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Abstract

Continuous low thrust propulsion can add considerable utility to spacecraft dy-

namics by enabling rich new families of thrust augmented orbits. With the aim of

enabling such orbits for small, low-cost spacecraft with limited on-board sensing,

new families of non-Keplerian orbits are generated in the Hill-Clohessy-Wiltshire

approximation using position-only feedback.

The same strategy is also applied to the linearised dynamics around collinear

libration points in the circular restricted three-body problem. In the Earth-

Moon system, position-only feedback is used to stabilise the local dynamics, and

interesting new multiply-periodic orbits are generated. The in-plane and out-of-

plane natural frequencies are then synchronised, allowing the generation of stable

halo-type orbits of arbitrary dimensions. An application for such orbits, an Earth-

Moon L2 communications relay, is also suggested. The propellant requirements

for such orbits are shown to be modest and achievable with existing low thrust

technology.

Continuous thrust is also used to produce artificial horseshoe orbits in a two-

body system. Using the cylindrical-polar form of the Hill-Clohessy-Wiltshire

approximation, low thrust manoeuvres are developed which allow for phased,

nested constellations of spacecraft around a circular two-body orbit. Interesting

new three-dimensional nested constellations can be enabled by the addition of out-

of-plane thrust, offering reconfigurable coverage of specific regions of the Earth.

In the circular restricted three-body problem, constant thrust directed along

the unit radius vector from each primary mass is applied to a spacecraft, modify-
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ing the positions and nature of the five equilibrium points, and thereby changing

the region in which horseshoe orbits can occur. In the 243 Ida binary asteroid

system, it is found that acceleration directed towards the two primaries results

in Lyapunov-stable L4 and L5 points, permitting horseshoe orbits.

In the 243 Ida system, a strategy is then proposed for finding periodic horse-

shoe orbits which rendezvous with the surface of the smaller primary. A search-

and-filter method is employed to produce initial guesses for periodic horseshoe

orbits, and these guesses are then refined using a numerical shooting method to

find precisely periodic orbits. However, this method misses periodic orbits with

more than two crossings of the axis connecting the primaries, and is therefore

modified to provide guesses for horseshoe orbits with additional crossings. Using

this strategy, two thrust augmented horseshoe orbits which rendezvous with the

surface of the smaller primary are found, and the speed of the spacecraft at ren-

dezvous is shown to be small. Such orbits offer interesting new opportunities for

binary asteroid touch-and-go sampling.
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ẋ0 = ż0 = 0, ẏ0 = −2nx0. . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Relative orbits with modified out-of-plane natural frequency. Fig-

ure (a) shows the trajectory of the chase spacecraft for k = 3, (b)

shows the required out-of-plane acceleration for k = 3, (c) shows

the trajectory of the spacecraft for k = 1/3, and (d) shows the

required out-of-plane acceleration for k = 1/3. Initial conditions

are r0 = 42157 × 103 m, x0 = z0 = 100 m, y0 = 0, ẋ0 = ż0 = 0,

and ẏ0 = −2nx0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Patching between displaced non-Keplerian orbits using low thrust.

Figures (a-d) show the trajectory (red) of the chase spacecraft.

Figures (e-h) show the required thrust-induced acceleration. Initial

conditions are r0 = 42157 × 103 m, x0 = z0 = 100 m, y0 = 0,
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Chapter 1

Introduction

In this Thesis, a rich range of new types of orbits is generated through the appli-

cation of continuous thrust in both the two-body Hill-Clohessy-Wiltshire (HCW)

approximation and the circular restricted three-body problem (CRTBP). This

Chapter presents a literature review of topics which provide a background and

inspiration for this Thesis, including displaced non-Keplerian orbits, artificial

equilibria, thrust augmented spacecraft relative motion, low thrust propulsion

technology, and co-orbital motion in the CRTBP. Novel mission concepts are also

described and scenarios are identified for which interesting new mission applica-

tions can be enabled. Emerging from this review, the objectives of the Thesis are

defined in Section 1.3, and the Thesis structure and author’s related publications

are given in Chapter-by-Chapter form in Section 1.4.

1.1 Literature Review

1.1.1 Artificial Equilibria and Non-Keplerian Orbits

This Thesis will build upon the basic concept of using continuous thrust-induced

acceleration to force spacecraft to follow orbits which would be impossible un-

der natural, free-flying conditions. This concept has been considered by many

past authors, and certain key advances relevant to this Thesis are presented in

2
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this Subsection. More specifically, two branches of this concept, artificial equilib-

rium points (AEPs) and non-Keplerian orbits (NKOs), are described, and their

relevance to this Thesis is defined.

Artificial Equilibria

In a dynamical system, equilibrium points are locations at which all forces acting

upon a particle are balanced, such that a particle would remain stationary if it

were placed precisely at one of these equilibria with zero initial velocity. Many

dynamical systems, such as the CRTBP, naturally contain such equilibria [1].

However, if additional forces, such as thrust, are artificially added to a dynamical

system, the locations of the equilibria may change or new equilibria may be

generated. These new points are termed artificial equilibrium points.

In the restricted three-body problem, Dusek first proposed that AEPs could be

created in the vicinity of libration points using continuous thrust [2]. Since then,

many authors have investigated the generation of AEPs in three-body systems.

Notably, McInnes et. al investiated the generation of AEPs in the CRTBP using

solar sails, finding that the five natural libration points are part of a surface of

AEPs parameterised by solar sail mass relative to area [3], and Morimoto et al.

investigated the thrust requirements to turn any arbitrary point in a restricted

three-body system into an AEP, finding the regions of stable AEPs in small

mass-ratio systems, such as the Sun-Earth system, which are achievable with

small control accelerations [4].

Later, Baig and McInnes studied the generation and nature of AEPs in the

CRTBP using a combination of solar sails and solar electric propulsion (such as

electrostatic ion thrusters), allowing for free selection of the sail lightness number

(the ratio of maximum spacecraft acceleration to the Sun’s local gravity) while

minimising propellant use, finding that hybrid propulsion required much lower

propellant mass than purely solar electric propulsion, and a smaller initial space-

craft mass than either a solar sail or solar electric spacecraft for a polar observa-
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tion mission [6]. Bombardelli and Peláez investigated the stability of AEPs under

minimum control in the CRTBP, showing that equilibrium is, in systems where

the masses of the primaries are different by an order of magnitude, achievable

when the spacecraft is nearly co-orbiting with the smaller primary. Furthermore,

they showed that stability is achieved when the spacecraft’s distance from the

smaller primary is greater than a minimum value given by a function of the mass

ratio and separation of the primaries [7]. Aliasi, Mengali, and Quarta investi-

gated the generation of AEPs using a generalised sail model (which describes

any propulsion system with only radial thrust which varies with distance from

the central body) in the elliptic restricted three-body problem, finding that the

AEPs exist only in the orbital plane of the primaries, and that the sail must peri-

odically vary its acceleration to maintain any particular AEP [8]. In recent years,

Lei and Xu studied invariant manifolds around unstable AEPs in the CRTBP,

and used high-order series expansions of the manifolds to design transfer trajec-

tories from the larger primary to the artificial L1 and L2 points [9]. De Almeida

et al. investigated the use of a solar sail for displacing a spacecraft above or below

the Sun-Earth L3 point [10] and described the motion of a spacecraft around an

AEP under perturbations [11]. Yang, Bai, and Li investigated the generation of

AEPs close to an irregularly-shaped asteroid, linearising the motion close to the

AEPs and deriving the pseudo-potential function for the system for topological

and stability analysis [12]. This particular method will also be employed in Chap-

ter 6 of this Thesis to analyse the effects of continuous thrust on the topology of

the pseudo-potential of the CRTBP.

Non-Keplerian Orbits

Keplerian orbits, having the shape of a conic section with the barycentre of the

two-body gravitational system at one of the section’s foci, can be modified with

continuous thrust to become non-Keplerian orbits. That is, the plane of the orbit

can be artificially displaced using out-of-plane thrust such that it no longer con-
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tains the barycentre. As such, NKOs are a closely-related concept to AEPs, since

a displaced orbit can appear as an AEP in a rotating frame of reference. Displaced

orbits could find useful application as displaced communications relays, avoiding

occultation by bodies in the orbit plane (as first proposed by Forward [13]), or as

displaced polar observation platforms (as proposed by McInnes [3,14]). Displacing

the plane of an orbit in such a way was also suggested by Austin et al. for small

displacements [15], and explored more prominently by Nock for in-situ observa-

tion of Saturn’s rings [16]. Yashko and Hastings analysed the propulsion system

requirements for satellite formations using NKOs [17], and McInnes investigated

the existence and stability of displaced NKOs in the two-body problem [18] and

the stability and control of such orbits [19], while Scheeres considered the stabil-

ity of NKOs about small bodies [20]. Later, Xu and Xu performed analysis of

the nonlinear dynamics of NKOs around a planet [21], Ceriotti and McInnes pro-

posed sail-displaced NKOs for polar coverage of the Earth [22], and more recently

McKay et al. performed a comprehensive survey of NKOs and their utility [23].

Of these authors, only Austin et al. considered the case of small displacements for

spacecraft proximity operations, and no analysis of this problem was performed.

Chapter 3 of this Thesis will build upon this concept by generating new types of

thrust augmented NKOs in the linear HCW approximation of spacecraft motion

relative to a circular two-body orbit, for the purposes of spacecraft formation

flight and specific applications therein. Additionally, the work which is most in-

fluential on the derivation of the new non-Keplerian orbit types presented in this

Thesis is that of McInnes [18], concerning the existence of NKOs in the two-body

problem. The survey performed by McKay et al. [23] also serves as inspiration for

the mission applications of the thrust augmented orbits generated, in Chapters 3

and 4.

As has been described, the mission applications of NKOs and AEPs depend on

the existence of suitable propulsion technologies, such as solar sails, electric sails,

and solar electric propulsion. These technologies are described in the following
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Subsection.

1.1.2 Continuous Low Thrust

Non-Keplerian orbits and artificial equilibria require the application of continuous

thrust-induced acceleration. While conventional chemical propulsion offers high

thrust and low specific impulse, requiring operation in discreet impulses and

essentially prohibiting such orbits, other propulsion technologies exist which offer

continuous low thrust with relatively small or zero propellant expenditure. This

Subsection broadly describes three such technologies (solar sails, electric sails,

solar electric propulsion), along with their applicability to NKOs and AEPs.

The decision to assume the use of generic low thrust propulsion throughout this

Thesis is also described, and the choice of thruster parameters when performing

propellant calculations is justified.

Solar Sails

Solar sails (which exploit solar radiation pressure for thrust) can be considered

well suited to the maintenance of NKOs and AEPs since they provide continu-

ous low thrust with no propellant requirement. For example, their use for the

generation of non-Keplerian geostationary orbits was considered by Forward [5],

Baig and McInnes [6], and Heiligers [24]. However, despite the zero propellant

and power requirement, solar sails possess a number of inherent disadvantages.

Solar sails cannot, for example, produce a thrust component directed towards

the Sun, and although demonstrative missions have taken place (e.g. JAXA’s

IKAROS [25] and NASA’s NanoSail-D2 [26]) the use of solar sails as primary

spacecraft propulsion is limited by existing materials technology: reflectivity and

mass relative to sail area govern the maximum acceleration which can be imparted

to the spacecraft. Furthermore, the thrust produced by a solar sail decreases with

distance from the Sun, and although the sail attitude can be varied to modify the

direction of the thrust vector, this also varies the magnitude of the thrust [14].
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Figure 1.1: Basic principle of operation of a perfectly reflecting solar sail [14].

This in turn limits the regions of AEPs and types of NKOs which can be ac-

cessed by a spacecraft equipped only with a solar sail. A schematic which shows

the basic principle of operation of a solar sail is given in Fig. 1.1, for a perfect

reflector. It should be noted that perfect reflectors do not exist, and a portion of

the incident solar radiation will be absorbed by the sail. This absorption causes

an additional force coincident to the solar radiation, i.e. directly away from the

Sun [14].

For the purposes of this Thesis, the inability to generate a component of thrust

directed towards the Sun places too great a limitation on the analysis which will

be performed, and so solar sails are not considered as the means of propulsion

herein.

Electric Sails

Electric sails, first proposed by Janhunen [27], differ from solar sails in that they

operate by using an electric field to gather momentum from solar wind charged

particles instead of by exploiting solar radiation pressure. A schematic of an

electric sail is shown in Fig. 1.2, where the rotation of the spacecraft is used to

deploy and maintain the radial configuration of the wires. Although the dynamic

pressure offered by the solar wind is three orders of magnitude smaller than that
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of solar radiation pressure at 1 AU, the effective area of the electric sail could

be made far larger than a solar sail with equal mass. This is due to the electric

sail consisting of radially placed wires, each generating a surrounding electric field

which extends into and interacts with the charged solar wind. The performance of

such sails in comparison to solar sails was first analysed by Mengali, Quarta, and

Janhunen [28], finding that for a given interplanetary mission the electric sail

potentially offers greater payload mass fraction, and greater thrust magnitude

at a given distance from the Sun. Electric sails were subsequently proposed by

Mengali and Quarta as a means of accessing NKOs [29], specifically for solar polar

observation. Recently, Wang et al. developed a new methodology for the analysis

of the formation flight of electric sails operating in NKOs, and proposed a control

strategy for such sail formations [30, 31]. Electric sails, however, possess similar

limitations to solar sails, including that they cannot produce a component of

thrust directed towards the Sun. An additional disadvantage is that they cannot

operate within a planet’s magnetosphere [27], and so cannot be used in proximity

to the Earth.

Similarly to solar sails, the limitations described above are considered too

great for the kind of generalised derivations in this Thesis, and so electric sails

will also not be assumed as the spacecraft’s means of propulsion. A more generic

form of low thrust propulsion is therefore sought, which can point and produce

thrust equally in all directions.

Solar Electric Propulsion

The pointing limitation of solar and electric sails is absent from electric propulsion

such as electrostatic ion thrusters. This type of propulsion electrically accelerates

inert propellants such as Xenon to very high exhaust velocities to offer high spe-

cific impulse, with low thrust output and high electrical power requirements [32].

For example, the QinetiQ T5 ion thruster produces thrust in the 5−25 mN range,

with specific impulse of 1900− 3000 s, for a power input of 200− 700 W [33]. A



9

Figure 1.2: Schematic of an electric sail, where the rotation of the spacecraft is
used to maintain the radial configuration of the charged wires [27].

schematic of the operation of a gridded electrostatic ion thruster is shown in Fig.

1.3. An electron gun (hollow cathode) is used to bombard the Xenon propellant

and strip it of electrons, and the resulting positive ions are accelerated electro-

statically between two oppositely charged grids. The electrons emitted by the

internal electron gun are collected by the anode (positively charged) grid, and

the positive ions in the exhaust are then neutralised by a second, external elec-

tron gun to avoid charge imbalance with the body of the spacecraft [35]. Power

is normally generated by solar photovoltaic cells, and so this form of propulsion

is often termed solar electric propulsion (SEP). The dependence on photovoltaic

power is perhaps the primary disadvantage of electric propulsion, since photo-

voltaic panels of considerable mass must be carried and since the available power

decreases with distance from the Sun. Furthermore, although the requirement is

relatively small, such propulsion still requires propellant.

As stated earlier, the use of hybrid solar sail-solar electric propulsion has

also been considered by a number of authors for the generation of NKOs and

AEPs (e.g. [24], [6]), to expand the regions of available orbits by permitting a

component of thrust in the direction of the Sun. Such propulsion benefits from

reduced propellant expenditure and correspondingly longer mission lifetimes when
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Figure 1.3: Schematic of a gridded electrostatic ion thruster, where electron bom-
bardment is used to ionise a propellant which is then accelerated by the charged
grids. The magnets surrounding the plasma generator enhance the efficiency of
the ionisation process [35].

compared with pure solar electric propulsion. However, in this Thesis, the use

of generic low thrust propulsion which can point and thrust in any direction will

be assumed in order to simplify the derivation and generalise the analysis of new

orbit types. Propellant expenditure calculations will be made by assuming the

use of electrostatic ion thrusters with a specific impulse of 3000 s, comparable to

the QinetiQ T5 thruster [34]. It will be assumed that this type of thruster can be

precisely throttled, since many of the new thrust augmented orbit types require

acceleration which is proportional to position and since the spacecraft’s mass

will change with propellant expenditure. Furthermore, in practice, the specific

impulse of electrostatic ion thrusters varies with the thrust output [34]. This

particular behaviour will be neglected in this Thesis.

1.1.3 Spacecraft Relative Motion and Formation Flight

This Thesis will consider, amongst other concepts, the use of continuous low

thrust to augment the relative motion between two spacecraft for the purposes
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of formation flight. This Subsection describes the basic concept of formation

flight and gives an overview of the advances in guidance and control of spacecraft

formations, indicating how the work in this Thesis relates to and builds upon

these advances.

The NASA Goddard Space Flight Center (GSFC) defines formation flight as

“the tracking or maintenance of a desired relative separation, orientation, or posi-

tion between or among spacecraft [36].” The need for coordinated proximity oper-

ations between spacecraft was initially driven by the goal of on-orbit rendezvous

and docking. Although Clohessy and Wiltshire had already proposed a guid-

ance strategy for such a rendezvous in 1960 [37], on-orbit rendezvous remained

a challenge and was not successfully attempted until the Gemini 6 spacecraft

rendezvoused with Gemini 7 in 1965. Difficulties encountered during previous

rendezvous attempts were primarily due to the unintuitive nature of the rela-

tive orbital mechanics when compared with aircraft formation flight, since thrust

towards or away from a target in a similar orbit will also change the chaser’s

altitude. It was noted by the Gemini 4 crew, who failed in their manual attempt

to rendezvous with a spent booster, that “it keeps falling, it’s probably three or

four miles away, and we just can’t close on it,” despite spending half of their

orbit and attitude maintenance propellant during the attempt [38]. Proper ren-

dezvous procedures were developed shortly thereafter, with the result that Gemini

6 performed a rendezvous and remained close to Gemini 7 for approximately 20

minutes by performing station-keeping manoeuvres [39], in effect becoming the

first mission to demonstrate spacecraft formation flight.

Perhaps one of the earliest recognitions of the potential utility of spacecraft

formation flight, beyond the scope of spacecraft rendezvous and docking, was a

space-based interferometer proposed by Sholomitsky, Prilutsky, and Rodin [40].

A similar concept was also proposed by Labeyrie [41], and the space-based in-

terferometer concept has perhaps most prominently been developed in the form

of ESA’s Laser Interferometer Space Antenna (LISA) mission (due to launch in
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2034), which will consist of three spacecraft flying in a precise equilateral trian-

gle with sides 2.5 million km long in order to detect and measure gravitational

waves [42,43], and the technology demonstration mission which precedes it (LISA

Pathfinder, launched in 2015) [44]. In the nearer term, ESA’s third Project for

On-Board Autonomy (PROBA-3) mission (due to launch in 2020) aims to use a

two-spacecraft formation to perform solar coronagraphy: one spacecraft will pre-

cisely occult the Sun, while the other images the solar corona [45]. Furthermore,

several missions demonstrating formation flight have flown in recent years, includ-

ing the ESA Cluster II (launched in 2000) and NASA Magnetospheric Multiscale

(launched in 2015) missions, both of which perform measurements of the Earth’s

magnetosphere using a four-spacecraft tetrahedral formation [46, 47]. Both of

these formations fly on highly elliptical orbits and maintain a tetrahedral for-

mation throughout, while the Chapter of this Thesis which concerns spacecraft

formation flight (Chapter 3) assumes a circular reference orbit and generates

thrust augmented orbits which offer dynamic formations.

The guidance and control of many different formation flying concepts have

been comprehensively surveyed for applications such as hyperspectral sensing (the

collection of information from a wide range of the electromagnetic spectrum) and

fractionated spacecraft (a formation of spacecraft, in which each individual space-

craft performs the function of one or more subsystems of a traditional spacecraft,

allowing robustness to equipment failures and operational flexibility) [48,49]. Un-

til recent years, such concepts have generally assumed the use of conventional

chemical propulsion for relative motion control through the application of discrete

impulses. The low specific impulse and high thrust offered by this type of thruster

impose limitations on spacecraft formations, since the available ∆v is low and the

spacecraft is restricted to following free-flying trajectories between impulses. It

has therefore been proposed that the continuous low thrust offered by modern

electrostatic thrusters could add versatility to spacecraft formation flight [15].

The thrust required for formation keeping is generally small, and so several con-
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cepts for efficient electrostatic microthrusters have been developed [32, 50]. As

an alternative, formation control using inter-spacecraft Coulomb forces has been

investigated by several authors (e.g. [51–54]). Other authors considered the use

of active control to stabilise the motion of a spacecraft relative to a reference

halo orbit in the Hill and restricted three-body problems, notably producing a

circular relative trajectory with applications in formation flight for stellar inter-

ferometry [55, 56], and later, Cielaszyk and Wie presented a numerical method

for halo orbit determination, designing a linear state-feedback controller in which

nonlinearities are considered as persistent disturbance inputs, for computing a

fuel-efficient nominal path around a libration point [57]. Actively controlled for-

mation flight in a two-body system has also been considered by several authors,

such as Bando and Ichikawa [58], where full-state feedback control has been used

to force a spacecraft onto an arbitrary singly-periodic reference orbit relative to

an elliptical orbit. Similarly, Arnot et al. used position-only feedback instead

of full-state feedback to modify the natural frequencies of linearised spacecraft

motion relative to a circular two-body reference orbit, resulting in the gener-

ation of multiply and singly-periodic relative orbits with applications such as

on-orbit inspection [59,60]. The same method was also applied to generate stable

multiply-periodic relative orbits around a collinear libration point using continu-

ous thrust [61]. This work will form the core of Chapters 3 and 4, where a range

of new spacecraft orbits for formation flight will be derived.

1.1.4 Halo Orbits and Co-orbital Motion

A further concept which will be explored in this Thesis is the use of continuous

thrust to augment the motion of a spacecraft which is orbiting within the CRTBP.

This Subsection defines halo orbits and co-orbital motion, and indicates how this

Thesis will build upon these concepts through the addition of thrust.

A schematic of the CRTBP is given in Fig. 1.4, indicating the relative po-

sitions of the two primary masses and the five libration points. The CRTBP is
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Figure 1.4: Schematic of the CRTBP, including horseshoe, tadpole, and halo
orbits.

a frame of reference which rotates about the mutual centre of mass of the two

primaries. Three kinds of orbits are also shown: halo, tadpole, and horseshoe

orbits. Halo orbits are families of periodic orbits around the collinear libration

points (L1, L2, or L3), first derived analytically by Farquhar [62] who proposed

that they be used for a lunar far-side communications relay. Howell performed a

numerical analysis of these orbits, discovering that families of halo orbits exist for

all mass ratios and that certain ranges of these were also stable [63]. A number of

halo-orbiting missions have flown, the first being NASA and ESA’s International

Sun-Earth Explorer-3/International Cometary Explorer (ISEE-3/ICE, launched

in 1978) which was placed in orbit around the Sun-Earth L1 point [64], and more

recently the LISA Pathfinder mission which was also placed into a halo orbit

around Sun-Earth L1 [44]. The use of conventional propulsion with discreet im-

pulses is normally assumed for the control and maintenance of these orbits, and

the use of continuous low thrust for the generation of new halo orbits has been

investigated by some authors (e.g. Baig [96]), however the use of thrust propor-

tional to position relative to a libration point has apparently not been considered.

Inspired by this, in Chapter 4 of this Thesis, the thrust-induced acceleration re-

quired to synchronise the in-plane and out-of-plane frequencies of motion of a

spacecraft around a collinear libration point will be derived in order to produce



15

halo-type orbits of arbitrary dimensions.

Tadpole and horseshoe orbits are forms of co-orbital motion, which can be

defined as the motion of one or more small bodies under their mutual gravitational

influence and that of two massive primaries, where the inertial-frame orbit period

of the small bodies is close to or the same as that of the two primaries’ mutual

orbit. Such motion has been investigated for more than a century by many

authors, initially due to observation of the librations of the Trojan asteroids

around the L4 and L5 points of the Sun-Jupiter system. These objects offered

the only real examples of motion of this kind, and so authors primarily considered

tadpole orbits (encircling only L4 or L5) which the Trojans followed. A related

class of orbits, called horseshoe orbits (encompassing L3, L4, and L5), were also

predicted to exist in the CRTBP [65–67], but their existence was not confirmed

until the Voyager mission observed the two co-orbiting satellites of Saturn, Janus

and Epimethus, following such orbits [68–70].

The detailed dynamics of horseshoe and tadpole orbits were principally in-

vestigated by Dermott and Murray, who proposed a method for estimating the

long-term stability of such orbits by considering that a particle in such an orbit

would be lost due to a random walk of the semi-major axis of the orbit after

each pair of encounters with the smaller primary, and provided a function for

the time scale in which this would occur. It was suggested that systems with

very small mass ratios could maintain horseshoe orbits for long time scales, and

that systems with larger mass ratios could maintain satellites in horseshoe orbits

for far shorter time scales (such as the Sun-Jupiter system, for approximately

106 years), which could account for the lack of Trojan asteroids with horseshoe

orbits [71, 72]. This definition of stability is not the same as that which will be

used throughout this Thesis, since herein it is generally used to mean stability (in

the sense of Lyapunov) of the linearised dynamics around an equilibrium point.

In Chapter 6 of this Thesis, the work of Dermott and Murray will be combined

with that of Dusek [2], to show how the existence of horseshoe orbits is linked to
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the positions and stability nature of the five equilibrium points in the CRTBP,

and how the application of conservative acceleration in the form of continuous

thrust changes these points and therefore the domain of existence of horseshoe

orbits.

Other authors have investigated families of periodic horseshoe orbits (e.g.

[73–75]) using numerical methods resembling that proposed by Howell [63]. These

numerical methods will serve as a foundation for the numerical search for thrust

augmented horseshoe orbits in the CRTBP in Chapter 7 of this Thesis. Simplified

models exploiting the apparent symmetry of the CRTBP to compute periodic

horseshoe orbits were proposed by Broucke and Konopliv [76], who also noted

the similarity of certain aspects of the CRTBP in polar coordinates to the HCW

approximation. This served as inspiration for Arnot and McInnes, who used low-

thrust transfers to replicate certain aspects of co-orbital motion in the cylindrical-

polar HCW approximation in order to produce nested artificial horseshoe orbits

for phased constellations of spacecraft [77]. This particular work will form the

core of Chapter 5, where the full derivation of the new orbits will be detailed.

1.1.5 Small Spacecraft

The concept of small spacecraft is also central to this Thesis, since a major moti-

vation for the strategies for generating new orbit types is the technological limita-

tions which such spacecraft face. This Subsection describes the concept of small

spacecraft, giving examples of the current mission applications and technological

challenges faced by such spacecraft.

CubeSats are miniaturised spacecraft composed of multiples of 10 × 10 × 10

cm, 1 kg, units, such that, for example, a 3U CubeSat consists of three such units.

They therefore generally belong to the category of nanosatellites (spacecraft with

a wet mass of 1 to 10 kg), and due to their use of off-the-shelf components they

have offered cost-effective space access for not only the on-orbit testing and qual-

ification of space hardware, but also for universities and developing nations to
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develop their own space programs [78]. The number of CubeSat launches per

year is increasing, aided by the miniaturisation of technology and new design

approaches, including more efficient launch strategies for constellations [79]. Re-

cent successful nanosatellite missions such as SMDC-ONE (US Army) [80], the

CanX series (University of Toronto) [81,109,131], STRaND-1 (University of Sur-

rey/SSTL) [82], and WNISAT (Weathernews Inc.) [83] have demonstrated how

such spacecraft can operate individually, while large constellations of nanosatel-

lites have also been successfully proven (e.g. the Planet Labs Flock constella-

tion [84]) with further constellations planned (e.g. the Sky and Space Global

200-satellite telecommunications constellation [85]).

However, the small size and mass of nanosatellites still pose design challenges.

Computing power is often limited when compared with larger satellites, and the

relatively low budget associated with most nanosatellite missions also ultimately

limits the complexity and functionality of flight hardware. The development

of thrust augmented orbits for small spacecraft should therefore take into ac-

count the limitations of such spacecraft. Miniaturised electrostatic thrusters for

nanosatellite applications already exist [50], and so the application of continuous

thrust to such spacecraft is feasible.

In this context, new families of orbits which have only simple pointing require-

ments (these pointing requirements will herein be termed steering laws, and they

will indicate the direction in which the spacecraft must apply thrust) will have

value, particularly if the sensing and control of such orbits can be accomplished

with simple and well-established hardware. For example, using a camera and

computer vision, it is possible to accurately measure the distance and relative

attitude between a chasing nanosatellite and a target,using strategies such as the

relative state estimator designed for this purpose by Tweddle and Saenz-Otero

and tested with a monochrome camera on the Synchronised Position, Hold, En-

gage, and Reorient Experimental Satellites (SPHERES) aboard the International

Space Station [86]. Sansone et al. also demonstrated the concept more recently
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using an infra-red camera, however this particular approach required the use of

a light source on the chase spacecraft and retro-reflective markers on the target,

and as such was only demonstrated at very close range (¡1 m). Within oper-

ating range, the system achieved a relative position accuracy of better than 5

mm, and a relative attitude accuracy of between 2◦ and 5◦ [87]. Furthermore,

computer vision based systems operate by analysing individual images at dis-

crete time steps, such that estimation of linear and angular velocities presents

a difficult challenge. Computer vision-based systems are therefore well suited to

applications such as on-orbit inspection and servicing, however applications with

higher accuracy requirements and greater separation between spacecraft (such as

stellar interferometry or hyperspectral sensing by a formation of spacecraft) will

require the use of different relative position and attitude determination systems.

Despite the challenges in obtaining high accuracy, cameras are still a versatile

choice of sensor for a small spacecraft with stringent mass limitations. For an

application such as on-orbit inspection, a camera could perform three functions:

observation of the target, attitude determination, and relative position determi-

nation. Additionally, the challenges inherent in rate estimations will be avoided

throughout this Thesis through the assumption of position-only feedback control,

allowing implementation aboard camera-equipped spacecraft, and only the radial

unit vectors from the two primary masses of the CRTBP will be required for the

steering laws in Chapters 6 and 7.

1.2 Research Motivation

In 2010, NASA published a detailed study of on-orbit servicing, concluding that

on-orbit servicing infrastructure was an essential and economical supporting step

for future space missions [88]. It can also be concluded that on-orbit inspection is

a necessary precursor to servicing, since it would allow for advance detection and

identification of failures on-board a satellite. In geostationary orbit, for example,
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many satellites could be inspected by a single small satellite, or formations of

small satellites, in order to determine the need for servicing. Woffinden proposed

a number of free-flying strategies for on-orbit inspection in which the natural rel-

ative motion between target and chase spacecraft are exploited [89], and Erdner

proposed [92] a 15 nanosatellite constellation capable of inspecting the entire geo-

stationary ring in less than a single year for space situational awareness. However,

the necessity of ballistic orbits imposes limitations on inspection mission concepts.

It is proposed in this Thesis that these limitations can be effectively addressed

with the introduction of continuous low thrust.

One major limitation of ballistic formation flight in two-body orbits is that

both the in-plane and out-of-plane oscillations of a spacecraft have the same nat-

ural period, which is equal to the period of the formation target’s orbit. By

making the system closed-loop and applying controlling thrust, it is possible to

modify these natural periods. Due to the decoupling of the in-plane and out-

of-plane motion for small displacements, it is possible to engineer a case where

the periods are distinct, and to cause the spacecraft to follow, as an example,

a helical trajectory around a target. Such a trajectory would be advantageous

for on-orbit inspection as it would allow for a detailed three-dimensional sweep

of a target. Science missions employing hyperspectral imaging or interferometric

sensing could also benefit from such trajectories, as a formation of lenses could be

made to rotate around a sensing unit, deriving a scanning ability from a plurality

of small satellites instead of a larger, more costly single spacecraft. However, such

applications would require greater relative navigation sensing accuracy than cam-

eras can provide, due to the need for accurate scientific measurement baselines.

A number of authors have proposed relative navigation systems with greater ac-

curacy, such as Lee et al. who proposed relative navigation with combined laser

and smoothed GPS range measurements, finding angular measurement accuracy

of greater than 0.001◦ at distances of more than 30 km [90], or the system pro-

posed by Renga et al. which combines carrier-phase differential GPS with local
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inter-spacecraft range measurements, yielding sub-centimetre accuracy for forma-

tion baseline separations of 1-2 km [91].

Past authors have generally used a top-down engineering approach, designing

active controllers which force a spacecraft onto a pre-determined reference trajec-

tory (e.g. [55, 56, 58]). In this Thesis, it is instead proposed to generate rich new

families of orbits without a reference trajectory. For the motion of a spacecraft

relative to a target on a two-body orbit, it is proposed here that position-only

feedback can be used to modify the natural frequencies of the linearised dynam-

ics by directly manipulating the system eigenvalues, thereby producing novel and

interesting stable relative orbits. As described in Section 1.1.5, the use of position-

only feedback instead of full state feedback would allow for relative sensing using

only a camera and on-board image processing. This assumption is justified by the

goal of providing access to useful new trajectories for small, low-cost spacecraft.

The use of position-only feedback mitigates the difficulties in implementing accu-

rate relative velocity sensing on-board such a spacecraft, and also avoids the need

for estimating the time derivative of the position (a method which is inherently

prone to noise errors), whilst still enabling interesting new relative orbits.

Furthermore, it is proposed that the concept of using position-only feedback

to modify the natural frequencies of motion can also be applied to the circular

restricted three-body problem. Though the problem is normally nonlinear, the

motion of a spacecraft in proximity to a libration point can be linearised, and

therefore thrust proportional to position can be implemented. This can be used

both to force the system to become linearly stable and to modify the natural

frequencies of spacecraft librations. Additionally, it is proposed that the in-plane

and out-of-plane motion can be coupled to yield a singly-periodic halo-type orbit

of arbitrary dimensions around the libration point, which could find application

in providing a constantly visible communications relay for lunar far-side missions

if applied to the Earth-Moon L2.

The use of continuous low thrust for spacecraft relative motion need not be
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limited to proximity operations. Further utility can be derived from this concept

in the form of nested constellations of small spacecraft around a central orbit,

for example the geostationary ring, to provide concentrations of spacecraft over

certain longitudes at particular times according to demand. Inspiration for such

phased constellations is drawn from past authors who proposed reconfigurable

constellations [98,99], and from co-orbital horseshoe orbits in the CRTBP, where

an object is transferred between a higher and lower orbit periodically by the

gravitational influence of the smaller primary mass. If continuous low thrust is

substituted for this gravitational influence, then it is proposed that certain aspects

of horseshoe orbits can be replicated in a two-body system for the purposes of

providing interesting new phased constellations.

The concept of a small spacecraft equipped with low thrust propulsion and

cameras for attitude sensing can be extended to include deep space exploration

missions. While co-orbital motion in the presence of continuous thrust, unlike

the zero-thrust case, is a largely unexplored problem, it can be envisaged that

the addition of thrust could make horseshoe orbits operationally advantageous

for certain mission architectures. For applications such as binary asteroid surface

sampling, it is proposed that low thrust can be used to generate three-body horse-

shoe orbits which rendezvous with the surface of one of the asteroids, returning

to visit the same sites periodically. In order to achieve this, it is first necessary

to analyse the effect of continuous thrust on the generation of horseshoe orbits,

which can be achieved through selection of a set of steering laws which can be

compared against each other. If cameras are assumed for attitude sensing, then

steering laws for which the thrust is always directed along the unit radius vector

from either of the two asteroids are, in principle, relatively simple to implement.

The problem can be further simplified by keeping the thrust-induced acceleration

constant, avoiding the need for throttling the propulsion system if the specific

impulse is assumed to be high and the corresponding spacecraft mass change

is small. With this as a foundation, a method can then be sought for finding
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periodic thrust augmented horseshoe orbits which rendezvous with one of the

asteroids in a binary pair.

Certain elements of the above scenarios could be achieved using solar sails

for propulsion, however, as stated in Section 1.1, solar sails have limitations such

as an inability to direct a component of thrust in the Sun-ward direction, and

zero thrust in eclipse periods. Therefore, the work in this Thesis assumes the

use of continuous thrust such as that provided by electrostatic thrusters, which

although they normally depend on photovoltaic power from the Sun, are not

subject to the limitation in thrust direction. Modern electrostatic thrusters can

produce continuous thrust in the µN and mN range with a specific impulse on

the order of 3000 s, using propellants such as Xenon and possessing operating

lifetimes of several years [15, 32, 34, 50], with the caveat that they generally have

high input power requirements (e.g. the QinetiQ T5 thruster, which produces 20

mN of thrust for 700 W of electrical power [33]).

1.3 Thesis Objectives

This Section describes the objectives of the Thesis, as derived from the literature

review of Section 1.1 and the research motivation of Section 1.2. The objectives

are defined as follows:

1. In the HCW approximation of motion relative to a target on a circular two-

body orbit, to apply thrust proportional to the relative displacement of a

spacecraft in order to modify the natural frequencies of motion and thereby

produce a rich range of new types of relative orbits which are accessible for

small, low-cost spacecraft with only limited on-board sensing.

2. In the CRTBP, to apply thrust proportional to the displacement of a space-

craft relative to a collinear libration point, modifying the natural frequencies

of motion to generate new types of stable singly- and multiply-periodic or-
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bits, including thrust augmented lissajous- and halo-type orbits about the

libration point.

3. In the cylindrical-polar form of the HCW approximation, to use low thrust

propulsion and simple thrust commands to replicate certain aspects of three-

body horseshoe orbits in a two-body system, thereby accessing new nested

and phased orbits for spacecraft constellations.

4. In the CRTBP, to analyse the effects of constant thrust, directed towards

either or both of the primary bodies (using an example binary asteroid

system), upon the positions and stability properties of the system equilibria

and the domain of existence of horseshoe orbits.

5. In the CRTBP, to propose a method for finding periodic thrust augmented

horseshoe orbits which graze the surface of the smaller asteroid in a binary

pair, facilitating touch-and-go sampling of the asteroid surface.

1.4 Thesis Structure and Related Authored Pa-

pers

This Section details the structure of the Thesis herein, outlining the contents of

each Chapter and the associated objective. Related papers which were authored

or co-authored by the author of this Thesis are also detailed, and indications are

made as to how these papers relate to the Chapters.

The Thesis is structured as follows. Chapter 2 introduces the key dynamical

models which are the technical foundations of the research presented, includ-

ing descriptions of the Hill-Clohessy-Wiltshire approximation and the circular

restricted three-body problem.
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1.4.1 Chapter 3

Chapter 3 addresses Objective 1 (as described in Section 1.3). New types of thrust

augmented relative orbits are generated in the two-body HCW approximation

using position-only feedback to directly modify the eigenvalues (and therefore

natural frequencies) of the linearised dynamics, allowing for interesting singly-

and multiply-periodic trajectories to be developed. Only proportional control is

employed, with no reference trajectory, and this simplicity is intended to facilitate

access to such new orbits for small, low-cost spacecraft with limited on-board

sensing and computational power.

The Chapter relates to the papers:

• C. S. Arnot, C. R. McInnes, Low thrust augmented spacecraft formation-

flying for on-orbit inspection, 66th International Astronautical Congress,

IAC-15-C1.8.1.x28589, 12-16 October 2015 [59]

• C. S. Arnot, C. R. McInnes, Low thrust augmented spacecraft formation-

flying, 25th International Symposium on Space Flight Dynamics: ISSFD

2015, Munich, Germany, 19-23 October 2015 [60]

and to the two-body HCW sections of:

• C. S. Arnot, C. R. McInnes, R. J. McKay, M. Macdonald, J. Biggs, Or-

bit period modulation for relative motion using continuous low thrust in

the two-body and restricted three-body problems, Celestial Mechanics and

Dynamical Astronomy, vol. 130, no. 2, February 2018 [61]

The co-author McInnes provided supervision and guidance throughout the devel-

opment of the research and the authoring of all three papers, while the co-authors

McKay, Macdonald, and Biggs provided the initial idea of modifying the natu-

ral frequency of one axis of motion in the HCW approximation with continuous

thrust, and offered advice during the writing of the journal paper. The author of

this Thesis performed all research and authored each paper.
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1.4.2 Chapter 4

Chapter 4 addresses Objective 2, employing a similar approach to Chapter 3, ap-

plied instead to the linearised dynamics around a libration point in the CRTBP.

The eigenvalues of the system are modified using thrust proportional to posi-

tion in order to generate stable orbits around the otherwise unstable collinear

libration points. Modified-period Lissajous orbits are produced, and the feed-

back gains required for synchronisation of the in-plane and out-of-plane natural

frequencies are derived, allowing stable, singly-periodic halo-type orbits around a

libration point to be attained. Such orbits could be used to provide, for example,

a constantly-visible communications relay for lunar far-side missions, extending

Farquhar’s original concept [62].

The Chapter relates to the CRTBP sections of the paper:

• C. S. Arnot, C. R. McInnes, R. J. McKay, M. Macdonald, J. Biggs, Or-

bit period modulation for relative motion using continuous low thrust in

the two-body and restricted three-body problems, Celestial Mechanics and

Dynamical Astronomy, vol. 130, no. 2, February 2018 [61]

for which the co-author McInnes provided supervision and guidance, while the

co-authors McKay, Macdonald, and Biggs provided the initial idea of modifying

the natural frequency of one axis of motion with continuous thrust in the HCW

approximation (and so were not involved in the CRTBP sections). The author of

this Thesis performed all research and authored the paper.

1.4.3 Chapter 5

Chapter 5 addresses Objective 3. In this Chapter, certain aspects of co-orbital

horseshoe orbits are replicated in the HCW approximation, rendered in cylindrical-

polar form, in order to develop the simple low thrust commands required to imple-

ment synchronised or phased nested constellations of spacecraft around a circular

reference orbit.
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The Chapter relates to the conference paper:

• C. S. Arnot, C. R. McInnes, Artificial horseshoe orbits using low thrust

propulsion, 67th International Astronautical Congress,

IAC-16-C1.1.2x34607, 26-30 September 2016 [77]

for which the co-author McInnes provided supervision and guidance, while the

author of this Thesis performed all research and authored the paper.

1.4.4 Chapter 6

Chapter 6 addresses Objective 4, investigating the effect of constant low thrust

directed along the unit radius vector from each primary mass in the CRTBP on

the existence of horseshoe orbits, through the analysis of the modified locations

and stability properties of the equilibrium points in a particular binary aster-

oid system (243 Ida). The key accelerations at which horseshoe orbits become

possible or impossible are identified for three separate steering laws, along with

the regions in which other types of co-orbital motion exist (tadpole and crescent-

shaped orbits).

The Chapter relates to the research in the submitted manuscript:

• C. S. Arnot, C. R. McInnes, Thrust-augmented horseshoe orbits in the

circular restricted three-body problem, submitted to Celestial Mechanics

and Dynamical Astronomy, May 2018 [93]

for which the co-author McInnes provided supervision and guidance, and the

author of this Thesis performed all research and authored the paper.

1.4.5 Chapter 7

Chapter 7 addresses Objective 5, applying the principles established in Chapter 6

to propose a method for finding periodic thrust augmented horseshoe orbits which
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graze the surface of the smaller primary, yielding new opportunities for touch-

and-go sampling of binary asteroid systems. First, a search-and-filter technique

is employed, modified from that used to find Lyapunov orbits, to find periodic

horseshoe orbits. Analysis is then performed to locate those orbits which have

close approaches to the smaller primary. It is shown that the use of thrust simpli-

fies this process by widening the region in which horseshoe orbits can occur, and

two members of a family of surface-grazing thrust augmented horseshoe orbits are

presented. It is shown that the acceleration and ∆v required for these particular

orbits are modest and achievable with existing propulsion technology, and that

the speed of the spacecraft relative to the smaller primary at rendezvous is small.

The Chapter also relates to the research in the submitted manuscript:

• C. S. Arnot, C. R. McInnes, Thrust-augmented horseshoe orbits in the

circular restricted three-body problem, submitted to Celestial Mechanics

and Dynamical Astronomy, May 2018 [93]

for which the co-author McInnes provided supervision and guidance, and the

author of this Thesis performed all research and authored the paper.

1.4.6 Chapter 8

Finally, in Chapter 8, conclusions are drawn regarding the entirety of the Thesis,

and future avenues of research are recommended.



Chapter 2

Dynamical Models

This Chapter describes the fundamental concepts and dynamical models which

form the foundations of the investigations undertaken throughout the Thesis.

The Hill-Clohessy-Wiltshire (HCW) approximation of spacecraft motion relative

to a target point on a circular reference orbit is described in Section 2.1, along

with the conditions for bounded motion, the types of relative orbits which occur

in such a system, and the applications thereof. The circular restricted three-body

problem is described in Section 2.2, including the derivation of the Jacobi integral

(the sole integral of motion in the CRTBP), and the locations and nature of the

five equilibrium points.

2.1 The Hill-Clohessy-Wiltshire Equations

The two-body problem describes the motion of two particles which interact grav-

itationally only with each other. It is the only natural gravitational problem for

which a general closed-form solution has been found. Assuming that one of the

masses is infinitesimally small in comparison to the other, then the barycentre of

the system will be at the centre of the large mass, and only the small mass will

orbit. If a further infinitesimal mass is added to the system, both small masses

will orbit the massive body without interacting gravitationally with each other,

28
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and the relative motion between them is a result only of the differences between

their orbits relative to the central massive body. Let the first infinitesimal mass

be called the target spacecraft, and the second be the chase spacecraft. Since, in

this Thesis, the focus is on the motion of a chase spacecraft relative to a target

(a spacecraft or a point), it is useful to define a frame of reference centred on

the target, and rotating with it around the central massive body. A schematic of

such a reference frame is given in Fig. 2.1. Assuming that the target’s orbit is

circular, the linearised equations of motion of the chase spacecraft relative to the

target are the well-known Hill-Clohessy-Wiltshire equations, given as [37]

ẍ = 3n2x+ 2nẏ (2.1a)

ÿ = −2nẋ (2.1b)

z̈ = −n2z (2.1c)

where n is the angular velocity of the rotating frame, the x-axis points in the

radial direction, the y-axis points in the direction of the target’s motion (the

along-track direction), and the z-axis follows the orbit angular momentum vector

and is therefore out of the plane of the target’s orbit. The angular velocity is

given by

n =

√
GM

r3
0

(2.2)

where G is the Newtonian gravitational constant, M is the mass of the massive

central body, and r0 is the radius of the target’s orbit around the massive body.

The target’s orbit is herein termed the reference orbit.

It can be shown that the HCW equations permit the closed-form solution [37]

x(t) = (4− 3 cosnt)x0 +
sinnt

n
ẋ0 +

2

n
(1− cosnt)ẏ0 (2.3a)

y(t) =
2ẋ0

n
cosnt+

(
6x0 +

4ẏ0

n

)
sinnt− (6nx0 + 3ẏ0)t− 2ẋ0

n
+ y0 (2.3b)
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Figure 2.1: Rotating reference frame on a circular orbit.

z(t) = z0 cosnt+
ż0

n
sinnt (2.3c)

This analysis is key to proximity operations between spacecraft and formation

flight, since for any initial position (x0, y0, z0) and velocity (ẋ0, ẏ0, ż0), the

state of the spacecraft after time t can be found. The new relative orbits which

will be generated in Chapter 3 using the HCW approximation can be considered

formation-flying orbits, since they assume the existence of a target spacecraft

about which the chase spacecraft will move.

2.1.1 Condition for Bounded Motion

The HCW equations were initially derived as the basis of a terminal guidance

system for satellite rendezvous, however they are also applied usefully to space-

craft formation flight. For such purposes, it is useful to find initial conditions

for which the chase spacecraft’s motion remains bound relative to the target. It

can be seen by examining Eq. (2.3b) that the third term is secular and therefore

becomes unbound with time. This can be avoided by selecting ẏ0 = −2nx0. With

this condition, the motion of the chase spacecraft will describe an ellipse in the

x-y plane with the major axis aligned with the y-axis. It is also evident from

examining the remaining periodic terms that the amplitude of the y-axis motion

will be exactly twice that of the x-axis motion. Figure 2.2 shows this bound
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Figure 2.2: Bounded ballistic relative orbit in the HCW frame. The units have
been normalised by the reference orbit radius. The black point represents the
target spacecraft, and the arrow indicates the direction of motion of the chase
spacecraft where (x0, y0, z0) = (10−6, 0, 0) and (ẋ0, ẏ0, ż0) = (0, − 2nx0, 0).

relative orbit, which was integrated numerically using Wolfram Mathematica’s

NDSolve function, and plotted using the ParametricPlot3D function.

Although circular motion in the x-y plane is not possible under free-flying

conditions, a projected circular orbit (PCO) can be obtained in the y-z plane by

selecting z0 such that the y- and z-axis amplitudes are equal. In recent years,

the feasibility of such orbits on a nanosatellite scale has been demonstrated by

the University of Toronto Institude for Aerospace Studies (UTIAS) Canadian

Advanced Nanospace Experiment (CanX) mission, with the CanX-4 and CanX-5

spacecraft. Using GPS carrier-phase differential techniques for relative naviga-

tion, the two spacecraft successfully entered into along-track formations at ranges

of 1000 m and 500 m, and PCO formations at 100 m and 50 m range [109,131].
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2.2 The Circular Restricted Three-Body Prob-

lem

The circular restricted three-body problem (CRTBP) has been amongst the most

studied problems in astrodynamics. It describes the motion of an infinitesimally

small mass as it gravitationally interacts with two larger masses which themselves

orbit the system barycentre in a circle. First formulated in order to model the

motion of the Moon around the Earth in the presence of the gravitational influence

of the Sun [111], the CRTBP has been found useful for describing the dynamics

of many other celestial systems, from the motion of asteroids in the Sun-Jupiter

system [65] to the dynamics of the narrow rings of certain planets in the solar

system [112,113].

A schematic of the CRTBP in the plane of motion of the two primaries is

given in Fig. 2.3. The x-axis coincides with the line connecting the centres of the

two primaries, and the barycentre of the system is found at the origin. Thus, the

reference frame is rotating with the two primaries around the barycentre. Using

the conventional formulation of the problem, the unit of length is the separation

of the two primaries. The mass of the third body, m3 is infinitesimal, and so the

unit of mass is chosen such that m1 +m2 = 1. The mass of the smaller primary

is chosen to be m2 = µ, such that the larger primary mass can then be given as

m1 = 1 − µ, while m1 is located at a distance µ from the barycentre and m2 is

located at a distance 1−µ. The time unit of the system is chosen such that both

the angular velocity of the rotating frame, ωF , and the gravitational constant

of the system, G, are unity, indicating that the period of the orbit of the two

primaries is TF = 2π.

The equations of motion of the CRTBP are given in Cartesian form as [111]

ẍ− 2ẏ = x− µ(x− 1 + µ)

r3
2

− (1− µ)(µ+ x)

r3
1

=
∂Ω

∂x
(2.4a)
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Figure 2.3: Schematic of the CRTBP.

ÿ + 2ẋ = y − µy

r3
2

− (1− µ)y

r3
1

=
∂Ω

∂y
(2.4b)

z̈ = −(1− µ)z

r3
1

− µz

r3
2

=
∂Ω

∂z
(2.4c)

where Ω is the sum of the gravitational and centrifugal potential (termed the

pseudo-potential), and r1 and r2 are the distances of the spacecraft from m1 and

m2, respectively. It can be shown that these distances are given by

r1 =
√

(x+ µ)2 + y2 + z2 (2.5a)

r2 =
√

(x− 1 + µ)2 + y2 + z2 (2.5b)

and Ω is given by

Ω =
1

2
(x2 + y2) +

(1− µ
r1

+
µ

r2

)
(2.6)

2.2.1 The Lagrange Points

In common with many dynamical systems, the CRTBP possesses points at which

all forces acting upon the particle are balanced, called equilibrium points, libration

points, or Lagrange points. The three equilibrium points which exist along the

axis connecting the two primaries were first discovered by Euler (termed the

collinear points), and two further points were later found by Lagrange at vertices
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of equilateral triangles (termed the triangular points), symmetric about the x-

axis, for which the primaries form the other two vertices [1].

The equilibrium points are found at all locations where ∂Ω
∂x

= ∂Ω
∂y

= ∂Ω
∂z

= 0

and by selecting ẍ = ÿ = z̈ = ẋ = ẏ = ż = 0 the equations of motion become

− x = −µ(x− 1 + µ)

r3
2

− (1− µ)(µ+ x)

r3
1

(2.7a)

− y = −µy
r3

2

− (1− µ)y

r3
1

(2.7b)

0 = −(1− µ)z

r3
1

− µz

r3
2

(2.7c)

whereupon it can immediately be seen that z = 0 and so any equilibrium points

must be located in the orbit plane. The triangular points are found by selecting

r1 = r2 = 1, such that Eq. (2.7a) and (2.7b) become identities showing that the

points exist at the vertices of equilateral triangles (L4 is found at (1
2
− µ,

√
3

2
, 0)

and L5 at (1
2
− µ,−

√
3

2
, 0)).

The three collinear points are located by adding the further condition y = 0,

such that the three equations are reduced to one, given as

x =
µ(x− 1 + µ)

|x+ µ|3
+

(1− µ)(µ+ x)

|x− 1 + µ|3
(2.8)

Algebraic operations are then performed to yield a quintic expression in terms

of x, which is solved numerically to locate the three collinear points, and has no

more than three real roots for 0 ≤ µ ≤ 1.

The locations of the five equilibrium points are shown in Fig. 2.4 for a mass

ratio equal to that of the Earth-Moon system. The locations were found using

Mathematica’s NSolve function, and the Figure created using the Plot function.

The usual naming convention for the equilibrium points is: L1, L2, and L3 are

the collinear points in the intervals (1 − µ) > x > −µ, ∞ > x > (1 − µ), and

−µ > x > −∞, respectively, L4 is the triangular point ahead of the smaller
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Figure 2.4: Locations of the primaries and equilibrium points of the CRTBP with
µ = 0.01213 (equivalent to the Earth-Moon system).

primary in the direction of rotation, and L5 is the triangular point behind the

smaller primary in the direction of rotation.

It can be shown through linearisation of the dynamics of the problem close to

a Lagrange point that the collinear points are unstable, but numerous missions

have placed spacecraft in the vicinity of the L1 and L2 points of the Sun-Earth sys-

tem, such as the Solar and Heliospheric Observatory (SOHO) [114] and Advanced

Composition Explorer (ACE) [115] at L1, and ESA’s Gaia spacecraft at L2, re-

quiring only modest station-keeping efforts. The triangular points are linearly

stable for µ ≤ 0.03852 [110]. This stability is evidenced in the solar system by

the large populations of Trojan asteroids which librate around the Sun-Jupiter

L4 and L5 (µ = 9.536 × 10−4). Furthermore, objects are not limited to solely

orbiting one or other of the triangular points. Horseshoe-shaped orbits, which

encompass L3, L4, and L5, are also possible, as noted in Section 1.1.4.
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2.2.2 The Jacobi Integral

In order to obtain a general solution to the CRTBP, six integrals of motion would

be required. Only one exists, called the Jacobi integral, and it is the only scalar

constant of motion within the CRTBP.

The equations of motion in Eq. (2.4) can be given in the form

ẍ− 2ẏ =
∂Ω

∂x
(2.9a)

ÿ + 2ẋ =
∂Ω

∂y
(2.9b)

z̈ =
∂Ω

∂z
(2.9c)

Equations (2.9a), (2.9b), and (2.9c) can be multiplied by ẋ, ẏ, and ż, respectively,

and the summation of all three gives

ẋẍ+ ẏÿ + żz̈ =
∂Ω

∂x
ẋ+

∂Ω

∂y
ẏ +

∂Ω

∂z
ż (2.10)

This expression may then be integrated to yield

ẋ2 + ẏ2 + ż2 = 2Ω− C (2.11)

where C is a constant of integration. Therefore, the Jacobi integral can be written

as

C = 2Ω− v2 = (x2 + y2 + z2)− (ẋ+ ẏ + ż) +
2− 2µ

r1

+
2µ

r2

(2.12)

where v is the velocity of the particle with respect to the rotating frame [110].

This integral is useful for finding the accessible regions of motion within the

CRTBP, as by choosing v = 0, it is possible to find the critical boundaries which

a particle possessing a particular value of C cannot cross. These boundaries,

termed the zero-velocity curves of the system, are shown in Fig. 2.5 for a system

with a mass ratio equal to the Earth-Moon system. This Figure was generated
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Figure 2.5: Zero-velocity curves of the CRTBP, for µ = 0.01213 (equivalent to
the Earth-Moon system) and 3 ≤ C ≤ 3.21.

using Mathematica’s ContourPlot function.



Chapter 3

Forced Relative Motion in the

Hill-Clohessy-Wiltshire

Approximation

This Chapter addresses Objective 1 as described in Section 1.3, by aiming to gen-

erate rich new families of relative orbits for spacecraft formation flight using the

two-body HCW approximation. Section 3.1 describes the dynamics of the HCW

approximation when augmented with thrust terms, Section 3.2 describes how arti-

ficial static equilibria and a circular relative orbit can be achieved, and Section 3.3

derives the closed-loop feedback gains required to modify the natural frequency

of the out-of-plane motion and shows how this can be used to transfer between

oppositely displaced non-Keplerian orbits. Section 3.4 derives the thrust com-

mands necessary to generate a circular relative orbit of any radius, orientation,

or period, and shows how this can be combined with the modified out-of-plane

motion to generate a cylindrical relative orbit and a Sun-vector tracking orbit.

Finally, Section 3.5 offers conclusions for the research presented in this Chapter.

It is proposed here that position feedback can be used to modify the natural

frequencies of the linearised dynamics through direct manipulation of the system

eigenvalues and to thereby produce interesting and novel stable relative orbits.

38
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Whereas past authors have generally used a top-down engineering approach, de-

signing active controllers with which to force a spacecraft onto a predetermined

reference trajectory (e.g. [55,56,58]), this work instead seeks to generate rich new

families of orbits with position-only feedback and without a reference trajectory,

thereby deriving utility from simple control strategies. As discussed in Section

1.2, the assumption of the use of only position feedback instead of full state feed-

back is justified by the goal of providing access to useful new trajectories for

small, low-cost spacecraft equipped with only position sensing relative to a target

spacecraft (e.g. [87]). The use of position-only feedback mitigates the difficulties

inherent in the implementation of accurate relative velocity sensing aboard such a

spacecraft, and also avoids the need for taking the time derivative of the position

vector (a method which is prone to noise errors). This strategy still permits at-

tainment of relative orbits in two-body systems with potential future applications

for space-based interferometry, hyperspectral sensing, and on-orbit inspection.

The Chapter builds on initial work [59] concerning forced motion relative to

a circular two-body reference orbit, comprising the systematic derivation and

exploration of new families of forced relative orbits using linearised dynamics de-

rived from the two-body problem. Using a state-space method, position feedback

control is then used to manipulate the eigenvalues (and therefore the natural fre-

quencies) of the system to produce interesting new relative orbits. A particular

aim of this Chapter is to generate relative orbits with potential future applications

for on-orbit inspection and servicing - an area where the advantages of modifying

the frequencies of periodic motion are numerous.

3.1 Equations of Motion

As stated in Section 2.1, the motion of a chase spacecraft relative to a target on

a circular two-body reference orbit can be described by the linear Hill-Clohessy-

Wiltshire equations. With the target at the origin of the rotating frame as shown
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in Fig. 2.1, the x -axis follows the radius vector from the central mass through

the target, the z -axis follows the orbital angular momentum vector, and the y-

axis points in the along-track direction of the target’s motion around the central

body. This reference frame forms the environment in which new relative orbits

are generated throughout this Chapter.

The well known HCW equations of Eq. (2.1), augmented with continuous

thrust terms, are given by

ẍ = 3n2x+ 2nẏ + ux (3.1a)

ÿ = −2nẋ+ uy (3.1b)

z̈ = −n2z + uz (3.1c)

where ux, uy, and uz are the thrust-induced acceleration terms, and n is

again the angular velocity of the rotating frame. Assuming that the mass of the

spacecraft is small with respect to the Earth, the angular velocity is given by Eq.

(2.2).

To apply thrust terms to the HCW equations, the dynamics from Eq. (3.1a-

3.1c) are first converted to the state-space form

ẋ = Ax+Bu (3.2)

where x = [x y z ẋ ẏ ż]T , and

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0


(3.3)
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B =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


(3.4)

A strategy is now proposed whereby the thrust-induced acceleration is pro-

portional to the displacement in the radial, along-track, and out-of-plane axes

only. The acceleration-law is therefore defined by

u = −Kx (3.5)

where the feedback gain matrix K is given by

K =


K11 0 0 0 0 0

0 K22 0 0 0 0

0 0 K33 0 0 0

 (3.6)

The upper bound of the input acceleration can be easily defined therefore in

terms of the maximum displacement along each axis, as

umax =


|uxmax|

|uymax|

|uzmax|

 =


K11xmax

K22ymax

K33zmax

 (3.7)

The control acceleration can therefore be bounded through the appropriate

selection of the maximum displacement along each axis, which is in turn generally

determined from the initial conditions.

Now, set Ac = A −BK, which has eigenvalues λ and corresponding eigen-

vectors V . The characteristic polynomial p(λ) of the matrix Ac can be given

as
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p(λ) = det(Ac − λI) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 0 1 0 0

0 −λ 0 0 1 0

0 0 −λ 0 0 1

3n2 −K11 0 0 −λ 2n 0

0 −K22 0 −2n −λ 0

0 0 −n2 −K33 0 0 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.8)

The eigenvalues are the roots of p(λ), and are therefore found to be

λ =



−
√
−K11−K22−n2−

√
(K11−K22)2+2(K11+7K22)n2+n4

√
2√

−K11−K22−n2−
√

(K11−K22)2+2(K11+7K22)n2+n4

√
2

−
√
−K11−K22−n2+

√
(K11−K22)2+2(K11+7K22)n2+n4

√
2√

−K11−K22−n2+
√

(K11−K22)2+2(K11+7K22)n2+n4

√
2

−
√
−K33 − n2

√
−K33 − n2


(3.9)

Since the eigenvalues represent the natural frequencies of the system, mod-

ifying K therefore directly modifies these frequencies. Feedback gains K11 and

K22 both affect the first two conjugate pairs of eigenvalues corresponding to the

in-plane motion, and K33 only affects a single decoupled pair of eigenvalues, corre-

sponding to the z -axis motion. This key idea of modifying the natural frequencies

of the system through position-only feedback is used to produce interesting and

novel relative trajectories in the two-body problem in this Chapter, and in the

circular restricted three-body problem in Chapter 4.

Stable oscillatory behaviour occurs when the eigenvalues are imaginary, so it

is useful to find the corresponding range of gains for this behaviour. Considering

the second, fourth, and sixth elements of Eq. (3.9), (λ2, λ4, and λ6), since these

eigenvalues each form one half of a conjugate pair, plots indicating the regions in
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which these eigenvalues are real, complex, and imaginary are given in Fig. 3.1.

These Figures were generated using Mathematica’s RegionPlot function. The

eigenvalue λ6 is considered separately since it is only affected by a single gain,

K33. Unstable regions are found where the real parts of the eigenvalues are greater

than zero. For λ2, it can be seen that the imaginary region covers approximately

three quarters of the K11 −K22 values, but that the imaginary region of λ4 only

covers a subset of these. Thus, for stable in-plane oscillatory motion, gains of

approximately K11 ≥ 2.97n2 and K22 ≥ 0 should generally be selected. It should

also be noted that a small imaginary region close to K11 = K22 = 0 exists, which

includes the free-flying case at one of its boundaries. It can be seen from Fig.

3.1c that the out-of-plane motion is stable and oscillatory for K33 > −n2.

The state transition matrix, Φ, which can be used to find the general solution

to Eq. (3.2), is given by

Φ = W (t)W−1(0) (3.10)

where W (t) is the fundamental solution matrix which satisfies

Ẇ (t) = A(t)W (t) (3.11)

The fundamental solution to the system is given as [126]

W (t) = V


eλ1t 0 · · · 0

0 eλ2t · · · 0
...

. . .
...

0 · · · eλ6t

 (3.12)

Note that, in the case where the eigenvalues are complex, it is necessary to

take the real and imaginary parts of the complex solution separately to find the

real fundamental solution to the system, Wr(t). The general solution to Eq.

(3.2), including control inputs, can then be found from
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Figure 3.1: Regions for which λ2, λ4, and λ6 are purely imaginary, purely real,
and complex.
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x(t) = Wr(t)Wr
−1(0)x(0) +Wr(t)

∫ t

t0

Wr
−1(τ)Bu dτ (3.13)

In the case that K11 = K22 = K33 = 0, the time domain solution to the

system is equal to the well known closed-form solution to the HCW equations of

Eq. (2.3), given in matrix form as



x(t)

y(t)

z(t)

ẋ(t)

ẏ(t)

ż(t)


=
[
S1 S2

]


x0

y0

z0

ẋ0

ẏ0

ż0


(3.14)

where

S1 =



4− 3 cosnt 0 0

6(sinnt− nt) 1 0

0 0 cosnt

3n sinnt 0 0

−6(1− cosnt) 0 0

0 0 −n sinnt



S2 =



1
n

sinnt 2
n
(1− cosnt) 0

− 2
n
(1− cosnt) 1

n
(4 sinnt− 3nt) 0

0 0 1
n

sinnt

cosnt 2 sinnt 0

−2 sinnt 4 cosnt− 3 0

0 0 cosnt


Since the aim of this work is to modify the natural frequencies of the system

and thereby generate novel orbits, it is necessary that at least one of the gains
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is non-zero, and so the solution in Eq. (3.14) cannot be used in its entirety.

However, part of this solution will be used in certain ∆v calculations later in this

Chapter.

3.2 Artificial Static Equilibria and a Simple Cir-

cular Relative Orbit

An interesting case to demonstrate the eigenvalue-based approach is that of the

generation of artificial static equilibria in the rotating frame of reference using

continuous thrust, since, if zero initial velocity is not assumed (for a truly static

solution), it is useful to characterise the type and frequency of motion followed

by the spacecraft. Such equilibria in the rotating frame are equivalent to type III

non-Keplerian orbits when viewed from an inertial frame [18].

Consider the state vector x = [x, y, z, ẋ, ẏ, ż]T in which ẋ, ẏ, and ż must be

zero for a static displacement. Since u = −Kx, the system state equation is

ẋ = Ax +B(−Kx). With zero initial velocity (ẋ0 = ẏ0 = ż0 = 0) the system

state is held constant by selecting the feedback gains as

K =


3n2 0 0 0 0 0

0 0 0 0 0 0

0 0 −n2 0 0 0

 (3.15)

With reference to Fig. 3.1, the motion should be stable, with all non-zero

eigenvalues being imaginary. Indeed, the eigenvalues of the system are found to

be
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λ =



−2in

2in

0

0

0

0


(3.16)

If the initial velocity is zero, there are no oscillations and the spacecraft re-

mains fixed at its initial position. However, with non-zero initial velocity, since

the coefficient of both λ1 and λ2 is 2, the forced natural frequency of the motion

in the x -y plane is twice the unforced natural frequency. Since K22 = 0, for static

formations in the rotating frame, the along-track position is arbitrary as it does

not affect the required thrust.

For zero thrust, bounded in-plane motion is always elliptical, and apparent

circular motion is only possible in the y-z plane (the projected circular orbit,

as described in Section 2.1). Interestingly, with the feedback gains in Eq. (3.15)

(ux = −3n2x, uy = 0, uz = n2z) the in-plane motion of the spacecraft can be made

circular simply by selecting the appropriate initial velocity along the x- and y-

axes. Recalling the condition for bounded motion in the HCW equations as given

in Section 2.1 (ẏ0 = −2nx0) it is necessary only to add the condition ẋ0 = 2ny0,

and the result is a circular trajectory in the x-y plane. As already indicated, the

relative orbit period is half of the reference orbit period. Furthermore, in this

case the gain K33 is arbitrary because the z-axis motion is decoupled and the

circular trajectory exists only in the x-y plane, and so the circular relative orbit

is achieved using thrust in only the radial direction. An example of this type

of relative motion is shown in Fig. 3.2, where the target is on a geostationary

Earth orbit (GEO) (r0 = 42157× 103 m, x0 = 100 m, y0 = z0 = 0, ẋ0 = ż0 = 0,

ẏ0 = −2nx0). The orbit was integrated using Mathematica’s NDSolve, Fig.

3.2a was created using ParametricPlot3D, and Fig. 3.2b was created using Plot.
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All subsequent graphs of relative orbits and thrust-induced acceleration in this

Chapter were generated in this way, and assume a target on a geostationary orbit.

In the case of zero initial velocity, i.e. for a static formation, the ∆v required

to maintain the formation is simple to calculate. Since with zero initial velocity

ux = −3n2x is constant, and assuming independent body-mounted thrusters on

each axis, it is possible to find

∆vx = 3n2xτ (3.17)

where τ is the duration for which the formation is maintained. Similarly, since

uz = n2z is also constant, we can find

∆vz = n2zτ (3.18)

Using the example of a target point in geostationary orbit, with Eq. (3.17)

and (3.18), the ∆v accumulated for a chase spacecraft positioned for one sidereal

day in a 100 m z -axis statically displaced non-Keplerian orbit is 0.046 ms−1, and

for a 100 m x -axis displacement is 0.138 ms−1. Assuming the use of electrostatic

ion thrusters with a specific impulse of 3000 s, for a nanosatellite with initial

mass of 10 kg, this amounts to a propellant expenditure of only 1.56 × 10−5 kg

and 4.69 × 10−5 kg, respectively. For a full year of operation, with independent

axis-aligned thrusters, the total propellant expenditure would be approximately

23 g. Considering that even a 3U CubeSat could feasibly carry in excess of 1.5

kg of Xenon propellant [116], this expenditure is very small.

3.3 Modulation of the Out-of-Plane Period

Having considered the in-plane behaviour of the system under the feedback gains

of Eq. (3.15), the out-of-plane motion is now considered. When K33 = −n2

with some non-zero z0, the chase spacecraft is fixed in a displaced non-Keplerian
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(a) Chase spacecraft trajectory.
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(b) Thrust-induced acceleration.

Figure 3.2: In-plane circular relative orbit achieved with single axis thrust around
a geostationary target. In (a), the trajectory of the chase spacecraft is shown in
red, the target is the black point, and the arrow indicates the direction of chase
spacecraft motion. In (b) the required thrust-induced acceleration along the x-
axis is shown. Initial conditions are r0 = 42157×103 m, x0 = 100 m, y0 = z0 = 0,
ẋ0 = ż0 = 0, ẏ0 = −2nx0.
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orbit whose plane does not contain the two-body centre of mass. Oppositely,

when K33 = 0, we have the ballistic case, and the spacecraft oscillates along the

z-axis with a period equal to the reference orbit period. A z -displaced static

formation can therefore be considered a periodic relative orbit with infinite out-

of-plane period. As noted by Arnot and McInnes [59], it is possible to modify the

period of the periodic z -axis motion by making the z -axis thrust proportional to

displacement. The period of motion along the z -axis is now modified by changing

the out-of-plane thrust component.

To begin, it is necessary to substitute K33 = −n2 with K33 = −ψ2, so that the

eigenvalue corresponding to the out-of-plane motion, λ6 in Eq. (3.9), becomes

λ6 =
√
ψ2 − n2 (3.19)

It follows that uz = ψ2z, and

Ac =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−K11 + 3n2 0 0 0 2n 0

0 −K22 0 −2n 0 0

0 0 ψ2 − n2 0 0 0


(3.20)

An augmented angular frequency, Ω, is now defined by

Ω2 = (n2 − ψ2) (3.21)

and so

Ω =
n

k
(3.22)

in which k represents the number of reference orbit periods in which the thrust

augmented relative motion completes a single out-of-plane cycle. Therefore, k can
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be considered the augmented period coefficient, so that the period of the z-axis

motion is Tz = kT . Through use of out-of-plane thrust, the period of the z-axis

motion can now be freely chosen.

Substituting Eq. (3.22) into (3.21), it is possible to rearrange for ψ such that

ψ = n

√
1−

( 1

k2

)
(3.23)

It can then be shown from Eq. (3.1c) that the new equation of out-of-plane

motion is given by

z̈ = −n
2z

k2
(3.24)

which is a harmonic oscillator whose natural frequency can now be selected

through the coefficient of the out-of-plane thrust law. The maximum input accel-

eration for this type of relative orbit is given simply by |uzmax| = ψ2z0, assuming

that the initial velocity is zero.

An example of thrust augmented z-axis motion is shown in Fig. 3.3a and 3.3c,

where k = 3 and k = 1/3, respectively, x0 = z0 = 100 m, r0 = 42157× 103 m and

ẏ0 = −2nx0. These plots

Clearly, when k = 1, the thrust-induced acceleration in the z -direction is zero,

corresponding to ballistic motion. However, when k < 1, the thrust is non-zero

and in the opposite direction to the case k > 1. In addition, the frequency

of oscillation in the z -direction is greater than the unforced frequency. When

k →∞, the expression for the thrust acceleration simplifies to uz = n2z, so that

K33 = −n2, and the z -axis displacement becomes fixed: that is, the trajectory is

equivalent to static equilibria in the rotating frame.

To calculate the ∆v required to maintain this type of continuously forced orbit,

the third row of Eq. (3.14) must be considered, which describes the unforced out-

of-plane position of the chase spacecraft. Since ż0 = 0 and the frequency of the

out-of-plane motion is now defined by Ω, the out-of-plane displacement simplifies
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(a) Tz = 3T .
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(b) Thrust-induced acceleration for Tz =
3T .

(c) Tz = T/3.
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(d) Thrust-induced acceleration for Tz =
T/3.

Figure 3.3: Relative orbits with modified out-of-plane natural frequency. Figure
(a) shows the trajectory of the chase spacecraft for k = 3, (b) shows the required
out-of-plane acceleration for k = 3, (c) shows the trajectory of the spacecraft for
k = 1/3, and (d) shows the required out-of-plane acceleration for k = 1/3. Initial
conditions are r0 = 42157 × 103 m, x0 = z0 = 100 m, y0 = 0, ẋ0 = ż0 = 0, and
ẏ0 = −2nx0
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to

z(t) = z0 cos Ωt (3.25)

It follows that the thrust command, uz, becomes

uz = ψ2z0 cos Ωt (3.26)

To find the ∆v accumulated over multiple orbit periods, the magnitude of

the acceleration must be considered since the direction of the out-of-plane thrust

changes direction at every plane crossing. This requires description as a piecewise

function, such that

|uz| =

ψ
2z0 cos Ωt if cos Ωt ≥ 0

−ψ2z0 cos Ωt if cos Ωt < 0

(3.27)

The integral then takes the form [59]

∆vz = ψ2z0

[
η

∫ t=Tz

t=0

| cos Ωt|dt+

∫ t=ε+ηTz

t=ηTz

| cos Ωt|dt
]

(3.28)

where η is the integer number of complete z-axis motion periods which have

elapsed and ε is the additional time over the integer number of periods. Thus,

the expression for accumulated ∆v becomes

∆vz = ψ2z0

[
4η

Ω
+

∫ t=ε+Tz

t=ηTz

| cos Ωt|dt
]

(3.29)

Equation (3.29) can be integrated for all positive integer values of η, and for

0 ≤ ε < Tz.

3.3.1 Patching Between Non-Keplerian Orbits

Transfers between displaced non-Keplerian orbits can be achieved simply in the

rotating frame using low or zero thrust. It can be envisaged that the ability

to patch, or transfer, between oppositely displaced orbits for small or zero ∆v
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could be operationally advantageous for applications such as on-orbit inspection

by offering a change in vantage point from which to view the target. For an

initially displaced orbit using K33 = −n2, the feedback may simply be disabled

for half of a reference orbit period, at which point the feedback is reapplied. The

result is then that the chase spacecraft is placed on an oppositely-displaced non-

Keplerian orbit. Furthermore, it is possible to modulate the out-of-plane period

for this transfer using the method proposed in Section 3.3 (uz = ψ2z), allowing

modification of the transfer time. Depending on ψ, transfers between displaced

orbits could complete in longer or shorter periods than the natural out-of-plane

period.

In an on-orbit inspection scenario, further utility may be drawn from the

thrust augmented transfer trajectory since it can be adjusted to avoid inter-

ference with, or obstruction of, the target’s sensor payload or communications

antennae. The zero-thrust patching trajectory, where the feedback is disabled for

the duration of the transfer, is the most feasible to perform with existing tech-

nology, since an accurately throttled propulsion system is not required: while the

thrust output of an electrostatic thruster can be throttled through the control of

the voltage between the two charged grids, this also impacts the specific impulse

of the thruster [33]. All patching manoeuvres proposed here assume accurate

measurement of the relative displacement of the chase spacecraft, since any error

will result in oscillations around the intended equilibrium point. However, any

oscillations will be stable, assuming correct selection of the feedback gains (based

on accurate knowledge of the target spacecraft’s mean motion, n) such that λ6

does not become real.

Figure 3.4 shows four example transfers around a geostationary target (r0 =

42157 × 103 m, x0 = z0 = 100 m, y0 = 0, ẋ0 = ż0 = 0, ẏ = −2nx0), three of

which use low thrust to modify the out-of-plane natural frequency (Fig. 3.4a,

3.4e, 3.4g), and one of which is a simple zero-thrust transfer (Fig. 3.4c). The

required thrust-induced acceleration in the out-of-plane direction is also given for
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each case.

3.4 The Cylindrical Relative Orbit

Now that a means of modulating the frequency of the out-of-plane motion has

been found, an interesting and novel application can be envisaged: on orbit in-

spection of a target by a chase spacecraft using continuous thrust to modify its

relative orbit period. The concept of on-orbit inspection has been explored by

other authors, however the use of continuous low thrust has generally not been

considered in this context. Using continuous thrust, a chase spacecraft on an

inspection mission can actively force its relative motion to enable operationally

advantageous non-Keplerian inspection trajectories. Perhaps the most interesting

example is that of a small spacecraft tasked to inspect multiple satellites on the

geostationary ring, and so previous work has considered the use of a thrust aug-

mented relative orbit in which the chase spacecraft tracks the sun vector around

a target in geostationary orbit [59]. Such a trajectory enables use of constant-

angle illumination to facilitate visual inspection. Here the more general case of

a cylindrical relative orbit is considered, which makes use of thrust augmented

in-plane and out-of-plane motion to produce an orbit with two distinct modified

periods.

A cylindrical relative orbit can be achieved by using the circular in-plane orbit

already described (using K11 = 3n2 and K22 = 0) combined with out-of-plane

orbit period modulation (K33 = −ψ2). Selecting an appropriate out-of-plane

period, the result is that the chase spacecraft performs a helical sweep around

the target as it oscillates between z0 and −z0 with an in-plane period of 0.5T .

However, although it is possible to freely select the out-of-plane period, this

type of trajectory has a fixed in-plane period. A circular relative orbit whose

period and orientation can also be freely selected would be of greater operational

advantage. As stated in Section 1.1, Bando and Ichikawa [58] showed that circular
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Figure 3.4: Patching between displaced non-Keplerian orbits using low thrust.
Figures (a-d) show the trajectory (red) of the chase spacecraft. Figures (e-h) show
the required thrust-induced acceleration. Initial conditions are r0 = 42157× 103

m, x0 = z0 = 100 m, y0 = 0, ẋ0 = ż0 = 0, ẏ = −2nx0.
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Figure 3.5: Parametrically described circular relative orbit in the HCW reference
frame.

and elliptical relative orbits of arbitrary frequency were achievable using active

control, however a useful analytical description of such a family of orbits has

apparently not been presented in the literature and is derived parametrically as

follows.

To produce a circular trajectory about the target spacecraft, consider first a

three-dimensional circle as shown in Fig. 3.5. It is described parametrically by

the unit vector α = [α1, α2, α3]T , which is coincident with the circle’s transformed

x -axis (transformed from the x -axis of the rotating frame and fixed with respect

to the circle), and the unit vector β = [β1, β2, β3]T , which is coincident with

the transformed y-axis of the circle. The vector describing the position of the

circle’s centre in the rotating frame is c = [c1, c2, c3]T , r is the radius vector of the

circle, and χ is the angle between the radius vector and the x -axis as measured

in the anticlockwise direction about the circle’s central axis. It is taken that

χ = −γnt (negative because the motion of the chase spacecraft in the x -y-plane

is clockwise), where γ is the ratio of the target spacecraft’s Keplerian orbit period

to that of the circular relative orbit in the rotating frame (for example, if γ = 1,

the period of the circular motion is equal to that of the Keplerian orbit of the

target spacecraft), and where n and t have their usual meaning. The inclusion of
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γ permits the modification of the period of the relative orbit, so that

r = c+ r cos(χ)α+ r sin(χ)β (3.30)

The first and second derivatives of Eq. (3.30) are found to be

ṙ = rγn sin(χ)α− rγn cos(χ)β (3.31)

r̈ = −r(γn)2 cos(χ)α− r(γn)2 sin(χ)β (3.32)

It follows that, in this case, ẋ = [ṙ, r̈]T . Then, referring to Eq. (3.2), the

acceleration input u = [ux, uy, uz]
T is recalled. Thus, it can be shown that

ẋ =



ẋ

ẏ

ż

3n2x+ 2nẏ + ux

−2nẋ+ uy

−n2z + uz


=



rγn sin(χ)α1 − rγn cos(χ)β1

rγn sin(χ)α2 − rγn cos(χ)β2

rγn sin(χ)α3 − rγn cos(χ)β4

−r(γn)2 cos(χ)α1 − r(γn)2 sin(χ)β1

−r(γn)2 cos(χ)α2 − r(γn)2 sin(χ)β2

−r(γn)2 cos(χ)α3 − r(γn)2 sin(χ)β3


(3.33)

The input acceleration u can then be obtained as

u =


n2(−r(α1(γ2 + 3)− 2β2γ) cos γnt+ r(2α2γ + β1(γ2 + 3)) sin γnt− 3c1

−n2rγ((2α1 − β2γ) sin γnt+ (α2γ + 2β1) cos γnt)

n2(−α3r(γ
2 − 1) cos γnt+ β3r(γ

2 − 1) sin γnt+ c3


(3.34)

Using ux from Eq. (3.34), it can be shown that the single axis thrust case

described earlier is a special case of the general thrust equations. Since this

case (using ux = −3n2x) is a circle in the x -y plane and centred at the origin,

α = [1, 0, 0]T , β = [0, 1, 0]T , and c = [0, 0, 0]T , so that u simplifies to
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u =


−n2r(γ2 − 2γ + 3) cos γnt

−n2rγ(2− γ) sin γnt

0

 (3.35)

where r cos γnt ≡ x. Therefore, in order for the first row of Eq. (3.35) to

be equivalent to ux = −3n2x, it is clear that γ = 2. Interestingly, we note that

with γ = 2, it follows that uy = 0 and as required, ux = −3n2r cos 2nt ≡ −3n2x,

which is equivalent to the earlier state feedback case where K11 = 3n2. This

provides a particularly simple steering law with a useful application. The value

of γ also correctly indicates that the period of the in-plane motion is 0.5T . From

Eq. (3.35), it is deduced that the maximum input acceleration in each axis is

given by |uxmax| = −n2r(γ2 − 2γ + 3) and |uymax| = −n2rγ(2− γ) for the x-axis

and y-axis, respectively.

The general case thrust commands of Eq. (3.34) can be used to produce a

circular relative orbit with arbitrary dimension, orientation and frequency. How-

ever, for the cylindrical relative orbit, the circle is only required in the x-y plane,

and so the vectors α and β are coincident with the HCW x- and y-axes in this

case. The two unit vectors α and β are [1, 0, 0]T and [0, 1, 0]T respectively. The

circle’s centre is c = [0, 0, z]. Now, using the in-plane thrust components defined

in Eq. (3.35) and the out-of-plane gain K33 = −ψ2, the natural frequencies of the

circular in-plane motion and oscillatory out-of-plane motion can be freely modi-

fied. As before, the z -axis position varies sinusoidally between the maximum and

minimum displacement. An example cylindrical relative orbit achieved using this

approach is shown in Fig. 3.6 (x0 = z0 = 100 m, y0 = ẋ0 = ż = 0, ẏ0 = −nx0),

with non-dimensional axes.

The ∆v required to maintain the cylindrical orbit is found by integrating the

three thrust acceleration components and summing the result, assuming indepen-

dent body-mounted thrusters. Taking the x and y components from Eq. (3.35),
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(a) Cylindrical relative orbit.
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(b) Required acceleration.

Figure 3.6: Cylindrical relative orbit with γ = 1 and k = 9. Figure (a) shows
the trajectory of the chase spacecraft, and (b) shows the required thrust-induced
acceleration. Initial conditions are r0 = 42157 × 103 m, x0 = z0 = 100 m,
y0 = ẋ0 = ż = 0, ẏ0 = −nx0.

the moduli are

|ux| =

| − n
2r(γ2 − 2γ + 3)| cos γnt if cos γnt ≥ 0

−n2r(γ2 − 2γ + 3) cos γnt if cos γnt < 0

(3.36a)

|uy| =

| − n
2rγ(2− γ)| sin γnt if sin γnt ≥ 0

−n2rγ(2− γ) sin γnt if sin γnt < 0

(3.36b)

The integrals then become

∆vx = | − n2r(γ2 − 2γ + 3)|

[
q

∫ t=Txy

t=0

| cos γnt|dt+

∫ t=υ+qTxy

t=qTxy

| cos γnt|dt

]
(3.37a)

∆vy = | − n2rγ(2− γ)|

[
q

∫ t=Txy

t=0

| sin γnt|dt+

∫ t=υ+qTxy

t=qTxy

| sin γnt|dt

]
(3.37b)
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where ∆vx and ∆vy are the components of ∆v in the x - and y-directions

respectively, Txy is the period of the x -y planar motion, q is the integer number

of x -y planar motion periods which have elapsed, and υ is the additional time

over the integer number of x -y motion periods. Integrating, the expressions for

∆v become

∆vx = | − n2r(γ2 − 2γ + 3)|

[
4q

γn
+

∫ t=υ+qTxy

t=qTxy

| cos γnt|dt

]
(3.38a)

∆vy = | − n2rγ(2− γ)|

[
4q

γn
+

∫ t=υ+qTxy

t=qTxy

| sin γnt|dt

]
(3.38b)

The z -axis component of ∆v is as given in Eq. (3.29). Equations (3.38a) and

(3.38b) can be integrated for all positive integer values of q, and for 0 ≤ υ < Txy.

3.4.1 The Sun Vector Tracking Orbit

A specific application of the cylindrical relative orbit is a relative orbit in which

the chase spacecraft continuously tracks the Sun vector around a target space-

craft in geostationary Earth orbit. Such an orbit would allow for a continuous

inspection of a target with constant-angle solar illumination, remote power col-

lection, solar shielding, for astronomy, or hyperspectral sensing of the Sun with

separate collector and detectors.

In the rotating frame centred on a target in geostationary orbit, the Sun vector

will appear to track around the target in the x-y plane with a period of one solar

day. Since the period of the geostationary orbit is one sidereal day, there will be a

small angular lag of approximately one degree per day which will sum to one full

rotation over one year. Furthermore, it should be noted that the geostationary

orbit plane is inclined with respect to the ecliptic plane, so that the apparent

declination of the solar radiation will vary with a period of one year. Assuming

that the Earth’s orbit is circular, it can be shown that the solar declination will

vary sinusoidally. From the perspective of the target, the Sun vector will oscillate
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along the z-axis. This implies that a chase spacecraft which tracks the Sun vector

about the target will also be required to oscillate along the z-axis with a period

of one year. Schematics illustrating this concept are shown in Fig. 3.7.

The required acceleration components to produce a Sun vector tracking orbit

can be found by applying the strategy from Section 3.4. Since the circular in-

plane orbit of the chase spacecraft is centred at the origin, it is possible to use

the in-plane acceleration as defined by Eq. (3.35), where the difference in length

of solar and sidereal days is accounted for by selecting γ = 0.99727. The out-of-

plane feedback gain is K33 = −ψ2, where ψ = n
√

1− (1/k2) and k = 365.25 to

extend the out-of-plane period to that of the Julian year. The orbit produced by

these acceleration commands is given in Fig. 3.8a.

The ∆v required to maintain a Sun vector tracking orbit can be calculated

from Eq. (3.38a), Eq. (3.38b), and Eq. (3.29), which yield the ∆v in the x,

y, and z directions, respectively. For an orbit with a 100 m in-plane radius,

43.3 m maximum out-of-plane displacement (as seen in Fig. 3.7e, using z0 =

x0 tan(23.4o)), and independent axis-aligned thrusters, the total ∆v for a full year

of operation would be 36.7 m s−1. This would amount to 12.5 g of propellant for

a 10 kg nanosatellite equipped with electrostatic thrusters with specific impulse

of 3000 s.

3.5 Conclusions

Continuous low thrust can augment the capabilities of spacecraft formations by

permitting relative motion on forced Keplerian and non-Keplerian orbits. Simple

control strategies based only on position feedback can be applied to generate rich

new families of relative orbits using the Hill-Clohessy-Wiltshire approximation.

Only position feedback is required, permitting the implementation of such strate-

gies on-board small, low-cost spacecraft. The other main contributions offered

by this Chapter are the parametric derivation of the thrust commands required
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Figure 3.7: Schematics of the position of chase spacecraft relative to target in a
Sun vector tracking orbit.
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(a) Orbit simulated for one year.
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(b) Thrust-induced acceleration for one day.

Figure 3.8: Sun vector tracking orbit around a geostationary target. In (a) the
red trajectory is the orbit, simulated for one year. In (b), the required thrust-
induced acceleration over one day of operation is shown. Initial conditions are
r0 = 42157× 103 m, x0 = 100 m, y0 = 0, z0 = x0 tan(23.4o), ẋ0 = 0, ẏ0 = −γx0n,
and ż0 = 0.
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for a forced circular orbit of arbitrary radius, orientation, and period relative to

a target on a circular reference orbit, and the use of thrust to modify the natural

frequency of out-of-plane motion. Cylindrical relative orbits, including an orbit

in which a chase spacecraft continuously tracks the Sun vector about a target,

have been developed, with potential future applications in on-orbit inspection,

space situational awareness, and solar observation. The propellant requirements

for these new orbits are small if modern electrostatic thruster technology is used.

Technological challenges exist in the accurate measurement of inter-spacecraft

distance, and in the throttling of electric propulsion systems without reductions

in specific impulse. In the out-of-plane direction, small errors in position measure-

ment or thrust-induced acceleration should generally result in small oscillations

around the desired path or equilibrium point, which will remain stable with cor-

rect selection of the feedback gain.

The strategy proposed in this Chapter for modifying the natural frequencies

of motion will be applied to the linearised dynamics in the vicinity of a libration

point in the CRTBP in Chapter 4, and the specific method for modifying the out-

of-plane natural frequency will be applied to artificial horseshoe orbits in Chapter

5.



Chapter 4

Forced Relative Motion in the

Vicinity of Libration Points

This Chapter addresses Objective 2 as described in Section 1.3, by aiming to

generate new and useful types of stable, thrust augmented singly- and multiply-

periodic trajectories around libration points in the CRTBP, applying a similar

approach to that of Chapter 3, using position-only feedback to modify the eigen-

values of the linearised dynamical system. Section 4.1 describes the linearised

dynamics in the vicinity of a libration point, and Section 4.2 derives the state-

space form of the system under position-only feedback and shows how the local

dynamics at the Earth-Moon L2 point can be made stable through modifica-

tion of the system eigenvalues, generating new multiply-periodic relative orbits

around the libration point. Section 4.3 describes how the in-plane and out-of-

plane natural frequencies of motion can be synchronised with thrust, such that

singly-periodic halo-type orbits around the libration point can be achieved, and

finally Section 4.4 offers conclusions for the Chapter.

Whereas Chapter 3 generated orbits with potential applications such as on-

orbit inspection, this Chapter aims to identify the range of feedback gains for

which stable oscillatory motion exists around an otherwise unstable collinear

Lagrange point. The multiply-periodic relative orbits which result from this

66
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closed-loop stability present interesting new opportunities for missions at La-

grange points, offering new multi-spacecraft formations for applications such as

astronomy, solar observation, and telecommunications. The stable, multiply-

periodic trajectories could be exploited for periodically reforming formations of

spacecraft, allowing, for example, the simultaneous measurement of aspects of

the Earth’s magnetotail around the Sun-Earth L2 point [117]. Or, at the Earth-

Moon L2 point, a formation of spacecraft could be used as a fractionated telescope

positioned with the Sun always at the same relative angle, using stable multiply-

periodic orbits to achieve a scanning capability.

A further objective of this Chapter is to derive the feedback gains required

to synchronise the in-plane and out-of-plane frequencies to produce a three-

dimensional, singly-periodic orbit with potential utility as an Earth-Moon L2

communications relay with constant visibility from the Earth. Such an orbit

provides a useful alternative to naturally-occurring halo orbits, since it offers

arbitrary dimensions and relative orbit period. A special case of this kind of

orbit, controlled using solar radiation pressure, was investigated by Tanaka and

Kawaguchi [95], and can further be considered an extension of Farquhar’s original

concept for a halo-orbiting lunar far-side communications relay [62].

4.1 Equations of Motion

The frame of reference used in this Chapter is the same as that which was defined

in Section 2.2, the geometry of which was provided in Fig. 2.4. Following the

convention defined in Section 2.2, the spacecraft’s position vector is normalised

using the radius of the mutual circular orbit followed by the two primaries, and

the time is normalised by the orbit period. The orbit period is taken to be 2π

and the normalised time is t. The origin of the system is at the barycentre of

the two primary masses, the x-axis is aligned with the vector connecting the two

primary masses (m1 and m2) and the y-axis is perpendicular to it such that the



68

Figure 4.1: Schematic of the frame of reference centred on L2.

x-y plane is the plane of the mutual orbit of the two primary masses and the

z-axis completes the triad. However, since the aim is to examine the motion of

a spacecraft relative to a Lagrange point with low thrust propulsion, it is useful

to place the origin of the system at the Lagrange point in question, Li (i = 1 to

5). Using this new origin, the δx-axis is aligned with the x-axis, the δy-axis is

aligned with the y-axis, and the δz-axis again completes the right-hand coordinate

system. A schematic of this reference frame is given in Fig. 4.1, using L2 as an

example.

The linearised equations of motion relative to the Lagrange point are given

by [62]

δẍ = 2δẏ + (2σi + 1)x (4.1a)

δÿ = (1− σi)y − 2δẋ (4.1b)

δz̈ = −σiδz (4.1c)

where

σi =
µ

|li(µ)− 1 + µ|3
+

(1− µ)

|li(µ) + µ|3
(4.2)

in which li(µ) is the distance of the Lagrange point from the system barycentre.

The mass ratio µ is given by
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µ =
m2

m1 +m2

(4.3)

The distance of the collinear Lagrange point from the system barycentre is found

using the method in Section 2.2 (specifically, Eq. (2.8)), by solving

li(µ) =
1− µ
r3

1

(li(µ) + µ) +
µ

r3
2

(li(µ)− 1 + µ) (4.4)

4.2 State-Space System

Now that the linearised equations of motion have been defined, it is possible

to generate the state-space form of the system. This allows the same analysis

performed in Chapter 3 to be applied to the motion of a spacecraft around a

Lagrange point. In particular, the state-space form will be used to find the

eigenvalues of the closed-loop system, and the ranges of feedback gains which

produce stable oscillatory motion at the Lagrange point can be identified.

The general state-space form of Eq. (4.1) has the same construction as Eq.

(3.2), where x = [δx δy δz δẋ δẏ δż]T , u has the same form as Eq. (3.5), and K

is identical to Eq. (3.6). The system matrix A has the new form

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2σi + 1 0 0 0 2 0

0 1− σi 0 −2 0 0

0 0 −σi 0 0 0


(4.5)

and B is identical to Eq. (3.4). Using the relation Ac = A − BK which

has eigenvalues λ and eigenvectors V , the general eigenvalues of the closed-loop

system are found to be
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λ =



−
√
−2−K11−K22+σi−

√
K2

11+8(K22−σi)−2K11(−4+K22+3σi)+(K22+3σi)2√
2√

−2−K11−K22+σi−
√
K2

11+8(K22−σi)−2K11(−4+K22+3σi)+(K22+3σi)2√
2

−
√
−2−K11−K22+σi+

√
K2

11+8(K22−σi)−2K11(−4+K22+3σi)+(K22+3σi)2√
2√

−2−K11−K22+σi+
√
K2

11+8(K22−σi)−2K11(−4+K22+3σi)+(K22+3σi)2√
2

−
√
−K33 − σi

√
−K33 − σi


(4.6)

Thus, in similar fashion to the linearised two-body problem, it is possible to

modify the natural frequencies of the in-plane and out-of-plane motion indepen-

dently by usingK. For the Earth-Moon L2 point (µ = 0.01213, σ2 = 3.19097) the

regions where the eigenvalues are purely imaginary, real, or complex are shown

in Fig. 4.2. Mathematica’s RegionPlot function was used to generate these Fig-

ures. The regions are similar to those of the two-body system, however unlike

the two-body case the region boundaries are dependent on σi and so the stable

region boundary changes at different Lagrange points and with different µ.

With reference to Fig. 4.2, it is worth noting that, unlike within the two-body

HCW system, the in-plane motion around the Earth-Moon L2 point is naturally

unstable. With K11 and K22 both zero, λ4 is positive and real. Therefore, in

order to design useful, stable, oscillatory relative trajectories around a Lagrange

point, it is necessary to apply feedback gains such that the eigenvalues become

purely imaginary. For the Earth-Moon L2 point, the relative in-plane motion

will be stable and oscillatory when gains of approximately K11 > 2.28σ2 and

K22 > −0.65σ2 are selected.

For arbitrary initial conditions, with K11 and K22 in the stable region, inter-

esting doubly-periodic trajectories are produced. An example of this is shown

in Fig. 4.3, where K11 = K22 = 10σ2 and the initial velocity is zero. Since the

z-axis motion is decoupled, it is not shown here. These Figures were generated

using Mathematica’s NDSolve and ParametricPlot functions.
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Figure 4.2: Regions for which λ2, λ4, and λ6 are purely imaginary, purely real,
and complex, for Earth-Moon L2 point (σ2 = 3.19097).
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(d) Required thrust-induced acceleration.

Figure 4.3: In-plane trajectory for the doubly-periodic case, using K11 = K22 =
10σ2, for Earth-Moon L2 (σ2 = 3.19097). Initial conditions are δx0 = 1000 km,
δy0 = δẋ0 = δẏ0 = 0. The black point indicates the location of L2.
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4.3 Synchronisation of the In-Plane and Out-of-

Plane Natural Frequencies

In the zero-thrust CRTBP, 3-dimensional periodic orbits about the collinear La-

grange points exist, called halo orbits. These orbits are described in Section 1.1,

and a schematic of a halo orbit around the L2 point of the CRTBP is shown

in Fig. 1.4. Halo orbits are useful for certain mission architectures, however in

this Section a different approach is used to generate three-dimensional periodic

orbits. This approach requires feedback gains to be selected such that the in-

plane and out-of-plane natural frequencies are equal, and permits the generation

of pseudo-halo orbits of arbitrary dimensions and natural frequency. Although

there are usually two distinct in-plane modes of oscillation, initial conditions may

be selected such that the in-plane motion becomes singly-periodic, and therefore

dependent on a single eigenvalue. The procedure for finding the required initial

conditions is as follows.

Let pj + iqj be the eigenvector corresponding to eigenvalue λj, and consider

only the two in-plane eigenvalues λ2 and λ4 (since the out-of-plane motion is

decoupled) such that j = (2, 4). Recalling that the eigenvalue λj is equivalent

to the natural frequency ωj, it can be shown that the three dimensional periodic

solution is found from [96]


δx

δy

δẋ

δẏ

 = cos(ω2t)[Ap2 +Bq2] + sin(ω2t)[Bp2 − Aq2] + cos(ω4t)[Cp4 +Dq4]

+ sin(ω4t)[Dp4 − Cq4]

(4.7)

for arbitrary constants A, B, C, and D. By setting t = 0, the initial conditions
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are found from Eq. (4.7) as


δx0

δy0

δẋ0

δẏ0

 =


−2ω2B − 2ω4D

A(h+ ω2
2) + C(h+ ω2

4)

2ω2
2A+ 2ω2

4C

ω2(h+ ω2
2)B + ω4(h+ ω2

4)D

 (4.8)

where h = 2σi + 1. The constants A, B, C, and D are then found to be


A

B

C

D

 =


−−hδẋ0−δẋ0ω

2
4+2δy0ω2

4

2h(ω2
2−ω2

4)

−−2δẏ0−hδx0−δx0ω2
4

2ω2(ω2
2−ω2

4)

−−hδẋ0−δẋ0ω
2
2+2δy0ω2

2

2h(ω2
4−ω2

2)

−−2δẏ0−hδx0−δx0ω2
2

2ω4(ω2
4−ω2

2)

 (4.9)

In order to remove the real modes of the motion, it is necessary that C = D = 0.

The initial conditions required for this can then be found by substituting C = 0

and D = 0 into Eq. (4.7), such that

δx = −2ω2B cos(ω2t) + 2ω2A sin(w2t) (4.10a)

δy = A(h+ ω2
2) cos(ω2t) +B(h+ ω2

2) sin(ω2t) (4.10b)

Constants A and B can be found in terms of the initial conditions by substituting

t = 0 into Eq. (4.10), yielding

A =
δy0

h+ ω2
2

(4.11a)

B =
δx0

−2ω2

(4.11b)

The required initial velocities are found by substituting Eq. (4.11) into Eq.(4.8),

such that



75δẋ0

δẏ0

 =

 2δy0ω2
2

h+ω2
2

−δx0(h+ω2
2)

2

 (4.12)

Equation (4.11) can then be substituted into Eq. (4.10), so a periodic solution [96]

which depends on a single natural frequency ω2 is found as

δx(t) = −Aδx cos(ω2t+ φ) (4.13a)

δy(t) = kAδx sin(ω2t+ φ) (4.13b)

in which k =
(ω2

2+h)

2ω2
, Aδx is the amplitude of the δx-axis motion, and φ is the phase

angle. Both K11 and K22 can now be varied to change the natural frequency and

δy-axis amplitude of the elliptical relative orbit around the Lagrange point. The

out-of-plane motion, which is always periodic, has solution

δz(t) = Aδz sin(ω6t+ φz) (4.14)

where Aδz is the δz-axis amplitude, φz is the phase angle, and ω6 is the out-of-

plane natural frequency which can be modified by changing K33. The periodic

in-plane motion generated by these initial conditions is shown in Fig. 4.4, where

K11 = K22 = 10σ2, x0 = 1000 km, y0 = 0, and the initial velocity is given by

Eq. (4.12). These Figures were generated using Mathematica’s NDSolve and

ParametricPlot functions.

It can then be shown that 3-dimensional periodic orbits are achieved when

ω2/ω6 is a rational number, and quasi-periodic Lissajous trajectories are obtained

when ω2/ω6 is irrational. An example of a thrust augmented Lissajous trajectory

is shown in Fig. 4.5, where K11 = K22 = 10σ2 and K33 = 0. These Figures were

generated using Mathematica’s NDSolve and ParametricPlot functions.

To achieve 3-dimensional periodic orbits of arbitrary dimensions, as opposed

to searching for naturally occurring halo orbit solutions, it is useful to apply

thrust to synchronise the in-plane and out-of-plane natural frequencies. It is
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(d) Required acceleration.

Figure 4.4: Periodic in-plane trajectory, using K11 = K22 = 10σ2. Figures (a)
and (b) show the δx and δy positions of the spacecraft over time, (c) shows the
orbit in the δx−δy plane, and (d) shows the required thrust-induced acceleration.
Initial conditions are δx0 = 1000 km, δy0 = 0, δẋ0 = 2(δy0ω

2
2)/(2σi−K11+1+ω2

2),
and δẏ0 = −δx0(2σi−K11 + 1 + ω2

2)/2. The black point indicates the location of
L2.
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(b) 3-D trajectory.

Figure 4.5: Thrust augmented Lissajous trajectory about Earth-Moon L2 point,
using K11 = K22 = 10σ2 and K33 = 0. Initial conditions are δx0 = δz0 = 1000
km, δy0 = 0, δẋ0 = 2(δy0ω

2
2)/(2σi−K11+1+ω2

2), δẏ0 = −δx0(2σi−K11+1+ω2
2)/2,

and δż0 = 0. The black point indicates the location of L2.

most simply achieved by properly selecting the out-of-plane feedback gain (K33),

since λ6 depends only on K33. In Eq. (4.6), choosing λ6 = λ2 for ω6 = ω2, yields

K33 =
2+K11+K22−3σi+

√
K2

11+8(K22−σi)−2K11(−4+K22+3σi)+(K22+3σi)2

2

(4.15)

This produces a tilted periodic orbit with a potential application in providing

an L2 communications relay for the far side of the Moon with respect to the

Earth, as an extension of the concept first proposed by Farquhar in 1968 [62]:

instead of out-of-plane phase-jump control impulses, continuous low thrust with

out-of-plane gain defined by Eq. (4.15) is used to control the out-of-plane natural

frequency of the spacecraft, preventing occultation behind the Moon. Constant

line-of-sight with the Earth is achieved by ensuring that Aδx and Aδz are greater

than the radius of the cone-shaped occluded region behind the Moon as viewed

from the Earth. A schematic showing the configuration of this kind of orbit

in the Earth-Moon system is given in Fig. 4.6. The in-plane and 3-dimensional
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Figure 4.6: Schematic of the Earth-Moon system and thrust augmented halo-type
orbit. Note that this schematic is not to scale.

trajectories of a spacecraft on such an orbit around the Earth-Moon L2 are shown

in Fig. 4.7, for Aδx = Aδz = 1800 km. These Figures were generated using

Mathematica’s NDSolve and ParametricPlot functions. For this example orbit,

with zero thrust in the in-plane directions, the peak thrust-induced acceleration

in the δz-axis is 3.56 µm s−2. The required ∆vz for one year of operation is

74.4 m s−1, corresponding to a 25 g propellant expenditure for a spacecraft with

initial mass of 10 kg, equipped with electrostatic thrusters of Isp = 3000 s. It

has already been stated in Chapter 3 that this is a very small quantity of Xenon,

since even a 3 kg nanosatellite could feasibly carry 1.5 kg of this propellant [116].

4.4 Conclusions

The method proposed in Chapter 3, where continuous low thrust propulsion is

used to generate rich new families of stable relative orbits, can be applied to

the circular restricted three body problem. The dynamics of a spacecraft rel-

ative to a libration point can be linearised, and this linearisation allows direct

modification of the natural frequencies of motion through manipulation of the

system eigenvalues, again using position-only feedback. The dynamics close to

the collinear Lagrange points, though unstable under zero-thrust conditions, can

be made stable in this way, allowing both quasi- and multiply-periodic orbits to
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Figure 4.7: Trajectory around Earth-Moon L2 point when ω2 = ω6, using K11 =
K22 = 0, and K33 is given by Eq. (4.15). Figure (a) shows the in-plane trajectory
of the spacecraft, (b) shows the three-dimensional trajectory, and (c) shows the
required thrust-induced acceleration. Initial conditions are δx0 = δz0 = 1800 km,
δy0 = 0, δẋ0 = 2(δy0ω

2
2)/(2σi−K11 + 1 +ω2

2), δẏ0 = −δx0(2σi−K11 + 1 +ω2
2)/2,

and δż0 = 0. The black point indicates the location of L2.
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be designed. Furthermore, the in-plane and out-of-plane natural frequencies can

be synchronised using continuous thrust, such that a stable, singly-periodic 3-

dimensional orbit around a libration point can be generated. This orbit, if at the

Earth-Moon L2 point, could provide a constantly visible communications relay

for lunar far-side missions. As in Chapter 3, the use of simple control strategies

requiring only position feedback would permit implementation on-board small,

low-cost spacecraft. Additionally, the propellant requirements for these new orbit

families are generally small, assuming the use of modern electrostatic thrusters.



Chapter 5

Artificial Horseshoe Orbits in the

Hill-Clohessy-Wiltshire

Approximation

This Chapter addresses Objective 3 as described in Section 1.3, by developing

a method for replicating certain aspects of three-body co-orbital motion by us-

ing low thrust in the two-body HCW approximation, in order to provide access

to new and interesting phased spacecraft constellations. Section 5.1 gives the

thrust augmented HCW equations of motion in cylindrical-polar form, Section

5.2 describes a strategy for generating a horseshoe orbit in the HCW approxima-

tion using thrust along a single axis and derives the necessary thrust commands,

Section 5.3 derives the thrust commands along two axes for the generation of

a horseshoe orbit with circular inner and outer orbits, and Section 5.4 applies

the modified out-of-plane motion of Chapter 3 to these horseshoe orbits, showing

that considerable utility can be added to the concept with this addition. Section

5.5 offers a discussion of the applications of the new relative orbits, and finally

Section 5.6 provides conclusions for the Chapter. The basic concept of a horse-

shoe orbit has been described in Chapter 1, and a schematic of a horseshoe orbit

in the CRTBP was shown in Fig. 1.4.

81
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5.1 Equations of Motion

The work presented in this Chapter is based on the cylindrical-polar form of

the HCW equations. The cylindrical-polar form of the HCW approximation is

used since the along-track coordinate of the Cartesian form is a straight axis and

therefore diverges from the reference orbit if along-track displacement is large.

In the cylindrical-polar form, δθ describes only a change in polar angle with

respect to the target point on the circular reference orbit, and so is correct for any

change in along-track displacement. Broucke and Konopliv used these equations

to generate approximate models of the motion of Saturn’s co-orbital satellites,

Janus and Epimethus [97]. The equations are given in cylindrical coordinates δr,

δθ, and δz and augmented with thrust terms as [110]

δr̈ = 2nr0δθ̇ + 3n2δr + ur (5.1a)

δθ̈ =
−2nδṙ + uθ

r0

(5.1b)

δz̈ = −n2δz + uz (5.1c)

where n and r0 have their usual meaning as the mean motion and radius of the

reference orbit, and ur, uθ, and uz are the thrust-induced accelerations in the

radial, along-track, and out-of-plane directions, respectively. A schematic of this

frame of reference is provided in Fig. 5.1. Since Eq. (5.1c) is decoupled from

the other two equations, it is possible to consider the in-plane and out-of-plane

motion separately, as was shown in Chapter 3.

The general solution to Eq. (5.1) when the thrust-induced acceleration is zero

is given as [110]

δr(t) = −

(
2

n
r0δθ̇0 + 3δr0

)
cos(nt) +

δṙ0

n
sin(nt) + 4δr0 +

2

n
r0δθ̇0 (5.2a)
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Figure 5.1: Schematic of the rotating frame of reference with cylindrical-polar
form.

δθ(t) = δθ0 −

(
3δθ̇0 +

6nδr0

r0

)
t+

(
4δθ̇0

n
+

6δr0

r0

)
sin(nt) +

2δṙ0

nr0

cos(nt)− 2δṙ0

nr0

(5.2b)

δz(t) = δz0 cos(nt) +
δż0

n
sin(nt) (5.2c)

The solution for the velocity terms is then given as

δṙ(t) = (2r0δθ̇0 + 3nδr0) sin(nt) + δṙ0 cos(nt) (5.3a)

δθ̇(t) = δθ̇0 +
2n

r0

(δr0 − δr) (5.3b)

δż(t) = −δz0n sin(nt) + δż0 cos(nt) (5.3c)

5.2 Transfers Using Single-Axis Thrust

A horseshoe orbit in the CRTBP can be considered in a simplified form as two

orbits, one of greater and one of lesser semi-major axis, connected by two arcs

during which the gravity of the smaller primary applies an along-track acceler-
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ation (or deceleration) to the particle. Such behaviour can be replicated in the

HCW approximation.

In essence, this orbit will be comprised of two symmetric transfer manoeuvres,

one to lower the orbit and another to raise it again, connected by two free-flying

trajectories. The manoeuvres will use constant thrust-induced acceleration in

the δθ-direction only. Such an orbit can be described analytically, using the free-

flying solution given in Eq. (5.2) for the inner and outer orbits, and a solution

for the position with constant along-track acceleration for the two manoeuvres.

The solution with constant acceleration can be obtained as follows.

Assuming only along-track thrust, ur = uz = 0, it is possible to rewrite Eq.

(5.1b) as
d

dt
(r0δθ̇ + 2nδr)− uθ = 0 (5.4)

which can be immediately integrated to yield

δθ̇(t) = δθ̇0 +
2n

r0

(δr0 − δr) +
uθt

r0

(5.5)

This can then be substituted into Eq. (5.1a) to give

δr̈ = 2nr0

(
δθ̇0 +

2n

r0

(δr0 − δr) +
uθ
r0

)
+ 3n2δr (5.6)

which is a simple harmonic oscillator with a forcing term. This can be solved in

the usual manner [110], with homogeneous and particular solutions, to find the

complete radial solution including uθ, given as

δr(t) =
1

n2

(
2n(uθt+ r0δθ̇0 + 2nδr0)− n(2r0δθ̇0 + 3nδr0) cos(nt)

+ (nδṙ0 − 2uθ) sin(nt)
) (5.7)

This is then substituted into Eq. (5.5) and integrated to find the along-track
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solution, which is

δθ(t) =
1

2n2r0

(
uθ(8− 3n2t2)− 2n(2δṙ0 + n(3r0tδθ̇0 + 6ntδr0 − r0δθ0))

+ (4nδṙ0 − 8uθ) cos(nt) + 4n(2r0δθ̇0 + 3nδr0) sin(nt)
) (5.8)

Taking the derivative of Eq. (5.7) yields the solution for radial velocity as

δṙ(t) =
1

n2

(
2n(uθt+2nδr0+r0δθ̇0)+(nδṙ0−2uθ) sin(nt)−n cos(nt)(3nδr0+2r0δθ̇)

)
(5.9)

Now that the full set of free-flying and powered arc solutions have been ob-

tained, they will be used to describe the four sections of the orbit. The state

of the system at each transition between free-flying and powered arcs must be

defined. There are five transitions (including the initial state), so that the time

of each transition can be denoted by ti where i = 0 - 4. Thus, the spacecraft will

perform the following sequence:

• At t = t0, the spacecraft is injected with initial conditions corresponding

to a free-flying circular orbit of greater radius than the reference orbit,

and thrust is enabled such that uθ 6= 0. It can be seen by substituting

uθ = δẋ0 = 0 into Eq. (5.7) that the necessary initial along-track velocity

is δθ̇0 = −3nδr0/2r0 such that the solution for radial motion reduces to

δr(t) = δr0.

• At t = t1, the thrust is disabled (uθ = 0), and the spacecraft is injected into

a free-flying orbit of smaller semi-major axis than the reference orbit. The

spacecraft now moves with δθ̇1 which is in the opposite direction to δθ̇0.

• At t = t2, the thrust is enabled in the opposite direction to that of t = t0,

in order to raise the spacecraft’s orbit.

• At t = t3, the thrust is disabled and the spacecraft is returned to the initial

free-flying circular orbit.
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Figure 5.2: Nested horseshoe orbits using along-track thrust-induced acceleration
between times t0 and t1, then t2 and t3. Initial conditions are r0 = 42157 × 103

m, δr0 = [500, 750, 1000]T m, δθ0 = δṙ0 = 0, δθ̇0 = −3nδr0/2r0.

• At t = t4, the spacecraft has returned to its initial conditions.

An example of this type of relative orbit is given in Fig. 5.2, (Figure gener-

ated using Mathematica’s NDSolve and ParametricPlot functions) for which the

analytical description is as follows.
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5.2.1 The Initial and Final Orbits

For the initial orbit of the spacecraft to be circular in the inertial frame (con-

stant δr in the rotating frame), the necessary initial along-track velocity is δθ̇0 =

−3nδr0/2r0.

To simplify the derivation, it is assumed here that the horseshoe orbit com-

pletes after some multiple of 2T , where T is the reference orbit period. An initial

along-track position of δθ0 = 0 is selected for simplicity. The orbit can now be

defined with a piecewise function in four parts, where the two free-flying parts

use the solution in Eq. (5.2), and the two manoeuvre parts use the solution from

Eq. (5.7) and Eq. (5.8), such that the functions describing the position are given

by

δr(t) =



1

n2

(
2n(uθt+ r0δθ̇0 + 2nδr0)

− n(2r0δθ̇0 + 3nδr0) cos(nt)

+ (nδṙ0 − 2uθ) sin(nt)
) if t0 ≤ t ≤ t1

−

(
2

n
r0δθ̇1 + 3δr1

)
cos(nt)

+
δṙ1

n
sin(nt) + 4δr1 +

2

n
r0δθ̇1

if t1 ≤ t ≤ t2

1

n2

(
2n(uθt+ r0δθ̇2 + 2nδr2)

− n(2r0δθ̇2 + 3nδr2) cos(nt)

+ (nδṙ2 − 2uθ) sin(nt)
) if t2 ≤ t ≤ t3

−

(
2

n
r0δθ̇3 + 3δr3

)
cos(nt)

+
δṙ3

n
sin(nt) + 4δr3 +

2

n
r0δθ̇3

if t3 ≤ t ≤ t4

(5.10a)
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δθ(t) =



1

2n2r0

(
uθ(8− 3n2t2)

− 2n(2δṙ0 + n(3r0tδθ̇0 + 6ntδr0 − r0δθ0))

+ (4nδṙ0 − 8uθ) cos(nt)

+ 4n(2r0δθ̇0 + 3nδr0) sin(nt)
)

if t0 ≤ t ≤ t1

δθ1 −

(
3δθ̇1 +

6nδr1

r0

)
t

+

(
4δθ̇1

n
+

6δr1

r0

)
sin(nt)

+
2δṙ1

nr0

cos(nt)− 2δṙ1

nr0

if t1 ≤ t ≤ t2

1

2n2r0

(
uθ(8− 3n2t2)

− 2n(2δṙ2 + n(3r0tδθ̇2 + 6ntδr2 − r0δθ2))

+ (4nδṙ2 − 8uθ) cos(nt)

+ 4n(2r0δθ̇2 + 3nδr2) sin(nt)
)

if t2 ≤ t ≤ t3

δθ3 −

(
3δθ̇3 +

6nδr3

r0

)
t

+

(
4δθ̇3

n
+

6δr3

r0

)
sin(nt)

+
2δṙ3

nr0

cos(nt)− 2δṙ3

nr0

if t3 ≤ t ≤ t4

(5.10b)
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and the functions describing the velocity terms are given by

δṙ(t) =



1

n2

(
2n(uθt+ 2nδr0 + r0δθ̇0)

+ (nδṙ0 − 2uθ) sin(nt)

− n cos(nt)(3nδr0 + 2r0δθ̇)
) if t0 ≤ t ≤ t1

(2r0δθ̇1 + 3nδr1) sin(nt)

+ δṙ1 cos(nt)
if t1 ≤ t ≤ t2

1

n2

(
2n(uθt+ 2nδr2 + r0δθ̇2)

+ (nδṙ2 − 2uθ) sin(nt)

− n cos(nt)(3nδr2 + 2r0δθ̇)
) if t2 ≤ t ≤ t3

(2r0δθ̇3 + 3nδr3) sin(nt)

+ δṙ3 cos(nt)
if t3 ≤ t ≤ t4

(5.11a)

δθ̇(t) =



δθ̇0 +
2n

r0

(δr0 − δr) +
uθt

r0
if t0 ≤ t ≤ t1

δθ̇1 +
2n

r0

(δr1 − δr) if t1 ≤ t ≤ t2

δθ̇2 +
2n

r0

(δr2 − δr) +
uθt

r0
if t2 ≤ t ≤ t3

δθ̇3 +
2n

r0

(δr3 − δr) if t3 ≤ t ≤ t4

(5.11b)

In this way, the position and velocity of the spacecraft at any point on the orbit

is known. It is then possible to find expressions for the final state of the system in

terms of the initial conditions. When the initial and final orbits of the spacecraft
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are identical, it can be shown that the final state of the system (when t = t4) is


δr4

δθ4

δṙ4

δθ̇4

 =


δr0

−6π(uθt1+nδr0)
nr0

0

−3nδr0
2r0

 (5.12)

5.2.2 The Required Thrust

Now that the initial state has been defined and the desired final state of the

system has been found using the general solution, it is necessary to find the thrust-

induced acceleration required to produce the manoeuvres between the inner and

outer orbits. Consider Eq. (5.12), where it can be seen that δθ4 is the only term

dependent on uθ and t1. It is therefore possible to solve for uθ. By selecting

δθ4 = δθ0, it is found that

uθ =



−nδr0
t1

if t0 ≤ t ≤ t1

0 if t1 ≤ t ≤ t2

nδr0
t1

if t2 ≤ t ≤ t3

0 if t3 ≤ t ≤ t4

(5.13)

where the relation t3 − t2 = t1 is used, implying that the duration of both ma-

noeuvres is identical. It is seen that the required acceleration can be found by

selecting the initial radial displacement and the manoeuvre duration.

Using Eq. (5.13) to define the acceleration and by placing the spacecraft into

the initial circular free-flying orbit, it is seen in Fig. 5.2 that the first manoeuvre

(from t = t0 to t = t1) places the spacecraft onto an elliptical orbit with smaller

semi-major axis than the reference orbit. The spacecraft then moves in the pos-

itive δθ-direction on a free-flying trajectory. At t = t2 = T , uθ = nδr0
t1

is applied

until t = t3, and the spacecraft is returned to its initial circular free-flying orbit.

At t = t4 = 2T , the relative orbit is completed and the spacecraft has returned
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Figure 5.3: Long horseshoe orbit mapped to the Earth-centred rotating frame,
using two transfers with single-axis thrust. The unit of measurement is the radius
of the reference orbit. The relative orbit period is 60T . Initial conditions are
r0 = 1, δr0 = r0/50, δθ0 = δṙ0 = 0, δθ̇0 = −3nδr0/2r0.

to its initial conditions.

5.2.3 Longer Horseshoe Orbits

As long as the magnitudes of uθ and t1 are kept the same for both the deceleration

and acceleration manoeuvres, the result is a repeating orbit of similar shape to

the case in Fig. 5.2. However, as stated, the special property given by Eq. (5.13)

is that the relative orbit completes in exactly two reference orbit periods. This

property can be extended over any integer multiple of 2 orbit periods to form

a longer horseshoe orbit. Figure 5.3 shows how this type of orbit maps to the

Earth-centred rotating reference frame, with a relative orbit period of 60T and

δr0 = r0/50.

Since the thrust-induced acceleration for this type of manoeuvre is constant,

the required ∆v for each manoeuvre can be calculated as ∆v = nδr0. Using

the example of an initial radial displacement of 1000 metres above geostationary

orbit, as in Fig. 5.2, the ∆v required for one full horseshoe orbit (two symmetric
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manoeuvres) is less than 0.15 ms−1.

As long as the thrust magnitude and duration obey Eq. (5.13), different initial

radial displacements may be selected for a constellation of spacecraft to occupy

nested horseshoe orbits, each with the same relative orbit period. This permits

the generation of new families of phased constellations with diverse applications.

As an example, it can be envisaged that a constellation of spacecraft on synchro-

nised, nested orbits around the geostationary ring could be reconfigured with

these simple manoeuvres to provide a greater density of spacecraft over particu-

lar longitudes at particular times, permitting enhanced coverage for services such

as satellite telecommunications according to demand.

5.3 Transfers Using Dual-Axis Thrust

A geometrically simple and operationally advantageous orbit is one composed of

two circular orbits of different radii, connected by powered arcs. As in Section

5.2, thrust is only necessary for the duration of the transfer from the higher

to lower orbit or vice-versa. In this Section, it is proposed that these transfers

are achieved using continuous thrust along two axes (along-track and radial) to

change the semi-major axis and eccentricity of the orbit such that the inner and

outer orbits of the horseshoe are circular in the Earth-centred frame.

Normally, bounded motion in the HCW system is elliptical in shape, obtained

by cancelling the secular term of the solution by selecting δθ̇ = −2nδr0/r0. In

Chapter 3, it was shown that thrust-induced acceleration in the radial direction

of ux = −3n2x results in circular in-plane relative motion with the same initial

conditions as the free-flying elliptical case. In cylindrical-polar form, this accel-

eration has the form ur = −3n2δr. This acceleration alone cannot be used for

a transfer, since it is purely radial and therefore does not affect the semi-major

axis of the spacecraft’s orbit. Furthermore, to ensure that the inner and outer

orbits are circular in the Earth-centred frame, the along-track velocity before
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and after the transfer must be δθ̇0 = −δθ̇1 = −3nδr0/(2r0), as shown in Section

5.2.1. Figure 5.4 shows the type of trajectory which results from a manoeuvre

using only radial thrust, where it can be noted that the semi-major axis of the

pre- and post-manoeuvre orbits are the same. This Figure were generated using

Mathematica’s NDSolve and ParametricPlot functions.

A constant along-track acceleration may be added to this radial acceleration

to produce the required transfer. It is first necessary to find the general solutions

to the in-plane part of Eq. (5.1) when ur = −3n2δr and uθ is constant. These

are found to be

δr(t) = − 1

4n2

(
− 2n(2δr0n+ uθt+ r0δθ̇0) + 2nr0δθ̇0 cos(2nt)

+ (uθ − 2nδṙ0) sin(2nt)
) (5.14a)

δθ(t) =
1

4n2r0

(
uθ + 4δθ0n

2r0 − 2nδṙ0 − (uθ − 2nδṙ0) cos(2nt)

+ 2nr0δθ̇0 sin(2nt)
) (5.14b)

Taking the derivative yields the general solution for the velocity terms as

δṙ(t) =
1

2n

(
uθ − (uθ − 2nδṙ0) cos(2nt) + 2nr0δθ̇0 sin(2nt)

)
(5.15a)

δθ̇(t) = δθ̇0 cos(2nt) +
1

2nr0

(
(uθ − 2nδṙ0) sin(2nt)

)
(5.15b)

It is then necessary to define the initial and final conditions of the manoeuvre.

Assuming that the manoeuvre takes place at the crossing of the δr axis, and ends

when the spacecraft re-crosses the same axis, the initial and final along-track

positions are δθ0 = δθ1 = 0. Since the initial orbit and final orbits must be circular

in the Earth-centred frame, it is necessary that δθ̇0 = −δθ̇1 = −3nδr0/(2r0).

Substituting δr1 = −δr0 into Eq. (5.14a) and δṙ0 = 0 into Eq. (5.15a) and



94

Thrust 

disabled

Ballistic 

trajectory after 

manoeuvre

Thrust 

enabled

Ballistic 

trajectory 

(initial circular 

orbit)

-500 1000
δr(m)

-8000

-4000

4000

r0δθ(m)

Figure 5.4: Trajectory before and after radial thrust manoeuvre, where r0 =
42157× 103 m, δr0 = 1000 m, δθ0 = δṙ0 = 0, and δθ̇0 = −3nδr0/2r0.
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solving for uθ in each yields two different expressions for the required thrust-

induced acceleration. These are

uθ =
2n
(
δṙ0 cos(2nt) + r0δθ̇0 sin(2nt))

)
cos 2nt− 1

(5.16a)

uθ = −
2n
(
r0δθ̇0 + 4nδr0 − r0δθ̇0 cos(2nt) + δṙ0 sin(2nt)

)
2nt− sin(2nt)

(5.16b)

where t = t1.

Letting Eq. (5.16a) equal Eq. (5.16b) and solving for t yields the duration of

the manoeuvre. Once t1 is known, it can be substituted into either equation to

find the required acceleration. Furthermore, when t = t1, it can be noted that

Eq. (5.16a) and Eq. (5.16b) are equal to Eq. (5.13). It should also be noted that

for the dual-axis case, t1 is dependent only on the dynamics of the system and

not the initial displacement of the spacecraft. Therefore, a manoeuvre beginning

at any initial radial position will have the same duration. An example showing

how these manoeuvres allow for nested equiperiodic orbits is given in Fig. 5.5,

for δr0 = 250, 500, and 1000 m (Figure generated using Mathematica’s NDSolve

and ParametricPlot functions). The orbit is completed by performing the oppo-

site manoeuvre after an arbitrary time to return to the original trajectory. A

schematic illustrating how this type of relative orbit maps to the Earth-centred

rotating frame is given in Fig. 5.6.

A single complete horseshoe orbit using dual-axis transfers (assuming inde-

pendent axis-aligned thrusters) with δr0 = 1000 m requires ∆v = 0.64 ms−1,

of which approximately 0.5 ms−1 is the radial component. This expenditure is

directly proportional to δr0.

Although thrust which is proportional to displacement is required in the radial

direction, and this adds complexity to the spacecraft control, it can be seen that

this type of orbit provides great utility since the transfers are geometrically simple

and the initial and final orbits are circular. The duration of the manoeuvre is
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Figure 5.5: Nested orbits with equal period, using manoeuvres with dual-axis
thrust. Initial conditions are r0 = 42157 × 103 m, δr0 = 250, 500, and 1000 m,
δθ0 = δṙ0 = 0, and δθ̇0 = −3nδr0/2r0. The GEO ring is located at δr = 0.
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Figure 5.6: Schematic of horseshoe orbit with dual-axis transfers mapped to
Earth-centred rotating frame. The radius of the reference orbit is shown as a
black circle.

constant regardless of initial displacement from the reference orbit, which allows

for synchronised or phased nested formations of spacecraft. Such formations

could find applications in space situational awareness missions, by performing an

inspection of the entire geostationary ring, or, as already suggested, by permitting

constellations with different concentrations of spacecraft over certain longitudes

at particular times, according to telecommunications demand.

5.4 Three-Axis Motion

The previous Sections have introduced two different methods for generating artifi-

cial horseshoe orbits using low thrust transfers, considering only in-plane motion.

In this Section, out-of-plane motion is introduced, adding to the potential utility

of the concept. Since δz-axis motion is decoupled from the other two axes, it can

be developed entirely separately.

With zero thrust, motion along the δz-axis is that of a simple harmonic oscil-

lator with period equal to that of the reference orbit, i.e. Tz = 2π/n. Combined

with the in-plane artificial horseshoe motion, even this free-flying case generates

interesting three-dimensional trajectories and greatly expands the available ar-
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chitectures for nested constellations. However, greater versatility can be found

when continuous thrust is also used to modify the out-of-plane natural frequency.

As in Chapter 3, it is possible to change the natural frequency of the out-of-

plane oscillations by making the thrust-induced acceleration proportional to the

displacement δz. Considering Eq. (5.1c), this is achieved by selecting

uz = λ2δz (5.17)

where λ is the modified mean motion. It can be shown that, in order to

change the period of the out-of-plane motion by a factor k, such that Tz = kT ,

it is necessary to select

λ = n

√
1−

( 1

k2

)
(5.18)

Substituting this into Eq. (5.17) gives

uz = n2δz
(

1− 1

k2

)
(5.19)

The out-of-plane motion is now given by the augmented equation

δz̈ = −n
2δz

k2
(5.20)

As in Chapter 3, a statically displaced non-Keplerian orbit is achieved when

uz = n2δz (implying k →∞). The thrust augmented three-axis motion is exhib-

ited in Fig. 5.7, where the differences between the single- and dual-axis transfers

can be clearly seen for Tz = 5T . These Figures were generated using Mathemat-

ica’s NDSolve and ParametricPlot3D functions.
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(a) Transfers using single-axis thrust. (b) Transfers using dual-axis thrust.

Figure 5.7: Horseshoe orbits in Earth-centred rotating frame with single-axis
thrust transfers and modified-period out-of-plane motion (Tz = 5T ). Solid line is
the inner orbit and dashed line is the outer orbit. The relative orbit has period
equal to 50T , δr0 = 1000 km, and r0 = 42157 km in both (a) and (b).

5.5 Discussion

The two methods proposed for providing the orbit transfers necessary to emulate

co-orbital motion both offer the possibility of creating constellations of spacecraft

on nested relative orbits. The simplest geometrically and arguably most versatile

of the two types is the dual-axis thrust version as proposed in Section 5.3. As

an example, it would be possible to nest several of these orbits inside each other

simply by giving each spacecraft a different initial displacement. Assuming that

each spacecraft started on a circular orbit, each would have a different relative

velocity, but if the transfer manoeuvres are performed simultaneously the space-

craft relative motion would remain synchronised since the duration of the transfer

is constant for all radial displacements. Phased constellations can be achieved

simply by varying the along-track displacement of the spacecraft. Additionally,

through the addition of out-of-plane thrust which is proportional to displace-

ment, nested horseshoe orbits can be fixed in different planes or with modulated

out-of-plane frequency to generate rich new families of spacecraft constellations.

It should be noted, however, that the orbit transfers used for this type of orbit

require thrust which can be accurately throttled to respond to changing radial
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displacement. Concepts for throttled electrostatic and plasma thrusters have

existed since the 1980s using pulse-width-modulation (PWM) and other meth-

ods [127–130], but at present this is still a technological challenge for electric

thrusters, since throttling normally changes the specific impulse (and therefore

propellant consumption) of the thruster, and since most possess a lower bound of

operating thrust which is greater than zero (e.g. the Qinetiq T5 thruster, which

produces a minimum of 5 mN of thrust while operating [33]). It can be expected

that the capabilities of this technology will improve with time, in the presence of

more mission applications which require such throttling abilities.

It can be envisaged that constellations of small satellites following nested,

phased, and displaced-plane orbits could be designed for a wide range of applica-

tions including on-orbit inspection and disaggregated spacecraft. As an example

which has been suggested throughout this Chapter, reconfigurable constellations

using such orbits could be developed to allow, using the example of the geo-

stationary ring, concentrations of spacecraft over certain longitudes at required

times, building upon the concepts of McInnes, and Mushet et al. [98, 99].

5.6 Conclusions

It has been shown that certain aspects of co-orbital relative motion in three-body

systems can be simply replicated in a linearised two-body system with the addi-

tion of continuous low thrust. Using simple thrust commands, two different types

of transfer between free-flying orbits have been developed to generate artificial

horseshoe orbits: one type which uses single-axis thrust and has a circular outer

and elliptical inner orbit, and one type which uses dual-axis thrust and has circu-

lar inner and outer orbits. For small ∆v, horseshoe orbits of arbitrary length can

be generated, and synchronised or phased nested orbits can be achieved since the

transfer manoeuvre duration is constant and independent of radial displacement.

It has also been shown that thrust augmented out-of-plane motion can be com-
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bined with the artificial horseshoe orbits, providing access to rich new families of

spacecraft constellations.



Chapter 6

Thrust Augmented Horseshoe

Orbits in the Circular Restricted

Three-Body Problem

This Chapter addresses Objective 4 as described in Section 1.3, providing anal-

ysis of the effects of continuous, conservative thrust-induced acceleration on the

generation of horseshoe orbits within a particular three-body system. The Chap-

ter is structured as follows: Section 6.1 describes the equations of motion of the

CRTBP augmented with thrust terms, and derives the expressions for the thrust

augmented pseudo-potential function and Jacobi integral of the system. Section

6.2 describes the choice of system in which to perform the analyses, Section 6.3

details the method through which the equilibrium points of the system can be

located and their stability analysed, and Sections 6.4, 6.5, and 6.6 present the

analysis of the effects of thrust on the generation of horseshoe orbits under three

different steering laws. Finally, Section 6.7 offers conclusions for the Chapter.

This Chapter primarily aims to extend the work of Dermott and Murray

[71, 72], who investigated the dynamics of horseshoe and tadpole orbits in the

circular restricted three-body problem, by combining it with that of Dusek [2]

who first proposed the generation of artificial libration points through continuous

102
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radial thrust in the CRTBP. It is shown in this Chapter that the existence and

stability of horseshoe and tadpole orbits (a schematic of these orbits was shown

in Fig. 1.4) are directly linked to the locations of the five equilibrium points, and

that continuous radial thrust which modifies the locations of these points also

therefore modifies the regions in which such orbits are possible.

An example system is chosen: 243 Ida, a binary asteroid which is assumed

here to have mass ratio equal to that of the Sun-Jupiter system. The reasons

for this choice are twofold. First, most historical literature investigates the exis-

tence of natural tadpole and horseshoe orbits in the Sun-Jupiter system, and so

the analysis of these orbits under thrust can be readily compared with existing

literature. Second, a binary asteroid system is chosen instead of the Sun-Jupiter

system because of the much smaller radial separation between the two primaries.

The radial separation governs the orbit period of the system. For a given mass

ratio, thrust augmented horseshoe orbits in a system with smaller radial separa-

tion are considered more technologically feasible due to the far shorter periods for

which a spacecraft would have to remain active and for the associated reduction

in ∆v.

The analysis performed in this Chapter will later be used to find surface-

grazing thrust augmented horseshoe orbits for touch-and-go sampling of binary

asteroids in Chapter 7.

6.1 Equations of Motion

A schematic of the thrust augmented CRTBP is shown in Fig. 6.1. The reference

frame is again rotating with the line connecting the centres of the two primary

masses, forming the x-axis; r1 and r2 are the distance of the spacecraft from m1

and m2 respectively, and a1 and a2 are the magnitudes of constant thrust-induced

accelerations directed along the unit radius vector from each primary mass. This

steering law is in-keeping with the themes of Chapters 3 and 4. Therefore, fol-
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Figure 6.1: Schematic of the thrust augmented circular restricted three-body
problem.

lowing Dusek [2], it is assumed that the spacecraft possesses a propulsion system

which can produce an acceleration that can be directed along the unit radius

vector from either primary. Later, steering laws with a1 6= 0 and a2 = 0, a1 = 0

and a2 6= 0, and a1 = a2 are considered. The simplicity of these steering laws

could allow for implementation in relatively low-cost missions with small space-

craft. For example, attitude determination could be provided through the use of

cameras and computer vision to obtain the unit vectors from each primary mass.

In agreement with convention, as defined in Section 2.2, m1 = 1 − µ and

m2 = µ, with m1 located at a distance µ from the origin and m2 located at

a distance 1 − µ. The angular velocity of the frame, n, is again selected as

unity so that the orbital period of the two primary masses is T = 2π and the

associated gravitational constant is G = 1. Considering only the in-plane motion,

the equations of motion, augmented with thrust terms, are given by [111]

ẍ− 2ẏ = x− µ(x− 1 + µ)

r3
2

− (1− µ)(µ+ x)

r3
1

+ ax (6.1a)

ÿ + 2ẋ = y − µy

r3
2

− (1− µ)y

r3
1

+ ay (6.1b)

where ax and ay are thrust-induced accelerations in the x- and y-directions,
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respectively. It can be shown geometrically that

ax =
a1(µ+ x)

r1

+
a2(x− 1 + µ)

r2

(6.2a)

ay =
a1y

r1

+
a2y

r2

(6.2b)

The distances of the spacecraft from m1 and m2, respectively, are

r1 =
√

(x+ µ)2 + y2 (6.3a)

r2 =
√

(x− 1 + µ)2 + y2 (6.3b)

and the pseudo-potential of the system, Ω, is given by

Ω =
1

2
(x2 + y2) +

1− µ
r1

+
µ

r2

+ a1r1 + a2r2 (6.4)

where the final two terms account for the thrust-induced acceleration. The equa-

tions of motion can then be defined in terms of the gradient of the potential such

that

ẍ− 2ẏ =
∂Ω

∂x
(6.5a)

ÿ + 2ẋ =
∂Ω

∂y
(6.5b)

It can be demonstrated that the system remains conservative, and so it is possible

to write a new augmented Jacobi integral of the system as

C = 2Ω− v2 = (x2 + y2)− (ẋ2 + ẏ2) +
2− 2µ

r1

+
2µ

r2

+ 2a1r1 + 2a2r2 (6.6)

This new integral, as with the zero-thrust CRTBP, is crucial for determining the

boundaries of motion within the system. Setting v = 0 in Eq. (6.6) for chosen

values of C yields zero-velocity curves for the system. In this respect, the radial
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thrust augmented CRTBP can be analysed in the same way as the zero-thrust

problem. The zero-velocity curves of the system under zero thrust are the same

as those given in Fig. 2.5, showing the locations of the equilibrium points and

their associated zero-velocity curves. These contours change when a1 or a2 are

non-zero.

6.2 Example System: 243 Ida

The formulation of the CRTBP as described in Section 6.1 dictates that the sole

parameter necessary to describe the system is the mass ratio of the two primaries,

µ. However, it is useful to have a fully dimensional system at hand so that the

applications of any results can be quantified.

Much historical literature investigates the existence of tadpole orbits around

the L4 and L5 points of the Sun-Jupiter system, since the most readily observ-

able and therefore first discovered objects following such orbits were the Jupiter

Trojans. It is therefore convenient, when applying the formulation of the CRTBP

described in Section 6.1, to use the mass ratio of the Sun-Jupiter system as this

readily allows for comparison with analysis in the literature. As such, the mass

ratio µ = 9.536× 10−4 is used throughout the remainder of this Chapter.

However, the orbit period of the Sun-Jupiter system is approximately 11.86

years. A horseshoe or tadpole orbit in this system could therefore require hun-

dreds of years to complete, and so would be impractical for realistic space mis-

sions. However, for a given mass ratio, thrust augmented orbits in systems with

a longer orbit period require a smaller dimensional thrust-induced acceleration

than those in systems with a shorter orbit period. It can be shown that the

dimensional thrust-induced acceleration can be calculated using

aidim =
air12dim

( 1
2π
Tdim)2

(6.7)

where the subscript dim denotes the dimensional value of the parameter, r12 is the
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separation of the two primary masses, T is the orbit period of the system, and

i = 1, 2. For reference, a constant non-dimensional acceleration of ai = µ is equal

to the gravitational acceleration produced by m2 at unit distance. This will be

used as the unit of acceleration throughout this Chapter.

A binary asteroid system with an orbit period of the order of one day can

now be envisioned, where the two asteroids are assumed to be spherical masses of

uniform density. An example is the asteroid 243 Ida and its small satellite, Dactyl.

Dactyl was first discovered in images taken by the Galileo spacecraft during its

encounter with 243 Ida in August, 1993 [118,119]. Belton et al. described Dactyl’s

orbit as a function of Ida’s mass, yielding an estimate for the density of Ida as

ρ = 2.6 ± 0.5 g cm−3 [120]. Given the apparent similar composition of Ida and

Dactyl, which are both thought to have formed at the breakup of the original

Koronis body [121], it is assumed for the purposes of this Chapter that both

bodies m1 and m2 possess the same density, of 2.6 g cm−3. Using the estimated

dimensions of Dactyl [122], the volume of Dactyl is found to be approximately

2.69 km−3. With its density as defined above, Dactyl’s mass is estimated as

6.99× 1012 kg, and the mass ratio of the system is found to be µ = 1.66× 10−4.

This is of the same order of magnitude as the Sun-Jupiter system, and since the

numerical methods used to find periodic horseshoe orbits in Chapter 7 should

be verifiable by comparing with orbits found by past authors (e.g. Taylor [74],

and Schanzle [75]), the Ida-Dactyl system is herein assumed to have the same

mass ratio as the Sun-Jupiter system (µ = 9.536 × 10−4). Assuming that both

bodies are spherical and of uniform density, the radii of m1 and m2 are found to

be 15.682 km and 1.544 km, respectively. These correspond to non-dimensional

radii of rm1 = 0.1742 and rm2 = 0.0172.

For the purposes of this Chapter, the smaller primary m2 is also assumed

to be in a circular orbit 90 km from the larger primary m1, consistent with

observations [119]. It follows that the distance of m2 from the origin is 89.914

km, and the distance of m1 from the centre-of-mass is 0.086 km. It is then possible
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Dimensional Non-dimensional

m1 4.2× 1016 kg 0.9990

m2 4.01× 1013 kg 9.536× 10−4

rm1 15.682 km 0.1742
rm2 1.544 km 0.0172

Table 6.1: Dimensional and corresponding non-dimensional parameters of each
primary.

to calculate the orbit period of the binary asteroid system as Tdim ≈ 28 hours.

With a constant non-dimensional acceleration of a1 = µ, the corresponding

dimensional acceleration is found by using Eq. (6.7) to be a1dim = 3.3 × 10−7 m

s−2. Thus, a single orbit period of operation in the binary asteroid system would

require ∆v = 0.033 m s−1.

The dimensional and corresponding non-dimensional parameters of the two

primary masses are summarised in Table 6.1. These values are used throughout

this Chapter, although the radii of the primaries are generally only relevant when

considering close approaches and rendezvous. Such cases are explored later, in

Chapter 7.

6.3 Thrust Augmented Equilibria

Dusek [2] showed that, with constant thrust directed along each of the two unit

radius vectors, in general there exist five libration points as in the zero-thrust

case. Three of these will be collinear points, and two will be triangular points.

In this Chapter, we use the usual labelling convention for these points as defined

in Section 2.2.

As with the zero-thrust CRTBP, the locations of the three collinear equi-

librium points can be found by setting ẍ = ẏ = y = 0. The locations of the

triangular points, however, are not found in the usual geometric manner, as for

ai 6= 0 (i = 1, 2), these two points are not located at the vertex of an equilateral
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triangle where the two primary masses form the other two vertices. Regardless,

the system retains its symmetry about the x-axis, and the triangular points can

still be located by finding the equilibrium points with highest pseudo-potential.

Although there usually exist five libration points, two special cases do exist in

which the two triangular points are no longer distinct from either the first or

third collinear point (i.e. yL4 = yL5 = 0), and so either L1 or L3 is the point of

highest potential in the system in each of these cases.

It is well known that, in the zero-thrust CRTBP, motion close to the three

collinear equilibrium points is unstable and motion close to the two triangular

points is stable in the sense of Lyapunov for µ < 0.0385, as discussed in Section

2.2.1. In the thrust augmented CRTBP considered here, it should not be assumed

that the modified equilibrium points retain the same stability properties as their

zero-thrust counterparts. As such, it is useful to consider the stability analysis of

the modified equilibria.

First, it is assumed that the spacecraft is positioned close to the equilibrium

point in question, so that

x = xe + δx (6.8a)

y = ye + δy (6.8b)

ẋ = δẋ (6.8c)

ẏ = δẏ (6.8d)

where δx and δy are small displacements, and (xe, ye) are the coordinates of the

equilibrium point. The equations of motion of the system can be written, to

linear order, as

δẍ− 2δẏ =
∂Ω

∂x

∣∣∣
(xe,ye)

+
∂2Ω

∂x2

∣∣∣
(xe,ye)

δx+
∂2Ω

∂x∂y

∣∣∣
(xe,ye)

δy (6.9a)
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δÿ + 2δẋ =
∂Ω

∂y

∣∣∣
(xe,ye)

+
∂2Ω

∂y2

∣∣∣
(xe,ye)

δy +
∂2Ω

∂x∂y

∣∣∣
(xe,ye)

δx (6.9b)

Recalling Eq. (6.4), we find that

∂2Ω

∂x2
= 1+

a2y
2

r3
2

− (µ− 1)(2µ2 + 4µx+ 2x2 − y2)

r5
1

+
a1y

2

r3
1

+µ

(
3(x− 1 + µ)2

r5
2

− 1

r3
2

)
(6.10a)

∂2Ω

∂y2
= 1 +

a2(x− 1 + µ)2

r3
2

+
(µ− 1)(µ2 + 2µx+ x2 − 2y2)

r5
1

+
a1(µ+ x)2

r3
1

+ µ

(
3y2

r5
2

− 1

r3
2

)
(6.10b)

∂2Ω

∂x∂y
= y

(
3µ(x− 1 +mu)

r5
2

− a2(x− 1 + µ)

r3
2

− 3(µ− 1)(µ+ x)

r5
1

− a1(µ+ x)

r3
1

)
(6.10c)

From Eq. (6.9) the linear dynamics in the neighbourhood of an equilibrium point

can be described in matrix form as

δẋ =


˙δx

δ̇y

δẍ

δÿ

 =


0 0 1 0

0 0 0 1

d2Ω
dx2

d2Ω
dxdy

0 2

d2Ω
dxdy

d2Ω
dy2

−2 0




δx

δy

δẋ

δẏ

 = Aδx (6.11)

As is well established, the solutions to the above system will be of the form

δx =
4∑
j=1

ηje
λjt (6.12)

where η represents the eigenvectors and λ represents the eigenvalues of the sys-

tem. The characteristic polynomial p(λ) of the matrix A is found from
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p(λ) = det(A− λI) =

∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 1 0

0 −λ 0 1

d2Ω
dx2

d2Ω
dxdy

−λ 2

d2Ω
dxdy

d2Ω
dy2

−2 −λ

∣∣∣∣∣∣∣∣∣∣∣∣
(6.13)

The eigenvalues are then the roots of p(λ). Again, if any of the four eigen-

values has a positive real part, then the particular equilibrium point is unstable.

Furthermore, since the trace Tr(A) = 0, the system possesses opposite and con-

jugate pairs of eigenvalues which must sum to zero.

6.3.1 Critical Horseshoe Curve

The locations and nature of the equilibrium points are key to establishing the

region in which horseshoe orbits can occur. As a definition, first given by Brown

[65], the zero-velocity curve which touches L3 (and therefore possesses the same

Jacobi constant as L3) will, under normal zero-thrust conditions, form a horse-

shoe shape consisting of two lobes connected at L3, each lobe surrounding L4 or

L5. Orbits within or around a single one of these two lobes are tadpole orbits,

and they encompass either L4 or L5, but not both. This zero-velocity curve is

termed the critical tadpole curve. Orbits which instead encompass all of the three

points L3, L4, and L5, and therefore exist outside of the critical tadpole curve,

are termed horseshoe orbits. From the definition in the literature [65, 71], the

critical horseshoe curve passes through L1 and L2. Horseshoe orbits should exist,

therefore, between the critical tadpole curve and the critical horseshoe curve. It

should be noted here that, although past authors considered the critical horseshoe

curve to pass through L1 and L2, generally these two points possess slightly differ-

ent Jacobi constants, and therefore have different associated zero-velocity curves.

Herein, the literature definition shall be used when applicable, but to avoid con-

fusion both the L1 and L2 curves shall be displayed when plotting the critical

curves. Indeed, it will be seen that the literature definition of the critical horse-
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shoe curve breaks down somewhat when thrust is applied, since the zero-velocity

curves of L1 and L2 separate considerably under certain thrust conditions.

The critical tadpole and horseshoe curves for a system with µ = 9.536× 10−4

are shown in Fig. 6.2, with example tadpole and horseshoe orbits. These Figures

were generated using Mathematica’s NDSolve and ParametricPlot3D functions.

It can be seen that the tadpole orbit (Fig. 6.2a) passes outside of the critical

tadpole curve. This is possible because, unlike horseshoe orbits, the tadpole

orbit family cannot be bounded by a particular value of Jacobi constant. The

critical tadpole curve represents a lower level of potential than that of the tadpole

orbit shown, and so the orbit may cross the boundary. Conceptually, the critical

tadpole curve can more accurately be considered the limiting curve beyond which,

at higher levels of potential, horseshoe motion is no longer possible. For the same

system, a natural horseshoe orbit is shown overlaying the critical curves in Fig.

6.2b. This orbit is given initial conditions such that its Jacobi integral is close

to that of the critical tadpole curve, and so the orbit also remains close to the

critical curve.

6.4 Steering Law 1: a1 6= 0, a2 = 0

Now that the critical curves have been defined and it has been shown that they are

governed by the locations and nature of the three collinear equilibrium points, the

effect of thrust on these points and the horseshoe orbit region can be analysed.

Three particular situations are to be considered: when a1 6= 0, a2 = 0, when

a1 = 0, a2 6= 0, and when a1 = a2. This Section considers the case where

the thrust-induced acceleration is directed only along the radius vector from the

larger primary, i.e. a1 6= 0, a2 = 0. Again, the thrust-induced acceleration is

constant. From the convention defined in Fig. 6.1, this acceleration is positive if

directed away from the primary, and negative if directed towards the primary.

The vector field of the acceleration for this case is shown in Fig. 6.3a (gen-
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(a) Tadpole orbit.
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(b) Horseshoe orbit.

Figure 6.2: Tadpole and horseshoe orbits when a1 = a2 = 0. The L3, L1, and
L2 zero-velocity curves are represented by the blue, orange, and green curves
respectively, and the red curve is the trajectory of the spacecraft. Note that the
orange and green curves are so close as to be almost indistinguishable.

erated using Mathematica’s VectorPlot function). Figure 6.3b shows the evo-

lution of the locations of the three collinear equilibrium points for the range

1000µ ≥ a1 ≥ −1000µ and a2 = 0 where the non-dimensional acceleration is

defined in units of µ, as discussed in Section 6.2. The locations of the equilibria

were found using Mathematica’s NSolve function, and the positions plotted using

ListPlot. It can be noted that, for positive a1, L1 and L3 draw markedly closer

to the origin, and while L2 also moves slightly closer the origin, it remains much

closer to its original location than the other two points. Conversely, for negative

a1, the points L2 and L3 move quickly away from the origin, and L1 remains

relatively close to its zero-thrust location. Accordingly, the critical curves also

change location and shape for each value of a1. Furthermore, the location of L4

under a range of accelerations is given in Fig. 6.3c, with the location of L5 being

symmetric about the x-axis.

The evolution of the critical tadpole curve for a range of a1 is shown in Fig.

6.4, generated using Mathematica’s ContourPlot function (all subsequent plots of
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(a) Thrust-induced acceleration vector field.
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Figure 6.3: Thrust-induced acceleration vector field (a) and locations of the equi-
librium points (b, c) for Steering Law 1, with −1000µ ≤ a1 ≤ 1000µ.
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Figure 6.4: Critical tadpole (L3) curves for 1000µ ≥ a1 ≥ −1000µ and a2 = 0.

zero-velocity curves are also generated in this way). It can be seen that a merge

between the two tadpole lobes occurs at a point within the range −818.2µ < a1 <

−636.4µ. The evolution of the L1 and L2 curves is shown in Fig. 6.5 and Fig.

6.6. As expected from inspection of Fig. 6.3b, the two curves which classically

mark the critical horseshoe curve become widely separated under this steering

law.

In the CRTBP without thrust, tadpole orbits are known to be the stable

librations of particles around L4 and L5 [71], so it can be supposed that horseshoe

orbits, which also librate around L4 and L5, also depend on the stability properties

of the dynamics at these points. This suggests that horseshoe orbits are unlikely

to occur in systems with unstable dynamics at these points, and so helps to limit

the range of thrust-induced acceleration which is considered when searching for

orbits.

Two extreme cases of this steering law are illustrated in Fig. 6.7 and Fig.

6.8, for a1 = 1000µ and a1 = −1000µ, respectively. In Fig. 6.7, it can be seen
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Figure 6.5: Curves of zero velocity for L1, when 1000µ ≥ a1 ≥ −1000µ and
a2 = 0.
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Figure 6.6: Curves of zero velocity for L2, when 1000µ ≥ a1 ≥ −1000µ and
a2 = 0.
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Figure 6.7: Critical curves for a1 = 1000µ and a2 = 0. Note that the curves of
zero velocity for L1 (orange) and L2 (green) have separated considerably. The L3

curve (blue) is of similar shape to the zero-thrust case, however as L3 has moved
closer to the origin, the curve has also contracted in radius. The red curve is the
trajectory of a spacecraft placed with zero velocity close to L4, clearly showing
that motion near the triangular points is no longer stable.
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a1 λ1 λ2 λ3 λ4

1000µ −1.22085 1.22085 0.0949449 −0.0949449
500µ 0.27369 + 0.150981i 0.27369− 0.150981i −0.27369 + 0.150981i −0.27369− 0.150981i
0 0.996758i −0.996758i 0.080452i −0.080452i
−500µ 1.34206i −1.34206i 0.0475089i −0.0475089i
−1000µ 1.52487i −1.52487i 0.0315107i −0.0315107i

Table 6.2: Eigenvalues of the system linearised about the artificial L4 point, using
Steering Law 1.

that the two-lobed form of the critical tadpole curve is preserved, though it has

shrunk in accordance with the location of L3. The tadpole curve still encloses

the two points of maximum potential, L4 and L5, but the L1 and L2 curves have

become widely separated. It can be seen that a spacecraft placed close to L4

in this system does not remain close to the equilibrium point, indicating that

the triangular points have become unstable. This lack of stability is confirmed

by examining the eigenvalues of the linearised system at the equilibrium point,

using the method detailed in Section 6.3. The eigenvalues of the system at the

artificial triangular equilibrium point for a range of a1 are given in Table 6.2. It

can be seen that, when a1 = 1000µ, two of the eigenvalues are positive real, and

so the dynamics close to the triangular points L4 and L5 are unstable in this case.

However, in Fig. 6.8, it can be seen that the two lobes of the L3 curve of zero

velocity have become connected and now form a single continuous crescent. Fur-

thermore, the L2 curve is now of higher potential than L3, and it now surrounds

L4 and L5. Tadpole orbits can still occur in this system, around either L4 or L5,

and though horseshoe motion in the classical sense is no longer possible, crescent-

shaped orbits which enclose L4, L2, and L5 can occur. It can be seen from Table

6.2 that for this case the eigenvalues of the system at L4 are all imaginary, like

the zero-thrust case, indicating stability in the sense of Lyapunov.

The magnitudes of the real and imaginary parts of one eigenvalue from each

conjugate pair at the L4 point are given in Fig. 6.9 for the range −1000µ ≤ a1 ≤

1000µ. Only one from each pair is required because, in every case where the real

part is non-zero, there exists at least one eigenvalue with a positive real part.
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Figure 6.8: Critical curves for a1 = −1000µ and a2 = 0. The curves of zero
velocity for L1 (orange) and L2 (green) are widely separated. The two lobes of
the L3 curve (blue) have connected and now form a single continuous crescent, and
the radius of this has expanded in conjunction with the location of L3. The red
curve is a crescent-shaped orbit with greater potential than L3. Initial conditions
are x0 = −1.16498, y0 = 0.846411, and ẋ0 = ẏ0 = 0.
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a1 xL3 xL2 CL3 CL2

−800µ −1.32927 1.33293 1.24532 1.24518
−798.182µ −1.32834 1.33202 1.24992 1.2498
−796.364µ −1.32740 1.33110 1.25452 1.25442
−794.545µ −1.32647 1.33019 1.25912 1.25904
−792.727µ −1.32554 1.32928 1.26371 1.26366
−790.909µ −1.32460 1.32837 1.26831 1.26827
−789.091µ −1.32367 1.32746 1.27289 1.27288
−787.273µ −1.32274 1.32655 1.27748 1.27748
−785.455µ −1.32181 1.32564 1.28206 1.28208
−783.636µ −1.32089 1.32473 1.28664 1.28668
−781.818µ −1.31996 1.32382 1.29121 1.29128
−780µ −1.31903 1.32292 1.29579 1.29587

Table 6.3: Locations and Jacobi constants of L2 and L3 for −800µ ≤ a1 ≤ −780µ.

As such, the system possesses no asymptotic stability. It can be shown that the

dynamics at L4 and L5 become unstable for approximately a1 > 380.2µ.

Further, it is useful to find the acceleration at which the L2 and L3 curves

of zero velocity are equal: that is, the value of a1 which causes both L2 and L3

to have the same potential. This acceleration value will be defined as amerge.

With a1 = amerge, the two lobes of the L3 zero-velocity curve touch at L2. For

a1 < amerge, the lobes merge together to form the continuous crescent seen in Fig.

6.8. By setting ẋ = ẏ = y = 0 and solving Eq. (6.1a) to find the locations of

L2 and L3 for a range of a1, then substituting these locations for x in Eq. (6.6)

to find the Jacobi constant at each point as listed in Table 6.3, it is found by

interpolation that amerge = −787.3µ.

6.4.1 Summary of Horseshoe and Tadpole Motion with

Steering Law 1

It is now possible to summarise the ranges of thrust-induced acceleration for

which horseshoe and tadpole orbits can occur under Steering Law 1, in the binary

asteroid system (µ = 9.536× 10−4):
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• For a1 > 380.2µ, the dynamics at L4 and L5 become unstable. Under these

conditions, it is seen that horseshoe and tadpole orbits do not freely occur,

as a spacecraft injected close to the triangular points, or close to the L3

zero-velocity curve, does not remain close to it.

• For −787.3µ < a1 < 380.2µ, the dynamics at L4 and L5 are stable, and

both tadpole and horseshoe orbits can occur.

• For a1 < −787.3µ, the dynamics at L4 and L5 are stable, so tadpole orbits

can still occur around these points. However, horseshoe orbits can no longer

occur because the two lobes of the L3 zero-velocity curve have become

connected. Crescent-shaped orbits, which encircle L2, L4, and L5, can

occur.

6.5 Steering Law 2: a1 = 0, a2 6= 0

This Section considers the case when the thrust-induced acceleration is directed

only along the radius vector from the smaller primary, r2. Thus, a1 = 0, a2 6= 0,

where a2 is constant. The thrust-induced acceleration vector field for this steering

law is shown in Fig. 6.10a.

The evolution of the locations of the three collinear equilibrium points under

this steering law for 1000µ ≥ a2 ≥ −1000µ is given in Fig. 6.10b. It can be seen

that, for positive a2, L1 and L2 draw closer to each other (and closer to m2),

and that L3 also draws inwards towards the origin. Conversely, for negative a2,

L1 and L2 separate from each other and from m2, and L3 expands away from

the origin. It appears that the region in which horseshoe orbits can occur should

expand with increasingly negative a2. The evolution of the location of L4 under

this steering law is given in Fig. 6.10c, where the collapse of L4 (and, due to the

symmetry of the system about the x-axis, L5) into L3 can be seen to occur at

approximately a2 = −2µ. For a2 < −2µ, it can be seen that the y-axis location
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(d) y-coordinate of L4 at merge with L3.

Figure 6.10: Thrust-induced acceleration vector field (a) and locations of the
equilibrium points (b, c) for Steering Law 2, with −1000µ ≤ a2 ≤ 1000µ. The
asymptotic approach of the y-coordinate to zero can be seen in (d).
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Figure 6.11: Critical tadpole (L3) curves for Steering Law 2.

of L4 asymptotically approaches zero.

The evolution of the critical tadpole curve over a range of a2 is shown in

Fig. 6.11. Note that for the values a2 ≤ −90.9µ the zero-velocity curves are

shown only as individual points, since the L3 curve actually collapses into the L3

point, indicating furthermore that L3 has become the point of maximum potential

for the system. This collapse of the L3 curve, which signals the collapse of the

triangular libration points into L3, occurs in the interval −90.9µ ≤ a2 ≤ 90.9µ.

A plot of the evolution of the L3 zero-velocity curve over a smaller range of a2

(−10µ ≤ a2 ≤ 10µ) is shown in Fig. 6.12a, with a detailed plot showing the L3

points in Fig. 6.12b.

The evolution of the L1 zero-velocity curve for a range of a2 is shown in Fig.

6.13a, with a detailed plot of the region close to m2 shown in Fig. 6.13b.

As in Section 6.4, the stability of the triangular point L4 can be evaluated

through examination of the eigenvalues of the system linearised at the equilibrium
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Figure 6.12: Curves of zero velocity for L3, when a1 = 0 and 10µ ≥ a2 ≥ −10µ.
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Figure 6.13: Curves of zero-velocity for L1 when a1 = 0 and 1000µ ≥ a2 ≥
−1000µ.
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Figure 6.14: Curves of zero-velocity for L2 when a1 = 0 and 1000µ ≥ a2 ≥
−1000µ.
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(b) Detailed plot around a2 = 20µ.

Figure 6.15: Magnitudes of the real and imaginary parts of one of each conjugate
pair of eigenvalues for the thrust modified L4 for Steering Law 2.

point in question. Using the method outlined in Section 6.1 (Eq. (6.13)), the

real and imaginary parts of one eigenvalue from each conjugate pair are plotted

against a2 in Fig. 6.15a. In general, it can be seen that the dynamics close to

L4 are stable for a2 ≤ 0, however upon inspection it is evident that there also

exists a small range of a2 > 0 for which the dynamics remain stable. In fact,

certain eigenvalues of the system have a positive real part approximately when

a2 > 21.5µ, as is shown in Fig. 6.15b. This is sufficient to determine the stability

of the equilibrium point since whenever one of the eigenvalues possess a non-zero

real part, an identical eigenvalue with opposite sign always exists, as confirmed

by the trace of the matrix A being equal to zero.
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a2 xL3 xL1 xL2 CL3 CL1 CL2

5µ −0.99881 0.93285 1.06825 3.02001 3.03939 3.03814
5.91µ −0.99852 0.93294 1.06815 3.02348 3.0395 3.03826
6.82µ −0.99824 0.93302 1.06804 3.02694 3.03962 3.03838
7.27µ −0.99795 0.93311 1.06794 3.0304 3.03973 3.0385
8.64µ −0.99766 0.93319 1.06784 3.03386 3.03985 3.03862
9.55µ −0.99737 0.93328 1.06774 3.03733 3.03996 3.03874
10.45µ −0.99709 0.93337 1.06764 3.04079 3.04007 3.03886
11.36µ −0.99680 0.93345 1.06754 3.04425 3.04019 3.03898
12.27µ −0.99651 0.93354 1.06743 3.04771 3.0403 3.03910
13.18µ −0.99622 0.93362 1.06733 3.05117 3.04041 3.03922
14.09µ −0.99594 0.93370 1.06723 3.05463 3.04053 3.03934
15µ −0.99565 0.93379 1.06713 3.05809 3.04064 3.03945

Table 6.4: Locations and Jacobi integral values of, L1, L2, and L3 for 5µ ≤ a2 ≤
15µ.

As with Steering Law 1, there exists a value of acceleration beyond which the

L2 point possesses higher potential than L3. There also exists, beyond a slightly

higher thrust-induced acceleration, a region in which both L1 and L2 are points

of higher potential than L3. In Table 6.4, the locations and Jacobi constants of

the three collinear equilibrium points are given for a range of a2 between 5µ and

15µ. The point at which the potential at an equilibrium point becomes greater

than L3 can be found where its Jacobi constant falls below that of L3. Thus,

using linear interpolation, it can be shown that L2 exceeds the potential of L3 for

approximately a2 > 9.93µ, and that L1 exceeds L3 for approximately a2 > 10.25µ.

Note that both of these values lie within the region where the dynamics at L4

and L5 are stable, and so there exists a small region in which both L1 and L2

are points of greater potential than L3 and stable librations around L4 and L5

are possible, i.e. 10.25µ < a2 < 21.5µ. In this case, tadpole orbits around either

L4 or L5 can occur, but horseshoe orbits are replaced by crescent-shaped orbits

which do not contain L3. An example crescent-shaped orbit within this range of

a2 is shown in Fig. 6.16.
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Figure 6.16: Crescent-shaped orbit with a1 = 0 and a2 = 15µ. The red curve
is the spacecraft’s trajectory, the blue curve is the L3 zero-velocity curve, and
the orange and green curves are the zero-velocity curves associated with L1 and
L2, respectively. Initial conditions are x0 = −y0 = −0.705164, and ẋ0 = ẏ0 = 0.
Note that the green and orange curves are very similar.
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6.5.1 Summary of Horseshoe and Tadpole Motion with

Steering Law 2

The available regions of motion with Steering Law 2 in the binary asteroid system

(µ = 9.536 × 10−4), examined over the range −1000µ ≤ a2 ≤ 1000µ, can be

summarised as follows:

• For the range −1000µ ≤ a2 ≤ −2µ, the point of maximum potential of

the system is located at L3; L4 and L5 are in fact merged with L3. Orbits

around this point are stable, and can have horseshoe shape.

• For the range −2µ ≤ a2 ≤ 21.5µ, the points of maximum potential of the

system are located at L4 and L5, which are distinct from L3. L2 becomes of

higher potential than L3 for a2 > 9.93µ, and L1 becomes of higher potential

than L3 for a2 > 10.25µ. Horseshoe orbits can occur for a2 < 9.93µ, but for

the range 9.93µ < a2 < 21.5µ, horseshoe orbits are replaced by crescent-

shaped orbits which do not contain L3. Tadpole orbits can still occur.

• For a2 > 21.5µ, the dynamics at L4 and L5 are unstable, growing asymp-

totically closer to m2 with increasing a2. Tadpole, crescent, and horseshoe

orbits are no longer seen to freely occur.

6.6 Steering Law 3: a1 = a2

Under Steering Law 3, the thrust-induced acceleration acting on the spacecraft

is assumed to be generated in such a way that it can be decomposed into two

vectors of equal magnitude, each directed along the radial vectors r1 and r2 from

the primary masses. The vector field resulting from this steering law is shown

in Fig. 6.17a. Note that the acceleration vectors precisely cancel along the line

connecting the two primary masses.
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(d) y-coordinate of L4 at merge with L3.

Figure 6.17: Thrust-induced acceleration vector field (a), locations of the equi-
librium points (b, c), and the merge of L4 with L3 (d) for Steering Law 3, with
−1000µ ≤ a1 = a2 ≤ 1000µ.
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As in the previous two Sections, a range of thrust-induced accelerations are

applied under the current steering law, −1000µ ≤ a1 = a2 ≤ 1000µ, to exam-

ine the evolution of the critical zero-velocity curves of the system. Firstly, the

evolution of the locations of the three collinear equilibrium points is shown in

Fig. 6.17b. It can be seen that L2 and L3 both move towards the origin for

a1 = a2 > 0, and that they grow further apart for a1 = a2 < 0. Since the ac-

celeration vectors precisely cancel between the two masses, the location of L1 is

unaffected by this steering law.

Then, as in Sections 6.4 and 6.5, the locations of the triangular equilibrium

points are located by numerically finding the points of maximum potential of

the system. The evolution of the location of L4 is shown in Fig. 6.17c for a

range of accelerations. Note that, as in Section 6.5, there is a point at which

the y-coordinate of L4 collapses to zero, and for increasingly negative thrust-

induced acceleration remains at zero. This indicates the point at which the L4

and L5 points merge with L3, and a detailed plot of this region is provided in Fig.

6.17c. It can be shown that the merge, for this particular mass ratio, occurs at

approximately a1 = a2 = −2µ. A further critical acceleration is found when the

L4 and L5 points merge with L1. It can be shown that the merge between these

points occurs at approximately a1 = a2 = 224.9µ, and for acceleration values

greater than this the equilibrium point with greatest potential is L1.

Figures 6.18a and 6.18b show the regions where the dynamics close to L4 and

L5 are stable and unstable. It can be noted that the dynamics at these points

are unstable for approximately a1 = a2 ≥ 10.7µ.

The zero-velocity curve associated with the L3 point is shown in Fig. 6.19

for a range of accelerations. As expected, the zero-velocity curve collapses into

a single point for the cases a1 = a2 ≤ −90.9µ, as they are less than the merging

value of a1 = a2 = −2µ. The zero-velocity curves associated with L1 and L2 for

a range of accelerations are shown in Fig. 6.20 and Fig. 6.21, respectively. The

L2 curve of zero velocity, for increasingly positive acceleration, draws into a small
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Figure 6.18: Eigenvalues of the linearised dynamics at L4.
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Figure 6.19: Zero-velocity curves associated with L3 for Steering Law 3. For all
contours where a1 = a2 ≤ −2µ the curves have collapsed into a single point at
L3.

bubble surrounding the L1 point, with the L2 point itself drawing ever closer to

m2.

By examining the Jacobi constant associated with each of the collinear equi-

libria over a range of accelerations, the points beyond which L1 becomes of higher

potential than L2 and L3, and L2 becomes of higher potential than L3, can be

found. These points are found at the intersection of the three curves in Fig.

6.22: L1 exceeds the potential of L2 for approximately a1 = a2 > 4.81µ and the

potential of L3 for approximately a1 = a2 > 9.94µ; L2 exceeds the potential of L3

for approximately a1 = a2 > 10.3µ. This figure also shows the region where the

linearised dynamics at L4 and L5 become unstable, i.e. a1 = a2 > 10.7µ. Thus,

there exists a relatively small range of accelerations for which horseshoe motion

is no longer possible while motion close to L4 and L5 is still stable. In the range

9.94µ < a1 = a2 < 10.7µ, tadpole and crescent orbits are possible but horseshoe

orbits are not. This occurs because the two lobes of the L3 curve have become

connected at L1, such that a spacecraft with lower Jacobi constant than L3 can

no longer cross from the inner to outer regions of the system.
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Figure 6.20: Zero-velocity curves associated with L1 for Steering Law 3.
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Figure 6.21: Zero-velocity curves associated with L2 for Steering Law 3.
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Figure 6.22: Jacobi constants for the collinear equilibria for a range of input
thrust values, for Steering Law 3. The shading indicates the region in which the
dynamics close to L4 and L5 are unstable.

6.6.1 Summary of Horseshoe and Tadpole Motion with

Steering Law 3

The regions of motion which are achievable under Steering Law 3 in the binary

asteroid system (µ = 9.536× 10−4), over the range of thrust-induced acceleration

−1000µ ≤ a2 ≤ 1000µ, can be summarised as follows:

• For −1000µ ≤ a1 = a2 ≤ −2µ, the system possesses only three equilib-

rium points, which are collinear along the x-axis. The point of maximum

potential is located L3, and motion close to this point is linearly stable.

Horseshoe-shaped orbits can occur.

• For −2µ < a1 = a2 ≤ 10.7µ the system possesses five equilibrium points,

three of which are collinear and two of which are triangular and symmetric

about the x-axis. The points of maximum potential of the system are

located at the triangular points, and motion close to these is linearly stable.

– For a1 = a2 > 4.81µ, the potential of L1 exceeds that of L2.

– For a1 = a2 > 9.94µ, the potential of L1 exceeds that of L3.
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– For a1 = a2 > 10.3µ, the potential of L2 exceeds that of L3.

– In the range −2µ < a1 = a2 < 9.94µ, tadpole, horseshoe, and crescent

orbits are possible.

– In the range 9.94µ < a1 = a2 < 10.7µ, horseshoe orbits can no longer

exist. Tadpole and crescent-shaped orbits may occur.

• For 10.7µ ≤ a1 = a2 ≤ 224.9µ, motion around L4 and L5 is linearly unsta-

ble. Tadpole, horseshoe, and crescent orbits no longer freely occur, although

periodic solutions may exist.

• For a1 = a2 ≥ 224.9µ, the L4 and L5 points have merged with L1, which is

the new location of the point of maximum potential. The motion around

this point remains linearly unstable.

6.7 Conclusions

This Chapter has shown that the application of continuous thrust to the circular

restricted three-body problem can modify the regions in which horseshoe and

tadpole orbits occur, affecting not only the shape and period of such orbits but

also the domain of their existence. Under different accelerations, the contours of

pseudo-potential can change widely. The critical contour which governs horseshoe

motion, the zero-velocity curve with potential equal to L3, can be made to merge

with L3 and widen the available horseshoe region, or to close upon itself and

entirely prevent horseshoe orbits from occurring. It is seen that when the L3

zero-velocity curve does close, in a trisectrix-like form, a new type of motion

replaces horseshoe motion: the crescent-shaped orbit. These orbits enclose L1,

L2, L4, and L5, and exist at higher potential levels than L3.

The effects of three different steering laws upon the locations of the equilibrium

points of a system with the same mass ratio as the Sun-Jupiter system have been

analysed in detail, and the locations and linear stability of L4 and L5 have been
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investigated for a range of accelerations. The transitions at which L4 and L5

become stable or unstable have been identified, and the effect of these transitions

on the existence of horseshoe orbits has been commented on. In general, negative

acceleration (acceleration towards each of the primary masses) results in stable

L4 and L5, and in two of the three steering laws this also results in a collapse

of the L3 zero-velocity curve, beyond which there exist only three equilibrium

points. This widens the region in which horseshoe orbits occur, corresponding to

a widening separation of the L1 and L2 points.

The analysis performed in this Chapter will be applied to the problem of

finding thrust augmented horseshoe orbits which graze the surface of the smaller

primary in the 243 Ida binary asteroid system in Chapter 7.



Chapter 7

Surface-Grazing Thrust

Augmented Horseshoe Orbits

This Chapter addresses Objective 5 as described in Section 1.3, proposing a

method to produce thrust augmented horseshoes orbits which rendezvous with

the surface of the smaller primary in the CRTBP, providing new opportunities

for touch-and-go sampling, specifically in binary asteroid systems. The structure

of the Chapter is as follows: Section 7.1 describes the numerical methods used

to find the initial conditions for periodic horseshoe orbits, Section 7.2 uses the

analysis performed in Chapter 6 to modify the numerical methods of Section

7.1 for finding the initial conditions of periodic horseshoe orbits which graze the

surface of the smaller primary, and finally Section 7.3 offers conclusions for the

Chapter.

The same example system as was used in Chapter 6 is considered in this

Chapter (243 Ida and Dactyl), with dimensional parameters identical to those es-

tablished in Section 6.2. Building on the analysis of Chapter 6, which established

the regions of thrust-induced acceleration in which horseshoe orbits can occur,

a method is proposed for finding periodic horseshoe orbits which are symmetric

about the x-axis of the CRTBP. This strategy, adapted from a method used to

find Lyapunov orbits, is shown to be applicable to the thrust augmented CRTBP,

141
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and both horseshoe and crescent-shaped orbits are found. A further technique is

then proposed which finds the initial conditions for thrust augmented horseshoe

orbits with close approaches to the smaller primary. With suitable acceleration

under Steering Law 3 (a1 = a2) two members of a family of horseshoe orbits

which rendezvous with the surface of the smaller primary are then shown.

7.1 Periodic Horseshoe Orbits

This Section details the methods used to obtain periodic (and near-periodic)

horseshoe orbits in the thrust augmented CRTBP. Attempts are not made to

exhaustively search for and define entire families of periodic orbits; instead, the

tools described here are used to sample and analyse some of the periodic orbits

which occur in the thrust augmented CRTBP. A shooting method is used to find

the initial conditions for periodic orbits, with initial guesses produced using a

search-and-filter technique which relies on certain simplifying assumptions.

As was pointed out by Deprit and Henrard [73], the search for families of peri-

odic orbits in the CRTBP is often accidentally limited to finding only families of

symmetric periodic orbits, since the conditions for periodicity and symmetry are

sometimes the same, as defined by the mirror theorem [100]. In fact, the CRTBP

allows for large families of periodic orbits which are asymmetric about the x-axis,

including asymmetric horseshoe orbits, as was demonstrated numerically by Tay-

lor [74]. However, limiting the search to only symmetric periodic orbits does offer

advantages, chiefly in the simplified process for locating initial guesses. Further-

more, symmetric periodic horseshoe orbits could offer operational advantages for

space missions, for example by allowing a spacecraft to approach two sides of the

smaller primary of a binary asteroid system at equal distance for sampling. As

such, the method detailed here for finding periodic orbits only seeks those which

are symmetric about the x-axis, and is a modification of the method often used

to find Lyapunov orbits.
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The search-and-filter method is performed as follows. First, consider a horse-

shoe orbit which crosses the x-axis at only two points, and each crossing is per-

pendicular to the x-axis. Choosing a starting position on the x-axis, y0 and ẋ0

are therefore zero, while x0 and ẏ0 are non-zero. A symmetric orbit, which is

also therefore periodic in this case, is found when the next crossing of the x-axis

is perpendicular. This requires that the velocity in the x-direction at the time

of crossing, ẋc, is equal to zero. Selecting x0, the equations of motion can be

numerically integrated for a range of ẏ0 until the following x-axis crossing, at

which point ẋc is recorded. Interpolation between the points (ẋc, ẏ0) will reveal

the approximate initial velocity at which ẋc = 0.

The range of ẏ0 can be limited so that the Jacobi constant of the spacecraft

is greater than the Jacobi constant of L3, meaning that the potential of the

spacecraft is lower than that of L3. This ensures that the orbits are limited by

the critical tadpole curve, and may encircle L3, L4, and L5. The orbits found

with perpendicular crossings of the x-axis can then be filtered by only selecting

those that cross to the left of m1, i.e. xc < −µ, since an orbit crossing to the

right of this is unlikely to be a horseshoe orbit. It can be noted that under certain

accelerations a horseshoe orbit may have more than two crossings of the x-axis,

but this search-and-filter technique disregards these in favour of those with only

two crossings.

An example analysis of ẋc for a range of ẏ0 is given in Fig. 7.1, where x0 =

−1.04 and a1 = a2 = 0. The detailed plot in Fig. 7.1b shows the points which

were used for initial guesses. Note that some ẏ0-axis crossings are ignored: these

crossings are close to being perpendicular due to the rapidly changing shape

of the function [75], and so do not provide useful initial guesses. These graphs

were generated using Mathematica’s Reap/Sow, NDSolve, and ListPlot functions.

Other similar graphs in this Chapter were also generated using these functions.

The data associated with the initial guesses of Fig. 7.1b can be found in Table

7.1. The estimate of the orbit half-period To/2 is obtained by noting the time at



144

Potential 

greater 

than L3

0.00 0.02 0.04 0.06 0.08

-0.2

-0.1

0.0

0.1

0.2

y

0

x c
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(b) Detailed plot illustrating points used as initial guesses for horseshoe orbits.

Figure 7.1: Component of velocity in x-direction at first x-axis crossing for a
range of ẏ0, where x0 = −1.04 and a1 = a2 = 0. Perpendicular crossings of the
x-axis are found where ẋc = 0. The red shaded region indicates potential levels
greater than that of L3, where horseshoe orbits are unlikely to occur.
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No. x0 ẏ0 To/2 xc

1 −1.04000 0.061927 83.4035 −0.975053
2 −1.04000 0.0625515 86.025 −0.968231
3 −1.04000 0.0632906 88.0239 −0.978787
4 −1.04000 0.0654096 91.9400 −0.95692
5 −1.04000 0.0662243 98.1633 −0.965717

Table 7.1: Details of the initial guesses from Fig. 7.1, where a1 = a2 = 0.

which the perpendicular x-axis crossing occurs.

A shooting method is then implemented to attempt to find the initial condi-

tions required for a precisely periodic orbit. The initial guesses generated by the

search-and-filter process are used as the starting conditions in a boundary value

problem, which is solved using the NDSolve function in Wolfram Mathematica.

This function uses a shooting method to locate the correct initial conditions.

For a nonlinear second-order problem, the shooting method works as follows.

The initial and final conditions of the system can be given in vector form, which

for an orbit with perpendicular crossings will be

x0 =


x0

y0

ẋ0

ẏ0

 =


x0

0

0

ẏ0

 = xTo =


xTo

yTo

ẋTo

ẏTo

 =


xTo

0

0

ẏTo

 (7.1)

where the subscript To denotes the state after one orbit period. Denote the guess

ẏ0 = s, where s can be considered the ‘shooting angle’ [123]. The solution to

this initial value problem is found by numerical integration of the equations of

motion. The solution to the initial value problem which satisfies the boundary

conditions is therefore the solution to the boundary value problem, and is denoted

as ẏ0 = s∗. To find s = s∗ which satisfies x0 = xTo and ẏ0 = ẏTo , an iterative

method is used, such as Newton’s method (which is the default method used by

NDSolve for boundary value problems [124]).
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No. x0 y0 ẋ0 ẏ0 Orbit Type

1 −1.04 0 −0.000655090 0.0619706 Horseshoe
2 −1.04 9.70854× 10−11 −0.0000142319 0.0625519 Horseshoe
3 −1.04 0 −2.12274× 10−6 0.0632904 Horseshoe
4 −1.04 2.0335× 10−12 −0.000215065 0.0654221 Horseshoe
5 −1.04 −4.30516× 10−9 −3.54953× 10−6 0.0662244 Horseshoe

Table 7.2: Outcomes of the attempted solution of the boundary value problems
using starting conditions from Table 7.1, where a1 = a2 = 0.

To further the earlier example, the initial guesses from Table 7.1 are given

as the starting conditions for a series of NDSolve boundary value problems. The

results of these numerical procedures are given in Table 7.2. Also noted is whether

the initial value solutions converged with the boundary value problem within 100

iterations, along with the scaled residual boundary error returned by the function.

As can be seen, each of the guesses from Fig. 7.1b converged to a precisely periodic

orbit.

It should also be noted that all of the orbits found in Table 7.2 are of horseshoe

shape, as seen in the converged orbits of Fig. 7.2, and are therefore indicative

of horseshoe behaviour for this range of initial conditions. Convergence depends

strongly on the accuracy of the initial guess, particularly in the regions of the ẋc

plot which are less smooth. These graphs were generated using Mathematica’s

NDSolve and ParametricPlot functions. Other similar graphs in this Chapter

were generated in the same way.

Furthermore, it is evident that the orbit period increases with ẏ0, which cor-

responds to the orbits existing closer and closer to the L3 zero-velocity curve: a

horseshoe orbit following this curve would be of infinite period. In agreement

with this observation, the orbit guess with the closest approach to m2 is number

1, which is the leftmost guess in Fig. 7.1. This orbit has the lowest value of Jacobi

constant of all the guesses, and is thus bounded by a wider zero-velocity curve. It

can therefore be supposed that for any given x0 through which periodic horseshoe

orbits pass, the horseshoe orbit with the closest approach to m2 is likely to be
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Figure 7.2: Converged periodic orbits from Table 7.2. The spacecraft’s trajectory
is shown in red.
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that with the lowest ẏ0. This result proves useful in the search for a horseshoe

orbit which closely approaches or performs a rendezvous with m2, as will be seen

in the following Section (Section 7.2).

A wider appreciation of the existence and behaviour of periodic orbits in the

system can be obtained when the procedure used to generate Fig. 7.1 is repeated

over a range of x0. Figure 7.3 shows ẋc for a grid of 102× 102 orbits (generated

using Mathematica’s Reap/Sow, NDSolve, and ListPointPlot3D functions), and

it can be seen that the region containing the most periodic orbits (where ẋc = 0

crossings occur) takes the form of an approximately diagonal band across the

surface generated. Running within this band, there exist many families of dis-

continuous parallel or near-parallel curves. In this context, a family of periodic

orbits can be defined by finding the ẋc = 0 crossings for a single diagonal strip.

It can also be seen that, with increasingly negative acceleration under Steering

Law 3, the diagonal strip containing the ẋc = 0 crossings becomes more ordered,

smooth, and with fewer crossings. This corresponds to a decrease in the number

of periodic orbits which can be found in this way.

It is also illuminating to examine the case of positive acceleration under Steer-

ing Law 3. Recalling from Section 6.6 that the acceleration at which the L4 and

L5 stability transition is found is at a1 = a2 = 10.7µ, a stable value close to this

limit is chosen, a1 = a2 = 10µ. The resulting surface for ẋc is shown in Fig.

7.4a. It can be seen that there are relatively few crossings in the range examined,

with the greatest number of crossings occurring close to L3 for lower values of ẏ0.

At this acceleration level, as can be found in Section 6.6, the potential of L1 is

greater than L3, and the points of maximum potential of the system are located

at the triangular points, but horseshoe orbits are no longer possible because the

two lobes of the L3 zero-velocity curve have become connected at L1. For ex-

ample, sampling the graph at x0 = −1.1, there are four ẋc = 0 crossings with

lower potential than L3, but none of these yield a horseshoe orbit: all xc crossing

locations are positive and beyond the orbit of m2.
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(a) a1 = a2 = 0 (b) a1 = a2 = −2µ

(c) a1 = a2 = −10µ (d) a1 = a2 = −100µ

Figure 7.3: Variation in ẋc over a range of x0 and ẏ0. The red surface indicates
the energy level of L3.
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(a) a1 = a2 = 10µ (b) a1 = a2 = 100µ

Figure 7.4: Variation in ẋc over a range of x0 and ẏ0. The red surface indicates the
energy level of L3, and the plane at ẋc = 0 is used to illustrate crossings. Note that
there appear to be no crossings with lower potential than L3 for a1 = a2 = 100µ.

If crescent-shaped orbits are sought instead of horseshoe orbits, a different

range of x0 should be used as these orbits do not cross the negative x-axis. In

Fig. 7.5a, the range used is x0 > xL2 , and a large region of crossings is readily

apparent. Selecting a single initial position, x0 = 1.2, the search-and-filter process

is used to locate an initial guess, which is in turn used to seed a shooting method

to find precise initial conditions for a periodic orbit. The crescent orbit found in

this manner is shown in Fig. 7.6a.

Extending the analysis even further by selecting an acceleration in the range

which produces unstable dynamics at L4 and L5 also produces interesting results.

As has already been stated, horseshoe orbits are not possible with Steering Law

3 for a1 = a2 > 9.94µ, because of the trisectrix form of the L3 zero-velocity

curve. When selecting a1 = a2 = 100µ, the surface of ẋc to the right of L2

possesses fewer ẋc = 0 crossings, as can be seen in Fig. 7.5b. Taking the sample

x0 = 1.4, it is found that there are only two crossings of ẋc = 0. The leftmost of

these produces a wide crescent orbit, with shape reminiscent of a large-amplitude

Lyapunov orbit, and the rightmost crossing produces a wide system-encircling

orbit. The crescent orbit found is shown in Fig. 7.6b.
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(a) a1 = a2 = 10µ (b) a1 = a2 = 100µ

Figure 7.5: Variation in ẋc over a range of x0 and ẏ0. The plane at ẋc = 0 is used
to illustrate crossings. Note that the ranges of x0 are beyond L2.

7.2 Rendezvous with the Smaller Primary

The objective stated at the beginning of this Chapter was to investigate the

feasibility of a surface-grazing rendezvous with the smaller primary using a thrust

augmented horseshoe orbit. This Section addresses this concept, and details the

methods used to seek such a rendezvous.

As a basic concept, a horseshoe orbit is envisaged for which the points of

closest approach to m2 almost contact the surface. The points of closest approach

occur at the parts of the trajectory where the spacecraft turns from the outer orbit

to the inner and vice-versa, which are termed the horns of the horseshoe. These

features tend to deform to follow the contours of pseudo-potential around the

smaller mass. An orbit with relatively high energy is unlikely to descend close to

the primaries, due to the steep gradient of the pseudo-potential near these points.

It was noted in Section 7.1 that, when plotting ẋc against ẏ0, the periodic

horseshoe orbit with the closest approach to m2 is generally the leftmost orbit

yielded by the search-and-filter process. This corresponds to the periodic horse-

shoe orbit with the lowest potential and highest Jacobi constant of all periodic

solutions with only two x-axis crossings, for a given x0. It is possible to perform
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(b) a1 = a2 = 100µ, x0 = 1.4, y0 = 0, ẋ0 = −0.000208, ẏ0 = −0.721176.

Figure 7.6: Periodic crescent-shaped orbits shown in red. The blue curve repre-
sents the zero-velocity curve for L3, the orange for L1, and the green for L2. Note
that, in (a), the orange and green curves are very similar.
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an exhaustive sweep, finding the leftmost periodic horseshoe for each x0 and

checking for a suitably close approach to m2. However, this method is labour-

intensive and may not return a rendezvous solution. Instead, it is recognised that

a periodic horseshoe orbit which approaches m2, due to the deformation of its

trajectory close to the mass may in fact cross the x-axis at more than two points.

Therefore, the search-and-filter method wherein only the first re-crossing of the

axis is recorded misses periodic orbits with more than one crossing. This does

not mean that the aforementioned search-and-filter method is without use in this

case, rather that it must be adapted for this specific purpose.

It is proposed here that instead of simply looking for ẋc = 0 crossings, the

value of ẏ0 which is likely to yield a close encounter with m2 is sought: the value

of ẏ0 which provides the desired rendezvous will be very close to this value. The

rapidly steepening potential gradient close to m2 results in high sensitivity to

initial conditions for trajectories which pass through this region, and so it can be

expected that the graph of ẋc will exhibit rapid change nearby the encounter. In

fact, this is usually seen as a spike in the graph, and it delineates the boundary

between the range of initial conditions which produce horseshoe orbits and those

which produce system-encircling orbits. An example graph of ẋc against ẏ0 is

given in Fig. 7.7, where the region of system-encircling orbits is shown along

with the point at which the trajectories encounter m2. For the system shown,

a first guess for a non-periodic close-approach horseshoe is marked with the red

point. The initial velocity at this point is ẏ0 = 0.01150, and as expected produces

a non-periodic trajectory with horseshoe-like behaviour and a close approach to

m2. Furthermore, the trajectory does indeed cross the x-axis at more than two

points, and in fact passes between m2 and L1. This trajectory is shown in Fig.

7.8. However, due to the complexity of this orbit, it is not straightforward to

estimate the half-period for the purposes of using a differential corrector to find

a periodic solution, and so a smoother trajectory is sought.

It was noted in Section 6.6 that applying negative acceleration with Steering
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Figure 7.7: Crossing velocity ẋc against ẏ0 for x0 = −1.04 and a1 = a2 = 0. The
point at which the trajectories encounter m2 and the region in which system-
encircling orbits exist are highlighted. Horseshoe orbits exist to the right of the
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m2
L1

m1L3

L4

L5

L2

-1.0 -0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0

x

y

(a) System overview.

m2

0.90 0.95 1.00 1.05 1.10
-0.10

-0.05

0.00

0.05

0.10

x

y

(b) Region near m2.

Figure 7.8: Non-periodic close-approach trajectory (red) exhibiting horseshoe-like
behaviour, for a1 = a2 = 0, x0 = −1.04, y0 = 0, ẋ0 = 0, and ẏ = 0.01150.
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Law 3 results in increasing separation of the collinear equilibrium points, with

only the L2 point remaining fixed. This corresponds to a widening of the re-

gion in which horseshoe orbits are possible, and horseshoe orbits with greater

separation between the inner and outer arcs tend to have a shorter period and

therefore fewer loops. This allows for the period of an initial guess to be more

accurately estimated, and in turn aids the shooting method to converge on a

precisely periodic orbit.

Choosing a1 = a2 = −80µ, which merges L4 and L5 with L3 and widens

the L1 and L2 zero-velocity curves, an initial position distant from L3 (xL3 =

−1.05390) but within these curves is first selected, x0 = −1.4. Then ẋc can be

plotted for a range of ẏ0 to locate the approximate initial velocity which causes an

encounter with m2. The earlier analysis suggests that this occurs at the leftmost

region of rapid change in the graph of ẋc, due to increased sensitivity to initial

conditions nearby the encounter. Orbits to the left of the encounter are expected

to be system-encircling orbits, while orbits to the right are expected to exhibit

horseshoe behaviour.

The graph of ẋc is given in Fig. 7.9a, where the location of the initial guess

for a rendezvous horseshoe orbit is indicated. The encounter with m2 takes place

slightly to the left of this on the edge of the smoother section of the curve. The

period T of the orbit is estimated by numerically integrating the equations of

motion with this guess until the orbit re-crosses the x-axis close to its starting

point. Then, the initial guess (x0, ẏ0, T ) is supplied to NDSolve, returning the

initial conditions for a precisely periodic horseshoe orbit which closely approaches

the surface of m2.

It is desired to find a closer approach, so a wider horseshoe orbit of the same

family is sought. Using x0 = −1.5, the graph of ẋc is given in Fig. 7.9b. The

initial guess is taken from the point which is analogous to that of the previous

value of x0, and NDSolve returns another periodic, symmetric horseshoe orbit

which performs an even closer approach to the surface of m2. This orbit not only
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a1 a2 x0 y0 ẋ0 ẏ0 T/(2π)

−80µ −80µ −1.40000 0.00000 0.0575745 0.329428 3.85155
−80µ −80µ −1.50000 0.00000 −0.0184697 0.472008 3.78789

Table 7.3: Initial conditions for two symmetric, periodic thrust augmented horse-
shoe orbits which perform a close approach or rendezvous with the smaller pri-
mary, m2.

contains L3 (and thereby the point of maximum potential of the system), but also

L2 as it crosses and re-crosses the x-axis on either side of this equilibrium point.

Furthermore, it is indicative of a family of periodic close-approach orbits whose

approach distance may be adjusted by varying x0. These two orbits, whose initial

conditions are listed in Table 7.3, are shown in Fig. 7.10.

The spacecraft’s distance from the surface of m2, and its speed, v, are shown

in Fig. 7.11. It can be seen that the orbit with the greater approach distance has

a speed at rendezvous of approximately 2.7 ms−1, while the orbit with the closer

approach passes m2 at a lower speed of 2.5 ms−1.

Integrating the magnitude of the thrust-induced acceleration (|a| =
√
a2
x + a2

y)

over a single orbit period for each horseshoe orbit yields the ∆v expended by the

spacecraft. It is found that the orbit with the furthest approach requires 18.5

ms−1 per orbit, and the orbit with the closer approach requires 18.1 ms−1 per

orbit.

The maximum magnitude of the acceleration when a1 = a2 = −80µ occurs

at all points on the x-axis to the left of m1. The value is simply |a| = 160µ,

which is equivalent to a dimensional acceleration of 5.28 × 10−5 ms−2. For a

100 kg spacecraft, this would require a maximum thrust of 5.28 mN, which is

readily achievable with existing electrostatic thruster technology. Assuming that

the spacecraft is equipped with a single thruster, an additional advantage of

a1 = a2 < 0 is that the exhaust plume is never directed towards m2, and so

impingement and contamination of the surface is avoided. Although the thrust

must be accurately throttled, the simplicity of the steering law could allow a
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Figure 7.9: Crossing velocity ẋc against ẏ0 for x0 = −1.4,−1.5, and a1 = a2 =
−80µ. The approximate region in which the trajectories encounter m2 and the
initial guesses for rendezvous horseshoe orbits are highlighted.
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Figure 7.10: Two members of a family of periodic, symmetric horseshoe orbits
with close approaches to m2, for a1 = a2 = −80µ. The full orbits are shown in
(a), and a detailed plot showing the trajectories close to m2 is shown in (b). The
dashed and solid red curves correspond to the first and second orbits in Table
7.3, respectively.
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spacecraft to find the unit vectors to m1 and m2 using a camera, as discussed in

Section 6.1.

7.3 Conclusions

A method for locating initial conditions for symmetric periodic orbits, adapted

from that used to find Lyapunov orbits, is employed to find periodic horseshoe

and crescent orbits. However, this method is shown to miss periodic orbits with

more than two crossings of the axis which connects the primary masses. The

method is adapted to locate the initial conditions for thrust augmented horse-

shoe orbits which rendezvous with the smaller primary, and two members of a

family of symmetric, periodic orbits which approach closely to or rendezvous with

the smaller primary are found using this method. The speed of a spacecraft at

rendezvous on each of these two orbits is found to be relatively small, the max-

imum thrust magnitude is readily achievable using existing technology, and the

∆v requirements are shown to be modest.
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Figure 7.11: Distance of the spacecraft from the surface of m2 is shown in (a),
and the spacecraft’s speed relative to m2 is shown in (b) for two members of a
family of periodic, symmetric horseshoe orbits with close approaches to m2, with
a1 = a2 = −80µ, in dimensional units. The dashed and solid lines correspond to
the first and second orbits in Table 7.3, respectively.



Chapter 8

Conclusion

This Thesis has presented rich new families of thrust augmented orbits in both

the two-body problem (Hill-Clohessy-Wiltshire approximation) and the circular

restricted three-body problem. Continuous low thrust has been used to generate

modified-period non-Keplerian orbits, halo-type orbits, and artificial horseshoe

orbits, with potential applications in stellar interferometry, on-orbit inspection,

constellation forming, and binary asteroid sampling. Each new orbit type has

been developed using assumptions derived from the use of small, low-cost space-

craft, recognising that such spacecraft typically have limited on-board sensing

and computational power. The strategies used to develop these new families of

orbits have taken these limitations into account, by assuming the use of position-

only feedback to control the continuous thrust and through the use of simple

steering laws. This Thesis has thus proposed that great utility can be derived

from the application of continuous thrust to the two-body and circular restricted

three-body problems. The conclusions drawn from each Chapter are given as

follows.

161
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8.1 Chapter 3

In Chapter 3, it was shown that low thrust can augment the capabilities of forma-

tions of spacecraft through enabling motion on forced non-Keplerian orbits. The

Hill-Clohessy-Wiltshire approximation of spacecraft motion relative to a target

on a circular two-body orbit was made closed-loop, using position-only feedback

to modify the eigenvalues and, therefore, the natural frequencies of spacecraft

relative motion. Such a control strategy enables small, low-cost spacecraft to

access rich new families of thrust augmented orbits. Due to the decoupling of

the in-plane and out-of-plane dynamics for small displacements, the two natural

frequencies can be made distinct with thrust, enabling new multiply-periodic or-

bits. Additionally, the thrust commands required for a circular orbit of arbitrary

radius, orientation, and period relative to a target were derived parametrically.

When combined with modified-period out-of-plane motion, cylindrical relative

orbits are enabled, including an orbit in which the spacecraft tracks the Sun

vector around a geostationary target. Such a family of orbits has wide-ranging

applications, from space situational awareness to solar observation or shielding.

Furthermore, the propellant requirements for the new families of orbits are small

when the use of electrostatic propulsion is assumed.

8.2 Chapter 4

In Chapter 4, continuous low thrust was used to generate interesting new families

of stable orbits in the vicinity of a libration point in the circular restricted three-

body problem, using the strategy proposed in Chapter 3. Through the linearisa-

tion of the dynamics of a spacecraft relative to a collinear libration point, position-

only feedback was used to manipulate the system eigenvalues and therefore the

natural frequencies of motion. Although the dynamics close to the collinear li-

bration points are normally unstable, they can be made stable through the ap-
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propriate selection of feedback gains such that new quasi- and multiply-periodic

orbits can be designed. In addition, the gain conditions required to synchronise

the in-plane and out-of-plane natural frequencies were derived, enabling stable,

three-dimensional, halo-type orbits of arbitrary dimensions. Such an orbit could

provide a constantly visible communications relay, if around the Earth-Moon L2

point, for lunar far-side missions. Similarly to Chapter 3, such a control strategy

would enable low-cost spacecraft to access these new families of orbits, and the

propellant required to maintain such orbits is also small when using electrostatic

propulsion.

8.3 Chapter 5

In Chapter 5, certain aspects of three-body co-orbital motion (specifically horse-

shoe orbits) were replicated in the Hill-Clohessy-Wiltshire approximation by using

low thrust manoeuvres. Thrust commands were derived to enable two different

types of artificial horseshoe orbit. The first type required only thrust in the

along-track direction to transfer a spacecraft between a circular outer orbit and

an elliptical inner orbit, and the second type used thrust in both the along-track

and radial directions to generate a horseshoe orbit with circular inner and outer

orbits. Using only two manoeuvres, it is possible to generate horseshoe orbits

of arbitrary length. Furthermore, since the duration of both types of low thrust

transfers are constant, synchronised constellations of spacecraft on nested horse-

shoe orbits are enabled. Using the strategy for modulation of the out-of-plane

frequency from Chapter 3, constellations can also be nested in three dimensions.

This concept provides interesting new opportunities for telecommunications or

Earth-observation constellations which can be reconfigured according to local de-

mand.
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8.4 Chapter 6

In Chapter 6, continuous thrust was applied to a spacecraft in the circular re-

stricted three-body problem to modify the domain of existence of horseshoe or-

bits. The existence of such orbits was shown to be governed by the zero-velocity

curve associated with the L3 point, and by the linear stability of the L4 and L5

points. In the 243 Ida binary asteroid system, three steering laws were analysed

in which constant thrust-induced acceleration was directed along either or both

of the unit radius vectors from the two primary bodies. The effects of the steering

laws on the locations of the five equilibrium points of the three-body system were

recorded in detail, and the stability of the linearised dynamics at L4 and L5 under

different accelerations was analysed. It was shown that thrust directed towards

the two primaries generally resulted in Lyapunov-stable dynamics at L4 and L5,

while thrust directed away from the two primaries generally resulted in unstable

dynamics at these points. Furthermore, thrust-induced acceleration caused the

shape of the L3 zero-velocity curve to change, and can be made to either close

entirely upon itself and prevent horseshoe orbits, or to merge with L3 and widen

the region in which horseshoe orbits occur. When the L3 zero velocity curve does

close upon itself, it was found that crescent-shaped orbits (a new type of orbit

which encloses the L1, L2, L4, and L5 points) replace horseshoe orbits.

8.5 Chapter 7

In Chapter 7, the analysis of Chapter 6 was applied to find periodic horseshoe

orbits which rendezvous with the surface of the smaller asteroid of a binary pair

(243 Ida). A strategy similar to that used to find the initial conditions for sym-

metric periodic Lyapunov orbits was used to locate horseshoe orbits, however

this strategy missed orbits which cross the axis connecting the two primary bod-

ies at more than two points. Since orbits which approach the smaller primary
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closely are likely to cross this axis at more than two points, the strategy was

adapted by instead selecting initial conditions from the range which produced

horseshoe orbits with the lowest pseudo-potential. As was shown in Chapter 6,

wider horseshoe orbits with lower pseudo-potential could be found using thrust

directed towards the two primaries, since this widened the region in which horse-

shoe orbits were likely to occur. Using low thrust and the adapted method, two

members of a family of symmetric, thrust augmented, periodic horseshoe orbits

with close approaches to the smaller primary were presented. Additionally, the

speed of the spacecraft at rendezvous was found to be small in both cases, offering

interesting new opportunities for touch-and-go sampling of binary asteroids.

8.6 Future Work

The research presented in this Thesis satisfied the objectives described in Chap-

ter 1, by developing rich new families of thrust augmented orbits for spacecraft

motion relative to a target on a circular two-body orbit and relative to a collinear

libration point in the CRTBP. Certain aspects of three-body co-orbital motion

were replicated in the HCW approximation using low thrust, and by analysing the

effects of continuous thrust on the generation of horseshoe orbits in the CRTBP

surface-grazing orbits for binary asteroid sampling were also found. These ob-

jectives were achieved, however each Chapter represents only the first steps into

potentially rich new avenues of research, and there is scope for further investiga-

tion in these areas.

A common objective shared by all Chapters in this Thesis is the use of simple

techniques and steering laws to enable access to these new families of orbits for

small, low-cost spacecraft. Reference has been made to the low mass and limited

complexity of such spacecraft, and the resulting limited sensing and on-board

computation capabilities. As such, a useful extension of the research in this

Thesis would be the investigation of the relative navigation systems which would
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enable the new families of orbits. RADAR and LIDAR are often used for relative

navigation by larger spacecraft, however few such solutions exist for nanosatellites

due to insufficient mass, power, and computational capabilities. Cameras offer

an interesting potential solution, due to the miniaturisation of such technology

for modern smartphones and other applications, and although some authors have

considered these (e.g. [87]) there is room for further development of the concept.

Such concepts usually rely on retroreflection of light emitted by a beacon [87] or

a projection of a pattern by a laser source [132], since passive sensing concepts

such as the Universal Docking Port have proven to lack robustness against varied

ambient light conditions [86] for close proximity operation applications. For the

three steering laws proposed in Chapter 6, only knowledge of the direction to

each of the primaries in a binary asteroid system is required. This has been

considered in part by Torre et al., who investigated the stationkeeping of one or

more spacecraft at the L4 point in a binary asteroid system, where each spacecraft

is equipped with a camera to observe both primaries for angles-only navigation

[133]. Although this was primarily for stationkeeping purposes, the concept could

be developed further for co-orbital motion in the binary asteroid system.

With the continuing miniaturisation of computers, it can be expected that on-

board image processing and computer vision capabilities will improve, allowing for

the development of more accurate and sophisticated relative navigation systems

for miniature spacecraft. However, in the absence of ideal sensors and image

processing capabilities, it would be useful to consider the effects of uncertainty of

relative position measurement on the generation and stability of the new families

of orbits. State estimation techniques can be applied, such as Kalman filters,

in order to make the system more robust to uncertainty. For example, in the

presence of nonlinear three-body dynamics, Torres et al. used an Unscented H-

infinity Filter for state estimation [133], and similar methods can be applied to

two-body dynamics under orbital perturbations.

It was suggested in Chapter 1 that a camera unit on-board a nanosatellite
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could be used for both relative navigation and on-orbit inspection of a target, and

so a future research avenue could be the development and demonstration of such

a multipurpose system. Interesting challenges would be found in the provision of

adequate illumination and image fidelity for both purposes, including the selection

of imager wavelength bands and an assessment of the associated power and mass

requirements.

In addition to the future work proposed above, suggestions for each Chapter

are given as follows:

• The research in Chapter 3 and Chapter 4 will benefit from the inclusion of

perturbations in both the two-body and three-body approximations, in or-

der to find the control accelerations required to counteract these for each of

the new families of orbits. Additionally, if it is assumed that the spacecraft

cannot counteract these perturbations, it will be useful to find the stabil-

ity and lifetime of the thrust augmented orbits to ascertain their feasibility

under these conditions.

• While the artificial horseshoe orbits of Chapter 5 offer useful new opportu-

nities for phased and nested constellations, it would be interesting to extend

the concept through the use of artificial potential fields centred on a space-

craft or reference point, such that the influence of the potential field could

be used to shepherd a ring system of small satellites, much in the same

way that certain small moons shepherd the rings of planets such as Saturn

or Uranus [112, 113]. Such a system could be used to provide a truly re-

configurable constellation, adjusting the density of satellites over particular

longitudes through the adjustment of the artificial potential field instead of

synchronised low thrust manoeuvres.

• The work in Chapter 6 could be extended by including steering laws with

thrust which varies with radial displacement, in order to analyse the effects

of varying acceleration on the zero-velocity curves and associated co-orbital



168

motion types. Such a development could allow for interesting cases where

the triangular equilibrium points are brought closer to the smaller primary

and yet remain stable, permitting interesting new hovering and librating or-

bits in the circular restricted three-body problem. Furthermore, the system

could be replaced by the elliptic restricted three-body problem, in order to

provide analysis which is more applicable to real systems.

• Chapter 7 could also be extended by searching for crescent-shaped orbits

which rendezvous with the surface of the smaller primary body, allowing

for the sampling of different faces of an asteroid in a binary pair. Addition-

ally, a more exhaustive search for families of horseshoe and crescent-shaped

orbits with close approaches could be performed, allowing for optimisation

of propellant expenditure, orbit period, and speed relative to the body at

rendezvous.
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[125] B.-G. June, Poincaré and the three body problem, American Mathematical

Society, vol. 2, 1997.



183

[126] W. L. Brogan, Modern control theory, Pearson Education India, 1982.

[127] R. Zappulla, J. Virgili-Llop, M. Romano, Spacecraft thruster control via

sigma-delta modulation, Journal of Guidance, Control, and Dynamics, vol. 40,

pp. 2928-2933, 2017.

[128] A. D. Challoner, R. L. Poeschel, Spacecraft with modulated thrust electro-

static ion thruster and associated method, US Patent 4,825,646, 02/05/1989.

[129] J. R. Beattie, Electrostatic ion thruster with improved thrust modulation,

US Patent 4,838,021, 13/06/2017.

[130] R. L. Burton, P. J. Turchi, Pulsed plasma thruster, Journal of Propulsion

and Power, vol. 14, no. 5, pp. 716-735, 1998.

[131] N. G. Orr, J. Eyer, B. Larouche, and R. Zee, Precision formation flight:

the CanX-4 and CanX-5 dual nanosatellite mission, In 4S Symposium Small

Satellites Systems and Services, vol. 660, 2008.

[132] C. P. Bridges, B. Taylor, N. Horri, C. I. Underwood, S. Kenyon, J. Barrerra-

Ars, L. Pryce, R. Bird, STRaND-2: Visual inspection, proximity operations

& nanosatellite docking, In Aerospace Conference, 2013 IEEE, IEEE, pp. 1-8,

2013.

[133] F. Torre, R. Serra, S. Grey, M. L. Vasile, Angles-only navigation of a forma-

tion in the proximity of a binary system, 2018 Space Flight Mechanics Meeting,

AIAA SciTech Forum, Kissimmee, Florida, 2018.


	Acknowledgements
	Abstract
	Acronyms
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Artificial Equilibria and Non-Keplerian Orbits
	Continuous Low Thrust
	Spacecraft Relative Motion and Formation Flight
	Halo Orbits and Co-orbital Motion
	Small Spacecraft

	Research Motivation
	Thesis Objectives
	Thesis Structure and Related Authored Papers
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8


	Dynamical Models
	The Hill-Clohessy-Wiltshire Equations
	Condition for Bounded Motion

	The Circular Restricted Three-Body Problem
	The Lagrange Points
	The Jacobi Integral


	Forced Relative Motion in the Hill-Clohessy-Wiltshire Approximation
	Equations of Motion
	Artificial Static Equilibria and a Simple Circular Relative Orbit
	Modulation of the Out-of-Plane Period
	Patching Between Non-Keplerian Orbits

	The Cylindrical Relative Orbit
	The Sun Vector Tracking Orbit

	Conclusions

	Forced Relative Motion in the Vicinity of Libration Points
	Equations of Motion
	State-Space System
	Synchronisation of the In-Plane and Out-of-Plane Natural Frequencies
	Conclusions

	Artificial Horseshoe Orbits in the Hill-Clohessy-Wiltshire Approximation
	Equations of Motion
	Transfers Using Single-Axis Thrust
	The Initial and Final Orbits
	The Required Thrust
	Longer Horseshoe Orbits

	Transfers Using Dual-Axis Thrust
	Three-Axis Motion
	Discussion
	Conclusions

	Thrust Augmented Horseshoe Orbits in the Circular Restricted Three-Body Problem
	Equations of Motion
	Example System: 243 Ida
	Thrust Augmented Equilibria
	Critical Horseshoe Curve

	Steering Law 1: a1=0, a2=0
	Summary of Horseshoe and Tadpole Motion with Steering Law 1

	Steering Law 2: a1=0, a2=0
	Summary of Horseshoe and Tadpole Motion with Steering Law 2

	Steering Law 3: a1=a2
	Summary of Horseshoe and Tadpole Motion with Steering Law 3

	Conclusions

	Surface-Grazing Thrust Augmented Horseshoe Orbits
	Periodic Horseshoe Orbits
	Rendezvous with the Smaller Primary
	Conclusions

	Conclusion
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Future Work

	Bibliography

