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Abstract

This thesis explores the application of Ensemble Decision Systems as an Artificial In-

telligence (AI) agent for playing video games on the General Video Game Artificial

Intelligence (GVGAI) platform.

The GVGAI offers a platform for research into developing General Video Game

playing AI agents. Significant progress has been made over the years in the area of

game playing AI agents, but it is often a trivial task for designers to propose new

problems that the agents are unable to solve. Humans are typically able to solve these

additional problems, making them an ideal model for an excellent general video game

player and a benchmark for AI agents. One of the objectives of this thesis has been

the introduction of Deceptive Games to the GVGAI, which are a class of games that

are designed to deliberately deceive AI agents.

Ensemble Decision Systems make use of multiple AI algorithms to make their deci-

sions, which may make them more robust to the problems that can deceive singular AI

agents. A wide variety of Ensemble Decision Systems were developed and compared

with agents from the GVGAI competition, with the aim of developing an indication of

the current level of performance that agents can reach. The Ensemble Decision Systems

show improved generality, being able to complete a wider range of games than other

agents, at a cost of win rate in specific games.

This thesis presents an Ensemble Decision System for GVGP and a suite of De-

ceptive Games. The Ensemble Decision System detailed in this thesis manages to out-

perform comparison agents in the Deceptive Games suite, with the top three positions

being taken by Ensemble agents for win rate, and a wider range of games.
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Chapter 1

Introduction

Since its inception, the dream of Artificial Intelligence (AI) pursued by researchers has

been to develop a general problem solving AI: an AI that can reason about new circum-

stances and act rationally. The goal of creating Artificial General Intelligence (AGI)

has been one of the main driving factors of conducting research in this area for many

researchers [1]. Media has portrayed both the hopes and fears of AI over the years,

with film franchises such as Terminator and 2001: A Space Odyssey presenting rogue

AIs that rebel against their creators. On the contrary, Star Trek: The Next Generation

brought the notion of a sentient, and altruistic, AI in the form of Lieutenant Comman-

der Data, and in many ways this remains the dream for researchers: an artificial being

that seeks to improve itself, those around it, and advance understanding while being

an equal to its creators.

1.1 Artificial General Intelligence

Progress in AI to date has mainly been through developing systems to solve specific

problems. This simplifies the problem by restricting the potential options available

to the AI. For example, instead of having to consider the benefits of cooking dinner

versus cleaning up a room, the AI is focused on deciding what to make for dinner,

and is not capable of thinking about any other situations. This has two advantages:

first, the processing power used to analyse the available options can look further into
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the future, because there are fewer options to analyse. Secondly, programmers can use

their own knowledge of how best to solve a problem to assist the AI in its decision

process. Historically this restriction has allowed a lot of progress to be made, but much

of this progress is not useful for AGI as the solutions are too specific to the problem

domain. For a game like chess it is relatively simple to describe a strategy for winning,

but how would you go about describing a problem solving strategy for a situation that

you have never encountered? If the situation is completely novel to both the agent and

its designer, then the agent will not know what to do, and would likely not perform

well in the given situation.

1.2 Why Games?

The real world is a complicated place, presenting the largest hurdle for AI advancement.

The cost and potential risk of developing real robotic AGI systems is currently too

restrictive to easily explore. While it is not a costly endeavour to build a robot, doing

so without knowing whether the software will allow it to function yet could be a costly

endeavour, in comparison to building a virtual agent which can be experimented with

and rebuilt repeatedly. The main risk is that it is not fully understood how an AI will

decide to act in all situations, and safety critical situations require significant confidence

to be able to carry out tasks. Can confidence be built up in a robot that can, in theory,

decide to do anything? And if not, how can progress be made? Fortunately, real

world situations can be approximated through virtual worlds, and video games provide

exactly this abstraction. The goal of developing the dream AI certainly requires state

of the art hardware, but to a higher degree it requires software. Video games provide an

exciting, dynamic and infinitely adaptable research platform for testing and improving

AI software systems, while saving a significant amount of time and money.

As technology has improved, the ability for Video Games to act as an abstraction

of the real world has grown accordingly. Improved graphics, physics, sound quality,

lighting and much more have made virtual worlds much more realistic, closing the gap

with reality and helping the usability and reliability of simulations. Video Games,

now more than ever, represent a cost effective abstraction of the real world, and are
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regularly used as training exercises for demanding roles such as pilot, architect, military

and medical practitioners [2] [3] [4] [5].

Video games and AI have been intertwined concepts since their inception. The first

computer games required challenges to overcome, and the most readily available were

computer controlled obstacles and enemies. The two have evolved in tandem, with new

games requiring more sophisticated AI, and new AI techniques leading to exciting new

game play features to build more games around. Many games have sported advanced

AI as their strongest feature. An example of this is Black and White [6], which features

an entirely AI driven companion character that can be trained by the player, and

FEAR [7], which uses AI for advanced behavioural interactions between the player and

the characters in the world, became successful and were marketed as AI driven games.

Incorporating advanced AI in games makes them more engaging, and they have, in

turn, been an incubator for future AI research and ideas for experimental exploration,

as well as attracting more researchers to the field through their interest in games. The

games mentioned are solid examples of using AI to improve the experience of a game

for human players, but another area of research is to develop AI which themselves play

the game.

1.3 Game Playing Agents

There are generally two types of agents built for playing a game: purpose built or

general [8]. Developing AI agents for playing video games has become a method for

developing systems for working in specific situations, similarly to how humans train

by practising in simulators [5]. The purpose built agents have seen great strides in

capability through research and innovation. These agents are designed with the details

of the game in mind, taking advantage of human expertise in playing the game. This

has led to advancements in the area, but it has a number of limitations. First of all,

the agent is only capable of playing that particular game, and the skills it possesses

are typically not transferable to other situations. Knowing how to play chess does

not help when playing Tetris, and if the agent does learn to play Tetris it may forget

how to play chess [9]. Secondly, many games require long term strategies to win and
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an understanding of how to execute those strategies is required. This can often be

difficult or impossible to describe in code, and many games that have been extensively

researched, such as Pacman, still do not have good enough AI to beat human experts

[10]. General Video Game Playing (GVGP) agents are general purpose agents whose

goal is to play a wide variety of games. GVGP agents do not need to rely on a specific

strategy, or game, in order to perform well. It can reason about new games and make

rational decisions based on prior experiences, or analysis. Developing GVGP agents

is challenging, though, as games do not share a common interface for interacting with

their systems. Video games also come in a variety of shapes and sizes meaning that

any specific rule that may work for one game will likely not work for many others.

This problem led to the creation of several common platform for furthering research

into GVGP agents. The Arcade Learning Environment (ALE) [11], LUDII [12] and

the General Video Game AI (GVGAI) [13] framework and some examples of these

platforms.

This thesis focuses on the GVGAI framework for developing GVGP agents as at

the time of initial research it had the widest range of games available.

1.4 General Video Game AI Competition

The main interest in general game playing AI research is to develop an agent that

can solve a wide variety of problems, and so a framework with an associated online

competition was created known as the General Video Game AI competition (GVGAI)

[13] [14] [15]. The GVGAI is a framework that provides a common interface for a

library of over 100 games for AI research. This makes it a perfect place to build and

experiment with GVGP agents, particularly when combined with the competition, as

it allows comparison across the world’s best GVGP agents.

The most successful agents in this competition have been deliberative agents re-

lying on search techniques such as Monte Carlos Tree Search (MCTS) with the first

iteration of the competition being won by a MCTS modification known as Open Loop

Expectimax Tree Search (OLETS) [16]. These agents have been able to do particularly

well at certain games, but not all of them. If a game is relatively small and the scoring
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system of that game is well defined then these agents can do well, but many games

do not have these characteristics. As a result there are many games that OLETS and

other search based algorithms cannot reliably solve, or solve at all. Part of the problem

is that these agents tend to fixate on what they perceive as a positive outcome in the

short or medium term. Scoring high should always lead to a win condition, but what

if this assumption is not true? That single minded focus can be used to lead search

agents away from the overall objective, taking advantage of their bias. The heuristic

that a search agent uses can be altered, perhaps to be more exploratory, but it will still

be fixated on only one aspect of a game. It would be desirable to be able to combine

multiple heuristics, or entire algorithms, into a single agent in order to use each unique

point of view to make more informed decisions.

To that end, two approaches were considered for achieving this goal: portfolio

agents and ensemble decision systems. Both types of agents try to make use of multiple

algorithms to improve their performance, but they do so in different ways. The portfolio

system will try to find the ideal algorithm to use for the particular game, essentially

selecting one agent per game from its set of agents. By contrast the Ensemble Decision

System (EDS) tries to use all of its algorithms to make every decision. This is done

by allowing each algorithm to voice its opinion on every decision and then an arbiter

makes the final decision that seems to be best. This thesis will focus on developing one

of these types of agents, namely the EDS.

The EDS was chosen as the focus for this thesis for a number of reasons. Firstly,

the EDS has not yet been explored as a GVGAI agent, whereas there have been many

portfolio agents used in the GVGAI. Secondly, the EDS offers a greater degree of flex-

ibility than the portfolio agent. This flexibility is particularly useful in multi-threaded

environments where the EDS can truly shine. Lastly, the EDS agent is simpler and

does not require any game analysis to determine which algorithm to use, as it uses all

of them in all situations.

The main risk for the EDS is in the restrictions imposed by the GVGAI. As the rules

of the GVGAI competition state that agents should be single threaded, this removes a

significant benefit of the EDS. The portfolio system does not run into this problem, as
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it is only selecting a single algorithm to run at any time. While both types of agent

would benefit from multi-threading, it is a trivial task to convert an EDS into a multi-

threaded agent whereas a portfolio agent would likely need significant re-engineering

to optimise performance.

1.5 Motivations

AI is not just a dream of researchers, or a storytelling mechanism of media. It is a suite

of tools that can be leveraged to solve important problems that humanity faces. There

are situations where humans cannot easily enter, such as disaster areas or outer space,

which robots and AI could be the solution to. There are often situations where an AI

that would be capable of adapting to new situations would be beneficial, particularly

in fast, reactive situations or where human control is too slow to respond. The Rosetta

mission is an excellent example of a situation where an AGI could have improved the

results of the mission [17]. Originally launched in 2004 the probe took a journey of

10 years to land at its destination, the comet 67P/Churyumov-Gerasimenko. The fact

that it landed successfully is a testament to the success of this mission. Unfortunately,

the probe ran into problems and had to land in a shadowed area, from which it lost

power due to not receiving any solar energy. This situation could not be corrected by

the human controllers remotely, as the distance between the probe and Earth enforced

a 40 minute time lag on any commands being sent. If the probe had been able to

perform its own analysis and course correct itself based on this novel circumstance, it

may have been able to land itself in a better position, as it would have been able to

react quicker than the remote control.

So if that is the reason why AI is exciting, why video games? Video games repre-

sent a pinnacle of art and potential. With the story telling capability of novels, the

engagement of film, the emotion of music and the potential of play, they combine the

best of humanity’s artistic capabilities into a single media [18] [19]. The real world

is a vast and complex place in which it takes humans on average 18 years to raise a

functioning member of society, so how can we similarly raise an AI? As video games

have become more sophisticated and more akin to the human experience, they have
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become a perfect environment for developing and improving AI: a set of training wheels

for artificial intelligence [20]. The educational and societal impact of games cannot be

overstated, and now with the technology improving constantly, the ability to simulate

complex real world situations is becoming a reality. These virtual scenarios can come in

all shapes and sizes and can offer incremental challenges for a fledgling AI to overcome.

The potential of video games is waiting to be explored, and AI is just one area in which

this potential can be realised.

From a personal point of view, video games have contributed a tremendous amount

to my personal growth and recovery from long term illness. I have been fascinated with

how AI in games function since I was a kid and I have always wanted to know exactly

how it works, and to see how far it can go. I feel that video games are a perfect test

bed for pushing the limits of AI.

1.6 Contributions

The work presented in this thesis has focused primarily on developing a better AI agent

for playing video games, but more specifically General Video Game Playing (GVGP)

in which the agent has to be capable of playing a wider variety of video games. As

such, a lot of exploratory work was performed and some of those ideas were further

explored. To clarify exactly what has been done as part of this work, this section will

go into the areas where there have been contributions from the author.

1.6.1 Ensemble Decision Systems

The most significant contribution of this work is the Ensemble Decision System (EDS)

for GVGP. The idea of an EDS itself is not novel, though its application within the

GVGP domain is. The exploration of different EDS architectures and parameters forms

a significant part of the work carried out in this thesis.

This work involved the development and testing of a variety of different EDSs to

verify their suitability as GVGP agents, as well as an in-depth comparison to other

agents. To that end, all of the EDS agents in this thesis were created by the thesis
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author.

1.6.2 Deceptive Games

The concept of deceptive games, as it relates to General Video Game Playing, is in-

troduced and developed as part of this thesis. Deceptive games are games designed

deliberately to deceive AI agents. Different types of deceptions are introduced, and

a suite of games which features those deceptions has been built and made available

for researchers to make use of. Two separate sets of experiments have been carried

out with these games, one looking at search based agents [21] and another looking at

learning based agents [22].

This work involved creating a number of games for the GVGAI framework and

performing experiments with them on a large selection of GVGAI agents. This work

was done in collaboration with the Game Innovation Lab at New York University

led by Professor Julian Togelius. The author of this thesis did the majority of the

work for deceptive games along with Dr Matthew Stephenson. This work has been

published in two papers entitled Deceptive Games, which can be found in appendix A,

and Superstition in the Network: Deep Reinforcement Learning Plays Deceptive Games

which can be found in appendix C.

I contributed the initial idea of deceptive games within the GVGAI and later ex-

plored this further with the Game Innovation Lab. I then went on to build a variety of

deceptive games for the GVGAI, and then we found and identified the different types of

deception that had been created. I set up and ran the experiments to test our hypoth-

esis, and then analysed the results along with the other authors. The learning agents

were tested by Philip Bontrager from the Game Innovation Lab. The games Invest and

Flower were implemented by Dr Matthew Stephenson. All other deceptive games were

implemented by myself.

1.6.3 Continuous Information Gain

To determine which games were the most interesting to experiment with, a new in-

formation gain centric approach has been developed. There are thousands of games
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available to test on, though many are similar to others or feature identical gameplay

mechanics. In GVGP the selection of games is a very important factor, as it should

be varied enough to showcase a diverse range of games. To this end, the continuous

information gain method seeks to find which problems, from a larger set of problems,

provide the most information about the agents tackling them.

This work involved running a large amount of experiments involving over half of

all the GVGAI agents and the entire GVGAI games library that was available at the

time. This work was done in collaboration with the Game Innovation Lab at New York

University led by Professor Julian Togelius, with significant input from Dr. Christoph

Salge. This work has been published on Arxiv under the title A continuous information

gain measure to find the most discriminatory problems for AI benchmarking which can

be found in appendix B.

The original idea of continuous information gain was proposed by Professor Julian

Togelius and refined through collaborative discussion. I designed and conducted the

original experiments and investigation along with Dr Matthew Stephenson. The final

formula was contributed by Dr Christoph Salge and the implementation of this was

done by Dr Matthew Stephenson and myself.

1.7 Thesis Statement

This thesis explores the use of Ensemble Decision Systems in creating GVGP agents and

analyses their performance with a rigorously selected suite of GVGAI games. Multiple

variations of Ensemble Decision Systems have been created for this work and have been

tested against a variety of GVGAI games, comparing with both provided sample agents

and top performing competition agents.

The hypothesis is that implementing a GVGP agent with an EDS makes the agent

more general by allowing it to complete a broader range of games. An additional ad-

vantage of the EDS is that it provides a framework for easily modifying or adding

behaviour. To this end, this work explores how the performance of monolithic agents

that have been used as a component of an EDS changes in terms of competition metrics

and generality. Further to this hypothesis, the EDS is also compared with successful

9



Chapter 1. Introduction

Portfolio agents, to determine if the level of performance seen from an EDS is compa-

rable to the currently top performing GVGP agents, and to determine if an EDS is a

suitable means for expanding the capabilities of an existing agent.

1.8 Thesis Structure

The remainder of this thesis is structured as follows.

Chapter 2 provides a review of the current literature on the relevant research fields,

and fills in the context in which this thesis fits. This chapter provides an overview

of the work that has been carried out in the General Video Game Playing field. In

particular, it covers the game playing agents and their capabilities.

Chapter 3 details the concept of deceptive games, outlines the different types of

deception and goes into detail about each of the games that were created as experiments

for the remainder of the work. The concept of deception has been an important part

of game AI research, as it can often be used as a tool for challenging AI and fostering

improvements.

Chapter 4 discusses the continuous information gain algorithm and describes each

of the games that were selected via this technique, as well as describing some additional

games that were added to the set of games for experiments. One of the biggest issues

with developing AGI is selecting a set of problems that are varied and comprehensive of

all typologies. Continuous information gain is a technique that tries to use a principled

approach for selecting problems that are different from each other, based on how agents

have performed on them in the past.

Chapter 5 describes the concept of EDSs and goes into detail about the architecture

of these systems, and the variations that were developed for this thesis. The consid-

erations that go into developing an EDS are also explained here, though it should be

noted that most of these considerations are specific to the problem area of GVGP.

Chapter 6 describes the experimental setup for the experiments performed and

discusses the results obtained. Details for the reproduction of the results of each exper-

iment are also provided. This chapter also outlines the timeline of this thesis, from the

initial proof of concept EDS, through to deceptive games and continuous information
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gain, and finally to the final EDS system.

Chapter 7 discusses the potential avenues for future research, including additional

architecture that could be explored going forward. The conclusions that were reached

through this work are also discussed here.

1.9 Publications

Throughout the course of this work several papers have been published. The list of

papers associated with this work are as follows:

• Deceptive Games [21]

• ”Superstition” in the Network: Deep Reinforcement Learning Plays Deceptive

Games [22]

• Ensemble Decision Systems for General Video Game Playing [23]

• A Continuous Information Gain measure to find the most discriminatory problems

for AI benchmarking [24]

The contributions of the author can be found in section 1.6.
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Literature Review

This chapter describes the context in which the work presented in this thesis fits into

the research field. The first section explores related work within the area, where it

originated from and how it has developed over the years. The second section examines

the various algorithms that have been developed and discusses their effectiveness. The

final part looks specifically at where the work featured in this thesis fits within the

related work.

2.1 Selective History of Artificial Intelligence

The idea of general problem-solving AI has been the ultimate goal of AI since its

inception. The vision of AI solving problems that, perhaps, humans do not know how

to solve is enticing and exciting. Due to the difficulty in this task, however, steps

towards this goal have been focused on tackling individual problems which are more

clearly understood such as Chess [25], and more recently, Go [26].

At this point, it is essential to define what is meant by the term AI. Russell and

Norvig define AI as ”the designing and building of intelligent agents that receive per-

cepts from the environment and take actions that affect that environment” [8]. The

term AI is often conflated with ideas from Science Fiction, where AI has achieved sen-

tience and determined that humans are a danger, or in Video Games where AI is the

term used to describe believable interactive agents which do not necessarily use AI
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techniques. The definition by Russell and Norvig focuses neatly on what AI is, and

encompasses the field from character recognition to general problem-solving.

The history of AI is considered to have begun in the 1950s and was formalised as an

academic field in 1956 [8]. The first landmark paper in this field was the formalisation

of the Turing test in 1950 by Alan Turing, which defines a test for a machine to be

considered intelligent, which is ”can a machine trick a human through conversation

into thinking that it is another human?” [27]. The next year would then start to see

the beginning of the collaboration between games and AI with the development of an

agent that was capable of challenging amateur checkers players [28]. This was the

period where many of the foundations of modern advances in AI were set in place: for

example techniques such as neural networks were originally defined in this period [29]

but would go dormant for many decades waiting for the physical hardware of computers

to catch up.

The victory of Deep Blue against Kasparov in 1997 led to a resurgence of interest

in the AI field [25]. The televised Chess matches between Deep Blue and Kasparov

were the first publicised instances of a computer defeating a human expert at a board

game. Deep Blue made use of extensive domain knowledge of the game of Chess, and

purpose built hardware in order to achieve this victory. This brought the dream of AI

into the public domain, and showed the potential that the field could have, not just for

games but for other applications.

In broad terms, AI can be broken down into two categories: Reactive and Deliber-

ative. Reactive AI agents have either learned a policy to apply to the current game or

use a rules-based system to decide what action to take, such as ”when being attacked

run away from the attacker”. They do not make decisions which take into account

future states; they react to the current state in a manner determined by their system.

Examples of reactive agents would be either Machine Learning (ML) agents, which have

developed a policy to follow based on their learned experience, or rules-based agents

which use a decision tree to prescribe what action to take in certain defined scenarios.

On the other hand, Deliberative systems attempt to reason about their current situ-

ation, potentially by analysing future states from the current one and taking actions
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based on that information. Search based agents typically fall into this category. Search

agents intuitively seem to be the more rational approach; however, some issues limit

their capabilities: most problems are vast, and to perform a search through all of the

possibilities that may exist takes a massive amount of time; not to mention that storing

the results of the search to be analysed also requires a large amount of memory. The

main challenge that search faces is to improve efficiency, in order to allow it to search

further into the future of possibilities.

Search encompasses a wide range of algorithms which focus on systematically and

deliberatively analysing the consequences of actions being taken. When given a game

to evaluate, the search algorithm looks at the state of the world and simulates what will

happen when all possible actions are taken in the game, ideally until an end game state

is reached. This process is typically repeated multiple times to build up confidence in

the results that have been found. This approach is ideal when there is enough time

given to an AI in order to perform the search, which in larger games is not always the

case. Figure 2.1 gives an example of how a search algorithm operates within a basic

game world.

The learning based approaches focus on attempting to use the rules of the game to

learn a set of rules, known as a policy, for playing. In the case of a deterministic game,

when given a game state S then the policy dictates that action A is the correct response.

For non-deterministic games, because the next state is not known, a probability can

be returned instead. This policy is traditionally learned through experience, and while

there are a number of different approaches to learning, the general concept of experience

remains the same. This is achieved by rewarding the agent when it makes ”good” moves,

and punishing it when ”bad” moves are taken. Learned policies can make decisions

extremely quickly, once a suitable policy has been developed, but it can take a lot of

time in order to learn the policy in the first place before becoming useful. Figure 2.2

illustrates a training iteration for a learning algorithm.

A popular avenue for exploring the edges of AI research has been online AI com-

petitions, which have ranged from posing specific games as challenges, to general game

playing, which looks at the ability for AI to play a wider variety of games. The Super
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Figure 2.1: Search Example: The algorithm looks at the current state and simulates
future states. The yellow square represents the current position of the agent, and the
green square represents a goal square.

Figure 2.2: Learning Example: The algorithm plays the game repeatedly and builds
up a policy for how to play it. This policy will then be applied to similar states in the
future. Image courtesy of Chiara Diritti.
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Mario AI competition, which began in 2009, was recently relaunched for a 10th anniver-

sary edition, which goes some way to show not only the relevance of these competitions

but also the challenge that they pose [30] [31]. Likewise, the Starcraft AI competition

has been active since 2010 and remains a highly energetic and challenging problem for

AI researchers [32]. Both the Super Mario and Starcraft competitions ask the same

question: can AI play these games to an expert level? But the games are so different

from one another that they represent entirely different problems. Super Mario is a

single player platformer which requires players to safely navigate their way through a

level to reach a finish line, whereas Starcraft is a multiplayer Real Time Strategy (RTS)

game which requires the micromanagement of hundreds of independent units, resource

management and strategic overview.

2.1.1 General Game Playing

Since 2005, with the advancement of techniques and technology, general problem solving

is an area that can be more thoroughly explored within academia and industry. The

General Game Playing (GGP) competition began in 2005 by the Stanford Logic Group

of Stanford University and seeks to find AI which can play a wide variety of board

games [33]. This competition uses board games as a platform for research and offers

one of the first examples of AI which are capable of solving multiple problems. When

this field of research was first proposed, the general intuition was that machine learning

would prove to be the most effective tool for progress towards a fully functional AGI,

and a lot of advancement was made in this direction. Work carried out by Asgharbeygi

et al. introduces the concept of using a relational temporal difference learning agent in

multiplayer general game playing [34]. Banerjee et al. built upon that work to develop

an agent capable of transfer learning in the GGP environment, taking the knowledge

it had gained from one game and applying it to a second [35]. While learning agents

have seen success with some aspects of the competition, it was still not clear if these

agents would be able to solve every game. The GGP area has also turned out to be an

excellent research area for search-based algorithms, leading to a strong push in research

towards methods taking advantage of the Monte Carlo Tree Search (MCTS) algorithm.
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In general board games provide a large amount of deliberation time, as players

typically take turns playing the game. Players are able to deliberate about each decision

for minutes at a time, as opposed to real life situations where often a decision must be

made quickly. This long deliberation time allows a search based solution to perform

exceptionally well, as it has the time to analyse states which are further into the future.

The further that a search algorithm can see, the better the results it produces can

potentially be, as its decision is more informed. For these reasons, learning algorithms

have typically fallen behind in performance compared to search algorithms which have

the added bonus of not needing to learn how to play the game beforehand. As such,

many board games can be defined as ”turn-based, zero-sum, deterministic games” which

are ideally suited for search-based solutions, and particularly MCTS. MCTS also has

the advantage that it can function without an explicit evaluation function, which many

other search algorithms need, instead relying on random rollouts. Because it is not

performing a full analysis of all permutations of a game, MCTS is able to reach the

end states of games and find out who won. Simply through this, it is able to develop

an indication of how good an action is by how often that action leads to a winning

state. The evaluation function essentially comes as part of the MCTS package. A more

detailed explanation of the workings of MCTS is provided later in section 2.2.1.1.

The continuing value of the GGP field is discussed further in work by Michael

Thielscher who looked at the history of the GGP competition, and why it has endured

as an exciting research area [36].

The next natural progression from GGP was to take the findings and apply them

to real-time situations. Video Games offer an excellent platform for performing such

experiments, as well as being able to simulate a wider range of real-world scenarios

than board games.

2.1.2 General Video Game Playing

The area of General Video Game Playing (GVGP) was first proposed in 2013 as a

natural extension to the GGP area [13]. Whilst board games offer an excellent variety

of different types of problems, they rarely present real-time decision-making scenarios,
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which is precisely the challenge offered by video games. In many video games, an agent

does not have a lot of time to deliberate about taking an action and has to correctly

react to an evolving scenario, much like many real-world situations. Agents competing

in a video game competition are not given the time to thoroughly analyse the state of

the game, and often need to react within milliseconds to an evolving situation.

One of the main challenges before embarking on GVGP work, however, was to

develop a platform that would allow AI to be developed for a wide range of games

quickly and easily. Earlier work developing the Arcade Learning Environment (ALE)

offers a wide range of Atari 2600 games for researchers to develop AI for, but adding

new games to the ALE would be particularly challenging as the games would need to

be coded from scratch [11]. A new platform was proposed and developed, based on

the creation of a Video Game Description Language (VGDL) that could quickly and

easily formulate a video game [14]. The VGDL is a simple language which allows a

game to be defined with a text file description of both the rules for the game, defined

as interactions between objects within the world and a level which is an almost ASCII

art style representation. The VGDL makes research into GVGP possible, as it provides

a simple, generic language that can be used to describe a large variety of games, which

is exactly what the GVGP requires.

2.1.3 General Video Game AI Competition

The General Video Game AI competition (GVGAI) is an annual competition, which

began in 2014, that focuses on encouraging the development of GVGP agents [15]. One

of the main problems that general AI research competitions have run into has been

that researchers are often prone to relying on domain-specific knowledge for progress.

The GVGAI framework and competition aims to combat this problem by making it

detrimental to focus on a specific game’s rules or even a genre of game [16]. The game

that is being played is unknown to both the agent playing it and the agent designers.

In order to maintain this requirement, each year the competition is run against newly

introduced games that are not currently a part of the GVGAI library of games.

The competition has a framework which gives agents a standard Application Pro-
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gramming Interface (API) for interacting with a library of, at the time of writing, 122

games. Along with these games, the competition framework provides a VGDL with

which new games can be added to the library quickly and easily in comparison to other

game design processes [14]. The VGDL allows the creation of new games through a

simple language that only requires a text file description of a level, and a series of rules

that defines how objects in the game interact. Each year, when the competition is

officially run, ten games are selected, or created, to test the submitted agents. The

games that the agents will play are unknown both to the developers and to the agents

that are currently playing them. The focus is on developing a general agent that does

not bias towards performing well on any particular type of game. Each game has 5

different maps, and each is played five times for a total of 25 runs per game.

Figure 2.3: A level of Aliens alongside its VGDL representation. There are slight
differences between the representations due to time passing in the real game, namely
the position of the avatar and the aliens.

The competition also offers a variety of tracks which focus on different areas of

AI research. Video Game playing agent research focuses on the planning and learn-

ing tracks, whereas content generation work is carried out through the level and rule

generation tracks [37] [38]. The planning track gives agents a forward model, which is

used to simulate future states of a game but does not provide any training time for the

agent. Due to the forward model, this track focuses more on search-based algorithms,

such as Monte Carlo Tree Search (MCTS) or Rolling Horizon Evolutionary Algorithm

(RHEA). The planning track has 2 variations, the single player track and the two player

track, which features a variety of multiplayer games, both competitive and coopera-

tive [39] [40]. The single player learning track differs from the planning track in that it

does not offer a forward model, but does give agents the opportunity to train a policy
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before official evaluation, which participants are required to use before submission to

the competition [41]. Due to the lack of forward model, the games that agents will be

evaluated on are published in advance, and developers are given a few levels of each

game to train with. The learning track offers both visual and state information to

agents, and has access to the same library of games as the planning tracks, though it

has a different API in order to allow the agents to select new levels of the game they

are playing during testing. When the competition is officially ran, the agents are all

tested against an undisclosed level of each game. In 2018 the learning track was ported

into the OpenAI Gym framework by Torrado et al. in order to simplify the creation of

new agents and also to develop a better understanding of how challenging the problems

presented by the GVGAI are compared to other problems, such as the Arcade Learning

Environment [42].

Along with the specifications of the tracks, there are also some general rules that

govern the behaviour of the agents to be eligible for the competition. All agents must

return each decision within 40ms, or risk disqualification. If a move is returned between

40 − 50ms then a nil action is carried out, voiding the agent’s choice. If the delay is

longer, then the agent is disqualified from that iteration. Agents are not allowed to

use multi-threading as part of their algorithms. These two rules must be taken into

consideration when designing an agent, particularly for multi-algorithm systems which

have to divide the time up between the algorithms. Multi-algorithm systems have seen

a great deal of success each year of the competition, and across multiple tracks [16].

Table 2.1 shows the winners of each iteration of the planning track competitions, single

and two player, as well as the type of agent that they were.

With the wide variety of tracks available, research that makes use of the GVGAI

ranges from game playing AI to AI for developing/co-creation of games. In the area

of game playing agents a number of exciting innovations have appeared, and they are

described in the following section.
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Table 2.1: Full list of previous GVGAI planning track winners

Contest Leg Winner Type

CIG-14 OLETS Tree Search

GECCO-15 YOLOBOT Hyper Heuristic

CIG-15 Return42 Hyper Heuristic

CEEC-15 YBCriber Hybrid

GECCO-16 YOLOBOT Hyper Heuristic

CIG-16 MaastCTS2 Tree Search

WCCI-16 (2P) ToVo2 Hybrid

CIG-16 (2P) Number27 Hybrid

GECCO-17 YOLOBOT Hyper Heuristic

CEC-17 (2P) ToVo2 Hybrid

WCCI-18 (1P) YOLOBOT Hyper Heuristic

FDG-18 (2P) OLETS Tree Search

2.2 GVGAI Agents

This section describes the various agents that were investigated as part of this work.

Starting off with the search agents that are commonly used for the planning track of the

GVGAI competition, and then moving on to some of the machine learning algorithms

that have been developed for the GVGAI competition.

2.2.1 Tree-Based Search Agents

Search algorithms are a family of algorithms which are able to simulate future states of

a given problem in order to reason about them. The more accurate their simulations

are, the better they will perform. Similarly, the longer than a search algorithm is able

to perform its analysis, the better it will perform.

This section describes some of the different search algorithms that have been used

as agents for the GVGAI.

2.2.1.1 Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS) has featured in a large number of agents submitted

to the GVGAI, as it encompasses a number of desirable features [43]. MCTS allows
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real-time decision making, is able to cope with stochastic environments, can return a

decision at any time, if necessary, and is able to improve its performance the longer it

runs.

Monte Carlo techniques were originally developed in the 1940s, as a method of

search using random sampling. The Monte Carlo method was first introduced in work

by Metropolis and Ulan in 1949 [44]. This work was expanded upon in the 1980s by

Bruce Abramson in his PhD thesis titled ”The Expected-outcome Model of Two-player

Games” [45]. The conclusion of Abramson’s work was that ”Overall, the expected-

outcome model of two-player games is shown to be precise, accurate, easily estimable,

efficiently calculable, and domain-independent.” The idea of MCTS is that the more

random samples that it can do, the more accurate the results of the search. In essence,

if an MCTS is able to perform a large number of random samples, then it will build

an accurate picture of the overall search space, as the more common events are more

likely to be observed in a random sample. If enough random samples are run, then the

entire search space can be observed.

SimulationExpansionSelection  Backprop.

Figure 2.4: MCTS Visualization. This image shows the four steps of the MCTS algo-
rithm, Selection, Expansion, Simulation and Backpropagation.

The MCTS algorithm iterates through four stages during execution as shown in

figure 2.4:

1. Selection: A selection function is applied to the current tree in order to find the

next node to analyse.

2. Expansion: The selected node is expanded, and its children are added to the tree.

3. Simulation: A rollout is performed using random steps until a terminal node is

reached in the tree.
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4. Backpropagation: The results of the simulation step are propagated back up to

the root node of the tree.

MCTS is no longer a single static algorithm, but actually represents a collection

of algorithms and modifications to the original stages of the algorithm. The selection

stage involves selecting which node of the current tree to perform the next rollout

from. A popular option for this stage is to use an Upper Confidence Bound for Trees

(UCT) approach, which attempts to balance the value of exploiting the currently gained

knowledge versus exploring new states. The UCT algorithm is based off of the Upper

Confidence Bounds formula first proposed by Hyeong Soo Chung et al. which uses the

formula as a way of selecting the next action to take by selecting the action with the

highest UCB value. The UCB formula is shown in formula 2.1 where wi is the number

of wins for move i, ni is the number of samples for i, C is a constant which determines

to what degree the second portion of the formula is included and t is the total number

of samples.

wi

ni
+ C ∗

√
logt

ni
(2.1)

One of the issues with UCB is that it requires the agent to be able to win a game.

In games with large search spaces, this can often be computationally difficult to carry

out in an usable time scale, particularly for Video Games which typically require faster

reaction times than board games. Upper Confidence Bounds for Trees (UCT) is an

adaptation of the UCB formula, first proposed by Kocsis and Szepesvri, which makes

use of a state’s value for the calculation instead of number of wins [46]. The UCT

formula is shown in formula 2.2 where Vi represents the estimated value of a node, C

is a constant which assigns a weighting to the exploration component. ni refers to the

number of times that the node has been selected, and N is the total number of visits

that the parent node has.

Vi = C ∗
√

lnN

ni
(2.2)

The expansion stage involves adding a new child to tree, which is reached by taking
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an action from a previous state. Essentially, if the node selected by the UCT function

is not a terminal node, then it expands that node with a new child representing the

possible next states from that selected node.

The simulation stage is where the game state is actually evaluated. A random

series of steps are played out until a terminal node is reached, or until a defined depth,

in games which are too long to explore fully. It is important that each rollout can

be performed quickly, as the power of MCTS comes from running a high number of

rollouts. A simple version of a rollout will only take into account whether a game has

been won or lost, denoted as 1 or −1 respectively, but in certain cases this does not

capture all of the desired information, especially in a setting such as GVGP. Particularly

for longer games, more sophisticated evaluation functions can be used.

2.2.1.2 MCTS Variations

MCTS agents have found success in the GGP field and have been a natural start-

ing place for developing planning agents for the GVGAI competition [33] [47] [48].

MCTS has a great deal of flexibility in how it can be implemented, and there has been

significant research into these variations through the competition. In work done by

Schuster, various modifications and alterations of MCTS were analysed to look at their

performance in GVGP, concluding that while some variations do see improvements in

performance, it is not seen across all games [49].

A number of papers have investigated the effect of MCTS variations as they pertain

to GVGP specifically. Soemers et al. look at multiple variations of the MCTS algorithm:

Progressive History (PH) and n-Gram Selection Technique (NST) (for the selection

and roll-out policies), tree re-use, breadth-first tree initialisation, pre-pruning the tree

safely, loss avoidance, novelty pruning, knowledge based evaluation and game feature

detection [50]. Tree re-use is a variation which begins each new search with the tree

already initialised from the previous search, making use of previously gained knowledge

instead of starting from scratch. Breadth-first tree initialisation does not start off by

using the MCTS algorithm immediately, instead opting to explore the children of the

root node first in breadth-first order. This intuitively makes sense as the first iterations
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of MCTS would simply explore those actions, but takes longer due to rollouts. Safely

pre-pruning the tree essentially prunes any nodes on the tree that have seen a high

number of losses from further evaluations. Loss avoidance is a variation which ignores

losing states once they are first encountered, by assuming that the agent will select a

better alternative than losing. Novelty Pruning tries to retain states that may have rare

features from being pruned, as they may lead to more beneficial states. Knowledge based

evaluation looks at evolving a set of weights to bias the MCTS simulations differently

on a per game basis. The idea of the fast knowledge based variation of MCTS was

originally proposed by Perez et al. [51]. Finally, Soemers et al. look at Game Feature

Detection to look specifically at detecting whether a game is deterministic or stochastic.

Soemers et al. built these variations on top of the provided sampleMCTS agent and

found that for the most part performance was improved, and that the combination of

all of these features into a single agent managed to improve the average win rate by 17

percent points. This all in one agent is named MaastCTS and was the winner of the

2016 planning track competition.

Another set of variations was tested by Frydenberg et al. in their work in 2015 [48].

The variations were aimed at adjusting the behaviour of the agent in the GVGP games,

noting that in certain situations the agent would behave oddly. First, a modification of

the exploitation component of the UCB calculation was implemented, called MixMax

Backups. The modified formula can be seen in formula 2.3.

Q ∗maxScore + (1−Q) ∗Xj (2.3)

This formula forces the agent to behave less ”defensively”, by allowing a good action

to contribute more to the average weight of a node. MCTS often tends to act defensively,

as noted in the Super Mario AI competition when it was observed that MCTS agents

would often have difficulty leaping over gaps because the vast majority of rollouts show

that the agent will fall in the gap and lose [52]. Macro Actions were also investigated by

Frydenberg et al. Macro Actions try to maximise the amount of search that the MCTS

algorithm is allowed by deferring the action selection process for a few time steps.

Essentially, the agent would repeat the last action taken for n steps, allowing the agent
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to search for n steps before returning its next action. Partial Expansion and a Reversal

Penalty were the final variations to be explored, with Partial Expansion attempting

to explore deeper in the tree by allowing the grandchildren of a node to be explored

before all children are considered explored, sacrificing exploration time. The Reversal

Penalty variation applies a small penalty to any actions that would take the agent

back to the previous state that they were in. These variations, particularly MixMax,

Reversal Penalty and Partial Expansion, did show improvements in some games of the

GVGAI, though they did not improve performance in all of the games tested.

2.2.1.3 Fast Knowledge Based MCTS

Work carried out by Perez et al. introduced the fast knowledge based MCTS (KB-

MCTS) variation [51]. KB-MCTS employs two modifications to improve performance,

which focus on biasing the MCTS rollouts. First, the agent stores distances to a variety

of different sprites in each game and uses those distances as features. These features

are used in a linear combination, with the weights evolving to bias the MCTS rollouts

to more beneficial states for the agent. Secondly, the agent stores a knowledge base

which is used to keep track of how ”interesting” the different sprites are to the agent.

Interesting sprites are defined by the rarity of sprites, as in how often they have been

seen with unknown sprites being biased towards, and experience where the previous

encounters are used to dictate the behaviour of the agent, such as moving away from

hostile sprites and towards beneficial sprites.

2.2.1.4 Self-Adaptive MCTS

An interesting approach to improving the performance of MCTS was to adapt the tun-

able parameters of the algorithm during game play [53]. The self adapting MCTS algo-

rithm makes use of evolutionary algorithms to alter the rollout depth and exploration

factor based on the performance of the game being played. This approach managed

to improve the results of MCTS for games where the base algorithm did poorly, while

retaining performance on games it was already successful at. In a follow up study to

access the impact of this algorithm, it was shown that the online parameters tuning is
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effective in only a few games, and in particular those with longer analysis times [54].

In general, the algorithm struggles to improve performance across all of the GVGAI

games.

2.2.1.5 Redundant Action Avoidance

Santos et al. introduced two techniques for further biasing MCTS rollouts, known as

Redundant Action Avoidance (RAA) and Non-Defeat Policy (NDP) [55]. The RAA

variation attempts to ignore sequences of actions that are considered redundant by

analysing state information. If the state remains largely unchanged by a sequence of

actions, then that sequence is avoided. Redundant states refer to states where position,

orientation or properties have not altered and no new sprites have been introduced.

NDP essentially tries to avoid losing states. It does this by ignoring any child nodes

in the search tree that have seen at least 1 loss. If all the children of the current

node have seen at least one loss, then the normal selection policy is applied. In their

results, both of these modifications show performance improvements in some of the

games of the GVGAI, but not all of them. In particular, games such as Digdug, Escape,

Lemmings and Roguelike show no improvements, though it is worth pointing out that

the modifications were not targeted at these particular games.

2.2.1.6 Evolving UCB Parameters

The UCB algorithm is the driving force behind MCTS, as it dictates which state to

look at next. In work done by Bravi et al. an agent was built which was able to

adjust the UCB calculation for specific games, in essence creating a UCB calculation

for each game that it plays [56]. The agent uses a combination of MCTS and evolution

to develop a UCB function for each game, which attempts to take advantage of the

characteristics of each game, effectively creating a separate tree policy for each game.

While the performance of this agent was poor, with none of the evolved tree policies

performing better than standard UCB, the results show that the tree policy plays an

important role in the performance of MCTS.
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2.2.1.7 Open Loop Expectimax Tree Search (OLETS)

OLETS is based on the Hierarchical Open-Loop Optimistic Planning (HOLOP) which

has been improved to perform better in stochastic environments [15]. OLETS was the

first winner of the GVGAI competition, with an agent implemented by Couetoux [16].

The key features of this agent are that it is open loop, meaning that it doesn’t store

state information at each node of the tree, and also does not use rollouts. Instead, it

uses an Open Loop Expectimax tree policy to compute the value of nodes. An expecti-

max policy works similarly to a minmax tree search and is used whenever the results of

an action are not clear, for example in solitaire, the next card to be drawn is not known.

Instead of representing min nodes as adversarial moves, they represent the probability

of an action leading to a particular state and calculates the estimated utility of taking

that action [57].

While tree search algorithms are a powerful, useful tool, they have a number of

drawbacks which should be taken into consideration. First of all, in situations where

time constraints must be met, search algorithms generally will not be able to fully

analyse all possible states and must make decisions based on an incomplete analysis.

This creates a horizon effect, where a search agent is not able to see beyond a number

of steps into the future due to making a decision and essentially aborting the current

search. Secondly, while they do tend to become stronger players when given more

time to analyse, it can often take a substantial amount of time in order to produce

competence. A tree search algorithm also does not typically store information relating

to previous searches, meaning that it can ”forget” useful strategies that it had developed

in a previous iteration [58].

2.2.2 Evolutionary Search Agents

Evolutionary agents represents agents which make use of evolutionary techniques to

perform their analysis. Evolutionary techniques typically begin with several random,

usually poor, solutions to a problem, which are iteratively altered in small increments

towards a better solution. This section provides an overview of some of the agents that
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have been developed, and how they function.

2.2.2.1 Rolling Horizon Evolutionary Algorithm (RHEA)

An effective alternative to tree search is the Rolling Horizon Evolutionary Algorithm

(RHEA) which performs a similar analysis but uses the evolutionary technique instead

of rollouts [59].

In contrast to MCTS, RHEA evolves a plan of a defined length, using standard

evolutionary techniques, and evaluates the state after executing the plan. Once analysis

is complete, the first step in the plan is executed, and the process begins anew. During

each iteration, a population of plans may be kept and used to crossover successful pairs

to form new individuals. This behaviour also ensures that the length of the plan is

never shorter than the defined plan length.

RHEA has a number of parameters that can be tuned, as well a number of modi-

fications to its behaviour that can affect performance [60]. The length of plan can be

altered to suits the needs of specific problems, as well as the mutation and crossover

rates.

Despite relying less on tree search for its performance, RHEA is able to perform to

a similar level as MCTS and even outperforming it in certain situations [59]. As a com-

petitive algorithm in the GVGAI, there has been great interest in finding improvements

and modifications to the algorithm to increase performance [16] [60].

2.2.3 RHEA Variations

Modifications to the algorithm have typically focused on improving the evolutionary

process, which can be broken down into four components which are listed as follows.

1. Mutation Operator

2. Population Management

3. Action Recommendation Policy

4. Individual Evaluation
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An interesting modification of the mutation operator has been to apply a bandit

mechanism. Rather than selecting uniformly across the individual for which gene to

modify, a bandit algorithm was used to decide which is the best gene to modify with

the given state [61].

An analysis into different seeding techniques for the initial population of RHEA was

performed by Gaina et al. [62]. Their work looked at seeding the initial population with

more promising individuals by using a variety of techniques to create the individuals.

One Step Look Ahead (OSLA) and MCTS were used as ways to finding the promising

individuals, and resulted in improved victory rates when the population size and the

length of the individuals were small, and losing impact as the sizes increase.

Santos et al. investigated the performance of three different RHEA variations of

the shift buffer version of RHEA [63]. The shift buffer is a method for maximising the

information gain, by retaining the generated path and removing the selection action

and appending a random action to the end of the path. The three modifications were

(i) using a one step look ahead algorithm after the shift buffer step to select a more

promising action; (ii) using the RAA from their previous work in MCTS [55], and

finally (iii) applying both the RAA and OSLA to the sampleRHEA agent. The results

gathered show that the third variation, which makes use of both the RAA and OSLA

achieved promising results over the sampleRHEA agent.

2.2.3.1 Random Search

Random Search (RS) works in a very similar way to RHEA algorithms, but instead of

evolving an individual to develop new plans, it randomly generates the individuals at

each iteration. RS also has an infinite population size, where as RHEA has a single plan

which is evolved [60]. RS is able to achieve better performance on some games compared

to RHEA, and was also shown in work by Gaina et al. to be able to outperform the

sample Open Loop MCTS algorithm in certain configurations.
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2.2.4 Genetic Programming

A different type of evolutionary agent developed for GVGAP which makes use of Ge-

netic Programming (GP) was developed by Jia et al. [64] [65]. This agent uses screen

captures of the game in progress to pull out useful features, such as the position of the

avatar and the distance to other sprites in the map. Those features are input into a GP

system, which functions as a tree of arithmetic operations, to determine which action

should be taken. The results that were achieved with this agent were of a similar level

to MCTS algorithms.

2.2.5 GVGAI Research and Specific Agents

This section will look at how some of the agents that have been submitted to the GVGAI

function. In particular, the details of the agents which are used for the experiments in

this thesis are detailed.

2.2.5.1 Agent Robustness

The GVGAI has seen a large variety of agents submitted to the competition, and a

number of new research questions have come up with the exploration of this research

space. Of particular interest has been the work looking at the robustness of GVGP

agents [66]. This work looked at how agents dealt with various issues such as inaccu-

rate forward models and randomly allocated actions. The experiments from this work

looked at a number of modifications to the GVGAI itself, and measured the amount

of performance variance across a set of agents. The alterations experimented with in-

cluded reward penalisation, discounted reward, noisy world, broken world and finally

a broken forward model.

Reward penalisation applies a simple −1 penalty for every action that they take.

This is a simple modification that tries to penalise agents which take too long to

complete a game. Discounted reward applies a discount factor to the score seen in

future states, with the discount being more significant the deeper down the state. This

modification artificially reduces the value of states that are far in the future. The Noisy

World alteration applies a random action instead of the agent’s desired action with a
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probability ( p), which was to set to 25%. Importantly, the noisy world alteration

applies this change to both the game world and the forward model so that the agent

is able to observe that they have not taken the desired action. Essentially each agent

will perform a random action every 4th action, and be aware of the action. The broken

world alteration is similar to the noisy world, except that the forward model does not

observe the random actions. Finally, the broken forward model is again similar to

noisy world except that the desired action is always executed in the real game, but a

random action is observed in the forward model. One of the main points that came out

from this work was how the different agents were able to deal with these modifications:

they have a dramatic impact on the ranking of the agents who had previously won at

different legs of the competition.

2.2.5.2 Portfolio Agents

An interesting type of successful agents in the GVGAI competition are portfolio agents

[67] [68] [16]. Their success can be seen in their presence among the competition

winners, as shown previously in table 2.1. Portfolio agents such as hyper-heuristic

and hybrid algorithm agents have been the main winners of the competition, with the

exceptions of the first competition, won by an OLETS agent named Adrienctx [15] and

the 2018 two player track by another OLETS agent [40]. Of these winners, YOLOBOT

stands out as the victor of the competition four times. These agents are quite similar

in idea to an EDS but instead of combining the outputs of different algorithms, they

typically analyse the game and try to apply the best algorithm for that game. Some of

the most successful agents of the GVGAI use a hybrid approach, otherwise known as

a portfolio agent, and use general game features such as whether a game is stochastic

or not to determine which algorithm will perform best at the current game [16]. An

illustrative example of a portfolio agent’s functionality is shown in figure 2.5.

Portfolio agents have a lot of commonality with Ensemble agents. While they

are successful, it is clear that they do not yet offer the full solution to GVGP. The

key difference between these two kinds of agents is that a portfolio agent requires a

system for identifying correctly which algorithm to apply to which game, while the
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Figure 2.5: Portfolio Agent Example: The portfolio agent selects one sub-agent best
suited for the game. Image courtesy of Chiara Diritti.

EDS evaluates each state with all its constituent algorithms and makes a decision

based on that input. Relying on a single algorithm for decision making opens up the

agent to the downsides of that algorithm, particularly if it has chosen unwisely. From

a conceptual view, a portfolio agent attempts to apply the best algorithm from its

library of algorithms to solve a problem, whereas an ensemble system employs all of

the algorithms to solve the same problem.

The main drawback of the portfolio approach is that while it is more robust to

changing games, it is still limited to one algorithm and one point of view for its decision

making processes. It cannot exceed the performance of its constituent algorithms on

a particular problem. Similarly, if the analysis of the game is incorrect, and a poor

algorithm is chosen then performance is likely to be worse. In work looking at the

robustness of GVGAI agents, many of the examined agents were portfolio agents and

included YOLOBOT and Return42 [66]. One of the conclusions of their work was

that agents that featured BFS style algorithms could be heavily impacted by certain

modifications to the game world.
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2.2.5.3 Yolobot

One of the most successful agents that the GVGAI competition has seen to date is

YOLOBOT which has won several iterations of the competition [67]. YOLOBOT

achieves its success by applying either a Best First Search or MCTS algorithm depend-

ing on the type of game being played: BFS for deterministic and MCTS otherwise.

2.2.5.4 Return42

Return42 is another winner of the competition, and is another example of a hyper-

heuristic agent like YOLOBOT [69]. This agent begins by determining whether the

game is stochastic or deterministic, and selects a different algorithm based on that

analysis. If the game is stochastic, then random walks are used to navigate through the

level, otherwise for deterministic games an A Star search algorithm is used to direct

the agent towards targets that have been identified as interesting.

2.2.5.5 YBCriber

YBCriber is a hybrid algorithm which uses a modified breadth first search known as

Iterated Width (IW). This alteration is paired up with an algorithm selection method,

similar to portfolio agents, which selects the best parameters for the IW algorithm to

use for the current game [16].

2.2.5.6 Hyper-Heuristic Agent

A more sophisticated hyper-heuristic agent was built by Mendes et al. which used

a series of classifiers which had been trained on various game features to select the

appropriate agent to play the game [68]. Interestingly, the work here showed that this

agent was able to achieve win rates that were higher than the individual algorithms

themselves.

2.2.5.7 ToVo2

Another successful agent is ToVo2 which has won the two player planning track of

the GVGAI competition twice [39] [16]. ToVo2 makes use of a combined MCTS and
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reinforcement learning approach which combines the strengths of both algorithms into

a single system [57]. The algorithm specifically combines Temporal Difference (TD)

learning and MCTS, and was originally built on the sampleOLMCTS agent provided

by the competition. To achieve this combination, a variation of the UCT function,

known as Sarsa-UCT, is used [70]. ToVo2 represents a strong example of existing

algorithms working together to create a better system.

2.2.5.8 Goal Orientation

An alternative take on the hybrid agent was created by Ross et al. for the first iteration

of the competition. This agent uses a novel combination of algorithms to achieve im-

proved performance [71]. By combining a long-range planner with a MCTS algorithm,

it uses the planner to plot a path to far off targets in the game word and evaluates

them, once within range of MCTS. Due to the inaccuracies in the planner, which uses

an A Star algorithm for path finding, it is not always possibly to know whether the

target is beneficial or detrimental to the goal of the game. For this reason, the target

is only properly evaluated once it is within the range of MCTS, as it can be done as

part of the normal analysis of MCTS.

2.3 Atari

In recent years Machine Learning (ML) has found great success in tackling, not only

single problems such as Go [26], but also in playing general video games, thanks in large

part to the research done by Google Deepmind. Contrary to search algorithms, ML

algorithms do not require a forward model in order to learn how to play a game. They

are able to learn a policy for playing a game entirely through the experience of playing

the game, largely fueled by advancements in computer vision through convolutional

neural networks (CNN) [72] [73].

One of the key advancements in computer vision came with the employment of a

CNN to map visual data to actions in video games. The first big application of this

innovation was to train an agent to play Atari games [74]. The work done by Mnih et
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al. allows a ML agent to develop a policy without state information of the game being

played, but from the image data of the game being played. This work achieved exciting

results and displayed that agents did not need state information to be able to play

video games, and showed agents that were able to match or exceed human performance

in several games. Of particular note was the agent’s performance at the game Breakout

where the agent was able to develop a tunnelling strategy to maximise its score after

only a few hours of training.

There are a number of drawbacks evidenced by this work. Firstly, while the agent

is general in that it can learn to play a wide variety of games, it is not able to retain in-

formation of previous games and must be retrained for every game. It doesn’t currently

learn general rules that can be applied to a wide variety of games. Secondly, there are

a number of games at which its performance is particularly poor, such as Montezuma’s

Revenge. This is due to the sparsity of rewards in the game which makes finding reward-

ing play through random exploration particularly challenging. Since the publication

of the original paper, Google Deepmind has developed improvements to their agent in

order to allow it to play Montezuma’s Revenge and perform well, through concepts

inspired by Intrinsic Motivation [75]. This has greatly improved the generality of the

agent, though it has still not allowed it to solve all games.

Games like Montezuma’s Revenge and Pitfall are particularly challenging for ML

agents due to a sparsity of rewards and a deceptive reward structure, which steers

agents in the wrong direction even when they find rewards. Ecoffet et al. propose

an algorithm, named Go-Explore, aimed at solving these hard-exploration problems

by introducing three principles: (i) store states that have already been explored; (ii)

perform exploration from promising states; (iii) solve simulated environments through

a variety of means [76]. The combination of these policies has shown dramatically

improved results in both Montezuma’s Revenge and Pitfall, with scores for Montezuma’s

Revenge reaching roughly four times the previous AI record, and results for Pitfall

which are above human expert level.
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2.4 AlphaGo and AlphaGoZero

Following Google Deepmind’s exciting results with Atari games, the next big step

forward for game playing AI came in the form of AlphaGo, and its victory over the

world champion Go player, Lee Sedol [26].

The progress achieved in Go represents a monumental leap forward in the capa-

bilities of AI. It was thought that developing an AI agent to master the game of Go

was at least a decade away from having the computational power to be tackled. There

are two main reasons why AI progress in Go had been slow up until this point. First,

evaluating a game of Go is exceptionally difficult and it is often difficult for human

players to determine who is currently winning a game of Go at any given time. This is

a significant factor, as AI techniques rely on state evaluation to know whether or not

their policy is working. Secondly, one of the main challenges for an agent playing Go

is the massive search space: at roughly 10170 compared to Chess, which has a search

space of roughly 1050, the complexity in searching through all permutations of the game

become apparent. Without sufficient processing power and memory, calculating all of

these positions would take an exceptionally long time. The work done by Silver et al. is

the first significant piece of research that suggests that solutions may already be within

reach using novel approaches. Silver et al. used a novel combination of systems to

achieve this leap forward in capability. AlphaGo makes use of both learning and search

techniques. First, the system has two deep neural networks, the policy and value net-

works. The policy network was trained through expert level play, and learned to be

able to predict moves that would be played. This network would then function as an

”intuition” for the system. Being able to predict expert-level moves allows AlphaGo to

cut down the search space to a few candidate moves, which are the moves that experts

would likely consider in similar circumstances. Once a move is selected by the policy

network, it is then evaluated by the value network, which was trained by playing games

against itself, and serves as a rapid evaluation function which gives AlphaGo an idea

of how the game is going. Finally, a search algorithm, in this case Monte Carlo Tree

Search, is used to evaluate the future states from each of the possible actions.
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One of the main drawbacks of AlphaGo is the massive amount of computation

required that puts it outside the possibilities of the majority of AI research labs. Deep-

mind required a total of 1202 CPUs and 176 GPUs in order to achieve this victory [26].

This is a restrictive requirement that limits the applicability of AlphaGo to a few labs.

Reducing the computational power became a priority, and was soon accomplished with

the development of AlphaGoZero [77]. AlphaGoZero has reduced this power to a single

computer, with 4 Tensor Processing Units (TPU) whilst retaining similar performance.

The success of AlphaGo shows that novel combinations of current approaches may

hold answers to improved performance in AGI, and in particular GVGP, though it does

not yet solve all of the problems posed by GVGP. The work presented in this thesis

was largely inspired by the success of AlphaGo, but seeks to find a novel approach to

combining algorithms in a general way. This poses new challenges in itself however, as

it is significantly harder to learn general policies that can be applied to a wide range

of problems, as is expected in the GVGAI. Describing an expert general game player

is a tough challenge, as it would involve describing and coding a multitude of scenarios

for a larger variety of games. Many of the situations that a game can present may not

be known to the developer which further complicates the notion of designing an expert

game player for an agent to learn from. If it were possible to easily code such a thing,

there would be no need to train a second agent to do it.

2.5 Ensemble Decision Systems

Ensemble Decision Systems (EDS) are a method of combining the analysis of multiple

algorithms into one single action. An EDS aims to gather various perspectives on

a problem to lead to a more informed decision. Each algorithm has its strengths

and weaknesses and making changes to how they function often comes at a cost in

performance in another area. The EDS allows complex behaviour to emerge from a

layering of simple algorithms, allowing each algorithm to focus on what it is good at to

inform the overall system.

EDSs share much in common with portfolio agents, though the way that they

process their decision is different. A portfolio agent tries to identify which of its con-
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stituent agents will perform best for the current game, according to analysis of the

game, whereas the EDS will use all of the algorithms it has at each decision point.

Both types of agents offer a flexible mechanism for tackling the area of GVGP, however

the EDS offers that flexibility across every game tick and also seeks to expand it by

using all of the Voices for every game tick.

2.5.1 Ensemble Classifiers

Ensemble Systems were a common solution to classification problems in the 1970 s [78].

Due to using multiple classifiers within a single system, they provided a number of ad-

vantages. Firstly, by using a variety of classifiers that were built into the system: with

each classifier being trained on unique, and potentially overlapping, parts of the train-

ing data, the chances of miss-classifying new data would be lower than an equivalent

monolithic system. Expansion of an ensemble classifier is also simpler, as rather than

modifying or retraining the system as a whole for new data sources, an additional

classifier can be added to the system.

The concept of Ensemble Decision Systems was further developed through work

done by Hansen and Salamon in 1990, in their paper titled ’Neural Network Ensembles’

[79]. Their work showed that the usage of an ensemble of neural networks reduces

inherent generalisation error in neural network classifiers. The reduction in error comes

from training multiple neural networks on different subsets of the data set. While each

neural network will still experience their own errors, coincidence of those errors will be

lower than for a single neural network.

Teams of classifiers have been used together to improve the performance of the

overall system. An overview of such systems can be found in work by Wozniak et.

al. [80]. Multiple classifier systems are described as a subcategory of Hybrid Intelligent

Systems and focus on combining heterogeneous or homogeneous modelling techniques

to solve a given problem.

39



Chapter 2. Literature Review

2.5.2 Pandemonium Systems

In 1996 a paper titled ’The Pandemonium System of Reflective Agents’ was published

by Frank Smieja which describes a pandemonium system of reflective Multiple Net-

work System (MINOS) agents. A reflective MINOS agent is composed of two neural

networks, one which is known as the worker agent that performs analysis and returns

output for the second agent, which is known as the monitor agent, which evaluates the

output of the worker agent and gives it a confidence value. Pandemonium systems were

originally proposed in 1959, and it wasn’t until hardware was more advanced that it

could be developed into a feasible working system [81].

2.5.3 IBM Watson

Ensemble systems have seen usage in more modern day applications, such as IBM’s

Watson [82]. Watson was originally created to participate in the American TV quiz

show Jeopardy, where it won the competition against human opponents. The system

employed by Watson makes use of a wide variety of answer sources, which are each

considered an expert in their specific domain. When Watson is asked a question, then

it queries each of the experts for an answer, and combines their output into a single

answer. Watson is a unique blend of ensemble decision making and natural language

processing, allowing it to understand questions posed to it. Due to its success as a

general knowledge system, Watson has been applied to more general problems and has

shown great potential with assisting doctors in their diagnosis of patients [83].

2.5.4 Ms. Pacman

An EDS for playing the game Ms. Pacman was developed by Rodgers et al. which

combines simple behaviours, such as eating pills and dodging ghosts, to improve per-

formance. At the time of writing this agent holds the world record for an AI player

for the Ms. Pacman game [84]. The agent that Rodgers et al. developed has separate

Voices for each of the different behaviours, defined as follows:

• Eat Pills: This is the main Voice which focuses on completing individual levels.
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A level of Ms.Pacman is completed once the last pill has been eaten.

• Eat Fruit: Fruit will spawn on each level, and will move in a pattern around the

level before exiting. Eating fruit gains a large amount of points, though does not

lead the agent towards the completion of the level.

• Eat Ghosts: After eating a power pill, the hostile ghosts become temporarily

edible and, if the agent is able to eat them consecutively, gains a large amount of

points. Again, these points do not lead to the completion of the level, but proper

management of the power pills and eating the ghosts is necessary for high level

play.

• Avoid Ghosts: At all other times, the ghosts are hostile to the agent and will

cause the agent to lose a life if interacted with. Avoiding ghosts is a priority

behaviour.

One of the most exciting features of the work by Rodgers et al. is the ease with

which the system can have additional behaviours added into it, without breaking the

overall system. Instead of trying to build in extra complexity to a monolithic agent,

the behaviour can be built as a separate Voice of the system and its input incorporated

directly, without major modifications.

2.6 Chapter Summary

This chapter outlined the previous work which inspired the work presented in this thesis.

In addition, the reason why video games were chosen as an experimental platform is set

out and much of the relevant literature in this area has been analysed and discussed.
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Deceptive Games

This chapter looks at the work that was done to develop a unique test suite of games

that were explicitly designed to be challenging for existing AI approaches to solve.

These games are known as deceptive games. First, we explain what deceptive games

are and why they are a useful tool for developing GVGP agents. Secondly, we discuss

the different types of deception developed so far. Finally, there are descriptions for

each of the games created for the set of deceptive games and the experimental results

showing the effect that game selection has on agent performance. These results show

that all tested agents are vulnerable to several deceptions, and that different types of

agents have different weaknesses.

This work was published as a conference paper at the Evostar conference in 2018

under the title Deceptive Games and can be found in appendix A [21].

3.1 Background

As mentioned previously in section 2.1.3, the GVGAI competition is an annual com-

petition for evaluating the performance of GVGP agents. Agents are tasked with

completing 10 unknown games which they, and their developers, have not experienced

beforehand. Each game has five levels and are run five times on each level for a total of

250 runs. Each agent is evaluated using three metrics. Number of wins, average score

achieved and average time taken to complete the game. Each metric is prioritised such
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that if two agents have the same number of wins, then the average score is used as a

tie breaker, and if scores are the same, then average time taken is used. The agents are

then ranked using a Formula One (F1) style scoring system which awards each agent

points depending on their positioning. Only the first ten positions are awarded points,

with the first earning the most. The competition awards points on a similar scale to

the F1 competition. The points awarded are in the range 0, 1, 2, 4, 6, 8, 10, 12, 15,

18 and 25 with the agent finishing in first place getting 25 points, the agent in second

getting 18 points and so on.

This scoring system then leads to a situation where a GVGP agent that specialises

in a few games can score highly in the competition if the games chosen for evaluation

feature those games. For example, if agent A scores 25 points on 5 games, but 0 on the

other 5 games it will have earned 125 points in total. Agent B is able to earn 10 points

on all 10 games and earns a total of 100 points. Agent A would win the competition,

but has focused on a few games where as agent B is a more general agent and is able to

solve a wider variety of games. It becomes clear that selecting a different set of games

would potentially affect these results, as B would in theory maintain a higher overall

performance while A may see a drop in performance if the games selected are outside

of its specialisation.

So, is it more desirable to have an agent that is able to play a few games extremely

well or an agent that can play a wider range of games adequately well? The best known

GVGP agent are human players who are able to learn a large variety of games, and to

be able to reach this level of GVGP generality with an AI agent would be the goal of

GVGP research. If an agent is developed that can play all games adequately well, then

this is a stronger foundation from which to improve performance.

3.2 What are Deceptive Games?

During exploratory research for this thesis, it was decided to observe a human playing

all of the games of the GVGAI competition in order to understand the diversity of

game types available. During these experiments a number of observations were made.

First, while humans could be deceived by games they would quickly learn to circumvent
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the deception and would not repeat the mistake. Secondly, some games had deceptive

elements that a human would not fall for but that an AI agent would be deceived by.

Finally, an interesting observation was that reaching a win state did not always mean

that the player had achieved the highest score [21]. Indeed, when looking at the scoring

priorities within the GVGAI competition, a higher win rate is the first ranking priority

followed by the score in the case of a tie, and finally the time taken to complete the

games if scores are tied.

While this initially makes sense, it became obvious that in certain games a higher

score is achievable while still winning the game. This raises the question: how much of

an effect does the reward structure have on the efficacy of an agent?

It then becomes important to define the exact goals of the competition. Is it more

desirable for an agent to do well at a few games, or score acceptably well across a wider

range of games, though winning none in particular? For the purposes of this thesis,

as well as for the GVGAI competition, a more general game playing agent is more

desirable, and it is primarily the property of generality that is being aimed for, while

trying to minimise any drops in individual game performance. This is an issue that

should be solved if an agent is to be able to solve problems beyond their original intent.

Even in the case of the GVGAI competition, where the game played by the agent is

unknown, it is not clear that an agent being able to solve all of the games within the set

would have the desired property of generality. How much of the performance is down

to the reward structure? Should altering the reward structure have a large effect on a

GVGP agent? If an agent is truly general problem solving, then it may be reasonable

to assume that the reward structure should not have a large effect on performance.

Noticing the discrepancies between wins and score, as well as the different groups of

game performance, the idea of creating deceptive games that would focus on these

issues came about.

3.3 Why are Deceptive Games Useful?

While deceptive games are challenging for AI to solve, currently, human players are

able to solve these games with relative ease. As the goal of the GVGAI and GVGP
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is to develop agents that are able to play a wide variety of games, it stands to reason

that as humans are currently considered excellent GVGP players, and are able to solve

these deceptive games, then a competent agent should also be able to do so. Should an

AI agent be able to solve deceptive games, then it may be able to act more favourably

in unknown scenarios that do not immediately offer obvious solutions, much as in real

life. Deceptions have long been used in the history of Artificial Intelligence in order to

expose the weaknesses of AI. An example is the Super Mario AI competition, where a

particular submission was performing exceptionally well on the test set but, upon closer

inspection, was actually using an A star search algorithm to efficiently find a path to

the right side of the screen [85]. This is a good solution to the problem, but does not

answer the question at the heart of the competition, so additional levels were added

which would expose similar behaviours in future agents. Essentially, deceptive levels

were added that would trap any agent that was only trying to reach the right hand

side of the screen, and reward those that were more exploratory and less regimented.

The ’Sussman anomaly’ is another example of a deceptive problem that was used to

push the boundaries of AI [86]. The anomaly identified the weakness in noninterleaved

planning algorithms by setting a seemingly simple problem that humans could easily

solve but the current planning algorithms could not. The noninterleaved algorithms

would split the goal into sub goals, but would then find itself trapped as to pursue one

goal would undo the other and vice versa.

As the successful agents become competent at solving the current set of problems,

adding additional problems to the set is a good way of pushing the agents themselves.

The successful agents, that can solve both the original set of problems as well as the

additional problems, are more powerful because of their inclusion.

In order to get to an agent that is more robust to deception, there needs to be

examples of such instances so that experimentation can be conducted. The aim of this

part of the work was to create some of those examples for the GVGAI, in order to have

simple examples of deception. An ulterior motive was also to build confidence in the

competition itself, to be sure that the games in the library were diverse enough to truly

test agents for general game playing capabilities.
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3.4 Types of Deception

With this question in mind, a set of games were designed to introduce explicit ”traps”

into the reward structure. During their creation, three distinct types of deception were

identified: Generality, Greediness and Smoothness.

These traps take advantage of an inherent bias in the behaviour of an algorithm

and use it to confuse the decision-making process. These biases are not inherently

negative, and in the correct circumstances can be useful for both humans and AI as a

cognitive strategy for solving problems [87] [88]. These biases become a disadvantage

when the problem itself violates the bias, and leads the agent to a sub-optimal answer.

While these traps are deceptive to agents, humans are typically able to generalise from

past experiences to avoid these deceptions, particularly after a few exposures to the

game. In our paper Deceptive Games a number of deceptive traps were identified and

versions of each were built into specific games for the GVGAI framework. The traps

take advantage of specific biases that different types of AI agents have. Each of the

traps that were identified are described below, along with descriptions of the games

that were created as examples of them.

3.4.1 Greed Trap

A greed trap is a game mechanic or level designed in such a way that pursuing short

term reward will result in a sub-optimal outcome. It is expected that agents that are

too greedy in the short term will fall for this deception. The game Decepticoins was

specifically designed to demonstrate this type of deception.

This type of trap functions in different ways, but primarily some immediate rewards

are offered to an agent which lead them in the wrong direction away from a win state,

or away from future rewards. Should an agent assume that positive rewards always

lead to a winning terminal state, then these types of games may expose these flaws

within agents. An illustrative example of this type of trap is shown in figure 3.1

The games that were created to feature the greed trap are Decepticoins, Sister-

Saviour, Flower and Invest. Butterflies is also considered a greed trap, though it was
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already part of the GVGAI library and was not created as part of the deceptive games

work.

Figure 3.1: Greed Trap Example. The agent is presented with two options, going left
or right. The agent decides to go left because there are some valuable coins there, but
the path closes behind them and they then realise that there was a valuable treasure
further in the distance on the other path. Greedy agents will often choose the most
immediately rewarding path over longer term gains. Image courtesy of Chiara Diritti.

3.4.2 Smoothness Trap

A smoothness trap hides good solutions, by clustering them with bad solutions. There

are times when, in order to progress, an agent has to overcome an obstacle that more

often than not leads to a lower score or a loss condition. Many agents assume that

good solutions tend to be clustered together, and so these types of traps are used as a

way of testing an agent’s analysis of risk.

This trap can also be viewed as testing an agent’s aversion to loss, in hopes of a
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greater future reward. In many circumstances it is often wise to spend current resources

for a greater return in the future. Many agents follow the assumption that any loss of

current reward should be avoided, and this trap is set for those agents.

There are two main types of smoothness trap. The first is geared towards deceiving

agents which rely on random simulations to evaluate actions. By placing the correct

path in a situation where random actions will lead to loss, it can appear to be a death

trap for agents that are afraid of risk. An intuitive example of this trap can be seen in

the Mario series. For humans, jumping over gaps has an obvious solution: jump across

with enough speed. On the other hand for AI evaluating with random samples, these

gaps can appear to be insurmountable as the majority of random forward motion and

jumping will lead into the gap. An illustrative example of this type of trap is shown in

figure 3.2. The game that illustrates this kind of trap is Deceptizelda.

Figure 3.2: Smoothness Trap Example. In this example, all of the options available to
the agent are statistically likely to lead to poor outcomes. This leads an agent to be
risk adverse, as doing nothing becomes the most rewarding option. Image courtesy of
Chiara Diritti.

The second type of trap takes advantage of the idea that in order to progress there

must be a sacrifice. The agent has to do worse before it can do better. Agents that

are not willing to give up their current accrued score will fall for this deception. For

example, situations where an agent has to use their score as currency to buy improved

equipment to progress in the game: if they are unwilling to spend their hard-earned
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score then a stalemate is reached and the agent will not see a path towards higher

rewards even though as a human the path forward is obvious. The game that illustrates

this kind of trap is Invest.

3.4.3 Generality Trap

Figure 3.3: Generality Trap Example. In this example the agent has to learn that
collecting too many of the circles will kill them. This can happen seemingly at random
from the perspective of the agent as they do not connect the action of collecting too
many with death. Image courtesy of Chiara Diritti.

An assumption that agents make, particularly Machine Learning agents, is that

taking an action in a given state will always lead to similar rewards. In essence, col-

lecting candy is great until the path of the candy leads you over the side of a cliff. A

generality trap aims to add into the game that either a diminishing return is applied

to an action, or at a certain point in play the action will suddenly be penalised. An

illustrative example of this type of trap is shown in figure 3.3.
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The games that were created to feature the generality trap are Decepticoins and

WaferThinMints.

The next sections of this chapter will go on to describe each of the deceptive games,

and go into some detail about the particular deception that they are an example of.

This is not an exhaustive list of all games in the GVGAI that are deceptive, just those

identified or created specifically for this work.

3.5 Butterflies

Figure 3.4: Butterflies. This image shows the first level of the GVGAI game Butterflies.

Butterflies is the first game identified within the GVGAI set as having deceptive

qualities. This game was originally a part of the GVGAI set, and the game was not

created as part of this research. Figure 3.4 shows the first level of this game.

The components of Butterflies involve a player avatar, numerous butterfly NPCs

and some cocoons which create more butterflies if interacted with by a butterfly. The

objective of the game is for the player to kill all of the butterflies before they can

interact with all of the cocoons. Should there be no more cocoons on the level, then

the player loses. Likewise, if no butterflies are remaining on the level, then the player

wins.

What makes this game deceptive is that each butterfly is worth two points to the

player. If the player kills all of the butterflies immediately then they will earn around

20-30 points. However, if the agent allows the butterflies to multiply, and defends a

single cocoon from being touched, they can greatly improve their score by killing the

now increased number of butterflies.
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This feature of the game makes Butterflies an example of a greed trap, as greedily

pursuing a win condition will lock the player out from a higher overall score. Scores

of around 50-60 can be achieved by following the optimal strategy, and allowing the

butterflies to multiply before killing them.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Butterfly: Awards 2 points to the agent if collected.

• Cocoon: If a butterfly interacts with this, then the cocoon is destroyed and

more butterflies are created.

3.6 Decepticoins

(a) DeceptiCoins Level 1

(b) DeceptiCoins Level 2

(c) DeceptiCoins Level 3

Figure 3.5: DeceptiCoins Levels. Three of the levels of DeceptiCoins are shown in the
above figures. Each level is more complicated than the previous.

Decepticoins was the first game that was designed for the deceptive suite of games

and is an example of a greed trap. Figure 3.5 shows the first three levels that were

created for this game. This game was developed by the author of this thesis.
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The objective of the agent is to collect as many gold coins as possible before exiting

the level and winning the game. Two paths are presented to the agent, one with some

immediate reward and the other with no immediate rewards. Once the agent chooses

a road to travel down, the other path is blocked, and its potential rewards are no

longer available to the agent. Should the agent be too ”greedy” and opt to collect the

immediate rewards then it will find no further reward down the remainder of the path,

whereas selecting the seemingly barren path will lead to a greater cumulative reward.

One of the interesting points of this game is that there is no mechanism to lose, other

than the default timeout mechanic of all GVGP games. The agent will win regardless of

which path is chosen but will achieve a higher score by ignoring the immediate rewards

and opting to take the seemingly less fruitful path.

A few variations of this game were created to explore additional deceptive properties.

The variations introduce hostile Non Player Characters (NPC) to the game, and require

different types of problem solving to win. The first requires the agent to lure both of

the enemies to follow them down one path, leaving the other free to reach the exit. The

second variation offers a lot of reward in the form of collectable coins to the agent, but

if the agent collects too many, the enemies will close the path behind them and defeat

the agent.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Gold Coin: Awards a point to the agent if collected.

• G Square: Triggers the win condition for the game and awards a point to

the agent when interacted with.

• Piranha: Enemies, if the Avatar interacts with these the game is lost.

3.7 Deceptizelda

Deceptizelda is a game that was designed with the notion of looking at the value of

achieving greater reward at the cost of encountering greater risk. This game was
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(a) Deceptizelda levels 1 and 2

Figure 3.6: Deceptizelda Levels. Two levels of Deceptizelda are shown. Level two
differs in that there are coins to collect and there is no secondary exit from the level.

developed by the author of this thesis.

There are two exits in this level, with one awarding a higher score than the other,

though hostile NPCs guard this exit. If the agent can navigate around, or defeat, the

NPCs then they will reach the exit and win the game. Alternatively, the agent may opt

to take the less risky path, that has no hostile NPCs and finish the level with a lower

score but still winning. The agent may lose the game if the agent dies while traversing

the riskier path.

An alternative version of this map removes the higher scoring exit but fills the

riskier path with gold coins which each provide a score to the agent. This alteration

was done in order to observe any changes in behaviour when there was only one win

state in a level of Deceptizelda.

This game is an example of a Smoothness Trap and takes advantage of the bias

that good rewards are clustered together, by surrounding the best score with negative

interactions, in this case, the hostile NPCs.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Spider: The enemies to overcome. If defeated awards 2 points to the agent,

but will kill the Avatar if touched (game is lost).

• Key: Used to unlock the first exit. Awards a point to the agent if collected.

• Gold Coin: Awards a point to the agent if collected.
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• Closed Door: The low value exit. Triggers the win condition for the game

and awards a point to the agent when interacted with, if the agent has already

collected the Key.

• Open Door: The high value exit. Triggers the win condition for the game

and awards ten points to the agent when interacted with.

3.8 Flower

Figure 3.7: The first level of Flower

Flower is another example of a Greed Trap though it behaves differently. The agent

must show patience in order to gain the maximum amount of reward from the plant

that grows in the level. This game was developed by Dr. Matthew Stephenson.

The objective of this game is to collect as many points as possible before the time

runs out. Points are collected by harvesting a flower that grows on the level; this can be

done at any time though if the flower is allowed to grow for longer, the agent will receive

more points. This point scaling feature ranges from 0-10 points. After harvesting a

flower, a new one will begin to grow and is also harvestable.

Greedy agents that do not allow the plant to grow will harvest the plant as soon as

it is worth any amount of points. Doing so leads to a lower overall score at the end of

the game.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.
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• Seed: Awards 0 points initially, this value increases as the seed grows and

becomes a full flower, up to a value of 10 points.

3.9 Invest

Figure 3.8: The first level of Invest

Invest is a game which provides a reward to the agent, if they are willing to sac-

rifice/invest their current points. Similar to Deceptizelda, this is an example of a

smoothness trap, but works differently in that optimal play involves a series of long

term decision making. This game was developed by Dr. Matthew Stephenson.

The objective of Invest is to successfully gather as many points as possible within the

time limit of 1500 time-steps. At the start of the game, the agent must collect gold coins

scattered around the level. At this point, the agent must then spend their accumulated

coins at different investors, with the hope that in the future their investment will return

a higher reward. If the agent is willing to incur penalties by spending their first point

total, they will be able to experiment with the different investment options to find out

which is the best over time.

Due to some limitations in the VGDL, it was not possible to create investments that

would return random values at random points in time. An extension of this particular

game would be to have the investments distributed over a range, and the investment

to yield rewards at irregular intervals.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.
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• Gold Coin: Awards a point to the agent if collected.

• Green Banker: Takes 3 points when moved onto, returns 5 points after 30

timesteps.

• Red Banker: Takes 7 points when moved onto, returns 15 points after 60

timesteps.

• Blue Banker: Takes 5 points when moved onto, returns 10 points after 90

timesteps.

3.10 SisterSaviour

Figure 3.9: The first level of SisterSaviour

SisterSaviour is a further example of a greed trap, but presented as a moral dilemma.

The agent must choose to either rescue some hostages, and gain a greater reward as a

result in the future, or kill the hostages for immediate rewards. This game was devel-

oped by the author of this thesis and was inspired by the game Bioshock which poses

similar morale dilemmas to players [89].

The objective of this game is that the agent must defeat the hostile NPC but can

only do this after saving three hostages on the map. The agent will receive 1 point for

each hostage rescued. Further complicating the situation, the agent may alternatively

kill the hostages, granting 2 points for each kill, but will not be powerful enough to

kill the hostile NPC as a result of their actions. Should the agent only rescue one or

two hostages, but kill the other, they will not have enough power to defeat the hostile
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NPC.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Scorpion: An enemy which chases the Avatar. Immune to attacks from the

Avatar, unless all of the civilians have been rescued. Awards 17 points to the

agent if defeated.

• Civilian: Can be either killed, by attacking them or rescued by moving into

their space. Awards 2 points to the agent if killed, and 1 point if rescued. If all

are rescued then the Avatar can kill the Scorpion.

3.11 WaferThinMints

Figure 3.10: The first level of WaferThinMints

WaferThinMints is a generality trap, and introduces the notion that repeating a

previously positive action eventually leads to a loss condition. This game was developed

by the author of this thesis.

The objective is to finish the level with as many points as possible. Points are earned

by eating mints that appear on the map; however, if the agent eats too many, they will

lose the game. WaferThinMints is intended to be deceptive for learning agents.

A few alternative levels for this game were provided. In one, there is a hostile

”Waiter” NPC who wanders around the level randomly placing more mints on the

floor for the agent to eat. A further level features an exit so that, if the agent wishes,

they can end the game early.
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The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Mint: Awards a point to the agent when collected. If 9 have been collected

already then the 10th will kill the avatar, causing a loss of the game as well as

resulting in a loss of 20 points.

• Waiter: A neutral NPC which drops more mint on the map at random.

• Exit: Triggers the win condition for the game when interacted with.

3.12 Experiments and Results

In order to better understand the effects that deceptive games have on the performance

of agents, a number of experiments were run. The aim of these experiments was to

first of all, identify if these deceptions had an effect on agent performance, and also to

determine to what degree the selection of games could have an effect on the ranking of

agents.

For this work the deceptive games were used to evaluate a range of agents that were

submitted to the GVGAI. Each agent was run 20 times on each of the deceptive games

and the results can be seen in figure 3.11. Each agent has been categorised to give a

clearer idea of any performance changes due to type of algorithm. Each row represents

the number of wins that each agent achieved out of 20, with the final column showing

the number of games where the agent did not fall for the deception.

Interestingly, portfolio agents seem to be concentrated towards the higher ranks of

the competition, taking 4 positions in the top 6. This may be indicative of an inherent

robustness to deception in multi-agent solutions, which is a good indication that an

EDS may achieve similarly good results in deceptive games. An investigation into the

agents in the competition shows that an EDS had not yet been tried for GVGP.

One of the most successful agents in past competition years has been YoloBot

which is a Portfolio agent. YoloBot first attempts to identify whether the game is
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Agent Name Algorithm DC 1 DC 2 DC 3 DZ 1 DZ 2 SS BF Flow Inv Mints Mints 2 Rational
1.	IceLab Portfolio 20 3 19 0 0 0 9 20 2 20 20 8
2.	Return42 Portfolio 20 3 13 0 0 4 5 20 20 20 0 8
3.	MH2015 GA 2 10 10 2 3 0 11 0 6 20 0 8
4.	SJA86 MCTS 1 2 0 2 1 0 17 10 16 8 0 8
5.	YBCriber Portfolio 20 9 20 0 0 0 2 0 20 20 20 7
6.	YoloBot Portfolio 20 8 20 0 0 0 12 13 0 20 20 7
7.	Catlinux GA 0 10 20 2 4 0 15 15 0 20 0 7
8.	muzzle GA 12 3 2 0 0 1 10 0 20 20 0 7
9.	NovTea Tree 8 7 20 0 0 12 9 3 0 20 0 7
10.	SJA862 MinMax 8 3 13 0 0 0 8 2 20 20 0 7
11.	number27 Portfolio 0 9 6 0 1 0 11 12 5 20 0 7
12.	adrienctx MCTS 0 5 10 0 0 0 7 20 0 20 20 6
13.	TeamTopBug GA 19 9 20 0 0 0 3 20 0 20 0 6
14.	bladerunner Portfolio 20 6 12 4 5 0 3 0 0 0 0 6
15.	EvolutionStrategies GA 0 1 1 0 0 0 3 8 0 20 1 6
16.	HillClimber Hill 3 0 0 0 0 0 13 6 8 1 1 6
17.	aStar A* 4 1 0 0 0 0 0 20 20 20 0 5
18.	novelTS Tree 2 5 20 0 0 0 8 0 0 20 0 5
19.	TomVodo MCTS 5 0 0 0 0 0 14 8 3 8 0 5
20.	mrtndwrd MCTS/A* 0 0 0 0 0 9 9 7 0 20 0 4
21.	simulatedAnnealing SA 8 0 0 0 0 0 14 10 0 0 1 4
22.	Greedy	Search Tree 20 0 0 0 0 0 10 0 0 0 0 2
23.	BFS Best	First 0 1 0 0 0 0 8 0 0 0 0 2
24.	IterativeDeepening ID 0 0 0 0 0 3 1 0 0 0 0 2
25.	DFS Depth 0 0 0 0 0 3 0 0 0 0 0 1
Total	Clever 192 95 206 10 14 32 202 194 140 337 83

Figure 3.11: The results of the deceptive experiments. This shows the number of wins
that each agent was able to earn on each game. Wins were classed as ”Rational” if
they managed to avoid falling for the deceptive qualities of the game in question. The
agents that perform well in this experiment were not those that typically perform well
in the official GVGAI competition.

deterministic or not and applies a different algorithm depending on this process [67] [68].

If the game is deterministic, then a Breadth First Search is used to analyze the game

state, otherwise a MCTS algorithm is used. With deceptive games, YoloBot finds itself

performing well, but is now down to 6th position, compared to its performance in

the competition where it often places 1st. Similarly, other previously high performing

agents such as Adrienctx, which finished 2nd in the 2016 competition, find themselves

performing lower than anticipated, finishing in 12th position. Of particular note is the

performance of Return42 and IceLab which finished in 9th and 10th places respectively

in the 2016 competition and now finds themselves in 2nd and 1st places with deceptive

games.
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3.12.1 Deceptive Games with Machine Learning Agents

The first experiments that were conducted using the deceptive games were using only

planning agents, and as such a further exploration of the effect on learning agents

was necessary. In the paper titled Superstition in the Network: Deep Reinforcement

Learning Plays Deceptive Games further experiments are performed, and makes use of

the learning track of the GVGAI competition to test the Asynchronous Actor Critic

(A2C) algorithm. The paper was accepted for publication at the Artificial Intelligence

and Interactive Digital Entertainment (AIIDE) conference in 2019. A copy of this

paper can be found in appendix C.

The main question of this additional set of experiments was to determine whether

learning agents were deceived in similar ways to the planning agents. A2C was selected

as the algorithm to experiment with as it is a widely used learning algorithm that has

been shown to be capable of learning to play some GVGAI games [90] [42]. As GVGAI

games are similar to arcade games, training is done on the pixel visual input from the

games. Due to the porting of the GVGAI learning track into the OpenAI Gym, the

A2C implementation used is the same as the OpenAI baseline implementation [91].

The neural network architecture that was used is the same as developed by Mnih et

al [92]. The hyperparameters that were used are as follows: step size of 5, no frame

skipping, constant learning rate of 0.007, the optimiser was RMS, and 12 workers were

used.

The experiments were designed to focus on different aspects of deception, and so

four of the deceptive games were used for these experiments. Decepticoins, Invest,

Flower and WaferThinMints. This work explores the concepts of deception further

and identifies further deceptive classifications. These games each represent a differ-

ent deceptive quality: Lack of Hierarchical Understanding, Subverted Generalisation,

Delayed Gratification, and Delayed Reward.

3.12.1.1 Lack of Hierarchical Understanding

Lack of Hierarchical Understanding is represented by Decepticoins. Decepticoins can

be seen as presenting a binary choice to the agent, to either go down one path or the
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other. From that point of view, solving the task is as simple case of evaluating the

expected reward of each path and selecting the path that provides the highest reward.

The issue is that the levels of the game have a much larger search space than the

overall goal would suggest. It is not a single action that decides which path the agent

travels down, but multiple successive ones. Humans are usually able to perceive the

overall direction of their actions, and are able to reason that each individual action

is not important unless it serves the greater goal. An AI is forced to evaluate each

action with equal importance, which combined with the large search space, makes it a

challenging problem to overcome. The results of this experiment can be seen in figure

3.12.

(a) DeceptiCoins Level 1 

(b) DeceptiCoins Level 2 

(c) DeceptiCoins Level 3 

Figure 3.12: DeceptiCoins Levels - Examples of Lack of Hierarchical Understanding.
While each level is different, a similar pattern in learning is observed across all of the
three levels. Notably, the third level shows a poor performance as the agent does not
find the optimal path.

The first thing of note with these results is that the agent is able to learn how to

play each level, with the exception of level 3 which converges on the easy path scoring
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just 2 points. Another note is that going from level 1 to 2, the time it takes for the

agent to learn the optimal path is massively increased, which is due to the increased

size of the search space. The A2C agent does seem to fall for this deception, even

though it is able to solve smaller scale versions of it.

3.12.1.2 Subverted Generalisation

Subverted Generalisation is represented by WaferThinMints, which was designed specif-

ically to deceive agents that generalise. The planning agents typically did not have a

lot of trouble with this particular deception, because they would be able to perceive

that a loss state was about to be reached and avoid it. As discussed previously in

section 3.10, collecting mints is beneficial to the agent, but only the first 9 times. The

10th collected mint will kill the agent, causing them to lose the game. The 9 successful

collections reinforce that collecting mints is a good behaviour, and so agents without

a forward model may be tricked into collecting too many mints. Without the forward

model, it is necessary for an agent to generalise from their past experiences, and act

on that information. It should be noted that generalisation is a good skill for AI and

humans to have, and the point of this deception is not to discourage generalisation, but

to become aware of the potential downfalls. The results of this experiment can be seen

in figure 3.13.

Figure 3.13: WaferThinMints level 1 - Example of Subverted Generalisation. The agent
does not manage to learn a good solution to this particular game, likely because of the
randomness of where win states are found.
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Looking at the erratic nature of the performance it is clear that the agent did not

have enough time to converge completely. This is largely due to the noisy environment,

with the waiter potentially introducing bad luck on the agent with random mint drops.

This noise is necessary though, in order to properly represent the deception, as simply

using a level with fixed mint positions would likely lead to the A2C agent learning

a pattern through the level. The agent will initially run to the room with the mints

and collect as many as possible, as these are a guaranteed source of reward. It will

then try to avoid the remaining mints at all costs, and usually only gets forced out

of the bottom room by the waiter. Similarly, the agent does not seem to understand

that collecting the mints earlier means that it is increasing its own risk. The optimal

strategy would be to collect the mints closer to the end of the game, to shorten the

window of vulnerability.

3.12.1.3 Delayed Gratification

Delayed Gratification is represented by Flower, and has its basis in a famous psychology

experiment from 1972 by Mischel et al. [93]. The experiment involved leaving 4 year

old children in a room with a marshmallow, and instructing the children not to eat

the marshmallow while the experimenter is away from the room. The children are

informed that if they are able to resist the temptation of eating the first marshmallow

until the experimenter returns, they will receive a second marshmallow. Some of the

children find this quite challenging, and so does the A2C agent. The rules for Flower

are described in detail in section 3.7. The results of this experiment can be seen in

figure 3.14.

Initially, the agent has difficulty collecting the flowers but eventually learns how

to perform this behaviour. The agent understands that the flowers provide a reward

quite quickly, but does not learn that collecting them faster has an effect on the overall

reward. Allowing the flowers to grow fully would be the optimal strategy, as collecting

them earlier nets a lower reward. As the agent improves at collecting flowers, it is able

to collect them faster and so earns less reward. This is interesting as it actually causes

the performance of the agent to get worse the longer is trained.
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Figure 3.14: Flower level 1 - Example of Delayed Gratification. While the agent initially
performs well, its performance starts to drop as it gains proficiency at finding the path
to the targets before they have matured.

3.12.1.4 Delayed Reward

Delayed Reward is represented by Invest. The challenge posed by this game can be

simplified down into how the agent can correctly link which action led to reward [57].

This type of deception essentially distances the reward from the action over time. By

delaying the receipt of reward for some time after the action was performed, an agent

is not able to learn which action triggered the reward. Invest is described in detail in

section 3.8. The results of this experiment can be seen in figure 3.15.

Figure 3.15: Invest level 1 - Example of Delayed Reward. The agent initially has a hard
time understanding how to advance in this game but eventually develops a behaviour
that leads to consistent rewards, though it is not the optimal strategy.

An interesting side effect of this deception is that a number of ”superstitious”

behaviours were noted in the A2C agent. The agent would invest with one of the

bankers, and then move immediately to a corner of the level. It is suspected that
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the reason for this is that this is where the agent happened to have been positioned

randomly at the point they received the reward for interacting with the banker, and so

has associated that position with the reward rather than the action itself. The training

graph shows an interesting trend, where the agent begins initially very well, as it invests

with all bankers, but slowly starts to associate the negative reward with the bankers.

It eventually converges on investing with a single banker, and then moving back to the

spot in which it received the delayed reward, while waiting for the banker to reappear.

While the concepts of delayed reward and delayed gratification are similar, the

effect that they have on the performance of an agent appears to be quite different. In

the experiments, delayed reward initially sees a drop in the performance of the agent

before improving as can be seen in figure 3.15, whereas delayed gratification shows a

spike in performance initially which then drops to a level far below the starting point

of performance as in figure 3.14. This appears to lead to behavioural differences in

how the agents approach the problems, though further experimentation is necessary to

confirm if this is always the case.

One of the big questions that this work raised was: does the GVGAI competition

adequately test for general problem solving ability? If an agent is able to win the

competition, does that mean they can competently play any game? Earlier work done

by Perez et al. takes a look at how robust GVGAI agents are to malicious changes,

such as a forward model that doesn’t accurately model the world, or a game that

randomly takes a different action than the one the agent selected [66]. This previous

work particularly inspired the notion of deceptive games. What can be seen from

the results is the notion that the winners of the GVGAI competition are decided as

much by the games chosen for evaluation, as well as by the capabilities of the agents

themselves. Seeking an answer to this question leads to the next research question: is

there a method for selecting games that reduces the overall bias towards any particular

type of algorithm?
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3.13 Chapter Summary

This chapter outlines the concept of Deceptive Games and experiments that were done

to develop appropriate experiments in this area. These types of games are an important

hurdle for game playing AI agents to overcome and the reasons for this are also laid

out.

One of the big questions that was raised throughout the work on this thesis starts

to come to light when looking into Deceptive Games. That is, what problems does

an AI agent need to solve in order to be considered a competent general video game

player?
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Game Selection

This chapter looks at the reasoning behind selecting the set of games that were chosen

for the experiments. First, looking at the Information Gain analysis of the GVGP

game set that was performed, and providing a description of the games selected with

this method. Secondly, to examine other games that were used to augment the original

selection, and then introducing each of these games in greater detail.

4.1 Information Gain

This section looks at the set of games that were selected to test GVGP agents, and

explains the methodology used for their selection. First, the information gain project

is described, which sought to find the most interesting games from the entire GVGAI

set. Second, the usage of the algorithm and a description of how it works is provided.

Finally, the results of running the continuous information gain algorithm on the GVGAI

are discussed.

4.1.1 The Information Gain Project

A natural progression from the work done looking into deceptive games was to analyse

further the set of games that make up the GVGAI library. A novel approach, based

on information gain theory, for selecting an interesting set of problems from a large set

was introduced, and used for the selection of some of the games for this work [24]. The
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concept of Information refers to the Shannon Information Theory [94]. The information

is representative of the confidence that the algorithm has that agent a is playing the

game g, given the performance of agent a on game g. This information can then be

used to provide a benchmark of games which collectively provide the most information

on the agents playing. There is a wide variety of games available in the library, but

do they represent a broad range of problems? How many of the games are similar to

each other? Is there a particular type of game that is over or under-represented in the

GVGAI set?

To look at these questions a project was setup in collaboration with Professor Julian

Togelius and the Game Innovation Lab, Dr Christoph Salge from the University of

Hertfordshire and Dr Matthew Stephenson from Maastricht University. The goal was

to find out which games in the GVGAI set were the most interesting. In this case,

interesting is defined as games which split the agents. Games that are too easy or too

hard for agents to solve do not provide much insight into the current state of the GVGP

field.

As part of this team the thesis author assisted with exploring ideas for finding and

defining the most interesting games in a set. Then, along with Dr Matthew Stephenson,

implemented an algorithm designed by Dr Christoph Salge that could go through the

entire GVGAI set and find those interesting games. The results of this work were then

used by the thesis author for their own work and used as a core component of the

experimental suite in later chapters.

This project has resulted in one paper which is available on Arxiv under the title

A Continuous Information Gain measure to find the most discriminatory problems for

AI benchmarking [24]. This paper can be found in appendix B.

4.1.2 Description

Each year, ten games are used to evaluate the performance of the submitted agents to

the GVGAI competition. As shown in the deceptive games chapter, this game selection

plays a significant role in deciding the winner of the competition, and its choice should

keep in mind the larger goal of the GVGAI competition: to develop general video
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game playing agents. Ideally, the ten chosen games should represent a diverse set of

challenges, and not focus too much on any particular one, introducing unwanted bias

into the competition. In other words, no two games selected to evaluate the agents

should pose the same problem. As an example, the decathlon is designed in such a

way that an athlete has to be competent at all of the events in order to do well. If the

decathlon featured both a 100m and 200m sprint, then it may unfairly bias towards

runners. For this reason, it would be beneficial to be able to detect which types of bias

may exist in the set of all games, and select a subset of those games which are diverse

and do not overly advantage or disadvantage any agent.

With this in mind, which games within the GVGAI are the most interesting? Games

that are too easy, or too hard, do not provide much information about the general

capabilities of an agent as all of the agents will either succeed or fail. The most

interesting games are likely to be those that split the performance of agents down the

middle, with good agents performing well and bad agents performing poorly. These

discriminatory games are those that the continuous information gain work tries to

identify. Ideally, the types of discrimination should differ, such that no single type of

agent is biased against or towards. Similar work has been done previously which looked

at which agents were best suited to which games in the GVGAI [95].

Tests were conducted by the thesis author and collaborators using the entire set

of GVGAI games, including the deceptive games, with a selection of about half of the

agents submitted to the competition, which were chosen based on their past perfor-

mance in the GVGAI competitions over the years as well as for algorithm uniqueness.

Essentially, if an agent had performed well in past competitions, and its algorithm was

not already represented in the currently selected algorithms, it was included. The data

provides insight into the types of agents that could solve those games and a glimpse

into what problems are represented currently in the set. More detailed information on

the specifics of the data gathering process can be found in section 4.1.3.

With the data gathered, the next step was to understand how best to select the

games which would not bias towards any particular type of agent. To this end, an

algorithm was developed which finds the game from the whole set that provides the
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most information about the agents, then removes that game and recursively finds the

game that then provides the most information gain and so on. This process repeats until

ten games are selected, in order to match the number of games chosen each year for the

GVGAI competition. An alternative method for deciding the number of games would

be t o stop selecting new games once the amount of information gained by including

a new game is below a set value. Performance measures for the agents were done in

three ways: win rate, score and both combined. Neither win rate nor score entirely

explains whether or not an agent has been completely successful in winning a game, as

demonstrated by the deceptive games in chapter 3.

An alternative approach to this problem was proposed by Balduzzi et al. in their

2018 paper entitled Re-evaluating Evaluation [96]. Balduzzi et al. propose Nash averag-

ing as a way to solve the problem of introducing bias into experimental sets and allows

researchers to include all possible problems in experiments as the approach adapts to

both problems that are too easy, and agents that are too weak.

4.1.3 Data Collection

To gather the data the competition conditions were replicated as closely as possible.

To this end, the agents were ran across 243 CPU cores with 2.6GHz processing power

and 8 GB of memory. In total, 3, 990, 760 complete playthroughs were recorded. A

successful playthrough was defined as the game finishing with the agent either winning

or losing, and no crash having occurred. The information that were retrieved from each

playthrough were: the agent that was playing, whether the agent had won, and the

score that had been achieved. On average, each agent/game pair had 1, 368.6 units of

data generated.

4.1.4 How does the Information Gain algorithm work?

The purpose of the continuous information gain algorithm is to find the most discrim-

inatory subset of games in a set of games.

The algorithm is broken up into two main components: single game information

gain (SGIG) and multi game information gain (MGIG). The SGIG is able to determine
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how effective a specific game is at discriminating agents. The MGIG is able to apply

the SGIG across a set of games to find not only the most discriminative games, but the

games that are discriminative in different dimensions.

The SGIG is used with every possible pairing of all agents, for each game. This then

creates a confusion matrix which shows how often a particular game is able to correctly

identify an agent playing that game, given the agent’s performance. Each cell in the

matrix refers to the probability that a given result is from a particular agent. This is

defined as P (A2|A1) where P is the probability function which states the probability

of identifying the agent A2 given the performance of agent A1. The formal definition

of the probability function can be found in appendix B.

C =


P (A1|A1) P (A2|A1)

P (A1|A2) P (A2|A2)


 (4.1)

Once a game is selected the process repeats itself n times, where n is the desired

number of games, but the chosen game is removed from the set. Rather than simply

selecting the the top n information games, this recursive process reduces the chance

that two games will be selected which discriminate in a similar manner. The intuition

is that games selected via this process should provide information about different types

of agents, so that no subset of the games are alike in terms of agent performance.

As an example, there are two agents, A1 and A2, which each play the games G1

and G2. Both agents play both of the games and their average scores for each game

is shown in table 4.1. From these results, it seems that G1 is the most discriminatory

game, so this would be the desired output of selecting a single game from this set.

Table 4.1: Example results for the Information Gain process using score and (Std Dev)

Agent G1 Average Score G2 Average Score

A1 60 (10) 30 (5)

A2 15 (10) 15 (5)

The results from table 4.1 are input into the SGIG algorithm to create the confusion

matrix shown in 4.2. Another matrix is similarly generated for G2. The matrices can
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then be used to get a value of how much information about the agents can be gathered

with that particular game.

G1 =


0.926 0.074

0.074 0.926


 (4.2)

With the matrix generated the amount of information is calculated, which in this

example for G1 is 0.620. This number is an indication of how good that particular

game is at discriminating agents. G2 generates a lower amount of information, 0.197.

As G1 provides more information about the agents it would be the game selected by the

algorithm. If a third game were to be introduced where the agents perform identically,

the amount of information generated for that game is zero.

The process can be run on a variety of metrics and all that is required is the metric

itself and the standard deviation of that metric. In the case of the GVGAI set the

metrics used were average wins, average score and both wins and score combined. In

the case of the combined wins and score, both cases are treated as a separate game.

Once the results for each are calculated, they are brought together into a single result

and the information is calculated from their combined value.

The full details of the mathematical underpinning of the continuous information

gain method can be found in appendix B. The algorithm can also be found on the

thesis author’s github [97].

4.2 Information Gain Experiments and Results

Once the continuous information gain method was developed, it was time to find the

most discriminatory games. Experiments were conducted using the entire library of

GVGAI games, including the deceptive games, using 27 agents that had been submitted

to the GVGAI competition. The intuition behind this experiment is that if an agent is

good at a particular game, then it may also be good at other games of the same type,

and ideally a selection of games can be chosen which do not favour any one particular

type of game too heavily. The reasons for not using all of the agents submitted is that

many of the agents would not complete full runs for all of the games, due to compilation
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errors, and some agents are slightly modified versions of others and would not present

new information. When selecting between variations of the same agents, the more up

to date version was selected.

The output of the information gain process can be seen in tables 4.2, 4.3, 4.4 and

4.5. The results show the analysis performed with agent win rate, score and both

combined as well as the cumulative results after iterating.

Table 4.2: The games with the highest win rate information gain in descending order.

Game Name (Win-rate) Information Gain

freeway 1.17484168

labyrinth 1.10088062

tercio 1.10018133

labyrinthdual 1.08531707

iceandfire 1.07275305

chopper 1.06542656

doorkoban 0.98911214

hungrybirds 0.91886839

watergame 0.89206793

escape 0.87721725

Table 4.3: The games with the highest score information gain.

Game Name (Score) Information Gain

invest 1.62405816

intersection 1.13955416

freeway 1.13619392

tercio 1.10018133

watergame 0.89206793

cops 0.88658183

flower 0.86746818

waitforbreakfast 0.80128373

labyrinth 0.78021437

realportals 0.73246317

The output from this process is used to select a group of 10 games which represent a

diverse group of different problems based on agent performance. The games that were
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Table 4.4: The games with the highest combined information gain in descending order.

Game Name (Combined) Information Gain

freeway 1.89430152

invest 1.62405816

intersection 1.59362941

chopper 1.48524965

tercio 1.44693431

labyrinthdual 1.42090667

iceandfire 1.32455879

hungrybirds 1.32100004

waitforbreakfast 1.28983481

doorkoban 1.28593860

Table 4.5: The games with the highest cumulative information gain after each recursive
step.

Game Name (Cumulative) Information Gain

freeway 1.89430152

invest 3.08236771

labyrinthdual 3.81992620

tercio 4.22563462

sistersaviour 4.40856274

avoidgeorge 4.54036694

escape 4.60252506

whackamole 4.64444512

chopper 4.67138328

watergame 4.68457480
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selected are those from table 4.5.

Interestingly, the maximum amount of information that a set of games can provide

with this technique is log2(n) where n is the number of agents. In this case, the

maximum amount of information is 4.75 or log2(27). Table 4.5 shows that by the

fourth game the majority of information about the set of games has been found. This

may indicate that there are only a few different types of games within the GVGAI.

The remainder of this section is used to describe each of the games that were selected

via the information gain process.

4.2.1 Avoidgeorge

Figure 4.1: The first level of Avoidgeorge

The objective of Avoidgeorge is to avoid the hostile NPC, George, and to prevent

him from touching all of the other NPCs on the map. When George interacts with an

NPC they become annoyed, and can only be calmed down by the avatar interacting

with them. The game is won by preventing at least one of the NPCs from being annoyed

for the duration of the game. The game is lost either when George interacts with the

avatar, or there are no calm NPCs remaining.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• George: The hostile NPC trying to annoy all other characters.

• Citizen: If interacted with by George, becomes annoyed and awards the

player −1 score.
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• Annoyed Citizen: If interacted with by the Avatar, becomes relaxed and

awards the player 1 score.

4.2.2 Chopper

Figure 4.2: The first level of Chopper

The objective of Chopper is to prevent the tanks from destroying the satellites in

the sky. The tanks do this by firing missiles into the sky, and the avatar must prevent

this by shooting the tanks first. There are some clouds in the path which offers a shield

to the satellites. If the agent destroys a tank, then they are awarded 1 point, likewise if

a satellite is destroyed then the agent is penalized −1 points. The game is lost if either

the avatar is destroyed, or all satellites are destroyed. The agent wins if they are able

to destroy all of the tanks.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Satellite: Removes 1 point if destroyed. If all are destroyed then the agent

loses.

• Cloud: Blocks missiles from reaching the satellites. Destroys both the missile

and the cloud in that case.

• Tank: Fires missiles upwards to destroy either the avatar or the satellites.

Awards 1 point if destroyed. If all are destroyed then the agent wins.
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Figure 4.3: The first level of Escape

4.2.3 Escape

The objective of Escape is to reach the cheese by navigating through the level. Paths

can be opened up by moving boxes around, and can be destroyed by moving them into

a hole. If the avatar moves into a hole however, they are killed and the game is lost.

The agent wins if the avatar manages to reach the cheese.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Box: Moves one space when the avatar interacts with them. Can be de-

stroyed by being moved into a hole.

• Hole: Destroys boxes if they are pushed into the hole. If the avatar moves

into a hole they are destroyed, and the agent scores -1 points.

• Cheese: The objective of the game. If the avatar reaches the cheese then the

agent wins.

4.2.4 Freeway

The objective of Freeway is for the avatar to cross the busy freeway and reach the flag.

In order to do this, the avatar must avoid being hit by traffic that move along the

roads. If the agent reaches the flag, they are awarded 10 points, the avatar is placed

back at the start of the map and a new flag is randomly placed at the end of the map.

If the agent is hit by a vehicle, they lose 5 points and are transported back at the

start of the map. The agent has five lives available to them and will only lose the game

77



Chapter 4. Game Selection

Figure 4.4: The first level of Freeway

if the agent loses all lives. The game is won if the agent has lives remaining when the

game timeout is reached.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Flag: Awards 10 if collected. A new flag is generated after collection.

• Fast Car: Moves at a fast speed either from left to right or right to left along

the roads. Removes 5 points and a life from the agent if hit.

• Slow Car: Similar to Fast Car expect moves at a slower speed.

4.2.5 Labyrinthdual

Figure 4.5: The first level of Labyrinthdual

The objective of Labyrinthdual is to reach the exit of the labyrinth. In order to do

this, the agent must avoid traps and collect coats which allows them to unlock various

barriers on the map. If the agent has not reached the exit by the level timeout, they

lose.
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The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Exit Flag: Awards 1 point if collected. Agent wins the game if collected.

• Red Coat: Awards 3 points if collected. Allows the avatar to traverse through

red blocks.

• Blue Coat: Awards 3 points if collected. Allows the avatar to traverse

through blue blocks.

• Blue Block: Blocks the avatar from progressing unless they have collected

the blue coat.

• Red Block: Blocks the avatar from progressing unless they have collected

the red coat.

4.2.6 Tercio

Figure 4.6: The first level of Tercio

The objective of Tercio is to move the tree to the hole. The avatar can move the

tree by pushing it, but the avatar cannot freely move onto all squares. There are black,

white, blue and brown squares. If the avatar is currently on a blue square, they can

only move onto other blue squares. This is the same for all other colours except brown,

which allows the avatar to transition to a new colour of square. The agent loses if the

time runs out.

The sprites used in this game are as follows:
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• Avatar: Represents the player/agent in the game.

• Hole: Awards 1 point if the tree is moved onto it. Agent wins the game if

that is the case.

• Tree: Can be moved around by the avatar if they push it.

• Black Square: Allows avatar to move on black and brown squares only.

• Blue Square: Allows avatar to move on blue and brown squares only.

• White Square: Allows avatar to move on white and brown squares only.

• Brown Square: Allows the avatar to move from one colour of square to

another.

4.2.7 Watergame

Figure 4.7: The first level of Watergame

The objective of Watergame is to reach the exit of the map. There are pools of

water which block access to the exit which can only be cleared by pushing a jar onto

them. As the jars can only be pushed, if they are moved incorrectly this can often lead

to an unwinnable game state, and so a precise pattern should be followed in order to

win. If the level timeout is reached then the agent loses the game.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.
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• Exit: Agent wins the game if the avatar reaches the exit.

• Water: Cannot be crossed by the avatar. Disappears if a jar is pushed into

it.

• Jar: Can be pushed by the avatar. Absorbs water if pushed into it.

4.2.8 Whackamole

Figure 4.8: The first level of Whackamole

The objective of Whackamole is to hit all of the moles in the level. The moles

appear randomly from holes in the ground and award 1 point when hit. There is also

a hostile cat which is also trying to collect moles, and if the cat hits the avatar the

agent loses the game and receives a −5 points penalty. There are two types of moles,

fast and slow, which remain for different amounts of time. The game is lost if the cat

catches the avatar, and the game is won if the avatar survives until the level timeout.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Cat: Chases moles and the avatar. Agent loses the game if the cat catches

the avatar and receives -5 points.

• Mole: Awards 1 point if hit.

• Hole: A location where a mole may spawn.
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The final list of games selected from the information gain technique are shown in

alphabetical order in table 4.6.

Table 4.6: The games selected, in alphabetical order, via the Information Gain process
using the combined metric (games in bold are deceptive)

Avoidgeorge Chopper

Escape Freeway

Invest Labyrinthdual

SisterSaviour Tercio

Watergame Whackamole

4.3 Further Games

The games selected through the Information Gain technique in section 4.1 provide a

good start point for initial experiments. In order to widen the range of games ex-

perimented with, the games that were chosen in other work for experimentation were

also included [98]. This may reintroduce some bias into the results as the games being

selected have not been selected through the information gain process. In order to mit-

igate this risk, the results in the final experiments are separated into the information

gain set, and the full set including the additional games.

The reason for including additional games beyond the Information Gain technique

was to increase confidence in the results, as well as to add in more diversity to the range

of games. This section describes those games in detail. Any deceptive games that were

already described in section 3 are not included in this section again.

4.3.1 Aliens

Aliens is one of the simpler games in the GVGAI and is typically used as an example

of how the VGDL functions. The objective of Aliens is to destroy all of the invading

alien ships before they destroy the avatar, and resembles the classic arcade game Space

Invaders.

The avatar can move either left or right, and may also fire projectiles which travel
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Figure 4.9: The first level of Aliens

upwards towards the top of the screen, and if the projectile collides with an alien ship,

then it is destroyed and rewards the player with 2 points. The aliens will return fire

with their missiles which will either kill the avatar or destroy a defensive base that the

avatar can use to hide.

Aliens is a game where agents will typically win this game nearly 100% of the

time [95]. An interesting component of this game though is that there is a delay

between the fire action to launch a projectile, and the reward generated for that action.

As a result of this, some unusual behaviours emerge as agents do not correctly associate

firing as the action that generates the reward.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Aliens: Fire projectiles down towards the bases and avatar. Awards 2

points if killed.

• Base: Awards 1 point if hit. Blocks missiles from either direction, and are

destroyed on impact.

4.3.2 Bait

The objective of Bait is to collect a key and use it to reach the locked door. There are

holes on the map which will kill the avatar if they step on them, causing the agent to

lose the game. The avatar can move boxes around the map and can push them into

the holes in order to cross the holes safely, which also awards 1 point. On some levels
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Figure 4.10: The first level of Bait

mushrooms are available, and they award the agent 1 point if collected. The agent loses

if the avatar steps into a hole, and the game is won if the avatar collects the key and

brings it to the exit.

What makes this game interesting is that the levels do not have any direct paths to

success: they are all blocked by holes. The agent may have to efficiently use the boxes

available to create a path for themselves that allows them to accomplish the objective.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Locked Door: The goal of the game. The avatar must bring the key to this

door in order to win. Awards 5 points if this is the case.

• Key: Allows the avatar to use the locked door, if collected.

• Hole: Kills the avatar if they step into the hole.

• Box: Can be pushed by the avatar. Awards 1 point if pushed into a hole.

• Mushroom: Awards 1 point if collected.

4.3.3 Camelrace

Camelrace may be one of the simplest games in the GVGAI, but proves a challenge for

many agents. The objective of Camelrace is to win the race by navigating from the

left side of the level to the finish line on the right. Several other camels are competing

against the agent, and the first one to reach the finish line is the winner.
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Figure 4.11: The first level of Camelrace

This game is an excellent example of a problem that many agents run into, which

is that if a goal is too far away in the future, then the agent will not be able to see

it. There are no rewards earned by the agent until the completion of the game, so a

search based solution must generate a correct path many time-steps into the future to

be able to win. If the agent can pass the finish line first, they earn 1 point; otherwise,

they earn −1 and lose. An interesting observation of performance on this game is that

the more sophisticated agents tend to perform worse than their simpler counterparts.

Camelrace was included not only because it has been used in other experiments but

is also challenging for greedy algorithms to solve. This game was originally designed

as an example of a problem that many agents may find challenging to solve.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Camels: The other camels in the game. If they reach the exit

before the avatar, the agent loses the game.

• Finish Line: The first camel to reach this wins the game. If it is the avatar,

then the agent wins the game.

4.3.4 Chase

The objective of Chase is for the avatar to find and kill all of the birds on the level. If

a bird comes across the body of another bird, then it will become angry and will hunt

down the avatar and kill them. Each bird killed awards the agent 1 point, and if an

angry bird catches the avatar then they are penalized −1 points and lose the game. If
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Figure 4.12: The first level of Chase

the agent is able to kill all of the birds then they win the game.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Bird: Awards 1 point if killed. Becomes a worm when killed.

• Angry Bird: A bird becomes angry if it collects a worm. Hunts and kills the

avatar causing the agent to lose the game.

• Worm: Transforms a bird into an angry bird if collected.

4.3.5 Crossfire

Figure 4.13: The first level of Crossfire

The objective of Crossfire is to reach the exit of the level while avoiding the obstacles

and their projectiles. The turrets on the level fire projectiles in a random direction,

creating a challenging pattern of movement which the avatar must traverse in order to

reach the exit. If the avatar is able to reach the exit, the agent earns 5 points and wins
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the game. Should the avatar be hit by a projectile, the agent will lose 1 point and lose

the game.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Turret: Fires projectiles in a random direction.

• Projectile: Fire by a turret in a random direction. If a projectile hits the

avatar, the agent loses 1 point, and loses the game.

• Exit: Awards 5 points and the agent wins the game if the avatar reaches it.

4.3.6 Digdug

Figure 4.14: The first level of Digdug

The objective of DigDug is for the avatar to collect all of the gems and gold coins

on the level. There are also a number of hostile NPCs on the level that will try to kill

the avatar, and causing the agent to lose the game. The avatar is able to dig through

the level, and fire boulders at the enemies to kill them and protect itself.

The agent loses if an enemy is able to kill the avatar and suffers a −1 penalty, but

receives 2 points if they are able to kill a monster. If all monsters are killed, or all gems

and coins are collected then the agent wins the game.

DigDug was included as it is a particularly challenging game which very few agents

have been able to solve [95].

The sprites used in this game are as follows:
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• Avatar: Represents the player/agent in the game.

• Coin: Collected by the Avatar. Agent wins the game if the Avatar collects

all of the coins and gems.

• Gem: Collected by the Avatar. Agents receives 1 points if collected, and

wins the game if all coins and gems are collected.

• Enemy: Awards 2 points if killed. Agent wins the game if all are killed,

otherwise Agent loses the game if the Avatar is killed by the enemy.

4.3.7 Hungrybirds

Figure 4.15: The first level of Hungrybirds

The objective of Hungrybirds is for the avatar to reach the exit of the maze. Each

time-step, the avatar gets hungry and loses health and must eat food in order to main-

tain their health level. When the avatar finds a food source, they regain health. If the

avatar’s health reaches 0 then the agent loses the game.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game. Loses 15 health every

time-step. The agent loses the game if the Avatar’s health reaches 0.

• Food: Collected by the Avatar. The Avatar regains 15 health and the agent

gains 40 points.

• Exit: The goal of the maze. If the Avatar reaches this then the agent gains

100 points.
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4.3.8 Infection

Figure 4.16: The first level of Infection

The objective of Infection is for the avatar to infect all of the healthy people in the

level. Each map features medics which are able to cure any infected people that they

encounter, and are able to cure the avatar, preventing them from infecting other people

until it is infected again. The avatar can kill medics by attacking them, awarding 2

points. The game is won if all healthy NPCs are infected, and the game is lost if the

timeout is reached.

This is a more complicated game, as their are numerous interactions between the

NPCs and the avatar. The goal of the agent is simple, but challenging to execute due

to the medics.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game. The first sprite is

the normal version of the avatar, which cannot infect other NPCs. The latter is

the carrier version, which is able to infect others.

• Virus: Transforms the Avatar from normal to carrier. Can also infect NPCs,

except the medics.

• People: Can be infected by the Avatar. The first sprite is an uninfected

person, and awards 2 points if infected by the avatar. The latter sprite is already

infected, and awards −1 points to the agent if they are cured by a medic. If an

infected person is cured, they revert back to an uninfected person.
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• Medic: Awards 2 points if killed. Can transform infected persons, or the

avatar, to uninfected. Can kill any Virus if interacted with.

4.3.9 Intersection

Figure 4.17: The first level of Intersection

The objective of Intersection is for the avatar to navigate through the level to

collect items that spawn randomly at various locations, which are separated by a busy

highway. Each time a vehicle collides with the avatar then the avatar loses a life and

loses 5 points. If the avatar is able to collect an item then they are awarded 10 points.

The avatar begins the game with 5 lives.

Should the avatar lose all of their lives then the game is lost. If the avatar is able

to survive until the timeout of 1000 timesteps then the agent wins the game.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game. Begins the game with 5

lives. If the avatar loses all of their lives, then the agent loses the game.

• Vehicle: Travels at different speeds, slow or fast, across the intersection.

If the avatar interacts with any Vehicle then the agent is penalized -5 points and

loses a life.

• Item: Appears randomly throughout the level. Awards the agent with 10

points if the avatar is able to collect them.
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Figure 4.18: The first level of Lemmings

4.3.10 Lemmings

The objective of Lemmings is to build a path that will guide lemmings to the exit of

the level. There are a number of obstacles in the way that will impede the lemmings,

and potentially kill them if interacted with. The lemmings will spawn from a doorway

and make their way towards exit of the level. Each lemming that makes it to the exit

gives the agent 2 points. If a lemming falls into a trap then the agent loses 2 points.

If the avatar falls into a trap themselves, then the agent loses 5 points and loses the

game.

What makes this game interesting is that the avatar is able to dig a path through

the walls for the lemmings to follow, allowing them to bypass traps and reach the exit.

The agent is not able to directly control lemmings, only the avatar. Each wall that the

avatar interacts with however, costs 1 point to remove. This leads to the majority of

agents, even successful agents, scoring poorly on Lemmings and makes for a particularly

challenging game overall.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Lemming: Appears from the door object and moves towards the exit.

Awards the agent 2 points if it reaches the exit, or −2 if it reaches a trap in-

stead.

• Trap: Kills the lemmings or avatar if stepped on. If the avatar steps onto a

trap, then the agent loses 5 points and loses the game.
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• Entrance: The door from which lemmings spawn and begin to travel towards

the exit.

• Exit: The exit that the lemmings are trying to reach. Awards the agent

with 2 points for each lemming that reaches it.

4.3.11 Missilecommand

Figure 4.19: The first level of Missilecommand

The objective of Missilecommand is to defend several cities from missiles that have

been launched at them. The avatar is able to fire at incoming missiles, and wins if they

are able to destroy all of the missiles. For each missile that the avatar destroys, the

agent is awarded 2 points. If a missile reaches a city, then the agent loses 1 point. If

all of the cities are destroyed, then the agent loses the game.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game. Is able to fire bullets at

the missiles to destroy them.

• Missile: A set number of these appear in each level and will fall at

different speeds, towards the cities at the bottom of the level.

• City: The cities that the avatar must defend. If all of these are destroyed,

then the agent loses the game. Each city lost loses the agent 1 point.

• Bullet: Fired by the avatar upwards to destroy missiles. If a bullet hits a

missile, then the missile is destroyed and the agent is awarded 2 points.
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4.3.12 Modality

Figure 4.20: The first level of Modality

The objective of Modality is to push a crate into a hole, which is similar to another

game known as Sokoban. Sokoban is a puzzle video game that presents the player with

a maze, and the avatar has to push crates around the maze into their correct positions.

The avatar is only able to move on one type of ground at a time, and has to step

onto a specific spot in order to change which type of ground they can move onto. The

crate is able to move across any surface, though because of the limitations on the avatar

it is possible to push the crate to a spot where the avatar cannot enter. The avatar

wins if they are able to push the crate into the goal, and loses if the timeout is reached.

The avatar is awarded 1 point when the crate reaches the hole.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Ground: The ground that the avatar is able to move on. If the avatar

is already on one of these types of ground, it cannot freely move onto a square of

the other colour, unless they go through the neutral square.

• Neutral: Neutral ground which allows the avatar to move onto a different

colour of ground.

• Crate: Can be pushed by the avatar in order to reach the hole. Can move

onto any colour of square. Awards 1 point if pushed into the hole.

• Hole: The hole which the crate has to be pushed into.
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4.3.13 Plaqueattack

Figure 4.21: The first level of Plaqueattack

The objective of Plaqueattack is to defend the teeth from food, which are trying to

destroy them. This is a similar game to Missile Command, except that the levels are

larger and there are a larger number of projectiles to deal with. The avatar can move

around the world and fire missiles at the food to destroy it, and can also repair teeth

that have been damaged. Food items are spawned from several spawning grounds in

each level, which disappear after spawning 5 of their related food item.

For each food item that the avatar destroys, the agent receives 2 points. If a food

item is able to reach a healthy tooth, then the tooth becomes damaged and the agent

loses 3 points. If there are no healthy teeth remaining on the level, then the agent loses

the game. The agent is able to transform a damaged tooth back into a healthy tooth

by interacting with it, and will receive 1 point for doing so. The agent wins if they are

able to destroy all food items, and at least 1 healthy tooth remains.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game. Can fire projectiles.

• Food Item: Spawned from food trolleys. Can be destroyed by avatar

projectiles, awarding the agent with 2 points. Transforms healthy teeth into

damaged teeth if touching them, and causes the agent to lose 3 points. Both

types of food item behave in the same way.

• Healthy Tooth: Can be transformed into a damaged tooth if a food item

interacts with it. If no healthy teeth remain then the agent loses the game.
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• Damaged Tooth: Can be transformed into a healthy tooth if the avatar

interacts with it.

• Food Trolley: Spawns food items of different types.

4.3.14 Roguelike

Figure 4.22: The first level of Roguelike

The objective of Roguelike is for the avatar to navigate through a maze and find

the exit. Roguelike features particularly large levels and has many features in common

with the rogue-like genre of games. There are two types of enemies that the avatar

will face, phantoms and spiders. Spiders are faster, and present a tougher challenge

to the agent. Each level has collectables that the avatar can reach, such as hearts to

restore health and coins. Each level also features some keys which can unlock doors,

and markets which the avatar can visit to exchange gold coins for health.

The avatar is awarded points for defeating enemies, 1 point for a phantom and 2

points for a spider. The avatar begins the game with 1 health point, which can be

increased by interacting with hearts or exchanging coins for health at a market. Each

heart restores 1 point of health, and each exchange also restores 1 point of health. The

avatar’s health cannot exceed 10 points of health. If an enemy NPC is able to interact

with the avatar, then the avatar loses either 1 point of health if it was a phantom, or

2 for a spider. The avatar also receives points for collecting items in the map, namely

the sword, key and coins. The sword gives the agent 2 points and allows the avatar to

attack. The key and coins each give 1 point to the agent.

If the avatar is reduced to 0 health, then the avatar is killed and the agent loses
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the game. Should the avatar reach the exit of the level then the agent is awarded 10

points and wins the game.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game. Can use the sword to

defeat enemies, but only after collecting it from the level. The agent loses the

game if the avatar is reduced to 0 points of health.

• Sword: Can be collected by the avatar. Allows the avatar to attack enemies

and awards the agent 2 points if collected.

• Phantom: A slow enemy that tries to kill the avatar. Reduces the avatar’s

health by 1 if interacted with directly. Awards 1 point to the agent if the avatar

hits the phantom with the sword.

• Spider: A fast enemy that tries to kill the avatar. Reduces the avatar’s

health by 2 if interacted with directly. Awards 2 point to the agent if the avatar

hits the phantom with the sword.

• Coin: Can be collected by the avatar. Awards the agent 1 point if collected

by the avatar.

• Market: The avatar can exchange points at a market in order to restore

health. Exchanges transform 1 coin into 1 point of health.

• Heart: Can be collected by the avatar to restore 1 point of health.

• Key: Can be collected by the avatar to unlock a gate. Awards the agent 1

point if collected.

• Gate: Prevents the avatar from moving through it until it is unlocked by a

key.

• Goal: The objective of the level. Awards 10 points if the avatar reaches it,

and the agent wins the game.
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4.3.15 Seaquest

Figure 4.23: The first level of Seaquest

The objective of Seaquest is to rescue divers that have fallen into the sea. The

avatar is a rescue submarine that is trying to reach the divers, while avoiding aggressive

animals. The submarine is able to fire projectiles which kills animals, and awards 1

point to the avatar. The objective is further complicated by the submarine having a

limited capacity of oxygen, requiring that they return to the surface to refill oxygen

periodically. If the avatar is able to rescue all of the divers, then the agent is awarded

1000 points.

The agent wins the game if the avatar is able to survive until the timeout of the

level. If an animal reaches the avatar, then the avatar is killed and the agent loses the

game. Similarly, if the avatar runs out of oxygen, then the avatar is killed and the

agent loses the game.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game. Can fire torpedoes. Has

a limited supply of oxygen which is depleted while the avatar is underwater.

• Torpedo: Fired by the avatar. If a torpedo hits an animal, then the animal

is killed and the agent is awarded 1 point.

• Animals: There are multiple types of animals which move at

different speeds and behaviours. If any of the animals interact with the avatar,

then the avatar is killed and the agent loses the game.
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• Diver: Divers that have become lost at sea. Can be collected by the avatar

and returned to the surface. If all 4 divers are saved, then the agent is awarded

1000 points.

4.3.16 Survivezombies

Figure 4.24: The first level of Survivezombies

The objective of Survivezombies is for the avatar to survive the waves of zombies

that are hunting it. The zombies will chase down the avatar, and if they are able to

catch it then the avatar will lose 1 point of health. Zombies will appear from graves

that appear around the map. If the avatar interacts with a grave, then the avatar is

killed and the agent loses 1 point and loses the game. The avatar is able to defend

themselves by collecting honey from around the map. Honey increases the avatar’s

health by 1 point and also awards the agent with 1 point.

Friendly bee NPCs will move around the map randomly. If a bee interacts with a

zombie, then the zombie is turned into a honey item. If the avatar is able to survive

until the timeout of the level then the agent wins the game.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.

• Zombie: Chases the avatar around the level. Reduces the health of the

avatar by 1 if interacted with, as well as losing the agent 1 point. Spawned from

graves.
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• Grave: Spawns zombies which will chase the avatar. There are two types of

graves which spawn the same type of zombie, but do so at different intervals. If

the avatar interacts with a grave, then the avatar is killed and the agent loses the

game and 1 point.

• Honey: Increases the health of the avatar by 1 if collected. Also increases

the agent’s score by 1.

• Bee: Moves randomly around the level and turns zombies into honey if

interacted with.

4.3.17 Waitforbreakfast

Figure 4.25: The first level of Waitforbreakfast

The objective of Waitforbreakfast is to successfully eat breakfast. The avatar must

wait for the waiter to serve breakfast, before eating it. If the avatar moves to the table

before breakfast is served, then they must wait there until breakfast arrives. If the

avatar leaves early, then the agent loses the game. The agent wins only if the avatar

eats breakfast after it has been served, and without leaving the table after sitting there.

Waitforbreakfast can also be considered a deceptive game, as it does not clearly state

to agents what the objective is immediately, and tries to punish agents for behaving

erratically by forcing them to lose the game if they move away from the table.

The sprites used in this game are as follows:

• Avatar: Represents the player/agent in the game.
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• Waiter: Brings breakfast to the table for the avatar. Initially does not spawn

with breakfast, and has to wait for a random amount of time before breakfast is

ready to be served.

• Chair: The location that the avatar must remain at until breakfast is served.

If the avatar leaves before breakfast is served, or leaves without eating breakfast,

then the agent loses the game.

• Table without Breakfast: The table before breakfast is served.

• Table with Breakfast: The table after breakfast is served. If the avatar eats

breakfast then the agent is awarded 1 point and wins the game.

With the selection of games for experimentation finalised the next step was to

develop agents that may be able to solve them, and select agents that would be good

benchmarks for comparison. The goal is to have a diverse selection of agents to compare

with, and to develop some new agents which are able to see improved generality across

the suite of games. Ensemble Agents were determined to be an interesting avenue to

explore.

4.4 Chapter Summary

This chapter outlines the rationale behind the particular games that were chosen as

part of the experiments for the final work of this thesis. This choice is particularly

important because of the likelihood of introducing bias through either over or under

representing a particular type of game. Along with this a detailed description of each

game has also been provided along with an explanation of the specific challenge involved

when playing each game.

A novel problem selection technique, Continuous Information Gain, was also intro-

duced as a way of solving the problem of game bias in the experimental set.
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Ensemble Decision Systems

As previously discussed in chapter 2, Ensemble Decision Systems (EDS) are a method of

combining the output from a variety of algorithms into a single action. Any combination

of algorithms can be used, and can be run concurrently to perform their analyses on

a given state simultaneously. These features mean that EDSs offer a huge amount of

flexibility for designing agents. Exploring some of these possibilities and implementing

a number of EDS variations has been one of the main goals of the work of this thesis,

in line with the larger goal of developing a more general GVGP agent that maintains

a high level of performance on each individual game.

One type of multi-algorithm agent has seen a lot of success in the GVGAI: portfolio

agents. By performing analysis on the game being played, the portfolio tries to decide

which algorithm is best suited for the current game. It is then generally unable to

switch algorithm during the game, as they work on the idea that each game has a

suitable algorithm to solve it [95]. This is behaviour that an EDS, on the contrary, is

able to accomplish.

As an example, Ms. Pacman is a challenging game for agents to solve. The reason

for this is that search agents typically rely on short to mid-term rewards to guide the

direction of where to go. What happens if the final pills that the agent needs are on

the other side of the level? Often search agents would become stuck, looking at a

barren reward landscape and trying to figure out which direction to go. Ideally, the

agent would want to change tactics at this point and potentially make use of a long-

101



Chapter 5. Ensemble Decision Systems

range planner to find its way to the final pills and complete the level. An EDS can

use the same search algorithm but have it supported by such a planner to inform the

overall strategy of the agent. In this example each of the algorithms provide a different

perspective to solving the same problem.

Due to the success of multi-algorithm agents in the GVGAI the question that arises

is: how can a multi-algorithm approach be improved? Theoretically, adding in addi-

tional algorithms for a portfolio agent to choose from would increase its performance,

but this relies heavily on accurate algorithm selection techniques. If the algorithm se-

lected to solve a particular game is poorly chosen, then performance on that game will

suffer. In contrast to portfolio agents, an EDS allows the collection of algorithms to

work together to propose the action to take. By balancing the views of each algorithm,

it is theorised that a more informed decision can be made about which action to take.

Each algorithm plays a part in every decision, and their combined input is used to make

the final decision on what the agent should do. The EDS takes advantage of emergent

behaviour by layering simple behaviours to generate complexity. The goal is to create

an agent with improved generality which aims to widen the range of games that can

be solved, while maintaining a standard of performance in each individual game, and

without the need of additional algorithms to analyse game characteristics.

This chapter will describe the different EDS agent variations that were built to test

the capabilities of an EDS. First, the different variations that were tried are described

in detail, along with some intuition about their inclusion and functionality. Secondly,

there are a number of considerations that each variation had to take into account during

design, which are also described in this chapter.

5.1 Architecture

Ensemble systems are primarily composed of three parts: Voices, Opinions and the

Arbiter. There are a number of ways each of these elements can be constructed, and part

of the work done has been to explore the possibilities and discover what modifications

and combinations of elements are effective for GVGP. Figure 5.1 shows an example of

the overall architecture of an Ensemble system. In this section, the different components
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are described in detail and the considerations for them are outlined.

Voices

State Arbiter Action

Voice 1 Voice 2 Voice 3

Figure 5.1: An intuitive view of the Ensemble architecture. The current state is input
into the system and each Voice analyses the state. The voices then each return an
opinion of what to do and the arbiter takes these opinions into account when deciding
what action to take.

5.1.1 Voices

A Voice is an algorithm, such as MCTS, which has been adapted to work within an

EDS. Voices analyse the current state independently, and essentially act as if their

analysis is the only one being considered. Once analysis is complete, an Opinion is

returned which could be a variety of different configurations, but typically contains the

action that the Voice wants to take and a value to represent the confidence that the

Voice has in that action. Additionally, a Voice need not be limited to a single algorithm,

but could also be represented as a collection of algorithms in itself. Voices could also

focus on discrete tasks, as well as general ones, such as avoiding dangers or collecting

coins.

There are a number of ways in which the behaviour of Voices can be decomposed.

This thesis considers three different decompositions: behavioural, temporal and per-

spective.
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5.1.1.1 Behavioural Decomposition

Behavioural decomposition aims to use each Voice within the EDS to achieve a specific

goal in a game. The work done by Rodgers et. al. [84] shows how such a system of

simple behaviours can be built up into a more complex agent. Each Voice in Rodgers’

Ms. Pacman system has a specific objective, such as collecting pills, avoiding ghosts

or collecting fruit.

This kind of decomposition works well when the game is well understood, though

it does not work well for a GVGP agent as the goals of the game need to be identified.

How would an agent decompose such goals for any game?

5.1.1.2 Temporal Decomposition

Temporal decomposition aims to design each Voice with more abstract goals across time.

Short range Voices were designed to focus on survival, trying to avoid a loss condition

and recommending actions that take the agent away from danger. A one step look

ahead agent which looks for loss conditions is a good example of a short range Voice.

Long range Voices would function similar to a planner, and would attempt to find an

interesting target far into the future that the agent should slowly try to achieve. The

medium range Voices were designed to safely traverse the game level while maximising

reward, as well as getting the agent closer to the long range Voice’s goal. Candidate

algorithms for the medium range Voices could be any search based algorithm such as

MCTS, OLETS or RHEA.

This type of decomposition was initially tried for the proof of concept system,

though a number of issues became apparent in these initial experiments. First, defining

a long range Voice proved to be difficult, as the amount of abstraction required removed

all detail from the game and left the Voices providing inaccurate Opinions. Secondly,

while the short range Voice was effective at avoiding danger it became clear that the

algorithm was double checking the immediate states from the initial state. The short

range Voice would analyse those states and return an Opinion, followed by the medium

range Voice performing a similar analysis on the first states.

To make the short range Voice more useful, it would need to be able to detect losing
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states before the point of no return. This behaviour is difficult to describe in code in a

general way and in the end it was decided to try a different kind of decomposition.

5.1.1.3 Perspective Decomposition

The concept of perspective decomposition breaks down the goals of problem solving

into different points of view. Games can be viewed in a number of different ways; it is

not always satisfying for a player to simply win a game. Role playing games heavily

encourage exploration whereas arcade games focus more on survival and achieving high

scores. Simply finding a win condition is not enough to adequately solve all games.

With this in mind and the ideas explored through deceptive games perspective

decomposition was selected as the way forward. Instead of trying to identify a set of

general objectives for Voices to accomplish, the algorithms each provide their own point

of view on what to do. These points of view are guided by the heuristics of the Voice,

but also by the mechanism of the Voice’s algorithm. Voices are added to the system

with a specific perspective in mind, such as maximising exploration or score, and work

together.

By bringing together a variety of points of view the EDS can make a more informed

decision.

5.1.2 Opinions

An Opinion is a set of actions labelled with values which holds the results of a single

Voice’s analysis. Due to the flexibility of an EDS, this could be represented in a variety

of ways. A Voice may return an Opinion on all possible actions, or just a single action,

or it could return an Opinion negatively, in order to express a dislike for a particular

action. The data structure could be expanded in order to include a veto feature, which

allows a Voice to remove an action from consideration for a number of reasons.

5.1.3 Arbiter

The arbiter is the final decision making component of the EDS. Decisions are made

after all of the Voices have returned their opinions about the current state of the game,
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and an action selection policy is used to decide the final action.

This component is the most critical to the success of the system, as the arbiter is

responsible for not only deciding the final action to take, but can also decide which

Voices to use. Typical policies could be to select the action with the highest value,

trusting the voices to know best about the situation, or using a democratic process to

select the action most preferred by all of the Voices. Another option could be that

the arbiter is a neural network which learns which Voices typically provide the best

outcomes for which states, or it could be a bandit style selection process. Arbiters also

have the option of activating and deactivating Voices, or adjusting weights applied to

each Voice which can alter the amount of importance that each Voice is given based

on experience. As an example, the EDS may have a limited number of active Voices,

but also has a larger library from which to choose from, and the arbiter would decide

which Voices to use based on their current performance in the game being played. If a

Voice is not contributing well, then it could be swapped for another that may do better.

Each Voice could have the confidence of their opinion modified by a weight, which can

be adjusted by the arbiter based on how well that particular Voice has performed in

the current game.

The policy chosen has a large effect on the performance of the agent [23].

Each of these components in themselves offer a wide variety of variations and mod-

ifications to experiment with. Voices could be designed to fulfill specific purposes, such

as survival or goal finding, whereas the arbiter can use a variety of policies for select-

ing the action to take. The system also offers the flexibility to switch between Voices

at run-time, essentially activating Voices that are determined to be promising, whilst

deactivating those that haven’t been useful to the particular game so far. Additionally,

this flexibility provides an easy mechanism for updating the behaviour of an EDS, by

creating a simple algorithm which achieves the desired behaviour, and then plugging it

into the EDS to become part of the decision making process.
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5.2 Variations

The flexibility offered by an EDS is one of its strongest points. The work required to

thoroughly test all possibilities are beyond the scope of this research, however some

exploration of those possibilities has been done.

Each of the main components of the EDS (Arbiter, Voices and Opinions) have

different considerations and possibilities, and the variations that were used in these

experiments are described here.

5.2.1 Arbiter Variations

The Arbiter can be implemented in a number of ways to tweak the performance of the

EDS. As the final decision making process for the agent, important considerations have

to be taken for how best to use the arbiter.

Within the GVGAI environment, there are two factors that make up the arbiter’s

functionality. The amount of time to return a decision, and the process of reaching the

decision.

5.2.1.1 Time Splitting

As the GVGAI does not allow multi-threaded solutions, deciding how best to use the

time available is of paramount importance, and even more so in an EDS. For example,

an MCTS algorithm will use the full 40ms available to it to return a decision, whereas

each Voice within an EDS necessarily receives a portion of that, depending on how the

arbiter apportions the time.

The simplest option for this is to give all Voices equal amounts of time, therefore

each Voice receives (40/N)−1 ms where N represents the number of Voices in the EDS.

An additional 1ms is removed in order to deal with the overhead of the arbiter making

its decision. This is the most straightforward method, however it doesn’t leverage all

of the possibilities of the EDS. Many of the Voices may not require a full slice of time

in order to conduct their analysis, whilst others may benefit from a larger slice.

Alternatively, over time the EDS can learn which Voices are providing the most
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accurate and productive information about the game being played and may tune the

time for each Voice differently as a result. In some cases, it may even be prudent to

switch off a Voice that is not able to contribute, such as a hostile NPC avoidance Voice

in games where NPCs are not present.

It is worth noting that these time splitting considerations are only necessary due to

the restriction enforced by the GVGAI competition. The EDS naturally lends itself to

concurrency with each Voice being ran as a separate thread, conducting their analyses

at the same time rather than sequentially.

5.2.1.2 Action Selection Policy

Once the Voices have returned their decisions, which one should the arbiter ultimately

listen to? Again, the simplest approach would be to use Opinions with values and to

take the Opinion that offers the highest value, as returned by the Voices. This still

offers a new insight into the game being played: the EDS can use one of N styles of

play at will, but doesn’t fully leverage the potential of the EDS.

A more interesting approach to action selection, is to have all of the Voices return

an Opinion for each possible action. Then the arbiter is able to select actions based

on a more representative view, and may even select actions that none of the Voices

specifically selected. As an example, if the Voices have each returned their opinions

for each action, and one Voice has highly valued action a1 while another has highly

penalized a1, then the system could choose their second choice action as it ranks higher

overall. This also allows the possibility for Voices that are focused on negative outcomes,

such as avoiding loss conditions, to penalize actions that are bad for the agent overall.

5.2.2 Voice Variations

One of the most interesting things about an EDS is the myriad ways in which a collection

of algorithms could be used. Not only are the combinations of Voices important, but

how they are designed to interact with each other also plays a part in determining the

overall performance of the agent.

An issue with single algorithm systems, in a general problem solving environment,
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is that they have to take into account all possibilities. Expanding a single algorithm to

do things beyond their original programming is often difficult, or can potentially alter

the strengths of the algorithm. In particular, the strengths of the MCTS algorithm

comes from the rollouts, so if these rollouts are biased too heavily towards a particular

objective in lieu of others, it may perform much worse in particular environments. With

an EDS all that is needed, to introduce additional behaviour or objectives, is to design

a separate algorithm that is capable of performing the additional functionality, and to

add it to the system. Complexity emerges from the culmination of simpler behaviours.

The specific Voices and EDS agents are described in chapter 6.

5.3 Prototype Experiments

The biggest initial question at the onset of this work was: would an EDS be able to run

in the GVGAI? Would the 40ms time limit and single threaded rules of the competition

be too limiting?

To answer these questions, an initial experiment was run as part of the author’s

undergraduate individual project, which sought to confirm that an EDS could, first

of all, run successfully without disqualifications and, also, wouldn’t greatly sacrifice

performance by splitting up the analysis time of each algorithm [99].

5.3.1 The Initial Ensemble Decision System

The first EDS that was designed took the approach of assigning a specific goal for

each of the three Voices, based on a simple notion of distance. There was one close

range survival Voice, a mid range Voice and a long range planning Voice. The intuition

behind this design was that a combination of reaction and long range planning could

complement each other well, and seems to be in line with human problem solving. When

someone wishes to plan a trip, they begin by deciding the end destination, and begin

to slowly plot a path to that point while at the same time being aware of immediate

dangers on the road as they progress. This EDS works in a similar fashion.

The long range Voice would first select an interesting observation on the map,
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preferably far away in distance, and then create a basic plan to reach this target.

This plan is then passed to the mid range voice, which in this case was a MCTS Voice,

which would then simulate following that path, before performing the rest of its normal

analysis. If the result of the path simulation is positive, the long range Voice would be

informed of this, and would retain this target, otherwise it would select a new target.

The short range voice is a simple one step look ahead algorithm that would simulate

a single step into the future for each possible action and would veto any actions that

would lead to a loss condition for the agent.

The main goal while developing this early prototype was to retain as much generality

as possible. Any improvements should not be too specific to any particular problem, as

this may weaken the agent in another game type. The reasoning behind this restriction

is to simply keep in mind the overall goal of the GVGAI competition, developing

general purpose game playing agents. To this end, a number of assumptions were made

to simplify some of the design choices.

First, in regards to the long range Voice, the level was assumed to have no walls. Due

to the unknown nature of the game being played, assuming that walls were obstacles

would not always be the rational choice. As an example, the game Digdug, discussed

in section 4.3.6, features walls that can by mined, creating new paths for the agent.

Similarly, because the nature of the target being selected by the long range Voice cannot

be discerned from a distance, it would not make sense to attempt to either positively or

negatively value the long range target. If the target is beneficial, is there a guarantee

that it is sufficiently better than all other options? Or if it is detrimental, should the

agent ignore positive states in order to avoid it?

Secondly, in an ideal EDS the Voices do not directly speak to each other, but instead

use the arbiter to pass information, which then makes decisions on what to do with it.

This prototype, on the contrary, had direct communication between the long and mid

range Voices, to ease the implementation. Also, any modifications that were done to

theoretically improve performance were done in a manner which retained generality. If

a behavioural modification could be made, which would improve performance for, as an

example, puzzle games, then, unless it could be shown to not impact the performance
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of other games, it wasn’t included.

Lastly, the short range Voice is able to use a veto on all actions from any other

Voice. If the short range Voice spots a threat, it will override the rest of the decision

making process and take control. While this isn’t necessarily a problem, it is preferable

to allow the Voices to perform their analysis and perhaps use the short range Voice

as a soft veto, to disallow analysis down a particular action, allowing deeper searches

down the other options.

As an initial experiment, this first system not only functioned well within the con-

straints of the competition, but showed results that were better than the sample agents

for some games. This is important, as the Voices were based on the sample agents, and

to see a strong performance like this is an encouraging observation [99].

With the proof of concept working within the GVGAI, the next step was to deter-

mine a set of games to experiment with. The reason this became important is that

much of the previous work had been done on different sets of games, and it would often

become difficult to compare individual results across papers. In addition, the ranking

system used within the GVGAI, ranking by win rate then score and finally time taken,

raised some questions. If an agent achieves a poor score, but wins the game is that as

desirable as an agent that scores exceptionally well but doesn’t win as often? Are there

games where it would actually be detrimental to reach a winning state early, or where

the score leads the agent away from a win state? Exploring the set of games within the

GVGAI gives some examples of games which do not easily fit into the ranking formula

of the competition: for example Butterflies can be won easily by agents but improved

performance can lead to a better score.

Finding such games raises a new question: how much of an effect does the set of

games chosen to evaluate agents have on the ranking of those agents? The notion of

games that deliberately mislead agents was then explored, and some deceptive games

were designed and implemented in the GVGAI framework. These games then formed

the basis for further experiments to look into creating effective ensemble agents which

are explained in chapter 6.
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5.4 Chapter Summary

This chapter introduced the main focus of investigation of this thesis, namely the

Ensemble Decision System. Each component of the system was explained in detail and

an in-depth explanation of how they work together is provided.

A number of proposed architectures for such as system are outlined along with

justifications for their inclusion/exclusion in the final experiments.
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Experimental Setup

This chapter looks at the final experiments that were conducted for this thesis. First,

the EDS using a perspective decomposition approach was tested, using the set of GV-

GAI games identified in chapter 4. Second, the ideas for improving the EDS are de-

scribed further, followed by a comparison with some of the portfolio agents from the

GVGAI. Lastly, the final series of experiments to test a variety of EDS architectures

and determine their viability for GVGP are presented.

6.1 Ensemble Decision Systems for General Video Game

Playing

With the continuous information gain technique selecting the most discriminatory

games, and the issue of deceptive games highlighted, the time came to design an agent

taking these factors into account. With the previous successes of portfolio agents and

the ensemble agents developed for AlphaGo [26] and Ms Pacman [84], implementing

an Ensemble agent for the GVGAI was the natural next step [23]. This work has had

one publication at the Conference for Games 2019 under the title Ensemble Decision

Systems for General Video Game Playing and can be found in appendix D.

When designing an EDS there are a number of questions to answer: what voices

should be used? How should actions be selected? What is the best way to use the 40ms

decision time?
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The first attempt to address these questions was to develop a more naive EDS which

would simply make use of a collection of current agents from the GVGAI competition,

to ensure that an EDS is able to perform satisfactorily within the environment.

The intuition behind this EDS was that algorithms focused separately on explo-

ration and winning can be combined usefully. Exploratory work was done to look at

this question by Perez et al., which looked at applying multiple heuristics simultanously

within a single algorithm, and showed that this combination of different perspectives

increased win rates of the MCTS agent [100].

Another source of inspiration was the work carried out by Guerrero-Romero et al.,

which looks at using different heuristics across five sample GVGAI agents to determine

which heuristics work best with which algorithms [98]. Guerrero-Romero et al. created

four different heuristics which focused on different, general, objectives of video games

such as exploration and gaining knowledge about the game. These heuristics are used

by five GVGAI agents (MCTS, OLETS, RHEA, RS and OSLA) and tested across a

set of GVGAI games.

Combining these ideas was a natural next step as the EDS provides a mechanism

for doing this. Instead of using different heuristics in a single algorithm, the EDS

allows the algorithms which are best for each objective to work together to make more

informed decisions.

Several EDS variations were created with these ideas in mind and tested against

the games chosen in previous chapters. The full list of agents tested is shown in table

6.1. Each agent was played against the five levels of each game, and given 50 iterations

of each level. The full list of games used for these experiments are shown in table 6.2

These experiments were performed using a laptop running Linux Mint with an Intel

i7-8565U CPU with 16GB of RAM.

6.1.1 Heuristics

There are four heuristics that were designed and created by Guerrero-Romero et al [98].,

each focusing on a specific objective. This section briefly describes these heuristics and

how they function.
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6.1.1.1 Win Maximisation

The Win Maximisation Heuristic (WMH) focuses on finding states that result in a win

for the agent. It applies a large bonus to any observed states that result in a win, and

a large penalty to states that result in a loss.

Upon reaching a terminal state, if the agent has lost the heuristic returns a value

of −10, 000, if the agent has won then the heuristic returns 10, 000. In the cases of non

terminal states, the heuristic returns the score that would be achieved from taking that

action. This is done by subtracting the evaluated score from the current score of the

agent. Pseudocode of the algorithm is shown in algorithm 1.

Algorithm 1 Win Maximisation Heuristic (WMH)

if isGameOver() and isLoss() then
return -10000

else if isGameOver() and isWin() then
return 10000

return newScore - currentScore

6.1.1.2 Exploration Maximization

The Exploration Maximisation Heuristic (EMH) focuses on bringing the agent to states

that it has not visited previously. States that have previously been visited are slightly

penalised, whereas states which have not been seen before, or have rarely been visited

are given a small bonus. This version differs slightly from the version presented by

Guerrero-Romero et al. in that winning is rewarded instead of penalised.

The EMH has a similar evaluation mechanic for win and loss states as the WMH

heuristic, but does not take score into account. If the desired action leads the agent

out of bounds of the game level then the heuristic returns −10, 000. If the position is

one that the agent has not visited before then the heuristic returns 100. If the position

has been visited before, within its memory, then the heuristic returned −50. Finally,

the heuristic returns −25 for all other positions. Pseudocode of the algorithm is shown

in algorithm 2.
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Algorithm 2 Exploration Maximisation Heuristic (EMH)

if isGameOver() and isLoss() then
return -10000

else if isGameOver() and isWin() then
return 10000

if isOutOfBounds(newPosition) then
return -10000

if not hasVisitedBefore(newPosition) then
return 100

if isSameAsCurrentPosition(newPosition) then
return -50

return -25

6.1.1.3 Knowledge Discovery

The Knowledge Discovery Heuristic (KDH) tries to interact with as many objects in

the game as possible to learn what happens in those situations. It does this by trying

to trigger as many interactions between entities on the level as possible, and trying to

learn how new entities are spawned, if any are.

The heuristic values states that have either new sprites in them, or new interactions

between sprites. A sprite is considered to be acknowledged if the avatar has observed it

in the real game or in the forward model for the first time. Any time that a new sprite

is acknowledged, the heuristic returns 10, 000. If no new sprites are acknowledged,

then the heuristic will return a different value, depending on the occurrence of an

interaction and its type. If the interaction has not been seen before, then the heuristic

returns 1000. If the interaction involves the avatar touching another sprite, then 50 is

returned. In many games the agent is able to create new sprites, such as projectiles,

which can interact with other sprites. In this case, the heuristic returns 50. If no

interaction occurs, then the heuristic returns −25. Pseudocode of the algorithm is

shown in algorithm 3.
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Algorithm 3 Knowledge Discovery Heuristic (KDH)

if isGameOver() and isLoss() then
return -10000

else if isGameOver() and isWin() then
return 10000

else if isOutOfBounds(newPosition) then
return -10000

if newSpriteAcknowledged() then
return 10000

if eventOccured() then
if eventIsUnique() then

return 100
else if avatarInteraction() then

return 50
else if avatarProjectileInteraction() then

return 25
return -25

6.1.1.4 Knowledge Estimation

The Knowledge Estimation Heuristic (KEH) has a similar objective to the KDH but at-

tempts to estimate what the interaction will achieve, instead of discovering it through

experience. The objective of this heuristic is to better understand the critical com-

ponents of the game being played. KEH tries to determine what the win and loss

conditions are, as well as what score change might happen when taking certain actions.

Unlike the other heuristics, KEH penalises win conditions, though less than a loss

condition. The main difference between KEH and KDH is that KEH returns values

based on what it believes the chances of winning are. These values range from 0− 100.

The pseudocode for KEH is shown in algorithm 4.
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Algorithm 4 Knowledge Estimation Heuristic (KEH)

if isGameOver() and isLoss() then
return -10000

else if isGameOver() and isWin() then
return -5000

else if isOutOfBounds(newPosition) then
return -10000

if newSpriteAcknowledged() then
return 10000

if eventOccured() then
if eventIsUnique() then

return 100
return rewardForTheEvents() . Value between 0 - 100

noOfInt = totalNStypeInteractions()
if noOfInt == 0 then

return 0

return
−50

(200× noOfInt)

6.1.2 Sample Agents

A number of sample agents are provided by the GVGAI framework as a basis for

building competitor agents. These are versions of different algorithms, such as MCTS

and RHEA, and demonstrate to developers some of the functionality provided by the

framework, as well as examples for how to interact with the framework API. In this

work, the sample agents were used as a basis for testing the capabilities of an Ensemble

system, as currently they are well understood, and using them as opposed to a new

algorithm removes some variables for performance analysis.

For these experiments, none of the sample algorithms used for comparison were

modified from the version provided by the framework. For those that were used in an

EDS, a number of modifications were necessary in order for them to meet the require-

ments of the system. First, they were adapted to be able to use different heuristics

for their analysis, based on the work of Guerrero-Romero et al [98]. Secondly, in order

to fit within the EDS, the algorithms were altered to return an Opinion instead of a

single action. As described in section 5.1.2, Opinions are a single action which also

holds a value associated with that action. This value represents the confidence that
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the Voice has in that action. A Voice can be required to either return one Opinion, or

several Opinions. In the case of returning several Opinions, the Voice has to provide

one Opinion for each possible action. For these experiments, the single Opinion option

is used.

The process of transforming a GVGAI agent into a Voice for the EDS is straight-

forward. Whenever the agent would return an action, it needs to instead create a new

Opinion and add that action to the Opinion, along with the value that it gives that

action. This value is typically the heuristic evaluation of the agent, in order to preserve

the perspective of that agent.

The sample agents that were used are described in this section.

6.1.2.1 sampleRandom

The SampleRandom agent does not have any deliberative or reasoning aspects and

simply selects an action at random from those that are available.

This agent was only used for benchmark purposes and was not used in an EDS.

6.1.2.2 One Step Look Ahead (OSLA)

The OSLA agent uses the forward model to analyse the state reached if each avail-

able action is taken once, and selects the best action to take. By default, the sam-

pleOneStepLookAhead agent uses the SimpleStateHeuristic, which is a basic heuristics

provided by the GVGAI framework. The SimpleStateHeuristic gives a large bonus to

states that result in the agent winning, and a penalty if a loss is observed. Other than

wins and losses, the heuristic also takes into account the NPCs present in the level, as

well as portals which may spawn new NPCs or lead the avatar to a new area.

This agent was only used for benchmark purposes and was not used in an EDS.

6.1.2.3 Open-Loop Monte-Carlo Tree Search (OLMCTS)

The OLMCTS agent is a variation of MCTS that is designed to work better in stochastic

environments [58]. Instead of storing states at each node of the search tree, the forward

model is used to reevaluate actions. The sampleMCTS agent provided in the framework
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makes use of the OLMCTS variation and has a rollout length of 10 and a C-value of
√

2.

The default evaluation function takes into account the current score that the rollout

has achieved, as well as applying a large bonus or penalty depending on whether the

agent has won or lost.

This agent was used both as a benchmark and as a Voice in EDS variations.

6.1.2.4 Open-Loop Expectimax Tree Search (OLETS)

The OLETS agent is based on the Hierarchical Open-Loop Optimistic Planning (HOLOP)

algorithm but has been improved specifically for stochastic environments [101]. OLETS

does not rely on roll outs in order to evaluate nodes, but instead relies on the open

loop expectimax method to assign bandit scores. The heuristic used to evaluate states

assigns a large reward for wins and a penalty for losses, and simply returns the score

achieved in other situations. Further details of the algorithm are described in [15].

The version provided by the framework has a playout length of 5 and the default

heuristic used takes into account whether or not the agent has won, as well as the

current score achieved.

This agent was used both as a benchmark and as a Voice in EDS variations.

6.1.2.5 Rolling Horizon Evolutionary Algorithm (RHEA)

The RHEA algorithm uses an evolutionary approach. It maintains a population of

individuals, which represents a plan of actions to execute. This plan is then simulated

and evaluated with the forward model [60]. After the evaluation is performed, the first

action in the best plan is executed by the agent. The sampleRHEA provided in the

framework uses the provided WinScoreHeuristic, and evolves individuals keeping 10 of

them at a time. The WinScoreHeuristic awards win states with a large bonus, those

with a loss a large penalty, and all other states return the score. It applies mutation

and crossover as part of the evolutionary process until time runs out. The number

of individuals that it will produce is dynamic, as it will produce individuals until the

analysis time limit of 40ms is nearly over.

This agent was used both as a benchmark and as a Voice in EDS variations.
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6.1.2.6 Random Search (RS)

The RS algorithm is another evolutionary approach, based on RHEA. Instead of evolv-

ing individuals however, they are generated randomly. The sampleRS implementation

provided by the framework produces individuals with a length of 10, and produces as

many as possible within the 40ms analysis time.

This agent was used as a benchmark and as a Voice in EDS variations.

6.1.3 Ensemble Agent Variations

In total, six Ensemble agents were created for these experiments. These agents use

different algorithms which are themselves using the heuristics described in section 6.1.1.

The initial idea for these experiments was to develop some EDS variations that could

combine the EMH and WMH heuristics, to develop an agent that could better balance

exploration and exploitation. An EDS with two voices, one using the EMH and one

using the WMH was tried, with a few further variations to try different algorithms with

the heuristics to see which performed best together. All of the EDS Voices return a

single Opinion when returning their output.

The EDS agents that were used for these experiments are described in this section.

The EDS agents use a naming convention to help differentiate them. As an example,

OLETSExpSc stands for OLETS Explore Score, which is a two Voice EDS using OLETS

for both Voices but one uses the WMH and the other uses the EMH.

6.1.3.1 BestFour

This variation uses four Voices, one for each of the heuristics described in section 6.1.1.

The Voices used are OLETS with WMH, RS with EMH, RS with KDH and OLETS

with KEH. Each of those algorithms were identified as the best for their respective

heuristic [98]. Each Voice is given an equal share of the analysis time, meaning that

they each receive roughly 9ms of time each to compute.

The action which has the highest value, returned by the Voices, is then selected by

the arbiter as the action to take.
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BestFour did not perform particularly well in the experiments, though it did manage

to win a large number of the games when compared to the sample agents. This is likely

due to the heavy dilution of the analysis time for each of the 4 Voices, leading to none

of the Voices having enough time to adequately analyse the states.

6.1.3.2 BestFourDiplo

This variation uses four Voices, which are the same as BestFour, but uses a diplomatic

arbiter instead. The main difference is that instead of selecting the action with the

highest value, each Voice gets a vote on which action to take, and the most popular

action is taken. In the case of no clear majority, a random action is selected.

BestFourDiplo performed better than BestFour, with a higher win rate and being

able to win an additional game over BestFour. It did not perform as well as the EDS

agents that used fewer Voices, showing that splitting the analysis time too much may

have a detrimental effect on performance.

6.1.3.3 BestExpSc

This variation uses two voices, OLETS with WMH and RS with EMH. The idea with

this variation was to see if simply combining the winning and exploration heuristics

would produce a more general agent, whilst maintaining a similar level of performance

as the individual algorithms. For the action selection policy, the action with the highest

value is selected.

This variation performs quite well and manages to complete more games than Best-

FourDiplo with a higher overall win rate.

6.1.3.4 MCTSExpSc

This variation uses two voices, but instead of working with the best algorithms for each

heuristic, the MCTS algorithm is used for both WMH and EMH. This gives a clearer

performance comparison with the sampleMCTS agent. The action with the highest

value is selected.
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Interestingly, this variation is able to win a larger number of unique games than

the sampleMCTS agent, as seen in table 6.3. It does suffer a performance hit in the

individual games, likely due to having less analysis time than the sampleMCTS. Given

the aim of the GVGAI, this is an encouraging result, particularly given that the EDS

at this stage is naively constructed.

6.1.3.5 OLETSExpSc

This variation used two voices, OLETS with EMH and OLETS with WMH. This gives

another interesting comparison to a single algorithm, in this case OLETS, which was a

highly successful algorithm in the first iteration of the GVGAI competition [15]. The

action with the highest value is selected.

Out of the EDSs created for this work, this one performed the best overall and, in

comparison to the OLETS agent, is able to complete a wider range of games, while

only dropping 2.1% in win rate. Interestingly, the last two EDS agents are able to solve

games that the single algorithms were not able to solve at all during experimentation.

6.1.3.6 OLETSExpScSerial

This variation uses a similar setup to OLETSExpSc, with the same voices and heuristics,

but uses a serial full time-step arbiter instead.

The main difference with this arbiter is that it tries to give each Voice 40ms of

decision time, by using a time-step per Voice. It does this by returning nil actions until

each Voice has analyzed the current state. After N timesteps, where N is the number

of Voices, an action is returned based on the action selection policy, which in this case

was the highest value action. The reason for this type of arbiter is that it would allow

all of the Voices to each have 40ms of analysis time, without breaking the rules of the

GVGAI competition and introducing concurrency.

While OLETSExpScSerial achieved good scores, it was not quite as good as the

OLETSExpSc agent and actually lost some games that OLETSExpSc was able to win.

In the original paper, Ensemble Decision Systems for General Video Game Playing,

this agent was known as OLETSExpScAsync and the name has been changed to better
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reflect the operation of the EDS.

The full list of controllers used are listed in table 6.1 and the games that they were

experimented on are listed in table 6.2.

Table 6.1: Full list of controllers used divided into EDS and Sample Agents.

EDS Agents Sample Agents

BestExpSc OLETS

BestFourDiplo sampleMCTS

BestFour sampleOneStepLookAhead

MCTSExpSc sampleRandom

OLETSExpSc sampleRHEA

OLETSExpScSerial sampleRS

Table 6.2: The Games selected from the GVGAI Framework (games in bold are decep-
tive)

Aliens Avoidgeorge Bait Butterflies

CamelRace Chase Chopper Crossfire

Digdug Escape Freeway Hungrybirds

Infection Intersection Invest Labyrinthdual

Lemmings Missilecommand Modality Plaqueattack

Roguelike Seaquest SisterSaviour Survivezombies

Tercio Waitforbreakfast Watergame Whackamole

6.1.4 Results

In table 6.3, the agents are ranked using the same F1 style system as is used for

the GVGAI competition. For each game, the agents are awarded points based on

their performance using win rate as the first indicator, then score if win rates are

tied, and finally time taken if a tie remains. The points that are given out are

0, 1, 2, 4, 6, 8, 10, 12, 15, 18, 25 with the agent earning first place receiving 25 points, the

second place agent earning 18, and so on. Two other tables are also shown which rank

the agents by the average win rate of the agents across all of the games (Table 6.4),

and the number of games that each agent was able to achieve at least 1 win (Table 6.5.
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Table 6.3: Controllers ranked by total number of F1-points. The EDS agents are
highlighted in blue. The OLETS sample agents and OLETS EDS agents are the top
performers in terms of F1 points, though the OLETSExpSc agent is able to win more
unique games than the sample OLETS agent. This trend can also be seen in the MCTS
agents.

Controller F-1 %Wins #Games

1 OLETS 501 55.69% 25

2 OLETSExpSc 463 53.59% 27

3 BestExpSc 318 42.86% 24

4 OLETSExpScSerial 316 45.52% 24

5 sampleMCTS 253 40.00% 19

6 sampleRS 237 39.76% 22

7 BestFourDiplo 213 33.02% 23

8 sampleRHEA 194 36.71% 23

9 BestFour 182 28.93% 22

10 MCTSExpSc 181 33.29% 22

11 sampleOneStepLookAhead 88 21.48% 12

12 sampleRandom 29 9.29% 15

Table 6.4: Controllers ranked by total number of Win Rate (%Wins). The EDS agents
are highlighted in blue. The OLETS sample agents and OLETS EDS agents are the
top performers in terms of F1 points, though the OLETSExpSc agent is able to win
more unique games than the sample OLETS agent. This trend can also be seen in the
MCTS agents.

Controller F-1 %Wins #Games

1 OLETS 501 55.69 25

2 OLETSExpSc 463 53.60 27

3 OLETSExpScSerial 316 45.52 24

4 BestExpSc 318 42.86 24

5 sampleMCTS 253 40.00 19

6 sampleRS 237 39.76 22

7 sampleRHEA 194 36.71 23

8 MCTSExpSc 181 33.29 22

9 BestFourDiplo 213 33.02 23

10 BestFour 182 28.93 22

11 sampleonesteplookahead 88 21.48 12

12 sampleRandom 29 9.29 15
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Table 6.5: Controllers ranked by total number of unique games won (#Games). The
EDS agents are highlighted in blue. This table shows that the EDS agents perform
well when looking at the range of games that they are able to solve, in comparison to
the sample agents.

Controller F-1 %Wins #Games

1 OLETSExpSc 463 53.60 27

2 OLETS 501 55.69 25

3 OLETSExpScSerial 316 45.52 24

4 BestExpSc 318 42.86 24

5 sampleRHEA 194 36.71 23

6 BestFourDiplo 213 33.02 23

7 sampleRS 237 39.76 22

8 MCTSExpSc 181 33.29 22

9 BestFour 182 28.93 22

10 sampleMCTS 253 40.00 19

11 sampleRandom 29 9.29 15

12 sampleonesteplookahead 88 21.48 12

This definition of generality has some problems, though as this was an initial set of

experiments it was considered sufficient. An improved measure of generality is defined

later for the experiments in section 6.3.

The first thing of note is that the sample OLETS algorithm takes the top position,

and second place goes to an ensemble agent which similarly uses the OLETS algorithm,

OLETSExpSc which is described in section 6.1.3.5. This difference in ranking is due to

the OLETS algorithm outperforming the ensemble OLETSExpSc more consistently on

the games that OLETS can perform well. OLETS can spend the entirety of its 40ms

analysis time searching deeper into the forward model, whereas OLETSExpSc has to

divide that 40ms up between the two voices, and is not able to search as deeply as a

result. While noting this, it is also clear that the difference between the two agents is

small, with OLETS earning a win rate across all games of 55.69% compared to 53.59%

for OLETSExpSc, a drop of 2.1%. This goes some way to show that performance is not

greatly diminished by splitting up the analysis time between two algorithms. This can

also be seen, though the difference is more observable when comparing the sampleMCTS

algorithm and the MCTSExpSc, with win rates of 40% and 33.29% respectively, showing
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a drop of 6.71%. These drops in individual game performance are offset somewhat by

the increased generality of the ensemble agents. OLETSExpSc is able to win 27 of the

28 games, whereas OLETS is able to win 25. A similar observation is made between

MCTSExpSc winning 22 of the games and MCTS winning only 19.

Another interesting note regarding these experiments begins to make itself clear

when analyzing performances on individual games. In figure 6.1 the win rates of each

agent across each individual game is shown. This perspective highlights that not all

games are equally challenging, yet are able to be won by ensemble agents where the base

agents are not able to win. Of particular note are the games SisterSaviour and Lem-

mings. Similarly, some instances where the base algorithms are able to outperform their

ensemble counterparts are also highlighted. In the case of the OLETS algorithm, the

games Chopper and PlaqueAttack show this most clearly. In the case of PlaqueAttack,

all levels that are played on are particularly large and this causes significant problems

for the ensemble as it makes use of an exploration heuristic which highly values new

states. This leads to the ensemble taking too long exploring the large level, and results

in having no time remaining to complete the objectives of the game which are outlined

in section 4.3.13. While this does lower the win rate of the agent on PlaqueAttack it

does not result in the agent losing all of the time. This is due to the other perspectives

within the EDS not being fooled by the game and sometimes being able to steer the

agent in the correct direction. Any individual perspective can be fooled, but it is much

harder for a problem to deceive all of the perspectives.

The win rates of agents do not tell the entire story, as certain games have deceptive

qualities which uses the reward structure of the game to deceive agents [21]. In figure

6.2 the total score each agent achieved on each game is shown. While this encompasses

similar information as figure 6.1, some cases show that there are differences in how

much an agent was able to win in each game. Games such as Bait, SisterSaviour,

WaitForBreakfast and Escape have a more pronounced difference, and in the case of

Lemmings the results indicate that this may be a deceptive game, as the win rate and

score do not match up. In particular when looking at Lemmings we see that while

OLETS attains some of the highest scores, it isn’t able to win any games, where as
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Figure 6.1: Total percentage of wins (0−100%) of each controller by game. Some of the
main observations in this data are the SisterSavior performance, where only the EDS
agents are able to achieve wins. OLETSExpSc in particular has a wide distribution of
wins across the majority of the games.
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Figure 6.2: Average scores per game. To be able to make a comparison between the
different games, the scores have been normalized, taking the maximum and minimum
average scores obtained in each game as limits for that game.
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OLETSExpSc manages to achieve some wins with a lower score.

The graphs shown here maintain the old name of the OLETSExpScSerial agent,

namely OLETSExpScAsync.

Figure 6.3: Lemmings stats per agent. The percentage of wins is in range [0, 100%]
and the average of score is relative to the maximum and minimum scores achieved in
the game (range: [−143, 1]). Values have been normalised in this figure. The most
interesting thing of note in this figure is that achieving high scores appears to correlate
with a lower win rate.

To better understand some of the differences in individual games, a deeper analysis

into selected games was performed. In figure 6.3 each individual agent’s performance

is displayed as two points on a spider graph, win rate and average score. Interestingly,

agents with a high average score do not achieve wins where as those with lower average

scores do win, though not always. This is due to the unusual scoring mechanism used in

Lemmings where progress results in a reduction in score, and so agents that are efficient

with their moves tend to achieve higher win rates. Another point of note is that none

of the sample agents are able to achieve wins on this game, while many of the ensemble

agents are capable of winning, indicating that more complex behaviour is emerging

from the simpler Voices within the EDS. A similar example is seen in the deceptive
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Figure 6.4: Invest stats per agent. The percentage of wins is in range [0, 100%] and
the average of score is relative to the maximum and minimum scores achieved in the
game (range: [−7, 161]). Values have been normalized in this figure. The results for
this game show that while winning is relatively easy, achieving a high score is more
challenging.
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game Invest shown in figure 6.4, though in this case winning is easy while achieving

a high score is challenging. As a deceptive game, Invest uses the reward structure to

draw agents away from good performance, which happens in the case of sample agents.

The ensemble agents are each able to achieve higher than baseline scores, with BestFour

performing better than all of the other agents. Invest punishes agents that are not able

to sacrifice current score for future reward, and the exploratory nature of the ensemble

agents allows them to overcome this deception due to the presence of the exloration

perspective.

Figure 6.5: Hungrybirds stats per agent. The percentage of wins is in range [0, 100%]
and the average of score is relative to the maximum and minimum scores achieved in
the game (range: [0, 140]). Values have been normalized in this figure. These results
show that in this game there is a correlation between score and win rate. EDS agents
appear to perform particularly well here.

The game HungryBirds is another example of a game where ensemble systems are

able to complete games that the sample algorithms are mostly not able to complete.

In figure 6.5, we can see that OLETS is the only sample agent able to perform well at

this game, though is outperformed by OLETSExpScSerial. Interestingly, the MCTS

ensemble agent, MCTSExpSc performs very well, compared to sampleMCTS which is
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not able to achieve any score or win any games. The reason for this behaviour is due

to the exploration perspective within MCTSExpSc which allows the algorithm to find

new states which are not easily achieved by simply looking for winning states.

Moving on from these results, a number of other avenues opened up for further ex-

ploration. Of particular interest was to directly compare portfolio agents with ensemble

agents. As the two systems both take a multi-algorithm approach to tackling GVGP,

the question is: is it better to combine algorithms in an EDS or select the correct single

algorithm for each game? With this in mind, some further experiments were performed

to answer this question and others.

6.2 Design of Further Experiments

This section explains the final experiments that were performed. It describes the mo-

tivations for conducting these specific experiments, as well as providing the details for

reproduction. A description of each experiment is provided, and finally the results are

discussed.

6.2.1 EDS Improvements

One of the drawbacks of the previous EDS experiments is that the Voices only return

an Opinion for a single action. If portfolio agents can be described as selecting which

agent to use for each game, then the earlier EDS systems can similarly be described

as selecting which agent to use at each time-step. The next step is to experiment with

more sophisticated systems that take allow Voices to express Opinions for all possible

actions. The system would need to be improved so that each Voice could return an

Opinion on each possible action, rather than just a single Opinion for its preferred

action. The arbiter would then be able to select the final action from the combined

Opinions for each action. The most intriguing capability of this system is that it is

able to select actions that none of the individual Voices would have selected if returning

only a single action. If an action is rated highly by some Voices, and poorly by others,
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then the arbiter may select the second best option proposed by the Voices.

A number of modifications were necessary to the existing system in order to make

this system function. First, the Voices were altered to require each to return a collection

of Opinions, with a value associated to each possible action. This is a significant

modification to some of the Voice’s algorithms, and requires significant restructuring

in certain algorithms due to the nature of their analysis. The only requirement of the

GVGAI framework is that a single action is returned. Some algorithms are designed

with this in mind and so may not be suitable as a multi-opinion Voice. For example

an enforced hill climbing algorithm would not be ideal, as it only ever returns a single

action. With this in mind, altered versions of the MCTS and OLETS algorithms

were created, as these algorithms provide an evaluation for each action as a natural

consequence of their analysis. The Opinions were also altered slightly, in order to

require that a value is associated with each action. This version of the EDS is known

as an All Actions EDS.

The action selection policies in the arbiter required some small alterations, as now

they would need to work with each action being represented across multiple Opinions.

The highest value action selection policy is simply a summation of the values associated

with each action, and then selecting the highest value action. The democratic action

selection policy serves no purpose in this system, and so was removed as an option.

The random action selection policy is still viable, though requires no changes.

With this new system in place, a further set of experiments were performed, and

forms the basis of comparison to portfolio agents.

6.2.2 Comparison to Portfolio Agents

Portfolio agents are conceptually similar to EDS agents. The main difference in their

operation lies in that a Portfolio agent attempts to select the best algorithm for each

game, from a collection of algorithms at its disposal, based on an algorithm selection

criteria, where as an EDS ideally uses all of the Voices within its collection at every

time step. Once a Portfolio agent has selected which algorithm to use, it normally

sticks to this decision until the end of the game. If this were not the case, and the
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agent were to change algorithm mid-game, it may then be considered as a simple EDS

instead of a Portfolio agent. These experiments also presented the opportunity to test

the All Actions EDS, and comparing which type of system performs better, as well as

determining whether the All Actions EDS gains the increased generality over the base

agents that was seen for the initial EDS experiments in section 6.1.

Experiments were ran using the games mentioned earlier in chapter 4, as well as the

full list of deceptive games described in chapter 3, though the number of iterations for

each level of each game was increased from 30 to 50. This was done simply to increase

confidence in the findings.

The Portfolio Agents that were used for the experiments were selected from the

GVGAI competition submitted agents, namely YOLOBOT, Return42, ICELab and

YBCriber. The reason for these agents to be used were that they have performed well

in past competitions, and particularly in the case of IceLab and Return42, performed

well in the deceptive games experiments. The Adrienctx agent was also used for these

experiments, to provide a further comparison with current top level performance agents

from the competition. Unfortunately, due to run-time errors that could not be resolved,

the ICELab results have not been included as the agent would crash repeatedly when

trying to run it through the experimental suite.

6.3 Further Experiments

The section discusses the final experiments performed for this work. First, each of

the EDS variations are described in detail, as well as the agents used for comparison.

Finally, the results of these experiments are discussed in depth.

6.3.1 Rationale behind further experiments

One of the biggest questions throughout this work has been to discover what combi-

nation of Voices, action selection policies, heuristics and so on would prove to be an

effective ensemble GVGP agent. The first step was to test whether or not the system

would work within a 40ms time frame. This was shown to be feasible by the earlier
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experiments in section 5.3. The second step defined a set of games that would best

represent a diverse variety of games, as well as adding additional games to the GVGAI

library which focused on deception. Lastly, single action EDSs were built in order to

determine first, if splitting up the 40ms was inherently reducing performance, and sec-

ond, to get an insight into what algorithms would function together best as Voices. The

final step was to build further EDSs, taking into account the findings of the previous

experiments and trying to gain further insight into the capabilities of an EDS, and

what an effective ensemble system would look like.

A number of additional EDS systems were developed on top of those created in

section 6.1. First, an All Action EDS, which would require every Voice to return

an Opinion for each possible action. This system allows the EDS to combine the

Opinions in a variety of ways, to make a final decision from the input of all Voices,

as opposed to selecting a single Voice’s opinion to use. Secondly, experiments were

conducted using a combination of both positive and negative Voices. Positive Voices

would seek out desirable/winning outcomes for the agent, whereas negative Voices

would look for losing outcomes. This brings an additional perspective to the EDS

which had not been previously explored. An alternative approach for future work

would involve implementing a veto system which could allow a Voice to remove an

action from consideration by other Voices. The final set of experiments were aimed at

demonstrating the potential of a multi-threaded ensemble system since EDSs naturally

lend themselves to concurrent execution. It should be noted that this is not a completely

fair comparison to the other systems, as they have not been fully adapted to make use

of a multi threaded environment, but it is useful to see how much this change may

improve the performance of the single threaded EDS.

In addition to the architectural changes of the ensemble systems, a new naming con-

vention was developed to better describe their behaviour. An example of this is STSAO-

LETSExpSc which in the previous EDS work was known as OLETSExpSc. This agent

is Single Threaded (ST) Single Action (SA) using two OLETS Voices (OLETS) with

two heuristics, maximise exploration (Exp) and maximise score (Sc). Multi-threaded

agents begin with MT, and the All Actions EDS has AA. An example of this is MTAAO-
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LETSExpSc.

The full list of agents that were used for these experiments are listed in table 6.6.

Table 6.6: The full list of agents used for the experiments, along with the type of agent
they are and where to find a description of their operation.

Agent Name Type Section

adrienctx Tree Search 2.2.1.7

OLETS Tree Search 6.1.2.4

OLETS80ms Tree Search 6.3.5

Return42 Portfolio 2.2.5.4

sampleMCTS Tree Search 6.1.2.3

sampleonesteplookahead Local Search 6.1.2.2

sampleRandom Random 6.1.2.1

sampleRHEA Evolutionary Agent 6.1.2.5

sampleRS Evolutionary Agent 6.1.2.6

YBCriber Hybrid 2.2.5.5

YOLOBOT Portfolio 2.2.5.3

MTAAOLETSExpSc EDS 6.3.5

MTSAOLETSExpSc EDS 6.3.5

STSAMCTSExpSc EDS 6.1.3.4

STSAMCTSOpPes EDS 6.3.4

STSAMCTSOpPesExpSc EDS 6.3.4

STSAMCTSOpPesSc EDS 6.3.4

STAAOLETSExpSc EDS 6.3.3

STSAOLETSExpSc EDS 6.1.3.5

STSAYoloOLETSExp EDS 6.3.6

STSAYoloOLETSExpSc EDS 6.3.6

6.3.2 Reproduction

In order to facilitate reproduction of these experiments, the full settings used and

machine specifications are provided in this section.

6.3.2.1 Machine Specifications

All of the experiments were performed on a Dell Inspiron 13-5378 laptop with a Intel

i7-7500u CPU and 16GB of memory.
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6.3.2.2 Experiment Specifications

Each of these experiments were ran across the full suite of games outlined in table 6.7.

This list of games are largely the same as those shown in table 6.2 but has the addition

of the deceptive games that were not previously selected in chapter 4. Each game was

run with all 5 of their levels, 50 times each, resulting in 250 runs per agent. Visuals

were disabled for the experiments, though some agents were rerun with visual output

enabled in order to observe agent behaviour in specific games.

In order to mitigate some of the risks associated with the inclusion of additional

games beyond the information gain games, as mentioned previously in chapter 4, sepa-

rate analyses were conducted for the three sets of games: the information gain set, the

deceptive games set and the entire set together. The main metrics used are the overall

win rates, and the win distributions for each agent. The win distribution table shows

the number of games each agent was able to win to a certain level of performance.

For example, each cell under the 10% column refers to the number of games where the

agent was able to win at least 10% of the total runs i.e. at least 25 out of 250 runs.

The reason that the win distribution analysis is included is to remove some of the

noise in individual game performance. Many agents are able to only win a single run

out of the full 250 runs which may be a part of the base algorithm’s normal distribution.

Similarly, noise in a game may cause agents to lose a single game. A good agent will

have a high number of different games won, that descends smoothly from 10% through

to 90% or doesn’t decrease at all.

All of the code that was used for these experiments can be found on the author’s

github page [102].

It should be noted that during the experiments Lemmings showed some deceptive

qualities and so is represented as a deceptive game. This means that the results for

Lemmings will also be shown in the deceptive games set as well as the all games set.

6.3.3 All Actions EDS

The All Actions EDS is a system in which the Voices are required to return an Opinion

for each action. Once each Voice has evaluated the current state, and returned their
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Table 6.7: The set of games for the additional experiments (games in bold are deceptive
and underlined games are from the information gain selection)

Aliens Avoidgeorge Bait Butterflies

CamelRace Chase Chopper Crossfire

Decepticoins Deceptizelda Digdug Escape

Flower Freeway Hungrybirds Infection

Intersection Invest Labyrinthdual Lemmings

Missilecommand Modality Plaqueattack Roguelike

Seaquest SisterSaviour Survivezombies Tercio

WaferThinMints Waitforbreakfast Watergame Whackamole

Opinions on it, then the arbiter combines the Opinions together. This combination is

done by summing together the value of each Opinion that has the same action. Once

the Opinions have been combined, the action with the highest value is then selected.

The most interesting difference between this system and the earlier, single action,

systems is that actions do not need to be suggested by the Voices. This change allows

the system to combine each Voice’s unique analysis, and potentially select an action

that none of the Voices would have selected as their preferred option. Figure 6.8 shows

an example of how this system would reach a decision, using the inputs from each Voice

and selecting to move right as its action.

Table 6.8: An action selection example with the All Actions system. The preferred move
of each Voice is highlighted in blue, with the action selected by the arbiter highlighted
in green.

Action Voice 1 Voice 2 Voice 3 Total

UP 1 5 2 8

DOWN 2 1 5 8

LEFT 3 4 3 10

RIGHT 4 3 4 11

STAY 5 2 1 8

An important consideration of the All Actions (AA) EDS is that the evaluation

of Voices are within a similar range. If one Voice returns values for Opinions which

are significantly different from another, then one Voice will rule the behaviour of the
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system. While some attempts to normalise these values were made for this work, this

needs further exploration in future work in order to determine the optimal method for

returning the value of an action.

6.3.3.1 Results: All Actions EDS

Table 6.9: All Actions agents ranked by win percentage across all games. The OLETS
sample agent outperforms the others in win rate, though it does not win as many unique
games as STSAOLETSExpSc.

All Actions Agents Win Rate - All Games

Agent %Wins #Games

OLETS 59.8% 29

STSAOLETSExpSc 59.1% 31

MTAAOLETSExpSc 36.0% 27

STAAOLETSExpSc 35.7% 26

The win rates and number of unique games won for each agent across all games

can be seen in table 6.9. The first thing of note is that there is a large difference in

performance between the single threaded All Actions (STAAOLETSExpSc) and Single

Action (STSAOLETSExpSc) agents. The STAAOLETSExpSc agent has a much lower

win rate compared to the STSAOLETSExpSc agents. After some visual observation of

the agent behaviour, this appears to be due to indecision in many of the games. This is

likely due to an improper balancing in the values returned from the individual Voices

in the AA EDS. The multi-threaded version of the AA EDS (MTAAOLETSExpSc) has

shown a small improvement in win rate and number of games though is still far lower

than the OLETS and STSAOLETSExpSc agents.

The win distributions across all of the games are shown in table 6.10. This table

shows a clearer picture of the differences between OLETS and STSAOLETSExpSc.

While OLETS does have an overall higher win rate by 0.7% it can be seen in the win

distributions that those wins are concentrated across fewer games. Both OLETS and

STSAOLETSExpSc have ten games in the 90% runs completed range, but STSAO-

LETSExpSc begins at 27 as opposed to 25 which shows that the agent appears to be
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Table 6.10: All Action agent win distributions across all games. Each column rep-
resents the number of games where the corresponding agent was able to win at least
that percentage of the total runs. The STSAOLETSExpSc and OLETS agents both
perform strongly in this metric, with the OLETS agent having a smoother drop-off in
performance.

All Actions Agents Win Dist - All Games

Agent 10% 20% 30% 40% 50% 60% 70% 80% 90%

OLETS 25 24 24 22 21 19 16 12 10

STSAOLETSExpSc 27 25 23 20 18 18 16 13 10

MTAAOLETSExpSc 20 18 16 11 9 9 9 6 4

STAAOLETSExpSc 20 17 16 11 11 9 8 7 4

capable of playing additional games to a satisfactory level. The AA agents both have

a similar win distribution, with the MTAAOLETSExpSc faring a little better, though

still performing worse than their Single Action counterparts.

Table 6.11: All Actions agents ranked by win percentage across the deceptive games.
The OLETS agent performs relatively poorly in the deceptive games compared to the
EDS agents, with a lower win rate and number of unique games.

All Actions Agents Win Rate - Deceptive Games

Agent %Wins #Games

STSAOLETSExpSc 78.3% 8

STAAOLETSExpSc 73.5% 8

MTAAOLETSExpSc 72.4% 8

OLETS 69.8% 7

The win rates and number of unique games won for each agent across the deceptive

games can be seen in table 6.11. Interestingly with this particular set the OLETS agent

falls to the bottom position, with a win rate 8.5% lower than the highest performing

agent STSAOLETSExpSc. Even the AA agents, which performed poorly across the set

of all games, have higher win rates than the OLETS agent on the deceptive games.

Whilst this is an improvement for the AA agents, the performance is still behind the

single action agents.

The win distributions across the deceptive games are shown in table 6.12. The
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Table 6.12: All Action agent win distributions across the deceptive games. Each column
represents the number of games where the corresponding agent was able to win at least
that percentage of the total runs. The STSAOLETSExpSc agent has a gradual drop
off in performance compared to the other agents, and only loses 2 additional games by
the 90% mark.

All Actions Agents Win Dist - Deceptive Games

Agent 10% 20% 30% 40% 50% 60% 70% 80% 90%

STSAOLETSExpSc 7 7 7 7 6 6 6 6 5

STAAOLETSExpSc 7 7 7 6 6 6 6 6 3

MTAAOLETSExpSc 8 8 7 6 5 5 5 5 3

OLETS 6 6 6 6 6 6 6 5 4

single action agent appears to have a much slower degradation of performance across

the distribution compared to the AA agents. MTAAOLETSExpSc is able to complete

more games to a satisfactory level initially, from the 10% to 20% range but this quickly

drops off to be one of the lower agents at 90%.

Table 6.13: All Actions agents ranked by win percentage across the information gain
games. OLETS is the clear winner in the information gain set of games having an equal
number of unique games won, but a higher win rate.

All Actions Agents Win Rate - Information Gain Games

Agent %Wins #Games

OLETS 59.0% 9

STSAOLETSExpSc 58.3% 9

MTAAOLETSExpSc 17.2% 6

STAAOLETSExpSc 16.9% 7

The results shown in table 6.13 begin to show where the AA agents are having

trouble. The difference in win rates between the highest AA agent and the lowest

single action agent is 41.1%. As mentioned previously this is likely due to an imbalance

in the weightings of perspectives that works well for a single action EDS but not for

an AA EDS. This is an issue that should be addressed in future work. The AA agents

also appear to complete less unique games than the other agents, as shown in the win

distributions for the information gain set in table 6.14.
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Table 6.14: All Action agent win distributions across the information gain games. Each
column represents the number of games where the corresponding agent was able to win
at least that percentage of the total runs. It becomes clear in these results that the
STSAOLETSExpSc is solving a wider range of games at higher performance levels,
maintaining 8 unique games up to the 30% mark, but drops off more quickly than
OLETS as the performance brackets go up.

All Actions Agents Win Dist - Information Gain Games

Agent 10% 20% 30% 40% 50% 60% 70% 80% 90%

OLETS 7 7 7 7 7 6 5 4 4

STSAOLETSExpSc 8 8 8 7 6 6 4 3 3

MTAAOLETSExpSc 3 3 2 1 1 1 1 1 1

STAAOLETSExpSc 3 3 3 1 1 1 1 1 1

The win distributions table shown in table 6.14 shows the same trend, with the

AA agents performing poorly across the information gain set. Interestingly though

STSAOLETSExpSc outperforms the OLETS agent here up until the 70% mark before

dropping one game below OLETS at 90%. The difference in overall win rate between

OLETS and STSAOLETSExpSc is only 0.7% but the wins appear to be earned across

a wider variety of games.

The main conclusion from this experiment is that the AA agents needs further

work to determine whether or not it is a viable option as an EDS. Observations of the

behaviour of the AA agents suggest that the Voices are not working cohesively together

with the current implementation, and will likely need further balancing in order to

function together coherently in this architecture. On the other side, the single action

variation performs particularly well across all of the sets with an acceptable loss in win

rate, when compared with the base agent, in exchange for greater generality. Also, all

of the EDS agents perform well in the deceptive games set, which is an encouraging

result as these games are designed to trick AI agents.
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6.3.4 Optimistic and Pessimistic MCTS EDS

The Optimistic and Pessimistic EDS uses two MCTS variations. The first is a standard

MCTS Voice, which is taken from the sampleMCTS agent described earlier in section

2.2.1.1. The second Voice is a pessimistic MCTS, which explores the search space with

an inverse value function: in essence, it explores for the worst possible states and tries

to find losing conditions. It is hoped that this pairing of perspectives may produce

some unique behaviour, and may alter the typical behaviour of the MCTS algorithm.

From an optimistic point of view, it is hoped that the generality of the algorithm will

increase.

This particular variation works a little differently from other EDSs, as one Voice

will be providing a negative value to actions, and the other will be positive. There are

still a number of interesting modifications that can be tried with this system, and two

of them are explored here: an All Actions version, which works identically to the All

Actions EDS described in section 6.3.3, and a single Action version, which has each

Voice return only a single action.

Three variations of this system were developed for these experiments. The first,

STSAMCTSOpPes does not make use of the heuristics described in section 6.1.1 and

simply uses the built in heuristic of the sampleMCTS agent. STSAMCTSOpPesSc, on

the other hand, does make use of heuristics by using the WMH, described previously in

section 6.1.1, for both Voices. Lastly, STSAMCTSOpPesExpSc uses a WMH heuristic

for the optimistic MCTS Voice, and a EMH heuristic for the pessimistic MCTS Voice.

The intuition behind this last variation is that as the pessimistic Voice is looking for

the most dangerous states to be in, it should be highly exploratory, where as the

optimistic Voice wants to take advantage of the knowledge gained thus far. Finally the

STSAMCTSExpSc agent is added as a comparison to the MCTSExpSc agent, originally

created for the earlier EDS work described in section 6.1.

6.3.4.1 Results: Optimistic and Pessimistic MCTS EDS

The results shown in table 6.15 show the win rates and number of unique games won

across all games. First, the sampleMCTS agent is still the highest win rate agent of
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Table 6.15: MCTS agents ranked by win percentage across all games.

MCTS Agents Win Rate - All Games

Agent %Wins #Games

sampleMCTS 46.1% 24

STSAMCTSOpPes 44.9% 26

STSAMCTSExpSc 37.3% 28

STSAMCTSOpPesExpSc 36.8% 26

STSAMCTSOpPesSc 33.5% 18

them all, though it does not win as many unique games as STSAMCTSOpPesExpSc

which wins 26 games as opposed to 24. It is interesting to note that the STSAMCT-

SExpSc is able to win 28 games. The difference in win rate between sampleMCTS and

STSAMCTSOpPesExpSc is quite large however, with a loss of 9.29%. This drop in

win rate is a bit too high to be acceptable, though it is worth mentioning that the new

games that STSAMCTSOpPesExpSc was able to win are games that the single agents

struggle on, Lemmings and Roguelike.

The results for the STSAMCTSOpPes agent are more encouraging, with a difference

of 1.2% in win rate while still being able to complete at least one run in 26 unique games.

The highest number of wins is earned by STSAMCTSExpSc which manages at

least one win in 28 games, though the overall win rate has dropped down to 37.3%.

Interestingly STSAMCTSExpSc is able to win 15 runs of the deceptive game Sister-

Saviour while none of the other MCTS agents have been able to achieve any wins.

This is likely due to the inclusion of the exploration perspective, though it seems that

the addition of this Voice is not always enough to solve this game, as in the case of

STSAMCTSOpPesExpSc.

The win distribution table across all games is shown in table 6.16. The first thing of

note is that the sampleMCTS has the lowest overall drop in wins across the distribution,

though initially all of the EDS agents begin with a higher number of games until the

30% column. The STSAMCTSOpPes agent initially has a lower number of games

compared to some of the other EDS agents, but has a much better win distribution,

similar to sampleMCTS.
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Table 6.16: MCTS agents win distributions across all games. Each column represents
the number of games where the corresponding agent was able to win at least that
percentage of the total runs.

MCTS Agents Win Dist - All Games

Agent 10% 20% 30% 40% 50% 60% 70% 80% 90%

sampleMCTS 17 17 16 16 15 15 14 13 10

STSAMCTSOpPes 19 17 16 16 15 13 13 12 8

STSAMCTSExpSc 21 20 14 12 11 10 8 6 6

STSAMCTSOpPesExpSc 20 17 13 12 11 10 9 7 5

STSAMCTSOpPesSc 18 17 11 10 10 9 9 8 6

Table 6.17: MCTS agents ranked by win percentage across the deceptive games.

MCTS Agents Win Rate - Deceptive Games

Agent %Wins #Games

sampleMCTS 68.7% 6

STSAMCTSOpPes 68.1% 6

STSAMCTSExpSc 64.6% 8

STSAMCTSOpPesExpSc 57.2% 6

STSAMCTSOpPesSc 51.7% 6
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In table 6.17 the win rates and unique games are shown for the deceptive games.

The win rate gap between sampleMCTS and STSAMCTSOpPes has narrowed slightly

from 1.2% to 0.6% though the number of unique games has not improved. Only the

STSAMCTSExpSc agent earns a higher number of games, with a win rate different of

4.1% behind sampleMCTS. The other EDS agents have fallen behind in terms of win

rate. This is likely due to the pessimistic MCTS not providing much additional infor-

mation about the games being played, as evidence by STSAMCTSExpSc outperforming

them in terms of unique games.

Table 6.18: MCTS agents win distributions across the deceptive games. Each column
represents the number of games where the corresponding agent was able to win at least
that percentage of the total runs.

MCTS Agents Win Dist - Deceptive Games

Agent 10% 20% 30% 40% 50% 60% 70% 80% 90%

sampleMCTS 6 6 6 6 6 6 6 6 3

STSAMCTSOpPes 6 6 6 6 6 6 6 5 4

STSAMCTSExpSc 7 6 6 5 5 5 5 4 4

STSAMCTSOpPesExpSc 5 5 5 5 5 5 5 4 3

STSAMCTSOpPesSc 6 6 4 4 4 4 4 3 2

The deceptive game win distributions are shown in table 6.18. The sampleMCTS

agent has a very smooth distribution across the deceptive games, before seeing a drop

at the 90% column. STSAMCTSOpPes has a very similar pattern but drops off more

smoothly and retains four games as opposed to three at the 90% column. While

STSAMCTSExpSc does start to drop games sooner than the other agents, it begins

with seven as opposed to six for the other agents and finishes with four. This is an

indication that STSAMCTSExpSc is getting wins across a larger number of games,

where as the other agents appear to be getting most wins from a core set of games that

they perform well at.

Table 6.19 shows the win rates for the MCTS agents across information gain games.

The ranking of results are similar to both the all games and deceptive games tables,

though the unique games won appears to be quite different. The agents with the

highest number of games are STSAMCTSOpPes and STSAMCTSExpSc with seven
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Table 6.19: MCTS agents ranked by win percentage across the information gain games.

MCTS Agents Win Rate - Information Gain Games

Agent %Wins #Games

sampleMCTS 39.8% 5

STSAMCTSOpPes 37.6% 7

STSAMCTSOpPesSc 25.6% 4

STSAMCTSOpPesExpSc 22.9% 6

STSAMCTSExpSc 22.1% 7

each, though the win rate of STSAMCTSExpSc is 15.5% lower.

To better understand these differences in the unique games, table 6.20 shows the

win distributions of the agents across the information gain games. The sampleMCTS

clearly has the best distribution and manages to not drop any games at all. The only

agent that comes close to this distribution is STSAMCTSOpPes. It appears that the

additional games being completed by the EDS agents were below the 10% range which

is not sufficient to consider them able to reliably complete those games.

To get a better understanding of these differences, further analysis is provided on

the games within the information gain set focusing on specific games where there are

differences in the number of wins. In particular the games Escape, Freeway, Labyrinth-

dual and SisterSaviour. Table 6.21 shows the number of wins achieved on each of the

mentioned games.

Table 6.20: MCTS agents win distributions across the information gain games. Each
column represents the number of games where the corresponding agent was able to win
at least that percentage of the total runs.

MCTS Agents Win Dist - Information Gain Games

Agent 10% 20% 30% 40% 50% 60% 70% 80% 90%

sampleMCTS 4 4 4 4 4 4 4 4 4

STSAMCTSOpPes 4 4 4 4 4 4 4 4 2

STSAMCTSOpPesSc 4 4 3 2 2 2 2 2 2

STSAMCTSOpPesExpSc 5 3 2 2 2 2 2 1 1

STSAMCTSExpSc 4 4 2 2 2 2 2 1 1
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The first thing of note is that STSAMCTSExpSc is the only agent able to win runs

of SisterSaviour. As a deceptive game, SisterSaviour is challenging to win, so accruing

any wins on this game is an indication that the agent is not being completely fooled

by this deception. Also, STSAMCTSExpSc is the agent which wins the most number

of games out of this subset of games, though it wins zero games of Freeway. This is

a strange result, as the agents that are able to win it get over 200 wins. This may

indicate an error in balancing the Voices as the other ExpSc agent is not able to win

any runs either.

The other two games, Escape and Labyrinthdual, are won to a satisfactory degree

by the ExpSc agents, which shows that these perspectives are providing some value to

the agents in solving new games.

Table 6.21: A closer look at game performance for the MCTS agents on the information
gain set

Agent escape freeway labyrinthdual sistersaviour

sampleMCTS 0 250 0 0

STSAMCTSExpSc 53 0 52 15

STSAMCTSOpPes 2 219 0 0

STSAMCTSOpPesExpSc 45 0 40 0

STSAMCTSOpPesSc 0 250 0 0

The results of the MCTS agents show that, at the moment, the sampleMCTS is the

best agent in this experiment. In some circumstances, particularly the deceptive games,

it is clear that additional games are being won by the EDS agents though this isn’t

bringing enough value to all of them. This is likely due to implementation details in

how the pessimistic MCTS is implemented, and may require some further modifications

in the future.

6.3.5 Concurrent EDS

Along with the flexibility of the EDS, the other main advantage of the system is how it

lends itself to concurrency: each Voice can be ran in parallel to maximise the amount

of thinking time available to the overall system. While other agents can also take
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advantage of parallelisation, it will not allow the agent to behave differently. If there are

games that an algorithm can’t solve, concurrency will not overcome those weaknesses.

The EDS, on the other hand, will be able to consider a number of different perspectives

and may find a solution to current problem.

In order to test the viability of such a system, some experiments were ran to deter-

mine, firstly, if a multi-threaded EDS has better performance than its single threaded

equivalent and similar generality, and secondly, if it is able to compete with strong

GVGAI agents in the competition. It would not be proper to directly compare the

performance of a multi-threaded EDS to single threaded GVGAI agents though, so

an important enhancement to the single threaded agents was made. While the multi-

threaded EDS has the standard 40ms to perform its analysis, the single threaded agents

have (40∗N)ms to perform their analyses, where N is the number of Voices in the multi

threaded EDS. The intuition behind this alteration is that if an EDS has N Voices

then it is effectively receiving 40 ∗ Nms of CPU time. This is not an entirely accept-

able comparison mechanism, as it would be preferable to modify all of the agents into

multi-threaded versions, which would be an avenue for future work.

Two different versions of the Concurrent EDS were developed. The first was an

All Actions versions, which requires all of the Voices within the system to return an

Opinion for all possible Actions. This system is known as the Multi-Threaded All

Actions EDS (MTAA). The second, is a Single Action version which only requires a

single action from each Voice, but has more options for the final action selection policy.

This system is known as the Multi-Threaded Single Action EDS (MTSA).

6.3.5.1 Results: Concurrent EDS

First, the MTSA was built with the STSAOLETSExpSc configuration as described in

section 6.1.3.5. This is the first experiment to show an EDS agent clearly outperforming

the base agent across all of the experiment games. The agent named MTSAOLETSEx-

pSc shows an immediate improvement when compared to its single threaded equivalent.

As can be seen in table 6.22, the number of unique games won has remained unchanged,

but the win rate for MTSAOLETSExpSc has improved by 2.07%. This increase in win
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Table 6.22: Concurrent agents ranked by win percentage across all games.

Concurrent Agents Win Rate - All Games

Agent %Wins #Games

MTSAOLETSExpSc 69.1% 31

OLETS80ms 60.5% 29

OLETS 59.8% 29

STSAOLETSExpSc 59.1% 31

MTAAOLETSExpSc 36% 27

Table 6.23: Concurrent agents win distribution across all games. Each column repre-
sents the number of games where the corresponding agent was able to win at least that
percentage of the total runs.

Concurrent Agents Win Dist - All Games

Agent 10% 20% 30% 40% 50% 60% 70% 80% 90%

MTSAOLETSExpSc 29 27 22 20 18 18 18 14 12

OLETS80ms 26 24 24 23 19 19 16 11 11

OLETS 25 24 24 22 21 19 16 12 10

STSAOLETSExpSc 27 25 23 20 18 18 16 13 10

MTAAOLETSExpSc 20 18 16 11 9 9 9 6 4
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rate has actually surpassed the original OLETS algorithm as well. As mentioned previ-

ously, an agent was given additional analysis time in order to more fairly compare with

the concurrent EDSs. This agent is OLETS80ms and has been given 80ms of analysis

time instead of 40. The performance of OLETS80ms shows that overall win rate has

improved by 0.71% from the standard OLETS agent, and no new games have been

solved. While the extra analysis time does lead to improved performance in the games

that the OLETS agent is already good at, it is not enough to allow the algorithm to

complete new games, whilst the EDS algorithm successfully won 2 additional games

with and without concurrency.

The second EDS agent, MTAAOLETSExpSc, was included to see if there was a

significant performance difference between the All Action and Single Action arbiters.

As can be seen in table 6.22 there certainly is a difference in their performance, with the

MTAAOLETSExpSc scoring a win rate of 36.04% and winning only 27 unique games,

compared to 61.9% and 31 unique games. This is a much more dramatic difference

than expected, and as mentioned earlier may be due to an improper balancing in the

values returned by the Voices, leading to one dominating the performance of the agent

rather than a blending of the two Voices.

Further analysis has been conducted on the distribution of wins that occurred across

all of the games. This is shown in table 6.23. The first thing of note is that the

MTSAOLETSExpSc agent has a fairly steep drop in wins between the 20-40% mark

but stabilises with 18 games before reaching 90% with 12 games. While this drop is

quite large, it remains ahead of the win distribution for the OLETS80ms agent. The

MTAAOLETSExpSc performs quite poorly in the win distribution table, finishing with

just four games in the 90% column.

To delve deeper into the results, some additional analysis was also done for the

deceptive games, which is shown in tables 6.24 and 6.25. These tables tell show the

same trend as the all games set, though the OLETS and OLETS80ms have dropped

to the bottom of the table. The EDS agents seem to have a clear lead when faced with

the deceptive games set, and this is a trend that is noticed throughout the experiments.

Finally, the results for the information gain set of games are shown in tables 6.26
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Table 6.24: Concurrent agents ranked by win percentage across the deceptive games.

Concurrent Agents Win Rate - Deceptive Games

Agent %Wins #Games

MTSAOLETSExpSc 79.4% 8

STSAOLETSExpSc 78.3% 8

MTAAOLETSExpSc 72.4% 8

OLETS 69.8% 7

OLETS80ms 68.5% 7

Table 6.25: Concurrent agents win distribution across the deceptive games. Each
column represents the number of games where the corresponding agent was able to win
at least that percentage of the total runs.

Concurrent Agents Win Dist - Deceptive Games Games

Agent 10% 20% 30% 40% 50% 60% 70% 80% 90%

MTSAOLETSExpSc 8 8 7 6 6 6 6 6 5

STSAOLETSExpSc 7 7 7 7 6 6 6 6 5

MTAAOLETSExpSc 8 8 7 6 5 5 5 5 3

OLETS 6 6 6 6 6 6 6 5 4

OLETS80ms 6 6 6 6 6 6 6 4 4
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and 6.23. This shows that the MTAAOLETSExpSc agent really struggles to perform

well on these games, and seems to indicate that the all actions arbiter is not performing

as expected. The best agent, MTSAOLETSExpSc performs well in both overall win

rates and in the win distribution table with the wins that it earns coming from a

wider variety of games, and also improving on the performance of both OLETS and

OLETS80ms. Interestingly, the win distributions for OLETS and OLETS80ms are

almost identical, though it appears that OLETS is very slightly better, as the wins

start to drop off at 60% as opposed to 50%. It appears that while the extra analysis

time given to OLETS80ms is improving its performance, it is doing so only on a small

number of games.

Table 6.26: Concurrent agents ranked by win percentage across the information gain
games.

Concurrent Agents Win Rate - Information Gain Games

Agent %Wins #Games

MTSAOLETSExpSc 61.2% 9

OLETS80ms 59.8% 9

OLETS 59% 9

STSAOLETSExpSc 58.3% 9

MTAAOLETSExpSc 17.2% 6

Table 6.27: Concurrent agents win distribution across the information gain games.
Each column represents the number of games where the corresponding agent was able
to win at least that percentage of the total runs.

Concurrent Agents Win Dist - Information Gain Games

Agent 10% 20% 30% 40% 50% 60% 70% 80% 90%

MTSAOLETSExpSc 8 8 7 6 6 6 6 4 4

OLETS80ms 7 7 7 7 6 6 5 4 4

OLETS 7 7 7 7 7 6 5 4 4

STSAOLETSExpSc 8 8 8 7 6 6 4 3 3

MTAAOLETSExpSc 3 3 2 1 1 1 1 1 1
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6.3.6 Yolobot Voice

As one of the most successful entrants to the GVGAI competition, YOLOBOT is a

natural selection for inclusion into an EDS. With this in mind, a version of YOLOBOT

was converted into a Voice and put into an EDS. The main question then was: which

other Voices would best work together with YOLOBOT?

From the experiments so far, it was clear that YOLOBOT was not capable of

winning every game in the experiment suite, Lemmings and SisterSaviour being the two

games that YOLOBOT did not receive any wins in. Those games were not won by any

single algorithm agent so far, though the Ensemble agent OLETSExpSc has been quite

successful at those games. This led to two variations of EDS being built, which make

use of the OLETSExpSc configuration and the YOLOBOT Voice. The first was to pair

YOLOBOT with the OLETS algorithm using the exploration maximisation heuristic,

and the second was a larger three Voice EDS using OLETSExpSc and YOLOBOT. Each

of these experiments would be conducted with the single action arbiter, as converting

YOLOBOT to return Opinions for every action was not viable. Experiments were

conducted with only a single-threaded version, though investigating a multi-threaded

version would be a useful avenue for future work.

6.3.6.1 Results: Yolobot Voice

Table 6.28: Yolobot agents ranked by win percentage across all games.

Yolobot Agents Win Rate - All Games

Agent %Wins #Games

YOLOBOT 74.3% 30

STSAYoloOLETSExp 57.0% 31

STSAYoloOLETSExpSc 54.4% 29

Table 6.28 shows the win rates and unique games won of the Yolobot agents across

all games. Yolobot is the winning agent across all of the games, with a win rate of

74.3% which is 17.3% difference to the highest EDS agent in this experiment. This

difference in performance is likely due to the dilution of the Yolobot voice in the EDS
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agents. While the additional perspective is allowing STSAYoloOLETSExp to complete

an additional game, it is not enough to offset the lost performance.

Table 6.29 shows the win distributions of the agents. It is similarly clear from this

perspective that the Yolobot agent is performing better than the EDS agents across

all of the games. It is a bit clearer though that there is a difference between the two

EDS agents and that the three voice EDS, STSAYoloOLETSExpSc is seeing worse

performance, which is likely due to the further dilution of the Voices.

Table 6.29: Yolobot agents win distribution across all games. Each column represents
the number of games where the corresponding agent was able to win at least that
percentage of the total runs.

Yolobot Agents Win Dist - All Games

Agent 10% 20% 30% 40% 50% 60% 70% 80% 90%

YOLOBOT 30 30 29 28 24 22 21 19 15

STSAYoloOLETSExp 30 26 23 18 16 16 14 13 10

STSAYoloOLETSExpSc 26 24 21 19 17 16 15 12 7

Table 6.30: Yolobot agents ranked by win percentage across the deceptive games.

Yolobot Agents Win Rate - Deceptive Games

Agent %Wins #Games

STSAYoloOLETSExp 71.6% 8

STSAYoloOLETSExpSc 67.3% 8

YOLOBOT 66.6% 6

Table 6.30 shows the win rates and unique games won of the Yolobot agents across

the deceptive games set. In this case the Yolobot agent has dropped to last place

compared to the EDS agents in both win rate and unique games won. This shows that

the Yolobot agent may be more susceptible to some of the deceptions, and that the

additional perspectives of the EDS may be making it more resilient.

The specific games that the EDS agents are able to win over Yolobot are Lemmings

and SisterSaviour.

The win distributions of the Yolobot agents are shown in table 6.31. While Yolobot
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does have the smoothest performance across the brackets, it does not begin as highly

as either of the EDS agents, and ends in the same place with four games completed.

This similarly suggests that Yolobot is receiving the majority of its wins from fewer

games in the deceptive games set.

Table 6.31: Yolobot agents win distribution across the deceptive games. Each column
represents the number of games where the corresponding agent was able to win at least
that percentage of the total runs.

Yolobot Agents Win Dist - Deceptive Games

Agent 10% 20% 30% 40% 50% 60% 70% 80% 90%

STSAYoloOLETSExp 8 8 6 6 5 5 5 5 4

STSAYoloOLETSExpSc 8 7 5 5 5 5 5 5 4

YOLOBOT 6 6 6 6 6 5 5 5 4

Table 6.32: Yolobot agents ranked by win percentage across the information gain games.

Yolobot Agents Win Rate - Information Gain Games

Agent %Wins #Games

YOLOBOT 70.2% 9

STSAYoloOLETSExp 45.0% 9

STSAYoloOLETSExpSc 42.1% 7

Table 6.32 shows the win rates of the Yolobot agents across the information gain

set of games. Yolobot returns to the top position in this set with a win rate of 70.2%

and getting at least one win in nine of the ten games. The closest EDS agent is 25.2%

behind Yolobot which is a large drop in performance, for the same number of unique

games won. As mentioned previously, this is due to the splitting of time between the

Voices and would likely see some improvement in a concurrent environment.

The win distributions for the information gain set of games are shown in table 6.33.

It is clear with these results that Yolobot is performing very well across the majority

of the set of games.

The main conclusion from these experiments is that while Yolobot performs well

across the all games and information gain set, it can be improved when dealing with
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Table 6.33: Yolobot agents win distribution across the information gain games. Each
column represents the number of games where the corresponding agent was able to win
at least that percentage of the total runs.

Yolobot Agents Win Dist - Information Gain Games

Agent 10% 20% 30% 40% 50% 60% 70% 80% 90%

YOLOBOT 9 9 9 8 7 6 6 5 5

STSAYoloOLETSExp 8 7 6 4 4 4 3 3 2

STSAYoloOLETSExpSc 6 6 5 5 5 4 4 3 1

deceptive games. The main limitation of the EDS agents in this case is the 40ms

decision time which means that they cannot use the Voices to their full potential.

Future work in this area would focus on turning the Yolobot agent into an EDS in

its own right, to get a more direct comparison of performance. Similarly, creating a

version of the Yolobot EDS agents that makes use of concurrency would be of interest.

6.3.7 Overall Results

To get a better understanding of the performance of each experiment, further anal-

ysis was performed to compare each experiment to each other, as well as to explore

individual game performance. This section first looks at the overall win rates for all

agents on all of the games, looking at trends in performance across the games. Finally,

games with unusual or interesting results are explored to give an explanation for the

behaviour seen in the agents with both raw data and visual analysis.

6.3.7.1 Overall Raw Results

The overall results are broken up similarly to the other experiments: each set is pre-

sented separately, with win rate and win distribution tables. As the majority of agents

have already been discussed, this section focused on the agents that have not yet been

discussed, such as YBCriber and Return42.

Table 6.34 shows the win rates and number of unique games won for all agents,

ordered by win rate. The first thing to note is that the highest win rate agent YBCriber

is not the agent that wins the highest number of games, winning 29 out of 32 games
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Table 6.34: All agents ranked by win percentage across all games.

Rank Agent %Wins #Games

1 YBCriber 78.5% 29

2 YOLOBOT 74.3% 30

3 adrienctx 69.1% 29

4 Return42 62.6% 32

5 MTSAOLETSExpSc 61.9% 31

6 OLETS80ms 60.5% 29

7 OLETS 59.8% 29

8 STSAOLETSExpSc 59.1% 31

9 STSAYoloOLETSExp 57.0% 31

10 STSAYoloOLETSExpSc 54.4% 29

11 sampleMCTS 46.1% 24

12 STSAMCTSOpPes 44.9% 26

13 sampleRS 43.7% 25

14 sampleRHEA 40.9% 25

15 STSAMCTSExpSc 37.3% 28

16 STSAMCTSOpPesExpSc 36.8% 26

17 MTAAOLETSExpSc 36.0% 27

18 STAAOLETSExpSc 35.7% 26

19 STSAMCTSOpPesSc 33.5% 18

20 sampleonesteplookahead 29.6% 17

21 sampleRandom 15.1% 18
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of the experiment set. This is likely due to the algorithm that YBCriber uses being

a less general algorithm, but does extremely well at the games that it is able to win.

Return42 is the only agent that has been able to win at least once across all games

of the experiment set, with a win rate of 62.55%. The highest EDS agent appears in

fifth place with a win rate of 61.9% and 31 games. It should be noted that this is a

multi-threaded agent and so this is not an entirely fair comparison with most of the

other agents.

Table 6.35: All agents win distribution across all games. Each column represents the
number of games where the corresponding agent was able to win at least that percentage
of the total runs.

Agent 10% 20% 30% 40% 50% 60% 70% 80% 90%

YBCriber 28 28 28 28 27 25 23 22 20

YOLOBOT 30 30 29 28 24 22 21 19 15

adrienctx 27 27 26 23 22 21 20 19 16

Return42 28 26 26 24 21 18 16 14 11

MTSAOLETSExpSc 29 27 22 20 18 18 18 14 12

OLETS80ms 26 24 24 23 19 19 16 11 11

OLETS 25 24 24 22 21 19 16 12 10

STSAOLETSExpSc 27 25 23 20 18 18 16 13 10

STSAYoloOLETSExp 30 26 23 18 16 16 14 13 10

STSAYoloOLETSExpSc 26 24 21 19 17 16 15 12 7

sampleMCTS 17 17 16 16 15 15 14 13 10

STSAMCTSOpPes 19 17 16 16 15 13 13 12 8

sampleRS 19 19 18 16 14 13 10 9 8

sampleRHEA 19 19 16 15 14 12 9 8 7

STSAMCTSExpSc 21 20 14 12 11 10 8 6 6

STSAMCTSOpPesExpSc 20 17 13 12 11 10 9 7 5

MTAAOLETSExpSc 20 18 16 11 9 9 9 6 4

STAAOLETSExpSc 20 17 16 11 11 9 8 7 4

STSAMCTSOpPesSc 18 17 11 10 10 9 9 8 6

sampleonesteplookahead 13 13 11 11 11 10 7 6 4

sampleRandom 9 8 6 5 4 3 2 2 2

The win distributions for all agents across all games is shown in table 6.35. YBCriber

has a smooth distribution dropping only eight games through all of the brackets, and

finishing on 20. Return42 also begins with 28 games but has a much sharper decline
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in performance. This indicates that YBCriber is retaining a high level of performance

across a wider variety of games.

A heatmap showing the win rates across each game is shown in figure 6.6. The

heatmap clearly shows which games are being won by which agents, with games such

as Lemmings, Sistersaviour, Watergame and Tercio proving to be challenging for par-

ticular groups of agents. In particular, it is worth noting the differences between Yolobot

and MTSAOLETSExpSc where the EDS agent has a wider distribution of wins, while

Yolobot has a number of darker cells where its performance is concentrated.

Table 6.36: All agents ranked by win percentage across the deceptive games.

Rank Agent %Wins #Games

1 MTSAOLETSExpSc 79.4% 8

2 STSAOLETSExpSc 78.3% 8

3 STAAOLETSExpSc 73.5% 8

4 adrienctx 73.6% 6

5 MTAAOLETSExpSc 72.4% 8

6 STSAYoloOLETSExp 71.6% 8

7 OLETS 69.8% 7

8 YBCriber 69.4% 6

9 sampleMCTS 68.7% 6

10 OLETS80ms 68.5% 7

11 STSAMCTSOpPes 68.1% 6

12 STSAYoloOLETSExpSc 67.3% 8

13 Return42 67.2% 8

14 YOLOBOT 66.6% 6

15 STSAMCTSExpSc 64.6% 8

16 sampleRHEA 61.1% 6

17 sampleRS 60.4% 6

18 STSAMCTSOpPesExpSc 57.2% 6

19 sampleonesteplookahead 52.4% 6

20 STSAMCTSOpPesSc 51.7% 6

21 sampleRandom 33.4% 5

The win rates for all agents across the deceptive games are shown in table 6.36.

This set of games shows a very different distribution of the agents, with the EDS

agents featuring in the top positions, while strong agents such as Yolobot drop down.

The top three positions are each taken by EDS agents, while Yolobot has dropped
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to 14th place. Adrienctx is the only non EDS agent to retain a spot in the top five

positions, though it is only able to win six of the eight deceptive games.

These results show that the EDS agents in general seem to be more resilient to

deception, though only for certain combinations. The agents STSAMCTSOpPesExpSc

and STSAMCTSOpPesSc rank in 18th and 20th position. This shows that the arbitrary

combination of Voices does not always lead to improved performance in this set of

games.

Table 6.37: All agents win distribution across the deceptive games. Each column
represents the number of games where the corresponding agent was able to win at least
that percentage of the total runs.

Agent 10% 20% 30% 40% 50% 60% 70% 80% 90%

MTSAOLETSExpSc 8 8 7 6 6 6 6 6 5

STSAOLETSExpSc 7 7 7 7 6 6 6 6 5

STAAOLETSExpSc 7 7 7 6 6 6 6 6 3

adrienctx 6 6 6 6 6 6 6 6 5

MTAAOLETSExpSc 8 8 7 6 5 5 5 5 3

STSAYoloOLETSExp 8 8 6 6 5 5 5 5 4

OLETS 6 6 6 6 6 6 6 5 4

YBCriber 6 6 6 6 6 6 6 5 4

sampleMCTS 6 6 6 6 6 6 6 6 3

OLETS80ms 6 6 6 6 6 6 6 4 4

STSAMCTSOpPes 6 6 6 6 6 6 6 5 4

STSAYoloOLETSExpSc 8 7 5 5 5 5 5 5 4

Return42 7 6 6 6 5 5 5 4 4

YOLOBOT 6 6 6 6 6 5 5 5 4

STSAMCTSExpSc 7 6 6 5 5 5 5 4 4

sampleRHEA 6 6 6 6 6 6 4 3 3

sampleRS 6 6 6 6 6 5 4 3 3

STSAMCTSOpPesExpSc 5 5 5 5 5 5 5 4 3

sampleonesteplookahead 5 5 5 5 5 5 3 3 2

STSAMCTSOpPesSc 6 6 4 4 4 4 4 3 2

sampleRandom 4 4 4 4 3 2 1 1 1

The win distributions of all agents across the deceptive games are shown in table

6.37. The top two agents have a very similar win distribution with the MTSAOLET-

SExpSc agent managing to win eight games in the early brackets and finishing on five.
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Adrienctx has a very smooth distribution though it does not begin as highly as the top

EDS agents. This shows that while Adrienctx is able to keep up with the EDS agents

in terms of win rate, it is doing so over fewer games. This can be seen further in the

heatmap shown in figure 6.7 which shows that Adrienctx is not able to win at either

Sistersaviour or Lemmings.

Figure 6.7: Total percentage of wins (0− 100%) of each controller by game across the
deceptive games.

The win rates for all agents on the information gain set of games are shown in table

6.38. YBCriber has returned to the top spot of this set, while Return42 has dropped to

8th position compared to the all games results. The AA and MCTS EDS agents have

dropped to low positions in this set, while MTSAOLETSExpSc, STSAOLETSExpSc

and the Yolobot EDS variations remain in the top ten.

The win distributions for all agents on the information gain set of games are shown

in table 6.39. YBCriber has a great distribution of wins in this set, and clearly leads

the way. While Yolobot is able to initially win more games, this soon drops down as

the performance brackets go up. A closer look at exactly which games are being won

is shown in the heatmap in figure 6.8.
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Table 6.38: All agents ranked by win percentage across the information gain games.

Rank Agent %Wins #Games

1 YBCriber 76.5% 9

2 YOLOBOT 70.2% 9

3 adrienctx 62.6% 8

4 MTSAOLETSExpSc 61.2% 9

5 OLETS80ms 59.8% 9

6 OLETS 59.0% 9

7 STSAOLETSExpSc 58.3% 9

8 Return42 53.0% 10

9 STSAYoloOLETSExp 45.0% 9

10 STSAYoloOLETSExpSc 42.1% 7

11 sampleMCTS 39.8% 5

12 STSAMCTSOpPes 37.6% 7

13 sampleRS 37.2% 6

14 sampleRHEA 30.7% 6

15 STSAMCTSOpPesSc 25.6% 4

16 sampleonesteplookahead 23.6% 4

17 STSAMCTSOpPesExpSc 22.9% 6

18 STSAMCTSExpSc 22.1% 7

19 MTAAOLETSExpSc 17.2% 6

20 STAAOLETSExpSc 16.9% 7

21 sampleRandom 2.5% 3
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Table 6.39: All agents win distribution across the information gain games. Each column
represents the number of games where the corresponding agent was able to win at least
that percentage of the total runs.

Agent 10% 20% 30% 40% 50% 60% 70% 80% 90%

YBCriber 8 8 8 8 8 8 7 7 7

YOLOBOT 9 9 9 8 7 6 6 5 5

adrienctx 7 7 7 7 7 7 6 6 4

MTSAOLETSExpSc 8 8 7 6 6 6 6 4 4

OLETS80ms 7 7 7 7 6 6 5 4 4

OLETS 7 7 7 7 7 6 5 4 4

STSAOLETSExpSc 8 8 8 7 6 6 4 3 3

Return42 8 6 6 6 6 6 5 4 2

STSAYoloOLETSExp 8 7 6 4 4 4 3 3 2

STSAYoloOLETSExpSc 6 6 5 5 5 4 4 3 1

sampleMCTS 4 4 4 4 4 4 4 4 4

STSAMCTSOpPes 4 4 4 4 4 4 4 4 2

sampleRS 5 5 5 4 3 3 3 3 3

sampleRHEA 5 5 4 3 3 2 2 2 2

STSAMCTSOpPesSc 4 4 3 2 2 2 2 2 2

sampleonesteplookahead 3 3 3 3 3 2 2 1 1

STSAMCTSOpPesExpSc 5 3 2 2 2 2 2 1 1

STSAMCTSExpSc 4 4 2 2 2 2 2 1 1

MTAAOLETSExpSc 3 3 2 1 1 1 1 1 1

STAAOLETSExpSc 3 3 3 1 1 1 1 1 1

sampleRandom 1 1 0 0 0 0 0 0 0
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Interestingly, there are differences between the top performing agents, particularly

among the games that they are able to win. Watergame and Tercio are only won by

YBCriber and Yolobot while Sistersaviour is won almost exclusively by EDS agents,

with the exception of Return42.

Figure 6.8: Total percentage of wins (0− 100%) of each controller by game across the
information gain games.

The results here give a good idea of the performance trends across the agents, but

this does not capture all aspects of performance. In order to look deeper into the

results, an analysis on specific games is carried out in the next section.

6.3.7.2 Game Analysis

The raw results do not entirely explain the full picture of the experiments and the

deceptive games, in particular, need additional examination. Many of the deceptive

games use win states as a deceptive feature to pull agents away from optimal play, so

it is necessary to look at both the win rate and scores on those games.

The first deceptive game to look at, Decepticoins, offers agents an easy win, by

sacrificing a higher point total. An agent has managed to surpass the deception if it
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has been able to score over 2 in individual games, so a higher average score is desired

across all of the levels. Table 6.40 shows the normalised win rate and scores achieved

from all agents on Decepticoins. The first thing of note is that Yolobot scores the

highest average score across all of the agents, though its win rate is lower than many

other agents. This indicates that Yolobot is not being deceived by the deception, though

it is not always finishing the levels. Whilst the EDS agents do get good win rates, their

scores are a bit lower, though over 2 which indicates that they are being fooled by the

deceptions some of the time.

Table 6.40: The normalised win rate and scores for all agents on Decepticoins

Agent Norm Win Norm Score

YOLOBOT 0.8 1

YBCriber 0.74 0.936571

adrienctx 0.892 0.72448

Return42 0.78 0.519326

sampleRS 0.66 0.454906

OLETS 0.8 0.441031

sampleRHEA 0.68 0.423191

OLETS80ms 0.744 0.41328

STSAMCTSOpPes 0.816 0.303271

sampleMCTS 0.816 0.278494

STSAMCTSOpPesExpSc 0.772 0.264618

STSAMCTSExpSc 0.76 0.232904

sampleonesteplookahead 0.676 0.221011

MTSAOLETSExpSc 0.856 0.215064

STSAYoloOLETSExp 0.86 0.198216

STSAOLETSExpSc 0.864 0.196234

MTAAOLETSExpSc 0.828 0.159564

STSAYoloOLETSExpSc 0.844 0.151635

STAAOLETSExpSc 0.816 0.139742

STSAMCTSOpPesSc 0.2 0.093162

sampleRandom 0.632 0

The next game to look at is Lemmings as this game requires the agents to spend

their score in order to win. Figure 6.9 shows the win rates and scores for the agents on

Lemmings. MTAAOLETSExpSc is the overall winner of this game with the highest win

rate, with the majority of the EDS agents managing to win some games, and the only
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non EDS agent winning being Return42. The most noticeable thing about the results

is that lower scores seems to correlate with a higher win rate. This is likely because

Lemmings rewards the player for losing score, which most agents are not yet able to

consider. Interestingly, OLETS80ms also does not manage to secure any wins for this

game, showing that simply increasing the amount of analysis time is not enough to

score a win. It is necessary to analyse the situation differently, as Return42 and the

EDS agents seem to do.

Flower has an unusual result, as there is no loss condition for the game. All of the

agents were able to achieve a 100% win rate. The differentiation then is in the score

that the agents were able to achieve. Table 6.41 shows the average score achieved by

the agents. The first observation is that the portfolio agents score quite poorly at this

game, with the highest coming in 12th. The EDS agents do particularly well in this

game, and show significant improvement over their base agents. This seems to be due

to the exploration Voice, which assigns value to unexplored states, meaning that the

agent is less likely to collect the small reward earned from the early flower growths.

Invest is another game that is best interpreted through looking at the scores achieved

by each agent as most agents achieve high win rates. Getting an average score higher

than 5 indicates that the agent has not fallen for the deception at least once. Figure

6.10 shows all of the agents win rates and average scores. The best, again, is Return42

which is able to achieve both a high win rate and score, with the other EDS agents

not far behind. Interestingly, both OLETS and OLETS80ms do not manage to attain

an average score above 5, but the EDS systems that make use of them do manage to.

This is likely due to the additional perspectives from the EDS Voices giving additional

information on which action to take.

The next game to investigate is WaferThinMints. It was expected, when designing

the game, that search agents would generally have few problems with it, as the deceptive

element is thought to effect machine learning agents. This turned out to be slightly

incorrect, as the deception does manage to separate the performance of search agents

too. Table 6.42 shows the win rates for all agents playing WaferThinMints. Looking

at the average scores for this game is unnecessary, as winning the game is an indication
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Figure 6.9: Lemmings stats per agent. The percentage of wins is in range [0, 100%]
and the average of score is relative to the maximum and minimum scores achieved in
the game (range: [−151, 35]). Values have been normalized in this figure.
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Table 6.41: Flower rankings by average score. The real values and normalised values
are shown.

Rank Agent Average Score Norm Average Score

1 MTAAOLETSExpSc 497.764 0.765898477

2 sampleRS 459.472 0.66871066

3 STAAOLETSExpSc 457.872 0.664649746

4 sampleRHEA 439.5 0.618020305

5 STSAMCTSOpPesExpSc 422.588 0.575096447

6 STSAMCTSExpSc 405.264 0.531126904

7 sampleMCTS 385.928 0.482050761

8 sampleonesteplookahead 371.8 0.446192893

9 STSAMCTSOpPesSc 369.696 0.440852792

10 STSAMCTSOpPes 364.632 0.428

11 adrienctx 340.744 0.367370558

12 sampleRandom 332.284 0.345898477

13 Return42 327.256 0.333137056

14 MTSAOLETSExpSc 312.42 0.295482234

15 STSAOLETSExpSc 301.036 0.266588832

16 YBCriber 300.24 0.264568528

17 OLETS80ms 291.968 0.243573604

18 OLETS 290.116 0.238873096

19 STSAYoloOLETSExpSc 263.204 0.170568528

20 YOLOBOT 254.292 0.147949239

21 STSAYoloOLETSExp 252.496 0.143390863
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Figure 6.10: Invest stats per agent. The percentage of wins is in range [0, 100%] and
the average of score is relative to the maximum and minimum scores achieved in the
game (range: [−7, 208]). Values have been normalised in this figure.
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that the agent has not fallen for the deception. YOLOBOT and Return42 manage to

achieve relatively low win rate on this game with 52.8% and 43.6% respectively. The

top performing agent for this game, MTSAOLETSExpSc, manages to achieve a 100%

win rate, showing that it is possible to defeat this particular deception consistently,

along with four other agents managing to achieve win rates over 90%.

Table 6.42: WaferThinMints win rates per agent.

Rank Agent Win Rate

1 MTSAOLETSExpSc 100.0%

2 adrienctx 99.2%

3 STSAOLETSExpSc 97.6%

4 STSAMCTSOpPes 94.4%

5 STAAOLETSExpSc 86.8%

6 sampleMCTS 82.4%

7 YBCriber 80.8%

8 OLETS 79.6%

9 STSAMCTSOpPesSc 78.8%

10 OLETS80ms 73.6%

11 sampleonesteplookahead 62.4%

12 sampleRHEA 60.0%

13 sampleRS 54.8%

14 YOLOBOT 52.8%

15 MTAAOLETSExpSc 44.8%

16 STSAYoloOLETSExp 44.0%

17 Return42 43.6%

18 STSAMCTSExpSc 39.2%

19 STSAYoloOLETSExpSc 14.8%

20 STSAMCTSOpPesExpSc 0.0%

21 sampleRandom 0.0%

6.4 Summary

The results show that while EDS agents perform particularly well in deceptive games,

there is still a lot of work to do in order to catch up with the current portfolio agents.

These are encouraging results that leave open a number of interesting avenues for

future work, and they show that an EDS is a viable option for a high performing agent,

particularly when concurrency is permitted.
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Conclusions and Further Work

This chapter discusses the impact of this work and draws conclusions about how they

may affect the future of GVGP agent design. In addition, some discussion on the

unexplored ideas and potential expansions that could arise from this work: first, ex-

ploring the different potential action selection policies that can be used, then going into

different approaches to designing and improving an EDS.

7.1 Machine Learning Voice

One of the earlier ideas was to incorporate a more extensive array of different types

of Voices within the EDS. The prospect of using a Machine Learning algorithm for

one of the Voices is an exciting idea, particularly with the combination of learning and

search that led to the success of AlphaGo [26] and AlphaZero [77]. There are many

situations that bring further opportunities to explore, from the agent’s point of view.

These situations are difficult to describe in code, but a Machine Learning Voice could

be trained to provide an EDS with an instinct about which actions are most beneficial,

so to provide the agent with a way to react to more complex situations such as dead

ends. Dead-end avoidance would involve an agent being able to determine if an action,

or a path of actions, would lead the agent into a no win situation. As an example, if

the agent were being chased by a hostile enemy and turned down a path with no exit,

the agent would lose the game and should be able to detect this before making the
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decision to travel down the path.

7.2 Neural Network Arbiter

Developing the arbiter as a neural network, and allowing it to decide which Voice

to listen to dependent on the state, is a similarly exciting avenue. This idea would

essentially treat a game state as an input into a neural network, which would have the

Voices as output nodes. Alternatively, the analysis of the states could be performed

beforehand, and the outputs from the Voices would form part of the input to the

arbiter, along with the state. The arbiter would then be able to adjust the weights of

the system, and hopefully learn which states were best handled by which Voices, or

sets of Voices. This approach would have the advantage of using both ML techniques

and search without requiring any changes to the current Voices. Expanding from this,

if a weight is applied to the value of each Voice’s Opinion, then the arbiter could adjust

this weight in order to amplify or dampen a Voice’s effect based on their performance

so far. If a Voice has been performing poorly in a particular game, its decisions can

be taken less seriously so that other Voices have a greater contribution to the decision

making process.

7.3 Large EDS

Another potential avenue for future research would be to develop a larger EDS with an

arbiter that could hold a library of Voices. This arbiter would have a certain number of

Voices currently active, which are contributing to the current decision making process,

and others that are inactive which do not contribute. The arbiter would be able to

swap the active and inactive Voices to adjust the performance of the system. This

arbiter would be able to tune its own architecture to the specific game being played.

While it may be better to run all of the Voices on every state, time limitations such

as the 40ms decision time limit of the GVGAI means that this could be a potential

compromise between a large library of Voices and giving each Voice another individual

computation time.
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7.4 Bandit Arbiter

Bandit style selection policies, similar to the MCTS UCT algorithm, are another inter-

esting area of research within an EDS. Voices could be given more or less computation

time based on their UCB value, or an action could be chosen based on a bandit ac-

tion selection policy. The Voices themselves do not know which situations they are

analysing, nor which they are effective at analysing. A bandit process would allow the

arbiter to evaluate the effectiveness of each Voice based on their prior experience in the

game, and how often they have found success.

7.5 Further Concurrency Experiments

The GVGAI currently does not support multi-threading within the official competition,

and an EDS would naturally benefit enormously from this due to its architecture. Each

Voice can process in parallel, which in theory should show a significant improvement

over its current performance, as it should retain the generality of the EDS while min-

imising any performance loss. It is not entirely clear whether other algorithms could

as easily take advantage of such a change to the competition, and indeed adding ad-

ditional Voices to the EDS would in theory only improve the generality of the system.

The experiments that were done to show the viability of a concurrent EDS were a small

proof of concept that such a system could function, and be developed easily. Further

work could be done to compare more definitively the EDS to other algorithms that

have been fully expanded to take advantage of a multi-threaded environment.

7.6 Voice Decomposition

The different methods of decomposing the Voices could be more thoroughly explored:

in particular the temporal decomposition. Perspective decomposition was the most

explored decomposition in this work, but there may be possibilities for further types of

decomposition. The temporal decomposition would use each Voice with a specific time

frame in mind, such as short or long range. The prototype EDS made use of such a
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system, and shows promise for further exploration.

7.7 Portfolio EDS

Agents that use a portfolio system would also be an interesting agent to adapt into an

EDS. Seeing as they are currently a collection of algorithms, altering their structure,

from selecting the algorithm based on game analysis to requiring each algorithm to be

a separate Voice, would be an easy step forward and would allow a clear example of

the performance differences between a portfolio and EDS agent. This would potentially

increase the generality of these systems, as well as allowing a greater degree of flexibility

in how the components of the portfolio system work together.

7.8 Conclusions

This thesis has analysed the performance characteristics of a selection of Ensemble

Decision Systems in the area of GVGP, using the GVGAI competition as an experiment

platform. The results show that thoughtful implementation of an EDS can improve the

generality of a GVGP agent. If concurrency is included then the EDS has shown

signs that the combination of algorithms may actually strengthen the base algorithms,

though further experimentation is required to determine this.

This thesis was done through the following steps: first, an appropriate set of games

with which to test the EDS had to be selected from the GVGAI library. During

this exploration of the current GVGAI library it was determined that there were a

class of games, deceptive games, which would be an important aspect for competent

GVGP agents to be able to complete. This involved the creation of a new suite of

games which had the desired deceptive qualities, and the development of the continuous

information gain algorithm which would select the most diverse set of games from the

GVGAI library. Secondly, an exploration of the different types of EDS agents that

could be developed was conducted, which led to the creation of several distinct systems

for experimentation. Third, a direct comparison of different EDS agents was done

with successful portfolio and appropriate benchmark agents from the GVGAI, to get
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a better idea if an EDS is a viable competition agent. Finally, a set of experiments

which brought together all of the previous work and delved deeper into the encouraging

results observed in previous experiments were done.

The EDS shows the potential to be a powerful GVGP agent. Successful portfolio

agents do see improved performance in comparison to the EDS agents so far, but it has

been shown in this thesis that even those portfolio agents see improved generality when

implemented in an EDS. As concurrency is a natural next step for an EDS agent, if it

were to be allowed within the GVGAI competition, the options available for an EDS

would broaden.

The EDS shows a resilience to deceptive games which other agents do not have.

If this benefit of the system can be retained whilst improving the performance of the

other aspects of the system, likely through concurrency, then the EDS may be a more

powerful GVGP agent.

7.9 Contributions

The exploration and development of the EDS is the main contribution of this thesis.

The GVGAI was used as the platform for experimentation where the EDS was shown

to be capable of playing the games in the library successfully, as well as to be capable

of improving the generality of base algorithms from the GVGAI.

Along with the EDS, the concept of deceptive games was introduced in terms of

the GVGAI and the importance of a GVGP agent being able to solve these types of

games was highlighted. The work with deceptive games included the introduction of

new games to the GVGAI library and experimentation to determine which agents were

affected by these games. Several different types of deception were also identified and

described. This work showed not only that agents could be deceived, but that the

ranking of agents was partially determined by the set of games selected to evaluate

them with.

The continuous information gain formula was also introduced as a way of devel-

oping a better understanding of what types of games exist in the GVGAI, and how

to rigorously select a set of games that minimises bias. The work done involved the
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implementation and usage of the algorithm on the set of GVGAI games, which itself

was developed by Dr Christoph Salge.

The main contribution of this thesis has been the introduction and exploration of

the Ensemble Decision System in the GVGAI framework. A number of different EDS

systems were implemented and tested for the GVGAI and compared to high performing

agents from the competition. While the EDS agents did not outperform the other

agents in all areas, they did see a wider spread of wins across a variety of games, and

managed to outperform other agents in the deceptive game suite. These encouraging

results indicate that the EDS system is capable of performing well, improving generality

within the GVGAI, and that further experimentation may be fruitful.
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Abstract. Deceptive games are games where the reward structure or
other aspects of the game are designed to lead the agent away from a
globally optimal policy. While many games are already deceptive to some
extent, we designed a series of games in the Video Game Description
Language (VGDL) implementing specific types of deception, classified
by the cognitive biases they exploit. VGDL games can be run in the
General Video Game Artificial Intelligence (GVGAI) Framework, making
it possible to test a variety of existing AI agents that have been submitted
to the GVGAI Competition on these deceptive games. Our results show
that all tested agents are vulnerable to several kinds of deception, but
that different agents have different weaknesses. This suggests that we can
use deception to understand the capabilities of a game-playing algorithm,
and game-playing algorithms to characterize the deception displayed by
a game.

Keywords: Games, Tree Search, Reinforcement Learning, Deception

1 Introduction

1.1 Motivation

What makes a game difficult for an Artificial Intelligence (AI) agent? Or, more
precisely, how can we design a game that is difficult for an agent, and what can
we learn from doing so?

Early AI and games research focused on games with known rules and full
information, such as Chess [1] or Go. The game-theoretic approaches [2] to these
games, such as min-max, are constrained by high branching factors and large
computational complexity. When Deep Blue surpassed the top humans in Chess
[3], the game Go was still considered very hard, partly due to its much larger
branching factor. Also, the design of Arimaa [4], built to be deliberately difficult
for AI agents, relies heavily on an even higher branching factor than Go.

But increasing the game complexity is not the only way to make games more
difficult. To demonstrate this we will here focus on old arcade games, such as
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Sokoban, Dig Dug or Space invaders, which can be implemented in VGDL. Part
of the motivation for the development of VGDL and GVGAI was the desire
to create a generic interface that would allow the same AIs to play a range
of different games. GVGAI competitions have been held annually since 2013,
resulting in an openly accessible corpus of games and AI agents that can play
them (with varying proficiency).

VGDL games have relatively similar game complexity: the branching factor
is identical (there are six possible actions) and the game state space is not too
different between games because of the similar-sized levels. Yet, if we look at
how well different agents do on different games we can see that complexity is
not the only factor for game difficulty. Certain games seem to be very easy,
while others are nearly impossible to master for all existing agents. These effects
are still present if the agents are given considerably more time which could
compensate for complexity [5]. Further analyses also shows that games cannot
easily be ordered by difficulty, as agents based on different types of algorithms
seem to have problems with different games—there is a distinct non-transitivity
in performance rankings [6]. This raises the question of what makes a game
difficult for a specific agent but not for others?

One way to explain this is to consider that there are several methods for con-
structing agents to play games. One can train a function approximator to map
from a state observation to an action using reinforcement learning algorithms
based on approximate dynamic programming (the temporal difference family of
methods), policy gradients or artificial evolution; alternatively, and complemen-
tary, if you have a forward model of the game you can use tree search or evolution
to search for action sequences that maximize some utility [7]. Additionally, there
are hybrid algorithms combining elements from several of these methods, such
as the very successful AlphaGo[8] system which combines supervised learning,
approximate dynamic programming and Monte Carlo Tree Search.

A commonality between these game-playing methods is that they rely on
rewards to guide their search and/or learning. Policies are learned to maximize
the expected reward, and when a model is available, action sequences are selected
for the same criterion. Fortunately, rewards are typically well-defined in games:
gaining score is good, losing lives or getting hurt is bad. Indeed, one of the
reasons for the popularity of games as AI testbeds is that many of them have
well-defined rewards (they can also be simulated cheaply, safely and speedily).
But it’s not enough for there to be rewards; the rewards can be structured in
different ways. For example, one of the key problems in reinforcement learning
research, credit allocation, is how to assign reward to the correct action given
that the reward frequently occurs long after the action was taken.

Recently, much work has gone into devising reinforcement learning algorithms
that can learn to play simple arcade games, and they generally have good per-
formance on games that have short time lags between actions and rewards. For
comparison, a game such as Montezuma’s Revenge on the Atari 2600, where
there is a long time lag between actions and rewards, provides a very hard chal-
lenge for all known reinforcement learning algorithms.



It is not only a matter of the time elapsed between action and reward; rewards
can be more or less helpful. The reward structure of a game can be such that
taking the actions the lead to the highest rewards in the short-to-medium term
leads to lower overall rewards, i.e. playing badly. For example, if you spend all
your time collecting coins in Super Mario Bros, you will likely run out of time.
This is not too unlike the situation in real life where if you optimize your eating
policy for fat and sugar you are likely to achieve suboptimal global nutritional
reward. Designing a reward structure that leads an AI away from the optimal
policy can be seen as a form of deception, one that makes the game harder,
regardless of the underlying game complexity. If we see the reward function as a
heuristic function approximating the (inverse) distance from a globally optimal
policy, a deceptive reward function is an inadmissible heuristic.

1.2 Biases, deception and optimization

In order to understand why certain types or agents are weak against certain
kinds of deceptions it is helpful to consider different types of deception through
the lens of cognitive biases. Deceptive games can be seen as exploiting a spe-
cific cognitive bias4 of the (human or AI) player to trick them into making a
suboptimal decision. Withholding or providing false information is a form of
deception, and can be very effective at sabotaging a player’s performance. In
this paper though, we want to focus on games where the player or AI has full
access to both the current game state and the rules (forward model). Is it still
possible to design a game with these constraints that tricks an artificial agent?
If we were facing an agent with unlimited resources, the answer would be no, as
unbounded computational resources makes deception impossible: an exhaustive
search that considers all possible action sequences and rates them by their fully
modeled probabilistic expected outcome will find the optimal strategy. Writing
down what a unbounded rational agent should do is not difficult. In reality, both
humans and AI agents have bounded rationality in that they are limited in terms
of computational resources, time, memory, etc.

To compensate for this, artificial intelligence techniques rely on approxima-
tions or heuristics that are easier to compute and still return a better answer
than random. In a naive interpretation, this seems to violate the free lunch the-
orem. This is still a viable approach though if one only deals with a subset of all
possible problems. These assumptions about the problems one encounters can
be turned into helpful cognitive biases. In general, and in the right context, this
is a viable cognitive strategy - one that has been shown to be effective for both
humans and AI agents [9,10]. But reasoning based on these assumptions also
makes one susceptible to deceptions - problems that violate this assumption and
are designed in a way so that the, now mistaken, assumption leads the player
to a suboptimal answer. Counter-intuitively, this means that the more sophis-
ticated an AI agent becomes, the better it is at exploiting typical properties of

4 To simplify the text we talk about the game as if it has agency and intentions; in
truth the intentions and agency lies with the game’s designer, and all text should be
understood in this regard.



the environment, the more susceptible it becomes to specific deceptions based
on those cognitive biases.

This phenomenon can be related to the No Free Lunch theorem for search
and optimization, which implies that, given limited time, making an agent per-
form better on a particular class of search problems will make it perform worse
on others (because over all possible search problems, all agents will perform the
same) [11]. Of course, some search algorithms are in practice better than others,
because many “naturally occurring” problems tend to fall in a relatively re-
stricted class where deception is limited. Within evolutionary computation, the
phenomenon of deceptive optimization problems is well-defined and relatively
well-studied, and it has been claimed that the only hard optimization problems
are the deceptive ones [12,13].

For humans, the list of cognitive biases is quite extensive, and subsequently,
there are many different deception strategies for tricking humans. Here we focus
on agent which have their own specific sets of biases. Identifying those cognitive
biases via deceptive games can help us to both categorize those agents, and help
us to figure out what they are good at, and on what problem they should be
used. Making the link to human biases could also help us to understand the
underlying assumptions humans use, enabling us to learn from human mistakes
what shortcuts humans take to be more efficient than AIs.

1.3 Overview

The rest of this paper is structured as follows. We first outline some AI-specific
deceptions based on our understanding of current game-playing algorithms. We
present a non-exhaustive list of those, based on their assumptions and vulner-
abilities. We then introduce several new VGDL games, designed to specifically
deceive the existing AI algorithms. We test a range of existing agents from the
GVGAI framework on our new deceptive games and discuss the results.

2 Background

2.1 Categories of Deception

By linking specific cognitive biases to types of deception we can categorize differ-
ent deceptive games and try to predict which agents would perform well on them.
We can also construct deceptive games aimed at exploiting a specific weakness.
The following is a non-exhaustive list of possible AI biases and their associated
traps, exemplified with some of the games we present here.

Greed Trap: A common problem simplification is to only consider the effect
of our actions for a limited future. These greedy algorithms usually aim to max-
imize some immediate reward and rely on the assumption that the local reward
gradient will guide them to a global maximum. One way to specifically exploit
this bias (a greedy trap) is to design a game with an accumulated reward and



then use some initial small reward to trick the player into an action that will
make a later, larger reward unattainable. The later mentioned DeceptiCoins and
Sister Saviour are examples of this. Delayed rewards, such as seen in Invest and
Flower, are a subtype. In that case, an action has a positive reward that is only
awarded much later. This can be used to construct a greedy trap by combining
it with a smaller, more immediate reward. This also challenges algorithms that
want to attach specific rewards to actions, such as reinforcement learning.

Smoothness Trap: Several AI techniques also rely on the assumption that
good solutions are “close” to other good solutions. Genetic Algorithms, for exam-
ple, assume a certain smoothness of the fitness landscape and MCTS algorithms
outperform uninformed random tree search because they bias their exploration
towards branches with more promising results. This assumption can be exploited
by deliberately hiding the optimal solutions close to a many really bad solutions.
In the example of DeceptiZelda the player has two paths to the goal. One is a
direct, safe, low reward route to the exit which can be easily found. The other is
a long route, passing by several deadly hazards but incurring a high reward if the
successful route is found. Since many of the solutions along the dangerous part
lead to losses, an agent operating with the smoothness bias might be disinclined
to investigate this direction further, and would therefore not find the much bet-
ter solution. This trap is different from the greedy trap, as it aims at agents that
limit their evaluation not by a temporal horizon, but by only sampling a subset
of all possible futures.

Generality Trap: Another way to make decision-making in games more man-
ageable, both for humans and AI agents, is to generalize from particular situa-
tions. Rather than learning or determining how to interact with a certain object
in every possible context, an AI can be more efficient by developing a generalized
rule. For example, if there is a sprite that kills the avatar, avoiding that sprite as
a general rule might be sensible. A generality trap can exploit this by providing
a game environment in which such a rule is sensible, but for few critical excep-
tions. WafterThinMints aims to realize this, as eating mints gives the AI points
unless too many are eaten. So the agent has to figure out that it should eat a
lot of them, but then stop, and change its behavior towards the mints. Agents
that would evaluate the gain in reward greedily might not have a problem here,
but agents that try to develop sophisticated behavioral rules should be weak to
this deception.

2.2 Other deceptions

As pointed out, this list is non-exhaustive. We deliberately excluded games with
hidden or noisy information. Earlier GVGAI studies have looked at the question
of robustness [14], where the forward model sometimes gives false information.
But this random noise is still different from a deliberate withholding of game



information, or even from adding noise in a way to maximize the problems for
the AI.

We should also note that most of the deceptions implemented here are fo-
cused on exploiting the reward structure given by the game to trick AIs that
are optimized for actual rewards. Consider though, that recent developments in
intrinsically motivated AIs have introduced ideas such as curiosity-driven AIs to
play games such as Montezuma’s Revenge [15] or Super Mario [16]. The internal
curiosity reward enhances the AI’s gameplay, by providing a gradient in a flat
extrinsic reward landscape, but in itself makes the AI susceptible to deception.
One could design a game that specifically punished players for exploration.

3 Experimental Setup

3.1 The GVGAI Framework

The General Video Game AI competition is a competition focused on develop-
ing AI agents that can play real-time video games; agents are tested on unseen
games, to make sure that the developer of the agent cannot tailor it to a par-
ticular game [17]. All current GVGAI games are created in VGDL, which was
developed particularly to make rapid and even automated game development
possible [18]. The competition began with a single planning track which provided
agents with a forward model to simulate future states but has since expanded
to include other areas, such as a learning track, a rule generation track, and a
level generation track [19].

In order to analyze the effects of game deception on GVGAI agent perfor-
mance, a number of games were created (in VGDL) that implemented various
types of deception in a relatively “pure” form. This section briefly explains the
goal of each game and the reasons for its inclusion. In order to determine whether
an agent had selected the rational path or not, requirements were set based on
the agent’s performance, which is detailed in this section also.

3.2 DeceptiCoins (DC)

The idea behind DeceptiCoins is to offer agents two options for which path to
take. The first path has some immediate rewards and leads to a win condition.
The second path similarly leads to a win condition but has a higher cumulative
reward along its path, which is not immediately visible to a short-sighted agent.
Once a path is selected by the agent, a wall closes behind them and they are no
longer able to choose the alternative path.

In order for the performance of an agent to be considered rational in this
game, the agent must choose the path with the greatest overall reward. In figure
1, this rational path is achieved by taking the path to the right of the agent, as
it will lead to the highest amount of score.

Two alternative levels were created for this game. These levels are similar in
how the rules of the game work, but attempt to model situations where an agent



Fig. 1. The first level of De-
ceptiCoins

Fig. 2. The second level
of DeceptiCoins

Fig. 3. The third level of De-
ceptiCoins

may get stuck on a suboptimal path by not planning correctly. Level 2, shown in
figure 2, adds some enemies to the game which will chase the agent. The agents
need to carefully plan out their moves in order to avoid being trapped and losing
the game. Level 3, shown in figure 3 has a simple path which leads to the win
condition, and a risky path that leads to large rewards. Should the agent be too
greedy and take too much reward, the enemies in the level will close off the path
to the win condition and the agent will lose.

The sprites used are as follows:

– Avatar - Represents the player/agent in the game.

– Gold Coin - Awards a point if collected.

– G Square - Leads to winning the game when interacted with.

– Piranha - Enemies, if the avatar interacts with these, the game is lost.

The rational paths for level 2 and 3 are defined as reaching the win condition
of the level, while also collecting a minimum amount of reward (5 for level 2 and
10 for level 3).

3.3 DeceptiZelda (DZ)

DeceptiZelda looks at the risk vs reward behavior of the GVGAI agents. As in
DeceptiCoins, two paths are presented to the agent, with one leading to a quick
victory and the other leading to a large reward, if the hazards are overcome.
The hazards in this game are represented as moving enemies which must either
be defeated or avoided.

Two levels for this game were created as shown in figure 5 and figure 4. The
first level presents the agent with a choice of going to the right, collecting the
key and exiting the level immediately without tackling any of the enemies. The
second path leading up takes the agent through a hazardous corridor where they
must pass the enemies to reach the alternative goal. The second level uses the
same layout but instead of offering a win condition, a lot of collectible rewards
are offered to the agent, who must collect these and then return to the exit.



Fig. 4. The first level of Decep-
tizelda

Fig. 5. The second level of Decep-
tizelda

The sprites used are as follows:

– Avatar: Represents the player/agent in the game.

– Spider: The enemies to overcome. If defeated awards 2 points.

– Key: Used to unlock the first exit. Awards a point if collected.

– Gold Coin: Awards a point to the agent if collected.

– Closed Door: The low value exit. Awards a point if moved into.

– Open Door: The high value exit. Awards 10 points if moved into.

The rational path for this game is defined as successfully completing the
path with the most risk. In the first level, this is defined as achieving at least 10
points and winning the game. This can be done by taking the path leading up
and reaching the exit beyond the enemies. The second level of DeceptiZelda is
played on the same map, but instead of offering a higher reward win condition,
a large amount of reward is available, and the agent has to then backtrack to
the single exit in the level. This level can be seen in figure 5.

3.4 Butterflies (BF)

Butterflies is one of the original games for the GVGAI that prompted the be-
ginning of this work. This game presents a situation where if the agent aims for
the win condition too quickly, they will lower their maximum potential score for
the level. The goal of the game is simple; collect all of the butterflies before they
reach their cocoons, which in turn creates more butterflies. To solve the game
all that is required is that every butterfly is collected. Each collected butterfly
grants a small reward to the agent. If the agent is able to defend a single cocoon
and wait until all other cocoons have been spawned, there will be the maximum
number of butterflies available to gain reward from. So long as the last cocoon



Fig. 6. The first level of Butterflies

is not touched by a butterfly, the game can still be won, but now a significantly
higher score is possible. The level used is shown in figure 6.

The sprites used are as follows:

– Avatar: Represents the player/agent in the game.

– Butterfly: Awards 2 points if collected.

– Cocoon: If a butterfly interacts with these, more butterflies are created.

The rational path for Butterflies is defined as any win condition with a final
score over 30. This is achieved by allowing more than half of the cocoons to be
spawned and then winning the level.

3.5 SisterSaviour (SS)

The concept of SisterSaviour was to present a moral choice to the agent. There
are 3 hostages to rescue in each level, and a number of enemies guarding them,
as shown in figure 7. It is not possible for the agent to defeat these enemies
immediately. The agent is given a choice of either rescuing the hostages or killing
them. If the agent chooses to rescue the hostages they receive a small reward
and will be able to defeat the enemies, which grants a large point reward. On the
other hand, if the agent chooses to kill the hostages, they are granted a larger
reward immediately, but now lack the power to defeat the enemies and will lose
the game.

The sprites used are as follows:

– Avatar: Represents the player/agent in the game.

– Scorpion: An enemy which chases the avatar. Immune to attacks from
the avatar, unless all of the hostages have been rescued. Awards 14 points if
defeated.

– Hostage: Can be either killed, by attacking them or rescued by moving
into their space. Awards 2 points if killed, and 1 point if rescued. If all are
rescued then the avatar can kill the enemy.



Fig. 7. The first level of Sis-
terSaviour

Fig. 8. The first level of Invest

The rational path for SisterSaviour is defined as reaching a score of 20. This
involves rescuing all of the hostages, by moving the avatar onto their space, and
then defeating the enemy.

3.6 Invest (Inv)

Invest looks at the ability of a GVGAI agent to spend their accumulated reward,
with the possibility of receiving a larger reward in the future. This game is
shown in figure 8. The agent begins with a set number of points which need
to be collected from the level, which can then be spent on investment options.
This is done by moving onto one of the 3 human characters to the north of the
level. Investing will deduct an amount from their current score, acting as an
immediate penalty, and will trigger an event to occur at a random point in the
future where the agent will receive a large score reward. Should the agent invest
too much, and go into a negative score, then the game is lost, otherwise, they
will eventually win. The interesting point of this game was how much reward
they accumulate over the time period that they have, and would they overcome
any loss adversity in order to gain higher overall rewards?

The sprites used are as follows:

– Avatar: Represents the player/agent in the game.

– Gold Coin: Awards a point when collected.

– Green Investment: Takes 3 points when moved onto, returns 8.

– Red Investment: Takes 7 points when moved onto, returns 15.

– Blue Investment: Takes 5 points when moved onto, returns 10.

The rational path in Invest is defined as investing any amount of score suc-
cessfully without suffering a loss.



3.7 Flower (Flow)

Flower is a game which was designed to offer small immediate rewards, and
progressively larger rewards if some time is allowed to pass for the reward to
grow. As shown in figure 9, a single seed is available for the agent to collect,
which is worth 0 points. As time passes the value of the seed increases as it
grows into a full flower, from 0 up to 10. Once collected, the seed will begin to
regrow, starting from 0 again. The rational solution for this game is to wait for
a seed to grow into a full flower, worth 10 points, and then collecting it.

The sprites used are as follows:

– Avatar: Represents the player/agent in the game.

– Seed: Awards 0 points initially, but this increases up to 10.

The rational path in Flower is defined as achieving a score of at least 30.
This can only be done by allowing the flower to grow to at least the second stage
and consistently collecting at that level.

3.8 WaferThinMints (Mints)

WaferThinMints introduces the idea that gathering too much reward can lead
to a loss condition. The agent has to gather resources in order to increase their
reward, but if they collect too many they will die and lose the game.

Two variants of this game were created. One which includes an exit from
the level, shown in figure 11, and one that does not, shown in figure 10. These
variants were created in order to provide a comparison of the effect that the
deception in the level has on overall agent performance.

The sprites used are as follows:

– Avatar: Represents the player/agent in the game.

– Cheese: Awards a point when collected. If 9 have been collected already,
then the 10th will kill the avatar causing a loss.

– Exit: Leads to a win condition when moved into.

The rational path for both versions of the game is defined as collecting a score
of 9, and then either waiting for the timeout, in level 1 or exiting the game, in
level 2.

4 Experiments and Results

The agents used were collected from the GVGAI competitions. Criteria for selec-
tion were the uniqueness of the algorithm used and competition ranking in the
past. The hardware used for all of the experiments was a Ubuntu 14.04 desktop
PC with an i7-4790 CPU and 16GB Ram.

Each agent was run 10 times on each level of the deceptive games outlined
in section 3. If an agent was disqualified for any reason it was given another



Fig. 9. The first level of
Flower

Fig. 10. The first level of
WaferThinMints

Fig. 11. The second level of
WaferThinMints

run to collect 10 successful results for each game and agent. In addition to
comparing these performance statistics, observations were made on the choices
that the agents made when faced with potentially deceptive choices. Each game’s
rational path is defined in section 3. The results of these experiments are shown
in table 12. Each game was played a total of 360 times. The totals at the bottom
of the table show how many of those games were completed using the defined
rational path. The results are ranked in descending order by their number of
rational trials, and then the number of games where they managed to play with
100% rationality.

Noticeably from the initial results is that no single algorithm was able to solve
all the games, with DeceptiZelda and SisterSaviour being particularly challeng-
ing. Furthermore, no single algorithm dominated all others in all games. For
Example, IceLab, the top agent in overall results, only has 2 rational trials in
Butterflies, compared to 9 for Greedy Search, which is in the 33rd place. In
general, the results for Butterflies are interesting, as top agents perform poorly
compared to some of the lower ranking agents.

Butterflies also has a good spread of results, with all but 4 of the algorithms
being able to find the rational path at least once. While many of the algorithms
are able to make some progress with the game, only 2 are able to achieve 100%
rationality.

There is an interesting difference in the performance of agents between Decep-
tiCoins level 1 and 2. The agents that performed well in Decepticoins 1 seemed
to perform significantly worse in level 2. The requirements of the levels are quite
different which appears to have a significant effect on the agents. If a ranking
was done with only the performance of DeceptiCoins level 2 then IceLab, the
1st ranked in this experiment, would be in the bottom half of the results table.

The hardest games for the agents to solve were DeceptiZelda levels 1 and 2,
and SisterSaviour. DeceptiZeldas levels had only 4 and 13 runs solved respec-
tively, and SisterSaviour having 14. These games present interesting challenges
to the agents, with the rational solution requiring a combination of long-range
planning and sacrificing apparent reward for the superior, long-range goal.

Another interesting case here is Mints, the only game in our set with a
generalization trap. Most algorithms do well in Mints, suggesting that they do



not generalize. This is to be expected, as a tree search algorithm does not in
itself generalize from one state to another. But bladerunner, AtheneAI, and
SJA86 completely fail at these games, even though they perform reasonably well
otherwise. This suggests that they perform some kind of surrogate modeling
of game states, relying on a generality assumption that this game breaks. The
inclusion of an accessible win condition in Mints 2 also dramatically reduced
the number of algorithms that achieved the maximum amount of score, from
26 to 8. This seems to be due to also introducing a specific greed trap that
most algorithms seem to be susceptible too - namely preferring to win the game
outright, over accumulating more score.

Note that, the final rankings of this experiment differ quite significantly from
the official rankings on the GVGAI competition. It is important to note that a
different ranking algorithm is used in the competition, which may account for
some of the differences observed. Many of the agents have a vastly different level
of performance in these results compared to the official rankings. First of all,
IceLab and MH2015 have historically appeared low in the official rankings, with
their highest ranks being 10th place. The typical high ranking algorithms in the
official competition seem to have been hit a bit harder by the new set of games.
Yolobot, Return42, maastCTS2, YBCriber, adrienctx and number27 tend to
feature in the top 5 positions of the official rankings, and have now finished in
positions 2, 4, 15, 8, 9, and 7. For them to lose their positions in this new set of
games could show how the games can be constructed to alter the performance
of agents [17,19].

In order to look at the effect of deception on specific types of algorithms,
such as genetic algorithms (GA) or Tree Search techniques, a second set of
experiments were performed. A selection of algorithms were ran an additional
10 times on each of the games, and each algorithm was investigated to identify
the core component of its operation. It should be noted that these classifications
are simple, and an in-depth analysis of the specifics used by the algorithms
might reveal some further insights. The results for these experiments are shown
in figure 13.

These results show a number of interesting observations. First of all, for De-
ceptiZelda1 and 2 it appears that agents using a genetic algorithm perform better
than most other approaches, but do poorly compared to tree search techniques
at SisterSaviour. Portfolio search agents, which employ different algorithms for
different games or situations, take the top two positions of the table and place
quite highly overall compared to single algorithm solutions.

5 Discussion and Future Work

The results suggest that the types of deception presented in the games have
differing effects on the performance of different algorithms. The fact that al-
gorithms, that are more sophisticated and usually perform well in the regular
competition are not on top of the rankings is also in line with our argument,
that they employ sophisticated assumptions and heuristics, and are subsequently



Agent Name DC1 DC 2 DC 3 DZ 1 DZ 2 SS BF Flow Inv Mints 1 Mints 2 Rational
1.	IceLab 10 2 10 0 0 0 2 10 10 10 10 8
2.	Return42 10 1 7 0 0 2 1 10 10 10 0 8
3.	MH2015 2 4 5 1 3 0 5 0 1 10 0 8
4.	YoloBot 10 3 10 0 0 0 6 6 0 10 10 7
5.	jaydee 9 6 9 0 0 0 1 10 0 10 3 7
6.	NovTea 3 4 10 0 0 6 3 2 0 10 0 7
7.	number27 0 5 4 0 1 0 4 6 3 10 0 7
8.	YBCriber 10 5 10 0 0 0 0 0 10 10 10 6
9.	adrienctx 0 3 4 0 0 0 1 10 0 10 10 6
10.	TeamTopBug 9 5 10 0 0 0 1 10 0 10 0 6
11.	Catlinux 0 7 10 0 4 0 6 7 0 10 0 6
12.	muzzle 6 2 1 0 0 0 3 0 10 10 0 6
13.	novelTS 1 4 10 0 0 0 3 0 4 10 0 6
14.	bladerunner 10 4 8 0 3 0 1 0 10 0 0 6
15.	maastCTS2 0 2 0 2 0 0 3 3 1 10 0 6
16.	SJA86 1 1 0 0 1 0 9 6 0 1 0 6
17.	Catlinux3 0 3 10 0 0 0 10 8 0 10 0 5
18.	aStar 2 1 0 0 0 0 0 10 10 10 0 5
19.	AtheneAI 10 6 0 1 0 0 10 0 10 0 0 5
20.	Rooot 0 1 7 0 0 0 7 10 0 10 0 5
21.	SJA862 3 0 7 0 0 0 3 0 10 10 0 5
22.	roskvist 0 2 0 0 0 0 5 2 0 10 3 5
23.	EvolutionStrategies 0 1 1 0 0 0 3 5 0 10 0 5
24.	AIJim 0 1 0 0 0 0 9 1 5 5 0 5
25.	HillClimber 2 0 0 0 0 0 7 3 1 0 1 5
26.	MnMCTS 0 1 0 0 1 0 6 0 8 6 0 5
27.	mrtndwrd 0 0 0 0 0 4 3 4 0 10 0 4
28.	simulatedAnnealing 4 0 0 0 0 0 8 4 0 0 1 4
29.	TomVodo 3 0 0 0 0 0 5 5 0 4 0 4
30.	ToVo1 1 0 0 0 0 0 9 1 0 9 0 4
31.	Thorbjrn 0 4 5 0 0 0 9 0 1 0 0 4
32.	BFS 0 1 0 0 0 0 5 0 10 0 0 3
33.	Greedy	Search 10 0 0 0 0 0 9 0 0 0 0 2
34.	IterativeDeepening 0 0 0 0 0 2 1 0 0 0 0 2
35.	Catlinux4 0 0 0 0 0 0 0 0 10 0 0 1
36.	DFS 0 0 0 0 0 0 0 0 0 0 0 0
Totals 116 79 138 4 13 14 158 133 124 235 48

Fig. 12. The results of the first experiment

susceptible to deception. Based on the data we have now it would be possible
to build a game to defeat any of the agents on the list, and it seems possible to
design a specific set of games that would put any specific AI at the bottom of
the table. The difficulty of a game is, therefore, a property that is, at least in
part, only well defined in regards to a specific AI.

In regards to categorization, it seems there is a certain degree of similarity
between groups of games and groups of AIs that perform similarly, but a more
in-depth analysis would be needed to determine what exact weakness each AI
has. The games in this corpus already contain, like Mints 2, a mixture of different
deceptions. Similarly, the more sophisticated agents also employ hybrid strategies



Agent Name Algorithm DC 1 DC 2 DC 3 DZ 1 DZ 2 SS BF Flow Inv Mints Mints 2 Rational
1.	IceLab Portfolio 20 3 19 0 0 0 9 20 2 20 20 8
2.	Return42 Portfolio 20 3 13 0 0 4 5 20 20 20 0 8
3.	MH2015 GA 2 10 10 2 3 0 11 0 6 20 0 8
4.	SJA86 MCTS 1 2 0 2 1 0 17 10 16 8 0 8
5.	YBCriber Portfolio 20 9 20 0 0 0 2 0 20 20 20 7
6.	YoloBot Portfolio 20 8 20 0 0 0 12 13 0 20 20 7
7.	Catlinux GA 0 10 20 2 4 0 15 15 0 20 0 7
8.	muzzle GA 12 3 2 0 0 1 10 0 20 20 0 7
9.	NovTea Tree 8 7 20 0 0 12 9 3 0 20 0 7
10.	SJA862 MinMax 8 3 13 0 0 0 8 2 20 20 0 7
11.	number27 Portfolio 0 9 6 0 1 0 11 12 5 20 0 7
12.	adrienctx MCTS 0 5 10 0 0 0 7 20 0 20 20 6
13.	TeamTopBug GA 19 9 20 0 0 0 3 20 0 20 0 6
14.	bladerunner Portfolio 20 6 12 4 5 0 3 0 0 0 0 6
15.	EvolutionStrategies GA 0 1 1 0 0 0 3 8 0 20 1 6
16.	HillClimber Hill 3 0 0 0 0 0 13 6 8 1 1 6
17.	aStar A* 4 1 0 0 0 0 0 20 20 20 0 5
18.	novelTS Tree 2 5 20 0 0 0 8 0 0 20 0 5
19.	TomVodo MCTS 5 0 0 0 0 0 14 8 3 8 0 5
20.	mrtndwrd MCTS/A* 0 0 0 0 0 9 9 7 0 20 0 4
21.	simulatedAnnealing SA 8 0 0 0 0 0 14 10 0 0 1 4
22.	Greedy	Search Tree 20 0 0 0 0 0 10 0 0 0 0 2
23.	BFS Best	First 0 1 0 0 0 0 8 0 0 0 0 2
24.	IterativeDeepening ID 0 0 0 0 0 3 1 0 0 0 0 2
25.	DFS Depth 0 0 0 0 0 3 0 0 0 0 0 1
Total	Clever 192 95 206 10 14 32 202 194 140 337 83

Fig. 13. The results of the second experiment.

and some, like YoloBot, switch between different AI approaches based on the
kind of game they detect [20]. One way to explore this further would be to use a
genetic algorithm to create new VGDL games, with a fitness function rewarding
a set of games that can maximally discriminate between the existing algorithms.

There are also further possibilities for deception that we did not explore here.
Limiting access to the game state, or even requiring agents to actually learn how
the game mechanics work open up a whole new range of deception possibilities.
This would also allow us to extend this approach to other games, which might
not provide the agent with a forward model, or might require the agent to deal
with incomplete or noisy sensor information about the world.

Another way to deepen this approach would be to extend the metaphor
about human cognitive biases. Humans have a long list of cognitive biases -
most of them connected to some reasonable assumption about the world, or
more specifically, typical games. By analyzing what biases humans have in this
kind of games we could try to develop agents that use similar simplification
assumptions to humans and thereby make better agents.
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Abstract
This paper introduces an information-theoretic method for se-
lecting a small subset of problems which gives us the most in-
formation about a group of problem-solving algorithms. This
method was tested on the games in the General Video Game
AI (GVGAI) framework, allowing us to identify a smaller set
of games that still gives a large amount of information about
the game-playing agents. This approach can be used to make
agent testing more efficient in the future. We can achieve al-
most as good discriminatory accuracy when testing on only
a handful of games as when testing on more than a hundred
games, something which is often computationally infeasible.
Furthermore, this method can be extended to study the di-
mensions of effective variance in game design between these
games, allowing us to identify which games differentiate be-
tween agents in the most complementary ways. As a side ef-
fect of this investigation, we provide an up-to-date compari-
son on agent performance for all GVGAI games, and an anal-
ysis of correlations between scores and win-rates across both
games and agents.

Introduction
Competitions and challenges are regularly used within AI as
a way of evaluating algorithms, and also for promoting inter-
est into specific problems. However, if the challenge poses
a large set of possible problems it can often be impracti-
cal or even impossible to evaluate a new algorithm on every
problem within this set. Comparing a new algorithm with
the state of the art on the full set of problems can require
immense computational resources, which are not available
to many researchers. Therefore, a smaller set of problems is
usually selected that intends to be representative of the en-
tire problem space. This leads to the fundamental question:
how should we select this subset of problems? This question
is critical, as selecting a poorly representative subset of the
problems available might leave out key aspects of the chal-
lenge, resulting in an unintentional bias that leads to spe-
cific solutions performing better than they would have on
the entire problem set. If you have good knowledge of the
domain, you could choose a set of problems with interest-
ingly difficult design features, but there is no guarantee that
these differences in design translate to meaningfully differ-
ent challenges. Also in many cases, you do not have deep
knowledge about the design of the different problems.

This issue is prevalent in any situation where it may be
computationally prohibitive to test a new algorithm on all
sub-problems presented. Examples of competitions or chal-
lenges where this is the case include the GVGAI (Perez-
Liebana et al. 2016b), ALE (Bellemare et al. 2013) and Kag-
gle competitions (Carpenter 2011), each of which have hun-
dreds of separate problems. There are also other sets of ma-
chine learning benchmarks that contain a multitude of dis-
parate tasks, such as the OpenAI Gym (Brockman et al.
2016) or the UCI repository of supervised learning tasks
(Dheeru and Karra Taniskidou 2017). Many of the partic-
ipants in these challenges cherry-pick benchmarks where
their new algorithm performs well. This will continue to
happen as long as benchmark sets are so large that it is com-
putationally infeasible to test on all benchmarks available.
However, we should not simply reject good papers simply
because the authors lack the resources to perform full eval-
uations on every benchmark possible. The solution to this
dilemma is to test new algorithms on problems that are most
relevant given the current set of well-performing algorithms,
not simply those where the new algorithm performs best.
This paper therefore proposes an approach for selecting a
small number of problems out of a larger set for accurately
testing an algorithm, and has great potential to revolutionize
AI benchmarking across many different AI challenges.

As a first approach to the task of selecting which prob-
lems to test an algorithm on, we look at the correlations be-
tween different algorithm’s performance for different prob-
lems. After testing an algorithm on one problem, another
problem could be selected with an anti-correlated perfor-
mance profile (i.e. one where other algorithms perform dif-
ferently). This is an incomplete solution however, most im-
portantly because it does not tell us which problem to test on
first and does not factor in the potential variability in agent
performance. We instead propose an information-theoretic
measure for determining which problems are best at telling
a given set of algorithms apart; a measure that also takes into
account the concept of noise when analyzing performance
measures. By recursively applying this measure, we can find
problems that are maximally informative considering previ-
ously selected problems, meaning that we can identify prob-
lems that discriminate among a set of algorithms in different
ways (Martınez-Plumed and Hernández-Orallo 2016).

We use the General Video Game AI (GVGAI) frame-
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work as a testbed for our method. The GVGAI library
includes more than a hundred mini video games (Bon-
trager et al. 2016), and several dozen different agents that
can play these games (Soemers et al. 2016; Gaina, Lu-
cas, and Perez-Liebana 2017; Weinstein and Littman 2012;
Pérez-Liébana et al. 2016c; Mendes, Togelius, and Nealen
2016) have been submitted to the associated GVGAI com-
petition (Perez-Liebana et al. 2016a). We present a for-
malised analysis on the correlations between agent perfor-
mances across different games, and use our information-
theoretic measure to select a subset of the GVGAI game li-
brary that accurately represents the full discriminative scope
when testing on all games available (i.e. provides a diverse
range of problems that best distinguishes between agents).

Background
General Video Game Playing (GVGP) is an area of research
that looks to expand upon the success of the General Game
Playing (GGP) competition. The GGP competition offers a
platform for researchers to create agents that can play a wide
range of board games (Genesereth, Love, and Pell 2005).
While board games offer an interesting variety of problems,
they do not offer real-time situations where rapid decision
making is key, which is what the GVGP competition does
by providing a library of video games as a research platform
(Levine et al. 2013).

The GVGAI competition has been running annually since
2014 and provides a Video Game Description Language
(VGDL) with which to quickly design games, and a common
API for agents to access those games (Ebner et al. 2013).
Each year ten games are selected to evaluate the submitted
agents, which often covers a wide range of game types from
role-playing to puzzle games (Perez-Liebana et al. 2018a).
One of the key elements of this competition is that the games
being played by the agents for each year’s competition are
unknown to both the developers and agents beforehand.
Many of the GVGAI games and most of the agents include
some form of stochasticity, meaning that performance eval-
uation is inherently noisy. Playing a GVGAI game will also
give two signals of performance, whether an agent won the
game or not and what score was obtained (Perez-Liebana et
al. 2016b). The competition currently offers multiple tracks,
including a single and multi-player planning track (Gaina,
Prez-Libana, and Lucas 2016), which provides a forward
model for analyzing future game states, and a learning track
which removes the forward model but allocates a train-
ing time to agents before submission (Pérez-Liébana et al.
2018b). For this paper, we only consider the games and
agents used in the single-player planning track.

One of the issues that we set out to tackle with this work is
that the games within the GVGAI framework are currently
not well documented. A few previous papers attempted to
evaluate how certain agents perform on different GVGAI
games (Bontrager et al. 2016; Nelson 2016), but none have
investigated the different discrimination profiles presented
by the full game corpus, or how this information could be
used to help design better agents and games in the future.
The fact that different GVGAI games pose different types of
problems to agents, may lead to biases towards a particular

type of algorithm when selecting game subsets. Understand-
ing what bias may exist in a given set of games, and being
able to select ten games which minimize any particular bias,
is desirable for ensuring that the competition is genuinely
evaluating general problem-solving capabilities.

Data Collection

The first step towards analyzing different GVGAI games is
to collect data from various playthroughs using a collec-
tion of agents. We used twenty-seven commonly available
agents, which were some of the top performing entries in
the previous GVGAI competitions over the last five years.
The games that were used consist of the full corpus of 102
GVGAI games that are currently available (at the time of
writing), plus an additional six deceptive GVGAI games in-
troduced by Anderson et al. (Anderson et al. 2018), making
the total number of games equal to 108.

Similar to the GVGAI competition format, each agent
has 40 milliseconds to perform each action and runs for
at most 2000 time steps. To replicate the competition envi-
ronment, we ran the agents using 243 CPU cores with 2.6
GHz and 8 GB of memory. Each successful playthrough
of a game that resulted in either a win or loss without
any crashes produces one unit of data, containing the in-
formation [agent, game, score, win/lose]. Unfortunately,
some of the agents occasionally crashed on certain games
due to changes that the GVGAI framework has received
through over the years, so not all the agents have the same
amount of the generated data. A total of 3,990,760 success-
ful playthroughs were recorded across all agents and games,
with an average of 1,368.6 data samples per game-agent pair.

Algorithm Performance

As a basis for further analysis, we compute both the average
win-rate and score for each game-agent pair, with the results
visualized in Figure 1. Looking at the win-rate in Figure 1a
we can already see that there are some games where nearly
all agents either win or lose, in which case the score seen
in Figure 1b would be the deciding value. Conceptually, it
seems that games which offer a large spread of performance
values would be best at discriminating between good and
bad agents in a competition, but we can also see in Figure 1
that not all games are necessarily won by the same agents.

We investigated this further by performing a principal
component analysis, where the win-rate and score of the
games are the data points, and the initial dimensions are
the games. We found that the first ten principal components
account for 80.1% of the variance. We also checked which
agents did well along which axes, the results of which can
be seen in Table 1. The fact that different agents perform
well along different dimensions reinforces the fact that it
matters which subset of games is picked for a competition.
By choosing games aligned with any of these principle di-
mensions, one could design a competition that would almost
certainly be won by the top performer for that component.
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(a) The average win-rate of each agent for each game.

 d
ec

ep
tiz

el
da

 b
ol

oa
dv

en
tu

re
s

 b
ai

t
 c

lu
st

er
s

 w
ra

ps
ok

ob
an

 c
hi

ps
ch

al
le

ng
e

 so
ko

ba
n

 re
al

so
ko

ba
n

 m
od

al
ity

 w
at

er
ga

m
e

 te
rc

io
 su

pe
rm

an
 e

gg
om

an
ia

 d
oo

rk
ob

an
 v

or
te

x
 c

oo
km

ep
as

ta
 th

ec
ita

de
l

 th
es

no
wm

an
 a

vo
id

ge
or

ge
 ro

gu
el

ik
e

 p
ac

m
an

 b
la

ck
sm

ok
e

 e
ig

ht
hp

as
se

ng
er

 fi
re

m
an

 re
al

po
rta

ls
 p

ai
nt

er
 la

se
rs

 w
itn

es
sp

ro
te

ct
ed

 a
ss

em
bl

yl
in

e
 la

se
rs

2
 b

el
tm

an
ag

er
 e

ne
m

yc
ita

de
l

 x
-ra

ce
r

 c
op

s
 su

rro
un

d
 in

ve
st

 k
illB

illV
ol

1
 is

la
nd

s
 sh

ip
wr

ec
k

 a
ng

el
sd

em
on

s
 ro

ad
fig

ht
er

 d
on

ke
yk

on
g

 ri
ve

rs
 p

la
nt

s
 p

ok
em

on
 ze

ld
a

 o
ve

rlo
ad

 fi
re

ca
st

er
 p

la
qu

ea
tta

ck
 in

fe
ct

io
n

 w
itn

es
sp

ro
te

ct
io

n
 m

irr
or

s
 b

om
be

r
 b

om
be

rm
an

 so
la

rfo
x

 g
ho

st
bu

st
er

 w
ild

gu
nm

an
 b

ou
ld

er
da

sh
 b

ou
ld

er
ch

as
e

 m
iss

ile
co

m
m

an
d

 se
aq

ue
st

 th
es

he
ph

er
d

 d
un

ge
on

 d
ig

du
g

 ja
ws

 la
by

rin
th

 h
un

gr
yb

ird
s

 c
ha

se
 w

ai
tfo

rb
re

ak
fa

st
 fr

og
s

 p
or

ta
ls

 ic
ea

nd
fir

e
 la

by
rin

th
du

al
 fr

ee
wa

y
 c

am
el

Ra
ce

 in
te

rs
ec

tio
n

 d
ef

en
de

r
 g

ar
ba

ge
co

lle
ct

or
 ru

n
 c

ro
ss

fir
e

 c
ak

yb
ak

y
 sh

er
iff

 d
ef

le
ct

io
n

 le
m

m
in

gs
 ze

np
uz

zle
 a

lie
ns

 w
af

er
th

in
m

in
ts

 b
ut

te
rfl

ie
s

 fl
ow

er
 si

st
er

sa
vi

or
 b

ra
in

m
an

 fa
ct

or
ym

an
ag

er
 fi

re
st

or
m

s
 ik

ar
ug

a
 su

rv
iv

ez
om

bi
es

 g
ym

kh
an

a
 c

at
ap

ul
ts

 d
ec

ep
tic

oi
ns

 ra
ce

be
t

 ra
ce

be
t2

 th
em

ol
e

 c
ho

pp
er

 w
av

es
 c

ha
in

re
ac

tio
n

 d
ef

em
 w

ha
ck

am
ol

e
 c

ol
ou

re
sc

ap
e

 e
sc

ap
e

SJA86
TomVodo
CatLinux

sampleMCTS
sampleRHEA

greedySearch
evolutionStrategies

aStar
mrtndwrd

simulatedAnnealing
hillClimber

jaydee
TeamTopbug

NovTea
YBCriber
AtheneAI

ICELab
thorbjrn

bladerunner
muzzle

adrienctx
MH2015
SJA862

Return42
NovelTS

Number27
MaastCTS2

(b) The average normalized score of each agent for each game.

Figure 1: The average performance of each agent for each game. Figure 1a shows the average win-rate, while Figure 1b shows
the average score (normalised based on the highest score achieved by any agent for each game). The games and agents are
sorted based using a hierarchical clustering algorithm.

Rank D1 Agents D2 Agents D3 Agents D4 Agents D5 Agents D6 Agents D7 Agents D8 Agents D9 Agents D10 Agents
#1 MaastCTS2 AtheneAI NovelTS bladerunner TomVodo adrienctx MaastCTS2 MaastCTS2 aStar MaastCTS2
#2 thorbjrn YBCriber aStar Return42 sampleMCTS TeamTopbug YBCriber ICELab adrienctx Number27
#3 NovTea NovTea TeamTopbug TomVodo SJA86 muzzle AtheneAI AtheneAI muzzle NovTea
#4 Return42 MaastCTS2 jaydee sampleMCTS CatLinux MaastCTS2 NovTea thorbjrn NovTea adrienctx
#5 AtheneAI ICELab muzzle muzzle Number27 MH2015 Return42 Number27 bladerunner muzzle

Table 1: Top five performing agents for each dimension using principal component analysis.

Correlation Analysis
In this section, we analyze the correlations between games in
terms of agent performance, as well as between using win-
rate and score as performance measures, as games which
have similar performance patterns should have similar prob-
lem characteristics. The resulting correlation matrices are
then used for clustering, and these clusters are analyzed for
meaningful similarities between games.

Game / game correlation
In the video game industry, similar video games are usually
grouped under a specific category that is defined by com-
mon gameplay characteristics, referred to as a game genre.

Games in the GVGAI framework are mostly ports of known
video games, meaning that we can often find genre relations
between them. However, attempting to group games by their
genres does not necessarily indicate that similar problem-
solving capabilities are required to solve them. We, there-
fore, took a more formal and robust approach for identifying
correlations between games based on agent performance.

For this analysis, we calculated the correlation matrix be-
tween all 108 games in our sample using either the agents’
win-rates or scores. Figure 2 shows these correlation ma-
trices where blue means high correlation, red means high
anti-correlation, and white means no correlation. To sim-
plify the task of analyzing such a large matrix, we clustered
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(a) Win-rate correlation matrix.
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(b) Score correlation matrix.

Figure 2: The correlation matrix between every game in the framework. Figure 2a is based on the agents’ win-rates, while
Figure 2b is based on the agents’ scores. The games are sorted based on the result of a hierarchical clustering algorithm.

their values using a hierarchical clustering algorithm and se-
lected clusters that minimize the variance between the games
within each cluster. The different clusters are represented by
the black vertical or horizontal lines and are ordered (and
subsequently referred to) in terms of their location from the
left/top of the matrix.

Figure 2a shows the correlation matrix using the agents’
win-rates. Using this matrix, we can see that games in the
fifth cluster have a low anti-correlation to the rest of the
games in the framework. These games are characterized by
either being very hard to beat (plants) or not having a win-
ning condition (invest). By analyzing the clusters row by
row, we can see that the win-rates of most games are not
highly correlated except for the first three clusters. Most of
the games within these first three clusters appear to be puz-
zle games (zenpuzzle, sokoban, cookmepasta are some ex-
amples). These types of games are typically characterized by
the need for long-term planning to solve them, which likely
causes their win-rates to be highly similar.

Figure 2b shows the correlation matrix using the agents’
scores. By looking closely, we can see that the score distri-
bution between most of the games are similar (the matrix
is mostly blue). This was not surprising as we know that
most of the games in the framework are designed to have
a score distribution that reflects the progress of the agents
in the game (good states have high scores, while bad states
have low scores). The only exception to this is the first three
clusters, which are highly anti-correlated with every game
in the framework except for those within its cluster. These
games appear to be characterized by a delayed score distri-

bution (score only received near the end of the game) which
makes them very different from the other games that provide
rewards for incremental steps closer to the solution.

Win-rate / score correlation
Since many GVGAI games are designed so that the score
heavily indicates progression towards the win condition,
most of the 108 games within our sample had very high
correlations between agent win-rates and score. In fact, 13
of the games had perfect correlation values of one (frogs,
pokemon, racebet2, roadfighter, run, waitforbreakfast, wa-
tergame, x-racer, modality, portals, racebet, tercio and wit-
nessprotected). However, some of the games had a very low
or even negative correlation, with the ten lowest correla-
tion games shown in Table 2. Note that some games such
as flower and invest always result in the agent either losing
or winning regardless of the actions they perform, meaning
that these games do not provide any correlation measure.

From these results we can see that Painter has a very high
negative correlation between win-rate and score, far more so
than any other game. The likely reason for this is that the ob-
jective of Painter is to change the color of all of the tiles in
the game to the same color, in as few steps as possible. Each
time the color of a tile is changed the agent receives a score
reward, so solutions that win the game quickly will often
have a lower score. While this is a rather counter-intuitive
idea, several other GVGAI games are also known to have
this property within their design. This strong negative cor-
relation between win-rate and score appears to be indicative
of a particular type of deception in the game, the greed trap.



Game name correlation coefficient
painter -0.90488026
rivers -0.62030330
surround -0.49545454
lemmings -0.37996316
chainreaction -0.35905795
donkeykong -0.11941969
lasers2 -0.04154697
boloadventures -0.02221504
beltmanager 0.01585323
deflection 0.05087994

Table 2: Games with the lowest correlation between win-rate
and score.

This deceptive design element exploits the fact that most
agents assume the reward structure for a game leads towards
a goal state, by creating levels where this is not strictly the
case (Anderson et al. 2018).

While our presented correlation matrices could be used to
roughly identify a collection of games with decent discrim-
inatory performance by selecting a game from each cluster,
this approach has several limitations. Not only is it diffi-
cult to tell which games in each cluster would provide the
most information, but neither the fact that certain agent’s
performance on the same game can vary dramatically be-
tween attempts, nor that two distinct performance measures
are available, are taken into account. However, these cor-
relation results can certainly be useful in other areas, such
as for allowing game designers to understand which games
are similar in terms of agent performance. Identifying which
games present unique performance distributions could help
in designing additional games that fit entirely new or under-
represented clusters. Accomplishing this would increase the
overall discrimination potential of our total game set, and
thus also increase the total amount of information that could
be achieved from a subset of games (i.e. allows our proposed
information-theoretic measure to be even more effective).

Information Gain Analysis
In this section, we analyze the information provided by each
of our 108 sample games. Information here is used in the
sense of Shannon Information Theory (Cover and Thomas
2006), and the information gain of a game is the average re-
duction in uncertainty regarding what algorithm we are test-
ing, given the score and/or win-rate performance of that al-
gorithm This information gain measure can then be used to
identify a benchmark set of games that provides us with the
maximum information about our agents.

While it is possible to compute information gain on dis-
cretized data by first binning the mean performances of the
different agents, this is problematic for two reasons. First,
as long as all the agents’ results are at least somewhat dif-
ferent, it would be theoretically possible to obtain all infor-
mation from just a single game. This situation would make
calculating the information gain highly redundant, as nearly
all of the games would give us the same maximal amount
of information. Second, this approach disregards any noise

within the measuring process. As an example, if we assume
that the average results for two agents are .49 and .50 when
playing a specific game, then a discretized information gain
analysis would give these as two separate outcomes (as-
suming we binned to the nearest .01 value). This approach
does not take into account the fact that repeated measure-
ments would likely produce slightly different results, varied
by some noise. Consequently, a game that gives us average
results for two agents of .1 and .9, rather than our previous
example of .49 and .50, would be much better suited to tell
two agents apart, as the scores are likely to be significantly
different even when taking noise into account. In essence,
games with agent results that are furthest apart and with the
lowest noise, provide the most information.

The following information gain formalism is an attempt
to accurately measure this difference by modelling the noise
within the agents’ performances as a Gaussian distribution.
This approach calculates the information gain for a specific
game g. Let us first define a few terms:
• A: The set of all algorithms, a
• a1: A specific algorithm, having an average performance

of µ1, with a variance of σ1, for the game in question.
This allows us to approximate the conditional probability

p(a2|a1). This probability expresses how likely it is that we
are observing the result of algorithm a2, if we are in fact ob-
serving the average performance for algorithm a1. In other
words, how well does a2 work as an explanation for what
we see from a1.

Equation 1 approximates this probability. It assumes that
observations of performance are normally distributed, pa-
rameterized by the means and variances from their actual
results. The upper part of the equation is the probability den-
sity function for a normal distribution based on a2, com-
puting how likely a result equal to the mean of a1 is. The
denominator is a normalization sum over all possible algo-
rithms, ensuring that the overall probabilities sum to one.

p(a2|a1) ≈

exp

(
− (µ1−µ2)2

2(σ2+σ1)2

)

√
2π(σ2+σ1)

2

∑
a∈A

(
exp
(
− (µ1−µa)2

2(σa+σ1)2

)
√

2π(σa+σ1)
2

) (1)

Computing the probabilities for all pairwise combinations
of algorithms allows us to define a confusion matrix C be-
tween n different algorithms as:

C =




p(a1|a1) p(a2|a1) · · · p(an|a1)
p(a1|a2) p(a2|a2) · · · p(an|a2)

...
...

. . .
...

p(a1|an) p(a2|an) · · · p(an|an)


 (2)

Each row of the matrix sums to 1, and each entry in the
first row indicates our best guess for the actual algorithm
given that we observed the mean of algorithm a1. The ma-
trix of conditional probabilities can then be seen as an error
matrix for a channel defined by using the game in question
as a measurement device. This allows us to compute the mu-
tual information for this channel, under the assumption that



the input distribution is an equal distribution. This value is
equivalent to the amount of information we get about what
algorithm is used from observing the average performance
result. Formally, we can define this as the mutual informa-
tion between your belief distribution Â and the distribution
A of the actual algorithm a ∈ A, expressed in Equation 3.

I(Â;A) = H(Â)−H(Â|A)
= log2(|Â|)−

∑

a∈A
p(a)

∑

â∈A
−p(â|a) log2 p(â|a) (3)

The a priori distribution of our beliefs Â, is an equal dis-
tribution. If we observe the average performance of the al-
gorithm a we get a distribution of Â|a, as defined by the
confusion matrix. The average information gain of observ-
ing these results is the average difference in the entropy be-
fore observation H(Â) and after observation, H(Â|A). The
equal distribution reduces to the log of the states, so we only
need to compute the conditional entropy. A higher value here
is more desirable, as the best games should provide us with
the most information.

Information gain for multiple games
The previous formalism allows us to quantify how much in-
formation a single specific game can provide us with about
what algorithm is being used, but the information gained
from looking at two games is always less than or equal to
the sum of the information gain from both games individu-
ally. To address this, we can directly compute a confusion
matrix for a pair, or any higher number, of games g ∈ G by
extending the definition of the conditional probability to that
presented in Equation 4.

p(a2|a1) ≈

exp

(
− ∑
g∈G

(
(µ1,g−µ2,g)2

2(σ2,g+σ1,g)
2

))

∏
g∈G

(√
2π(σ2,g+σ1,g)2

)

∑
a∈A

(
exp

(
− ∑
g∈G

(
(µ1,g−µa,g)2
2(σa,g+σ1,g)

2

))

∏
g∈G

(√
2π(σa,g+σ1,g)2

)
) (4)

Using this new conditional probability definition allows
us to compute the information gain for any subset of games,
by just picking a suitable set G. The mutual information for
the resulting confusion matrix is computed as usual. This
means that the theoretical maximum information gain that
any set of games could give is equal to (log2(A)). In general,
those games that offer different kind of information lose less
information due to redundancy.

Combine win-rate and score together
Using the previous equations, we can calculate the informa-
tion gain for a particular game or set of games, using either
the win-rate or score as the measure of performance. How-
ever, it is also possible to calculate the total information gain
based on both win-rate and score combined. To do this, we
treat each of these cases as a separate game (i.e., for a partic-
ular game gi there are two variants, one where the win-rate is

used as the measure of performance gi,w and one where the
score is used gi,s). Since the distance is scaled by the vari-
ance, both win-rate and score can be translated in the same
way as information. We can then use Equation 4 to calcu-
late the total combined information gain of the game gi by
setting G = [gi,w, gi,s]. This means we can create a sin-
gle confusion matrix for each game that encompasses both
the win-rates and scores of all agents. The first six columns
of Table 3 show the 10 games with the highest informa-
tion gain when using either the win-rate, score, or both of
these combined as the measure of performance. In general,
this approach allows for the combination of any scalar val-
ues expressed by the game, and can, therefore, be applied to
a range of different gaming benchmarks, even those where
games have entirely different performance measures.

Note, though, that the approximation used here operates
under the assumptions that the performance measures are
distributed independently. This is true for combining the
same performance measure across different games, but not
necessarily true for different performance measures, such as
win-rate and score, for the same game. A more faithful, but
also more complex, approximation could be achieved by us-
ing the Mahalanobis distance (Mahalanobis 1936) instead of
the sum of variances.

Top ten games (of 2018)
By initially selecting the game that provides the largest in-
formation gain (based on both win-rate and score combined)
and then recursively selecting the game that adds the most
information to the already selected games, we can create a
set of 10 games that provide the most information possible.
The rightmost two columns of Table 3 provide the 10 games
that were chosen for this set in the order they were selected,
along with the total cumulative information gain of the set
after each game was added. These 10 games are also high-
lighted in red in Figures 1 and 2.

Discussion
The theoretical maximum information gain that any set of
games could give is roughly 4.75 (log2(27)), so we can see
from these results that after selecting only 3 or 4 games
we can already get the majority of information about which
agent is playing. It is worth noting that this set of games is
not simply the ten games that individually provide the most
information, as some of these games likely provide the same
“kind” of information. For example, the game intersection
had the third highest information gain when looking at each
game individually but was not selected for our top 10 games
set. This is likely because it provides the same information
as one of the previously selected games. By looking at how
this game is played and our correlation matrices in Figure
2, it would appear that this game is very close to that of the
game freeway and would likely give similar information.

We can also compare the information gain provided by
using just the win-rate or score for certain games, versus the
combined information gain from using both. When looking
at each of these performance measures separately it appears
that Invest has the highest information gain, which is likely
due to the large variation in possible scores that agents could



Game Name
(win-rate)

Information
gain

Game Name
(score)

Information
gain

Game Name
(combined)

Information
gain

Game Name
(top 10)

Information gain
(cumulative)

freeway 1.17484168 invest 1.62405816 freeway 1.89430152 freeway 1.89430152
labyrinth 1.10088062 intersection 1.13955416 invest 1.62405816 invest 3.08236771
tercio 1.10018133 freeway 1.13619392 intersection 1.59362941 labyrinthdual 3.81992620
labyrinthdual 1.08531707 tercio 1.10018133 chopper 1.48524965 tercio 4.22563462
iceandfire 1.07275305 watergame 0.89206793 tercio 1.44693431 sistersavior 4.40856274
chopper 1.06542656 cops 0.88658183 labyrinthdual 1.42090667 avoidgeorge 4.54036694
doorkoban 0.98911214 flower 0.86746818 iceandfire 1.32455879 escape 4.60252506
hungrybirds 0.91886839 waitforbreakfast 0.80128373 hungrybirds 1.32100004 whackamole 4.64444512
watergame 0.89206793 labyrinth 0.78021437 waitforbreakfast 1.28983481 chopper 4.67138328
escape 0.87721725 realportals 0.73246317 doorkoban 1.28593860 watergame 4.68457480

Table 3: The games with the highest information gain (using win-rate, score or both combined as measure of performance), as
well as the top 10 games which collectively provide the highest information gain.

achieve. However, as agents will always lose this game, ei-
ther by spending too much money or the time limit expiring,
the win-rate provides no information gain at all. Freeway, on
the other hand, has a high information gain when using ei-
ther win-rate or score, allowing it to have a combined infor-
mation gain that is higher than Invest. It is worth reiterating
that the combined information gain for a game is not simply
the sum of its individual parameters, as some information
may be shared between the different performance measures
(calculation for combined information gain is subadditive).

Conclusions and Future Work
In this paper, we have proposed an information-theoretic
method for selecting which problems to test a given al-
gorithm on. This is particularly useful for the many cases
where it is computationally infeasible to test a new algorithm
on all benchmark problems. Our method is generally appli-
cable to any situation where algorithms need to be tested on
many problems, and is especially useful when the problems
are noisy and/or have multiple performance metrics.

As part of developing this method we performed an in-
depth analysis into the discriminatory capabilities of the
games in the GVGAI framework, as well as the correlations
between games in terms of agent performance. Our correla-
tion analysis shows that there are substantial variations in
agent performance between different GVGAI games, and
the resulting correlation matrices can be used to cluster cer-
tain games together. Developing new GVGAI games that
do not fit within these identified clusters would present an
entirely new challenge for the current selection of agents,
making them highly desirable. Games that have different
discriminatory profiles from those that already exist would
likely be more useful for investigating agent performance
than those with similar profiles to previous games.

Our proposed information theory-based method provides
a more principled approach to finding discriminatory games.
We extend the notion of information gain to handle noisy
feedback and to combine two feedback signals (win-rate and
score). We also show how this measure can be applied re-
cursively to find a small set of games that give us almost as
much information about an agent as the full set of games
would have. Analyzing this set of games reveals that sev-

eral of them have “deceptive” qualities, where the score is
not strongly correlated with win-rate. Future work could in-
volve expanding the evaluation criteria to include additional
data from agent playthroughs, such as the time required to
solve a level or the number of moves used, which may help
us to better differentiate between agents.

This research will hopefully allow future developers and
researchers to accurately compare the performance of their
new agent against the current set of evaluated agents without
the need for exhaustive testing on the full GVGAI corpus.
New agents can be tested on a set of exploratory experiments
to help gauge how well the agent may perform on more de-
tailed experiments that consider the entire GVGAI game set.
This will be especially important in the future as more and
more games are added to the GVGAI game library, resulting
in significantly increased benchmark evaluation times. The
proposed approach can also be used to evaluate games that
are selected for future GVGAI competitions, to ensure that
they present a diverse range of problems.

One thing to note here is that the specific results of our
analysis are based on the combined game-agent ecosystem.
Having a different set of agents could mean different games,
that might previously have been too hard, would suddenly
be more discriminatory. Similarly, adding additional games
can affect which games provide us with redundant infor-
mation. Because of this, while the specific games identified
here are interesting today, they might very well change in
the future. However, we believe the more important con-
tribution presented in this paper is our proposed methodol-
ogy that was used to select these games. Furthermore, this
method, while used here on GVGAI games, could also eas-
ily be applied to other sets of problems and algorithms. Our
approach can be generalized from just win-rates and scores
to include any number of different outcome measures from
other domains. This could even include problems outside of
the traditional game space, as long as it is possible to ob-
tain the mean and variance of each algorithm’s performance.
Some obvious future application would be to analyze the
performance of multiple deep reinforcement learning algo-
rithms on the Atari games in the Arcade Learning Environ-
ment (ALE) framework, and supervised learning algorithms
tested on datasets associated with Kaggle competitions.
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Abstract

Deep reinforcement learning has learned to play many games
well, but failed on others. To better characterize the modes
and reasons of failure of deep reinforcement learners, we test
the widely used Asynchronous Actor-Critic (A2C) algorithm
on four deceptive games, which are specially designed to pro-
vide challenges to game-playing agents. These games are im-
plemented in the General Video Game AI framework, which
allows us to compare the behavior of reinforcement learning-
based agents with planning agents based on tree search. We
find that several of these games reliably deceive deep rein-
forcement learners, and that the resulting behavior highlights
the shortcomings of the learning algorithm. The particular
ways in which agents fail differ from how planning-based
agents fail, further illuminating the character of these algo-
rithms. We propose an initial typology of deceptions which
could help us better understand pitfalls and failure modes of
(deep) reinforcement learning.

Introduction
In reinforcement learning (RL) (Sutton and Barto 1998) an
agent is tasked with learning a policy that maximizes ex-
pected reward based only on its interactions with the en-
vironment. In general, there is no guarantee that any such
procedure will lead to an optimal policy; while convergence
proofs exist, they only apply to a tiny and rather uninter-
esting class of environments. Reinforcement learning still
performs well for a wide range of scenarios not covered by
those convergence proofs. However, while recent successes
in game-playing with deep reinforcement learning (Justesen
et al. 2017) have led to a high degree of confidence in the
deep RL approach, there are still scenarios or games where
deep RL fails. Some oft-mentioned reasons why RL algo-
rithms fail are partial observability and long time spans be-
tween actions and rewards. But are there other causes?

In this paper, we want to address these questions by look-
ing at games that are designed to be deliberately decep-
tive. Deceptive games are defined as those where the reward
structure is designed to lead away from an optimal policy.
For example, games where learning to take the action which
produces early rewards curtails further exploration. Decep-
tion does not include outright lying (or presenting false in-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

formation). More generally speaking, deception is the ex-
ploitation of cognitive biases. Better and faster AIs have to
make some assumptions to improve their performance or
generalize over their observation (as per the no free lunch
theorem, an algorithm needs to be tailored to a class of
problems in order to improve performance on those prob-
lems (Wolpert and Macready 1997)). These assumptions in
turn make them susceptible to deceptions that subvert these
very assumptions. For example, evolutionary optimization
approaches assume locality, i.e., that solutions that are close
in genome space have a similar fitness - but if very bad so-
lutions surround a very good solution, then an evolutionary
algorithm would be less likely to find it than random search.

While we are specifically looking at digital games here,
the ideas we discuss are related to the question of optimiza-
tion and decision making in a broader context. Many real-
world problems involve some form of deception; for ex-
ample, while eating sugar brings momentary satisfaction, a
long-term policy of eating as much sugar as possible is not
optimal in terms of health outcomes.

In a recent paper, a handful of deceptive games were pro-
posed, and the performance of a number of planning algo-
rithms were tested on them (Anderson et al. 2018). It was
shown that many otherwise competent game-playing agents
succumbed to these deceptions and that different types of de-
ceptions affected different kinds of planning algorithms; for
example, agents that build up a model of the effects of in-
game objects are vulnerable to deceptions based on chang-
ing those effects. In this paper, we want to see how well
deep reinforcement learning performs on these games. This
approach aims to gain a better understanding of the vulnera-
bilities of deep reinforcement learning.

Background
Reinforcement learning algorithms learn through interact-
ing with an environment and receiving rewards (Sutton and
Barto 1998). There are different types of algorithms that fit
this bill. A core distinction between the types are between
ontogenetic algorithms, that learn within episodes from the
reward that they encounter, and phylogenetic algorithms,
that learn between episodes based on the aggregate reward
at the end of each episode (Togelius et al. 2009).

For some time, reinforcement learning had few clear suc-
cesses. However, in the last five years, the combination of
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ontogenetic RL algorithms with deep neural networks have
seen significant successes, in particular in playing video
games (Justesen et al. 2017) such as simple 2D arcade
games (Mnih et al. 2015) to more advanced games like Dota
2 and Starcraft (OpenAI 2018; Vinyals et al. 2019). This
combination, generally referred to as deep reinforcement
learning, is the focus of much research.

The deceptive games presented in this paper were devel-
oped for the GVGAI (General Video Game Artificial Intelli-
gence (Perez-Liebana et al. 2016)) framework. The GVGAI
framework itself is based on VGDL (Video Game Descrip-
tion Language (Ebner et al. 2013; Schaul 2013)) which is
a language that was developed to express a range of arcade
games, like Sokoban and Space Invaders. VGDL was devel-
oped to encourage research into more general video game
playing (Levine et al. 2013) by providing a language and an
interface to a range of arcade games. Currently the GVGAI
corpus has over 150 games. The deceptive games discussed
in this paper are fully compatible with the framework.

Methods
To empirically test the effectiveness of the deception in ev-
ery game, we train a reinforcement learning algorithm and
run six planning algorithms on each game. The benefit of
working in GVGAI is that we are able to evaluate the same
game implementations with algorithms that require an avail-
able forward model and with learning agents. GVGAI has a
Java interface for planning agents as well as an OpenAI Gym
interface for learning agents (Perez-Liebana et al. 2016;
Rodriguez Torrado et al. 2018; Brockman et al. 2016).

All algorithms were evaluated on each game 150 times.
The agent’s scores are evaluated along with play through
videos. The qualitative analyses of the videos provide key
insights into the causes behind certain scores and into what
an agent is actually learning. The quantitative and qualitative
results are then used for the final analysis.

Reinforcement Learning
To test if these games are capable of deceiving an agent
trained via reinforcement learning, we use Advantage Actor-
Critic (A2C) to learn to play the games (Mnih et al. 2016).
A2C is a good benchmark algorithm and has been shown
to be capable of playing GVGAI games with some success
(Rodriguez Torrado et al. 2018; Justesen et al. 2018). A2C
is a model-free,extrinsically driven algorithm that allows for
examining the effects of different reward patterns. A2C is
also relevant due to the popularity of model-free agents.

Due to the arcade nature of GVGAI games, we train on
pixels with the same setup developed for the Atari Learning
Environment framework (Bellemare et al. 2013). The atari
configuration has been shown to work well for GVGAI and
allows a consistent baseline with which to compare all the
games (Rodriguez Torrado et al. 2018). Instead of tuning
the algorithms for the games, we designed the games for the
algorithms. We use the OpenAI Baselines implementation of
A2C (Dhariwal et al. 2017). The neural network architecture
is the same as the original designed by Mnih et al. (Mnih
et al. 2016). The hyper-parameters are the default from the

original paper as implemented by OpenAI: step size of 5, no
frame skipping, constant learning rate of 0.007, RMS, and
we used 12 workers.

For each environment, we trained five different A2C
agents to play, each starting from random seeds. In initial
testing, we tried training for twenty million frames, and
we found that the agents converged very quickly, normally
within two million frames of training. We therefore stan-
dardized the experiments to all train for five million frames.
One stochastic environment, WaferThinMints, did not con-
verge and might have benefited from more training time.

Planning Agents
For comparison with previous work and better insight into
the universality of the deceptive problems posed here, we
compare our results to planning algorithms. What we mean
by planning agents are algorithms that utilize a forward
model to search for an ideal game state. In the GVGAI plan-
ning track, each algorithm is provided with the current state
and a forward model and it has to return the next action in a
small time frame (40 milliseconds). This time frame doesn’t
give the algorithm enough time to find the best action. This
limitation forces traditional planning algorithms to be some-
what greedy which, for most of these games, is a trap.

In this paper, we are using six different planning algo-
rithms. Three of them (aStar, greedySearch, and sampleM-
CTS) are directly from the GVGAI framework, while the
rest (NovelTS, Return42, and YBCriber) are collected from
the previous GVGAI competitions. Two of these algorithms,
Return42, and YBCriber, are hybrid algorithms. They use
one approach for deterministic games, such as A* or Itera-
tive Width, and a different one for stochastic games, such as
random walk or MCTS. Both algorithms use hand designed
heuristics to judge game states. These hybrid algorithms also
use online learning to bypass the small time per frame. The
online learning agents try to understand the game rules, from
the forward model during each time step, and then use that
knowledge to improve the search algorithm.

Deceptive Games
In our previous work, a suite of deceptive games was created
in order to take a look at the effects that these deceptive me-
chanics would have on agents (Anderson et al. 2018). These
deceptive games were designed in order to deceive different
types of agents in different ways.

From a game design perspective, the category of decep-
tive games partially overlaps with “abusive games”, as de-
fined by Wilson and Sicart (Wilson and Sicart 2010). In par-
ticular, the abuse modalities of “unfair design” can be said to
apply to some of the games we describe below. Wilson and
Sicart note that these modalities are present in many com-
mercial games, even successful and beloved games, espe-
cially those from the 8-bit era.

This section describes some of these games in detail, and
defines optimal play for an agent playing each game. We
focus on four key categories of deception that these games
exploit. We believe these categories represent general prob-
lems that learning agents face and these simple games allow



(a) DeceptiCoins Level 1 

(b) DeceptiCoins Level 2 

(c) DeceptiCoins Level 3 

Figure 1: DeceptiCoins Levels

us to shine a spotlight on weaknesses that model-free, deep
reinforcement learning agents still face. For a more compre-
hensive list of types of deceptions and deceptive games see
Deceptive Games (Anderson et al. 2018).

The following four different categories of deception will
be discussed further in the discussion section: Lack of Hier-
archical Understanding, Subverted Generalization, Delayed
Gratification, and Delayed Reward.

DeceptiCoins (DC)
Game DeceptiCoins, Figure 1, offers an agent two paths
which both lead to the win condition. The first path presents
immediate points to the agent, in the form of gold coins. The
second path contains more gold coins, but they are further
away and may not be immediately visible to a short-sighted
agent. Once the agent selects a path, they become trapped
within their chosen path and can only continue to the bottom
exit. The levels used here are increasingly larger versions of
the same challenge, but remain relatively small overall.

The optimal strategy for DeceptiCoins is to select the path
with the highest overall number of points. For the levels
shown in Figure 1, this is achieved by taking the right side
path, as it leads to the highest total score (i.e., more gold
coins can be collected before completing the level).

Goal The game offers a simple form of deception that tar-
gets the exploration versus exploitation problem that learn-
ing algorithms face. The only way for the learning agent to
discover the higher reward is for it to forgo the natural re-
ward it discovers early on completely. By designing different
sized levels, we can see how quickly the exploration space
becomes too large. At the same time, an agent that correctly
learns, on the short route, about coins and navigation could
then see that going right is superior.

Results The first two levels of DeceptiCoins are very
small, and the agent fairly quickly learns the optimal strat-
egy. However, In level two the agent took several times
longer to discover the optimal strategy, as expected from an
agent that can only look at the rewards of individual moves.
Level 3 proves to be too hard, and the agent converges on the

Figure 2: The first level of WaferThinMints

suboptimal strategy. By comparison, a randomly initialized
agent is very likely to select the easy path, since it starts next
to it, before being forced to move toward the exit.

The training curve for level 3 shows a significant drop in
performance at the beginning of training. The video footage
suggests that the agent learns the concept of the gold coins
and is attempting to collect them all, but fails to understand
that once it takes the easy coin it will become trapped in the
left path. The agent will also move back and forth between
the paths at the beginning of the game, trying to decide.

WaferThinMints (Mints)
Game WaferThinMints is inspired by a scene in Monty
Python’s The Meaning of Life. The game presents the agent
with easily obtainable points, but if the agent collects too
many it will lead to a loss condition. The idea of this game
is to model a situation where a repeated action does not
always lead to the same outcome or has a diminishing re-
turn over time. The levels for this game feature mints which
each award a point when collected and also fill up a resource
gauge on the agent. The level used is shown in figure 2. If
the avatar’s resource gauge (green bar on avatar) is filled,
defined in this case as nine mints, and the agent attempts
to collect an additional mint, then the agent is killed and
a loss condition is reached. Losing the game also causes the
agent to lose 20 points. A waiter (not seen in Figure 2) moves
around the board distributing mints at random. This means
it is possible for an agent to get trapped while the waiter
places mint on the agent’s square, forcing the agent to eat it.
The agent must, therefore, try to avoid getting trapped.

The optimal strategy is to collect as many mints as pos-
sible without collecting too many, which is currently set as
nine. The player should avoid mints early on and try to avoid
getting trapped. Near the end of the game, the agent should
then eat the remaining mints to get to 9.

Goal WaferThinMints is our primary example of the
changing heuristic deception. The mint goes from providing
a positive reward to giving a substantial negative reward with
the only visual indication being a green bar on the avatar that
represents how full the character is. The agent must learn
that the value of the mints is dependent on that green bar.
Since the bar moves with the Avatar, it cannot just memo-
rize a fixed state in which to stop eating the mints. The mint
is distributed by a chef and left around the board at random.
For the agent to play optimally, it should also learn that it is
not good to get full early on because it might get trapped in



Figure 3: Flower level 1

and forced to eat another mint at some point.

Results As can be seen from the graph, this agent did not
have enough time to converge completely. This points to the
difficulty of learning in the noisy environment where even a
good strategy could result in a bad reward if the agent is un-
lucky. This is necessary though, as in a simpler environment
with a fixed mint layout, the agent would learn to memorize
a path that results in a perfect score. The agent shows some
improvement over time but still plays very poorly.

By observing the agent, we see that the agent uses loca-
tion to solve this problem. At the beginning of the episode,
the agent rushes to the room where the initial mints are
placed. This is a guaranteed source of rewards. The agent
will mostly stay in the room, a safe place, unless chased
out by the chef’s mint placement. After the initial mints, the
agent attempts to avoid mints until it’s trapped by them.

It is not clear whether the agent understands its fullness
bar or uses the amount of mints placed in the game to as-
sess the risk of eating more mints. The agent seems to have
learned that the mints become dangerous, but it seems to use
strange state and location information to help it know when
to eat mints. This is related to the behavior we see in the
game Invest. It also is incapable of reasoning about waiting
until the end of the game to eat mints when it is safer to eat,
an instance of the delayed gratification deception.

Flower (Flow)
Game Flower is a game which rewards patient agents by
offering the opportunity to collect a small number of points
immediately, but which will grow larger over time the longer
it is not collected. As shown in figure 3, a few seeds are avail-
able for the agent to collect, which are worth zero points.
The seeds will eventually grow into full flowers and their
point values grow along with them up to ten points. Once a
flower is collected, another will begin to grow as soon as the
agent leaves the space from which it was collected.

The optimal strategy for Flower is to let the flowers grow
to their final stage of development before collecting them.

Goal In Flower, an agent is rewarded every time it collects
a flower. To get maximum points the agent should collect
each flower the moment it matures to 10 points. This will
provide a better score than constantly collecting seedlings.

Results The training graph for this game shows the agent
falling for the specific deception with the sudden drop-off in
performance. As the agent gets better at knowing where the
flowers are, the score starts to improve. Then the agent gets

Figure 4: Invest level 1

too good at collecting the flowers, and they no longer have a
chance to grow, lowering the score. Watching agent replays
further confirms this, the agent finds a circuit through all the
flowers and then gets better at quickly moving through this
circuit. The agent perfectly falls for the deceit and has no
way back unless it ignores the immediate rewards.

Invest (Inv)
Game Invest is a game where agents can forgo a portion of
their already accumulated reward, for the benefit of receiv-
ing a larger reward in the future. The level used is shown
in figure 4. The agent begins with no points but can col-
lect a small number of coins around the level to get some
initial amount. These points can then be “spent” on certain
investment options. Doing this will deduct a certain number
of points from the agent’s current score, acting as an imme-
diate penalty, but will reward them with a greater number
of points after some time has passed. The agent has several
different options on what they can invest in, represented by
the three human characters (referred to as bankers) in the
top half of the level. Each banker has different rules: Green
banker turns 3 into 5 after 30 ticks, Red turns 7 into 15 after
60 ticks, and Blue turns 5 into 10 after 90 ticks. The agent
can decide to invest in any of these bankers by simply mov-
ing onto them, after which the chosen banker will take some
of the agent’s points and disappear, returning a specific num-
ber of timesteps later with the agent’s reward. The agent will
win the game once the time limit for the level expires.

The optimal strategy for Invest is defined as successfully
investing with everyone as often as possible.

Goal Invest is a game where the agent has to intentionally
seek some negative reward to get a positive reward, and then
wait for a certain amount of time to get the positive reward.
This delayed reward makes it very difficult for the reinforce-
ment learning algorithm to assign credit to a specific assign-
ment. The initial investment will only be assigned a negative
reward, and the agent then has to figure out that the reward
that happens later should also be assigned to this action.
In this case, the reward is deterministic, and the challenge
could be increased further by making the delay stochastic.

Results The agent learns a very particular strategy for all
five instances of training. The agent first collects all the coins
and then invests with the Green Banker. From there it runs
to the far right corner and waits, some agents always choose
the top while others choose the bottom. As soon as the Green
banker returns, the agent runs back over and reinvests only
to run back to its corner and wait. This at first seems like



Agent DC 1 DC 2 DC 3 Inv Flow Mints
aStar 3.36 3.54 1.33 17.53 604.99 1.92
greedySearch 5.0 3.0 1.23 1.0 6.83 -5.15
sampleMCTS 2.0 2.0 1.99 3.5 392.73 5.73
NovelTS 2.1 2.0 2.0 4.8 298.51 8.75
Return42 5.0 2.0 2.0 190.12 329.73 -2.66
YBCriber 5.0 4.0 4.0 10.91 300.73 5.2
A2C 5.0 3.79 2.0 69.6 228.86 -6.21

Table 1: Average score for different games using different agents.
Darker blue entries have higher positive score values for that game
between all the agents, while darker red entries have higher nega-
tive score values.

puzzling behavior as a better strategy would be to sit next to
the Green Banker and be able to reinvest faster and collect
more points. On closer inspection, it becomes apparent that
the time it takes the agent to reach the far corner correlates
with the arrival of the delayed reward. It appears that the
agent learned that investing in the Green Banker and then
touching the far tile resulted in a large positive reward.

The size of the game board allowed the agent to embody
the delay through movement and predict the arrival of the
reward through how long it takes to walk across the board. It
is possible that the agent would have learned to invest with
the other bankers if the board was larger so the agent could
have found a location associated with the delayed reward.

The training graph shows an interesting story too. The ini-
tial random agent would accidentally invest with all three
bankers and get a fairly high score despite not consistently
investing with anyone. The agent quickly learns to avoid the
negative reward associated with the bankers and its score
drops. It stops investing with the Blue Banker first, then the
Red, and finally the Green. After it discovers how to predict
the delayed reward for the Green Banker, it starts doing this
more regularly until its performance converges.

Comparison with planning algorithms
In this section we want to compare the results from some of
the planning agents in the previous paper (Anderson et al.
2018) with the deep RL results in this paper. Table 1, shows
the average score respectively for all the games using six dif-
ferent planning agents and the trained reinforcement learn-
ing agents. Every agent plays each game around 150 times,
and the average score is recorded. These are drastically dif-
ferent algorithms from A2C, but they provide context for
how different algorithms are affected by our deceptions.

While the planning agents perform slightly better on av-
erage, this depends highly on what exact planning algorithm
we are examining. The planning algorithms have an advan-
tage over the reinforcement learning algorithm as they have
a running forward model that can predict the results of each
action. On the other hand, the small time frame (40 millisec-
onds), for deciding the next action, doesn’t give the algo-
rithm enough time to find the best action.

In an important way, both RL and planning are facing a
similar problem here. In both cases, the algorithms can only
query the game environment a limited amount of times. This
makes it impossible to look at all possible futures and forces

the algorithms to prioritize. While most planning agents en-
tirely rely on the given forward model, some, such Return42,
also use online learning. These agents initially play with the
forward model but will try to learn and generalize the game
rules while playing. As the game progresses, they rely more
and more on those learned abstractions. In general, this is
an efficient and smart strategy but makes them vulnerable
to deceptions where the game rules changed in the middle
of the game, such as in Wafer Thin Mints. Here the agents
might get deceived if they do not verify the result using the
forward model. This is very similar to the problem that A2C
encounters since the network representation is tries to gen-
eralize the states of the game.

In summary, while the best planning agents seem to be
stronger than A2C, they also are subject to different forms
of deceptions, dependent on how they are implemented.

Discussion
In summary, while the A2C deep reinforcement learn-
ing(Mnih et al. 2016) approach performs somewhat well, it
rarely achieves the optimal performance in our games and is
vulnerable to most deceptions discussed here. In contrast,
the A2C algorithm performs quite well across the board
for different AI benchmarks and can be considered com-
petitive (Arulkumaran et al. 2017; Justesen et al. 2017). It
should also be noted that the fast-moving field of deep re-
inforcement learning has already produced numerous mod-
ifications that could potentially solve the games discussed
here(Arulkumaran et al. 2017). However, instead of dis-
cussing possible modifications to overcome any particular
challenge presented here, we want to take a step back and
refocus back on the point of this exercise. We are interested
in deceptions to gain a better understanding of the general
vulnerabilities of AI approaches, and try to gain a more sys-
tematic understanding of the ways deep learning in particu-
lar, and AI, in general, might fail. With the previous games
as concrete examples in mind, we now want to discuss four,
non-exhaustive, categories for deception.

Types of Deception
Lack of Hierarchical Understanding The DeceptiCoin
games are relatively easy to solve if one thinks about them
at the right level of abstractions. DeceptiCoins can be seen as
a single binary decision between one path and another. Once
this is clear, one can quickly evaluate the utility of choosing
the correct one and pick the correct path. The deceptive el-
ement here is the fact that this is presented to the AI as an
incredibly large search space, as it takes many steps to com-
plete the overall meta-action. Humans are usually quite good
at finding these higher levels of abstraction, and hence this
problem might not look like much of a deception to us - but
it is pretty hard for an AI. The large search space, paired with
the assumptions that all actions along the path of the larger
action matter, makes it very hard to explore all possible steps
until a possible reward is reached. This is a similar problem
to the famous problem in Montezuma’s Revenge, where the
AI could not reach the goal, and its random exploration did
not even get close. This problem was only recently solved
with forced exploration (Ecoffet et al. 2019).



Finding a good hierarchical abstraction can actually solve
the problem. For example, in DeceptiCoins we can look at
the path from one point to another as one action - something
that has been explored in GVGAI playing agents before.

Subverted Generalization Wafterthinmints is a game
specifically designed to trick agents that generalize. Agents
that simply use a forward model to plan their next step
perform quite well here, as they realize that their next ac-
tion will kill them. But in general, we do not have access
to a forward model, so there is a need to generalize from
past experience and use induction. The fact that each mint
up to the 9th gives a positive rewards reinforces the idea
that eating a mint will be good. The 10th mint then kills
you. This is not only a problem for reinforcement learning,
but has been discussed in both epistemology (Hume 1739;
Russell 1912) and philosophy of AI - with the consensus
that induction in general does not work, and that there is not
really a way to avoid this problem. The subverted general-
ization is also a really good example of how more advanced
AIs become more vulnerable to certain deceptions. On aver-
age, generalization is a good skill to have and can make an
AI much faster, up to the point where it fails.

Delayed Reward The big challenge in reinforcement
learning is to associate what actions lead to the reward (Sut-
ton 1992). One way to complicate this is to delay the pay-
ment of this reward, as we did in the example of invest. The
player first has to incur a negative reward to invest, and then,
after a certain amount of time steps gets a larger positive re-
ward. The RL agent had two problems with Invest. First, it
only ever invests with the investor with the shortest repay-
ment time. The Red Banker would, overall, offer the best
payout, but the RL agent either does not realize this rela-
tionship, or does not associate the reward correctly.

Furthermore, the RL agents also seems to be learning
“superstitions”. When we examined the behaviour of the
evolved RL agent, we see that the agent invests with the
Green Banker and then runs to a specific spot in the level,
waiting there for the reward payout. This behaviour is then
repeated, the agent runs to the banker and then back to the
spot to wait for its reward. We reran the training for the RL
agent and saw the same behaviour, albeit with a different
spot that the agent runs to. We assume that this superstition
arose because the agent initially wandered off after invest-
ing in the Green Banker, and then received the reward when
it was in that spot. It seems to have learned that it needs to
invest in the banker - as varying this behaviour would re-
sult in no payout. But there is little pressure to move it away
from its superstition of waiting for the result in a specific
spot, even though this has no impact on the payout. In fact,
it makes the behaviour, even with just the Green Banker sub-
optimal, as it delays the time until it can invest again, as it
has to run back to the green banker.

What was exciting about this behavior, was the fact that
similar behavior was also observed in early reinforcement
learning studies with animals (Skinner 1948). Pigeons that
were regularly fed by an automatic mechanism (regard-
less of their behaviour) developed different superstitious be-
haviours, like elaborate dance and motions, which Skinner

hypothesized were assumed (by the pigeon) to causally in-
fluence the food delivery. In our game, the agent seems to
develop similar superstitions.

Delayed Gratification There is a famous experiment
(Mischel, Ebbesen, and Raskoff Zeiss 1972) about delayed
gratification that confronts 4 year old children with a marsh-
mallow, and asks them not to eat it while the experimenter
leaves the room. They are told that they will get another
marshmallow, if they can just hold off eating the first marsh-
mallow now. This task proves difficult for some children,
and it is also difficult for our agent. Flower is a game where
the agent actually gets worse over time. This is because it
initially is not very good at collecting the flowers, which al-
lows the flowers time to mature. The optimal strategy would
be to wait for the flowers to grow fully, and then go around
and collect them. The agent learns the expected reward of
collecting seeds early on but does not realize that this reward
changes with faster collection. When it updates its expected
reward based on its new speed, it forgets that it could get
higher rewards when it was slower. While some of the plan-
ning algorithms perform better here, it is likely that they did
not actually “understand” this problem, but are simply much
worse at collecting the flowers (like the untrained RL agent).
This example demonstrates that we can design a problem
where the AI gets worse over time by “learning” to play.

Conclusion
It appears that deep reinforcement learners are easily de-
ceived. We have devised a set of games specifically to show-
case different forms of deception, and tested one of the most
widely used RL algorithms, Advantage Actor-Critic (A2C),
on them. In all games, the reinforcement learners failed to
find the optimal policy (with the exception that it found the
optimal policy on one level of one game), as it evidently fell
for the various traps laid in the levels.

As the games were implemented in the GVGAI frame-
work, it was also possible for us to compare with tree search-
based planning agents, including those based on MCTS.
(This is very much a comparison of apples and oranges, as
the planning agents have access to a forward model and di-
rect object representation but are not given any kind of train-
ing time.) We can see that for every game, there is a plan-
ning agent which performs better than the A2C agent, but
that there is in most cases also a planning agent that per-
forms worse. It is clear that some kinds of deception affect
our reinforcement learning algorithm much more severely
than it affects the planning algorithms; in particular, the sub-
verted generalization of WaferThinMints. On the other hand,
it performed better than most planning algorithms given the
delayed reward in Invest, even though the policy it arrived at
is bizarre to a human observer and suggests a warped asso-
ciation between cause and effect.

We look forward to testing other kinds of algorithms on
these games, including phylogenetic reinforcement learning
methods such as neuroevolution. We also hope that other re-
searchers will use these games to test the susceptibility of
their agents to specific deceptions.
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Abstract—Ensemble Decision Systems offer a unique form of
decision making that allows a collection of algorithms to reason
together about a problem. Each individual algorithm has its own
inherent strengths and weaknesses, and often it is difficult to
overcome the weaknesses, while retaining the strengths. Instead
of altering the properties of the algorithm, the Ensemble Decision
System augments the performance with other algorithms that
have complementing strengths. This work outlines different
options for building an Ensemble Decision System as well as
providing analysis on its performance compared to the individual
components of the system with interesting results, showing an
increase in the generality of the algorithms without significantly
impeding performance.

Index Terms—GVGAI, GVGP, Ensemble Decision Systems,
Game AI

I. INTRODUCTION

When developing agents to play a game, characteristics of
the game under consideration can be included in the logic to
guide them to the objective and play optimally, but that agent
will not be able to perform well in other games or when a
rule is updated. General Video Game Playing (GVGP) aims to
tackle the challenge of building agents capable of performing
well in different games, so these agents’ value functions need
to be as general as possible.

Most of the heuristics present in planning algorithms devel-
oped for GVGP focuses on specific goals, which usually are
winning or guiding the agent following the maximization of
the score. Others also include information about the proximity
of different elements of the game, which is combined with the
previous ones. The agents follow these goals and they perform
well in certain types of games, while the reward structure is
well defined, or the goals are in a reachable distance. However,
what happens when the game is built in a way where the
reward structure is not clear or is designed to guide the agents
away from the optimal solution? What happens in games with
large maps where the agent needs to move in a particular path
to reach the goal? The agents who focus on just the goal and
score will have a poor performance; being unable to solve the
games. A solution would be building an agent with new goals
that overcomes the weakness of that heuristics (e.g. focused on
exploring the level). Nevertheless, even when this new agent
could solve the games that the other ones were unable to, it

may become worse at games that it previously did well at,
which is not the outcome we are looking for.

The approach taken by some authors to tackle this problem
is using systems that combine different agents based on the
type of game they believe they are facing, but their perfor-
mance relies entirely on the correct prediction of the game.
The solution we present in this paper is using an Ensemble
Decision System (EDS), which is built to make the most
of different agents by focusing on their strengths instead of
weakness. We carried out an experiment where we ran a
series of EDS with different configurations and compared their
performance in contrast with known sample agents provided
in the General Video Game AI framework. The results show
the flexibility of this approach and open an interesting GVGP
line of research to develop its full potential.

II. BACKGROUND

The field of General Video Game Playing (GVGP) began
in 2013 as a way of promoting interest towards developing
game playing agents that could play a wide variety of video
games [1]. The initial interest in this field originally sprang
from work in General Game Playing and a desire to explore
game playing agents in real-time situations [2].

The GVGP field is supported through an online competition
known as the General Video Game AI competition1 (GVGAI)
where entrants can submit GVGP agents. The GVGAI com-
petition offers a framework that provides a large library of
games, up to 122 currently. Further games can be quickly
created and added to the library through the Video Game
Description Language (VGDL) that simplifies the game cre-
ation process [3]. The competition also offers a variety of
tracks for different types of agents. These tracks focus on two
main areas, planning and learning [4] [5]. The planning track
offers both a single player and multi-player variation, which
provide agents with a forward model in order to facilitate
search-based algorithms. Agents can use the forward model
to search through and evaluate future states of the game. The
learning track, on the other hand, removes the forward model
and replaces it with a training period before official evaluation
occurs which allows agents to develop a policy for playing the

1http://www.gvgai.net/
978-1-7281-1884-0/19/$31.00 ©2019 IEEE
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game. The work carried out for this research focuses on the
single player planning track.

Over the years the competition has received a large number
of entrants [6], though only a few have attempted to incorpo-
rate multiple types of algorithms into one system. These agents
typically take on a portfolio approach, however, determining
the type of game being played and applying a single algorithm
to that game. One such example is YOLOBOT, which uses
the game dynamics observed to determine whether a game is
deterministic or stochastic, running, respectively, a heuristic
Best First Search or Monte Carlo Tree Search (MCTS) [7].
Another agent, Return42, uses a similar approach but instead
uses an A* algorithm for stochastic games, and random walks
for deterministic games [8]. These approaches have enjoyed
a great deal of success in the GVGAI competition, yet, rely
largely on the correct identification of the type of game to
fully leverage the strength of the algorithms. Mendes et al.
used a portfolio hyper-agent approach that predicted which of
the seven controllers they included should be used based on
the features present in the game; outperforming the winners
of the 2014 and 2015 competitions [9].

The concept of tackling complex problems with an array of
algorithms has found success in other areas of AI research.
Most notably, Google Deepmind’s AlphaGo makes use of
multiple systems to create complex behaviour that is capable
of defeating professional human players at the game of Go
[10]. By using a combination of neural networks and tree
search algorithms, the system is capable of succeeding where
no single algorithm has been able to so far. Similarly, an
Ensemble Decision System (EDS) has achieved a world record
for an AI playing the game of Ms. Pacman. The EDS achieves
this by allowing complex behaviour to emerge from the
combining of simple algorithms that focus on specific tasks,
such as collecting pills or dodging ghosts [11].

One of the main challenges to overcome is the notion of
games, or environments, that are purposefully designed to lead
agents away from an optimal outcome [12]. Perez et al. took
a look at the robustness of agents to disruptive changes in
the environment, such as a forward model that would return
incorrect information, or a system that would occasionally
apply a random action instead of the agent’s intended action
for a given state [13].

III. CONTROLLERS

In this section we present, and briefly describe, the algo-
rithms and heuristics that have been either included in the
EDS implemented (Section IV) or executed for performance
comparison.

A. Algorithms

The controllers used in these experiments belong to the
sample pool of the GVGAI framework.

1) sampleRandom: The action is chosen randomly between
the options available.

2) One Step Look Ahead (OSLA): It estimates the reward
gained for each of the possible actions on the next step of
the game and chooses the action that returns the highest
value. The sampleOneStepLookAhead agent uses by default
the SimpleStateHeuristic, provided in the framework.

3) Open-Loop Monte-Carlo Tree Search (OLMCTS): It is
a variant of Monte-Carlo Tree Search (MCTS) [14] that is
designed to work better in stochastic environments. It uses the
forward model to reevaluate the actions instead of keeping the
states of the game in the nodes of the tree. The sampleMCTS
version provided in the framework has a rollout length of 10
and a C-value of

√
2. The default value function takes into

consideration the winning condition and the raw score.
4) Open-Loop Expectimax Tree Search (OLETS): It is

based on the Hierarchical Open-Loop Optimistic Planning
(HOLOP), improved to work better in stochastic environments.
Its details and the differences between both algorithms are
described in [4]. The version provided by the framework has
a playout length of 5 and the default value function takes into
consideration the winning condition and the raw score.

5) Rolling Horizon Evolutionary Algorithm (RHEA): It is
an evolutionary algorithm that uses a population of individuals,
which represents a sequence of actions to execute in a specific
order. The plan of actions of each individual is evaluated using
a forward model and the agent takes the first action of the
individual with the best fitness [15]. The sampleRHEA pro-
vided in the framework uses the WinScoreHeuristic, evolves
the individuals keeping 10 at a time and has a mutation rate of
1. It applies mutation and crossover to get the next generation
until the time runs out. Because it produces as many sequences
as possible in this time, the number of individuals is dynamic.

6) Random Search (RS): It is similar to RHEA, but it
randomly generates the individuals instead of evolving them.
The sampleRS uses lengths of 10, and it produces as many
sequences as possible in the given time.

The algorithms that we executed in the experiments as
a point of comparison were not modified in any way.
However, those that we included as part of the EDS
required some modifications that do not affect their core
implementation but allow them to fit the needs of the system.
These include those related to the abstraction of the heuristics
[16], and the modifications needed to make the algorithms
return Opinions instead of the action to take. As detailed in
the next section, an Opinion is a simple data structure which
holds the action to take, a value computed for that action and
the name of the algorithm which suggested it.

B. Game Heuristics

The EDS combines different algorithms and game heuris-
tics. The heuristics that we utilize go further than merely
winning the game by following score, and are based on the
work of Guerrero-Romero et al. [16].

1) Winning Maximization Heuristic (WMH): Its goal is
winning the game, maximizing the score when reaching the
winning status is not possible.



2) Exploration Maximization Heuristic (EMH): Its goal is
maximizing the exploration of the level, prioritizing visiting
those locations that were not visited before, or have been
visited less often. For these experiments, this heuristic has
been updated regarding the one in [16], so winning the game
is always rewarded instead of penalized.

3) Knowledge Discovery Heuristic (KDH): Its goal is
interacting with the game as much as possible to trigger
interactions, and new sprite spawns. For these experiments,
this heuristic has been updated regarding the one in [16], so
winning the game is always rewarded instead of penalized.

4) Knowledge Estimation Heuristic (KEH): Its goal is
interacting with the game to predict the outcomes of the in-
teractions between the different elements of the game, related
to both the victory status and score modifications.

IV. ENSEMBLE DECISION SYSTEMS

Each of the algorithms described have their own strengths
and weaknesses. Each algorithm can solve a different set of
problems, but none can currently solve all of them.

Ensemble Decision Systems are a flexible system for com-
bining the decisions of multiple algorithms into a single
action. Instead of trying to develop complex problem solving
behaviour in a single algorithm, complexity is built up with
simpler layers of behaviours that each focus on different
aspects of a problem, or different types of problems altogether.

Expanding the capabilities of an algorithm whilst maintain-
ing the strengths it already has can be challenging. EDS’s offer
a potential solution to this by allowing each algorithm to focus
on its strengths, and addressing their weaknesses through other
algorithms. Intuitively, if an algorithm is good at finding paths
through an environment, but bad at identifying long term goals,
then combining that initial algorithm with a long term planner
may give the overall system the best of both worlds.

A. Architecture

The EDS is comprised of two components. The algorithms,
known as voices, which evaluate the current state, and the
arbitrator (Section IV-C), which makes the final decision of
which action to take. When a game begins, the arbitrator is
given the state which is then passed to each voice. The voices
perform their own analysis and then return their opinion to
the arbitrator. An opinion is a data structure which holds the
action selected, as well as a value assigned to that action.

Once every voice has returned their opinion, the arbitrator
will use a final action selection policy to decide which action
to take, based on the information from the voices.

This architecture can be adjusted in a variety of ways. First
of all, the number of voices, and which are used, can be
altered at implementation or at run-time. For example, if a
voice does not seem to be performing well in a given game,
it can be disabled or swapped with another voice to improve
overall system performance. The action selection policy is also
a parameter which can be adjusted. Some examples would be
using a bandit selection algorithm to decide which action to
take from the opinions, or a diplomatic option which selects

the action that most voices have selected. A neural network
could also be trained to identify which voices do well in
certain states, as an action selection policy. Each voice could
potentially assign a value to all possible actions, and the action
selection policy then decides based on the highest value, and
could potentially decide actions that none of the voices had
primarily suggested. There are a wide number of possibilities
available for adjusting the EDS.

B. Action Selection Policies

The policy used to select the action to take has a large
impact on the overall behaviour of the EDS. The variations
that were used for the experiments are the following:

1) Highest Value: This policy simply selects the action
which returns the highest value, based on the analysis of its
voice. The possible range from this is not currently limited,
though future work would look at normalizing the output from
the heuristics.

2) Diplomatic: This policy is only useful when using more
than two voices in the system, and essentially selects the action
that has the most votes from the voices. The action that is
returned with each Opinion is counted as a vote in favour
of that action. In the case that no majority exists, then an
alternative action selection policy is used. For the experiments
in this work, this was the random action selection policy.

3) Random: This policy simply selects an opinion at ran-
dom and uses the action assigned to it.

C. Arbitrator

The arbitrator can be implemented in a number of different
ways, depending on the constraints of the problem set. In
particular, the GVGAI has a 40ms per action time limit that
needs to be respected, which has a significant impact on the
analysis that algorithms can do. This has a large impact on
an EDS because each algorithm has to be allocated a slice
of that 40ms. Further impacting this, the GVGAI does not
allow multi-threading, which is where an EDS would be able
to leverage the voices simultaneously.

In order to deal with these limitations, two different arbi-
trators, described in this section, were created and tested.

1) Central Arbitrator: This arbitrator splits the 40ms
evenly between all of the voices within the system. As an
example, if there are N voices, then each voice receives
(40/N)− 1 ms per time-step to return its opinion.

2) Asynchronous Arbitrator: This arbitrator gives each of
the voices within the system the full 40ms decision time, but
does so by skipping actions until each voice has returned an
opinion. If there are N voices within the system, then for N-1
time-steps a Nil action is returned and a voice performs its
analysis. At the Nth time-step, after all voices have returned
their Opinions, then an action is selected based on the current
action selection policy. The decision of taking no-op actions
comes from the will to affect the game the least, so the voices
analyze the most similar state of the game as possible.



D. Variations

Some of the variations that were tested for this work are
outlined in the following sections.

1) BestFour: This variation makes use of prior work, which
measured the performance differences in playing GVGAI
games with different heuristics [16]. The heuristics created for
that work with the algorithms identified as performing best for
each heuristic were used here in an EDS. There are four voices
in this variation (OLETS with WMH, RS with EMH, RS with
KDH and OLETS with KEH), the Central Arbitrator is used,
and the action selection policy is Highest Value.

2) BestFourDiplo: This variation uses the same four voices
as BestFour (OLETS with WMH, RS with EMH, RS with
KDH and OLETS with KEH) and the Central Arbitrator, but
it uses Diplomatic as the action selection policy instead.

3) BestExpSc: There are two voices in this variation:
OLETS with WMH and RS with EMH. The Central Arbitrator
is used, and the action selection policy is Highest Value.

4) MCTSExpSc: There are two voices used in this variation:
MCTS with WMH and MCTS with EMH. This variation was
tested to give a more direct comparison to the sampleMCTS
controller. The Central Arbitrator is used and the action
selection policy is Highest Value.

5) OLETSExpSc: There are two voices used in this vari-
ation: OLETS with WMH and OLETS with EMH. This
variation was tested to give a more direct comparison to the
OLETS controller. The Central Arbitrator is used, and the
action selection policy is Highest Value.

6) OLETSExpScAsync: There are two voices used in this
variation: OLETS with WMH and OLETS with EMH. It uses
the the Asynchronous Arbitrator and Highest Value as the
selection policy. This variation was also tested to give a more
direct comparison to the OLETS controller.

V. GAME SELECTION

There are 122 available single-player games in the GVGAI
Framework at the time of writing2 and running the experiments
using all of them is prohibitively time consuming. Therefore, a
subset of these was selected, with enough diversity to ensure
that the games selected represent the full variety of options
available from the GVGAI set.

The choice of games for the experiment was based on
previous work. Twenty games were based on Gaina et al.
selection in [17], where they used a balanced set of 20
stochastic and deterministic games. We also included the ten
games which collectively provided the highest information
gain in Stephenson et al. work in [18]. Because 2 of the
games are present in both sets (Chopper and Escape), the total
number of games used in the experiment was 28 (Table I).

The selection includes a series of deceptive games, which
are designed to lead the agent away from the most optimal
solution [12]:

2https://github.com/GAIGResearch/GVGAI/blob/master/examples/all
games sp.csv

TABLE I
THE GAMES SELECTED FROM THE GVGAI FRAMEWORK (GAMES IN

BOLD ARE DECEPTIVE)

Aliens Avoidgeorge Bait Butterflies
CamelRace Chase Chopper Crossfire

Digdug Escape Freeway Hungrybirds
Infection Intersection Invest Labyrinthdual

Lemmings Missilecommand Modality Plaqueattack
Roguelike Seaquest Sistersavior Survivezombies

Tercio Waitforbreakfast Watergame Whackamole

a) Butterflies: The goal is capturing all of the butterflies
before the time runs out or all the cocoons open. A cocoon
opens when a butterfly collides with it, spawning a new butter-
fly. Each butterfly captured increases the score +2. Therefore,
the higher the number of cocoons opened, the higher the final
score can be. Trying to win quickly leads to a less optimal
solution, as the score will not be as high as it could.

b) Invest: The goal is maximizing the score by collecting
gold coins and investing them with the investors. Investing
too much and getting into debt results in a loss. Once an
investment is made, that investor will disappear for a set
period, before returning and awarding a higher amount of
points to the player. Each gold coin awards 1 points when
collected; the Green investor takes 3 points and returns 5 after
30 timesteps; the Red investor takes 7 points and returns 15
after 60 timesteps; the Blue investor takes 5 and returns 10
after 90 timesteps.

c) Lemmings: Lemmings are spawned from one door and
try to get to the exit of the level. There are obstacles on the
way, so the goal is destroying these so the lemmings can reach
the exit. For every lemming that reaches the exit +2 is given,
but −1 is subtracted from every piece of wall destroyed. If a
lemming falls into a trap, the score is reduced −2, and if it is
the avatar who falls, the score is reduced −5.

d) Sistersavior: The goal is rescuing all of the hostages
to be able to defeat the scorpion and win the game. There is
the option to kill the hostages, receiving a moderate immediate
reward (+2 points if shot vs. +1 if rescued). The scorpion
provides 14 points if defeated, but it can only be defeated if
all 3 hostages are rescued.

VI. EXPERIMENTAL WORK

This section describes the experiments that were carried out
and provides instructions for replication.

A. Experimental Setup and Specifications

The code used for the experiments is in a Github reposi-
tory3. All of the experiments were performed using a laptop
running Linux Mint with an Intel i7-8565U CPU with 16GB
of RAM.

The GVGAI framework has up to five levels available for
each of the games. Each level was run 30 times in order to
build up confidence in the results being gathered, having 150

3https://github.com/Damorin/PhD-Ensemble-
GVGAI/tree/master/src/COGPaper



runs per game for each controller. Each successful iteration
of a game that resulted in either a win or loss without any
crashes produces one unit of data, containing the information
[agent, game, score, win/lose, time]. In total, 48, 600 units
of data were generated from these experiments, with each
game generating 1800 units of data across all of the agents.

The controllers described in Sections III and IV were used
for these experiments. The final list of controllers can be found
in Table II.

TABLE II
FULL LIST OF CONTROLLERS USED

EDS Agents Sample Agents
BestExpSc OLETS
BestFourDiplo sampleMCTS
BestFour sampleOneStepLookAhead
MCTSExpSc sampleRandom
OLETSExpSc sampleRHEA
OLETSExpScAsync sampleRS

B. Results

To thoroughly analyze the performance of the GVGAI
agents, both wins and scores are taken into account. A number
of visualizations and a ranking of performance based on those
metrics have been created. These are detailed below:

1) Percentage of wins per game: Fig. 1 shows the percent-
age of wins that each agent achieved in each game. It has been
ordered to show the win rates per game, with the easier games
to win at the top and the harder at the bottom.

Fig. 1. Total percentage of wins (0− 100%) of each controller by game.

2) Score average per game: Fig. 2 shows the average score
that each agent achieved per game. The score depends on the
game considered, so to have all the results on the same scale to
be able to be displayed together, the average of the scores per
game were normalized. This normalization was done by taking
the maximum and minimum score average obtained by the
agents in a game, and used those values for the normalization,
so that for every game, there is an agent whose score is
represented by 0 and another represented by 1, and all others
in between. This approach visualizes the difference in scores
between the agents, by game, in an informative manner. It
is possible to distinguish between those games were agents
manage to get a score easily, and those were they struggle, and
the contrast between the higher and lower average obtained.

Fig. 2. Average scores per game. To be able to make a comparison between
the different games, the scores have been normalized, taking the maximum
and minimum average scores obtained in each game as limits for that game.

3) F1 Ranking: In order to have an overall performance
of the agents through every game, we include a Formula 1
(F1) ranking, like the one used in the GVGAI Competition
[4]. Each agent receives 25, 18, 15, 12, 10, 8, 6, 4, 2, 1
or 0 points per game based on their performance regarding
the rest of the algorithms in that game. The performance is
measured with the data that was gathered at the end of each
run (Section VI-A), considering the total number of wins, the
average of the score and the average of timesteps per game.
In general, the agent with a higher number of wins is better
in that game. In case there is a tie, the highest average score
between the agents breaks the tie. In the case that there is
a tie in both measures, the lowest average of timesteps is
considered. The highest ranked agent receives 25 points in



that game, the second one 18, and so on, until all agents have
been assigned a score. If there is a tie in the three measures,
those agents involved in it will receive the same number of
points. Table III shows the final ranking overall the 28 games
used in the experiment.

TABLE III
CONTROLLERS RANKED BY THE TOTAL NUMBER OF F1-POINTS GAINED
OVERALL THE GAMES. IT INCLUDES THE TOTAL PERCENTAGE OF WINS

(%WINS) AND THE NUMBER OF DIFFERENT UNIQUE GAMES WON
(#GAMES) BY EACH OF THEM.

Controller F-1 %Wins #Games
1 OLETS 501 55.69% 25
2 OLETSExpSc 463 53.59% 27
3 BestExpSc 318 42.86% 24
4 OLETSExpScAsync 316 45.52% 24
5 sampleMCTS 253 40.00% 19
6 sampleRS 237 39.76% 22
7 BestFourDiplo 213 33.02% 23
8 sampleRHEA 194 36.71% 23
9 BestFour 182 28.93% 22
10 MCTSExpSc 181 33.29% 22
11 sampleOneStepLookAhead 88 21.48% 12
12 sampleRandom 29 9.29% 15

C. Discussion

The first finding is that overall the best performing agent
is the OLETS agent, which gets a final score of 501 points
and wins the most amount of games out of all of the agents
(55.69%). The second highest, OLETSExpSc, has a similar
level of performance (53.59%), though the games that it
wins are quite different from OLETS. In particular, it is
able to outperform OLETS on a variety of games, such as
Waitforbreakfast, Crossfire and Escape. OLETSExpSc also
appears to make progress towards winning over a wider range
of games than OLETS, with OLETS winning at least once 25
unique games, as opposed to OLETSExpSc, winning 27.

In regards to deceptive games, which are currently not
solved by the sample agents, such as SisterSavior and Lem-
mings, EDS agents manage to achieve significant results.
Interestingly, the best-performing agents on these levels are
EDS agents which use OLETS as their voices, but the standard
OLETS algorithm is not able to progress on these games.
This improvement in the OLETS performance suggests that
combining the traditional OLETS algorithm with a dedicated
search algorithm provides enough of an advantage to allow
OLETS to solve more problems beyond its original capability.

OLETSExpSc gets 59 of 150 wins in SisterSavior, OLET-
SExpScAsync, 50, and BestExpSc, 9, when OLETS gets 1
and the rest of the algorithms, none. In particular, the EDS
algorithms are able to consider compromising their immediate
score reward (saving the hosts instead of killing them), having
the chance to reach the most challenging goal and win the
game.

In Lemmings, the EDS agents that manage to win the game
are MCTSExpSc, OLETSExpSc, BestFour, BestFourDiplo and
OLETSExpScAsync, with 4, 12, 15, 20 and 43 of 150 wins
respectively. As Fig 3 shows, they also have the lowest score

average, as they use heuristics with further considerations
other than trying to maximize the score, not being afraid
of losing points while exploring the level and destroying
the walls. Even when the solutions might not be the most
optimal ones, and their levels could be solved getting a higher
score average, they are able to win the game when the other
controllers fail.

Fig. 3. Lemmings stats per agent. The pct. of wins is in range [0, 100%] and
the avg. of score is relative to the maximum and minimum scores achieved
in the game (range: [−143, 1]). Values have been normalized in this figure.

Looking further at the deceptive games, Invest has some
interesting results (Fig. 4). All of the sample agents score an
average of five or less across their games of Invest, while the
EDS agents manage to score significantly higher. This is an
interesting result as the deception in Invest was designed to
trick search based agents that would typically be reluctant to
surrender their current score in order to progress. The EDS
agents are able to perform well in this game, with BestFour
scoring highest with an average of 123. Interestingly, one of
the EDS agents, MCTSExpSc, loses some of the games. As
the sampleMCTS agent does not lose any games of Invest in
the experiments, it seems that the exploration combined with
MCTS causes it to take some risks, while increasing its overall
performance.

Games where OLETS still performs notably better than
its EDS versions, are discussed next. In Missilecommand,
OLETSExpSc gets 22.00% of wins and OLETSExpScAsync
22.67%, in contrast with OLETS’s 48.67%. We believe that
this decrease is due to the exploratory behaviour added to
these agents, which brings them to explore the level instead
of focusing on achieving the goal of the game. When the
agents finally realize they are about to lose, they are too
far away to be able to prevent themselves from losing the
game. In Chopper, OLETS manages to win most of the
games (99.33% of wins) with an average of score of 17.03.
In contrast, OLETSExpSc achieves a 76.00% of wins and
an average of score of 4.5, and OLETSExpScAsync gets a
16.00% of wins averaging −5.55 points. In Plaqueattack, the



Fig. 4. Invest stats per agent. The percentage of wins is in range [0, 100%]
and the avg. of score is relative to the maximum and minimum scores achieved
in the game (range: [−7, 161]). Values have been normalized in this figure.

decrease of performance is even higher: OLETS manages to
get 96.00% of wins when OLETSExpSc only wins a 30.00%
of the games and OLETSExpScAsync does not win any of
them. Looking at the behaviour of the agents in both of these
games, during observation the Async controller spends most
of the time exploring rather than learning to gain points. The
central controller moves much faster, reaching new positions
sooner and, therefore, lessening the value of the exploration
heuristic sooner. It allows it to focus on the score and win the
game. This may be due to the exploration heuristic providing
excessively high evaluations in the decision process of these
agents, causing them to ignore the actual goal. Hence, the
value returned by the EDS agents’ heuristics should be tuned
in future work to have a more balanced input from all of the
heuristics in levels with a large state space, particularly where
the rewards are focused in a small area of the level.

CamelRace is a racing game where the avatar must get to the
finish line before any other camel does. It is a compelling case
to comment on, as it is quite a simple game that the complex
algorithms struggle to solve but OSLA, one of the simplest
controllers in the sample batch, gets 120 of 150 wins. Some
EDS agents perform better than OLETS (21 wins) in this game
(MCTSExpSc, BestFourDiplo, BestExpSc and OLETSExpSc,
with 28, 32, 33 and 38 wins respectively) but they are far
behind OSLA. The reason for the good performance of OSLA
comes from how fast the game is, the well defined path
that should be followed and the lack of score rewards until
the end. Because the win state is not reached unless the
agent heads to the goal, and there is no score information
to use, the agents that just use these values as a reference
will behave randomly until their movement heads them to
the exit. If those agents are lucky enough to choose those
actions that get them closer to it quickly, then they may win.
Exploring in this game is also not beneficial, because the path
to the exit should be followed quickly to avoid losing. OSLA’s

heuristic (SimpleStateHeuristic) considers, apart from winning
condition and score, those actions where the distance between
the avatar and the closest portal sprite (which is the category
of the goal sprite) is small. In the first four levels, where this
information is enough to reach the goal, it manages to get
there promptly. However, in the last level, where there is a
wall between the agent and the goal, it gets stuck not being
able to rectify its path.

Finally, an example where the exploration heuristic is prof-
itable is Hungrybirds. In this game, the player is a bird that
needs to exit a maze but needs to find food and eat it while
doing so to avoid dying. As observed in Fig. 5, the only sample
agent with a significant number of wins is OLETS, while
the rest of the sample controllers achieve less than a 4.60%
winning rate. In contrast, all EDS agents based on sample
controllers achieve between 32.00% and 74.00% win rate, and
OLETSExpScAsync improves OLETS (92.67% vs 76.00%).
Something similar happens in other games such as Escape,
Labyrinthdual and Lemmings. These results show how using
agents with different policies can help to improve the win rates
in a game, showing the potential of the approach developed.

Fig. 5. Hungrybirds stats per agent. The pct. of wins is in range [0, 100%]
and the avg. of score is relative to the maximum and minimum scores achieved
in the game (range: [0, 140]). Values have been normalized in this figure.

VII. CONCLUSIONS AND FUTURE WORK

This work presents a novel approach to designing GVGP
agents through the use of an Ensemble Decision System
(EDS) and showcases a number of potential variations of how
such a system may work. While the EDS does not currently
outperform the individual algorithms, it maintains a significant
portion of their strengths and adds to the generality of the agent
by allowing it to succeed at more games. The flexibility of the
EDS is the main strength that it offers, and the potential of
this approach has not yet been fully explored.

The results show the potential of combining different algo-
rithms with different goals using this kind of system. OLETS’
EDS variant is able to win two more games than the original



agent without compromising its overall performance, simply
by providing two different intentions to take into consideration.
One of these games, Lemmings, is a deceptive game that
none of the sample controllers are able to solve but five
different EDS systems win, one of them 43 times. This is
an impressive result that shows what this approach is capable
of achieving, having noted potential that could be developed
further. A similar generality improvement is seen between the
sampleMCTS and MCTSExpSc, winning in 19, vs 22 games.

Future work for this project will look at developing fur-
ther variations of the system, which could look at different
action selection policies or types of arbitration. Possibilities
in this area could include developing a bandit style selection
algorithm for deciding which voice should be selected, or the
arbitrator itself could be a neural network that is trained to
identify which voices are best suited to deal with a given state.
It will also compare EDS to portfolio approaches as they have
distinct strengths and weaknesses that would be interesting to
analyze in detail.

At the moment the EDS variations that have been imple-
mented are quite naive. There has not been any optimization of
which voices work best together, or development of the more
sophisticated arbitrators and action selection policies. Each
voice is treated as an expert, and their evaluation is trusted.
This creates some performance issues for certain games, that
were highlighted earlier in Section VI-C. In particular, it seems
that there are cases where the exploration heuristic might be
providing more weight in the decision process of the agents
than it should. This has been noticed especially in games that
present significant exploratory areas but where the primary
objective of the game is focused on a particular area. This
problem could be improved by not only tuning the values
returned by the heuristics, but by adding in voices that are
designed to fulfill a specific purpose. As an example, a survival
voice could be added to an EDS whose role would either
be to veto actions that lead to a losing state or remove an
action from consideration. Or perhaps all voices could be
able to veto actions that they evaluate as being dangerous.
A fitness function could be built into the arbitrator that is
able to evaluate how well a voice is performing in a particular
situation, and could adjust the confidence of that voice or swap
it with another voice. Voices themselves could be required to
evaluate all actions available, and the system could then make
selections based on evaluations from all perspectives. Lastly,
a voice does not need to be a singular algorithm, but could
instead be a collection of algorithms working together to return
a single opinion. An EDS of multiple EDSs.

In short, the EDS offers a considerable amount of flexibility
and consolidates the strengths of current GVGP approaches to
overcome their weaknesses, making the system more robust
overall. It is also worth noting that while a range of variations
were built for these experiments, they are still naive in their
implementation. Further sophistication in their decision mak-
ing process, and a more intelligent selection process regarding
which voices to pair together will likely improve performance
further. With the recent trend of high performing solutions

coming not from singular algorithms, but from algorithms
working together, the interesting results of this paper show
that this is a fruitful area for further research.
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