Characterisation of the Modulation of Human Inflammatory Cytokine Production by Prostaglandin D₂ Pathways

by

Prasad Bharat Raval

A Thesis presented for the degree of Master of Philosophy

Strathclyde Institute of Pharmacy and Biomedical Sciences University of Strathclyde 27, Taylor Street Glasgow G4 ONR Scotland, UK

November 2008

Declaration of Author's Rights

'The copyright of this thesis belongs to the author under the terms of the United Kingdom Copyright Acts as qualified by the University of Strathclyde Regulation 3.51. Due acknowledgements must always be made of the use contained in, or derived from, this thesis.'

I declare that the research work reported in this myself carried out thesis at the Strathclyde Institute of Pharmacy and Biomedical sciences (SIPBS), University of Strathclyde and that any help that I received for any part of the work is duly acknowledged. I believe that the contents of this thesis are wholly original, expect where due references are made. Furthermore, the work described in this thesis has not been presented for any other degree.

Prasad Raval B January-2009 **Dedicated to Lord Krishna**

ACKNOWLEDGEMENTS

I would like to express my special gratitude to my supervisor Dr. Dino Rotondo for all his great direction, support, and encouragement during the whole course of this project. I would also like to thank Dr. Jill Davidson, for guiding me during my project work. I wish to express my gratitude with deep reverence to them for their effective guidance and constant encouragement. I am very thankful for their excellent care, continuous support and optimistic approach, which influenced me to accomplish this work successfully.

I extend humble thanks to my parents, brother and my wife for their invaluable support and co-operation during my study.

My sincere thanks also to Dr. C.W. Roberts and Prof. Stimson for their kind support, help and encouragement during the course of my project work.

I want to give warm thanks and sincerely express my gratitude to Maureen, Kenny and David for being supportive. I am very grateful to Mr. Devdeep Roy who also cheered me up and helped me retain my enthusiasm and energy.

To end with I am very thankful to all the blood donors and the Scottish Blood Transfusion Service for providing me with the samples of blood during my studies.

Prasad Raval B

Abbreviations

AA	Arachidonic acid
APC	Antigen presenting cells
BSA	Bovine serum albumin
cAMP	Cyclic- adenosine monophosphate
C5a	Complement type 5-a
cDNA	complementary DNA
CNS	Central nervous system
CSFs	Colony stimulating factor
COX	Cyclooxygenase
CRTH ₂	Chemoattractant homologous molecule expressed
	on Th2 cells
DAG	Diacylglycerol
DC	Dendritic cells
DGLA	Dihomo-gamma linolenic acid
DKPGD ₂	13,14-dihydro-15-keto PGD ₂
DMSO	Dimethyl sulphoxide
EFA	Essential fatty acids
ELISA	Enzyme-linked immunosorbent assay
EPA	Eicosapentaenoic acid
ERK	Extracellular signal-regulated kinase
FADD	Fas-associated death domain protein
FCS	Foetal Calf Serum
Fc	Constant fragment (antibody)
FcR	Fc receptor
GLA	Gamma linolenic acid
GM-CSF	Granulocyte monocyte-colony stimulating factor
GSH	Glutathione
HIV	Human Immunodeficiency virus
GST	Glutathione S-transferase

HBBS	Hank's balanced salt solution
HLA	Human leukocyte antigen
MYD88	Myeloid differention primary response gene (88)
NF-κB	Nuclear factor-kappa B
NK	Natural Killer cells
NO	Nitric oxide
NOD	Nucleotide oligomerization domain
NSAIDs	Non-steroidal anti-inflammatory drugs
PAF	Platelet activating factor
РВМС	Peripheral blood mononuclear cells
PBS	Phosphate buffered saline
PDGF	Platelet derived growth factor
PG	prostaglandin
PGE ₂	Prostaglandin E2
PGD ₂	Prostaglandin D2
$PGF_{2\alpha}$	Prostaglandin F2α
15d-PGJ ₂	15-deoxy Prostaglandin J ₂
РКА	cAMP dependent protein kinase
РКС	Protein Kinase C
PLA	Phospholipase A
PMA	Phorbol 12-myristate 13-acetate
PPAR	Peroxisome proliferator-activated receptor
PUFAs	Polyunsaturated fatty acids
RBC	Red blood cells
rIL	Recombinant interleukin
RPM	Revolution per minute
rTNF	Recombinant Tumour necrosis factor
s.d.	Standard deviation
ТВ	Tuberculosis
TGF-β	Transforming growth factor beta

Th	T helper
TMB	Tetramethyl benzidine
TNF-α	Tumour necrosis factor alpha
TNFR	Tumour necrosis factor Receptor
TLR	Toll-like receptor
TRADD	Tumor necrosis factor receptor 1-associated death
	domain protein
TRAF	Tumor necrosis factor receptor-associated factor-6
ТХ	Thromboxane
VCAM	Vascular cell adhesion molecule
WBC	White blood cells

Table of Contents

page

Title page	i
Declaration of Author's Rights	ii
Acknowledgements	iv
Abbreviations	v
Table of Contents	viii
List of Figures and tables	xii
Abstract	xiv

1.	Introduction	1
1.1	The Immune system	2
1.2	Optimal immunity	2
1.3	Innate and Adaptive Immunity	3
1.4	Cells of immune system	3
1.5	Inflammation	4
1.5.1	Cardinal signs of inflammation	4
1.5.2	Causes of Inflammation	5
1.5.3	Initiation of Inflammatory Responses	6
1.5.3.1	Lipopolysaccharide	6
1.5.3.2	Toll-like Receptors	12
1.5.3.3	Signalling pathways of TLRs	12
1.5.4	Inflammatory cytokines	13
1.5.4.1	Cytokine receptors	13
1.5.4.2	Interleukins	13
1.5.4.3	Tumour necrosis factor-α	14
1.5.4.4	TNF Receptor family	14
1.5.4.5	Signalling by the TNF Receptor superfamily	14
1.5.4.6	Physiology of TNF	15
1.5.4.7	Pharmacology of TNF	16
1.5.5	Eicosanoids	17
1.5.5.1	Structure and biosynthesis of eicosanoids	17
1.5.5.2	Cycloxygenase	19
1.5.5.3	Prostaglandin synthases	20

1.5.5.4	Prostaglandin receptors	22
1.5.5.5	PGE ₂ and EP Receptors	24
1.5.5.6	PGF ₂ alpha and FP Receptors	24
1.5.5.7	PGD ₂ , and DP Receptors	25
1.5.5.8	15-deoxy $\Delta^{12, 14}$ -prostaglandin J ₂ (15d-PGJ ₂)	27
1.5.5.9	Immunopharmacology of Prostaglandins	29
1.5.5.9.1	Prostaglandin E ₂ analogues	29
1.5.5.9.2	2 Prostaglandin DP analogues	30
1.5.5.10	Prostaglandins in inflammation	31
1.6	Aims and objectives of study	32

2.	Material and Methods	33
2.1	Materials	34
2.2	Methods	36
2.2.1	Preparation of Test substance, chemical and drugs	36
2.2.2	Preparation of human blood and human monocytes for experimental use	36
2.2.2.1	Blood Incubation Protocol	36
2.2.2.2	Isolation of human Peripheral blood monocytes	37
2.2.2.5	Cell counting and assessment viability	38
2.2.3	Measurement of TNF- α production	39
2.2.3.1	ELISA Assay Protocol	39
2.2.3.2	Flow Diagram for ELISA Assay	40
2.2.3.3	TNF- α data analysis	41
2.2.3.4	Typical Standard Curve from TNF-α ELISA assay	45

3.	Results
3.1	Effect of Varying LPS Concentration on TNF-α Production in Human Blood44
3.2	Effect of Various Concentration of PGE ₂ on TNF-α production in Human Blood in response to the presence LPS
3.3	Effect of PGD ₂ on LPS stimulated TNF-α Production in Human Blood
3.4	Effect of PGD ₂ on LPS stimulated TNF-α Production in Human Monocytes
3.5	Effect of $PGF_{2\alpha}$ on LPS stimulated TNF- α Production in Human Blood
3.6	Effect of PGD ₂ and BWA868C (DP ₁ receptor antagonist) on LPS stimulated TNF-α production in Human Blood
3.7	Effect of PGD ₂ and BWA868C (DP ₁ receptor antagonist) on LPS stimulated TNF-α production in Human monocytes
3.8	Effect of PGE ₂ on LPS stimulated TNF-α production in Human Blood in the presence of BWA868C
3.9	Effect of PGE ₂ on LPS stimulated TNF-α production in Human monocytes in the presence of BWA88C
3.10	Effect of the BWA868C (DP ₁ receptor antagonist) on the PGF _{2α} induced suppression of the LPS stimulated TNF ₋ - α production
3.11	Effect of the BWA868C (DP ₁ receptor antagonist) on the PGF _{2α} induced suppression of TNF- α production in Human Monocytes
3.12	Effect of the BW245C (DP ₁ receptor agonist) on LPS stimulated TNF- α production in Human Blood
3.13	Effect of the BW245C (DP ₁ receptor agonist) on TNF-α production in Human Monocytes
3.14	Effect of PGD ₂ on LPS stimulated TNF-α Production in Human Blood in the presence of BW245C and BWA868C62
3.15	Effect of the BW245C and CAY10471 on LPS stimulated TNF-α production in Human Blood66
3.16	Effect of the dual CAY10471 on the BW245C induced suppression of LPS stimulated TNF-α production in a human blood66

5.	References	101
4. 5	Summary and Conclusion	99
4.4	Comparison of the inhibitory actions of PGD_2 and its metabolite 15d- PGD_2 on TNF- α production	98
4.3.2	The role of $DP_2/CRTH_2$ pathways in the suppression of TNF- α	. 97
4.3.1	The role of DP_1 pathways in the suppression of TNF- α	. 94
4.2	Control of TNF- α production by arachidonic acid metabolites	. 93
4.1	Bacterial endotoxin-induced TNF-a Production	92
4.	Discussion	91
3.27	Summary of the Inhibitory effects of PGs and analogues, on LPS-stimulated TNF-α production in blood and peripheral mononuclear cells	89
3.26	Effects of 15d-PGJ ₂ in presence of CAY10471 on TNF- α production in human monocytes	86
3.25	Effects of PGD ₂ in presence of CAY10471 on TNF- α production in human monocytes	86
3.24	Comparison of effect of the PGD ₂ and 15d-PGJ ₂ in the presence of BWA868C on TNF- α production in human monocytes	. 81
3.23	Comparing the effect of PGD2 and 15d-PGJ ₂ in the presence of CAY10471 on TNF- α production in human blood	. 81
3.22	Comparing the effect of PGD ₂ and 15d-PGJ ₂ in presence of BWA868C on TNF- α production in human blood	. 77
3.21	Effect of 15d-PGJ ₂ on LPS stimulated TNF- α production in Human Blood	. 77
3.20	Effect of BWA868C on LPS induced production of TNF-α in the presence of BW245C	. 73
3.19	Comparing the effect of BW245C, and BWA868C and CAY10471 on TNF α production in human blood and monocytes	. 73
3.18	Comparison of effect of the BW245C and BWA868C and CAY10471 on TNF- α production in human blood	. 69
3.17	Effect of PGD ₂ on LPS stimulated TNF- α Production in Human Blood in the presence of CAY10471	. 69

List of Figures and Tables

1.1	General architecture of Lipopolysaccharide7
1.2	Structure of disaccharide and fatty acids in the Lipid A moety of LPS7
1.3	Structure of LPS in situ
1.4	LPS stimulation of inflammatory cascade and its regulation 11
1.5	Structures of the main prostaglandins and the various biosynthetic enzymes
1.6	Formation of PGE ₂ by COX-1 and COX-2 pathways
1.7	The structure of DP ₁ receptor ligands
1.8	PGD ₂ metabolic pathways
2.1	TNF-α assay Standard curve
3.1	Effect of Varying LPS Concentration on TNF-α production in blood
3.2	Effect of Various concentrations of PGE ₂ on TNF- α production in blood46
3.3	Effect of Various concentrations of PGD ₂ on TNF- α production in blood
3.4	Effect of Various concentration of PGD ₂ on TNF- α production in monocytes
3.5	Effect of PGF _{2α} on LPS stimulated TNF- α production in blood
3.6	Effect of PGD ₂ and BWA868C on TNF-α production in blood
3.7	Effect of PGD ₂ and BWA868C on TNF- α production by monocytes
3.8	Effect of PGE ₂ and BWA868C on TNF- α production in blood
3.9	Effect of PGD ₂ and BWA868C on TNF- α production by monocytes
3.10	Effect of BWA868C on PGF _{2α} TNF- α production in blood
3.11	Effect of BWA868C on PGF _{2α} TNF- α production in human monocytes
3.12	Effect of BW245C on TNF-α production in blood61
3.13	Effect of BW245C on TNF-α production by monocytes
3.14	(a) Effect of PGD ₂ on TNF- α production in blood in the presence of BW245C
3.14	(b) Effect of PGD ₂ on TNF- α production in blood in the presence of BWA868C
3.15	Effect of BW245C and CAY1047 on TNF-α production in blood
3.16	Effect of CAY10471 on BW245C-induced suppression of TNF-α production
3.17	Effect of PGD ₂ on TNF- α Production in presence of CAY1047
3.18	(a) The effect of BWA868C on BW245C-induced suppression of TNF-αproduction in blood

3.18	(b) The effect of CAY10471 on BW245C-induced suppression of TNF-α production in blood	72
3.19	(a) The effect of BWA868C on BW245C-induced suppression of TNF-α production by monocytes.	74
3.19	(b) The effect of CAY10471 on BW245C-induced suppression of TNF-α production by monocytes.	75
3.20	Effect of various concentrations of BWA868C on BW245C-induced suppression of TNF- α production in blood	76
3.21	Effect of 15d-PGJ ₂ on TNF-α production in blood	78
3.22	(a) The effect of BWA868C on PGD ₂ -induced suppression of TNF- α production in blood	. 79
3.22	(b) The effect of BWA868C on 15d-PGJ ₂ –induced suppression of TNF- α production in blood	80
3.23	(a) The effect of CAY10471 on PGD ₂ -induced suppression of TNF- α production in blood	82
3.23	(b) The effect of CAY10471 on 15d-PGJ ₂ –induced suppression of TNF- α production in blood.	. 83
3.24	(a) The effect of BWA868C on PGD ₂ –induced suppression of TNF-α production by monocytes	84
3.24	(b) The effect of BWA868C on 15d-PGJ ₂ -induced suppression of TNF- α production by monocytes	. 85
3.25	The effect of CAY10471 on PGD ₂ -induced suppression of TNF- α production by monocytes	87
3.26	The effect of CAY10471 on 15d-PGJ ₂ -induced suppression of TNF- α by monocytes	88

List of Tables

1	Comparison of the actions of IL-1 and TNF-α	15
2	Prostanoid receptors and second messenger system	. 23
3	Comparison of IC_{50} values for the different modulators on the suppression of	
	TNF- α production in blood and by monocytes	. 90

Abstract

TNF- α is the major pro-inflammatory cytokine released in response to many pathogenic stimuli. Prostaglandins are well-established secondary mediators of inflammation derived from arachidonic acid. Recently PGE₂ has been shown to be a potent suppressor of the production of the primary inflammatory mediators, specifically TNF- α possibly as a negative feedback mechanism, (Davidson *et al.*, 1998). There are also other series of prostaglandins such as PGF_{2 α}, PGD₂, and 15d-PGJ₂. In general there is a lack of information regarding the role of these other prostaglandins especially in terms of immune and inflammatory responses. In the current study, attempts were made to evaluate the effects of PGD₂ on suppression of TNF- α . Attempts were also made to elucidate the receptor pathway involved by which PGD₂ mediates its suppressive effect. The effect of the spontaneous PGD₂ metabolite, 15d-PGJ₂, was also studied on the inhibition TNF- α production.

Whole human blood and monocytes were utilised to investigate the effects of PGD₂, PGE₂, PGF_{2 α} and 15d-PGJ₂, upon TNF- α production, which was measured by ELISA. TNF- α production was also analysed in the presence and absence of various agonists and antagonists including BWA868C (DP1 receptor antagonist), CAY10471 (DP₂/CRTH₂ receptor antagonist) and BW245C (DP₁ receptor agonist). PGE₂, PGF_{2a}, 15d-PGJ₂, and PGD₂ induced a strong suppressive effect on LPS-stimulated TNF-α production in human blood and monocytes. The suppressive effect of these prostaglandins was not altered in the presence of BWA868C (DP₁ receptor antagonist) suggesting the absence of a DP1 receptor pathway. However, BW245C (DP1receptor agonist) showed a dose-dependent decrease in LPS-stimulated TNF- α production in blood and monocytes. This suppressive effect was not altered by CAY10471 (DP₂/CRTH₂ antagonist) or BWA868C (DP₁ receptor antagonist) suggesting that BW245C may be acting via other non- PGD₂ receptors. The suppressive actions of PGD₂ and 15d-PGJ₂ on TNF- α production was inhibited in the presence CAY10471 but not by BWA868C suggesting the potential involvement of DP₂ pathways. Overall the study indicates a similarity between the actions of PGD₂ and 15d-PGJ₂ on the modulation of TNF- α production via a DP₂ receptor pathway.

1. Introduction

1.1 The Immune system

The immune system in vertebrates incorporates a wide range of defensive mechanisms which includes intracellular sensors and signalling molecules that provide protection by reorganization and killing of diverse pathogenic organisms, thereby eliminating them. (De Franco *et al.*, 2007). The immune mechanism in invertebrates includes antimicrobial peptides called defensins, elements of phagocytes and the complement system (Klein & Heresy, 1997). Evolution of vertebrates such as humans has led to the evolution of a much more sophisticated immune system comprised of proteins, cells organs and tissues that interact in a dynamic network (Gregory *et al.*, 1996). Optimal immunity is required to prevent hypo- or hyper- functioning of the immune system.

1.2 Optimal immunity

Immunodeficiency disorders occur when the immune system is not functioning normally and may be due to genetic diseases, or acquired immunodeficiency e.g. caused by HIV (retro virus). This could lead to, for example, insufficient production of inflammatory cytokines, (Bouma & Strober, 2003) resulting in hypo-functioning of the immune system. Conversely, The overproduction of inflammatory mediators can occur in septic shock or in autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus and inflammatory bowel disease (Bouma & Strober, 2003). The adaptive and innate immune systems play an important role in the maintenance of optimal immunity.

1.3 Innate and adaptive immunity

The innate immune system acts directly through the recognition of microorganisms (De Franco *et al.*, 2007). The response is non-specific and can lead to an immediate maximal response. The innate immune response involves:

- Phagocytic cells (neutrophils, monocytes, and macrophages);
- Cells that release inflammatory mediators (basophils, mast cells, and monocytes)
- Natural killer cells (NK cells)
- Molecules such as complement proteins, acute phase proteins and cytokines.

In the adaptive immune response, the immune system adapts during infection to improve its recognition of a pathogen. This improved response is retained after the elimination of the pathogen as immunological memory, thus allowing a faster and stronger attack on subsequent encounters with the pathogen. This adaptive immune response is primarily mediated by T- Lymphocytes and B-Lymphocytes (Defranco *et al.*, 2007).

1.4 Cells of the immune system

Haematopoietic cells from bone marrow give rise to RBC and WBC via committed progenitors. Erythroid lineage cells develop into erythrocytes and megakaryocytic cells (which form platelets that initiate blood clotting). Myeloid lineage cells give rise to cells which include phagocytes that engulf pathogens and merge with lysosomes (macrophages, neutrophils, dendrites cells, mast cells, eosinophils and basophils) whereas lymphoid lineage cells give rise to T cells and B cells of adaptive immunity as well as NK cells that are specialized cytotoxic cells (Defranco *et al.*, 2007).

1.5 Inflammation

Inflammation is regarded as the first response of the immune system to infection (Serhan *et al.*, 2005). Inflammation is a complex biological response of vascular tissue to harmful stimuli such as pathogens, damaged cells or irritants (Sell, 1987). It is a protective attempt by an organism to remove an injured stimuli as well as an innate healing process for the tissue (Gallin *et al.*, 1988). The inflammatory response is the body's natural response that occurs immediately following tissue damage. Its main functions are to defend the body against harmful substances, dispose of dead or dying tissue and to promote the renewal of new tissue. The following series of events takes place during inflammatory conditions:

- Vasodilation resulting in increased blood flow
- Increased vascular permeability
- Exudation of fluid into tissue leading to swelling
- Phagocytosis (destruction of microbes)
- Tissue repair

1.5.1 Cardinal signs of Inflammation

The cardinal signs of inflammation are outlined below and are more commonly termed the "Celsus signs" of inflammation

Rubor- redness	associated with increased blood flow
Calor- heat	increased blood flow/ vasodilation
Tumor- swelling	vasodilation followed by an increase in permeability/ exudation leading to increased tissue mass
Dolor- pain	increased sensitivity of sensory nerves manifest as pain

1.5.2 Causes of inflammation

The inflammatory process can be either classified as acute or chronic. Acute inflammation is the initial response of the body to harmful stimuli resulting in increased movement of plasma and leucocytes from blood to the injured tissue. This process leads to the progression of an inflammatory cascade. Chronic inflammation leads to a progressive shifting of cell types at the site of inflammation and a cycle of destruction and healing of the tissue from the inflammatory process. Chronic inflammation is a consequence of many human diseases. If inflammation remains unchecked it can result in a host of diseases such as rheumatoid arthritis, which has a strong risk of rheumatoid vasculitis or rheumatoid lung disease, thereby elevating the risk of cardiovascular disease. Severe systemic inflammation can also lead to a shock response e.g. septic shock. This can result in a profound drop in blood pressure due to the presence of bacteria in the blood resulting in multi-organ failure and death. It is for this reason that inflammation must be tightly regulated by the body (Serhan et al., 2005). There are various diverse triggers of inflammation such as: environmental factors including air pollutants, foreign bodies including splinters and dirt, pathological factors such as infection by bacteria, burns, and immune reactions due to hypersensitivity.

1.5.3 Initiation of inflammatory responses

1.5.3.1 Lipopolysaccharide

The main component of the membrane of gram-negative bacteria is a lipopolysaccharide. Being discovered as endogenous toxins of pathogenic bacteria, they were initially named endotoxins. LPS, is a potent bacterial endotoxin and is responsible for the toxic manifestation of gram-negative infections and generalized inflammatory reactions (Rietschel *et al.*, 1993). In humans, LPS triggers an innate immune response characterized by cytokine production and immune system activation. Inflammation is a common result of cytokine production, which produces host toxicity. LPS is one of the most potent stimuli for the induction and release of pro-inflammatory cytokines especially IL-1 from monocytes (Rietschel *et al.*, 1994).

LPS acts as a permeability barrier in bacteria allowing access only to low molecular weight, hydrophilic molecules. It is impermeable to larger molecules and hydrophobic compounds. Thus, LPS in hosts may impede the destruction of bacterial cells by serum components and phagocytic cells. LPS may also play a role as an adhesin, used in colonization of the host. Variations in LPS structure provide for different antigenic strains of a pathogen that may be able to bypass a previous immunological response to a related strain (Corsaro *et al.*, 2001).

Lipopolysaccharides are complex amphiphilic molecules with a molecular weight of about 10kDa that vary in chemical composition among bacterial species. In Region I: Lipid A is the lipid component of LPS (Fig. 1.1). It contains the hydrophobic, membrane-anchoring region of LPS. Lipid A consists of a phosphorylated N-acetylglucosamine (NAG) dimer with 6 or 7 fatty acids attached to it. All fatty acids in Lipid A are saturated (Fig. 1.2). Some fatty acids are attached directly to the NAG dimer and others are esterified to the 3-hydroxy fatty acids that are characteristically present. The biological activity of LPS resides in the Lipid A portion and is mostly responsible for the endotoxic activities of LPS whereas immunogenicity is associated with the polysaccharide components (Raetz *et al.*, 2007). The lipid A is characterized by relatively short chain length (C10) of the 3-hydroxy fatty acid components directly bound to a glucosamine disaccharide backbone by either amide or ester linkages.

Fig: 1.1 General architecture of Lipopolysaccharide. General Structure of LPS molecules (Kenneth, 2008)

Fig: 1.2 Structure of the glucosamine disaccharide and fatty acids in the Lipid A moiety of LPS (region I from figure 1.1).

These unusual fatty acids in Lipid A are embedded into the outer membrane of the bacterium while the rest of the LPS project from the surface (Fig. 1.3).

Region II: Core (R) antigen or R polysaccharide consists of a short chain of sugars. Two unusual sugars, heptose and 2-keto-3-deoxyoctonoic acid (KDO) are usually present, in the core polysaccharide. KDO is unique and invariably present in LPS and so it has been used as an indicator in assays for LPS/ endotoxin (Corsaro *et al.*, 2001).

Region III: Somatic (O) antigen or O polysaccharide is attached to the core polysaccharide. The cell wall antigens (O antigens) of Gram-negative bacteria are components of LPS. It consists of repeating oligosaccharide subunits made up of 3 - 5 sugars. The individual chains vary in length ranging up to 40 repeat units (Fig. 1.1). The O polysaccharide is much longer than the core polysaccharide, and it maintains the hydrophilic domain of the LPS molecule. A major antigenic determinant (antibody-combining site) of the Gram-negative cell wall resides in this O polysaccharide. The presence or absence of O chains determines whether the LPS is rough or smooth respectively. The involvement of the polysaccharide chain in virulence is shown by the fact that small changes in the sugar sequences in the side chains of LPS result in major changes in virulence (Jansson, 1999).

In humans, LPS binds to a lipid binding protein (LBP) in the serum which transfers it to CD14 on the cell membrane, which in turn transfers it to another non-anchored protein, MD2, which associates with Toll-like receptor-4 (TLR4). This triggers the signaling cascade for macrophage/endothelial cells to secrete inflammatory cytokines and nitric oxide that can ultimately lead to endotoxic shock. CD14 and TLR4 are present on several immunological cells, including macrophages and dendritic cells. These can activate the production of cytokines, including IL-1, IL-6, IL-8, and TNF- α . These cytokines, in turn, stimulate the production of prostaglandins and leukotrienes. These powerful mediators of inflammation can in extreme circumstances cause life-threatening symptoms such as the loss of blood pressure control which is a hallmark of septic shock.

Fig. 1.3 structure of LPS in situ (bacterial cell wall).

When bacteria are lysed, either through cell death or division, the bacterial cell wall endotoxin (LPS) can be released and can activate monocytes to initiate acute immune responses. Tissue macrophages are the primary source of increased serum TNF- α level during endotoxaemia (Leone, *et al.*, 2007). Release of LPS either into localized regions or the circulation results in inflammatory responses (manifest as fever systemically) (Davidson *et al.*, 1998). Both this effect of the bacteria locally and systemically mediates the production of endogenous cytokines, such as interleukins especially IL-1 and TNF- α . These pro-inflammatory cytokines stimulate the production of prostanoids, primarily PGE₂, which are ultimately responsible for the symptomatic manifestations of the inflammatory response (see Fig. 1.4).

Activation of host immune cells by Gram-negative bacteria can be reproduced *in vitro* by incubating whole blood, or cells isolated from blood, with LPS. Macrophages participate actively in the onset of inflammation and immune system activation by releasing pro-inflammatory and anti-inflammatory cytokines that further enhance inflammatory stimulation, release of bioactive lipids (PGs, leukotrienes), reactive oxygen species, nitrogen species that exert a cytotoxic effect against pathogens and tumour cells (Takahiro *et al.*, 2002). Stimulation of monocytes by LPS is restricted to the first few hours, with little or no effect on longer incubations up to 24 hours; this may be due to the production of downstream mediators by LPS which counteract the actions of LPS by initiating a down-regulating response which can be induced by PGs (see Fig. 1.4). LPS induces the production of TNF - α by activation of the MAP kinase pathway via toll-like receptor 4 (Swantek *et al.*, 1997).

Fig. 1.4. LPS stimulation of inflammatory cascade and its regulation.

1.5.3.2 Toll like receptors

The mammalian toll-like receptors (TLRs) are expressed on cells of the immune system, which are primarily involved in innate immunity such as macrophages and dendritic cells. When microorganisms enter a tissue site, Toll-like receptors sense their presence. Pathogen recognition by TLRs results in the activation of innate immunity and induces the production of pro-inflammatory cytokines and chemokines like TNF- α , IL-1 *etc*. (Kaisho *et al.*, 2002). Cytokine inducers such as LPS, polyinosinic: polycytidylic acid and IL-1 itself, activate immune cell responses by utilizing TLR receptor pathways. Lipopolysaccharide (LPS) is the major ligand for TLR-4.

1.5.3.3 Signalling pathways of TLRs

Almost all TLRs associate with the adapter protein, MyD88, which is essential for cytokine production induced by TLRs. MyD88 is a cytoplasmic adapter protein, which associates with all members of IL-1R domains and TLR families (Kaisho *et al.*, 2002). Ligands for several TLRs, such as TLR2, TLR3, TLR4, TLR5, TLR6, and TLR-9 have been identified. These TLRs play an important role in inflammatory cascades and primarily signal via MyD88-dependent pathways (Mainly TLR2 and TLR9). TLR4 is essential for recognizing LPS from Gram-negative bacteria. Upon binding of TLR ligands, TLR induces cytokine production and up-regulation of co-stimulatory molecule expression in APCs, thereby conferring on them the ability to activate adaptive and innate immune responses. Ligand binding recruits MYD88 adaptor to TLR. MyD88 recruits related protein kinases such as IRAK-4 and IRAK-1 which in turn recruits the adaptor-TRAF6. The IRAK 1- TRAF6 complex dissociates allowing amplification of signal and activation of TAK-1 and MAP kinase leading to IκB phosphorylation, with the sequential disengagement/ activation of NFκB which activates inflammatory cytokine gene transcription (Kaisho *et al.*, 2002).

1.5.4 Inflammatory Cytokines

Inflammation is regulated by cytokines primarily TNF- α and IL-1. These act on their respective receptors to activate the production of secondary mediators which are ultimately responsible for the symptoms of inflammation (see Fig. 1.4).

1.5.4.1 Cytokine receptors

Cytokine receptors stimulate immune responses by either promoting or inhibiting inflammation, activating macrophages, activating B and T cells, activating eosinophils and mast cells. Six major classes of cytokine receptors have been described and the major sets involved in inflammation are the IL-1 family receptors and the TNF- α superfamily receptors. IL-1 family-receptors have homologous domains to the TLRs (TLR domains) in their cytoplasmic tails and they mainly signal by interacting with the adaptor protein MyD88 and downstream signalling is also identical to TLR signalling. Receptors of the TNF receptor superfamily signal apoptosis via death domains called TRADD and FADD that link to enzymes of programmed cell death e.g. caspases, by TNF receptor associated factors (TRAFs).

1.5.4.2 Interleukin-1

It is well established that LPS stimulates the production of IL-1. However, it is less clear how IL-1 production is controlled. IL-1 appears to produce a positive feedback mechanism whereby released IL-1 further increases IL-1 release (Dinarello *et al.*, 1986, Ghezzi *et al.*, 1988). IL-1 can induce its own synthesis by inducing gene expression (Dinarello *et al.*, 1987). In contrast, Stephen *et al.* (1987) showed that endothelial cells, stimulated with IL-1, results in the production of PGE₂ that can suppress further IL-1 production. Thus, reduced IL-1 production may be controlled by a negative feedback mechanism mediated by PGE₂ (Kunkel *et al.*, 1986). In the presence of indomethacin (a PG-synthesis inhibitor), an increased IL-1 release was detected when stimulated by exogenous IL-1 (Knudsen *et al.*, 1987; Rotondo *et al.*, 1992; Maakie *et al.*, 2002). This indicated a regulation of IL-1 production by endogenously produced PGs. Rotondo *et* *al.* (1992) showed that IL-1 and LPS increase the activity of phospholipases associated with the release of arachidonic prior to the production of PGs.

1.5.4.3 Tumour necrosis factor-α

TNF- α is a cytokine which appears to be centrally involved in the development of inflammatory processes. Dysregulation and overproduction of TNF- α mediates a series of inflammatory diseases (Gallin *et al.*, 1988).

TNF molecules are homotrimers synthesized as type 2 transmembrane proteins. STNF (soluble TNF) is released via proteolytic cleavage by metalloproteases. They act distantly or locally either on neighbouring cells in a paracrine fashion (Defranco *et al.*, 2007). TNF- α then acts as a trigger that activates a cascade of cytokine production. TNF- α is released rapidly in response to inflammatory conditions that induce the production of other inflammatory cytokines such as IL-1 (Standiford *et al.*, 1990).

1.5.4.4 TNF-α receptor family

The three members of the TNF family are commonly known as TNF- α , lymphotoxin- α , (LT- α also termed TNF- β), and lymphotoxin- β (LT- β). They are encoded in three closely linked genes within the MHC (Klein and Horejsi, 1997) and act through the TNF receptor superfamily.

1.5.4.5 Signalling by the TNF-α receptor superfamily

The TNF- α receptor superfamily have a conserved 70-amino acid globular domain in their cytoplasmic tail termed the "death domain" (Defranco *et al.*, 2007). Two distinct cell-surface receptors have been described. These are TNF receptor type 1 (TNF-R1) and TNF receptor type 2 (TNF-R2). TNF-R1 is expressed in most tissues and can be fully activated by both membrane bound and soluble trimeric forms of TNF- α . TNF-R2 signals directly in lymphoid cells and has an auxiliary role in modulating TNFR1

signalling. On binding of ligand by receptor, a death domain recruits the formation of FAS mediated death domain (FADD) and TNF- α receptor associated death domain (TRADD). This results in the activation of caspases ultimately leading to cell death. During cell infection by viruses the transcriptional response is blocked, this leads to inhibition of protein synthesis. In such cases TNFR1 induces a dual mode of signalling by inhibiting apoptotic pathways but also inhibiting viral replication without inducing cytolysis. These pathways induced by TNF- α are only operational when transcription is blocked, thereby reflecting a role in antiviral immune defences (Defranco *et al.*, 2007).

1.5.4.6 Physiology of TNF

Dinarello *et al.* (1986) showed that TNF- α is an endogenous pyrogen that induces the production of IL-1, moreover rTNF α and rIFN- γ have synergistic effects on IL-1 production. However, almost all actions of TNF- α are shared by IL-1. Some of these are listed in table 1 below (Gallin *et al.*, 1988).

target cells	Biological activity shared by IL-1 and TNF- α
Endothalium	Cytokine production
Endomentum	Leukocyte adherence
	Procoagulant
	NO synthase
B-cells	Stimulate B cells for antibody production
T cells	Synthesis of IL2, IFN-y and other
	cytokines.
Brain	Fever
Fibroblast	Interferon β synthesis
Myocyte	Causes proteolysis
Osteoclast	Bone resorption
Macrophage	production of IL-1, TNF, and IL-6

Table 1 Comparison of the actions of IL-1 and TNF-α

1.5.4.7 Pharmacology of TNF-α

Rheumatoid arthritis is an autoimmune disease involving activated T-cells which give rise to overproduction of IL-1 and TNF- α production resulting in chronic inflammation (Abramson & Weismann, 1989). Monoclonal antibodies such as Infliximab (Remicade) or Adalimumab (Humira) and the TNF-receptor fusion protein, Etanercept (Enbrel) can abolish the symptoms of inflammation by binding to TNF- α and neutralising its activity (Aeberli et al., 2002). Alternative treatment strategies have been developed for reducing circulating levels of TNF- α other than by neutralisation with TNF- α binding proteins. An example being Pirfenidone that has been shown to inhibit de-novo TNF- α synthesis particularly following bacterial activation (Hale et al., 2002). However, a disadvantage of these treatments is that cases of tuberculosis (TB) and other serious infections have been observed in patients treated with these medicines. Various oxysterols, particularly 25-hydroxycholesterol have been shown to decrease LPS-induced TNF- α secretion (Englund *et al.*, 2001) probably via a glucocorticoid-independent pathway. Glucorticoid analogues such as dexamethasone etc., are well established inhibitors of cytokine production, particularly TNF- α (Bleeker *et al.*, 1997). However, they have numerous undesirable clinical effects and with respect to inflammatory responses, also inhibit the formation of eicosanoids. This is important as PGs in particular, appear to have a negative feedback mechanism for the release of TNF- α and other pro-inflammatory cytokines (Kunkel et al., 1986).

1.5.5 Eicosanoids

Eicosanoids are a group of molecules produced by the oxygenation of 20-carbon unsaturated fatty acids which can exert many complex control actions over numerous organ and cell systems but especially in inflammation and immunity. They are derived either from ω -3 or ω -6 polyunsaturated fatty acids. There are at least four broad families of eicosanoids that include prostaglandins, thromboxanes, leukotrienes and HETEs. This study will focus on prostaglandins which are predominantly derived from arachidonic acid released from membrane phospholipids. Arachidonic acid appears to have a unique and selective role in cell signalling in the immune system (Rotondo *et al.*, 1994). Although arachidonic acid is the immediate precursor for the formation of 2-series prostaglandins (Coceani *et al.*, 1986) it can also be involved in signalling via eicosanoid-independent mechanisms. An example is mediation by arachidonic acid of Fc- γ -receptor-mediated superoxide generation (Rotondo *et al.*, 1994). Arachidonic acid also appears to be an obligatory mediator for TNF- α induced cytotoxicity (Calder *et al.*, 1991) and can play an important role in G-protein activation. However, many of the actions of arachidonic acid are mediated via their conversion to prostanoids.

1.5.5.1 Structure and Biosynthesis of Prostanoids

Cells activated by mechanical trauma, cytokines, and other growth factors, release fatty acids, primarily arachidonic acid, from membrane phospholipids. The release of arachidonic acid occurs via the activation of phospholipases. The release of arachidonic acid is the rate-limiting step in PG synthesis. Arachidonic acid is further converted to PGG₂, which is peroxidised to PGH₂. This reaction is catalyzed by the enzyme cyclooxygenase (Bomalaski *et al.*, 1992). Various downstream enzymes produce the different specific prostaglandins (see Fig. 1.5).

Figure 1.5 Structures of the main prostaglandins and the various enzymes which lead to the production of each specific prostanoid (adapted from Watanabe, 2002).

The prostaglandins are the most prevalent autacoids found in almost every tissue as well as body fluids. They mediate responses to numerous diverse stimuli, in minute quantities and produce a remarkably broad spectrum of effects that encompasses practically every biological function. Prostaglandins were first isolated from the semen of sheep and that of human prostate gland from where their name is derived (Goldblatt and Von Euler 1935). Chemically they are 20-carbon unsaturated fatty acids containing a cyclopentane ring. There are a number of different prostaglandins and are named as A, B, C, D, E, F etc., depending on the constituents of the cyclopentane ring. If a prostaglandin has one double bond in the hydrocarbon chain they are classified as 1-series e.g. PGE₁. If there are two double bonds in the chain they are classified as 2-series PGs e.g. PGE₂. Similarly, there may also be 3-series PGs such as PGE₃ (Sell, 1987).

1.5.5.2 Cyclooxygenase

There are 2 major isoforms of cyclooxygenase COX-1, localized in the endoplasmic reticulum and COX-2 which acts at the nuclear envelope (Morita *et al.*, 1995). Prostaglandins are produced by the sequential oxidation of arachidonic acid by cyclooxygenase, either COX-1 or COX-2 (Smith, 1992). COX-1 is expressed in most cells, thought to be responsible for baseline levels of prostaglandin production. COX-1 plays a major role in platelet aggregation and renal function. COX-2 is not constitutively present but induced by cells stimulated with pro-inflammatory agents such as cytokines e.g. IL-1 or TNF α . Inflammatory responses can be associated with COX-1 and COX-2 isoforms. Both COX-1 and COX-2 convert arachidonic acid to the various specific prostaglandins via the various prostaglandin synthases (Fig. 1.5).

1.5.5.3 Prostaglandin synthases

Prostaglandin F Synthesis. $PGF_{2\alpha}$ can be synthesized via three pathways from PGE_2 , PGD_2 , or PGH_2 . The PGE_2 pathway for $PGF_{2\alpha}$ synthesis involves the action of 9-ketoreductase, the PGD_2 pathway is via 11-ketoreductase, and the PGH_2 pathway is via 9-11-endoperoxide reductase in the presence of NADH or NADPH (Watanabe, 2002).

Prostaglandin E Synthesis PGE₂ is mainly produced by conversion of the unstable intermediate PGH₂ via isomerisation by prostaglandin E synthase (PGES) which is also termed PGE isomerase. There exist two PGES biosynthetic routes, COX -1-cytosolic cPGES and the COX-2-membrane associated mPGES (see Fig. 1.6). Membrane associated PGES participates in various pathophysiological states in which COX-2 is involved. Murakami *et al.* (2002) showed that NSAIDs can preferentially inhibit mPGES activity.

Figure 1.6 Model showing the formation of PGE_2 by two separate pathways. Ca²⁺ mobilisers elicit an immediate response whereas a delayed response can be induced by pro-inflammatory stimuli. Arachidonic acid is slowly and continuously released by cPLA₂, which is further metabolized to PGE₂, via COX-2 and mPGES. mPGES is capable of producing PGE₂ via COX-1 but only when explosive activation of cPLA₂ occurs (Murakami *et al.*, 2002).

1.5.5.4 Prostaglandin receptors

Prostanoid receptors are classified primarily on the basis of the naturally occurring prostanoid ligand and sub-classified on the basis of synthetic prostanoid agonists and antagonists (Koremu et al., 1997). Nine types of prostaglandin receptors have been described (Table 2). These are a family of cell surface seven-transmembrane spanning receptors which are linked to heterotrimeric G-proteins (Sugimoto et al., 2003). These receptors are termed depending on which prostanoid is the preferred ligand followed by the suffix P (e.g. EP-receptors for PGE₂) rather than any genetic relationship. The PGE receptors constitute a complete family consisting of EP1, EP2, EP3, and EP4 receptors each encoded by distinct genes (Coleman et al., 1990). EP₁ receptors are structurally closely related to TP and FP receptors and EP₂ receptors are closely related to IP and DP receptors (Toh et al., 1995). The type of G protein activated by different prostanoid receptors correlates well with the c-terminal region of the receptors. One category encompasses receptors that activate Gs and stimulate cyclic AMP formation by adenylate cyclase e.g. IP, EP₂, EP₄ and DP receptors (Adie et al., 1992). A second category includes receptors that activate Gq thus enhancing intracellular Ca²⁺ levels by increasing phosphotidylinositol turnover e.g. TP, EP₁ FP receptors (Funk et al., 1993). There is also a third category of prostanoid receptors that act via Gi which inhibits adenylate cyclase and suppresses cyclic AMP formation e.g. EP3 receptors (Bos et al., 2004).
Table: 2 Major classes of prostanoid receptors and proposed intracellular 2nd messengersystems (data from Alexander *et. al.*, 2009).

PG Receptor	Agonist	2 nd messenger
DP ₁	PGD ₂	cAMP increase (Gs)
DP ₂	PGD ₂	cAMP decrease (Gi)
EP ₁	PGE	IP ₃ / DAG/ Ca ²⁺ (Gq)
EP ₂	PGE	cAMP increase (Gs)
EP ₃	PGE	cAMP decrease (Gi)
EP ₄	PGE	cAMP increase (Gs)
FP	$PGF_{2\alpha}$	IP ₃ / DAG/ Ca ²⁺ (Gq)
IP	PGI ₂	cAMP increase (Gs)
ТР	TXA ₂	IP ₃ / DAG/ Ca ²⁺ (Gq)

1.5.5.5 PGE₂ and EP receptors

PGE₂ binds to EP receptors to mediate its many actions. EP₂ and EP₄ receptors can stimulate Gs and induce upregulation of cyclic AMP production with the subsequent activation of protein kinase A (Yamamoto *et al.*, 1987). PGE₂ via EP₂ receptors can regulate cytokine production especially TNF- α . EP₃ receptors inhibit adenylate cyclase via activation of the pertussis toxin-sensitive G protein Gi. Functional characterisation of the receptors can be achieved using various agonists and antagonists which have an overlapping selectivity for each receptor. An example is the use of Butaprost (a selective EP₂ agonist) to indicate the action of PGE₂ via EP₂ receptors (Honda *et al.*, 1993). This would be compared to the actions of the EP₁/EP₃ selective agonist Sulprostone to eliminate activity via EP₃ receptors and the EP₁ receptor antagonist SC51322 which would eliminate actions mediated by EP₁ receptors (Alexander *at al.*, 2009)

1.5.5.6 $PGF_{2\alpha}$ and FP receptors:

 $PGF_{2\alpha}$ induces its actions via FP receptors (Breyer *et al.*, 2001). Upon binding of $PGF_{2\alpha}$ to its receptor, it results in the activation of Gq which is linked to an increase in phosphatidyl inositol turnover with a subsequent increase in intracellular calcium levels (Chen *et al.*, 1998). This pathway plays an important role in uterine contraction as well as modulating mitogenesis. There appear to be 2 selective FP receptor agonists, Fluprostenol and Latanoprost (both PG F-series analogues) and, more recently, a non-prostanoid analogue (AS604872) has been shown to be a highly selective antagonist of FP receptors (Alexander *et al.*, 2009).

1.5.5.7 PGD₂ and DP Receptors

PGD₂ can bind and activate two distinct receptors DP₁ receptors and CRTH₂ receptors (Chemoattractant receptor homologues molecule expressed on T-helper type 2 cells) now identified as a DP₂ receptor. DP₁ receptors are linked to adenylyl cyclase via the G protein subunit Gas resulting in an increase in cyclic AMP levels (Hirata et al., 1994, Boie et al., 1995). BWA868C (see Fig. 1.7) which also binds to DP₁ receptors can completely antagonize the PGD₂-induced elevation in cyclic AMP levels indicating that BWA868C is an antagonist of the DP₁ receptor (Arimura et al., 2001). Town et al. (1983) had previously shown that an analogue, BW245C (see Fig. 1.7), had a high affinity and selectivity towards DP₁ receptors and acted as an agonist. Abramowitz et al., (2000) have since demonstrated that BW245C has an approximately 5-fold higher affinity for DP₁ receptors than PGD₂. However, although BW245C exhibits a high selectivity towards DP1 receptors it retains activity against EP2 and EP4 receptors. This was demonstrated in the study of Rangachari et al. (1995) which showed that BW245C did not inhibit canine colonic epithelium in the same manner as PGD₂, but produced a stimulant effect instead. In addition, the DP₁ receptor antagonist, BWA868C, failed to alter the actions of BW245C which indicated that the actions of BW245C were most likely mediated via EP receptors. BW245C's affinity towards EP2 and EP4 receptors has also been shown by others (Abramowitz et al., 2000). BW245C has, nevertheless, been useful in elucidating the existence of the DP_2 receptor. It was shown by Hirai *et al.* (2001) that the PGD₂ dependent migration of blood eosinophils and basophils was not mimicked by BW245C indicating that the actions of PGD₂ on eosinophils and basophils was not mediated via the DP₁ receptor but by another PGD₂-binding receptor. This has subsequently been termed the DP₂ receptor

BWA868C (DP1 Receptor antagonist)

BW245C (DP1 Receptor agonist)

Figure: 1.7 Structures of Prostaglandin DP₁ receptor ligands

$1.5.5.8 15-Deoxy^{12} ^{14}-prostaglandin J_2 (15d-PGJ_2)$

PGD₂ readily undergoes spontaneous dehydration to yield 15-deoxy-PGJ₂, which has been suggested to exert anti-inflammatory effect *in vivo* (Takahiro *et al.*, 2002). PGD₂ *in vitro*, is a natural precursor for PGJ₂ which spontaneously converts into the cyclopentenone PGs of the J series (see Fig. 1.8), such as PGJ₂, Δ^{12} -PGJ₂, and 15-deoxy- $\Delta^{12. \ 14}$ -PGJ₂ (15d-PGJ₂) (Hirata *et al.*, 1988). 15d-PGJ₂ can be produced both extracellularly, via nonenzymatic conversion of PGD₂ (where it may function as an autocrine and paracrine factor during inflammatory processes) as well as intracellularly where it has thought to regulate peroxisome proliferator-activated receptors (PPARs). Both inflammatory cytokine stimulation (TNF- α and IL-1) and also cytoprotective steroids can enhance the production of 15d-PGJ₂ from human monocytes. Davidson *et al.* (2008) have shown that 7β-hydroxy-epiandrosterone, a cytoprotective steroid, which protects against experimentally-induced damage in various organs, appears to do so by upregulating 15d-PGJ₂ production. This upregulation of 15d-PGJ₂ production appears to be further enhanced in the presence of TNF- α (Davidson *et al.*, 2008).

lipocalin-type PGD synthase or haematopoetic PGD synthase

Figure 1.8 PGD₂ metabolic pathways. This shows the production of PGD₂ by two enzymic pathways (depending on cell type) and the subsequent conversion of PGD₂ to known metabolites (dashed arrows show non-enzymatic conversion). The compounds outlined in bold are those which have been used in the current study (adapted from Hirata *et al.*, 1988).

1.5.5.10 Immunopharmacology of Prostaglandins

The various PGs have many opposing and overlapping actions. An example of this is the effect of $PGF_{2\alpha}$ which produces bronchoconstriction, while PGE_2 produces bronchodilation yet they both contract muscles of the GI tract (Mathe & Hedqvist, 1975). PGE₂ is a well established mediator of inflammation as it appears to be responsible for the symptoms of inflammation (Gallin *et al.*, 1988), however, the role which other PGs play in the control or modulation of inflammatory responses, particularly TNF production, is not well characterised. This is important with respect to both the different PGs and their respective receptor subtypes. PG analogues have been useful in this regard, both agonists and antagonists have helped elucidate the PG and receptor pathways for various responses especially for PGE₂. As indicated earlier, the use of analogues which target PGs other than the one of interest are useful in eliminating "cross-reactivity" and confirming whether a receptor system is solely involved in controlling a particular response. Thus, although PGD₂ receptor pathways are the focus of the present study, analogues for PGE₂will also be briefly discussed.

1.5.5.10.1 Prostaglandin E₂ analogues

Numerous studies have shown that PGE_2 can inhibit many immune cell responses such as phagocytosis or the production of inflammatory cytokines (Davidson *et al.*, 1998). Conversely, COX inhibitors enhance these parameters indicating that endogenous prostaglandins are actively involved in the downregulation (Watabe *et al.*, 1993; Davidson *et al.*, 1998). The nature of the receptors which mediate this suppression has been studied using various synthetic PGE_2 analogues. Butaprost (an EP_2 receptor agonist) has been shown to suppress TNF production from LPS-stimulated dendritic cells (Vassiliou *et al.*, 2003) which would indicate that EP2 receptors are involved in the suppression. The lack of effect of the EP3/ EP1 agonist, sulprostone, gave a clear indication that downregulation of TNF occurs via EP2 receptors. In the same study, the authors showed that all 4 EP receptor subtypes are upregulated in the presence of LPS (Vassiliou *et al.*, 2003) clearly indicating the invaluable contribution of PG receptor analogues in elucidating the receptors responsible for controlling specific functions. On the basis of gene expression data it would not have been possible to reveal which receptor subtype was the most important with respect to function.

1.5.5.10.2 Prostaglandin DP analogues

As indicated previously, BWA868C is an antagonist which binds to DP₁ receptors and has been shown to prevent PGD₂-induced increases in cyclic AMP levels (Arimura *et al.*, 2001). Similarly BW245C, a DP₁ receptor agonist increases intracellular levels of cyclic AMP (Town *et al.*, 1983), but, as discussed previously, it retains activity against EP₂ and EP₄ receptors. (Abramowitz *et al.*, 2000).

Recently several compounds have been developed which may be useful tools in evaluating the role of DP₂ receptors. The most promising compound is CAY10471 which is an analogue of BAY-µ3405 (ramatroban) a TP receptor antagonist which also showed antagonist activity toward DP₂ receptors (Ulven et al., 2005). CAY10471 was developed by modifying the ramatroban structure (Sugimoto et al., 2003). Minor structural changes such as shortening of the acidic side chain by one methylene group resulted in a compound with highly selective and potent DP₂ antagonist activity (Sugimoto et al., 2003). Mathiesen et al. (2006) showed that three ramatroban analogues TM30642, TM30643, TM30089 (CAY10471) which were modifications of the ramatroban structure by either i) a single additional methyl group (TM30642), or ii) an acetic acid instead of propionic acid side chain (TM30634), or iii) by both modifications (TM30089- CAY10471). All three compounds inhibited PGD₂ binding to DP₂ receptors with nanomolar affinity (Mathiesen et al., 2006). However, it was also shown that the 3 compounds were functionally antagonists and compared to ramatroban, this was accompanied by a decrease in maximal effect indicating that the antagonism, by CAY10471 especially, was insurmountable. It was shown, in the same study, that this was not the result of an allosteric interaction but by direct binding to DP2 receptors. The data indicated that the reason for the insurmountable antagonism is a result of the slow rate of dissociation of from the DP₂ receptor and compared to ramatroban (which shows surmountable antagonism) the half-life was 1.55×10^6 -fold longer (Mathiesen *et al.*, 2006). This clearly indicates that antagonism of the DP₂ receptor by CAY10471 is essentially irreversible and would make it an ideal research tool and, potentially, a useful therapeutic compound.

1.5.5.10 Prostaglandins in inflammation

The 2- series of prostaglandins, especially PGE_2 , are generally regarded as being proinflammatory (Funk et al., 2001). This is based on the observations that PGE₂ can induce the various symptoms of inflammation i.e. vasodilation, swelling and pain. Direct evidence for the role of PG in inflammatory responses was provided by the study of Portanova et al. (1996). It was shown that specific anti- PGE₂ antibodies attenuated both the oedema (swelling) and pain associated with inflammation. They showed that rat paw oedema and hyperalgesia induced by carageenan was suppressed by an anti-PGE₂ monoclonal antibody compared to treatment with a control non-specific antibody (Portanova et al., 1996). These results indicate that PGE₂ plays a major role in tissue oedema and hyperalgesia. This effect was comparable to the actions of the cyclooxygenase inhibitor indomethacin in the same study (Portanova et al., 1996). Thus, this is further direct evidence that PGE2 is involved in producing the symptoms of inflammation. However, many studies have also shown that PGE₂ can potently suppress the formation of the upstream mediators of inflammation i.e. cytokines especially IL-1 and TNF- α . PGE₂ can completely suppress TNF- α production from many cells including monocytes/ macrophages and whole blood (Spengler et al., 1989; Davidson et al., 1998; Habeeb et al., 2002). This clearly demonstrates that exogenous PGE₂ can suppress cytokine production, but cyclooxygenase inhibitors have been shown to enhance cytokine release indicating that endogenous PGs have a regulatory role in the control of cytokine production (Gilroy et al., 1999). As the cylooxygenase inhibitors suppress all PG synthesis it is most likely that PGE₂ is not the only PG which can modulate cytokine production and that other major PGs produced during inflammatory responses may also play an important role such as the PGD₂ pathways evaluated in the present study.

Following the stimulation of immune cells such as monocytes or lymphocytes by a wide variety of pathogenic stimuli, Interleukin-1 and TNF- α are the major pro-inflammatory cytokines released. It has been shown that prostaglandins are produced from arachidonic acid and act as secondary mediators of inflammation (Davidson *et al.*, 1998). More recently it has been recognized that PGE₂ can suppress the production of primary inflammatory mediators, specifically TNF- α . (Davidson *et al.*, 1998). There are many different series of prostaglandins in addition to PGE₂ such as PGD₂ and PGF_{2 α}. This project aimed to study the effect of prostaglandin D₂ (PGD₂) and its metabolite 15d-PGJ₂ on LPS-stimulated TNF- α production in human blood and monocytes.

It was also intended to ascertain which receptor systems were involved in mediating the effects of PGD₂ and 15d-PGJ₂. This was achieved pharmacologically, using different agonist and antagonist drugs which interfere with the 2 main receptor systems, DP₁and DP₂, described for PGD₂. The study will assess the actions of 15d-PGJ₂ on TNF- α production.

The specific objectives of the study were:

- To ascertain the effect of PGD₂ on LPS-stimulated TNF-α production in human blood and monocytes.
- To compare the effect of PGE_2 and $PGF_{2\alpha}$ on LPS-stimulated TNF- α production in human blood as a landmark (established) action.
- To characterise the receptor pathways for PGD₂ on LPS stimulated TNF-α production in human blood and monocytes using:

 a selective agonist for DP₁ receptors BW245C
 selective antagonists for the 2 receptors
 BWA868C (DP₁ antagonist) and
 CAY10471 (DP₂/CRTH₂ antagonist)
- To compare the effect of PGD₂ to that of 15d-PGJ₂ on LPS-stimulated TNF- α production in the presence of the DP₁ and DP₂ inhibitors BWA868C and CAY10471.

2. Materials and Methods

2.1 Materials

'Analar' reagents were used throughout and any additional materials were obtained from the following sources

Cells

Human Blood- & Buffy Coat	Scottish National Blood
	Transfusion Service (SNBTS)
	Gartnavel Hospital, Glasgow UK
Drugs/ modulators	

BWA868C (DP1 antagonist) Cayman Chemical Co., USA ,, BW245C (DP1 agonist) ,, CAY10471 (DP₂/CRTH₂ antagonist) Prostaglandin D₂ ,, ,, Prostaglandin E₂ Prostaglandin $F_{2\alpha}$,, ,, Prostaglandin 15d-PGJ₂ ,, Lipopolysaccharide (Salmonella abortus equi)

Chemicals/ Assay Materials

Bovine serum albumin	Sigma – Aldrich, Dorset, UK
Dimethyl sulphoxide	"
Di-Sodium Hydrogen Phosphate	22
Ethanol	"
Ficoll Histopaque (1.077g/l)	"
Polyethylene glycol (Av. Mol. Wt. 8000)	22
Potassium Chloride	22
Potassium dihydrogen Phosphate	22
Sodium Chloride	"
Sulphuric acid	22
Tween-20	22
3, 3', 5, 5'-tetramethylbenzidine (TMB)	"

Biosource Europe S.A. Belgium

Consumables/ plastics

Cell culture dish and flask Eppendorf 1.5 ml tubes

Sterile universal tubes (30ml) 24-well cell culture plates

Coaring- Coaster Greiner Bio-one (Stonehouse, UK) "

Additional Materials

Chloroform Distilled water Foetal calf serum Hank's balanced salt solution RPMI-1640

Fisher Scientific UK ELGASTAT water purifier Invitrogen/ Gibco, Paisley, UK "

Equipment

Balance- Mettler AJ100 Benchtop Centrifuge- Jouan A-14 Centrifuge- Sorvall RT 6000D ELISA plate reader – Titertek Multiskan MCC/340 pH meter –Jenway 3020

2.2 Methods

2.2.1 Preparation of test substances, chemicals and drugs

Stock solutions of PGE₂, PGD₂ and PGF_{2 α} and BWA868C were prepared in ethanol. BW245C and CAY10471 stock solutions were prepared in Dimethyl sulphoxide (DMSO). The maximum solvent concentration did not exceed (0.1%) in final incubations and solvents were diluted in RPMI immediately before use.

2.2.2 Preparation of human blood and human monocytes for experimental use

Whole human blood was obtained from the Scottish National Blood Transfusion Service (SNBTS) Glasgow, and utilised directly from the donor bag. Human mononuclear cells and monocytes were isolated from leukocyte-rich Buffy coat fraction obtained from SNBTS.

2.2.2.1 Blood incubation protocol

Each assay was performed under aseptic conditions. Aliquots of blood (700µl) were dispensed into plastic 1.5 ml Eppendorf tubes. Sterile solutions of drugs including LPS, PGE₂, PGD₂, and PGF_{2 α} were added in 100 µl aliquots and the volume was adjusted to yield a final volume of 1ml by the addition of RPMI-1640 or solvent. Samples were incubated in plastic 1.5ml Eppendorf tubes. Incubations were carried out for 20 h, at 37 °C, 5% CO₂ and 100% humidity. After incubation, the samples were centrifuged at 10,000 g for 30 seconds and plasma was collected. The plasma was transferred to fresh tubes and stored at -20° C until assayed.

2.2.2.2 Isolation of human peripheral blood monocytes

The Leukocyte-rich Buffy coat fraction was collected from the donor bag under aseptic conditions and the mononuclear cell layer was obtained by Ficoll Histopaque (1.077 g/ l) density centrifugation. The Buffy coat was gently layered onto 10 ml of Ficoll before being centrifuged in swing-out rotor for 1 h at 400 g at 20 °C. The mononuclear cell layer was removed, washed twice with HBBS and resuspended in 16ml RPMI-1640.

Aliqouts (4 ml) of the mononuclear cell suspension (isolated as described previously) were placed into sterile 60-mm diameter plastic Petri dishes (Nunclon, Denmark) and incubated for 20 h, at 37°C, 5% CO2 and 100% humidity. Adherent cells were collected by scraping the plates with a sterile rubber 'policeman' into 1 ml of HBBS followed by centrifugation at 400 g for 5mins at 20 °C and washed twice in HBBS. Finally, the cells were resuspended in RPMI 1640 at 2 x 10^6 cells/ ml and referred to as monocytes. Monocytes were adjusted to produce a final concentration of $1x10^6$ cells/ml and placed in Eppendorf tubes. Cells were incubated in a volume of 700 µl and the various agents were added in 100 µl aliquots to yield a final volume of 1 ml. Cells were incubated at 37° C, 5% CO₂ and 100% humidity. Following incubations, the samples were centrifuged at 10,000 g for 30 seconds and the resultant supernatant was transferred to fresh tubes and stored at -20 °C until assayed.

2.2.2.3 Cell counting and assessment of viability

Cell viability was estimated with cell counting using the Trypan blue exclusion test. An aliquot of collected cells was diluted 1:10 (v/v) with RPMI-1640 before being diluted 1:1 with Trypan blue solution. The stained cells were then immediately transferred to a Neubauer improved Haemocytometer and counted under a phase contrast light microscope. Trypan blue stain excluded from viable cells, while non-viable cells are permeable appearing blue when stained. Viability was estimated by calculating the percentage of total cells within the sample that were observed to exclude the dye. Cell viability was routinely found to be greater than 95% in human peripheral mononuclear cells and human monocytes.

2.2.3 Measurement of TNF-α Production

2.2.3.1 ELISA Assay Protocol

The sandwich enzyme-linked immunosorbent assay (ELISA) technique was used for the determination of TNF- α . Microtitre plates (Nunc-Imuno modules 100 µl/ well) were used coated with capture monoclonal antibody diluted to 5µgm/ml for TNF- α antibody in a coating buffer (PBS: Nacl 8g/ L, Na₂HPO₄2H₂O 1.13g/ l, KH₂PO₄ 0. 2g/ L KCl 0. 2g/ L, 99% Distil H₂O) at pH 7.4 and incubated for 18 h at 4^o C. Wells were then washed four times with PBS containing 0.5% (v/ v) Tween-20. Samples and TNF- α standards were diluted appropriately in standard diluent (standard diluent; PBS containing 0.5% (w/ v) BSA and 0.1% (v/ v) Tween-20). The biotinylated detection antibody was also diluted in the standard diluent to achieve a concentration of 0.8µg/ml. Aliquots of diluted samples/standards (100µl) were added to the appropriate wells before 50µl of diluted detection antibody was added to each well and incubated for 2 hrs at room temperature. After a further five washes with PBS containing 0.5% (v/ v) Tween-20, a streptavidin horseradish peroxidase (HRP) conjugate was diluted 1:625 in standard diluent and 100µl added to each well for 30 minutes at room temperature.

The substrate 3,3', 5,5'-tetramethyl-benzidine (TMB) was utilised to detect the bound HRP. The TMB substrate solution was diluted 1:3 in standard diluent and 100 μ l added to each well. The wells were then incubated at room temerature in the dark or 30 minutes. The reaction was stopped by the addition of 100 μ l of 1M H₂SO₄ to each well and the absorbance measured within 30 minutes on a Titertek Multiskan MCC/340 plate reader at an absorbance of 450 nm.

In order to determine the concentrations of TNF- α in samples, standard curves were always prepared alongside samples.

2.2.3.2 Flow Diagram for ELISA Assay of TNF-α

2.2.3.3 Data analysis

Data was analysed using Statview Student Software (Abacus Concepts, Inc.) with the TNF- α concentration present within each sample determined by 3rd order polynomial regression analysis, enabling comparison with the appropriate standard curve (Figure 2.1). In each case the values obtained were adjusted for the appropriate dilution factors. All the data are expressed as the mean of n replicates \pm the standard deviation of the mean and were assessed for statistical significance using a Students unpaired t-test. The difference between control and treated groups was considered to be significant when P was less than 0.05.

A standard curve for TNF- α was generated for each assay using human recombinant TNF- α standards that were run concurrently with the samples during analysis by ELISA as described in section 2.2.3.1. The equation above the figure shows the 3rd order polynomial algorithm generated by this particular data set and used by the software to calculate unknown concentrations of TNF- α from the absorbance values.

3. Results

3 RESULTS

3.1 The effect of Varying LPS Concentrations on TNF-α Production in Human Blood

The various effects of lipopolysaccharide (LPS) are widely documented within the scientific literature for its ability to stimulate cytokine production (Mathiak *et al.*, 2002).

Initial experiments were performed to determine the effect of LPS on the production of TNF- α in human blood. The level of TNF- α was measured by ELISA assay as described in section 2.2.3 As shown in Fig. 3.1, increasing concentrations of LPS resulted in a dose-dependent increase in TNF- α production. At 0.1µg/ml LPS had no effect. The threshold level in the production of TNF- α occurred at 1µg/ml. 10µg/ml concentration of LPS was shown to induce sub-maximal production of TNF- α . The maximum production of TNF- α was observed in the presence of 10-100 µg/ml LPS, which shows a 17-18 fold increase in TNF- α levels above control.

3.2 Effect of Varying Concentrations of PGE₂ on TNF-α production in Blood in response to LPS.

PGE₂ was used to ascertain its ability to reduce cytokine production, specifically TNF- α . Human blood was incubated with increasing concentrations of PGE₂ in the absence (control) or presence of LPS (10µg/ml) for 20 hours. The production of TNF- α within each sample was determined by ELISA assay (section 2.2.3). As shown in Fig. 3.2, blood incubated with LPS produced a 6-fold increase in TNF- α production in comparison to incubations without LPS or PGE₂. Increasing the PGE₂ concentration resulted in a dose-dependent decrease in TNF- α production having a maximum suppressive effect between 1-10µM (Fig. 3.2). The threshold level at which PGE₂ exerted a significant inhibition on TNF- α production in whole blood was 0.01 µM. The IC₅₀ for PGE₂ to inhibit the production of TNF- α in blood was calculated to be 40 nM.

Figure 3.1The effect of Varying LPS Concentrations on
TNF-α Production in Human Blood

Blood was incubated with increasing concentrations of LPS for 20 hours at 37 °C, 100% humidity, 5% CO₂. Incubations were then centrifuged and the TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. *Denotes P < 0.05 when compared to control.

Figure 3.2 Effect of Varying Concentrations of PGE₂ on TNF-α production in Blood in response to LPS

Blood was incubated either with culture medium alone (filled square, showing basal TNF- α production) or with various concentrations of PGE₂ in the presence of LPS (10µg/ml) for 20 hours. Incubations were then centrifuged and the TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. *Denotes P < 0.05 when compared to LPS alone i.e. no PGE₂.

3.3 Effect of Varying Concentrations of PGD₂ on LPS-stimulated TNF-α production in blood.

In the previous experiment PGE_2 suppressed LPS-stimulated TNF- α production in blood. Thus, the effect of other prostaglandins such as PGD_2 , and $PGF_{2\alpha}$ was also evaluated on LPS-stimulated TNF- α production. LPS stimulation resulted in a > 20-fold increase in of TNF- α production compared to the control incubations (Fig. 3.3). PGD_2 produced a dose-dependant decrease in TNF- α production. Maximal suppression of TNF- α was observed at 1 - 10 μ M PGD₂. The threshold level at which PGD₂ exerted a significant inhibition on TNF- α production in blood was 0.1 μ M. The IC₅₀ for PGD₂ to inhibit the production of TNF- α in whole blood was calculated to be 20 nM.

3.4 Effect of PGD₂ on LPS-stimulated TNF-α Production in Human Monocytes

As PGD₂ was shown to have a suppressive action toward LPS-stimulated TNF- α production, experiments were performed to see whether this action of PGD₂ was directly targeted toward monocytes. This was studied on monocytes isolated from human blood. Incubation of monocytes with LPS (10 µg/ ml) resulted in a 22-fold increase in TNF- α production in comparison to control incubations (Fig. 3.4). The increase in TNF- α production was reduced with increasing PGD₂ concentrations (Fig. 3.4). The threshold level at which PGD₂ exerted a significant inhibition of LPS-stimulated TNF- α production in monocytes was 0.1 µM. The IC₅₀ for this PGD₂ to inhibition in monocytes was calculated to be 30 nM. Maximum suppression of TNF- α production occurred at 1 – 10 µM (Figure 3.4).

Figure 3.3 Effect of PGD₂ on LPS-stimulated TNF-α Production in Human blood

Blood was incubated either with culture medium alone (\blacklozenge - basal TNF- α production) or with various concentrations of PGD₂ in the presence of LPS (10µg/ml) for 20 hours. Incubations were then centrifuged and the TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. *Denotes P < 0.05 when compared to incubations with LPS alone.

Figure 3.4 Effect of PGD₂ on LPS-stimulated TNF-α Production in Human Monocytes

Monocytes (1x10⁶) isolated from human peripheral blood were incubated either with culture medium alone (\blacksquare) or with various concentrations of PGD₂ in the presence of LPS (10µg/ml) for 20 hours. Incubations were then centrifuged and the TNF- α levels in the supernatant were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the mean of n = 3 ± s.d. *Denotes P < 0.05 when compared to incubations with LPS alone.

3.5 Effect of $PGF_{2\alpha}$ on LPS-stimulated TNF- α Production in Human Blood

The effect of $PGF_{2\alpha}$ on LPS-stimulated TNF- α production in whole blood was also evaluated. Blood was incubated with LPS in the presence of increasing concentrations of $PGF_{2\alpha}$ for 20 hours. TNF- α production was determined by ELISA assay (section 2.2.3). As shown in previous experiments, LPS increased TNF- α production well above the basal level. $PGF_{2\alpha}$ decreased TNF- α production in a dose dependent manner (Fig. 3.5). The threshold level at which $PGF_{2\alpha}$ exerted a significant inhibition of TNF- α production was 0.01 μ M. The corresponding IC₅₀ value for the $PGF_{2\alpha}$ inhibition of TNF- α production in whole blood was calculated to be 50 nM. This indicated that $PGF_{2\alpha}$ was less effective than either PGE_2 or PGD_2 . The remainder of the study focussed on PGD and PGD receptor pathways.

3.6 Effect of PGD₂ and BWA868C (DP₁ receptor antagonist) on LPS -stimulated TNF-α production in Human Blood.

A series of experiments were carried out to ascertain the receptor pathways by which the various prostaglandins PGE₂, PGD₂, and PGF_{2 α} induced their suppressive effects. PGD₂ was shown to suppress TNF- α production and this could be mediated by two potential receptor pathways DP₁ or CRTH₂/ DP₂. The effects of a DP₁ receptor antagonist (BWA868C) were evaluated on the PGD₂-induced suppression of TNF- α production. In order to ascertain the role of DP₁ receptors. Fig. 3.6 shows the effect of PGD₂ on TNF- α production in the presence of BWA868C. TNF- α production was very low in control incubations (in the absence of any agents). LPS (10µg/ml) stimulated a large increase in TNF- α production, > 40-fold. BWA868C alone also resulted in an increase in TNF- α . PGD₂ almost completely abolished the LPS-stimulated increase in TNF- α compared to incubations with LPS alone. The PGD₂ –induced suppression of LPS-stimulated TNF- α production was not altered by BWA868C.

Figure 3.5Effect of PGF2α on LPS-stimulated TNF-α Production
in Human Blood

Blood was incubated either with culture medium alone (\blacksquare) or with various concentrations of PGF_{2 α} in presence of LPS (10µg/ml) for 20 hours. Incubations were then centrifuged and the levels of TNF- α in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the mean of n = 3 ± s.d. * Denotes P < 0.05 when compared to incubations with LPS alone.

Figure 3.6Effect of PGD2 and BWA868C (DP1 receptor antagonist) on
LPS-stimulated TNF-α production in Human Blood.

Blood was incubated for 20 hours either with culture medium alone (ctrl) or with LPS (10µg/ml) in absence and presence of PGD₂ (1 µM), BWA868C (50 nM) or a combination of LPS, PGD₂ and BWA868C (L+BWA868C+D2). The TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. * Denotes P < 0.05 when compared to LPS induced TNF- α stimulation.

3.7 Effect of PGD₂ and BWA868C (DP₁ receptor antagonist) on LPS –stimulated TNF-α production in Human monocytes.

In whole blood PGD₂ demonstrated a profound suppression of LPS-stimulated TNF- α levels that was unaffected in the presence of BWA868C. Further experiments were performed to ascertain whether similar effects occurred in monocytes. In the presence of LPS, TNF- α production was greatly elevated and this was considerably suppressed in incubations including PGD₂ (Fig. 3.7). BWA868C did not significantly alter either the PGD₂–induced suppression of LPS-stimulated TNF- α production or the elevated level of TNF- α with LPS alone. Thus, the suppressive effect of PGD₂ was not altered by the DP₁ receptor antagonist, BWA868C.

3.8 Effect of PGE₂ on LPS-stimulated TNF-α production in Human Blood in the presence of BWA868C (DP₁ receptor antagonist)

PGE₂ or PGF_{2 α} can be interconverted by enzymatic actions in blood and possibly converted to PGD₂. The metabolites may be responsible for producing a suppressive effect on TNF- α production. To test this hypothesis, additional experiments were carried out to ascertain the effects of exogenous PGE₂ and PGF_{2 α} via DP1 receptors on TNF- α production in the presence of a DP₁ receptor antagonist (BWA868C). Fig 3.8 shows the effect of PGE₂ on TNF- α production in the presence of BWA868C. Incubation of blood with LPS greatly increases TNF- α production in comparison to control incubations. Exogenously added PGE₂ either alone or in incubation with LPS significantly reduced TNF- α production. BWA868C either alone or in the presence of LPS produced a significant increase in TNF- α production. However, BWA868C did not alter the suppressive actions of PGE₂ (Fig. 3.8).

Figure 3.7Effect of PGD2 and BWA868C (DP1 receptor antagonist) on
LPS-stimulated TNF-α production in Human monocytes

Monocytes (1×10^6) isolated from Human peripheral blood were incubated for 20 hours either with culture medium alone (ctrl) or with LPS $(10\mu g/ml)$ in the absence and presence of PGD₂ $(1\mu M)$, BWA868C (50 nM) or a combination of both PGD₂ and BWA868C in the presence of LPS (L+BWA868C+D2). TNF- α levels in the supernatant were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the mean of n = 3 ± s.d. * Denotes P<0.05 when compared to controls. † Denotes P < 0.05 when compared to LPS alone.

Figure 3.8 Effect of PGE₂ on LPS-stimulated TNF-α production in Human Blood in the presence BWA868C (DP₁ receptor antagonist)

Blood was incubated for 20 hours either with culture medium alone (ctrl) or with LPS (10µg/ml) in absence and presence of PGE₂ (1µM), BWA868C (50 nM) or combination of PGE₂ and BWA868C (L+BWA868C+E2) and the TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the mean of n = 3 ± s.d. * Denotes P < 0.05 when compared to LPS alone. † Denotes P < 0.05 when compared to LPS alone.

3.9 Effect of PGE₂ on LPS -stimulated TNF-α production in Human monocytes in the presence of BWA868C (DP₁ receptor antagonist)

In whole blood PGE₂ demonstrated a suppression of TNF- α production that was unaltered by BWA868C. Further experiments were designed to see whether similar effects of PGE₂ were found in monocytes. The effect of PGE₂ on TNF- α production in human monocytes is shown in Fig. 3.9. The LPS-stimulated elevation of TNF- α levels were greatly reduced by PGE₂ (1 μ M). As with the blood incubations, BWA868C did not alter the effects of PGE₂.

3.10 Effect of the BWA868C (DP₁ receptor antagonist) on the PGF_{2 α} induced suppression of the LPS-stimulated TNF- α production in Human Blood

Previous experiments had shown that in human blood and monocytes, incubation with PGE₂ and PGD₂ produces a considerable suppression of TNF- α production. The effect of PGF_{2 α} either alone or in combination with BWA868C was also evaluated. PGF_{2 α} either alone or in the presence of LPS significantly lowers TNF- α production (Fig. 3.10). Incubation with BWA868C indicated that although it significantly increased TNF- α levels when incubated alone, it did not significantly alter either the LPS-stimulated increase or the PGF_{2 α}-induced suppression (Fig. 3.10).

Figure 3.9 Effect of PGE₂ on LPS- stimulated TNF-α production in Human monocytes in the presence of BWA868C (DP₁ receptor antagonist)

Monocytes (1x10⁶) isolated from Human peripheral blood were incubated for 20 hours either with culture medium alone (ctrl) or with LPS (10µg/ml) in the absence and presence of PGE₂ (1µM), BWA868C (50 nM) or a combination of both PGE₂ and BWA868C (L+BWA868C+E2) and the TNF- α levels in the supernatant were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the mean of n = 3 ± s.d. * Denotes P < 0.05 when compared to controls. †P < 0.05 compared to LPS alone, § P < 0.05 when compared to LPS + PGE₂.

Figure 3.10 Effect of BWA868C (DP₁ receptor antagonist) on $PGF_{2\alpha}$ -induced suppression of LPS-stimulated TNF- α production in Human Blood

Blood was incubated for 20 hours either with culture media alone (ctrl) or with LPS (10µg/ml) in the absence or presence of PGF_{2α} (1µM), BWA868C (50 nM) or a combination of both PGF_{2α} and BWA868C (L+BW+F2). Incubations were then centrifuged and the TNF-α levels in the plasma were determined by ELISA. Results are from of single blood donor and are representative of at least three independent experiments. Values are expressed as the mean of $n = 3 \pm s.d$. * Denotes P < 0.05 when compared to controls. † Denotes P < 0.05 compared to LPS alone.
3.11 Effect of BWA868C (DP₁ receptor antagonist) on the PGF_{2 α} induced suppression of LPS-stimulated TNF- α production in Human Monocytes

Previous experiments had shown that in human blood $PGF_{2\alpha}$ produced a considerable suppression of TNF- α production which was unaltered by BWA868C. Experiments were also carried out on monocytes to ascertain if the effects were similar. Fig. 3.11 shows the effect of the BWA868C (DP₁ receptor antagonist) on TNF- α production in the presence of PGF_{2 α}. LPS increased TNF- α levels which were reduced by PGF_{2 α}. The PGF_{2 α}-induced decreases in TNF- α production were not altered by BWA868C.

3.12 Effect of BW245C (DP₁ receptor agonist) on LPS-stimulated TNF-α production in Human Blood

As the suppression of TNF- α production by PGD₂was unaltered in the presence of BWA868C (DP₁ antagonist). It was decided to further investigate the potential role of DP₁ receptor pathways by using a DP₁ agonist. The effects of the synthetic prostanoid analogue, BW245C (known to act at DP₁ receptors in other tissues) was evaluated on LPS-stimulated TNF- α production. In the presence of BW245C, LPS-stimulated TNF- α production decreased in a dose-dependent manner. The maximum suppression of TNF- α production was between 1 and 10µM (Fig. 3.12). The concentration of BW245C which yielded a threshold inhibition was 0.01µM. The IC₅₀ for BW245C inhibition of TNF- α production was 0.01µM (10 nM).

Monocytes $(1x10^6)$ isolated from Human peripheral blood were incubated for 20 hours either with control media alone (ctrl) or with LPS $(10\mu g/ml)$ in the absence or presence of PGF_{2 α} (1 μ M), BWA868C (50 nM) or a combination of both PGF_{2 α} and BWA868C (L+BW+F2) and the TNF- α levels in the supernatant were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the mean of n = 3 ± s.d. * Denotes P < 0.05 when compared controls. † Denotes P < 0.05 compared to LPS alone.

Figure 3.12Effect of BW245C (DP1 receptor agonist) on LPS- stimulated
TNF-α production in Human Blood

Blood was incubated for 20 hours either with control media alone (\blacklozenge) or with LPS (10µg/ml) in the absence and presence of various concentrations of BW245C. Incubations were then centrifuged and the TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. * Denotes P < 0.05 when compared to control.

3.13 Effect of the BW245C (DP₁ receptor agonist) on LPS-stimulated TNF-α production in Human Monocytes

In whole blood BW245C showed a profound dose-dependent suppression of TNF- α production (Fig. 3.12). Thus, the effect of BW245C was also evaluated on TNF- α production from monocytes. LPS incubation produced a six-fold increase in TNF- α production in comparison to the control. As with whole blood, BW245C also suppressed TNF- α levels in a dose-dependent manner in monocytes. The maximum suppressive effect occurred at 10 μ M. (Fig. 3.13). The threshold effect occurred at 0.1 μ M BW245C. The data showed that the IC₅₀ for BW245C –induced suppression of TNF- α production in monocytes was higher than that in blood - 0.09 μ M (90nM).

3.14 Effect of PGD₂ on LPS-stimulated TNF-α Production in Human Blood in the presence of BW245C (DP₁ receptor agonist) and BWA868C (DP₁ receptor antagonist)

In previous experiments BW245C showed a significant inhibition of TNF- α production. In order to ascertain whether this occurred via DP₁ receptors, the actions of BW245C alone or in combination with PGD₂ were investigated in the presence of BWA868C. Figs. 3.14 (a) and 3.14 (b) show the effect of PGD₂ in combination with BW245C and both agonists with BWA868C respectively. LPS produced a significant increase in TNF- α production which was suppressed by PGD₂ and BW245C individually and additionally when combined (Fig. 3.14a). The inclusion of BWA868C to the incubations did not alter the ability of either PGD₂ or BW245C to suppress TNF- α production (Fig. 3.14 b).

Figure 3.13Effect of the BW245C (DP1 receptor agonist) on LPS-stimulated
TNF-α production in Human Monocytes

Monocytes $(1x10^6)$ were incubated for 20 hours either with control media alone (\blacklozenge) or with LPS $(10\mu g/ml)$ in the absence or presence of various concentrations of BW245C. Incubations were then centrifuged and the TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of $n = 3 \pm s.d$.

* Denotes P < 0.05 when compared to controls.

Figure 3.14a Effect of PGD_2 on LPS-stimulated TNF- α Production in Human Blood in the presence of BW245C (DP₁ receptor agonist)

Blood was incubated for 20 hours either alone (ctrl) or with LPS (10µg/ml) in the absence or presence of PGD₂ (1µM), BW245C (1µM), or in combination of PGD₂ and BW245C (L+D2+BW245) and the TNF- α levels in the plasma were determined by ELISA. Results are from the single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. *Denotes P < 0.05 when compared to controls. † Denotes P < 0.05 when compared to LPS-stimulated TNF- α production. § Denotes P < 0.05 when compared to PGD₂ induced suppression of LPS stimulated TNF- α production. (note: some error bars are extremely small and are not visible).

Figure 3.14bEffect of PGD2 on LPS-stimulated TNF-α Production in
Human Blood in the presence of BWA868C (DP1 receptor
antagonist)

Blood was incubated for 20 hours either alone (ctrl) or with LPS (10µg/ml) in the absence or presence of PGD₂ (1µM), BWA868C (0.05µM) or a combination of PGD₂ and BWA868C (L+ BWA868C +D2) and the TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. * Denotes P < 0.05 when compared to controls. † Denotes P < 0.05 when compared to LPS stimulated TNF- α production.

3.15 Effect of BW245C (DP₁ receptor agonist) and CAY10471 (DP₂ antagonist) on LPS-stimulated TNF-α production in Human blood

BW245C had demonstrated its ability to downregulate TNF- α production which was unaffected by the DP₁ antagonist BWA868C. It was decided to evaluate the effect of a DP₂ antagonist (CAY10471) on the BW245C-induced suppression of TNF- α production. The LPS-stimulated increases in TNF- α production was significantly reduced in a dose-dependent manner by BW245C. This inhibition was largely unaltered in the presence of CAY10471 (0.05 μ M). However, only at a concentration of 0.1 μ M BW245C there was a significant suppression of TNF production in the presence of CAY10471 which did not alter any other actions (Fig. 3.15). Thus, The IC₅₀ for BW245C was calculated to be 0.12 μ M in absence of CAY10471 and slightly enhanced to 0.07 μ M in the presence of CAY10471.

3.16 Effect of CAY10471 (DP₂ antagonist) on BW245C (DP₁ receptor agonist) induced suppression of LPS-stimulated TNF-α production in human blood

As shown previously, a single concentration of BW245C (1 μ M) induced a suppression of LPS-stimulated (10 μ g/ ml) TNF- α production which was unaltered by CAY10471 (0.05 μ M). However, it was noticed that the basal level of TNF- α production (in the absence of LPS) increased in the presence of CAY10471 (Fig. 3.16).

Figure 3.15Effect of BW245C (DP1 receptor agonist) and CAY10471 (DP2
antagonist) on LPS-stimulated TNF-α production in Human blood

Blood was incubated for 20 hours either with culture media alone (-obscured by 0.05 μ M CAY10471 alone- \blacksquare) or with LPS (10 μ g/ml) in the absence or presence of increasing concentrations of BW245C alone (open circles) or BW245C + CAY10471 (closed circles). Incubations were then centrifuged and the TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. * Denotes P < 0.05 when compared to controls.

Figure 3.16 Effect of CAY10471 (DP₂ antagonist) on BW245C (DP₁ receptor agonist) induced suppression of LPS-stimulated TNF-α production in human blood

Blood was incubated for 20 hours either with culture media alone (ctrl) or with LPS (10µg/ml) in the absence or presence of BW245C (1µM), CAY10471 (0.05µM), or a combination of BW245C and CAY10471 [L+BW245 (1) +CAY] and TNF- α levels in the plasma were determined by ELISA. Results are from the single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. *Denotes P < 0.05 when compared to controls. § Denotes P < 0.05 when compared to CAY-induced stimulation of TNF- α production in LPS incubated blood.

3.17 Effect of PGD₂ on LPS-stimulated TNF-α Production in Human Blood in the presence of CAY10471 (DP₂ antagonist).

PGD₂ was previously shown to effectively suppress TNF- α production and that this was not affected by the DP₁ receptor antagonist BWA868C. Thus, it was decided to evaluate the actions of the DP₂ receptor antagonist CAY10471 on the PGD₂-induced suppression of LPS-stimulated TNF- α production. In control incubations TNF- α production increased in the presence of CAY10471 (0.05µM). PGD₂ (1 µM) also resulted in a small increase in TNF- α production in comparison to control. However, PGD₂ greatly decreased levels of TNF- α stimulated by LPS (10 µg/ml). This inhibition was reversed in the presence of CAY10471 (Fig. 3.17) indicating the possible involvement of a DP₂ receptor pathway.

3.18 Direct Comparison of the effect of and BWA868C (DP₁ antagonist) and CAY10471 (DP₂ antagonist) on the BW245C (DP₁ agonist)-induced suppression of LPS-stimulated TNF-α production in human blood

BW245C previously demonstrated a profound suppression of LPS-stimulated TNF-α levels which were unaffected by BWA868C. Thus, it was decided to directly compare the actions of BWA868C and CAY10471 on the suppressive effects of BW245C (Figs. 318 a/b). LPS (10 μ g/ ml) greatly increased levels of TNF-α which were inhibited by 1 μ M BW245C (Figs. 3.18a and 3.18b). This BW245C-induced inhibition was not altered by BWA868C (0.05 μ M) or CAY10471 (0.05 μ M).

Figure 3.17Effect of PGD2 on LPS-stimulated TNF-α Production in Human
Blood in the presence of CAY10471 (DP2 antagonist)

Blood was incubated for 20 hours either with culture media alone (ctrl) or with LPS (10µg/ml) in the absence or presence of PGD₂ (1µM), CAY10471 (0.05µM) or a combination of both PGD₂ and CAY10471 (L+D2+CAY). TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the mean of n = 3 ± s.d. * Denotes P < 0.05 when compared to LPS + PGD₂.

Figure 3.18a Comparison of effect of the BW245C (DP₁ receptor agonist) and BWA868C (DP₁ receptor antagonist), on LPS-stimulated TNF-α production in human blood

Blood was incubated for 20 hours either with culture media alone (ctrl) or with LPS (10µg/ml) in the absence or presence of BW245C (1µM), BWA868C (0.05µM), or a combination of BW245C and BWA868C (L+ BWA868C+B245 (1)) and TNF- α levels in the plasma was determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. * Denotes P < 0.05 when compared to controls. † Denotes P<0.05 when compared to LPS alone.

Figure: 3.18b Comparison of effect of BW245C (DP₁ agonist) and CAY10471 (DP₂ antagonist) on LPS stimulated TNF-α production in human blood

Blood was incubated for 20 hours either with culture media alone (ctrl) or with LPS (10µg/ml) in absence and presence of BW245C (BW245-1µM), CAY10471 (CAY-0.05µM), or combination of both BW245C, and CAY10471 (L+BW245 (1) +CAY) and the TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the mean of n=3 ± s.d. * Denotes P<0.05 when compared to controls. † Denotes P<0.05 when compared to LPS stimulated TNF- α production.

3.19 Direct Comparison of the effect of BWA868C (DP₁ antagonist) and CAY10471 (DP₂ antagonist) on BW245C (DP₁ agonist) induced suppression of LPS -stimulated TNF-α production in human monocytes

In previous experiments BWA868C and CAY10471 did not have any significant effect on the suppressive actions of BW245C toward LPS-induced TNF- α production in blood. It was decided to examine the effects of these treatments on monocytes. In monocytes, the LPS-induced elevation in TNF- α levels was reduced in the presence of BW245C (1 µM). This reduction was not altered by either BWA868C (0.05 µM) or CAY10471 (0.05 µM). However, there was an increase in both the basal and LPSstimulated level of TNF- α (Fig. 3.19a) in the presence of BW868C (without BW245C). CAY10471 did not affect either the basal or BW245C-suppression of TNF- α production (Fig. 3.19b).

3.20 Effect of varying concentrations of BWA868C (DP₁ antagonist) on the BW245C (DP₁ agonist)-induced suppression of LPS-stimulated production of TNF-α on induced in human blood.

In previous experiments, where BW245C demonstrated a concentration-dependent suppression of LPS-induced TNF- α production in blood, the DP₁ antagonist BWA868C at a single concentration (0.05 μ M) did not show any effect. Thus, it was decided to examine the effect of a higher range of BWA868C concentrations (0.1 – 10 μ M) on the BW245C-induced suppression of TNF- α levels. The LPS-stimulated elevation in TNF- α levels was suppressed by BW245C (1 μ M) as shown previously, however, this inhibition was unaltered by any of the BWA868C concentrations between 0.1 and 10 μ M (Fig. 3.20).

Figure 3.19aThe effect of BW245C (DP1 receptor agonist) on LPS-stimulated
TNF-α production in the presence of BWA868C (DP1 antagonist)
in human monocytes

Monocytes (1x10⁶) isolated from Human peripheral blood were incubated for 20 hours either with culture media alone (ctrl) or with LPS (10µg/ml) in the absence or presence of BW245C (1µM), BWA868C (BW86 - 0.05µM), or a combination of both BW245C, BWA868C (L+BW245 (1) + BW86) and TNF- α levels in the supernatant were measured by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. * Denotes P < 0.05 when compared to controls. † Denotes P < 0.05 when compared to LPS alone.

Figure: 3.19b The effect of BW245C (DP₁ agonist) on LPS-stimulated TNF- α production in the presence of CAY10471 (DP₂ antagonist) in human monocytes

Monocytes (1×10^6) isolated from Human peripheral blood 20 hours either with culture media alone (ctrl) or with LPS $(10 \mu g/ml)$ in the absence or presence of BW245C (BW245-1 μ M), CAY10471 (CAY-0.05 μ M), or a combination of BW245C, and CAY10471 (L+BW245 (1) +CAY) and TNF- α levels in the supernatant was determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. * Denotes P < 0.05 when compared to controls. † Denotes P < 0.05 when compared to LPS alone.

Figure 3.20 Effect of varying concentrations of BWA868C (DP₁ antagonist) on the BW245C (DP₁ agonist)-induced suppression of LPS-stimulated production of TNF- α on induced in human blood.

Blood was incubated for 20 hours either with either culture media alone (•), BW245C alone (•) or a combination of LPS (10µM) and BWA868C (•) or LPS + BW245C (1µM) + increasing concentrations of BW868C (o). Incubations were then centrifuged and the TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. * Denotes P < 0.05 when compared to LPS alone.

3. 21 Effect of 15d-PGJ₂ on LPS-stimulated TNF-α production in Human blood

The effect of the PGD₂ metabolite, 15d-PGJ₂, was studied in order to ascertain its effects on basal and LPS-stimulated TNF- α production in blood. As shown in Fig 3.21 LPS produced a 15-fold increase in TNF- α production in comparison to control incubations. In the presence of 15d-PGJ₂, TNF- α production decreased in a dose-dependent manner (Fig. 3.21). Maximum suppression of TNF- α was observed between 1 and 10 μ M 15d-PGJ₂. The threshold concentration for TNF- α suppression was 0.01 μ M. The data showed that the IC₅₀ value for 15d-PGJ₂ inhibition of TNF- α production was 0.01 μ M (10 nM).

3.22 Comparison of the effects of PGD₂ and 15d-PGJ₂ in the presence of BWA868C (DP₁ receptor antagonist) on LPS-stimulated TNF-α production in Human blood

PGD₂ was shown to inhibit TNF- α production which was not affected by the DP₁ receptor antagonist BWA868C but did appear to be reversed by the DP₂ receptor antagonist CAY10471. However, it was not certain if the suppressive actions of PGD₂ occurred directly or were mediated via its conversion to the spontaneous metabolite 15d-PGJ₂. Figs. 3.22a/b shows a direct comparison of the effect of PGD₂ and 15d-PGJ₂ respectively, on TNF- α production in the presence of the DP₁ receptor antagonist BWA868C. Both PGD₂ and 15d-PGJ₂ decreased the elevated levels of TNF- α following exposure to LPS (Figs. 3.22a/b) and these decreased-levels were unaffected by BWA868C (0.5 μ M). The low basal level of TNF- α was slightly increased by 15d-PGJ₂ (Fig. 3.22b). In addition, the higher level of BWA868C (0.5 μ M) used in this experiment was shown to slightly reduce the LPS-stimulated level of TNF- α when incubated in the absence of either PGD₂ or 15d-PGJ₂ (Figs. 3.22 a/b).

Figure 3.21 Effect of 15d-PGJ₂ on LPS -stimulated TNF- α production in Human blood

Blood samples were incubated either with culture medium alone (\blacklozenge) or with increasing concentrations of 15d-PGJ₂ in the presence of LPS (10µg/ml- \bigcirc) for 20 hours. Samples were then centrifuged and TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ±s.d. *P < 0.05 when compared to controls.

Figure 3.22a The effects of BWA868C (DP_1 antagonist) on PGD_2 induced suppression of LPS-stimulated TNF- α production in Human blood.

Blood was incubated for 20 hours either with media alone (ctrl) or with LPS (10µg/ml) in the absence or presence of PGD₂ (D2 -1µM), and BWA868C (BWA86- 0.5 µM) or a combination of PGD₂ and BWA868C (L+ D2+BW86) and the TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. * Denotes P < 0.05 when compared to controls. † Denotes P < 0.05 when compared to LPS alone.

Figure 3.22b The effects of BWA868C (DP₁ antagonist) on 15d-PGJ₂ –induced suppression of LPS-stimulated TNF- α production in Human blood.

Blood was incubated for 20 hours either with media alone (ctrl) or with LPS (10µg/ml) in the absence or presence of 15d-PGJ₂, (PGJ2- 1µM), and BWA868C (BWA86C-0.5 µM) or a combination of 15d-PGJ₂ and BWA868C (L+ J2+BWA86C). TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. * Denotes P < 0.05 when compared to controls. † Denotes P < 0.05 when compared LPS alone.

3.23 Comparison of the effects of PGD₂ and 15d-PGJ₂ in the presence of CAY10471 (DP₂/CRTH₂ antagonist) on LPS-stimulated TNF-α production in Human blood

As shown in previous experiments the PGD₂ and 15d-PGJ₂–induced inhibition of LPSstimulated TNF- α production was unaffected by the DP₁ antagonist BWA868C. It was therefore decided to examine the effects of the DP₂ antagonist CAY10471 on the PGD₂ and 15d-PGJ₂–induced suppression. Figs. 3.23a and 3.23b show a direct comparison of the effect of CAY10471 on TNF- α production in the presence of PGD₂ and 15d-PGJ₂. As shown previously, incubation with LPS (10 µg/ ml) produced a large increase in TNF- α levels which were suppressed by both PGD₂ and 15d-PGJ₂ (Figs. 3.23 a/b). The suppressive action of PGD₂ (Fig. 3.23a) was significantly reversed by CAY10471 (0.05 µM). However, this concentration of CAY10471 did not significantly alter the suppressive effect of 1 µM 15d-PGJ₂ (Figure 3.23b).

3.24 Direct comparison of the effect of BWA868C (DP₁ antagonist) on PGD₂ and 15d-PGD₂-induced suppression of LPS-stimulated TNF-α production from Human monocytes.

The suppressive effects of PGD₂ and 15d-PGJ₂ on LPS-stimulated TNF- α production was shown to be unaltered by BWA868C in blood. Thus, a similar series of experiments was carried out using monocytes to ascertain the actions of BWA868C on the inhibitory actions of PGD₂ and 15d-PGJ₂ (Figs. 3.24 a/b). In general, similar observations were made using monocytes compared to blood i.e. that the higher concentration of BWA868C (0.5 μ M) did not alter either the PGD₂ or 15d-PGJ₂-induced suppression of LPS-stimulated TNF- α production (Figs. 3.24 a/b).

Figure 3.23a The effects of CAY10471 (DP₂ antagonist) on PGD₂- induced suppression of LPS-stimulated TNF-α production in Human blood

Blood was incubated for 20 hours either with media alone(ctrl) or with LPS (10µg/ml) in the absence or presence of PGD₂ (D2 -1µM), and CAY10471 (CAY -0.05µM) or a combination of both PGD₂ and CAY10471 (L+ D2+CAY). TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. * Denotes P < 0.05 when compared to controls. † Denotes P < 0.05 when compared to LPS alone. § Denotes P < 0.05 when compared to PGD₂ induced suppression of LPS stimulated TNF- α production.

Figure 3.23b The effects of CAY10471 (DP₂ antagonist) on 15d-PGJ₂-induced suppression of LPS-stimulated TNF-α production in Human blood.

Blood was incubated for 20 hours either with media alone(ctrl) or with LPS (10µg/ml) in the absence or presence of 15d-PGJ₂, (J2- 1µM), and CAY10471 (CAY- 0.5µM) or a combination of both 15d-PGJ₂ and CAY10471 (L+ PGJ2+CAY). TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. * Denotes P < 0.05 when compared to CPS alone.

Figure 3.24aEffect of BWA868C (DP1 antagonist) on PGD2-induced
suppression of LPS-stimulated TNF-α production from Human
monocytes.

Monocytes (1×10^6) isolated from Human peripheral blood were incubated for 20 hours either with media alone (ctrl) or with LPS $(10 \mu g/ml)$ in the absence or presence of PGD₂ (1 μ M) and BWA868C (0.5 μ M) or a combination of PGD₂ and BWA868C (L+ D2+ BWA868C) and the TNF- α levels in the supernatants were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. * Denotes P < 0.05 when compared to controls. † Denotes P < 0.05 when compared to LPS stimulated TNF- α production.

Figure 3.24bEffect of BWA868C (DP1 antagonist) on 15d-PGJ2-induced
suppression of LPS-stimulated TNF-α from Human monocytes

Monocytes $(1x10^6)$ isolated from Human peripheral blood were incubated for 20 hours either with media alone (ctrl) or with LPS $(10\mu g/ml)$ in the absence or presence of 15d-PGJ2 (PGJ2-1 μ M), BWA868C (0.5 μ M) or a combination of 15d-PGJ2 and BWA868C (L+ J2+ BWA868C) and the TNF- α levels in the supernatants were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. * Denotes P < 0.05 when compared to controls. † Denotes P < 0.05 when compared to LPS alone.

3.25 Effects of CAY10471 (DP₂ antagonist) on the PGD₂-induced suppression of LPS-stimulated TNF-α production from human monocytes.

It was previously shown in blood, that the suppressive effect of PGD₂ on TNF- α production was reversed in the presence of CAY10471. Similar experiments were carried out using monocytes. Fig. 3.25 shows the effect of PGD₂ on TNF- α production in the presence of CAY10471. As shown previously, TNF- α production was greatly increased by LPS (10 µg/ml) and this elevation was dramatically lowered when PGD₂ (1 µM) was included (Fig. 3.25). In the presence of CAY10471 (0.05 µM) the PGD₂-induced inhibition was reversed. A slightly lower level of TNF- α was observed in LPS incubations with CAY10471 compared to those with LPS alone (Fig. 3.25).

3.26 Effect of CAY10471 (DP₂ antagonist) on 15d-PGJ₂-induced suppression of LPS-stimulated TNF-α production from Human monocytes.

As the PGD₂-induced inhibition of TNF- α production from monocytes was reversed by CAY10471, the effects of CAY10471 were also evaluated on the 15d-PGJ₂-induced inhibition of TNF- α production from monocytes. Human monocytes were incubated with LPS, in the presence of increasing concentrations of 15d-PGJ₂ along with a fixed concentration of CAY10471 (0.05 μ M). A concentration-dependent decrease in LPS-stimulated TNF- α levels was observed in response to 15d-PGJ₂ (Fig. 3.26). CAY10471 on its own produced a small increase in TNF- α production but had no significant effect on TNF- α levels stimulated by LPS. The inhibitory effect of 15d-PGJ₂ was reversed in the presence of CAY10471 (Figure 3.26). The IC₅₀ value for 15d-PGJ₂ in presence of CAY10471 was calculated to be 0.08 μ M (80 nM).

Figure 3.25 Effect of CAY10471 (DP2 antagonist) on PGD2-induced suppression of LPS-stimulated TNF-α production from Human monocytes.

Monocytes $(1x10^6)$ isolated from Human peripheral blood were incubated for 20 hours either with media alone (ctrl) or with LPS $(10\mu g/ml)$ in the absence or presence of PGD₂ (D₂- 1 μ M), CAY10471 (CAY- 0.05 μ M) or a combination of PGD₂ and CAY10471 (L+ D2+ CAY) and the TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the means of n = 3 ± s.d. * Denotes P < 0.05 when compared to controls. † Denotes P < 0.05 when compared to LPS alone. § Denotes P<0.05 when compared to PGD₂ induced suppression of LPS stimulated TNF- α production.

Figure 3.26 Effect of CAY10471 (DP₂ antagonist) on the suppression of LPSstimulated TNF-α production from Human monocytes by varying concentrations of 15d-PGJ₂.

Monocytes (1×10^6) isolated from Human peripheral blood were incubated for 20 hours either with media alone (\circ), CAY10471 alone (0.05 μ M) (\diamond), LPS + 15d-PGJ₂ (**n**) or a combination of LPS + 15d-PGJ₂ + CAY10471 (**•**). Samples were then centrifuged and the TNF- α levels in the plasma were determined by ELISA. Results are from a single blood donor and are representative of at least three independent experiments. Values are expressed as the mean of n = 3 ± s.d. * Denotes P < 0.05 when compared to controls. † Denotes P < 0.05 when compared to LPS alone. § Denotes P < 0.05 when compared to 15d-PGJ₂ induced suppression of TNF- α production.

3.27 Summary of the Inhibitory Actions of PGE₂, PGF_{2α}, PGD₂, 15d-PGJ₂, BW245C and BWA868C upon LPS-stimulated TNF-α production in blood and from monocytes.

The data presented in previous figures were subjected to statistical analysis via 3^{rd} order polynomial regression analysis to produce IC₅₀ values for the various agents. These values indicated that the most potent inhibitor of LPS-stimulated TNF- α production in blood was 15d-PGJ₂, which was at least 2-fold more potent than PGD₂ and 4-5- fold more potent than either PGE₂ or PGF_{2 α} in blood.

Table 3Direct comparison of IC50 values for different modulators/
suppressors on LPS-stimulated TNF-α production from human
blood and monocytes.

Cell system	TNF-α modulators	IC ₅₀
human blood	15d-PGJ ₂	0.01 µM
	PGD ₂	0.02 µM
	PGE ₂	0.04 µM
	$PGF_{2\alpha}$	0.05 μΜ
	BW245C + CAY10471	0.07 μM
	BW245C	0.12 μM
	BW245C + BWA868C	0.45 μM
human monocytes		
	PGD ₂	0.03 µM
	15d-PGJ ₂ + CAY10471	0.08 µM
	BW245C	0.09 µM
	15d-PGJ ₂	0.12 μM

The IC₅₀ values for the different modulators of LPS-stimulated TNF production from human blood or monocytes were derived using Statistical software using 3^{rd} order polynomial regression analysis to calculate the concentration of each agent which produced a 50 % maximal response and are listed in order of decreasing potency for each cell system.

4. Discussion

4. Discussion

Interleukin-1 and Tumour necrosis factor α (TNF- α) are the major pro-inflammatory cytokines released in response to the stimulation of monocytes by variety of pathogenic organisms (Defranco *et al.*, 2007). This release of TNF- α from human blood or monocytes is altered by variety of lipids including arachidonic acid and prostaglandins. The present study characterised the effects of several prostaglandins such as PGE₂, PGF_{2 α} and especially PGD₂ along with its metabolite 15d-PGJ₂ on TNF- α production with a focus on the 2 main PGD₂ receptor pathways, DP₁ and DP₂.

4.1 Bacterial endotoxin-induced TNF-α production

LPS (endotoxin) is a component of the outer membrane of Gram-negative bacteria. Many studies have shown that LPS is one of the most potent stimuli for the production of pro-inflammatory mediators especially TNF- α and IL-1 from monocytes (Rietschel et al., 1994). In the study of Kreutz et al. (1997) the effects of bacterial LPS, a synthetic lipoprotein analogue lipopeptide (Pam 3-Cys-Ala-Gly) and heat killed Staphylococcus *aureus* were compared with respect to TNF- α production in human monocytes. The data showed that LPS stimulated the production of TNF- α with higher potency compared to the other stimuli. LPS was always greatly more potent in the lower dose range compared to Pam3-Cys-Ala-Gly, or S. aureus. LPS at concentrations between 5- 50 µg/ ml produced a maximal production of TNF- α (Kreutz et al., 1997). This is similar to the observations in the current study where the same LPS was used i.e. derived from Salmonella Abortus equi. In other studies (using L929 TNF- α cell-toxicity bioassay) it was shown that incubation of human blood with LPS (1-100 µg/ ml) also caused a concentration-dependent increase in TNF- α release with a maximum between 10 μ g/ ml- 100 µg/ml (Foster et al., 1993). This strongly correlates with the present study in that a maximal production of TNF- α occurred with concentrations between 10µg/ml-100 μ g/ml (Figure 3.1). TNF- α production was measured by ELISA assay in this study. The similarity to the data obtained by Foster et al. (1993) that used bioassay indicated

that the ELISA assay used in this study was able to reflect changing levels of bioactive TNF- α .

4.2 Control of TNF-α production by prostaglandins

Prostaglandins can inhibit LPS-induced TNF-a production in blood or monocytes by acting via their respective receptor pathways. Rotondo et al. (1993) showed that TNF- α / IL-1 are the major pro-inflammatory cytokines released from monocytes in response to LPS. Rotondo et al. (1988) showed that there is a dramatic increase (> 10-fold) in circulating PGE_2 levels following the administration of LPS in rabbits, indicating that the increase in PGE₂ levels which occur in vivo is an important component of the response to LPS stimulation. The released PGE₂ results in the systemic inflammatory response primarily manifest as fever. However, it may also provide a negative feedback mechanism suppressing the further release of cytokines (Davidson et al., 1998). It had previously been shown that exogenously added PGE₂ suppressed TNF- α production from monocytes and that cyclooxygenase inhibitors enhanced production, indicating a role for endogenous prostaglandins in limiting TNF- α production (Kunkel et al., 1986; Spengler et al., 1989). Many other studies have also demonstrated the suppressive effects of PGE₂ (Davidson *et al.*, 1998) and PGF_{2 α} (Kiyoshi *et al.*, 2000). However, the role of other prostaglandins has not been well characterised. In the current study, PGE₂, PGF_{2 α} and PGD₂ were all able to decrease TNF- α production (Figs. 3.2, 3.3 and 3.5).

Although many studies have shown that there are other pathways which can suppress TNF- α production, such as Transforming Growth Factor β_2 (TGF- β_2) and that this occurs independently of PGE₂ (Dunham *et al.*, 1990), it would appear that the "master" regulators are prostaglandins (Habeeb *et al.*, 2002). It is clear that endogenous prostaglandins are involved in the suppression of inflammatory cytokine production as COX inhibitors enhance their release (Habeeb *et al.*, 2002). However, the inhibition of COX, which would result in the global inhibition of prostaglandin synthesis, does not give any indication as to which specific prostaglandins are involved. In the current

study, the suppressive actions of PGE_2 were confirmed and compared alongside the actions of the PGD_2 whose role is less well studied. Initial experiments demonstrated that PGD_2 suppressed TNF- α production in both blood and monocytes (Figs. 3.3 and 3.4). Thus, the PGD_2 receptor pathway were further studied using different agonists and antagonists that interfere with the main receptor systems for PGD_2 .

4.3 The role of PGD_2 receptor pathways in the suppression of $TNF-\alpha$ production

 PGD_2 can bind to two different receptors, the DP_1 receptor and the chemo-attractant receptor homologous molecule expressed on Th_2 cells (CRTH₂), now termed the DP_2 receptor. These 2 receptor pathways are discussed below.

4.3.1 The role of DP₁ receptors in the suppression of TNF- α production

DP₁ is positively linked to adenylyl cyclase via the G-protein subunit G α s causing an increase in cyclic AMP levels (Hirata *et al.*, 1994, Boie *et al.*, 1995). Hirata *et al.* (1994) have identified a gene and cloned DNA for the mouse PGD₂ receptor. They also demonstrated that the DP₁ receptor activates adenylate cyclase. Similarly, Boie *et al.* (1995) showed that a cloned DP₁ receptor (expressed in CHO cells) resulted in the elevation of cyclic AMP, but did not lead to the generation of inositol 1,4,5-triphosphate. Both PGD₂ and BW245C (a DP₁ receptor agonist) activated adenylate cyclase with a resulting elevation in cyclic AMP levels (Boie *et al.*, 1995) clearly indicating that the DP₁ receptor signals through the cyclic AMP pathway.

BWA868C binds to DP₁ receptors with high affinity and has been shown to inhibit agonist-induced cyclic AMP production in response to either PGD₂ or BW245C with a Kd value in the order of 10 nM (Sharif *et al.*, 2000). In the present study BWA868C was used to evaluate the effect of PGD₂ on TNF- α production. In both blood and monocytes
PGD₂-downregulated production of TNF- α was not altered by BWA868C indicating the possibility that TNF- α levels are not regulated by DP₁ receptor pathways.

BW245C is a potent DP₁ receptor agonist and like BWA868C it binds to PGD₂ receptors with high affinity. It has been shown to inhibit human platelet aggregation with a K_i of 24- 26 nM and, compared to the potency of PGD₂ with a K_i of 80 nM this indicates that BW245C is in the order of 3-fold more potent than PGD₂ (Sharif et al., 2000). In the present study BW245C was used as a DP₁ agonist in order to confirm the absence of a DP₁ receptor pathway involvement in the suppression of TNF- α production. BW245C inhibited LPS-stimulated TNF- α production from both blood and monocytes (Fig. 3.12 and 3.13). However, this action of BW245C was not affected by BWA868C. These observations were interesting and contradictory, this may be possibly due to the involvement of other receptors i.e. the suppressive action of BW245C is potentially acting through receptors other than DP₁ as it has been shown that in other cells the actions of BW245C are reversed by BWA868C (Sharif et al., 2000). BW245C also has affinity toward EP receptors which can also downregulate TNF- α production. The actions of BW245C in other tissues has clearly shown that it can have divergent effects to PGD₂. Rangachari et al. (1995) showed that BW245C did not mimic the inhibitory effects of PGD₂, but produced a stimulant effect on canine colonic epithelium. BWA868C even at the highest concentration (30 µM) failed to produce any significant inhibition of BW245C-induced stimulation indicating that its activity appears to involve receptors other than the classical DP₁ receptor. In their study Rangachari et al. (1995) showed that BW245C produced its stimulatory effect via EP receptors as only PGE₂ was able to demonstrate cross desensitisation of the BW254C effects. This was similar to that observed in the present study where the down-regulating effect of BW245C on TNF- α production was not altered even in the presence of high concentrations of BWA868C (10 µM) (Figure 3.20). The BW245C suppression could be possible via EP receptors as BWA868C has been shown to not affect IP, EP₁, EP₂, FP and TP receptors (Giles et al., 1989). Stimulation of EP receptors, in the present study, was shown to suppress TNF- α production (Fig. 3.2). This PGE₂-induced inhibition of TNF- α production was not altered by BWA868C (Figs. 3.8 and 3.9).

Clearly, human monocytes also have EP receptors which downregulate TNF- α production, but it in the present study, the nature of the EP receptors was not studied further. Synthetic PGE₂ analogues such as butaprost (EP₂/EP₄ receptor agonist) suppress pro-inflammatory cytokine synthesis. However, sulprostone, an EP₃ receptor agonist, has no effect on cytokine production. Rotondo *et al.* (2004) showed that PGE₂ strongly suppresses IL-12-induced synthesis of IFN- γ by NK cells. Butaprost suppressed IFN- γ synthesis and competes exclusively with PGE₂ for receptor binding on NK cells. Sulprostone, (EP₁/EP₃ agonist) was devoid of any effect indicating that cytokine production is regulated by EP₂ or EP₄ receptors. In the current series of experiments PGE₂ strongly suppressed TNF- α production both in blood and monocytes. BWA868C had no effect on the suppressive actions of PGE₂ (Figs. 3.8 and 3.9). Indicating that PGE₂ acts in a manner distinct from the DP₁ receptor pathway.

PGF_{2 α} also lowered TNF- α production which was also unaffected by BWA868C (Figs. 3.10 and 3.11) confirming the view that PGE₂ & PGF_{2 α} produce their actions without the involvement of the DP₁ receptor. It was important to evaluate the effects of PGF_{2 α} as it can be synthesised from PGD₂. Watanabe *et al.* (2002) showed that PGF_{2 α} is synthesized via three pathways from PGE₂, PGD₂, or PGH₂ by PGE₂ 9-ketoreductase, PGD 11-ketoreductase, or PGH 9-, 11-endoperoxide reductase enzymes, respectively. The enzymatic action could be responsible for the inter-conversion of various prostaglandins (Rotondo *et al.*, 2004). PGE₂ or PGF_{2 α} are unlikely to be converted to PGD₂, thus, suppressive effect on TNF- α production would not occur via DP receptors (Rotondo, *et al.*, 2004).

4.3.2 The role of DP₂ receptors on the suppression of TNF- α production.

The CRTH₂ receptor, now identified as a DP₂ receptor, has been shown to be a major PGD₂-related receptor, which may have pivotal roles in controlling the production of pro-inflammatory cytokines such as TNF- α . Unlike DP₁ receptors, Hirai *et al.* (2001) showed that DP₂ receptors inhibit adenylyl cyclase through G α i proteins, leading to the inhibition of cyclic AMP production and an increase in intracellular calcium. Hirai *et al.* (2001) also indicated that DP₂ but not DP₁, mediates PGD₂ dependent cell migration of eosinophils and basophils. This was confirmed using DP₂ receptor knockout mice where PGD₂ had no effect on cell migration. The DP₂ receptor may also bind the PGD₂ metabolite, 15d-PGJ₂, with equal affinity to that of PGD₂ and its metabolite 15d-PGJ₂ bound with the high affinity to the DP₂. This raises the possibility that PGD₂ metabolites may differentially exert effects through the DP₂ receptor.

In the present study, the effect of BW245C and PGD₂ (DP₁ receptor agonists) were investigated in the presence of CAY10471 (DP₂ antagonist). CAY10471 is an analogue of BAY- μ 3405 (ramatroban). BAY- μ 3405 itself is a potent antagonist of DP₂ receptors (Sugimoto *et al.*, 2003; Ulven *et al.*, 2005) and minor structural changes in ramatroban results in a compound (CAY10471) with highly selective, potent and essentially nonreversible DP₂ antagonist activity. In the current study, the suppressive effect of PGD₂ on TNF- α production was reversed in the presence of CAY10471 (Fig. 3.17). Indicating that PGD₂ acts via DP₂ receptors in suppressing TNF- α production in blood and monocytes. A similar action has been reported for lymphocytes. Xue *et al.* (2005) showed that PGD₂ stimulates Th2 cytokine production from CD23/CD28 cells solely via a DP₂-dependent mechanism. The effect of PGD₂ is mimicked by the selective DP₁ agonist 13, 14-dihydro-15-keto-PGD₂ (DK-PGD₂) but the selective DP₁ agonist BW245C was without any effect, confirming that stimulation was mediated by DP₂ and not DP₁ receptors. In the current series of experiments CAY10471, rather than reversing the action of BW245C, reduces TNF- α production further in comparison to BW245C alone (Fig. 3.15). This raises the possibility that the receptors which BW245C acts through (possibly EP₂ or EP₄ receptors as discussed previously) may be actively antagonised by DP₂ receptor pathways.

4.4 Comparison of the effects of PGD_2 and its metabolite 15d- PGJ_2 on TNF- α production

PGD₂ can be converted to 15d-PGJ₂, thus the actions of PGD₂ may not occur directly but occur via conversion to 15d-PGJ₂ (Takahiro *et al.*, 2002). It appears that the natural precursor for 15d-PGJ₂ is PGD₂. Administration of PGD₂ *in vivo* leads to a large increase in 15d-PGJ₂ (Takahiro *et al.*, 2002). In the present study exogenously added 15d-PGJ₂ suppressed LPS-stimulated TNF- α production in blood and monocytes (Figs. 3.21 and 3.26). Experiments were carried out to compare the effects of PGD₂ & 15d-PGJ₂ on TNF- α production in the presence of BWA868C (DP₁ receptor antagonist) and CAY10471 (DP₂ antagonist). In both blood and monocytes BWA868C had no effect on the ability of PGD₂ or 15d-PGJ₂ to suppress TNF- α production (Figs. 3.22a-3.22b), whereas, CAY10471 reversed the suppressive action of both PGD₂ and 15d-PGJ₂ (Figs. 3.23a-3.23b) indicating the potential involvement of DP₂ receptor pathways in the suppressive response of both prostanoids.

PGD₂ like PGE₂ has been regarded as a pro-inflammatory prostanoid as it has the ability to produce the end-functions involved in the symptoms of inflammation such as erythema etc. When it is administered *in vivo* it produces eosinophilia in the lungs of several experimental animals such as rats and dogs (Sandig *et al.*, 2007). However, PGD₂ has also been shown to have anti-inflammatory actions. An example is carageenan-induced pleurisy which is exacerbated in the presence of COX inhibitors but resolves following administration of either PGD₂ or 15d-PGJ₂ (Sandig *et al.*, 2007). It has been suggested that the opposing effects may be due to either conversion of PGD₂ to 15d-PGJ₂ or actions via either of the DP receptors. This would appear unlikely with respect to the control of inflammatory cytokine production as DP₁ pathways appear to have no role and DP₂ pathways suppress TNF- α production in the present study. In addition, both PGD₂ and 15d-PGJ₂ are inhibitory. It would also not appear to be the case that DP₂ receptors are generally anti-inflammatory in nature. Almishri *et al.* (2004) showed that PGD₂ induced eosinophil infiltration *in vitro* through DP₂ receptors. A selective DP₂ receptor agonist, DK-PGD₂ induced similar responses. However, the current study clearly suggests the potential involvement of DP₂ receptor pathways in the suppressive control of TNF- α production in human cells.

4.5 SUMMARY AND CONCLUSIONS

- LPS stimulated TNF- α production in human blood and from human monocytes.
- PGE_2 , $PGF_{2\alpha}$, PGD_2 and $15d-PGJ_2$ induced a strong suppressive effect on LPSstimulated TNF- α production in both blood and monocytes.
- The suppressive effect of either PGE₂, PGF_{2α}, PGD₂ or 15d-PGJ₂ on LPS stimulated TNF-α production in whole blood and monocytes was not altered by BWA868C (DP₁ receptor antagonist) suggesting the absence of a DP₁ receptor pathway in this response.
- BW245C (DP₁ receptor agonist) also suppressed LPS -stimulated TNF-α production in blood and monocytes, This effect was not altered by CAY10471 (DP₂ antagonist) or BWA868C (DP₁ receptor antagonist) suggesting that BW245C may be acting via other non-PGD₂ receptors.
- The suppressive actions of PGD₂ and 15d-PGJ₂ on TNF-α production was reversed by CAY10471 suggesting the involvement of DP₂ receptor pathways.

The present study has made an attempt at elucidating the mechanism by which PGD_2 and 15d-PGJ₂ suppress TNF- α production. The most probable mechanism is via the DP₂ receptor without involvement of the DP₁ pathway. This study proposes that within blood and monocytes PGD₂ and 15d-PGJ₂ demonstrates suppression of TNF- α production by utilization of DP_2 pathway. Further research is still required to establish the important role that PGD_2 and $15d-PGJ_2$ may play in the control of inflammatory conditions. In the present study BW245C (DP_1 receptor agonist) is thought to mediate its suppressive effect via the involvement of other receptors possibly EP_2 and/ or EP_4 receptors. Further studies on the DP_2 receptor pathway are required to clarify the significance of the DP_2 -mediated activities in the control of inflammatory responses. 5. References

5. References:

Abramovitz, M., Adam, M., Boie, Y., Carriere, M., Denis, D., Godbout, C., Lamontagne, S., Rochette, (2000) The utilization of recombinant prostanoid receptors to determine the affinities and selectivity's of prostaglandins and related analogs. Biochim. Biophys. Acta. **1483**, 285-293.

Abramson, S.B., Weissmann, G., (1989) The mechanism of action of nonsteroidal antiinflammatory drugs. Arth. Rheum. **32**, 1-9.

Aeberli, D., Oertle, S., Mauron, H., Reichenbach, S., Jordi, B. and Villiger, P. M. (2002) Inhibition of the TNF-pathway: use of infliximab and etanercept as remission-inducing agents in cases of therapy-resistant chronic inflammatory disorders. Swiss Med. Wkly. **132**, 414-422.

Adie, E.J., Mullaney, Y.I., Mckenzie, F.R., Milligan, G., (1992) Concurrent downregulation of IP prostanoid receptors and the α -subunit of the stimulatory guanine-nucleotide-binding protein (Gs) during prolonged exposure of neurolastoma x glioma cells to prostanoid agonist. J. Biochem. **285**, 529-536.

Alexander, S.P.H., Mathie, A., Peters, J.A (2009) Guide to Receptors and Channels. Prostanoid receptors. Br. J. Pharmacol. Supplement 1, **158**, S86-S87.

Almishri, W., Cossette, C., Rokach, J., Martin, J.G., Hamid, Q., (2004) Effects of Prostagalndin D_2 , 15-deoxy-12, 14- prostaglandin J_2 , and selective DP_1 and DP_2 receptor agonsit on pulmonary infiltration of eosinophils in Brown Norway rats. J. Pharmacol. Exp. Therap. **313**, 64-69.

Arimura, A., Yasui, K., Kishino, J., Asanuma, F., Hasegawa, H., Kakudo, S., (2001) Prevention of allergic inflammation by novel prostaglandin receptor antagonist S-5751. J. Pharmacol. Exp. Therp. **298**, 411-419.

Becknell, B., Wei, M., Trotta, R., Liu, S., Blaser, B.W., Jaung, M.S., Mao, H., Shen, L., Caligiuri, M.A., (2006) Pro- and anti-inflammatory cytokine signalling: Reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunol. **24**, 575-590.

Belge, K.U., Davyani, F., Horelt, A., Siedlar, M., Frankenberger, M., Espevik, T., (2002) The proinflammatory CD14+ CD16+ DR++ monocytes are a major source of TNF. J. Immunol. **168**, 3536-3542.

Bernik, T., Friedman, S.G., Ochani, M., Ulloa, L., Sudan, S., (2002) Pharmacological stimulation of the cholinergic anti-inflammatory pathway. J. Exp. Med. **195**. 781-789.

Bleeker, M.W., Netea, M.G., Kullberg, B., Van der Ven-Jongekrijg, J. and Van der Meer, J.W. (1997) The effects of dexamethasone and chlorpromazine on tumour necrosis factor-alpha, interleukin-1 beta, interleukin-1 receptor antagonist and interleukin-10 in human volunteers. Immunology, **91**, 548-552.

Bohm. E., Sturm, G.J., Weiglhofer, I., Sanding, H., Shichijo, M., McNamee, A., Pease, J.E., Kollroser, M., Peskar, B.A., Heinemann, A., (2004) 11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH₂) in human eosinophils and basophils. J. Biol. Chem. **279**, 7663-7770.

Bomalaski, J.S., Steiner, M.R., Simon, P.L., Clark, M.A., (1992) IL-1 increases phospholipase A2 activity, expression of phospholipase A2-activating protein, and release of linoleic acid from the murine T helper cell line EL-4. J. Immunol. **148**, 155-160.

Boie, Y., Sawyer, N., Slipetz, D.N., Metters, K.m., (1995) Molecular cloning and characterization of human prostanoid DP receptor. J. Bio. Chem. **270**, 18919-18916.

Borovikova, L.V., Ivanova, S., Zhang, M., Yang, H., Botchkina, G.I., 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. **405**. 458-462

Bos, C.L., Richel, D.J., Ritsema, T., Peppelenbosch, M.P., Versteeg, H.H., (2004) Prostanoid and prostanoid receptor in signal transduction. Int. J. Biochem. Bio. **36**, 1187-1205.

Bouma, G. and Strober, W. (2003) The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol. **3**, 521-533.

Breyer, R.M., Bagdassaraian, C.K., Myers, S.A., Breyer, M.D., (2001) Prostanoid receptors: Subtypes and signalling. Ann. Rev. Pharmacol. Toxicol. 661-690.

Browning, J.L., Ribolini, A., (1987) Interferon blocks interleukin 1-induced prostaglandin release from human peripheral monocytes. J. Immunol. **138**, 2857-2863.

Burkey, T.H., Regan, J.W., (1995) Activation of mitogen-activated protein kinase by the human prostaglandin EP3A receptor. Biochem. Biophy. Res. Commu. **211**, 152-158.

Calder, P.C., Bond, J.A., Bevan, S.J., Hunt. S.V., Newsholme, E.A., (1991) Int. J. Biochem. 23, 579-588.

Chen, D.B., Westfall, S.D., Fong, H.W., Roberson, M.S., Davis, J., (1998) Prostaglandin $F_{2\alpha}$ stimulates the Raf/MEK/mitogen activated protein kinase signalling cascade in bovine luteal cells. Endo. **139**, 93876-93885.

Coceani, F., Bishai, I., Lees, J., Sirko, S., (1986) Prostaglandin E_2 and fever: a continuing debate. Yale. J. Biol. Med. **59**, 169-174.

Coleman, R.A., Grix, S.P., Head, S.A., Louttit, J.B., Mallett, A., (1994) A novel inhibitory prostanoid receptor in piglet saphenous vein. Prosta. **47**, 151-166.

Coleman, R.A., Kennedy, I., Humphrey, P.P.A., Bunce, K., Lumley, P., (1990) Lipidderived autacoids, Eicosanoids and platlet activating factor. In: Hardman. J.G., Limbard. L.E., Gilman A.G., (Eds), Goodman and Gilman's the Pharmacological Basis of Therapeutics. 10th ed. McGraw-Hill Companies Inc, New York.

Coleman, R.A., Smith, W.L., Narumiya, S., (1994) International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol. Rev. **46**, 205-229.

Corsaro, M.M., De Castro, C., Molinaro, A., 2001. Structure of lipopolysaccharides from phytopathogenic bacteria. Recent Research Development in Phytochemistry. **5**, 119-138.

Davidson, J., Abul, H.T., Milton, A.S., Rotondo, D., (2001) Cytokines and cytokine inducers stimulate prostaglandin E_2 entry into the brain. Eur. J. Physiol. **442**, 526-533.

Davidson, J., Wulfert, E., Rotondo, D., (2008) 7 β -hydroxy-epiandrosterone modulation of 15-deoxy- $\Delta^{12,14}$ –Prostglandin J₂, Prostaglandin D₂ and Prostaglandin E₂ production from human monocuclear cells. J. Steroid. Biochem. Mol. Biol. **112**, 220-227.

Davidson, J., Flower, R.J., Milton, A.S., Peers, S.H., Rotondo, D., (1991) Antipyretic actions of human recombinant lipocortin-1. Br. J. Pharmacol. **102**, 7-9.

Davidson, J., Kerr, A., Guy, K., Rotondo, D., (1998) Prostaglandin and fatty acid modulation of Escherichia coli O157 phagocytosis by human monocytic cells. Immunol. **94**, 228-234.

Davidson, J., Milton, A.S., Rotondo, D., (1990) A study of the pyrogenic actions of interleukin-1 alpha and interleukin-1 beta: interactions with a steroidal and a non-steroidal anti-inflammatory agent. Br. J. Pharmacol. **100**, 542-546.

DeFranco, A., Locksley, R.M., Robertson, M., (2007) Immunity: the immune response in infectious and inflammatory disease. New Science Press; Sunderland, MA: Sinauer Associates; Oxford University Press, U.K

Dinarello, C.A., Cannon, J.G., Wolf, S.M., Beutler, B., Cerami, A., (1986) Tumor necrosis factor (cachetin) is an endogenous pyrogen and induces production of interleukin 1. J. Exp. Med. **63**. 1433-1450.

Dinarello, C.A., Ikejima, T., Warner, S.J., Orencole, S.F., Lonnemann, G., Cannon, J.G., Libby, P., (1987) Interleukin 1 induces interleukin 1. I. Induction of circulating interleukin 1 in rabbits in vivo and in human mononuclear cells in vitro. J. Immunol. **139**, 1902-1910.

Dunham, D.M., Arkins, S., Edwards, C.K., Kelley, K.W., (1990) Role of interferongamma in counteracting the suppressive effects of transforming growth factor-beta 2 and glucorticoids on the production of tumor necrosis factor-alpha. J. Leukoc. Biol. **48**, 473-481.

Endres, S., Sinha, B., Fule, H.J., Stoll, D., Dinarello, C.A., Gerzer, R., (1994) Cyclic nucleotides differentially regulate the synthesis of tumour necrosis factor-alpha and interleukin-1 beta by human mononuclear cells. Immunol. **72**, 56-60.

Englund, M. C., Karlsson, A. L., Wiklund, O., Bondjers, G. and Ohlsson, B. G. (2001) 25-hydroxycholesterol induces lipopolysaccharide-tolerance and decreases a lipopolysaccharide-induced TNF-alpha secretion in macrophages. Atherosclerosis **158**, 61-71.

Foster, S.J., McCormick, L.M., Ntolosi, A., Campbell, D., (1993) Production of TNF- α by LPS stimulated murine, rat and human blood and its pharmacological modulation. Agents & Actions, **38**, C77-C79.

Funk, C.D., (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Sci. Rev. **294**, 1871-1875.

Gallin, J.I., Goldstein, I.M., Snyderman, R., (1988) Inflammation Basic Principals and Clinical Correlates. Raven Press, New York.

Ghezzi. P., Dinarello, C.A., (1988) IL-1 induces IL-1. III. Specific inhibition of IL-1 production by IFN-γ. J. Immunol. **140**, 4238-4244.

Giles, H., Leff, P., Bolofo, M.L., Kelly, M.G., Robertson, A.D., 1989. The classification of prostaglandin DP-receptors in platelets and vasculature using BWA868C, a novel selective and potent competitive antgonist. Br. J. Pharmacol. **96**, 291-300.

Gilroy DW, Colville-Nash PR, Willis D, Chivers J, Paul-Clark MJ, Willoughby DA. (1999) Inducible cyclooxygenase may have anti-inflammatory properties. Nature Med. **5**, 621-622.

Goldblatt, M.W., Eluer, U.V., (1935) Properties of human seminal plasma. J. Physiol. 14, 1182-1183.

Gorelik, L., Constant, S., Flavell, R.A., (2002) Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J. Exp. Med. **195**, 1499-1505.

Graves, L.M., Bornfeldt, K., E., Sidhu, J.S., Argast, G.M., Raines, E.W., Ross, R., (1996) Platelet derived growth factor stimulates protein kinase A through a mitogenactivated protein kinase-dependent pathway in human arterial smooth muscle. J. Biol. Chem. **271**, 505-511.

Gregory, B., Habicht, G.S., (1996) Immunity and the Invertebrates. Scientific American. 60-66.

Habeeb, F. Rotondo, D. and Davidson, J. (2002) Suppression of Tumour Necrosis factor- α production in human blood by Interactions between Prostaglandin E₂, Interleukin-10 and Transforming Growth Factor - β . Br. J. Pharmacol. **137**, 87P.

Hale M.L., Margolin, S.B., Krakauer, T., Roy, C.J., Stiles, B.J. (2002) Pirfenidone Blocks the *In Vitro* and *In Vivo* Effects of Staphylococcal Enterotoxin B. Infect. Immunity. **70**, 2989-2994.

Han, B.J., Thompson, P., Beutler, B., (1990) Dexamethasome and pentoxifylline inhibits endotoxin induced cachetin/Tumour necrosis factor synthesis at separate point in the signalling pathway. J. Exp. Med. **172**, 391-394.

Hart, P.H., Whitty, G.A., Piccoli, D.S., Hamilton, J.A., (1989) Control by IFN-gamma and PGE₂ of TNF alpha and IL-1 production by human monocytes. Immunology, **66**, 376-383.

Hata, A.N., Breyer, R.M., (2004) Pharmacology and signalling of prostaglandin receptors. Multiple role in inflammation and immune modulation. Pharmacol. Therap. **103**, 147-166.

Heinemann, A., Magdalena, G., Gerald, H., Rufina, S., (2008) Effect of endotoxin treatment on the expression and localization of spinal cyclooxygenase, prostaglandin synthase, and PGD₂ receptor. J. Neurochem. **104**, 1345-1357.

Hirai, H., Tanaka, K., Yoshie, O., Ogawa, K., Kenmotsu, K., Takamori, Y., Ichimasa, M., Sugamura, K., Nakamura, M., Takano, S., Nagata, K., (2001) Prostaglandin D₂ selectively induces chemotaxis in T-Helper type 2 cells, eosinophils and basophils via seven transmembrane receptor CRTH₂. J. Exp. Med. **193**, 255-261.

Hirai, H., Tanaka, K., Takano, S., Ichimasa, M., Nakamura, M., Nagata, K., (2002) Cutting edge: Agonistic effect of indomethacin on prostaglandin D₂ receptor, CRTH₂. J. Immunol. **169**, 981-985.

Hirano, Y., Shichijo, M., Deguchi, M., Nagira, M., Suzuki, N., Hatori, M., (2007) Synergistic effect of PGD₂ via prostanoid DP receptor on TNF- α induced production of MCP-1 and IL-8 human monocytic THP-1 cells. Eur. J. Pharmacol. **560**, 81-88.

Hirata, Y., Hayashi, H., Ito, S., Kikawa, Y., Ishibashi, M., Sudo, M., Miyazaki, H., Narumiya, S., (1988) Occurance of 9-Deoxy- $\Delta^9\Delta^{12}$ -13, 14-dihydroprostaglandin D₂ in human urine. J. Biol. Chem. **263**, 16619-16625.

Hirata, M., Kakizuka, A., Aizawa, M., Ushikubi, F., Narumiya, S., (1994) Molecular characterization of a mouse prostaglandin D receptor and functional expression of the cloned gene. Proc. Natl. Acad. Sci. **91**, 11192-11196.

Holst, O., 1999. Chemical structure of the core region of lipopolysaccharide. In: Endotoxin in Health and Disease, Eds: Brade. H. Morrison, Opal S. Vogel Marcel Dekker Inc., New York pp. 115-154.

Honda, A., Sekiguchi, Y., Mori, Y., (1993) Prostaglandin E_2 stimulates cyclic AMP mediated Hyaluronan synthesis in rabbit pericardial mesothelial cell. J. Biochem. **292**, 495-500.

Jansson, P.E., 1999. The chemistry of O-polysaccharide chains in bacterial lipopolysaccharides In Brade H, Morrison DC, Opal S, Vogel S (eds) Endotoxin in Health and Disease, Marcel Dekker Inc., New York pp. 155-178.

Kaisho, T., Akira, S., (2002) Toll like receptors as adjuvant receptors. Biochmica. et. Biophysica Acta. **1589**, 1-13.

Klein, J., Horejsi, V., (1997) Immunology. 2nd ed. Blackwell Science Publication, London. 85-91.

Koremu., K.M., Deborah, L.C., Maria, G.B., Susan, J.S., Elizabeth, H., Magdi, H., (2005) Prostanoid receptor expressions by human air way smooth muscles and regulation of the secretion of granulocyte colony-stimulating factor. Am. J. Physiol. Lung Cell Mol. Physiol. **288**, L238-L250.

Kreutz, M., Ackermann, U., Hauschildt, S., Krause, W., Riedel, D., Bessler, W., (1997) A comparative analysis of cytokine production and tolerance induction by bacterial lipopeptides, lipopolysaccharides and Staphylococcus aureus in human monocytes.

Kristin, A.K., Jerry, L.W., Robert, M., Glenn, A.R., Branyn, F.C., (2005) Effects of BW245C, a prostaglandin DP receptor agonist, on systemic and regional haemodynamica in the anaesthetized rat. Clin. Exp. Pharmacol. Physiol. **32**, 931-935.

Knudsen P.J., Dinarello, C.A., Strom, T.B., (1987) Glucocorticoids inhibit transcriptional and pos-transcriptional expression of interleukin 1 in U937 cells. J. Immunol. 139, **4129-4134**.

Kunkel, S.L., Chensue, S.W., Phan, S.H., (1986) Prostaglandins as endogenous mediators of interleukin 1 production. J. Immunol. **136**, 186-192.

Lee, S.H., Soyoola, E., Chanmugam, P., Hart, S., Sun, W., Zhong, H., Liou, S., Simmons, D., Hwang, D., (1992) Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J. Biol. Chem. **267**, 25934-25938.

Leone, S., Silipo, A., Nazzarenko, E.L., Lanzetta, R., Pamilli, M., Molinaro, A., (2007) Molecular structure of Endotoxins from Gram-negative Marine Bacteria: An Update Marine Drugs **5**, 85-112.

Maaike, M.B., Dopper, W., Riel, B.V., M^{*}rabbet, L., (2003) Dihomo- γ -linolenic acid inhibits tumour necrosis factor- α production by human leucocytes independently of cyclooxygenase acitivty. Immunology, **110**, 348-357.

Maaike, M.B., Dooper, W., Wassink, L., M'rabbet, L., Graus, Y.M.F., (2002) The modulatory effects of prostaglandin-E on cytokine production by human peripheral blood mononuclear cells are independent of the prostaglandin subtype. Immunology, **107**, 152-159.

Mathe, A.A., Hedqvist, P., (1975) Effect of $PGF_{2\alpha}$ and PGE_2 on airway conductance in healthy subjects and asthmatic-patients. Am. Rev. Respir. Dis. **111**, 313-320.

Mathiesen, J.M., Christopoulos, A., Ulven, T., Royer, J.F., Campillo, M., Heinemann, A., Pardo, L., Kittenish, E., (2006) On the mechanism of interaction of potent surmountable and insurmountable antagonists with the prostaglandin D_2 receptor CRTH₂. Mol. Pharmacol. **69**, 1441-1453.

Mathiesen, J.M., Ulven. T., Martini, L., Gerlach, L.O., Heinemann, A., Kostenis, E., (2005) Identification of indole derivatives exclusively interfering with a G proteinindependent signaling pathway of the prostaglandin D_2 receptor CRTH₂. Mol. Pharmacol. **68**, 393-402.

Moncada, S., Gryglewski, R., Vane, J.R., (1976) Lipid-derived autacoids, Eicosanoids and platlet activating factor. In: Goodman and Gilman's the Pharmacological Basis of Therapeutics. 10th Eds: Hardman. J.G., Limbard. L.E., Gilman A.G., McGraw-Hill Companies Inc, New York.

Morita, I., Schindler, M., Regier, M.K., Otto, J.C., Hori, T., DeWitt, D.L., Smith, W.L., (1995) Different intracellular locations for prostaglandin endoperoxide H synthase-1 and -2. J Biol. Chem. **270**, 10902-10908.

Murakami, M., Nakatani, Y., Tanioka, T., Kudo, I., (2002) Prostaglandin E synthase. Prosta. Lip. Mediat. **69**, 383-399. Rev.

Pettipher, R., Gyles, S., Xue, L., Townsend, E.R., (2006) A dominant role of chemoattratcant receptor homologues molecule expressed on T helper type 2 (Th2) cells (CRTH₂) in mediating chemotaxis of CRTH₂⁺ CD4⁺ Th2 lymphocytes in response to mast cell suppressants. Immunol. **119**, 362-368.

Poole, S., Cunha, F.Q., Seikrik, S., Lorenzetti, B.B., Ferredra, S.H., (1995) Cytokine mediated inflammatory hyperglesia limited by interleukin-10. Br. J. Pharmacol. **115**, 684-688.

Portanova JP, Zhang Y, Anderson GD, Hauser SD, Masferrer JL, Seibert K, Gregory SA, Isakson PC. (1996) Selective neutralization of prostaglandin E2 blocks inflammation, hyperalgesia, and interleukin 6 production in vivo. J Exp Med. **184**, 883-891.

Rangachari, P.K., Betti, P.A., Prior, E.T., Roberts, L.J_{2nd.} (1995) Effects of a selective DP receptor agonist (BW245C) and antagonist (BWA868C) on the canine colonic epithelium: an argument for a different DP receptor?. J. Pharmacol. Exp. Therap. **275**, 611-617.

Raetz C.R.H., Reynolds, C.M., Trent, M.S., Bisoph, R.E., 2007. Lipid A modification systems in gram-negative bacteria. Ann. Rev. Biochem. **76**, 295-329.

Rietschel, E., Brade, H., (1993) Bacterial endotoxins: relationship between chemical structure and biological effect. Sci. Rev. 267, 26-35.

Rietschel, E.T., Kirikae, T., Schade, F.U., Mamat, U., Schmidt, G., Loppnow, H., (1994) Bacterial endotoxin: Molecular releationship of structure to activity and function. J. FASEB. **8**, 217-225.

Roitt, I., Brostoff, J., Male, D., (1993) Immunology. 3rd ed. Mosby, Europe.

Roitt, I.M., (1998) Essential Immunology. 8th edition. Blackwell scientific Publication, Germany.

Roper, R.L., Phipps, R.P., (1992) Prostaglandin E_2 and cAMP inhibit B lymphocyte activation and simultaneously promote IgE and IgG1 synthesis. J. Immunol. **149**, 2984-2991.

Rotondo, D., Abul, H.T., Milton, A.S., Davidson, J., (1987) The pyrogenic actions of the interferon-inducer, polyinosinic: polycytidylic acid is antagonized by ketoprofen. Eur. J. Pharmacol. **137**, 257-260.

Rotondo, D., Abul, H.T., Milton, A.S., Davidson, J., (1988) Pyrogenic immunomodulators increase the level of Prostaglandins E_2 in the blood simultaneously with the onset of fever. Eur. J. Pharmacol. **154**, 145-152.

Rotondo, D., Earl, C.R., Laing, K.J., Kaimakamis, D., (1994) Inhibition of cytokinestimulated thymic lymphocyte proliferation by fatty acids: the role of eicosanoids. Biochim. Biophys. Acta. **1223**, 185-194.

Rotondo, D., Earl, C.R., McIntosh, G., McIntosh, F.S., Hepburn, A., Milton, A.S., Davidson, J., (1992) The role of Inositol lipids in the activation of monocytes by inerleukin-1 and bacterial endotoxin. FEMS. Microbiol. Immunol. **5-6**, 249-259.

Rotondo, D., Kaimakamis, D., Baldie, G., (1993) Fatty acid modulation of cytokine release from humanmonocytic cells. Biochim. Biophys. Acta. **1179**, 125-133.

Rotondo, D., Milton, A.S., Davidson, J., (1992) α -melanocyte-stimulating hormone suppresses feaver and increase in plasma level of prostaglandin E₂ in rabbit. J. Physiol. **451**, 491-502.

Sakumoto, R., Murakami, S., Okuda, K., (2000) Tumor necrosis factor- α stimulates prostaglandin F_{2 α} secretion by bovine luteal cells via activation of mitogen-activated protein kinase and phospholipase A₂ pathways. Mol. Reprod. Dev. **56**, 387-391.

Sandig, H., Pease, J.E., Sabroe, I., (2007) Contrary prostaglandins: the opposing roles of PGD₂ and its metabolites in leukocyte function. J. Leuko. Biol. **81**, 372-382.

Santoli, D., Phillips, P.D., Colt, T.L., Zurier, R.B., (1990) Suppression of interleukin 2dependent human T-cell growth in vitro by Prostaglandin E (PGE) and their precursor fatty acids. J. Clin. Invest. **85**. 424-432.

Santoli, D., Zurier, R.B., (1989) Prostaglandin E precursor fatty acids inhibit human IL-2 production by a prostaglandin E-independent mechanism. J. Immunol. **143**, 1303-1309.

Sawyer, N., Cauchon, E., Chateanueuf, A., Cruz, R.P.G., Nicholson, D.W., Metters, K.M., (2002) Molecular pharmacology of the human prostaglandin D₂ receptor CRTH₂. Br. J. Pharmacol. **137**, 1163-1172.

Sell, S., (1987) Immunology Immunopathology and Immunity. 4th ed. Elsevier Science Publishing Company, Inc, New York.

Serhan, C.N., Savill, J., (2005) Resolution of inflammation: the beginning programs the ends. Nat. Immunol. **6**, 1191-1197.

Sharif, A.S., Crider, J.Y., Xu, S.X. & Williams, G. W. (2000) Affinities, Selectivities, Potencies, and Intrinsic Activities of Natural and Synthetic Prostanoids Using Endogenous Receptors: Focus on DP Class Prostanoids. J. Pharmacol. Exp. Ther. **293**, 321-328.

Smith, (1992) Lipid-derived autacoids, Eicosanoids and platlet activating factor. In: Goodman and Gilman's the Pharmacological Basis of Therapeutics. 10th edition. Eds: Hardman. J.G., Limbard. L.E., Gilman A.G. McGraw-Hill Companies Inc, New York.

Soberman. Roy, J., Peter, C., (2003) The organization and consequences of eicosanoids signalling. J. Clin. Invest. **111**, 1107-1113.

Spengler RN, Spengler ML, Lincoln P, Remick DG, Strieter RM, Kunkel SL. (1989) Dynamics of dibutyryl cyclic AMP- and prostaglandin E₂-mediated suppression of lipopolysaccharide-induced tumor necrosis factor alpha gene expression. Infect. Immun. **57**, 2837-2841. Standiford, T.J., Kunkel, S.L., Basha, M.A., Chensue, S.W., Toews, G.B., (1990) Interleukin-8 gene expression by a pulmonary epithelial cell line. A model for cytokine networks in the lung. J. Clin Invest. **861**, 945-953.

Stephen, J.C., Auger, K.R., Libby, P., (1987) Interleukin 1 induces Interleukin 1. II. Recombinant human interleukin 1 induces interleukin 1 production by adult human vascular endothelial cells. J. Immunol. **139**, 1911-1917.

Sugimoto, H., Shichijo, M., Lino, T., Manabe, Y., Watanabe, A., Shimazaki, M., Gantner, F., Bacon, K.B., (2003) An orally bioavailable small molecule antagonist of CRTH₂, ramatroban (BAY- μ 3405), inhibits prostaglandin D₂-induced eosinophil migration in vitro. J Pharmacol Exp Ther. **305**, 347-52.

Sugimoto, Y., Tsuboi, K., Ichikawa, A., (2002) Prostanoid receptor subtypes. Prost. Lip. Mediat. **68**, 535-556.

Swantek, JL., Cobb, M.H., Geppert, T.D., (1997) Jun N-terminal kinase/stress-activated protein kinase (JNK/SPAK) is required for lipopolysacchride stimulation of tumor necrosis factor alpha (TNF- α) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SPAK. Mol. Cell. Biol. **11**, 6274-6282.

Takahiro, S., Mitsuhiro, K., Toshihiko, O., Noriyuki, S., Makio, K., (2002) 15- Deoxy-Delta- 12,14-Prostaglandin J2. A Prostaglandin D_2 metabolite generated during inflammatory process. J. Bio. Chem. **277**, 10459-10466.

Tilley, S.L., Thomas, M., Coffman., Koller, B.H., (2001) Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J. Clin. Invest. **108**, 15–23.

Toh, H., Ichikawa, A., Narumiya, S., (1995) Molecular evolution of receptors for eicosanoids FEBS. Lett. **361**, 17-21.

Town, M.H., Casals-Stenzel, J., Schillinger, E., (1983) Pharmacological and cardiovascular properties of a hydantoin derivative, BW245C, with high affinity and selectivity for PGD₂ receptors. Prosta. **25**, 13-28.

Ulven, T., Kostenis, E., (2004) Minor structural modifications convert the dual TP/CRTH₂ antagonist ramatroban into a highly selective potent CRTH₂ antagonist. J. Med. Chem. **40**, 897-900.

Vassiliou, E., Jing, H., Ganea, D. (2003) Prostaglandin E_2 inhibits TNF production in murine bone marrow-derived dendritic cells. Cellular Immunol., **223**, 120-132.

Walker, W., Rotondo, D., (2004) Prostaglandin E_2 is a potent regulator of interleukin-12-and interleukin-18-induced natural killer cell interferon- γ synthesis. Immunol. **111**, 298-305.

Watabe, A., Sugimoto, Y., Honda, A., Irie, A., Namba, T., Negishi, M., Ito, S., Narumiya, S., Ichikawa, A. (1993) Cloning and expression of cDNA for a mouse EP_1 subtype of prostaglandin E receptor. J Biol Chem. **268**, 20175-20178.

Watanabe, K., (2002) Prostaglandin F synthase. Prost. Lipid Mediat. Rev. 69, 401-407.

Watson, D.A., Musher, D.M., Jacobson, J.W., Verhoef, J., (1993) A brief history of pneumococcus in biomedical research: A panoply of scientific discovery. Clin Infect Dis. **17**, 913.

Xue, L., Gyles, S. L., Wettey, F. R., Gazi, L., Townsend, E., Hunter, M. G. and Pettipher, R. (2005) Prostaglandin D_2 causes preferential induction of proinflammatory Th2 cytokine production through an action on chemoattractant receptor-like molecule expressed on Th2 cells. J. Immunol. **175**, 6531-6536.

Yamamoto, H., Suzuki, T., (1987) Prostaglandin E₂-induced activation of Adenosine 3'-5' Cyclic monophosphate-dependent protein kinases of murine macrophage like cell line (P388D1) J. Immunol. **139**, 3416-3421.