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Abstract 

The market for plug-in electric vehicles is expected to grow significantly over the next 

few years as a number of automobile manufacturers have released electric vehicle 

models onto the market.  The charging demand of wide-scale use of EVs may have a 

significant impact on domestic electricity loads and could risk overloading the power 

distribution system unless appropriate charging strategies are applied to prevent this. 

In order to quantify the future electric vehicle charging demand, it is necessary to gain 

a good understanding of current privately owned car use.  In this thesis, domestic car 

use patterns have been studied in detail by analysing the United Kingdom Time of Use 

Survey 2000 data.  The key findings show that weekday car use patterns are rather 

different than weekend ones.  The majority of domestic cars are used for commuting to 

work during week days.  Car activities, such as depart from home and arrive home are 

highly correlated and dependent on time of the day.  Cumulative driving times are 

significantly dependent on the car arrival time.  In most research, the relationship 

among these types of events are often ignored, which leads to errors in the calculation 

of charging demand.  Three high resolution Monte Carlo simulation models are 

structured based on these domestic car use statistics in order to represent the weekday 

car use patterns; they represent three different approaches to trying to capture the 

complex dependencies associated with car use.  The return time dependent Monte 

Carlo model utilise car returning home probabilities and the cumulative driving period 

dependent on arrival home time statistics.  The single time increment Monte Carlo 

model uses two-state probability distributions of car departure and arrival to 

reproduce the weekday car location status.  Although the correlation between car 

departure and arrival home events are not explicitly captured in this model, the 

multiple time increments Monte Carlo model captures this relationship by sampling 

from car away and parking period time dependent probability distributions.  
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Validation of the simulation results shows that all three models generate acceptably 

accurate car use patterns with home as the primary parking location.   

In the later part of the thesis, assessments the impact of electric vehicle home charging 

on the distribution network have been performed for two case studies; one focuses on 

the peak load impact on substation transformers, and the other one examines 

individual  household voltages (at 230V low voltage level).  For the specific network 

considered, it is shown that distribution substation transformers (i.e. primary and 

secondary) will face increasing peak load due to electric vehicle charging in the case 

that householders start charging as soon as they arrive home.  It is recognised for the 

first time that domestic car use behaviour has effects on the household electricity 

consumption model and to reflect this the household electricity model has been 

modified to account for the changes in occupancy associated with car movements.  In 

the low voltage case study, the household voltage issue has been investigated for this 

specific network by performing power flow calculations, and shows that a household, 

located at the end of a long service cable, suffers under voltage before the substation 

feeder reaches its thermal limit.   

In the last part of the thesis, several vehicle charging strategies have been developed to 

mitigate the problem of overloading the substation transformer.  It is shown that a 

simple time delay to charging strategy creates an additional peak load on the substation 

loading profile; however, with a random time delay, overloading of the substation can 

be avoided.  The potential role of EVs as responsive demand has been explored with the 

aim of utilising vehicle charging to support local power system operation with surplus 

wind generation.  An algorithm is proposed that can effectively shift vehicle charging 

by implementing a linear cost function to track the surplus wind generation.    
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1. Chapter 1: Introduction 

With wider deployment of the plug-in electric vehicles (EV), Distribution 

Network Operator (DNO) would expect increasing domestic demand due to 

large numbers of vehicles charging.  Additional EV charging load could lead 

potentially to overloading of power system assets unless appropriate demand 

side management is in place.  This thesis is primarily concerned with the 

quantification of the potential impact of domestic electric vehicle charging on 

the power distribution system. 

This chapter first assesses the existing literature on modelling electric vehicle 

charging and analysing the impact on the distribution system.  It then 

introduces relevant analysis techniques and outlines the objectives and 

methodology of the thesis.  Finally, it enumerates the main contributions of 

the thesis.    
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1.1. Thesis background 

1.1.1. Electric Vehicle Deployment Contributions and Concerns 

The need to reduce carbon emissions is driving significant changes to the way 

electricity is generated and used.  Transport poses particular challenges to 

decarbonisation but one approach that is finding favour in European countries 

is a move to replace a proportion of cars with EVs, [1.1].  Transport is a 

significant and growing source of domestic carbon emissions, presently 

representing 21% of total UK domestic carbon emissions, where passenger 

cars account for 58% of this, [1.2].  Wide deployment of electric vehicles can 

offer significant environmental benefits for reducing carbon emissions 

compared with existing internal combustion engine (ICE) vehicles.  The UK 

government provides incentive schemes for domestic consumers to purchase 

electric vehicles.  The UK Department for Transport (DfT) released a document, 

“Low carbon and electric vehicles”, in 2009, [1.3].  It states that the government 

plans to create a £250m scheme to reduce the price of electric and plug-in 

hybrid cars, from 2011 onwards, to help consumers purchase them.  

Approximately £20m of the £250m will be used to develop an electric vehicle 

charging infrastructure framework, helping to create a UK network of electric 

car cities.  The number of the electric vehicles deployed in the UK up to 2050 

has been forecast by John et al [1.4].  The predicted number of EVs up to 2050,  

under the market leading ‘Market Rules’ scenario, is presented in that work; 

in particular it is assumed that there would be 1.1 million electric vehicles on 

the road in the UK by 2020.   

The electricity supply industry, including the DNOs, concerned that the 

increasing deployment of electric vehicles will lead to significant additions to 

electricity load that could be difficult to meet, [1.5], [1.6].  There is also 
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particular concern that much of this additional load may occur at times when 

the electricity supply system is already heavily loaded.  These challenges will 

apply across the entire power system.  It is likely that EVs will not be evenly 

distributed geographically since their limited range will make them more 

attractive in urban than rural areas.  In the early days of deployment it is also 

quite possible that certain cities will see higher penetrations as a result of local 

planning and incentive schemes, and measures to discourage the use of 

conventional vehicles, for example through the establishment of centre city 

non-pollution zones.  National Grid (NG), the UK transmission network 

operator, has created two different ‘Future Energy Scenarios’ (FES) – Slow 

Progression and Gone Green – to meet the energy demands of this century, 

[1.7].  At the moment, there are around 5,000 electric vehicles on the road in 

the UK.  In Gone Green, there are expected to be 3.2 million cars in the UK by 

2030 and in Slow Progression there will be 0.9 million.  On a cold winter day, 

the average electricity customer currently consumes 13 kWh.  FES analysis 

assumes an average EV charge of approximately 6.3kWh per day, which 

means an increase in consumption of almost 50% for a typical home.  As the 

transmission system owner and operator, NG has to understand what the 

future demand is at peak times so as to ensure that the network has adequate 

capacity in place to meet the demand. 

1.1.2. Studies on Electric Vehicle Use Modelling and Charging 

Impact on the Distribution Network 

Several PhDs, [1.8] to [1.13] have been recently completed that focus on 

resolving the challenges of integrating electric vehicles into power systems.  

Some of the researchers analysed the potential impact of electric vehicle 

charging on the distribution network, [1.8], [1.9] and others focused more on 

developing control strategies for EV charging in order to either mitigate the 
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impact or to utilise them as responsive load[1.10], [1.12].  In [1.8], the thesis 

illustrates the EV charging impact on medium voltage distribution network as 

results of power flow analysis with various charging strategies.  Another 

thesis focuses on impact analysis of EV charging specifically on the Irish LV 

network as well as the development of control strategies for EV charging, [1.9].  

The development of control strategies for EV charging as demand response in 

order to prevent stress on the power distribution system, [1.10].  In [1.11], part 

of thesis deals with the EV charging impact at a national level as well as at low 

voltage level under a 2030 EV deployment scenario.  The thesis explores the 

opportunities for EV charging providing ancillary services for intermittent 

energy sources, such as photovoltaic generation are explored in [1.12].  

Another UK thesis illustrates the capability of a developed tool to assess the 

EV charging impact on the national load profile based on the statistical 

analysis of household car use data as well as EV models currently available on 

the market, [1.13].   

A number of electric vehicle trials have been performed by the automobile 

manufactures, electricity utilities and academic researchers, often undertaken 

collaboratively, in order to learn from EV user adaption as well as assess EV 

charging impact on the electricity grid, [1.14] to [1.17].  In addition to 

providing valuable practical experience to the companies, these studies 

provide data on EV use patterns.  However, due to the limited nature of the 

trials, these data are of restricted generality.  For example, in [1.9], the EV 

charging model has been structured from limited trial vehicle usage data.  

Most research though has focused on predicting the impact of EV take up on 

the electricity system, the best of this based on substantial data quantifying 

vehicle use.  A Finnish study modelled plug-in hybrid electric vehicle (PHEV) 

charging based on the National Travel Survey published by the Finnish 
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Transport Agency, [1.18].  It states that half of the driven journeys in Finland 

are shorter than 50km.  This paper also highlights the challenges and 

limitations of the National Travel Survey data, in particular that a driver can 

operate multiple cars during the same survey diary day.  Papers [1.19] to [1.21] 

derive from the on-going multi-year EPRI study into plug-in electric vehicles, 

this being the most comprehensive approach to EV impact analysis 

undertaken to date, and serves to underline the importance of this area of 

analysis.  In [1.22], US National Household Travel Survey has been studied in 

detail in order to quantify the PHEV charging load for summer and winter 

cases.  Although this study comes after [1.10], more precise assumptions and 

careful considerations of future PHEV deployment enables much more 

accurate impact analysis on the distribution network, which is rather different 

than the previous study.  Two Dutch studies derived statistics for vehicle use 

patterns from a survey conducted by the Dutch Ministry of Transportation, 

[1.23] and [1.24].  Both Verzijlbergh and Lojowska present probability 

distributions for vehicle movements based on the Dutch survey, and these are 

used in stochastic modelling; the main weakness of these studies is their 

hourly time resolution.  Large volumes of information regarding short 

distance vehicle movements have thus been neglected due to the course time 

resolution, although these short trips constitute the bulk of domestic journeys 

and would make significant contributions to EV charging loads.  Yunus et al, 

[1.25], presented a stochastic model for EV charging and impact on the 

distribution transformer. This work illustrated the merit of the stochastic 

method (sampling from probability distribution) compared with a 

deterministic approach (using assumptions) to EV modelling.  The main 

concern with this study though is its assumption that cars only make one trip 

away from home each day and associated with this that the departure times 
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from home and the return time are normally distributed about their mean 

values chosen to be 7am and 6pm respectively for weekdays, which is highly 

simplistic as compared with the data presented in this thesis, and therefore 

likely to produce misleading results.  Moreover the rather low charging rates 

used in the study can lead to underestimates of the potential impact on the 

grid, even though different sizes of battery capacities have been considered.  

Qian et al, [1.26], present in detail their modelling of vehicle movements 

making use of UK data on vehicle utilisation as a function of time of day.  

However, a log-normal probability distribution is simply used to represent the 

daily distance travelled and although this is not totally unreasonable it does 

not take account of the fact that in practice journey lengths depend strongly 

on when those journeys occur during the course of the day, as will be shown 

in the next part of this thesis.   

Other than the time resolution issue, another interesting relationship that has 

often been neglected in earlier research is the link between car arrival time and 

the time of the subsequent departure from the home.  These two parameters 

are critical when determining the available time period for EV charging.  One 

Monte Carlo model structured in this thesis has treated these events as 

statistically independent in the approach implemented, although it is possible 

to evaluate the correlations between these events, [1.27] and [1.28].  In [1.27], a 

mathematical formulation, called a copula function, was used to evaluate an 

approximation to the relationship between car departure and arrival home 

and is limited to a maximum of two home-to-home (h2h) journeys per day.  

No validation is presented in the paper; therefore, it is not possible to know 

the accuracy of the driving patterns represented in the paper.  In [1.28], a curve 

fitting technique was applied to the hourly distribution of the last arrival time 

home dependent on car departure time to generate the required time 
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dependent distribution.  However, as the car arrives home, the synthetic 

driving cycles are randomly assigning to the temporal distribution.  In fact, 

the driving activity is highly dependent on the car arrival time, and this is 

ignored in [1.28].  Both approaches have shown the challenges of determining 

the mathematical relationship between car departure from home and arrival 

back home.   

Pecas Lopes et al, [1.29], have examined in detail the impact of EVs on the 

electricity distribution system; they refer to the situation where owners charge 

their vehicles without constraints when they return home as “dumb charging” 

but little detail on modelling of the vehicle movements is provided.  Electric 

vehicle charging impact can be assessed by performing load flow such as in 

[1.30].  Putrus et al presents the three supply-demand matching scenarios 

charging impacts on substation transformer loading as well as voltage issues 

at 11kV and 400V level as results of power flow calculation.  The impact on the 

LV network voltage has been illustrated for the EV acting as distributed 

generation through vehicle-to-grid technology; and for that particular 

network, the system can couple up to 30% of households with EVs before the 

local voltage drops below the statutory limits.  Additionally, power quality 

and phase imbalance issues due to vehicle charging have also been 

investigated.  In contrast to small-scale distribution network analysis, a 

Spanish research team analysed electric vehicle charging impacts on large-

scale real distribution areas from medium voltage 20kV to low voltage 6kV 

voltage levels, which includes more than 6,000 LV residential customers, and 

an industrial and residential area with over 61,000 customers, [1.31].  The 

advantage of having this large-scale distribution model enables distribution 

system operators to forecast the required network investment with different 

future levels of PEV penetration.  Although the EV penetration level is 
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adapted from the EPRI study, the large-scale distribution planning model has 

simulated that required incremental investment can be avoided if smart 

charging strategies are implemented compared to the default charging regime; 

and the energy losses with maximum EV penetration level could significantly 

be increased even when majority of vehicles charging at off-peak hours.  As 

part of analysis of network constraints, Quiming et al, [1.32] performed a study 

focusing on the potential impact on residential distribution transformer life 

due to vehicle charging.   

Several EV studies have been published on vehicle charging strategies 

developed to meet system constraints, reduce EV charging costs, or help 

absorb renewable generation in the distribution system, [1.33] to [1.36].  

Control strategies have been applied to EV charging activity in order to 

prevent either overload the system or voltage droop, such as in [1.37].  In paper 

[1.34], load scheduling and dispatch for vehicle charging are adjusted to 

reduce EV charging costs based on an electricity price signal.  Deilami and his 

colleagues, [1.35], proposed a novel load management solution for 

coordinating the charging of EV fleets.  By identifying three prioritised time 

zones, vehicle charging can be shifted to times of day with less intensive 

system loading in order to manage system distribution system constraints and 

reduce costs.  However, this modelling approach has the weakness of using 

fixed and generalised household demand profiles; therefore, the change of the 

household demand profiles would lead to different prioritised time zones for 

vehicle charging.   

1.2. Thesis Objectives 

The main question this thesis attempts to answer is: 
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x What will be the impact of electric vehicle charging on the UK power 

distribution network in the future and how can this charging be 

controlled to improve distribution network operation? 

Answering this question requires the statistical analysis of data for current 

domestic car use, the development of stochastic models for future electric 

vehicle charging, and the development of a power distribution network model 

which enables distribution network operators assessing the impact.  Finally, 

charging strategies need to be developed that can be applied to these vehicle 

charging loads in order to mitigate the impact and help absorb surplus 

renewable generation.   

To answer the main thesis question, the following activities have been 

undertaken: 

1. Review the existing literature on modelling electric vehicle charging 

and impact assessment on the power distribution system to identify the 

research gap. 

2. Identify main car use data sources and calculate privately owned car 

use statistics with home as primary parking location, especially for 

weekdays. To understand the use patterns of domestic car driver. 

3. Develop stochastic models to simulate weekday car driving patterns. 

4. Analyse simulation results against the data source statistics to check the 

consistency of the model output. 

5. Establish case studies to quantify the impact of vehicle charging on 

primary (11kV) and secondary (11kV/400V) distribution substation 

transformers. 



10 
 

6. Develop a low voltage network model with real network parameters to 

perform assessment on the vehicle charging impacts. 

7. Identify a suitable individual household electricity consumption tool 

and generate house by house electricity consumption profiles for a 

hypothetical residential community. 

8. Investigate the impact of vehicle charging on low voltage network in 

terms of feeder loading and voltage deviation. 

9. Develop control strategies for vehicle charging in order to mitigate the 

impact on the substation transformer loading. 

10. Develop control strategy for vehicle charging to absorb local surplus 

renewable generation. 

1.3. Contributions to Knowledge 

The thesis delivers a number of important contributions to engineering in 

terms of both knowledge and the development of novel techniques: 

1. It provides a detailed analysis of UK privately owned car use based on 

the United Kingdom Time of Use Survey 2000 data.  From this data, key 

statistics of weekday car usage have been identified and from these, key 

probabilities and probability distributions of weekday car usage, such 

as departure time, arrival time, cumulative driving period dependent 

on arrival time, etc. have been estimated.  These statistics reveals the 

driving behaviour of domestic car user in UK.  In different European 

countries, the driving habits of people are different; UK domestic car 

user has different driving distance than the Finnish drivers. This 

particular contribution is presented in Chapter 2. 
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2. High resolution time-series Monte Carlo (MC) models enable 

simulating privately owned car daily use patterns have been developed.  

A return time dependent MC model utilises only car arrival time and 

the associated cumulative driving period.  Both fixed time increment 

and multiple time increments MC models follow weekday car 

movements, such as time of departure and arrival, duration of parking 

at home and time away from home, and the cumulative driving period.  

A comprehensive analysis has been performed to check the modelling 

results with Time of Use Survey statistics.  Three Monte Carlo models 

are present in detail in Chapter 3.   

3. An individual household electricity consumption model has been 

modified to include the electricity consumption changes due to EV use 

through active occupancies in the household.  Details of individual 

household electricity consumption modelling is presented in Chapter 4.   

4. An impact assessment of future EV charging has been performed on 

primary and secondary substation transformers of a UK specific 

network that structured based on real network parameters.  Power flow 

analysis has been performed on a typical low voltage (11kV/400V) 

distribution network based on real network parameters.  Impact results 

are presented in Chapter 4. 

5. Opportunities to use EV charging as responsive load in the power 

distribution system have been explored with ‘time-shifting’ charging 

strategies.  The potential benefit of utilising EVs to absorb surplus wind 

generation in the system have been investigated based on the 

consideration of the numbers of EVs parked at home and available for 
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charging at any time of day.  Details of developed charging strategies 

has been presented in Chapter 5.   

1.4. Publications Arising from This Thesis 

Through the development of this thesis, the author has contributed the 

following journal articles as co-author: 

J. Barton, S. Huang, D. Infield, M. Leach, D. Ogunkunle, J. Torriti, M. 

Thomson, The Evolution of Electricity Demand and the Role for 

Demand Side Participation, in Buildings and Transport, Energy Policy 

Special Section: Transition Pathways to a Low Carbon Economy, vol. 52, pp, 

85-102, January 2013. 

D. Pudjianto, P. Djapic, M. Aunedi, C. K. Gan, G. Strbac, S. Huang, D. 

Infield, Smart Control for Minimizing Distribution Network 

Reinforcement Cost due to Electrification, Energy Policy Special Section: 

Transition Pathways to a Low Carbon Economy, vol 52, pp, 76-84, January 

2013. 

The author has also contributed to the following conference papers either as 

main author or co-author: 

X. Zhong, A. Cruden, D. Infield, S. Huang, Assessment of Vehicle to 

Grid Power as Power System Support, Proceedings of the 44th 

International Universities Power Engineering Conference (UPEC), Glasgow, 

2009. 

S. Huang, D. Infield, The Potential of Domestic Electric Vehicles to 

Contribute to Power System Operation through Vehicle to Grid 

Technology, Proceedings of the 44th International Universities Power 

Engineering Conference (UPEC), Glasgow, 2009. 



13 
 

S. Huang, D. Infield, The Impact of Domestic Plug-in Hybrid Electric 

Vehicles on Power System Loads, Proceedings of International Conference 

on Power System Technology (POWERCON), Hangzhou, 2010. 

S. Huang, D. Infield, Demand Side Management for Domestic Plug-in 

Electric Vehicles in Power Distribution System Operation, The 21st 

International Conference and Exhibition on Electricity Distribution (CIRED), 

Frankfurt, 2011. 

D. Frame, G. Ault, S. Huang, The Uncertainties of Probabilistic LV 

Network Analysis, IEEE Power and Energy Society General Meeting 

(PESGM), San Diego, 2012. 

S. Huang, D. Infield, Potential of Plug-in Electric Vehicles for 

Supporting Regional Power Distribution System Operation with High 

Penetration of Wind Generation, Proceedings of International Conference 

on Sustainable Power Generation and Supply (SUPERGEN), Hangzhou, 

2012. 

S. Huang, R. Carter, A. Cruden, D. Densley, T. Nicklin, D. Infield, 

Potential Impact of Uncoordinated Domestic Plug-in Electric Vehicle 

Charging Demand on Power Distribution Networks, European Electric 

Vehicle Congress (EEVC), Brussels, 2012 

S. Huang, L. Wu, D. Infield, T. Zhang, Using Electric Vehicle Fleet as 

Responsive Demand for Power System Frequency Support, Vehicle 

Power and Propulsion Conference (VPPC), Beijing, 2013. 

S. Huang, D. Infield, A. Cruden, D. Frame, D. Densley, Plug-in Electric 

Vehicles as Demand Response to Absorb Local Wind Generation in 
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Power Distribution Network, Proceedings of the 27th International Electric 

Vehicle Symposium & Exhibition (EVS), Barcelona, 2013. 

1.5. Thesis Structure 

The structure of this thesis mirrors the development of the concepts – from 

initial scoping, through development of the Monte Carlo model, to impact 

assessment and demand side management for electric vehicle charging. 

Chapter 2 first describes the different sources of survey data for UK transport 

statistics, which includes privately owned car use information.  This part of 

chapter also explains the advantages of using The United Kingdom 2000 Time 

Use Survey (TUS) compared to the National Travel Survey 2002-2008 (NTS).  

The second part of this chapter describes the methodological steps to derive 

the required statistical information relevant to privately owned car use.  The 

third part of Chapter 2 describes in detail the car use statistics derived from 

the TUS data, including time of departure and arrival back home, purpose and 

duration of journeys, and locations of parking, etc.  This chapter provides 

statistical information that will be used for the Monte Carlo simulation (MC) 

modelling of privately owned car use presented in Chapter 3.  The last part of 

the chapter discusses the challenges faced in assessing car use statistics.   

Chapter 3 presents in detail the Monte Carlo modelling of privately owned car 

use and the implementation of the inverse-transform method and illustrates 

the different approaches taken to modelling car use.  The basic concept of MC 

simulation is explained in the first section.  A MC model that uses only 

statistics of time arrival and the total driving journey distribution at these 

times is developed; this is referred as the return time dependent MC model.  

The main advantage of this return time dependent MC model is that it only 

requires the two types of car use statistics mentioned and despite this can 
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produce accurate forecasts of cumulative driving period for cars returning 

home.  Next two MC models following car locations approach are structured 

by following the logical sequence through the day when cars park at home, 

depart from home, arrive home, and the total journey driven as a function of 

the arrival time.  One is called single time increment MC model, which only 

uses probabilities of car departure home and car arrival home.  Although the 

correlation between car departure and arrival home events are ignored in this 

model, the multiple time increments Monte Carlo model captures this 

relationship by sampling from car away and parking period time dependent 

probability distributions.  It is assumed that the charging facility is only 

available at home; therefore, the parking location analysed in the MC models 

is no other than the primary house.  Simulation results from these MC models 

have been analysed in detail so that the outputs of these MC models are 

consistent with TUS data statistics calculated in Chapter 2. 

Chapter 4 presents two case studies illustrating the impact of EV charging on 

the power distribution network, including the increase in primary substation 

(11kV/400V) peak power, secondary substation (400V/230V) feeder thermal 

limits as well as voltage deviations at monitored households.  In the first case 

study, the EV charging profiles are calculated based on the outcome of the 

return time dependent MC models, and both standard (13A) and fast (32A) 

single-phase charging are considered.  The simple ‘plug and charge’ strategy 

enables charging the battery starting as soon as the EVs arrive home, and no 

constraints on the charging duration.  These vehicle charging profiles have 

been used to assess the impact on the primary substation loading.  Results 

shows that the EV charging increases the existing peak load on substation 

transformers.  As contrast, the multiple time increments MC model limits the 

EV charging in relation to the car departure statistics, and charging profiles 
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have been used in the second case study.  The LV network model is based on 

a hypothetical residential community but makes use of real network 

parameters.  Results present that the impact of EV charging on the low voltage 

network, especially 230V.  The assessment of EV charging impact has been 

undertaken on distribution feeder line and examines thermal limits and 

voltage deviations.  Power flow (also known as load flow) analysis has been 

performed for calculating excessive feeder current and the deviation of voltage 

due to EV charging on the network.   

Chapter 5 explores the potential of privately owned EVs to act as responsive 

demand in the context of local power distribution network operation.  The first 

section presents the opportunity of electric vehicle participating in the 

demand side management (DSM).  Case study 1 introduces several different 

charging strategies that modify the EV charging impact on the power 

distribution network.  In case study 2, electric vehicles are used to absorb local 

wind generation so that the maximum amount of surplus wind can be utilised 

driven by a wind dependent cost function for vehicle charging.  The outcome 

illustrates that EVs can be utilised to improve the operations of the distribution 

network, and reduces the cost of recharging the EVs. 

Chapter 6 concludes the thesis and brings together the learning from each of 

the chapters.  It justifies the contributions to knowledge listed above and 

answers the key thesis question.  Finally, important future work is identified. 
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2.Chapter 2: Household Car Use Data 

Analysis and Identification of 

Relevant Probabilities and 

Probability Distributions 

For the purposes of quantifying the potential impact of widespread electric 

vehicles charging on the UK’s power distribution system, it is essential to 

obtain relevant statistical data on vehicle usage.  Since EV ownership is 

presently very limited, these data will inevitably be for internal combustion 

engine (ICE) vehicles, and in particular privately owned cars.  This should not 

be an issue since the limited journey distances that will be dealt with in this 

work could easily be undertaken by an EV.  Different sources that provide 

data on the use of household cars are presented and compared.  Particular 

attention is paid to the United Kingdom 2000 Time of Use Survey as it contains 

detailed and valuable statistical information about household car use.  This 

database has been analysed to obtain detailed car use statistics, such as 

probability of a car departure from home, probability of a car arrival home, 

probability distributions of individual journey time, etc.  In this chapter, 

household car use behaviour is discussed in detail.    
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2.1. Private Owned Car Use Data Sources 

In order to build up the probabilistic models1 for privately owned car use, The 

United Kingdom 2000 Time Use Survey (TUS) has been selected as the main 

data source, [2.1].  There are other data sources available for verifying key 

statistics, such as time of day of car departure and arrival home, average daily 

driving journey time and length, car parking locations, and the journey 

purpose; in particular the National Travel Survey 2002-2010 (NTS), and Focus 

on Personal Travel 2005, [2.2] and [2.3].   

2.1.1. The United Kingdom 2000 Time of Use Survey 

The Time of Use UK Survey (TUS) 2000 is concerned with how people in the 

United Kingdom spend their time.  The survey is based on diaries kept by 

12,000 participants describing their day-to-day (D2D) activities with a ten-

minute time resolution.  In particular, the survey provides detailed data on 

privately owned vehicle use.  Individuals in sampled households are asked to 

complete a two separate one day travel diaries for each week over the 15 

months that they are participating in the survey, where the days are chosen at 

random over the whole week.  Each diary runs from 4.00am to 3.50am the next 

day to minimise activity at the beginning and end of diaries.  These diaries 

provide details of trips undertaken, including the purpose, method of travel, 

time of day that journey takes place, and the destination.  Specific number 

codes are used to denote these household activities (i.e. sleeping, eating, etc.) 

and these will be made use of at a later stage in order to perform statistical 

analysis.  The way data was recorded enables unambiguous identification of 

car movements, the purpose of the journey (e.g. travel to work, travel to 

                                                 
1 A probability model is a mathematical representation of a random phenomenon. It is defined by its sample 

space, events within the sample space, and probabilities associated with each event. 
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shopping centre, travel to school, etc.) and the location where the car is parked 

(e.g. home, friend’s home, workplace, etc.) when it is not being driven. 

2.1.2. National Travel Survey 2002-2008 

The purpose of National Travel Survey is to monitor long-term changes in 

travel patterns and provide a better understanding of the use of transport 

facilities made by different sectors of the population.  A similar survey 

methodology is applied as for the TUS: participating households are asked to 

fill in a seven-day travel diary, and the time resolution of the survey data is 

thirty minutes in this case.  Additionally, the survey also provides general 

information on personal and company vehicle travel and also the driving 

speed for urban and other areas.  As stated in the report, car access is one of 

the most important factors in determining the amount of travelling people do.  

Overall, there were 34.2 million licensed vehicles registered in Great Britain at 

the end of 2008, which included approximately 28 million cars.  Among these 

28 million cars, 89% of them are privately owned. 

2.1.3. Focus on Personal Travel 2005 Edition 

This survey is designed to bring together information about personal travel in 

Great Britain and highlight some of the key issues.  It aims to provide readers 

with an introduction to the major trends in personal transport and a greater 

depth of understanding of some of the current areas of interest, debate and 

development.  It includes the report of the National Travel Survey 2002/2003.   

2.1.4. Other Available Car Use Data Sources  

Besides UK data sources mentioned above, there are several studies with good 

quality analysis utilising overseas car use data sources in order to capture the 

characteristics of privately owned or domestic car driving patterns.  In papers 

[2.4] and [2.5], the authors simulate electric vehicle’s plug-in time by analysing 
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US National Household Travel Survey (NHTS) 2001 data, [2.6].  NHTS data is 

collected on daily trips taken in a 24-hour period, and various attributes are 

recorded, such as purpose of the trip, means of transportation used, and how 

long the trip took, etc.  The 2001 NHTS sample comprised 26,038 samples and 

43,779 households in nine areas, based on a total of 69,817 interviewed 

households.  For long trips, a four-week recall period was used and data was 

collected on all trips of 50 miles or more from home.  The definition of a travel 

day trip was modified to explicitly exclude stops to change mode of 

transportation.  The time resolution is 1-min over 24-hour period, starting 

from 04:00 to 03:59 next day hours. 

In [2.7] and [2.8], driving patterns were extracted from the transportation data 

for the year 2008 provided by the Dutch Ministry of Transportation, [2.9].  The 

Mobility Research Netherlands report gives a large dataset of individual trips 

by various transport means.  The data is collected by means of a survey of 

roughly 40,000 people in the Netherlands.  The dataset consists of over 130,000 

individual movements (one way trips), from which approximately 40,000 are 

car movements involving roughly 18,000 individual cars.  The most important 

variables that have been used to construct the different charge profiles in this 

study are (for each of the 18,000 individual cars): daily driving distance, home 

arrival time and home departure time.  The time resolution, shown in [2.7] and 

[2.8], is hourly from 0000 to 2400 hours. 

2.1.5. Advantage of Analysing United Kingdom Time Use Survey 

2000 Data 

The main advantage of using TUS as the main data source is the ten-minute 

time resolution compared to the NTS data, despite the rather similar 

approaches to collecting data, and the nature of the records, including 

departure and arrival time of day, duration of journey, etc.  The amount of 
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energy required to charge electric vehicle batteries is calculated based on the 

total length of journeys starting from and returning back home.  Thirty-minute 

or lower time resolution data certainly loses critical information on commonly 

made short journeys, such as trips to local shops (see Section 2.3.3) with the 

result that the amount of energy required to charge EV batteries for these 

frequent journeys would be neglected.  Figure 2.1 illustrates three examples of 

household journey activity that can be identified from the TUS data and the 

corresponding journey codes.   

 

(a) 

 

(b)

 

 

(c) 

Figure 2.1 Examples of household journey activities. (a) home-to-work; (b) 

home-to-work with an errand en route; (c) home-to-work with a shopping 

trip from work. 
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As shown in Figure 2.1, specific code numbers are assigned in order to reflect 

the purpose of each journey. For example, Figure 2.1a shows the 

straightforward journeys to work and back home from work, coded as 913.  

TUS data indicates that many people in paid work start from home in the 

morning and return home in the evening.  The first journey is defined by its 

purpose, which in this case is to go to work. If the journey back home in the 

evening was defined in the same way it should be a journey home from work, 

but instead, it is defined as another journey that relates to work.  The code 

does not differentiate between journeys to and from work although this 

distinction can be deduced from the sequence.  If an errand or additional 

driving activity occurs before one to/from working place, these driving 

activities tend to be rather short journeys.  Detailed statistics of these errands 

or additional activities are explained in Section 2.3.5.  Figure 2.1b gives the 

defined journeys to and from work including an errand or additional activity; 

suppose now that an errand is carried out on the way to work and from work, 

e.g. a child is left at the day nursery in the morning and picked up in the 

afternoon.  Since the commute to work is no longer straightforward, the 913 

code is no longer used.  The first part of the journey is now connected with 

childcare (i.e., the reason to go to the day nursery) and the second part is 

connected with work.  However, since the work portion of the journey is no 

longer straight from home, this is given the code for travel to/from work from 

a place other than home (code 914).  The first part of the way back home is also 

connected with childcare, coded as 938.  The final part of the journey is also 

coded to childcare since the journey’s destination is home, coded as 938.  In 

the Figure 2.1c, the journey includes an errand during lunch break at work, 

but still the starting place and final destination is home.  Code 913 applies since 

the purpose of the journey is commuting as in the first case.  The journeys to 
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and from work are unaffected.  The trip to the store is a journey of its own. The 

trip to the store is coded according to the purpose of the trip (code 936); the 

trip to work is classified according to the destination and the fact that the 

journey is not undertaken from home.  Such detailed journey information is 

valuable for calculating total journey length when the car returns home and 

enables a Monte Carlo simulation model based on this data to produce 

accurate and valid charging demand calculations.  Comparing the daily car 

usage patterns defined as the probability that a car is in use at different times 

of the day2 for the TUS and NTS data it is clear that the two data sets are in 

reasonable agreement for the trend of weekday household car use as shown 

in Figure 2.2a.  The weekend data of household car use shows that TUS data 

gives a higher proportion of cars in use than NTS data; however, the focus of 

the research here is on the weekday household car use.  Household electricity 

consumption is suspected to impose the largest temporal demands on the 

distribution system.  Additionally, electric vehicles are more likely to be used 

for short-range journeys (<100 miles) rather than long-range journeys (> 100 

miles) which are more likely to take place at weekends.   

 

(a) 

                                                 
2 Note that these are not probability distributions (sometimes called probability density functions – PDFs) in the formal sense 

even though they involve probabilities. 
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(b) 

Figure 2.2 Comparison of NTS and TUS data. (a) weekday; (b) weekend. 

A further advantage of the TUS data is that it has already been used to build 

an electricity consumption model for domestic households, [2.10], that can be 

used alongside the vehicle modelling.  This household electricity consumption 

model, developed at Loughborough University, calculates demand based on 

active occupancy; this being the number of occupants who are active (i.e. not 

sleeping) in the household at a given time of day.   

2.2. Methods Used for Calculating Car Use Statistics 

This section explains the procedures for extracting the driving related data 

from the TUS database, such as car location, car being driven on the road, etc.  

These driving related data are all available in terms of time of day, reflecting 

the diary structure, and the time resolution is ten-minutes.  Different stages of 

data processing are illustrated in Figure 2.3.  The first step is raw data 

processing, which extracts and converts the original TUS data into more 

usable data compatible with Microsoft Excel.  The next step is data post 

processing, and the outcome dataset contains household diaries together with 
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car ownership information.  These processed datasets have been further 

analysed in order to obtain statistics for the use of privately owned cars in a 

form useful for the subsequent Monte Carlo modelling. 

 

Figure 2.3 Stages of TUS data processing.  The data format has been 

converted into a Microsoft Excel readable format at the end of the process. 

2.2.1. Raw Data Processing 

Several pre-requisite procedures are needed in order to process the database 

before more detailed analysis is undertaken.  The first step is to extract the 

relevant data from the original TUS database.  A C# code has been developed 

to extract the location, mode of transport and purpose for travel from the 

database.  The function of the C# code is to locate the required variable label 

and extract the whole variable value for each diary entry.  These diaries record 

every household’s daily activities.  Each diary contains the specific code 

denoting people actually driving their car (there are separate codes for 
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passengers in transit).  The extracted data is saved as a new Excel readable file 

for further data analysis.  The resulting new database contains more than just 

driving information; it includes household reference number and number of 

persons in the house, day of the week, cars ownership etc.  In total, 18,469 daily 

diaries (for both adults and children) were analysed.  A total of 5,158 cars were 

identified as owned by the sample population in question.  The nature of each 

stage of data processing is shown in Figure 2.4. 

 

Figure 2.4 The structure at each data processing stage. 

After filtering out the child diaries at the outset (not shown in Figure 2.4) , the 

remaining 14,443 adult diaries, which are recorded for each ten-minute period 

throughout the day, were arranged into two sub-databases, depending on 

whether weekdays or weekends are being considered.  The numbers of 

weekday and weekend diaries returned were 7,219 and 7,224 respectively.  

This separation was performed as driving habits are self-evidently different at 

weekends.  Both databases contain a specific code that indicates that the diary 

owner is travelling in a car as the driver (inherited from the original TUS data 

base).  These diaries also distinguished the purpose and mode of travelling.  

Details of processed TUS data regarding code dictionary can be found in 

Appendix A.   
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2.2.2. Post Data Processing 

After extracting driving related data, a new dataset is formed that also 

contains relevant household information.  Summing up the number of unique 

household reference numbers gives the total number of households in the 

survey; this was found to be 4,972.  Table 2.1 provides the relevant numbers 

for TUS data.  For the population outlined above, the task is now to obtain 

exact car use patterns in the form of appropriate statistics and probability 

distributions.  By searching for this specific driving code for each ten-minute 

interval, the probabilities of cars being parked or driven on the road at given 

time of day can be calculated.  All calculated probabilities are all functions of 

time but do not themselves constitute a probability distribution.  They have 

been classified into weekday and weekend profiles (as for example were 

shown in Figure 2.2).  Detailed analysis of the weekday profiles helps build up 

the probabilistic models of these privately owned cars. There are a number of 

parameters for which time of day dependent probabilities are calculated; note 

that some of these are conditional probability events.  For example, at given 

time of day, the probability that a car leaves home is self-evidently under the 

condition that it has been parked at home in the immediately preceding time 

step.  Probabilities for each ten-minute time interval, t, are estimated from the 

survey data.  These are listed below: 

1. Probability of a car being parked at home 

2. Probability of a car being away from home 

3. Probability of a car departure home 

4. Probability of a car arrival home 
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5. Probability distribution for time away from home conditional on time 

of departure 

6. Probability distribution for time parking at home conditional on time 

of arrival to home 

7. Probability distribution for cumulative time driving conditional on 

time away from home 

8. Probability distribution for total driving time during round trip – 

conditional on arrival time 

Table 2.1.  Households and Diary Numbers in the TUS data. 

 Numbers in TUS data  
Households 4,972 
Population of Adults 
(Households with 1+ cars) 

7,565 

Households with Cars 3,623 
Weekday Diary Households 3,606 
Weekend Diary Households 3,608 
Weekday Diary 7,219 
Weekend Diary 7,224 
Weekday Diary contains Driving 3,716 
Cars in Weekday Diary Data 5,158 

 

2.3. Identification of Key Probabilities and Probability 

Distributions  

Probabilistic characterisations of privately owned vehicle usage cover time of 

use, duration of use and distance covered as well as car ownership are outlined 

below.  The results presented here represent UK privately owned driving 

behaviour based on the TUS survey sample. 
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2.3.1. Household Car Ownership 

The population of adults whose household has at least one car in this study is 

7,565, and this subset of the adult population is distributed over 3,623 

households.  Of this subset, 3,606 are covered by weekday diaries and 3,608 

by weekend diaries; Figure 2.5 shows a Venn diagram of the households 

showing coverage of weekdays only, weekends only, and coverage of both.  

As already mentioned, all participants return at least 2 diaries, but there would 

seem to have been required a requirement for roughly equal numbers of 

weekdays and weekend diaries.3  As a result there is a small number of adults 

who only return weekday diaries, and a similarly small number who only 

return weekend diaries.  A consequence of this is that some households with 

at least one car are exclusively described in terms of weekend activity, and 

some only in terms of weekday activity.  Fortunately the vast majority of 

households with at least one car (over 99%) are described in terms of both 

weekday and weekend activity, and car use in particular.  It is also fortuitous 

that the numbers of weekday and weekend diaries are almost equal.  These 

issues are important for some of the car status probability calculations, as will 

be described below. 

                                                 
3 It is stated in the report for The United Kingdom 2000 Time Use Survey that there is a roughly equal number of week and 

weekend day diaries completed. 
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Figure 2.5 Venn diagram showing diary information for households with 

more than one car. 

The number of cars per household is also analysed and classified by car 

ownership as shown in Figure 2.6a.  The largest group of households in the 

survey have just one car.  Just over one-fourth of total households have two 

cars.  25% of households in the original database do not have a car, as shown 

in Figure 2.6b.  The average car ownership per household is just over one for 

the entire sample population. 

 

(a) 
 

(b) 

Figure 2.6 Cars ownership per household. (a) frequency distribution; (b) pie 
chart. 
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For the population outlined above, the task is now to calculate the exact 

patterns of vehicle use.  After filtering out the child diaries, the remaining 

adults’ diaries, which are recorded for each ten-minute period throughout the 

day, were arranged into two sub-databases, depending on whether weekdays 

or weekends are being considered.  By searching for this specific driving code 

for each ten-minute interval, the probability of cars being driven on the road 

at any time can be calculated, as explained in detail in the following sections. 

2.3.2. Time of Day Car in Use 

The time of day when people use their cars as main driver (i.e. not as passenger) 

is important as it determines when EV batteries are being discharged and by 

how much, and consequently will affect when battery charging is likely to 

occur.  The exact timing of battery charging is essential to determine the added 

load on the electricity distribution system, in itself important to ensure the 

provision of adequate electricity supply capability (both generation, 

transmission and local distribution) to charge future electric vehicles whilst 

supplying the remainder of the demand.  Without further analysis, including 

other system loads, it is not possible to identify when the most critical time 

periods will be.  As defined in the survey data, a car is driving on the road at 

a particular time of day when the diary gives the household adult activity for 

that ten-minute period as “driving a car as main driver” (code 15 in TUS).  The 

probabilities for a car being in use for weekdays and weekends are calculated 

as follows: 

1. For each ten-minute time step, count the number of diaries where an 

adult is driving (code 15), driven , over all weekday or weekend diaries: 

summing over all weekday 7,219 diaries with a value of 1 assigned to 
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all code 15 entries, and zero otherwise, and denoted by the logical 

variable (15)val : 

drive day
1

( ) (15), 1, 2,3,..,
dsi n

i
n t val t t

 

 

  ¦  (2.1) 

The integer t denotes the time of day in terms of the number of ten-minute 

periods and runs from 1 to 144 to cover 24 hours, and where 1t   is the time 

period 4.00am to 4.10am.  dayt  is equal to 144.  i  denotes the diary index and 

dsn  represents the number of total diaries in the weekday or weekend data. 

2. Dividing driven  by the total number of cars4, dsn , the probability of a car 

being in use, � �driveP t  is calculated for both weekday and weekend 

subsets: 

� � � �drive
drive day

ds

P , 1, 2,3,...,
n t

t t t
n

   (2.2) 

Where driven  gives the total number of cars in use (actually being driven) at any 

time.  Note that this is different from cars simply being away from home at a 

given time.  This summation is repeated for all weekday or weekend diaries.  

These probabilities are presented as a function of time of day in Figure 2.7.  It 

should be noted that these probabilities will be underestimates since diaries 

for the houses with more than one car may not always cover situations where 

more than one car is being driven at the same time. These probabilities give a 

good idea of car use throughout the week but in fact are not used in the Monte 

Carlo simulation so that accuracy is not a particular issue.  To be clear, these 

                                                 
4 Although, as discussed previously, not all households are separately covered by both weekday and weekend diaries the 

coverage is sufficiently complete (over 99%) that no significant errors are introduced if the figure for total number of cars is used 
to calculate these probabilities rather than the number of cars that would be calculated by summing over all the houses with 
weekday or weekend diaries. 
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are time dependent probabilities but are not probability distributions.  There 

is nothing in principal to stop the probabilities remaining high throughout the 

day, or conversely low.  The integral over time is not constrained to be unity 

as with a probability density function (PDF).  

 

Figure 2.7 Probabilities that a car is being driven during weekdays and 

weekends as a function of time of day. 

Figure 2.7 show the varying probability through the day that a random car is 

being driven, and exhibits the expected peaks occurring in the weekday 

morning and evening.  In contrast, driving over the weekend is more widely 

spread over the day.  Specifically the results confirm that the peak driving time 

for weekdays is over the period 7:30 to 9:20 in the morning and 16:45 to 18:40 

in the evening as might be expected from known commuting behaviour, and 

that the pattern over the weekend is very different, justifying the 

disaggregation of the data.  If a significant proportion of cars are assumed to 

be electric at some time in the future, it will be essential to ensure provision of 

adequate electricity supply capability (both generation, transmission and local 
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distribution) to charge these electric vehicles whilst of course supplying the 

remainder of the demand.  Without further analysis, including other system 

loads, it is not possible to identify when the most critical time periods will be, 

although already there should be concern about EVs returning to home after 

work at about the same time the electricity load tends to peak.  Detailed results 

from the modelling are presented in Chapter 4. 

2.3.3. Average Daily Driving Period 

The average daily driving period reflects the amount of time people spent on 

driving over 24-hour period, and it is a crucial parameter that can be obtained 

from the TUS data.  From analysis of both the weekday and weekend datasets, 

the average daily driving period can be calculated as following: 

1. Calculate the average driving period for a single diary day: 

� � � �drive
driving

day

  
T i

T i
T

�

  (2.3) 

driveT , is the total number of 10 minute time slots occupied by driving counted 

in the thi  diary over the day.  dayT  is the total number of time slots in a day, 144.  

After calculating the average driving period for each diary, the average 

driving period for the whole TUS activity dataset, including weekday and 

weekends, can be calculated as following: 

2. Divide the sum of average driving period by the number of driving 

diaries5 in the TUS data:  

� �TUS_ driving driving
1

1   
dsi n

ids

T T i
n

 � �

 

 u¦  (2.4) 

                                                 
5 Driving diaries represent the diaries containing driving activity in the dataset. 
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As already noted, there are 6,670 driving diaries for 5,158 cars in the TUS 

dataset.  The corresponding figures for weekdays and weekends6 are 5.24% 

and 5.04% respectively indicating, as might have been anticipated, that cars 

spend a higher proportion of the time driving during the week than weekend. 

2.3.4. Car Parking Locations 

Data about the locations where people park their cars is important for the 

analysis of the impact of EV charging since this determines future charging 

opportunities, and from the point of view of the power distribution network 

operators, will determine the impacts from future EV charging on their system, 

as well as the opportunities for utilising these parked electric vehicles as 

responsive demand.  The home and the work place are considered as the 

primary and secondary locations for future vehicle charging points, and there 

is also expected to be a growth in other charging locations such as public car 

parks.  In the case of the TUS data, the weekday dataset has been analysed and 

probability of a car parking at home at a given time of day has been calculated.  

Figure 2.8, gives the probability of cars parking at home as a function of time 

of day.  This parking information is derived from the TUS weekday dataset by 

counting the number of cars parking at home at time for each ten-minute time 

interval t.  Recall that the total number of cars in the TUS dataset is 5,158; 

however, the available number of adult diaries with driving information for 

weekdays is only 3,716 (this is a subset of the 7,219 adult weekday diaries 

where there has been some driving activity during the day).  The difference 

between the total car population and the number of available diaries that 

include at least one period where the car is being driven, dsn' , is equal to 1,442 

as (5,158 minus 3,716).  These missing driving related diaries have been 

                                                 
6 There are 3,716 driving diaries in the weekday dataset and 2,956 driving diaries in the weekend dataset. 
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excluded when calculating the probabilities, and this is thought to be a 

reasonable way to prevent overestimating the probability of car use.  It 

assumes that all cars in a household can be treated equally.  This may not fully 

capture the way a household utilises their cars but without more information, 

there is no alternative way to analyse the TUS data.  On the positive side the 

sample number of diaries used (weekdays) at 3,716 is statistically significant.  

The weekday probability that a car is parked at home (or conversely is away 

from home, either driving or parked elsewhere) at time interval t can be 

calculated as follows: 

1. For each ten-minute time step, count the number of diaries where an 

adult is staying at home (code 1), homen , over all driving diaries, 

3,716dsn  , in the weekday data subset7 with denoted by the logical 

variable (1)val : 

home day
1

( ) (1), 1, 2,3,...,
dsi n

i
n t val t t

 

 

  ¦  (2.5) 

2. Dividing homen  by dsn , the probability of a car parking at home at time 

t , homeP  is calculated below for weekday datasets: 

home
home day

( )( ) , 1, 2,3,...,
ds

n tP t t t
n

   (2.6) 

3. Similarly the probability of a car being away from home, awayP , is 

calculated as below: 

� � � �away home day, 1, 2, 3, , dsn t n n t t t �  }  (2.7) 

                                                 
7 Code ‘1’ is interpreted as the status of “car parking at home” in the post data processing. The original TUS code ‘2’ definition 

was designating that person stays at home. These two can be considered equivalent given that the car is associated with the person 
who identifies his or herself as the driver in their diary. 
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away day

n (t)
( ) , 1, 2,3,...,away

ds

P t t t
n

   (2.8) 

where homen  is the number of diaries that a car parks at home, and awayn  is the 

number of diaries that a car is away from home.  Again dsn  is the total available 

weekday diaries that include some driving activity, 3,716.  From this point on 

analysis will concentrate on weekday car use and thus the subset of 7,219 

weekday diaries.  The probabilities cars parking at home or being away from 

home are denoted as homeP  and awayP .respectively.  Because awayn  is defined as 

ds homen n� , awayP  is simply home1 P�  for all t, as is clear and how these 

probabilities vary through the day is compared in Figure 2.8.  It is useful to 

think of these probabilities as applying to cars (or individual drivers), rather 

than households.  Figure 2.8 shows that majority of cars are parked at home 

during night time and early evening when they could play an important role 

in demand side management scheme, such as easing the integration of 

renewable or offsetting other loads on the system. 

 
Figure 2.8 Probabilities of car locations calculated from weekday subset data. 
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In the TUS data, other parking locations have been coded, such as at schools, 

supermarkets, and hospitals and the average parking period at these locations 

could be calculated.  These places may well become available for fast charging 

in the future as charging stations are installed more widely, [2.11].  This 

however, is beyond the scope of the present study.  Nevertheless it is 

interesting to briefly look at the probabilities of parking at the workplace, 

park_workP .  These are calculated as follows: 

park_work
park_work day

( )
( ) , 1, 2,3,...,

ds

n t
P t t t

n
   (2.9) 

park_workn  is the total number of diaries where a person is at work (code 1110) 

that a car parks at work over all weekday diaries.  It is calculated by sum value 

of 1 assigned to all code 1110, and zero otherwise, which is denoted by the 

logical variable (2)val 8.   

Figure 2.9 shows these probabilities superimposed on the probabilities of 

parking at home as previously calculated.  It can be seen that, following the 

morning commute to work, a significant proportion of cars, but clearly not all 

of the cars that leave home in the morning, are subsequently parked at the 

workplace for much of the working day.  The probability of parking at work 

is approximately half from 9am until 3pm but with a short dip between 11:30 

am and 2pm where the car has been used for some additional activity such as 

driving to lunch or shopping. 

                                                 
8 In the TUS data, code ‘1110’ is defined that a person is ‘working time in main job’. 



43 
 

 
Figure 2.9 Probabilities of cars being parked at home and at work on a 

weekday. 

2.3.5. Purpose of Journeys 

Driving is generally undertaken for a specific purpose, such as getting to work, 

taking children to school (also known as ‘school run’), etc.  By extracting and 

analysis of the data for weekdays, the probabilities of travel to/from work and 

the parking location of cars at different times of the day have been calculated 

as function of time.  The probability of driving to work at time t  is calculated 

from: 

work
drive_work day

ds

( )( ) , 1, 2,3,...,n tP t t t
n

   (2.10) 

where workn  is the number of weekday diaries that have driving to work (code 

913) recorded at time t .   

Figure 2.10 illustrates the probabilities of cars being driven on the road 

through the day for the purpose of getting to/from work compared the 

probability of the car being in use for any purpose, as already given in Figure 
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2.7.  Well over half of the morning rush hour domestic traffic is involved with 

commuting to work.  To be more specific, at 7:40 in the morning on a typical 

weekday, the probability of cars being on the road travelling to (or from) work 

is around 20% less than the probability of driving for all purposes. In other 

words, during the morning peak, about 80% of privately owned cars on the 

road are being used for commuting.  During the evening peak however, the 

reasons for driving are a little more diverse with 34% of cars being used in 

connection with the workplace. The key conclusion, perhaps not unexpected, 

is that most cars contributing to the morning rush hour are commuting to 

work.  The evening peak in contrast reflects a greater diversity of reasons for 

being on the road.  One point to note though is that the design of the survey, 

and in particular the ten-minute resolution, makes it difficult to distinguish 

when cars are being driven to drop off children at school en route to work.  

The higher time resolutions that most researchers work with will of course 

encounter more pronounced difficulty in this regard. 

 
Figure 2.10 Comparison of probabilities that a car is used for commuting 

to/from work with car in use for weekdays. 
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2.3.6. Further Investigation of Weekday Driving Patterns 

Since electricity use profiles have a distinct diurnal characteristic, it is 

important to capture the daily pattern of vehicle use, and in particular the 

probability of journeys commencing at particular times of the day, and their 

expected duration.  For the interests of this research, weekday daily driving 

patterns related to home only have been analysed and in the most recent 

electric vehicle trials, users mainly drive electric vehicles during weekdays 

and use conventional ICE cars for longer weekend journeys, [2.14].   

2.3.6.1. Car Departure and Arrival Time in Relation to Home 

A random sample of 100 TUS weekday diaries showing driving activity as 

shown in Figure 2.11.  In this example, each dot represents a ten-minute 

driving period and an unbroken series of dots means a continuous driving 

event.  For each individual driving event, the start and end times together with 

the diary codes will also allow the locations of the cars to be determined.  In 

the previous section, probabilities of cars parking at home or the work place 

at given time were calculated.  Now the focus is to obtain the probability that 

car starts a driving event from home and then ends the driving event at home.   

 

Figure 2.11 Individual weekday driving periods for a population 100 cars. 
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A car status transition plot is shown in the Figure 2.12 for a random sample of 

100 weekday diaries.  It illustrates the times when the car status changes from 

home to away, or vice versa; these are the times when a car departs or arrives 

back home respectively.  The blue crosses mark car departures from home and 

the red stars represent arrivals home.  For example, in diary number 1890, a 

car departs home at 21t   (i.e. 07.30 am) and arrives back home the same day 

at 45t   (11.30am).  Note that there are instances where a car departs from 

home during the diary day but does not return home during that same diary 

day (i.e. up to 3.50am the next day).  Conversely, there can be instances where 

the diary only records a return during the diary day with no corresponding 

departure on that diary day.  This illustrates what is perhaps the main 

limitation of the TUS data and is a consequence of the limitation to single day 

diaries.  All the adult weekday diaries, the focus of this study, have been 

analysed to count how many such instances arise.  The results indicate 555 

diaries (14.95%) show the car not arriving home in the same diary day, i.e. 

being away at 3.50am next day ( 144t  ); and 424 diaries (11.41%) show the 

first event during the diary day as a car arriving home; this implies that the 

car status is away at the beginning of the diary day (4.00am and 1t  ).  It 

cannot be known the exact reason for the car either not arrives home or not 

departs from home in the same day; it is possible that a car was away from 

home for several days.  Therefore the relationship between when a car departs 

from home and arrives back home within the diary day period (4:00am to 

3:50am next day) has been investigated.  The numbers of cars arriving back 

home, given their departure time, has been recorded and illustrated in Figure 

2.13.  The numbers of cars arriving home for a given departure time are 

indicated in the figure by the colour of the points.  There are two major trends 

evident: first, the majority of cars are clustered along the diagonal line; second, 
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for cars departing from home around 8am in the morning, the arrival home 

time lies generally between 4pm in the afternoon and 8pm in the evening.  

Clearly cars cannot arrive home before they depart; this explains the diagonal 

feature.  How the diary characteristics illustrated in the figure are dealt with 

in the Monte Carlo simulation is discussed in Chapter 3, Section 3.3. 

 

Figure 2.12 Examples of car departure times and arrival home.  The blue 
crosses represents car departures from home, red stars represent car arrivals. 

 
Figure 2.13 Relationship between car departure time and subsequent arrival 

time during the diary day for all journeys. 
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For a specific car to depart home at given time t, it must already be at home 

(i.e. it must be at home at 1t � ).  If a car is parked at home at time t  , it is 

possible that the car departs home or alternatively remains parked at home 

during the next 10 minute interval � �1t � .  The same logic applies to cars 

arriving home.  For a certain population of cars, the probability that a single 

car departs or arrives home is therefore conditional upon whether the car is 

parked at home9.  Therefore, the probability that a specific car departs or 

arrives home at time t , should be calculated as the probability conditional on 

the car status at time 1t � , [2.12].  For each ten minute time interval throughout 

the 24 hours, the probability of a given car departing from home, departureP , is 

calculated for weekday data directly from: 

1. For each ten-minute time step, counting the number of diaries where a 

car departs from home (code 915), departuren , over all weekday data 

subset10 with a value of 1 assigned to all code 915 entries, and zero 

otherwise, and denoted by the logical variable (915)val : 

departure day
1

( ) (915), 1, 2,3,...,
dsi n

i
n t val t t

 

 

  ¦  (2.11) 

2. The probability of a car departs from home at time t  as condition of 

parking at home at time � �1t � , � �departureP t  is calculated below for 

weekday datasets: 

� � departure
depart dayure

home

( )
, 1, 2,3,...,

( 1)
  
n

P t
n

t
t t

t
 

�
  (2.12) 

                                                 
9 The primary parking location considered in this research is home. 
10 Code ‘915’ is defined as the status of car departs from home in the post data processing. 
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where departuren  is the total number of diaries with cars depart from home at time 

t  and homen  is the total number of diaries with cars parking at home at time 

1t � .  dsn  is the total number of diaries in the weekday dataset, which is 3,716.  

In a similar manner, for each ten minute time throughout the diary day, the 

probability of a given car arriving back home at time t , arrivalP , conditional on 

the car being away from home at time 1t � , is calculated for all weekday data, 

directly from: 

1. For each ten-minute time step, counting the number of diaries where a 

car arrives back home (code 159), arrivaln , over all weekday data subset11.  

Value of 1 assigned to all code 159 entries, and zero otherwise, and 

denoted by the logical variable (159)val : 

arrival day
1

( ) (159), 1, 2,3,...,
dsi n

i
n t val t t

 

 

  ¦  (2.13) 

2. The probability of a car arrives back home at time t  as condition of 

being away from home at time 1t � , � �arrivalP t  is calculated below for 

weekday datasets: 

� � arrival
arrival

away

( )  , 1, 2,3,...,144
( 1)

n tP t t
n t

  
�

 (2.14) 

where arrivaln is the number of diaries with cars arriving home at time t  

calculated as the sum of the (159)val .  awayn  is the number of cars being away 

from home at time 1t � .  dsn  is the total number of diaries in the weekday 

dataset as before.  Therefore, the probabilities of a car departs and arrives 

                                                 
11 Code ‘159’ is defined as the status of car arrives back home in the post data processing. 
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home at given time, departureP  and arrivalP , is plotted against time of day in Figure 

2.14.   

 

Figure 2.14 Time dependent probabilities of a car departs from home and 

arrives back home. 
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� � arrival
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n

P    (2.15) 
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where householdn  is the total number of households in the weekday dataset, 

which is equal to 3,606.  There is an uprising trend of car returning household 

from 6am in the morning, and majority of cars returning to household is 6pm 

in the evening as shown in Figure 2.15.  The probability then decreases to near 

zero between 1am and 5am in the early morning, which signifying extremely 

low car returning to household activity.   

 

Figure 2.15 Probability of a car returning to the household. 
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Figure 2.16 Probability distribution of car away home period calculated from 

TUS weekday data. 
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group is the second largest with approximately 17%, and reflects the peak in 

the away period distribution occurs at around 10 hours as shown in Figure 

2.18.  It would be helpful if the purpose of the journey (such as travel to work, 

shopping, education, etc.) could be associated with the length of these away 

period; but this is beyond the scope of this research reported here.   

 

Figure 2.17 Frequency distribution for car away period for duration between 
7 hours and 12 hours 20 minutes. 

 

Figure 2.18. Percentage of car away period. 
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A joint probability distribution for round trip durations and time of day when 

the vehicle departs from home as shown in Figure 2.19.  This joint PDF is not 

used directly but in future research a suitable analytic joint distribution 

function could be fitted to the data.  In this work, it is regard the probability 

distribution of a car away period as a series of 144 time dependent marginal 

PDFs.  The ten-minute time resolution data provides sufficient statistics to 

describe domestic car use probability distributions without the use of curve 

fitting.  The risk of curve fitting to such probability distributions can lead to 

overgeneralisation of event occurrences and also can result in biased statistics.  

As shown in the figure, there is a concentration of data points for which cars 

depart from home between 6am and 9am.  The corresponding round trip 

journey times fall mainly between four and half hours and twelve and half 

hours.  This confirms the previous comment (Section 2.3.5) that majority of 

journeys are related to work.  Another phenomenon apparent from Figure 2.19 

is that the later in the day a car departs from home, the less likely it will be 

away for long period of time.  In other words, shorter journeys tend to take 

place in the evening and night time, rather than during the morning and 

afternoon. 

T

Figure 2.19 Joint probability distribution for round trip durations. 
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2.3.6.3. Car Being Parked at Home Period 

The amount of time a car spends parking at home is defined as the number of 

time intervals between a car arrival time and its next departure.  The parking 

duration information is associated with the time period, arrivalt , when the car 

arrives back home.  However, due to the structure of TUS data, the calculation 

of parking period has been performed with a ‘loop-back’ technique12.  This 

technique is explained in detail in the Appendix A.  Figure 2.20 shows the 

probability distribution for time parking at home based on a total sample of 

4,799.  From the distribution it can be seen that, the highest probabilities are 

associated with parking periods up to 30 minutes.  The longest is parking 

period considered is 24 hours, which signifies that a car parks at home for the 

entire survey day.  A local peak in probability can be identified at around 14 

hours.  It can be understood that during weekdays, the majority of households 

park their overnight at home after returning from main daily activities, such 

as working at main job during daytime.   

 
Figure 2.20 Probability distribution of car away home period calculated from 

TUS weekday data. 

                                                 
12 The ‘loop-back’ technique counts the number of time slots occupied by parking activity from the arrival time to the end of 

diary and then from the beginning of the same diary.  TUS data only covers 24 hours period from 4am to 3:50pm next day. 
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A joint probability distribution for round trip durations and time of day when 

the vehicle departs from home is shown in Figure 2.21.  These series of 144 

time dependent marginal PDFs has been used as inputs of fixed time 

increment and multiple time increments Monte Carlo models (see Chapter 3 

section 3.3.2.3).  As shown in the figure, there is a linear concentration of data 

points for cars arriving back home between 4 and 8pm.  The corresponding 

parking duration are 16 hours and 11 hours respectively.  This confirms the 

previous comment that the majority of households park their cars at home 

after returning from their main daily activities.  For example, if a car arrives 

back home at 4pm, it will then be parked at home for 16 hours (i.e. this car 

departs from home at 8am next day).  Another phenomenon apparent from 

the figure is that there are number of short parking periods (less than 2 hours) 

occurring between 8am and 8pm.  This reveals the fact that households are 

likely to park their cars at homes for a couple hours during daytime, although 

the purpose of stay is unclear.  These parking durations are important for 

calculating EV home charging.   

 
Figure 2.21 Joint probability distribution for home parking durations. 
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2.3.6.4. Car Drive Period 

The amount of time people spend on actual driving is important for 

calculating the amount of energy used by the EV, the state of charge (SOC), 

and the re-charging period required.  Across the entire fleet of EVs it will 

determine the amount of electricity required to replace the equivalent number 

of conventional ICE cars.  Up-to-date electric vehicle specifications indicate 

that it is not possible to completely replace ICE cars with electric vehicles due 

to range limitations.  By counting the number of individual driving periods in 

the weekday diaries, a probability distribution of the length of individual 

journeys can be deduced.  This is shown in Figure 2.22 and confirms that a 

large proportion of driving activities are very short (ten minutes or less), and 

that occasionally very long journeys are made.  Note that driving period is 

only accurate to the nearest ten-minutes due to the time resolution of TUS 

diaries recorded.  If a car has actually been driven for a time less than 5 minutes, 

it will be recorded as a ten-minute journey.  This is considered the simple way 

to interpret the TUS data, but it will provide some minor bias to the journey 

time statistics, particularly for short journeys.   

Most individual weekday driving events are short journeys; for example, 

driving events of ten-minutes (or less) account for approximately 38% of all 

journeys, and 23% for twenty-minute driving events (more details see 

Appendix A).  The occasional long aggregated round trip distance driving 

period events can be found. For example a journey with a total 420 minutes (7 

hours) driving duration has been calculated by aggregation; however these 

long journeys are rare (less than 1% of such journeys last more than 400 

minutes).  It can be seen that journeys up to 30 minutes in length account for 

over 78% of all journeys.  For weekday TUS dataset, there are 3,716 diaries 

containing driving information and the average driving period is 0.052% over 



58 
 

24-hour period, i.e. the average domestic car is only driving on the road for 

approximately one hour a day. 

 
Figure 2.22 Percentage of weekday journey durations. 
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1. For each car arriving home at time, arrivalt , sum individual driving period, 

driving_periodt , between its departure and arrival time: 

� �
arrival

departure

driving arrival driving_period

t

t
T t t ¦  (2.15) 

2. To calculating the conditional probability of the cumulative driving 

period, drivingT , for each car dependent on its arrival time t , the number 

of occurrences for each cumulative driving period, � �drivingn T  is divided 

by the number of cars arriving home at time arrivalt , denoted arrivaln : 

^ `driving arrival
driving arrival

arrival arrival

( )
( | )

( )
n T t

P T t
n t

  (2.16) 

Figure 2.23a, a isometric view of the conditional probability of driving period 

given the time of arrival at home, shows that at the beginning of the diary day 

(4am) and its end (3:50am next day), the probability is equal to 1.  This is the 

result of the very small sample sizes at such times of day since very few cars 

arriving home then.  For example, for a car arriving home at 4:10am, there is 

only one diary record, so that the calculated probability is unity for the one 

round trip journey involved, in this particular case it was equal to twenty 

minutes.  Similar arguments apply to other small samples sizes, giving 

probabilities of 0.5, 1/3, 0.25, etc. 
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(a) 

 
(b) 

Figure 2.23 Distributions that cumulative car driving period dependent on 

the arrival home time. (a) conditional PDF; (b) scatter plot. 
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Figure 2.24, some example probability distributions are presented for the 

cumulative driving periods for cars arriving home at different times of day.  

For each time t , a single probability distribution of journey length, 

driving arrival( | )P T t , can be used to calculate the mean distance travelled by each 

car when it arrives back home.  drivingT  represents the total round trip driving 

duration, is a discrete random variable and equals the number of ten minute 

periods.  It is important to note that these probabilities are for total round trip 

driving duration, not time away from home.  In fact the duration of the round 

trip is not needed explicitly for calculation purposes, but it is implicit in the 

probabilities calculated.  However, for the purposes of this research, the PDFs 

are required for Monte Carlo simulation.  A clear trend is apparent in that as 

the day progresses, typical journey times are longer.  This is not really 

surprising as more time is available for car driving activity.  Figure 2.25c, 

shows that for journeys ending at 6.00pm, journey times can be up to 270 

minutes, approximately 4.5 hours, but such long journeys are rare.  Figure 

2.25d shows signs of rather small data sets, which indicates less cars arriving 

back home at that particular time.   
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(c) 

 

(d)

 

Figure 2.24 Probability distributions of round trip aggregate driving period 

dependent on when the cars arrive home for:  (a) morning period; (b) noon 

period, (c) evening period, (d) night-time period. 
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ten-minute resolution, it is impossible to establish relationship cumulative 

driving period and car away period for every possible condition unless there 

is sufficient data available.  For example, at 8am, the probability distribution 
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for the duration that the car is away from home, as shown in Figure 2.25, has 

data only for 53 entries out of the 117 away periods (total of 146 samples), with 

the bulk of the diary entries clustered around 580 minutes, i.e. 9 hours and 33 

minutes. 

 

Figure 2.25 Probability distribution of car away period for departures at 8am 
in the morning. 

The given aggregated driving period data associated with these away periods 

is not sufficient to produce accurate probability estimates to cover every given 

possible away period.  For example, the car away period of 580 minutes is 

taken as a sample from the probability distribution of car away period 

dependent on departure at 8am.  There are a maximum of 58 possible values 

for driving period associated with this away period13.  This means that when 

calculating the probability for each driving period dependent on the away 

period, there will be 58 potential driving period values that can occur.  In fact, 

as shown in Figure 2.26, only 33% (19 out of 58) of all possible values exist in 

the data set due to the limited total number of diaries in the TUS data.  It is 

clear that there are insufficient data samples for reliably calculating the 

                                                 
13 Driving period is less than or equal to away period. 
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required probabilities.  It is possible to resolve this issue by fitting a parametric 

distribution to the histogram of cumulative driving dependent on car away 

period.  However, the concern of sampling from the fitted distribution is the 

overfitting of the cumulative driving period dependent on car away period.  It 

is beyond the scope of this research to investigate the effects of using 

parametric distribution to represent the cumulative driving period. 

 

Figure 2.26 Available driving period entries for cars departing at 8am. 

To resolve this issue, clustering technique has been used to group the away 

period data into blocks, [2.13], as discussed above.  Eight groups are used as 

shown in Table 2.2.  The first group is defined to cover away periods from ten-

minutes up to 30 minutes, and the last group covers the wide time range from 

15 hours up to 19.5 hours.  The intention is to ensure that all cluster groups 

have sufficient data to facilitate acceptable probabilistic calculations in the 

Monte Carlo simulations. 

Table 2.2 Groups of car away period 

Groups Away period (ten-minute) 
I 1~3 
II 4~6 
III 7~12 
IV 13~18 
V 19~36 
VI 37~60 

67%

33%

        

 

 

empty entries
filled entries
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VII 61~90 
VIII 91~117 

 

These grouped blocks of away period data can now be combined with the 

associated driving period data to estimate the conditional probabilities of 

cumulative driving period dependent on a specific away period range at a 

given time of day.  For example, in the TUS data, a particular car is away for 

ten minutes and being driven for ten minutes; this ten-minute driving period 

is added to the ten-minute of less driving group conditional upon car away 

period being in cluster Group I.  After clustering, the number of driving period 

entries in cluster Group I, for cars departing at 8am, is shown in Table 2.3.  

Note that the resulting conditional probability is function of time with ten-

minute resolution.  These cluster based probabilities are used as input to some 

of the Monte Carlo simulation models explored in Chapter 3.   

Table 2.3 Number of driving period entries in cluster Group I for cars 

departing at 8am. 

Away period (minutes) Driving period entries 
10 4 

20 
0 
1 

30 
0 
1 
3 

Group I (10~30) 
4 
2 
3 
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2.4. Summary of Chapter 2 

This chapter discusses the car use data sources available in the United 

Kingdom, the United States and European countries.  The reasons for choosing 

United Kingdom Time of Use 2000 survey data as the main data source for this 

research was explained, in particular its much higher time resolution than 

other UK sources such as the National Travel Survey.  In fact the time 

resolution, at ten minutes, is better than data sets available to most researchers 

around the world, where hourly data is the most commonly used. 

Household car use statistics has been calculated from the TUS survey data, 

especially weekday car use has been presented in detail.  Preliminary analysis 

shows that privately owned cars are utilised only 5.2% of the time for 

transportation, thus making them, in principal, available for the remaining 

94.8% of time providing ancillary services to the power system.  The 

methodology used to extract relevant data has been presented.  Key findings 

showing high time resolution car use patterns have been presented, including 

probabilities of car use and parking status for both weekday and weekends.  

The focus though is on car use during the working week as this is where most 

power network problems are anticipated.  Probabilistic characterisation of car 

usage during weekdays has been undertaken that covers time of use, and 

duration of use dependent on the time that a car arrives home, and also as 

dependent on the round trip duration, and both of these as a function of the 

time of day.  These probabilities will be used as the basis for Monte Carlo 

simulations of car use in Chapter 3. 

Various challenges have been encountered in the search for good quality data 

on the use of privately owned cars.  The first challenge is to identify a reliable 

source of car use data, since there are various options available for different 
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countries and for UK in particular.  Both TUS and NTS data provide good 

quality car use information; however, the focus of these two data sets are very 

different.  For TUS data, the focus is on the activities of the people living in 

various households; and therefore, it is highly relevant to the integration of EV 

charging loads with other domestic appliances electricity loads.  On the other 

hand, NTS data provides more information regarding geographic and speed 

related information, and the primary limitation is the lower time resolution.  

The second challenge is to do with the process of extraction and post-

processing of the car use information required for Monte Carlo modelling, and 

this regard the TUS data, although highly detailed, is incomplete and 

sometimes difficult to interpret.  With the TUS data, numerical codes are used 

to distinguish the activities of the house occupants, and a sub-set of these 

codes relate specifically to car use.  During the extraction of car related data, 

various conditions need to be considered.  For example, a person drives the 

car as its main driver and the purpose of the driving activity is take a child or 

children to school (technically in TUS: a place of education).  Two sets of codes 

in the TUS diaries represent the activity itself, and the separately the purpose 

of activity.  A significant challenge faced in this research was the calculation 

of probabilities of car use from TUS data.  Due to the survey diary format, the 

starting point of all diaries is at 4am in the morning and the end point is 3:50am 

next day.  This was chosen by TUS because the household activity reaches a 

minimum at around this time in most cases.  This together with the fact the 

diaries are kept two distinct, non-contiguous, days during each week the 

survey period means that it is not possible to properly capture certain 

probabilities of car use, such as a car departing home and then staying away 

from home until beyond 3.50 the next day.  There is no way of knowing exactly 

when that particular car actually returns home and thus the round trip journey 
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duration, and aggregate associated driving time cannot be determined in these 

instances.  Fortunately there are only limited numbers of such occurrences 

evident in the diaries.  Nevertheless there is no proper way to deal with these 

and the resulting statistics and probabilities will be to a small extent in error. 

Another issue that follows from the high time resolution is the lack of 

sufficient data at each time of day, to confidently estimate all the required 

probabilities and probability distributions.  Again, it is possible to resolve this 

issue by fitting a parametric distribution to the histogram of car use statistics.  

However, the concern of sampling from the parametric distribution is the 

overfitting of the car use statistics, which produce non-realistic car use patterns.  

It also is beyond the scope of this research to investigate the effects of using 

parametric distribution to represent the cumulative driving period.  A 

clustering approach was used to try and overcome this difficulty, and the 

clustered group has sufficient amount of data points.  However, with limited 

success and some loss of time resolution for certain probability distributions 

required for some of the Monte Carlo modelling, the main drawback of 

clustering was a less accurate representation of the characteristics of the 

original data.   
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3.Chapter 3: Monte Carlo Simulation 

of Daily Car Driving Patterns 

 

In Chapter 2, probability distributions of weekday car daily use have been 

estimated from the Time of Use Survey data.  Now the task is to reproduce 

weekday car driving patterns based on these probability distributions so that 

electric vehicle charging load can be calculated.  In order to achieve this, Monte 

Carlo method has been chosen and three models have been structured to 

generate random samples from these probability distributions so that 

synthesised daily car use can be simulated.  The Monte Carlo methodology is 

a well-known technique for solving uncertainty problems, and the origin of 

the concept was developed by French scientist Georges-Louis Leclerc Comte 

de Buffon in 1733.  In this chapter, three Monte Carlo simulation models are 

presented and the simulation results have been analysed to verify the results 

are as expected and are consistent with the statistics extracted from the TUS 

data.    
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3.1. The Concept of Monte Carlo Simulation 

The basic concept of the Monte Carlo (MC) method dates back to the 18th 

century when the French scientist Georges-Louis Leclerc Comte de Buffon 

presented the fam���ȱ������ȱ���� ȱ����ȱ������ȱ��ȱ���������ȱΔȱ��ȱŗŝřřǰȱ[3.1] 

and [3.2].  The method is as follows.  A needle of length d  is thrown randomly 

onto a plane on which some parallel lines separated by distance, a , have been 

drawn, where d a� .  It can be shown that the probability of the needle hitting 

a line is 2p d aS .  Since the probability can be estimated as the ratio of the 

������ȱ��ȱ���� �ȱ�������ȱ�ȱ����ȱ��ȱ���ȱ�����ȱ������ȱ��ȱ���� �ǰȱ���ȱ�����ȱ��ȱΔȱ

can be obtained by 2d paS  .  This is the earliest example of a MC method.  

The method can be used to solve both stochastic and deterministic problems.  

Monte Carlo is the general term for a stochastic simulation that makes use of 

random numbers (or events as in Buffon’s case) and takes its name from the 

suburb in Monaco made famous by gambling.  The name was also used as the 

secret code for atomic bomb work performed during World War II involving 

random simulation of the neutron diffusion process.  MC methods have been 

used in many areas since that time.   

In modelling city scale traffic, agent-based approach has been used, such as in 

[3.3].  This approach also appear ideal to study interdependencies between 

different human activities, [3.4].  However, Monte Carlo method has been 

recognised as the simplest approach to simulate household car by utilising the 

car use statistics calculated from the TUS data.  For the interests of this research, 

MC simulation models for privately owned car use have been structured 

based on the statistics described in the previous chapter.   
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3.2. Monte Carlo Simulation Methodology 

Monte Carlo simulation involves several stages.  Random number generation 

is the first part of the process, in which random numbers appropriate to the 

problem being studied are generated.  Creating samples of defined random 

variables (RVs), X , is the next stage.  This procedure produces a sample of RV 

X  each time it is called, and a large MC computation may spend most of its 

time doing this.  There are several different sampling methods for the 

generation of random samples from a probability distribution (also known as 

random variates)14 for MC simulation, such as the Inverse-Transform method, 

Acceptance and Rejection techniques, the Composition approach, etc., [3.5].  

The inverse-transform sampling method has been used in this work for 

generating synthetic domestic car daily use patterns, and is explained below.   

3.2.1. Inverse-Transform Method for Discrete Distribution 

The basic idea of this transformation method is to generate random samples 

from the given target distribution15 using the cumulative distribution function 

(CDF), by using random numbers created over the interval, > @0,1U � , with 

uniform probability distribution.  This approach to generating random 

samples for MC simulation is known as the Inverse-Transform Method (see 

[3.5], [3.6], and [3.7]).  Let X  be a discrete random variable (e.g. duration of 

car driving period within a round trip), with probability of X  as 

� �i iP X x p  , cumulative driving period 1, 2,3, 4,5i   with 1i
i
p  ¦  and 

1 2 3 4 5x x x x x� � � � .  The CDF16 F  of RV X  is given by 
:

( )
i

i
i x x

F x p
d

 ¦ , with 

0 ( ) 1F xd d  for all driving period x .  For any uniformly distributed random 

                                                 
14 A random variate is a particular outcome for a random variable (i.e. a particular sample from the pdf). 
15 The target distribution needs to be invertible. 
16 The CDF is an increasing function, however it is not necessarily continuous. 
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number generated from the interval > @0,1U � , there is a range of x  with 

� �U F xd .  Thus the generalised inverse can be defined as � �F U� , is equal to the 

smallest element of x  where � �F x Ut .  An example cumulative distribution 

function is shown in Figure 3.1. 

 

Figure 3.1 Illustration of the generating of random samples from a given 

CDF, [3.6]. 

The inverse-transform algorithm can be implemented as follows: 

1. Generate random number � �U 0,1U � . 

2. Find the smallest positive integer, k , such that � �kU F xd  and return 

the sample from RV X  as kx . 

Note that in general, the most time consuming process is Step 2, which makes 

comparisons between the random number and the given by the CDF of X .  

For some random variables that will be used in the MC modelling described 

in section 3.3 below, there are only two possible states and in this case the 

inverse-transform method is computationally fast.  It simply comprises of a 

check whether the random number U  is less than or greater of equal than the 

probability of state 1.  In Chapter 2, the probability that a car departs from 
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home at a given time, � �departureP t , and probability that a car arriving back home, 

� �arrivalP t , are both time dependent probabilities and the notation used here 

makes this time dependence explicit.  However, since all of the RVs and 

distributions used in the MC simulations of EVs in this work 17  are time 

dependent, there will be no further need to show this explicitly.  The inverse-

transform method is an effective tool for generating random variables 

sampled from a specified distribution.  Their implementation requires a 

reliable random number generator; these are readily available in most 

programme environments, such as the MATLAB function ‘rand’ that 

generates uniformly distributed random numbers between 0 and 1.   

Besides inverse-transform method, Markov Chain method has also been 

considered by utilising car transient status probabilities, such as in [3.8].  The 

inverse-transform method takes the advantage of the high resolution of TUS 

data by direct sampling from the car use probability distributions.   

3.2.2. Random Number Generator 

Various methods exist to generate random numbers, [3.9].  In this work, 

random numbers are generated using the ‘RandStream’ random number 

generation function implemented in the mathematical software, MATLAB, 

[3.10].  This function creates a random number stream that uses the uniform 

pseudo-random number generator algorithm specified by the function call.  In 

this work the algorithm used is ‘mrg32k3a’, [3.11] and [3.12]; it generates a 

series of random numbers between 0 and 1. 

                                                 
17 This is in contrast with much of the published work on EV modelling to date. 
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3.2.3. Convergence Criteria 

Recent MC studies in the context of electrical engineering have used a fixed 

MC sample size; a very large number of iterations is specified to ensure 

convergence (usually 10 to some integer power), see for example [3.13] and 

[3.14].  In these fixed-sample-size procedures, a single simulation run of trialsN  

is performed, and then the computed variance obtained from the MC sample 

trialsN  is used as the unbiased point estimate of the process variance, [3.15].  An 

experimenter using this procedure has to be content with a default value of 

confidence level (CL), which can be specified as a whole or half width 

confidence level, [3.16].  After specifying an acceptable CL half width, the 

experimenter usually prefers to perform the MC experiment using excessively 

long run lengths to avoid the possibility that the default confidence level falls 

below a reasonable level.  By using these exceptionally long runs, such authors 

do not feel the need to use a more rigorous assessment of convergence.  In 

terms of computing time, the saving, due to not estimating the process 

variance, may be overtaken by the extra computing time required to generate 

redundant MC sample points.  A more sophisticated method to assess 

convergence is the acceptable shifting convergence band rule (ASCBR), [3.16].  This 

method defines that the simulation has converged when the sample mean of 

the output variable of interest falls inside the convergence band (CB) of a given 

width and length; otherwise, the convergence band shifts to a new sample 

mean outside the existing CB with a new width and length.  The width of the 

convergence band, 2H , is calculated from the confidence interval wanted by 

the modeller (e.g. 90% or 95% confidence level) and the standard deviation of 

the iterations results.  The length of the convergence band, ] , is self-defined 

value and depends on the judgement of the standard deviation of the sample 
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mean.  Let H  be the calculated half value where ix is the MC mean, then the 

CB can be constructed with the upper and lower bound as follow: 

� �i iUp x x H �  (3.1) 

� �i iLo x x H �  (3.2) 

driving
2

i

Z
nD

V
H   (3.3) 

� �iUp x  and � �iLo x  are the upper and lower confidence bound, and 2ZD  is 

calculated from the confidence level � �1 D� .  The value of 2ZD  is equal to 2.58 

for a 95% and 1.96 for a 90% confidence level respectively.  Figure 3.2 

illustrates the concept of the ASCBR convergence criterion, [3.16]. 

 

Figure 3.2 The illustration of ASCBR convergence criterion. 

 

3.3. Monte Carlo Simulation Modelling for Privately Owned 

Car Daily Driving Pattern  

Monte Carlo simulation models have been developed to represent daily car 

use.  Various modelling approaches for structuring the MC simulation have 

been implemented and validated.  Different MC methods have their strengths 
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and weaknesses; therefore, there is no unique approach of formulating the 

simulation for this application.  In this research, the MC model generates 

random samples directly from probability distributions taken from the TUS 

data rather than from fitted distribution functions.  This sampling approach 

takes advantage of the high time-resolution of the TUS data.   

The car location in a week day period was simulated using a discrete-time MC 

simulation model at each time step of ten minutes.  It is assumed that for every 

given time, only one activity from a finite set of activities can be allocated to 

the simulated car.  Four car location status descriptors that apply to all times, 

t, are used: car parking at home ( HS ), car not parking at home ( NHS ), car 

departs from home ( DHS ), car arrives back home ( AHS ); > @, , ,L H NH DH AHS S S S S� .  

Time terminology will be used to reflect the ten-minute nature of the TUS data 

and MC trials will be made at each time step in time sequence, with car 

location status LS  simulated at time t  represented by t
LS .  It is assumed that 

the initial time for simulation purposes is given by 1t   and this refers to 

4.00am in clock time for consistency with the TUS diaries.  Therefore, 1t
LS
  

denotes that the initial status of a car, this can be written as 1
LS .  Technically, 

taken together, this is a discrete-time stochastic process (given that t  is finite 

and can be enumerated) with a finite state space, > @, , ,L H NH DH AHS S S S S� .  The 

purpose of the modelling is to simulate car use status for a representative 

weekday; although for some purposes five consecutive weekdays are 

considered.   

3.3.1. Monte Carlo Modelling of Household Car Ownership 

Before car use patterns can be simulated, household car ownership must be 

established for all houses included in the modelling.  Each household is taken 

in turn.  The number of cars that are owned is determined for each household.  
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This is done by sampling from the CDF for household car ownership (see 

Chapter 2 Section 2.3.1).  The process of random sampling from this CDF using 

the inverse transform method described earlier is illustrated in Figure 3.3. 

 

Figure 3.3 The CDF of household car ownership. 

In the case of car ownership per household, the distribution is of course 

discrete.  As already made clear, the number of cars per household, carsn , does 

not exceed 618.  Sampling to give the number of cars for the household in 

question is very straightforward to implement.  If � �iF x  is the CDF of cars per 

household, then the number of cars owned in a given household is given by: 

cars in x  (3.4) 

if � � � �
1

cars 1 cars
1 1

i i

i i
i i

F x P U F x P
�

�
  

 � �  ¦ ¦ , 1,2,...,7i    

                                                 
18 In Chapter 2 section 2.3.1, it is stated that the maximum number of cars owned per household in TUS sample is equal to 6. 
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where carsn  is the sample value for the number of cars owned by the household.  

i  represents the number of available sample points in the distribution (in this 

case 7 as there can be zero cars in a household).   

As calculated in Chapter 2 section 2.3.1, the probability of a no-car household 

is � �cars 1 0.28P x  , the probability of one-car household is � �cars 2 0.46P x  , the 

probability of two-cars household is � �cars 3 0.22P x  , and so on.  For illustration 

purpose, a random number 0.82U   is generated from the interval (0,1).  Since 

this is a discrete CDF, this number is first compared with the value of the CDF 

corresponding to the lowest car ownership (zero), i.e. � � � �1 cars 1 0.28F x P x  .  

As result, random number generated, 0.82U  , is bigger than � �1F x , and the 

model compares U  with � �2F x , where � � � � � �2 cars 1 cars 2 0.74F x P x P x �  .  

Again, the random number is greater than � �2F x .  The model continues 

comparing U  with � �3F x , and � �3F x  is larger than U , where

� � � � � � � �2 cars 1 cars 2 cars 3 0.96F x P x P x P x � �  .  Therefore, the sample generated by 

the model is � � 3F U x�  , which gives the number of cars owned by the 

household is cars 2n  . 

Later in this chapter, the same algorithm is applied when sampling from the 

CDF of the away period, parking period, and the driving period. 

 

3.3.2. Different Approaches to Structure the Monte Carlo Model 

There are different approaches that can be followed in the design of the Monte 

Carlo model, and these different approaches use different statistics describing 

domestic car use.  As already mentioned, the simulation of domestic car use 

can be regarded as discrete event simulation, with the state of the system 
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continuously changing to reflect domestic car status, [3.15].  In the following 

sub-sections, two different approaches of Monte Carlo modelling are 

introduced and explained in detail; the first approach focuses on household 

car returning activities developed specifically for home based charging; the 

next approach follows car locations.  The return time dependent Monte Carlo 

model is then structured based on this modelling approach.  Two variants of 

the second approach are developed.  One is called fixed time increment MC 

model, which generates an appropriate random sample at every time step; it 

is a fixed-increment, time-advance method.  The other one is called multiple 

time increments MC model, and it uses a next-event time-advance mechanism 

in which time can progress in multiples of the ten-minute time step 

determined by sampling from a CDF of duration (for example of car parking 

at home).  These MC simulation models are discrete-time models as the state 

variables can change their values only at discrete instants of time reflecting the 

ten-minute sampling of the TUS data.  MC modelling can be used to derive 

the likelihood of particular events happening given certain modelling 

assumptions, and so the sensitivity of the results to the input assumptions (for 

example the number of EVs) can easily be calculated.   

3.3.2.1. Return Time Dependent Monte Carlo Model 

The return time dependent MC model focuses on household activity related 

to car use, and generates random samples for two discrete RVs.  The first is 

sampled from the time dependent two state PDF arrival_householdP  for a car arriving 

back home at a specific household.  The second is sampled from the multi-

state PDF, driving arrival( | )P T t  for cumulative car driving period dependent on car 

arrival time at the household.  The model thus contains two sub-models as 

shown in Figure 3.4; the first one generates random samples for the two state 



81 
 

RVs representing a car arriving back home, denoted arrival_householdp  and a second 

that generates random samples for the RV representing cumulative driving 

time prior to arrival home, denoted arrival
driving
tp .   

 

Figure 3.4 The structure of return time dependent MC model. 

The simulation flowchart is presented in Figure 3.5 and it proceeds as follows.  

In the first sub-model, each household is taken in turn, generating random 

samples from probability distribution of household having a car arrival at that 

time, arrival_houseP .  This probability distribution represents households with a car 

arriving at a discrete time regardless of the number of cars that might have 

arrived at this household in previous time steps.  For example, a household 

can have a car return at time t, and a second car returns the same household 

at time t+1.  By only performing one sample at each time step, the model limits 

the number of cars arriving at a given time to one (i.e. household can have 

only one car returning at time t).  The model generates samples by directly 

comparing the random number U  with the probability of household with car 

arriving at given time arrival_householdP .  The simulation timeframe is [1, 2,..., ]tott t� .  

When U  is less than or equal to arrival_householdP , the car location status changes to 

t
L AHS S  .  Otherwise, the car location status is t

L NHS S .  It is possible in this 

model for each household that multiple cars arrive back within the same 

simulation timeframe since the information regarding when the car departed 
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is not used.  Because such simulation events are rare, there is no significant 

distortion caused by this, as will be seen later, when the model is tested for 

consistency with the TUS data.  Again, the assumption, household can only 

have one car returning at a time, is reasonable as the TUS diary does not 

distinguish different cars in the household.  In order to capture individual car 

use pattern, it is necessary to have sufficient diaries of covering individual car 

use diary. 

 

Figure 3.5  Simulation flowchart of return time dependent MC model. 
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The next step is to determine drivingT , the cumulative car driving period 

dependent on the car arrival time, assuming there are any, and for the car in 

question to calculate the total time it drives before arriving home.  The model 

generates samples for discrete time variable arrival_household
driving
tp  by sampling from the 

PDF of cumulative driving period on cars arrival time.  For each household, 

information regarding time of day that cars arrive home and the associated 

total driving period is generated by this model.   

3.3.2.2. Fixed Time Increment Monte Carlo Model 

The fixed time increment MC model follows the car movement and thus the 

MC model can generate the daily car use patterns.  It determines car initial 

location first, and then generates car location status from two conditional 

probabilities of car departing from home and arriving back home.  It is defined 

that the car away period is the time period between the car departure time and 

arrival time.  This approach utilises the following probabilities and probability 

distributions for simulating car daily use: 

1. probability of car parking at home at 1t  , parkP  

2. conditional probability of car departing from home dependent on car 

at home at previous time, departureP  

3. conditional probability of car arriving back home dependent on car 

not at home at previous time, arrivalP  

4. conditional probability distribution of cumulative driving period 

dependent on car away from home period, � �driving away|P T T  

Model output comprises the synthesised daily car use patterns and includes 

car location at a given time of day, car departure and arrival time, cumulative 
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driving period dependent on car away period, and time period that car is 

parking at home and car is away from home.  The model consists two sub-

models, where the first sub-model generates random samples from PDF of car 

departure and car arrival, departureP  and arrivalP  respectively.  The second sub-

model generates samples from the conditional PDF of cumulative driving 

period dependent on car away period, � �driving away|P T T .  Figure 3.6 illustrates 

the structure of fixed time increment MC model. 

 

Figure 3.6 Overall structure of fixed time increment MC model. 

The activities of car departure and arrival home have been treated as 

statistically independent in the approach implemented here, although it is 

possible to evaluate the correlations between these events, [3.17] and [3.18].  In 
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synthetic driving cycles are randomly assigned to the temporal distribution.  

In fact, the driving activity is highly dependent on the car arrival time, as 

presented in Chapter 2 Section 2.3.6.4, and this is ignored in [3.18].  Both 

approaches have shown the challenges of determining the mathematical 

relationship between car departure from home and arrival back home.  In 

Chapter 2 Section 2.3.6, the relationship between car departure time and 

subsequent car arrival time has been investigated; however, due to data 

limitations, it is not possible to capture the car arrival beyond the 24-hour 

period.   The probability distributions of car departure and arrival have been 

calculated dependent on the previous time step car status (i.e. car being away 

from home or parked at home).  The resulting simulation procedure follows 

the logical sequence of car movements.  Arrival and departure events are 

treated as independent for simplicity; the alternative would be large number 

of different dependencies for each of the combinations of departure and 

subsequent arrival time.  Despite this simplification the time dependence of 

the probability distributions indirectly capture much of the connection 

between departure and arrival times.   The benefit of this modelling approach 

is the effectiveness and simplicity of implementation.  Therefore, the fixed 

time increment MC model developed here treats car departure and arrival as 

independent events.  In the multiple time increments MC model, the car 

departure and arrival events are linked by using car away period and car 

parking period probability distributions calculated from the TUS data. 

The flowchart is illustrated in Figure 3.7.  An initial trial is performed to 

identify the location status of every car at 1t  .  The model generates random 

samples for the discrete RV home
tp  to determine the car’s initial location, 1t

LS
  

(i.e. 1
L HS S  or 1

L NHS S ).  Again, t  is a fix-increment time-advance variable 

and it varies from 1 as the starting value to tott  as the maximum simulation 
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time value.  At next time instant 2t  , the model simulates the next location 

(depending on the car location at time 1t  ) by sampling from the two state 

probability distribution departureP  or conversely arrivalP .  For the RV departp  (and the 

same for RV arrivalp ), the car location is set to 2
L DHS S , when U  is less than 

departureP ; otherwise, the car remains parking at home, 2
L HS S .  Again, the 

random number is directly compared with the probability.  For the next time 

step, the model generates another U  and compares this with departureP .  Note 

that the simulation timeframe can be longer than 24 hours in this case, and the 

time index t  will then be converted into a 24-hour periodic variable.  This 

process continues until car location status is t
L DHS S  signifying that the car 

departs from home.  Therefore, the car departure time can be formulated as 

follow: 

departuret t t � '  (3.5) 

where departuret  is the time of day that the selected car departs from home, and 

t'  is the number of time steps until car status changed.  t'  could be equal to 

1, meaning car departs from home at the next time instant; however, t'  could 

also be equal to 1tott � , which indicates the selected car parks at home during 

the entire simulation timeframe.  The model continues by generating samples 

for RV t
arrivalp  to determine next car location.  This process will be repeated 

until the car location status is t
L AHS S  signifying that the car arrives back 

home.  The car arrival time, arrivalt , is then equal to departuret t� ' .  This Monte Carlo 

simulation loop terminates when time t  is larger than simulation timeframe 

tott .   
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Figure 3.7 The flowchart of fixed time increment MC model. 
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The car away period awayT  is calculated from: 

away arrival departureT t t �  (3.6) 

The car being parked at home period is then calculated from the time slots 

between the car arrival time and next departure time: 

park arrival next_departureT t t �  (3.7) 

For each car away period calculated, the model generates random samples for 

cumulative car driving period dependent on car away period, as before.  

Sampling cumulative driving period, drivingT  can be performed as follow.  The 

sampling process is undertaken in a manner analogous to that described in 

detail in section 3.3.2.1.  For RV drivingp , samples are generated from the PDF, 

� �driving away|P T T , at car departure time departuret .  The cumulative car driving 

period, drivingT , is the total amount of time occupied by car driving activity.  The 

cumulative driving period cannot exceed the car away period.  The analysis of 

the simulation results will be explained and discussed in the section 3.4. 

3.3.2.3. Multiple Time Increments Monte Carlo Model 

The first part of multiple time increments MC model exactly follows the fixed 

time increment MC model, until the point where the car changes status for the 

first time, i.e. t
L DHS S  or t

L AHS S .  Depending on the car location, the model 

generates random samples awayT  and parkT  from � �away departure|P T t , 

� �parking arrival|P T t .  The model then generates car location status from these two 

conditional probabilities until the simulation timeframe is reached.  The final 

part of this model generates samples for cumulative car driving period 

dependent on car away period, drivingp .  In contrast to the fixed time increment 
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MC model, this model only uses departureP  and arrivalP  for initialisation, after 

which the loop generating awayT  and parkT  is repeated as ‘hopping process’ 

shown in Figure 3.8.  The ‘hopping process’ is defined as time index t increases 

dependent on the simulated car away period and car parking period.  The loop 

will be terminated when the time index t reaches tott .   

 

Figure 3.8 Overview of the multiple time increments MC model. 

As defined and calculated in Chapter 2 Section 2.3.6.2, the away period 

(round-trip journey time) is the total amount of time between car departing 

from home and the following arrival.  Therefore, the time of the car arriving 

back home, arrivalt , is equal to departure awayt T� .  The car parking period parkT  is 

sampled from the PDF � �park arrival|P T t .  The car next departure time equals 

arrival parkt T� .  One advantage of this approach is that the model can simulate 

multi-day car use patterns much more quickly.  The flowchart is illustrated in 

Figure 3.9.  The analysis of the simulation results will be explained and 

discussed in the section 3.4. 
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Figure 3.9 The simulation flowchart of multiple time increment MC model. 
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3.4. Analysis of Monte Carlo Simulation Modelling Results  

To ensure structured Monte Carlo models do not significantly distort the 

simulation results, a careful statistical analysis of the results has been 

performed, comparing the driving patterns simulated with those of the 

original TUS data, [3.19].  Before this can be done, it is essential to ensure 

convergence as discussed above.  A statistical consistency analysis can then be 

done to determine whether or not the MC simulation results reflect the 

original input data.   

3.4.1. Diagnosing Convergence of Monte Carlo Simulation Results 

The convergence of MC simulation depends on the number of trials or 

iterations performed.  For the car modelling, convergence can be taken as 

convergence of the mean driving period, driving[X ]E .  For the purpose of 

identifying convergence of three structured Monte Carlo models, iterations 

have been performed as shown in Table 3.1.  The mean driving period is then 

calculated using equation 2.4 for each additional iteration and the sample 

mean and standard deviation are calculated.  These are then input into the 

equations 3.1 to 3.3.  The convergence criteria described in section 3.2.3 is 

adopted and then applied to determine the required number of iterations.  

Note that the higher the level of confidence, the wider the confidence band.  A 

wider the CB allows more points fall within the acceptable convergence area. 

Table 3.1 Sample population and number of trials for MC models. 

Monte Carlo Model Iterations Days 
Return time dependent 10,000 1 
Fixed time increment 20,000 5 
Multiple time increments 20,000 5 
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3.4.1.1. Return Time Dependent Monte Carlo Model 

For the return time dependent Monte Carlo model the convergence of the 

mean driving period is shown in Figure 3.10.  A ‘burn-in’ period up to 2000i   

is apparent so convergence is assessed beyond this point.  For 2000i  , the 

mean driving period calculated as a percentage of time is 4.6906ix   and the 

standard deviation is 2000
driving 0.6193iV   .  Applying the convergence criteria 

described in section 3.2.3, the mean value is deemed to have converged by 

9051i   with a 90% confidence interval and 8192i   with the 95% confidence 

interval.  Note that for higher confidence levels, the probability of divergence 

of the solutions is greater, which leads to early stopping of the simulation.  It 

is clear that sufficient iterations have been undertaken; the converged values 

are equal to 4.7427 and 4.7336 for confidence levels of 90% and 95% 

respectively.  For practical purposes it can be stated that the return time 

dependent MC model estimates that a typical car is driving for 4.7% of the 

time. 

 

Figure 3.10 The estimated mean driving period for return time dependent 

MC model. 
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3.4.1.2. Fixed Time Increment Monte Carlo Model 

The process above is repeated for the fixed time increment MC model.  Figure 

3.11 presents the estimator of mean driving period as a percentage over the 24-

hour period as the outcome of up to 20,000 MC iterations.  As shown in the 

figure, there is a ‘burn-in’ period of the mean value up to 3000i  .  Therefore, 

the convergence check starts from 3000i  .  For 3000i  , the mean driving 

period calculated as percentage is 5.6700ix   and the standard deviation is 

2000
driving 0.7581iV   .  After applying the convergence criteria of section 3.2.3, the 

mean value converged at 7356i   with the 90% confidence interval and at 

7463i   with the 95% confidence interval.  The resulting mean driving period 

value are 5.6139% and 5.6121% for confidence level of 90% and 95% 

respectively.  For practical purposes the fixed increment time MC model 

estimates that a typical car is driving for 5.6% of the time. 

 

Figure 3.11 The estimated mean driving period for fixed time increment MC 

model. 
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3.4.1.3. Multiple Time Increment Monte Carlo Model 

The convergence check process was applied to the multiple time increment 

MC model.  Figure 3.12 presents the estimator of mean driving period as 

percentage over the 24-hour period as the outcome of up to 20,000 MC 

iterations.  As shown in the figure, there is a ‘burn-in’ period of the mean value 

up to 3000i  .  Therefore, the convergence check starts from 3000i  .  For 

3000i  , the mean driving period calculated as percentage is 5.2909ix   and 

the standard deviation is 2000
driving 0.6458iV   .  After applying the convergence 

criteria, the mean value converged at 9930i   with the 90% confidence 

interval and at 9795i   with the 95% confidence interval.  The resulting the 

mean value equals to 5.3083 and 5.3071 for confidence level of 90% and 95% 

respectively.  For practical purposes the multiple time increments MC model 

estimates that a typical car is driving for 5.3% of the time.  Not surprisingly 

there are differences between the results from all three MC models.   

 

Figure 3.12 The estimated mean driving period for multiple time increment 

MC model. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1

2

3

4

5

6

7

Iterations i

P
er

ce
nt

ag
e 

%

Estimate of mean driving period as percentage over 24-hour period, 20,000 samples



95 
 

3.4.2. Consistency Analysis of Monte Carlo Simulation Results 

There are two distinct ways in which the consistency of the Monte Carlo 

simulation results with TUS data can be established.  Where TUS data is 

directly used to create the Monte Carlo model, the model output can be 

directly compared to the input.  In the second case outputs from the model can 

be checked against data from TUS not used as input to the Monte Carlo 

simulation.  The purpose of the MC modelling is to produce the car use 

patterns based on the statistics obtained from the TUS data.  The structured MC 

models can only utilise the empirical distribution and recover the statistics 

from the sampling process. 

3.4.2.1. Return Time Dependent Monte Carlo Modelling Results 

A key outcome of return time dependent MC model, the probability of 

household car arrival time, has been validated against probabilities calculated 

directly from the TUS weekday dataset (as described in Chapter 2 Section 

2.3.6).  Figure 3.13 and Figure 3.14 compare in different ways the probability 

that a car arrives back at the household based on 10,000 MC simulations with 

those based on the original TUS data.  The percentage of difference between 

MC model results and TUS data has been calculated for both probability of a 

car returns to house and cumulative driving period dependent on car arrival 

time.  The percentage error of probability of a car returns to house is 0.37%, 

and for cumulative driving, the percentage error is less than 1%.  Therefore, 

the return time dependent MC model produces acceptably accurate results 

and recover the statistics calculated from the TUS data by sampling directly 

from the empirical distributions.  Therefore, the return time dependent MC 

model produces acceptably accurate results and recover the statistics 
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calculated from the TUS data by sampling directly from the empirical 

distributions. 

 

Figure 3.13 Comparison of probability of a car arriving at a household 

derived from return time dependent MC model results and from TUS data. 

 

Figure 3.14 Comparison between return time dependent MC model results 

and TUS data calculation for marginal distribution of cumulative driving. 
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3.4.2.2. Fixed Time Increment Monte Carlo Model Results 

The fixed time increment MC model uses much more information than the 

return time dependent MC model.  In order to analyse the consistency of the 

MC model, and the MC simulation results, in this case from 20,000 iterations, 

results have been compared for the following: 

1. Probability of car parking at home. 

2. Probability of car departure at t  dependent on car being parked at 

home at 1t � . 

3. Probability of car arrival at time t  dependent on car being away from 

home at time 1t � . 

4. Probability distribution of cumulative car driving period as 

conditional on car away period for cars that departed at departure 

time, departuret . 

The car away period is calculated from car departure time and its next arrival 

time as described in previous section; its probability distribution as calculated 

by MC simulation outcome and TUS data calculation has been compared.  

Figure 3.15 illustrates the comparison of probabilities of car departure and 

arrival.  The percentage error between MC model results and TUS data has 

been calculated for both probability of a car departure from home and 

probability of a car arrive back home.  The percentage error of car departure 

is 1.63%, and 2.76% for car arrival; therefore, MC model produces acceptably 

accurate results. 
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(a) 

 

(b) 
Figure 3.15 Comparison of fixed time increment MC results and TUS 

calculation for (a) probability of car departure; (b) probability of car arrival. 

Unlike the return time dependent MC model, this MC model can also capture 

the car location over multiple days as in Figure 3.1619.  The probabilities follow 

the same trends from 2nd day to 5th day.  However, there is a significant 

                                                 
19 Monte Carlo simulation starts at 4:00am, the same as the TUS data, and the axes have not been adjusted in this case. 
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difference between the model output and the input data for time between 8pm 

in the night and 8am in the morning.20 

 

Figure 3.16 Comparison of fixed time increment MC model results and TUS 

calculation for probability of a car being parked at home and being away 

from home. 

In the fixed time increment MC model, car departure and arrival events have 

been treated as two independent events; the result is a significant error in the 

simulation of the probability of an individual car away period as shown in 

Figure 3.17.  The MC model generates fewer short away period (<2 hours) 

comparing to TUS data, and more medium away period (between 3 hours and 

9 hours).  As a result, the simulation results for the cumulative car driving 

period also show some, although less, error, Figure 3.18.  Therefore, the fixed 

time increment MC model has the disadvantage when reproducing car away 

                                                 
20 TUS data only has one 24-hour profile, so the following days are an exact replication of the first 24-hour profile. 

04:00 12:00 20:00 04:00 12:00 20:00 04:00 12:00 20:00 04:00 12:00 20:00 04:00 12:00 20:00 04:00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probability of a car parks at home and being away from home

Time

P
ro

ba
bi

lit
y

 

 

Prob. car at home - MCS
Prob. car not at home - MCS
Prob. car at home - TUS
Prob. car not at home - TUS



100 
 

home period and cumulative driving period.  Consequently, this MC model is 

not ideal to be used to generate individual household car use patterns. 

 

Figure 3.17 Comparison of fixed time increment MC model results and TUS 

data calculation for car being away from home period. 

 

Figure 3.18 Comparison of fixed time increment MC model results and TUS 

data calculation for cumulative car driving period. 
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The multiple time increments MC model uses more car use statistics than the 

fixed time increment MC model.  As before, 20,000 iterations are used.  Results 

are shown for: 

x Probability of car parking at home. 

x Probability of car departure at t  dependent on car being parked at 

home at 1t � . 

x Probability of car arrival at t  dependent on car being away from home 

at 1t � . 

x Probability distribution of car away period at departuret  

x Probability distribution of car parking period at arrivalt  

x Probability distribution of cumulative car driving period as conditional 

of car away period at departure time, departuret . 

In contrast to fixed time increment model, the car away period is directly 

sampled from the relevant probability distribution, as is the car parking period.  

The probability distributions of car away period and car parking period have 

been compared that shown as quantile-quantile plot in Figure 3.19 and Figure 

3.20.  The cumulative car driving period is sampled as conditional on car away 

period.  The probability distribution of cumulative car driving period provides 

good correlation with the TUS data that shown as quantile-quantile plot in 

Figure 3.21.  This demonstrates the effectiveness of the multiple time 

increments MC modelling method in replicating relevant statistical 

characteristics of the original TUS data.  Multiple time increments MC model 

can also reproduce multi day car location as shown in Figure 3.22.  The 

probability of car being parked at home has almost the same trends from 2nd 

day to 5th day, as is the probability of car being away from home.  It can be 
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seen that significant modelling error occurs for car location during two time 

periods.  The first period is between 8am and 6pm.  Second period is between 

7pm and midnight.   

 

Figure 3.19 Comparison of multiple time increments MC model results and 
TUS data calculation for car away period. 

 

Figure 3.20 Comparison of multiple time increments MC model results and 
TUS data calculation for car parking period. 
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Figure 3.21 Comparison of multiple time increments MC simulation results 
and TUS data calculation for cumulative car driving period. 

 
Figure 3.22 Comparison of multiple time increments MC model results and 

TUS calculation for probability of car being parked at home and being away 

from home. 
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of car departure has been plot against the TUS calculation in Figure 3.23a.  The 

percentage error of car departs from home is only 1.4% between MC model 

results and TUS data.  In Figure 3.23b, the probability of car arrives back home 

has been plot against the TUS calculation.  However, the probability of car 

arrival is poorly modelled as seen from the figure, especially around 5pm in 

the afternoon and 4am in the morning.  The simulation results has been further 

analysed in order to explain the discrepancy.   

 
(a) 

 
(b) 

Figure 3.23 Comparison of multiple time increments MC results and TUS 

calculation. (a) Probability of car departure; (b) Probability of car arrival. 
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As stated in Chapter 2, the probability of car arrival is calculated from the 

number of cars arriving back home at time t  divided by the number of cars 

away from home at the previous time step 1t � .  The car arriving back home 

events depend on the car being away from home at previous time step.  The 

difference for the probability of a car being away from home has been 

calculated as percentage between simulation results and TUS data, and is 

shown in Figure 3.24.  There is a marked correlation between the periods when 

there is large error modelling the car arrival and when the percentage of error 

in the probability that a car is away from home is large.  From Chapter 2 

section 2.3.5.3, it is known that the majority of journeys happened between 

7am in the morning and 4pm in the afternoon as illustrated in Figure 2.22.  The 

absolute difference between the MC results and TUS data is below 20% for this 

time period, as shown in Figure 3.24.  As a result, the simulated car arrivals 

during the important part of the day should be reliable.  The bias in the 

simulation of car arrival is caused by the error of car away from home.  To 

resolve this error, a different Monte Carlo simulation method might be helpful; 

however, this is beyond the scope of this research and is left for future research.   

 
Figure 3.24 Comparison of car away error percentage and probability of car 

arrival home. 
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Additionally, the percentage of cars arriving back home over a day has been 

calculated as follow: 

� � � �arrival
arrival

arrival
1

, 1, 2,3,...,
tot tott t

t

n t
Percentage n t t

n
 

 

  

¦
 

(3.8) 

where arrivaln  is the number of cars arriving back home.  The percentage of cars 

arriving back home correlate well with the TUS calculation, as shown in Figure 

3.25.  The percentage error calculated for car arrival home distribution is less 

than 1%.  This also explains the effectiveness of the multiple time increments 

MC model in replicating the statistical nature of the original TUS data where 

the emphasis is on the car driving period.   

 

Figure 3.25 Comparison of multiple time increments MC model results and 

TUS data calculation for car arriving back home as percentage. 
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value should provide a good approximation to the expectation calculated from 

the TUS data.  Note that the estimate of mean driving period (75 minutes) can 

be directly calculated from the weekday TUS dataset as illustrated in Figure 

2.23, (Chapter 2 section 2.3.6.3).  Furthermore, all three MC models can only 

generate the cumulative driving period between departure from home and 

subsequent return. Individual journeys that might contribute to this driving 

period have not been resolved in this analysis of the TUS data.  It is thus 

reasonable to use the mean cumulative driving period as the modelling 

consistency check criteria.  The method of calculating the percentage of overall 

driving period as a proportion of single day is given by the following formula: 

� �driving
1 1iterations days

1 1 1 iterations toti N t t

driving i
i ttot

T T t
N t N

  

  

 u u u ¦ ¦  (3.9) 

where iterationsN  denotes the number of iterations performed by MC models, 

daysN  is number of days performed by MC models, tott  means the number of 

time slots for 24-hour period.  i  is the diary index and � �driving iT t  is the 

individual driving period in each individual diary.  The value obtained 

directly from the TUS weekday data used to determine the probability used in 

the Monte Carlo simulation is 5.2%.  For the return time dependent MC model, 

the mean driving period as percentage is 4.7%, which has a fractional error of 

0.096.  The fixed time increment and multiple time increments MC models 

produced 5.6% and 5.3% respectively.  The fractional errors are 0.077 and 0.019 

for these two models.  In the context of the imprecision resulting from the use 

of limited data, all these results are viewed as acceptable.  Clearly, for this 

important measure of performance, the return time increment MC model 

produced less accurate results.  However, in the view of its simplicity, it 

remains attractive.  Comparing Figure 3.14, Figure 3.18 and Figure 3.21, it can 
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be seen that the return time increment MC model actually reproduces the 

driving period PDF more accurately. 

3.5. Discussion and Summary 

In this chapter, Monte Carlo simulation has been explained and regarded as 

the effective approach to generate synthetic individual car use patterns.  Based 

on the Inverse-transform method, three different Monte Carlo simulation 

models have been described.  For each MC model, analysis has been 

performed on the simulation results to demonstrate convergence and also to 

check consistency with the TUS input data.  The purpose of the MC modelling 

is to produce the car use patterns based on the statistics obtained from the TUS 

data.  As discussed previously, it is possible to fitting parametric distribution 

to certain car use probability distributions; however, the concern is that MC 

modelling results might not reflects the statistics calculated from the TUS data.  

In this case, the structured MC model can only utilise the empirical distribution 

and recover the statistics from the sampling process. 

The advantage of the return time dependent MC model is that it utilises only 

two car use statistics: the probability of a car arriving back at a household; and 

the probability distribution of cumulative driving period dependent on car 

arrival time.  The return time dependent MC model allows simulation results 

to converge with less iterations as illustrated, which means less computational 

time compared to both fixed time increment and multiple time increments MC 

modelling approaches considered.  This model can only generates car arrival 

activities and its associated cumulative driving period; however it produces 

accurate estimation and time distribution of car arrival time and cumulative 

driving period, which is the main objective of the MC models.  Both fixed time 

increment and multiple time increment MC models can generate car parking 
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locations and departure and arrival events by sampling from different 

statistical distributions.  For example, the fixed time increment MC model only 

needs probabilities of car departure and arrival to generate car parking 

location information.  The multiple time increments MC model uses 

probability distributions of car parking period and away period to generating 

car parking location information.  Additionally, both fixed time increment and 

multiple time increments MC models can provide information about the next 

car departure, which could be helpful in the study of demand side 

management applied to EV charging. 

Cumulative driving period, when car arrives back home, determines the 

amount of energy required for vehicle charging calculations.  All three 

structured MC models produced a mean driving period within ±5% of TUS 

data statistics, with the multiple time increments MC model being most 

accurate in this regard.   

Both fixed time increment and multiple time increments MC models follow 

the car movement.  The fixed time increment MC model assumed independent 

car departure and arrival.  The benefit of this modelling approach is the 

effectiveness and simplicity of implementation.  However, the calculated car 

away period and the cumulative car driving period have significant 

differences from those calculated from the TUS data.  On contrast, the multiple 

time increments MC model can accurately reproduce frequency distributions 

of car away and parking period, the number of cars arriving back home at any 

time, and also the probability of car departure.  However, there is significant 

error in calculating the probability of car arrival with the multiple time 

increments MC model, which is caused by errors in modelling the time of day 

that the car returns home.  These two models have different strengths and 

weaknesses.  Nevertheless, both MC models can accurately simulate two most 
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critical parameters: car arrival home probabilities and cumulative driving 

period on arrival home.  A different modelling approach might provide a more 

complete model able to reproduce all the relevant statistics, and this is 

suggested as future work. 
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4. Chapter 4: Impact Assessment of 

Electric Vehicle Charging on UK 

Low Voltage Distribution 

Network 

The driving patterns of electric vehicles are expected to follow the 

conventional or internal combustion engine car use statistics for all but the 

longest journeys.  The return time dependent Monte Carlo model developed 

in the previous chapter allows an accurate representing of the likely domestic 

car journeys.  The electrification of these journeys places additional electricity 

loads on the distribution system that dependent on the different scenarios of 

EV take-up.  In addition, the multiple time increments MC model developed 

in the previous chapter has been extended to incorporate a household 

electricity load model so that house by house total load profiles (including EV 

charging) can be generated for use in distribution system load flow studies as 

part of power distribution system impact assessment.  The uncertainty 

associated with these charging loads can also be estimated, which is important 

for network expansion and contingency planning.  Simple ‘plug and charge’ 

strategies are shown to significantly add demand at the times of existing peak 

domestic load, potentially causing problems for distribution network 

operators.    
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4.1. Case Study 1: Impact on Substation Transformer 

Before assessing in detail the impact of vehicle charging on the low voltage 

network secondary transformer (400V/230V) including line flows and voltages, 

it is useful to present an assessment of the aggregate impact of EV charging on 

the 11kV primary substation transformers.  As described in Chapter 3, the 

return time dependent Monte Carlo model simulates household car arrival 

time and the associated cumulative driving period.  Knowing the cumulative 

driving period and thus the degree of battery discharge at the time of arrival 

home is all that is required to calculate the vehicle charging for a simple ‘plug 

and charge’ strategy.  The ‘plug and charge’ strategy regards home as the only 

location for charging and allows vehicle charging to begin as soon as the EV 

arrives back home.  When these charge durations are overlaid for the 

population of households under consideration the result is the additional 

electricity load for the population of houses.   

The residential network data is provided by Scottish Power, comprising one 

33/11kV 7.5 MVA primary substation transformer, and six 11kV secondary 

substation transformers with a mix of 300kVA and 500kVA capacities.  Census 

data provides the total number of household in the area is 1,885, [4.1].  It is 

assumed that the LV networks considered supplies predominantly domestic 

housing.  On average, each distribution transformer in this system supplies 

259 houses.  Initially all households supplied by the primary transformer are 

considered together so as to examine the additional charging load on the 

substation transformer.  With Monte Carlo simulation, it is important to 

determine how many independent trials using different random number 

seeds are required to achieve reasonable convergence to the required 

distribution or characteristic of interest.  Here the concern is with the 

aggregate EV charging load and how this varies through the day.  This 
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approach provides accurate forecasting of the additional electricity loads 

placed on the 11kV distribution system for different assumed scenarios of EV 

take-up.   

4.1.1. Electric Vehicle Deployment in the Residential Area 

The TUS household car ownership distribution has been adapted to allow 

households with at least one car to have one EV.  Number of cars owned per 

household is simulated from the distribution calculated from TUS data, see 

Figure 2.6a.  The maximum number of cars for each household is six.  It is 

recognised, certainly for a modest overall take-up rates, that it is unlikely that 

any household would have more than one EV.  For simplicity, and because of 

lack of more detailed data, it has been assumed that EVs are distributed evenly 

across all the households having cars.  Before calculating the EV charging load, 

the MC model (see Chapter 3 section 3.3.1) simulates the number of cars 

owned by each household.  After sampling for 1,885 households supplied by 

the same primary transformer, there are 1,966 cars owned by these households 

in the district. As a result, there are 1.042 cars per household.  For the 215 

households supplied by the same secondary transformer, the MC model gives 

205 cars as the outcome of one simulation calculation.  Among these 215 

households, there are 68 households (32%) without a car.  It is higher than the 

statistics presented in the Chapter 2.  However, it is reasonable that these 

results are the outcome of single Monte Carlo simulation.  The deployment 

level of EVs among car owning households, defined as the proportion of cars 

owning households with an EV, has been assumed to vary from 0% to 100% 

with 10% increments.   
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4.1.2. Electric Vehicle Charging Modelling 

Once the round trip total driving times have been established (see Chapter 3 

section 3.3.2.1), it is possible to calculate the corresponding degree of battery 

discharge for each returning vehicle based on reasonable assumptions of 

average driving speed and energy consumption.  The average driving speed 

used in this study is 33 mph and is based on the results reported in [4.2] for 

measurements of urban driving.  Calculation of the total energy consumed 

also requires knowledge of the vehicle performance in terms of the energy 

consumed per unit time at this average speed.  The energy consumption value 

for a typical urban driving cycle is taken from the BMW i3, which is 0.21 

kWh/mile21, [4.3].  This vehicle has a practical range limit of 90 miles (a 19kWh 

lithium-ion battery), so that cumulative driving journeys, simulated by the MC 

model, must be equal to or less than this limit.  Longer journeys simulated by 

the MC model are ignored for recharging calculations.  The total energy used 

driveE  for a particular driving journey of duration driveT  is calculated as follows: 

drive drive speedE T v k 
 
  (4.1) 

where speedv  is the average driving speed (33 mph) and k is the energy 

consumption (0.21 kWh/mile).  For example, if an EV drives for period of time 

of 10 minutes (1/6 hours), it will consume 1.16 kWh according to these 

assumptions.  Since all re-charging is assumed to start immediately on return 

to the house, and is assumed to be at a fixed rate until the battery is fully 

charged, it is straightforward to calculate the charging duration chargeT  (in 

hours) from: 

                                                 
21 Units have been converted from km to miles for the each BMW i3 specifications. 
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drive
charge

arg _ chargingch ing rate

ET
P K

 



 (4.2) 

where charging_rateP  is the rating of domestic charger, which can be set for either 

single phase standard charging or fast charging 22 , [4.3].  The charging 

efficiency chargingK  is assumed to be 0.90, [4.4].  Table 4.1 shows the charging 

characteristics for standard and fast single phase charging.  In the next stage 

of system impact evaluation, both low and high charging profiles have been 

considered in order to assess the impact on the substation transformer.   

Table 4.1 Domestic charging characteristics for BMW i3. 
 Standard charging Fast charging 

Charging rate  
AC Type 2/ 
Mode 2 charging/ 
Up to 2.4kW/10Amps 

AC Type 2/ 
Mode 3 charging/ 
7.4kW/32Amps 

Time period (h) < 7 for 0-80% 
State of Charge 

< 3 for 0-80% 
State of Charge 

 

4.1.3. Impact on Primary Substation 

Initially all 1,885 households are considered together so as to examine the 

additional charging load on the primary substation transformer.  Since at this 

stage we are interested in aggregate charging loads at substations and 

distribution transformers, there is no need to model the house by house 

variations in non-EV loads.  The worst case scenario of UK winter electricity 

profiles is used to understanding the impact of EV charging on the distribution 

network substation loading.  In case study 2 to examine the charging impact 

on LV network flows and voltages, these house by house loads have been 

modelled.  Here the concern is with the aggregate EV charging load and how 

                                                 
22 The model does not consider ‘ramp up’ or ‘ramp down’ charging, and charging rate is constant. 
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this varies through the day.  The power factor is defined as the ratio of true 

power in kW to apparent power in kVA, [4.5].  It can be measured by a power 

factor meter, which determines the cosine value of the angle between the 

voltage and current.  Unity power factor has been assumed for this case, 

therefore all units are presented in kW instead of kVA.  Good convergence has 

been achieved for only 100 trials; this is not unexpected given the large number 

of independent households modelled in each of the trials.  Of the 1,885 

households supplied by the primary substation, 10% of these are initially 

assumed to be EVs.  Figure 4.1 gives the calculated additional EV charging 

load as a function of time of day for a take-up rate of 10%23.  It is clear that fast 

charging creates a higher peak load than standard charging; however, the 

duration of fast charging is shorter than standard charging.  As a result, fast 

charging profile has greater impact overnight under the ‘plug and charge’ 

strategy. 

 

Figure 4.1. 10% EV charging load without base load. 

Figure 4.2 shows EV charging (fast charging only) together with a typical UK 

domestic daily load taken from United Kingdom Energy Research Council 

(UKERC) winter weekday profile, [4.6], but suitably scaled to the number of 

                                                 
23 A 10% take-up signifies that one in ten of households owning cars are assumed to have one EV. 
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houses supplied.  The mean load for a single household according to the 

UKERC profile is 580 Watts; this is close to the figure of 536 Watts available 

from DUKES for 2009, [4.7].  It should be noted that the load information has 

a time resolution of 30 minutes, reflecting the UK market arrangements.  For 

comparison purposes only, the 10 minute Monte Carlo results have been 

averaged up in 30 minute blocks.  It is apparent that for this UK example the 

charging load occurs very much at the time of the existing peak load at 18:00.  

This is unsurprising but the magnitude of the new peak (increased by 14%) is 

considerable, even for the modest EV ownership assumed for this case.  Figure 

4.3 shows the impact of different levels of EV charging on the primary 

substation loading.  It is clear that with higher EV penetration, the peak load 

of the substation will be considerably increased by as much as three times.   

 
Figure 4.2. 10% EV charging impact on primary substation loading. 
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Figure 4.3 EV charging impact on primary substation loading. 

4.1.4. Impact on Secondary Substation 

As mentioned above, Figure 4.2 was the result of 100 Monte Carlo trials to 

calculate the additional electricity demand from domestic EVs.  Attention is 

now focused on a single group of 215 houses supplied by a single 300kVA 

distribution transformer and with an EV take-up, as before, of 10%.  With this 

smaller sample size there is expected to be greater variation between 

individual simulation trials.  As for larger group of houses, the model needs 

to be re-run until convergence has been achieved.  As well as the mean 

behaviour importantly this will quantify the uncertainties associated with the 

additional load.  Good convergence was achieved with 200 simulation trials24; 

this is more than for 1,885 houses, reflecting the reduced number of houses.  A 

total of 21 EVs was used, consistent with the car ownership statistics already 

presented.  Figure 4.4 shows the mean of 200 EV charging simulation trials 

(fast charging profiles only) with 95% confidence interval as function of time. 

[4.8].  The 30 minutes time resolution has been maintained here.  The simplest 

                                                 
24 Sample population of 215 houses has been used in the MC simulation.  Therefore, there is total of 43,000 trials (215 houses 

* 200 trials) performed. 
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measure of the uncertainty associated with these values is provided by the 

standard deviation.  These have been calculated from the 200 trials, again as a 

function of time of day. 

 

Figure 4.4. Expected mean EV charging with 95% confidence level. 

For the sample of 215 houses, the peak mean charging load occurred at 17:30 

hours and was 27.8kW, with a standard deviation of 12.3.  Assuming as usual 

that the error distribution is Gaussian, the peak charging load will lie in the 

range from 26.07kW to 29.49kW with 95% confidence.  So to take a simple 

example, this distribution transformer would need to be sized (for 95% 

confidence) to be 29.49kW larger than at present to account for this likelihood 

of additional EV charging load.  This is approximately 15% of the existing 

domestic peak load (197.8kW) and thus not insignificant.  However, the worst 

case scenario is the unexpected high vehicle charging load that was calculated 

from these 200 MC simulation results.  It is shown as the maximum likely 

vehicle charging impact on the domestic load profile.  Figure 4.5 brings 

together the expected electricity load profile for a typical weekday with the 
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of 10%.  It is important to reiterate that this is for the simple ‘plug and charge’ 

strategy in which the vehicle battery is recharged immediately on return to the 

home. 

 

Figure 4.5. 10% EV charging impact on secondary substation. 
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In order to assess the potential impact of EV charging on power distribution 
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power flow model.  A worst case scenario (UK winter electricity profile) is 
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4.2.1. Overview Modelling Structure 

In this section, the integrated model is explained in detail and the various sub-

models developed for the vehicle charging impact assessment.  The integrated 

model consists of the MC household car model, a household electricity model 

that depends on occupancy, and an LV network model.  There are three stages 

to the analysis: generation of house by house electricity profiles, power flow 

performance; and analysis of results (as shown in Figure 4.6).   

 

Figure 4.6 Overview modelling structure. 

The multiple time increments Monte Carlo model for household car use 

generates synthetic vehicle charging patterns.  Household electricity 

consumption profiles are created using the CREST model developed by 

Richardson, which generates individual household electricity load based on 

active occupancies25, [4.9].  EV charging load profiles are added on top of the 

household load profiles in order to create the new household electricity 

consumption profiles.  The LV network model has been structured in Open 

Distribution System Simulator software (OpenDSS) based on network 

                                                 
25 The active occupancy has been modified for the consideration of EV use. 

Stage 1: Input profiles Stage 2: Power flow Stage 3: Results analysis

Monte Carlo model:
‘uncontrolled’ vehicle 

charging

Household electricity 
consumption profiles:
individual household, 

substation loading

MATLAB:
perform power flow 

calculation, store 
output data(Excel .csv)

OpenDSS LV network 
model:

One feeder modeled in 
detail

Power flow 
calculation 
results 
analysis: 
peak power 
at substation, 
line current 
for each 
feeder, 
voltage 
variation.



123 
 

parameters for one feeder, including number of households, cable types, 

length, and thermal limits, [4.10].  Monitoring data was available for peak load, 

and feeder voltage/current values.  To assess the potential impacts of electric 

vehicle charging on LV network, power flow calculation26 has been performed 

based on the penetration level of electric vehicle and household electricity 

consumption.  Both the distribution of the EVs on the network and their 

charging profiles were generated anew with each run of the simulation.  

Figure 4.7 shows the detailed programme flow for the study. 

 

Figure 4.7. Programme flow. 
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charging profiles are in ten minutes resolution because of the format of Time 
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26 The power-ÀRZ�calculation (somHWLPHV�FDOOHG�ORDG�ÀRZ��LV�WKH�EDVLF�WRRO�IRU�LQYHVWLJDWLQJ�system impact due to system 
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household load, EV charging load has been converted into one minute basis 

data as same resolution as the CREST model outputs.  Therefore, ‘new’ 

household electricity load profiles are in one minute resolution.   

4.2.2. Simulation Software 

The Open Distribution System Simulator (OpenDSS) is a comprehensive 

electrical system simulation tool for electric utility distribution systems.  It is 

an open source developed by the Electric Power Research Institute, [4.10].  The 

basic user interface is a text scripting standalone user interface which is 

sufficient for most of the analysis.  The COM interface can be used to design 

and execute custom solution modes and features of the simulator from any 

third party analysis programs such as MATLAB, VBA, and Python.   

4.2.3. Distribution Power Flow Algorithm 

As the design of distribution system in UK, the system commonly serves 

unequal single phase loads; hence the loading of the system becomes 

inherently unbalanced.  The non-equilateral conductor spacing introduces an 

additional unbalance for three-phase overhead and underground cable 

segments.  The cable in a distribution network have higher (R/X) ratios.  

Therefore, the conventional power flow or short circuit methods are not 

adequate for the radial characteristics of the distribution system; additionally 

these methods display poor convergence characteristics, [4.11].  The non-linear 

and iterative methods for load flow algorithm have been developed and 

employed [4.12] and [4.13].  It is imperative that the distribution feeder is 

modelled as accurately to perform accurate power-flow and short-circuit 

studies by utilizing the three-phase models of the major components.   
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4.2.4. Low Voltage Distribution Network Modelling 

The residential network data was provided by Scottish Power, comprising one 

33/11kV 7.5 MVA primary substation transformer, and six 11kV secondary 

substation transformers with a mix of 300kVA and 500kVA capacities.  All 

associated LV (400/230 V) networks, providing power to some 1,554 connected 

customers, has been used as a guide to a distribution system supplying 

predominantly domestic housing.  On average, each distribution transformer 

in this system supplies 259 houses.  One substation (11kV/400V 300kVA 

transformer) supplying 215 households with five feeders has been modelled 

with one feeder for 42 households modelled in detail, while the remaining four 

feeders represented as lumped loads.  For low voltage network modelling, 

many factors must be determined including transformer settings, cable 

parameters, and household phase connections.  This information has been 

obtained from the low voltage network data for cable parameters and the 

phase allocation of the individual houses, supplied in a geographic 

information system (GIS) data (see Appendix B).  Table 4.2 lists the modelled 

LV network feeder parameters. 

Table 4.2 Number of premises supported by LV network feeder. 

Premises 43 

3-phase cable (m) 171 

Single phase cable (m) 396 

 

4.2.4.1. Substation Transformer 

The modelled 11/0.4kV 300kVA secondary distribution transformer supplies 

five LV feeders with the impedance percentage of 4.75%.  The transformer tap 
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changer is adapted from [4.14].  Taps should be able to step from -5% to +5% 

in 1.25% intervals, and it is an off-load tap changer27.   

4.2.4.2. Low Voltage Cables 

The network uses of two types of cables; one is the main 3-phase cable, and 

second type is the service single phase cable, [4.15].  Details of cable 

parameters are listed in Table 4.3. 

Table 4.3 LV network cable parameters. 

Cable  Type Rphase 

(Ohm/km) 

Xphase 

(Ohm/km) 

3 phase cable 95mm AL 0.379 0.069 

Single phase Mural cable 0.0225in Cu 1.477 0.0865 

 

4.2.4.3. Network Voltage Limits 

Distribution network operators are obliged to supply their customers at a 

voltage within specified limits. In the UK, these limits are +10% and -6% from 

the nominal single phase voltage of 230V, according to the Electricity Safety, 

Quality and Continuity Regulations [4.16]. 

4.2.4.4. Phase Information 

The service cables stored in the DNO’s current GIS database are often assumed, 

and even where they are not there is no information to indicate what phase 

single-phase cables or consumers are on.  Thus a phase allocation strategy is 

required as the load flow calculations are carried out on a phase by phase basis 

                                                 
27 A tap changer is a connection point selection mechanism along a power transformer winding that allows a variable number 

of turns to be selected in discrete steps. A transformer with a variable turns ratio is produced, enabling stepped voltage regulation 
of the output. The tap selection may be made via only manual tap changer mechanism. 
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and this follows, [4.17].  From the available monitoring data 28 , the phase 

allocation for each household has been defined (see Appendix B for more 

details).  The household phase information is shown as a single line diagram 

in Figure 4.8.  The red line, Phase A, supplies 13 premises, the yellow line, 

Phase B, is connected to 19 premises, and the blue line, Phase C, is connected 

to 12 premises.  This modelled feeder is clearly unbalanced.   

 

Figure 4.8 The single-line diagram of the modelled feeder. 

4.2.5. Household Electricity Load Modelling 

For the modelled feeder, individual household electricity load is generated by 

the CREST model.  The other feeders use the UKERC winter load profile as in 

section 4.1.3.  The CREST model is an open source tool that generates 

individual household daily electricity consumption and it allows user to set 

the model input parameters (e.g. number of people, day of week, month of the 

                                                 
28 There are two sets of monitoring data provided by Scottish Power.  One set is for one feeder measured at the substation, and 

the other is measured at the specific household/premise.  Both sets provide information on phase voltage values. 
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year).  The model is based on daily active occupancies29 within the household 

that extracted from the United Kingdom Time of Use Survey 2000.  In the 

Chapter 3 section 3.3.2.3, the multiple time increments MC model simulates 

household daily car use patterns, such as car departure, car arrival, car driving 

period, etc.  As stated in the TUS technical report, a driving activity is defined 

when the person drives the car as the main driver.  Therefore, when the car 

departs from home or arrives back home, it also indicates that a person sets off 

or returns home at that specific time.  These changes of personal location 

results changes of active occupancies within the house as shown in Figure 4.9 

and changes in household electricity use.  Consequently, the household 

electricity profile generated by the CREST model is adapted to reflect the 

changes of active occupancies associated with the car use.   

 

Figure 4.9 Household active occupancies and electricity consumption change 

due to car use. 

                                                 
29 “active occupancy” (that is, when occupants are within a dwelling and not asleep). 
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The person’s driving activity can consequently affect the household electricity 

consumption, although most researchers neglect this, for example [4.18] - 

[4.20].  In [4.21], a household electricity model takes into account the vehicle 

use, which is structured based on active residential patterns.  The integration 

of the Monte Carlo model with CREST electricity model in this way can more 

accurately predict household electricity consumption in the context of vehicle 

use.  This modified CREST model should enable DNOs to improve their 

existing household After Diversity Maximum Demand (ADMD) profiles 

when considering domestic EV take-up in the future.  However, there are 

other approaches to establish a household electricity model by using smart 

meter data.  In [4.22] to [4.24], researchers identify that the household 

electricity consumption has behavioural patterns and less diversity than 

expected.  The CREST model is one approach to generate household electricity 

consumption profiles.  Appendix C explains in more detail the process of 

integrating MC model with the CREST model.   

Individual housing occupancy is available from the Census data as shown in 

Figure 4.10.  In this particular area, the largest group of housing is for two 

people (31%), followed by equal proportions of three and four people 

households (19% each).  Five and six people households share a total 14%, and 

one person household accounts for the rest 17%.  Note that a two people 

household could mean one adult and one child.  The CREST model only 

requires number of residents in the house; therefore, the housing occupancy 

statistics from Census data has been directly used to generate household 

electricity load.   
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Figure 4.10 Housing occupancy for modelled feeder. 

For the modelled feeder, car ownership has been calculated by the MC model 

described in Chapter 3 section 3.3.1.  As the outcome of the MC simulation, 

there are 13 households without cars, as shown in Table 4.4.  Households are 

restricted to at most one EV.  The maximum penetration of EV in the system 

is 29 and only fast charging is considered.  The EV charging demand is 

calculated as described in section 4.1.2.   

Table 4.4 Car ownership for 42 households. 
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Figure 4.11 EV charging impact on single household loading. 

4.2.6. Impact Assessment 

In order to assess the 32A EV charging impact on the LV system, 24 hours 

household load profiles generated in section 4.2.5 have been assigned to the 

modelled feeder.  Penetration of EVs in the system has been assumed from 0% 

to 100% with 10% increments.  Initial power flow has been performed without 

any EV charging in order to setup the initial system status.  This LV network 

looks at the feeder loading at the substation and the voltage levels at the 

monitored household as shown in Figure 4.8.  The analysed results are for 462 

runs (42 houses * 11 levels of EV penetration) as one run for one level of EV 

penetration, for each one minute time step of a week day (24 hours period), 

including maximum, minimum and average substation power; maximum, 

average and minimum voltages, minimum load voltages for those loads that 

were monitored, and maximum line currents for those lines that were 

monitored.  In the following subsections, vehicle charging impact on 

substation feeder loading and voltage variation at the monitored household 

are analysed and discussed in details.   
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4.2.6.1. Feeder Loading 

The load profiles for the feeder with increasing EV penetration level are shown 

in Figure 4.12.  The peak load at the feeder of 90.4 kVA occurs at 19:00 when 

EV penetration level reaches 100%.  There is also a local peak occurring just 

prior to 12:00 that results from a specific EV that starts charging at a household 

at that time (see Appendix D).  It is known that the feeder rating is 60kVA.  

The simple ‘plug and charge’ strategy increases the peak load and exceeds the 

existing feeder rating with only a 30%  of EV penetration for 32A charging, as 

shown in Figure 4.13.  Note that the peak load calculated from power flow 

results is the highest value throughout the 24 hours period.  For such a small 

group of households, the range of times when EVs start charging will be large.  

As a consequence, the peak load remains the same for 10 per cent and 20 per 

cent EV penetration levels (see Appendix D).  Therefore, this particular LV 

feeder can cope with a maximum of 20% EV penetration (e.g. 6 households 

with an EV).  More details of the feeder loading results can be found in 

Appendix D. 

 

Figure 4.12 Feeder loading profiles for EV penetration from 0% to 100%. 
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Figure 4.13 Peak load exceeds feeder rating as 30% EV penetration. 

4.2.6.2. Voltage Profiles at House 51 

The voltages at House 51, found at the end of a service cable supplying 9 

households (see Figure 4.8), were monitored for each level of EV penetration.  

Figure 4.14 illustrates the voltage profiles of House 51 for increasing levels of 

EV penetration.  It is seen that the voltage profiles at House 51 dipped 

significantly between 12:00 and 22:00 while EV penetration level increases.  

More details of the House 51 voltage results can be found in Appendix D. 

 

Figure 4.14 House 51 voltage profiles for EV penetration from 0% to 100%. 
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The lowest voltage at House 51 is 0.88 p.u., which is well below the network 

voltage limits (0.94 p.u.), as shown in Figure 4.15.  It is obvious that House 51 

suffers from a relatively low voltage level even with no EVs in the system due 

to its location at the end of a long service cable.  When EV penetration level 

reaches 20%, the voltage dips below the network limits.  Voltage continues 

dropping as EV penetration levels increase.  This is due to households located 

up-stream of House 51 having EV charging.  When EV penetration level 

reaches 60%, House 51 is assigned an EV.  As a result, all the households on 

Phase A (red line in Figure 4.8) have EV charging activity during the 24-hour 

period, and as a result the voltage value dips to 0.88 p.u.  Voltage value at 

House 51 remain the same while EV penetration level down-stream of House 

51 increase from 60% to 100% (Phase B yellow line in Figure 4.8).  Because of 

this peculiarity, a 20% EV penetration results in an unacceptable voltage at 

House 51.  Thus from the standpoint of voltage, the highest allowable EV 

penetration is 10%.   

 

Figure 4.15. Minimum House 51 voltage profiles. 
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4.3. Discussion and Summary 

In this chapter, two case studies have been presented in order to assess the 

impact on electric vehicle charging on typical parts of the UK distribution 

network.  In case study 1, the impact on primary and secondary substation 

transformers has been assessed for a residential area.  The return time 

dependent Monte Carlo methodology has been used to model EV charging 

loads.  This approach makes use of two statistical characteristics of domestic 

car use: the probabilities of cars returning home (as a function of time of day) 

and the distribution of driving time whist away from the home.  This 

simplification is appropriate when, as in this analysis, the assumption is that 

charging takes place only at home.  Winter weekday household load profiles 

from the UKERC have been be used with residential Census data to provide 

representative substation and distribution system loads so that the potential 

impacts on the distribution network of different penetrations of EVs could be 

investigated.  As the key outcome of the impact analysis, even a modest 10% 

EV take-up can results in a considerable increase in peak load at primary 

substation transformers.  Again, the simple ‘plug and charge’ strategy has 

been applied.  For the secondary substation transformer, mean EV charging 

increased the existing peak load by 15%; with possible peaks up 48%.  For 

higher EV penetrations, charging impact on the substation loading 

significantly increases the peak load as much as three times.  Thus appropriate 

charging strategy need to be implemented as EV developed in a residential 

area. 

In case study 2, EV charging impacts on the LV network have been assessed 

on a section of real distribution network as provided by Scottish Power.  There 

are some challenges in modelling the substation feeder accurately.  One of the 

most difficult tasks is to acquire all the necessary network data, such as 
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transformer capacity, cable type, length, household phase allocation.  Feeder 

GIS maps provides most of the needed network data.  Distribution network 

modelling tool, OpenDSS, provides the capability of performing power flow 

analysis via MATLAB.  Individual household load on the distribution system 

are created by CREST model with the consideration of household occupancy 

change due to car use.  The main advantage of integrating the multiple time 

increments MC model with the CREST model is to produce a more realistic 

household electricity consumption profile when considering EV charging.  

The power flow calculation results show that for the modelled secondary 

substation feeder, 32A fast charging undoubtedly increases the existing peak 

load.  The feeder rating was found to allow up to 20% EV deployment.  Voltage 

profiles at one particular house at the end of a service cable has been 

investigated for EV penetration level varying from 0% to 100%.  Due to the 

configuration of the LV network, this house suffers relatively low voltage 

when no EV.  Power flow calculation showed that for this house, the minimum 

voltage drops below the UK LV network standard when EV penetration level 

exceeds 10%.  This indicates that voltage limit violation at an individual house 

occurs before the substation feeder reaches its thermal rating.  Applications of 

the power flow results shows that distribution transformers, and also of course 

the associated distribution lines, will need substantial upgrading if any 

significant use of EVs develops.  This LV network load flow model provides a 

useful tool for DNOs to gain a better understand of the potential EV charging 

impact so that appropriate demand side management scheme needs to be 

implemented.   
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5.Chapter 5: Demand Side 

Management for Electric Vehicle 

Charging 

With wider deployment of the plug-in electric vehicle, a power distribution 

network operator would expect increasing domestic demand due to large 

numbers of vehicles charging.  This could lead potentially to overloading of 

power system assets unless appropriate demand side management is in place.  In 

this chapter, several improved charging strategies, utilising forms of demand side 

management, are presented that can significantly ameliorate the demands on the 

power system and in particular utilise surplus wind generation in the distribution 

system.  Such proposed charging approaches have far less impact on the 

distribution system, indeed it is shown in the chapter that such DSM strategies 

are capable of smoothing the domestic load profile at key points in the 

distribution system thus facilitating an improvement in distribution system 

operation, and also operation of the power system as a whole.  Additionally, the 

potential of utilising electric vehicles to absorb renewable generation has been 

investigated considering constraints on car parking period.  Wind generation has 

been selected for demonstration purposes, and the developed charging algorithm 

can also be applied to absorb other types of renewable generation, such as 

photovoltaic, wave and tidal generation.    
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5.1. Opportunities for Electric Vehicle to Participating in Future 

Smart Grid 

By the year 2020 the Department of Energy and Climate Change (DECC) has 

forecast that smart meters will be installed in every house in the UK enabled by a 

£500 million incentive plan created by Ofgem, the UK electricity and gas market 

regulator, to support smart grid trials carried out by DNOs, [5.1].  Mass rollout of 

smart meters will be the foundation of future smart grid networks and the 

anticipated outcomes are benefits for both energy consumers as well as DNOs.  In 

the context of smart grid, privately owned electric vehicles have opportunities to 

participate as responsive demand; or even distributed energy resources with the 

help of bi-directional power flow, known as vehicle-to-grid (V2G).  V2G 

technology represents a means by which power generation capacity available 

from parked EVs can be used to supply electricity to the power grid, [5.2].  In 

technical terms, there are no barriers to V2G technology.  For each electric vehicle, 

three elements are required: a connection to the grid for electrical energy flow; 

suitable communication with the power network operator (perhaps via real time 

price signals), power flow controls and metering either off or on-board the vehicle.  

In the early stages of V2G implementation, systems are expected to focus on 

power delivery of time-critical power market services due to the associated high 

value/rewards.  In effect, such V2G technology makes available bi-directional 

energy storage that can be used to ease the integration of wind energy.  V2G 

implementation is of value only if the appropriate match occurs between electric 

vehicle availability and times of high electricity cost within the power market, 

[5.3].  There is a cost associated with V2G resulting from the increased cycling of 

the battery and consequent reduced lifetime, but this cost is expected to be more 
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than covered by the high value of electricity at peak times. Simple using the 

batteries as responsive load (i.e. no discharging for power generation purposes) 

is not anticipated to reduce the battery lifetime.   

Several studies have been published on vehicle charging strategies developed to 

meet system constraints, reduce EV charging costs, or help absorb renewable 

generation in the distribution system, [5.4].  In paper [5.5], load scheduling and 

dispatch for vehicle charging are adjusted to reduce EV charging costs based on 

an electricity price signal.  Deilami et al., [5.6], proposed a novel load management 

solution for coordinating the charging of EV fleets.  By identifying three 

prioritised time zones, vehicle charging can be shifted to times of day with less 

intensive system loading in order to manage system distribution system 

constraints and reduce costs.  However, this modelling approach has the 

weakness of using fixed and generalised household demand profiles; therefore, 

the change of the household demand profiles would lead to different prioritised 

time zones for vehicle charging.  There is also a growing interest in using the EV 

batteries as an alternative energy source of generation to help meet peak demands.  

This is often referred to as Vehicle to Grid, or V2G for short; see for example 

references [5.7] to [5.13].  It would be possible to apply the model developed here 

to V2G applications and this is currently being considered for future research 

alongside investigation of more sophisticated demand side management 

opportunities associated with vehicle battery charging than are examined here. 
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5.2. Cast Study 1: Electric Vehicle Charging Strategies at 

Substation Level 

In order to reduce the adverse impact of vehicle charging on the peak load at the 

primary distribution transformer, it is expected that some sort of charging control 

or demand side management (DSM) of charging will be applied, [5.5] and [5.6].  

A simple ‘plug and charge’ strategy has been developed and applied to vehicle 

charging in order to assess the impact on the substation loading profiles (see 

Chapter 4 section 4.1.3).  The assessment shows that this simple charging strategy 

increases the existing domestic peak load and therefore improved charging 

control strategies need to be developed and applied to mitigate the impacts.  The 

first charging strategy allows users to charge their vehicles as soon as they arrive 

home, but only at the standard charging rate during defined ‘peak’ domestic load 

period of 4pm to 8pm with high charging only allowed during ‘off-peak’ period 

from9pm to 3am.  As shown in Figure 5.1, the peak demand of domestic plus EV 

profile is reduced by 4.21% and 11.41% compared with uncontrolled vehicle 

charging with low and high rate charging respectively.   

 
Figure 5.1. 1st and 2nd DSM schemes for managing vehicle charging. 
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The second method investigated is simply to delay all vehicles charging until a 

designated time.  This was selected as 11:30 pm, since the conventional domestic 

load is generally low at this time of night.  It is also the time used in an EV user 

trial undertaken by the Ultra Low Carbon Vehicle project, [5.14].  In this scenario 

all EVs start charging from 11:30 pm with low or high charging rates as 

appropriate.  As would be expected, this approach creates a new peak load due 

to fast vehicle charging, as illustrated in Figure 5.1.  Although this new peak 

occurs at a period of otherwise low demand, its magnitude even with only a 10% 

EV penetration is unacceptable in the case of fast charging since the total load 

then exceeds the previous peak value.  In contrast, using the standard charging 

rates (see Chapter 4 section 4.1.2), vehicle charging has been spread out over a 

longer period peak load value.  These simplified charge regimes do not entirely 

solve the problem of accommodating EV charging loads as the penetration level 

of EVs increases.  For this reason, a progressive ‘smarter’ technique has been 

introduced to smooth out the impact of vehicle charging.  The approach is to delay 

a proportion of vehicle charging by a random time subsequent to 11:30 pm.  The 

delay period is determined by sampling from a truncated Gaussian distribution 

as illustrated in Figure 5.2.  The delay period is between 0 and 7 hours.  Before the 

EV charging starts at mid-night, a random time delay has been sampled from this 

truncated Gaussian distribution, and then assigned to the charging activity.  For 

instance, the random time delay, sampled from the distribution, equals to 3 hours 

(180 minutes); thus, the EV charging will start at 3am instead of mid-night.   
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Figure 5.2. The Gaussian distribution of delay period. 

This approach effectively solves the problem of creating a new night-time peak 

load due to EV charging, even with the high charging rate, as illustrated in Figure 

5.3 below.  With the standard rate charging, the resulting profile has a higher 

morning peak than the domestic demand profile without vehicle charging.  It is 

also seen from the figure that the ‘new’ morning peak load is relatively lower than 

the evening peak load; therefore, this ‘Smarter’ charging strategy has effectively 

resolved the uncertainty issue of increasing peak load due to EV charging. 

 

Figure 5.3. ‘Smarter’ charging strategy for EV charging on primary substation. 
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5.3. Case Study 2: Electric Vehicle as Responsive Load to Absorb 

Surplus Wind Generation in Power Distribution System 

In this section, the potential opportunities are presented from using domestic 

owned electric vehicles to support the operation of regional power distribution 

networks in the context of a high penetration of wind generation.  Unlike 

photovoltaic modules can only produce electricity during daytime, wind turbines 

can generate electricity whenever the wind is available.  The main charging 

location in this research is assumed to be in the residential neighbourhood; 

therefore, it is reasonable to explore the potential of utilising EV to absorb surplus 

wind generation in the system.  In [5.4], Bashash et al discuss how a sliding mode 

control strategy for grid-connected vehicles was designed to be robust to 

uncertainties in renewable energy generation.  Vlachogiannis presented a new 

formulation and solution of probabilistic constrained load flow problems, which 

includes renewable generation, in [5.15].  Results of the load flow calculation 

established the first benchmark for the optimal integration of wind power 

generation with EV integration into the power systems, which is considered 

within this section.  In the following section, wind power profiles are presented 

and a proposed smart charging strategy for these EVs is illustrated.  A specific 

aim of this strategy is to shift the timing of EV charging in order to absorb the 

excessive wind generation in the power system and also to minimise the charging 

cost for the EV owners’ perspective.  The penetration level of wind generation has 

been assumed to be 15% for a typical day in April for illustration purposes. 

The wind farm data has been taken from an operational Scottish Power owned 

site consisting of 26 Bonus 600kW stall regulated turbines producing a total 
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installed (rated) capacity of approximately 15MW [5.16].  The instantaneous 

penetration of the wind generation in the system has been scaled down to 

represent approximately 2.3MW of locally installed wind capacity.  Figure 5.4 

shows the wind generation profiles obtained from April 2005.  Most of the 

turbines produced electricity in one day of April during daytime and the total 

energy produced is 33.92MWh.   

 
(a) 

 
(b)

Figure 5.4. Wind farm turbines output power for one day in April. (a) individual 

wind turbine power generation; (b) local wind power output. 
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actual wind farm power output is used to calculate the surplus wind generation 

in the system, although there are established methodologies to predict wind farm 

power output, such as in [5.17].  Note that the emphasis of the developed 

algorithm is on the framework rather than the accuracy of the wind forecasting; 

therefore the assumption of perfect wind forecasting is not an issue.  As EV 

charging scheduling depends on surplus wind generation forecast, and wind 

forecasts are inherently uncertain, it is crucial to consider the level of confidence 

of the forecast wind generation, [5.18].  The wind power surplus has been 

calculated by deducting the local (non-EV) domestic load for 1,885 households.  

The EV charging profiles have been presented in Chapter 4 section 4.1.3.  The 

objective of the system as a whole is to enable, as far as possible, for the 

aggregated electric vehicle charging demand to track the desired wind power 

surplus trajectory, in this case the measured wind power generation. 

 

Figure 5.5. The time difference between EV charging and wind generation. 
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Figure 5.5 shows the vehicle charging demand profiles simulated from the MCS 

model with 10%, 50% and 100% penetration levels30.  The amounts of energy 

required for charging these EVs are 1.26MWh, 6.27MWh and 12.56MWh for the 

three penetrations respectively.  The amount of wind generation in the system is 

sufficient to charge these EVs; however, the time difference between the high 

wind power and electric vehicle charging peaks are the biggest challenges for 

distribution network operator as illustrated in Figure 5.5.  However, electric 

vehicle users can change their recharging behaviour as long as their vehicles are 

ready for their next day journeys.  As shown in Figure 5.6, a charging event shows 

as colour changes from cold to warm colours that reflect the SOC varying from 

low to high values.  For example, a charging event takes place for two and half 

hours (from 17:40 to 20:10) for EV 28 and its SOC increases from 0.4 to 1 (full 

capacity).  EV 28 user has the opportunity to delay the charging until its next 

departure.   

Ti

Figure 5.6. State-of-charge of 100 EVs shown as examples. 

30 Charging in the uncontrolled case is assumed to start as soon as the vehicles arrive home. 
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In this case study, it is assumed that EV owners schedule their charging according 

to the electricity tariff of surplus wind generation.  Before modifying the EV load 

to absorb the surplus wind power, some constraints must be considered which 

limit the clustering and shifting the EV loads.  The charging time, chargingT , of an 

EV cannot be longer than its parking period parkingT .  A simple linear electricity 

price function, � �windC P , is assumed that gives the cost of vehicle charging in 

pence/kWh as a function of the surplus wind power in the local power system. 

� �
wind

wind wind wind

wind

0 1
13.84 13.84,0 1

13.84 0

P
C P P P

P

t­
° � 
 � � �®
° d¯

 (5.1) 

where windP  in MW is the surplus wind in the system, 13.84 is the electricity price 

at the standard charge rate as domestic consumers, [5.19].  A 1 MW surplus wind 

generation limit has been chosen to reflect assumed power export constraints in 

the system.  For example, if the surplus wind is 0.6MW representing a discount 

of electricity tariff, the EV charging tariff will then be 13.84 * (1-0.6) = 55.36 

pence/kWh.  When the wind surplus exceeds 1 MW, the cost of local electricity is 

assumed to be zero.  In these cases, vehicle users can charge their EVs at no cost; 

however, when there is no surplus wind locally, the electricity price is fixed at the 

standard charge rate for domestic consumers.  The charging cost varies linearly 

for users only when there is less than 1 MW surplus wind in the system.   

The model takes one EV at a time and utilises the cheapest tariffs first to 

undertake the required EV charging.  Depending on the duration of vehicle 

charging, a previous continuous charging event will now potentially be broken 

down into several small charging events in order to achieve the most cost effective 
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way to charging the vehicle as well as to satisfy vehicle user’s next journey 

requirement.  As a result of the cost model used, the cost of charging is free as 

long as the surplus wind power is greater than 1 MW.  After each individual 

vehicle charging calculation, the absorbed surplus wind and electricity price is 

recalculated and made available to the remaining households.  Figure 5.7 

illustrates the price-driven EV charging load to absorb surplus wind generation a 

result of this strategy.  Results indicate that for the example day, EV charging 

absorbed 42% of surplus wind and the average charging cost per house for the 

day analysed reduces from 13.84 pence per unit down to 2.08 pence per unit.   

 

Figure 5.7. Applied strategy for electric vehicle charging as leveraged by 

surplus-wind price. 

5.4. Discussion and Summary 

In this chapter, the potential for demand side management inherent in EV 

charging has been explored with various charging strategies.  Strategy 1 presents 

the simple delay technique to avoid increasing existing domestic peak load; 

however, the delayed EV charging creates an unwanted additional peak load at 

00:00 06:00 12:00 18:00 00:00
0

0.5

1

1.5

2

2.5

3
EV charging as leveraged by surplus-wind price

Time

Po
w

er
 (M

W
)

 

 
Wind generation
price-driven EV
100% EV



152 
 

the beginning of charging time zone with 32A fast charging.  Strategy 2 allows 

mixed rate charging throughout the day, and the outcome of this technique to 

only mitigate the peak load rather than completely solve the problem of 

additional EV charging.  These two EV charging strategies, the time delay 

charging and mix rate of charging, successfully manipulate EV charging load to 

avoid increasing existing domestic peak load comparing the simple ‘plug and 

charge’ strategy.  Strategy 3 applies a further random delay to EV charging based 

on Strategy 1.  Such controlled charging approach resolves issue of impact on the 

domestic peak load, indeed it has been shown that such DSM strategy is capable 

of smoothing the domestic load profile at key points in the distribution system 

and thus facilitating an improvement in distribution system operation, as well as 

operation of the power system as a whole. 

Case study 2 presents the capability of utilising electric vehicle charging to 

regulate surplus wind power by implementing an electricity price function.  Real-

world wind farm power output monitoring data are used to create a realistic 

example daily electricity cost function for a locality.  For users charging their 

electric vehicles at minimum cost, the cost function shifts charging to the cheapest 

electricity time consistent with the EV being parked at home, and thus absorbs as 

much surplus wind as possible.  This enables the wind farm owner to benefit from 

reduced curtailment of wind generation and financial rewards from electricity 

supplier when EV users pay for charging.  The DNO will benefit from saving on 

infrastructure reinforcement costs as the proposed DSM scheme shifts EV 

charging to the off-peak period.  For the users, identifies the cheapest way to 

charge vehicle batteries.  In this example day, the cost savings to the consumer 

associated with EV charging are considerable. 
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6.Chapter 6: Conclusions and Future 

Work 

This chapter presents the conclusions of the thesis.  These have been divided into 

three parts: key findings from domestic car use statistics, lessons learnt from the 

specification and development of the Monte Carlo models; and key results from 

the case studies for impact assessment as well as control strategies for demand 

response.  This chapter also summaries the main original contributions of this 

thesis, and proposes future work for the improvement and further development 

of the models presented.   

This thesis has presented new approach to modelling future electric vehicle 

charging with high time resolution, and thus quantify the impact on the power 

distribution network.  In additional, a number of control strategies for EV 

charging have been presented that can mitigate the impact on the distribution 

system.  Case study results demonstrate the capabilities of the various models 

developed throughout the research.  The work presented in this thesis can be used 

to enable distribution network operators to quantify the potential electric vehicle 

charging impact on the network.  
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6.1. Key Findings from Domestic Car Use Statistics 

Detailed analysis of privately owned car use in the UK has been presented in 

Chapter 2 based on the United Kingdom Time of Use Survey 2000 data.  The 

reasons for choosing TUS data as the main data source for this research was 

explained, in particular the much higher time resolution than other UK sources 

such as the United Kingdom National Travel Survey.  Preliminary analysis shows 

that majority of households in the survey has only one car.  Privately owned cars 

are utilised only 5.2% of the time for transportation, thus making them, in 

principal, available for the remaining 94.8% of time to provide ancillary services 

to the power system.  The focus is on car use during the working week as this is 

when most power network problems are anticipated.  Probabilistic 

characterisation of car usage during weekdays has been undertaken that covers 

time of use, and duration of use dependent on the time that a car arrives home, 

and also as dependent on the round trip duration, and both of these as a function 

of the time of day.  For example, during weekdays, over 90% of cars park at home 

between mid-night and 06:00 in the morning.  More than 50% of cars are used to 

travel to workplaces in the morning and late afternoon.  Another important 

statistical feature is that the highest probability of a car returning home during 

weekdays occurs around 18:00 hour, reflecting in the main return from work.  

Various challenges were encountered in the search for good quality data on the 

use of privately owned cars and also the derivation of car use statistics.  For 

example, due to the daily nature of survey diaries, it is not possible to know 

exactly the time car returns home if it departs late in the diary day. 
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6.2. Lessons Learnt in Monte Carlo Modelling 

Monte Carlo simulation is widely regarded as the best approach to generate 

synthetic individual car use patterns, as has been explained in Chapter 3.  In order 

to utilise the statistics calculated in Chapter 2, the inverse-transform method has 

been used to structure three different MC models.  The return time dependent 

MC model had the advantage of only needing two car use statistics and was 

found to converge with relatively less iteration than fixed time increment and 

multiple time increments MC models, which means reduced computational time.  

This approach can only partially capture car use patterns, but it gives a reasonable 

estimate and includes the distribution of car driving time (the main objective of 

the MC models).  Both fixed time increment and multiple time increments MC 

models can generate car parking locations and departure and arrival events by 

sampling from different statistical distributions.  The outcome of the multiple 

time increments MC model has been used to calculate the modification of 

individual household electricity consumption caused by EV charging (Chapter 4).  

For each MC model, detailed analysis has been performed on the simulation 

results to check convergence and also to check consistency with the TUS input 

data.  Cumulative driving period is the most critical parameter for vehicle 

charging calculations.  Both time increment MC models and the return time 

dependent MC model produced a mean driving period within an acceptable 

range, with the multiple time increments MC model being most accurate in this 

regard.  Both time increment MC models produced some errors in car use patterns.  

Significant error occurred in car away from home period in the fixed time 

increment MC model.  As a consequence, the calculated cumulative car driving 

periods were in poor agreement with the TUS data.  The multiple time increments 
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MC model produced significant error in the estimation of the probability of car 

arrival.  The bias in the simulation of car arrival is caused by the modelling error 

in the calculation of the probability of the car being away from home.  To resolve 

this error, a different Monte Carlo simulation method might be helpful; however, 

this is beyond the scope of this research and is left for future research.   

6.3. Key Results from the Case Studies 

The results from the case studies are presented and discussed in the Chapter 4 

and 5.  Although the results from the case studies are related to the specific 

household population and network typology, some general conclusions were 

identified.  Key findings are highlighted here.  The first case study discussed the 

impact on the primary and secondary distribution transformer for a residential 

area (Chapter 4).  The worst case scenario is that vehicle charging takes place on 

a typical winter weekday.  As the key outcome of the impact analysis for this 

specific network typology, even a modest 10% EV take-up with simple ‘plug and 

charge’ charging strategy can result in a considerable increase in peak load at 

primary substation transformers.  For the secondary substation transformer, 

mean EV charging increased the existing peak load by 15%; with possible peaks 

up approximately 50%.  Note that same charging strategy has been applied.  For 

higher EV penetrations, charging impact on the substation loading significantly 

increases the peak load as much as three times.  The second case study focuses on 

the vehicle charging impact on the LV network (Chapter 4).  Despite the specific 

network configuration, the power flow calculation results show that unacceptable 

household voltage drops occur before the feeder thermal rating is exceeded.  As 

a result, appropriate demand side management scheme needs to be implemented 

so that vehicle charging impact can be mitigated.  Chapter 5 presents the 
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development of several control strategies for vehicle charging for two case studies.  

Strategies 1 to 3, for case study 1, aim to mitigate the impact of vehicle charging 

on the primary substation transformer loading.  In case study 2, the control 

strategy utilises electric vehicle charging to help absorb otherwise surplus wind 

power by implementing an electricity price function.  It has been assumed that 

the EV owner is informed about the surplus wind tariffs for the day ahead and 

this in turn assumes that the power output from the wind capacity is forecast 

perfectly for the day ahead.  As the outcome of this case study, for the example 

day, EV charging absorbed 42% of the surplus wind and the average charging 

cost per house for the day analysed reduces from 13.84 pence per unit down to 

2.08 pence per unit.  This demonstrates the potential of power distribution 

network operators to benefit from the reduced curtailment of wind and for the 

users, to reduce the cost of charging their vehicle batteries. 

6.4. The Contribution to the Knowledge 

The following contributions of this thesis have been identified as novel and 

important: 

1. It analyses car use in detail from the United Kingdom Time of Use Survey 

2000 (Chapter 2).  Key statistics for weekday car usage have been identified 

and from these, key probabilities and probability distributions of weekday 

car usage, such as departure time, arrival time, cumulative driving period 

dependent on arrival time, etc. have been estimated.   

2. It presents different approaches to modelling domestic car use (Chapter 3).  

Chapter 3 presents three high time resolution time-series Monte Carlo 

simulation models.  A return time dependent MC model focuses on the car 
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arrival time and the associated cumulative driving period.  Two time 

increment MC models follow weekday car movements.  A comprehensive 

analysis has been performed to check the modelling results against the TUS 

statistics.   

3. It presents a model of individual household electricity consumption that 

takes in account domestic car use (Chapter 4).  In Chapter 4, an individual 

household electricity consumption model has been modified to include the 

electricity consumption changes due to car use through associated changes 

in household active occupancy.   

4. It presents an assessment of electric vehicle charging impact on power 

distribution network (Chapter 4).  Electric vehicle charging load has been 

calculated based on the simulation results of return time dependent MC 

model in Chapter 3.  Chapter 4 presents the potential impact of future electric 

vehicle charging by performing assessment on primary and secondary 

substation transformers.  The impact on the LV network of EV charging has 

been studied by performing power flow analysis.   

5. It illustrates the development of control strategies to mitigate the impact of 

electric vehicle charging (Chapter 5).  Chapter 5 illustrates ‘time-shifting’ 

charging strategies to utilise EV charging as responsive load in the power 

distribution system.  EVs charging has also been scheduled to absorb local 

surplus wind generation, taking into account the numbers of EVs parked at 

home and available for charging at any time of day. 
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6.5. Future Work 

Further work for the improvement and extension of the Monte Carlo models 

developed and the analysis technique applied in this thesis has been identified.  

Three main avenues of research are suggested.  One is related to the further 

development of the multiple time increments Monte Carlo model to include 

workplace charging.  The second one is to develop a Markov Chain Monte Carlo 

model for privately owned car use.  The third one is to perform probabilistic 

power flow analysis for electric vehicle charging impact on the distribution 

network. 

6.5.1. Further Development of the Multiple Time Increments Monte 

Carlo Model 

In this thesis, the home has been regarded as the primary location for electric 

vehicle charging, although other locations can offer vehicle charging, such as the 

workplace, supermarket, public car parking, etc.  In recent electric vehicle trials, 

such as in [6.1], vehicle owners have the opportunities to charging their vehicles 

at their workplace without paying for the electricity.  It is common that workplace 

charging offers high charging rates and even 3-phase charging.  With the further 

deployment of electric vehicles, workplace charging will become more popular 

for vehicle owners.  UK Time of Use Survey 2000 has recorded the information 

regarding people travel to workplace by car as presented in Chapter 2 section 

2.3.4.  Furthermore, in Chapter 3 section 3.3.2.3, Multiple Time Increments Monte 

Carlo model for domestic car use has been structured following the logical 

sequence through the day; for example, time of day car departs from home, time 

of day car returns home.  It is reasonably feasible to incorporate the statistics of 



162 
 

people who travel to the workplace by car with the Multiple Time Increments MC 

model.  Furthermore, the driving styles, such as driving velocity and acceleration, 

need to be considered in order to produce more accurate battery energy 

consumption figure, which is assumed as constant in this thesis.  The driving style 

has effects on the battery state of charge as well as state of health; therefore, it is 

necessary to obtain relevant statistics.   

6.5.2. Develop Markov Chain Monte Carlo Model for Privately Owned 

Car Use 

In Chapter 3, section 3.3.2.2, the fixed time increment Monte Carlo model utilise 

two-state probability distributions of car departs from home and probability 

distributions of car returns home.  However, car departure and arrival home have 

been treated as two independent events, which results some error.  A rather 

different modelling approach has been presented that implemented a Markov 

Chain methodology in modelling domestic car daily driving patterns, [6.2].  

Domestic car daily driving patterns are simulated based on the transition 

probability matrices, which presents states of car activity at each time step.  The 

Markov Chain Monte Carlo (MCMC) model still follows the logical sequence 

through the day.  The transition probability matrices can be easily calculated from 

the processed Time of Use data that presented in Chapter 2.  In such a modelling 

approach, the relationship between various car activities can be simulated with 

the multi-state transition probability matrices.  It will be interesting to see 

whether the simulation results of the MCMC model are consistent with the 

calculated TUS statistics.   
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6.5.3. Perform Probabilistic Power Flow Analysis for Electric Vehicle 

Charging Impact on Distribution Network 

Case study 2 in Chapter 4 section 4.2, presents impact assessments of electric 

vehicle charging on the LV network; however, only one set of electric vehicle 

charging profiles are used in the power flow analysis.  In order to obtain the 

statistical variation of EV charging impact, probabilistic and long period time-

series load flow techniques are being increasingly used to provide the kind of 

analysis necessary to capture the stochastic nature of LV customer load profiles 

and distributed energy resources behaviour, such as in [6.3].  Probabilistic power 

flow can be undertaken using MC simulation, and in that case the approach 

would not significantly differ from the power flow analysis of Chapter 4.  

However there are faster closed form approaches to probabilistic power flow that 

could be undertaken using probability distributions for EV charging.  This could 

be an interesting exercise, but it is unclear how the time of day dependence would 

then best be captured.   

6.6. Reference 
[6.1] S. Huang, et al, Battery Electric Vehicle Academic Study Report, tech. report, 

University of Strathclyde, 2014. 

[6.2] Grahn, P. (2013) Electric Vehicle Charging Impact on Load Profile. PhD 
Thesis. Royal Institute of Technology, Sweden. 

[6.3] D. Frame, G. Ault, “A Framework for Probabilistic Planning and 
Analysis of Low Carbon Technology Integration into LV Networks,” 
internal technical report, University of Strathclyde, 2014. 
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Appendix A: United Kingdom Time of 

Use Survey 2000 Data Processing 

A.1 Data Extraction 

A programming script has been coded in Microsoft Visual C# 2008.  The function 

of C# script is to extract the selected columns in the original database in order to 

form a new database, which containing ‘Location and mode of transport’ and 

‘Travel by Purpose’ information.  The function of the C# code is to locate the 

required variable label and extract the whole variable value for each diary entry.  

Extracted data contain ‘Location and mode of transport’ and ‘TRAVEL BY 

PURPOSE’ information.  The coded information provides considerable detail 

level of domestic car use at each specific time slot, where the database is on ten-

minute basis.  Inputs file is in ‘tab’ formation and outputs file has been formed in 

Excel readable formation.   

A.2 Diary Code Dictionary 

In ‘Location and mode of transport’ database, domestic car parking location codes 

indicate where these cars parked.  At the same time, the database shows how 

people travelling by mode of transport.  Specific code, ‘15’ in ‘Location and mode 

of transport’, express people travelling by passenger car as the driver.  This 

valuable information allows us to track each household car use, which contributes 

to probabilistic model of domestic car use.  Other codes state the car location as 

shown in the table below.  Table A-1 and Table A-2 lists the variable value and its 

related information, which used to calculate the car use statistics of the TUS data.   
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Table A-1. Diary location code explanation. 
Location  Information 

2 Home 
3 Second home or weekend house 
4 Working place or school 
5 Other people’s home 

15 
Travelling by passenger car as the 

driver 

Table A-2. Diary activity code explanation. 
Activity Information 

110 Sleep 

9130 Travel to work from home and back 
only 

 

A.3 Loop-back Technique 

In this section, the loop-back technique is explained and applied to calculate the 

car away from home period and car parking at home period for the UKTUS 2000 

data.  The loop-back technique goes back to the beginning of the diary as it 

calculates either away period of time or parking period of time.  The main 

advantage is that it solves the issue of 24-hour time limitation of the original data 

format and it is saving process time for matching correct diaries.  The 

disadvantage of this technique is that the results are not as precise as the 

calculation method for continuous diaries and could create significant errors.  

Figure A.1 shows the histogram of car away from home that calculated from the 

TUS data.  It is clear that the longest away period does not exceed the diary day 

time limits (24 hours from 04:00 hour to 03:50 hour next day).  Results that applied 

with loop-back technique agrees well with the calculation without the loop-back 
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technique.  This indicates that the loop-back technique does not affect the car 

away period calculation.   

 
Figure A.1. The frequency distributions that car away from home. 

Figure A.2 illustrates the calculation results for car parking at home period.  It is 

obvious that the loop-back technique has huge impact on the parking period 

calculation.  In fact, it causes almost half of the differences between the calculation 

methods. 

 

Figure A.2.  The frequency distributions that car parking at home period. 
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A.4 Probability of each individual driving period. 

Table A-3 provides the corresponding data for journey durations calculated 

from the TUS data, the longest journey recorded is 420 minutes (7 hours). 

Table A-3. Probability of each individual driving period. 

Driving 
period 
(10 mins) 

Counts Probability  
Driving 
period 
(10 mins) 

Counts Probability 

1 4076 0.38  22 2 0.02*10-2 
2 2502 0.23  23 4 0.04*10-2 
3 1811 0.17  24 3 0.03*10-2 
4 899 0.08  25 1 0.09*10-3 
5 506 0.05  26 2 0.02*10-2 
6 335 0.03  27 0 0 
7 160 0.01  28 2 0.02*10-2 
8 114 0.01  29 1 0.09*10-3 
9 86 0.01  30 0 0 
10 44 0.04*10-1  31 0 0 
11 25 0.02*10-1  32 0 0 
12 25 0.02*10-1  33 0 0 
13 19 0.01*10-1  34 0 0 
14 10 0.09*10-2  35 0 0 
15 9 0.08*10-2  36 1 0.09*10-3 
16 9 0.08*10-2  37 0 0 
17 6 0.05*10-2  38 0 0 
18 12 0.01*10-1  39 0 0 
19 2 0.02*10-2  40 0 0 
20 2 0.02*10-2  41 1 0.09*10-3 
21 2 0.02*10-2  42 1 0.09*10-3 
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Appendix B:  Low Voltage Network 

Data 

B.1 Distribution Network GIS information 

The GIS map shows the single phase premises supports by the common service 

cable and then connects to the 3-phase main wire in Figure B.1.  The type of the 

single phase connection is known as ‘Mural cabling’; however, it is understood as 

non-standard service type.  The definition of mural cabling can be explained in 

the context as for the terraced housing, there is a common service cable cleated to 

the front of the premises.  This type of wiring is used in the past to save on the 

overall length of cable. 

1 Mural cabling is defined as cables clipped along the wall from an underground 

or overhead span joint position.  This specific type of LV network configuration 

has a rather long single phase service cable to support a series of households, and 

can potentially lead to voltage issues when there is EV charging at the end of the 

cable as discussed in Chapter 4.  More details is available at: E.On Central 

Networks, Notes of guidance for service alterations, http://www.eon-

uk.com/images/13715_Service_Alteration_Guidance_AW.pdf 
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Figure B.1 GIS map for the modelled distribution network. 

B.2 Premises Phase Allocation 

The single premise phase allocation information is not available from substation 

monitoring data. The methodology of allocating the single premise phase on the 

3-phase connection has been developed and will be discussed in the following 

section. 

In order to determine the premise phase allocation information, one-week period 

of substation feeder monitoring data was selected for the analysis. The selected 

one week data starts 9th May 2011 and ends 15th May 2011, which includes the 

information of voltage, current and real power of each phase.  Figure B.2a, b and 

c show the 3-phase real power profile of the one-week monitoring data. 

Modelled feeder 
(Purple line)

Monitor 
household
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(a) 

 

(b) 



171 
 

 

(c) 

Figure B.2. The real power measurement data for the feeder. (a) phase A. (b) 

phase B. (c). phase C. 

The one-week real power monitoring data has been aggregated into a 24-hour 

profile in order to determine the loading on each phase as illustrated in Figure. 

B.3.  The purpose of the aggregation is to avoid the load deviation between 

different days and improves the determination of the average loading profile on 

each phase.  The measurement data contains the electricity generated from the PV 

module installed at the monitor household.  The PV module produces zero power 

during night time; therefore, it is reasonable to use the real power profile between 

1:50 am and 3:50 am in order to determine the proportion load on each phase as 

shown in Figure. B.4.   
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Figure B.3 The aggregated 7-day profile of real power data. 

 

Figure B.4  The 3-phase loading on each phase between 1:50am and 3:50am of 

the aggregation profile. 

By summing up the loads on each phase, the proportion of load on each phase 

can be calculated as the following: 
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݀ܽ݋݈ ݁ݏ݄ܽ݌ % = ݀ܽ݋݈ ݁ݏ݄ܽ݌ ݈ܽݐ݋ݐ 
 ݀݋݈ܽ ݁ݏ݄ܽ݌ 3 ݈ܽݐ݋ݐ

As a result, the proportion of loading on each phase is fairly balanced with Phase 

B having few percentages more than other two phases.  The percentages of 

loading on each phase are 32.85% for Phase A, 36.76% for Phase B and 30.39% for 

Phase C.  The number of premises allocated on each phase is listed in Table B-1.  

Figure B.5 shows the percentage of loading on each phase based on the 7-day 

aggregation load profile from 9th May 2011 to 15th May 2011.   

 

 

Figure B.5. The proportion of loading on each phase based on the aggregated 

load profile from 9th May to 15th May 2011. 
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Table B-1. Number of premises allocated on each phase. 

 Phase A Phase B Phase C 

% load 32.85 36.76 30.39 

No. of premises 13 16 13 

Total premises 42 

 

The number of premises allocated on each phase has been assumed based on the 

structure of the single line diagram shown in Figure 4.8.  Two heavy load 

branches are assumed to be on different phase in order to get the most accurate 

loading on each phase, which has been validated by Scottish Power engineer.  The 

premise No. 55 connects one of the two heavy loading service branches as shown 

in Figure single line diagram.  Therefore, the phase allocation of premise No. 55 

can be applied to other premises with the same service cable connection.  In order 

to determine the phase of premise No. 55, the voltage profile has been analysed 

during the time period of the substation measurement profile.  Figure B.6 shows 

the voltage profile of premise No. 55 and substation feeder between 1am and 5am. 

 

Figure B.6. Voltage profile of premise No. 55 and substation feeder between 1am 

and 5am. 
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The dashed line indicates the voltage measured at premise No. 55 and the red, 

blue, yellow lines are showing the voltage measured at substation feeder.  It is 

clear that the voltage value of premise No. 55 is below the substation feeder 

voltages due to line loss and power consumptions.  Another difference between 

these two sets of voltage profiles is the synchronisation of the measurement data 

as shown in Figure B.7.  There is approximately one hour time difference between 

two voltage profiles. The synchronisation problem has been adjusted. The 

adjusted voltage profile of premise No. 55 compared with the substation feeder 

voltage profiles is shown in Figure B.8a, b, c. 

 

 

Figure B.7.  Premise No. 55 monitoring data is not synchronised with the 

substation monitoring data. 
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(a)  

 
(b)  

 
(c)  

Figure B.8. Adjust premise No. 55 phase voltage compare with substation phase 
voltage.  (a) Phase A; (b) Phase B; (c) Phase C. 
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From the Figure B.8a, it is obvious that premise No. 55 voltage is in phase with 

substation phase.  Premise No. 55 is on the branch of 9 premises attached single 

phase service cable; therefore, that single phase service cable is in phase A.  From 

the substation real power monitoring data as shown in Figure B.2. and Figure B.3, 

loads of Phase A and Phase B have higher compensation from the PV generation 

during daylight period than Phase C.  Therefore, it is reasonable to assume that 

Phase A and Phase B have higher PV generation than Phase C.  

  



178 
 

Appendix C: Household Electricity 

Consumption Change Due to Car Use 

The CREST model generates individual household electricity consumption based 

on active occupancies.  The use of car changes the household active occupancies.  

Therefore, when the car departs from home or arrives back home, it also indicates 

that a person sets off or returns home at that specific time.  It has been defined 

that ‘-1’ means one person drives a car away from home, and ‘0; means one person 

drives a car back home.  When integrating car use Monte Carlo model with 

household electricity consumption model, it has been assumed that active 

occupancies reduces by one if a car use is ‘-1’ and remains unchanged when car 

use value is ‘0’.  Therefore, the active occupancies for each time step reduces by 

one when there is a car departing from home; otherwise, the active occupancies 

remains the same.  Figure C.1 shows the household electricity consumption 

change due to car use.   

 

Figure C.1. Household electricity consumption change due to car use.  
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Appendix D: Power Flow Results for 

Cable Currents and Household 

Voltage Profiles 

In Chapter 4 section 4.2.6, impact of electric vehicle charging has been assessed 

on the LV network.  Feeder loading increased EV charging is presented in Figure 

4.12 and maximum feeder loading is illustrated in Figure 4.13.  Table D-1 gives 

the value of maximum feeder loading with EV penetration varying from 0% to 

100%.   

Table D-1.  The maximum feeder loading as the power flow results. 

EV 
penetration 

Max Load of the day 
(kW) 

0% 50.936 

10% 57.177 

20% 57.177 

30% 64.961 

40% 64.961 

50% 67.479 

60% 76.971 

70% 83.517 

80% 83.517 

90% 91.509 

100% 91.504 
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Voltage profiles at monitored household are shown in Figure 4.14 and 4.15.  Table 

D-2 shows the value of minimum voltages at the monitored household with EV 

penetration varying from 0% to 100%.   

Table D-2.  The minimum voltage level at the monitored household. 

EV 
penetration 

Minimum voltage 
(p.u.) 

0% 0.94344 

10% 0.94344 

20% 0.93276 

30% 0.93716 

40% 0.92772 

50% 0.91188 

60% 0.88052 

70% 0.88052 

80% 0.88052 

90% 0.88052 

100% 0.88052 

 

EV charging creates a new peak load of 7.8 kW at household 52 from 11:30 to 

12:05.  For household 51, EV charging occurs three periods (04:25 to 05:19, 14:40 

to 15:38, 17:20 to 17:27).   
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Figure D.1.  EV charging impact on Household 52 electricity profile. 

 
Figure D.2.  EV charging impact on Household 51 electricity profile. 

The peak load remains the same for 10% and 20% EV penetration level; however, 

for the 20% EV penetration level, the peak load has been increased when EV 

charging takes place. 

 

Figure D.3.  Secondary substation feeder loading with EV charging. 
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