b2))
: goa lCondi t i on (and (on ? b1 ? b2))
: a c t i o n (s t a c k ? b1 ? b2)

)
(: r u l e p i c k u p f o r f i r s t l a y e r B l o c k

: parameters (? b1 ? b2 ? onBlock − b l o c k)
: c o n d i t i o n (and (onTab le ? b2) (c l e a r ? b2) (on ? b1 ? onBlock)

(c l e a r ? b1) (goa lBot tom ? b2))
: goa lCondi t i on (and (on ? b1 ? b2))
: a c t i o n (u n s t a c k ? b1 ? onBlock)

)
(: r u l e p i c k u p f o r f i r s t l a y e r T a b l e

: parameters (? b1 ? b2 − b l o c k)
: c o n d i t i o n (and (onTab le ? b2) (c l e a r ? b2) (onTable ? b1)

(goa lBot tom ? b2) (c l e a r ? b1))
: goa lCondi t i on (and (on ? b1 ? b2))
: a c t i o n (p i ck up ? b1)

)
; ;
; ; b u i l d n e x t l a y e r
; ;
(: r u l e p u t d o w n n e x t l a y e r

: parameters (? p a r t i a l B 1 ? p a r t i a l B 2 ? b − b l o c k)
: c o n d i t i o n (and (on ? p a r t i a l B 1 ? p a r t i a l B 2) (c l e a r ? p a r t i a l B 1) (h o l d i n g ? b))
: goa lCondi t i on (and (on ? p a r t i a l B 1 ? p a r t i a l B 2) (on ? b ? p a r t i a l B 1))
: a c t i o n (s t a c k ? b ? p a r t i a l B 1 ?)

)
(: r u l e p i c k u p f o r n e x t l a y e r B l o c k

: parameters (? p a r t i a l B 1 ? p a r t i a l B 2 ? b ? onBlock − b l o c k)
: c o n d i t i o n (and (on ? p a r t i a l B 1 ? p a r t i a l B 2) (c l e a r ? p a r t i a l B 1)

(on ? b ? onBlock) (c l e a r ? b))
: goa lCondi t i on (and (on ? p a r t i a l B 1 ? p a r t i a l B 2) (on ? b ? p a r t i a l B 1))
: a c t i o n (u n s t a c k ? b ? onBlock)

)
(: r u l e p i c k u p f o r n e x t l a y e r T a b l e

: parameters (? p a r t i a l B 1 ? p a r t i a l B 2 ? b − b l o c k)
: c o n d i t i o n (and (on ? p a r t i a l B 1 ? p a r t i a l B 2) (c l e a r ? p a r t i a l B 1)

(onTable ? b) (c l e a r ? b))
: goa lCondi t i on (and (on ? p a r t i a l B 1 ? p a r t i a l B 2) (on ? b ? p a r t i a l B 1))
: a c t i o n (p i ck up ? b)

)
; ;
; ; d i s c a r d b l o c k i n hand
; ;
(: r u l e d i s c a r d b l o c k

: parameters (? h e l d − b l o c k)

334

Chapter H. Enhancing the problem model for structure building problems

: c o n d i t i o n (and (h o l d i n g ? h e l d))
: goa lCondi t i on (and)
: a c t i o n (putdown ? h e l d)

)
� �
This policy does not lead to a particularly efficient strategy. As blocks are un-

earthed we put the blocks on the table. Only once this process has finished do we
allow stacks be rebuilt. In order to allow only good-towers to be built we must control
the building of stacks. We achieve this by controlling the construction of stacks of size
two, using the goalBottom predicate. After this we can build on any tower that is at
least a good-tower to the depth of two. The final rule acts as a default that makes the
hand free when there is no use of the current block.

In conclusion, we have presented a target type for a structure building problems and
demonstrated that we can use ALMA as part of a solution to solving certain types of
problem. Once again we have seen that targets that can be solved mostly independently
from the rest of the problem work best. However, the rules that use the vocabulary, the
macros in the bags and binding constraints, and the rule system allow parameterisation
of the vocabulary and provide some flexibility in the computation behind modelling
the vocabulary.

An alternative is to evaluate the ALMA expansion in a context with the achieved
goal context (Yoon et al., 2002). If the assumptions of target significance held then this
would provide a method of implementing a good tower builder. The targets would be
paths from the bottom of the tower to the top in the achieved goal context.

335

APPENDIX I

A CHAIN OF LANGUAGE

RESTRICTIONS: FURTHER INTUITION

I.1 Vocabulary rich modelling and its restricted views

In Chapter 3 we introduced a notional, vocabulary rich model, M, and its restricted
views, M|Σ, for a language, Σ. In this section we describe these ideas in more detail,
providing more intuition and making explicit more of the relationships between M and
its restricted view.

I.1.1 Vocabulary rich modelling

The vocabulary defined by the model influences the way that the planner reasons and
interacts with the model. The Blocksworld planning model typically defines three sets
of propositions: the on ?a ?b propositions that exist between two blocks ?a and ?b if
?a sits directly on top of ?b; clear ?a, that holds if any block, ?a, is on top of a stack;
and ontable ?a that is true of any block, that sits on the table. For example, Subfig-
ure I.1(b) illustrates the modelled propositions in a Blocksworld problem. Blocks can
be picked up by a hand and placed onto the table or another block. These propositions
allow a concise representation of the valid actions in the problem. However, there are
many propositions that are not modelled, such as the two under proposition.

It has been shown by Khardon (1999a); Martin and Geffner (2000) that the mod-
elled propositions are an important consideration for certain planning techniques, such
as planners that exploit formulae over the propositions modelled by states. For exam-

336

Chapter I. A chain of language restrictions: further intuition

...

DC

A
B

DCBA

DC

A
B Choose

Goal Piles

DC

A
B

A

DC

A
B

DC

A
B

onTable {C,D}
on {(A B), (B C)}
clear {A,D}

height {({C,D} 1), (B 2), (A,3)}
under {(A {B,C}), (B C)}
twoUnder {(A C)}
above {...}
inPile {...}
nextTo {(C D)...}
goalStack {...}

DC
B A

D
B
C

A

Swap

CollapseMove

DC
B

C

A
B

Pickup

Pickup

D

(a) Rich representation

...

DC

A
B

DCBA

DC

A
B Choose

Goal Piles

DC

A
B

A

DC

A
B

DC

A
B

onTable {C,D}
on {(A B), (B C)}
clear {A,D}

height {({C,D} 1), (B 2), (A,3)}
under {(A {B,C}), (B C)}
twoUnder {(A C)}
above {...}
inPile {...}
nextTo {(C D)...}
goalStack {...}

DC
B A

D
B
C

A

Swap

CollapseMove

DC
B

C

A
B

Pickup

Pickup

D

(b) Sufficient representation

Figure I.1: Propositions for two approaches to modelling a Blocksworld problem.

ple, in Khardon (1999a) it is demonstrated that enhancing the problem model with ad-
ditional propositions can lead to improved planning performance. The Subfigure I.1(a)
illustrates several relationships that could be captured in a rich model of the prob-
lem. For example, concepts such as two under, or more generally the somewhere
under propositions. These are basic relationships that hold between objects in the
environment. The somewhere under ?a ?b proposition can be useful as it can link
a required block, ?b, with the block, ?a, at the top of its stack that needs to be moved
first.

There are many conceptual methods of interaction with these objects; for example,
in a Blocksworld problem it might be useful to consider dismantling an entire stack
of blocks. However, the presented model defines the vocabulary that dictates how
a planner can interact with the objects in the problem. In the benchmark problems
the planner is restricted in interaction; only one block can be moved at a time. Even
moving a block might involve picking the block up and then putting it down somewhere
else, illustrated in Figure I.2(b).

A rich model of the problem could represent conceptual actions on the objects; this
would allow the planner to select the level of abstraction that a decision was made at.
For example, in an alternative representation of the Blocksworld problem where the
arm is not modelled, the relaxed plan heuristic is more informative (Hoffmann, 2005)
and the performance of control knowledge based planning can be improved (Aler et al.,
2000a). The progression through states introduces many layers of interpretation of
the objects in the world; some of these are illustrated in Figure I.2(a). For example,
collapsing an entire stack onto the table is a natural extension from pickup and place
actions.

We can also consider exactly why a certain behaviour is being carried out, in terms

337

Chapter I. A chain of language restrictions: further intuition

D
B CBA
C

DC

A
B Choose

Goal Piles

A

D
B
C

A

Swap

DC

A
B

CollapseMove

D

(a) Rich representation

D

DC

A
B

DCBA

DC

A
B Choose

Goal Piles

DC

A
B

A

DC
B

C

A
B

Pickup

Pickup
DC

B A

D
B
C

A

Swap

CollapseMove

(b) Suf-
ficient
representa-
tion

Figure I.2: Actions for two approaches to modelling a Blocksworld problem.

of the individual decisions that led to the choice being made. These decisions are
actions, as they manipulate propositions at some conceptual level. For example, it
might be useful to decide which stacks will be used for developing the final goal stacks,
setting conceptual propositions in the state (I.1(a)). In transportation problems, prior
to a truck being moved, the planner will determine a package to collect, or perhaps
the entire tour that will be made for redistribution. In a rich model of the planning
problem the planner should be able to make decisions at the suitable level, including
more “fine-grained” levels of the decisions.

Definition I.1.1 A rich planning model, M, is a state transition system, (S,A, γ), such

that,

• the states in S model propositions that capture the concepts and relationships

that exist between objects or states in the state machine;

• the transitions connect the states where a transition exists in some level of inter-

pretation of the model;

• M has a current state, sC ∈ S.

This model provides a rich environment that allows the problem to be interpreted at
many levels; in particular, a level that is relevant to the decision being made. The states

338

Chapter I. A chain of language restrictions: further intuition

model all of the propositions that are suggested by the behaviours in the problem. We
can observe that the interpretation of the problem as a whole introduces the concept
of a solve action. Thus the vocabulary includes a single step plan for any solvable
planning problem. The graph defined by the vertex and edge sets 〈S,A〉 is therefore
densely connected:

∀s, s′ ∈ S (∃a1, . . . , an s
′ = γ(. . . (γ(s, a1) . . .), an) =⇒ (∃a s′ = γ(s, a))

A planning problem

A planning problem is described by a triple, P = 〈M, i, g〉, where M = (S,A, γ) is
a concept rich planning environment model, i ∈ S is the initial state and g is a goal
formula. The current state of M is initialised to the initial state, sC = i.

I.1.2 A restricted model

The restricted model, M, accepts the sentences of a language, Σ. We define M as a
view of M, such that M is consistent with M for any sentence that can be expressed in
Σ. In this subsection we formalise this relationship.

Restricting the view of the model

If the language, Σ, cannot express all of the actions and propositions in M then the
planner is given a restricted view of M. This will result in the restricted model de-
scribing a state transition system, M = (S,A, γΣ), with fewer actions and states (Fig-
ure I.3). We require that the restricted model captures all of the states and actions that
can be expressed in Σ. Similarly, there should not be extra actions or states that are not
in the model. Otherwise consistency will not follow.

States and propositions The restricted model, M, for language, Σ, is defined for
propositions expressible in Σ: M |= p, where p ∈ wff(Σ). This extends to sets of
wff(Σ) and hence to states. A state, s, in the language, Σ, represents a state, s′, in M,
if every proposition that is expressible in Σ and is entailed by s′ is also entailed in s.
Formally, we say:

s′(M)Rs(Σ) ⇐⇒ (∀p ∈ wff(Σ) s |= p ⇐⇒ s′ |= p).

A state in wff(Σ) is modelled by M if it represents a state that is modelled by M.

339

Chapter I. A chain of language restrictions: further intuition

M|Σ

M

Figure I.3: Capturing M in a language acts like a filter, retaining the parts of the model
that can be expressed in the language and removing the parts that cannot.

M |= s(Σ) ⇐⇒ (∃s′ s′Rs & M |= s′)

A state in M might entail more propositions than the representing state in the re-
stricted model. As a result the distinction between two states in M might not be ex-
pressible in Σ and they are represented by the same state in wff(Σ). A state in M,
however, will be represented by at most a single state in the restricted model. Of
course there may be states modelled by M that are not represented by states in wff(Σ).

Actions As several states in M can be represented by a single state in wff(Σ), a single
action in wff(Σ), between two states in wff(Σ), can represent many actions in M. As
the states in M are richer, there can be actions that have an effect on parts of the state
that are not expressible in Σ. In particular, there can be actions that have no visible
effect with respect to the state expressible in Σ; as well as actions that transition to
states not represented by states in wff(Σ). An action in M will be represented by at
most a single action in wff(Σ).

An action a ∈ wff(Σ) represents an action a′ ∈ S if the part of a′ expressible in Σ

has the same effect on the state as a.

340

Chapter I. A chain of language restrictions: further intuition

a′(M)Ra(Σ) ⇐⇒
(∀s′0, s′1 ∈ S s′1 = γ(s′0, a

′) =⇒
∀s0 ∈ wff(Σ) (s′0Rs0 =⇒ (s′1RγΣ(s0, a))))

An action in wff(Σ) is entailed by the restricted model if it represents an action in
the conceptual model.

M |= a(Σ) ⇐⇒ (∃a′ ∈ A(M) a′Ra)

The restricted view We define the restricted model, M, that accepts the language,
Σ, as a restricted view of M. M is consistent with M for any sentence expressible in Σ.
As we have defined M |= e for propositions, states and actions, these are all modelled
by the restricted view. These definitions ensure that M captures as much of M as can
be expressed in Σ and that there is nothing captured by M that is not part of M.

Definition I.1.2 A Restricted View: M|Σ, for some language Σ, such that

∀e M|Σ |= e ⇐⇒ (e ∈ wff(Σ) . M |= e)

The planning problem We use P = 〈M|Σ, sinit, g〉 to represent the problem for the
restricted view for M, for the language Σ. sinit ∈ S is the state in wff(Σ) that represents
the initial state of the problem, sinit(S)Ri(P), and g is the goal formula.

A language, Σ, can be used to solve a planning problem P = 〈M, sinit, g〉 if the
initial state is represented in the states of the restricted model, M|Σ, and if the states
that satisfy the goal in M are represented by states in M that satisfy the goal of the
problem.

Definition I.1.3

The restricted model M|Σ = (S,A, γΣ) is usable for problem P ⇐⇒
(∃sinit ∈ S iRsinit) . (∀s ∈ S, s′ ∈ S (s′ |= g . s′Rs) =⇒ s |= g)

I.2 A chain of language restrictions

In definition 3.1.2 we defined a chain of language restrictions as a collection of lan-
guages that are ordered in terms of expressivity, with the most limited language as the

341

Chapter I. A chain of language restrictions: further intuition

first element of the chain. In the following we take a more formal approach to defining
the chains that we focussed on in this work.

The goal of the chain of language restrictions is to enhance the problem model. As
such, all of the states of the model should be represented in the enhanced model. If
this is not the case then our view of the model has become more restricted. Also, there
is no reason to consider states that are not represented by any of the described model
states. These states fall outside the model and any solution that includes them will be
impossible to interpret with respect to the restricted model.

Definition I.2.1

ShapePreservingΣ0→Σ1
⇐⇒

∀s ∈ wff(Σ0) ∃s′ ∈ wff(Σ1) s′Rs

∀s′ ∈ wff(Σ1) ∃s ∈ wff(Σ0) s′Rs

∀s0, s1, a s1 = γΣ0(s0, a) =⇒
(∀s′0 s′0Rs0 =⇒ (∃s′1, a′ s′1 = γΣ1(s′0, a

′) . a′Ra))

The intuition behind this is that the structure of the described model is important
and its shape should be preserved in any restricted model for languages on a chain. In
particular, the behaviours of objects in the restricted model should still be possible in
the richer models and any new behaviours introduced into the model should not move
outside states that are represented by states in the described model.

The concept of ShapePreserving goes some way to capture this intuition. However,
a chain that is ShapePreserving could model an action that bridged two sets of states
that are disconnected in the described model. Such actions are not interesting as we
cannot interpret them in the described model. We focus our attention on two groups of
actions and propositions: those that abstract the model and those that enrich the model
(Figure I.4).

As the actions in M form a densely connected graph connecting the states, it is
likely that there will be many actions that would describe shorter paths between the
states in M|Σ. These actions correspond to abstracting actions that are composed of
several of the actions described in the problem model. It should be noted that although
these actions have the same effect as several actions and therefore provide an abstract
way of interacting with the model, they are added to the existing actions and are there-
fore an enhancement. We define an abstracting action with respect to a language that
the action can be expressed, Σ1, and a more limited language, Σ0.

342

Chapter I. A chain of language restrictions: further intuition

Enrichment

Abstraction

M|Σ0

Figure I.4: In relation to the described model M = M|Σ0 , there are two groups of con-
cepts that can be added into the model: concepts that abstract the model and concepts
that enhance the model.

343

Chapter I. A chain of language restrictions: further intuition

Definition I.2.2

AbstractingActionΣ0→Σ1
(a′) ⇐⇒

a′ 6∈ wff(Σ0)

(∀s′0, s′1 ∈ wff(Σ1) s′1 = γΣ1(s′0, a
′) =⇒

(∃a0, . . . , an−1, s0, sn ∈ wff(Σ0)

sn = γΣ0(. . . (γΣ0(s0, a0) . . .)an−1) . s′0Rs0 . s
′
1Rsn))

Adding abstracting actions to the problem model is a well researched topic within
Automated Planning. They are typically called macro actions (defined in Section 2.3)
and can allow large sections of the search space to be cut through. The usual downside
to using abstracting actions is that they can greatly increase the total number of actions
in the model and increase the branching factor at each state. The planning approach
that we use in this work does not does not ground all of the possible actions prior to
search and as a consequence this problem is greatly reduced. We discuss abstracting
actions in more detail in Section I.5.

We have observed that some decisions made during planning are made implicitly.
One aspect of this work investigates introducing these decisions as explicit proposi-
tions in the states of the model. Our framework supports adding actions that change
the enriched part of the state and therefore allow these decisions to be made as part of
the planning process.

Definition I.2.3

EnrichingActionΣ0→Σ1
(a′) ⇐⇒

(∀s′0, s′1 ∈ wff(Σ1) s′1 = γΣ1(s′0, a
′) =⇒

∀s ∈ wff(Σ0) s′0Rs ⇐⇒ s′1Rs)

These actions transition between states that are represented by the same state in the
described language. They break up the decision making into smaller steps by using
propositions that are part of the less restricted models.

We combine the property of ShapePreserving with the two forms of model en-
hancements to define a chain of language restrictions.

344

Chapter I. A chain of language restrictions: further intuition

Definition I.2.4

The languages Σ0, . . . ,Σn, are a chain of language restrictions of the model M, if:

M|Σ0 , . . . ,M|Σn are restricted views of M

Σ0 is usable for M

for i = 0, . . . , n− 1

ShapePreservingΣi→Σi+1

∀a ∈ wff(Σi+1)

(a ∈ wff(Σi) ∨ EnrichingActionΣi→Σi+1
(a) ∨ AbstractingActionΣi→Σi+1

(a))

(∃aM|Σi+1
|= a .M|Σi 6|= a) ∨ (∃pM|Σi 6|= p .M|Σi+1

|= p)

Each of the languages in a chain of language restrictions, Σi, can be used to provide
a restricted view of M, M|Σi . For high values of i this view will be less restricted than
for lower values of i. A chain can be seen as a series of steps that can be taken between
languages: either downwards from an expressive language to a limited language or
upwards from a limited language to an expressive language.

I.3 Policy transferral

In this section we consider how a policy expressed in one model can be used as a policy
in another model. This is discussed for policies between the rich conceptual model,
M, and a policy for a language, Σ; between two languages on a chain of language
restrictions; and between two languages in the case of of co-execution.

I.3.1 Transferring between M and Σ

As the models have different sets of states and actions it means that a policy that is
for the states and actions of M is not directly applicable as a policy for a syntactic
model with states and actions in Σ and similarly for using a policy for Σ as a policy
for M. This also means that a plan for one model cannot be used directly as a plan
for the other. However, a policy for one model can be interpreted as a policy for the
other model. We assume that the restricted model M|Σ is usable for the problem being
solved (Definition I.1.3).

345

Chapter I. A chain of language restrictions: further intuition

πΣi for use with M

The process for interpreting a policy, πΣ, for the Σ language model, as a policy for M
is quite straightforward. However, πΣ will only provide a partial policy for M. This is
because there are states in M that are not represented in Σ. For a state, s, in M there
is at most one state, s0, in the Σ model that represents it. If there is not a state, s0,
then the mapping, πM(s), is undefined. Otherwise, πΣ maps from s0 to a single state,
s1. However, it may represent several states in M. There is therefore a set of actions
that link from s to each of these states and we define these as the represented action

set (RAS).

RAS(s′0) = {a′(M)|
∃s ∈ S, a ∈ A

s′0Rs . a = πΣ(s) . a′Ra . (∃s′1 s′1 = γ(s′0, a
′))}

These actions are equivalent with respect to the model captured in Σ. Any deter-
ministic selection process, f , can be used to select a single action. This provides the
partial mapping: πM(s) = f(RAS(s)).

In the case of plans then it is guaranteed that a plan, πΣ, is a plan for M. The
initial state and at least one goal satisfying state must be expressible in Σ. This relies
on M|Σi being usable for the problem (Definition I.1.3). The actions described by πΣ

join states that are in wff(Σ). From the definition, the actions in RAS(s) link to states
that are represented by a state in wff(Σ). As the initial state is represented in wff(Σ)

this means that execution will not move to a state that is not represented by a state in
wff(Σ). If the restricted model was not usable with the problem then there might be a
state in M that is not a goal for the problem, but is represented by a goal state in M|Σ.
This could result in the policy providing a mapping for the states along a path to a state
represented by a goal state in M|Σ but then providing no more guidance.

πM for use with M|Σ

The process for interpreting a policy, πM, for M, as a policy for the Σ model is slightly
more complicated. For a state, s, in Σ there might be several (at least one) states
represented by s in M. πM maps each of these states to an action. This describes a set
of actions in A that we label the abstract action set (AAS):

AAS(s) = {a′(M)| ∃s′ ∈ S (a′ = πM(s′) . s′Rs)}

346

Chapter I. A chain of language restrictions: further intuition

We then define the base language action set (BAS) of actions in wff(Σ) that rep-
resent actions in AAS(s).

BAS(s) = {a(Σ)| ∃a′ ∈ AAS(s) a′Ra}

The set BAS(s) can be empty and even if it is never empty, the interpreted map,
πΣ(s) = f(AAS(s)) (for some deterministic selection function, f), is not guaranteed
to be a policy. Execution can enter loops, and due to the deterministic selection process,
the loop will never be left. Intuitively, these loops occur where the policy maps to a
state and the distinction between this state and a previous state is not expressible in Σ,
leading to a loop.

s0(Σ), . . . , sn(Σ) loop in πM ⇐
∀i ∈ [0, . . . , n− 1],∃a ∈ BAS(si) si+1 = γ(si, a)

s0 = sn

We define the Σ-coherent property such that if a policy, πM, is Σ-coherent then it
can be interpreted as a policy for a model expressed in Σ.

Definition I.3.1

πM is Σ-coherent ⇐⇒
∀s ∈ wff(Σ) BAS(s) 6= ∅
∀s0(Σ), . . . , sn(Σ) s0, . . . , sn is not a loop in πΣj

∀s′ ∈ S s′ |= g =⇒ (∃s ∈ S s′Rs)

There can be goal states in M that are not represented by states in the restricted
view. The final line of Definition I.3.1 ensures this is not the case. An alternative
would be to demonstrate that an executive would not be directed towards these states.

This property can be weakened for plans by ensuring that any reachable state
(through policy execution) is either the goal or has an action to apply, and that any
sub-chain of the states reached on a chain of execution is not a loop.

I.3.2 Transferring between languages

For any two languages Σi and Σj , i < j from a chain of language restrictions, Σ0, . . . ,Σn,
we can examine how a policy intended for the model captured in one language can be

347

Chapter I. A chain of language restrictions: further intuition

interpreted to be used with the model captured in the other. The result is similar to
transferring policies between the model, M, and a restricted view of the model, M|Σ.

πΣi for use with M|Σj
The definition of the restricted chain means that the interpretation of a policy, πΣi , for
use with a problem, P = 〈M|Σj , sinit, g〉, is straightforward. We can guarantee from
the definition of restricted chain that for every state in wff(Σi) there is at least one
state in wff(Σj) that is equivalent or an enrichment of it. Also, for every action, a, in
wff(Σi) and states, s and s′, such that s′ = γΣi(s, a), there is an action in wff(Σj) that
transitions from a state equivalent or enriching s to a state equivalent or enriching s′.

As the states of M|Σi express all of M that is expressible in Σi then there is at most
one state corresponding to the initial state, sinit. As Σi is usable for M then there is
precisely one state, s0.

We can map this state to an action, a1 = πΣi(s0) and find the following state,
s1 = γΣi(s0, a1). The corresponding actions in the richer model are defined by the
represented action set (RAS). The names are overloaded from definitions above.

RASΣ0→Σ1(s′0(Σ1)) = {a′(Σ1)|
∃s, a ∈ wff(Σ0)

s′0Rs0 . a = πΣ0(s0) . a′Ra . (∃s′1 ∈ wff(Σ1) s′1 = γ(s′0, a
′))}

Any deterministic selection process, f , can be used to select an action from this
set. And we define the policy for Σi as: πΣj(s) = f(RASΣi→Σj(s)).

πΣj for use with M|Σi
The process of interpreting a policy, πΣj , for language, Σj , as a policy to be used with
the problem, P = 〈M|Σi , sinit, g〉, is more involved, as the policy may map to enhanced
actions and have no corresponding action in Σi. For a state, s, in Σi there might be
several (at least one) states that are represented by s in Σj . We can define the abstract

action set (AAS) of actions, using the policy to map each of these states:

AASΣ1→Σ0(s) = {a′(Σ1)| ∃s′ ∈ wff(Σ1) (a′ = πΣ1(s′) . s′Rs)}

There are two possibilities for each action, a, in the abstract action set: either there
is an action that represents a in wff(Σi), or there is not.

348

Chapter I. A chain of language restrictions: further intuition

These actions that make an observable change in the state of M|Σi , are defined in
the effecting action set (EAS):

EASΣ1→Σ0(s) = {a′ ∈ AASΣ1→Σ0(s)|∃s′ (s′Rs . γΣ1(s′, a′)��Rs)}

Similar to above we then define the base language action set (BAS), as the actions
in wff(Σ) that represent actions in EASΣj→Σi(s).

BASΣ1→Σ0(s) = {a(Σ0)| ∃a′ ∈ EASΣ1→Σ0(s) a′Ra}

The result is exactly the same as for interpreting a policy for M, as a policy for
M|Σ: this set can be empty and there can be loops in the interpreted policy.

I.3.3 Co-execution

In this work we follow a chain of language restrictions from the presented language,
Σ0, to a richer language, Σi. This means that we have two models of the problem:
M|Σ0 and M|Σi . If we assume that the state of both models are known then actions can
be followed in both models.

Co-execution is the process of executing a policy, πΣi , in M|Σi and concurrently
interpreting the policy as a policy for M|Σ0 and executing the interpreted policy in
M|Σ0 . If we assume that we co-execute the policies from the current state to the goal
then we can interpret a policy for use with M|Σi as a complete collection of plans for
M|Σ0 .

Co-executing πΣi(s0) in M|Σ0 and M|Σi
We assume a state, s0, in the wff(Σ0) and a state, s′0, in the wff(Σi) as the current state
of the models. Previously, the process for mapping state, s0, began by finding all of
the states that were represented by s0. We can focus on the single action mapped to by
a′ = πΣi(s

′
0). a′ can be applied to s′0 resulting in a new enhanced state, s′1. There are

two possibilities with regards s′1: it will be represented by s0 in the restricted model,
or it will be represented by another state s1. In the former case, we do not attempt to
translate this as an action, instead we progress M|Σi to the new state, s′1, and use the
policy again. This process is guaranteed to lead eventually to a state that is represented
by a different state in M|Σ0 .

The next state is represented by a state, s1, in M|Σ0 . The languages are related
through the chain of language restrictions, this means that there are two possibilities

349

Chapter I. A chain of language restrictions: further intuition

for the relationship between s0 and s1. There is either a single action or a sequence
of actions (corresponding to an abstracting action) that transitions from s0 to s1. For
the action, a′, mapped to by πΣi , we can now define the action sequence set (ASeS),
composed of action sequences that represent this action in Σ0.

ASeSΣ1→Σ0 = {a1, . . . , an| a′Ra1, . . . , an}

πΣi
(s
′
1
)

M|Σi s′4s′3

s′0

s′2

s′1

πΣi(s
′
0)

M|Σ0

πΣ0
(s0)

s2 s1

s0

Figure I.5: The process of co-execution relies on the current state of both models
being known. There can be several transitions that have no effect at the restricted level,
however, progress the enhanced model’s state. The enhanced model can translate the
action that it applies into an action in the restricted language.

Any of these sequences can be applied; however, it makes sense to select a deci-
sion process that minimises the number of actions used to move between the states.
Figure I.5 illustrates co-execution for an enriched action.

Co-execution guides M|Σ0 out of loops

We return to consider the previous looping behaviour. Loops occur when a sequence
of actions, a′1, . . . , a

′
n, transition the state from s′0 to s′1 in M|Σi and there is a state,

s, in wff(Σ0) that represents both s′0 and s′1. In this case, the part of the state that has
been changed cannot be expressed in Σ0. This is interpreted as a sequence of actions

350

Chapter I. A chain of language restrictions: further intuition

a1, . . . , am that represent a′1, . . . , a
′
n and have no effect on the state of M|Σ0 and so

cause a looping behaviour.
When the policy is being co-executed the state, s′, of M|Σi is known. As the loop

is repeating in M|Σ0 , the state of M|Σi is changing. Eventually, πΣi will guide the
executive to a state, s′2, that is not represented by any of the states in the loop and M|Σ0

will safely exit the loop. This is guaranteed as πΣi guides an executive to the goal and
the chain of language restrictions ensures that the goal cannot be represented by a state
in the loop or the problem would be solved on the first loop.

πΣ0: a complete collection of plans

The previous description of execution fails to define a policy. In fact, we can only
interpret πΣi as a collection of plans for M|Σ0 if we add some constraints for how it
will be used. There are three issues concerning the interpretation. The first is that there
can be loops, as we have discussed earlier. The second is that the sequences selected
to represent abstracting actions can overlap. In both of these situations a different
action may be applied in a state that has already been visited. The third issue is that
actions can be represented by action sequences. These three properties violate the
policy definition.

We have shown that co-execution will eventually lead the executive out of a loop,
however, this relies on different actions being applied for the same state. For a loop
in M|Σ0 , (s, a0), (s1, a1),. . . ,(sn, an),(s, an+1), it would be convenient to define the
mapping an+1 = πΣ0(s). This means that the loop is entirely missed out and therefore
does not cause the policy interpretation to map to different actions. Of course this
requires loop detection and plan manipulation. However, if using a simple executive
then execution is guaranteed to exit loops and this aspect will not prevent the policy
solving a problem, but this does not define a policy.

Secondly we consider the sequences of actions that represent abstracting actions.
For a chosen sequence, a1, . . . , an, from the set ASeSΣ1→Σ0 , and current state, s0,
we can store the set of pairs: StepCache = {(s0, a1), . . . , (sn−1, an)}, such that
si = γΣ0(si−1, ai). We can now define a = πΣ0(s), where (s, a) ∈ StepCache. If
the mapping is not defined then we are guaranteed to have completed the sequence
(and s will represent the current state of M|Σi) and we should look up the next action
in πΣi . Intuitively, this says that the sequence of actions needs to be applied before
co-execution can continue, so we break it up and feed the actions to the executive one
at a time. This idea relies entirely on the assumption that co-execution traverses from

351

Chapter I. A chain of language restrictions: further intuition

the current states to the goal using only the actions of the policy or the interpreted plan.
Under the presented method of co-execution, for any state, s, the interpretation

provides a plan, πΣ0 , that leads an executive to the goal. However, for two plans, πΣ0s0

and πΣ0s1
for states, s0 and s1, we cannot guarantee that for every state, s, πΣ0s0

(s) =

πΣ0s1
(s). This is because we might be following sequences of actions that represent

different abstracting actions and therefore pass through the state s as part of sequences
to different states. This means that our interpretation provides a complete collection of
plans but is not a complete policy for M|Σ0 . This is a strong property that is sufficient
for the purposes of this work.

I.4 Proofs for state and action representation

Theorem 3.2.1 For any state, s, expressible in Σi, there is a single state, s′, expressible

in Σ0, which represents s (sRs′).

Proof This restriction follows from the limited space of enhancements we presented
in Section 3.1. This can be demonstrated through an inductive step, by considering
an enhancement between languages, Σj and Σj+1, in the case of each of the three
possible enhancement steps. The base case is trivial as the chain starts at Σ0 and all
states expressible in Σ0 can be represented by themselves in Σ0. The assumption is
that every state that is expressible in Σj is represented by a state expressible in Σ0. The
added formulae in Σj+1 must belong to one of three cases:

• An abstract action, expressible in Σj+1, is composed of actions expressible in
Σj and can therefore only link states expressible in Σj and from the inductive
assumption, these must be represented by states in Σ0.

• An enrichment step leads to states in Σj+1 that are enrichments of states in Σj:
that is, each state, s ∈ wff(Σj+1) is equivalent to a state s′ ∈ wff(Σj) for all of
the propositions expressible in Σj . If s′ is represented by a state, s′′ ∈ wff(Σ0)

then s is represented by s′′; and through the inductive assumption this is the case.

• The final case is similar, except there might be a set of states, s0, . . . , sm ∈
wff(Σj+1), represented by s′ ∈ wff(Σj). In this case each state matches in
all propositions expressible in Σj and each alternative sk differs in the possible
decisions. Also there are actions; however, these actions affect the decision
propositions and therefore do not alter the state, with respect to a lower language
(that is, the changed propositions are not part of the language).

352

Chapter I. A chain of language restrictions: further intuition

Theorem 3.2.2 For any action, a ∈ wff(Σi), there exists an (possibly empty) action

sequence, a′0, . . . , a
′
m ∈ wff(Σ0), which represents a (aRa′0, . . . , a

′
m).

Proof We assume that every action, a, and state pair, s0, s1, that is expressible in
Σj is represented by an action sequence, a′0, . . . , a

′
m ∈ wff(Σ0), such that s′1 =

a′0, . . . , a
′
m(s′0). The base case holds as all actions in Σ0 are represented by themselves

in Σ0. The added formulae in Σj+1 must belong to one of three cases:

• An abstract action is equivalent to a sequence of actions, a′′0, . . . , a
′′
k, in Σj and

each of these is represented by a sequence of actions in Σ0 (from the assump-
tion). Therefore the composition of each of these action sequences represents
the action.

• Enriching steps preserve the actions set and therefore all actions in Σj+1 are in
Σj and therefore represented by an action sequence in Σ0.

• The decision actions’ effects involve only propositions not expressible in Σj .
Therefore, decision actions are represented by a NO-OP (empty sequence) in
Σj .

I.5 Setting related work within our framework

In Chapter 3 and Appendix I, we have developed a framework for enhancing the prob-
lem model. The models explored within this framework share properties with the
described problem model, including action-sequence transferral under co-execution.
In order to secure this property we have made several restrictive assumptions over the
chains of languages that can be explored in the framework. In this subsection we con-
sider approaches that have exploited an enhanced problem model either as part of a
planner’s strategy, or as the formalism used for planning. In the latter case, we relate
the examples from the literature to our model.

I.5.1 Remodelling as a planning approach

Remodelling is a natural strategy for tackling a problem and it has formed a part of
many strategies to solving the planning problem. A common approach in problem
solving is to construct a relaxed model of the problem and use a solution to the relaxed
version of the problem to guide actions taken in the original problem. It can follow
that by selecting the relaxation in a sensible way, its solutions might provide useful

353

Chapter I. A chain of language restrictions: further intuition

guidance for the original problem. This approach is part of the strategy adopted in
the state of the art domain independent approaches to planning (Hoffmann and Nebel,
2001; Richter et al., 2008; Helmert and Domshlak, 2009). The relaxation is com-
puted by removing the delete effects from each actions. The reformulated problems
have the benefit that they can be solved efficiently (Bonet and Geffner, 1998) and it
has been demonstrated that they are informative for heuristic search (Hoffmann and
Nebel, 2001; Richter et al., 2008; Helmert and Domshlak, 2009). More generally, a
collection of relaxed models can be made for the same problem and their solutions can
be used in combination to provide an estimate for the original model (Culberson and
Schaeffer, 1998). An approach that is related to our framework is presented in Gregory
et al. (2011). A hierarchy of abstractions of the model is constructed and information
found solving problems higher in the hierarchy is used to inform the search in lower
hierarchies. In these approaches the planner is presented with the original planning
problem and the solving strategy involves some form of remodelling.

I.5.2 Macro actions

A macro action, a, is a collection of actions, a0, . . . , am with the interpretation s′ =

γ(s, a) ⇐⇒ s′ = γ(. . . (γ(s, a0), . . .), am), or in other words, the action represents
an action sequence. Macro actions can be constructed and provided to the planner
as an alternative to the actions in the problem model. These actions are equivalent
to abstracting actions in our model. The process of enhancing the problem model
with macro actions corresponds to moving along a chain of language restrictions,
Σ0, . . . ,Σn, with the added restriction that the enhancements can only add abstract-
ing actions:

Definition I.5.1

Σ0, . . . ,Σn are a chain of abstraction enhancing languages ⇐⇒
Σ0, . . . ,Σn are a chain of language restrictions

∀i ∈ [0, . . . , n− 1]

∀a ∈ wff(Σi+1)

(a ∈ wff(Σi) ∨ AbstractingActionΣi→Σi+1
(a))

The nature of heuristics means that it is sometimes difficult to evaluate the relative
quality of the surrounding states. For example, a state on a plateau, or at a local min-
imum in a heuristic landscape. This means that a planner cannot rely exclusively on

354

Chapter I. A chain of language restrictions: further intuition

a hill-climbing or greedy algorithm to solve planning problems with heuristic search.
One solution to reducing the limitations of the heuristics is to include macro actions
in the problem model (e.g. Coles and Smith, 2007). If the actions are constructed
sensibly then they can provide a single choice that escapes the plateau in the heuris-
tic landscape (Iba, 1989; Coles and Smith, 2007; Lindsay, 2012). These actions raise
the level of planning and allow the planner to step over states where the relative re-
ward cannot be determined. This work takes a more general look at determining the
appropriate level for making decisions.

Adding macro actions to the problem model will usually increase the branching
factor of the state space, causing an increase in utility cost and more states to exam-
ine in each layer. If the actions are helpful then search will have to expand fewer
layers as the macro actions will reach the goal using fewer actions. The difficulty in
using macros is to select a small number of macro actions that lead to improved per-
formance (Botea et al., 2005a; Newton et al., 2007). Performance improvements will
often be a reduction in the time taken to find a solution. In CONSTANCE, macro actions
are used to reduce the plan space in a constraints model, by reducing the interweaving
of causally unrelated action sequences and abstracting from the specific actions used
to transition between states. These reductions lead to a more effective constraint based
planner (Gregory et al., 2010). Efficiency of the planner is not the main issue that
we address in this work, although matters of efficiency are inevitably important when
considering a hard problem like planning.

Pre-process and on-line model extension

In Botea et al. (2005a); Newton et al. (2007) the enhanced view M|Σi is constructed
upfront and the planner solves the planning problem expressed for the enhanced model.
The plan is translated into a solution for M|Σ0 as a post-process. In general, a macro
action, a, such that s′ = γΣi(s, a), can be substituted for any sequence, a0, . . . , am,
such that s′ = γΣ0(. . . (γ(s, a0) . . .), am).

Another approach to using macro actions is to generate them during planning (Coles
and Smith, 2007; Laird et al., 1986; Iba, 1989). We can interpret this as moving through
a chain of language restrictions during the planning process. The planner begins with
the model captured in Σ0. During planning a series of models are presented to the
planner: the restricted views corresponding to the languages on a chain of language
restrictions, Σ0, . . . ,Σi, At a certain point during planning the planner will use the
model M|Σj to choose the next action to apply. It is limited to the actions that can be

355

Chapter I. A chain of language restrictions: further intuition

expressed in Σj . The constructed plan is a valid plan for M|Σi as a chain of abstraction
enhancements has been followed and any action in Σj is in Σi. This means that we can
translate the solution for M|Σi , as a solution for M|Σ0 as before.

The use of a post-process to translate the plan for the original problem model is an
alternative to our process of co-execution. One advantage of co-execution is the states
of both transition systems are known during planning. However, when using macro
actions, the chains only enhance the model with abstracting actions, and therefore the
models share the same states. As we observed in the previous section, a plan in the
enhanced model is not guaranteed to translate to a plan in the base language.

There are two methods of presenting a planner with macro actions. One approach
is to compose the actions and include the macros in the problem model that is presented
to the planner. The planner uses the actions in the same way as standard actions and
a plan in the original language is computed as a post-process. The main benefit to
this approach is that the benefits of macro actions can be realised in any planner. The
other approach is to build a specialised component into the planner for dealing with the
macro actions. In Botea et al. (2005a) it is demonstrated that extending the planner to
handle abstracting actions directly can result in a more efficient and effective system.
In our approach we rely on a policy and therefore whether the action is a macro action
or not is determined by the policy mapping.

I.5.3 Support predicates

The propositions modelled in the state have limited impact on relaxed plan based plan-
ners. However, for planners that rely on expressions built from the state and goal for-
mulae, the modelled propositions can be crucial. This observation has already inspired
researchers to investigate enhancing the problem model (Khardon, 1999a; Martin and
Geffner, 2000; Bacchus and Kabanza, 2000; Doherty and Kvarnström, 2001). These
approaches to enhancing the model correspond to moving through a chain of language
restrictions, Σ0, . . . ,Σn. The main motivation for these approaches came from plan-
ners using fully hand-written control knowledge (Bacchus and Kabanza, 2000; Do-
herty and Kvarnström, 2001). This has inspired the community to approach automat-
ically generating the control knowledge. There has been substantial progress in this
area (Fern et al., 2006): through development of the language used to express the con-
trol knowledge (Martin and Geffner, 2000), discussed in Chapter 4; and improved rule
learning strategies (Fern et al., 2006), discussed in Chapter 8. The richer languages
that have been developed do not establish comprehensible abstraction layers, resulting

356

Chapter I. A chain of language restrictions: further intuition

in control knowledge that is complicated to understand; however, they allow concepts
to be constructed over the described model. We divide the approaches into those that
enrich the states (through hand or automatically determined enrichments) and those
that enhance the entire model.

Enriching the states

In Khardon (1999a); Martin and Geffner (2000); de la Rosa and McIlraith (2011) the
chains considered are restricted: the authors investigate enriching the states, but do
not add actions into the model. Instead, richer languages model more propositions. In
particular, there is a one-to-one mapping between the states in the described model,
M|Σ0 , and the states in any of the richer models on the chain, M|Σi . This is because in
these works there are no enriched actions to make fine grained decisions.

Definition I.5.2

Σ0, . . . ,Σn are a chain of state enriching languages ⇐⇒
Σ0, . . . ,Σn are a chain of language restrictions

∀i ∈ [0, . . . , n− 1]

a ∈ wff(Σi+1) (a ∈ wff(Σi))

∀s0, s1 ∈ wff(Σi+1) (∃s2 ∈ wff(Σi) s0 |= s2 . s1 |= s2) ⇐⇒ s0 = s1

The planner is provided with the same actions as in M|Σ0 . This means that the
planner generates a plan that is usable for M|Σ0 without translation.

In these works they demonstrate that learning control knowledge relies on richer
propositions than are expressed in the described planning models. The authors observe
that in certain problems they cannot learn control knowledge that makes effective ac-
tion choices. After moving through a chain of state enriching languages, the authors
demonstrate that once certain propositions are modelled then effective control knowl-
edge can be learned. The key to this is that the states are enriched with propositions
that provide the necessary information to make action choices. These works are par-
ticularly relevant, as a key motivation for this work is that the planning model does not
always express all of the necessary propositions useful for selecting actions.

357

Chapter I. A chain of language restrictions: further intuition

Enhancing the model

In Bacchus and Kabanza (2000); Doherty and Kvarnström (2001) it is demonstrated
that enhancing the model allows effective control knowledge to be expressed. One of
the key properties of these systems is that very little search is required, because the
control knowledge heavily constrains every choice. The control knowledge used by
TLPLAN establishes various levels of abstraction so that decisions can be made at the
correct level. A lot of effort goes in to hand-writing the control knowledge, as it is
important that the control knowledge covers each of the decisions in problems of the
domain. Moreover, a rich knowledge representation language allows knowledge to be
represented for the various styles of benchmark planning problem. However, control
knowledge can be used to generate a high-quality plan very efficiently (Bacchus and
Kabanza, 2000; Doherty and Kvarnström, 2001). We developed a general framework
for exploring similar forms of abstraction: the enrichments made in these works can
be compared to moving along a chain of language restrictions.

I.5.4 Extra world concepts

In the previous subsections we have presented processes that can be explained with
a chain of language restrictions. In Dornhege et al. (2009); Gregory et al. (2012),
chains of language restrictions that do not conform to the shape preserving property
are investigated. A key difference in these works is that the solution to the problem is
expressed for the enhanced model. This means that no interpretation is required.

Definition I.5.3

The languages, Σ0, . . . ,Σn, are a chain of model augmenting

language restrictions of the model M, if:

M|Σ0 , . . . ,M|Σn are restricted views of M

Σ0 is usable for M

for i = 1, . . . , n− 1

(∃aM|Σi+1
|= a .M|Σi 6|= a) ∨ (∃pM|Σi 6|= p .M|Σi+1

|= p)

The motivation for these works is that there are parts of the planning problem that
are difficult to express in a standard language. This contrasts with our motivation:
that there are parts of the planner that are hard to express in a standard language.

358

Chapter I. A chain of language restrictions: further intuition

The authors extend the model using specialised language and demonstrate the use of
heuristic search to solve problems expressed in the richer language.

I.5.5 Decomposition

Breaking a problem into smaller chunks and constructing a solution to the original
problem from solutions to the smaller parts is another traditional approach to problem
solving. We look at several approaches to planning that decompose the problem in
different ways.

Goal ordering is an approach that decomposes the problem by splitting the problem
goals into a chain of growing goal subsets. The planner is presented each sub-problem
in progression, starting from the final state of the previous run. This decomposition
can lead to an exponential complexity reduction (Koehler, 1998). More generally,
landmarks are facts that must be true at some point in a plan (Porteous et al., 2001).
Various relationships have been derived that imply orderings between pairs of land-
marks. An approach to planning is to use landmarks as intermediate goals that the
planner must solve before solving the goal. In Hoffmann et al. (2004) it is demon-
strated that several problems are broken into easier sub-problems that can be solved
quickly by a planner and that this combined solution can be shorter and found faster.
However, as some of the used landmark orderings are only approximate and because
in the over-head of multiple planner calls, the use of landmarks can also result in worse
performance. Each of these approaches is compatible with this work and could be used
to improve the performance.

Planning problems can contain challenging optimisation problems as sub-components.
In HybridSTAN (Fox and Long, 2001) the problem is decomposed so that appropriate
special purpose solutions can be exploited on a collection of these challenging compo-
nents. At the core is a reduced problem model (the core problem) that is solved by a
general purpose heuristic planner. In comparison, this is similar to moving backwards
along a chain from a richer language to a less expressive language. A key benefit to
this approach is that by exploiting tailored solutions, the planning problem is simpler.

359

Chapter I. A chain of language restrictions: further intuition

Definition I.5.4

The languages Σ0, . . . ,Σ−n, are a chain of model simplifying

restrictions of M, if:

Σ−n is usable for M

for i = 1, . . . , n− 1

(∃aM|Σi+1
|= a .M|Σi 6|= a) ∨ (∃pM|Σi 6|= p .M|Σi+1

|= p)

The core problem is not necessarily shape preserving and the decomposition does
not just remove enriching or abstracting actions. For example, when a transportation
sub-problem is identified, the transporter’s located propositions are removed. In the
described problem the transporter is located so that it can pick up a subset of the pack-
ages. However, in the core problems the transporter can pick up any package. These
actions are not represented by actions in the described problem.

Another way of interpreting this work is as a form of reverse engineering of Dorn-
hege et al. (2009), where the components that should have been defined in a specialised
language have been forced into PDDL. In Fox and Long (2001) these components are
identified and removed for specialised treatment. The model is then moved through
a chain of model augmenting language restrictions and a plan is generated for the
enhanced (complete) model. Fox and Long (2001); Dornhege et al. (2009) both use
heuristic estimates as the means of communication between the special purpose solvers
and the general planner.

An aspect of the approach developed in Fox and Long (2001) is that the compo-
nents have to separate cleanly from the rest of the model. A fingerprint defines the
exact properties that a problem model must exhibit so that a particular special purpose
solver is applicable. As soon as the model is slightly different then the problem can-
not be decomposed and the specialised solution cannot be applied. In this work we
investigate similar specialised solvers; however, instead of decomposing the structures
from the model, we enhance the model with information about the structure. In this
way, if the structure is not exactly as expected the information could still be provided,
although we do not experiment with this in the current work.

360

BIBLIOGRAPHY

Homepage of IPP, February 1999. URL http://user.enterpriselab.ch/

˜takoehle/publications/ipp/ipp.html.

The 4th international planning competition, 2004. URL http://ipc.

icaps-conference.org.

The international planning competition, 2014. URL http://ipc.

icaps-conference.org.

Philip E. Agre and David Chapman. Pengi: an implementation of a theory of activity.
In Proceedings of the sixth National conference on Artificial intelligence, volume 1,
pages 268–272. AAAI Press, 1987. ISBN 0-934613-42-7.

Martin Aigner. Combinatorial search. Wiley-Teubner series in computer science.
Wiley-Teubner, New York, 1988. ISBN 9783519021094.

Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Evolving heuristics for planning. In
Proceedings of Evolutionary Programming VII, pages 745–754. Springer, 1998.

Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Knowledge representation issues in
control knowledge learning. In Pat Langley, editor, In Proceedings of the Seven-

teenth International Conference on Machine Learning, pages 1–8, Standford, CA,
June-July 2000a.

Ricardo Aler, Daniel Borrajo, and Pedro Isasi. GP fitness functions to evolve heuristics
for planning. In Martin Middendorf, editor, Evolutionary Methods for AI Planning,
pages 189–195, Las Vegas, NV (USA), July 2000b.

Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Learning to solve planning problems
efficiently by means of genetic programming. Evolutionary Computation, 9(4):387–
420, 2001.

361

http://user.enterpriselab.ch/~takoehle/publications/ipp/ipp.html
http://user.enterpriselab.ch/~takoehle/publications/ipp/ipp.html
http://ipc.icaps-conference.org
http://ipc.icaps-conference.org
http://ipc.icaps-conference.org
http://ipc.icaps-conference.org

BIBLIOGRAPHY

Giuliano Armano, Giancarlo Cherchi, and Eloisa Vargiu. A parametric hierarchical
planner for experimenting abstraction techniques. In Proceedings of the 18th Inter-

national Joint Conference on Artificial Intelligence, pages 936–941, 2003.

Giuliano Armano, Giancarlo Cherchi, and Eloisa Vargiu. DHG: A system for gen-
erating macro-operators from static domain analysis. In Artificial Intelligence and

Applications, pages 18–23, 2005.

Fahiem Bacchus. The 1st international planning competition, 2000. URL http:

//www.cs.toronto.edu/aips2000/.

Fahiem Bacchus. The AIPS ’00 planning competition. AI Magazine, 22(3):47–56,
2001.

Fahiem Bacchus and Michael Ady. TLPlan / HPlan-P documentation, 2003. URL
http://www.cs.toronto.edu/tlplan/docs.shtml.

Fahiem Bacchus and Froduald Kabanza. Using temporal logics to express search con-
trol knowledge for planning. Artificial Intelligence, 116:123–191, 2000.

Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Com-

putational Intelligence, 11:625–655, 1993.

Alex Bavelas. Communication patterns in task-oriented groups. Journal of the Acous-

tical Society of America, 1950.

Avrim Blum and Merrick L. Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90(1-2):281–300, 1997.

Avrim L. Blum and Pat Langley. Selection of relevant features and examples in ma-
chine learning. Artificial Intelligence, 97:245–271, 1997.

Blai Bonet and Hector Geffner. HSP: Heuristic search planner. In AIPS-98 Planning

Competition, 1998.

Adi Botea, Martin Müller, and Jonathan Schaeffer. Using abstraction for planning
in sokoban. In Jonathan Schaeffer, Martin Müller, and Yngvi Björnsson, editors,
Computers and Games, volume 2883 of Lecture Notes in Computer Science, pages
360–375. Springer Berlin Heidelberg, 2003. ISBN 978-3-540-20545-6.

362

http://www.cs.toronto.edu/aips2000/
http://www.cs.toronto.edu/aips2000/
http://www.cs.toronto.edu/tlplan/docs.shtml

BIBLIOGRAPHY

Adi Botea, Markus Enzenberger, Martin Müller, and Jonathan Schaeffer. Macro-FF:
Improving AI Planning with Automatically Learned Macro-Operators. Journal of

Artificial Intelligence Research (JAIR), 24:581–621, 2005a.

Adi Botea, Martin Müller, and Jonathan Schaeffer. Learning partial-order macros from
solutions. In Proceedings of the International Conference on Automated Planning

and Scheduling, pages 231–240, 2005b.

Adi Botea, Martin Müller, and Jonathan Schaeffer. Fast planning with iterative macros.
In Proceedings of the 20th International Joint Conference on Artificial Intelligence,
pages 1828–1833, 2007.

Craig Boutilier, Richard Dearden, and Moises Goldszmidt. Stochastic dynamic pro-
gramming with factored representations. Artificial Intelligence, 121:2000, 1999.

Craig Boutilier, Raymond Reiter, and Bob Price. Symbolic dynamic programming for
first-order MDPs. In Proceedings of the International Joint Conference on Artificial

Intelligence, volume 1, pages 690–700. Morgan Kaufmann, 2001.

Tom Bylander. Complexity results for serial decomposability. In Proceedings of

the tenth national conference on Artificial intelligence, AAAI’92, pages 729–734.
AAAI Press, 1992. ISBN 0-262-51063-4.

Jaime Carbonell, Oren Etzioni, Yolanda Gil, Robert Joseph, Craig Knoblock, Steve
Minton, and Manuela Veloso. PRODIGY: an integrated architecture for planning and
learning. SIGART Bulletin, 2(4):51–55, July 1991. doi: 10.1145/122344.122353.

Andrew. I. Coles and Amanda. J. Smith. Generic types and their use in improving
the quality of search heuristics. In Proceedings of the 25th Workshop of the UK

Planning and Scheduling Special Interest Group, PlanSIG 2006, December 2006.

Andrew. I. Coles and Amanda. J. Smith. Marvin: A heuristic search planner with
online macro-action learning. Journal of Artificial Intelligence Research, 28:119–
156, February 2007. ISSN 11076-9757.

Andrew. I. Coles and Amanda. J. Smith. Upwards: The role of analysis in cost op-
timal SAS+ planning. ICP 2008, Booklet on participating planners, International
Conference on Automated Planning and Scheduling, September 2008.

363

BIBLIOGRAPHY

Andrew I. Coles, Maria Fox, Derek Long, and Amanda J. Smith. Teaching forward-
chaining planning with javaff. In Colloquium on Artifical Intelligence Education,

Twenty-Third AAAI Conference on Artificial Intelligence, July 2008.

Stephen Cresswell and Peter Gregory. Generalised domain model acquisition from ac-
tion traces. In Proceedings of the International Conference on Automated Planning

and Scheduling, pages 42–49, June 2011.

Stephen N. Cresswell, Thomas Leo McCluskey, and Margaret M. West. Acquisition of
object-centred domain models from planning examples. In Alfonso Gerevini, Adele
Howe, Amedeo Cesta, and Ioannis Refanidis, editors, Proceedings of the Nineteenth

International Conference on Automated Planning and Scheduling, pages 338–341.
AAAI Press, September 2009.

Matt Crosby, Michael Rovatsos, and Ronald P. A. Petrick. Automated agent decom-
position for classical planning. In Proceedings of the International Conference on

Automated Planning and Scheduling (ICAPS 2013), pages 46–54, June 2013.

Joseph C. Culberson and Jonathan Schaeffer. Pattern databases. In Computational

Intelligence, 1998.

Colin De la Higuera. Grammatical inference: learning automata and grammars. Cam-
bridge University Press, 2010.

Tomás de la Rosa and Sheila A. McIlraith. Learning Domain Control Knowledge for
TLPlan and Beyond. In Proceedings of the International Conference on Automated

Planning and Scheduling, Workshop on Planning and Learning (PAL), 2011.

Tomás de la Rosa, Sergio Jiménez, and Daniel Borrajo. Learning relational decision
trees for guiding heuristic planning. In Proceedings of the International Conference

on Automated Planning and Scheduling. AAAI Press, 2008.

Tomas de la Rosa, Sergio Jiménez, Raquel Fuentetaja, and Daniel Borrajo. Scaling up
heuristic planning with relational decision trees. Journal of Artificial Intelligence

Research, 40:767, 2011.

Thomas Dean and Michael Wellman. Planning and Control. Morgan Kaufmann, 1991.

Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms, vol-
ume 16. John Wiley & Sons, 2001.

364

BIBLIOGRAPHY

Anthony H. Dekker and Bernard D. Colbert. Network robustness and graph topol-
ogy. In Proceedings of the 27th Australasian Conference on Computer Science,
volume 26 of ACSC ’04, pages 359–368. Australian Computer Society, Inc., 2004.

Patrick Doherty and Jonas Kvarnström. TALplanner: A temporal logic based planner.
AI Magazine, 22(3):95–102, 2001.

Christian Dornhege, Patrick Eyerich, Thomas Keller, Sebastian Trüg, Michael Bren-
ner, and Bernhard Nebel. Semantic attachments for domain-independent planning
systems. In Proceedings of the Nineteenth International Conference on Automated

Planning and Scheduling, 2009.

Filip Dvorak and Roman Barták. Integrating time and resources into planning. In Pro-

ceedings of the 22nd International Conference on Tools with Artificial Intelligence,
volume 2, pages 71–78. IEEE, 2010.

Stefan Edelkamp and Malte Helmert. MIPS: The model-checking integrated planning
system. AI Magazine, 22(3):67–72, 2001.

Stefan Edelkamp and Jörg Hoffmann. PDDL2.2: The language for the classical part
of IPC-4. Proceedings of the International Planning Competition. International

Conference on Automated Planning and Scheduling, 2004.

Kutluhan Erol, James Hendler, and Dana S. Nau. Complexity results for HTN plan-
ning. Annals of Mathematics and Artificial Intelligence, 18(1):69–93, 1996. ISSN
1012-2443.

Patrick Fabiani and Yannick Meiller. Planning with tokens: an approach between
satisfaction and optimisation. In European Conference on Artificial Intelligence,

Workshop on New Results in Planning, Scheduling and Design, 2000.

Alan Fern, Sungwook Yoon, and Robert Givan. Learning domain-specific control
knowledge from random walks. In Proceedings of the 14th International Conference

on Automated Planning and Scheduling. AAAI Press, 2004.

Alan Fern, Sungwook Yoon, and Robert Givan. Approximate policy iteration with
a policy language bias: Solving relational Markov decision processes. Journal of

Artificial Intelligence Research, 25:75–118, 2006.

Alan Fern, Roni Khardon, and Prasad Tadepalli. International planning competition,
2008. URL http://ipc.informatik.uni-freiburg.de/.

365

http://ipc.informatik.uni-freiburg.de/

BIBLIOGRAPHY

Alan Fern, Roni Khardon, and Prasad Tadepalli. The first learning track of the interna-
tional planning competition. Machine Learning, 84(1-2):81–107, July 2011. ISSN
0885-6125.

Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and executing general-
ized robot plans. Artificial Intelligence, 3:251–288, 1972.

Robert W. Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345,
1962.

Maria Fox and Derek Long. Hierarchical planning using abstraction. In IEE pro-

ceedings on Control Theory and Applications, volume 142, pages 197–210. IET,
Institution of Electrical Engineers, 1995.

Maria Fox and Derek Long. The automatic inference of state variables in TIM. Journal

of Artificial Intelligence Research, 9:367–421, 1998.

Maria Fox and Derek Long. The detection and exploitation of symmetry in planning
problems. In Proceedings of 16th International Joint Conference on Artifical Intel-

ligence, pages 956–961, 1999.

Maria Fox and Derek Long. Hybrid STAN: Identifying and managing combinatorial
sub-problems in planning. In Proceedings of 17th International Joint Conference on

Artifical Intelligence, pages 445–452. Morgan Kaufmann Publishers, 2001.

Maria Fox and Derek Long. PDDL2.1: An extension of PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20:61–124, 2003.

Linton C. Freeman. A set of measures of centrality based on betweenness. Sociometry,
pages 35–41, 1977.

Michelle Galea, David Humphreys, John Levine, and Henrick Westerberg.
Evolutionary-based learning of generalised policies for AI planning domains. In
Proceedings of the Genetic and Evolutionary Computation Conference, 2009.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.
ISBN 0716710447.

Hector Geffner. Functional strips: a more flexible language for planning and problem

solving, pages 187–209. Kluwer Academic Publishers, 2000. ISBN 0-7923-7224-7.

366

BIBLIOGRAPHY

Michael Genesereth, Nathaniel Love, and Barney Pell. General game playing:
Overview of the aaai competition. AI magazine, 26(2):62, 2005.

Alfonso Gerevini and Derek Long. Plan constraints and preferences in PDDL3 - the
language of the fifth international planning competition. Technical report, University
of Brescia, Italy, 2005.

Alfonso Gerevini and Lenhart Schubert. Inferring state constraints for domain-
independent planning. In Proceedings of AAAI/IAAI, pages 905–912, 1998.

Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. Planning through stochastic
local search and temporal action graphs in LPG. Journal of Artificial Intelligence

Research, 20:239–290, 2003.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and prac-

tice. Morgan Kaufmann, 2004.

Peter Gregory and Alan Lindsay. The dimensions of driverlog. In Proceedings of the

UK planning and scheduling special interest group, 2007.

Peter Gregory, Derek Long, and Maria Fox. Constraint based planning with com-
posable substate graphs. In Helder Coelho, Rudi Studer, and Michael Wooldridge,
editors, Proceedings of the 19th European Conference on Artificial Intelligence, vol-
ume 215, pages 453–458. IOS Press, August 2010.

Peter Gregory, Derek Long, Craig McNulty, and Susanne M. Murphy. Exploiting
path refinement abstraction in domain transition graphs. In Proceedings of AAAI,
volume 2, pages 971–976. AAAI, 2011.

Peter Gregory, Derek Long, Maria Fox, and J. Christopher Beck. Planning modulo
theories: Extending the planning paradigm. In Proceedings of the International

Conference on Automated Planning and Scheduling, 2012.

Charles Gretton and Sylvie Thiébaux. Exploiting first-order regression in inductive
policy selection. In Proceedings of the Twentieth Conference on Uncertainty in

Artificial Intelligence, UAI’04, 2004.

Isabelle Guyon. An introduction to variable and feature selection. Journal of Machine

Learning Research, 3:1157–1182, 2003.

367

BIBLIOGRAPHY

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. Systems Science and Cybernetics, IEEE

Transactions on, 4(2):100–107, July 1968. ISSN 0536-1567.

Malte Helmert. On the complexity of planning in transportation domains. In Proceed-

ings of the 6th European Conference on Planning, pages 349–360. Springer-Verlag,
2001.

Malte Helmert and Carmel Domshlak. Landmarks, Critical Paths and Abstractions:
What’s the Difference Anyway? In Proceedings of the International Conference on

Automated Planning and Scheduling (ICAPS), 2009.

Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Lubos Brim, Stefan Edelkamp, Erik A.
Hansen, and Peter Sanders, editors, Graph Search Engineering, number 09491
in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2010. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany.

Jörg Hoffmann. Where ‘ignoring delete lists’ works: Local search topology in planning
benchmarks. Journal of Artificial Intelligence Research, 24:685–758, 2005.

Jörg Hoffmann. Analyzing search topology without running any search: On the con-
nection between causal graphs and h+. Journal of Artificial Intelligence Research,
41:155–229, 2011.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered landmarks in planning.
Journal of Artificial Intelligence Research, 22:215–278, 2004.

Chad Hogg, Héctor Muñoz-avila, and Ugur Kuter. HTN-MAKER: Learning HTNs
with minimal additional knowledge engineering required. In Proceedings of the

23rd Conference on Artificial Intelligence. AAAI Press, 2008.

Glenn A. Iba. A heuristic approach to the discovery of macro-operators. Machine

Learning, 3:285–317, 1989. ISSN 0885-6125.

368

BIBLIOGRAPHY

Okhtay Ilghami, Dana S Nau, and Hector Munoz-Avila. Learning to do HTN plan-
ning. In Proceedings of the International Conference on Automated Planning and

Scheduling, pages 390–393, 2006.

Sergio Jiménez, Tomás de la Rosa, Susana Fernández, Fernando Fernández, and Daniel
Borrajo. A review of machine learning for automated planning. Knowledge Engi-

neering Review Journal, 27(04):433–467, 2012.

Subbarao Kambhampati and Sungwook Yoon. Explanation-based learning for plan-
ning. In Claude Sammut and Geoffrey I. Webb, editors, Encyclopedia of Machine

Learning, pages 392–396. Springer, 2010. ISBN 978-0-387-30768-8.

Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic,
and stochastic search. In Proceedings of the National Conference on Artificial Intel-

ligence, pages 1194–1201. AAAI Press, 1996.

Henry A. Kautz and Bart Selman. The role of domain-specific knowledge in the plan-
ning as satisfiability framework. In Proceedings of the 4th International Conference

on Artificial Intelligence Planning Systems, pages 181–189, 1998.

Roni Khardon. Learning action strategies for planning domains. Artificial Intelligence,
113(1-2):125–148, 1999a.

Roni Khardon. Learning action strategies for planning domains. Technical report,
University of Edinburgh, 1999b.

Craig A. Knoblock. Learning abstraction hierarchies for problem solving. In Pro-

ceedings of the eighth National conference on Artificial intelligence, volume 2 of
AAAI’90, pages 923–928. AAAI Press, 1990. ISBN 0-262-51057-X.

Jana Koehler. Solving complex planning tasks through extraction of subproblems. In
Proceedings of the 4th International Conference on Artificial Intelligence Planning

Systems, pages 62–69. AAAI Press, 1998.

Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial

Intelligence, 97(1):273–324, 1997.

Jonas Kvarnström and Patrick Doherty. A temporal logic based forward chaining plan-
ner. Annals of Mathematics and Artificial Intelligence, 30:119–169, 2001.

369

BIBLIOGRAPHY

John E. Laird, Paul S. Rosenbloom, and Allen Newell. Chunking in soar: The anatomy
of a general learning mechanism. Machine learning, 1(1):11–46, March 1986. ISSN
0885-6125.

John Levine and David Humphreys. Learning action strategies for planning domains
using genetic programming. In Proceedings of the 4th European Workshop on

Scheduling and Timetabling (EvoSTIM 2003), 2003.

Alan Lindsay. Macro actions for structures. In Proceedings of the UK planning and

scheduling special interest group, 2012.

Alan Lindsay, Maria Fox, and Derek Long. Abstracting chains of reasoning. In Pro-

ceedings of the UK planning and scheduling special interest group, 2008.

Alan Lindsay, Maria Fox, and Derek Long. Lifting the limitations in a rule-based pol-
icy language. In Proceedings of the 22nd International Florida Artificial Research

Society Conference, 2009.

Nir Lipovetzky and Hector Geffner. Searching for plans with carefully designed
probes. In Proceedings of the 21st International Conference on Automated Plan-

ning and Scheduling, 2011.

Derek Long and Maria Fox. Efficient implementation of the plan graph in STAN.
Journal of Artificial Intelligence Research, 10:87–115, 1999.

Derek Long and Maria Fox. Automatic synthesis and use of generic types in planning.
In Proceedings of Artificial Intelligence Planning and Scheduling Systems, pages
196–205, 2000.

Derek Long and Maria Fox. Planning with Generic Types, chapter 4, pages 103–138.
Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann, 2002.

Derek Long and Maria Fox. The 3rd international planning competition: Results and
analysis. Journal of Artificial Intelligence Research, 20:1–59, 2003.

Mario Martin and Hector Geffner. Learning generalized policies in planning using con-
cept languages. In Proceedings of the 7th International Conference of Knowledge

Representation and Reasoning, 2000.

Thomas Leo Mccluskey, Nona E. Richardson, and Rosemary M. Simpson. An in-
teractive method for inducing operator descriptions. In Proceedings of the Sixth

370

BIBLIOGRAPHY

International Conference on Artificial Intelligence Planning Systems. AAAI Press,
2002.

Thomas Leo McCluskey, Stephen N. Cresswell, Nona E. Richardson, and Margaret M.
West. Automated acquisition of action knowledge. In Proceedings of the Interna-

tional Conference on Agents and Artificial Intelligence (ICAART), pages 93–100,
January 2009.

Drew McDermott. The 1998 AI planning systems competition. Artificial Intelligence

magazine, 21(2):35–56, 2000.

Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins. PDDL-the planning domain
definition language. Technical report, Yale University, 1998.

Neville Mehta, Prasad Tadepalli, and Alan Fern. Autonomous learning of action mod-
els for planning. In Proceedings of the Neural Information Processing Systems,
pages 2465–2473, 2011.

Steven Minton. Selectively generalizing plans for problem-solving. In Proceedings

of the 9th International Joint Conference on Artificial Intelligence, volume 1 of IJ-

CAI’85, pages 596–599. Morgan Kaufmann Publishers Inc., 1985. ISBN 0-934613-
02-8, 978-0-934-61302-6.

Steven Minton. Quantitative results concerning the utility of explanation-based learn-
ing. Artificial Intelligence, 42(2-3):363–391, March 1990. ISSN 0004-3702.

Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1998.

Luke Murray. Reuse of control knowledge in planning domains. Technical report,
University of Durham, 2002.

Luke Murray, Derek Long, and Maria Fox. Automating the use of control information
in planning domains. Technical report, University of Durham, 2003.

Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William Murdoch, Dan Wu,
and Fusun Yaman. SHOP2: An HTN planning system. Journal of Artificial Intelli-

gence Research, 20:379–404, 2003.

Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, Dan Wu, Fusun Yaman,
Héctor Munoz-Avila, and J. William Murdoch. Applications of SHOP and SHOP2.

371

BIBLIOGRAPHY

Intelligent Systems, IEEE, 20(2):34–41, March 2005. ISSN 1541-1672. doi:
10.1109/MIS.2005.20.

Allen Newell and Herbert A. Simon. GPS, a program that simulates human thought. In
E.A Feigenbaum and J. Feldman, editors, Computers and Thought, pages 279–293.
McGraw-Hill, New York, 1963.

M. A. Hakim Newton and John Levine. Implicit learning of macro-actions for plan-
ning. In Proceedings of the 19th European Conference on Artificial Intelligence

(ECAI 2010), August 2010.

M. A. Hakim Newton, John Levine, Maria Fox, and Derek Long. Learning macro-
actions for arbitrary planners and domains. In Proceedings of the Seventeenth Inter-

national Conference on Automated Planning and Scheduling (ICAPS 07), Septem-
ber 2007.

Ian Parberry. A real-time algorithm for the (n2 − 1)-puzzle. Information Processing

Letters, 56(1):23 – 28, 1995. ISSN 0020-0190.

J. Scott Penberthy and Daniel S. Weld. UCPOP: A sound, complete, partial order
planner for ADL. In Proceedings of the 3rd International Conference of Principles

of Knowledge Representation and Reasoning, volume 92, pages 103–114. Morgan
Kaufmann, 1992.

Julie Porteous, Laura Sebastia, and Jörg Hoffmann. On the extraction, ordering, and
usage of landmarks in planning. In Recent Advances in AI Planning. 6th European

Conference on Planning (ECP’01), pages 37–48, 2001.

Silvia Richter, Malte Helmert, and Matthias Westphal. Landmarks revisited. In Pro-

ceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI-08), pages
975–982, 2008.

Ronald L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246, 1987.

Paul S. Rosenbloom, John E. Laird, John Mcdermott, Allen Newell, and Edmund Or-
ciuch. R1-soar: An experiment in knowledge-intensive programming in a problem-
solving architecture. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 7(5):561–569, September 1985. ISSN 0162-8828.

Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial intelligence,
5(2):115–135, 1974.

372

BIBLIOGRAPHY

Laura Sebastia, Eva Onaindia, and Eliseo Marzal. Decomposition of planning prob-
lems. AI Communications, 19(1):49–81, 2006.

Steven Skiena. The Algorithm Design Manual (2. ed.). Springer, 2008.

David E. Smith and Daniel S. Weld. Conformant graphplan. In Proceedings of the

National Conference on Artificial Intelligence, number 15, pages 889–896, 1998.

Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein. Learning generalized
plans using abstract counting. In Proceedings of AAAI, pages 991–997, 2008.

Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein. Computing applicabil-
ity conditions for plans with loops. In Proceedings of the International Conference

on Automated Planning and Scheduling, pages 161–168, 2010.

Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein. A new representation
and associated algorithms for generalized planning. Artificial Intelligence, 175(2):
615–647, 2011.

Manuela Veloso, Jaime Carbonell, Alicia Pérez, Daniel Borrajo, Eugene Fink, and Jim
Blythe. Integrating planning and learning: The PRODIGY architecture. Journal of

Experimental and Theoretical Artificial Intelligence, 7:81–120, 1995.

C. Henrik Westerberg and John Levine. Genplan: Combining genetic programming
and planning. In Proceedings of the 19th Workshop of the UK Planning and Schedul-

ing Special Interest Group, 2000.

Elly Winner and Manuela Veloso. LoopDISTILL: Learning looping domain-specific
planners from example plans. In Proceedings of the International Conference on

Automated Planning and Scheduling, Workshop on Artificial Intelligence Planning

and Learning, 2007.

Yuehua Xu, Sungwook Yoon, and Alan Fern. Discriminative learning of beam-search
heuristics for planning. In Proceedings of the International Joint Conference on

Artificial Intelligence, pages 2041–2046, 2007.

Yuehua Xu, Alan Fern, and Sungwook Yoon. Learning weighted rule sets for for-
ward search planning. In Proceedings of the International Conference on Automated

Planning and Scheduling, Workshop on Planning and Learning, 2009.

373

BIBLIOGRAPHY

Qiang Yang, Rong Pan, and Sinno Jialin Pan. Learning recursive HTN-method struc-
tures for planning. In Workshop on Artificial Intelligence Planning and Learning,

Proceedings, 2007.

Sungwook Yoon, Alan Fern, and Robert Givan. Inductive policy selection for first-
order MDPs. In Proceedings of the 18th Conference on Uncertainty in Artificial

Intelligence, pages 568–576. Morgan Kaufmann, 2002.

Sungwook Yoon, Alan Fern, and Robert Givan. Learning heuristic functions from re-
laxed plans. In Proceedings of the International Conference on Automated Planning

and Scheduling, 2006.

Sungwook Yoon, Alan Fern, and Robert Givan. Using learned policies in heuristic-
search planning. In Proceedings of the International Joint Conference on Artificial

Intelligence, volume 7, pages 2047–2052, 2007.

Sungwook Yoon, Alan Fern, and Robert Givan. Learning control knowledge for for-
ward search planning. Journal of Machine Learning Research, 9:683–718, June
2008. ISSN 1532-4435.

374

	Introduction
	Automated planning
	Automating the planning problem

	Control knowledge
	A language for learning

	Structure of thesis

	Background
	Modelling
	Modelling a planning problem
	Remodelling

	Search and search control
	The search problem
	Control strategies in planning

	Control knowledge
	Opportunities for exploiting control knowledge in planning
	Representing control knowledge for search

	Learning
	Local search
	Genetic algorithms

	Statement of thesis

	A framework for exploring problem models
	A chain of language restrictions
	Co-execution
	Discussion

	Control knowledge
	Policies
	Generalised policy
	Domain conventions
	Instantiating the policy

	Computability of the policy mapping
	Policy representation
	Relational control knowledge
	Properties of the policy representation

	Evaluation of the rule antecedent
	The current state
	Achieved goal context
	Planner specific context
	Rule language

	Alternative generalised policy representations
	Conformant planning
	Partially ordered plan

	An enhanced problem model
	Enhancing the problem model
	Special purpose solver
	The architecture
	Enhanced model description

	Structures
	Traversal problems
	Structure building problems

	Selecting meaningful chain steps
	Directed connectivity
	Connectivity
	Shortest path
	Constrained traversal: identifying the relevant closed nodes
	Constrained traversal: interaction between traversers

	Optimisation
	Graph relations
	Local heuristics
	Utilising global heuristics

	Level of reasoning
	Level of interpretation
	Level of planner interaction

	Conclusion

	Results concerning the enhanced language
	Investigations in our framework
	Experimental setup

	Directed connectivity
	An analysis of the use of concepts of directed connectivity
	Heuristically guided structure interactions
	Conclusion

	Optimisation
	Supporting the policy in making comparisons
	Global and local solver heuristics
	Conclusion

	Level of reasoning
	Step by step macro application

	Analysis of the architecture
	Generality of framework

	Summary

	Automating model enhancement
	Automatic enhanced pddl generation
	Search space
	Domain analysis
	Generic types to the enhanced domain model
	Conclusion

	A general model for generating structure interactions
	Arbitrary length macro actions (ALMAs)
	The ALMA directed connectivity solver
	Target structure interactions
	Discussion of ALMAs

	Automated vocabulary generation
	Formulation of the problem
	Example plans
	Generating language

	Identifying important subsequences
	Targets
	Identification of targets
	Exploiting targets

	Bag expansion pruning
	Bag significance

	Discussion
	A summary of the ALMAGen approach
	Exploiting domain analysis
	Generating abstractions
	Learning domain vocabulary
	Conclusion

	Automating policy acquisition
	Learning policies
	Learning rules
	Learning rule based policies
	Integrating rules with search

	Learning rule based policies in optimisation problems
	An appropriate fitness function for rbp learning
	A fitness function for problem solving
	Implementation
	Discussion

	A plan to policy translation
	A translation from plan to policy (M|0)
	An extended translation (M|i)
	A rule for a "426830A "526930B i plan step
	A worked example
	Discussion

	Results for learning and the enhanced language
	Invoking a domain model, M|i
	Invoking an appropriate model from a solver library
	Generating appropriate solvers for dc

	Arbitrary length macro actions
	Vocabulary computation
	Target and state significance
	Alternative graph definitions
	Discussion of the alma solver

	Learning parameters
	Learner setup
	Training data

	Validating M|i
	Learning from randomly initialised populations
	Generated seeds
	Learning from seeds
	Fitness and performance
	Discussion of the learning approach

	Contributions, future work and conclusion
	Contributions
	Problem modelling
	Control knowledge representation and learning
	Planning and search

	Future work
	alma
	Learning rbp

	Conclusion

	Planning domains
	Solver listings
	The enhanced domain model
	The solver listings file

	Step-by-step macro application vocabulary
	Traversing through a cluster

	Policies
	Handwritten
	Blocksworld
	Depots
	Driverlog
	Goldminer
	Grid
	Logistics

	alma
	Driverlog
	Goldminer
	Grid

	Partially bound rules
	Driverlog
	Goldminer

	Generated seeds
	Driverlog
	Goldminer
	Structure briefcase

	Learned
	Driverlog
	Goldminer

	Further analysis
	Quality of solutions
	Analysis of plan length
	Setup
	Expectations
	Results

	Combining information
	Transportation and resource management
	Transportation and building

	TLPlan rules
	Driverlog
	Blocksworld
	Conclusion

	Example output from almagen

	Individual presentation of the results
	Handwritten rbp results
	Heuristic guidance
	Step by step application
	Plots for planning with learned control knowledge

	Additional developments for arbitrary length macro actions
	Heuristic guided target selection
	A template layer
	Evaluation

	Automating significance
	Target significance

	Enhancing the problem model for structure building problems
	Enriching the state with the well-placed predicate
	Matching a graph in the goal

	Arbitrary length macro action case study: structure building
	Problem mapping
	Targets
	Use and limitations of the vocabulary

	A chain of language restrictions: further intuition
	Vocabulary rich modelling and its restricted views
	Vocabulary rich modelling
	A restricted model

	A chain of language restrictions
	Policy transferral
	Transferring between M and
	Transferring between languages
	Co-execution

	Proofs for state and action representation
	Setting related work within our framework
	Remodelling as a planning approach
	Macro actions
	Support predicates
	Extra world concepts
	Decomposition

	Bibliography

