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Abstract

Mobile communications has become an indispensable part of  our everyday lives, with
increasingly more people owning a smartphone, and being given access to a plethora
of  wireless access technologies: WiFi, 3G, and 4G. In an environment of  such diversity,
where each wireless access technology has its own distinct characteristics, network se-
lection mechanisms provide an efficient way of  handling communications services by
matching the services’ required quality with the characteristics of  a particular access
technology.

This thesis explores the economic aspects of  intelligent network selection in the con-
text of  Digital Marketplace—a theoretical market-based framework where network op-
erators compete in a procurement auction-based setting for the right to transport the
user’s requested service over their infrastructure. It investigates the suitability of  a first-
price sealed-bid auction as a network selection mechanism. Since this auction-based
mechanism constitutes the main trading mechanism of  the Digital Marketplace, the
results reported herein affect its feasibility as a market for trading wireless communica-
tions services of  the future. Since it lacks extensive and rigorous economic analysis, this
thesis addresses this deficiency by providing an extensive game theoretic analysis of  the
network selection mechanism.

This thesis creates an economic model of  the network selection mechanism, and is the
first to characterise the equilibrium bidding behaviour for an arbitrary number of  net-
work operators participating in the Digital Marketplace. It proposes three novel numer-
ical methods that allow for numerical derivation of  the equilibrium bidding behaviour:
forward shooting method (FSM), polynomial projection method (PPM), and extended
FSM (EFSM). The FSM and PPM methods allow for numerically approximating equi-
librium bidding behaviour for a subset of  all possible bidding scenarios, while the EFSM
method enables computation of  the numerical solution to all bidding scenarios. Finally,
since the EFSM method becomes numerically unstable for large number of  network
operators, a novel methodology for approximating the network selection mechanism
with an auction format for which there exist many well-defined and extensively studied
numerical solutions is discussed.
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Chapter 1

Introduction

This thesis explores the economic aspects of  intelligent network selection in the context
of  Digital Marketplace. In this chapter, the motivation for research into the economics
of  intelligent network selection is explained, the problem under consideration is defined,
and the main contributions are stated.

1.1 Research Objectives

Mobile communications has become an indispensable part of  our everyday lives. Ac-
cording to Ofcom [1], 51% of  all adults in the UK own a smartphone, and approxi-
mately 24% of  all UK households own a tablet. Furthermore, one in five adults declares
they would miss their smartphone most if  it were taken away. It should be noted that
these numbers continue to rise, and with each year the penetration of  mobile commu-
nications will increase.

Parallel to this, mobile users (henceforth referred to as subscribers) are given access
to a plethora of  wireless access technologies: from WiFi, through 3G, to the latest 4G.
Cities throughout the UK are now offering free WiFi hotspots [2]. Furthermore, ac-
cording to Ofcom, while 3G already covers 98% of  the UK population indoors, this
figure is promised to be at least matched by the 4G mobile services by the end of  2017
at the latest [3]. In an environment of  such diversity and heterogeneity, where each wire-
less access technology has its own distinct characteristics, network selection mechanisms
provide an efficient way of  handling communications services by matching the services’
required quality with the characteristics of  a particular access technology [4]. The im-
portance of  these mechanisms is emphasised by the fact that multimode smartphones
(iPhones, Android phones, BlackBerry phones) and tablets (iPads, Android tablets) cur-
rently dominate the market thus enabling subscribers to connect to many of  the avail-
able wireless access technologies.
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This diversity opens exciting, new possibilities in both the technological and eco-
nomic sense. The exclusive one-to-one mapping between network operators and sub-
scribers need no longer hold; when requesting a service (for example, making a phone
call, or checking the email), the network selection mechanism will be responsible for se-
lecting the network operator (access technology) that best matches the required quality
requirements of  the service. From the subscribers’ perspective, this permits the ability to
seamlessly connect at any time, at any place, and to the technology offering the highest
quality available for the best price: a paradigm referred to as Always Best Connected [5].
From the network operators’ perspective, the integration of  wireless access technolo-
gies will allow for more efficient usage of  network resources, and more importantly,
improved revenue generation. In other words, it might be the most economic way of
providing both universal coverage and broadband access [4].

However, there also exists the possibility of  a “tussle” since there are many differ-
ent actors with opposing interests involved [6]. For example, it is in the best interest
of  subscribers to obtain the highest quality of  the service for the lowest price. Network
operators, on the other hand, aim to maximise their profit, and perform efficient load
balancing. Furthermore, the situation may become even more complex should the ser-
vice provision be decoupled from the network operators; that is, if  the service provision
is handled by a separate entity, service provider, while network operators are left with
handling of  the transport provision [7]. Therefore, the problem of  network selection,
which was considered to be technologically difficult, can also be considered to be the
problem of  economics where wireless access, traded on a per connection basis, is an
electronic good that is sold to the subscribers.

This thesis explores the economic aspects of  intelligent network selection. The
problem is studied within the context of  Digital Marketplace—a theoretical market-
based framework for trading wireless communications services. It was first proposed by
Irvine et al. in 2000 [8, 9], and it was developed with the heterogeneous wireless com-
munications environment in mind, where the subscribers have the ability to select a
network operator that reflects their preferences on a per service basis. Since the Digi-
tal Marketplace was created with free market (or “perfect” competition) in mind, it is
particularly well-suited towards the management of  future wireless environment where
wireless access is traded on a per service basis. It is for this reason that this research
explores the problem of  network selection within the context of  Digital Marketplace.

More specifically, the main research objectives of  the work reported in this thesis are
to:

1. review existing approaches to intelligent network selection by other researchers;

2. understand the fundamental assumptions about the operation of  the Digital Mar-
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ketplace;

3. create an economic model of  the network selection mechanism described in the
Digital Marketplace;

4. apply game theory, and in particular auction theory, to study the model and derive
equilibrium bidding strategies for the network operators.

The work conducted in this thesis will investigate the suitability of  a first-price sealed-
bid auction as a network selection mechanism, and it will explore its economic merits.
Since this auction-based mechanism constitutes the main trading mechanism of  the
Digital Marketplace, the results reported herein will affect the feasibility of  the Digital
Marketplace as a market for trading wireless communication services of  the future.

1.2 Main Contributions

As briefly outlined in the previous section, in order to fully utilise the wealth and het-
erogeneity of  the future wireless access environment, intelligent network selection is a
necessary condition: without it, subscribers will only be able to achieve a suboptimal
ratio of  price to quality of  the received services, while network operators will struggle to
maximise their profit and usage of  their resources. Over the last decade, several different
approaches have been proposed as possible solutions to the technologically advanced
problem of  network selection. Tools as disparate as supervised machine learning algo-
rithms [10], fuzzy logic [11], and Markov decision process were utilised [12].

Intelligent network selection on its own, however, is not an immediately obvious
sufficient condition for fully unlocking the potential of  the future wireless access en-
vironment. A landscape of  such diversity and with so many different actors involved
will inevitably lead to a “tussle”. Therefore, a careful economic analysis of  the prob-
lem is needed. Several researchers have employed the tools of  economics to study the
problem of  network selection, and to a degree, considered the economic implications of
the problem. Those approaches included utility theory [13], multiple attribute decision
making [14], and game theory [15].

The work reported in this thesis complements the existing research base through the
following main contributions:

1. This thesis presents an economic analysis of  the network selection mechanism
in the context of  Digital Marketplace. The work reported in this thesis comple-
ments the work of  other researchers on intelligent network selection by proposing
an auction-based approach which is based on a procurement first-price sealed-
bid auction. In this way, since the proposed mechanism is based on an auction, it
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embraces the uncertainties that exist in a competitive environment—an element
that the vast majority of  the existing literature has ignored. It should be noted,
however, that the analysis and results presented in this thesis are easily extrapo-
lated from the context of  the Digital Marketplace. As a matter of  fact, one of  the
main aims of  this research was to keep the analysis as generic as possible so that
the results can easily be applied elsewhere.

2. This thesis fills the gap in the research on the Digital Marketplace. The Digi-
tal Marketplace lacks comprehensive economic analysis of  the network selection
mechanism, and this thesis address this problem by providing such an analysis.
An analysis from the economic perspective is important in order to verify whether
the mechanism performs as expected in economic terms. For example, thanks to
the economic analysis presented in this thesis, it is verified that the network selec-
tion mechanism in the Digital Marketplace maximised the expected utilities of  the
network operators, and from the subscriber’s perspective, the network operator
who matches the subscriber’s preferences in terms of  requested price and quality
of  service is selected. Indeed, with the results presented in this thesis, the Digital
Marketplace can now be considered a framework of  choice for the management
of  wireless access networks of  the future.

3. Finally, this thesis adapts numerical algorithms for approximating first-price
sealed-bid auction with asymmetric bidders to the bidding problem posed by the
network selection mechanism in the Digital Marketplace. In this case, the asym-
metry of  the bidders is unusual and no existing numerical methods are directly
applicable. This thesis addresses that deficiency by proposing an extended numer-
ical method that tackles the unusual aspect of  the network selection in the Digital
Marketplace. To the best of  the author’s knowledge, the proposed method is the
only numerical algorithm in existence capable of  solving the bidding problem of
the Digital Marketplace.

1.3 Thesis Outline

This thesis is organised as follows. In Chapter 2, the concept and importance of  intelli-
gent network selection in future wireless access networks is explained. To this end, the
chapter outlines the concepts of  heterogeneous wireless access network and Always Best
Connected paradigm, and outlines the role of  network selection. Then, a summary of
previous research on intelligent network selection is given. Finally, the contributions of
the research presented in this thesis to the problem of  intelligent network selection are
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outlined.
Chapter 3 introduces the concept of  Digital Marketplace and its fundamental as-

sumptions. It starts with description of  the principles of  operation of  the Digital Mar-
ketplace, and then moves onto a brief  overview of  auction theory. The overview is nec-
essary to understand the fundamental assumptions of  the network selection mechanism
employed by the Digital Marketplace which are subsequently outlined. Furthermore,
Digital Marketplace is compared with the wholesale electricity market, and it is shown
that due to the similarities between the two markets, Digital Marketplace is more likely
to be adopted by the industry as a commodity market for trading wireless communica-
tions services of  the future. Finally, the chapter concludes with a summary of  previous
research on Digital Marketplace, and outlines how the research work reported in this
thesis complements the work of  other researchers.

In Chapter 4, the network selection mechanism employed by the Digital Marketplace
is cast into the framework of  game theory. The mechanism is then directly analysed in
three special cases: 1) when only reputation ratings of  the network operators decide on
the winning network operator, 2) when only the monetary bids of  the network operators
matter in the selection of  the winner, and finally, 3) when all network operators are char-
acterised by the same reputation rating. In essence, those special cases correspond to the
extremes of  the studied bidding problem, and in all those cases, the equilibrium bidding
strategies are derived. The chapter then concludes with the analysis of  the mechanism
in a restricted case with only two network operators, for which the equilibrium bidding
strategies are derived. They are shown, however, to be suboptimal as they allow the
network operators to submit a negative monetary bid.

In Chapter 5, the studied problem is transformed into a problem that has already
been researched by the economic community, and hence, there exist results that are
applicable to the problem at hand. The chapter then proceeds to characterising the
equilibrium bidding strategies (their existence and uniqueness) in the generic case; that
is, with an arbitrary number of  network operators and arbitrary distributions of  costs.
The equilibrium bidding strategies are then explicitly derived in the restricted case;
that is, with the number of  network operators restricted to two and costs uniformly
distributed. Finally, the chapter concludes with the presentation of  three numerical
methods: forward shooting method (FSM), polynomial projection method (PPM), and
extended FSM (EFSM). The methods can be used to numerically approximate the equi-
librium bidding strategies in the case of  more than two network operators characterised
by uniform distributions of  costs. The first two of  the presented methods, FSM and
PPM, allow for numerically approximating equilibrium bidding strategies for a subset
of  all possible bidding scenarios resulting in nontrivial equilibria, while the third method
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(EFSM) enables computation of  the numerical solution to all bidding scenarios.
The EFSM method becomes numerically unstable for large number of  bidders.

Therefore, Chapter 6 explores whether an auction format represented by the network
selection mechanism employed in the Digital Marketplace can be modelled as an auc-
tion with common prior. In an auction with common prior, the range the costs can vary
is the same for each bidder. For this type of  problem, there are many well-defined and
extensively studied numerical solutions. In the first instance, the assumptions governing
an auction with common prior are described, and the existence and uniqueness of  the
equilibrium bidding strategies is formally defined. Following that a numerical method
tailored specifically to the auction with common prior is presented. Having derived
the numerical method for approximating the equilibrium in the auction with common
prior, the methodology for casting the original problem into the auction with common
prior is discussed. Finally, the methodology for quantifying the accuracy of  the approxi-
mation is presented, and the chapter concludes with the presentation of  approximation
results for four bidding scenarios with two, three, four and five bidders respectively.

Finally, Chapter 7 draws final conclusions, and discusses future work. Furthermore,
in Appendix A, mathematical proofs of  all propositions included in the thesis are pre-
sented, while in Appendix B, the mathematical notation used in this thesis is explained,
and an overview of  the more important mathematical concepts necessary to understand
the work reported in this thesis is provided.
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Chapter 2

Intelligent Network Selection

This chapter explains the concept and importance of  intelligent network selection in
future wireless access networks. To this end, firstly, the concepts of  heterogeneous wire-
less access network and Always Best Connected paradigm are described, and the role of
network selection is outlined. Secondly, the chapter summarises previous research work
on intelligent network selection. Finally, the contributions of  the research presented in
this thesis are outlined.

2.1 The Problem of Intelligent Network Seletion

The aim of  this section is to explain the concept and importance of  intelligent network
selection in the future wireless access networks. To this end, this section starts with an
explanation of  the concept of  a heterogeneous wireless access network. It then moves
onto a discussion of  the Always Best Connected paradigm and the role of  intelligent net-
work selection in fulfilling its assumptions. Finally, the importance of  economic aspects
of  intelligent network selection is highlighted.

2.1.1 Heterogeneous Wireless Access Network

Over the last decade, the world of  wireless and mobile communications has witnessed
several major improvements [5]. The evolution of  traditional 2nd Generation (2G) cel-
lular systems (such as GSM), through 3rd Generation (3G) systems (such as UMTS or
CDMA2000), into 4th Generation (4G) systems (such as LTE), has drastically improved
the cellular coverage worldwide, and provided mobile Internet access [4, 16]. At the
same time, IEEE 802.11-based Wireless Local Area Network (WLAN; commonly re-
ferred to as WiFi) solutions have emerged as the predominant high-speed wireless In-
ternet access at airports, in hotels, or even at home.

With the introduction of  smartphones (iPhones, Android phones, BlackBerry phones)
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Internet

WiFi
3G

4G

Smartphone

Figure 2.1
Heterogeneous wireless access network (adapted from [4])

and tablets (iPads, Android tablets), the subscribers are finally able to take advantage of
both the coverage offered by 3G/4G cellular access network and the high-speed Inter-
net access offered by WiFis. Whenever the smartphone/tablet is in close proximity to a
WiFi hot spot, it automatically switches from 3G/4G to WiFi mode for faster data ac-
cess. However, this only works when either the WiFi hot spot provides free access, or is
within the subscriber’s subscription; for example, as part of  the monthly data allowance
plan with a local wireless access network operator. Moreover, this solution lacks the sup-
port for session continuity, and does not provide any intelligence when switching from
one access network to another. For instance, although the WiFi hot spot is by definition
deemed to offer faster data rates, this does not necessarily translate into higher quality of
service (QoS). In fact, it might be just the contrary, especially in a very crowded hot spot
area where the subscribers run very bandwidth intensive applications such as video or
music streaming, or even on-line gaming. For example, under such circumstances, try-
ing to make a Skype call can be nearly impossible [17]. Therefore, the decision to switch
from one network to another should not only consider the availability of  a particular
wireless access network, but also the QoS offered for the best user experience.

Concurrently, the industry is driving for an all-IP-based platform which enables in-
tegration of  diverse access networks in a common scalable framework [16]. As a result,
wide range of  multimedia services can be extended to subscribers over heterogeneous wire-
less access networks. The heterogeneous wireless access network spans different wireless ac-
cess technologies integrated into one network to provide subscribers with the requested
multimedia services and QoS. It will take full advantage of  the multimodality offered
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City Limits4G

WiFi3G

Figure 2.2
Typical distribution of  wireless access technologies in a modern-day city

by the smartphones by having the device connected to all wireless access technologies
at all times. This is depicted in Figure 2.1.

The heterogeneous wireless access network will possess many advantages over the
contemporary wireless networking solution. From the subscribers’ perspective, different
coverage and QoS characteristics of  each of  the included wireless access technologies
will lead to the ability to seamlessly connect at any time, at any place, and to the access
technology which offers the most optimal quality available. This is referred to as Always
Best Connected paradigm [5], and will be introduced in more detail in the subsequent
section. From the network operators’ perspective, on the other hand, the integration of
wireless access technologies will allow for improved revenue generation, more efficient
usage of  the network resources, and might be the most economic way of  providing both
universal coverage and broadband access [4].

Figure 2.2 depicts a typical distribution of  wireless access technologies in a modern-
day city. In the example, WiFi hot spots are used as a localised very high-speed Internet
access; 4G covers nearly the 3/4 of  the city area, and provides high-speed Internet ac-
cess; and 3G delivers medium speed wireless access inside as well as outside the city.
There is a high overlap of  different wireless access technologies within the city. With the
adoption of  a heterogeneous wireless access network, this overlap could be utilised to its
full potential by providing better network resources management, and high-speed and
high quality Internet access for the subscribers inside as well as outside the city limits.
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Figure 2.3
The essence of  ABC networking paradigm

2.1.2 Always Best Connected and Intelligent Network Selection

The Always Best Connected (ABC) paradigm assumes that a subscriber is: (1) “always” con-
nected to the Internet, and (2) uses the “best” access technology available [5]. “Always”
should be interpreted as being able to utilise all wireless access technologies available
at any time, while “best” implies that when a particular technology is being chosen,
several factors such as subscriber’s preferences, application requirements, network cov-
erage, etc., are considered in order to make the most optimal selection possible (see Fig-
ure 2.3). The mechanism responsible for implementing the ABC principles is referred
to as intelligent network selection.

Furthermore, the paradigm emphasises seamless information delivery and exten-
sive mobility support. In other words, the changes in the communications environment
should affect the subscriber as little as possible, even when they are “on the move”.
Therefore, should the subscriber move from the coverage area of  one access technol-
ogy to another, the switch should be as non-disrupting for the subscriber as possible;
i.e., the session continuity should be maintained at all times, regardless of  the access
technology currently used. Thus, it is clear that intelligent network selection plays a
vital role in the successful operation of  the ABC solution.

2.1.3 Economic Aspects of Intelligent Network Selection

Since there are many different actors with opposing interests involved, there also exists
the possibility of  a “tussle” [6]. For example, it is in the best interest of  the subscribers
to obtain the highest quality of  the service for the lowest price. Network operators, on
the other hand, aim to maximise their profit, and perform efficient load balancing. Fur-
thermore, the situation may become even more complex should the service provision
be decoupled from the network operators; that is, if  the service provision is handled by
a separate entity, service provider, while network operators are left with handling of  the
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transport provision [7]. Therefore, the problem of  intelligent network selection, which
as pointed out in the previous section, was considered to be technologically difficult,
can also be considered to be the problem of  economics where wireless access, traded on
a per connection basis, is an electronic good that is sold to the subscribers.

In this section, the core concepts and the importance of  intelligent network selection
in the wireless access networks of  the future were outlined. The next section summarises
the research efforts of  the researchers on the problem of  intelligent network selection.

2.2 Intelligent Network Selection in the Literature

Over the last decade, several papers have explored the problem of  intelligent network
selection in heterogeneous wireless access networks utilising concepts from economics.
It is the aim of  this section to summarise the research work of  other researchers on
the problem of  intelligent network selection. To this end, the approaches are grouped
based on the economic theory they utilise; that is, utility theory-based approaches are
discussed first, followed by multiple attribute decision making, and game theory. Finally,
approaches to network selection that are not economics oriented are summarised in a
seperate section entitled miscellaneous. It is worth noting that the grouping is inspired
by an excellent survey paper by Wang and Kuo [18].

2.2.1 Utility Theory

The utility theory approach to network selection is based on the concepts of  classical
demand theory of  microeconomics. Classical demand theory assumes that each con-
sumer is characterised by a preference relation that can be captured by a mapping into
real numbers—the utility function [19]. For example, suppose a subscriber prefers a
monthly subscription contract to wireless services over a yearly one. Then, their utility
of  the former is greater than the utility of  the latter.

When applied to the problem of  intelligent network selection, the utility function
measures the level of  subscriber’s satisfaction with a set of  characteristics offered by an
access network [20]. Thus, the main challenge is to capture subscriber’s preferences for
different attributes/characteristics of  a wireless service in the form of  a utility function.
Some common attributes include but are not limited to: bandwidth required by the ser-
vice, price of  the service, bit error rate, delay, etc. In the context of  network selection,
utility function is defined as a mapping from the set of  all attributes of  a wireless service
to the set of  real numbers. Formally, let X denote the set of  all attributes of  a wireless
service. Then, the utility function is a function U : X → R. Therefore, it encodes user
preferences for different attributes of  a particular service as real numbers. The network
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selection mechanism uses the derived utility function to select network/access technol-
ogy that yields the highest overall utility to the subscriber. The main shortcoming of
this approach is to decide on a correct functional form of  the utility function for each
attribute of  a wireless service. The most common ones include: linear piecewise, loga-
rithmic, exponential and sigmoidal [20]. The question remains, however, whether those
functional forms are representative of  the reality. In fact, there are as many characteri-
sations of  the attributes and associated utility functions as there are researchers working
on the problem of  utility theory-based network selection (cf. Table III in [18]).

A more interesting approach to network selection that is not a pure utility theory-
based approach but uses the concept of  utility function is by Ormond et al. [21, 22, 13].
The authors propose to use the concept of  consumer surplus to drive network selection.
In economic terminology, consumer surplus refers to a measure of  net benefit from con-
suming a good, and is equal to the difference between the utility the consumer extracts
from consuming the good and its price [19, 23, 24]. In their work, Ormond et al. focus
mainly on non real-time data services, and for this case, derive a nonincreasing utility
function which captures subscriber’s willingness-to-pay versus their willingness-to-wait.
The network that achieves the highest consumer surplus for the service is then selected.
However, the approach is suffering from the same problem as all utility theory-based
approaches; namely, how to capture utility of  a subscriber so that it is representative of
the reality.

2.2.2 Multiple Attribute Decision Making

Multiple attribute decision making (MADM) is a branch of  multiple criteria decision
making (MCDM), a subdiscipline of  operations research [25]. The main aim of  MADM
is to aid a decision-maker in making a complex decision that often depends on multiple,
possibly conflicting attributes.

MADM-based network selection is closely related to utility-based approach as it ef-
fectively studies methods of  combining utilities for different attributes in the most opti-
mal way [26]. As such, the main challenge of  this approach is similar to that of  utility-
based approach; that is, capturing subscriber’s preference per attribute per scenario.

The MADM-based network selection usually involves [14]:

1. gathering and quantifying values for each considered attribute for each candidate
network. For example, candidate network A might have a price attribute of  0.5,
while candidate network B of  0.25.

2. calculating weights for each attribute based on subscriber’s preferences. For ex-
ample, a subscriber might prefer a higher price but a lower delay, and hence, a
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higher weight is assigned to the price attribute.

3. utilising a MADM algorithm to score each candidate network based on the com-
bination of  attributes and weights. It is interesting to note that the score is equiv-
alent to the combined utility function in the utility-based network selection. The
score can be computed, for example, as a simple sum of  all the attributes weighted
by the weights, or alternatively, the attributes can be raised to the power of  the
corresponding weights and multiplied together. The former approach is referred
to as simple additive weighting (SAW) [27], while the latter as multiplicative expo-
nential weighting (MEW) [20]. Other popular algorithms include: grey relational
analysis (GRA) [28], and technique for order preference by similarity to an ideal
solution (TOPSIS) [29].

4. selecting candidate network which achieves the highest score.

The MADM-based network selection algorithms suffer from two issues: 1) since they
utilise the concept of  subscriber’s utility, similarly to the utility theory-based approaches,
it is difficult to correctly capture subscriber’s preference per attribute per scenario; 2)
different MADM methods often produce inconsistent ranking outcomes for the same
problem, and therefore, establishing the validity of  the proposed MADM-based scheme
proves prohibitive [30, 31].

2.2.3 Game Theory

Game theory deals with the analysis of  mathematical models of  conflict and cooperation
between two or more intelligent individuals [32, 33, 34]. In game theoretic terminol-
ogy, a game refers to any social (and possibly conflictual) situation involving two or
more individuals who are referred to as players. The players are assumed to be rational
decision-makers; i.e., they will always strive to make the best decision possible in pursuit
of  their own interests. Furthermore, each player is characterised by a set of  strategies
and payoffs/utilities for choosing a particular strategy. For each player, payoff  depends
not only on their chosen strategy, but also on the strategies chosen by other players. The
aim of  game theoretic analysis is then to characterise an equilibrium (typically, Nash
equilibrium); that is, a set of  strategies that if  played by all the players, guarantee the
highest utility given the strategy choices of  other players.

There exist two distinct approaches to game theory, classical and evolutionary game
theory, and both were extensively applied to the problem of  intelligent network selec-
tion [18]. While classical game theory concentrates on the analysis of  possible outcomes
of  a game between N players, in evolutionary game theory the focus is put on the dy-
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namics of  the whole population (or a group) of  decision-makers. In other words, classi-
cal game theory concentrates on characterising an equilibrium (if  exists) to anN -player
game. Evolutionary game theory, on the other hand, examines how a particular deci-
sion made by the whole population changes over time in response to the decisions made
by all players individually.

When applied to network selection, the problem is modelled as either a game be-
tween the subscribers, or a game between the network operators. There has been some
nonextensive research carried out that permitted a third possibility of  a game between
subscribers and network operators [18, 35]. In particular, in [35], the authors model
the network selection problem as a noncooperative game where subscribers select net-
work operators who maximise the requested services’ requirements, while the network
operators select the subscribers who maximise their revenue and allow for optimal load
balancing. The mechanism proposed by the authors is limited due to the fact it is not
guaranteed to converge on an equilibrium solution; in fact, in their formulation of  the
game, Nash equilibrium is not guaranteed to exist. The authors provide an alternative
solution concept, called suboptimal solution, however, this solution concept is not rigor-
ously shown to constitute an equilibrium of  the game. In other words, in practice, it
might happen that the players (subscribers and network operators) will deviate from it
significantly; therefore, putting in question the proposed network selection scheme. This
result demonstrates the complexity of  the problem of  network selection, and the fact
that modelling it as a game between the subscribers and network operators might not
be viable. For this reason, this thesis concentrates on the former two, more widespread
approaches.

2.2.3.1 Games Between Subscribers

Modelling network selection as a game between the subscribers aims at arriving at an
(equilibrium) distribution of  the subscribers between the available networks, and as a re-
sult, avoiding network congestion and performance degradation. In other words, limited
wireless resources are shared in the most optimal way between the subscribers, and at
the same time, the subscribers select the network that matches their preferences in the
best possible way [36]. In what follows, a few noteworthy examples of  this modelling
approach described in the literature are outlined.

Niyato and Hossain [36] use evolutionary game theory to study dynamics of  com-
petition among groups of  subscribers in different service areas. The authors propose
two algorithms for deriving an equilibrium to the problem: population evolution and
reinforcement learning. The first algorithm uses centralised controller (e.g., a base sta-
tion) to maintain payoff  information for all subscribers. In the second approach, each
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subscriber tries different networks, observes the size of  the allocated bandwidth and
price from the chosen network, and changes the network selection if  necessary; in other
words, each subscriber learns and adopts independently based on the past events. The
authors simulate the proposed algorithms in a scenario with three different wireless ac-
cess technologies, and examine the performance of  the algorithms (such as the speed of
convergence on the equilibrium). Addtionally, in a different paper [37], the same au-
thors model the subscriber churning behavior in heterogeneous wireless access networks
using evolutionary game theory, and use the derived evolutionary equilibrium to study
two different pricing schemes for the wireless providers: noncooperative and cooper-
ative. Finally, Zhu et al. [38] build upon the work reported in [36], and use Bayesian
evolutionary game theory to derive and study the dynamics of  the equilibrium in an
environment where subscribers have only limited (incomplete) information about each
others preferences.

To recap, modelling network selection as a game between subscribers assumes that
the subscribers are the decision-makers, and that they will distribute themselves between
the available networks in a way that avoids network congestion and performance degra-
dation. While this is appealing from the perspective of  economic usage of  scarce network
resources, network operators are more likely to prioritise revenue generation over opti-
mal load balancing. Thus, it might be challenging to convince the network operators to
adopt this approach. Furthermore, since this approach relies on modelling the payoff-
s/utilities of  the subscribers, it suffers from the same problem as utility theory-based and
MADM-based approaches: difficulty in correctly capturing subscribers’ preferences.

2.2.3.2 Games Between Network Operators

In a heterogeneous wireless access network, network operators will witness a more se-
vere competition for the subscribers, since the subscribers will be given the freedom to
choose a network operator at any time. Therefore, it is crucial for network operators
to understand the implications of  the increased competition and the behaviour of  the
competing network operators in order to ensure they stay competitive in this market
of  the future and attract as many subscribers as possible [18]. This is the aim of  the
second game theoretical approach to network selection, that is, modelling the problem
as a game between network operators. This approach is different from the previous
one in the sense that it indirectly guides the subscribers into selecting the most optimal
network by prescribing guidelines to the competing network operators. In other words,
with this approach, the network operators are prescribed a set of  guidelines that lead
to an equilibrium in which their networks are selected by subscribers with matching
preferences. Several researchers have considered this problem, and the most interesting
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of  the approaches are briefly outlined below.
Niyato and Hossain [15] explore the competitive pricing in a heterogeneous wireless

access network. To this end, they study a scenario consisting of  three network operators,
and assume each network operator offers two types of  connections: premium and best-
effort connections. The former have a fixed price, while the latter are dynamically priced
and depend on the competitive or cooperative behaviour of  the network operators. The
authors model the problem in three different ways: as a simulatenous-move noncoop-
erative game (i.e., prices are offered to the subscribers at the same time), leader-follower
Stackelberg game (i.e., network operator may offer their price before other network op-
erators), and a cooperative pricing game (i.e., network operators cooperate in order to
maximise their total revenue across all network operators). In [39], Antoniou and Pit-
sillides model the problem as a noncooperative game between wireless access networks
with the aim of  obtaining the best possible trade-off  between the efficiency and the avail-
able capacity of  networks, while, at the same time, satisfying the requested quality by
the subscribers. Charilas et al. [40, 41] extend the work reported in [39] by focusing on
the computation of  payoffs for each competing network—the authors employ GRA to
compute the payoffs. Chang et al. [42] propose a scheme that combines utilty-based ap-
proach with game theory approach. Their approach involves the following three stages:
1) subscriber calculates utility value for each candidate network; 2) the competition be-
tween candidate networks is modelled as a cooperative game; and 3) the network that
maximises linear combination of  utility and the resulting equilibrium payoffs of  stage
2) is selected.

All of  the proposed solutions discussed thus far suffer from the same shortcoming: in
all cases, the authors assume that the network operators have complete knowledge of  the
cost structure, etc., of  their opponents, i.e., other network operators. This assumption
is unrealistic as there is always some uncertainty present especially in a competitive
setting such as this one [23]. Some researchers have attempted to address this issue by
modelling the network selection mechanism as an auction. To elaborate further, the
main use case for auctions is a scenario where one party (usually the seller) is uncertain
how valuable the object being traded is to the other party (usually the potential buyers;
see Section 3.2.1 for a detailed overview of  auctions). Khan et al. [43, 44, 45] model the
problem as a procurement second-price sealed-bid auction where network operators
bid for the right to service the subscriber’s request. While their results are theoretically
appealing, second-price sealed-bid auctions are rarely used in practice due to several
inherent weaknesses, such as vulnerability to collusion by a coalition of  losing bidders,
or vulnerability to the use of  multiple bidding identities by a single bidder [46].

Finally, Irvine et al. [8, 47, 48] propose a theoretical market-based framework called
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the Digital Marketplace where network operators compete in a variant of  a procure-
ment first-price sealed-bid auction for the right to transport the subscriber’s requested
service over their infrastructure. However, the authors do not verify whether the pro-
posed bidding strategies constitute an equilibrium of  the proposed auction. This is a
major flaw from the economic viewpoint as otherwise it is unclear whether the mecha-
nism induces rational behaviour in participants; for example, whether it maximises the
network operators’ expected utilities.

2.2.4 Miscellaneous

Thus far, those approaches to intelligent network selection that utilise concepts from
economics to drive the mechanism were scrutinised. Since this thesis studies the eco-
nomic aspects of  the problem, they are deemed as directly relevant; however, the re-
search on network selection abounds, and there exist many different approaches that
are not economics oriented. The most notable of  those approaches are outlined in this
section.

Espi et al. [10] present a machine learning approach to network selection; in partic-
ular, the authors utilise a Hopfield neural network to solve the underlying optimisation
problem. Hopfield neural network is an example of  a supervised learning approach
based on the artifical neural network algorithm. In their paper, the authors model the
cost function for each subscriber as a ratio between the bandwidth required by the
service to the total available bandwidth of  a network operator. They further demon-
strate that their approach achieves better bandwidth allocation than two other similar
approaches of  other researchers. Since the authors model the subscribers’ preferences
consisting of  only the required bandwidth, they fail to capture the true complexity of  the
problem of  network selection. That is, other technical parameters such as packet delay,
jitter, etc. are left out. Furthermore, no accounting of  subscribers’ monetary prefer-
ences and commitments is given. If  included, it would strengthen the applicability of
the algorithm to real-life scenarios. Khaleel et al. [49], on the other hand, propose a
mechanism based on k-nearest neighbour (knn) classfication algorithm. They model
the subscriber as being characterised by three parameters: cost, mobility and energy.
Energy is equivalent to the current level of  the phone’s battery. Mobility specifies how
mobile the subscriber anticipates to be while contracting the service. Cost is assumed to
represent the subscriber’s willingness to pay for the service; it can take on one of  three
possible labels: not important, avoid, very important. While the approach proposed by
the authors tries to capture the subscriber’s monetary preferences to a degree, restrict-
ing it to three possible labels is prohibite and not representative of  reality. Liu et al. [50]
propose an algorithm for optimal network selection which mainly aims at optimising
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energy consumption of  the subscriber equipment. Since the proposed algorithm priori-
tises energy efficiency above all else, their solution suffers from the same shortcoming
as the previous two approaches: it does not capture subscriber’s monetary preferences,
and therefore, under-represents the complexity of  the problem of  network selection.

Hou and O’Brien [11] cast the problem of  network selection into the framework of
fuzzy logic. Fuzzy logic generalises traditional (binary) logic to situations that are nei-
ther true nor false; rather, to a degree, they can be both at the same time. The authors
advocate the usefulness of  fuzzy logic in the context of  network selection due to its abil-
ity to solve uncertainty and contradiction embedded within the problem; for example,
achieving both high throughput and zero delay. The authors model the problem using
three inputs: probability of  interruption, failure probability of  handover, and size of  un-
sent messages. While their approach is innovative, it concentrates solely on technical
aspects of  network selection, ignoring the economics of  the problem. Finally, Stevens-
Navarro et al. [12] model the problem as a Markov decision process (MDP). MDP is
used in modelling of  decision making processes that contain some degree of  random-
ness, and yet are at least partially under the control of  the decision-maker. Applied to
the problem of  network selection, the decision-maker is the subscriber, and the process
corresponds to selecting network under uncertainty of  receiving the desired QoS. Simi-
larly to the previous papers mentioned in this section, the authors focus on the technical
aspects of  the network selection, and ignore the important economic aspect.

This section provided an overview of  the literature on intelligent network selection.
In the next section, the contributions of  this research to intelligent network selection are
summarised.

2.3 Contributions of this Research to Intelligent Network Selec-

tion

As outlined in the previous section, substantial work has been carried into the modelling
of  network selection from the economic perspective. The approaches can be categorised
into 3 major classes: utility theory-based, MADM-based, and game theory-based ap-
proaches. Each class of  approaches is facing some challenges that need to be addressed if
it is to be implemented in reality. To summarise, utility theory-based and MADM-based
approaches require a specification of  a correct functional form of  the utility functions
for the subscribers that is representative of  reality; not an easily accomplished task. The
game theory-based approaches can be further subdivided into two categories: 1) games
between subscribers where the subscribers distribute themselves in the most optimal
way between the available networks; and 2) games between network operators where
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the network operators compete for the right to provide the subscribers with a service.
The former approach faces two major challenges. Firstly, since it relies on modelling
of  the utilities of  the subscribers, similarly to utility theory-based and MADM-based
approaches, it requires a correct specification of  the utility functions for the subscribers.
Secondly, this approach prioritises economic usage of  network resources over revenue
generation for the network operators, and as such, it might not be appealing to the net-
work operators. In the latter approach, on the other hand, the vast majority of  the au-
thors assume that the network operators have complete knowledge of  the cost structure,
etc., of  their opponents. This assumption is unrealistic as there is always some uncer-
tainty present especially in a competitive setting such as this one [23]. Some researchers
have attempted to address this issue by modelling the network selection problem as an
auction. In particular, first-price and second-price sealed-bid auctions were advocated.
While the theoretical properties of  the second-price sealed-bid auction are appealing,
the auction itself  is rarely used in practice due the several inherent weaknesses. The first-
price sealed-bid auction-based mechanism was first proposed by Le Bodic et al. [8] in
their theoretical framework, Digital Marketplace. While the use of  the first-price sealed-
bid auction as a network selection mechanism is very appealing, the mechanism itself
was not subjected to extensive economic analysis. Therefore, fundamental questions
such as whether the proposed bidding strategies by the authors constitute an equilib-
rium of  the proposed auction remain unanswered.

The main contribution of  the research reported in this thesis to the problem of  in-
telligent network selection is an extensive economic and game theoretic analysis of  the
problem of  network selection in the context of  the Digital Marketplace (see Chapter 3
for a detailed description of  the Digital Marketplace). It should be noted, however, that
the analysis and results presented in this thesis are easily extrapolated away from the
context of  the Digital Marketplace. In fact, one of  the main aims of  this research was to
analyse the bidding problem in the context of  the Digital Marketplace, but in a manner
such that the results are stated in a form generic enough to be applied elsewhere. In this
way, this thesis contributes to the problem of  intelligent network selection by propos-
ing an auction-based network selection mechanism which is based on a procurement
first-price sealed-bid auction. Therefore, since the mechanism is based on an auction,
it embraces the uncertainties that exist between the network operators in a competitive
environment.
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2.4 Summary

In this chapter, the concept and importance of  intelligent network selection in hetero-
geneous wireless access network and Always Best Connected paradigm were explained.
Furthermore, research work on the concept of  network selection of  other researchers
was summarised, and the contributions of  the research work documented in this thesis
were outlined.
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Chapter 3

Digital Marketplace

This chapter introduces the concept of  Digital Marketplace (DMP) and its fundamen-
tal assumptions. Firstly, the principles of  operation of  the DMP are described. Then, a
brief  overview of  auction theory is provided, and the fundamental assumptions of  net-
work selection mechanism employed by the DMP are outlined. Furthermore, DMP is
compared with the wholesale electricity market, and it is shown that due to the simi-
larilities between the two markets and the fact that the wholesale electricity market is
used in practice, DMP is more likely to be adopted by the industry as a commodity
market for trading wireless communications services of  the future. Finally, the chapter
concludes with a summary of  previous research on DMP, and outlines how the research
work reported in this thesis complements the work of  other researchers.

3.1 Principles of Operation

The DMP is a theoretical market-based framework for trading wireless communications
services. It was first proposed by Irvine et al. in 2000 [8, 9], and it was developed with the
heterogeneous wireless communications environment in mind, where the subscribers (of
communications services) have the ability to select a network operator that reflects their
preferences on a per service basis.

In its basic form, there are three main groups of  economic agents involved in the
operation of  the DMP: subscribers, network operators, and market provider. This is depicted in
Figure 3.1. The subscribers are the end-users of  the communications services, and act
as the buyers in the DMP. The network operators, on the other hand, act as the seller-
s/bidders, and are responsible for providing the subscribers with services and facilitat-
ing network resources required to transport said services. In networking terminology,
network operators are equivalent to mobile network operators (MNOs); for example,
O2 or Vodafone in the UK. Lastly, the market provider is tasked with operating the
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DMP; thus providing common platform for all agents involved. It is left open-ended
who should be the market provider; however, one of  the following three choices is the
most likely: a regulatory body, a consortium of  network operators, or a single network
operator on behalf  of  the regulatory body [8, 48].

It should be noted that the original specification of  the DMP found for example
in [8, 48, 51] differentiates between service and network providers. Thus, the network
operator as an entity is decoupled into service and network providers as shown in Fig-
ure 3.2. According to this model, the service provider is responsible for providing com-
munications services to the end-user, while network provider facilitates (physical) net-
work resources required to transport said services. A good example of  a service provider
is that of  a mobile virtual network operator (MVNO). An MVNO, such as Giffgaff  in the
UK, provides services to the end-users, but does not necessarily own a physical network
infrastructure; instead, they enter into a contract with an MNO, and use their network
to transport users’ services. In the UK, Giffgaff  has such a contractual agreement with
O2.

While the original specification of  the DMP advocates decoupling of  service and net-
work provision, the research reported in this thesis concentrates on the basic business
model; i.e., service and network provision is handled by one entity, a network operator.
The basic business model is seen as the most appropriate since any additional aspects
of  the decoupled case can later be incorporated into the mathematical model of  the ne-
gotiation process developed in this thesis without affecting the results reported herein.
The applicability of  the results reported in this thesis to the decoupled case deserves a
more elaborate explanation. In the decoupled case, the subscribers do not enter into
direct negotiation with the network providers. Instead, they are represented by the ser-
vice providers who conduct the negotiation on their behalf; hence, acting as the buyers.
While the results presented in this thesis are still applicable to this case, the overall busi-
ness model of  the DMP is significantly complicated by the fact that the service providers
act as intermediaries between the subscribers and the network providers. For example,
for the subcribers characterised by similar preferences, the service providers might enter
into negotiation with the network providers only once rather than negotiate on behalf  of
each subscriber separately. Furthermore, the service providers might reach an agree-
ment with the network providers that the winner of  the negotiation will supply their
services to a number of  subscribers for a specified period of  time, such as a day, a week,
etc. The model developed in this thesis should incorporate these possibilities if  it was
extended to the decoupled case.

In this section, the principles of  operation of  the DMP were outlined. The next sec-
tion provides a conceptual overview of  the negotation process between the subscriber
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Decoupling of  network operator into service and network providers (adapted from [48])
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and the network operators. This process is termed network selection mechanism, and is the
means for the subscriber to select the network operator who reflects their service pref-
erences best.

3.2 Network Selection Mechanism

This section is organised as follows. Firstly, a high-level overview of  auction theory is
given, which is necessary to understand the fundamental assumptions governing the
network selection mechanism in the DMP. Then, a conceptual overview of  the network
selection mechanism is provided.

3.2.1 Primer in Auction Theory

As argued by many economists [52, 53], auction theory is one of  the most prominent
branches of  economics. Examples of  auctions being used in real life abounds: purchas-
ing rare items of  considerable value such as paintings, buying a house, or simply shop-
ping on eBay. Another very good example of  the popularity of  auctions in real life is
the well-known case of  spectrum auctions which were used by both the US and the
UK governments to sell the radio spectrum licenses to network operators. It is the pur-
pose of  this section to provide a high-level overview of  the most important models and
assumptions of  auction theory.

3.2.1.1 Common Auction Formats

There are many different auction formats reported in the auction theory literature;
however, four are particularly popular, and are explored in this section [54]. Those are
English (also known as open ascending-price), Dutch (also known as open descending-
price), first-price sealed-bid, and second-price sealed-bid auctions.

In an English auction, the person who conducts the sale, i.e., the auctioneer, calls
out bids in an increasing fashion until there is only one interested bidder left [55]. For
example, the sale of  a painting (or other work of  art) would traditionally be facilitated by
the mechanism of  an English auction. In such an auction, the auctioneer would set the
base price for the object to be sold, x say. Suppose further that some bidder A registered
their interest (by raising their hand, or otherwise) in obtaining the object for the price of
x. Then, bidder A would be proclaimed the highest bidder, and the auctioneer would
call out another price, y, such that it is higher from the previous one, x < y (hence, the
alternative name of  ascending-price auction). If  other bidder, bidder B say, registered
their interest in obtaining the object for the new price of y, then bidder B would become
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the highest bidder, and the auctioneer would further increase the price. And so on, until
no further interest was observed. The object would then go to the current highest bidder.

Similarly to an English auction, in a Dutch auction, the prices of  the object for
sale change in a sequential manner; however, in a Dutch auction, the price is decreas-
ing [55]. The auction is conducted in the following way. The auctioneer starts at a price
x, say. If  no bidder registers interest within the given time limit set by the auctioneer,
then the price is decreased to y, say, such that y < x. And so on, until a bidder registers
interest. Then, the object is sold for that price to that bidder. It is worth noting that
English and Dutch auctions are an example of  open auctions since every bidder ob-
serves the bids of  all the other bidders. This is in contrast to first-price and second-price
sealed-bid auctions where bidders submit their bids simultaneously in sealed envelopes.

In a first-price sealed-bid auction, the bidders submit their bids simultaneously in
sealed envelopes to the auctioneer [55]. The bidder who submitted the highest bid, wins
the auction and pays what they bid. Second-price sealed-bid auction is very similar to
a first-price sealed-bid auction with this difference that the highest-bidding bidder wins
the auction, but pays the amount equal to the second-highest bid. That is, suppose
the highest and second-highest bids are denoted by b1 and b2 respectively such that
b1 > b2 > bi for all i such that i > 2. Then, in a first-price sealed-bid auction, bidder
who submitted the highest bid b1 wins and pays that amount. In a second-price sealed-
bid auction, on the other hand, bidder who submitted the highest bid b1 wins, but pays
the amount equal to the second-highest bid b2.

3.2.1.2 Bidder Valuations

The main reason for a seller of  an object to use an auction mechanism is because they are
uncertain how valuable the object is to the potential bidder. Otherwise, if  the bidders’
valuations were known, the seller would simply discriminate by offering the object to
the bidder who is willing to pay the most [54]. This uncertainty in bidders’ valuations is
categorised into three distinct models: private values, common values, and interdependent values
model.

In private values model, each bidder knows the value of  the object to himself  at the
time of  bidding. Furthermore, each bidder can only make an intelligent guess about the
valuations of  other bidders. Finally, the knowledge of  other bidders’ valuations would
not affect the bidder’s own valuation for the object.

In common values models, the value of  the object is the same for all bidders. It is,
however, unknown to them at the time of  bidding except for some estimates of  the true
value.

The interdependent values model generalises the common values model in the sense
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that the value of  the object is not necessarily the same for all bidders. The bidders, how-
ever, still possess only estimates of  the true value of  the object at the time of  bidding.
Furthermore, in interdependent values model, the information available to other bid-
ders, i.e., their estimates of  the value, may influence the value of  the remaining bidders
if  known to them.

To put the models in context, a scenario where a painting is sold at an auction and
the bidders do not intend to resell the object in the resale market, that is, they assign
values to a painting only on the basis of  how much utility they would derive from pos-
sessing it, can accurately be approximated by private values model. Common values
and interdependent values model, on the other hand, is a good approximation to an
auction where land with an unknown amount of  oil is being sold; bidders may possess
different estimates of  the amount of  oil, but the final value depends directly on the future
sales of  the extracted oil.

3.2.1.3 Standard versus Procurement Auctions

So far, only the assumptions and models of  auction theory where a number of  bidders
is contesting for the right to buy an object were discussed. However, auctions can also
be used to sell goods. In other words, in such a scenario, the auctioneer is trying to
purchase an item for the lowest price from a set of  sellers/bidders. This type of  auctions
is referred to as procurement auctions.

It is important to realise that, from a game-theoretical perspective, procurement auc-
tions are equivalent to standard auctions in the same setting [54]. Therefore, the abun-
dance of  results on standard auctions applies to procurement auctions with only certain
small, conceptual differences; for example, standard auctions consider the maximum
bid, while procurement auctions the minimum bid. This fact is exploited in this thesis,
and proofs of  the results not already covered in the literature on auctions in general are
provided. This is since if  the result is proved in one case (be it either for standard or
procurement auctions), it can immediately be adapted to the other case.

To provide an example, consider a procurement first-price sealed-bid auction. First-
price auction is discussed since, as evident in the subsequent section, the network selec-
tion mechanism in the DMP is based on a procurement first-price sealed-bid auction.
Similarly to the standard auction, the bidders (sellers of  a good) submit their bids (prices)
simultaneously in sealed envelopes to the auctioneer (buyer). Suppose the lowest and
second-lowest bids are denoted by b1 and b2 respectively such that b1 < b2 < bi for all
i such that i > 2. Then, the bidder who submitted the lowest bid b1 wins the auction,
and sells the good to the auctioneer for the price equivalent to their bid, i.e., b1.
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3.2.2 Conceptual Overview

The process of  negotiation (or the network selection mechanism) in the DMP is based on
a procurement first-price sealed-bid auction. Unlike in a procurement first-price sealed-
bid auction, however, the winning bid is a weighted (convex) combination of  both the
network operator’s monetary bid and their reputation rating; henceforth referred to as
the compound bid. The network operator is elected as the winner of  the auction if  their
compound bid is the lowest in value, and accrues their monetary bid minus the cost of
supporting the service. The monetary bid is equivalent to the price of  supporting the
service by the network operator. The precise definition of  the price is left open-ended;
one possibility, for example, would be to charge the buyer per unit of  bandwidth. The
weights in the compound bid are set by the subscriber before each auction, and are
announced to the network operators. This effectively gives the subscriber the freedom to
choose any combination ranging from: a low price for the service but also poor quality;
to a high quality but for a high price [51].

It is important to note that, out of  sequential-bid and sealed-bid auctions, a pro-
curement first-price sealed-bid auction was chosen due to the following reasons. Firstly,
given the timing constraints in the DMP (e.g., the waiting time of  the subscriber for the
service to be admitted), and the difficulty in predicting the number of  bids placed un-
til the winner is selected in a sequential-bid auction, sealed-bid auctions were deemed
as the most appropriate [51]. Secondly, the rules governing a second-price sealed-bid
auction may appear as counter-intuitive to the subscriber; that is, as mentioned in the
previous section, the lowest bid secures the auction but the price paid equals the second-
lowest bid. Lastly, since the subscribers not only base their network selection strategy
on the offered price, but also on reputation, a first-price sealed-bid auction is the best
fit to such a requirement.

Furthermore, since the communications services are traded on an individual service
level, it might be difficult for the subscriber to judge the overall quality of  the services
supplied by a particular network operator [48]. Therefore, one of  the fundamental as-
sumptions governing the operation of  the DMP is that, by registering in the DMP,
network operators agree to report on their contract fulfillments to the market provider;
that is, they agree to report a binary value denoting the success in delivering the service
to the subscriber within the agreed QoS bounds [8]. The value of 0 denotes a failure,
while the value of 1 a success. The latest d (d > 1) reports are then used to compute the
reputation rating of  the network operator which will be used when a new service request
arrives in the marketplace. Hence, assuming network operator i admitted t service re-
quests, the formula for computing a reputation rating update is as follows (cf. Section 3.2
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in [8])

rt+1
i =

d∑
k=t−d

1− ρki
d

, (3.1)

where ρki denotes the kth binary report of  the network operator i. It is important to
notice that the reputation rating relates to the network operator rather than to the type
of  service offered by the network operator, such as phone call, email or web browsing
requests [51]. Note further that Equation (3.1) implies rt+1

i = 0 if  the network operator
i has successfully delivered d services to the subscriber, while rt+1

i = 1 if  has failed in
all d attempts. Furthermore, Equation (3.1) implies that if  the operator is consistently
unreliable, their performance is reflected accordingly by their reputation rating history.
Whilst, similarly, one failure in delivering the service does not immediately render a
network operator unreliable; rather, it marginally affects their updated reputation rat-
ing. At the same time, at the end of  each contract, the subscriber may report on their
satisfaction (or Quality of  Experience, QoE) with the service, for example, by submit-
ting a mean opinion score in case of  real-time services, and achieved throughput for
non-real-time ones. The reputation rating update formula in Equation (3.1) could then
be modified to incorporate QoE, for instance, by taking an appriopriately weighted
composition of  both network operator’s and subscriber’s reports. The literature on the
concept of  QoE abounds. For example, Kilkki discusses the conceptual differences be-
tween QoS and QoE, and how the concepts fit into the communications ecosystem [56].
He further defines QoE to be a set of  metrics, such as mean opinion score, that cap-
ture the experience of  the users with a particular service. At the same time, he reserves
QoS to consist of  metrics capturing the quality of  the service at the technical level be-
tween network and application; e.g., bit rates, delay properties, and packet loss rates.
Brooks and Hestnes, on the other hand, discuss different ways of  measuring QoE both
subjectively and objectively [57]. Furthermore, Fiedler et al. propose a quantitative for-
mula for relating QoS with QoE [58], and similarly, Shaikh et al. provide insight into
the correlations of  QoS and QoE; hence, capturing the relationships between the two
metrics [59].

In this section, a conceptual overview of  the network selection mechanism was pro-
vided. The next section draws a comparison between the DMP and the wholesale elec-
tricity market, argumenting that through the similarilities of  the two markets and the
fact that the wholesale electricity market is used in practice, DMP is more likely to be
adopted by the industry.
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Figure 3.3
Time line for wholesale electricity trading in the UK (adapted from [61])

3.3 Digital Marketplace as a Commodity Market

In this section, the DMP is considered as a commodity market and compared with an
existing market where a commodity of  similar characteristics is traded; namely, electric-
ity market. It is further demonstrated using the example of  the electricity market that
DMP is a feasible framework for trading wireless communications services.

DMP is an example of  a commodity market where the traded commodity are wire-
less communications services. There are in existence markets which trade commodities
of  very similar characteristics to wireless communications services. The most notable
example is that of  the electricity markets. When it comes to tradability, electricity and
wireless services share several features; for example, there is a huge consumer demand,
and both commodities do not take the form of  physical raw materials [60]. A good ex-
ample of  a functioning electricity market is the UK wholesale electricity market. The
operation of  the market is characterised by three main time periods: 1) bilateral trading
via contracts (also known as forward) market, 2) operation of  the balancing market, and
3) physical delivery [61]. This is depicted in Figure 3.3.

The majority of  electricity is traded through bilateral, long-term contracts in the
contracts market between the bulk electricity generators (sellers) and the distributors of
electricity to final consumers (buyers) [62]. Electricity is traded in 30 minute blocks re-
ferred to as settlement periods, and each trading day consists of  48 settlement periods [63].
The participants of  the market are allowed to trade until an hour before a particular
settlement period is being realised, i.e., when physical delivery of  electricity occurs. This
period is referred to as gate closure (see Figure 3.3).

In the period between the gate closure and the start of  the physical delivery, the
market operator (e.g., National Grid in England and Wales) is balancing the supply and
demand in real-time to avoid potential breaches of  electrity system’s limits [62]. This is
depicted as the operation of  the balancing market in Figure 3.3. The matching of  supply
and demand is performed via an auction where the generators and distributors submit
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bids and offers in order to decrease generation or increase demand, or vice versa [64].
It is important to note that the bids and offers need to be submitted by the market
participants before the gate closure. During the balancing period, the market operator
is effectively executing the auction, determining the winners of  the submitted bids and
offers, and as a result, balances supply and demand [65].

In the context of  the DMP, the bulk electricity generators correspond to network
providers, while the distributors to service providers. Furthermore, the balancing mech-
anism corresponds to the network selection mechanism in the DMP. It is encouraging
to realise that the theoretical concept of  the DMP is very closely related to the existing
wholesale electrecity market. This fact speaks favourably in support of  adoption of  the
DMP as a market for trading wireless communications services of  the future.

This section compared the DMP with an existing wholesale electricity market,
demonstrating its feasibility. The next section outlines the contributions of  the research
reported in this thesis to the DMP.

3.4 Previous Research on the Digital Marketplace

In this section, previous research on the DMP is summarised.
Over the last two decades, several papers have explored both the economic and tech-

nical challenges of  the DMP. In their seminal paper, Le Bodic et al. [8] discuss how the
DMP can be used in a 3G environment to increase the competition between network
operators by using a marketplace approach. Furthermore, they describe the business
and technical underpinnings of  the DMP. Finally, the operation and the fundamental
assumptions of  the network selection mechanism are outlined, and a bidding strategy
based on a tatonnement process is proposed. The tatonnement process is based on the
principle that each network operator analyses past auctions in order to determine the
market price they have to offer to remain competitive. It is important to realise that the
authors do not verify whether the proposed bidding strategy constitutes an equilibrium
of  the network selection mechanism; rather, it is provided as is. From the economic
perspective, this is major flaw in the analysis as otherwise it is unclear whether the
mechanism induces rational behaviour in participants; for example, whether it max-
imises the network operators’ expected utilities. The authors also simulate DMP with
the proposed bidding strategy as the equilibrium bidding strategy, and the evolution
of  the market equilibrium is analysed under different simulated scenarios. It is worth
noting that the ideas presented in Le Bodic’s paper [8] are substantially extended and
elaborated upon in Le Bodic’s PhD dissertation [51].

Irvine et al. [47] explore the problem of  interconnection between DMPs. More specif-
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ically, they examine how, in a hybrid environment featuring a variety of  wireless access
technologies, service requests are handled between multiple DMPs, e.g., call intercon-
nections. Simulation results for four interconnected DMPs are presented, and the bid-
ding mechanism proposed in [8] is simulated. It is concluded that with that bidding
strategy in force, network operator should accept as many calls as possible, and let the
quality of  the service degrade. The paper then concludes with the statement that since
the DMP is a complex system, many different bidding strategies may be used, but com-
plex bidding strategies are not necessarily beneficial.

In [48], Irvine describes in detail the business model for the DMP, and presents
the fundamental requirements for a market to operate freely. He then highlights how
the DMP fulfils all the requirements thus establishing DMP a free market. Finally, he
summarise the operation of  the DMP, discusses how DMP can be used as a management
platform for services beyond 3G, and draws a comparison between DMP and other
similar solutions.

Mathur et al. [66] propose a method for accurate estimation of  reputation ratings.
They derive a 3D surface graph which allows the network operators to deduce how
many users they can accomodate in the network before they reach limits in capacity,
and as a result, risk degrading their reputation. The 3D surface is derived through the
means of  simulation modelling, and encapsulates three categories of  users: voice heavy
users, data (mainly web browsing) heavy users, and video heavy users.

In [67], McDiarmid et al. extend the reputation system of  the DMP by introducing a
new parameter called commitment level as a means of  securing the DMP. This param-
eter is meant to encapsulate the commitment of  the network operators to successfully
providing the required QoS levels of  a service as requested by the subscriber. That is, if
a network operator sets their commitment level at 90%, then they declare that they will
strive to fulfil at least 90% of  all the contracts (within a time window) to their required
QoS levels. The authors simulate their proposed reputation system, and conclude that
it is fair towards network operators; that is, it rewards providers who exceed their com-
mitment level, and punishes those who fail.

Finally, in [7], Bush et al. extend the ideas presented in [48] to next generation wire-
less networks; that is, a wireless environment featuring a plethora of  wireless access
technologies, such as 3G, 4G and beyond. The authors argue that the DMP can be
used to manage the effect of  a ‘tussle’ in the next generation wireless networks. They
predict the tussle between different economic agents involved, and especially between
the end-users of  wireless service, service and network providers.

In this section, previous research on the DMP was summarised. The next section
outlines the contributions of  this research to the DMP.
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3.5 Contributions of this Research to Digital Marketplace

Out of  six papers presented in the previous section, only two papers [8, 47] touch upon
the issue of  the best bidding strategy for the network operators. In both cases, the bid-
ding strategies are given as is rather than being a result of  an in-depth economic/game-
theoretical analysis. The work reported in this thesis addresses this issue by providing a
comprehensive analysis of  the network selection mechanism from the economic view-
point.

It is important to analyse the network selection mechanism from the economic point
of  view (using game theory or otherwise) in order to verify whether the mechanism per-
forms as expected in economic terms. For example, thanks to the economic analysis pre-
sented in this thesis, it is verified that the DMP network selection mechanism maximises
the expected utilities of  the network operators, and from the subscriber’s perspective, the
network operator who matches the subscriber’s preferences in terms of  requested price
and quality of  service wins the auction. In particular, this thesis characterises expected
bidding behaviour that constitutes an equilibrium of  the auction upon which the net-
work selection mechanism is based. In this context, the equilibrium bidding strategies
are equivalent to the best bidding strategies network operators can undertake. Further-
more, it is shown that the equilibrium exists and it is unique, and can be approximated
numerically.

3.6 Summary

In this chapter, the concept of  the DMP was introduced, and an outline of  the funda-
mental assumptions and operation of  the network selection mechanism employed by
the DMP was provided. Furthermore, DMP was compared with the wholesale electric-
ity market, and it was shown that due to the similarilities between the two markets and
the fact that the wholesale electricity market is used in practice, DMP is more likely to
be adopted by the industry as a market for trading wireless communications services of
the future. The chapter then concluded with a summary of  previous research on DMP,
and an explanation of  how the research work reported in this thesis contributes to the
DMP framework.
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Chapter 4

Direct Analysis of Network Selection

Mechanism

This chapter formally defines the network selection mechanism in the DMP, and casts
it into the framework of  game theory. The mechanism is then directly analysed in three
special cases: 1) when only reputation ratings of  the network operators decide on the
winning network operator, 2) when only the monetary bids of  the network operators
matter in the selection of  the winner, and finally, 3) when all network operators are char-
acterised by the same reputation rating. In essence, those special cases correspond to the
extremes of  the studied bidding problem, and in all those cases, the equilibrium bidding
strategies are derived. The chapter then concludes with the analysis of  the mechanism
in a restricted case with only two network operators, for which the equilibrium bidding
strategies are derived. They are shown, however, to be suboptimal as they allow the
network operators to submit a negative monetary bid.

4.1 Problem Definition and Assumptions

The game-theoretic description of  the network selection mechanism employed in the
DMP is as follows. The model constitutes a version of  procurement first-price sealed-
bid auction (henceforth, referred to as FPA). To recap, in FPA, bidders submit their bids
simultaneously [33]. Furthermore, each bidder knows their own cost of  selling the good
to the buyer but does not know any other bidder’s type; i.e., the costs are private knowl-
edge. The bidder who submitted the highest bid, wins the auction and sells the good to
the buyer for the price equivalent to their bid. Since the costs are private knowledge,
the bidders are uncertain about another bidders’ utility functions. Thus, FPA and the
network selection mechanism represent Bayesian games of  incomplete information (see
Section B.4, Appendix B for the formal definition of  a Bayesian game of  incomplete
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information).
There are n network operators who bid for the right to sell their product to the

subscriber such that n = |N | where N denotes the set of  all network operators. Let
β : R+ × [0, 1]→ R+, defined by

β(bi, ri) = wprice · bi + wpenalty · ri for all i ∈ N, (4.1)

denote the compound bid. Each network operator i is characterised by the utility func-
tion ui such that

ui(b, c, r) =

 bi − ci if β(bi, ri) < min
j ̸=i

β(bj, rj),

0 if β(bi, ri) > min
j ̸=i

β(bj, rj),
(4.2)

where b = (bi, b−i) represents the monetary bid (or offered price) vector, c = (ci, c−i)

the cost vector, and r = (ri, r−i) the reputation rating vector. In this notation, b−i is a
shorthand notation for a vector containing all elements with the bi element excluded;
that is, b−i = (b1, . . . , bi−1, bi+1, . . . , bn). Furthermore, as stated in Section 3.2.2, Chap-
ter 3, the monetary bid is equivalent to the price of  supporting the service by the net-
work operator. The precise definition of  the price is left open-ended; one possibility, for
example, would be to charge the buyer per unit of  bandwidth.

The cost of  each network operator is assumed to represent the minimum price for
transporting the service request under consideration. The winner of  the auction is de-
termined as the network operator whose compound bid is the lowest one; i.e., network
operator i is the winner if

β(bi, ri) < min
j ̸=i

β(bj, rj). (4.3)

In the event that there is a tie

β(bi, ri) = min
j ̸=i

β(bj, rj), (4.4)

the winner is randomly selected with equal probability.
It is, moreover, assumed that the price and reputation weights (wprice, wpenalty) are

announced by the subscriber to all network operators before the auction. They are spe-
cific to the subscriber and the service they requested. In other words, it is envisaged that
the same subscriber might use different weights for subsequently requested services dur-
ing their participation in the DMP. Since the weights are announced by the subscriber
to all network operators before the auction, there is no uncertainty in knowing how
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much the subscriber values the offered price of  the service over the reputation of  the
network operator (or vice versa). Furthermore,

wprice + wpenalty = 1, 0 ≤ wprice, wpenalty ≤ 1. (4.5)

In order to simplify the notation, it is assumed throughout the rest of  this thesis that
w = wprice. This simplifies the definition of  the compound bid in Equation (4.1) to

β(bi, ri) = wbi + (1− w)ri for all i ∈ N. (4.6)

Note, however, that since w is assumed to be common knowledge, it could potentially
lead to a situation where network operators manipulate the knowledge of w to increase
their profits by overcharging the subscriber. Therefore, in order to circumvent such an
eventuality, the subscriber would only consider offers such that

v ≥ wbi + (1− w)ri for all i ∈ N (4.7)

where v ∈ (0, 1] is the subscriber’s valuation, and it is private knowledge [8].
The subscriber’s valuation is effectively equivalent to a secret (or hidden) reserve
price [68, 69, 70]. This creates an additional uncertainty about the auction that each
network operator needs to incorporate into their equilibrium bidding strategies. To
elaborate further, by setting a secret reserve valuation, the subscriber creates a phan-
tom bidder characterised by a reputation rating r0 and submitting a bid b0 such that
v = β(b0, r0), and therefore, risks not obtaining a service offer from any network op-
erator if v < β(bi, ri) for all i ∈ N . Therefore, the solution presented in this and the
following chapters would have to be modified by including the phantom bidder in the
derivation of  the equilibrium bidding strategies. However, in order to keep the analysis
tractable, this assumption is not incorporated in this research.

Following the standard assumptions from the auction literature [54], the set of  net-
work operators,N , is finite and the network operators are risk neutral; that is, they seek
to maximise their expected profits. Furthermore, the subscriber is risk neutral and does
not have any budget constraints; that is, the subscriber is prepared to accept any of-
fer from the network operators. In reality, it is unlikely for the network operators and
the buyer to be risk neutral, and the buyer to not have any budget constraints. How-
ever, in order for the problem to be tractable, those assumptions are enforced in this
research. The implications of  relaxing those assumptions on the analysis of  an auction
are explored by Krishna [54].

The costs ci for each network operator i are private knowledge. Thus, they are par-
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ticular realisations of  the random variables (r.v.) Ci for each i. Furthermore, it is as-
sumed that each Ci is identically and independently distributed (i.i.d.) over the interval
[0, 1] according to some (absolutely-) continuous probability distribution which admits
a distribution function FC and an associated density function fC such that fC is lo-
cally bounded away from zero over the interval [0, 1]. In order to keep the specifica-
tion generic, the costs are not explicitly decomposed into the underlying components
such as interconnection charges, infrastructure fixed costs, etc. The reader is referred
to [71, 72, 73] for an in-depth coverage of  the problem. Furthermore, it is recognised
that various network operators will have different architecture, topology, infrastructure,
etc., and that this impacts cost to support the service. In order to capture the variation
in costs, an i.i.d. random variable is employed to assign a cost to a particular network
operator at the time of  the service request. This further aids generality of  the results and
subsequent analysis presented in this research.

The reputation ratings ri for each network operator i are common knowledge. It is
assumed that each ri ∈ [0, 1] such that the higher the reputation, the lower the rating
ri. Initially, it was assumed that ratings are private knowledge. However, after analysis,
it was concluded that this would contradict its purpose. The reputation of  each network
operator, in order to be meaningful, must be freely available to everyone, including the
competitors of  the network operators. For example, in the Amazon.com Marketplace,
the buyers have the right to rate the seller they buy from on a scale from one to five
(with five being the best), and these ratings are publicly available [74]. Similarly, on
eBay, the buyers can leave sellers feedback (negative, neutral, or positive) which over
time is viewed as reputation, and is also publicly available [75].

The bidding strategy functions bi : [0, 1] → R+ are nonnegative in value for all i.
The aim is to solve the game for pure-strategy Bayesian Nash equilibrium(-a) as defined
in Equation (B.6), Section B.4.1, Appendix B. It is further assumed that the network
operators will bid at least their cost (unless explicitly stated otherwise). The problem
of  bidding below cost or negatively deserves a more elaborate explanation. There are
two fundamental assumptions governing game theory [32]: 1) economic agents are ra-
tional decision-makers; that is, they make decisions consistently in pursuit of  their own
objectives; and 2) their objective is to maximise the expected value of  their own utility.
In the light of  those assumptions, network operators are implied to bid at least their
cost as they would always strive to maximise their expected utility. However, the real
behaviour of  the network operators might be different in the sense that they might, in
the view of  game theory, behave irrationally by bidding below their cost to secure the
contract with the subscriber. In fact, if  the temporal aspect of  the DMP is considered,
network operators will interact by engaging in the DMP auction more than once. Then,
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it might prove beneficial for them to bid below their cost trading positive utility for se-
curing the win—this is a well-known pricing strategy in economics called “loss leader”
pricing strategy [76, 77]. The idea behind the strategy is to sell a good at a price below
its market cost to increase the store traffic and encourage sales of  other, possibly more
profitable goods. Applied back to the DMP, a network operator could, in principle,
willingly incur cost by bidding below their cost to encourage more subscribers to use
their services, or to improve their reputation rating by serving more subscribers. While
the fact that situations like this can occur in reality is appreciated, this thesis follows
the fundamental assumptions of  game theory; that is, in the rest of  this thesis (unless
explicitly stated otherwise), it is assumed that all economic agents involved in the DMP
are rational decision-makers and strive to maximise their expected utility. Otherwise,
the mathematical treatment of  the problem would prove impossible [78].

The problem is divided into two cases: generic and restricted case. In the former case,
no additional assumptions about the game than those already stated in this section will
be made, and the discussion will concentrate on finding a symmetric equilibrium. In the
latter case, on the other hand, the problem will be simplified by considering only two
network operators, letting costs be drawn from the uniform distribution, and focusing
on (possibly different) bidding strategy functions which are linear functions of  cost.

4.2 Generic Case

Suppose that all network operators use the same strictly increasing in ci bidding strat-
egy function; i.e., bi = bi(ci) = b(ci) for all i ∈ N . In this case, the equilibrium profile
(b∗, . . . , b∗) is called symmetric. In its generic form, the problem proves to be too compli-
cated for the analytical solution using the existing methods of  solving auctions. It would
seem that since the problem is a modified version of  the standard FPA, the standard
analytical approach, found for example in [54, 55, 79, 80], should apply. However, this
is not the case. To see why, note that each network operator i faces an optimisation
problem

max
bi

E

[
bi − ci

∣∣∣∣ wbi + (1− w)ri < min
j ̸=i

(wb(Cj) + (1− w)rj)
]
. (4.8)

Note that

min
j ̸=i

(wb(Cj) + (1− w)rj) ≥ wmin
j ̸=i

b(Cj) + (1− w)min
j ̸=i

rj. (4.9)
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Substituting the inequality (4.9) into the identity (4.8), yields for all w ̸= 0

max
bi

E

[
bi − ci

∣∣∣∣ b−1

(
bi +

1− w
w

(ri −min
j ̸=i

rj)

)
< min

j ̸=i
Cj

]
, (4.10)

where the fact that b is increasing was used, and hence, it is invertible (cf. Corollary B.1)
and minx b(x) = b(minx x) for all x.

Let C1:n−1 = minj ̸=iCj be the lowest order statistic of  an i.i.d. random sample Cj

for all j ̸= i with the distribution function FC1:n−1 . Hence, the identity (4.10) becomes

max
bi

(
bi − ci

)(
1− FC1:n−1

(
b−1

(
bi +

1− w
w

(ri −min
j ̸=i

rj)

)))
=max

bi

(
bi − ci

)(
1− FC

(
b−1

(
bi +

1− w
w

(ri −min
j ̸=i

rj)

)))n−1

, (4.11)

where the fact was used that the distribution function of  an ith order statistic of  an
i.i.d. random sample is defined as in Equation (B.2), Section B.3.1, Appendix B.

Finally, recalling that at a symmetric equilibrium bi = b(ci) and letting k = (1−w)
w

(ri−
minj ̸=i rj), the identity (4.11) becomes

d

dci
b
(
b−1(b(ci) + k)

) [
1− FC(b

−1(b(ci) + k))
]n−1

=(n− 1)(b(ci)− ci)
[
1− FC(b

−1(b(ci) + k))
]n−2

fC(b
−1(b(ci) + k)). (4.12)

It is difficult (if  possible) to derive a closed-form solution for the resulting ordinary differ-
ential equation in Equation (4.12). Therefore, it can be concluded that even significant
simplification of  the problem is not enough to heuristically derive an optimal bidding
strategy function for each network operator i. It is possible, however, to derive the op-
timal bidding strategies in a handful of  special cases: w = 0, w = 1, and ri = rj for all
i, j ∈ N such that i ̸= j. This is the subject of  the next three sections.

4.2.1 Special Case w = 0

In one of  the extreme cases, however, when w = 0, the problem becomes simpler. For
then, the utility function simplifies to

ui(b, c, r) =

 bi − ci if ri < min
j ̸=i

rj,

0 if ri > min
j ̸=i

rj.
(4.13)

Since the reputation ratings, ri, are common knowledge, the probability of  winning, i.e.,
the probability of  the event such that ri < minj ̸=i rj for all i, is either 0 or 1, and does
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not depend on the value of  the bid, bi. In other words, each network operator knows in
advance whether they won, tied, or lost based on their own and their opponents repu-
tation ratings since these are deterministic in nature. Hence, it is clear that the network
operator with the lowest reputation rating will have an incentive to bid abnormally high
since they are guaranteed a win regardless of  the value of  their bid. The remaining net-
work operators, on the other hand, will be indifferent to the value of  the submitted bids
as it is impossible for them to win regardless of  the values of  their bids. In case of  a tie,
i.e., in case there is more than one network operator with the lowest reputation rating,
each has an equal probability of  winning the auction, and this probability is indepen-
dent of  the values of  their bids. Hence, in this case, the network operators also have an
incentive to bid abnormally high. Formally,

Proposition 4.1. Suppose ci is i.i.d. over the interval [0, 1] for all i ∈ N and ri ∈ [0, 1] for
all i ∈ N is common knowledge. Let N0 ⊆ N be the set of  all those network operators with the
lowest reputation rating. If w = 0, then every network operator j ∈ N0 will have an incentive to
bid abnormally high, i.e., bj → ∞, while every remaining network operator k ∈ N \ N0 will be
indifferent to the value of  their bid.

The formal proof  of  Proposition 4.1 as well as any other proposition included in this
thesis is given in Appendix A.

4.2.2 Special Case w = 1

When w = 1, on the other hand, the problem becomes that of  standard FPA auction.
The utility of  each network operator i becomes

ui(b, c, r) =

 bi − ci if bi < min
j ̸=i

bj,

0 if bi > min
j ̸=i

bj.
(4.14)

Network operator i conjecturing that other network operators follow b symmetric bid-
ding strategy and submit their costs truthfully, tries to solve

max
bi

E

[
bi − ci

∣∣∣∣ bi < min
j ̸=i

b(Cj)

]
=max

bi
E

[
bi − ci

∣∣∣∣ b−1(bi) < min
j ̸=i

Cj

]
=max

bi
E
[
bi − ci

∣∣ b−1(bi) < C1:n−1

]
=max

bi

∫ 1

b−1(bi)

(bi − ci)dFC1:n−1(t)
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=max
bi

(bi − ci)(1− FC1:n−1(b
−1(bi))), (4.15)

where, as before, C1:n−1 = minj ̸=iCj is the lowest order statistic of  an i.i.d. random
sample Cj for all j ̸= i with the distribution function FC1:n−1 , and associated density
fC1:n−1 . The first-order condition yields

1− FC1:n−1(b
−1(bi))− (bi − ci)

fC1:n−1(b
−1(bi))

d
dbi
b(b−1(bi))

= 0. (4.16)

Recalling that at a symmetric equilibrium bi = b(ci), the identity (4.16) becomes

d

dci
b(ci)− b(ci)

fC1:n−1(ci)

1− FC1:n−1(ci)
= −ci

fC1:n−1(ci)

1− FC1:n−1(ci)
, (4.17)

or equivalently,

d

dci
(b(ci)(1− FC1:n−1(ci))) = −cifC1:n−1(ci). (4.18)

Since ci ∈ [0, 1] for all i ∈ N , it follows b(1) = 1. To see this, suppose network operator
1 is characterised by cost c1 = 1. Then, they would never submit a bid higher than
their cost c1 = 1 since they would never win. That is, the competing network operator,
network operator 2 say, regardless of  their cost, could just bid b(c2) = c1 = 1 and win
the auction. Furthermore, network operator 1 would never submit a bid lower than their
cost c1 = 1 since they would make a loss if  they were to win the auction. Therefore, it
must be that b(1) = 1. It follows then

b(ci) =
1

1− FC1:n−1(ci)

∫ 1

ci

tdFC1:n−1(t)

=
n− 1

(1− FC(ci))n−1

∫ 1

ci

t(1− FC(t))
n−2fC(t)dt. (4.19)

Thus, the symmetric bidding strategy in Equation (4.19) is the most likely candidate for
a symmetric pure-strategy Bayesian Nash equilibrium at w = 1.

Proposition 4.2. Suppose ci is i.i.d. over the interval [0, 1] for all i ∈ N and ri ∈ [0, 1] for all
i ∈ N is common knowledge. If w = 1, then the symmetric equilibrium bidding strategy function of
the standard procurement first-price sealed-bid auction,

b∗FPA(ci) =
1

1− FC1:n−1(ci)

∫ 1

ci

tdFC1:n−1(t) for all i ∈ N, (4.20)

constitutes a symmetric pure-strategy Bayesian Nash equilibrium of  the DMP variant of  a procurement
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first-price sealed-bid auction.

4.2.3 Special Case ri = rj

In the last extreme case, when all network operators are characterised by the same
reputation rating, i.e., when ri = rj for all i ̸= j, and when w ̸= 0, it can be easily
verified that the problem simplifies to the special case w = 1. To see why, let r = ri, for
all network operators i. Then, for all i ∈ N and w ̸= 0

β(bi, r) < min
j ̸=i

β(bj, r) (4.21)

⇐⇒ 1

w

(
bi +

1− w
w

r

)
<

1

w
min
j ̸=i

(
bj +

1− w
w

r

)
⇐⇒ bi +

1− w
w

r < min
j ̸=i

bj +
1− w
w

r

⇐⇒ bi < min
j ̸=i

bj.

Hence, the utility of  each network operator i simplifies to

ui(b, c, r) =

 bi − ci if bi < min
j ̸=i

bj,

0 if bi > min
j ̸=i

bj.
(4.22)

Formally,

Corollary 4.3. Suppose ci is i.i.d. over the interval [0, 1] for all i ∈ N and ri ∈ [0, 1] for
all i ∈ N is common knowledge. Suppose ri = rj for all i ̸= j, and w ̸= 0. Then, the problem
simplifies to the special case w = 1, and hence, b∗FPA is the symmetric equilibrium bidding strategy
(Proposition 4.2).

In this section, it was shown that, in the generic case, it is difficult to derive a closed-
form solution to the bidding problem. Furthermore, the optimal bidding strategy was
characterised in three special cases: w = 0, w = 1, ri = rj for all i, j ∈ N such that
i ̸= j.

The problem is considerably simplified by restricting the number of  network opera-
tors to n = 2, and letting the costs be drawn from the uniform distribution. In this case,
it is possible to derive bidding strategies for both bidders, and this is the subject of  the
following section.
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4.3 Restricted Case n = 2

In this section, the discussion will be restricted to only two network operators. Since
the problem in its generic form proved intractable to be solved analytically, this section
will explore whether in a much simplified scenario it is possible to find a closed-form
solution. To this end, letn = 2. The utility function for each network operator i ∈ {1, 2}
thus becomes

ui(b, c, r) =


bi − ci if β(bi, ri) < β(bj, rj),

1
2
(bi − ci) if β(bi, ri) = β(bj, rj),

0 otherwise.

(4.23)

Furthermore, the assumption concerning the symmetric equilibrium profile is relaxed;
that is, network operators are permitted to use differing bidding strategies.

The analysis is conducted in two steps. Firstly, it is assumed that information is com-
plete; that is, that each network operator not only knows their own cost and reputation,
but also those of  their opponent’s. Secondly, the standard case is considered; that is,
that the reputation ratings of  the network operators are assumed to be known, while
the costs are private knowledge.

4.3.1 Complete Information

Here, it is assumed that information is complete; i.e., that each network operator knows
their own and their opponent’s cost and reputation rating. In total, there are 7 different
bidding scenarios to consider as described below.

Figure 4.1 shows the first 4 cases for which r1 < r2. (Note that exactly the same
reasoning applies to the situation when r1 > r2.) If c1 < c2, network operator 1 is
guaranteed a victory and a positive profit as long as they bid within the highlighted part
of  the β(b, r) curve depicted in Figure 4.1a. Thus, their optimal bidding strategy would
be to bid slightly less than their opponent’s compound bid evaluated at their opponent’s
cost, β(c2, r2); that is, b1 = c2 +

1−w
w

(r2 − r1)− ϵ where ϵ > 0 is very small. Network
operator 2, on the other hand, should find it optimal to bid b2 = c2. To see why, suppose
network operator 2 bids b̂2 > c2. Since network operator 1’s reputation rating and cost
are strictly lower than those of  network operator 2’s, they can undercut the network
operator 2’s bid by a small amount so that b̂1 < b̂2 and still make positive profit. But, in
response, network operator 2 will find it optimal to lower their bid so that it undercuts
that of  network operator 1’s; that is, b̂2 < b̂1. This process will continue until one of
the network operators is forced to bid their cost. Since network operator 1’s reputation
rating and cost are strictly lower than those of  network operator 2’s, it can be concluded
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Different bidding scenarios for r1 < r2
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that b2 = c2 and b1 = c2 +
1−w
w

(r2 − r1)− ϵ where ϵ > 0 is very small.
If c1 = c2, arguing in the similar manner as previously, network operator 1’s optimal

bidding strategy would be to bid b1 = c2 +
1−w
w

(r2− r1)− ϵ where ϵ > 0 is very small;
while network operator 2 should bid b2 = c2 (see Figure 4.1b).

If c1 > c2, there are two cases to consider. If β(c1, r1) < β(c2, r2), then network
operator 1 still has some room for manoeuvre, and should find it optimal to bid b1 =

c2+
1−w
w

(r2−r1)−ϵ where ϵ > 0 is very small; while network operator 2 to bid b2 = c2

(see Figure 4.1c). If β(c1, r1) ≥ β(c2, r2), on the other hand, the roles are reversed, and
network operator 2 should find it optimal to bid b2 = c1+

1−w
w

(r1−r2)−ϵ where ϵ > 0

is very small; while network operator 1 to bid b1 = c1 (see Figure 4.1d).
Figure 4.2 depicts the remaining 3 cases for which r1 = r2. If c1 < c2, network

operator 1’s optimal bidding strategy would be to bid b1 = c2 − ϵ where ϵ > 0 is very
small; while network operator 2 should bid b2 = c2 (see Figure 4.2a).

If c1 = c2, both network operators should bid their costs; that is, b1 = c1 and b2 = c2

(see Figure 4.2b).
If c1 > c2, network operator 2’s optimal bidding strategy would be to bid b2 = c1− ϵ

where ϵ > 0 is very small; while network operator 1 should bid b1 = c1 (see Figure 4.2c).
It can be concluded that the bidding strategies depend only on costs if r1 = r2. In the

remaining cases, they are asymmetric in the sense that the winning network operator is
characterised by

b1 = c2 +
1− w
w

(r2 − r1)− ϵ with ϵ > 0 being very small, (4.24)

while the losing network operator by bidding their own cost

b2 = c2. (4.25)

Hence, when dealing with incomplete information, these results will be exploited by
concentrating on equilibrium bidding strategies which are linear functions of  cost.

4.3.2 Incomplete Information

Here, contrary to previous section, the standard case is assumed; that is, that reputation
rating values for both network operators i ∈ {1, 2} are known at the time of  bidding;
however, their costs are private knowledge. Suppose that the network operators use a
strategy function bi : [0, 1]→ R defined by the rule

bi(ci) = ζi + ηici, for all ζi ∈ R, ηi > 0, i ∈ {1, 2} (4.26)
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and costs are independently drawn from the uniform distribution over the interval [0, 1].
In other words, (although somewhat counter-intuitive) negative bids from the network
operators are allowed. The motivation for such an assumption will be explained in detail
later on in the section. Note, moreover, that the strategy function is assumed to be linear
in cost. Network operator 1 faces an optimisation problem

max
b1

E [b1 − c1 | wb1 + (1− w)r2 < w(ζ2 + η2C2) + (1− w)r2] (4.27)

If w = 0, then the result described in Proposition 4.1, Section 4.2.1, holds. Other-
wise, for 0 < w ≤ 1, network operator 1 solves

max
b1

E

[
b1 − c1

∣∣∣∣ 1

η2

(
b1 +

1− w
w

(r1 − r2)− ζ2
)
< C2

]
=max

b1

∫ 1

1
η2

(b1+
1−w
w

(r1−r2)−ζ2)

(b1 − c1)dFC(t)

=max
b1

(
b1 − c1

)(
1− 1

η2
b1 −

1

η2

(
1− w
w

(r1 − r2)− ζ2
))

. (4.28)

The first-order condition yields

1− 2

η2
b1 +

1

η2
c1 −

1

η2

(
1− w
w

(r1 − r2)− ζ2
)

= 0

⇐⇒ b1 =
η2
2
− 1

2

(
1− w
w

(r1 − r2)− ζ2
)
+

1

2
c1. (4.29)

(Note that the second-order condition is satisfied; i.e., d2

db21
E[·|·] = − 2

η2
< 0 since η2 >

0.) Similar argument for network operator 2 yields

b2 =
η1
2
− 1

2

(
1− w
w

(r2 − r1)− ζ1
)
+

1

2
c2. (4.30)

Thus, it follows

η1 = η2 =
1

2
,

ζ1 =
η2
2
− 1

2

(
1− w
w

(r1 − r2)− ζ2
)
,

ζ2 =
η1
2
− 1

2

(
1− w
w

(r2 − r1)− ζ1
)
.

(4.31)

Solving the above equations simultaneously yields the equilibrium bidding strategies for
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both bidders

b1(c1) =
1

2
− 1− w

3w
(r1 − r2) +

1

2
c1, (4.32)

b2(c2) =
1

2
− 1− w

3w
(r2 − r1) +

1

2
c2. (4.33)

Formally,

Proposition 4.4. Let there be n = 2 network operators. For all i ∈ {1, 2}, suppose ci is
independently drawn from uniform distribution over the interval [0, 1], and ri ∈ [0, 1] is common
knowledge. Then the equilibrium bidding strategies for all w ∈ (0, 1] are given by

b1(c1) =
1

2
− 1− w

3w
(r1 − r2) +

1

2
c1, (4.34)

b2(c2) =
1

2
− 1− w

3w
(r2 − r1) +

1

2
c2. (4.35)

Observe that the pair of  strategies (b1, b2) does not constitute a symmetric equilibrium.
By way of  example, Table 4.1 depicts a particular set of  cost-reputation pairs of  two

network operators. Figure 4.3 shows the value of  the compound bid, β, for different
values of w for both network operators, while Figure 4.4 depicts the value of  the mone-
tary bid (or offered price), bi, for different values of w for both network operators. The
numerical data in Table 4.1 suggests that network operator 2 should be the winner for
the values of w → 1 since network operator 2’s cost is strictly lower than that of  their
opponent’s. On the other hand, network operator 1 should be winner for the values
of w → 0 since network operator 1’s reputation rating is strictly lower than that of
their opponent’s (which implies that network operator 1’s reputation is in fact strictly
higher than that of  their opponent’s). This prediction agrees with the numerical output
shown in Figure 4.3. Letwc denote the value ofw for which an intersection between the
compound bids of  both network operators occurs (if  it exists). In Figure 4.3, wc = 0.4.
Hence, network operator 2 wins the auction for the values ofw ∈ (wc, 1], while network
operator 1 for the values of w ∈ [0, wc). Note, moreover, that network operator 2 bids

Table 4.1
An exemplary set of  cost-reputation pairs of  two network operators

Cost, ci Reputation rating, ri
Network operator 1 0.75 0.25
Network operator 2 0.25 0.75
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below their cost for values ofw < wc (see Figure 4.4). However, this does not necessarily
disqualify the equilibrium bidding strategies given by Equations (4.34) and (4.35). The
following observations show why. Firstly,

Proposition 4.5. Suppose both network operators bid according to bi bidding strategies in Equa-
tions (4.34) and (4.35). Then they are guaranteed nonnegative profit in case of  winning (or a draw).

Even though the prediction suggests that one of  the network operators may bid nega-
tively, they will not win the auction, and hence, are guaranteed profit at worst equal to
zero.

Secondly, let (Q,M) be the direct mechanism induced by the equilibrium bidding
strategies, bi, in Equations (4.34) and (4.35) where Q = (Q1, Q2) and M = (M1,M2).
Here, Qi represents the allocation rule for each network operator i ∈ {1, 2} defined by

Q1(c1, c2) =


1 if β(b1(c1), r1) < β(b2(c2), r2),

1
2

if β(b1(c1), r1) = β(b2(c2), r2),

0 otherwise,

(4.36)

for network operator 1, and

Q2(c1, c2) =


1 if β(b2(c2), r2) < β(b1(c1), r1),

1
2

if β(b2(c2), r2) = β(b1(c1), r1),

0 otherwise,

(4.37)

for network operator 2. Mi for all i ∈ {1, 2}, on the other hand, denotes the payment
rule, and is defined by

M1(c1, c2) = Q1(c1, c2)b1(c1) (4.38)

for network operator 1, and

M2(c1, c2) = Q2(c1, c2)b2(c2). (4.39)

for network operator 2. Suppose network operator 2 reveals their cost truthfully. The
equilibrium payoff  function for network operator 1 characterized by cost c1 but reveal-
ing c′1 is

˜̃u1(c
′
1) = E [M1(c

′
1, C2)− c1Q1(c

′
1, C2)]

= E [(b1(c
′
1)− c1)Q1(c

′
1, C2)]

= E [b1(c
′
1)− c1 | β(b1(c′1), r1) < β(b2(C2), r2)] . (4.40)
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It turns out that it is in network operator 1’s best interest to reveal their cost truthfully as
well; i.e., c′1 = c1. Moreover, both network operators cannot be better off  by not partic-
ipating in the auction; i.e., their equilibrium payoff  function is nonnegative, ˜̃ui(ci) ≥ 0

for all i ∈ {1, 2}. Formally,

Proposition 4.6. The direct mechanism (Q,M) where Q = (Q1, Q2) and M = (M1,M2)

satisfies both the IC and IR constraints.

This strengthens the fact that even though the network operators may bid negatively,
the auction is still attractive to them.

Thirdly, suppose that economic agents are computers who bid on behalf  of  the net-
work operators. This assumption is reasonable since there currently are estimated 6.1
billion mobile subscribers around the world [81]. In other words, bidding on a per call
basis would have to be automated by the network operators in order to make the pro-
cess manageable. One way of  achieving such an automation would be to utilise the
concept of  a direct mechanism. In a direct mechanism, economic agents submit their
costs (which need not be truthful) directly to the mechanism which then computes the
bids and chooses the winner on their behalf. By the Revelation Principle, for every
mechanism and an equilibrium for that mechanism, there exists an incentive compat-
ible direct mechanism which yields the same outcomes as in the given equilibrium of
the original mechanism (see Section B.4.2, Appendix B for the definition of  the Reve-
lation Principle). In this case, the direct mechanism (Q,M) is the direct representation
of  the DMP variant of  an FPA. Since it is incentive compatible, economic agents will
not lie about their costs. Since it is individually rational, they will find it beneficial to
participate in the mechanism. Therefore, the possibility of  one of  the network operators
bidding below their cost or negatively will not matter to any of  the network operators
and will not lead to an outcome in which the service is sold for a negative price.

4.4 Summary

In this chapter, game-theoretical model for the DMP network selection mechanism was
formally defined. Several simplifying assumptions were made in order to keep the anal-
ysis mathematically tractable. For example, the network operators and the subscriber
are risk neutral, and the subscriber does not have any budget constraints. Despite the
fact that those assumptions are not entirely representative of  the reality, following in
the footsteps of  von Neumann and Morgenstern, the mathematical theory of  an eco-
nomic phenomenon should be rigorous and developed gradually [78]. Therefore, the
simplifying assumptions made in this chapter serve as a starting point for the rigorous,
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gradual development of  the economic theory of  operation of  the DMP network selec-
tion mechanism before it can embark on capturing the reality to a high degree.

This chapter further demonstrated that for the price weight of w = 1, and equal
reputation ratings for all network operators, ri = rj for all i ̸= j, the DMP auction re-
duces to the standard, symmetric FPA (Proposition 4.2 and Corollary 4.3). In this case,
the abundance of  theoretical results and economic insight from the auction literature
applies, found, for example, in Krishna [54]. For the price weight of w = 0, however,
it was shown that the network operators would engage in abnormally high bidding
(Proposition 4.1). Hence, charging the subcriber the maximum they are prepared to
pay for the service. While this result sounds like a potential design flaw, in reality, the
subscribers will necessarily be budget constrained, and therefore, abnormally high bid-
ding of  the network operators will translate into charging the subscribers a premium
price for the service that is within the limits of  their respective budgets.

Finally, the chapter concluded with the specification of  an analytical solution to the
restricted case of  two network operators n = 2 (Proposition 4.4). The solution is subop-
timal in the sense that the derived equilibrium bidding strategies permit the network op-
erators to bid negatively. In the view of  game theory, this would imply that the network
operators are not rational decision-makers. However, it was also shown that negative
bidding does not lead to negative profit for either network operator (Proposition 4.5).
Concurrently, it was proved that the network operators would not find it beneficial not
to participate in the auction if  they were to bid according to the strategies summarised
in Proposition 4.4 (Proposition 4.6). It should further be noted that the real behaviour
of  the network operators might be dictated by the need to secure the contract with the
subscriber first and foremost, and hence, lead to negative bidding; a strategy akin to the
“loss leader” pricing strategy. However, since the ultimate aim of  this thesis is to grad-
ually develop rigorous economic theory of  operation of  the DMP auction, it is assumed
throughout this thesis that network operators will bid at least their cost.
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Chapter 5

Indirect Analysis of Network Selection

Mechanism

In this chapter, the bidding problem described in Section 4.1 is transformed from a
bidding problem with symmetric cost (or type) distributions into a bidding problem
with asymmetric cost distributions. This type of  bidding problems has already been
researched by the economic community, both in a very specific setting (two bidders,
specific cost distributions) [82, 83], and in a very general setting (n bidders, arbitrary cost
distributions) [84, 85], and hence there exist results that are applicable to the problem
at hand.

In the first instance, it is showed how the problem can be restated into a bidding
problem with asymmetric cost distributions. The discussion then proceeds to character-
ising the equilibrium bidding strategies (their existence and uniqueness) in the generic
case; that is, with an arbitrary number of  network operators and an arbitrary distri-
bution of  costs. The equilibrium bidding strategies are then explicitly derived in the
restricted case; that is, with the number of  network operators restricted to two and the
costs uniformly distributed. Finally, the chapter concludes with the presentation of  three
numerical methods that can be used to numerically approximate the equilibrium bid-
ding strategies in the case of  more than two network operators characterised by uniform
distributions of  costs.

5.1 Problem Restatement

In order to transform the problem, recall the utility function for each network operator i

ui(b, c, r) =

 bi − ci if wbi + (1− w)ri < min
j ̸=i

[wbj + (1− w)rj],

0 if wbi + (1− w)ri > min
j ̸=i

[wbj + (1− w)rj],
(5.1)
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and let

b̂i = wbi + (1− w)ri for all i ∈ N. (5.2)

Solving Equation (5.2) for bi yields

bi =
b̂i − (1− w)ri

w
, w ̸= 0. (5.3)

Substituting Equation (5.3) back into the utility function yields

ui(b̂, c, r) =


1

w

[
b̂i − (wci + (1− w)ri)

]
if b̂i < min

j ̸=i
b̂j,

0 if b̂i > min
j ̸=i

b̂j.

(5.4)

Further let

ĉi = wci + (1− w)ri for all i ∈ N, (5.5)

then the utility function simplifies to

ui(b̂, ĉ) =


1

w

(
b̂i − ĉi

)
if b̂i < min

j ̸=i
b̂j,

0 if b̂i > min
j ̸=i

b̂j.

(5.6)

The rest of  this thesis concentrates on the utility function with the scaling factor, 1/w,
omitted; that is, let

ûi(b̂, ĉ) = w · ui(b̂, ĉ) (5.7)

for all i ∈ N . In fact, it can be noted that the pure-strategy Bayesian Nash equilibrium
for the auction with utility function in Equation (5.7) constitutes an equilibrium for the
auction with utility function in Equation (5.6). Formally,

Proposition 5.1. Suppose (b̂∗1, . . . , b̂∗n) is a pure-strategy Bayesian Nash equilibrium profile for
an auction with the utility function

ûi(b̂i, ĉi, b̂−i, ĉ−i) =


(
b̂i − ĉi

)
if b̂i < min

j ̸=i
b̂j,

0 if b̂i > min
j ̸=i

b̂j.
(5.8)
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Then, the same profile constitutes an equilibrium for an auction with the utility function

ui(b̂i, ĉi, b̂−i, ĉ−i) =
1

w
· ûi(b̂i, ĉi, b̂−i, ĉ−i). (5.9)

In order to avoid ambiguity, ĉi will be referred to as cost-hat and b̂i as bid-hat, while
ci will still be referred to as cost and bi as bid. Note, moreover, that since both w and ri
are assumed to be given to the network operators (i.e., they cannot directly modify their
values), the costs-hat and bids-hat are simply convex (and hence, linear) combinations
involving costs and bids respectively (Equations (5.2) and (5.5)). Therefore, a network
operator bidding their cost-hat is equivalent to bidding their cost.

As a result of  this transformation, the costs-hat, ĉi, for each network operator i are
distributed over the interval

ĉi ∈ [(1− w)ri, (1− w)ri + w] = [ĉi,
¯̂ci] (5.10)

since ci ∈ [0, 1] for all i ∈ N . Note, moreover, that for all i ∈ N

[ĉi,
¯̂ci] ⊂ [0, 1] (5.11)

since w ∈ (0, 1) and ri ∈ [0, 1], and in particular, if w = 1

[ĉi,
¯̂ci] = [0, 1]. (5.12)

Therefore, in terms of  costs-hat, the network operators are ex ante asymmetric; that is,
due to differing domains of  costs-hat between the network operators, the probability
distributions will have differing supports.

With these results at hand, the discussion can proceed with the characterisation of
the equilibrium bidding strategies in the generic case, which is the subject of  the next
section.

5.2 Generic Case

In the generic case, with arbitrary probability distributions of  costs and n ≥ 2 network
operators, recall that: if w = 0, then Proposition 4.1 holds; if w = 1, then Proposi-
tion 4.2 holds; and if ri = rj for all i, j ∈ N such that i ̸= j, then Corollary 4.3 holds.
Therefore, it suffices to consider only the case when w ∈ (0, 1).

Firstly, note that under the generic assumptions specified in Section 4.1 and w ∈
(0, 1], the problem satisfies the following regularity conditions.

54



Proposition 5.2 (Regularity Conditions). Let Fi be the distribution function of ĉi for all
i ∈ N , and suppose w ∈ (0, 1]. Then,

1. the support of Fi is an interval [ĉi, ¯̂ci];

2. Fi is differentiable over (ĉi, ¯̂ci] with a derivative fi locally bounded away from zero over this
interval; and

3. Fi is atomless.

The regularity conditions in Proposition 5.2 correspond to the regularity assump-
tions on type distributions put forward by Lebrun [85] (cf. Assumptions A.1 in [85]).
Therefore, since the problem satisfies Lebrun’s assumptions, his results are applicable.

Further assume that

Assumptions 5.1. Assume that

1. w ∈ (0, 1);

2. there exists i ∈ N such that ri ̸= rj for all i ̸= j and j ∈ N ; and

3. without loss of  generality, let network operator 1 be characterized by the lowest
reputation rating; that is, r1 ≤ ri for all i ∈ N such that i ̸= 1. If  there exists
j ∈ N such that j ̸= 1 and r1 = rj , then it is further assumed that there exists
δ > 0 such that Fi is strictly log-concave over (¯̂c1 − δ, ¯̂c1) ∩ (ĉi,

¯̂ci) for all i ∈ N .

In equilibrium, the bids of  each network operator equal b̂i = b̂i(ĉi), where b̂i is
the equilibrium bidding function. Denote by ĉi(b̂i) = b̂−1

i (b̂i) an inverse equilibrium
bidding function for each network operator i ∈ N . Therefore, the expected utility for
each network operator i ∈ N can be written as

Πi(b̂i, ĉi, b̂−i, ĉ−i) = (b̂i − ĉi)P{winning | b̂i} (5.13)

= (b̂i − ĉi)Qi(b̂i),

where

Qi(b̂i) =
∏
j ̸=i

(
1− Fj(ĉj(b̂i))

)
(5.14)

is the probability that network operator i is the lowest bidder.
The first order condition for maximising network operator i’s expected utility is

d

db̂i
Πi(b̂i, ĉi, b̂−i, ĉ−i) = Qi(b̂i) + (b̂i − ĉi) ·

d

db̂i
Qi(b̂i) = 0, (5.15)
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where

d

db̂i
Qi(b̂i) = (−1)

∑
j ̸=i

fj(ĉj(b̂i))
d

db̂i
ĉj(b̂i)

∏
k ̸=j

(
1− Fk(ĉk(b̂i))

)
. (5.16)

Noting that in equilibrium ĉi = ĉi(b̂i), letting b̂i = b, and rearranging terms in
Equation (5.15) yields

1

b− ĉi(b)
=

∑
j ̸=i fj(ĉj(b))

d
db
ĉj(b)

∏
k ̸=j (1− Fk(ĉk(b)))∏

j ̸=i (1− Fj(ĉj(b)))

=
∑
j ̸=i

fj(ĉj(b))

1− Fj(ĉj(b))
· d
db
ĉj(b). (5.17)

Summing Equation (5.17) over all n network operators yields

1

n− 1

n∑
i=1

1

b− ĉi(b)
=

n∑
i=1

fi(ĉi(b))

1− Fi(ĉi(b))
· d
db
ĉi(b). (5.18)

Subtracting Equation (5.17) from (5.18) yields

1

n− 1

n∑
i=1

1

b− ĉi(b)
− 1

b− ĉi(b)
=

fi(ĉi(b))

1− Fi(ĉi(b))
· d
db
ĉi(b) (5.19)

which leads to the system of  nonlinear ordinary differential equations (ODE)

d

db
ĉi(b) =

1− Fi(ĉi(b))

fi(ĉi(b))

[
1

n− 1

n∑
i=1

1

b− ĉi(b)
− 1

b− ĉi(b)

]
(5.20)

for i = 1, 2, . . . , n. As will be shown briefly, there exists a unique set of  inverse bidding
functions that satisfy the system and constitute a pure-strategy Bayesian Nash equilib-
rium where network operators submit at least their costs-hat. Firstly, few concepts need
to be defined (cf. Definitions 1, 2 and 3 in Lebrun [85]).

Definition 5.1 (Upper bound on bids). Let Assumptions 5.1 be satisfied. Then, the
upper bound on bids is defined as follows

¯̂
b = min arg max

b∈[¯̂c1,¯̂c2]
(b− ¯̂c1)

∏
i>1

(1− Fi(b)) . (5.21)

Definition 5.2 (Feasible bidders). Let Assumptions 5.1 be satisfied. Let J denote the
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set of  feasible bidders. Then, J is a subset of N such that

J =
{
j
∣∣∣ 1 ≤ j ≤ n and ĉj <

¯̂
b
}
. (5.22)

Furthermore, let n′ = |J |.

Definition 5.3 (Characterisation of  lower bound on bids). Let Assumptions 5.1 be
satisfied. Then,

1. For all b̂ ∈ (ĉ2,
¯̂
b), there exists one and only one k(b̂) ∈ {2, . . . , n} such that

ĉk(b̂) < b̂ and

1

b̂− ĉk(b̂)
≤ 1

k(b̂)− 1

k(b̂)∑
i=1

1

b̂− ĉi
, (5.23)

and if ĉk(b̂)+1 < b̂ (and k(b̂) < n)

1

k(b̂)− 1

k(b̂)∑
i=1

1

b̂− ĉi
<

1

b̂− ĉk(b̂)+1

. (5.24)

The proof  of  this assertion can be found in Lebrun [86] (see Lemma A4.1, Ap-
pendix 4).

2. For all b̂ ∈ (ĉ2,
¯̂
b), let ĉ(b̂) be defined as follows

ĉ(b̂) = b̂−
(
k(b̂)− 1

)
/

k(b̂)∑
i=1

1

b̂− ĉi

. (5.25)

Note that Definition 5.3 implies

ĉk(b̂) ≤ ĉ(b̂) < ĉk(b̂)+1 if k(b̂) < n,

and ĉk(b̂) ≤ ĉ(b̂) if k(b̂) = n.
(5.26)

With those definitions at hand, the discussion can proceed with the characterisation
of  the equilibrium which is due to Lebrun [85].

Proposition 5.3 (Characterisation of  the Equilibrium). Let Assumptions 5.1 be satisfied.
There exists one and only one pure-strategy Bayesian Nash equilibrium where network operators submit
at least their costs-hat. In every such equilibrium, network operator i ∈ J follows a bid function b̂i, for
all 1 ≤ i ≤ n. Moreover, there exists b̂ ∈ (ĉ2,

¯̂
b) such that, for all i ∈ J , there exists a continuous

extension of b̂i to the interval
[
min{ĉi, ĉ(b̂)},

¯̂
b
]

that is differentiable with a strictly positive derivative
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everywhere over this interval, except possibly at ĉi or when its value is equal to ¯̂b, and such that the
inverse bid functions ĉi for all i ∈ J of  these extensions, where differentiable, satisfy the following
system of  differential equations

d

db
ĉi(b) =

1− Fi(ĉi(b))

fi(ĉi(b))

[
1

n− 1

n∑
k=1

1

b− ĉk(b)
− 1

b− ĉi(b)

]
(5.27)

for all 1 ≤ i ≤ n, with the following lower boundary condition

ĉi(b̂) = min
{
ĉi, ĉ(b̂)

}
for all i ∈ J (5.28)

and the upper boundary condition

ĉi(
¯̂
b) =

¯̂
b (5.29)

for all, except possibly one, 1 ≤ i ≤ n.

It is worth noting that, to the best of  the author’s knowledge, the system of  ODEs
in Equation (5.27) with boundary conditions (5.28) and (5.29) is unique to the domain
of  auction theory. This can be attributed to the fact that the derivation of  the system
involves the inverses of  the equilibrium bidding strategy functions (as opposed to the
equilibrium bidding strategy functions themselves), and unknown a priori lower bound
on bids, b̂.

The intuition behind the upper boundary condition in Equation (5.29) is that the
network operator bids their cost-hat when their probability of  winning is zero. Ignoring
the minimum operator, the intuition behind the lower boundary condition in Equa-
tion (5.28) on the other hand, is that the lowest bid-hat of  each network operator is
reached for their lowest cost-hat.

Since both w and ri are assumed to be given to the network operators (i.e.,
they cannot directly modify their values), the costs-hat and bids-hat are simply con-
vex (and hence, linear) combinations involving costs and bids respectively (Equa-
tions (5.2) and (5.5)). Therefore, a network operator bidding their cost-hat is equivalent
to bidding their cost, and the following corollary can immediately be deduced.

Corollary 5.4. Let Assumptions 5.1 be satisfied. There exists one and only one pure-strategy
Bayesian Nash equilibrium where network operators submit at least their costs.

Even though it is guaranteed that there exists a unique equilibrium to the problem,
the establishment of  a closed-form solution to the system of  ODEs for n ≥ 2 network
operators and arbitrary cost distribution is very difficult (if  possible), and for n > 2 is
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not possible [85, 54]. However, it is possible to explicitly derive the equilibrium bidding
strategy functions in a much restricted setting with two network operators characterised
by uniform distributions of  costs. This is explored in the next section.

5.3 Restricted Case n = 2

Let n = 2 network operators, and assume costs, ci, for both network operators are
drawn from the uniform distribution. Furthermore, let Assumptions 5.1 be satisfied.
Without loss of  generality, suppose r1 < r2, which implies ĉ1 < ĉ2 and ¯̂c1 < ¯̂c2. The
utility function for each i ∈ {1, 2} is

ui(b̂, ĉ) =



1

w

(
b̂i − ĉi

)
if b̂i < b̂j,

1

2w

(
b̂i − ĉi

)
if b̂i = b̂j,

0 if b̂i > b̂j.

(5.30)

Since the distribution of  costs, ci, for each network operator i is uniform with support
[0, 1], the distribution of  costs-hat, ĉi, for each network operator i is uniform with sup-
port [ĉi, ¯̂ci] = [(1− w)ri, (1− w)ri + w]. Therefore, the distribution function of  costs-
hat satisfies the regularity conditions specified in Proposition 5.2, and by Corollary 5.4,
it can be concluded that the pure-strategy Bayesian Nash equilibrium where network
operators submit at least their costs exists and is unique.

The derivation of  the equilibrium involves three stages: 1) deriving equilibrium in-
verse bidding strategy functions using the procedure described by Kaplan and Za-
mir [82]; 2) numerically estimating the equilibrium bidding strategy functions by in-
verting the inverses; and 3) transforming the problem back to the original domain (from
costs-hat and bids-hat back to costs and bids).

First, note that, by Definition 5.1, the upper bound on bids is equal to

¯̂
b = min arg max

b∈[¯̂c1,¯̂c2]

(b− ¯̂c1)(¯̂c2 − b)
¯̂c2 − ĉ2

=
¯̂c1 + ¯̂c2

2
, (5.31)

where the fact that F2 is the distribution function of  the uniform distribution with sup-
port [ĉ2, ¯̂c2] was used.

If ¯̂b ≤ ĉ2 ⇐⇒ ¯̂c1 ≤ 2ĉ2 − ¯̂c2, then, by Definition 5.2, only network operator 1 is
a feasible bidder. In this case, any pure-strategy Bayesian Nash equilibrium must have
network operator 1 always bidding ĉ2, and hence, always winning the auction at price
ĉ2 [82]. Henceforth, this case will be referred to as trivial. Otherwise, in the nontrivial
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case, by Proposition 5.3, the inverse equilibrium bidding functions are determined by
the system

d

db
ĉ1(b) =

¯̂c1 − ĉ1(b)
b− ĉ2(b)

d

db
ĉ2(b) =

¯̂c2 − ĉ2(b)
b− ĉ1(b)

(5.32)

with boundary conditions (cf. boundary conditions in [82]) ĉ1(b̂) = ĉ1 and ĉ1(
¯̂
b) = ¯̂c1

for network operator 1, and ĉ2(b̂) = ĉ2 and ĉ2(
¯̂
b) =

¯̂
b for network operator 2.

Note that, since n = 2, k(b̂) = 2 by Definition 5.3. Hence, by (5.26), ĉ2 ≤ ĉ(b̂),
and since ĉ1 < ĉ2, this reduces the lower boundary condition in Equation (5.28) to
ĉi(b̂) = ĉi for all i ∈ {1, 2}.

Integrating the system (5.32) bounded by the aforementioned boundary conditions
results in the derivation of  the equilibrium inverse bidding strategy functions. The
derivation procedure is fully described in Kaplan and Zamir [82]; hence, only the final
result is provided.

Proposition 5.5. Let there be n = 2 network operators, and suppose ci is independently drawn
from uniform distribution over the interval [0, 1] for all i ∈ {1, 2}. Furthermore, let Assumptions 5.1
be satisfied. The equilibrium inverse bidding strategy functions are given by

ĉ1(b) = ¯̂c1 +
(¯̂c2 − ¯̂c1)

2

(¯̂c2 + ¯̂c1 − 2b)d1 exp
( ¯̂c2 − ¯̂c1
¯̂c2 + ¯̂c1 − 2b

)
+ 4(¯̂c2 − b)

, (5.33)

ĉ2(b) = ¯̂c2 +
(¯̂c1 − ¯̂c2)

2

(¯̂c1 + ¯̂c2 − 2b)d2 exp
( ¯̂c1 − ¯̂c2
¯̂c1 + ¯̂c2 − 2b

)
+ 4(¯̂c1 − b)

, (5.34)

where

d1 =

(¯̂c2 − ¯̂c1)
2

ĉ1 − ¯̂c1
+ 4(b̂− ¯̂c2)

−2(b̂− ¯̂
b)

exp

(
¯̂c2 − ¯̂c1

2(b̂− ¯̂
b)

)
, (5.35)

d2 =

(¯̂c1 − ¯̂c2)
2

ĉ2 − ¯̂c2
+ 4(b̂− ¯̂c1)

−2(b̂− ¯̂
b)

exp

(
¯̂c1 − ¯̂c2

2(b̂− ¯̂
b)

)
, (5.36)
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and

b̂ =
ĉ1ĉ2 −

(¯̂c1 + ¯̂c2)
2

4
ĉ1 − ¯̂c1 + ĉ2 − ¯̂c2

,
¯̂
b =

¯̂c1 + ¯̂c2
2

. (5.37)

It is worth noting that, if  the network operators are assumed to submit at least their
costs, then Proposition 4.4 is ruled out by Proposition 5.3 combined with Proposition 5.5
since the latter establishes an analytical solution to the bidding problem while Proposi-
tion 5.3 makes this solution unique. However, if  the assumption that network operators
submit at least their costs is relaxed, then, as shown by Kaplan and Zamir [87], Propo-
sition 5.3 need no longer hold, and hence, there may exist multiple equilibria in the
first-price sealed-bid auction bidding problem. As a result, both equilibria summarised
in Proposition 5.5 as well as Proposition 4.4 are valid. Kaplan and Zamir [87], who clas-
sify equilibria like the one specified in Proposition 4.4 as non-standard, further argue
that such equilibria are important and should not be neglected since they may result
in different network operators winning the auction, and as a result, different expected
prices. In other words, relaxing the assumption about network operators submitting at
least their cost might help in understanding the “deviations” from the predicted equi-
librium bidding behaviour prescribed in Proposition 5.5 should these occur in reality.
Here, those “deviations” may be captured by non-standard equilibria.

The equilibrium inverse bidding strategy functions are inconvenient to work with:
for a particular bid-hat value, they map into a particular cost-hat for either network
operator. It would be more intuitive to work with their inverses, where for a particular
cost-hat, a particular bid-hat is obtained. Since inverting the equilibrium inverse bidding
strategy functions in Equations (5.33) and (5.34) is analytically intractable, numerical
method is proposed that can be employed to estimate the inverses for a particular set of
cost-reputation pairs with respect to the price weights for both network operators.

Listing 5.1 depicts the pseudo-code of  the proposed method. The steps of  the algo-
rithm can be summarised as follows:

1. For a particular price weight w and reputation ratings r1 and r2, calculate the
costs-hat supports for both network operators; that is, the endpoints of  the interval
[ĉ1,

¯̂c1] for network operator 1, and [ĉ2,
¯̂c2] for network operator 2 (lines 1–4).

2. If ¯̂c1 ≤ 2ĉ2− ¯̂c2, then the equilibrium is trivial. Network operator 1 bids the lower
endpoint of  the cost-hat support of  network operator 2; that is, network operator
1 bids ĉ2 for all ĉ ∈ [ĉ1,

¯̂c1]. Network operator 2, on the other hand, bids their
cost-hat; that is, network operator 2 bids ĉ for all ĉ ∈ [ĉ2,

¯̂c2] (lines 6–9).

3. If ¯̂c1 > 2ĉ2 − ¯̂c2, then the equilibrium is nontrivial. Hence,

61



Algorithm 5.1 Inverse of  equilibrium inverse bidding strategy functions
Input: w ∈ (0, 1]; r1, r2 ∈ [0, 1] such that r1 ≤ r2
Output: Tabulation of  functions b̂i(ĉi) for all i ∈ {1, 2}: (ĉ1, b̂1) and (ĉ2, b̂2)

1 ĉ1← (1− w)r1
2 ¯̂c1← (1− w)r1 + w

3 ĉ2← (1− w)r2
4 ¯̂c2← (1− w)r2 + w

5 if ¯̂c1 ≤ 2ĉ2 − ¯̂c2 then
6 ĉ1← {ĉ1, . . . , ¯̂c1}
7 b̂1← {ĉ2, . . . , ĉ2}

8 ĉ2← {ĉ2, . . . , ¯̂c2}
9 b̂2← {ĉ2, . . . , ¯̂c2}
10 else
11 b̂← compute using (5.37)
12

¯̂
b← compute using (5.37)

13 b̂1← {b̂, . . . , ¯̂b}
14 ĉ1← compute using (5.33) for all b ∈ b̂1

15 b̂2← {b̂, . . . , ¯̂c2}
16 ĉ2← compute using (5.34) for all b ∈ b̂2
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(a) Calculate the common bids-hat support [b̂, ¯̂b] using Equation (5.37) (lines
11–12).

(b) For all b̂ ∈ [b̂,
¯̂
b], calculate the corresponding costs-hat for both network

operators using Equations (5.33) and (5.34). Since by assumption r1 < r2,
it follows that ¯̂c1 ≤ ¯̂c2, and hence, ¯̂b ≤ ¯̂c2. Thus, network operator 2 bids
their cost-hat, ĉ2(b̂) = ĉ2 for all b̂ ∈ [

¯̂
b, ¯̂c2] (lines 13–16).

The result of  the steps described above is the tabulation of  the costs-hat and their
corresponding equilibrium bids-hat for a particular price weight w, and reputation rat-
ings r1 and r2 for both network operators, in the ranges [ĉ1, ¯̂c1] for network operator 1
and [ĉ2,

¯̂c2] for network operator 2.
Denote by

b̂1(ĉ1) = b̂1 for all ĉ1 ∈ [ĉ1,
¯̂c1], (5.38)

and

b̂2(ĉ2) = b̂2 for all ĉ2 ∈ [ĉ2,
¯̂c2] (5.39)

the resultant equilibrium bidding strategy functions. The problem can be transformed
back into the original domain by substituting Equations (5.2) and (5.5) into Equa-
tions (5.38) and (5.39); that is,

b̂1(ĉ1) = b̂1 ⇐⇒ b1 =
b̂1(wc1 + (1− w)r1)− (1− w)r1

w
(5.40)

for all c1 ∈ [0, 1], and

b̂2(ĉ2) = b̂2 ⇐⇒ b2 =
b̂2(wc2 + (1− w)r2)− (1− w)r2

w
(5.41)

for all c2 ∈ [0, 1]. Keeping costs and reputation ratings fixed, one can then estimate the
equilibrium bidding strategy functions with respect to the price weights by sliding the
value of w ∈ (0, 1).

By way of  example, the equilibrium bidding strategy functions were estimated for
the set of  cost-reputation pairs depicted in Table 5.1. Figure 5.1 shows the value of
the compound bid, β(bi, ri), for different values of w for both network operators, while
Figure 5.2 depicts the value of  the monetary bid (or offered price), bi, for different values
ofw for both network operators. The numerical data in Table 5.1 suggests that network
operator 2 should be the winner for the values ofw → 1 since network operator 2’s cost
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Table 5.1
An exemplary set of  cost-reputation pairs of  two network operators

Cost, ci Reputation rating, ri
Network operator 1 0.75 0.25
Network operator 2 0.25 0.75

is strictly lower than that of  their opponent’s. On the other hand, network operator
1 should be winner for the values of w → 0 since network operator 1’s reputation
rating is strictly lower than that of  their opponent’s (which implies that network operator
1’s reputation is in fact strictly higher than that of  their opponent’s). This prediction
agrees with the numerical output shown in Figure 5.1. Let wc denote the value of w for
which an intersection between the compound bids of  both network operators occurs (if
it exists). In Figure 5.1, wc ≈ 0.365. Hence, network operator 2 wins the auction for
the values of wc < w < 1, while network operator 1 for the values of 0 < w < wc.

Note, furthermore, that since it was explicitly required for the network operators
to bid their own costs when their probability of  winning is zero, the monetary bid of
network operator 2 is capped at their cost, b2 = 0.25, for the values of 0 < w ≤ w0

where w0 ≈ 0.265 (see Figure 5.2). In the same range of w, as w decreases, network
operator 1’s bid increases in an exponential-like fashion, to finally culminate in b1 →∞
at w = 0 in accordance with Proposition 4.1. As w → 1, on the other hand, the
monetary bids of  both network operators tend to the values specified in Proposition 4.2,
that is, b1 = 0.875 and b2 = 0.625, to finally attain those values at w = 1.

Having derived the equilibrium bidding strategy functions, it is possible to examine
the expected prices the subscriber will have to pay for different values of  the price weight
given the reputation ratings of  the network operators. This is examined next.

5.3.1 Subscriber’s Perspective: Expected Prices

Suppose there are two network operators, and costs are uniformly distributed over the
interval [0, 1]. The expected price is equivalent to the expected value of  the winning
bid; that is,

E[p](w, r1, r2) = E[bi | arg min
i∈{1,2}

β(w, bi, ri)], (5.42)

where bi is the equilibrium bid, and β(w, bi, ri) = β(bi, ri) evaluated for a particular
value of w for all i ∈ {1, 2}.

If  both network operators have equal reputation ratings, r = r1 = r2 say, then
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Corollary 4.3 holds for all w ∈ [0, 1]. Therefore, regardless of  the choice of  the price
weight, the subscriber expects to pay the price of

E[p∗] = E[p](w, r, r) = E

[
min

i∈{1,2}

1 + ci
2

]
for all w ∈ [0, 1], (5.43)

which is equivalent to Equation (4.20) evaluated at n = 2. In particular, for costs, ci,
uniformly distributed over the interval [0, 1], E[p∗] = 2

3
.

If, on the other hand, both network operators are characterised by different reputa-
tion ratings, then an analytical derivation of  the expected prices for each value of  the
price weight given a pair of  reputation ratings is cumbersome. This is due to the fact
that network operators bid according to a pair of  inverse equilibrium bidding functions
specified in Proposition 5.5, which are not easily invertible. Hence, numerical method
is used to estimate average (sample mean) prices for selected values of  the price weight
given a pair of  reputation ratings.

To this end, for any given pair of  reputation ratings, the costs are pseudo-randomly
drawn from the uniform distribution over the discretised interval [0, 1]. For each selected
price weight, the average price is averaged over 10,000 i.i.d. observations. The Strong
Law of  Large Numbers implies that as the number of  observations tends to infinity, the
average (sample mean) of  the observations approaches the real mean of  the distribution
of  the r.v. in question (see Section B.3.2, Appendix B for the definition of  the Strong
Law of  Large Numbers). Furthermore, it was empirically established that averaging
over more than 10,000 observations does not drastically improve the results; that is,
the already narrow 95% confidence intervals do not get narrower as the number of
observations increases beyond 10,000. In other words, 10,000 is large enough a sample
size, and therefore, an average of  10,000 observations of  the price for each selected
price weight should provide a reasonable approximation of  the expected price for that
price weight. Without loss of  generality, suppose further that r1 ≤ r2. Figure 5.3 shows
the result of  the estimation for four pairs of  reputation ratings: (r1, r2) = (0.25, 0.25),
(0.25, 0.5), (0.25, 0.75), and (0.25, 1.0).

It can be observed that regardless of  the values of  the reputation ratings, the expected
prices, E[p](w, r1, r2), are bounded from below by E[p∗] for each price weight; this is
depicted in Figure 5.3. Hence, it can be concluded that regardless of  the values of  the
reputation ratings, the lowest expected price is achieved forw = 1, and will not decrease
as w decreases; in fact, it can only either increase or remain constant.

Furthermore, as the difference (r2−r1) increases, the expected prices,E[p](w, r1, r2),
increase as the price weight decreases; this is depicted in Figure 5.3. Therefore, it can
be hypothesised that the smaller the difference (r2 − r1), the less (expected) price sen-
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sitive the price weight; that is, for any w1 ∈ [0, 1], if (r(2)2 − r
(2)
1 ) > (r

(1)
2 − r

(1)
1 ) for

all r(1)1 , r
(1)
2 , r

(2)
1 , r

(2)
2 ∈ [0, 1], then E[p](w1, r

(2)
1 , r

(2)
2 ) ≥ E[p](w1, r

(1)
1 , r

(1)
2 ) (see Fig-

ure 5.4). In other words, for any expected price, as the difference (r2− r1) between the
reputation ratings of  the network operators increases, the price weight has to increase
(or remain constant) in order to keep the expected price fixed. This observation carries
very serious implications on the operation of  the DMP, as the subscriber is effectively
given the ability to influence the expected prices by an appropriate choice of  the price
weight. To illustrate, suppose there are 2 network operators characterised by reputation
ratings (r1, r2). Suppose further that the subscriber paid the price of p1 at some point
in the past for some type of  service, and they request the same service again. Therefore,
in order to pay the expected price of  at most p1, the subscriber solves

p1 ≥ E[p1](w, r1, r2) (5.44)

for the price weight w. In this way, the subscriber is guaranteed the expected price of  at
most p1.

As already mentioned in the previous section, the bidding problem does not possess
a closed-form solution in the case of  more than two network operators. However, it
is possible to approximate the solution numerically, as it will be discussed in the next
section. It should further be noted that the equilibrium bidding strategies derived in
this section will be used to verify the correctness of  the numerical methods presented in
the next section.

5.4 Numerical Analysis

Precisely because the system of  ODEs (5.27) together with the lower and upper bound-
ary conditions (5.28) and (5.29) does not possess any known closed-form solution in a
generic setting, and especially when n > 2, there exists a considerable research base
studying methods for numerical approximation of  the solution to the system of  ODEs
in question. See Hubbard and Paarsch [88] for an excellent overview of  the subject.

The literature is mostly concerned with asymmetric first-price auctions in which
the bidders are characterised by different probability distributions sharing a common
support; that is, Fi(x) ̸= Fj(x) for at least one i ∈ N such that i ̸= j, j ∈ N , and for
all x ∈ [ĉ, ¯̂c] where [ĉ, ¯̂c] = [ĉi,

¯̂ci] for all i ∈ N . This is not true in this case. Therefore,
the methods described in Hubbard and Paarsch [88] have to be adapted before they
can be applied to the problem under investigation here.

Firstly, it should be noted that there exist many methods for numerically approx-
imating the solutions to a system of  (ordinary or partial) differential equations; but,
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finite-difference methods, such as Euler or Runge-Kutta methods, are particularly well
suited to solving systems of  ODEs [89, 90]. In the problem at hand, since the system of
ODEs satisfies the Lipschitz condition of  continuity at the lower boundary condition b̂,
if b̂ was known, standard finite-difference methods would apply [91] (see Section B.2.2,
Appendix B for the definition of  Lipschitz condition). However, this is not true in ei-
ther scenario, the one considered in the literature and the one at hand: the common
lower bound on bids, b̂, is unknown a priori [88]. On the other hand, since the common
upper bound on bids, ¯̂b, is known a priori, it would seem that the finite-difference meth-
ods could be applied to the system of  ODEs in Equation (5.27) with the upper bound
on bids as a starting point (the so-called terminal value problem as opposed to the more
common initial value problem). As shown by Hubbard and Paarsch [88], the system does
not satisfy the Lipschitz condition as the solution approaches the upper bound on bids,
¯̂
b. Therefore, much of  the theory of  ordinary differential equations no longer applies.
In practice, this effectively means that the numerical solution obtained using a finite-
difference method applied to the terminal value problem will quickly diverge. This is
depicted in Figure 5.5. In this scenario, there are 2 network operators characterised by
reputation ratings r1 = 0.25 and r2 = 0.75, and the price weight is set to w = 0.5.
The 4th-order backwards Runge-Kutta method is used to numerically solve the terminal
value problem. It is clear in the figure that the numerical solution tracks the analytical
equilibrium path only for b̂ ∈ [0.72, 0.75], while it diverges for all the remaining values
of  bid-hat, b̂ ∈ [0.515625, 0.72). Note, further, that after the solution diverges, it never
recovers rendering the approximation useless.

In this section, two numerical algorithms are considered which overcome the afore-
mentioned problem: the forward shooting method (FSM), and the polynomial projec-
tion method (PPM), both of  which were first proposed by Bajari [91]. It is worth noting
that the problem naturally fits into the framework of  the FSM method since, as dis-
cussed in the previous paragraph, if  the lower boundary condition, b̂, was known, stan-
dard finite-difference methods could be used to a great success in finding a numerical
solution to the system of  ODEs. As demonstrated in the subsequent section, the FSM
method tries iteratively to guess the lower boundary condition, and for each guess, it
then uses finite-difference methods to numerically solve the system of  ODEs. Further-
more, the thesis focuses on the FSM and PPM methods since they are the simplest out
of  all of  the available algorithms described in Hubbard and Parsch [88], and hence,
they pose the least technical difficulties when adapting to the problem at hand, and yet
yield numerical results of  acceptable quality to permit conlusions to be drawn. To this
end, let costs, ci, be drawn from a uniform distribution for all network operators as in
Section 5.3. Again, this implies that the distribution of  costs-hats, ĉi, is uniform with
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supports [ĉi, ¯̂ci] = [(1 − w)ri, (1 − w)ri + w] for all i ∈ N . The discussion concen-
trates only on cases in which J = N ; that is, ĉi <

¯̂
b for all i ∈ N . In particular, it

is required w ∈ (0.5, 1) which immediately implies ĉi <
¯̂
b for all i ∈ N . To see this,

without loss of  generality, suppose r1 ≤ · · · ≤ rn with at least one inequality strict.
Since ¯̂b ∈ [¯̂c1, ¯̂c2] by Definition 5.1, and in particular, if ĉn < ¯̂c1, then ĉn <

¯̂
b. Thus, it is

required ĉn = (1−w)rn < (1−w)r1+w = ¯̂c1. This is equivalent to 1− 1
1+rn−r1

< w.
Since (rn − r1) ∈ (0, 1], then 1 − 1

1+rn−r1
∈ (0, 0.5]. Therefore, if 0.5 < w, then

1− 1
1+rn−r1

< w for all (rn − r1) ∈ (0, 1].
Furthermore, note that assumption 3 in Assumptions 5.1 is satisfied even if  there

exists two or more network operators characterised by the lowest reputation rating. To
see this, let, without loss of  generality, network operators 1 and 2 be characterised by the
lowest reputation rating. Then, ¯̂c1 = ¯̂c2. Recall that ¯̂b ∈ [¯̂c1, ¯̂c2] by Definition 5.1. Thus,
¯̂
b = ¯̂c1. For assumption 3 in Assumptions 5.1 not to hold, it is required ¯̂

b = ¯̂c1 ≤ ĉi for
any i ∈ N and any δ > 0. But this means network operator i is not a feasible bidder;
that is, i ̸∈ J by Definition 5.2. A contradiction since it was assumed J = N . Now, let
δ =

¯̂
b− ĉn > 0 where n = |N |; that is, r1 ≤ rn. Then,

(
¯̂
b− δ, ¯̂b) ∩ (ĉi,

¯̂ci) = (ĉn,
¯̂
b) ∩ (ĉi,

¯̂ci) = (ĉn,
¯̂
b) (5.45)

for all i ∈ N . The resulting set is convex, and since (ĉn,
¯̂
b) ⊂ [ĉi,

¯̂ci] for all i ∈ N , this
implies that Fi is strictly log-concave over (¯̂b− δ, ¯̂b) ∩ (ĉi,

¯̂ci) for all i ∈ N .
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Finally, the discussion will concentrate on cases such that

ĉi ≤ ĉ(b̂) for all i ∈ N. (5.46)

This requirement simplifies the problem so that it is numerically tractable using exist-
ing numerical methods. More specifically, it reduces the lower boundary condition in
Equation (5.28) to

ĉi(b̂) = ĉi for all i ∈ N. (5.47)

The ultimate aim of  the numerical analysis is to obtain a numerical approximation to
the equilibrium bidding strategies for all bidding scenarios that involve feasible bidders
(cf. Definition 5.2). However, as shown below, the assumption (5.46) restricts the choice
of  the price weight and the reputation ratings to a subset of  all possible bidding scenarios
involving feasible bidders. Without this assumption, as explained by Lebrun [85], there
might exist i such that

ĉ(b̂) < ĉi <
¯̂
b (5.48)

which forces the bid function b̂i to be extended to the interval [ĉ(b̂), ¯̂b], which is strictly
larger than the actual support, truncated at ¯̂b, [ĉi,

¯̂
b] of  network operator i’s cost. This

result is somewhat confusing since even though Fi(ĉi) = 0 for all ĉi ∈ [ĉ(b̂), ĉi],
b̂i(ĉi) is still network operator i’s best response for all ĉi ∈ [ĉ(b̂), ĉi]. The main dif-
ficulty when considering such cases stems from the fact that for all i ∈ I , where
I =

{
i ∈ N

∣∣∣ ĉ(b̂) < ĉi <
¯̂
b
}

, the system of  ODEs in Equation (5.27) reduces to

0 =
1

n− 1

n∑
k=1

1

b− ĉk(b)
− 1

b− ĉi(b)
. (5.49)

As further explained by Lebrun [85], the (inverse) equilibrium bidding functions are
then determined by

d

db
ĉj(b) =

1− Fj(ĉj(b))

fj(ĉj(b))

 1

k(b̂)− 1

∑
k∈N
k ̸∈I

1

b− ĉk(b)
− 1

b− ĉj(b)

 (5.50)

for network operators j ∈ N, j ̸∈ I , and by the system in Equation (5.49) for network
operators i ∈ I . Both systems are combined for all b > b̂ until the common function
ĉi, i ∈ I , takes as its value the smallest lower extremity strictly smaller than ĉ(b̂). At the
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bid where this next smallest lower extremity is reached, the functions ĉi of  the network
operators with this lower extremity of  their supports are added to the system in Equa-
tion (5.50). This process is repeated until ĉi for all i ∈ N are included in (5.50). This
procedure is not easily accommodated by any of  the numerical methods described in
the literature; hence, the assumption

ĉi ≤ ĉ(b̂) for all i ∈ N. (5.51)

Note, however, that this assumption cannot be enforced a priori since b̂ is unknown. The
(approximate) probability of  enforcing this condition can be maximised by reasoning as
follows. Without loss of  generality, suppose r1 ≤ · · · ≤ rn with at least one inequality
strict. If k(b̂) = n, then, by Definition 5.3, ĉn ≤ ĉ(b̂) and ĉn < b̂. Furthermore, since
b̂ ∈ (ĉ2,

¯̂
b), then as the distance (ĉn − ĉ2) → 0, k(b̂) → n. Thus, the probability that

b̂ ∈ (ĉn,
¯̂
b) (assuming b̂ is distributed uniformly over (ĉ2,

¯̂
b)) can be quantified as follows

P
{
b̂ ∈ (ĉn,

¯̂
b)
}
= 1− P

{
b̂ ∈ (ĉ2, ĉn)

}
= 1− ĉn − ĉ2

¯̂
b− ĉ2

=
¯̂
b− ĉn
¯̂
b− ĉ2

. (5.52)

For example, for the probability of  at least 0.9, it is required

¯̂
b− ĉn
¯̂
b− ĉ2

≥ 0.9 ⇐⇒ ¯̂
b ≥ 10ĉn − 9ĉ2. (5.53)

Since ¯̂c1 ≤ ¯̂
b by Definition 5.1, it follows that

¯̂c1 ≥ 10ĉn − 9ĉ2 ⇐⇒ w ≥ 1− 1

10rn − 9r2 − r1 + 1
. (5.54)

Note that, since it was assumed r1 ≤ · · · ≤ rn with at least one inequality strict, the de-
nominator is always strictly greater than 1 (10rn−9r2−r1+1 > 1), hence guaranteeing
the right-hand side of  the inequality to be smaller than 1.

To conclude, the rest of  this section will concentrate on cases such that

w ∈ (0.5, 1) and w ≥ 1− 1

10rn − 9r2 − r1 + 1
(5.55)

for all r1, r2, rn ∈ [0, 1] such that r1 ≤ · · · ≤ rn with at least one inequality strict.
In what follows, firstly the inner workings of  the FSM and PPM methods are outlined,

and then the numerically approximated equilibrium bidding strategies are presented
for two bidding scenarios generated using both algorithms. In both cases, it is assumed
without loss of  generality that network operator 1 is characterised by the lowest reputa-
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tion rating, network operator 2 by the second lowest, and so on. Hence, ĉ1 ≤ ĉ2 ≤ ĉi

and ¯̂c1 ≤ ¯̂c2 ≤ ¯̂ci for all i ≥ 2.

5.4.1 Forward Shooting Method

The idea behind the FSM is to find the best approximation of  the lower bound on bids,
b̂
′

say, by successively picking a value from the feasible interval (ĉ2,
¯̂
b), and verifying

whether a numerical solution to the initial value problem

d

db
ĉi(b) =

1− Fi(ĉi(b))

fi(ĉi(b))

[
1

n− 1

n∑
k=1

1

b− ĉk(b)
− 1

b− ĉi(b)

]
ĉi(b̂

′
) = ĉi

(5.56)

for all i ∈ N satisfies the following three conditions: 1) it is a function mapping [b̂
′
,
¯̂
b]

into [ĉi,
¯̂ci], that is,

si : [b̂
′
,
¯̂
b]→ [ĉi,

¯̂ci]; (5.57)

2) it is monotonically increasing everywhere except possibly at ¯̂b, that is,

b1 < b2 =⇒ si(b1) < si(b2) for all b1, b2 ∈ [b̂
′
,
¯̂
b); (5.58)

and 3) each function value is strictly lower than its argument except possibly at ¯̂b, that
is,

si(b) < b for all b ∈ [b̂
′
,
¯̂
b). (5.59)

This specification of  the problem is a modified version of  the First Algorithm in
Bajari [91] (cf. Section 3.3 in [91]) that accommodates for different lower and upper
extremities in the supports of  bidders’ costs.

The pseudo-code for the FSM is depicted in listing Algorithm 5.2. For any given tol-
erance, ϵ ∈

(
0,
¯̂
b− ĉ2

)
, the algorithm aims at finding the intervalLH = [low, high] ⊆

[ĉ2,
¯̂
b] such that (approximately) b̂ ∈ LH and high − low < ϵ. The approximation to

the lower bound on bids is then found to be b̂
′
= 0.5 · (low + high).

The initial guess supplied to the algorithm is the interval [ĉ2,
¯̂
b]. In every iteration,

the guessed value for the lower bound on bids is the midpoint of  the interval; that is,
guess = 0.5 · (low + high). The algorithm then uses this value as the new initial
condition for the system in (5.56). If  the solution to the system lies within the set Si

for all i ∈ N , then guess becomes the new upper endpoint of  the interval LH ; that
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Algorithm 5.2 Forward shooting method

Input: ϵ ∈ (0,
¯̂
b− ĉ2); low, high ∈ [ĉ2,

¯̂
b] such that low ≤ high

Output: Approximation to b̂

1 low← ĉ2
2 high← ¯̂

b

3 while high− low > ϵ do
4 guess← 0.5 · (low + high)

5 bids← [guess,
¯̂
b)

6 (costs1, . . . , costsn)← solve (5.56) with initial value b̂
′
= guess

evaluated at points b ∈ bids
7 if (bids, costsi) satisfies (5.57), (5.58) and (5.59) for all i← 1 to n then
8 high← guess
9 else
10 low← guess

11 b̂
′
← 0.5 · (low + high)

is, LH = [low, guess]. Otherwise, it becomes the new lower endpoint; that is, LH =

[guess, high]. This procedure is repeated until the length of  the interval is smaller than
ϵ.

In each step, the system of  ODEs in (5.56) can be solved numerically using any type of
finite-difference methods, such as Euler or Runge-Kutta methods. The results presented
in this section were obtained using the GNU Scientific Library (GSL) implementation
of  the Embedded Runge-Kutta-Fehlberg (4, 5) method [92].

Furthermore, in the implementation of  the FSM, it was assumed that

Fi(x) =
x− ĉi
¯̂ci − ĉi

and fi(x) =
1

¯̂ci − ĉi
(5.60)

for all i ∈ N and x ∈ R. This assumption reduces the original initial value problem
in (5.56) to

d

db
ĉi(b) =

[
¯̂ci − ĉi(b)

]
·

[
1

n− 1

n∑
k=1

1

b− ĉk(b)
− 1

b− ĉi(b)

]
,

ĉi(b̂
′
) = ĉi,

(5.61)

and it is there mainly to avoid possible divisions by zero which are not handled properly
by the GSL library. Situations like this may arise due to the nature of  finite-difference
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methods, and the fact that the system of  ODEs features a fraction

1− Fi(x)

fi(x)
(5.62)

which is undefined for all x ∈ R such that x < ĉi and x > ¯̂ci (since fi(x) = 0 for all
x < ĉi and x > ¯̂ci). On the other hand, by enforcing this assumption, it is implicitly
assumed that the algorithm always operates in the feasible region; that is,

ĉi(b) ∈ [ĉi,
¯̂ci] for all i ∈ N and b ∈

[
b̂
′
,
¯̂
b
]
. (5.63)

This, of  course, cannot be guaranteed for all choices of b̂
′

made by the algorithm, and
therefore, it might skew the final result away from the actual value of  the lower bound
on bids, b̂.

5.4.2 Polynomial Projection Method

The PPM method assumes that the inverse equilibrium bidding function for each net-
work operator i ∈ N can be approximated by a K th order polynomial of  the form

ĉi(b; b̂, αi) = ĉi +
K∑
k=1

αi,k(b− b̂)k, (5.64)

whereK ∈ N+ andK ≥ 2, and αi = (αi,1, . . . , αi,K)
T is a vector ofK unknown poly-

nomial coefficients such that αi ∈ RK . The idea behind the method is then to employ
a nonlinear optimisation technique, such as the Nelder-Mead method, to find an ap-
proximation to the lower bound on bids and the set of  polynomial coefficients that best
satisfy the system of  ODEs (5.27) with lower and upper boundary conditions (5.28) and
(5.29) in the least squares sense. That is, minimise the least squares objective function

H(b̂, α1, . . . , αn) =
∑
i∈N

∑
b∈B

Gi(b; b̂, α1, . . . , αn)
2+ |B| ·

∑
i∈N

(
¯̂
b− ĉi(¯̂b; b̂, αi))

2, (5.65)

where B = {b̂, . . . , ¯̂b} is a (finite) grid of  points uniformly spaced between b̂ and ¯̂
b,

|B| <∞ denotes the cardinality of B, and Gi captures network operator i’s first-order
condition for profit maximisation, and is defined as follows

Gi(b; b̂, α1, . . . , αn) =
d

db
ĉi(b; b̂, αi) (5.66)

− 1− Fi(ĉi(b; b̂, αi))

fi(ĉi(b; b̂, αi))

[
1

n− 1

n∑
j=1

1

b− ĉj(b; b̂, αj)
− 1

b− ĉi(b; b̂, αi)

]
.
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Note thatGi(b; b̂, α1, . . . , αn) = 0 corresponds to the ODE in Equation (5.27) for each
network operator i ∈ N . Furthermore, note that the objective function,H , incorporates
only the upper boundary condition (5.29); that is,∑

i∈N

(
¯̂
b− ĉi(¯̂b; b̂, αi))

2. (5.67)

The lower boundary condition (5.28) is omitted since it is always satisfied through the
definition of  the inverse equilibrium bidding function in Equation (5.64). To see this,
recall that the lower boundary condition implies

ĉi − ĉi(b̂; b̂, αi) = ĉi − ĉi −
K∑
k=1

αi,k(b̂− b̂)2 = 0 (5.68)

for all i ∈ N . Therefore, it is unnecessary to include the lower boundary condition in
the objective function, as it is always equal to 0.

This specification of  the problem is a modified version of  the Third Algorithm in
Bajari [91] (cf. Section 3.5 in [91]) that accommodates for different lower and upper
extremities in the supports of  network operators’ costs.

Algorithm 5.3 Polynomial projection method

Input: k ≤ K where K ≥ 3; αi ∈ Rk for all i ∈ N ; b ∈ (ĉ2,
¯̂
b)

Output: Approximate b̂; αi ∈ RK for all i ∈ N

1 k← 3
2 K ← 8
3 for i← 1 to n do
4 αi← create k-element vector of 10−2

5 b← ĉ2

6 repeat
7 bids← B
8 (b, α1, . . . , αn)← minimise (5.65) with initial values (b, α1, . . . , αn)

evaluated at points b ∈ B
9 k← k + 1
10 for i← 1 to n do
11 αi← (αi,1, . . . , αi,k, 10

−6)

12 until k ≤ K

The pseudo-code for the PPM is shown in listing Algorithm 5.3. The algorithm aims
at refining the solution to the minimisation problem in Equation (5.65) by successively
increasing the order of  approximating polynomials. In each such iteration, the output
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from the previous run of  the algorithm is used as the input to the next run. That is,
suppose (bk, αk

1, . . . , α
k
n) is the output from the algorithm where kth order polynomials

were used. Then, this output is used as the input (and a starting point for the minimisa-
tion problem in Equation (5.65)) to the next stage of  the algorithm where (k+1)th order
polynomials are used. This procedure is repeated until the approximating polynomials
are of  the desired order. A similar approach is used by Katzwer [93] in his Auction-
Solver software, however, with the difference that he advocates the use of  Chebyshev
polynomials rather than ordinary polynomials.

In each step of  the algorithm, the nonlinear optimisation problem in (5.65) can be
solved numerically using any nonlinear optimisation technique, such as Nelder-Mead
or Broyden-Fletcher-Goldfarb-Shanno methods. The results presented in this section
were obtained using the GSL implementation of  the Nelder-Mead method [92]. A brief
overview of  the most basic form of  the Nelder-Mead simplex method can be found for
example in [94].

Furthermore, in the implementation of  the PPM, the same simplification was made
as in the implementation of  the FSM method; that is,

Fi(x) =
x− ĉi
¯̂ci − ĉi

and fi(x) =
1

¯̂ci − ĉi
(5.69)

for all i ∈ N and x ∈ R. This assumption reduces the definition of Gi to

Gi(b; b̂, α1, . . . , αn) =
d

db
ĉi(b; b̂, αi) (5.70)

−
[
¯̂ci − ĉi(b; b̂, αi)

]
·

[
1

n− 1

n∑
j=1

1

b− ĉj(b; b̂, αj)
− 1

b− ĉi(b; b̂, αi)

]
,

and it is there mainly to avoid possible divisions by zero which are not handled properly
by the GSL library. It is important to realise, however, that by enforcing this assumption,
it is implicitly assumed that the algorithm always operates in the feasible region; that is,

b̂ ∈ (ĉ2,
¯̂
b) and ĉi(b; b̂, αi) ∈ [ĉi,

¯̂ci] (5.71)

for all b ∈ [b̂,
¯̂
b], αi ∈ RK , and i ∈ N . This, of  course, cannot be guaranteed since the

minimisation problem in (5.65) is treated as an unconstrained optimisation problem,
and therefore, there exists a possibility that the algorithm will reach a minimum that is
outside of  the feasible range of  values. At the same time, note that certain precautionary
measures may be employed as to reduce the probability of  such an event; for example,
the unconstrained optimisation problem can be translated into a constrained optimisa-
tion problem using a penalty function approach as described in [94]. Alternatively, a
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Table 5.2
Bidding scenario with 2 network operators

Price weight, w Reputation rating, ri
Network operator 1

0.5
0.25

Network operator 2 0.75

constrained optimisation technique, such as the Constrained Optimisation BY Linear
Approximation (COBYLA) method [95], could be used in place of  the Nelder-Mead
method.

5.4.3 Approximation Results

In this subsection, the approximation results for two bidding scenarios with 3 and 4
network operators are presented. The source code of  all algorithms presented in this
thesis is available upon request from the author. It is also envisaged that, in the future, the
source code will be publicly available on the author’s Github website: https://github.
com/kubkon.

Before analysing numerical results, both algorithms were tested for correct imple-
mentation. To this end, the numerically approximated equilibrium for n = 2 network
operators was compared with the closed-form solution derived in Proposition 5.5, Sec-
tion 5.3. The parameters for the test bidding scenario are shown in Table 5.2. Fig-
ure 5.6 depicts the results of  the comparison for the FSM, while Figure 5.7 for the
PPM. It is clear from Figure 5.6 that the result produced by FSM matches the (theoret-
ical) closed-form solution perfectly. In case of  PPM, on the other hand, the numerical
result approaches the closed-form solution; however, due to the nature of  the approx-
imating polynomials, the match is not ideal. The accuracy of  the solution could be
increased by increasing the order of  the approximating polynomials, or by utilising a
basis of  approximating functions which is better suited to the least squares optimisation,
for example, employing Chebyshev polynomials in place of  the polynomials in Equa-
tion (5.64) [88, 96]. Nevertheless, the results demonstrate that both algorithms were
implemented correctly.

Note, however, that this does not prove that the algorithms will provide correct re-
sults for any number of  network operators. On the contrary, it merely suggests that the
implementation of  the algorithms passed basic sanity check. Therefore, in what follows,
for each produced output, it will be verified whether the numerically approximated bid-
ding strategies satisfy the sufficiency condition for an equilibrium; that is, whether the
numerically derived bidding strategy for each network operator is a best response to the
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Figure 5.6
FSM solution to the bidding problem characterised by: w = 0.5, r1 = 0.25, and r2 = 0.75
agreeing with the closed-form solution
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Figure 5.7
PPM solution to the bidding problem characterised by: w = 0.5, r1 = 0.25, and r2 = 0.75
agreeing with the closed-form solution

79



Table 5.3
Bidding scenario with 3 network operators

Price weight, w Reputation rating, ri
Network operator 1

0.75
0.25

Network operator 2 0.5
Network operator 3 0.75

bidding strategies of  the remaining network operators. If  the derived bidding strategies
constitute best responses that are mutually consistent, then they constitute an approxi-
mate Bayesian Nash equilibrium.

In the first examined scenario, there are 3 network operators characterised by repu-
tation ratings as summarised in Table 5.3. Furthermore, the price weight is set to 0.75.
Figures 5.8 and 5.9 depict the results of  the approximation generated by the FSM and
the PPM methods respectively. Both approximation methods yield virtually the same
estimate of  the lower bound on bids, b̂ ≈ 0.375. In the FSM case, the approximation
diverges in the very near proximity of ¯̂b, and therefore, the approximation satisfies the
sufficiency only until b reaches a close neighbourhood of ¯̂b. This is due to the fact that
the system of  ODEs does not satisfy Lipschitz condition as b approaches ¯̂b. The PPM
method, on the other hand, eliminates this problem entirely, and the approximation
satisfies sufficiency for all b ∈ [b̂,

¯̂
b].

In the second examined scenario, there are 4 network operators characterized by
reputation ratings as summarized in Table 5.4. Furthermore, the price weight is set to
0.85. Figures 5.10 and 5.11 depict the results of  the approximation generated by the
FSM and PPM methods respectively. Both approximation methods yield virtually the
same estimate of  the lower bounds on bids, b̂ ≈ 0.38. Similarly to the bidding scenario
with 3 network operators, in the FSM method case, the approximation diverges in the
very near proximity of ¯̂b, and therefore, the approximation satisfies the sufficiency only
until b reaches a close neighbourhood of ¯̂b. In the PPM method case, the approximation
satisfies sufficiency for all b ∈ [b̂,

¯̂
b].

In this section, the FSM and PPM numerical algorithms were described, and two
exemplary bidding scenarios were analysed for which the equilibrium bidding strate-
gies were generated using the aforementioned algorithms. It should be noted, however,
that one of  the key assumptions of  this section was ĉi ≤ ĉ(b̂) for all network operators
i ∈ N , which restricted the choice of  the price weight and the reputation ratings to a
set satisfying w ≥ 1 − 1/(10rn − 9r2 − r1 + 1). In the following section, this assumption is
relaxed by allowing cases such that ĉ(b̂) < ĉi <

¯̂
b for at least one network operator
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Figure 5.8
FSM solution to the bidding problem characterised by: w = 0.75, r1 = 0.25, r2 = 0.5,
and r3 = 0.75. The solution satisfies the sufficiency condition for all b̂ except b̂’s in the close
neighbourhood of ¯̂b.
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Figure 5.9
PPM solution to the bidding problem characterised by: w = 0.75, r1 = 0.25, r2 = 0.5, and
r3 = 0.75. The solution satisfies the sufficiency condition for all b̂.
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Figure 5.10
FSM solution to the bidding problem characterised by: w = 0.85, r1 = 0.2, r2 = 0.4, r3 = 0.6,
and r4 = 0.8. The solution satisfies the sufficiency condition for all b̂ except b̂’s in the close
neighbourhood of ¯̂b.
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Figure 5.11
PPM solution to the bidding problem characterised by: w = 0.85, r1 = 0.2, r2 = 0.4, r3 = 0.6,
and r4 = 0.8. The solution satisfies the sufficiency condition for all b̂.
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Table 5.4
Bidding scenario with 4 network operators

Price weight, w Reputation rating, ri
Network operator 1

0.85

0.2
Network operator 2 0.4
Network operator 3 0.6
Network operator 4 0.8

i ∈ N . In other words, all nontrivial equilibria characterised by Proposition 5.3 are
considered. Furthermore, a numerical algorithm which is able to generate equilibrium
bidding strategies under the relaxed assumption is presented.

5.5 Extended Numerical Analysis

Suppose ĉ(b̂) < ĉi <
¯̂
b for at least one i ∈ N , and let all the remaining assumptions of

Section 5.4 hold. To be more specific, let w ∈ (0.5, 1.0) for all ri ∈ [0, 1], i ∈ N such
that r1 ≤ · · · ≤ rn with at least one inequality strict.

In what follows, a numerical algorithm which improves upon the algorithms consid-
ered in Section 5.4 is presented: the extended forward shooting method (EFSM). Fur-
thermore, the numerically approximated equilibrium bidding strategies for two bidding
scenarios generated using the algorithm are analysed. It is, furthermore, assumed with-
out loss of  generality that network operator 1 is characterised by the lowest reputation
rating, network operator 2 by the second lowest, and so on. Hence, ĉ1 ≤ ĉ2 ≤ ĉi and
¯̂c1 ≤ ¯̂c2 ≤ ¯̂ci for all i ≥ 2.

5.5.1 Extended Forward Shooting Method

The EFSM method extends the FSM method by effectively implementing the reason-
ing behind the bidding extension characterised by Lebrun [85] (see Section 5.4 for a
description of  the extension). To the best of  the author’s knowledge, the EFSM method
developed in this thesis is the only numerical algorithm in existence that considers all
nontrivial equilibria to the system of  ODEs in Equation (5.27) with lower and upper
boundary conditions in Equations (5.28) and (5.29) respectively.

Similarly to the FSM method, the EFSM aims at finding the best approximation of
the lower bound on bids, b̂

′
say, by successively picking a value from the feasible interval
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(ĉ2,
¯̂
b), and verifying whether a numerical solution to the initial value problem

d

db
ĉi(b) =

1− Fi(ĉi(b))

fi(ĉi(b))

[
1

n− 1

n∑
k=1

1

b− ĉk(b)
− 1

b− ĉi(b)

]
ĉi(b̂

′
) = min{ĉi, ĉ(b̂

′
)}

(5.72)

for all i ∈ N satisfies the following three conditions: 1) it is a function mapping [b̂
′
,
¯̂
b]

into [min{ĉi, ĉ(b̂
′
)}, ¯̂ci], that is,

si : [b̂
′
,
¯̂
b]→ [min{ĉi, ĉ(b̂

′
)}, ¯̂ci]; (5.73)

2) it is monotonically increasing everywhere except possibly at ¯̂b, that is,

b1 < b2 =⇒ si(b1) < si(b2) for all b1, b2 ∈ [b̂
′
,
¯̂
b); (5.74)

and 3) each function value is strictly lower than its argument except possibly at ¯̂b, that
is,

si(b) < b for all b ∈ [b̂
′
,
¯̂
b). (5.75)

The pseudo-code for the EFSM is shown in listing Algorithm 5.4. The flow of  the
algorithm is almost exactly the same as for the FSM. The main differences are twofold:
the algorithm estimates k(b̂

′
) and ĉ(b̂

′
) (line 6); and the algorithm solves the system (5.72)

using the reasoning behind the bidding extension characterised by Lebrun [85] and
described below (line 8).

Listing Algorithm 5.5 depicts the pseudo-code for the function ‘estimateKC’ which
estimates k(b̂

′
) and ĉ(b̂

′
). It takes as an input an estimate of  the lower bound on bids,

b̂
′
, and the set of  lower extremities {ĉi} for all i ∈ N . The function then iterates over

k ∈ {2, . . . , n}, and for each k it computes ĉ(b̂
′
) according to Equation (5.25). If k < n

and ĉ(b̂
′
) satisfies (5.26), then the function returns that particular pair of  values (k, ĉ(b̂

′
))

such that 2 ≤ k < n. Otherwise, k = n is returned which reduces system (5.72) to (5.56),
and EFSM to FSM.

In order to describe how the algorithm solves the system (5.72), suppose there are
n = 4 network operators. The following argument can easily be adapted to the case of
n = 3 or n > 4 network operators. Furthermore, suppose that

ĉ1 < ĉ2 < ĉ(b̂) < ĉ3 < ĉ4. (5.76)

The method comprises three stages as depicted in Figure 5.12.
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Algorithm 5.4 Extended forward shooting method

Input: ϵ ∈ (0,
¯̂
b− ĉ2); low, high ∈ [ĉ2,

¯̂
b] such that low ≤ high

Output: Approximation to b̂

1 low← ĉ2
2 high← ¯̂

b

3 while high− low > ϵ do
4 guess← 0.5 · (low + high)
5 (k, ĉ)← estimateKC(guess, ĉ1, . . . , ĉn)
6 bids← [guess,

¯̂
b)

7 (costs1, . . . , costsn)← solve (5.72) with initial value b̂
′
= guess

evaluated at points b ∈ bids, and k(b̂) = k
and ĉ(b̂) = ĉ

8 if (bids, costsi) satisfies (5.73), (5.74) and (5.75) for all i← 1 to n then
9 high← guess
10 else
11 low← guess

12 b̂
′
← 0.5 · (low + high)

Algorithm 5.5 Function for estimating k(b̂) and ĉ(b̂)

Input: Estimate of b̂; ĉi for all i ∈ N
Output: k(b̂) ∈ {2, . . . , n}; ĉ(b̂) computed according to (5.25)

1 function estimateKC(̂b, ĉ1, . . . , ĉn)
2 for k = 2→ n do
3 ĉ(b̂)← compute using (5.25) with k(b̂) = k
4 if k < n then
5 if ĉk ≤ ĉ(b̂) ∧ ĉ(b̂) < ĉk+1 then
6 break
7 return (k, ĉ(b̂))
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Figure 5.12
The reasoning behind the bidding extension characterised by Lebrun [85] captured by the
EFSM method

Stage 1 Since ĉ1 < ĉ2 < ĉ(b̂) < ĉ3 < ĉ4, then k(b̂) = 2, and hence, network operators
1 and 2 solve

d

db
ĉi(b) =

1− Fi(ĉi(b))

fi(ĉi(b))

 1

k(b̂)− 1

k(b̂)∑
k=1

1

b− ĉk(b)
− 1

b− ĉi(b)


ĉi(b̂) = ĉi

, (5.77)

while network operators 3 and 4 solve

ĉi(b) = b− k(b̂)− 1∑k(b̂)
j=1

1
b−ĉj(b)

. (5.78)

The system (5.77) is solved for all b ∈ [b̂,
¯̂
b], and the approximation is then used

to solve (5.78). However, only bid values such that b̂ ≤ b ≤ b̂3(ĉ3) are kept, where
ĉ3(b̂3(ĉ3)) = ĉ3 maps into network operator’s 3 cost-hat.

Note that the solution to (5.78) depends only on k(b̂) and the solution to (5.77).
Therefore, both network operator 3 and 4 are characterised by the same set of
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values (Stage 1, Figure 5.12).

Stage 2 Next, k(b̂) is incremented by 1 over the previous value, and the procedure in
Stage 1 is repeated with this difference that now network operators 1, 2 and 3
solve system (5.77) while network operator 4 solves (5.78). The system (5.77) is
solved for b ∈ [b̂3(ĉ3),

¯̂
b], but only bid values such that b̂3(ĉ3) ≤ b ≤ b̂4(b̂4) are

kept (Stage 2, Figure 5.12).

Stage 3 Finally, all network operators solve the system (5.77) for bid values b ∈
[b̂4(ĉ4),

¯̂
b] (Stage 3, Figure 5.12).

In each stage, the system of  ODEs in Equation (5.77) can be solved numerically
using any type of  finite-difference methods, such as Euler or Runge-Kutta methods.
The results presented in this section were obtained using the GSL implementation of
the Embedded-Runge-Kutta-Fehlberg (4, 5) method [92].

Furthermore, similarly to the implementation of  the FSM and PPM methods, in the
implementation of  EFSM, it was assumed that

Fi(x) =
x− ĉi
¯̂ci − ĉi

and fi(x) =
1

¯̂ci − ĉi
(5.79)

for all i ∈ N and x ∈ R. The discussion of  the consequences arising from this simplify-
ing assumption can be found in Section 5.4.1.

5.5.2 Approximation Results

This subsection presents the approximation results for two bidding scenarios with 3 and
4 network operators. Similarly to the algorithms presented in Section 5.4, the EFSM
method was tested for correct implementation using the same procedure as presented
in Section 5.4. However, since the verification results match exactly those presented in
Figure 5.6, their discussion is omitted from this section.

In the first examined scenario, there are 3 network operators characterised by rep-
utation ratings summarised in Table 5.5. Furthermore, the price weight is set to 0.55.
Figure 5.13 depicts the results of  the approximation generated by the EFSM method.
The method yields an estimate of  the lower bound on bids of b̂ ≈ 0.407, and satisfies
the sufficiency for all b ∈ [b̂,

¯̂
b]. It is worth noting that, as expected, the bidding scenario

comprises two stages (cf. Figure 5.12): stage 1 such that b̂ ∈ [0.407, 0.43] where net-
work operators 1 and 2 are competing against each other only, and network operator
3 is characterised by the bidding extension given by Equation (5.78); and stage 2 such
that b̂ ∈ [0.43, 0.71] where all network operators are competing against each other, and
are solving the system in Equation (5.77).
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Table 5.5
Bidding scenario with 3 network operators

Price weight, w Reputation rating, ri
Network operator 1

0.55
0.25

Network operator 2 0.5
Network operator 3 0.75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Cost-hat, ĉi

0.40

0.45

0.50

0.55

0.60
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NO 1: Best response
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NO 2: Best response
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NO 3: Best response

Figure 5.13
EFSM solution to the bidding problem characterised by: w = 0.55, r1 = 0.25, r2 = 0.5, and
r3 = 0.75. The solution satisfies the sufficiency for all b̂.

In the second examined scenario, there are 4 network operators characterised by
reputation ratings summarised in Table 5.6. Furthermore, the price weight is set to
0.55. Figure 5.14 depicts the results for the approximation generated by EFSM. The
estimate of  the lower bound on bids is b̂ ≈ 0.353, and the solution satisfies the suf-
ficiency for all b ∈ [b̂,

¯̂
b]. It is worth noting that, as expected, the bidding scenario

comprises three stages (cf. Figure 5.12): stage 1 such that b̂ ∈ [0.353, 0.3625] where
network operators 1 and 2 are competing against each other, while network operators
3 and 4 are characterised by the bidding extension given by Equation (5.78); stage 2
such that b̂ ∈ [0.3625, 0.43] where network operators 1, 2 and 3 are competing against
each other, and network operator 4 is still characterised by the bidding extension, albeit
different compared to the bidding extension established in stage 1; and stage 3 such that
b̂ ∈ [0.43, 0.675] where all network operators are competing against each other.
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Table 5.6
Bidding scenario with 4 network operators

Price weight, w Reputation rating, ri
Network operator 1

0.55

0.2
Network operator 2 0.4
Network operator 3 0.6
Network operator 4 0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Cost-hat, ĉi

0.35
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Figure 5.14
EFSM solution to the bidding problem characterised by: w = 0.55, r1 = 0.2, r2 = 0.4,
r3 = 0.6, and r4 = 0.8. The solution satisfies the sufficiency for all b̂.

In this section, the EFSM numerical algorithm was outlined, and two exemplary
bidding scenarios were analysed for which the equilibrium bidding strategies were gen-
erated by the aforementioned algorithms. The method “completes” the FSM and PPM
methods in the sense that it permits for cases such that ĉ(b̂) < ĉi <

¯̂
b for at least one

network operator i ∈ N , and hence, considers all nontrivial equilibria characterised by
Proposition 5.3. It is an important improvement since otherwise only a very restricted
subset of  all possible bidding scenarios resulting in nontrivial equilibria could be con-
sidered and numerically approximated.
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5.6 Summary

In this chapter, the bidding problem with symmetric cost distributions, as defined in
Chapter 4, was transformed into a bidding problem with asymmetric cost distributions.
Following the transformation, the equilibrium bidding strategies for the generic case ofn
network operators were formally characterised; that is, it was shown that the pure strat-
egy Bayesian Nash equilibrium exists and is unique (Proposition 5.3 and Corollary 5.4).
This is an important result as it proves that the DMP network selection mechanism is
economically well-behaved since the equilibrium exists.

When restricted to n = 2 network operators, the equilibrium bidding strategies were
analytically derived. To aid in the derivation, it was necessary to assume that costs for the
network operators were uniformly distributed. Given the lack of  knowledge of  the way
the costs are distributed, it is standard practice to assume the probability of  each cost
to be uniform [97]. Nonetheless, such an assumption is limiting and it is highly likely it
will not be fully representative of  the reality. Furthermore, in the case of n = 2 network
operators, the expected prices for the subscriber were analysed, and it was shown that,
for any expected price, as the difference between the reputation ratings of  the network
operators increases, the price weight has to increase (or remain constant) in order to
keep the expected price fixed. This observation carries very serious implications on the
operation of  the DMP, as the subscriber is effectively given the ability to influence the
expected prices by an appropriate choice of  the price weight.

Finally, for the case of n ≥ 2 network operators, three numerical algorithms for ap-
proximating the equilibrium bidding strategies were proposed: FSM (Algorithm 5.2),
PPM (Algorithm 5.3), and EFSM (Algorithm 5.4). When developing the algorithms,
similarly to the restricted case with n = 2 network operators, it was assumed that costs
for the network operators were uniformly distributed. Therefore, the same limitations
apply. However, generalising algorithms to nonuniform distributions should not prove
difficult since other researchers have successfully employed similar numerical methods
for studying problems where distributions were nonuniform [88]. The algorithms were
further verified for correct implementation, and, for each approximated scenario, the
derived equilibrium bidding strategies were tested for sufficiency condition for a pure
strategy Bayesian Nash equilibrium. The FSM and PPM methods allow for numeri-
cally approximating equilibrium bidding strategies for a subset of  all possible bidding
scenarios resulting in nontrivial equilibria, while the EFSM method enables computa-
tion of  the numerical solution to all bidding scenarios. Since, as shown in Section 5.2,
the analytical derivation of  the equilibrium bidding strategies in the case of  more than
two network operators is not possible, the existence of  algorithms capable of  numerically
approximating the solutions is a major step forward in the development of  the economic
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theory of  operation of  the DMP network selection mechanism. Furthermore, the algo-
rithms constitute a tool that the network operators participating in the DMP can use to
formulate their own bidding strategies and understand the bidding behaviours of  other
network operators.
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Chapter 6

Casting Network Selection Mechanism into

Common Prior Setting

This chapter presents a methodology for approximating the DMP network selection
mechanism with an asymmetric FPA auction with common prior. It is further argued
that this methodology constitutes a possible resolution to the potential problem of  nu-
merical instability of  the FSM and EFSM methods.

Fibich and Gavish [98] showed that the FSM method and its derivatives, such as
the EFSM method, become numerically unstable for large numbers of  bidders. The
issue has not impacted the results presented in this thesis thus far due to the fact that
only the scenarios with as many as 4 network operators were considered. However, it
is important to acknowledge the fact that the issue exists and, sooner or later, for large
number of  network operators, it will affect the numerical solutions generated by FSM
and, more importantly, EFSM methods. Therefore, it is vital to address the issue on a
proactive rather than reactive basis.

The most obvious way of  addressing the issue would be to employ a different nu-
merical method in place of  the EFSM method. However, to the best of  the author’s
knowledge, the EFSM method is the only numerical algorithm in existence that con-
siders all nontrivial equilibria to the system of  ODEs in Equation (5.27) with lower and
upper boundary conditions in Equations (5.28) and (5.29) respectively. Furthermore,
it is not immediately obivious how the EFSM method would have to be modified to
be based entirely on methods that are not FSM derivatives, and hence, do not possess
numerical instability issues.

In this chapter, an alternative approach is presented. It is explored whether an auc-
tion format represented by the DMP network selection mechanism can be modelled as
an asymmetric FPA auction with common prior (henceforth, referred to as CP auction).
In a CP auction, the range the costs can vary is the same for each bidder. More formally,
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the cost distributions for each bidder share the same support. By modelling the DMP
network selection mechanism as a CP auction, the numerical solution methods (other
than the FSM-based methods) presented in Hubbard and Parsch [88], and extensively
studied by the economic community, could be used to approximate the solution to the
DMP auction. This would allow network operators to consider a simpler bidding prob-
lem for which there are many well-defined numerical solutions. As a result, presented
with a DMP auction, network operators could bid according to the equilibrium bidding
strategies of  the corresponding CP auction while approximately retaining the expected
utility if  bidding according to the equilibrium bidding strategies of  the DMP auction,
and hence, avoiding the need to use the EFSM method to solve the DMP auction.

Modelling of  the DMP auction as a CP auction assumes that the network operators
will use the equilibrium bidding strategies of  the CP auction (CP strategies) as bidding
strategies in the DMP auction. However, by Proposition 5.3, the CP strategies do not
constitute an equilibrium to the DMP auction; they are merely used as approximations to
the actual equilibrium bidding strategies of  the DMP auction (equilibrium strategies).
Therefore, there exists possibility that a network operator might exploit this fact by
bidding according to the equilibrium strategies while other network operators will bid
according to the CP strategies. Concurrently, however, since the equilibrium strategies
can only be derived using the EFSM method, it is likely that the derivation might fail
due to the numerical instability of  the algorithm. All in all, each network operator faces
a tradeoff: bid according to the equilibrium strategies but risk lack of  convergence, or
bid according to CP strategies but risk other network operators bidding according to
the equilibrium strategies. Of  course, the magnitude of  the problem decreases dramat-
ically as the number of  network operators involved in the DMP increases. For then the
numerical instability will lead to the divergence of  the EFSM algorithm and render the
derivation of  the equilibrium strategies impossible. Hence, the network operators will
be forced to rely on the CP strategies.

The analysis is organised as follows. In the first instance, the assumptions govern-
ing the CP auction are described, and the existence and uniqueness of  the equilibrium
bidding strategies is formally defined. Following that the FSM numerical method tai-
lored specifically to the CP auction setting is presented. It is worth noting at this point
that the CP version of  the FSM algorithm corresponds to the original FSM algorithm
first presented by Bajari [91] (cf. Algorithm 1 in [91]). Having derived the numerical
method for approximating the equilibrium in the CP auction setting, the methodology
for casting the DMP bidding scenario into a CP auction setting is discussed. That is,
it is showed how a DMP auction can be approximated as a CP equivalent. Further-
more, the methodology for quantifying the accuracy of  the approximation is presented.
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Finally, the chapter concludes with the presentation of  approximation results for four
bidding scenarios with two, three, four and five bidders respectively.

6.1 Mathematical Description

Following the notation of  Chapter 5, let each bidder i be characterised by the utility
function

ui(b, c) =

 bi − ci if bi < min
j ̸=i

bj,

0 if bi > min
j ̸=i

bj,
(6.1)

where, as before, b = (b1, . . . , bn), and c = (c1, . . . , cn). In the CP auction, it is assumed
that each bidder i draws their cost from common support across all bidders; i.e., let

ci ∈ [c, c̄] for all i ∈ N such that [c, c̄] ⊆ [0, 1]. (6.2)

Let Fi be the distribution function of ci for all i ∈ N . Note that the distribution
functions between bidders need not be equal, and hence, the problem is that of  an
asymmetric FPA.

It is further assumed that

Assumptions 6.1. Assume that

1. Fi is differentiable over (c, c̄] with a derivative fi locally bounded away from zero
over this interval;

2. Fi is atomless; and

3. Fi(c) > 0 for all c ∈ [c, c̄] and i ∈ N .

These assumptions correspond to Assumptions A.1 and Theorem U.1 in Le-
brun [85], and, as shown by Lebrun, with these assumptions satisfied, there exists one
and only one pure-strategy Bayesian Nash equilibrium where bidders engage in serious
bidding; that is, bid at least their cost. Formally,

Proposition 6.1 (Characterisation of  the Equilibrium in Common Prior Setting). Let
Assumptions 6.1 be satisfied. There exists one and only one pure-strategy Bayesian Nash equilibrium
where bidders submit at least their costs. In every such equilibrium, bidder i ∈ N follows a bid
function bi, for all 1 ≤ i ≤ n such that its inverse, ci = b−1

i , satisfy the following system of

94



differential equations

d

db
ci(b) =

1− Fi(ci(b))

fi(ci(b))

[
1

n− 1

n∑
k=1

1

b− ck(b)
− 1

b− ci(b)

]
(6.3)

for all 1 ≤ i ≤ n, with the following lower boundary condition

ci(b) = c (6.4)

and the upper boundary condition

ci(c̄) = c̄ (6.5)

for all 1 ≤ i ≤ n.

In effect, Proposition 6.1 is a special case of  Proposition 5.3. That is, the equilibrium
bidding functions still have to satisfy the system of  nonlinear ODEs given by Equa-
tion (5.27); however, in this case, the lower boundary condition reduces to

ci(b) = c, (6.6)

and the upper boundary condition to

ci(c̄) = c̄, (6.7)

i.e., the bids never exceed the upper extremity of  the common support range.
It should be noted that, even though the bidding problem is considerably simpler

than the original one discussed in this thesis (cf. Chapter 5), it still involves finding the
lower bound on bids, and hence, the closed-form solution exists only in a handful of
special cases [54, 88]. However, as presented by Hubbard and Paarsch [88], the problem
can be approximated using numerical methods, which is discussed in the next section.

6.2 Numerical Solutions

In this section, a CP auction is approximated using the FSM method already intro-
duced in Section 5.4, Chapter 5, but tailored to the problem at hand. The FSM method
was chosen due to its relatively low implementation complexity (compared to the PPM
method), and the fact that it was also used to approximate the DMP bidding problem.
Therefore, in terms of  the numerical accuracy and stability, the numerical solutions to
the DMP and CP auctions should be of  comparable quality. Furthermore, since the dis-
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cussion concentrates on a relatively small number of  bidders, the FSM (and the EFSM)
method is still well-behaved numerically.

6.2.1 Forward Shooting Method

To briefly recap, the FSM method was first proposed by Bajari [91] (cf. Algorithm 1 in
[91]). The method aims at finding the best approximation of  the lower bound on bids,
b, by successively picking a value from the feasible interval, (c, c̄), and verifying whether
a numerical solution to the initial value problem

d

db
ci(b) =

1− Fi(ci(b))

fi(ci(b))

[
1

n− 1

n∑
k=1

1

b− ck(b)
− 1

b− ci(b)

]
ci(b) = c

(6.8)

for all i ∈ N satisfies the following three conditions: 1) it is a function mapping [b, c̄]

into [c, c̄], that is,

s : [b, c̄]→ [c, c̄]; (6.9)

2) it is monotonically increasing everywhere except possibly at c, that is,

b1 < b2 =⇒ s(b1) < s(b2) for all b1, b2 ∈ [b, c̄); (6.10)

and 3) each function value is strictly lower than its argument except possibly at c̄, that
is,

s(b) < b for all b ∈ [b, c̄). (6.11)

The pseudo-code for the FSM is depicted in listing Algorithm 6.1. Note that the
algorithm is almost identical to the FSM version tailored to the DMP auction (cf. Algo-
rithm 5.2), with only differences being the definition of  the set of  permissible functions,
S, and the algorithm’s search region delimited by low and high variables. Hence, the
discussion of  the algorithm is omitted, and the reader is referred to Section 5.4.1.

Similarly to the implementation of  the FSM (and EFSM) algorithm for the DMP
auction, the approximation results presented in this chapter have been derived using
the GSL implementation of  the Embedded Runge-Kutta-Fehlberg (4,5) method.
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Algorithm 6.1 Forward shooting method (common prior version; Bajari [91])
Input: ϵ ∈ (0, c̄− c); low, high ∈ [c, c̄] such that low ≤ high
Output: Approximation to b

1 low← c
2 high← c̄

3 while high− low > ϵ do
4 guess← 0.5 · (low + high)
5 bids← [guess, c̄)
6 (costs1, . . . , costsn)← solve (6.8) with initial value b = guess

evaluated at points b ∈ bids
7 if (bids, costsi) satisfies (6.9), (6.10) and (6.11) for all i← 1 to n then
8 high← guess
9 else
10 low← guess

11 b← 0.5 · (low + high)

6.2.2 Verification

Before proceeding with the modelling and analysis, the FSM algorithm was tested for
correct implementation. The bidding scenario used to verify the algorithm is taken from
the Bajari’s paper [91]. There are three bidders, and each is characterised by a truncated
normal distribution but with different mean and standard deviation parameters (see
Table 6.1). Furthermore, each bidder draws their cost from common costs’ range, ci ∈
[2, 8].

Figure 6.1 depicts the numerically approximated solution to the problem. It is clear
that the approximation agrees with that of  Bajari’s [91] (cf. Figure 1 in [91]). Further-
more, in Figure 6.2, the numerical solution is verified whether it satisfies the sufficiency
condition for an equilibrium; that is, whether the numerically derived bidding strategy
for each bidder is a best response to the bidding strategies of  the remaining bidders. As
expected, the solution satisfies the sufficiency condition, and hence, it is concluded that
the algorithm was implemented correctly.

In this section, version of  the FSM algorithm tailored to the CP auction was pre-
sented, and verified for correct implementation. The next section explores the method-
ology for approximating a DMP auction with a CP auction.
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Figure 6.1
FSM solution to the test common prior bidding problem
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Figure 6.2
FSM solution satisfies sufficiency condition for an equilibrium
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Table 6.1
Test bidding scenario

Mean, µi Standard deviation, σi
Bidder 1 4 1.5
Bidder 2 5 1.5
Bidder 3 6 1.5

6.3 Network Selection Mechanism Cast into Common Prior Set-

ting

In this section, the DMP auction is firstly modelled as a CP auction where bidders are
characterised by costs distributed according to a truncated normal distribution. Then,
the methodology used to quantify the accuracy of  approximations is outlined.

6.3.1 Modelling using Truncated Normal Distribution

Recall from Chapter 5 that, in the DMP auction, each bidder i draws their cost from a
uniform distribution with the support

[(1− w)ri, (1− w)ri + w] = [ci, c̄i] ⊂ [0, 1]. (6.12)

In order to simplify the exposition of  the concepts presented in this chapter, the costs-
hat, ĉi, introduced in Chapter 5 will be referred to as costs, ci. Therefore, in the general
case, unless the bidders are characterised by the same reputation rating, that is ri = rj

for all i, j ∈ N , their distributions’ supports will not overlap fully; i.e.,

[ci, c̄i] ̸= [cj, c̄j], i ̸= j and i, j ∈ N. (6.13)

Recall further that, in a CP auction, every bidder is characterised by a distribution
(of  costs) with common support across all bidders. Hence, in order to model any DMP
bidding scenario, firstly, it needs to be agreed on a support that is common to every
bidder and, at the same time, encompasses the supports of  every individual bidder from
the original (DMP) auction. The smallest such support is

[c, c̄] =

[
min
i∈N
{ci},max

i∈N
{c̄i}

]
⊂ [0, 1]. (6.14)

To see this, recall that, for any given w ∈ (0, 1), assuming r1 ≤ · · · ≤ rn with at
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Mapping probability distributions from the DMP auction into truncated normal distributions
with common support
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least one inequality strict, it follows c1 ≤ · · · ≤ cn and c̄1 ≤ · · · ≤ c̄n with at least
one inequality strict. Further let Ci = [ci, c̄i]; then C =

∪
i∈N Ci is the smallest set

containing all sets Ci for all i ∈ N . Since Ci is closed for all i ∈ N , it follows that C is
closed, and C = [c, c̄] such that c ≤ ci and c̄i ≤ c̄ for all i ∈ N , which is equivalent to
[mini∈N{ci},maxi∈N{c̄i}].

All that remains is to then select a family of  distributions which captures the numer-
ical ranges of  the original supports as closely as possible. To provide an illustrative ex-
ample, let there be 2 bidders such that c1 < c2 < c̄1 < c̄2. Each bidder is characterised
by a uniform distribution. The common support in this case equals [c, c̄] = [c1, c̄2].
Firstly, recall that the chosen distirbutions have to satisfy Assumptions 6.1. Thus, uni-
form distributions considered over the common support cannot be chosen since they
violate those assumptions. To see this, letF1 be the cumulative distribution function (cdf)
of  the uniform distribution with the support [c1, c̄1]. Extended to the common support
[c, c̄], the derivative of F1, the probability density function (pdf), is zero over the interval
[c̄1, c̄] = [c̄1, c̄2], and hence, it is not locally bounded away from zero over the com-
mon support. As a result, it is necessary to choose distributions such that they satisfy
Assumptions 6.1, and at the same time, possess the shape characteristics similar to the
uniform distribution, such as symmetry about the mean. One possible way of  casting
this scenario into common prior setting is to model the distributions of  both bidders
as truncated normal distributions truncated to the interval [c1, c̄2], and with differing
mean and standard deviation parameters. This is depicted in Figure 6.3.

In order to describe the truncated normal distribution, firstly recall the pdf  of  stan-
dard normal distribution

ϕ(c) =
1√
2π

exp
{
−1

2
c2
}
, (6.15)

and cdf

Φ(c) =

∫ c

−∞
ϕ(c)dc =

1

2

[
1 + erf

(
c√
2

)]
(6.16)

for all c ∈ R. The pdf  of  the truncated normal distribution, truncated to the interval
c ∈ [c, c̄], can then be described in terms of  the pdf  of  the standard normal distribution
as follows

f(c;µ, σ, c, c̄) =
1
σ
ϕ
(
c−µ
σ

)
Φ
(
c̄−µ
σ

)
− Φ

(
c−µ
σ

) (6.17)

where µ ∈ R is the mean (or location) of  the distribution, and σ2 ≥ 0 is the variance
(or squared scale) [99, 100]. Similarly, the cdf  of  the truncated normal distribution can
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Choosing parameters for the truncated normal distributions of  the bidders

be defined as follows

F (c;µ, σ, c, c̄) =

∫ c

−∞
f(c;µ, σ, c, c̄)dc =

Φ
(
c−µ
σ

)
− Φ

(
c−µ
σ

)
Φ
(
c̄−µ
σ

)
− Φ

(
c−µ
σ

) . (6.18)

Before moving on to discussing the methodology for quantifying the accuracy of  the
approximations, consider bidding scenario summarized in Table 5.2 in Chapter 5. Sup-
pose this scenario was cast into common prior setting where bidders are characterised
by truncated normal distributions. Firstly, it can be noted that the supports for both
bidders are

[c1, c̄1] = [0.125, 0.625] (6.19)

for bidder 1, and

[c2, c̄2] = [0.375, 0.875] (6.20)

for bidder 2, while the common support is given by

[c, c̄] = [c1, c̄2] = [0.125, 0.875]. (6.21)

Secondly, the distribution specific parameters (mean and standard deviation) need
to be specified for each bidder. The choice of  the parameters is motivated by the shape
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Table 6.2
Numerical values of  the chosen truncated normal distribution parameters

Mean, µi Standard deviation, σi
Bidder 1 0.375 0.125
Bidder 2 0.625 0.125

of  the normal distribution. Therefore, the midpoints of  the original supports are picked
as means for both bidders, that is,

µi = ci +
c̄i − ci

2
= ci +

w

2
. (6.22)

Furthermore, noting that, in the case of  normal distribution, 95% of  all the values falls
within 2 standard deviations away from the mean [99], the standard deviations are
selected to be equal to the quarter of  the length of  the original supports, that is,

σi =
c̄i − ci

4
=
w

4
. (6.23)

In this way, for each bidder, 95% of  all the costs falls within the interval [ci, c̄i], and
therefore, the probability of  drawing cost outside this interval is minimised. With this
choice of  parameters, the truncated normal distributions are effectively imitating uni-
form distributions with support [ci, c̄i] for each bidder. This is depicted in Figure 6.4 as
the shaded region under the bell curve.

Table 6.2 summarises the numerical values of  the described parameters, while the
resultant pdfs are depicted in Figure 6.5, and Figure 6.6 shows the resultant equilibrium
bidding strategies for both bidders. It is worth noting that the pdfs match the illustra-
tive example shown in Figure 6.3. Furthermore, note that the pdfs for both bidders, as
intended, are centred around the midpoints of  their original supports respectively, and
they tail off  to zero as the bounds of  the supports are reached.

6.3.2 Methodology for Quantifying Accuracy of the Approximations

There are two fundamental questions that need to be addressed when it comes to quan-
tifying accuracy of  the approximations. First, how can the predictions (in terms of  the
equilibrium bidding strategies) produced by both auction types be compared, and sec-
ond, how such a comparison can be quantified to allow for a programmatic treatment
of  the problem (thus, removing the possibility of  human error when visually comparing
the results). Two metrics will be considered: buyer’s expected price, and ex ante expected
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Pdfs of  the truncated normal distributions from the CP bidding problem characterised by: c =
c1 = 0.125, c̄ = c̄2 = 0.875, and µ1 = 0.375 and σ1 = 0.125 for bidder 1, and µ2 = 0.625
and σ2 = 0.125 for bidder 2
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FSM solution to the CP bidding problem characterised by: c = c1 = 0.125, c̄ = c̄2 = 0.875,
and µ1 = 0.375 and σ1 = 0.125 for bidder 1, and µ2 = 0.625 and σ2 = 0.125 for bidder 2
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utility for each bidder. In this way, an indicator of  how better off  (or worse off) is the
buyer and each of  the bidders is obtained; that is, all agents involved in the auction are
considered.

The buyer’s expected price is equivalent to the expected value of  the winning bid;
that is,

p = E[bi(ci) | bi(ci) < min
j ̸=i

bj(cj)], (6.24)

where bi is the equilibrium bidding function for all i ∈ N . Since an analytical derivation
of  the closed-form solution is not straightforward, similarly to the analysis presented in
Section 5.3.1, Chapter 5, the buyer’s expected price is estimated numerically. That is,
for each considered bidding scenario, the costs for each bidder are pseudo-randomly
drawn from uniform distribution, the corresponding equilibrium bids are computed,
and the minimum is chosen as the winning bid (price). This procedure is repeated 1000
times, yielding 1000 i.i.d. observations of  the price which are then averaged to give an
estimate of  the expected price (consequence of  the Strong Law of  Large Numbers; see
Section B.3.2, Appendix B).

In order to define the bidder’s ex ante expected utility, with some abuse of  notation, the
expected utility function for each bidder i ∈ N as defined in Equation (5.13), Chapter 5
is restated here:

Πi(ci) = (bi(ci)− ci) ·
∏
j ̸=i

(
1− Fj(b

−1
j (bi(ci)))

)
(6.25)

where bi is the equilibrium bidding function, and Fi is the distribution function of  costs
for bidder i. The ex ante expected utility is then equivalent to the expected value of  the
expected utility; that is,

Πi = E[Πi(ci)] =

∫ c̄i

ci

Πi(t)dFi(t) (6.26)

for all i ∈ N . In other words, the ex ante expected utility can be thought of  as the average
expected utility for each bidder for each considered bidding scenario, and it follows from
the definition of ex ante expected payments in a standard first-price auction put forward
by Krishna [54] (cf. Section 2.4 Revenue Comparison in [54]).

The way the aforementioned metrics are actually computed deserves a more elab-
orate explanation. The numerical derivation of  equilibrium in CP auction relies on
approximating the bidders’ distributions of  costs with truncated normal distributions
with common support, as discussed in Section 6.3.1. When computing the expected
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Table 6.3
Expected prices and ex ante expected utilities for the considered bidding scenario

Expected ex ante expected utility, Πi

price, p Bidder 1 Bidder 2
DMP 0.583 0.183 0.030

CP 0.573 0.176 0.026

price and ex ante expected utilities for all bidders in the CP auction, it is assumed, how-
ever, that the bidders draw their costs from their actual (uniform) distributions but use
the equilibrium bidding strategies derived for the CP auction with truncated normal
distributions to compute their bids. In this way, when computing the expected price
and ex ante expected utilities, the bidders’ distributions of  costs are not misrepresented,
and hence, ensure the comparison results of  casting the DMP auction into CP auction
setting are as realistic as possible. To see this, suppose that, in the CP auction, the bid-
ders’ costs are drawn from the truncated normal distributions but in reality they come
from uniform distributions. Let FCP

i denote the truncated normal distribution function
with support [c, c̄] (according to Equation (6.14)), and let FDMP

i denote the uniform
distribution function with support [ci, c̄i] for all i ∈ N . Then, as shown in the previous
section, [ci, c̄i] ⊂ [c, c̄]. Hence, there exists c ∈ [c, c̄] such that c ∈ [ci, c̄i] for some
i ∈ N ; that is, a bidder is allowed to submit a cost lying outside their actual support.

By way of  example, consider the numerical example from the previous section. Ta-
ble 6.3 presents the resulting expected prices and ex ante expected utilities for both bid-
ders for both auctions. It is difficult to judge by the values of  expected prices and ex ante
expected utilities how erroneous the approximation for each bidder is. To account for
this fact, the relative error in expected prices is defined as

ηp =

∣∣∣∣pDMP − pCP

pDMP

∣∣∣∣ (6.27)

and the relative error in ex ante expected utilities as

ηΠi
=

∣∣∣∣ΠDMP
i − ΠCP

i

ΠDMP
i

∣∣∣∣ (6.28)

for all i ∈ N , where pDMP and pCP denote the expected prices for DMP and CP
auction respectively, and ΠDMP

i and ΠCP
i denote the ex ante expected utilities for bidder

i for DMP and CP auction respectively. For the values of  expected prices and ex ante
expected utilities depicted in Table 6.3, the (percentage) relative errors are summarised
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Table 6.4
Percentage relative errors in expected prices and ex ante expected utilities for the considered
bidding scenario

Expected ex ante expected utility, Πi

price, p Bidder 1 Bidder 2
Percentage relative

1.72% 3.83% 13.33%error, η · 100%

in Table 6.4.
In this section, it was shown how a DMP bidding scenario can be cast into CP setting

by approximating bidders’ cost distributions with truncated normal distributions with
common support. Furthermore, expected prices and ex ante expected utilities were sug-
gested as metrics for quantifying the accuracy of  approximating DMP auction with CP
auction. In what follows, the proposed metrics are used to study approximation results
in four different bidding scenarios with two, three, four and five bidders respectively.

6.4 Approximation Results

This section analyses the results for four bidding scenarios: with n = 2, n = 3, n = 4

and n = 5 bidders respectively. The discussion concentrates on only up to five bidders
due to the following three reasons. Firstly, the time required to simulate the problem
increases exponentially with each additional bidder. It should be noted that the sim-
ulations were run on a 12-core Xeon processor, and were fully parallelised (i.e., each
repetition was run in a separate process, and up to 20 processes were running at any
one time). The time required to complete each simulation run took approximately: 1.6
hours for n = 2 bidders, 25.6 hours for n = 3 bidders, 76.2 hours for n = 4 bidders,
and 271.9 hours for n = 5 bidders. Figure 6.7 depicts results of  fitting an exponential
function of  the form

f(x) = aebx + c, where a, b, c ∈ R, and x ∈ R+ (6.29)

to the data. Assuming the growth rate of  simulation times with each additional bidder
will be at least as big as inferred from the measured simulation times, simulating for
more than five bidders is impractical. For example, a predicted simulation time for ten
bidders is approximately 124,255 hours, which equates to more than 14 years.

Secondly, as shown by Fibich and Gavish [98], FSM method becomes numerically
unstable for large numbers of  bidders (cf. Corrolary 3.2 in [98]). It applies to EFSM
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Figure 6.7
Exponential function fitted to the simulation time data

method since it is based on the FSM method.
Finally, it can be noted that since the UK market is currently dominated by an

oligopoly of  four incumbent network operators (bidders) who own their infrastructure
(EE, Vodafone, O2, and Three), solving the problem for up to five bidders is directly
relevant.

The procedure for generating the approximation results is as follows:

1. For each chosen value of  price weight, generate 100 reputation ratings vectors,
(r1, . . . , rn). Each vector is ordered; that is, r1 < r2 < · · · < rn. Therefore, in
what follows, bidder 1 is characterised by the lowest reputation rating, bidder 2 by
the second lowest, and so on. By ordering individual reputation ratings within the
vectors, the mean relative errors in ex ante expected utilities can be explored for
individual bidders characterised by the lowest reputation rating, second lowest,
etc. In other words, if  a bidder is characterised by the lowest reputation rating,
the mean relative error in ex ante expected utility the bidder is going to incur
by bidding according to the equilibrium bidding strategies prescribed by the CP
auction is quantified. Without this assumption, the mean relative error curves
would converge on the same value for all bidders, and thus, some valuable insight
into the extent of  the mean relative errors in ex ante expected utilities would be
lost. It is worth noting, however, that the mean relative error in expected price is
unaffected by ordering of  the reputation ratings.
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Furthermore, each ri for each bidder i is drawn from a uniform distribution over
the range (0, 1). It should be noted that reputation ratings have to be unique: if
(r1, r2), then r1 ̸= r2; and if r = (r1, r2) and g = (g1, g2) are two consecutively
generated reputation rating vectors, then it is required r ̸= g. By Assumptions 5.1,
there exists at least one ri ̸= rj for all 1 ≤ i, j ≤ n such that i ̸= j. This
immediately rules out the possibility of  bidders having equal reputation ratings
in case of  2 bidders. In case of  3 or more bidders, Assumptions 5.1 permit for 2
or more bidders (but not all) to be characterised by equal reputation ratings. In
order to keep the analysis numerically tractable, however, the bidding scenarios
with bidders characterised by equal reputation ratings in case of  3 or more bidders
are not considered.

2. For each reputation ratings vector, evaluate relative errors in expected price and
ex ante expected utility per bidder using Equations (6.27) and (6.28).

3. Evaluate mean relative errors in expected price and ex ante expected utility per
bidder, and associated 95% confidence intervals. The confidence interval for the
mean is computed using the formula described in [101]; that is, given a random
sample of  size k with unknown mean and standard deviation, the confidence
interval is defined as

ci = X̄ ± t1−α/2,k−1
s√
k
, (6.30)

where X̄ is the sample mean, s is the sample standard deviation, and t1−α/2,k−1 is
the upper 1−α/2 critical value for the t-distribution with k−1 degrees of  freedom.
It is worth noting that for 95% confidence interval, α = 0.05.

4. Repeat for price weight values ranging from 0.55 to 0.99. Since only feasible
bidders are considered, it is required that w ∈ (0.5, 1) which was shown to be
sufficient to warrant feasible bidding in Section 5.4, Chapter 5.

6.4.1 n = 2 Bidders

The approximation results for two bidders are depicted in Figure 6.8. It is worth ob-
serving that as the price weight increases, the confidence intervals for the mean rela-
tive errors decrease. This is a direct consequence of  the fact that as the price weight
approaches 1, the actual values of  the reputation ratings of  the bidders do not signif-
icantly influence the mean relative errors in expected price and ex ante expected util-
ities for both bidders. To see this, recall from Equation (6.14) the common support
[mini ci,maxi c̄i] = [(1 − w)mini ri, (1 − w)maxi ri + w]. As w → 1, this reduces
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to [limw→1(1 − w)mini ri, limw→1(1 − w)maxi ri + w] = [0, 1]. Hence, as the price
weight increases, the less significant the effect of  the reputation ratings on the common
support.

Another interesting observation is that, as the price weight approaches 1, the mean
relative errors in ex ante expected utilities for both bidders start to converge. This is due to
the fact that, as w approaches 1 and in particular at w = 1, the DMP auction becomes
a standard FPA auction with all bidders characterised by uniform distributions which
are overlapping to a high degree; i.e., with some abuse of  notation, Fi(x) ≈ Fj(x) for
all x, i ̸= j and i, j ∈ N . The same is true for the CP auction with this difference
that all bidders are characterised by almost equal truncated normal distributions. Fur-
thermore, in both auctions, the bidders are characterised by symmetric, albeit different
across auctions, equilibrium bidding strategies. This is due to the fact that at a sym-
metric equilibrium the support becomes identical in both auctions, and hence, uniform
distribution of  costs and truncated normal distribution of  costs will result in different
equilibrium bidding strategies. This in turn leads to almost equal mean relative errors
in ex ante expected utilities for all bidders.

The error bounds are explored next. The mean error in expected prices is approxi-
mately linearly increasing in price weight, and is bounded from above by 8% and from
below by 3%. The mean error in ex ante expected utility for bidder 1 also linearly in-
creasing in price weight, and is bounded from above by 15% and from below by 7%.
For bidder 2, however, the relationship between the price weight and the mean error is
nonlinear, with the error attaining its maximum of  approximately 15.5% for the price
weight of w ≈ 0.8. It is bounded from above by 15.5% and from below by 13%. It
is clear that bidder 1 who is characterised by lower reputation rating is experiencing
overall smaller mean error for all values of  the price weight. However, as w → 1 and
as explained in the previous paragraph, the mean error converges on the same value of
approximately 15% for both bidders.

To summarise, for all analysed values of  price weight, the mean relative error in ex-
pected prices is relatively small compared to the mean errors in ex ante expected utilities
for both bidders. It is important to notice that the mean relative errors for both bidders
are bounded from above by the same mean relative error of  15%. In terms of  the lower
bound, however, bidder 2 who is characterised by higher reputation rating is charac-
terised by much higher mean relative error (13% in contrast to only 7% for bidder 1).

6.4.2 n = 3 Bidders

Figure 6.9 depicts the approximation results for three bidders. First of  all, it should be
noted that the first two observations pointed out in case of  two bidders also apply to the
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Approximation results for two bidders
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Approximation results for three bidders
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current case. More specifically, as the price weight increases, the confidence intervals
for the mean relative errors decrease, and, as the price weight approaches 1, the mean
relative errors in ex ante expected utilities for all bidders start to converge.

All mean relative errors, unlike in the case of  two bidders, exhibit clear nonlinearity in
price weight. Furthermore, the mean relative error in expected prices is nondecreasing
as the price weight increases, and achieves its maximum at w = 0.99. It is bounded
from above by 5% and from below by approximately 1.8%. The mean relative error in
ex ante expected utilities for bidder 1 is bounded from above by 10% and from below by
4.5%. The mean relative error in ex ante expected utilities for bidder 2 is also bounded
from above by 10%, but it is bounded from below by 7%. It is worth noting that the
shape of  the mean relative error curve for bidder 2 resembles that of  the mean relative
error curve for bidder 1 translated in y-direction. Finally, the mean relative error in ex
ante expected utilities for bidder 3 is bounded from above by 15% and from below by
10%.

As expected, bidder 3 who is characterised by the highest reputation rating experi-
ences the highest mean relative error in ex ante expected utilities for all values of  the price
weight out of  all bidders. In fact, the lower bound for bidder 3 is the same as the upper
bound for the remaining bidders. This agrees with the conclusion drawn for the case
of  two bidders, where bidder 2 was the bidder characterised by the highest reputation
rating and experienced the highest mean relative error out of  all bidders.

6.4.3 n = 4 Bidders

Figure 6.10 depicts the approximation results for four bidders. Firstly, it should be noted
that, similarly to the previous two scenarios, as the price weight approaches 1, the mean
relative errors in ex ante expected utilities for all bidders start to converge. Furthermore,
as the price weight increases, the confidence intervals for the mean relative errors de-
crease.

In terms of  shape, similarly to the case of  three bidders, all mean relative errors
exhibit nonlinearity in price weight. Furthermore, the mean relative error in expected
prices is bounded from above by approximately 0.7%, and from below by approximately
0.1%. The mean relative error in ex ante expected utilities for bidder 1 is bounded from
above by 2%, and from below by approximately 0.1%. The mean relative error in ex
ante expected utilities for bidder 2 is bounded from above by 2.5%, and from below by
0.1%. It is worth noting that, for the values of  price weight w ∈ [0.65, 0.9], the mean
relative error for bidder 2 is actually smaller than for bidder 1, even though bidder 1 is
characterised by the lowest reputation rating. The mean relative error in ex ante expected
utilities for bidder 3 is bounded from above by 6.1%, and from below by 1.8%. Finally,
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Approximation results for four bidders
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Approximation results for five bidders
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the mean relative error for bidder 4 is bounded from above by 16%, and from below
by 1.5%.

As expected, bidder 4 who is characterised by the highest reputation rating expe-
riences the highest mean relative error in ex ante expected utilities for all values of  the
price weight out of  all bidders. This agrees with the conclusion drawn for the previous
two bidding scenarios, where bidder who was characterised by the highest reputation
rating, experienced the highest mean relative error out of  all bidders. It should further
be noted that the range of  values the mean relative error takes is much larger than it
was the case for bidders characterised by the highest reputation rating in the previous
two bidding scenarios.

6.4.4 n = 5 Bidders

Figure 6.11 depicts the approximation results for five bidders. Similarly to the previous
three scenarios, as the price weight approaches 1, the mean relative errors in ex ante
expected utilities for all bidders start to converge. Furthermore, as the price weight
increases, the confidence intervals for the mean relative errors decrease.

All mean relative errors, similarly to the case of  three and four bidders, exhibit clear
nonlinearity in price weight. Furthermore, the mean relative error in expected prices
is bounded from above by approximately 6%, and from below by approximately 1%.
The mean relative error in ex ante expected utilities is bounded from above and below
by: 10% and 3% respectively for bidder 1; 9% and 3.5% for bidder 2; 8% and 3% for
bidder 3; 9.5% and 3% for bidder 4; 16.5% and 2% for bidder 5.

Similarly to the previous scenarios, bidder 5 who is characterised by the highest rep-
utation rating experiences the highest mean relative error in ex ante expected utilities;
however, unlike in the previously considered scenarios, it no longer holds for all values
of  the price weight. In particular, while for the values of  price weight w ∈ [0.55, 0.7]

bidder 5 is indeed characterised by the highest error, for w ∈ [0.8, 1) the error is the
lowest. Interestingly, it is bidder 1 who is characterised by the highest relative error for
w ∈ [0.8, 1). This is an unexpected result as it contradicts the conclusions drawn from
the previously considered scenarios. At the same time, it is a positive result for bidder
5 as it means that being the bidder characterised by the highest reputation rating does
not necessarily entails experiencing the highest error for all values of  the price weight.
Finally, similarly to previous scenarios, bidder 5 is still characterised by largest range of
mean relative errors out all bidders.

114



0.5 0.6 0.7 0.8 0.9 1.0
Price weight, w

0

1

2

3

4

5

6

7

8

P
er

ce
nt

ag
e

re
la

ti
ve

er
ro

r
2 bidders

3 bidders

4 bidders

5 bidders

Figure 6.12
Mean relative error in expected prices across all bidding scenarios
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Mean relative error in ex ante expected utilities for bidder 1 across all bidding scenarios
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Mean relative error in ex ante expected utilities for bidder 2 across all bidding scenarios
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Mean relative error in ex ante expected utilities for bidder 3 across all bidding scenarios
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Mean relative error in ex ante expected utilities for bidder 4 across all bidding scenarios

6.4.5 Discussion

Considering all bidding scenarios together, the relationship between the number of  bid-
ders and mean relative errors in prices and ex ante expected utilities for each bidder is
nonlinear. Furthermore, there is no clear tendency between the number of  bidders and
mean relative errors; that is, the mean relative errors do not necessarily decrease with
each additional bidder. To see this, it can be noted that for all values of  the price weight,
the mean relative error in expected prices decreases for 2 and 3 bidders, achieves its
minimum for 4 bidders, and then increases for 5 bidders (see Figure 6.12). The same
applies to the mean relative errors in ex ante expected utilities for bidder 1 and 2 (see
Figures 6.13 and 6.14). However, the situation is more complicated for bidder 3 and
bidder 4. In the former case, for the price weight values w ∈ [0.55, 0.62], the mean
relative error decreases with each additional bidder, while for w ∈ (0.62, 1) it behaves
similarly to the case of  bidder 1 and 2 (see Figure 6.15). In the latter case, the situa-
tion is almost exactly the same: the mean relative error decreases with each additional
bidder for w ∈ [0.55, 0.82], and behaves similarly to the case of  bidder 1 and 2 for
w ∈ (0.82, 1) (see Figure 6.16).

It can be concluded, however, that approximating the network selection mechanism
employed by the DMP with a CP auction consitutes a valid alternative, and as such, even
though not perfectly accurate (mean relative errors as large as 16% for all bidders), it
might be a more desirable option for the network operators due to the wealth of  nu-
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merical methods available that have been extensively studied by the researchers [88].
The same cannot be said about the EFSM method presented in this thesis (Section 5.5,
Chapter 5), which, first of  all, becomes numerically unstable for large number of  bid-
ders [98], and secondly, to the best of  the author’s knowledge, has not yet been consid-
ered by the economic community.

6.5 Summary

It is a well-known fact that the FSM method and its derivatives, such as the EFSM
method, become numerically unstable for large number of  bidders [98]. While this
issue did not impact the results presented in the thesis (due to the fact that only as many
as five network operators were considered), it is important to acknowledge the fact that
the issue exists. Therefore, in order to address the problem of  numerical instability, in
this chapter, it was explored whether the DMP auction can be approximated with a
CP auction. To this end, the notion of  the CP auction was introduced and formally
defined. It was shown that the pure strategy Bayesian Nash equilibrium exists and is
unique, provided the cost distributions for each bidder satisfy certain assumptions (see
Proposition 6.1).

Furthermore, this chapter presented a numerical algorithm, first proposed by Ba-
jari [91], for numerically approximating equilibrium bidding strategies to the CP auc-
tion (see Algorithm 6.1). The method was verified for correct implementation in two
ways: by comparing the resultant equilibrium bidding strategy functions with those
presented by Bajari [91]; and by testing the equilibrium bidding strategy functions for
sufficiency condition for a pure strategy Bayesian Nash equilibrium.

Finally, the DMP auction was modelled as a CP auction where each bidder drew
their costs from a truncated normal distribution with common support but differing
parameters. A formal methodology for comparing the results generated by the CP auc-
tion with those of  the DMP auction was presented. The methodology is based on two
metrics: expected price and ex ante expected utilities for all bidders. The chapter culmi-
nated with the analysis of  approximation errors in four bidding scenarios: with n = 2,
n = 3, n = 4 and n = 5 bidders. It was concluded that, even though not perfectly accu-
rate (approximation errors as large as 16% for all bidders), approximating the original
DMP auction with the CP auction might be a more desirable option for the network
operators. This is emphasised by the fact that there exists an abundance of  numerical
methods for solving a CP auction that have been extensively studied by the economic
community, which are less prone to numerical errors than the FSM method and its
derivatives such as the EFSM method.
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Chapter 7

Conclusions and Further Work

7.1 Conclusions

The world of  mobile communications is becoming increasingly diverse in terms of  dif-
ferent wireless access technologies available: WiFi, 3G, and the cutting-edge 4G are
gradually being rolled out in many countries across the world. In an environment of
such diversity and heterogeneity, where each wireless access technology has its own dis-
tinct characteristics, intelligent network selection provides a resource efficient way of
handling communications services by matching the services’ required quality with the
characteristics of  a particular access technology.

To make full use of  this increasingly diverse environment and increase the competi-
tion between network operators even further, the one-to-one mapping between network
operators and subscribers need no longer hold. This allows the subscribers to seamlessly
switch not only between different wireless access technologies belonging to one partic-
ular network operator, but also between network operators themselves. In this way, the
subscriber, when requesting a service, is given the option to select a network operator
and a wireless access technology that best matches the required quality requirements of
the service. It is not only to the benefit of  the subscribers, however, since the integra-
tion of  wireless access technologies will allow network operators for improved revenue
generation, and more efficient usage of  network resources.

This thesis explored the economic aspects of  intelligent network selection. The
problem was studied within the context of  Digital Marketplace—a theoretical market-
based framework for trading wireless communications services. It was first proposed by
Irvine et al. in 2000 [8, 9], and it was developed with the heterogeneous wireless com-
munications environment in mind, where the subscribers have the ability to select a
network operator that reflects their preferences on a per service basis. Since the Digi-
tal Marketplace was created with free market (or “perfect” competition) in mind, it is

119



particularly well-suited towards the management of  future wireless environment where
wireless access is traded on a per service basis. It is for this reason that this research
explored the problem of  network selection within the context of  Digital Marketplace.

The network selection mechanism advocated by the Digital Marketplace lacked ex-
tensive and rigorous economic analysis. With the game theoretic analysis presented in
this thesis, this deficiency has been addressed. More specifically, in Chapter 4, a game-
theoretic model of  the network selection mechanism was formally defined. Several sim-
plifying assumptions were made in order to keep the analysis mathematically tractable.
For example, the network operators and the subscriber are risk neutral, and the sub-
scriber does not have any budget constraints. Despite the fact that those assumptions
are not entirely representative of  the reality, following in the footsteps of  von Neumann
and Morgenstern, the mathematical theory of  an economic phenomenon should be
rigorous and developed gradually [78]. Therefore, the simplifying assumptions made
in this chapter and thesis serve as a starting point for the rigorous, gradual development
of  the economic theory of  operation of  the network selection mechanism in the Digital
Marketplace, before it can embark on capturing the reality to a high degree.

Furthermore, in the chapter, the equilibrium bidding strategies were derived for
three special/extreme cases. In the first case, when only reputation ratings of  the net-
work operators decide on the winning network operator, it was shown that network
operators will find it beneficial to submit abnormally high bids, since their bid is in-
dependent of  the probability of  winning the auction. While this result sounds like a
potential design flaw, in reality, the subscribers will necessarily be budget constrained,
and therefore, abnormally high bidding of  the network operators will translate into
charging the subscribers a premium price for the service that is within the limits of  their
respective budgets. In the second case, when only the monetary bids of  the network
operators matter in the selection of  the winner, it was shown that the problem reduces
to a standard first-price sealed-bid auction with symmetric bidders, and therefore, the
symmetric equilibrium bidding strategies of  the standard first-price sealed-bid auction
applies. Similarly, the third case, when all network operators are characterised by the
same reputation rating, was shown to be a special case of  the second case. In both cases,
the abundance of  theoretical results and economic insight from the auction literature
applies, found, for example, in Krishna [54].

Finally, the equilibrium bidding strategies for only two network operators were ana-
lytically derived. It was shown that although the derived equilibium bidding strategies
allows for negative bids, it does not lead to negative profit in case of  winning (or a tie)
of  either network operator. In fact, it was established that the direct mechanism rep-
resentation of  the Digital Marketplace auction satisfies both individual rationality and
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incentive compatibility constraints. As a result, this proved that the network operators
would find it in their best interest to participate in the auction, and they would reveal
their costs truthfully. It was further noted that the real behaviour of  the network oper-
ators might be dictated by the need to secure the contract with the subscriber first and
foremost, and hence, lead to negative bidding; a strategy akin to the “loss leader” pric-
ing strategy. However, since the ultimate aim of  this thesis was gradual development of
rigorous economic theory of  the operation of  the network selection mechanism within
the Digital Marketplace, network operators were always assumed to behave rationally
from the perspective of  game theory, and bid at least their cost.

In Chapter 5, by mathematically transforming the problem into an alternate form,
it was shown that the equilibrium bidding strategies exist and are unique. This was an
important result from the perspective of  the development of  rigorous theory of  the op-
eration of  the network selection mechanism as it proved that the mechanism is econom-
ically well-behaved since the equilibrium exists. Furthermore, the equilibrium bidding
strategies were explicitly derived in the case of  two network operators and their costs
assumed to be uniformly distributed. The assumption of  uniform distribution of  costs
for the network operators was argumented by the fact that it is a standard practice when
there is a lack of  knowledge of  the actual type of  the distributions [97]. Nevertheless, it
was noted that such an assumption is limiting, and it is highly likely it will not be fully
representative of  the reality. Furthermore, in the case of  two network operators, the
expected prices the subscribers will have to pay for different values of  the price weight
were examined. It was shown that, for any expected price, as the difference between the
reputation ratings of  the network operators increases, the price weight has to increase
(or remain constant) in order to keep the expected price fixed. It was noted that this ob-
servation carries very serious implications on the operation of  the Digital Marketplace,
as the subscriber is effectively given the ability to influence the expected prices by an
appropriate choice of  the price weight.

Finally, three numerical methods for numerically approximating the equilibrium bid-
ding strategies in the case of  more than two network operators were proposed: for-
ward shooting method (FSM), polynomial projection method (PPM), and extended
FSM (EFSM). When developing the algorithms, similarly to the restricted case with
two network operators, it was assumed that costs for the network operators were uni-
formly distributed; therefore, the same limitations applied. However, generalising the
algorithms to nonuniform distributions should not prove difficult since other researchers
have successfully employed similar numerical methods for studying problems where dis-
tributions were nonuniform [88]. The FSM and PPM methods allow for numerically
approximating equilibrium bidding strategies for a subset of  all possible bidding sce-
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narios resulting in nontrivial equilibria, while the EFSM method enables computation
of  the numerical solution to all bidding scenarios. It should be noted at this point that
the development of  the EFSM method constitutes an indirect contribution of  this the-
sis. The method allows for approximating solution to first-price sealed-bid auction with
asymmetric bidders posed by the Digital Marketplace bidding problem, and to the best
of  the author’s knowledge, this type of  auctions has not yet been solved numerically by
the economic community. Since the analytical derivation of  the equilibrium bidding
strategies in the case of  more than two network operators is not possible, the existence
of  algorithms capable of  numerically approximating the solutions is a major step for-
ward in the development of  the economic theory of  operation of  the network selection
mechanism in the Digital Marketplace. Furthermore, the algorithms constitute a tool
that the network operators participating in the Digital Marketplace can use to formulate
their own bidding strategies, and understand the bidding behaviours of  other network
operators.

It is a well-known fact that the FSM method and its derivatives, such as the EFSM
method, become numerically unstable for large number of  bidders [98]. While this is-
sue did not impact the results presented in the thesis (due to the fact that only as many
as five network operators were considered), it is important to acknowledge the fact that
the issue exists. Therefore, in order to address the problem of  numerical instability,
Chapter 6 explored whether an auction format represented by the network selection
mechanism employed in the Digital Marketplace can be modelled as an auction with
common prior. In an auction with common prior, the range the costs can vary is the
same for each bidder. To this end, the methodology for casting the bidding problem
posed by the Digital Marketplace into the auction with common prior was presented,
and the methodology for quantifying the accuracy of  the approximation was outlined.
Finally, the chapter concluded with the presentation of  approximation results for four
bidding scenarios with two, three, four and five bidders respectively. It was shown that
approximating the network selection mechanism employed by the Digital Marketplace
with an auction with common prior consitutes a valid alternative, and as such, even
though not perfectly accurate (mean relative errors as large as almost 16% for all bid-
ders), it might be a more desirable option for the network operators due to the wealth
of  numerical methods available that have been extensively studied by the researchers.

To conclude, the work reported in this thesis constitutes the first step towards the
development of  rigorous economic theory of  the operation of  the network selection
mechanism in the Digital Marketplace. As such, the participating network operators
can use the results derived in this thesis to formulate their pricing strategies and under-
stand the bidding behaviour of  their opponents. The subscribers, on the other hand,
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are in the position to understand the prices they will be required to pay depending on
their preferences for the requested service (in terms of  the price weight) and the reputa-
tion ratings of  the participating network operators. However, due to the fact that many
simplifying assumptions had to be made in order to develop the theory, it will not be
fully representative of  the reality, and therefore, the results presented herein should be
taken “with a grain of  salt”.

7.2 Further Work

There are many aspects of  the research presented in this thesis that can further be elab-
orated upon. The most important future directions are as follows.

7.2.1 Dynamic Aspect of the Network Selection Mechanism

This thesis did not consider the temporal aspect of  the network selection mechanism.
In game-theoretic terms, the game was assumed to be static as opposed to dynamic. In
other words, it was assumed that if  the network operators were to interact in an auction
more than once, they would discount any previous, historic interactions. This limits the
applicability of  the results presented in this thesis to real-life scenarios for two main
reasons.

Firstly, treating the game as static ignores the forces of  supply and demand that neces-
sarily exist in the market, and ignores the possibility of  existence of  market equilibrium
(regardless of  whether it is actually achievable) [19]. Indeed, the physical medium (i.e.,
the radio frequency spectrum) which facilitates distribution of  wireless communications
services has finite capacity, and therefore, on many occassions, supply may outweigh de-
mand, or in less populated areas, demand may outweigh supply [72]. While the problem
of  matching supply and demand in wireless communications markets is not as critical
as in electricity markets where imbalance may damage the entire electricity network,
it is important to consider as it will affect the subscribers’ experience with the services
received [62].

Secondly, as discussed by Figliozzi et al., repeated interaction of  bidders in an auction
will inevitably lead to information revelation and learning by the bidders [102]. For
example, if  it was assumed that the bids are disclosed to all network operators after the
auction concludes, this would inevitably lead to network operators inferring the cost
structure of  other network operators, and hence, induce bidding strategies that diverge
from the equilibrium bidding strategies derived in this thesis.
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7.2.2 Relaxing Fundamental Assumptions

The results presented in this thesis are based on the following fundamental assumptions:
1) subscriber does not have any budget constraints; 2) subscriber and network operators
are risk neutral; and 3) network operators are characterised by symmetric cost distribu-
tions (see Section 4.1, Chapter 4). It is generally agreed that these assumptions do not
reflect the real world to a high degree [54].

To elaborate further, by enforcing budget constraints on the subscriber, the theory
developed in this thesis would be in a better position to rigorously put a limit on abnor-
mally high bidding of  network operators stated in Proposition 4.1, which otherwise had
to be speculated. Secondly, the assumption of  risk neutrality is theoretically desirable as
it implies that the expected payoff  of  a bidder is additively separable, and hence, easier
to handle mathematically [54]. However, risk aversion, which assumes that bidders are
more likely to accept a certain outcome rather than embrace the uncertainty and gam-
ble, may be a more credible assumption [103]. Finally, the last assumption supposes
that the network operators are ex ante identical, and, as argued by Guth et al. for exam-
ple, it is violated in many real-life auction environments. Thus, it should be dropped
in favour of  more credible assumption that the network operators are characterised by
asymmetric cost distributions.

It is important to notice, however, that the reason those assumptions were incorpo-
rated in this research in the first place was to retain the mathematical tractability. With
those assumptions relaxed, this is no longer guaranteed, and hence, it gives rise to a
tradeoff  between mathematical tractability and applicability to real-world scenarios.

7.2.3 Subscriber’s Perspective: Expected Prices

This thesis examined the expected prices only in the case of  two network operators (see
Section 5.3.1, Chapter 5). Since the UK market is currently dominated by an oligopoly
of  four incumbent network operators who own their infrastructure (EE, Vodafone, O2,
and Three), examining the expected prices for more than two network operators is
directly relevant.

It should be noted that deriving the expected prices should be fairly straightforward
to execute. All that is required is to treat the numerically approximated equilibrium
bidding strategies (generated using EFSM method, or otherwise) as the input to Al-
gorithm 5.1, and proceed according to the methodology presented in Section 5.3.1,
Chapter 5.

An analysis of  expected prices in scenarios with more than two network operators
would be of  benefit not only to the subscribers involved in the Digital Marketplace, but
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also to the system designer/market provider. With the characterisation in place, it would
then be possible to verify whether the subscribers are still able to influence the expected
prices by an appropriate choice of  the price weight like in the case of  only two network
operators (see Section 5.3.1, Chapter 5).

7.2.4 Generalising Extended Forward Shooting Method

The implementation of  the EFSM method assumes the bidders to be characterised by
uniform distributions of  costs (see Section 5.5.1, Chapter 5). As discussed in the thesis,
uniform distributions are an appropriate assumption given the lack of  knowledge of  the
way the costs are distributed. However, should the Digital Marketplace and the network
selection mechanism presented in this thesis be used in practice, the market participants
may acquire knowledge that will conflict with the assumption of  uniformly distributed
costs [97]. Therefore, it will strengthen the generality of  the results presented in this
thesis if  the EFSM method is implemented for bidders characterised by nonuniform
distributions as well.

Furthermore, generalising the EFSM method to nonuniform distributions would
make it applicable to problems beyond the Digital Marketplace. To the best of  the au-
thor’s knowledge, the EFSM method is the only numerical algorithm in existence that
numerically solves the unusual first-price sealed-bid auction with asymmetric bidders
posed by the Digital Marketplace bidding problem. As such, it would constitute a major
contribution to the field of  computational auction theory.

7.2.5 Different Distributions in Common Prior Auction

It is a well-known fact that the FSM method and its derivatives, such as the EFSM
method, become numerically unstable for large number of  bidders [98]. In order to
address the problem of  numerical instability, this thesis explored whether an auction
format represented by the network selection mechanism employed in the Digital Mar-
ketplace can be modelled as an auction with common prior.

Casting the auction format represented by the network selection mechanism em-
ployed in the Digital Marketplace into an auction with common prior assumes that the
latter is based on truncated normal distributions (see Section 6.3, Chapter 6). However,
this assumption generated an approximation error as large as 16%. It should be ex-
plored whether utilisation of  different distributions would decrease the error. A natural
starting point would be to test truncated normal distributions with different mean and
standard deviation parameters. But the investigation is not limited to this particular
family of  distributions since there exist many distributions that could be used in their
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place; for example, truncated log-normal distributions.
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Appendix A

Mathematical Proofs

In this chapter, mathematical proofs of  all propositions are presented.

Proposition 4.1. Suppose ci is i.i.d. over the interval [0, 1] for all i ∈ N and ri ∈ [0, 1] for
all i ∈ N is common knowledge. Let N0 ⊆ N be the set of  all those network operators with the
lowest reputation rating. If w = 0, then every network operator j ∈ N0 will have an incentive to
bid abnormally high, i.e., bj → ∞, while every remaining network operator k ∈ N \ N0 will be
indifferent to the value of  their bid.

Proof. Let m = |N0| be the number of  network operators with the lowest reputation
rating such that m ∈ Z+. Since n = |N | is finite and N0 ⊆ N , then m ≤ n. Now, each
j ∈ N0 is facing a maximisation problem

max
bj

1

m
(bj − cj) , for all j ∈ N0. (A.1)

Since 1 ≤ m ≤ n, and since bj ∈ R+ and R+ is not bounded from above, this implies
that the maximisation problem is unbounded; that is, bj →∞ for all j ∈ N0.

The remaining network operators k ∈ N \N0 will try to solve

max
bk

0, for all k ∈ N \N0, (A.2)

since rk > rj = mini∈N ri. Hence, each network operator k ∈ N \N0 is indifferent to
the value of  their bid, which concludes the proof. ■

Proposition 4.2. Suppose ci is i.i.d. over the interval [0, 1] for all i ∈ N and ri ∈ [0, 1] for all
i ∈ N is common knowledge. If w = 1, then the symmetric equilibrium bidding strategy function of
the standard procurement first-price sealed-bid auction,

b∗FPA(ci) =
1

1− FC1:n−1(ci)

∫ 1

ci

tdFC1:n−1(t) for all i ∈ N, (A.3)
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constitutes a symmetric pure-strategy Bayesian Nash equilibrium of  the DMP variant of  a procurement
first-price sealed-bid auction.

Proof. The proof  is analogous to the proof  of  Proposition 2.2 in Krishna [54]. ■

Proposition 4.4. Let there be n = 2 network operators. For all i ∈ {1, 2}, suppose ci is
independently drawn from uniform distribution over the interval [0, 1], and ri ∈ [0, 1] is common
knowledge. Then the equilibrium bidding strategies for all w ∈ (0, 1] are given by

b1(c1) =
1

2
− 1− w

3w
(r1 − r2) +

1

2
c1, (A.4)

b2(c2) =
1

2
− 1− w

3w
(r2 − r1) +

1

2
c2. (A.5)

Proof. Suppose there are two network operators: network operator 1 and 2 with cost-
reputation pairs (c1, r1) and (c2, r2) respectively. Suppose that network operator 2 fol-
lows b2 equilibrium bidding strategy. It will be argued that it is optimal for network op-
erator 1 to follow b1 equilibrium bidding strategy. First, note that b1 is strictly increasing
and continuous function of  cost (similarly is b2). Suppose that network operator 1 bids an
amount b1. Since b1 is strictly increasing, it is bijective. Therefore, there exists unique
cost c′1 such that c′1 = b1

−1(b1). Network operator 1’s expected utility from bidding
b1(c

′
1) is

ũ1(b1(c
′
1), c1) (A.6)

= E [b1(c
′
1)− c1 | wb1(c′1) + (1− w)r1 < wb2(c2) + (1− w)r2]

=
1

2

(
1− 2

3
· 1− w

w
(r1 − r2) + c′1 − 2c1

)(
1− c′1 −

2

3
· 1− w

w
(r1 − r2)

)
.

Thus, it follows

ũ1(b1(c1), c1)− ũ1(b1(c′1), c1) =
1

2
(c1 − c′1)2 ≥ 0 (A.7)

regardless of  whether c′1 ≥ c1 or c′1 ≤ c1. It was thus argued that if  network operator 2
follows b2, network operator 1 with a cost c1 cannot benefit by bidding anything other
than b1(c1). Similar argument can be used to show that it is optimal for network operator
2 to follow b2 while network operator 1 is following b1. Hence, (b1, b2) constitutes a
Bayesian-Nash equilibrium profile. ■

Proposition 4.5. Suppose both network operators bid according to bi bidding strategies in Equa-
tions (4.34) and (4.35). Then they are guaranteed nonnegative profit in case of  winning (or a draw).

Proof. Let there be two network operators: network operator 1 and 2 with cost-
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reputation pairs (c1, r1) and (c2, r2) respectively. Suppose that both network operators
follow the equilibrium bidding strategy, bi(ci). It needs to be shown that network op-
erator 1’s bid is always at least as high as their cost whenever they win or draw with
network operator 2; that is, b1(c1) ≥ c1.

First of  all, note that if r1 ≤ r2,

b1(c1) =
1

2
− 1− w

3w
(r1− r2) +

1

2
c1 ≥

1

2
(1+ c1) ≥ c1, for all c1 ∈ [0, 1]. (A.8)

Thus, the case when r1 > r2 needs only to be considered.
Suppose r1 > r2. If c1 > c2, and since b1(c2) is strictly increasing in c1, network

operator 1 will lose for all values of w ∈ (0, 1]. If c1 = c2, network operator 1 will lose
for all values of w ∈ (0, 1), except at w = 1 when there will be a draw. But at w = 1,
network operator 1’s bid is at least as high as her cost; i.e.,

b1(c1) =
1

2
(1 + c1) ≥ c1, for all c1 ∈ [0, 1]. (A.9)

If c1 < c2, it is sufficient to show that the intersection of b1(c1) and c1 in terms of w
can never occur before the intersection of β(b1(c1), r1) and β(b2(c2), r2). First of  all, it
needs to be checked that both intersections do occur; that is,

b1(c1) = c1 ⇐⇒ w =
1

1 + 3
2
· 1−c1
r1−r2

. (A.10)

Similarly,

β(b1(c1), r1) = β(b2(c2), r2) ⇐⇒ w =
1

1 + 3
2
· c2−c1
r1−r2

. (A.11)

Since r1 > r2 and c1 < c2, it follows that 0 < r1 − r2 ≤ 1 and 0 < c2 − c1 ≤ 1.
Therefore, this implies

0 < w =
1

1 + 3
2
· 1−c1
r1−r2

≤ 1, (A.12)

and

0 < w =
1

1 + 3
2
· c2−c1
r1−r2

≤ 1. (A.13)

Now, suppose that the intersection of b1(c1) and c1 occurs before that of β(b1(c1), r1)
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and β(b2(c2), r2). It must thus follow

1

1 + 3
2
· c2−c1
r1−r2

<
1

1 + 3
2
· 1−c1
r1−r2

⇐⇒ 1− c2
r1 − r2

< 0. (A.14)

But since c2 ∈ [0, 1] and r1 > r2 by assumption,

0 <
1− c2
r1 − r2

; (A.15)

a contradiction, which concludes the proof. ■

Proposition 4.6. The direct mechanism (Q,M) where Q = (Q1, Q2) and M = (M1,M2)

satisfies both the IC and IR constraints.

Proof. Let there be two network operators: network operator 1 and 2 with cost-
reputation pairs (c1, r1) and (c2, r2) respectively. Suppose that both network operators
participate in the direct mechanism (Q,M). Firstly, it is shown that the mechanism
is incentive compatible. Without loss of  generality, suppose that network operator 2
truthfully submits their cost to the mechanism. It is argued that it is optimal for network
operator 1 to also submit their cost truthfully. Suppose to the contrary; that is, that
network operator 1 has an incentive not to reveal their cost truthfully by submitting c′1.
Thus, their expected utility becomes

˜̃u1(c
′
1) = E

[
b1(c

′
1)− c1

∣∣∣∣ 2b1(c′1)− 1 +
4

3
· 1− w

w
(r1 − r2) < C2

]
(A.16)

=

(
1

2
− 1

3
· 1− w

w
(r1 − r2) +

1

2
c′1 − c1

)(
1− c′1 −

2

3
· 1− w

w
(r1 − r2)

)
.

The first-order condition yields c′1 = c1 and the second-order condition is satisfied.
Hence, this shows that (Q,M) is incentive compatible.

Secondly, it is shown that (Q,M) is individually rational. Since the mechanism is
incentive compatible, each network operator reveals their cost truthfully. Hence, for all
c1

˜̃u1(c1) =

(
1

2
− 1

3
· 1− w

w
(r1 − r2)−

1

2
c1

)(
1− c1 −

2

3
· 1− w

w
(r1 − r2)

)
(A.17)

=
1

2

(
1− c1 −

2

3
· 1− w

w
(r1 − r2)

)2

≥ 0.

Therefore, (Q,M) is individually rational. ■

Proposition 5.1. Suppose (b̂∗1, . . . , b̂∗n) is a pure-strategy Bayesian Nash equilibrium profile for
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an auction with the utility function

ûi(b̂i, ĉi, b̂−i, ĉ−i) =


(
b̂i − ĉi

)
if b̂i < min

j ̸=i
b̂j,

0 if b̂i > min
j ̸=i

b̂j.
(A.18)

Then, the same profile constitutes an equilibrium for an auction with the utility function

ui(b̂i, ĉi, b̂−i, ĉ−i) =
1

w
· ûi(b̂i, ĉi, b̂−i, ĉ−i). (A.19)

Proof. Let

Π̂i(b̂i, ĉi, b̂−i, ĉ−i) = ûi(b̂i, ĉi, b̂−i, ĉ−i)P{winning | b̂i} (A.20)

and

Πi(b̂i, ĉi, b̂−i, ĉ−i) = ui(b̂i, ĉi, b̂−i, ĉ−i)P{winning | b̂i} (A.21)

be the expected utilities corresponding to utility functions ûi and ui respectively. By
definition of  the pure-strategy Bayesian Nash equilibrium [33], for all i and ĉi,

Π̂i(b̂
∗
i , ĉi, b̂

∗
−i, ĉ−i) ≥ Π̂i(b̂i, ĉi, b̂

∗
−i, ĉ−i) (A.22)

for all b̂i. Since w ∈ (0, 1), both sides of  the inequality may be multiplied by 1
w
> 0,

which yields, for all i and ĉi

1

w
Π̂i(b̂

∗
i , ĉi, b̂

∗
−i, ĉ−i) ≥

1

w
Π̂i(b̂i, ĉi, b̂

∗
−i, ĉ−i) (A.23)

⇐⇒ 1

w
ûi(b̂

∗, ĉ)P{winning | b̂∗i } ≥
1

w
ûi(b̂i, b̂

∗
−i, ĉ)P{winning | b̂i}

⇐⇒ ui(b̂
∗, ĉ)P{winning | b̂∗i } ≥ ui(b̂i, b̂

∗
−i, ĉ)P{winning | b̂i}

⇐⇒ Πi(b̂
∗
i , ĉi, b̂

∗
−i, ĉ−i) ≥ Πi(b̂i, ĉi, b̂

∗
−i, ĉ−i)

for all b̂i. Hence, it was just shown that (b̂∗1, . . . , b̂∗n) constitutes a pure-strategy Bayesian
Nash equilibrium of  the auction with utility function ui. ■

Proposition 5.2. Let Fi be the distribution function of ĉi for all i ∈ N , and suppose w ∈ (0, 1].
Then,

5. the support of Fi is an interval [ĉi, ¯̂ci];

6. Fi is differentiable over (ĉi, ¯̂ci] with a derivative fi locally bounded away from zero over this
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interval; and

7. Fi is atomless.

Proof. Proof  of  1) is trivial. To prove 2) and 3), note that for all x ∈ [(1 − w)ri, (1 −
w)ri + w],

Fi(x) = P{Ĉi ≤ x} (A.24)

= P{wC + (1− w)ri ≤ x}

= P

{
C ≤ x− (1− w)ri

w

}
since ĉi = wci + (1− w)ri and w ̸= 0. Hence,

Fi(x) = FC

(
x− (1− w)ri

w

)
(A.25)

and

x− (1− w)ri
w

∈ [0, 1] (A.26)

for all x ∈ [(1−w)ri, (1−w)ri+w]. Therefore, sinceFC is differentiable over (0, 1]with
a derivative fC locally bounded away from zero over this interval, by extension, Fi is dif-
ferentiable over ((1−w)ri, (1−w)ri+w]with a derivative fi locally bounded away from
zero over this interval, and this proves 2). Moreover, since FC is absolutely-continuous,
it is atomless (see [104, 105] for definition of  atomless probability distribution), and by
extension, Fi is atomless, which proves 3). ■

Proposition 5.3. Let Assumptions 5.1 be satisfied. There exists one and only one pure-strategy
Bayesian Nash equilibrium where network operators submit at least their costs-hat. In every such equi-
librium, network operator i ∈ J follows a bid function b̂i, for all 1 ≤ i ≤ n. Moreover, there
exists b̂ ∈ (ĉ2,

¯̂
b) such that, for all i ∈ J , there exists a continuous extension of b̂i to the interval[

min{ĉi, ĉ(b̂)},
¯̂
b
]

that is differentiable with a strictly positive derivative everywhere over this interval,

except possibly at ĉi or when its value is equal to ¯̂b, and such that the inverse bid functions ĉi for all
i ∈ J of  these extensions, where differentiable, satisfy the following system of  differential equations

d

db
ĉi(b) =

1− Fi(ĉi(b))

fi(ĉi(b))

[
1

n− 1

n∑
k=1

1

b− ĉk(b)
− 1

b− ĉi(b)

]
(A.27)

for all 1 ≤ i ≤ n, with the following lower boundary condition

ĉi(b̂) = min
{
ĉi, ĉ(b̂)

}
for all i ∈ J (A.28)
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and the upper boundary condition

ĉi(
¯̂
b) =

¯̂
b (A.29)

for all, except possibly one, 1 ≤ i ≤ n.

Proof. To prove existence, note that Lebrun [85] proves the existence of  a pure-strategy
Bayesian Nash equilibrium where network operators submit at least their costs-hat
(cf. C.5 Characterization with Possibly Different Lower and Upper Extremities in [85]).

To prove uniqueness, without loss of  generality, let network operator 1 be charac-
terised by the lowest reputation rating, network operator 2 by the second lowest, and
so on; that is, let r1 ≤ r2 ≤ · · · ≤ rn. This implies ĉ1 ≤ ĉ2 ≤ · · · ≤ ĉn and
¯̂c1 ≤ ¯̂c2 ≤ · · · ≤ ¯̂cn. Since Assumptions 5.1 are satisfied, then at least one inequality is
strict. Two cases need to be considered: 1) r1 < r2, and 2) r1 = r2. When 1) holds, then
¯̂c1 < ¯̂c2, implying that the additional condition (ii) in Theorem 1 in Lebrun [85] holds.
Otherwise, if  2) holds, then the additional condition (iii) in Theorem 1 in Lebrun [85]
is satisfied. Thus, the considered first-price auction has one and only one pure-strategy
Bayesian Nash equilibrium where network operators bid at least their costs-hat. ■

Proposition 5.5. Let there be n = 2 network operators, and suppose ci is independently drawn
from uniform distribution over the interval [0, 1] for all i ∈ {1, 2}. Furthermore, let Assumptions 5.1
be satisfied. The equilibrium inverse bidding strategy functions are given by

ĉ1(b) = ¯̂c1 +
(¯̂c2 − ¯̂c1)

2

(¯̂c2 + ¯̂c1 − 2b)d1 exp
( ¯̂c2 − ¯̂c1
¯̂c2 + ¯̂c1 − 2b

)
+ 4(¯̂c2 − b)

, (A.30)

ĉ2(b) = ¯̂c2 +
(¯̂c1 − ¯̂c2)

2

(¯̂c1 + ¯̂c2 − 2b)d2 exp
( ¯̂c1 − ¯̂c2
¯̂c1 + ¯̂c2 − 2b

)
+ 4(¯̂c1 − b)

, (A.31)

where

d1 =

(¯̂c2 − ¯̂c1)
2

ĉ1 − ¯̂c1
+ 4(b̂− ¯̂c2)

−2(b̂− ¯̂
b)

exp

(
¯̂c2 − ¯̂c1

2(b̂− ¯̂
b)

)
, (A.32)

d2 =

(¯̂c1 − ¯̂c2)
2

ĉ2 − ¯̂c2
+ 4(b̂− ¯̂c1)

−2(b̂− ¯̂
b)

exp

(
¯̂c1 − ¯̂c2

2(b̂− ¯̂
b)

)
, (A.33)
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and

b̂ =
ĉ1ĉ2 −

(¯̂c1 + ¯̂c2)
2

4
ĉ1 − ¯̂c1 + ĉ2 − ¯̂c2

,
¯̂
b =

¯̂c1 + ¯̂c2
2

. (A.34)

Proof. The proof  is analogous to the proof  of  Proposition 1 in Kaplan and Zamir [82].
■

Proposition 6.1. Let Assumptions 6.1 be satisfied. There exists one and only one pure-strategy
Bayesian Nash equilibrium where bidders submit at least their costs. In every such equilibrium, bidder
i ∈ N follows a bid function bi, for all 1 ≤ i ≤ n such that its inverse, ci = b−1

i , satisfy the
following system of  differential equations

d

db
ci(b) =

1− Fi(ci(b))

fi(ci(b))

[
1

n− 1

n∑
k=1

1

b− ck(b)
− 1

b− ci(b)

]
(A.35)

for all 1 ≤ i ≤ n, with the following lower boundary condition

ci(b) = c (A.36)

and the upper boundary condition

ci(c̄) = c̄ (A.37)

for all 1 ≤ i ≤ n.

Proof. The proposition is just a restatement of  the Theorems C.1 Characterization of
the Equilibria and U.1 Uniqueness of  the Equilibrium in Lebrun [85], and hence, the
reader is referred to that paper for proofs. ■
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Appendix B

Mathematical Notation and Preliminaries

This chapter, firstly, introduces mathematical notation used in this thesis. It then pro-
vides an overview of  the more important mathematical concepts necessary to under-
stand the work reported in this thesis.

B.1 Notation

Following the standard notation used in real analysis literature, the set of  all real num-
bers is denoted by R. An open subset of R is denoted by (a, b) ⊂ R such that a < b and
a, b ∈ R. Similarly, [a, b] ⊂ R denotes a closed subset of R, (a, b] a half-open (from the
left) subset, and [a, b) a half-open (from the right) subset. The set of  all positive (negative)
real numbers, however, is denoted by R+ (R−).

B.2 Mathematical Analysis

B.2.1 Invertibility of a Function

Let f : X → Y be a function mapping set X into Y .

Theorem (Inverse of  a Function). The function f : X → Y has an inverse f−1 : Y → X

if  and only if f is one-to-one and onto.

Proof. Suppose f has an inverse f−1. Since f−1 is a function, then for all y ∈ Y , there
exists x ∈ X such that f−1(y) = x. Hence, f is onto. Suppose there exist x, x′ ∈ X
and y ∈ Y such that f(x) = y and f(x′) = y. Then, x = f−1(y) and x′ = f−1(y).
But f−1 is a function; hence, x = x′ and f is one-to-one.

Conversely, suppose f is one-to-one and onto. Let f−1 : Y → X so that for all
y ∈ Y , there exists x ∈ X such that f−1(y) = x. Since f is onto, for all y ∈ Y , there
exists x ∈ X such that f(x) = y. Furthermore, since f−1(y) = x for all y ∈ Y by
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definition, then f−1(f(x)) = x. Since f is one-to-one, for all x, x′ ∈ X , f(x) = y

and f(x′) = y implies x = x′. Since f−1(f(x)) = x by the previous assertion, then
f−1(f(x)) = f−1(f(x′)). Hence, f−1 is an inverse of f . ■

Let f be an increasing function. That is, for all x, y ∈ X such that x < y, it follows
that f(x) < f(y).

Corollary B.1. If f is increasing, then it is invertible.

Proof. Every increasing function is one-to-one and onto. ■

B.2.2 Lipschitz Condition

Let f be a function such that f : Rn → Rn, and let E be a subset of Rn. Then, f is said
to satisfy Lipschitz condition on E if  there exists M > 0 such that

∥f(x)− f(y)∥ ≤M∥x− y∥ (B.1)

for all x, y ∈ E, where ∥ · ∥ denotes a norm on Rn [88, 106].

B.3 Probability Theory and Statistics

LetX denote an (absolutely-) continuous random variable (r.v.) with the support [a, b] ⊂
R. Let FX denote a cumulative distribution function of  the X r.v.; therefore, for any
x ∈ R, FX(x) = P{X ≤ x}, where P{X ≤ x} denotes the probability of  the event
such that X ≤ x. If FX admits a density function, it shall be denoted by fX = d

dx
FX .

If  it is clear from the context which variable is considered random, the subscript will be
dropped; that is, FX = F .

The expected value of X , denoted by E[X], is defined as E[X] =
∫∞
−∞ xdF (x).

Similarly, if u is a function of X , then the expected value of u(X) is defined as
E[u(X)] =

∫∞
−∞ u(x)dF (x).

B.3.1 Order Statistics

Let X1, . . . , Xn be independent continuous r.v.s with distribution function F and den-
sity function f = d

dx
F . LetXi:n denote the ith smallest of  these r.v.s; thenX1:n, . . . , Xn:n

are called the order statistics [107, 108]. In the event that the r.v.s are independently and
identically distributed (i.i.d.), the distribution of Xi:n is

FXi:n
(x) =

n∑
k=i

(
n

k

)
(F (x))k(1− F (x))n−k, (B.2)
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while the density of Xi:n can be obtained by differentiating Equation (B.2) with respect
to x [109]. Hence,

fXi:n
(x) =

n!

(n− i)!(i− 1)!
f(x)(F (x))i−1(1− F (x))n−i. (B.3)

B.3.2 Strong Law of Large Numbers

Let X1, . . . , Xn be i.i.d. r.v.s with finite mean µ. Let

X̄(n) =

∑n
i=1Xi

n
. (B.4)

Then, for sufficiently large n, X̄(n) provides a reasonable approximation of µ [101].
This result is known as the Strong Law of  Large Numbers,

Theorem (Strong Law of  Large Numbers). X̄(n)→ µ with probability 1 as n→∞.

Proof. For proof  of  this theorem, the reader is referred to Chung’s “A Course in Proba-
bility Theory” [110]. ■

B.4 Game Theory

B.4.1 Static Games with Incomplete Information

Let ΓB = [N, {Si}, {ui},Θ, F ] be a Bayesian game with incomplete information. Formally, in
this type of  games, each player i ∈ N has a utility function ui(si, s−i, θi), where si ∈ Si

denotes player i’s action, s−i ∈ S−i = "j ̸=iSj denotes actions of  all other players
different from i, and θi ∈ Θi represents the type of  player i. Letting Θ = "i∈NΘi, the
joint probability distribution of  the θ ∈ Θ is given by F (θ), which is assumed to be
common knowledge among the players. For a more in-depth treatment of  the theory of
games see for example [32, 33, 19].

In game ΓB, a pure strategy for player i is a function ψi : Θi → Si, where for each type
θi ∈ Θi, ψi(θi) specifies the action from the feasible set Si that type θi would choose.
Therefore, player i’s pure strategy set Ψi is the set of  all such functions.

Player i’s expected utility given a profile of  pure strategies (ψ1, . . . , ψ|N |) is given by

ũi(ψ1, . . . , ψ|N |) = E[ui(ψ1(θ1), . . . , ψ|N |(θ|N |), θi)], (B.5)

where the expectation is taken over the realisations of  the players’ types, θ ∈ Θ. Now, in
game ΓB, a strategy profile (ψ∗

1, . . . , ψ
∗
|N |) is a pure-strategy Bayesian Nash equilibrium if  it

constitutes a Nash equilibrium of  game ΓN = [N, {Ψi}, {ũi}]; that is, if  for each player
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i ∈ N ,

ũi(ψ
∗
i , ψ

∗
−i) ≥ ũi(ψi, ψ

∗
−i) (B.6)

for all ψi ∈ Ψi, where ũi(ψi, ψ−i) is defined as in Equation (B.5).
Alternatively, a strategy profile (ψ∗

1, . . . , ψ
∗
|N |) constitutes a pure-strategy Bayesian

Nash equilibrium in game ΓB if  and only if, for all i ∈ N and all θ̂i ∈ Θi occurring
with positive probability

E[ui(ψ
∗
i (θ̂i), ψ

∗
−i(θ−i), θ̂i) | θ̂i] ≥ E[ui(s

′
i, ψ

∗
−i(θ−i), θ̂i) | θ̂i] (B.7)

for all s′i ∈ Si, where the expectation is taken over realisations of  the other players’
types, θ−i, conditional on player i’s realisation of  his type, θ̂i. In other words, each type
of  player i can be thought of  as a separate player who maximises his payoff  given his
conditional probability distribution over the strategy choices of  his rivals.

B.4.2 Mechanism Design Theory

In economics, a system where economic transactions take place and goods are allocated
is called an allocation mechanism; for example, an auction is an allocation mechanism.
This section summarises the most important concepts of  mechanism design theory. For
a more in-depth treatment, see for example [111, 54, 112, 113, 114, 115].

Let (B, π, µ) be a mechanism representing any given auction. In this notation: B is a
set of  all possible bids; π : B → ∆ is an allocation rule, where ∆ is a set of  all probability
distributions over the set of  biddersN ; and µ : B → Rn is a payment rule where n = |N |.
The allocation rule quantifies as a function of  all n bids the probability that bidder i
receives the good. The payment rule determines as a function of  all n bids the expected
payment that bidder i must make. For example, if b = (bi, b−i) is the vector of  all bids
submitted to the mechanism, the probability that bidder i receives the good is πi(b),
while the expected payment is µi(b).

Every mechanism can be viewed as a game with incomplete information between
n bidders. For each bidder i, let bi(·) : Θi → Bi be the pure strategy where as before
Θi is the set of  all possible valuations of  bidder i. The equilibrium of  the mechanism is
hence defined as a vector of  strategies (bi(·), b−i(·)) if  for all i and for all θi ∈ Θi, bi(θi)
maximises bidder i’s expected payoff.

If Bi = Θi for all i, then the mechanism becomes the so-called direct mechanism. In a
direct mechanism, bidders are effectively submitting their valuations rather than bids
to the mechanism. In general, direct mechanisms tend to be smaller and simpler than
generic mechanisms, and therefore are easier to analyse while still being able to model
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the scenario accurately. Formally, a direct mechanism is defined as a pair (Q,M) with
an allocation rule defined as Q : Θ→ ∆, and a payment rule defined as M : Θ→ Rn.
Note that in direct mechanism bidders’ valuations are directly used to determine the
outcome of  the mechanism.

A direct mechanism (Q,M) is said to satisfy incentive compatibility (IC) constraint if  for
all i ∈ N , for all θi ∈ Θi, and for all θ̂i ∈ Θi,

˜̃ui(θi) = qi(θi)θi −mi(θi) ≥ qi(θ̂i)θi −mi(θ̂i), (B.8)

where

qi(θ̂i) = E[Qi(θ̂i, θ−i)], (B.9)

and

mi(θ̂i) = E[Mi(θ̂i, θ−i)]. (B.10)

In both cases, the expectation is taken over the realisations of  all but player i types,
θ−i ∈ Θ−i.

A direct mechanism (Q,M) is said to satisfy individual rationality (IR) constraint if  for
all i ∈ N , and for all θi ∈ Θi,

˜̃ui(θi) ≥ 0. (B.11)

This thesis also utilises the very powerful Revelation Principle theorem due to
Myerson which states the link between any generic mechanism and a direct mecha-
nism [114, 54]:

Theorem (Revelation Principle). Given a mechanism and an equilibrium for that mechanism,
there exists a direct mechanism in which (1) it is an equilibrium for each buyer to report his or her value
truthfully and (2) the outcomes are the same as in the given equilibrium of  the original mechanism.

Proof. For proof  of  this theorem, the reader is referred to Krishna’s “Auction Theory”
[54]. ■
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