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Abstract

Atom interferometry is a next-generation technique of precision measurement that can
vastly outperform its optical analogue. These devices utilise the wave nature of atoms
to make interferometric measurements of, for example, gravitational and magnetic
fields, inertial effects, and the fine-structure constant. The main focus of this thesis
is the creation of a general purpose atom interferometer in free space.

We create a Bose-Einstein condensate of ∼105 87Rb atoms in a crossed-optical
dipole trap. The atomic wavefunction is coherently manipulated using highly tuned
pulses comprising off-resonant light that form our atom-optical elements. These atom
optics are analogous to the beam splitters and mirrors in an optical interferometer. By
controlling the timing and amplitude of the pulses we demonstrate the ability to excite
specific momentum states with high efficiency.

The tuned atom optics allows for the construction of an atom interferometer in free
space. From this we can measure the recoil velocity of an 87Rb atom and calculate the
value of the fine structure constant. We also demonstrate the measurement of magnetic
field gradients using atom interferometry.

A second method of data readout is also demonstrated, known as contrast inter-
ferometry. This increases the rate at which information is obtained and decreases the
measurement duration from a few hours to a few minutes.

Within the vacuum chamber we also have a copper ring which form the basis of
an AC coupled ring trap for atoms. The long term goal is to use this as a waveguide
for atom interferometry and, whilst not the main focus of this thesis, we present some
proof-of-principle type data demonstrating the ring trap. In addition we show the first
Kapitza-Dirac splitting of a BEC within the waveguide which forms the first part of a
guided atom interferometer.
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Chapter 1

Introduction

1.1 Research at the University of Strathclyde
In 2002, Arnold and Riis started the construction of an apparatus at the University of
Strathclyde to investigate the behaviour of a Bose-Einstein condensate (BEC) of 87Rb
atoms in a large (10 cm diameter) toroidal magnetic waveguide [1]. The motivation
for such an experiment was that the use of a waveguide to confine a BEC would allow
for the study of “persistent currents, Josephson effects, phase fluctuations and Sagnac
or gravitational interferometry”. The first experimental realisation of a BEC in this
large ring trap (figure 1.1a), along with data showing the complete revolution of the
atoms around the ring, was reported in 2006 [2]. In 2010, the same apparatus was used
to show the interference fringes between two initially spatially separated condensates
[3, 4], in an atomic analogue of a Young’s double slit type experiment. Further investi-
gation of these interference fringes, including their phase stability, formed the basis of
the work by Carson [5], who reported single-shot contrasts of ≥ 95 %. The large ring
experiment continues to operate and at the time of writing, further publications are in
preparation regarding phase fluctuations and the Talbot effect.

In parallel to the large ring trap, the group at Strathclyde have been investigating
AC coupled ring traps. First proposed by Griffin et al. in 2008 [6], the idea is to use
an induced current to generate the trapping magnetic field potential and thus eliminat-
ing the ‘end-effects’ produced in conventional coils of wire that use input and output
wires. These input and output wires can cause unwanted deviations in an otherwise
smooth trapping potential. The first experimental demonstration of such a ring trap
was reported in 2012 by Pritchard et al. [7] using ultra cold 87Rb atoms in a proof-
of-principle type experiment, with the accompanying thesis written by Dinkelaker in
2013 [8] (figure 1.1b). Following the success of the first generation AC coupled ring
trap, the second generation experiment was started involving the construction of a new,
vertically orientated AC coupled ring trap of 4 mm diameter, this time for the confine-
ment of a BEC of 87Rb. It is this experiment that is the focus of this thesis. Recent
success has lead to the preparation of a paper reporting on the optical control of our
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(a)

10 mm

(b)

Figure 1.1: (a): Schematic of large (10 cm diameter) magnetic ring trap for a Bose-
Einstein condensate, where the ‘y’ axis points downwards in the lab frame. Figure
from [2]. (b): Horizontally orientated AC coupled ring trap for ultra-cold 87Rb atoms.

BEC [9], and further findings will be published in due course, including measurements
using our contrast interferometer.

1.2 Atom Interferometry
Interferometry, in general, offers the ability to make precision measurement by ob-
serving the constructive and destructive interference effects of waves. For example,
an optical interferometer uses the wave nature of light to produce interference patterns
from which it is possible to make measurements, such as differences in optical path
length [10]. Using this it is possible to make accurate measurements of external influ-
ences that cause a change in phase at the interferometer output, for example, rotations
[11, 12].

Wave-like properties are not exclusive to light, and indeed matter can also be as-
signed a wave-like nature known as the de Broglie wavelength, described in section
1.2.1. For everyday, macroscopic objects this wavelength is tiny. A golf ball driven off
the tee at 180 mph has a de Broglie wavelength of just 1.8×10−34 m, but for ultra-cold
atoms this wavelength lengthens to hundreds of nanometres. With precise manipula-
tion of ultra-cold atoms, it is possible to construct interferometers that use the wave
nature of matter to produce constructive and destructive interference effects. In ad-
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dition to rotations [13, 14, 15, 16, 17], atoms can also be used to measure magnetic
fields [18], gravity [19, 20, 21], and ac Stark shifts [22]. This leads to many practical
applications such as gravimetry, inertial sensing and magnetometry.

It is widely known that light can be manipulated by matter as demonstrated by the
interaction of light with mirrors, lenses, beamsplitters, and diffraction gratings. The
inverse of this is also possible; matter can be directed by the application of light and
this fact is key in atom interferometry. Throughout this thesis we will draw the analogy
between optical and atomic interferometers, and we begin here by mentioning beam
splitters and mirrors. For an optical interferometer the beam splitters and mirrors are
made of matter: glass and dielectric slabs. Conversely, standing and travelling waves
of light can be used to coherently split and reflect atomic wavefunctions. This forms
the basis of an atom interferometer.

The first proposal of the coherent manipulation of matter waves by a standing wave
of light was made by Kapitza and Dirac in 1933 [23]. Here they proposed an exper-
iment where a beam of electrons is partially reflected from a standing wave of light
by stimulated Compton scattering. Although it took until 2001 for this to be conclu-
sively demonstrated experimentally [24], experimental atom interferometers have been
around since 1991 [25, 26] where gratings made of matter were used to diffract an
atomic beam. The first experiments to use standing waves of light for the diffraction
of atoms were demonstrated in 1995 [27, 28], although matter-wave interferometers
using electrons [29, 30] and neutrons [31, 32] pre-date this. Whilst early interferom-
eters were ‘proof-of-principle’ type experiments, today the technology has progressed
such that it is possible to use atom interferometers to make measurements of external
influences. Applications include inertial force and rotation sensing [33, 34, 16, 35],
gradiometry [20, 21], tests of fundamental physics [36], and measurements of the fine-
structure constant [37, 38].

1.2.1 Atoms as Waves
Atom interferometry utilises the wave-like nature of matter. In 1923 de Broglie as-
signed matter a wave-like nature [39] where the wavelength of a particle can be ex-
pressed by the well known equation

λdB =
h

p
, (1.1)

where λdB is known as the de Broglie wavelength, h is the Planck constant and p
is the momentum of the particle. Just as the wave nature of light causes interference
effects, so can the wave nature of particles. The simplicity of a Young’s double slit type
experiment provides an ideal example of this interference effect in atoms as shown in
figure 1.2 [3, 5, 26].
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Figure 1.2: Two condensates of 87Rb are allowed to expand such that they overlap and
interference fringes are observed in absorption imaging (figure from [5]). Scale shows
optical density.

1.2.2 Advantages of Using Atoms
There are two main advantages of atoms over photons for interferometric measure-
ments: increased phase accumulation in certain situations such as Sagnac interferom-
etry, and atoms are sensitive to effects that photons are not such as electromagnetic
fields. The increased phase accumulation, and therefore sensitivity, can be demon-
strated by considering the Sagnac effect [14, 40], illustrated in figure 1.3. The phase
accumulation of a Sagnac interferometer is given by

∆Φ =
4πAΩrot

λv
, (1.2)

where A is the enclosed area, Ωrot is the rotational velocity, λ is the wavelength, and
v is the propagation velocity. If we compare the optical and atomic versions of this
scheme, the sensitivity per particle has a ratio of

∆Φatom

∆Φphoton

=
λphoton c

λdBv
=

mc2

~ωphoton

. (1.3)

For example, by comparing an atom interferometer using 87Rb to an optical inter-
ferometer using laser light of 780 nm, the sensitivity ratio ∆Φatom

∆Φphoton
≈ 5×1010. This

increase in sensitivity can also be illustrated by considering the ratio of the velocities
of the interfering particles. Photons travel at c = 3×108 ms−1, while atoms in an in-
terferometer typically travel at v ≈10−2 ms−1. The ratio c/v ∼3×1010, and the low
atomic velocity gives a de Broglie wavelength on the order of an optical wavelength,
λdB ≈ λγ . Given the comparable wavelengths, and therefore frequencies, atoms typi-
cally have more time to accumulate phase than photons do due to their lower velocities.
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θ

Ωrot

Figure 1.3: A schematic of a Sagnac interferometer. Each arm of a rotating inter-
ferometer has an interfering field that travels a different path length due to the finite
propagation speed and thus the phase at the output will vary. From this, a measurement
of the rotation can be made.

In the interest of transparency, it’s worth pointing out that this increased sensitivity
is per particle, and it’s normally easier to get more photons than it is atoms. However,
with the potential for such large gains in using atoms, they are still favourable for many
applications.

The other advantage of atoms over photons is that atoms have a strong sensitivity
to electromagnetic fields. This makes then excellent measurement devices for mag-
netometry [41], and an example of such a measurement is demonstrated in chapter
5.4.

1.2.3 Waveguides
The use of waveguides in atomic (and optical) interferometry allows for the construc-
tion of compact devices with long interaction times and minimal dispersion transverse
to the propagation direction. This then leads to an increased sensitivity of the appa-
ratus, albeit with an increased cost in terms of complexity. For example, a laser ring
gyroscope can measure rotations via the Sagnac effect and uses coiled optical fibres
that direct the photons around the enclosed area multiple times which increases the
sensitivity (equation 1.2). By directing the interfering particles around the same region
of space multiple times, the size of the device can be reduced whilst the sensitivity
can be increased, with no additional cost in terms of size. Moreover, the transverse
confinement provided by a waveguide reduces divergence, which increases the signal
strength at longer interferometer durations.

The first demonstration of a interferometer using a BEC in a waveguide was by
Wang et al. in 2005 [18], followed the next year by Garcia et al. [42]. Both are
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Ultra-cold

Figure 1.4: Ultra-cold atoms fill up the trapping potential with a Maxwell-Boltzmann
distribution. Once cold enough, bosons can all fall into the ground state of a trap-
ping potential, while fermions cannot occupy the same state due to the Pauli exclusion
principle and therefore fill the energy levels from the bottom up.

examples of Michelson interferometers. The first Mach-Zehnder interferometer using
a BEC was demonstrated by Horikoshi et al. [43].

Waveguides can be described as quasi-one-dimensional systems because the atoms
are confined in the two dimensions orthogonal to the propagation direction. By consid-
ering these waveguides to be 1D, analysis and modelling becomes simpler. However,
in reality there can be 3D dynamics such as sloshing within the waveguide, as well as
thermal or mean field expansion of the atomic ensemble.

1.2.4 Cold Atoms, Bosons and Fermions
We can define three classes of atoms used in atom interferometry: ultra-cold thermal
atoms, Bose-Einstein condensates (BEC), and Degenerate Fermi gasses (DFG) (see
figure 1.4). Each class has advantages and, depending on the application, one may be
more suited than another.

Ultra-cold thermal atoms have the advantage that experimentally they are easier
and faster to produce. The repetition rate of the apparatus can be very high com-
pared to the often lengthy process required to create a BEC or DFG. For example, the
group of Tino [20] use thermal atoms with a cycle time of <400 ms and the group of
Biedermann [19] use a recapture method to increase their cycle rate to 60 Hz. BEC
production is typically slower and the apparatus in this thesis requires ∼30 s to create
a BEC. However, thermal atoms do not have the high coherence of a BEC. This can be
likened to performing optical interferometry with white light; it works, but only a few
fringes are visible. Coherence will be discussed further in section 3.1.1.

Temporal and spatial coherence (given by the g(1) correlation function) is a key
argument for using a BEC and will be discussed in section 3.1.1. It is analogous to
using a laser for optical interferometry instead of white light. As a result the signal-to-
noise ratio can be much greater and the contrast of the signal is increased. However, a
BEC suffers from self-interactions which can result is a loss of phase coherence [44].
Also, upon releasing a BEC from a trapping potential, it expands due to mean field
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effects [45]. If this expansion rate is sufficiently high, the density of the cloud will
decrease rapidly which can lead to a reduced interferometry signal. The expansion of
our BEC is discussed in section 4.2.

The non-interacting nature of a DFG [46] makes it an attractive choice for atom
interferometry. The Pauli-exclusion principle implies that atoms in the same internal
state cannot interact and therefore the ultra-cold fermions of a DFG do not have the
self interactions of a BEC. This ultimately means there is less noise from uncontrolled
phases in the system. However, a reduction of phase coherence can lead to a reduced
contrast in the interferometry signal. In [47], an interferometry signal from fermions
and bosons in an optical lattice are compared. In this specific case, the experiment
“proves the superiority of noninteracting fermions with respect to bosons for precision
interferometry”. This is due to the mean field expansion of the BEC in the optical
lattice which “tends to wash out the contrast of the Bloch oscillations”.

1.3 Ring Traps
As mentioned above, waveguides can improve the performance of an atom interferom-
eter. One commonly used geometry is a ring or toroidal trap. If the interfering particles
are split such that they counterpropagate around the ring with an integer number of ro-
tations, phase noise common to both arms is equal and opposite so it can be cancelled
out. In addition, since the atoms will return to their initial position, a reflection pulse
is not required so systematic noise can be reduced.

1.3.1 Optical Ring Traps
One method of creating a ring trap for BECs is to use optical potentials. These traps are
typically small in size and as such the BEC may fill the entire ring, which means they
are suited to the study of superflow [48, 49, 50, 51], although interferometry is still
possible [52]. It is also possible to create arbitrary static potentials by using specially
engineered diffraction gratings [53], or static and dynamical potentials by using an
AOM to control a fast moving laser beam that ‘paints’ the trap [54]. The BEC can then
be confined to the time averaged optical potential. Small ring traps can also be used to
simulate other physical phenomena such as the sonic analogue of black holes [55].

1.3.2 RF Dressed Ring Traps
First proposed by Zobay and Garraway in 2006 [56], the application of radio-frequency
(RF) radiation to a magnetic trap modifies the potential and can be used to create ring
traps. The atomic sub-levels shift in the presence of an RF field, and the combined
magnetic and RF energy, the dressed state, varies adiabatically in space giving rise to
a trapping potential. This allows for the smooth, adiabatic transformation to different
trap shapes, and the construction of novel trap geometries such as ring traps [57, 58, 59]
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and double-well potentials that can be used as beam splitters for atom interferometry
[60, 61].

1.3.3 Magnetic Ring Traps
The first magnetic ring trap for neutral atoms was demonstrated in 2001 [62]. Since
then there have been various publications regarding magnetic ring traps for cold atoms
[62, 63, 64], and many experiments have successfully demonstrated the confinement
of BECs in magnetic waveguides (eg. [2, 65]). Hybrid ring traps combining magnetic
and optical potentials have also been demonstrated [66]. Ring traps, both for BECs
and thermal atoms, are of great interest commercially for compact rotation sensing.

1.3.4 Our AC Coupled Ring Trap
The apparatus presented in this thesis has a vertically-orientated, AC-coupled mag-
netic ring trap for a BEC, and is based on a previous generation AC coupled ring trap
involving a horizontally orientated ring trap for thermal atoms [6, 7, 8]. Typically a
magnetic ring trap would require current-carrying input and output wires to the coils
that produce the magnetic field (eg. [2]). This results in deviations to the smooth mag-
netic field profile, often referred to as end effects, which can lead to an asymmetry in
the system [63]. The AC coupled ring trap design does not require these input and
output wires to be near the atoms and therefore results in a smoother trap geometry
[6]. Moreover, the alternating current has the effect of smoothing any roughness in the
crystal structure of the copper ring which further smooths the trapping potential [67].

1.4 Fine-Structure Constant
The fine-structure constant is given by

α =
e2

(4πε0) ~c
≈ 1

137
, (1.4)

where e is the charge of an electron, ε0 is the permittivity of free space, ~ is the re-
duced Planck constant, and c is the speed of light. Originally introduced by Sommer-
field in 1916, its purpose was to describe the splitting of degenerate energy levels in
a Bohr atom [68]. It is a dimensionless parameter that characterises the strength of
electromagnetic interactions [38], and as a result determines the structure of atoms and
molecules, as well as the propagation of electromagnetic waves [69]. It has been de-
scribed in Kolachevsky et al. [69] as “the electromagnetic force between two electrons
at a distance of one meter measured in units where the speed of light c and Planck’s
constant ~ are set to unity” and is also the key parameter of calculations in quan-
tum electrodynamics (QED) [70]. Interestingly, equation 1.4 combines three areas of
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physics into one value: the charge of an electron e from particle physics, the reduced
Planck constant ~ from quantum physics, and the speed of light c from relativity. An-
other, perhaps more philosophical, question is why does α have the value it does? If it
was just slightly different, the universe as we know it would not have formed the way
it has; atomic structure would be different leading to the alteration of star formation
and the carbon chemistry on which life is based would not exist.

One argument for α having the value it does is the anthropic principle, which states
that we observe the value we do because if it was different we would not be here to
make the observation in the first place, i.e. α ≈ 1/137 because we exist to measure it.

Despite α being described as a constant, there exists the possibility that it varies
very slightly over time and space. In 1937 Dirac formulated his “large number hypoth-
esis” [71] where he used known physical constants to construct small dimensionless
numbers. For example, the age of the universe in atomic units divided by the electro-
magnetic force between a proton and electron in units of gravitational force, which in
1937 was calculated to be ξ ≈3 [69]. This is demonstrated below.

Cosmological theories in 1937 predicted the age of the universe to be around 2×109

years old [71]. If we express this age in units of e2/(mec
3), where e is the charge of an

electron, me is the mass of an electron, and c is the speed of light in a vacuum, with all
constants taking their values in c.g.s units, we obtain a value of 6.7×1039.

The electromagnetic force between a proton and an electron, in c.g.s units can be
written as

Fem =
qpqe

r2
, (1.5)

where qp and qe are the proton and electron charges respectively, and r2 is their sepa-
ration. The gravitational force, again in c.g.s units, is given by

Fg =
Gmpme

r2
, (1.6)

where mp and me are the proton and electron masses respectively, and G is the grav-
itational constant. By taking the ratio Fem/Fg we obtain (qpqe)/(Gmpme), and when
calculated, this returns a value of 2.3×1039. Thus, the age of the universe in atomic
units, 6.7×1039, divided by the electromagnetic force between a proton and an electron
in units of the gravitational force, 2.3×1039, is ≈3.

It is worth pointing out that this calculation is based on information from 1937 and
the current estimate of the age of the universe is 13.8×109 years. Also, if SI units
are used instead of c.g.s units with the current estimate of the age of the universe, we
obtain a value of ξ ≈1.5×1014.

From calculations such as this, Kolachevsky et al. state “the gravitational constant,
G, or any other constant that appears in the construction of these small numbers should
vary in time as the Universe expands”. A review of the possible variation in α during
different universe epochs is given in [72].

At the time of writing the best constraint on the temporal variation of α was
determined by Godun et al. [73] who reported α̇/α = -0.7(2.1)×10−17yr−1. This
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was achieved by comparing two ultra-narrow optical transition frequencies of 171Yb+.
However, it is possible that α has varied in the past even if it is shown to be stable
today [72].

It is worth noting that α = α(E), which means that the value of α actually changes
depending on what energy scale is being considered, and equation 1.4 is only valid
in the low energy limit. Physically, this low energy α describes the interaction of
electrons that are infinitely separated. If the electrons are close together, then there is
a screening effect and the interaction energy increases, corresponding to an increase in
α. The variation of α across differing energy scales is known as the running value and
can be expressed by [74]

α(E) =
α(0)

1−∆α(E)
, (1.7)

where α(0) is the fine-structure constant value at zero energy (equation 1.4), and
∆α(E) is a measured deviation in α(0) at a given energy.

The running value of α is important in particle physics and has implications when
considering the standard model. As mentioned in [75], the value of α(E) is needed
for precise standard model calculations, and interestingly α(E) for E >1 GeV is the
“least precisely known of the fundamental parameters of the standard model”. Also,
it is expected that if the four forces (strong, weak, electromagnetic, and gravity) are
unified, α(E) and other running constants will converge at a high energy [76].

1.4.1 Measurement of α
There are various ways in which α has been measured [68]. For example, it can be
determined by the measurement of the ‘anomalous’ electron magnetic moment (g-
factor) and QED calculations [77]. The g-factor is the ratio of the magnetic moment
to the angular moment of a rotating charge. The part-per-thousand level corrections to
the calculated g-factor value of 2, which arise due to the interaction of electrons with
virtual particles in a vacuum, requires the input of α [76, 70].

Another method is to measure the ratio h/ma. The fine-structure constant can be
written as [38]

α2 =
2R∞
c

ma

me

h

ma

, (1.8)

where R∞ is the Rydberg constant, ma is the mass of a test atom, me is the mass
of an electron, and h is Planck’s constant. The h/ma, for alkali atoms, is the least
well known part in the expression above and therefore if the precision of this was
to increase, the precision of α would be improved. Currently the uncertainty of R∞
is 1.6×10−12 m−1 [78]. The uncertainty in the 87Rb-electron mass ratio mRb/me is
4.4×10−10 [38, 79], c is defined as 299,729,458 m/s [80], and h/ma is measured to
5×10−9 m2s−2 by [38].

The ratio h/ma is often measured by using atom interferometry to determine the
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recoil frequency, ωr, of a test atom. The recoil frequency can be written as

ωr =
1

2

~
ma

k2 , (1.9)

where k is the wavevector of the interferometry beams. The wavelength, and therefore
k, can be measured very accurately by use of, for example, a frequency comb. There-
fore by measurement of ωr, a value of h/ma can be obtained and by substitution in
equation 1.8, a value of α can be calculated.

The current best estimate of α from a single measurement was reported by Hanneke
et al. [77]. They determined α−1 = 137.035999084(51) by measurement of the electron
magnetic moment. The current best estimate by measurement of h/ma was reported by
Bouchendira et al. [38] who found α−1 = 137.035999037(91). The CODATA database
combines many different measurements and calculates an accepted value of α−1 =
137.035999139(31) [81].

−1.5 −1 −0.5 0 0.5 1 1.5
Deviation from accepted CODATA value (x10−5)

a
e

1987

h/m (Cs) 2002

h/m (Rb) 2006

a
e
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a
e

2008

h/m (Rb) 2008

h/m (Rb) 2011

Figure 1.5: Measurements of α relative to the accepted value reported by the CODATA
database [81]. There are two types of measurement displayed: ‘h/m’ and electron
anomaly measurements denoted by ‘ae’. From bottom to top: Van Dyck et al. 1987
[82], Wicht et al. 2002 [83], Cladé et al. 2006 [84], Odom et al. 2006 [70], Han-
neke et al. 2008 [77], Cadoret et al. 2008 [85], and Bouchendira et al. 2011 [38].
Note the values determined from ‘ae’ include the re-evaluation of the “eighth-order
contribution” in QED calculations [86, 87].
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1.5 Thesis Outline
This thesis reports on initial measurements of a Bose-Einstein condensate (BEC) atom
interferometer, the progress towards performing atom interferometry in an AC coupled
ring trap, and the initial measurement of the fine-structure constant. After motivating
my work and the advantages of atom interferometry as a general technique, I give
a brief description of the theory involved in creating a source of ultra-cold atoms in
chapter 2. Then, in chapter 3, I describe the theory of the atom interferometer and
describe how to achieve high efficiency optical control of a BEC using tuned pulses of
light.

The experimental apparatus is described in chapter 4. The experiment reported
here is a second generation AC coupled ring trap system and as such some of the
optical setup remains the same [8]. With this in mind more emphasis is given to the
newer apparatus including the interferometry laser and low light level detection. The
experimental sequence used to create a BEC of 87Rb is also outlined.

Chapter 5 presents results from an atom interferometer performed in free space.
I first demonstrate our beam splitter and mirror pulses described in chapter 3, then
results from a full atom interferometer sequence and a preliminary measurement of
the fine-structure constant are presented. The interferometer is then used to measure
magnetic field gradients generated by an electromagnet

In chapter 6 I report on contrast interferometry. At the time of writing there are
only two reported examples of this method [37, 88] and this is the first using a BEC
of 87Rb. This technique allows atom interferometry to be performed with a greatly
increased data readout rate.

Finally, a description of the AC coupled ring trap is given in chapter 7. This second
generation, vertically orientated ring trap works on the same principle as the first gen-
eration. Whilst most of my PhD work was focussed on performing interferometry, the
ring trap was used briefly as a proof of principle and thus the results will be reported
here.
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Chapter 2

Cold Atoms & Quantum Gases

In this chapter we consider the cooling and trapping of neutral atoms using magnetic
and optical fields, with the goal being to create a Bose-Einstein condensate (BEC) that
can be used for atom interferometry. The production of an atomic BEC1 relies on
capturing and cooling a large number of atoms.

We start in section 2.1 by considering the cooling of atoms from room temperature
down to sub-Kelvin temperatures by the application of photons. Then we discuss mag-
netic trapping of these cold atoms and the creation of a magneto-optical trap (MOT).
Optical trapping is then presented, followed by evaporative cooling techniques used in
the creation of a BEC. Finally, in section 2.2 we outline the formation and properties
of a BEC in a harmonic potential and introduce some key parameters.

2.1 Cooling and Trapping of Neutral Atoms
Atoms at room temperature have a speed of a few hundreds of meters per second
(≈240 m/s in the case of Rb). In order to achieve sufficient control of the atoms for
our experiments we must first reduce their temperature and, therefore, their speed. A
typical atom trap has a trap depth ranging from a few mK to a few hundred µK, or less,
and any atoms that are hotter than this will have sufficient energy to escape the trap.
Efficient cooling and trapping of atoms is key both in the experiment presented in this
thesis and many others (eg. [5, 8, 90, 91].

In order to cool atoms from room temperature laser cooling can be used. The
idea, first proposed by Hänsch and Schawlow in 1975 [92], is to make fast moving
atoms absorb many oncoming photons, and the momentum kick from these photons
will reduce the velocity of the atoms and thus reduce temperature. Each absorption
event transfers a very small amount of momentum (~k, where k is the wavevector of
the photon) to the atom, and therefore many absorption events are needed. A laser
provides an ideal source of photons for this, due to the high photon flux and well

1A BEC of photons has been made by Klaers et al. [89]
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defined wavelength.

2.1.1 Doppler Cooling
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Figure 2.1: Doppler cooling diagram. An atom moving to the left preferentially ab-
sorbs a photon from the left beam. This causes a momentum kick opposing the direction
of travel and therefore a reduction in velocity due to the conservation of momentum.
The atom, now in the excited internal state, can emit a photon by spontaneous emission
in a random direction, which results in a second momentum kick.

For simplicity we consider a two-level atom moving in 1D. We apply two counter-
propagating laser beams of frequency ω that are red detuned from the atomic reso-
nance, as shown in figure 2.1. As an atom moves along the axis of the beams it ‘sees’
the frequency of one beam increase and the other decrease. This Doppler shift results
in the increased frequency laser becoming closer to the atomic transition resonance
and therefore photons from this beam are preferentially absorbed by the atom. This
photon absorption rate for a single laser beam, also known as the scattering rate, can
be expressed as

γsc =
Γ

2

I/Isat

1 + I/Isat + 4(∆+~k·~v
Γ

)2
, (2.1)

where Γ is the linewidth of the atomic transition, I is the laser intensity, Isat is the sat-
uration intensity, δ is the laser detuning from the atomic transition, ~k is the wavevector
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Figure 2.2: Scattering force as a function of atomic velocity (equation 2.2). The red
dashed lines indicate the forces from a single laser beam while the solid black line is
the sum of the two forces. Here, I/Isat = 1 and ∆ = −Γ/2.

of the laser, and ~v is the velocity of the atom. The fact that there are two counter-
propagating beams gives rise to a viscous, or restoring force, acting upon the atoms
that is often referred to as optical molasses. The force from a single laser beam is
given by

~Fscatt = ~~k
Γ

2

I/Isat

1 + I/Isat + 4(∆+~k·~v
Γ

)2
. (2.2)

Figure 2.2 plots the force on an atom as a function of velocity in the presence of two
counter-propagating laser beams. This force implies that it would be possible for the
atom to reach a temperature of 0 K, however in reality this is not the case as described
below.

The lower temperature limit for the mechanism described above, the Doppler limit,
arises due to the random direction in which the absorbed photon is emitted, and in
fact this emission increases the temperature of the atom slightly. The Doppler limited
temperature (for a six beam molasses) can be expressed as [93]

TD =
~Γ

4kB

1 + (2∆/Γ)2

2|∆|/Γ
, (2.3)

where kB is the Boltzmann constant. This is minimised at ∆ = −Γ/2 giving TDmin =
~Γ/2kB (146 µK for 87Rb).

If the atoms are moving sufficiently fast the laser frequency will remain far from
resonance and the atomic motion will not be impeded. This gives rise to a maximum
velocity that an atom can have if it is to be impeded by the molasses beams such that it
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Figure 2.3: Six beam 3D molasses. By expanding the mechanism described in figure
2.1, cooling in three spatial dimensions can be achieved.

is ‘captured’ in velocity space and settles at the point (0,0) in figure 2.2. An estimate
of this capture velocity is given by vc ' Γ/k [93], which for 87Rb is ≈5 ms−1.

To create a 3D optical molasses the above description can be expanded to include
six laser beams (figure 2.3) and atomic velocity components in three directions [94,
95].

2.1.2 Sub-Doppler Cooling
Using the model outlined above, the minimum achievable temperature is limited to the
Doppler temperature (equation 2.3). However, experimentally lower temperatures can
be achieved as observed by Lett et al. in 1988 using sodium atoms [96]. Below we
outline the two common models explaining this sub-Doppler cooling.

The two types of sub-Doppler cooling at play in a 3D molasses are Sisyphus cool-
ing, involving two counter-propagating laser beams of orthogonal linear polarisation,
and polarisation gradient cooling using laser beams of opposite circular polarisation
[97, 95]. Experimentally, circularly polarised beams are used but due to the interfer-
ence between the (typically six) beams, the polarisation gradients are complex and
both effects contribute to the cooling, hence both methods are described below.

Sisyphus cooling: Consider an atom with two ground states: mJ = +1/2 and mJ =
-1/2, and an excited state J ′ = J + 1. The interference of two counter-propagating,
orthogonally linearly polarised laser beams, red detuned from the atomic resonance
produces a periodic modulation in the AC stark shift of the ground states [93]. In
figure 2.4, an atom entering from the left in the mJ = -1/2 state, sees an increasing
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E=ħωem Unshifted 
ground state

Figure 2.4: A periodic AC stark shift is generated by the interference of two counter-
propagating, red detuned laser beams whose polarisation is linear and orthogonal.
An atom entering from the left gains potential energy as it travels, shifting it closer
to resonance. It absorbs a photon, then by spontaneous emission emits a photon such
that it transitions to the other ground state. The net effect is it dissipates an energy of
E = ~(ωem − ωabs) per cycle, resulting in cooling.

potential. As it travels up the ‘hill’ its transition is shifted closer to the frequency of
the laser and the possibility of absorbing a photon increases. It can then spontaneously
decay by emitting a photon which transfers it to either the mJ = +1/2 state or the mJ

= -1/2 state. If the atom transitions to the mJ = -1/2 state, the absorption process
repeats, but if it transitions to the mJ = +1/2 state the atom now has a lower potential
energy than before the absorption-emission event and thus energy is dissipated from
the system, resulting in cooling. This cycle can then be repeated many more times to
provide further energy dissipation of E = ~(ωem − ωabs) per cycle.

Polarisation gradient cooling: Two red detuned, counter-propagating laser beams are
circularly polarised. The laser beams interfere to give a standing wave of linearly
polarised light, the polarisation of which rotates along the beam axis with period λ/2
[97]. We consider a two-level atom with ground states mF=-1,0,1 and excited states
mF=-2,-1,0,1,2 (figure 2.5).

If the atom is at rest, the distribution of states is symmetric around mF=0, and it is
energetically favourable for the atom to be in the mF=0 ground state. If the atom starts
moving, the local polarisation direction changes, which causes the mF states skew and
become asymmetric as a result of the light-shift. It also causes the oncoming σ+ beam
to shift closer to resonance and the atoms start to get optically pumped toward the
most light-shifted mF level. Moreover, the Clebsch-Gordon coefficients of the most
light-shifted transitions increase.

The dipole of the atom has minimum energy when aligned with the polarised field.
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Figure 2.5: A stationary atom sees a linearly polarised light field. If it starts moving to
the right the σ+ beam becomes closer to resonance and the atom is optically pumped in
to the positive mF states. The difference in energy between the absorbed and emitted
photons leads to the dissipation of energy and therefore cooling. Numbers in figure
denote the mF states of the atom

This dipole cannot instantly change direction to align itself with a new polarisation
direction, but instead takes some finite time to do so via the scattering of photons.
Much like Sisyphus cooling, the kinetic energy of the atom is converted to potential
energy during the absorption and emission of photons, which allows the dipole to
realign with the new polarisation direction. Thus, as before, the energy of the system
is dissipated via spontaneously emitted photons, but unlike the Doppler limited case,
the energy loss is the difference in energy between the absorbed and emitted photons.

The mechanisms above are known as polarisation gradient cooling and are limited
by the recoil momentum of the atom, ~k, which is the momentum one atom gets from
absorbing one photon. This lower temperature can be written as

Trec =
~2k2

mkB

, (2.4)

where m is the atomic mass and kB is the Boltzmann constant. For 87Rb this is 362 nK
[98] although experimentally the lowest temperatures are typically several Trec [99].
This can be intuitively understood because as the atom cools and loses kinetic energy,
its de Broglie wavelength increases such that it is compatible in length to the period-
icity of the polarisation lattice. Therefore its position is poorly defined, the variation
in energy between the mF states washes out and the cooling mechanism becomes less
efficient.

2.1.3 Magneto-Optical Traps
The application of laser light onto atoms can reduce their temperature as described
above. It does not, however, provide spatial trapping as atoms will eventually diffuse
out of the laser cooling volume. The trapping of atoms can be achieved by the appli-
cation of magnetic fields combined with light. A magneto-optical trap (MOT) can be
constructed that both cools and traps the atoms by adding a spatially varying magnetic
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Figure 2.6: Six beam 3D MOT. By expanding the mechanism described in figure 2.7,
cooling and trapping in three spatial dimensions can be achieved.

field. Here the light provides the velocity trapping whilst the magnetic field provides
the spatial trapping. This atom trapping scheme was first demonstrated in 1987 by
Raab et al. [100] using a six beam configuration. This is the most commonly used
configuration although in principle only n + 1 beams are needed to trap atoms in n
dimensions, and thus only 4 beams are needed for 3D trapping [101].

To construct a (six beam) MOT a quadrupole magnetic field is applied to the over-
lap region of the six circularly polarised molasses beams. This is typically done with
two magnetic coils in an anti-Helmholtz configuration as shown in figure 2.6. The
quadrupole field gives a zero magnetic field at the centre of the trap and a linearly
increasing field going outwards. The trapping mechanisms can be described by con-
sidering the 1D case (figure 2.7) and then expanding into 3D as done previously,
however, here we must consider the mF states.

In figure 2.7, we label the polarisation of the laser beam as σ+ and σ−, not to
indicate handedness of the polarisation but the atomic transitions that they drive. The
accessible atomic transitions for each handedness changes depending on what direction
the magnetic field gradient is (the quantisation axis), and hence the direction of optical
pumping flips as an atom crosses the centre of the trap. This is why a single beam is
labelled as σ+ on one side of the magnetic field and it is labelled σ− on the other.

We start with a two-level atom in the ground state |F = 0,mF = 0〉, and two
counter-propagating laser beams detuned from the atomic resonance. The atom can
be excited into the |F ′ = 1,mF ′ = −1, 0,+1〉 state depending on the polarisation of
the incident light. Right hand circularly polarised light drives ∆mF = +1 transitions
where the quantisation axis is collinear with the incident photon and similarly left hand
circularly polarised light drives ∆mF = −1 transitions. If the atom moves to the right
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Figure 2.7: 1D MOT schematic. An atom in the |F = 0,mF = 0〉 ground state sees a
Zeeman shift of its |F = 1,mF = −1, 0, 1〉 magnetic sub-levels which is proportional
to its position (due to the magnetic field). This shifts the relative detunings of the
incoming laser beams, and therefore the atom preferentially absorbs a photon of the
appropriate polarisation. For example, an atom at a position of positive x has its
|F = 1,mF = −1〉 state shifted closer to resonance and so is more likely to absorb a
σ− photon and get kicked towards negative x.

of centre (x > 0 in figure 2.7), it sees a Doppler shift in the light beam due to its ve-
locity as well as a change in mF ′ level energy, due to the Zeeman splitting. In our case
we set gF > 0 and hence mF = −1 is shifted closer to resonance. The atom therefore
preferentially absorbs a photon from the counter-propagating (σ− beam) which results
in a momentum kick towards the centre of the trap. An atom moving to the left of
centre experiences the same phenomena and the mF = −1 is again shifted closer to
resonance but here the magnetic field gradient is the opposite direction and therefore it
preferentially absorbs a photon from the counter-propagating beam.

The detuning of the σ− laser beams decreases as the distance from the centre of
the trap increases due to the increasing B-field. Therefore the restoring force that the
atoms experience increases as they drift further from the centre. This force can be
written as [8]

~F = −β~v − κ~r , (2.5)

where β is the damping coefficient and κ is the spring constant (when the laser detuning
is large compared to the Doppler and Zeeman shifts). This force leads to damped
harmonic motion of the atoms [95]. Note that for a quadrupole field the trapping force
is not spherically symmetric and the force is double along the coil axis compared to
the radial directions due to the increased field gradient.

The system described above is a one dimensional case but if it is expanded into
three dimensions using six orthogonal beams and a quadrupole magnetic field, it is
possible to trap atoms in three spatial dimensions.

The maximum atomic velocity (temperature) of an atom that a MOT can capture
is known as the capture velocity vc. It is given by “the incoming velocity for which
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atoms are completely stopped when they reach the opposite edge of the MOT region”
and is typically ∼100 m s−1 [95].

2.1.4 Magnetic Trapping
In order to obtain control over, and interact with atoms, it can be useful to confine
them to a specific location in space. One method of achieving this is to use magnetic
trapping.

The potential energy of an atom in a magnetic field can be written as

UB = −~µ · ~B , (2.6)

where ~B is the external magnetic field and ~µ is the magnetic moment of the atom
[97]. This magnetic moment varies with mF level and as such the atomic energy can
increase or decrease depending on the mF value. Magnetic trapping works by the fact
that for a given mF state, the potential energy of the atom UB can be written as

UB = gFmFµB

∣∣∣ ~B∣∣∣ , (2.7)

where gF is the Landé g-factor and µB is the Bohr magneton. Thus for gFmF > 0,
atoms are low-field seeking and can be magnetically trapped in a static magnetic field.
High-field seeking atoms (gFmF < 0) cannot be trapped2, due to Earnshaw’s theorem
which states there cannot be any local DC field maxima in free space [103, 104].

In order for neutral atoms to remain trapped, they must remain in a low field seek-
ing state. Therefore the magnetic moment of the atom ~µ must be able to follow the
magnetic field lines as it moves around within the trap. The precession of the magnetic
moment is known as the Larmor precession frequency ωL and is given by

ωL =
gFmFµB

∣∣∣ ~B∣∣∣
~

. (2.8)

To avoid the atoms ‘spin-flipping’ into an untrapped mF state, the rate of change of
the magnetic field in the reference frame of the moving atom must be significantly less
than ωL [95]. If this condition is met, the atom will maintain itmF state and it is said to
follow the magnetic field adiabatically. The first observation of magnetically trapped
neutral atoms was made by Migdall et al. in 1985 [105] using a quadrupole trap.

A quadrupole trap can be created by two coils of wire aligned axially along the z
axis. A current is passed through them on opposite direction which is known as an
anti-Helmholtz configuration. The resultant magnetic field gives a trapping potential
that, for a ground state atom, can be written as [90]

U(x, y, z) = µB gF mF B
′(~r)

√
x2

4
+
y2

4
+ z2 , (2.9)

2The group of Schmiedmayer actually successfully trapped high-field seeking atoms using a single
current-carrying wire [102].
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where B′(~r) is the magnitude of the spatially varying magnetic field. This magnetic
field geometry has been described as a “three dimensional ‘conical’ potential” [90].

The simplicity of the quadrupole trap is attractive for experiments. However, there
exists a point of zero magnetic field at the very centre of the trap. At this position,
the mF states of the atom become degenerate and therefore there is a possibility that
the atom will fall into an untrapped or antitrapped mF state. This results in the atom
leaving the trap. These losses are known as Majorana losses [106].

It is possible to avoid Majorana losses by removing the point of zero magnetic field
from the trap. This can be achieved using repulsive blue detuned light to ‘plug’ the
bottom of trapping potential and was essential for the production of the first BEC of
sodium [107]. Another method to reduce Majorana losses is to use a time orbiting
potential (TOP) [108], which involves applying a time varying bias field of angular
frequency ωB to make the magnetic zero point orbit around the atoms such that the
atoms see the averaged potential which contains no zeros. For this scheme to work,
the varying magnetic field must meet the condition

ωL > ωB > ωA , (2.10)

where ωA is the frequency of the atomic motion [8].

2.1.5 Optical Dipole Traps
Optical dipole traps for neutral atoms work due to the AC Stark shift. This is the
variation of atomic energy levels in the presence of a light field and is analogous to
the Zeeman shift in magnetic fields. If the light field is red detuned from the atomic
resonance, it is energetically favourable for the atoms to remain in a region of maxi-
mum intensity, whilst blue detuned light will repel atoms. It is therefore possible to
trap atoms in a red detuned beam and the spatially varying Gaussian beam profile will
provide 3D confinement at a beam focus. A blue detuned beam can also provide con-
finement if more complex beam shapes are used. For example, a cylindrical beam with
two sheets capping the ends can produce a uniform cylindrical trap for a BEC [109].
Note that these potentials are conservative for far detuned beams so in order to retain
the atoms in the trapping volume, the atomic temperature must be less than the trap
depth.

In order for the confining dipole force Udip to dominate over the force from scatter-
ing photons Γsc, the laser must be sufficiently detuned. However, if we assume that the
detuning from atomic resonance of the trapping laser, ∆, is much less than the atomic
resonance itself, such that ∆� ω0, then the rotating-wave approximation (ω/ω0 ≈ 1)
expression for these two phenomena are [110, 111]

Udip =
3πc2

2ω3
0

Γ

∆
I , (2.11a)

Γsc =
3πc2

2~ω3
0

(
Γ

∆

)2

I , (2.11b)
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where ω0 is the optical transition frequency and I is the laser intensity. Note that these
equations assume a single atomic transition. The important thing to note here is that
Udip scales as 1/∆ while Γsc scales as 1/∆2 and therefore it is advantageous to have
a far detuned trapping laser. However, an increased intensity would then be needed to
provide the same trap depth.

It is worth noting that in our experiment we use 87Rb which has a D1 and a D2

transition of 795 nm and 780 nm respectively. Therefore we drive multiple transitions
with our 1070 nm trapping laser, and a more complete expression for the trap depth
would be the incoherent sum of equation 2.11a, [110]

Udip (r) =
πc2Γ

2ω3
0

(
2 + PgFmF

∆2,F

+
1− PgFmF

∆1,F

)
I (r) , (2.12)

where P indicates the polarisation of the laser (0 or ±1 for linear and circular σ±

respectively), and ∆2,F and ∆1,F are the detunings from the transitions between the
ground state 52S1/2 and the 52P3/2 and 52P1/2 excited states respectively.

2.1.6 Radio Frequency Evaporative Cooling
The laser cooling techniques described previously can cool and trap atoms down to a
temperature of a few recoil energies (equation 2.4). This puts a hard limit on the min-
imum achievable temperature and in order to decrease the temperature further other
methods must be used. Such a method is radio frequency (RF) evaporative cooling.
Simply put, we remove the hottest atoms and allow the remaining atoms to rether-
malise, thus reducing the temperature.

Ideally we would use a mechanism, such as an RF field, to remove only the hottest
atoms from the trap, and indeed we can selectively target the hottest atoms by the ap-
plication of a spatially varying magnetic field in conjunction with an RF field. The
atoms in the high magnetic field have their mF states Zeeman shifted onto resonance
with an otherwise detuned RF field. This selected velocity group of atoms then transi-
tion from one spin state to another, e.g. from |F = 1,mF = 1〉 to |F = 1,mF = −1〉
via the |F = 1,mF = 0〉 state, and are left untrapped or anti-trapped.

The application of an RF field targets one ’position’, or more generally, atoms
at one particular magnetic field value. This gives rise to an evaporation surface; the
surface from which the atoms are lost from the trap.

To evaporatively cool an ensemble of atoms, we must remove the hottest atoms,
then allow time for the system to rethermalise via inter-atomic collisions, which nar-
rows the velocity distribution of the atoms and the atoms are cooled. This technique is
then repeated, and if we make the time step increasingly small, we can use a smooth RF
field ramp of decreasing frequency to apply an ‘RF knife’ to the system that progres-
sively targets the hottest remaining atoms in the ensemble. The average temperature
of the remaining atoms is therefore decreased as the frequency of the RF field is de-
creased.
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Figure 2.8: RF cooling scheme. Atoms in the |F = 1,mF = 1〉 state are trapped in a
quadrupole field. When an RF photon becomes resonant, it causes the atom to ‘spin
flip’ and it becomes untrapped or anti-trapped. The hotter atoms have more energy
and can reach higher RF frequencies, therefore the RF field is swept from high to low
frequency such that the hotter atoms are addressed first. With rethermalisation, the
average temperature of the ensemble decreases. Note that the effects of gravity are
neglected here.

The maximum speed at which the RF sweep can be applied whilst still achieving ef-
ficient cooling is determined by the scattering rate, which is the number of inter-atomic
collisions per second. The higher the scattering rate the faster the rethermalisation and
therefore the RF sweep can be applied faster. If the RF sweep is too fast, there will
be very few remaining atoms at the end, albeit very cold, and whilst a slow ramp in
principle would work, experimental factors such as trap lifetime start to come into
play that make a slow ramp less than optimal. In producing a BEC, the figure of merit
during the evaporation stage is phase-space density, discussed in section 2.2.1, which
should increase throughout the sequence. This requires a high atom number and a low
temperature and as a result RF sweep parameters are often experimentally tuned.

It is worth noting that the trap described in figure 2.8 is a quadrupole magnetic field.
Therefore there exists a point of zero magnetic field at the centre. At this point the mF

states of the atom become degenerate and Majorana losses can occur (section 2.1.4).
This is a limiting factor in our experiment; as we cool the atoms a point is reached
where the atoms are lost without a reduction in temperature. Also, the quadrupole
trap is not harmonic. As a result the rethermalisation dynamics during the RF knife
technique are altered slightly from the typical example of atoms in a harmonic trap.

Given an appropriate trap geometry and RF ramp, it is possible to cool bosons to a
Bose-Einstein condensate using this method (eg. [2, 5, 90]).
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2.1.7 Optical Evaporative Cooling
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Figure 2.9: Optical evaporative cooling. As the power of the laser beam is reduced,
the trap depth is also reduced. This allows the hottest atoms to escape the trap. With
the correct temporal power sweep, the remaining atoms rethermalise and the mean
temperature of the ensemble decreases. Note that the effects of gravity are neglected
here.

The general idea of evaporative cooling in optical potentials is the same as for RF cool-
ing in magnetic potentials; the most energetic atoms escape thus lowering the average
temperature of the remaining atoms. As described in section 2.1.5, for a red detuned
trapping beam the atoms see a potential minimum at the point of maximum intensity
and, for a Gaussian beam, the potential will have a Gaussian profile. Any atoms with
energy greater than the trap depth will be able to escape the confining potential (equa-
tion 2.11a) and this fact is used to control the evaporative cooling.

To achieve optical evaporative cooling the optical power of the trapping beam will
initially be high in order to have a deep trapping potential and capture a large number
of atoms. The power can then be ramped down allowing the hot atoms escape and the
remaining atoms rethermalise and reduce the average temperature of the ensemble. As
in RF cooling this ramp is typically approximately exponential in shape, which allows
sufficient time for the atoms to rethermalise.

A key difference from RF cooling is the varying trap frequency. In this case the
trap frequency, and therefore atomic collision rate, scales with the square root of op-
tical power [112]. Therefore, as the power is reduced so does the collision rate and
rethermalisation takes longer [113]. To account for this the power ramp can be drawn
out in time such that the exponential is effectively stretched, or a magnetic field can
be added to provide additional confinement and recover some of the reduced trap fre-
quency [114, 115]. The application of both optical and magnetic trapping potentials if
referred to as a hybrid trap. It is this type of trap that is used in this thesis to create a
BEC.

25



2.2. BOSE-EINSTEIN CONDENSATION

2.2 Bose-Einstein Condensation
The de Broglie wavelength of a particle of mass, m, at temperature, T , is written as

λdB =
h√

2πmkBT
. (2.13)

At room temperature, atoms can be considered as particles due to their short de Broglie
wavelength. It can be seen that as temperature decreases, the de Broglie wavelength
increases. When the wavelength becomes greater than the inter-atomic spacing of an
ensemble, the particles overlap and become indistinguishable. Providing the particles
are bosons, they preferentially condense into the ground state of a trapping potential
and Bose-Einstein condensation can occur.

λdBd

BEC fraction
Pure BEC

Temperature

Figure 2.10: As the temperature of a cloud of bosons decreases, their de Broglie wave-
length becomes comparable to the inter-atomic separation. At this point the bosons
start to overlap and they condense into the ground state of the trapping potential. As
temperature decreases further, the fractional population of atoms in the condensed
fraction increases until a pure BEC remains. Figure adapted from [108].

2.2.1 Phase-Space Density
Phase-space density, Λ, is a critical parameter in creating a BEC. It is defined as “the
number of particles contained within a volume equal to the cube of the thermal de
Broglie wavelength” [104], and is written as

Λ = nλ3
dB , (2.14)

where n is the number density. Therefore if it is greater than one, the particles can be
considered as overlapping. Phase-space density is dependent on atom density and tem-
perature, and we will now show that a large number and low temperature are required
to create a BEC.

The minimum phase-space density needed to achieve condensation is in fact more
complicated than above, and this critical phase-space density has a value of 2.612
regardless of the trapping potential [116].
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Figure 2.11: Bose-Einstein distribution (black solid line) and a Maxwell-Boltzmann
distribution (red dashed line) describing the occupation of energy levels of a system in
thermal equilibrium.

2.2.2 Bose Gas in a Harmonic Potential
The following describes the properties of an ideal Bose gas in a harmonic potential and
follows the formalism of [117]. We start by considering a system of N non-interacting
bosons in a harmonic potential. At thermal equilibrium the particles will exist in a
Bose-Einstein distribution over the energy levels (figure 2.11):

Nnx,ny,nz =
1

exp
[
β
(
Enx,ny,nz − µ

)]
− 1

, (2.15)

where nx,y,z = 0,1,2,... are the energy levels of the trapping potential, β = 1/(kBT ), E
is energy, and µ is the chemical potential. The total number of particles N is then

N =
∞∑

nx,ny,nz=0

1

exp
[
β
(
Enx,ny,nz − µ

)]
− 1

. (2.16)

If kBT is larger than the energy level spacing in the harmonic potential, the sum in
equation 2.16 can be replaced with an integral:

N = N0 +

∫ ∞
0

dE D(E) , (2.17)

where N0 is the population number of the lowest energy state,

N0 =
1

exp [β (E0 − µ)]− 1
, (2.18)

27



2.2. BOSE-EINSTEIN CONDENSATION

and D(E) is the density of states for a harmonic trap given by [118]

D(E) w
1

2

E2

(~ω)3
+ γ

E

(~ω)2
, (2.19)

where ω = (ωxωyωz)
1/3 is the geometrical mean trap frequency and

γ =
ωx + ωy + ωz

2ω
. (2.20)

For an isotropic trap γ = 3/2 [118]3.
By substitution of equation 2.19 into 2.17, the total number can be written as

N = N0 +
1

2(~ω)3

∫ ∞
0

E2dE

eβ(E+E0−µ) − 1
+

γ

(~ω)2

∫ ∞
0

EdE

eβ(E+E0−µ) − 1
. (2.21)

We now introduce the polylogarithmic function gn(z) and the fugacity of the ensemble

z = exp [β(µ− E0)] , (2.22)

which lies in the range 0 < z < 1. This allows equation 2.21 to be written as

N = N0 +

(
kBT

~ω

)3

g3(z) + γ

(
kBT

~ω

)2

g2(z) . (2.23)

At the transition temperature z=1, giving

gn(1) =
∞∑
l=1

1

ln
= ζ(n) , (2.24)

where

ζ(2) =
π2

6
, ζ

(
3

2

)
= 2.612 , and ζ(3) = 1.202... . (2.25)

The function ζ(n) is known as the Riemann zeta function. It is from the value of
this function that the critical phase-space density for condensation to occur in a given
potential is determined.

2.2.3 Condensation in a Harmonic Potential
At low temperature where the number of bosons in the ground state is large such that
N0 � 1 and z=1, equation 2.23 can be rearranged to

N0 = N −
(
kBT

~ω

)3

ζ(3)− γ
(
kBT

~ω

)2

ζ(2) . (2.26)

3If the trap is anisotropic, γ must be determined numerically [118, 119].
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To obtain an expression for the transition temperature Tc, we say that it is the temper-
ature where N0=0. With T=Tc,

Tc =
~ω
kB

(
N

ζ(3)

) 1
3

[
1− γ ζ(2)

N

(
kBTc

~ω

)2
] 1

3

. (2.27)

As the total number of bosons, N , approaches infinity, the terms in the square brackets
approach 1, giving the transition temperature in the limit of infinite boson number

TN→∞ =
~ω
kB

(
N

ζ(3)

) 1
3

. (2.28)

If the number of bosons is low enough such that this approximation becomes in-
valid, Tc decreases. This modification leads to

Tc w TN→∞

[
1− γζ(2)

3ζ(3)2/3

1

N1/3

]
, (2.29)

To put this in perspective, for N = 10,000, the shift in Tc is about 3 % (see figure 2.12).
Experimentally, the transition temperature of a harmonically trapped Bose gas de-

creases further due to inter-atomic repulsions which reduces the peak density [90, 120].

2.2.4 Condensate Fraction
The classic signature of a BEC created in a 3D harmonic trap is a bimodal distribution
comprised of a Gaussian distribution of thermal atoms and an inverted, approximately4

parabolic distribution of condensed atoms. The parabolic density distribution of the
BEC fraction results from the parabolic trap shape; the condensed atoms fill up the trap
starting from the bottom [108]. Below Tc the BEC fraction increases as the temperature
of the system T is decreased. By rearranging equation 2.26 we obtain

N0

N
= 1−

(
kBT

~ω

)3
ζ(3)

N
− γ

(
kBT

~ω

)2
ζ(2)

N
, (2.30)

then by substitution of equation 2.28 the condensate fraction can be written as

N0

N
= 1−

(
T

TN→∞

)3

− γ ζ(2)

ζ(3)2/3

(
T

TN→∞

)2

N−
1
3 . (2.31)

This is shown in figure 2.12.

4In the Thomas-Fermi approximation, which ignores the kinetic energy of the atoms. See eg. [108].
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Figure 2.12: Fractional ground state population as temperature is decreased. Solid
black line is for N=10,000 bosons using equation 2.31 while the dashed red line is for
the infinite boson limit meaning the last term of equation 2.31 is ignored.
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Chapter 3

Atom Interferometry and Splitting the
Wavefunction

Atom interferometry utilises the wave-like nature of particles to make precision mea-
surements. The de Broglie wave nature of the particles causes interference effects,
which are analogous to light interfering in an optical interferometer. The advantage
of atom interferometers over optical ones is the increased sensitivity as discussed in
section 1.2.2.

A‘back-of-the-envelope’ type calculation demonstrates the difference in sensitiv-
ity: A 1 W laser of frequency 400 THz has an energy per photon of ∼3×10−19 J and
an output of 4×1018 photons per second. A typical BEC in our experiment has an
atom number of ∼105, and, if we assume a cycle time time of 25 s we obtain a particle
flux of 4×103 atoms per second. This gives a difference of ∼ 1015 in terms of particle
flux. However, we must also consider the sensitivity in the phase of the interferometer
which scales as 1/

√
N , where N is particle number. Thus the ratio of sensitivities is

given by
photon

atom
=

√
4× 1018

√
4× 103

≈ 107 . (3.1)

Comparing this to the 5×1010 increase in particle energy (equation 1.3) gives a 103

improvement for atoms compared to photons.
We can generally describe two types of atom interferometer. The first uses the in-

ternal electronic state of the atom to make interferometric measurements, for example,
atomic clocks [121, 122]. The other type uses momentum states which is the type that
is described here. The momentum state version typically uses the absorption and emis-
sion of photons to transfer momentum to the atoms which allows them to trace out a
path in space. This allows for the measurement of spatial magnetic fields and gravity
gradients [18, 20], as well as inertial sensing [35], including Sagnac effects [16, 34].

The construction of an atom interferometer requires the coherent control of atomic
states. This is achieved by the application of light fields in the form of standing waves.
Just as beam splitters create coherent superpositions of photonic states, it is possible to
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use light to create coherent superpositions of atomic states. Similarly, light can also be
used to coherently redirect matter much like a mirror. The following sections describe
these phenomena and the methods used for the coherent control of atoms.

3.1 Bose-Einstein Condensates

3.1.1 Coherence
Coherence is a key factor in obtaining high contrast interferometry data, as is well
understood in classical optics [10]. Hence, we show why a BEC is a good choice for
interferometry [123]. We start by considering the coherence length of a laser

Llaser =
c

∆f
=

λ2

∆λ
, (3.2)

where c is the speed of light in a vacuum, ∆f and ∆λ quantify is the spectral width,
and λ is the laser wavelength. By drawing the analogy between light waves and matter
waves, we write the coherence length of matter as

Lmatter =
λ2

dB

∆λdB

, (3.3)

where λdB is the de Broglie wavelength given by

λdB =
h

p
=

h

mv
. (3.4)

To increase the coherence length one can therefore increase λdB by reducing the par-
ticle velocity, i.e. cooling in the laboratory reference frame. In addition, this also
decreases the spread of velocities ∆v. The spread in de Broglie wavelength, ∆λdB,
can be obtained by differentiation of equation 3.4, with respect to v, to give

∆λdB =
h

mv2
∆v . (3.5)

By substitution of equations 3.4 and 3.5 into 3.2, the coherence length of an ensemble
of cold particles then becomes

Lmatter =
h

m∆v
. (3.6)

Ultra-cold atoms, particularly BECs have a narrow velocity distribution corresponding
to a large coherence length. This spectral coherence and a narrower velocity distribu-
tion are analogous to having a laser of narrower linewidth.

First order correlations: The normalised first-order correlation function, g(1), param-
eterises the level of first-order coherence in a system. A g(1) = 1 indicates a perfectly
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coherent system, while a value of 0 indicates a fully incoherent system, with all values
between indicating partial coherence [124]. A fully coherent system would give an
interference signal of 100% contrast while a fully incoherent system would give 0%
contrast. From this it is obvious that a system with g(1)=1 would be the ideal case when
performing interferometry.

Source

Detector

r2

r1
s1

s2

Figure 3.1: Young’s double slit experiment.

An explanation of the physical origins of g(1) is given by considering a Young’s
double slit type experiment. Figure 3.1 shows a source of monochromatic waves, for
example light, two slits labelled r1 and r2 and a detector at some position after the slits
which can be scanned in the detection plane parallel to the plane of the slits. The signal
from r1 will arrive at the detector after time t1, and similarly that from r2 after time t2.
We define xi = (ri, ti) as a point in both space and time. From [124], the normalised
first-order correlation function can be written as

g(1)(x1, x2) =
G(1)(x1, x2)√

G(1)(x1, x1)G(1)(x2, x2)
, (3.7)

where G(1)(xi, xi) is the amplitude of a signal at the detector and G(1)(x1, x2) is a
measure of the correlation, or contrast, of the signal arriving at the detector from x1

and x2. G(1)(xi, xi) can be measured by scanning the detector and observing the signal
from one slit at a time. G(1)(x1, x2) is measured by scanning the detector and observing
the interference pattern with both slits unblocked. Thus we see that g(1) is a measure
of both spatial and temporal coherence.

In principle, the g(1) value of a pure BEC is 1, and therefore a BEC can give high
contrast when performing interferometric measurements. Figure 3.2 shows the dif-
ference in the first order correlation for ultra-cold atoms and a BEC, which has been
shown experimentally by Bloch et al. [125]. Here they investigate the visibility of in-
terference fringes produced by a double slit type experiment performed with atoms for
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3.1. BOSE-EINSTEIN CONDENSATES

varying slit separation. The g(1) value for ultra-cold atoms approaches zero for varying
time and/or separation, while for a BEC it approaches the condensate fraction [126].
This is a strong reason for using a BEC in our experiments.

0

1

Separation

g(1
) (x

1,x
2) BEC (T<Tc)

Ultra-cold (T>Tc)

Figure 3.2: Normalised first-order correlation function of ultra-cold atoms (red dashed
line) and a BEC (black solid line) as a function of initial separation of the two ensem-
bles. In the Young’s double slit analogy this is equivalent to the slit separation. This
was shown experimentally in [125].

3.1.2 Momentum Spread
In the experiment to be described in this thesis we use a BEC as the interfering medium,
not just for its coherence properties but also for its low momentum distribution. We
interfere the momentum states of the BEC, and typically we use the p = ±2~k mo-
mentum states which, in our setup, correspond to a velocity of 10.6 mm/s. Ideally
the BEC would have zero initial velocity, however, experimentally it has a velocity
distribution determined by the trapping frequency of the trap in which it was created,
which for our experiment is ∼1.6 mm/s along the interferometer axis1. Additional ini-
tial velocity results in a momentum of p = ±2~k± δ where δ is the initial momentum.
This extra momentum is then carried through the interferometer and therefore an initial
momentum causes a perturbation in the interferometer output frequency. If the initial
momentum distribution is centred around zero, then the output frequencies of all the
momentum classes will be centred around the ‘zero-momentum’ frequency and any
initial distribution will simply cause a reduction in signal contrast.

Since the experiment to be described in this thesis uses momentum states as the
interfering medium, a low momentum distribution of atoms in the ensemble is advan-
tageous for increased signal contrast. More specifically, the velocity of the atoms that
are used in the interferometer should ideally be sub-recoil, and a BEC provides us with

1This is determined from the gradient of figure 4.17.
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a narrow velocity spread atoms2, in addition to increased coherence. However, it is
also possible to have ultra-cold thermal atoms with sub-recoil velocities [34], and even
atoms with a velocity distribution larger than the recoil-velocity can be used to make
measurements. For example, the group of Kasevich [15] measure rotation using a col-
limated Cs beam with a transverse velocity of 10 cm/s to which they impart a velocity
of 7 mm/s, although in this case not all the atoms are used to make the measurement.

3.2 Resonant Scattering
When an atom absorbs (or emits) a photon, it recoils with some energy. This recoil
energy, Er, is given by

Er = ~ωr =
~2k2

2m
, (3.8)

where ωr is the recoil frequency, k is the wavevector of the photon, and m is the mass
of the atom. This leads to a momentum, p, associated with the photon absorption (or
emission) given by p = ~k.

Consider an atom with momentum p = +~k in the reference frame of the labo-
ratory. Two counter-propagating laser beams of frequency ω detuned from an atomic
transition, ω0, by ∆ (figure 3.3) interfere to produce an optical lattice. It is possible to
drive a two-photon Raman transition, shown in figure 3.4, such that the atom receives
two ‘recoils’ of momentum. These two momentum recoils come from the absorption
of a photon from one beam and the stimulated emission of a photon into the other
beam. The scattering process has the effect of changing the momentum of the atom
from p = +~k to p = −~k.

ω = ω0 - Δω = ω0 - Δ

p=-ħk

Δp=-2ħk

p=+ħk

Figure 3.3: An atom with initial momentum p = +~k undergoes a two-photon Raman
transition such that it then has momentum p = −~k.

We describe these Raman transitions as ‘resonant’ because the total energy of the
atom, shown on the dispersion curve of figure 3.4, does not change, i.e. the energy
levels are degenerate. If one laser beam is detuned relative to the other, the previously
stationary optical lattice will become a moving optical lattice. It is then possible to
transition between momentum states that are not degenerate in the lab reference frame
but degenerate in the reference frame of the optical lattice.

2The velocity distribution of a BEC is dependant on the trapping frequency of the trap in which it
was created, and for our experiment is ∼1.6 mm/s along the interferometer axis
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3.3. KAPITZA-DIRAC SCATTERING

These resonant scattering processes using laser beams of equal frequency form
the basis of our reflection pulses, which will be discussed further in section 3.4. In
order to impart a momentum change onto the atoms with laser beams of the same
frequency, Raman transitions can still be used, but since the momentum states are no
longer degenerate there is a detuning that results from the difference in energy making
the transition off-resonant. This is discussed in the following section.

ωr

ω = ω0 - Δ

-ħk +ħk

Energy

Momentum

Δ

Figure 3.4: Dispersion curve of energy and momentum. An atom with initial mo-
mentum p = +~k can undergo a two-photon Raman transition, transferring it to the
p = −~k state. The reverse is also possible and this scheme can be extended to higher
orders by driving 2n-photon Raman transitions, for example p = +2~k → p = −2~k
using a four-photon transition.

3.3 Kapitza-Dirac Scattering
In the creation of an atomic interferometer we first need to engineer beam splitters.
This involves taking a stationary BEC and imparting momentum on to it such that
the wavefunction splits in to positive and negative momentum states. Here we intro-
duce the idea of Kaptiza-Dirac scattering, which is a method of splitting the BEC by
applying pulses of light from two laser beams of the same frequency. They create a
stationary optical lattice which can excite the ±2n~k momentum states of the BEC.

The complete transfer of the atomic population cannot be achieved with a single
off-resonant pulse because the kinetic energy introduced by the pulse leads to an ef-
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3.3. KAPITZA-DIRAC SCATTERING

fective detuning. To explain this we introduce the ‘Bloch sphere’ picture in figure
3.5, where the south pole represents the |g, 0~k〉 momentum state and the north pole
represents the |g,±2~k〉 momentum state. When the state vector lies in a position
somewhere inbetween the two pole, the system is in a superposition state. A state vec-
tor starting at the south pole will never reach the north pole because the detuning of
the off-resonant pulse applies an additional torque which causes the path of the state
vector to deviate from its ‘on-resonance’ trajectory. Therefore, a single Bragg pulse
with beams of equal detuning will not allow 100% transfer from |g, 0~k〉 to |g,±2~k〉,
or any other transfer where the total atomic energy changes. In Kapitza-Dirac splitting
the energy of the wavefunction changes which makes it an off-resonant process.

Δ = 4ωr

Energy

Momentum

Figure 3.5: A two-photon Raman transition imparts a momentum of ±2n~k on to an
atom. This leads to an effective detuning ∆ (left). Therefore a single pulse will not
give 100% population transfer from 0~k to ±2~k as the state vector never reaches the
top of the Bloch sphere (right).

In the following sections we first describe the excitation of momentum states us-
ing single pulses of light. Then we look at a double pulse technique for controlled
excitation of only the ±2~k momentum states.

3.3.1 Single Pulses
Kaptiza and Dirac, in 1933, predicted that a beam of electrons would undergo Compton
scattering when incident on an appropriate standing wave of light [23]. Providing
the light field is on for a short enough period of time, τ � 1/ωr, the atoms can be
considered to be at rest for the duration of the pulse. This pulse can therefore be
said to operate within the Raman-Nath regime, which is analogous to the thin lens
approximation in optics [127].

In our experiment, the reality is that we operate somewhere just outside the Raman-
Nath regime, and therefore the kinetics of the atom are included here for a more ac-
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curate model. The mathematical description below follows the formalism of Gad-
way et al. [128]. The Hamiltonian of a BEC in a standing wave of light can be given
as

Ĥ = − ~2

2m

d2

dz2
+ V0 cos2(kz) , (3.9)

where V0 is the amplitude of the light field, often referred to as the lattice depth, k is
the wavevector of the light, and z is the axis of propagation. The first and second terms
describe the kinetic and potential components, respectively. The atomic wavefunction
can be written as the sum of all modes:

Ψ(t) =
∑
n

Cn(t)ei2nkz , (3.10)

where Cn is the complex amplitude coefficient of the n-th momentum state given by
p = ±2n~k. By substitution of equation 3.10 into the time-dependent Schrödinger
equation we obtain a set of coupled differential equations

i
dCn
dt

=
αn2

τ
Cn +

β

4τ
(Cn−1 + 2Cn + Cn+1) , (3.11)

where α = (E
(2)
r /~)τ , β = (V0/~)τ , E(2)

r is the 2-photon recoil energy, and τ is pulse
duration. Here α and β are dimensionless parameters that describe pulse duration and
pulse area respectively. From the second term in equation 3.11 we see that any given
momentum state, n, is coupled to its nearest neighbours, namley the n + 1 and n − 1
momentum states.

We temporarily ignore the kinetics and operate entirely within the Raman-Nath
regime. This requires the pulse duration, τ , to be much shorter than the period of
the harmonic oscillation given by ωho = (V0E

(2)
r )1/2/~, or αβ � 1. This means

the αn2 term in equation 3.11 is ignored and the standing wave can be treated as a
“thin phase grating” [129], or to link it back to optics, it is the equivalent to the thin
lens approximation. Assuming a stationary initial population such that |C0|2 = 1, the
solution then becomes

Cn(t) = (−i)ne−iβt/2τJn(βt/2τ) , (3.12)

where Jn are Bessel functions of the first kind. The population of the n-th momentum
state then becomes

Pn = |Cn|2 = J2
n

(
β

2

)
. (3.13)

Figure 3.6 shows the population evolution for a varying β, which physically equates to
varying the pulse area.
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Figure 3.6: Population evolution for a varying pulse area β. Note that as β increases,
the total populations plotted do not sum to unity. This is due to the negation of higher
order terms. We assume a initial popution of 100% in the 0th mode and plot the modes
such that they are the sum of the positive and negative momentum sates.

As the duration of the pulse, τ , is increased the negation of the kinetics becomes
invalid and we must include them for the model to be accurate. Also, the Fourier width
narrows and the excitation of higher orders is suppressed. This leads to a more general
form of equation 3.13:

Pn = |Cn|2 = J2
n

(
β

2
sinc

α

2

)
. (3.14)

The above is valid in the weak-pulse regime where only the lowest momentum states
are populated (±2~k) and the optical lattice depth V0 . 4Er. For pulses of greater
amplitude, this expression does not hold and numerical integration of equation 3.11 is
required.

3.3.2 Double Pulses
The single pulse method of splitting a BEC can populate many momentum states. To
perform atom interferometry it would be advantageous to target only specific momen-
tum states, for example, | ± 2~k〉. Double pulse techniques allow this to be achieved
(or at least very nearly) [18, 130].

Here we base our mathematical description on the work of Wu et al. [130]. By
using equation 3.9, the Schrödinger equation for an atom in a standing wave of light
can be written as

iψ̇(z, t) =

(
− ~

2m

d2

dz2
+ V0(t) cos2(kz)

)
ψ(z, t) . (3.15)
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The wavefunction of the atomic ensemble can be written as the sum of all the individual
quantised momentum state components

ψ(z, t) =

∫
dk
∑
n

C2n(k, t)ei(2nk+k0)z , (3.16)

where k0 describes the initial momentum of the atom. Note that equation 3.16 is equiv-
alent to equation 3.10 but here we allow for non-zero initial momentum and multiple
wavevectors. We assume that each momentum state is only coupled to the adjacent mo-
mentum states and by substitution into equation 3.15 we obtain coupled Raman-Nath
equations3:

i ˙C2n =
~

2m
(2nk + k0)2C2n(k0, t) +

V0(t)

2
(C2n−2(k0, t) + C2n+2(k0, t)) . (3.17)

This shows that the strength of the coupling between adjacent states is determined by
the amplitude of the standing wave. Equation 3.17 comprises an infinite set of coupled
equations. For simplicity we truncate them to include only the zeroth and first order
modes such that n = −1, 0, 1.

If we shift into the reference frame of the atoms via a Lorentz transformation to get
rid of the k0 terms, equation 3.17 becomes

iĊ0(k0, t) =
V0(t)√

2
C+ , (3.18a)

iĊ+(k0, t) = 4ωr C+ +
V0(t)√

2
C0 + 4ωr

k0

k
C− , (3.18b)

iĊ−(k0, t) = 4ωr C− + 4ωr
k0

k
C+ , (3.18c)

where C+ = (1/
√

2)(C2 + C−2) and C− = (1/
√

2)(C2 − C−2). Since k0 = 0, we
can also neglect the k0/k terms. Furthermore, an initial population of |C0|2 = 1 means
there are no atoms in the C− state. From above we see there is no coupling to this
state from the C0 state and therefore C− remains a dark state. By setting the above
equations in a different rotating frame, the resultant two-state system is described by

iĊ0 = −2ωrC0 +
V0(t)√

2
C+ , (3.19a)

iĊ+ =
V0(t)√

2
C0 + 2ωr C+ . (3.19b)

This two level system is conveniently visualised using state vectors on the Bloch
sphere (figure 3.7), where the ‘south pole’ is the |C0|2 = 0~k momentum state and the

3Note that equation 3.17 is equivalent to equation 3.11 but in the reference frame of the C0 state.
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‘north pole’ is the |C+|2 = ±2~k state. The goal is to find a sequence of pulses that
transfers the population from the 0~k state to the ±2~k state. In [130], a double pulse
technique is proposed where each pulse should have an amplitude of Ω = 2

√
2ωr, a

duration of τ1 = (2n1 + 1)π/4
√

2ωr, and a separation of τ2 = (2n2 + 1)π/4ωr, where
n1 and n2 are integers. These integers can be interpreted as the number of rotations
around the Rabi vector during each pulse; n = 1 is a 1/2 rotation while n = 2 is 3/2
rotation etc. In figure 3.7, n1 and n2 are set to one.

Figure 3.7: The double pulse splitting scheme as represented on the Bloch sphere. The
red arrow represents the state vector while the blue dashed arrow is the Rabi vector
that is applied during the pulses.

In figure 3.8 we plot equations 3.18 for varying pulse duration τ1 and pulse separa-
tion τ2 with pulse amplitudes of 2

√
2ωr. This simulation suggests that 100 % popula-

tion transfer from |0~k〉 to |±2~k〉 is possible using a double pulse.
In the above model the higher order momentum states have been ignored which is

an approximation. Moreover, this does not allow for the optimisation of higher order
splitting pulses. We also assumed a stationary atom cloud and therefore this description
would not allow for the modelling of a reflection pulse. While Kapitza-Dirac scattering
is an off-resonant process, a reflection pulse is a resonant process.
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Figure 3.8: Surface plot of double pulse splitting model (equation 3.18) for varying
pulse duration τ1 and pulse separation τ2. Pulse amplitudes are 2

√
2ωr.

3.4 Composite Pulses for High Efficiency Splitting
Ideally we would have a mathematical description of both the splitting and reflec-
tion pulses. Section 3.3.1 describes single pulses while section 3.3.2 describes double
pulses for splitting into only the ±2~k momentum states with higher orders ignored.
In both sections we assumed a stationary cloud of atoms, and therefore using this de-
scription we cannot model a reflection pulse. Below we include initial momentum
in the mathematical description and show how the model can be used to predict high
efficiency splitting and reflection pulses.

We start by rewriting equation 3.11 with the α and β terms substituted:

i
dCn
dt

=
E

(2)
r n2

~
Cn +

V0

4~
(Cn−1 + 2Cn + Cn+1) , (3.20)

where E(2)
r = 4~2k2/2m is the two-photon recoil energy and m is the mass of the

atom. We include initial momenta by altering the value of k such that k = k + k0

where k0 is the initial momentum. This then gives

i
dCn
dt

=
4~(k + k0)2n2

2m
Cn +

V0

4~
(Cn−1 + 2Cn + Cn+1) . (3.21)

Equation 3.21 is then used to generate coupled differential equations, which are
numerically solved in MATLAB. We truncate these equations at | ± 12~k〉; we only
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observe a population of 10−18 in these modes from our simulations. Light shift poten-
tials corresponding to arbitrary pulse shapes can be simulated, such that V0 = V0(t),
and the final population of the momentum states can be calculated4 [9]. This allows us
to predict the resultant state populations for arbitrary pulse shapes. By using a genetic
algorithm in MATLAB we can also calculate a composite pulse sequence to generate
any arbitrary final state.

We use a combination of square pulses for our composite splitting pulse. This
is convenient to model because of the low resolution required compared to a smooth
curve, and square pulses are also easier to implement experimentally. Smooth curves
are possible although a higher resolution is required for an accurate simulation. We
describe our pulse shapes with an amplitude in terms of light shift potential in units of
the recoil energy Er.
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Figure 3.9: Composite light pulse for high efficiency splitting (left) and reflection pulse
with a Blackman shape (right).

If the population of only the ±2~k states is required, we find that a simple double
pulse technique is not optimum. We calculate (and demonstrate in figures 5.5 and 5.6)
that a small light potential between the two pulses provides a higher fidelity split. This
is consistent with the data presented in [123]. The reason for this is to account for the
excitation of higher order modes. By applying this extra amplitude, the | ± 4~k〉 ‘re-
phase’ such that when the second large amplitude is applied the untargeted (n 6= ±1)
modes tend back to zero.

Our optimised parameters are two pulses of τ1 = 26.6 µs duration and A1 =
6.07 Er in amplitude with a spacing of τ2 = 45.6 µs during which an amplitude of
A2 = 0.52 Er is applied. From our model we predict a split efficiency of 100.00 %,
and in section 5.1.2 we experimentally observe an efficiency of 99.97± 0.03 % (figure
5.5).

The population of higher order states using this technique is also possible. Indeed,
we have demonstrated its efficacy in populating only the±4~k states in figures 5.7 and
5.8. We find optimised parameters of τ1 = 53.3 µs, A1 = 23.7 Er, τ2 = 39.0 µs,
and A2 = 3.59 Er. Pulses designed to populate higher order states are much more

4The pulse shapes must be discretised with a finite resolution due to the MATLAB algorithm.
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susceptible to intensity noise. This is due to increased rate at which the phase evolves
and their increased sensitivity to amplitude noise. From our model we predict a split
efficiency of 99.30 %, and experimentally we observe an efficiency of 88±4 %.

Our numerical model also aids us in the optimisation of the reflection pulses. In
principle this is a resonant transfer of momentum and hence a single Blackman shaped
pulse is used as it has a better defined frequency than a square pulse. Our pulse pa-
rameters are τ = 164 µs and A = 12.2 Er for an optimal ±2~k reflection5. Our
model predicts a reflection efficiency of 99.88 %. Experimentally this is difficult to
observe due to the low velocity in which the momentum state separate, as discussed in
section 5.1.4, but we place a lower bound of 86 % by analysis of the contrast of a full
interferometer sequence (figure 5.12).

A note on momentum state coupling: Previously it was pointed out that any single
momentum state is coupled only to its nearest neighbour, and this holds true for equa-
tion 3.21. However, for the reflection pulses and higher order splitting we can target
and excite momentum states that aren’t adjacent to the input state, so how is this possi-
ble? One can think of the atomic wavefunction sweeping trough the momentum states
sequentially until the final state is reached, for example, a reflection pulse applied to
the +2~k momentum state causes the wavefunction to sweep through the 0~k state
before reaching the −2~k state.

3.4.1 Blackman Pulses
A Blackman shaped pulse was selected for our mirror pulse for a few reasons, not least
of which it is relatively easy to program. A Blackman pulse has the form [131]

y(t) =
7938

18608
− 9240

18608
cos

(
2πt

τ − 1

)
+

1430

18608
cos

(
4πt

τ − 1

)
, (3.22)

where τ is pulse width. A second reason is that the amplitude goes to zero at the wings.
This suppresses higher frequencies that would be introduced by a discontinuous step
function. Lastly, the higher frequency components have a much lower amplitude in
Fourier space compared to a square pulse (figure 3.10). This means that it targets
only resonant atomic transitions which is exactly what is wanted for a mirror pulse.
Kasevich and Chu [132] report an improvement of “at least 3 orders of magnitude”
when using a Blackman pulse compared to a square pulse to drive Raman transitions
in sodium.

5It is worth noting that what is often referred to as a ‘mirror’ pulse is actually the addition or sub-
traction of ±2n~k
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Figure 3.10: Using the window visualisation tool in MATLAB we plot the spectral
density of a Blackman (black), rectangular (red), and Blackman-Nuttall (blue) window
function.

However, other pulse shapes are expected to work, for example, a Blackman-
Nuttall window (blue line in figure 3.10). These shapes, in theory, can further suppress
higher frequency components. It is also possible to simply use a single square pulse of
longer duration as demonstrated in [18].

3.4.2 Competing Methods
A recent paper by Berg et al. [133] discusses a “Composite-Light-Pulse Technique”
to construct a Mach-Zehnder type interferometer. These pulses operate in the Bragg
regime and require the use of blow-away pulses to remove atoms in unfavourable elec-
tronic states (these pulses are used in other atom interferometers as well [134]). Whilst
Berg et al. demonstrate excellent levels of sensitivity, these blow-away pulse mean
that not all atoms contribute to the interferometer signal.

An interferometer comprised of the pulse types described in this thesis does not
require blow-away pulses as the atoms remain in the same internal state throughout.
Therefore all the atoms, in principle, contribute to the output signal and the system can
be regarded as more efficient, although experimentally we observe less than 100%
splitting and reflection efficiency (99.77% and 82% respectively) which mean that
small fraction of the atoms are still lost.

By keeping the atoms in the same internal state our type of interferometer has
an inherent insensitivity to non-inertial perturbations such as phase from spatially flat
magnetic fields for the entire duration of the interferometer sequence, and not just
during the free evolution time as reported in [133]. Furthermore, our method requires
fewer pulses and a single laser detuning making the system easier to implement, and
therefore is an attractive method for the miniaturisation of atomic interferometers.
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Figure 3.11: Three arm interferometer scheme.

3.5 Atom Interferometer Model
For the majority of our experiments the wavefunction is split into three separate wavepack-
ets. This allows for the construction of a 3-arm interferometer using |p =0,±2~k〉, as
shown in figure 5.15, which can be likened to two Mach-Zehnder interferometers with
a common arm. A 3-arm configuration allows for the measurement of ωr due to the
central arm acting as a common phase reference.

When the interferometer is closed it is the phase difference between the arms that
manifests itself as variation in mode population. If only two symmetrical arms are
used (eg. ±2~k) the phase velocity of each is the same and therefore, providing there
are no external perturbations, the populations will fold back into the 0~k state when
the interferometer is closed. Using 3 arms means the phase difference between the 0~k
and ±2~k states is observed at the output and the rate of change of phase is ωr.

3.5.1 3-arm Interferometer Model
The mathematical description here of the 3-arm interferometer (figure 3.11) tracks the
phases of the arms and follows a similar formalism to [91]. After the initial splitting
pulse, the phases of the three modes are

Φ0 = 0 , (3.23a)
Φ+ = φ1 , (3.23b)
Φ− = φ1 , (3.23c)

where Φ0, Φ+, and Φ− refer to the phases of the middle, upper, and lower arms of
the interferometer in figure 3.11 respectively, and φ1 is a phase introduced by the op-
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tical lattice during splitting pulse. After time T1 (time between splitting and reflection
pulses) the phases are

Φ0 = 0 , (3.24a)
Φ+ = φ1 − 4ωrT1 , (3.24b)
Φ− = φ1 − 4ωrT1 , (3.24c)

where the −4ωrT1 terms are due to the kinetic energy. The reflection pulse adds the
spatial phase 2φ2 from the optical lattice, and after T2 we have

Φ0 = 0 , (3.25a)
Φ+ = φ1 + 2φ2 − 4ωrT1 − 4ωrT2 , (3.25b)
Φ− = φ1 + 2φ2 − 4ωrT1 − 4ωrT2 . (3.25c)

Finally, after a closing pulse there are nine possible paths. At the |0~k〉 port we have

Φ0 = 0 , (3.26a)
Φ+ = φ1 + 2φ2 + φ3 − 4ωrT1 − 4ωrT2 , (3.26b)
Φ− = φ1 + 2φ2 + φ3 − 4ωrT1 − 4ωrT2 . (3.26c)

At the |+2~k〉 port we have

Φ0 = φ3 , (3.27a)
Φ+ = φ1 + 2φ2 + 2φ3 − 4ωrT1 − 4ωrT2 , (3.27b)
Φ− = φ1 + 2φ2 − 4ωrT1 − 4ωrT2 , (3.27c)

and at the |−2~k〉 port we have

Φ0 = φ3 , (3.28a)
Φ+ = φ1 + 2φ2 − 4ωrT1 − 4ωrT2 . (3.28b)
Φ− = φ1 + 2φ2 + 2φ3 − 4ωrT1 − 4ωrT2 , (3.28c)

A full analysis of the resulting wavefunction would require the nine terms multi-
plied by their complex conjugate, which would give 81 terms. Therefore for simplicity
we consider only at the |0~k〉 output port. From the thesis of Gupta [91], the output
population is given by

P0~k ∝ cos

(
Φ0 −

Φ+ + Φ−
2

)
, (3.29)

then by substitution of equations 3.26 we obtain

P0~k ∝ cos (φ1 + 2φ2 + φ3 − 4ωrT1 − 4ωrT2) . (3.30)
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Therefore if we probe the momentum state populations as a function of T2, we observe
a frequency proportional to 4ωr. This is demonstrated experimentally in chapter 6 and
the data is shown in figure 5.16.

The output populations of the interferometer depend on the phases accumulated
during the interferometer sequence. Above we assume a perfectly symmetric system
such that the phase contributions from Φ+ and Φ− at the |0~k〉 output port are equal. If
a differential phase shift is introduced into one of the arms, there would be an additional
phase terms in Φ+ and Φ− that would break the symmetry. For example, if a phase
difference, φδ, was introduced into Φ+ such that at the |0~k〉 port

Φ+ = φ1 + 2φ2 + φ3 − 4ωrT1 − 4ωrT2 + φδ , (3.31)

then

P0~k ∝ cos

(
−4ωrT1 − 4ωrT2 +

φδ
2

)
. (3.32)

This additional phase term manifests in a phase shift in the interferometer output,
which makes this type of interferometer sensitive to gravitational fields, and rotations.
We demonstrate in section 5.4 its sensitivity to magnetic field gradients.

In the case of contrast interferometry, where a laser beam is Bragg reflected off the
matter-wave grating (see chapter 6), the intensity, I , of the reflected light becomes the
square of the population modulation giving

I = cos2 (−4ωrT1 − 4ωrT2) . (3.33)

When we perform contrast interferometry, we are effectively varying T2, and therefore
the frequency of the intensity modulation is 8ωr, as will be demonstrated in chapter 7.

3.5.2 2-arm Interferometer Model
By a similar analysis of a 2-arm interferometer (figure 3.12), the phases at the |0~k〉
output port are

Φ+ = φ1 + 2φ2 + φ3 − 4ωrT1 − 4ωrT2 , (3.34a)
Φ− = φ1 + 2φ2 + φ3 − 4ωrT1 − 4ωrT2 . (3.34b)

Since the output populations depends on the interference between the two modes, it is
the relative phase difference that we must consider:

Φ+ − Φ− = 0 , (3.35)

which shows that the recoil frequency does not manifest itself in the output as it does
in the 3-arm interferometer scheme. However, as before, a differential phase shift, φδ,
introduced into one of the arms would cause a phase shift in the output port population
as in this case Φ+ − Φ− = φδ.

48



3.5. ATOM INTERFEROMETER MODEL

+2ħk -2ħk

-2ħk +2ħk

Split Reflection Recombine

Time

P
os
it
io
n

T1 T2

Figure 3.12: Two arm interferometer scheme.
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Chapter 4

Experimental Setup

The current apparatus was designed as a second generation inductively coupled ring
trap experiment. Given the success of the first generation, involving a horizontally
orientated ring trap [7, 8], we constructed a smaller, vertically-orientated ring trap.
This can act as a waveguide for an atom interferometer. By positioning the ring trap
vertically, atoms originating at the bottom of the ring and travelling up the potential
will return to the bottom as a result of gravity. This allows for the ‘reflection’ of the
atoms without the need for laser pulses that can add experimental noise to the system.

The following sections will outline experimental apparatus used to create a BEC of
87Rb in the |F = 2,mF = 2〉 state, the interferometry laser and detection systems, and
the experimental sequence.

4.1 System
Part of the system was already constructed upon my arrival to to the group and as such
I will give a brief overview of this apparatus. More details, including the construction
of the vacuum system can be found in chapter 6 of the thesis of Aline Dinkelaker [8].

4.1.1 Vacuum System
We use double-chamber vacuum system comprising of two glass cells at different pres-
sures connected via a differential pumping tube (figure 4.1). Each cell has a corre-
sponding valve allowing them to be pumped down to different pressures. The first
cell, held at a higher pressure of ∼10−7 Torr, contains our 2D MOT, while the sec-
ond chamber is held at a lower pressure of ≈2×10−10 Torr, and contains the 3D MOT
and ring trap. Rubidium dispensers fill up the high pressure chamber where the atoms
are cooled along two axes by the 2D MOT. The cooled atoms are then pushed by a
laser beam through the differential pumping tube, orientated along the third axis, into
the low pressure chamber where we load the 3D MOT. Throughout this thesis, we as-
sign axis labels of X to the direction of the differential pumping tube, Y is the other
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Figure 4.1: Vacuum system comprising of two glass cells and two vacuum pumps.

horizontal axis, and Z is the vertical axis.

4.1.2 Glass Cells
The 2D MOT chamber is homemade using anti reflection (AR) coated glass from SLS
Optics. Each glass plate is 4 mm thick and an epoxy resin (EPO-TEK 353ND) is used
to glue them together. The assembled chamber measures 5 cm in X, Y, and Z across
the outside surfaces.

The science chamber housing the 3D MOT and ring trap is sourced from an ex-
ternal supplier (Precision Glass Blowing). Its elongated shape makes it less trivial to
construct in-house. It measures 10.2 cm long, has a 27.5 mm square cross section, and
is AR coated on the outside.

4.1.3 Atom Source
Within our vacuum chamber we have a source of Rb, although we also have a source of
potassium in the system. This is for future experiments with degenerate Fermi gasses
but we have yet to use this. With regards to the Rb dispensers, we have two (natural
abundance) 87Rb dispensers from SAES with a common ground pin and a separate
single (enhanced abundance) 87Rb dispenser from Alvatec.
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Figure 4.2: (a): Cross section of the copper ring with dimensions in millimetres. (b):
Copper ring in Macor mount.

Initially we used the two SAES dispensers at a current of around 3 A. Over time
this current was increased to get sufficient pressure, and after 3 years a current of 4.5 A
was applied. More recently we have switched over to using the single Alvatec source
at a current of 2.2 A. We run the experiment with the dispensers on continuously and
switch them off at the end of the day.

4.1.4 Copper Ring
This second generation experiment features an oxygen-free high thermal conductivity
copper ring mounted vertically and positioned within the science chamber. Its di-
mensions are given in figure 4.2a. A mount is machined from Macor which is non-
conductive and importantly does not outgas under vacuum (figure 4.2b). The ring is
machined to have a tapered inside edge which allows optical access for both the dipole
trapping beams and the interferometry beams. The copper ring, in its Macor mount,
was placed inside the chamber before the system was sealed.

4.1.5 Magnetic Coils
To achieve the necessary magnetic fields we use several sets of coils (figure 4.3). Start-
ing at the 2D side of the chamber we firstly have two sets of rectangular quadrupole
(QP) coils aligned along the Y and Z axes. These produce a cylindrically symmetric
QP field. We also have three pairs of shim coils (one per axis) to give us control over
the position of the QP centre. All these coils are wrapped tightly around coil holders
surrounding the glass cell.

Above and below the low pressure science chamber we have machined Perspex
moulds which hold the 3D MOT, quadrupole, and the AC drive coils which induce
the current in the copper ring. This form allows the coils to be held in a low form
factor housing, which increases optical access. The transport coils are clamped to
the outside of the Perspex forms. The aforementioned coils are made from hollow
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Figure 4.3: Side view schematic of the vacuum cells and magnetic coils. Atoms are
initially loaded and cooled in the high pressure chamber containing the 2D MOT.
They then pass through a differential pumping tube to the 3D MOT located in the low
pressure chamber. They are then magnetically transported to the ring region.

copper pipe encased in electrically insulating heat shrink tubing. This allows them to
be water cooled and therefore higher magnetic field gradients are achievable and for
longer durations compared to if no active cooling was used.

The MOT coils are wound two layers deep and produce a measured gradient of
1.57 G/cm/A [8]. The transport coils are five layers deep and produce 0.53 G/cm/A.
The uniformity of these coils is less crucial due to them being further from the chamber.
The QP coils are again two layers deep, and from these we achieve 1.21 G/cm/A.
Finally we mount the AC drive coils orthogonally to the other coils and on axis with
the copper ring. These are wound in a Helmholtz configuration. By placing them as
close to the ring as possible we achieve maximum AC coupling and therefore increased
trap depth.

Surrounding these four sets of coils and the low pressure chamber, we position
shim coils to cancel out stray magnetic fields in all axes. These are wound around an
alloy form and are made from enamelled copper wire. They provide 3.4 G/A, 4.0 G/A,
and 7.6 G/A along X, Y, and Z respectively at both the MOT position and ring position.

4.1.6 ECDL Lasers
The cooling and repump lasers in our system are homebuilt external cavity diode lasers
(ECDLs) in a Littrow configuration [135] with 780 nm laser diodes (figure 4.4). These
have the advantage of being fairly inexpensive, compact, and tunable.

The housing of the laser is machined from a single aluminium block. This main
body, which holds the laser diode and collimation lens, is bolted to a thermoelectric
cooler, allowing for temperature stabilisation. In addition to this there is a front plate
onto which is attached a grating and mirror on a single mount. We attach the front
plate and feedback control mount to the main body via stiff springs. This allows for
the adjustment of the cavity which is needed for feedback and locking the laser.
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Figure 4.4: Diagram of the Strathclyde ECDL design (adapted from [8]).

The ‘external cavity‘ is created between the diode and the diffraction grating (1800
lines/mm). This is positioned at approximately 45◦ to the incident beam with the lines
vertically orientated. As a result the grating diffracts the -1st order beam back towards
the diode while the 0th order is reflected at 90◦ to the incident beam. This 0th order
diffracted beam is then reflected off a mirror to give the output. Without this additional
mirror, as the cavity is modulated the beam angle will change, resulting in misalign-
ments later in the optical setup. By including this mirror, the modulation of the cavity
leads to a small lateral shift of the beam that is favourable over an angular displacement
as it results in less misalignment in the rest of the system.

Control of the lasers is achieved via a laser diode controller (MOGbox DLC-202).
As well as temperature stabilisation, it also modulates the frequency of the laser by
modulating the current to the laser diode, which allows us to lock the laser to the
hyperfine structure of the saturation absorption spectroscopy signal [8]. The controller
allows for fast locking via current feedback and slow locking via the piezoelectric
crystal that controls the cavity length.

4.1.7 Optics Setup
The beam preparation optics are quite complex, so it’s probably best illustrated by
figure 4.5. Both lasers (cooling and repump) are locked via frequency-modulated satu-
ration absorption spectroscopy. The repump laser is locked to the F = 1→ F ′ = 1, 2
crossover then frequency shifted by +77.210 MHz on to resonance with a single pass
AOM. This AOM also acts as a switch and allows us to turn off the repump beam. To
further exclude any leakage light, we also place a homemade shutter at the focus of the
telescope. Our homemade shutters comprise of a Sunex SHT934 mechanical shutter
and a simple electronic control circuit, shown in appendix A.1. After this the beam is

54



4.1. SYSTEM

split into the 2D and 3D paths and coupled into the appropriate optical fibres.
The laser from which the cooling beam is derived acts as the source for our imag-

ing, optical pumping, and push beam. Again, we lock the laser via frequency-modulated
saturated absorption spectroscopy to the F = 2 → F ′ = 1, 3 crossover, but this
time we use a single pass AOM positioned in the spectroscopy beam path to shift
the frequency by +200 MHz. This means that the frequency of the laser output is
-200 MHz from the spectroscopy light. We take the ECDL output and pass it through a
tapered amplifier (New Focus TA-7600). From≈18 mW fibre input power we measure
≈470 mW fibre output power. A PBS after the output cleans the polarisation; it’s from
the reflected port that we derive the readout beam for our contrast interferometer. The
transmitted beam is then further split into the 2D and 3D cooling beams and we use
double pass AOMs (both operating at +200 MHz) to control the power in each beam.
Finally the 2D and 3D cooling beams are mode matched to the repump beams via PBSs
and fibre coupled into the appropriate fibres. In the 3D beam we use a shutter (Uniblitz
LS2T2) at the focus of a telescope to block any stray resonant light from reaching the
science chamber. This is not necessary in the 2D beam because the fibre output is at
the other side of the vacuum system and away from the science chamber.
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Figure 4.5: Setup of the cooling laser (red) and the repump laser (blue) preparation optics. The cooling laser is also used for
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The imaging beam, which drives the F = 2 → F ′ = 3 transition is double passed
through an AOM, goes through a telescope with a homemade shutter at the focus, and
is then fibre coupled into a fibre that takes the light to the main chamber. The optical
pumping beam, which drives the F = 2 → F ′ = 2 transition follows a similar setup
to that of the imaging beam. It is then mode matched to the imaging beam and fibre
coupled. However, for this beam we use a fast Uniblitz LS2T2 shutter at the telescope
focus. The beam cube used to mode match these beams is an NPBS which allows both
beams to have the same linear polarisation upon entering the fibre.

Finally the push beam is generated by double passing an AOM then sent toward
the 2D MOT by propagation in free space. We also use a homemade shutter at the
telescope focus to block any leakage light. An optimum detuning of -9.18 MHz from
the F = 2→ F = 3′ transition and a power of 500 µW is used.

The second half of our table comprises the vacuum chamber with raised bread-
boards for the placement of optics (figure 4.6). Starting at the high pressure chamber
side we construct our 2D MOT optics. Both the vertical and horizontal beams are
expanded through cylindrical lenses which increase the beam waist from ≈12 mm to
≈36 mm in one axis while the other axis remains unchanged. They are then retro-
reflected back along the same beam path. The push beam is aligned using 2 mirrors to
direct it through the differential pumping tube and optimised for maximum 3D MOT
load rate.
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Figure 4.6: Diagram of optics setup around the vacuum chamber. The 2D MOT (left
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denote the focal length in millimetres. Blue waveplates are λ/2 while green waveplates
are λ/4.

Around the low pressure science chamber we firstly have the 3D MOT beams,
which are collimated at the fibre output with a 12 mm waist. The beam is split into 3
pairs of beams via PBSs and λ/2 waveplates, which allows for each pair to be made
counterpropagating. The polarisation of the beams are made circular with the use of
λ/4 waveplates positioned before the cell.

The optical pumping (OP) and imaging light emerge from the same fibre and are
immediately collimated. A PBS splits the beams such that both beams pass through
the 3D MOT and ring sections of the cell, although the OP beam is only used in the 3D
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MOT section while the imaging is only used in the ring section1. The beams are made
circularly polarised by λ/4 waveplates after the PBS.

Optical Dipole Trap: The crossed optical dipole trap (ODT) is derived from a 1070 nm,
20 W Ytterbium fibre laser (IPG YLM-20-LP-SC) running at an output power of 10 W.
We control the power in the beam via a SRS DS345 arbitrary function generator con-
nected to an AOM of which use use the first order (see more details in section 4.3).
A PBS splits the beam into the two beam that form the crossed ODT. We refer to the
beams as the South East (SE) beam and the South West (SW) beam form the direction
that they ‘hit’ the atoms. Both beams are focused to a waist of≈86 µm with f=200 mm
lenses.

As indicated in figure 4.6, the optical power of the SE beam is terminated on a
beam block. Around 90 % of the SW beam power is terminated on a beam block
while 10 % is directed onto a photodiode using a pick-off plate. This is then used in a
feedback loop for power stabilisation via the AOM.

4.1.8 Light-Induced Atomic Desorption
In order to temporarily increase the background pressure of rubidium in the 2D MOT
chamber, we employ a Light-Induced Atomic Desorption (LIAD) scheme [136]. We
apply ultraviolet light to the chamber during the MOT loading stage which causes atom
that are stuck to the inside of the chamber to be “kicked off” (desorbed). This increases
the local pressure of rubidium, which increases the MOT load rate. When the light is
turned off, the atoms can return to the chamber walls and the previous vacuum pressure
is maintained.

We use two 5W LEDs (part no. LZ1-00UA00) with an emission wavelength cen-
tred at 400 nm and powered by 12 V, 275 mA (see appendix A.2 for circuit diagram).
They are toggled on via the main experiment control during the MOT load stage. We
find an increase in load rate of around 50 %.

A heat sink is attached to the LEDs and a thermal cut-off is implemented to trigger
at 70 ◦C. Despite this we find the stable temperature with the LEDs on continuously to
be around 40 ◦C.

1The imaging beam was used in the 3D MOT section for initial diagnostics and quadrupole trap
alignment.
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4.2 Experimental Sequence
The exact experimental sequence will of course depend on what type of experiment we
wish to perform, however the initial stages are common to all.

Initial Stages: The MOT coil currents for the first stages of the experimental sequence
are shown in figure 4.7. We start by loading a MOT of ∼ 5 × 108 atoms. The load
rate is ∼ 5 × 107 atoms per second. The MOT is then compressed for 5 ms during
which we increase the magnetic field gradient from 11 G/cm to 16 G/cm and change
the detuning of the light from -14 MHz to -25 MHz. After 4 ms of optical molasses
we optically pump our atoms into the |F = 2,mF = 2〉 state over a duration of 1.2 ms
by using σ+ light on the |F = 2〉 → |F ′ = 2〉 transition.

The atoms are then loaded into a magnetic quadrupole (QP) trap. We want to have
a rapid turn on of the QP field but the inductance of the coils gives a slow rise time to
the requested current. Therefore we ‘snap’ on the coils by initially requesting a high
current of 330 A then, after just 180 µs we change the requested value to 40 A, which
gives us 63 G/cm. This has the effect of decreasing the rise time of the current in the
coils. After 5 ms, the field is ramped linearly to 100 G/cm over 95 ms.
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Figure 4.7: The requested MOT coil current up to the start of the magnetic transport
stage. Note that the ‘Load MOT’ stage is typically 15 s and the time axis does not vary
linearly. The coils produce 1.67 G/cm/A. The red dashed line during the ‘snap’ stage
indicates the actual coil current

Magnetic Transport: We need to transport the cold atoms to the centre of the ring
region, located 62 mm from the centre of the MOT. To do this we use a magnetic
transport system [8, 137] which utilises dedicated transport coils as well as the MOT
and quadrupole trap coils. The transport coil current is ramped up whilst the MOT coil
current is reduced, thus shifting the centre of the trapping potential in the horizontal
direction. The same is then repeated for the quadrupole trap coils and the transport
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coils to further move the trap centre to the ring region. By using three pairs of coils we
can maintain a constant aspect ratio across the atom cloud [137].

The magnetic transport stage takes 389 ms for the atoms to travel from the MOT
region to the ring region, shown in figure 4.8. In order to avoid the atoms colliding
with ring, we apply a Y bias field for the final 250 ms of the transportation. The atoms
are now displaced from the plane of the ring, and so we relax the bias field and the
atom cloud moves to centre of the ring.

MOT

Copper Ring

Atomic Trajectory

X

Y

Z

Figure 4.8: A top-down view of the trajectory of the atoms during magnetic transport.

The required coil currents for the magnetic transport stage, excluding the relaxation
of the QP to the ring centre, are calculated by LabVIEW for a specified maximum
velocity of 20 cm/s and a maximum acceleration of 4 m/s2, whilst keeping the magnetic
field gradient at 100 G/cm for the entire stage. The coil currents are shown in figure
4.9 and the calculated atomic trajectory is shown in figure 4.10.
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Figure 4.9: Currents applied to the MOT, transport, and quadrupole trap coils during
magnetic transport.
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Figure 4.10: Atomic motion during the magnetic transport stage. Velocity is in the X
direction. The zero in the X direction is defined to be the centre of the MOT and the
zero in Y is the MOT centre and plane of the ring.

RF Evaporation: We perform RF evaporation by using an Agilent 33522A arbitrary
function generator with a peak-to-peak output voltage of 10 V to apply a varying RF
frequency over a total of 4.133 s, with the ‘main’ evaporation stage lasting for 3 s
whilst the atoms are in a quadrupole trap of 206 G/cm. Each of the 4 different RF
ramps shown in figure 4.11 can be calculated from:

f(t) = fbase + (fstart − fbase)× e(−t/τ) , 0 < t < τ ln

(
fstart − fbase

fstop − fbase

)
, (4.1)

where fbase is the frequency that the exponential asymptotically approaches, fstart is
the initial frequency, fstop is the frequency after time t, and τ is the time constant of
the ramp.

The evaporation parameters are experimentally tuned for optimum phase-space
density (see below) and the ‘linear’ regions are generated using fbase = -500 MHz.
We apply an RF field during the magnetic transport stage to decrease the size of the
atom cloud such that it fits into the ring region without colliding with the copper, which
would result in atom loss. After the main evaporation stage, lasting 3 s, we typically
have ≈ 4× 107 atoms at a temperature of ≈35 µK.

The figure of merit in optimising the evaporation trajectory is the phase-space den-
sity, Λ, of the atomic ensemble, which can be calculated by

Λ = λ3
dBn0 , (4.2)

where λdB is the de Broglie wavelength and n0 is the peak density of the atoms. Using
this we can then calculate the efficiency, γ, of our evaporation stages using [114, 138]

γ = − ln (Λ)

ln (N)
, (4.3)
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Figure 4.11: RF evaporation frequency ramp. We start by applying 16 MHz ramped
linearly to 14 MHz as we compress the MOT QP field and perform magnetic transport.
We then linearly ramp the frequency to 15 MHz during the relaxation of the QP bring-
ing the atoms into the centre of the ring. A linear ramp from 15 MHz to 3.75 MHz over
3 s is then applied as our main RF cooling stage. Finally, the frequency is ramped
exponentially to 0.6 MHz in 200 ms as we load the optical dipole trap.

where N is the number of atoms. For RF and optical evaporation we calculate γ to
be 2.6 and 3.1 respectively (figure 4.12). To put this in perspective, using a similar
apparatus, the group of Hadzibabic [114] calculate an efficiency of 2.1 and 3.1 for RF
and optical evaporation respectively.

In order to estimate the phase-space density of the atoms in our trap we need to
determine the number of atoms and the size of the ensemble. However, we cannot
directly determine this from absorption imaging as the high density of the atoms leads
to lensing of the imaging beam and results in a negative measured optical density at
the edges of the cloud. Moreover, the magnetic field of the trapping potential gives the
atoms the wrong quantisation axis for the imaging beam. We therefore release the atom
cloud from the trap and observe the thermal expansion as a function of time. From this
expansion we infer the initial size of the atom cloud as well as the atom number and
temperature.

The data points in figure 4.12 are calculated by measuring the expansion rate of the
atom cloud during free fall. The width of the atom cloud as a function of time is then
plotted and the initial size determined by extrapolation. The final data point in figure
4.12 is measured close to the BEC transition temperature at ∼130 nK. For this data
point only we infer initial cloud size from the measured trap frequency (figure 4.15).
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Figure 4.12: Temperature and phase-space density as a function of atom number dur-
ing evaporation stages. Efficiency of the evaporation stages calculated using equation
4.3.

Loading the Optical Dipole Trap: After the main RF evaporation stage, we load the
atoms into the crossed optical dipole trap (ODT). Our method is partly based on the
scheme of Lin et al. [115] and Hung et al. [138]. The beams are aligned slightly (∼ a
beam waist) below the QP centre and the magnetic field gradient is lowered such that
the atoms are adiabatically transferred into the hybrid trap. The vertical alignment is
determined by optimising the position of a single beam for maximum atom number,
then aligning the other beam to the same height. The loading stage takes 200 ms
during which the QP field is ramped from 206 G/cm to 15 G/cm. The final magnetic
field gradient effectively cancels the gravitational field such that the atoms are levitated
(see appendix A.3). To minimise magnetically induced atomic motion, the magnetic
field gradient is ramped in a s-curve of the form

y(t) =
ymax

1 + exp[−(t− t0)]
, (4.4)

where ymax is the maximum value of the curve (the new magnetic field gradient), and
t0 is the centre of the curve (half the duration of the ramp).

At the end of this stage we can release the magnetic trap completely and image the
number of atoms in the crossed ODT region, which we find to be ≈6×106. Note that
in the complete sequence there will be more atoms than this contributing to the optical
evaporation as the QP is held on to create a hybrid trap. The approximate phase-space
density and temperature of the atoms at this point is 3×10−4 and 3.5 µK respectively.

Optical Evaporation: The atoms are now held in a hybrid trap in which we perform
evaporative cooling to produce a BEC. Each beam has an initial power of 2.6 W fo-
cused to a waist of ≈86 µm with a crossing angle of 128◦, giving an optical trap depth
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of ≈15 µK. Using an SRS DS345 arbitrary function generator, the dipole power is
ramped exponentially to 0.26 W over 4 s, with a base value of 0.15 W (figure 4.13),
and follows the form of equation 4.1. We also reduce the B-field gradient to 7.5 G/cm
in an s-curve ramp in the first 100 ms. This is similar to the scheme in [115]. By reduc-
ing the magnetic field the trap is effectively tilted in the Z axis such that evaporation
surface is at the bottom and the hot atoms are poured out.
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Figure 4.13: Dipole evaporation trajectory. The power in each beam is held at 2.6 W
for 200 ms during the loading stage. The power is ramped according to equation 4.1 to
final power of 0.26 W during the evaporation and is held at the final power for 300 ms.
Zero in defined as the start of the dipole evaporation stage.

Half way through the power ramp we ramp up a large vertical magnetic shim which
moves the QP centre upwards to ≈2.7 cm above the ODT centre. The reason for this
is that we typically apply a levitation field later in the sequence, which requires the QP
centre to be high such that the atoms see a magnetic field gradient with minimal curva-
ture. By moving the QP centre at this point before the atoms condense, we minimise
sloshing motion of the BEC. In addition, we no longer require the extra confinement
that we did during the dipole trap loading stage and the first 2 s of dipole evaporation.

We measure the trap frequency of the hybrid magneto-optical trap by loading it
with ultra-cold thermal atoms and inducing a sloshing motion using a magnetic kick
via the displacement of the quadrupole trap. The vertical position of the atoms after
some time of flight is then plotted against ODT duration. To these data we fit a sinusoid
to extract the frequency and an exponential decay to account for the anharmonicity of
the trapping potential. An example of such a measurement is shown in figure 4.14.
This is repeated multiple times to obtain the data in figure 4.15. A power relationship
of y = A × PB is also fitted to the data, where P is the optical power per beam. The
fitted parameters have a value of A = 140 and B = 0.57. In a purely optical trapping
potential we would expect B = 0.5 as the trap frequency scales as the square root
of optical power [110], however in this case we are using a hybrid trap and the extra
trapping potential of the magnetic field gradient alters this scaling.
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Figure 4.14: The hybrid trap is held with an optical power of 0.4 W per beam and a
magnetic field gradient of 7.5 G/cm. A magnetic kick is used to induce sloshing in the
vertical direction. Position as a function of time is used to measure the trap frequency
for the given dipole power.
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Figure 4.15: Vertical trap frequency of the hybrid trap as a function of beam power.
The magnetic field gradient is 7.5 G/cm for all data points. A power relationship of
y = A× PB is fitted to the data, where P is the optical power per beam, and A = 140
and B = 0.57 are constants .

The data plotted in figure 4.15 are the vertical (radial) trap frequencies. Due to
the geometry of the crossed ODT, the frequencies in the other axes differ from these
values but an estimate can be obtained from a simulation of the trapping potential.

66



4.2. EXPERIMENTAL SEQUENCE

This is done in MATLAB by combining the optical and magnetic potentials (equations
2.12 and 2.7). The lowest beam power of 0.4 W returns a trap frequency of 76 Hz,
from which we calculate an X and Y trap frequency of 35 Hz and 74 Hz respectively.
Trap frequencies for lower powers are difficult to measure due to the slow oscillation
frequency, but can be inferred from the fit to the data in figure 4.15.

After 4 s of evaporation we hold the dipole power constant for 306.5 ms whilst
ramping the QP field in an s-curve to 14.3 G/cm in 300 ms which we find experimen-
tally to increase the BEC fraction of the remaining atoms2.
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Figure 4.16: QP coil current during last stages of creating a BEC. All ramps are S-
curves to maximise adiabacity.

We are now left with a BEC of ≈105 atoms with a BEC fraction of &80 %. From
here the exact sequence varies depending on what experiment we are performing and
therefore details can be found in the specific chapters.

BEC Size: The size of the BEC in a harmonic trap can be quantified by the Thomas-
Fermi radius. The energy of a quantum harmonic oscillator can be written as

U(r) =
1

2
mr2

TFω
2 = kBT , (4.5)

where m is the mass of the atom, rTF is the Thomas-Fermi radius, ω is the trap fre-
quency, kB is the Boltzmann constant and T is temperature. By rearranging we obtain

rTF =

√
kBT
1
2
mω

. (4.6)

The typical final evaporation power is 0.26 W, which gives trap frequencies of 28 Hz,
60 Hz, and 66 Hz in the X, Y, and Z axes respectively and the Thomas-Fermi radii are

2The extra 6.5 ms is to account for opening time of the interferometry shutters
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calculated to be 13 µm, 6 µm, and 5 µm for a transition temperature of 172 nK (using
equation 2.29).

When the BEC is released from the trapping potential it expands due to inter-atomic
interactions. An estimation of the expansion of our condensate of 1×105 atoms can
be obtained by approximating the trapping potential to a cylinder with an axial trap
frequency of 28 Hz and a radial trap frequency of 63 Hz. Equation 103 of [45] gives

d2

dτ 2
b⊥ =

1

b3
⊥bz

and
d2

dτ 2
bz =

λ2

b2
⊥b

2
z

, (4.7)

where τ = ω⊥t, ω⊥ is radial trap frequency, t is time, and b⊥ and bz are radial and
axial scaling parameters respectively that define the trap dimensions. This is solved
numerically in MATLAB and figure 4.17 is produced. This shows that the rate of
expansion initially varies then becomes constant for long durations. When performing
our atom interferometer experiments we typically allow 2 ms of free expansion before
applying the initial beam splitter pulse. This duration is chosen as ideally the BEC
would have a constant expansion rate but if we wait for too long the atoms can fall out
of the interrogation region (if no levitation field is applied).
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Figure 4.17: Expansion of a BEC of 1×105 atoms created in an axially symmetric trap-
ping potential with radial and axial trap frequencies of 28 Hz and 63 Hz respectively.
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4.3 Interferometry Setup

4.3.1 Interferometry Laser Setup
The interferometer light (red beam of figure 4.18) that forms our beam splitter and
mirror pulses is produced by an external cavity diode laser (ECDL) of 780 nm wave-
length (figure 4.4). It is locked to the F = 2 → F ′ = 2, 3 crossover 85Rb repump
transition using saturation absorption spectroscopy. When we apply the interferom-
eter light to the atoms we typically apply a 20 G bias field which gives the laser a
detuning of 4.18 GHz from the F = 2 → F ′ = 2 transition and 3.92 GHz from the
F = 2→ F ′ = 3 transition of 87Rb.

The beam then passes through an acousto-optic modulator (AOM) operating at
84 MHz driven by a homemade circuit (appendix A.4). This circuit uses an RF mixer
(Minicircuits ZP-3LH-S+) and an RF source (Keysight N5138B) to convert a DC input
voltage to a change in amplitude of the 84 MHz output, which allows us control of
the power in the -1st order diffracted beam and forms the basis of our interferometer
beams. The control mechanism will be discussed further in the following section 4.3.2.

The frequency shifted beam is then split using a polarising beam-splitter (PBS)
with the power balance controlled by the λ/2 waveplate beforehand. We target an
even power balance in the science chamber, but each beam has different power loss
mechanisms along their path lengths (eg. the NPBS in figure 4.18) and therefore the
power balance after the PBS is an experimentally tuned parameter. Each beam is then
coupled into separate single mode optical fibres.

Bragg Laser
I = 107 mA

Rb cell

Sat. Spec. 
photodiode

λ/2

λ/2λ/4 λ/2

λ/2

λ/2

Shutter

Shutter

f = 250 mm

f = 250 mm

C. I. readout beam

Interferometer 
Beam A

Interferometer 
Beam B

NPBS

Figure 4.18: Schematic of interferometer laser setup. The red beam indicates the
beams used for splitting and reflection pulses. The blue beam indicates the contrast
interferometer probe beam which is drawn from the MOT cooling system and is mode
matched into fibre A along with the interferometer beam A.

The aim is to spatially overlap the interferometer beams with the dipole trapping
beams. This means that when we create a BEC, the interferometer beams are already
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Figure 4.19: GaussianBeam program used in mode matching the interferometry beams
to the dipole trapping beams. This example shows the predicted profile of beam A.

aligned with the atoms, and it also ensures that the interferometer beams pass through
the copper ring. In addition, we want the focus of the interferometer beams to be at the
position of the atoms such that the wavevectors of the beams are parallel. To do this
we can use ABDC matrices to model the propagation of the beam (see eg. [139]), and
do so via a freeware program called ‘GaussianBeam’ [140].

In order to model the interferometer beams, we first needed to profile the output
of the optical fibres. The fibre of beam A is a Thorlabs PM306341 and the fibre of
beam B is an Oz Optics PMJ-3A3A-780 and we use fibre collimation lenses at both
fibre outputs. Profiling was done primarily with a CCD camera, providing the beam
waist was significantly larger than the pixel size of 5.5 µm. To measure the small beam
waist (≈53 µm) at the focus of the telescope, a knife edge measurement was used. A
knife edge measurement was also used to confirm some of the CCD measurements to
ensure accuracy.

From the beam profiling measurements we determine an M2 value of 1.05 for both
beams A and B [141]. The final lenses, of focal lengths f=200 mm, in the interferome-
ter beam paths have a fixed position as they focus the dipole trapping beam. Therefore
we use a telescope comprising two f=100 mm lenses in each interferometer beam to
set the waist size and position, as well as a long path length of ≈3 m.

The beam and lens parameters were used with GaussianBeam to determine the
telescope lens position and path length for optimal spatial overlap with the dipole trap-
ping beams at the position of the atoms (figure 4.19). The waist of the interferometer
beams at the atoms is predicted to be 95 µm. To overlap the interferometer beams with
the dipole trapping beam a PBS was used in each arm (see figure 4.6). These are trans-
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Figure 4.20: Top view cross section diagram of the copper ring and interferometer
beams. Beam splitter and mirror pulses are applied with beams A and B (red). The
contrast interferometer probe beam (blue) is applied via beam A only, and the Bragg
reflection causes the signal to emerge along the path of beam B.

missive at 1070 nm and allow the dipole trap beam to pass through but are reflective to
the 780 nm interferometer beams.

The interferometer beams are vertically polarised as they reach the science cham-
ber. However the angle of incidence on the chamber is different for beams A and B
(figure 4.20), therefore the fractional loss due to Fresnel reflections is different for each
beam. Using a duplicate cell we measure a transmission of 96 % for beam A and 85 %
for beam B. This difference in transmission is compensated for by the tuning the wave-
plate before the PBS that splits the single interferometer beam to balance the powers
inside the chamber (figure 4.18).

We note that these measured transmission values differ from the theoretical values
for beam A and B, which we calculate to be 95% and 78% respectively, assuming zero
reflection from the air-glass interface due to the anti-reflection coating and a refractive
index of 1.51 for the borosilicate glass. However, this is not of major concern as the
optical lattice formed during our interferometer pulses does not require exact power
balance.

4.3.2 Optical Control of Interferometer Sequence
Most of the experiment timing is done by the computer with a time-step of 20 µs,
however this resolution is not sufficient for some of the stages. Therefore we use
arbitrary function generators for stages requiring higher resolution. This includes the
interferometer pulses sequences and timings.

The intensity control of the interferometer beams is crucial in our experiment. We
use LabVIEW to trigger an SRS DS535 which in turn triggers an SRS DS345 signal
generator which controls the voltage to an AOM driver circuit which in turn controls
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Figure 4.21: Schematic of optical control system. Red denotes pulse sequence path,
blue denotes trigger signals, and green denotes RF signal path. The pulse sequence
is generated by LabVIEW then sent to the arbitrary function generator (SRS DS345).
The SRS DG535 timing box is triggered by the LabVIEW experiment control, and after
opening the shutter it triggers the pulse sequence to be sent to the AOM via the AOM
driver. The ‘step-down’ box reduces the voltage which gives us an effective increase
in bit depth when specifying pulse amplitudes. The RF switch controls the path of the
RF signal and effectively turns off the interferometer AOM and turns on the contrast
interferometer probe AOM such that the remaining pulse sequence goes to this AOM.

the AOM. The SRS DG535 pulse delay generator, when triggered firstly opens the
shutters that block the interferometer beams. Secondly it triggers the SRS DG345
arbitrary function generator that outputs a time varying voltage to drive the AOM via
the driver circuit (appendix A.4). Lastly, it controls the timing of an RF switch used in
contrast interferometry (see chapter 6). A schematic of this is given in figure 4.21.

We use a custom LabVIEW program to generate the pulse sequences required for
interferometry (figure 4.22). This includes single and triple square pulses, and Black-
man pulses. We can vary the timing and amplitudes of each pulse and can vary the
duration between pulses. The SRS DS345 arbitrary function generator, to which we
write our pulse train, has a maximum sampling frequency of 40 MHz and a maximum
sample number of 16,299. For our high efficiency splitting pulses we use a resolution
of 0.1 µs and therefore use a sampling frequency of 10 MHz. For full interferometer se-
quences, specifically 3-arm interferometers, we find a resolution of 1 µs is sufficient to
give a good splitting pulse, and with a sampling frequency of 1 MHz, we can program
longer interferometer sequences.
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Figure 4.22: LabVIEW program GUI for writing interferometer pulses sequences to
the Stanford Research Systems DS345 arbitrary function generator

Due to the finite bit-depth of the SRS DG345, it has a voltage resolution of 10 mV
across the±5 V range. Since we operate the AOM at low voltages we don’t require the
full voltage range and it would be advantageous to have a higher voltage resolution,
particularly for our highly tuned pulses. Therefore we use a potential divider to reduce
the SRS voltage by a factor of 0.031 for the interferometer pules and 0.062 for the
contrast interferometer probe beam, which gives us an effective voltage resolution of
0.31 mV and 0.62 mV respectively.

Within the AOM driver circuit there is a double-balanced mixer that allows for the
amplitude control of the 84 MHz output via a DC control voltage. In order to ensure
that when we request zero amplitude (0 V from the SRS DG345) we do not have any
residual 84 MHz signal coming from the AOM driver, we use a potentiometer to trim
the output to zero by applying a small offset voltage to the input.

We introduce a ‘scaling factor’ which is a calibration between voltage output at the
SRS and the optical lattice depth at the atoms. The AOM response is parabolic in the
low power regime that we operate (figure 4.23) and therefore the scaling factor

η =
V0

V 2
AOM

, (4.8)

where V0 is the lattice depth and VAOM is the voltage to the AOM driver. Note that the
voltage offset has already been accounted for. The advantage of this system is that we
can specify pulse amplitudes in units of recoil energies, Er, which is a convenient unit
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4.3. INTERFEROMETRY SETUP

of lattice depth. In order to calibrate the scaling factor we use a single square pulse
and perform a sweep of either pulse amplitude (in Volts) or pulse duration and fit the
model outlined in section 3.4 to the data [9]. The lattice depth calibration is outlined
further in section 5.1.1 along with example data.
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Figure 4.23: The response curve of the AOM used for the control of the interferometer
beams. Diffracted power was measured on a photodiode (Thorlabs PDA8A/M), and a
the curve is a fitted parabola.

Once we have generated our pulse sequence it is sent to the SRS DS345. The volt-
age output of this box is held at the starting value of the pulse sequence until triggered,
at which point it outputs the entire sequence. The output is fed into a homemade AOM
driver circuit (appendix A.4) which utilises an RF mixer (Minicircuits ZP-3LH-S+)
and an RF source (Keysight N5138B) to convert the DC voltage to a change in am-
plitude of the 84 MHz output signal, which in turn gives a modulation in the optical
power of the -1st diffracted order.

Figure 4.21 shows a single RF source driving both AOMs. This is because, in a
previous version of our setup we used one AOM per interferometer beam and a single
RF source allowed both AOMs to be phase locked. In the latest setup we found no
reason to connect another RF source.

4.3.3 Contrast Interferometer Probe Beam
A readout beam is required to probe our matter-wave grating to perform contrast in-
terferometry. We derive this from the reject port of a PBS in our MOT cooling beam
system (figure 4.5). This PBS is at the output of the TA and is used to clean the
polarisation. The probe beam is then passed through an AOM operating at 84 MHz
and the -1st diffracted order is then mode matched to interferometer beam ‘A’ before
the optical fibre input (figure 4.18). Given that we typically apply a 20 G bias field
during our interferometer sequence, the detunings of this probe beam are 238 MHz
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4.3. INTERFEROMETRY SETUP

from the F = 2,mF = 2 → F ′ = 2,mF ′ = 2 transition and 505 MHz from the
F = 2,mF = 2→ F ′ = 3,mF ′ = 2 transition.

We use the same LabVIEW program to control the readout AOM by using an RF
switch to ‘redirect’ the 84 MHz RF signal to the readout AOM instead of the AOM
used to control the splitting (and reflection) beams. The timing of the RF switch is
controlled by the SRS DG535 timing box and is set to occur between the reflection
and readout pulses (figure 4.21).

4.3.4 Low Light Level Detection
In order to perform contrast interferometry, we need to detect the Bragg reflected light
from the BEC which is very low in power (<100 pW). We first used an avalanche
photodiode (APD) to obtain a signal, and more recently have used a single photon
counting module (SPCM). Data from both methods are reported in chapter 6. Another
way to detect our signal would be to use a photomultiplier tube (PMT) [37, 142] which
gives a high gain and bandwidth, however these are more expensive and are easily
damaged.

The nature of the contrast interferometer scheme is such that if the matter wave
grating is probed with beam A, the signal will be mode matched along the path of beam
B (see figure 4.20). Therefore alignment of our APD (Hamamatsu C12703-01) is fairly
straight forward. A PBS suited for 780 nm light is used to separate the signal beam
from the optical dipole trap beam at 1070 nm; the 780 nm light is reflected whilst the
1070 nm is transmitted. To further reduce any stray 1070 nm light, a bandpass filter was
placed in front of the APD. An aperture was placed in the beam to help eliminate stray
light. The probe beam produced a reflection off the outer surface science chamber. This
was approximately collinear with the signal beam but the aperture helped to reduce this
offset signal as seen by the APD.

APD Module

f = 150 mm
Dipole trapping

beam

Bandpass 
filter

Figure 4.24: Schematic of APD signal acquisition setup. The PBS separates the signal
from the optical dipole trapping beam. The aperture reduces the signal from stray light
on the APD. A bandpass filter further reduces any light from the dipole trapping beam.

As will be outlined in section 6.2, the APD system has some limiting factors,
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4.3. INTERFEROMETRY SETUP

mainly the bandwidth of 100 kHz and the low signal-to-noise ratio. Therefore, a
single-photon counting module (SPCM) (Excelitas SPCM-AQRH-14-FC) was used
as an upgrade to the APD as it has increased sensitivity as well as the ability to detect
higher frequency signals. As shown in figure 4.25 the optics setup for this is slightly
more complex than that of the APD. As before, a PBS and bandpass filter are used
to separate the signal from the optical dipole trap beam. Due to the sensitivity of the
SPCM, a protection shutter is kept closed until the probe beam is applied and we ob-
tain our signal. Another protection shutter is used in beam B. This closes during the
C. I. readout process and stops leakage light from the interferometry AOM travelling
though beam path B and into the SPCM. Both these shutters are placed at a focus of the
beams for fast switching times. We use Uniblitz LS2T2 shutters which give switching
times of ≈30 µs. The SPCM has a multimode fibre input to which we couple ≈80 %
of the signal.

Dipole trapping
beam

f = 50 mm

Uniblitz 
LS2T2 shutter

Bandpass filter

APD Module

Figure 4.25: Schematic of SPCM signal acquisition setup. We remove the APD and
replace it with an SPCM system. The beam is focused through a shutter to enable fast
switching times. A bandpass filter further reduces any light from the dipole trapping
beam.
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Chapter 5

Interferometry in Free Space

Optical interferometers are widely used for precision measurements of rotation, dis-
tance, and recently gravitational waves [143]. Just as these systems exploit the wave
nature of light, atom interferometers use the wave nature of matter to make measure-
ments. In order to create the analogue of beam splitters and mirrors, pulses of light are
used to coherently control the atoms. These pulses allow the atomic wavefunction to be
split into different momentum states which then track out different spatial paths, thus
making the interferometer sensitive to spatial variations in external fields and inertial
forces.

In this chapter we demonstrate the coherent control of the momentum states of a
BEC, and use these techniques to construct free space atom interferometers.

Φ

Φ

Φ

Φ

Φ = 00 Φ = 00

Φ = 1800 Φ = 1800

Figure 5.1: Analogy between an optical and an atom interferometer. Just as an optical
interferometer (left) can return information about a phase difference Φ introduced in
one arm, so can an atom interferometer (right). This can be done by observing the
relative momentum state populations after the closing pulse.
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5.1. OPTICAL TOOLBOX

5.1 Optical Toolbox
All the splitting and mirror pulses are crafted using a standing wave of light that creates
an optical lattice at the atoms. This then causes diffraction of the BEC into varying
momentum states (see chapter 3). Figure 5.2 shows the resultant momentum states if a
single strong pulse is applied. This is one of our first beam splitters and the uncalibrated
pulse excited many modes and is somewhat uncontrolled. However, it would be good
to be able to closely control which momentum states are populated and the relative
populations of the states in order to perform interferometry. By careful application
of the optical lattice we can achieve the coherent control of the diffraction and target
specific momentum states. In this section we explain and demonstrate this control.

Photon recoil [ħk]
−20 −10 0 10 20

−28ħk +28ħk

Figure 5.2: An early example of an attempt at splitting the BEC. A single intense pulse
is used to Bragg diffract the BEC into many momentum states up to 28~k. Note that the
apparent ring shape of the different momentum states is due to lensing of the imaging
light as a result of the high atomic density.

5.1.1 Lattice Depth Calibration
The optical lattice is applied in pulses and a convenient unit of amplitude is recoil
energies Er. This is a measure of the optical lattice potential the two interferometer
beams make. By using this metric, the pulse parameters are directly transferable to
other atomic species.

To generate the optical pulses needed to manipulate the atoms, we use an AOM
driven by an arbitrary function generator. Since the response of the AOM is parabolic
in the low voltage regime that we operate (figure 4.23), it is possible to convert volts
into lattice depth via equation 4.8.

To calibrate this scaling factor we apply a single square pulse of 20 µs duration
and vary the amplitude. The absorption images of the resultant 0~k, ±2~k and ±4~k
modes then give us the fractional populations1. We then plot the fractional population
as a function of pulse amplitude squared (since the AOM response is squared). Since
we also know the predicted mode evolution from our model discussed in section 3.4,
we rescale voltage to trap depth and extract the scaling factor, η, from the fitted curve.
An example of such a data run is shown in figure 5.3. With the known calibration

1The analysis code actually includes up to ±12~k modes
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Figure 5.3: An example of how we calibrate the scaling between AOM driver voltage
and lattice depth. A square pulse of 20 µs duration and varying amplitude is applied.
Equation 3.11 is fitted to the data and the pulse voltage is rescaled to lattice depth.
From this we extract the fitted scaling parameter η.

between voltage and lattice depth we can then input all our pulse parameters in terms
of lattice depth.

We find that the optical power of the interferometer beams can drift day-to-day, and
therefore performing these scaling factor measurements are more reliable than using a
look-up table of measured optical powers for given voltages. Moreover, this method
uses the atoms as the diagnostic and as such it is a more direct measurement of lattice
depth than a look-up table of inferred values calculated from measured powers.

5.1.2 First Order Atomic Beam Splitters
In optics, a beam splitter would split the incoming light into 2 arms. The atomic ana-
logue is what we demonstrate here, where we perform the operation |0~k〉 → | ± 2~k〉.
We refer to this as our ±2~k splitter. Using our model (see section 3.4) we predict an
optimum pulse to give us a high efficiency split [9]. This composite pulse is of the
form shown in figure 5.4 with values τ1 = 26.6 µs, A1 = 6.07 Er, τ2 = 45.6 µs and A2 =
0.52 Er. We then experimentally test the accuracy of our prediction.
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Figure 5.4: Composite splitting pulse.

We create a BEC and following release from the dipole trap we allow 2 ms for
mean field expansion during which we apply a magnetic levitation field. We then
apply the splitting pulses with the levitation field on. After a further 64 ms time of
flight to allow the different momentum states to spatially separate, we use absorption
imaging to image the atoms (inset of figure 5.5). During the first 60 ms we apply a
levitation field to cancel out the force of gravity and during the final 4 ms we align the
magnetic field for absorption imaging. We then create an integrated line profile and
fit Thomas-Fermi profiles to the |0,±2~k〉 states plus a Gaussian to the original BEC
position to account for thermal atoms that have not been split (figure 5.5). The width
of the Gaussian, σ, is fixed and is determined from A.5

σ(t) =

√
2kBT

m
t+ σ0, (5.1)

where the temperature, T , is an estimated 50 nK, m is the atomic mass, t is the expan-
sion time, and the initial width, σ0, is the Thomas-Fermi radius which we estimate to be
15 µm. From the fitted profile we extract the fractional population of each momentum
state.

Figure 5.5 shows the final momentum state populations and demonstrates our abil-
ity to perform a highly efficient ±2~k splitter. These data return a split efficiency of
99.97±0.03 %.
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Figure 5.5: Integrated profile of absorption image of BEC after ±2~k splitting pulse.
From the fitted Thomas-Fermi profiles, we infer the split efficiency of 99.97 ± 0.03 %.
Inset: absorption image of BEC after ±2~k splitting pulse.

To further test the accuracy of the model, we apply the above ±2~k splitting pulse
but cut it short such that we can track the evolution of the momentum states through
the pulse. These data are shown in figure 5.6 where the lines are the predicted state
evolutions for the given pulse parameters. We emphasise that the curves are not fitted
to the data.
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Figure 5.6: Evolution of momentum states through a ±2~k splitting pulse . The curves
are the predicted state evolutions generated by numerical simulation for the optimum
pulses parameters. Shading around these lines are the 4% error bands which we es-
timate to be the level of error in our experiment. The black dashed line indicates the
timing and amplitude of the splitting pulse.

5.1.3 Second Order Atomic Beam Splitters
We also investigate a second order beam splitter. Higher order momentum states of-
fer increased sensitivity to the photon recoil frequency ωr which is attractive when
measuring the fine-structure constant. Since the scaling goes as k2, an interferometer
using the ±4~k momentum states offers 4x the sensitivity of an interferometer using
the ±2~k states.

The simulated pulse parameters of τ1 = 53.3 µs, A1 = 23.7 Er, τ2 = 39.0 µs and A2

= 3.59 Er predict an efficiency of 99.30 %. This is tested in figure 5.7 using the same
method as section 5.1.2. The width of the central Gaussian is fixed, and determined
using equation 5.1. From these data we obtain a split efficiency of 88±4 %.
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Figure 5.7: Integrated profile of absorption image of BEC after ±4~k splitting pulse.
From the fitted Thomas-Fermi profiles, we infer the split efficiency of 88 ± 4 %.

We also track the mode populations through the optimised pulse and show the data
in figure 5.8. This shows an excellent agreement with the model despite the highly
non-trivial evolution of the modes. Again, we emphasise that the curves are not fitted
to the data.
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Figure 5.8: Evolution of momentum states through a ±4~k splitting pulse. The final
data point gives a splitting efficiency of 88±4 %. The curves are the predicted state
evolutions generated by numerical simulation for the optimum pulses parameters. That
shading around these lines are the 4% error bands which we estimate to be the level of
error in our experiment. The black dashed line indicates the timing and amplitude of
the splitting pulse.

The dynamics of this pulse are a lot faster than the±2~k splitting pulse. This is due
to the higher intensity pulses and therefore deeper optical lattice potential. As a result,
higher order pulses are more susceptible to noise in the system. The main source of
noise in our system is laser intensity noise at the atoms.

5.1.4 Atomic Mirrors
Having demonstrated efficient beam splitters, it is now necessary to perform ‘mirror’
pulses to reverse the momentum states in order to close the interferometer. Characteris-
ing our mirror pulses is more difficult than characterising our splitting pulses. The rea-
son for this is that we would typically perform a reflection after ≈1 ms, at which time
the different momentum states aren’t spatially separated much (≈10 µm for ±2~k).
If we then image the atoms we cannot distinguish which atoms were reflected from
+2~k to -2~k and which atoms were always in the -2~k state. A workaround for this
is to increase the time between the split and reflection pules, and we find that we can
distinguish the reflected and non-reflected atoms after 4.5 ms. An example of an in-
tegrated line profile fit to an absorption image is shown in figure 5.9. However this
introduces some issues, including whether or not the atoms remain in the centre of the
interferometer beams, which have a waist of 95 µm.
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Figure 5.9: Measurement of reflection efficiency. We Split the BEC such that there is
a significant fraction of the atoms in the ±2~k state then after 4.5 ms we perform a
mirror pulse. From the Gaussian fits to the reflected and unreflected atoms we infer
reflection efficiency. Note: the fit to the central mode is unused in the calculation.

We nonetheless attempt to characterise the mirror pulse, and the results show rea-
sonably good agreement with our model. We create our BEC and after 2 ms of free
expansion we apply a pulse to excite the ±2~k modes. After 4.5 ms we apply apply
a reflection pulse, then image the atoms after some time of flight. A levitation field
is applied from the creation of the BEC until the end of the pulses which cancels the
force of gravity thus keeping the atoms in the interferometer beam region. We apply
our mirror pulse in the form of a Blackman (see section 3.4) pulse, and vary either du-
ration or amplitude. Integrated profiles if the absorption images (eg. figure 5.9) allow
us to determine the fractional population of each state. We then fit our model to these
data with pulse amplitude as the fit parameter.

The reflection parameters, duration and amplitude, can be pictured as lying on a
two dimensional parameter space. To test the model we perform parameter scans in
the form of straight lines through the parameter space, varying either pulse duration
or amplitude. It is not necessary to scan through the optimum point to test the model,
and therefore in figure 5.10 we apply a mirror pulse with an approximate amplitude
of 12.2 Er (the predicted optimum). The duration of this pulse is then scanned and
the mode populations plotted. Since we know the pulse duration for each point, we
fit our model with pulse amplitude as the free parameter and in this instance we fit an
amplitude of 13.03±0.06 Er.
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Figure 5.10: We excite ±2~k momentum states of the BEC then apply a Blackman
pulse of approximately 12.2 Er in amplitude with variable duration after 4.5 ms. We
then fit our model to the data with the pulse amplitude as the free parameter. The fitted
pulse amplitude is 13.03±0.06 Er.

Figure 5.11 shows data from a similar experiment but this time the pulse amplitude
is scanned. We apply pulses of the predicted optimum pulse duration of 164 µs. The
pulse amplitude, with a fixed estimate of the scaling factor, is then varied and mode
populations determined. By fitting our model we effectively determine the actual scal-
ing factor, which in this instance we determine to be η=34.83±0.18. This method is
essentially the same as the lattice depth calibration method outlined in section 5.1.1.
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Figure 5.11: We split the BEC into the ±2~k momentum states then apply a Blackman
pulse of 164 µs in duration and vary the pulse amplitude with an approximate, but
fixed, voltage to lattice scaling factor. We then fit the data with our model with the
scaling factor as a free parameter. The fit returns a scaling factor of 34.83±0.18. The
fitting can be regarded as the scaling of the x axis to get the best fit.
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Another method of estimating the efficiency of our mirror pulse is to perform a
full 3-arm interferometer sequence and infer efficiency from the contrast of the output
signal. The BEC is split into a 25%, 50%, 25% superposition of the −2~k, 0~k, and
+2~k modes. After T1=700 µs, the | ± 2~k〉 are reflected using a mirror pulse and
the splitting pulse is then applied to close the interferometer. The time at which the
closing pulse is applied is varied and the resultant populations plotted in figure 5.12.
A perfect 3-arm interferometer, with a perfect reflection, would output a maximum
fractional population in the |0~k〉 of 1, and a maximum contrast of 100%. Therefore
we attribute any less than this to a reduction in reflection efficiency. From these data,
a lower limit on the reflection efficiency is determined to be 86%, which is calculated
from the maximum - minimum of the data.

450 500 550 600 650 700
0

0.2

0.4

0.6

0.8

1

Interferometer reflect → close time [µs]

F
ra

ct
io

na
l p

op
ul

at
io

n 
in

 z
er

o 
m

om
en

tu
m

 s
ta

te

Figure 5.12: We perform a 3-arm interferometer pulse sequence using the predicted
optimum mirror pulse with an ’arm length’ of T1=700 µs. We place a lower limit on
our reflection efficiency of 86 % by maximum - minimum of the data

5.1.5 Efficiency and Limitations
An important consideration regarding high efficiency splitting, as well as full interfer-
ometer sequences, is the wavevectors of the laser beams creating the optical lattice.
Ideally the wavevectors across the beam waist would be parallel; the phase fronts at
the position of the atoms would be parallel and orthogonal to the direction of beam
propagation. This occurs in a collimated beam (approximately) or at a focus. It is at a
focus that we perform our atom optics.

In our model we assume that the atoms are at the focus such that the wavevectors
are parallel. Experimentally this is difficult to prove, and a lot of effort has been made
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to get the focus position as close as possible to the atoms. However, even if the focus
was in the exact position, the angle of the interferometry beams means that across the
BEC the wavevectors change slightly. Since the beams are angled at 26◦ to the X axis,
a position change in the Y axis of say 10 µm is equivalent to moving out of the focal
plane of the interferometer beams by 4.4 µm.

5.1.6 Higher Order Splitting
We have demonstrated high efficiency splitting pulses for | ± 2~k〉 and | ± 4~k〉 mo-
mentum states. In principle, pulses that can efficiently split a BEC into higher orders is
also possible. This, however, would require excellent laser intensity control and pulse
timing as well as potentially more complex pulse shapes. In addition very well defined
wavevectors are also needed.

In our case the main limiting factor is laser intensity, for which the r.m.s. variation
is measured to be 0.4% with a range of 2%. To put things in perspective, we can still
achieve a 98% efficient split into the |±2~k〉with a±10% lattice depth variation, while
for the | ± 4~k〉 split a variation of only 1% is acceptable. A | ± 6~k〉 would require
lattice depth control of ±0.5%, and this becomes even smaller for higher orders. Note
that we make some assumptions here such as perfect pulse timings and arbitrarily well
defined wavevectors. We also do not include mean field and density effects, which are
currently under investigation.

We are optimistic that with better laser control and more constraints on system
parameters, it would be possible to demonstrate higher order splitting and arbitrary
state population, although this would likely require more complex pulse shapes. For
example, we predict an effieciency of ∼60% if we target the | ± 6~k〉 state using a
pulse comprising three squares such as those demonstrated in this chapter. By compar-
ison, our simulation predicts an efficiency of &90% if we use a pulse comprising five
squares.
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5.2 Two-Arm Interferometer
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Figure 5.13: Two arm interferometer scheme.

As shown in section 5.1, we can split the BEC into |±2~k〉 with very high efficiency.
We have also demonstrated mirror pulses to reflect the atoms. This allows us to perform
a simple Mach-Zehnder type interferometer (figure 5.13). In a perfect experiment, free
from noise, the recombining pulse would cause all the atoms to return to the |0~k〉
state (see section 3.5). Indeed, in figure 5.14 we show that this is the case, albeit with
reduced efficiency due to experimental noise and reflection pulses that are less than
100% efficient.

We create a BEC and apply our optimised splitting and reflection pulses. For the
duration of the interferometer we apply a levitation field to cancel out the acceleration
due to gravity. This prevents the atoms from falling out of the atom-light interac-
tion region. Figure 5.14 shows the fractional central mode population as a function
of interferometer duration. The observation of a constant central population fraction
indicates that the interferometer has no inherent bias and importantly shows no oscilla-
tions, which makes it a good measurement device. The data points settle at 0.69 which
is attributed to the efficiency of the reflection pulses and experimental noise; in this
case there was a slight asymmetry in the mode populations which was attributed to a
residual velocity.

The maximum interferometer duration tested here is 8 ms. The maximum possible
time is limited by the size of the interferometer beams; when the atoms are split they
begin to travel outwards and out of the interferometer region, therefore if the interfer-
ometer duration is increased sufficiently, it is possible that the atoms will have left the
beams before the reflection pulses are applied.
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Figure 5.14: We perform a two arm interferometer for varying durations. The relative
populations are determined by analysis of absorption images taken after the interfer-
ometer sequence (see inset). We fit a horizontal straight line of 0.69 to all but the
left-most data point.

5.3 Three-Arm Interferometer
The two-arm Mach-Zehnder interferometer scheme does not allow for the measure-
ment of the recoil frequency ωr (see section 3.5). In order to get this information from
the system we add a third arm in the form of the |0~k〉 state (figure 5.15). This gives
the two outer arms a stationary phase reference to which they ‘beat’ against. If only
the |±2~k〉 state are present, their phases evolve together (assuming no external influ-
ences). When they are recombined their phases always ‘match’ so the frequency does
not manifest itself in the output. By adding the third arm as a reference, the relative
phases between the |0~k〉 state and the |±2~k〉 states vary as a function of time and
this results in a frequency at the output. This frequency is 4ωr, where the factor of 4 is
a result of the p2 scaling of energy on the dispersion curve:

E = ~ωr =
p2

2m
=

(2~k)2

2m
. (5.2)

We perform the 3-arm interferometer as described in section 3.5.1 and make a mea-
surement of the recoil frequency. We split the BEC into thirds (∼33% in |+2,0,-2~k〉);
a superposition of 25%, 50%, 25% in the −2~k, 0~k, and +2~k modes is predicted to
be the optimum but we deliberately overpopulate the ±2~k modes to account for the
less than perfect reflection pulse discussed in section 5.1.4. A single square pulse of
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Figure 5.15: Three arm interferometer scheme.

30 µs and amplitude ∼8 Er is typical, although other pulse parameters are also suffi-
cient such as shorter pulses of increased amplitude. We then let the system evolve for
some time T1 before applying a mirror pulse. The system is allowed to evolve further
and we vary the timing of the recombination pulse. An absorption image is recorded
and the populations of the momentum states determined by fitting Gaussians to the
integrated line profiles

Figure 5.16 shows an example of a typical interferometer data set with T1=1 ms,
to which we fit a sine curve with a Gaussian envelope to account for the wave-packets
travelling through each other. The point of maximum overlap of the wave-packets is
at approximately the symmetrical interferometer time2. The decay of the signal either
side of this is due to the wave-packets only being partially overlapped, thus the width
of the signal is given by the width and velocity of the wave-packet.

A frequency of 12.18±0.04 kHz is fitted to these data, which corresponds to a
recoil frequency of 3.77±0.6 kHz, given an uncertainty in the beam angle of 0.5◦.
This gives a h/m value of 4.6±0.7×10−9m2s−1 from equation 1.9 and α−1 = 137±10
from equation 1.8 (see also appendix A.6). From the CODATA database, α−1 =
137.035999139(31) [81].

The main source of uncertainty in our measurement is the angle of the interferom-
eter beams. As explained in section 4.3, the beams are angled in order to align with the
copper ring used for our inductive ring trap. This angle is measured to be 26.0±0.5◦

relative to the plane of the copper ring, which gives a corresponding error in k of 0.4 %.

2The wave-packets may not be ‘perfectly’ overlapped at the symmetrical interferometer time due
mean-field interactions [88]
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In future, the plan is to set the beams to be counter propagating. This is expected to
greatly reduce the uncertainty in the measurement of the recoil frequency.
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Figure 5.16: Three arm interferometer with T1 = 1 ms. The |0~k〉 acts as a phase
reference and the output frequency contains the recoil frequency. We fit a sine curve
of frequency 12.18±0.04 kHz with a Gaussian envelope from which we determine the
value of the fine-structure constant to be α−1 = 137±10.

5.4 Magnetic Gradiometry
An advantage to using atoms over photons is their sensitivity to magnetic fields, which
will be harnessed in this section. We install a coil of wire in the Y-Z plane at the end of
the glass science chamber. It is constructed from enamelled cooper wire with 5 turns
and 2.5 cm in diameter. When a current is passed through the coil, a magnetic field gra-
dient is produced inside the chamber and the positioning is such that the interferometer
operates parallel to the axial magnetic field gradient to give maximum sensitivity.
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Interferometer Axis
Gradient 

Coil
2.5 cm

Figure 5.17: Diagram of the gradient coil positioned at the end of the science chamber
in the Y-Z plane such that the generated magnetic field gradient is perpendicular to the
interferometer axis.

We first calculate what the expected phase shift is as a result of a gradient field.
The potential energy UB from a magnetic field is given by

UB = gFmFµB

∣∣∣~B (x)
∣∣∣ , (5.3)

where gF is the Landé g-factor, mF is the magnetic sub-level of the atoms, and µB
is Bohr magneton. The phase accumulation over time T , resulting from the magnetic
field gradient, can be written as [18]

φ (x, t) =

∫ T

0

UB(x)

~
dt , (5.4a)

=
gFmFµB

~

∫ T

0

∣∣∣~B (x)
∣∣∣ dt . (5.4b)

The atoms are moving in the field,
∣∣∣~B (x)

∣∣∣ = dB
dx
vt+B0, where v is the velocity of the

atoms, t is the time spent in the gradient field, and B0 is the magnetic field at the initial
position, and therefore

φ (t) =
gFmFµB

~
vt2

2

dB

dx
+B0t . (5.5)

This can be thought of as the phase accumulation for one wave-packet travelling out to
a point in space and the sign of the phase is determined by the direction of the gradient
field.

During our interferometer sequence we apply a levitation field. This is produced
by our QP coils and a large bias field. As a result the magnetic field the atoms probe
is a little more complex than a simple gradient field. To get an appreciation for what’s
going on we model the field in MATLAB (figures 5.18 and 5.19).
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Figure 5.18: Simulation of combined quadrupole, gradient and levitation magnetic
fields. Centre of interferometer indicated with white cross. Both the gradient coil and
the quadrupole coils are orthogonal to the plane of the figure. Note: the gradient coil
is modelled as single wire, and quadrupole coils modelled as multiple wires including
wire separation.
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Figure 5.19: We model the magnetic field in MATLAB and plot the magnitudes (blue)
and gradients (red) in the X (left) and Z (right) directions. The interferometer is located
at the zeros and aligned along X. The dashed lines indicate the gradient coil position
in the left-hand graphs and the quadrupole coil boundaries in the right-hand graphs.
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For this simulated magnetic field we can also simulate a two-arm interferometer
and the effect of applying short pulses of magnetic field gradient by numerical inte-
gration of equation 5.4b. Our simulated interferometer parameters follow the form of
figure 5.20 with T1 = T2 = 1.4 ms and the magnetic field gradient applied for 260 µs
either side of the reflection. We scan the gradiometer coil current and produce fig-
ure 5.21 and observe that the symmetry is not centred around 0 A. This is due to the
levitation field that we apply during the interferometer. If only the gradient field was
applied, the fringes would be centred around 0 A.
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Magnetic Field Gradient

Interferometer Pulses

Figure 5.20: Pulse scheme for gradiometry. Beam splitter and mirror pulses (red)
manipulate the atomic momentum while a magnetic field gradient (blue) is applied at
the point of maximum atomic spatial separation.
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Figure 5.21: Simulated interferometer output for T1=1.4 ms. A simulated levitation
field is applied which shifts the symmetry point to -3.6 A.

5.4.1 Method
We create a BEC following the usual method, outlined in section 4.2. After release
from the dipole trap we keep a levitation field on for the duration of the interferometer
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in order to keep the atoms within the interferometry region.
The BEC is split into the |±2~k〉 states only using the optimised pulses outlined

previously (section 5.1.2). Our optimised mirror pulse reverses the velocity of the
atoms (section 5.1.4) and we close the interferometer with a second splitting pulse.

Either side of the reflection pulse we apply a magnetic field gradient of varying
amplitude for 260 µs, as indicated in figure 5.20. By applying the gradient at this point
in time we maximise the sensitivity of our system as this is when the two momentum
states are maximally separated in space. In principle we could apply the gradient field
for the entire duration, however if this was done the atoms would accelerate such that
the mirror pulse would no longer be optimal. Essentially the |±2~k〉 states would be-
come |±2±δ~k〉 and therefore our mirror pulse would be targeting the ‘wrong’ states.
By applying the gradient field for 260 µs the change in velocity is minimal and we still
obtain an interference signal. We did not apply the gradient during the refection pulse
in case it reduced the reflection efficiency, although we later determined that this was
not a problem.

The magnetic field gradient is applied by varying the current passed through the
coil. Negative currents are applied by simply switching the polarity of the coil and
as such we obtain two data points at 0 A. We find these data give the same mode
populations within the error bars. Note that we ignore the switching time of the coil
which we calculate to be on the order of 1 µs.

5.4.2 Measurements
We use the pulse sequence described above and in figure 5.20 for a variety of coil
currents and hence magnetic field gradients and for T1 = T2 times of 1.4 ms and 2.0 ms.
After the interferometer pulses, we allow the momentum states to spatially separate
before taking an absorption image. From this we determine the fractional population
of each mode and plot the data in figures 5.22 and 5.23.

To each data set we fit a sine of varying frequency. For a given current value
we can then extract a phase. From equation 5.5 we determine what magnetic field
gradient this corresponds to and therefore we can map magnetic field gradient to coil
current (figure 5.24). We note that the symmetry point in the simulated gradiometer
output (figure 5.21), which is at -3.6 A, is not observed in the data of figures 5.22 and
5.23. We attribute this to the fact that the simulation is sensitive to positional changes
in the placement of the gradient coil. We estimate the positional uncertainty in coil
placement to be 3 mm experimentally, and if we displace the coil by 3 mm vertically
in our simulation, the symmetry point in the gradiometer output occurs at -4.8 A.

From figures 5.22 and 5.23 we can calculate the sensitivity of the gradiometer. This
varies depending on the applied current since the curves in figure are nonlinear. In the
case where no current is applied to the gradient coil we find a resolution of 0.10 µT/m
and 0.07 µT/m for the T1 = T2 = 1.4 ms and 2.0 ms data respectively. This is determined
functionally from the uncertainty in the fitted phase at I=0 A. Given that for both cases
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the magnetic field gradient is applied for 2×260 µs, for the T1 = T2 = 1.4 ms and 2.0 ms
data, we find sensitivities of 4.4 µT/m/

√
Hz and 3.0 µT/m/

√
Hz respectively.

The experiment performed here is a demonstration of the effect of a magnetic field
gradient on our interferometer output, and should not be considered competitive in
terms of sensitivity compared to reported values where magnetometry was the pri-
mary objective. For example, the group of Romalis achieve a maximum sensitivity of
0.54 fT/

√
Hz using thermal potassium atoms [144].

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

Current [A]

F
ra

ct
io

na
l 0
ħk

 M
od

e 
P

op
ul

at
io

n

Figure 5.22: Magnetic gradiometry with T1 = T2 = 1.4 ms. We fit a chirped sine curve
to the data and extract the phase.
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Figure 5.23: Magnetic gradiometry with T1 = T2 = 2.0 ms. We fit a chirped sine curve
to the data and extract the phase.
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Figure 5.24: Using the data in figures 5.22 and 5.23, we determine the applied mag-
netic field gradient for a given current by modelling the magnetic fields in MATLAB
(figure 5.19).
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Chapter 6

Contrast Interferometry

The unique selling point of contrast interferometry (CI) is the method by which the
information is read out of the system. Whilst in the previous chapter (5.3) absorption
images were used to determine fractional momentum state mode populations, here we
apply a single probe beam and observe the reflection from the atoms.

Applying a closing pulse at the end of the sequence, then taking absorption images
and determining populations can be a time consuming process; the data in figure 5.16
was recorded over many hours and many experiment cycles. Contrast interferometry
offers the ability to get this type of data but in only a few experiment cycles (as low as
one) corresponding to a few minutes in the case of our system.

Consider three separate wave-packets (0~k,±2~k) as they overlap in space. Each
wave-packet has an associated wavelength. Therefore the 0~k state and the +2~k state
will interfere to produce a travelling wave, and similarly the 0~k state and the -2~k
state will interfere to produce a travelling wave in the opposite direction. The com-
bination of these two travelling wave will produce a standing wave of time varying
contrast, sometimes referred to as a Moiré pattern.

The standing wave, when at non-zero contrast, can act like a Bragg reflector. If
a laser is directed onto this matter-wave grating, it will be reflected back as if it had
struck a grating. Since the contrast of the matter-wave grating evolves at 8ωr (for
0~k,±2~k states), if a laser is shone onto it, the reflected signal will be modulated at
this frequency. With the detection of this signal, it is possible to make a measurement
of ωr, as well as detect magnetic fields and gravity gradients.
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Figure 6.1: Contrast interferometry scheme.

6.1 Difficulty
Simply put, constructing a contrast interferometer is difficult. Given that there are
only two examples [37, 88] of contrast interferometers to date, the range of literature
is limited and it is a fairly unknown technique. With this in mind, outlined below are
some of the crucial factors with regards constructing such a device.

Signal detection: The initial plan was to simply use an amplified photodiode for de-
tection. However after further calculations it was determined that the reflected signal
would likely be too low in power for this to work. The predicted reflection from the
matter-wave grating is only ∼0.02 % of the probe power incident on the BEC (see
appendix A.7). Therefore an avalanche photodiode (APD) was purchased to provide
the required sensitivity: a Hamamatsu C12703-01 with a sensitivity of 1.5×108 V/W.
It was on this device that we detected our first CI signal.

In later experiments we use a single photon counting module (SPCM) for further
sensitivity and increased bandwidth. These experiments are discussed at the end of this
chapter.

Signal filtering: Using first-order momentum states the expected signal frequency is
≈25 kHz, and therefore the APD signal could be filtered before being viewed on the
oscilloscope. Whilst this could be done in post-processing, real-time filtering helped
the signal emerge from the noise as the experiment was running and we were observing
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the cumulative average, which was useful in initial experiments when we were still
optimising the system.

Probe Beam: This was final hurdle in obtaining a signal. Initially the C.I. probe
beam was simply one of the splitting beams (beam A) which has a detuning of 4 GHz,
however no signal was detected on the APD. It was then decided to use light derived
from the cooling laser instead as it is closer to the atomic resonance and the scattering
rate is increased (see optics diagram in figure 4.5). It is passed through an AOM
operating at 84 MHz and the -1st order goes to the atoms (figure 4.18). The BEC is
created in the |F = 2,mF = 2〉 state and we apply light of linear polarisation, and
typically a levitation field of 20 G is applied. As a result we drive the |F = 2,mF =
2〉 → |F ′ = 2,mF ′ = 2〉 and the |F = 2,mF = 2〉 → |F ′ = 3,mF ′ = 2〉 transitions
with a detuning of 238 MHz and 505 MHz respectively.

Atom number: More atoms results in a higher signal amplitude since the scattering of
the probe laser increases linearly with atom number. We typically use a BEC of around
1×105 atoms. A smaller BEC still gives a signal but reduced in amplitude.

6.2 Avalanche Photodiode (APD) Detection

6.2.1 First Detection
The readout signal from our interferometer is detected on an APD (setup shown in
figure 4.24). A signal of ≈25 kHz is expected and therefore we filter the APD output
with a 50 kHz low-pass Bessel filter operating at 12 dB/octave (Stanford Research
Systems SIM965 Analog Filter). Note that this filter was later changed to 100 kHz
low-pass.

In figure 6.2 the first CI signal is shown. To ensure this ‘blip’ was indeed due
to the matter-wave grating, data was recorded where the MOT beams were blocked
during the MOT load stage. This meant at the point of applying the probe beam all
experimental conditions were the same except for the presence of atoms. From the
peak voltage we estimate a peak optical power of ∼10 pW.
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Figure 6.2: First CI signal (a). To check the signal was from the atoms, in (b) the same
experimental sequence was performed but with no atoms.

We now ask some questions of our system. Firstly, what do we detect if we perform
the CI sequence on ultra-cold thermal atoms just above Tc? Figure 6.3 shows the
average of 16 shots and we observe a pedestal in the signal for the duration of the CI
probe beam. However, no discernible CI signal is observed. In principle it should be
possible to perform CI with ultra-cold atoms but in this instance we assume that the
signal-to-noise ratio of the detection system is too low1. The pedestal here is assumed
to be fluorescence.
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Figure 6.3: Contrast interferometry with thermal atoms just above Tc (no BEC). Clean
oscillations are not observed and the pedestal is assumed to be fluorescence. Note the
grey probe pulse is for a timing reference only and the amplitude is arbitrary.

Next, what signal would we observe if the probe beam is applied to a stationary
BEC? In this instance there are no splitting or mirror pulses, and therefore no matter-

1We have yet to attempt this with the recently installed single photon counting module, which has a
larger signal-to-noise ratio.
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wave grating. The obtained signal (figure 6.4) shows a pedestal but no peaks that we
attribute to a CI signal. As before, the pedestal this is assumed to be fluorescence.
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Figure 6.4: CI probe beam applied to a stationary BEC with no split or mirror pulses.
No oscillations are observed and the pedestal is assumed to be fluorescence. Note the
grey probe pulse is for a timing reference only and the amplitude is arbitrary.

6.2.2 Further Analysis

Signal Filtering: Given that using a 50 kHz low-pass filter results in a small attenua-
tion at 25 kHz the filtering frequency is increased to 100 kHz. The effect of this filter
is tested in figure 6.5. We find that without the filter, the power at 25 kHz is 7 mVs and
with the filter it reduces by an order of magnitude to 0.8 mVs.
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Figure 6.5: The effect of applying a 100 kHz low-pass Bessel filter to the APD signal
background signal. Upper left plot is raw APD signal. Lower left plot is filtered signal.
Plots on the right are FFTs of the signals. (We expect a signal of ≈25 kHz).

APD Detection: We prepare our BEC of 1.2×105 atoms as described previously. After
1.87 ms free expansion we apply our interferometer pulses. The splitting pulse is
11.5 µs with an amplitude of 12.2 Er. This splits the BEC into the |0,±2~k〉 states with
≈60 % in the ±2~k modes and a negligible amount in higher order modes. After T1 =
700 µs we apply a Blackman mirror pulse of 164 µs duration, and 12.2 Er amplitude.
Then we apply the probe beam 480 µs after the reflection. The probe is applied before
the symmetrical time in an effort to increase the duration of our signal.
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Figure 6.6: We apply a splitting and mirror pulses (red) as previously. The contrast
interferometry probe beam (blue) is applied slightly before the symmetrical time in
order to increase the signal duration.

We perform the experiment and view the APD signal on an oscilloscope. The
data is then saved and processed in MATLAB. Figure 6.7 shows data from a 10 shot
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average where the averaging is done on the oscilloscope. We fit an exponentially
decaying sinusoid using the curve fitting toolbox in MATLAB ( ‘cftool’). A fre-
quency of 24.349±0.003 kHz obtained where the uncertainty is the 68 % confidence
bounds. This returns a value of α−1 = 137±5 following the calculation outlined in
appendix A.6.

We attribute the decay of the signal to the loss of atoms from the grating. In the
particle picture, for every photon reflected by the grating, an atom has absorbed then
emitted a photon which causes a momentum kick of 2~k. As a result, that particular
atom no longer contributes to the matter-wave grating. The reading out of data could
therefore be described as a destructive process.
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Figure 6.7: Top: Average of 10 single shot contrast interferometry measurements. T1

= 700 µs and probe beam applied 480 µs after reflection . A exponentially decaying
sinusoid is fitted to the data with a frequency of 24.349±0.003 kHz. Bottom: Residuals
of fit.

This hypothesis is backed up by figure 6.8 showing the absorption images of the
atoms after a weak CI probe. Up until the probe is applied, the system is symmetric,
however after the sequence (with a low probe power) the integrated profile is asymmet-
ric as shown in figure 6.8. The probe is applied from the left hand side so some of the
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-2~k atoms have transferred to the 0~k state while some of the 0~k state have trans-
ferred to the +2~k state. This is also reported in figure 2-10 of [91] and it is pointed
out that this is a good indication that the CI system is working even before a signal is
observed.
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Figure 6.8: Absorption image and profile of atoms after a weak CI probe beam is
applied. Image acquired after 64 ms time-of-flight. Asymmetric distribution is charac-
teristic of a successful CI probe and readout.

Assuming the exponentially decaying signal is indeed due to effective atom ‘loss’
from the matter-wave grating, we should be able to observe a signal for longer if we
reduce the probe power. This however has the issue that it reduces the signal to noise
ratio. If we were to strobe the signal at a 50 % duty cycle, it would follow that the
signal would last for twice as long. We test this hypothesis in figure 6.9. A probe
beam is applied comprising of multiple square pulses of 5 µs separated by 5 µs and
compared to a DC readout signal of the same peak amplitude. Note that the bandwidth
of the APD is 100 kHz. A sinusoid with an exponential decay and a linear gradient
offset is fitted to both data sets, but to the strobed probe data we also include a second
higher frequency. From this we extract the decay times of 69 µs and 140 µs for the DC
and strobed case respectively, which is in excellent agreement with our hypothesis.
From this we conclude that the signal decay is due to the destructive readout process.
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Figure 6.9: A strobed probe with a 50 % duty should increase the decay constant of the
data by a factor of 2. We fit decay constants of 140 µs and 69 µs to the strobed (top)
and DC (bottom) probe data respectively

6.2.3 APD Limitations
As shown above, the APD is functional, however it is not ideal. Firstly we were oper-
ating close to the signal to noise limit despite this particular model having amongst the
highest sensitivity available (at our wavelength). A voltage amplifier was used in an
attempt to improve the signal to noise but it was found that the noise was inherent to
the APD module. Secondly, the bandwidth of the APD is only 100 kHz. The expected
frequency of a second order momentum state CI (±4~k) is 100 kHz and therefore if
this is something we want to pursue then a higher bandwidth device may be needed. A
photomultiplier tube may be sufficient for the task, however they can be expensive and
easily damaged. Something more robust would be better suited and with this in mind,
in the following section we use a single photon counting module (SPCM) for low level
light detection.
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6.3 Single Photon Counting Module (SPCM) Detection

6.3.1 Method of Detection
The experiments performed here are the same as those performed in the previous
APD detection method section, and the differences arise in the signal acquisition and
processing. The SPCM (Excelitas SPCM-AQRH-14-FC) is on continuously and we
record the counts in LabVIEW via a National Instruments PCI-6713 interface card.
Before we expect to detect our signal, we trigger the computer to start recording the
SPCM counts, which arrive in the form of a pulse train. We also set a bin width on the
computer, typically 4 µs, giving ≈10 bins per period of the ≈25 kHz signal.

We assemble the apparatus as shown in figure 4.25. The APD is left in place and a
single mirror is used to redirect the beam to the SPCM. This would allow us to quickly
return to the previous APD setup. In addition to the SPCM, we also add two Uniblitz
LS2T2 shutters: one in the telescope of beam B and a second in a telescope in the
newer SPCM setup. We refer to these as ‘beam B blocking shutter’, and the ‘SPCM
protection shutter’. The beam B blocking shutter is closed after the reflection pulse
and prevents any leakage light from beam B reaching the SPCM, while the SPCM
protection shutter prevents the splitting and reflection pulses from beam B entering the
SPCM.

The SPCM counts are recorded in labVIEW and saved as a .csv file for analysis in
MATLAB. We record the individual shots which allows us to average the data in post
analysis.

6.3.2 Measurements

Initial Measurements: A BEC is created as described previously. After 2.1 ms of
free expansion, the interferometer pulses are applied following the form of figure 6.6.
The BEC is split into 3 with ≈50 % in the ±2~k modes, 50 % in the 0~k mode, and
negligible fraction in the higher orders. This is achieved using a pulse of 30 µs duration
and 6.2 Er amplitude. After T1 = 600 µs a mirror pulse is applied. Finally the CI probe
is applied for 500 µs and the signal is recorded.

Figure 6.10 shows the data to which a sinusoid with a Gaussian envelope is fitted.
This average of 10 shots returns a frequency of 24.33± 0.06 kHz. Note that the larger
uncertainty here compared to the data from figure 6.7 is due to fewer data points.

Given the counting nature of the SPCM, Poissonian counting statistics are used
for the uncertainty calculations. The standard deviation of each data point is simply
σ =
√
C̄, where C̄ is the mean average of the number of counts. The standard error is

then σ/
√
N where N is the number of samples [145].
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Figure 6.10: Contrast interferometry with SPCM detection. A sinusoid with a Gaussian
envelope is fitted with a frequency of 24.33 ± 0.06 kHz. Data is the average of 10
shots and the error bars are the standard error in each point. T = 0 is the symmetrical
interferometer time.

Recent Measurements: In our initial measurement we attributed the decay of the
signal to the loss of atoms from the grating. This is supported by the data taken using
the APD, specifically figure 6.9. From performing a 3-arm interferometer and using
absorption images as the readout, we observe in figure 5.16 that the point of maximum
contrast is ∼30 µs before the symmetrical interferometer time. Thus we would expect
that the CI data in figure 6.10 would include the time of peak contrast, although it may
not be obvious as atom loss from the grating is assumed to be the dominant effect.

We therefore investigate the effect of moving the probe beam closer to the reflection
pulse, and we observe some interesting results. From an interferometer sequence with
a free expansion time of 2.1 ms and T1 = 1 ms we obtain the data in figure 6.11.
A sinusoid with a Gaussian envelope is fitted and a frequency of 24.42±0.05 kHz is
obtained, with a χ2=1.59. From the fit we determine the peak contrast to occur at
-182 µs relative to the symmetrical interferometer time.

A reason for the discrepancy between symmetrical interferometer time and peak
contrast time is most like due to atomic interaction, which is discussed in a recent
paper by Jamison et al. [88]. These interactions can be reduced by decreasing the
density of the BEC. It is pointed out that increasing the BEC expansion time from
2 ms to 10 ms should decrease the interaction effects by at least a factor of 10. In order
to characterise and quantify these interactions a three dimensional Gross-Pitaevskii
model is performed in [44]. A full Gross-Pitaevskii equation simulation is currently
being investigated in our group and will likely be reported on in the near future.

109



6.3. SINGLE PHOTON COUNTING MODULE (SPCM) DETECTION

−400 −300 −200 −100 0 100 200
0

5

10

15

20

25

30

35

Time [µs]

A
ve

ra
ge

 C
ou

nt
s

Figure 6.11: Contrast interferometer with T1=1 ms. A sinusoid with Gaussian envelop
is fitted and a frequency of 24.42±0.05 kHz is returned. The time axis is relative to the
symmetrical interferometer time. The peak contrast is found to occur 182 µs before the
symmetrical interferometer time. Fitting algorithm returns χ2=1.59. Data is average
of three shots.

In recent experiments the expansion time of the BEC is varied to investigate if this
has an effect on the peak contrast position. For T1=500 µs, we plot the peak contrast
position relative to the symmetrical interferometer time as a function of expansion time
in figure 6.12. An expansion time of 6.1 ms gives the smallest discrepancy (inset of
figure 6.12). In future work it would be interesting to allow the BEC to expand further
and observe the effect on discrepancy.
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Figure 6.12: Time of peak contrast relative to the symmetrical interferometer time as
a function of free expansion time. Inset shows the data from 6.1 ms expansion time
with a fitted sinusoid with Gaussian envelope, and we find the peak contrast occurs at
7±4 µs.

Short CI: An alternate method of performing contrast interferometry is what we refer
to as ‘short CI’. As described in figure 6.13, the BEC is split then the CI probe beam
is applied almost immediately after, and crucially, before the wave-packets spatially
separate. The minimum delay that we can currently achieve between the splitting and
probing pulse is 120 µs which is limited by shutter opening and closing times.

+2ħk-2ħk

Split

Readout

T
im
e

Position

0ħk

Figure 6.13: Short contrast interferometry sheme. A splitting pulse splits the BEC into
three parts then the CI probe is applied before the wave-packets spatially separate.
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Figure 6.14 shows data from a ‘short CI’ experiment. Given that we want to per-
form the interferometry sequence as quickly as possible, we split the BEC using a 10 µs
pulse of 13 Er amplitude. This results in ≈60 % in the ±2~k modes. After 120 µs, the
CI probe beam is applied in the SPCM signal recorded.

The average of 10 shots is fitted with a sinusoid with Gaussian envelope and the
frequency is obtained. Figure 6.14 shows the data with a fitted frequency of 25.91
± 0.10 kHz. By performing the traditional interferometer (described is section 5.3
we predict a frequency of 24.68 kHz. The reason for this discrepancy is not yet fully
understood and is under investigation at the time of writing, although we believe it is
due to the mean field expansion of the BEC.
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Figure 6.14: Short contrast interferometry. We perform a split, then we probe the
matter-wave grating 120 µs later, ie. we do not apply a reflection pulse. We fit a
sinusoid with a Gaussian envelope and obtain a fitted frequency of 25.91 ± 0.10 kHz.
The time axis is relative to the start of the splitting pulse. Data is the average of 10
shots.

Phase Stability: Another discussion point which is common to all CI data sets is the
reduced contrast, or the fact that the counts don’t go to zero in figure 6.14. Firstly,
there is a resolution issue due to the finite bin width, which means that even in a per-
fect system the bin with the lowest counts would still have a non-zero value. Secondly,
and more interestingly, we observe a slight phase drift between individual shots. This
results in a slight loss of contrast, however the ‘true frequency’ of the signal is still ob-
servable. This phase drift is attributed to a variation in the intensity of the splitting and
reflection pulses. Currently, this is most likely due to laboratory temperature fluctua-
tions. In figure 6.15 we plot the phase of the interferometer as a function of temperature
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at the air conditioning inlet. Note that the temperature range at the interferometer is
not expected to be this extreme.
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Figure 6.15: Interferometer phase as function of temperature at the air conditioning
inlet.
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Chapter 7

AC Coupled Ring Trap

Waveguides allow the interfering particles of an interferometer to be spatially con-
fined. This leads to the advantage of increasing the interaction time which can lead
to increased sensitivity. A popular geometry for atom (and light) interferometers is a
ring shape. These typically come in three varieties: Optical, RF dressed, and magnetic.
Optical ring traps are typically smaller and suited to the study of superflow, supercur-
rents, and vortices in BECs [49, 50, 51]. RF dressed traps have the advantage that
their shape can be transformed adiabatically by the application of an RF field [57, 58].
Magnetic ring traps [2, 62, 65] are typically larger in size and are of particular interest
for rotation sensing.

In order to create a magnetic ring trap, the use of current-carrying input and output
wires is normally required to drive the coils that produce the magnetic field, which
can result in the cylindrical symmetry of the ring trap being broken [63]. In order
to suppress these end effects we have constructed a time-averaged trapping potential
that results from the induced current in a cooper ring generated via two external drive
coils [6]. This is designed to limit the end-effects and maintain a smooth, cylindrically
symmetric trapping potential. Moreover, the time varying nature of the current has
the effect of averaging any roughness in the copper ring which further smooths the
trapping potential [67].

The apparatus reported on here is a second generation experiment with the first
generation comprising a larger, horizontal ring trap [7, 8]. The second generation ring
trap is not the primary focus of this thesis, however its function has been demonstrated
and some interesting results have been obtained which are promising for its future use
as a waveguide for ultra-cold atoms and BECs.

In this chapter we will briefly discuss the theory of an AC coupled ring trap1, fol-
lowed by an overview of recent results including the loading and Kaptiza-Dirac split-
ting of a BEC in the ring trap. Finally we will discuss the current limitations of the
system and future improvements.

1An in-depth explanation of the mechanisms of a AC coupled ring trap can be found in the thesis of
Dinkelaker [8] and related publications [6, 7]
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7.1 Theory
We start by describing the general mechanisms used in creating a ring trap. The ring
trapping potential is created from the superposition of two magnetic fields, namely the
driving AC magnetic field and the induced AC magnetic field. We start our description
by considering a single straight wire through which current flows as shown in figure
7.1. This produces a cylindrically symmetric magnetic field, according to Ampére’s
law, which decreases radially from the centre of the wire [102, 146]. If a magnetic
bias field is then added orthogonally to the wire the magnetic field will cancel out at
one radial position resulting in a line of magnetic zeros running parallel to the wire.
To reduce Majorana losses, a magnetic bias field parallel to the wire can be applied to
offset the magnetic zeros. This can then be used to trap atoms, and indeed this is how
many atom chip traps operate, eg. [18].

r

B

r

B

Iw

Iw

Bb

Figure 7.1: Upper: A wire carrying current Iw produces a radially symmetric magnetic
field (red ellipses) which falls off as 1/r. Lower: By adding a DC bias field, Bb, the
magnetic fields cancel at one radial position, which results in a trapping potential (for
low field seeking atoms) running parallel to the wire.

We can now take this wire and bend it such that it forms a ring with the potential
minimum on the inside, thus creating a ring trap. However we need a way to get the
electrical current into the wire, and without cutting the wire as this would introduce
asymmetry from wire end effects. To achieve this we can induce a current in the
wire by applying an alternating magnetic field to the ring. The induced current is
proportional to the magnetic flux through the centre of the ring and from [6] can be
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Figure 7.2: AC coupled ring trap (a) with green drive coils and black bias coils. The
driving magnetic field (b) induces a magnetic field (c) from current in the copper ring
resulting in a combined magnetic field (d). The circles in plot (d) plot indicate the
potential minimum, which here is zero. Figure adapted from [7].

written as

I(r) = −
πr2

ringB0

L
√

1 + Ω−2
cos(ωt+ δ0) , (7.1)

where Ω = ωL/R, ω is the drive frequency, L and R are the coil inductance and
resistance respectively, and δ0 = tan−1(1/Ω) is the phase shift of the induced current
relative to the drive field phase.

Conveniently, the induced magnetic field opposes the driving magnetic field within
the ring according to Lenz’s law, and as such a ring of magnetic zeros is produced
inside the ring of wire. Figure 7.2 shows, for one instance in time, the driving magnetic
field, the magnetic field resulting from the induced current, and the total combined
field. The circles in the lower left plot indicate the position of the potential minimum,
which here are zero.

Providing the drive frequency ω is larger than the trap frequency, the atoms expe-
rience the time averaged trap potential, and it is this average potential that forms the
basis of our ring trap. The shape of this radially symmetric potential can be likened to
the bottom of a wine bottle (figure 7.3).

As described in section 2.1.4, the Larmor frequency ωL must be larger than the rate
of change of the magnetic field in order that the atomic dipole adiabatically follows
the trapping field, which is necessary to avoid Majorana losses. For the time-averaged
potential it is the instantaneous field value that matters and as such |B(t)| > 0 at all
times.
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z/rring y/rring

B

Figure 7.3: Ring trap potential (figure adapted from [8]).

To remove the ring of magnetic zeros we apply either a bias field orthogonal to
the plane of the ring, or a quadrupole field with the axis of symmetry parallel to the
plane of the ring. A bias field prevents the zero points sweeping radially through the
potential minimum as the current alternates, and as a result ‘flattens’ the bottom of
the trap and it becomes anharmonic (figure 7.4 centre plot). A quadrupole field shifts
the magnetic zeros symmetrically out of the plane of the ring while keeping the time-
averaged potential minimum in the centre (figure 7.4 right plot).
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Figure 7.4: Vertical ring time-averaged trapping potentials with instantaneous zeros
marked as red dots. Left: bare ring potential (drive field only). Centre: ring trap with
Y bias field of 5 G. Right: ring trap with quadrupole field of 10 G/cm which pushes the
zeros out of the plane of the ring.

The description above ignores the effects of gravity, which for a complete model
we must include. In our second generation experiment we use a vertically orientated
copper ring of 4 mm inner diameter to produce the trapping potential. The size of the
ring was chosen for performing atom interferometry using the ring trap as a waveguide,
and therefore the 4 mm diameter gives a significant area to accumulate a Sagnac phase.
In order to account for the effects of gravity a MATLAB simulation was performed
using code written by colleague Jonathan Pritchard. The simulation output is shown
in figure 7.4. The plots show, from left to right, a vertical slice of the time averaged
trapping potential formed by only applying the drive field, drive field plus a 5 G bias
field, and drive field plus a 10 G/cm quadrupole field. In each case the driving field has
a peak value of 100 G applied at a frequency of 44.7 kHz. We mark the instantaneous
magnetic field zeros with red dots.

Drive frequency: The drive coil circuitry forms an LCR resonator, where L is the
inductance of the coils, C is some load capacitor, and R is the total resistance. The total
resistance is measured to be R = 1.96 Ω, and we select a capacitance value of 247 nF
such that the resonance frequency, f0, given by 1/(2π

√
LC), is 44.7 kHz (measured

in figure 6.23 of [8]). This frequency allows us to use a high power (600 W) audio
amplifier (Behringer Eurorack EP1500) with a peak frequency of 50 kHz to power the
coils, but the frequency is still high enough that it is outside the limit of human hearing.
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7.2 Thermal Atoms in the Ring Trap
Here we load atoms of around 35 µK into the ring trap and let them expand to fill the
potential. The experiment sequence up to RF evaporation follows the description in
section 4.2. During the RF evaporation we apply a bias field of 37 G in the Z direction,
ramped from 0 G in an s-curve over 2.5 s, which raises the centre of the quadrupole trap
by 1.85 mm. At the end of this stage we are left with∼3×107 atoms in the quadrupole
trap of 206 G/cm, at a temperature of 35 µK. We then relax the quadrupole gradient to
15 G/cm over 200 ms whilst ramping the Z shim in an s-curve to 2.6 G. This keeps the
centre of the magnetic trap at roughly the same position, and importantly overlapped
with the ring trap potential. The Y and Z shim values are then tuned for optimal loading
into the ring trap for the given ring trap parameters.

We then immediately turn on the ring trap by applying a driving field of 44.7 kHz
with a maximum magnetic field of 130 G. We offset the magnetic zeros by applying a
quadrupole field, which is ramped linearly from a starting value of 15 G/cm to 6 G/cm
in 1 ms. The atoms in the ring trap can then be allowed to evolve for a variable time
before some time-of-flight and an absorption image records their position. Ideally we
want the time-of-flight to be as short as possible such that we see the atoms as close
as possible to their ring trap position. The shortest we can manage is 0.8 ms and is
limited by the probe shutter opening time.

Atoms are loaded into the ring trap at the top, slightly left of centre. At the time of
running the experiment we did not have full control of the horizontal (X axis) position
and this was the closest we could get the atoms to the centre. The hold time is then
varied and we observe the cloud thermally expanding to fill the ring trap as well as a
centre-of-mass motion analogous to the motion of a rigid pendulum. Figure 7.5 shows
an example absorption image of the atoms having been in the ring trap for 42 ms.
The fact that the ring of atoms has sagged slightly with respect to the copper is due to
gravity and the fact that applying a quadrupole field loosens the trapping potential2.

2After 0.8 ms time-of-flight the atoms will have dropped only 3.1 µm
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Figure 7.5: Atoms of∼35 µK loaded into the ring trap and allowed to evolve for 42 ms.
Gravity acts downwards

In figure 7.6 we count the number of atoms in the ring trap by applying a back-
ground subtraction, masking the centre region of the ring where there are no atoms,
then summing the pixel values. We plot the number of atoms as a function of ring
trap hold time and fit an exponential decay to determine the trap lifetime which we
find to be 60 ms. Note that we ignore the initial data points as the high optical density
causes the image to saturate. The atom number is determined by pixel counting with a
background subtraction applied.
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Figure 7.6: Ring trap lifetime. Atom number determined by pixel counting then expo-
nential decay fitted to data and a lifetime of 60 ms obtained.

The short measured lifetime of 60 ms is primarily attributed to a possible loss
mechanism located at roughly the ‘8 o’clock’ position of the ring trap. This loss is
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further examined in the following section where we load ultra-cold atoms in the ring
trap.

7.2.1 Loading from Dipole Trap
We now load the ring trap with ultra-cold atoms from the optical dipole trap. The
vertical (Z axis) magnetic field shim is applied during RF evaporation as before such
that the trap centre is approximately aligned with the ring trap. The relax trap stage
loads the optical dipole trap as described in section 4.2, but this time the beams are
crossed at the top of the ring trap, with the position of the beams adjusted for optimal
atom loading into the ring trap. We then evaporatively cool the atoms using a typical
power curve but it is stopped after 1.5 s when the beams have a power of around 0.9 W
each. This leaves us with around 106 atoms at an estimated temperature of 1 µK.

There is then a 1 ms transition time where the optical dipole trap is turned off and
the ring trap is turned on. A quadrupole field of 27.2 G/cm is applied during the ring
trap stage, and we vary the duration of this stage before recording an absorption image
of the atoms. Again, a time-of-flight of 0.8 ms is used.

Figure 7.7 shows the evolution of the system as we vary the duration of the ring
trap. The colour scale used is the logarithm of the optical density on order to that the
atoms remain visible after longer durations. We see that the atoms are loaded off-centre
and as such slosh around the ring trap, as well as expanding thermally. The interesting
observation from these data can be seen from 28 ms onwards; the cloud of atoms starts
to split at the ‘8 o’clock’ position. This splitting seems to be mirrored at the other side
of the ring trap as well and is clear in images 40-45 ms.
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Figure 7.7: Ultra-cold atoms are loaded at the top if the ring trap and allowed to evolve
for some time. We observe splitting of the atom cloud in the image labelled ‘28 ms’,
and this seems to be mirrored in the image labelled ‘45 ms’.

It was postulated that the reason for this was end effects resulting from the in-
put/output wires of the drive coils [147], which are positioned 4 cm from the copper
ring for maximum coupling. The resultant perturbations in the local magnetic field
may be causing an unexpected trap shape. To test this the drive coils were rotated by
60◦ and the experiment was repeated. We found that the position of the artefact also
moved by 60◦ as shown in figure 7.8.
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Figure 7.8: After rotating the AC drive coils by 60◦, we see the position of the ring
artefact shift by the same angle compared to the data in figure 7.7.

Another explanation for the splitting is that the kinetic energy of the atoms gained
under the influence of gravity allows them to ride up the walls of the confining potential
such that they reach the position of the magnetic field zeros as described in figure
7.4. Once at a point of zero magnetic field, the magnetic atomic sub-levels become
degenerate and the atoms can freely fall into any of the 5 available mF states, such that
some of the atoms will no longer be trapped by the ring trap potential.

In this experiment we are applying a quadrupole field, which displaces the instan-
taneous magnetic zeros out of the plane of the ring (Y axis). This would indicate that
the atoms are loaded outside the plane of the ring such that they then oscillate along
the Y axis and encounter the magnetic field zeros. From the ring trap model used to
generate figure 7.4, we estimate the magnetic zeros are displaced by a minimum of
≈100 µm. Assuming a conservative harmonic potential in the Y direction, this would
mean the loading position of the atoms would need to be only ≈100 µm away form
the ring plane in order for them to oscillate and reach the instantaneous zeros. How-
ever, we note that this hypothesis is not immediately concurrent with the ‘end-effect’
explanation which is supported by the data in figure 7.8.

7.2.2 Pendulum Modelling
Here we load thermal atoms into the bottom of the ring trap and allow them to oscillate
azimuthally in the trapping potential. These oscillations can be likened to the motion of
a rigid pendulum. The experimental sequence is similar to that of section 7.2.1 where
we load ultra-cold atoms at the top of the ring, however here we apply a Z shim in the
opposite direction such that the quadrupole trap centre is moved down during the RF
evaporation stage. The atoms are then transferred to the optical dipole trap where they
undergo evaporative cooling for 1 s.

The atoms are loaded into the ring trap slightly off-centre, and in this instance we
do not apply a bias field or quadrupole field. A bias field would flatten out the trap-
ping potential which would give the atoms less confinement in the radial direction and
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would lead to a less well defined pendulum length in the model. A quadrupole field
would slightly distort the trap due to the cylindrical symmetry of the field3, and there-
fore the pendulum length would vary slightly depending on angular position. After
some ring trap hold duration, the atoms are released and absorption images recorded.

We perform the experiment described above for both the original orientation of the
AC drive coils and for the rotated orientation mentioned in the previous section, for
which the location of the splitting of the atom cloud is shifted as shown in figure 7.8.
From the data, we can then see if the orientation of the drive coils effects the frequency
with which the atoms oscillate.

Analysis of the absorption images is performed in MATLAB. We first determine
the centre of the ring trap from a calibration image containing no atoms, then apply
a mask to exclude the central and outer regions of the ring where the outer mask has
the radius of the copper ring (2 mm). The image pixels are then binned both radially
and angularly around the ring centre and Gaussian profiles are fitted to the radial and
angular position data to determine atom cloud centres. An example of this processing
is shown in figure 7.9. We can then plot atom cloud angular position as a function of
ring trap hold time, as shown in figures and 7.10a and 7.10b.
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Figure 7.9: An example of the angular and radial binning of the (360 ms, rotated
orientation) image of the atoms in the ring trap. In the lower plot the hollow data
points indicate the radii where the image mask was applied.

3A field generated by our two coils has twice the gradient along the coil axis (Z) as it does in the
radial directions (X,Y).
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(a) AC drive coils in original orientation.
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(b) AC drive coils in rotated orientation.
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Figure 7.10: The angular position of ultra-cold atoms in the ring trap are recorded as a
function of ring trap hold time. A rigid pendulum model is fitted to the data using equa-
tions 7.2 and we find an oscillation frequency of 11.69±0.09 Hz and 9.266±0.002 Hz
for the upper and lower graphs respectively. In addition, there is an angular offset of
-22◦ and -18◦ applied to the data in the upper and lower graphs respectively, meaning
the pendulum stable point is to the left of centre in figure 7.9 in both cases.
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7.2. THERMAL ATOMS IN THE RING TRAP

The rigid pendulum model is calculated using numerical integration of the follow-
ing equations:

θ = θ0 +
∂θ

∂t
t , (7.2a)

∂θ

∂t
= v0 +

∂2θ

∂t2
t , (7.2b)

∂2θ

∂t2
= −g

′

l
sin(θ) , (7.2c)

where θ in position, t is time, v0 is initial velocity, g′ is the total downward acceleration,
and l is pendulum length. This model is then fitted to the data in figure 7.10b with a
fixed pendulum length of 1.6 mm which is determined by the average centre position
of the Gaussians fitted to the radially binned images.

The oscillation frequency of the atoms with the AC drive coils in their original
orientation is determined to be 11.69±0.09 Hz from the fit to the data in figure 7.10a,
and with the coils in their rotated orientation the oscillation frequency is found to be
9.266±0.002 Hz from figure 7.10b. In addition to the difference in frequency, there
is also an angular offset observed in both data sets. The data presented in figures
7.10a and 7.10b have an applied offset of -22◦ and -18◦ respectively, meaning the
pendulum stable point is to the left of centre in figure 7.9 in both cases. Therefore we
conclude that there is a stray magnetic field, most probably from the AC drive coils
[147], effecting the atoms within the ring trap.

Trap lifetime: The pendulum data allows for the determination of the trap lifetime
via the data fitting method shown in figure 7.9. From figure 7.11, where the AC drive
coils are in the rotated orientation, we observe a negligible decrease in atom number
over the range of ring trap hold durations. Whilst we don’t fit an exponential decay
as we did in figure 7.6, it is clear that the trap lifetime is increased in this case. We
attribute this increase to the fact that the atoms do not reach the point of the ring trap
where we observe the splitting of the ultra-cold atom cloud (figure 7.8), as thus this
loss mechanism is not present.
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Figure 7.11: Atom number as a function of ring trap hold time, where the atoms are
oscillating in the bottom of the ring trap, similar to a rigid pendulum.

7.2.3 Kapitza-Dirac Splitting
Whilst the dipole trapping beams were at the top of the ring trap, we also attempt to
create a BEC and apply an interferometer splitting pulse. We use the same sequence
used for loading ultra-cold atoms into the ring trap but this time we perform the full
4 s evaporation such that we are left with a BEC if 1.2×105 atoms. This is checked by
observing the characteristic bimodal distribution after some time-of-flight.

With the BEC loaded into the ring trap we apply a single square splitting pulse
of 10 µs duration to excite multiple momentum states. At this time we had not yet
implemented our high efficiency interferometer pulses and were using an older optics
setup. As a result the exact amplitude of the splitting pulse is unknown but we estimate
∼60 Er from the resultant populations.

Figure 7.12 shows an example image of such a split. Given that the atoms move
out of the interferometer beams after the split, this is as far as we could go with an
interferometer sequence. If the atoms were able to return to the interferometer region,
in principle, we could apply a readout pulse and close the interferometer. For this to
work we would also need to load the atoms closer to the top of the ring trap as in this
system the momentum states are not travelling tangentially to the trapping potential
and we would expect them to slosh radially as they travel around the ring. There are
many more steps to performing a full interferometer sequence in the ring trap, but these
data demonstrate a promising outlook.
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Figure 7.12: We load a BEC in the ring trap and apply a KD splitting pulse. An
absorption image, taken after 20 ms in the ring trap, shows the resultant momentum
mode populations.

7.3 Limitations
There are currently two main limitations to our AC coupled ring trap. Firstly, there
is the perturbation in the smooth trapping potential as shown in figures 7.7 and 7.8.
A potential fix would be to wind the drive coils such that the input and output wires
are further away from the copper ring. However, his may lead to complications with
regards to optical access as the coils would likely block the MOT beams in the current
setup.

Secondly, whilst we can create a BEC at the top of the ring, we cannot create one
at the bottom. This is because during the dipole loading stage the quadrupole field is
relaxed but this causes some of the atoms to come into contact with the copper, which
causes them to be lost from the atomic ensemble and this decrease in atom number
prevents the creation of a BEC. A possible solution for this would be to load the dipole
trap in the centre of the ring, then move the beams downwards during the 4 s dipole
evaporation stage. This would require additional hardware such as stepper motors on
the mirrors immediately before the chamber.

If we could load a BEC into the ring trap at the bottom, we could potentially re-
move the issue of the atom cloud splitting, as discussed in section 7.2.1, by having the
input/output wires near the top of the ring and performing experiments using only the
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lower section of the ring. This is an attractive proposition as it would be possible to
perform contrast interferometry (see section 6) in a wave guide which has yet to be
experimentally demonstrated. However, the interferometer would not enclose an area4

as it would if we started the atoms at the top, and therefore we would not be able to
measure Sagnac effects.

4The plane of the ring is aligned approximately East-West to maximise the effect of the Earth’s
rotation
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Chapter 8

Conclusions

8.1 Conclusions
The primary result of the work presented in the thesis is the construction of an atom
interferometer. We have successfully used finely tuned optical pulses to excite and
control momentum states of a BEC which were then used to make interferometric
measurements of the recoil frequency of rubidium, as well as magnetic field gradients.
From the measured recoil frequency in figure 5.16, an estimate of the fine-structure
constant value was determined to be α−1 = 137±10. These methods, used in chap-
ter 5, whilst effective, were also time consuming. Therefore in chapter 6 we focussed
our efforts on contrast interferometry; a faster method of obtaining essentially the same
data. From figure 6.7 we calculate α−1 = 137±5. In both methods the main uncertainty
in the α−1 calculation was the interferometer beam angle. By realigning our interfer-
ometer beams to be counter propagating, this uncertainty would be greatly reduced
leading to a more precise measurement of α.

We have demonstrated the first contrast interferometer using a BEC of 87Rb. Whilst
the system is still in the process of being fully characterised, we have presented initial
data containing the recoil frequency of 87Rb. This method is promising with regard to
the precision measurement of the fine-structure constant as well as for rotation sensing,
gravimetry, magnetometry, etc.

Another key result is the high efficiency control of the momentum states of our
BEC using highly tuned optical pulses, which form the basis of the work presented in
[9]. By substitution of the Hamiltonian in the Schrödinger equation we obtain a set
of coupled differential equations describing the momentum state population evolution
for a given pulse amplitude and duration. The equations can be numerically solved in
MATLAB and we compare the model to experimental data and show excellent agree-
ment.

Within the science chamber we have constructed an AC coupled ring trap for ultra-
cold atoms and BECs. Whilst not the primary focus of the work presented, the prin-
ciple has been demonstrated in chapter 7. Most encouragingly, we have demonstrated
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the Kapitza-Dirac splitting of a BEC within the ring trap which forms the first step
of an atom interferometer in a waveguide. We have also identified some issues with
the current setup that will potentially inhibit us from performing a full interferome-
ter sequence. By recognising these issues now we can rectify the problems in future
designs.

8.2 Future Work

8.2.1 Magnetic Gradiometry using CI
The magnetic gradiometry presented in section 5.4 demonstrates that our atom inter-
ferometer is a valid measurement tool. In future work it would be interesting to use the
contrast interferometer to make similar measurements, but with an increased readout
rate. The current gradiometer uses a 2-arm configuration, which will not work with the
CI probe beam. Therefore we would use a 3-arm system and the information about the
magnetic field gradient would come from a phase shift in the signal.

8.2.2 Measurements of Gravity
As mentioned previously, atom interferometers are sensitive to gravity. Unfortunately,
our interferometer is orientated horizontally and therefore we are insensitive to gravity.
However, we can tilt our optics table slightly (±0.3◦) adding a slight vertical compo-
nent to the atomic trajectory. For a typical 2 ms total interferometer duration the atoms
would be separated by a maximum ∼100 nm in the vertical direction. We calculate
that this small separation would give a phase shift of ∼1 rad in the interferometer out-
put (see appendix A.8). In addition, the phase change is proportional to T2, so a longer
interferometer duration is very favourable.

8.2.3 Higher Order Interferometry
We have demonstrated excellent control of the first order momentum states and their
use in interferometry. In the future we would like to construct an interferometer using
higher order momentum states. The current limiting factor in our experiment is laser
intensity control and in order to use higher orders successfully we need to maintain
stable splitting and reflection pulses for extended periods of time. However we are
optimistic that this is achievable with the current system, or at least with minimal
changes to the interferometry laser setup.
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Appendix A

A.1 Shutter Circuit Diagram
We construct homemade shutter circuits comprising Sunex SHT934 mechanical shut-
ters and the circuit shown in figure A.1. The power supply operates in constant voltage
mode and provides a maximum current of 250 mA when the shutters are held open.
When a 5 V control voltage is applied to the base pin of the transistor it causes satura-
tion and the shutter opens.

The shutters are typically placed at the foci of beams are therefore the timings
of the shutter circuits are measured using a laser beam with a waist of ≈30 µm. We
measure an opening (closing) time of≈80 µs (≈80 µs), with a delay of≈7 ms (≈4 ms)
and jitter of ≈40 µs (≈70 µs).

Figure A.1: Homemade shutter circuit diagram.
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A.2. LIAD CIRCUIT DIAGRAM

A.2 LIAD Circuit Diagram
The circuit with which we control the Light Induced Atomic Desorption (LIAD) is
shown in figure A.2. A 5 V control is applied to a relay switch to close the circuit and
switch on the UV LEDs, and the 4.7 Ω power resistor sets the operating current.

A thermal cut-out is applied by way of a thermistor and FET; if a temperature of
70◦C is reached, the voltage at the base pin of the FET decreases and the LEDs are
switched off. We note that the circuit has never actually reached this temperature, even
when the LEDs are on continuously.

5 V control12 V

Relay

LZ1-00UA00

LZ1-00UA00

4.7 R
(power resistor)

100 K

FET

thermistor

Figure A.2: LIAD circuit diagram.
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A.3 Magnetic Levitation
Zeeman energy can be written as

E = mFgFµBB , (A.1)

where B is the magnetic field. Force can be written as

F = −∇E = −mFgFµB
dB

ds
. (A.2)

Relating the gravitational and magnetic forces we find

mg = −mFgFµB
dB

ds
. (A.3)

For 87Rb, mF=2,gF=1/2 giving

dB

ds
= 15.4 G/cm . (A.4)

Note, that according to our coil calibration data it would require quadrupole coil cur-
rent of 12.7 A to achieve this magnetic field gradient. Experimentally we apply only
12.4 A, giving an expected field of 15.0 G/cm, and we find this current to be optimum
in terms of supporting the atoms against gravity. Therefore it is likely that our coil
calibration has changed slightly since it was first measured.
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A.4 AOM Driver Circuit Diagram
The AOM driver circuit shown in figure A.3 is used for all the AOMs in our optical
setup. Both the amplitude and frequency control can be set to internal mode in which
case the driver output is determined by the internal circuitry of the driver, or external
mode in which case 0-10 V DC is used to control the amplitude and frequency via their
respective inputs. Note that for the interferometry AOM drivers the frequency source
is a Keysight N5138B which we fix at a frequency of 84 MHz. The frequency from the
voltage controlled oscillator (VCO) is sent to an RF mixer (Minicircuits ZP-3LH-S+)
along with the DC voltage to control the amplitude of the output.

Figure A.3: AOM driver circuit diagram.
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A.5 Thermal Size Calculation
We start by considering the energy, E, of the atomic ensemble:

E = kBT =
1

2
mv2 , (A.5)

where kB is Boltzmann’s constant, T is temperature, m is atomic mass, and v is atomic
velocity. Now we equate velocity to the rate of change of displacement,

v =
∂σ

∂t
, (A.6)

where σ is displacement with respect to time t. By substitution of equation A.6 into
equation A.5 we obtain

∂σ

∂t
=

√
2kBT

m
. (A.7)

Displacement during the interval between time ti to tf can be written as the integral of
velocity with respect to time such that

σ(t) =

∫ tf

ti

∂σ

∂t
dt =

∫ tf

ti

√
2kBT

m
dt . (A.8)

This then gives

σ(t) =

√
2kBT

m
t+ σ0 , (A.9)

where σ0 is some initial displacement.
We can consider displacement in equation A.9 as the radius of a cloud of thermal

atoms with temperature T after some free expansion time t, offset by some initial
size σ0.
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A.6 Calculation of α
From figure 5.16 we fit a frequency of 12.18±0.04 kHz. We describe below the calcu-
lations to determine the value of α and the associated uncertainty.

Value of α: The angle of the interferometry beams θ is measured to be 26◦. This re-
duces the effective k-vector of the optical lattice and therefore the measured frequency
of ω relates to recoil frequency of rubidium ωr by

ωr =
ω

4 cos2(θ)
=

12.18 kHz

4 cos2(26
◦
)

= 3.77 kHz . (A.10)

By rearranging equation 1.9, the ratio of h/ma is calculated from

h

ma

=
4πωr

k2
=

4π 3.77 kHz

(8.05× 106 m−1)2
= 4.59× 10−9 m kg s−1 , (A.11)

where k is 2π/λ, and λ = 780.24 nm (the beam angle has already be accounted for by
altering the frequency).

Then by substitution into (equation 1.8)

α2 =
2R∞
c

ma

me

h

ma

, (A.12)

giving α = 7.32×10−3, and 1/α = 136.63.

Uncertainty in α: Firstly we deal with the uncertainty in the recoil frequency which,
given the form of equation A.10, we write as

δωr =

√(
∂ωr

∂ω

)2

(δω)2 +

(
∂ωr

∂θ

)2

(δθ)2 , (A.13)

where

∂ωr

∂ω
=

cos2(θ)

2(cos(2θ) + 1)
, (A.14a)

∂ωr

∂θ
=

2ω sin(θ)

3 cos(θ) + cos(3θ)
. (A.14b)

δω = 0.04 kHz , (A.14c)
δθ = 0.5◦ . (A.14d)

Now we need an expression for the uncertainty in h/ma:

δ
h

ma

=

√√√√(∂ h
ma

∂ωr

)2

δω2
r , (A.15)
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where
∂ h
ma

∂ωr

=
4π

k2
. (A.16)

and δωr is given by equation A.13.
Finally, we assume the uncertainty in h/ma is dominant in the expression for α

(equation A.12) and we define the constant

β =
2R∞
c

m

me

. (A.17)

The uncertainty in α2 can then be written as

δα2 =

√√√√( ∂α2

∂ h
ma

)2(
δ
h

ma

)2

, (A.18)

where
∂α2

∂ h
ma

= β . (A.19)

We can now calculate the uncertainty in α2 by substitution of equation A.13 into equa-
tion A.15, then into equation A.18.

To convert the uncertainty in α2 into an uncertainty in α we use the following:

α =
√
α2 , (A.20)

and therefore

δα =

√(
∂α

∂α2

)2

(δα2)2 =

√(
1

2
√
α2

)2

(δα2)2 . (A.21)

From this we calculate α = (7.3 ± 0.6) × 10−3. Then to calculate the uncertainty in
α−1 we use the fractional uncertainty in α, giving α−1 = 136± 10.

Uncertainty in α from contrast interferometry: The uncertainty calculation for con-
trast interferometry data is similar to that outlined above with the exception of the
following. Now the equation for ωr is

ωr =
ω

8 cos2(θ)
, (A.22)

and therefore the partial derivatives of equation A.14 become

∂ωr

∂ω
=

cos2(θ)

4(cos(2θ) + 1)
, (A.23a)

∂ωr

∂θ
=

ω sin(θ)

3 cos(θ) + cos(3θ)
. (A.23b)
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A.7 BEC Reflectivity
If a weak probe power (� Isat) is assumed, the refractive index of a BEC can be given
by [108]

nref = 1 +
σ0nλ

4π

[
i

1 + δ2
− δ

1 + δ2

]
, (A.24)

where σ0 = 6π(λ/2π)2 is the resonant cross-section, n is the density, λ is the illumi-
nating wavelength, and δ is the detuning in half linewidths. In calculating the reflected
power the imaginary term can be ignored so we obtain

nref = 1− σ0nλ

4π

δ

1 + δ2
. (A.25)

For a beam of normal incidence angle, the reflectivity of the interface of two mediums
of differing refractive index is given by

Rint =

(
n1 − n2

n1 + n2

)2

. (A.26)

In our case this give a reflectivity of ≈0.02%.
We typically apply a probe beam of∼100 nW focussed to 70 µm giving an intensity

of 13 W/m2 at our matter-wave grating. Assuming the grating size is the same as the
BEC radius of 15 µm, the optical power incident on the BEC will be ≈9 nW. If the
reflectivity is 0.02%, the reflected power is therefore≈2 pW. Note that this calculation
ignores the enhancement that would result from multiple layers of differing refractive
index.
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A.8 Gravitational Phase Calculation
Here we calculate the expected phase difference in a tilted interferometer. We assume
a simple model where the atoms travel out and then back in and ignore the phase
accumulation during the splitting and reflection pulses.

The phase difference ,∆φ, can be written as

∆φ =

∫
E dt =

∫
m g s(t)

~
dt =

1

2

m g s t

~
, (A.27)

where E is energy, m is atomic mass, g is gravitational acceleration, and s(t) is height
which varies with time T .

We now need an expression for s. For an interferometer tilt angle γ the vertical
displacement can be written as

s = sin(γ)x , (A.28)

where the horizontal displacement x = vt, where v is velocity. The velocity of the
atoms is determined by the wavevector of the interferometry beams, k = 2π/λ cos(θ),
where θ is the beam angle (see figure 4.20). Since the splitting pulse is a two photon
process:

k′ =
4π

λ
cos(θ) . (A.29)

The velocity is then given by

v =
~ k′

m
=

~ 4π

mλ
cos(θ) . (A.30)

Equation A.28 then becomes

d = sin(γ)
~ 4π

mλ
cos(θ) t . (A.31)

Finally, by substitution of equation A.31 into equation A.27 we obtain the phase dif-
ference for one arm making one outward journey:

∆φ =
2πg

mλ
sin(γ) cos(θ) t2 . (A.32)

Once we include the return journey and the phase difference from the other interfer-
ometer arm we get a final expression of

∆φ =
8πg

mλ
sin(γ) cos(θ) t2 . (A.33)
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