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Abstract 

This thesis intends to study the manoeuverability of a single ship advancing in regular 

waves which is believed to be important for ship navigation safety as the situation is 

much more common experienced by a seagoing ship in real seaways instead of the 

calm water environment for traditional manoeuverability analysis. 

For this purpose, a so called two time scales model is applied to study the problem, 

according to the difference of the motion frequencies between the two involved sub-

problems. That is to say, the total ship motions are consist of two parts, namely the 

wave induced motions analysed in a rapidly varying time scale system and the 

manoeuvring motions associated with a slowly varying time scale system. The two 

systems exchange data with each other at specific time intervals to reflect the 

interaction between two sub-motions. By this means, the analysis for an advancing 

ship executing a maneuver in waves can be achieved. 

To make concrete analysis of the sub-problems, a boundary element method (BEM) 

based on the 2.5 dimensional (2.5D) potential flow theory is adopted to solve the 5 

degrees of freedom (DOF) rapidly varying wave induced motions, i.e., the seakeeping 

problem of slender ships advancing at speeds from moderate to relatively high is 

determined by interactively solving the discrete boundary integrate equation, 

kinematic and dynamic boundary conditions on the free surface in cross sections from 

bow to stern in time domain. Besides, this method is also used for the estimation of 

the manoeuvring derivatives required by the manoeuvring analysis. A numerical 

scheme called Multi-Transmitting Formula (MTF) is imposed on an artificial 

boundary to satisfy the radiation condition. The lift force, regarded as a consequence 

of the 3 dimensional (3D) flow effect which is important to manoeuvring motions but 

normally be neglected in the 2.5D theory, is taken into account for the evaluation of 

the total hydrodynamic forces acting on the ship during lateral motions. Furthermore, 

Non-Uniform Rational B-Spline (NURBS) is used for modelling the body plans of the 

ship and expressing the unknown quantities on the boundary elements to give more 

accurate and smoother solutions for the boundary value problems (BVP). To validate 
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the established numerical tool, computations are carried out on a WigleyIII hull, a 

Series 60 hull and a container ship S175 hull respectively. The results are compared 

with the available experimental data. 

Regarding the manoeuvring motion simulations, the model is established based on the 

modular concept proposed by the Japanese Mathematical Modelling Group (MMG). 

The forces and moments induced by the propulsion system, the rudder system and the 

nonlinear viscous effect are estimated separately by empirical formulae or directly 

obtained from experimental measurements. The mean second order wave drift force is 

determined by direct pressure integration depending on the solved linear velocity 

potential from the seakeeping module. Simulations of the standard free running 

maneuvers, namely turning circle motion and Zig-zag motion, are carried out on the 

S175 ship in calm water and different regular waves successively. The results are 

compared with experimental measurements for validation which demonstrates that the 

present numerical tool can reasonably predict the manoeuvring motions of a slender 

ship in regular waves. 

 

Key words: manoeuvring in waves; two time scales; 2.5D theory; NURBS; MMG 
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1 Introduction 

1.1 Background and motivation 

When designing and building a ship, there are six aspects of navigation performances 

that need to be evaluated in the framework of hydromechanics, namely, buoyancy, 

stability, insubmersibility, rapidity, seakeeping and manoeuverability. According to 

the motion state of the ship, the studies on these hydromechanical problems can be 

classified into two groups. The former three performances (buoyancy, stability and 

insubmersibility) of a ship are the subjects of ship hydrostatics depending on the 

submerged volume of the ship, while ship hydrodynamics dependent on the sailing 

speed covers the other three (rapidity, seakeeping and manoeuverability). It is 

generally known that the development of ship hydrostatics has a long history since the 

advent of the ship in ancient times. Related theories were established step by step 

based on the Archimedes’ principle described in the work, on floating bodies, written 

around 250 BC. To the present, ship hydrostatics has been well developed and 

relevant methods are mature enough to give satisfactory evaluations of ship’s 

buoyancy, stability and insubmersibility in practice. By contrast, the development in 

the field of ship hydrodynamics has not progressed to the same extent yet. Therefore, 

more efforts should be made to the hydrodynamics problems studies since ship’s 

performances in moving state are what we are more concerned about in transportation 

of passengers and cargoes.  

Broken down further, the ship resistance and propulsion deciding ship’s rapidity are 

normally the subjects when the ship is advancing straightly with a constant speed in 

still water therefore can be considered as steady problems, whereas the seakeeping 

and manoeuvring problems are regarded as unsteady ones which are generally thought 

to be more complex. To be specific, seakeeping performance represents the ability of 

a seagoing ship to carry out particular missions in a given sea condition, speed and 

heading. The wave environment will not only affect the effectiveness of the ship in 

attaining its mission, but may also put the ship in danger of structural damage even 

capsizing. On the other hand, ship’s manoeuverability is the ability of a ship to keep 
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or change its state of motion under the control actions, i.e., keeping the straight ahead 

course with constant speed for lower fuel consumption purpose, or changing the speed, 

the course and the position of the ship to avoid obstacles appearing on its routes, 

according to the intention of the helmsman. By these definitions, it is quite clear that 

both of the unsteady hydrodynamic performances are vitally important to navigation 

safety. 

 

Fig. 1.1 Ship seakeeping (internet photo) 

 

 

(a)                                                                (b) 

Fig. 1.2 Ship manoeuvring (a) Zig-zag; (b) Turning (internet photos) 

 

However, in the past, less attention has been paid to seakeeping and manoeuverability 

than the other four performances at the draft stage of ship design. This is not only 

because of the different complexity levels of relevant problems, but also due to the 

requirements proposed by the ship owners from an economic standpoint. Especially 
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for the manoeuverability, verification of this performance is often carried out after the 

design stage, even until the ship has been constructed. Accordingly, the improvement 

of manoeuverability would be very limited which brings potential risks of collision, 

etc. For instance, if somehow the manoeuverability is overestimated based on the 

original construction of the ship, in particular the rudder control and response 

characteristics, the developed situation may lead to the point of no return in time even 

if an extreme rudder action is executed. 

Looking back through the shipping history, there are spectacular shipwrecks resulting 

in severe loss of life and property and pollution to the environment, due to deficiency 

of manoeuverability and improper steering operations. At this point, everyone’s first 

thought would be the most well-known Titanic passenger liner who is the largest and 

most secure cruise at the time she entered service. Although she was claimed to be 

unsinkable, she went down to the bottom of the North Atlantic Ocean due to colliding 

with an iceberg on her maiden voyage as reported by Young (1912) 37 days after the 

sinking. Of the 2224 passengers and crew aboard, more than 1500 died, making it one 

of the deadliest peacetime maritime disasters in modern history. According to the 

record, she sailed at her full speed ahead aiming to arrive in New York earlier. 

Consequently, the collision could not be avoided when the iceberg appeared in front 

of the ship even the engines were set in reverse to full astern with a tiller order of hard 

a starboard (an old British Merchant Navy steering order which was not phased out 

until 1933) directing the helmsman to turn the wheel to port (anti-clockwise) as far as 

it would go to attempt to clear the iceberg by swinging the ship to her port side. Apart 

from the lack of telescope and lifeboats, weak iron rivets, and communication barrier 

which are considered as the major causes to this disaster, it should be noted that the 

ship’s manoeuverability, to some extent, is not good enough to change the course at a 

relatively high speed in case of emergency.  

In the near decades, the deficiency of manoeuverability still threatened the navigation 

safety. In 1999, a Chinese Ro-Ro ferry Dashun capsized after a series of manoeuvers 

on the way back to the port when encountering severe weather in the Yellow Sea. As 

cited by Ma (2007), the ferry tried to keep a straight course instead of moving on a 

Zig-zag route which led to a large amplitude (30 degrees) roll motion around a 15 

degrees of heeling angle in the beam sea. Together with the steering engine failure 
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due to the fire induced by the movements of the vehicles carried inside, the ship 

finally capsized after letting go port anchor during the drifting in wave. Obviously, 

unlike the calm sea state the Titanic sailed in, this is a typical case of a ship 

manoeuvring in waves which implies improper steering operations will not only lead 

to an undesirable course but also result in decrease of seakeeping performance and 

then further affect the manoeuverability in turn. That is to say, there exists coupling 

effect between the manoeuvring motion and the wave induced motion which is the 

main task of the present study and will be described in more detail later. Other more 

recent shipwrecks, such as the oil tanker Cosco Busan collided with the pier of the 

Bay Bridge resulting in serious oil spill to the sea in 2007 and the sensational Korean 

motor vessel Sewol capsized with nearly 300 people deaths in 2014, are all closely 

connected to the steering and manoeuvring problems. According to rough statistics 

given by Xia & Fan (2008), about 40% of shipwrecks are related to the deficiency of 

manoeuverability. 

In order to improve the situation and prevent more disasters occurred in future, the 

International Maritime Organization (IMO) started to propose the evaluation criteria 

of ship’s manoeuverability since 1982. Relevant guidelines and standards were issued 

and adopted to make explicit quantitative requirements on ship’s manoeuverability in 

1985, 1993 and 2002 successively. A questionnaire survey carried out by the 

Manoeuvring Committee of the 24th International Towing Tank Conference (ITTC) 

reported that approximately half the respondents regarded the IMO resolution as 

mandatory for conventional ships. Besides, due to the adoption of IMO manoeuvring 

standards, the number of cases regarding ship’s manoeuverability was increasing 

rapidly, and 80% among ship builders noticed an increased awareness for 

manoeuvring issues. On the other hand, Computational Fluid Dynamics (CFD) and 

Experimental Fluid Dynamics (EFD) techniques have been promptly developed in the 

recent decade with the usage of more advanced computers and modern experiment 

equipment, thereby greatly strengthen the research means for designers. In these 

circumstances, motivation on studying ship’s manoeuverability received a big boost 

and it comes to a conclusion that assessment of manoeuverability should be made at 

the design stage prior to ship construction as well as other performances.  
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Traditionally, ship’s manoeuverability is evaluated in calm water as the IMO 

standards based on. Admittedly, this evaluation is essential and valuable, and even 

enough for a ship navigating in port areas or inland waterways. However, for a 

seagoing ship, its manoeuvring performance on a given route in the open sea or 

exposed coastal areas may be significantly affected by the presence of environmental 

forces due to waves, wind and tidal currents. Recalling the Dashun shipwreck 

mentioned before, these environmental factors did present during the voyage. Hence 

the ship can be subjected to additional forces which might be of considerable 

magnitude. Among of them, wave effects are perhaps the most important since 

moderate values of this phenomenon can result in large magnitude of forces and 

moments. In this case, corresponding steering operations should be executed to 

maintain a desired heading in a seaway which may induce large ship motions and a 

variation of the wetted surface, even the dangerous scenarios such as propeller and 

rudder emergence. Moreover, due to increasing added resistance in waves and 

reducing propulsive efficiency, an involuntary speed loss can be experienced during 

the manoeuvers which is also undesirable from economy aspect. As a consequence, 

the trajectory of the ship will be quite different from the expected one in calm water. 

On the other hand, the wave force direction and the encounter frequency are varying 

with the incident wave angle, thereby the seakeeping performance is also affected 

during manoeuvers. In a word, a ship navigating in a seaway implies a more complex 

problem and requires some insight into the fluid phenomena acting upon the ship. The 

fluid effects involving the viscous and the potential contribution and, the nonlinear 

behaviour as a result of the rigid body motions, increases the complexity of the 

problem. The assumptions taken into account for the manoeuvring in calm water and 

seakeeping analysis might not be applicable, at least not directly. Therefore, in order 

to solve the ship dynamics while manoeuvring in a seaway, a method must be sought 

that investigates both performances conjunctly.  

In fact, the topic of the manoeuvring motions in waves has been raised and discussed 

since a few decades ago. However, research on this problem was hobbled due to its 

much more complexity than the two separate ones and the limit of the discipline level 

in the early period. With the rapid development of ship hydrodynamics and relevant 

techniques in recent years, substantial progress has been achieved. And the ITTC has 



6 
 

also put this combined problem in a list of subjects with special care in 2011 and 2014, 

which means it is a leading edge topic at present. 

As long as in the scope of mechanics, the subject can always be studied by conducting 

experiments, i.e., full scale trials which can provide most accurate results directly. 

However, these results are the important criterion for the delivery of the newly built 

ship, thereby does not meet the premise of being carried out prior to the ship 

construction in the design stage. Therefore, conducting series of model tests is the 

common option until now even it suffers the so called scale effects which will also be 

mentioned in the next chapter. In order to further reduce research cost, and to 

maximum extent eliminate the scale effects and experimental errors during repeating 

the tests, adopting a numerical approach with the advantage of modern computers is 

an effective alternative for designers.  

Moreover, with the tendency of the demand for high speed vessels, the knowledge and 

experience of traditional ships of relatively low speed would be not suitable for high 

speed vessels. Therefore, there is an urgent need to apply a practical method to study 

the dynamic behaviour of high speed vessels in a seaway. 

Finally, in order to integrate with the actual ship construction, applying geometry 

modelling techniques into the hydrodynamic calculations is another research hotspot 

nowadays. Among them, Non-Uniform Rational B-Spline (NURBS) is a widely used 

tool from industrial design field which can fulfill the requirement and connect with 

Computer Aided Design (CAD) well. The present work is carried out based on the 

above background.  

1.2 Aims and Objectives 

In brief, the main objective of the present work is to predict the manoeuverability of a 

single ship advancing in regular waves numerically. The water depth is assumed to be 

infinite and the navigation area has infinite horizontal extent which means shallow 

water and bank effect are not taken into account here. Balance between the efficiency 

of simulation and the accuracy within the engineering practice is pursued in the 

development. 
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Specific objectives include the following: 

 To establish a systematic model for the simulation of ship manoeuvring in waves 

which can combine the wave induced motions and the manoeuvring motions in 

calm water together and capture the interaction between the motions. 

 To formulate a numerical approach addressing the seakeeping performance of 

slender ships advancing in a seaway suitable for application to speed range from 

moderate to relatively high.  

 To connect with CAD in ship structural constuction by applying a practical 

modelling technique for precisely expressing ship geometry and integrating it into 

the developed seakeeping analysis tool. 

1.3 Outline of the thesis 

In Chapter 2, a detailed literature review of previous studies on the seakeeping and 

manoeuvring problems respectively as well as the combined problem is presented. 

The review also introduces previous works on the application of spline modelling 

techniques in the field of hydrodynamic calculations by BEMs.  

In Chapter 3, according to the objectives of the present study, the adopted approach is 

outlined based on the literature review, followed by presenting the innovations. 

In Chapter 4, an numerical approach mainly for the seakeeping analysis to determine 

the hydrodynamic forces acting on an advancing ship with relatively high speed is 

developed, together with the equations of ship motion responses in regular waves 

been established. The numerical schemes to solve the boundary value problems are 

detailed, including discretization formats and processing of deterministic conditions. 

Besides, viscous correction and solutions for low frequency lateral motions are 

presented as the obtained hydrodynamic derivatives are required in the manoeuvring 

analysis. Special attention is also paid to the lift effect generally negligible in vertical 

motions whereas is important to lateral motions associated with the manoeuvring.  
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In Chapter 5, an extension of the numerical scheme for the solutions of the BVPs 

described in Chapter 4 is made by introducing a spline modelling technique to form 

the contours of the geometries for the purpose of better integrating with ship structural 

construction and improving the accuracy of the results. Verification and validation of 

the geometry modelling module are carried out on a circle and several selected ships. 

Then validations of the completed seakeeping analysis module are carried out on the 

selected ships by calculating series of hydrodynamic characteristic coefficients and 

comparing with experimental data or other numerical results available in published 

literature. 

In Chapter 6, a combined mathematical model involving the manoeuvring motions 

and the wave induced motions is applied for the analysis of a ship manoeuvring in 

regular waves based on the fact that the manoeuvring and steering control actions 

typically occur at a much lower frequency than the important linear wave encounter 

frequencies. The derivation of the motion equations in the established coordinate 

systems is given in detail. Forces and moments acting on the ship are estimated by 

proper methods, including the hydrodynamic wave loads dependent on the wave 

induced motions solved in seakeeping analysis. After that, the flow chart of the whole 

simulation system for a single slender ship manoeuvring in regular waves is presented. 

Simulations are carried out on one selected ship and compared with available results 

for validation, together with the parameter studies to analyse the wave effect on the 

manoevring motions.  

Finally, in Chapter 7, the conclusions drawn from the present work are summerized 

including the major achievements and conclusions, eventually the perspectives for 

further studies are proposed. 
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2 Literature review 

As mentioned before, to investigate a single ship manouevring in waves, two sub-

problems, namely the low frequency manoeuvring in calm water and high frequency 

seakeeping problem, should be taken care of in advance. Therefore, in this Chapter, 

previous work and progress on these two sub-problems will be reviewed successively. 

Application of the spline modelling technique in the hydrodynamic calculation is also 

introduced. Finally, an overview of the state of the art relavant to the prediction of the 

manoeuvring behaviour of ships in a seaway is presented.  

2.1 Previous works on manoeuvring problems in calm water 

2.1.1 Introduction of manoeuvring prediction 

Investigation of ship manoeuverability in calm water conditions was initiated during 

early 1960s. Norrbin (1960) gave a review of the state of the art of scientific work 

carried out on manoeuverability of ships in that time. Since then, an increasing 

attention has been paid on research in this particular field gradually. Consequently, 

several theoretical and experimental methods have been developed and improved 

through the use of more refined techniques, comparisons between different methods, 

and parametric studies. Generally, there are four categories of methods for this 

prediction at the design stage, which are the method of conducting free running model 

tests, the estimation method based on data base or regression formulae, computer 

simulation of manoeuvring motions using mathematical models, and numerical 

prediction based on CFD technique.  

Free running model tests are usually conducted with scaled models in indoor basins or 

sheltered outdoor lakes, thereby the limited size of water area makes it difficult for 

manoeuvring tests of high speed vessels at their maximum operating speeds. In the 

tests, the standard manoeuvers are performed on the model and the parameters 

evaluating its manoeuvring characteristics are measured from the test records. Hence, 

this method is the most direct way for prediction and regarded as the most reliable 

method. For example, in the recently held special workshops on the verification and 
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validation of ship manoeuvring simulation, SIMMAN (2008, 2014), plenty of free 

running model tests had been carried out on several ship types, e.g., KCS, KVLCC, 

DTMB 5415 etc. by different organizations and the measured results can be used as 

valuable benchmarks for manoeuvring simulations and related comparative studies. 

Besides, a recommended procedure and guideline for conducting free running model 

tests was proposed by the manoeuvring committee of the 27th ITTC (2014). However, 

this method is time consuming and costs a lot of money to build the model after all. 

And it is inconvenient for application at the design stage since series of model tests 

are usually needed to be repeated. Moreover, it should be noted that due to the so 

called scale effects, there usually exists a distinct difference of performance between 

the model and the full scale ship as pointed out by Qudvlieg &Tonelli (2015).  

Similarly, the estimation method based on data base or regression formulae also rely 

on large number of model tests or full scale trials of similar parent ships, then results 

are gathered from these tests to derive a data base containing the characterized 

parameters of manoeuverability or establish regression formulae to estimate these 

parameters as functions of ship particulars. Representative works can refer to Lyster 

& Knights (1979) and Haraguchi (2000). Although this method would be very 

efficient once the data base obtained, it is quite limited for new type ship construction 

since lack of accurate data.  

2.1.2 Computer simulation using mathematical models 

With the rapid development of the computer technology and its successful application 

in ship engineering, the third category of methods, i.e., computer simulation using the 

mathematical models becomes more and more popular. It provides a convenient way 

for predicting ship manoeuverability in the design stage. By considering the ship as a 

rigid body, this category of methods need to establish a dynamic system to simulate 

the motions under external forces including the components on the hull, the propeller 

and the rudder, which are collectively known as the manoeuvring hydrodynamic 

forces. Normally, these hydrodynamic forces are determined indirectly by obtaining a 

series of corresponding coefficients in the models through experiments or theoretical 

calculations. Compared to the former two methods, the advantages of this method are 

it is more convenient to conduct particular model tests to obtain the coefficients and 

the contribution from each force component to the manoeuvring motion with its 
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changing rule can be better analysed. There are two main types of mathematical 

models for the manoeuvrability analysis, namely response models and hydrodynamic 

models.  

In the response models, the motion equations are transformed into the expressions of 

which the motions are the response to the value of control parameters such as rudder 

angle. In this way, the coefficients in the transformed motion equations reflect the 

characteristics of the manoeuvring hydrodynamic forces and can be derived from 

particular model tests. The initial model of this concept was first proposed by Nomoto 

et al. (1956). They carried out Laplace transform to derive the transfer function 

between yaw rate and rudder angle from the linear manoeuvring motion equations 

established by Davidson & Schiff (1946). After that, Nomoto & Taguchi (1957) 

summarized the first and second order linear response models respectively. For the 

first order linear response model, only two parameters K and T are contained which 

can be easily derived from Zig-zag motion tests. Although this model cannot give 

precise predictions for large amplitude manoeuvring motions, both of the parameters 

have definite physical meaning, and can be used to evaluate ship’s manoeuverability 

directly. Thereby they are beneficial for qualitatively predicting and improving ship’s 

manoeuverability. Based on the linear models, several nonlinear response models 

were developed later, such as Bech (1966), Clarke (1971), Matsumoto & Suemitsu 

(1981), which have been widely applied in ship control and autopilot design. 

In contrast to the response models, the hydrodynamic models keep the original motion 

equations without transformation and solve the equations directly by obtaining the 

manoeuvring hydrodynamic forces contained in the equations. To be specific, the 

existing hydrodynamic models for manoeuvring problems studies can be essentially 

classified into two groups, which are the whole ship models or common called the 

Abkowitz models named after the introducer Martin A. Abkowitz, and the modular 

manoeuvring ship models or the so called MMG models, short for Mathematical 

Modelling Group, the proposer in the Japanese Towing Tank Conference. 

The whole ship models were developed in the early stages of the manoeuvring 

simulation studies by Abkowitz (1964), Chislett & Strøm-Tejsen (1965) and later 

revised by Norrbin (1970). This kind of models represents composed manoeuvring 
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system where the total hydrodynamic forces and moments acting on the combination 

of hull-propeller-rudder, and are expressed as functions of the kinematic parameters 

and the rudder angle in a formal way using the perturbation analysis to expand the 

total hydrodynamic forces and moments into a series of the hydrodynamic derivatives 

through Taylor expansion of a function of several variables. Although the whole ship 

model is still very attractive to use due to the relatively simple series representation of 

the total hydrodynamic forces and moments, its applicability among the manoeuvring 

simulator facilities worldwide starts to show the limitations during 1980s. The 

limitations related to the difficulties in the comparison procedures between different 

modelling approaches led to the second group of mathematical models proposed by 

Japanese research group, namely the MMG models. Ogawa et al. (1977), Hamamoto 

(1977), Kasai & Yushitsu (1977) outlined the main concept of these modular 

manoeuvring simulation models. Afterwards, Kose et al. (1981), Inoue et al. (1981) 

and Kijima et al. (1990) presented the concrete models based on this concept and 

further improved them. Recently, Yasukawa & Yoshimura (2015) summarized the 

previous works and established the standard form of the MMG model with procedure 

for determining the hydrodynamic force coefficients required by the model to avoid 

inadaptability of hydrodynamic force data between different models.  

The MMG model is a physically motivated model based on the modular concept by 

decomposing the total hydrodynamic force and moment into three parts, i.e., the parts 

acting on the hull, the propeller and the rudder respectively and evaluating them 

through a set of interactively connected modules. Each module is programmed as a 

separate unit which describes particular force and moment due to the hull, the 

propeller and the rudder, as well as the environmental forces and moments due to 

waves, wind and current if exist. The modules are linearly superimposed, so that the 

complete manoeuvring model in general can be easily modified according to the 

imposed requirements from a manoeuvring simulation.  

2.1.3 Determination of hydrodynamic derivatives 

Obviously, as the precondition to carry out the manoeuvring motion simulations, the 

hydrodynamic derivatives in both the whole ship model and the MMG model should 

be determined experimentally or theoretically. There are four basic methods for this 
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purpose, i.e., captive model tests, system identification technique, semi-theoretical 

and semi-empirical method, and numerical method.  

Captive model tests are conducted with a scale model in ship model basins, where the 

models are forced to move in a prescribed manner. These tests include oblique towing 

test (OTT) in a conventional long and narrow towing tank, rotating arm test (RAT) in 

a rotating arm facility, the planar motion test using planar motion mechanism (PMM) 

in a long and narrow towing tank, and circular motion test (CMT) in a big towing tank 

or in a seakeeping and manoeuvring basin. By analyzing the forces and moments 

measured on the model, the hydrodynamic derivatives can be determined. Chislett & 

Strøm-Tejsen (1965) conducted PMM tests on a mariner vessel to obtain all the 

hydrodynamic derivatives based on the Abkowitz model, then applied these 

derivatives to carry out standard manoeuvring simulations on this mariner vessel 

including turning, Zig-zag and spiral manoeuvers, and the results show good 

agreement with the full scale trials measurements. Norrbin (1970) also conducted 

captive model tests such as OTT and RAT to obtain the derivatives based on a whole 

ship model proposed by himself, then carried out Zig-zag and spiral manoeuvers 

simulations on a 98000 deadweight ton (DWT) tanker. The results also show satisfied 

agreement with the full scale trials measurements. On the basis of existing test 

procedure, Kose & Kijima (1977) gave a recommended procedure for captive model 

tests based on a MMG model. Inoue (1981) followed the procedure to carry out a 

series of captive model tests on 10 different types of ships in different ballast 

conditions, and gave regression formulae for linear hydrodynamic derivatives based 

on ship’s principal dimensions. As the container and ro-ro ships have small transverse 

metacentric heights which leads to relatively large heeling angles in turning motions, 

the roll coupling effect on manoeuvring should not be neglected. Son & Nomoto 

(1982) established a 4-DOF MMG model and carried out captive model tests on a 

SR108 container to obtain corresponding hydrodynamic derivatives. Simonsen (2004) 

summarized the procedure for captive model tests and presented a method of 

uncertainty analysis for the tests. In addition, the previous mentioned workshops 

SIMMAN (2008, 2014) also provided numerous results of captive model tests on the 

same selected ship types in free running model tests for manoeuvring simulations. 
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Although captive model tests are considered to give reliable results of derivatives, 

special experimental facilities are often unaffordable to many designers, and it should 

be noticed that captive model tests also suffer scale effects as the free running model 

tests, so extrapolation corrections are usually needed. For these reasons, several 

researchers applied system identification techniques to obtain the hydrodynamic 

derivatives based on full scale trials. For example, Abkowitz (1980) and Hwang (1980) 

applied Kalman filter technique to obtain the derivatives using the full scale trial 

results on the Esso Osaka oil tanker. Yoon & Rhee (2003) applied a so called 

estimation before modelling technique to identify the derivatives of the Esso Osaka 

oil tanker and a 113K oil tanker based on a modified Abkowitz model. Again, since 

the full scale trials are available after the construction of the real ship which is the 

obstacle to the studies in design stage, Zou and his research team carried out 

identification work to determine the derivatives from free running model tests by 

system identification methods, such as Luo & Zou (2009), Zhang & Zou (2011), 

Wang et al. (2014). Not only these works obtain valuable hydrodynamic derivatives 

of ship models, but also provide references for further improvement of the 

manoeuvring mathematical models and correction due to scale effect.   

The hydrodynamic derivatives can also be determined by semi-theoretical and semi-

empirical methods, including the methods of data base and the estimation methods 

using semi-empirical formulae. Systematic captive model tests still need to be 

conducted, and the data of measured hydrodynamic force and moment are to be 

gathered, from which a data base or semi-empirical formulae can be derived based on 

the main particulars and other ship form coefficients. Then the data base and the semi-

empirical formulae can be used to estimate the hydrodynamic derivatives in the 

equations of motion conveniently. Obviously, this method has the same disadvantage 

as the previous mentioned manoeuvring performance estimation method by data base 

or regression formulae which is limited to the data of ship types already existed. The 

common used formulae for linear hydrodynamic derivatives estimation were given by 

Inoue (1981) and Clarke et al. (1982). Furthermore, Zhou et al. (1983), Kijima & 

Nakiri (1999), Kijima (2003), Aoki et al. (2006), Furukawa et al. (2008) presented the 

formulae for the nonlinear hydrodynamic derivatives estimation based on the two 

widely used hydrodynamic decomposition expressions proposed by Inoue (1981) and 
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Kijima (1990). Note that there is another recommended hydrodynamic decomposition 

expression of the 3rd order polynomial function through Taylor series expansion as 

presented by Yasukawa & Yoshimura (2015) in the MMG model standard procedure. 

Although this 3rd order polynomial function expression is believed to be superior to 

the other expressions in the view of estimation accuracy pointed out by Matsumoto & 

Suemitsu (1980), it is hard to give regression estimation formulae for the nonlinear 

derivatives since the correlations between the derivatives and ship form coefficients 

are not prominent. 

2.1.4 Numerical methods for manoeuvring prediction 

In the aspect of theoretical calculation, simple analytic methods based on potential 

theory such as such as the low-aspect-ratio wing theory introduced by Bollay (1939) 

and the slender body theory originated in the field of aerodynamics were applied to 

ship manoeuvring problems for qualitative analysis in earlier studies by Inoue (1956), 

Fuwa (1973) and Newman (1977), respectively. For the purpose of improving the 

accuracy, there is an increasing trend to apply numerical methods in the calculations 

with the development of computer technology since 1980s. In such a situation, two 

categories of numerical methods were initiated. Based on the chosen manoeuvring 

mathematical model, the first category still need to carry out specific simulations of 

selected forced manoeuvring motions for calculating the hydrodynamic forces and 

moments acting on the hull and then to determine the corresponding manoeuvring 

derivatives of the model. Since the viscosity of the fluid is the essence of generating 

the hydrodynamic forces acting on the ship in manoeuvring motions, it is important to 

reflect this viscous effect directly or indirectly in the numerical calculations. For 

instance, Wellicome et al. (1995) developed a method based on the slender body 

theory applying source elements and discrete vortices together with a vortex shedding 

model to calculate the sway force and yaw moment on three ships in oblique motion. 

On the other hand, Nakatake et al. (1990) proposed a panel method by utilizing a 

Rankine source distribution on the hull surface and a part of the free surface and a 

distribution of Rankine type vortices on the center plane of the ship to iteratively 

solve the lifting flow problem of a drifting Wigley hull. A similar method using 

Rankine singularities was also presented by Zou & Söding (1994) for conventional 

ships in steady motion at small drift angles. Meanwhile, Yang et al. (1994) developed 
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a panel method combined with a wake vortex model to calculate the hydrodynamic 

forces acting on an obliquely sailing ship with helm angle, in which the mutual 

interaction among hull, propeller and rudder was taken into account. Matsui et al. 

(1994) continued their work by using the developed panel method to calculate flow 

around a hull and the hydrodynamic forces upon it in turning motion. Two shapes of 

free vortex models were examined to discuss the influence on the efficiency and 

accuracy of the method. Later on, Ando et al. (1997) applied a simple panel method 

without iterative procedure by distributing source elements on the hull surface and 

discrete vortex on the center plane of the hull similar to the distribution adopted by 

Nakatake et al. (1990) to estimate the hydrodynamic forces acting on three ship 

models in oblique towing. Nakatake et al. (2001) synthesized the methods by Matsui 

et al. (1994) and Ando et al. (1997) to carry out the calculations on the flow field 

around ship hulls in oblique and turning motions. In addition, Kijima & Takazumi 

(2000) utilized a cross flow model to estimate the hydrodynamic forces acting on a 

hull in lateral motion. Apparently, all the above mentioned approaches based on the 

potential flow theory approximate the viscous effect indirectly by considering the 

effects of vortex. More specifically, for small amplitude manoeuvring motions in 

which the flow separation can be neglected, circulation was introduced in the model 

to fulfill certain Kutta condition imposed along the trailing edge of the hull, whereas 

vortex shedding model or cross flow model was applied for large amplitude 

manoeuvring motions.  

In order to take the viscosity into account directly for further improving the accuracy, 

more advanced methods based on the viscous flow theory were developed to calculate 

the hydrodynamic forces and moments acting on the ship during selected forced 

motions by solving the Reynolds Averaged Navier Stokes (RANS) equations, e.g., 

Finite Volume Method (FVM), Finite Difference Method (FDM), and Finite Analytic 

Method (FAM), which are often simply referred to as CFD methods. Ohmori & 

Fujino et al. (1994, 1995, 1996 and 1998) successively reported a series of pioneering 

works in this field on the ships in oblique and turning motions. Since then, several 

similar studies were carried out by Hochbaum (1998), Toxopeus (2004), and Zou et al. 

(2010), etc. with the free surface neglected, whereas Alessandrini & Delhommeau 

(1998) and Tahara et al. (2002) took the free surface into consideration. Additionally, 
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the approach of conducting CFD based PMM tests to generate the hydrodynamic 

derivatives for manoeuvring prediction has been in development for the recent decade 

represented by Hochbaum (2006) and Simonsen et al. (2006, 2012). Furthermore, the 

dedicated benchmarking workshops mentioned previously, SIMMAN (2008, 2014), 

have greatly promoted the application of CFD methods on forced motion simulations. 

With the further development of the CFD technique, the second category of numerical 

methods for manoeuverability prediction appeared which no longer need to carry out 

series of forced motion simulations for the estimations of the manoeuvring derivatives 

contained in the chosen mathematical model, but to simulate the flow field around the 

ship to obtain the hydrodynamic forces and moments acting on the ship in every time 

step, and then to solve the rigid body motion equations of the free running 

manoeuvring motions directly. The representative publications of this category were 

presented by Sato et al. (1999), Hochbaum & Vogt (2002), Carrica et al. (2006), etc. 

In contrast to the traditional prediction methods of the first category based on the 

manoeuvring mathematical models, the advantage of this direct CFD based simulation 

methods is that not only it can take naturally into account the viscous effects of the 

fluid but also capture the details of the complex flow field of the real time steering 

manoeuver around the hull with appendages, the wake in the propeller plane, and the 

nonlinear interaction effects in the hull-propeller-rudder configurations. However, due 

to the facts that the approaches have relative higher demand on computational 

resource, and there are still several technical details under further investigations such 

as the choice of the turbulence model and the accuracy of the simulation results at 

large drift angles, it makes the approaches still not mature enough for practical 

applications but mostly confined to the research communities as pointed out by Skejic 

(2013).  

Finally, an overview of the existing manoeuvring predicition methods is illustrated in 

Fig. 2.1 summarized by ITTC (2005), while the major advantage and disadvantage of 

the most applied methods are briefly labelled in Table 2.1.   
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Fig. 2.1 Overview of manoeuvring prediction methods by ITTC (2005) 

Table 2.1 Summary of manoeuvring prediction methods 

Methods Advantage  Disadvantage 

Free model tests Most direct Scale effect; costly 

Captive model tests Systematic Rely on experiment facility 

Empirical Fast; low cost Inaccurate 

System identification Reduce scale effect Rely on number of the tests 

Potential flow Mathematical rigour Limit to small amplitude manoeuvers 

Viscous flow CFD Close to reality Computational resource consuming 

 

2.2 Previous works on seakeeping problems 

For seagoing ships, investigation of ship motions in waves is another classic topic in 

ship hydrodynamics which people have realized its importance long time ago and 

tried to reduce the amplitude of ship motions, particularly rolling, by intuitive ways 
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according to experience. However, theoretical studies on seakeeping performance for 

a ship in a seaway started from the century before last one, and not much earlier than 

those on manoeuverability. Fortunately, bigger progress in this field has been made 

and the applications of theoretical methods are relatively extensive and successful. 

Therefore, only the related works of theoretical studies will be introduced here, in 

spite of that experimental methods are also available. 

2.2.1 Potential flow theory methods 

Since the middle of 19th century, with the advent of steamships without sail to 

provide sufficient air damping, larger amplitude of roll motion drew designer’s 

attention to study the mechanism of the motion and seek measures for ship 

stabilization. Froude (1861) and Kriloff (1896) initially started the research work on 

ship’s roll and pitch motions induced by waves respectively. In their works, the 

assumption, what is now called the Froude-Kriloff hypothesis, neglected the influence 

on the flow field due to the disturbance by the ship, but only kept the contribution of 

the exciting force due to the pressure distribution in the undisturbed incident wave. 

Thereafter, the part of the wave exciting force induced by the undisturbed incident 

wave is named as the Froude-Kriloff force, F-K force for short in the following. On 

the other hand, the neglected part of the exciting force is known as the diffraction 

force.  

Series of theories have been developed for seakeeping problems studies gradually 

since 1940s. Based on the potential flow theory, most of the studies were carried out 

by establishing and solving the linear boundary value problems of the velocity 

potential around the ship with the disturbance by the ship been taken into account for 

more reasonable description of ship motions. It is worth mentioning the work by 

Haskind (1946) who made use of Green’s theorem to construct the perturbation 

velocity potential due to the presence of a ship and its motions, then solved the 

resulting integral equation by adopting the thin ship idealization. In his analysis, 

within the framework of linear theory, the total perturbation velocity potential was 

decomposed into two components for the first time, which are the radiation potential 

due to the ship motions in still water and the diffraction potential due to the presence 

of the ship fixed on its average position. This decomposition was regarded as a 

classical way for linear seakeeping problems in the following decades until now. At 
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around the same time, Ursell (1949) also published his work by using a multiple 

expansion method to determine the hydrodynamic coefficients of semicircular cross 

sections oscillating in deep water in the frequency domain which marked for the first 

time a rough estimation could be made of the motions of a ship in regular waves at 

zero forward speed. Although these pioneering works gave exciting results, no matter 

the solutions based on the thin ship theory or the studied semicircular cross sections 

are much different from the actual ship transverse profiles, thus these methods could 

only be used for qualitative analysis of ship motions.   

 Strip theories 
Two breakthroughs were achieved in studying the wave induced ship motions in 

1950s. The first one is the work presented by St. Denis & Pierson (1953) who first 

proposed a method to predict the statistics of ship responses to a realistic seaway. 

Using spectral methods developed in applied mathematics, they established a 

relationship between the spectral density of ship responses and the input ocean wave 

spectrum. In this way, the studies of ship motions in regular and irregular waves can 

be linked to each other which makes the further development of the theories for ship 

motions in regular wave more meaningful. The second breakthrough is the original 

strip theory introduced by Korvin-Kroukovsky (1955) from parallel development in 

aerodynamics. In the theory, the ship is treated as a slender body and can be divided 

into several transverse strips, typically 20 to 30, which are rigidly connected to each 

other along the longitudinal direction of the ship. Interactions between the strips are 

ignored for the zero speed case. Therefore, each strip can be approximately treated as 

a segment of an infinitely long floating cylinder, and the flow field within each cross 

section around the strip can be solved by a two dimensional (2D) approach, which 

means in essence the original three dimensional (3D) problem is simplified and 

reduced to a set of 2D boundary value problems. Finally, the total hydrodynamic 

forces and moments acting on the whole ship are obtained by integrating the 2D 

solutions on each strip over the ship length. Later, Korvin-Kroukovsky & Jacobs 

(1957) refined the theory by taking the speed effect into account for vertical motions 

of a ship in head waves, while Tasai (1967) extended the theory to the lateral motions 

of a ship in oblique waves. In fact, the concept of the strip decomposition was first 

applied by Lewis (1929) in the study of a hull vibration at high frequency, in which 

the well-known Lewis two parameters conformal mapping was proposed for 



21 
 

analytical calculating the added mass of ship like sections. Nevertheless, it was 

Korvin-Kroukovsky’s work that applied the strip theory in ship oscillation problem 

and drew widespread attention. 

Since the ordinary strip theory was proposed mostly based on physical intuition 

without complete and rational derivation, there are some shortcomings in practical 

applications. For example, in spite of the speed effect been considered by Korvin-

Kroukovsky & Jacobs (1957), the hydrodynamic coefficients obtained by this strip 

method do not fulfill the symmetric relation proved by Timman & Newman (1962). 

Moreover, in order to satisfy the free surface condition, the theory is limited in low 

frequency range, that is to say, it is a short wave theory. Even so, as the computation 

based on the strip theory is relatively simple and the obtained results agree well with 

experimental ones for ships with length breadth ratio down to about 3.0, especially for 

the vertical motions in head waves, thus the theory finds popularity amongst naval 

architects for seakeeping performance analysis. 

Since late 1960s, big progress has been made in the development of the strip theory in 

three aspects. Firstly, in order to make the basis of the theory more rigorous, some 

improved strip methods with slightly different basic assumptions were developed, e.g., 

the new strip method by Tasai & Takaki (1969), the rational strip theory by Ogilvie & 

Tuck (1969), and the famous STF strip theory by Salvesen, Tuck & Faltinsen (1970) 

which most of today’s strip methods are its variations. Results by all of them satisfy 

the symmetric relation with forward speed mentioned above. The second aspect is the 

development of approaches for the hydrodynamic calculation in 2D profiles, e.g., the 

multiple parameters conformal mapping method by Miao (1980) and the close fit 

method by Frank (1967) to calculate the hydrodynamic forces acting on the real body 

surface instead of using the resembling ship sections, i.e., Lewis forms, to 

approximate the contours of the ship which is limited for application at the sections, 

e.g., the submerged bulbous bow. Up to now, the strip theory has been fully 

developed and there are several commercial codes based on it, e.g., SEAWAY by 

Delft University of Technology referring its manual by Journée & Adegeest (2003) 

and Maxsurf by FormSys, etc. 
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To remove the limitation of strip theories in low frequency range, the unified theory 

was developed by Newman (1978) and Newman & Sclavounos (1980). Kashiwagi 

(1997) described more recent developments of the unified theory. In essence, the 

theory uses the slenderness of the ship hull to justify a 2D approach in the near field 

coupled to a 3D flow in the far field, where the flow is generated by distributing 

singularities along the center line of the ship. The theory can also be regarded as a 

variation of the strip theory since it turns into the strip theory in the case of high 

frequency motions or oscillating in short waves, whereas becomes the slender body 

theory proposed by Newman (1964) in low frequency motions or long waves. 

Therefore, it is theoretically applicable to all frequencies as its name ‘unified’. 

Despite its better theoretical foundation, the theory failed to give significantly and 

consistently better results than strip theories for real ship geometries with forward 

speed as concluded by Sclavounos (1984) and Ronæss (2002), since the near field 

solution cannot perfectly match with the far field solution to represent the complicated 

steady wave system around the ship, hence hard to be accepted by practice.  

 2.5D theory 
Development of the high speed vessels in last decades led to the foundation of another 

high speed strip theory, which is often called 2.5D or 2D+t theory. In the 2.5D theory, 

based on the slenderness assumption same as the previous strip theories, the original 

3D problem for a ship in waves is approximated by a series of time dependent 2D 

problems in space fixed cross planes normal to the longitudinal direction of the ship. 

However, unlike the strip theories, three dimensionality is partly considered as the 

flow at a cross section is influenced by the flow upstream of this section, but not by 

the flow downstream of it. In other words, the 2D governing equation and the body 

condition of the velocity potential are considered in each cross plane with a 3D free 

surface condition being satisfied in the formation of the theory, thereby its name 2.5D 

is derived. The calculations start from the bow of the ship and then proceed along the 

longitudinal downstream direction of the ship. Divergent waves can be described in 

the 2.5D theory, whereas transverse waves cannot. The consequence is that the sailing 

speed should be relatively high on the basis of the ship length Froude number usually 

above 0.4 as claimed by Faltinsen (2005). In addition, it should be noted that an 

inconsistency happens at a transom stern where the flow separates for high Froude 

number cases, because the 2.5D theory cannot foresee the flow separation and the 
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influence from the flow downstream of the transom stern is neglected. This shows an 

inherent deficiency of the 2.5D theory. In spite of this, the theory has proved to be a 

very efficient approach for high speed ships.  

The concept of the 2.5D approximation was proposed by Munk (1924) in his slender 

body theory for airships. Tulin (1957) and Ogilvie (1967) applied this idea to slender 

planing surfaces and displacement hulls. Chapman (1975, 1976) further developed the 

2.5D approach together with linear and nonlinear free surface conditions respectively 

to solve the problem of a surface piercing plate in yaw and sway motions. Since then, 

many scholars have investigated the application of the 2.5D theory for ship motions 

by different ways in dealing with the boundary conditions. Yeung & Kim (1981) 

employed a similar 2.5D approach using linearized free surface conditions to calculate 

the hydrodynamic forces on an advancing frigate hull in forced heave and pitch 

motions. Meanwhile, Yamasaki & Fujino (1985) presented a modified 2.5D approach 

based on Chapman (1975)’s work to study harmonic lateral oscillations of a plate and 

two ship models with special numerical schemes for the boundary conditions, of 

which the free surface elevation and velocity potential on the free surface in each 

station can be given by discretized forms of the free surface conditions through a step 

procedure. Besides, a more relaxed radiation condition to express the generated wave 

propagating outwards was imposed at infinity to overcome the numerical jump 

phenomenon. Later on, Chapman (1976)’s approach was generalized by Faltinsen & 

Zhao (1991) to study the steady and unsteady motions of a high speed slender ship. 

They firstly imposed nonlinear free surface conditions to solve the steady flow 

problem and used a distribution of 2D vertical dipoles with unknown strengths to 

express the flow far away from the ship, then the velocity potential of the unsteady 

flow was linearized about the steady flow free surface to take into account the 

contribution of the steady flow potential. Takaki et al. (1995) presented a comparative 

study on the estimations of the hydrodynamic forces and motion amplitudes of a high 

speed ship advancing in head sea by the strip theory, 2.5D theory and 3D methods. 

They concluded that the 2.5D theory is the most useful and accurate method for the 

high speed estimation. Similar to Yamasaki & Fujino (1985)’s work, Wang (1999) 

expressed the free surface kinematic and dynamic boundary conditions along the so 

called characteristic lines to solve the hydrodynamic problems of two ships in vertical 
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motions by a 2.5D approach. On the other hand, Duan & He (2001), Davis & 

Holloway (2003) applied transient free surface Green function to transform the 

formulation of the 2.5D theory into a boundary integration equation on the body 

surface of the ship. Due to the fact that linearized free surface condition and radiation 

condition at infinity can be automatically satisfied by the time domain boundary 

integration equation, this numerical algorithm is not susceptible to numerical error 

caused by the stepping procedure for the free surface and radiation condition at 

infinity, but the method is confined to the linear problems. Moreover, for ships with 

large flare, numerical divergence problem will be raised as pointed out by Duan 

(1999). The problem is due to the memory effect term of Green function that 

oscillates abruptly on the segment with a large inclined angle near the free-surface. 

This oscillation leads to numerical integration error of memory effect in terms of 

convolution integral of transient free surface Green function on the segment, then the 

accumulation of the numerical error causes numerical divergence of the boundary 

integral equation. In order to avoid this divergence for ships with large flare, Ma et al. 

(2005) presented a matched boundary integral equation method to solve the formation 

of the 2.5D theory. More recent relevant works in the application of 2.5D theory 

should be referred, such as Sun & Faltinsen (2007) studied the gravity influence on 

the performance of high speed planning vessels, Ma et al. (2012) extended the 

application to ship motions of trimaran, and Sclavounos & Lee (2013) imposed 

nonlinear boundary condition on the hull in their solutions to large amplitude ship 

motions. In addition, Lugni et al. (2004) presented a comprehensive experimental and 

numerical study of the steady wave elevation around a semi-displacement monohull 

with transom stern and compared the results of linear 3D and nonlinear 2.5D 

computations to prove the effectiveness of the 2.5D theory for a large range of high 

Froude numbers. In the aspect of CFD calculation, Tulin & Landrini (2001) applied 

the Smoothed Particle Hydrodynamics (SPH) method in a 2.5D approach to 

investigate the breaking bow waves of slender ships. However, although relevant 

studies on the 2.5D methods are plenty, commercial codes based on the 2.5D theory 

are few to the author’s knowledge, only ShipX-VERES by Norwegian University of 

Science and Technology referring to its manual by Fathi (2004), and MAESTRO by 

DRS Technologies Inc. used by Zhao & Ma (2016) can be found. 
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 3D methods 
Heretofore, all the mentioned theories for seakeeping performance analysis are based 

on the assumption of thinness or slenderness, thereby not in general be suitable for the 

problems of full formed ships which involve blunt bodies and floating structures like 

offshore platform. Therefore the 3D methods have been developed gradually to treat 

the corresponding seakeeping problems, with the appearance of high performance 

computers since 1970s. They can be basically classified into two groups, i.e., the 

Kelvin-Havelock singularity based methods and the Rankine singularity based 

methods. 

To be specific, the Kelvin-Havelock singularity, or known as the free surface Green 

function given by Havelock in 1928, can automatically satisfied linear free surface 

condition and radiation condition at infinity same as that mentioned above in 2D 

solution, which indicate the velocity potential of the flow around the floating structure 

can be expressed by the sum of the surface integral of the singularities over the wetted 

body surface and the line integral along the intersection between the body and free 

surface. According to the way treating the time varying terms, the free surface Green 

function can be further classified into two categories in frequency domain and time 

domain.  

The Green function method in frequency domain was studied by many researchers, 

mainly for zero forward speed offshore structure. Application examples were well 

established by Faltinsen & Michelsen (1974), Chang & Pien (1976) and Garrison 

(1978), etc. Besides, Noblesse (1982) and Newman (1985) presented numerical 

algorithms for the evaluation of the free surface Green function. Here, it is worth 

mentioning that the well-known program WAMIT developed by Massachusetts 

Institute of Technology is based on this method referring to its manual by Lee (1995). 

On the other hand, for a ship advancing with forward speed in a seaway, much less 

studies can be found by applying the Green function method in frequency domain due 

to the complexity and time consuming of the evaluation of the Green function, only a 

few researchers, i.e., Chang (1977), Inglis & Price (1982), Wu & Eatock Taylor (1987) 

and Chen et al. (2000) presented relevant works. Instead, a preferred alternative is 

performing the calculations in time domain because the form of the Green function 

applied in time domain is relative simple regardless of the forward speed. However, 
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the method is still computationally extensive since the evaluation of the Green 

function requires the calculation of a convolution integral. By using a transient free 

surface Green function, Liapis (1986) calculated the added masses and damping 

coefficients of a Series 60 ship in heave and pitch motions with forward speed. King 

(1987) further studied the diffraction problem by using this method. Similarly, 

Bingham (1994) also solved radiation and diffraction problems on a Wigley hull and a 

Series 60 ship with steady forward speed and carried out motion simulations on these 

two ships in vertical motions through incident waves.  

Here, it should be noticed that the key step to solve the perturbation potiential is the 

simplification of the governing equations by linearization since the original fully 

nonlinear problem is difficult to solve. There are mainly two ways for this purpose. 

The first one is known as the Neumann-Kelvin linearization, N-K for short, proposed 

by Brard (1972), in which the entire perturbation induced by the body is assumed 

smaller than that by uniform flow, thus also called uniform flow linearization. It is 

applicable for a slender body. There is another linearization scheme named the double 

body linearization which has been applied by Dawson (1977). A basic assumption of 

the double body linearization is that the flow with waves is a small perturbation of 

that without waves, thus also called slow ship linearization. A comparative study on 

these two linearizations are presented by Kim & Kim (2010).  

As both linearizations are based on small amplitude ship motions, whereas not 

suitable for large amplitude motions, Beck & Magee (1990), Lin & Yue (1990), Sen 

(2002) further imposed exact body condition on the instantaneous wetted surface of 

the moving body to take account of nonlinear effect while the free surface condition 

are still linearized. Besides, Lin et al. (1996) improved their method and developed 

the program LAMP for calculation of the large amplitude ship motions with forward 

speed. In fact, the LAMP system has several editions due to the combinations of 

different levels of nonlinearity of the solution, of which the lastest edition LAMP-4 is 

a totally nonlinear edition as both the perturbation potential and the wave exciting 

forces are solved over the instantaneous wetted hull surface. In addition, it is worth 

noting that Lin et al. (1999) further implemented a mixed source formulation into the 

LAMP which takes advantage of both transient Green function and Rankine source 

which will be introduced later, to enhance the efficiency of the code. 
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Although the time domain Green function based method is superior to the frequency 

domain based one for seakeeping performance analysis with forward speed, there are 

four main disadvantages in application as pointed out by Dai (1998) and Bertram 

(2000). Firstly, it is difficult to numerically treat the term of waterline integral in the 

integral equation, thereby contribution from this term is normally neglected. Secondly, 

for a ship having a large flare form which means the body surface is not vertically 

wall sided at the free surface, the difficulty that time stepping calculations give 

divergent results will be encountered. The greater the flare, the worse the calculated 

results. Fortunately, Duan & Dai (1999) presented a practical solution to this problem. 

The third challenge comes from the numerical calculation of the second derivative of 

the steady flow potential on the average wetted body surface. To overcome this 

challenge, some researchers used the double body flow model regardless of wave and 

imposed rigid wall condition on the free surface which is reasonable for low speed 

case. However, the induced velocity by the steady potential becomes infinite at the 

non-vertically wall sided intersection, hence violating the assumption of perturbation 

expansion. That is to say, the original body surface condition on the instantaneous 

wetted surface cannot be transferred to the one on the average wetted surface which is 

the burden of the method. Lastly, as the free surface Green function based method 

only satisfy linear free surface condition, it is hard to apply the method to strong 

nonlinear problems with nonlinear free surface condition. 

For the purpose of avoiding the complexity inherent in the Green function, the 

Rankine singularity based method, also categorized as the simple Green function 

method as in the 2D cases mentioned before, was introduced in which the singularities 

have to be distributed all over the boundaries of the flow field around the structure 

including the free surface since this kind of Green function does not satisfy any 

boundary condition in nature. Although this will significantly increase the number of 

unknowns in the flow domain and put pressure on computer memory, it has greatly 

broadened the scope of application to nonlinear free surface condition. The basis for 

the development of the methods using Rankine singularity was given by Gadd (1976) 

and Dawson (1977) for the steady wave resistance problem. Frequency domain 

solutions by using the Rankine singularity based method for the unsteady flow 

problem and the diffraction problem were obtained by Nakos (1990) and Bertram 
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(1990). Later, the method was extended to time domain by Nakos et al. (1993) and 

Kring (1994). Based on their works, the code SWAN was the first developed code to 

be used commercially with different editions in frequency domain and time domain 

respectively. In the near decade, Chen & Zhu (2010 a b) carried out time domain 

calculations on a DTMB5512 ship and a 4000 twenty-foot equivalent unit (TEU) 

container ship by the Rankine source panel method in head wave. Song et al. (2011) 

considered the nonlinear restoring force in their 3D Rankine source panel method and 

calculated the motion response on a 6500TEU container ship in waves with different 

amplitudes. In addition, Kim et al. (2011) developed a program using the 3D Rankine 

panel method for nonlinear motion responses and wave loads calculations named 

WISH based on the so called weak scatter hypothesis. More recently, Yuan et al. 

(2015, 2016) further applied the 3D Rankine source panel method to ship to ship 

interaction problem studies.  

Same as we done in manoeuvring field literature review, the distinguished advantage 

and disadvantage of the introduced potential theory methods for seakeeping analysis 

are briefly labelled in Table 2.2. 

Table 2.2 Summary of potential flow methods for seakeeping 

Methods Advantage  Disadvantage 

Ordinary strip Simple and fast Inappropriate with forward speed 

STF More rational Inappropriate for non-slender body 

2.5D Suitable for high speed Inappropriate for low speed 

3D Green function Fully consider 3D effect Limited to linear problem 

3D Rankine Flexible Computational resource consuming 

 

In spite of developing 3D Rankine singularity based method for different kinds of 

seakeeping performance analysis is popular nowadays, it is well known that the 3D 

methods are computationally more demanding and time consuming than the 2D strip 

theory methods after all. Further, it is not so that the 3D models always represent an 

improvement over the strip theory calculations for slender high speed vessels which is 

of interest in this study.  
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2.2.2 Boundary element method 

As numerical tools for computation of potential flow, 2D BEM and 3D BEM (panel 

method) have been widely used. The original panel method proposed by Hess and 

Smith (1964) uses large numbers of plane quadrilateral panels to discretize the body 

surface, and distributes a constant source density on each panel. Similarly, numerous 

short line segments are used to construct the ship profiles in 2D BEM. In this way, the 

actual profile or surface of the flow field is represented by a polygon or polyhedron, 

and the physical quantities on the boundary become discontinuous which violating the 

continuity condition of the flow field and resulting in poor accuracy if the meshing is 

coarse. In order to improve the accuracy and efficiency of the method, many efforts 

have been made on proposing better geometric description of the body surface and 

smoother singularity density distribution. Webster (1975) applied triangular panels 

with a linear singularity density distribution on the panel. Willis et al. (2006) used 

quadratic curved panel with a polynomial distribution in the recent decade. Besides, 

paraboloidal panel by Hess (1979), hyperboloidal panel by Hsin et al. (1991) were 

also tried in their developed BEM respectively. In addition, Söding (1993) used point 

sources instead of source panels in his application. However, all these mentioned 

approaches have some limitations. Firstly, it is difficult to derive exact normal vector 

on the body surface if using plane panels. Continuity of the first derivative cannot be 

ensured at the boundaries between panels even for quadratic curved panels. Secondly, 

an additional error would be induced by assuming a simple source density distribution 

on each panel. Thirdly, except for those by Willis et al. (2006) and Söding (1993), 

large numbers of collocation points have to be set to satisfy the boundary conditions 

with sufficient accuracy in low order BEM which significantly increases the 

computational time. On the other hand, in high order BEM, although less collocation 

points can be used, the position of the collocation points is hard to be chosen. Kouh 

and Ho (1996) proposed a high order panel method by using the Gaussian points as 

both the collocation points and the source points to solve this problem. 

During the last decade, high order panel methods based on B-spline or NURBS have 

been developed rapidly. Not only because B-spline and NURBS can give a more 

precise description of the body geometry and create meshes on the body surface for 

hydrodynamic calculation easily, but also due to that they can be used to represent the 
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source density or velocity potential distribution on the panel to ensure the continuity 

of higher order derivatives of velocity potential on the boundary. Nakos (1990) and 

Nakos et al. (1993) applied bi-quadratic spline to approximate the distribution of the 

unknown potential over plane quadrilateral panels in their Rankine source based 

method. Hsin et al. (1993) developed a 2D higher order panel method, in which the 

body geometry and the singularity distribution are expressed by B-splines. Maniar 

(1995) extended the B-spline based panel method to calculate the hydrodynamic force 

on 3D bodies. Danmeier (1999) used B-spline to represent the velocity potential on 

the body surface while the body geometry was described by arbitrary mathematical 

expressions. Kouh & Suen (2001) and Qiu & Hsiung (2002) all used NURBS to 

describe the body geometry, while the source density distribution was replaced by 

point sources. Later, Kim & Shin (2003) used NURBS, Datta & Sen (2006) used B-

spline to describe the body geometry as well as the velocity potential on the body 

surface in dealing with radiation and diffraction problems without forward speed. In 

recent decade, more relevant works such as Wang & Zou (2008), Gao & Zou (2008), 

Song et al. (2011), Kim et al. (2011) applied B-spline or NURBS for both the body 

geometry and velocity potential distribution in their 3D Rankine panel methods to 

carry out the calculations for different kinds of seakeeping problems with forward 

speed. 

2.3 Research progress in manoeuvring in waves 

2.3.1 Introduction of the manoeuvring in wave analysis 

As mentioned in Chapter 1, a single ship manoeuvring in waves suffers manoeuvring 

hydrodynamic forces to change its speed, direction and position in horizontal plane 

and generates 6-DOF oscillation motions due to incident waves. Therefore, it is a 

combined problem of manoeuvring in calm water and classic wave induced motions. 

From the review of the works on these two sub problems, both of them were studied 

based on the rigid body dynamics. The difference is, the external force acting on the 

ship in manoeuvring motions is induced by the rudder or other steering devices, while 

in wave induced motions the wave exciting force is the source. Theoretically speaking, 

if these two kinds of forces can be fused as a total external force, the motion could be 

absolutely solved according to the Newton’s second law. But, In fact, it is difficult to 
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implement this fusion since they are essentially different in physical nature. That is, 

the wave exciting force is dominated by nonviscous force and the main part of it is 

varying in high frequency, whereas, in contrast, viscous force is the main cause to the 

manoeuvring motion which is varying slowly. Based on this physical background, 

most of relevant studies made efforts on finding a reasonable way to take both two 

kinds of external forces into account simultaneously for the analysis of manoeuvring 

in waves. According to the report by the ITTC Manoeuvring Committee (2011), 

different approaches found in the literature have been classified into four categories, 

namely experimental methods, methods based on two time scales model, methods 

based on unified theory and methods using CFD. 

Experimental methods are still the most reliable to investigate ship manoeuvring and 

course keeping in waves. Ueno (2003) conducted free running model tests on a VLCC 

model manoeuvring in regular waves and discussed effects of different wave lengths, 

encounter angles and loading conditions on the results. Yasukawa (2006, 2008) 

carried out free running model tests on a SR108 model (typically known as S175 

container ship) manoeuvring in regular waves and the measured results become 

benchmark data for many relevant numerical studies. Similarly, Lee et al. (2009) 

presented experimental results with a KVLCC model manoeuvring in waves for 

various wave lengths and wave amplitudes ratios. More recently, Yasukawa et al. 

(2015) carried out the free running model tests on a KVLCC2 model in irregular 

waves. In addition, Xu et al. (2007) and Kinoshita et al. (2008) carried out a series of 

PMM tests in waves and a theory to evaluate wave drift force was summarized.  

CFD methods in principle provide an adequate description of all physics. However, 

same as the situation in calm water, this approach is still highly challenging from a 

computational point of view, thereby hardly for real time simulation. Moreover, many 

technical problems need to be further studied mentioned by Skejic (2013), such as 

how to arrange an appropriate turbulence model which is especially difficult in the 

highly challenging case of curvilinear motion of a ship, as the flow around the hull is 

rich in separations, re-attachments, vortex formation and substantial interaction with 

the rudder and propeller. 
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2.3.2 The unified theory method 

Perhaps the most widely applied methods to deal with manoeuvring in a seaway are 

methods based on two time scales model and the unified theory. Both of the methods 

are based on the potential flow theory, whereas different in handling the external force 

which is to some extent similar to the difference between Abkowitz model and MMG 

model. The methods based on the unified theory integrate the low frequency 

manoeuvring motion and the high frequency wave induced motions into a generic set 

of 6-DOF motion equations to describe the manoeuvring in waves. McCreight (1986) 

established a nonlinear manoeuvring model in waves, in which the hydrodynamic 

forces related to the wave induced motion were evaluated in a body-fixed coordinate 

system by a linear strip method. Ottosson & Bystrom (1991) introduced a more 

simplified method, where added mass and damping coefficients were assumed to be 

constant based on mean encounter frequency during manoeuvring motion. Later, 

Hamamoto (1992) presented a landmark work in which a horizontal body fixed 

reference frame was proposed to incorporate the standard reference frames used in 

manoeuvrability, stability and seakeeping, thereby simplify the description of the 6-

DOF manoeuvring motions in waves. Based on Hamamoto (1992)’s work, Nishimura 

& Hirayama (2003) simulated a small vessel manoeuvring in waves by considering 

the F-K force as the external wave force. Since the inertial forces acting on the ship 

are varying with the encounter frequency, Bailey et al. (1997) and Fossen (2005) 

adopted the linear convolution integral formula based on Cummins (1962)’s work to 

take into account the unsteady memory effects which requires the evaluation of the 

convolution integral and the impulse response function (IRF) at every time step. 

Similarly, Ayaz & Vassalos (2003) used the convolution integral approach combined 

with the evaluation of the first order wave loads on the instantaneous wetted surface 

of the ship manoeuvring in astern seas. Although this concept of including memory 

effect seems more reliable, the accurate computation of the convolution integral is not 

simple as it depends strongly on the asymptotic behaviour and limiting (zero and 

infinite) values of either the encounter frequency dependent added mass or damping 

coefficients. Moreover, The first order excitation forces and moments need to be 

transferred into time domain by means of Fourier transform as they are varying with 

encounter frequency due to change of ship speed and heading angle. Thereby the 

evaluation of the IRF will be frequently executed. Consequently this fact together 
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with direct evaluation of the convolution integrals will increase the CPU time. For 

example, Ayaz et al. (2006) stored the values of the added mass and the damping 

coefficients for every 10° heading angle between 0° to 360° and then interpolated for 

a particular wave heading during simulation. To simplify the convolution integral, 

Sutulo & Guedes Soares (2006a, 2006b, 2008) employed auxiliary states variables for 

the approximation of the added mass by a rational function while applying the inverse 

Fourier transform for the radiation problem. In addition, Fang et al. (2005) developed 

a less rigorous model by disregarding the convolution integrals but implementing 

direct evaluation of the hydrodynamic coefficients at instantaneous encounter 

frequency in time domain. More recent work within this classification were carried 

out by Lin et al. (2006) and Yen et al. (2010) in which the 3D time domain nonlinear 

ship motion simulation program LAMP was expanded to study the problem of ship 

manoeuvring in waves. 

A remarkable fact to criticize the methods based on the unified theory is that few of 

them incorporated the mean second order wave loads which were proved important in 

context of the manoeuvring ship in waves through model tests by Inoue & Murahashi 

(1966). In contrast with the short time scale first order wave loads whose mean value 

over the wave period is zero, the mean second order wave loads are able to produce a 

long term steady wave effects. These effects will change the average ship 

manoeuvring trajectory, induce involuntary speed loss, and affect other slowly 

varying manoeuvring parameters such as drift angle. So the omission of the mean 

second order wave forces will lead to a wrong prediction of manoeuverability. 

However, if the incorporation of the mean second order components is sought, it will 

turn the problem even more complex since it implies a second order expansion of the 

Volterra series that further increase the difficulty in the estimation of IRF as pointed 

out by Skejic & Faltinsen (2008). Moreover, even though the second order wave loads 

can be counted in a few studies, it is impossible to distinguish the contribution from 

each motion component to the loads due to the motions are considered conjunctly in 

the unified theory, thereby some approximation has to be introduced and it is hard to 

guarantee the accuracy of the estimated second order wave loads. 
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2.3.3 The two time scales model 

In contrast to the unified theory model, the two time scales model separates the total 

motion equations into two sub motions based on the physical assumption of a rapidly 

varying time scale associated with the wave induced motions and a slowly varying 

time scale associated with the manoeuvring motion. The independent analysis of each 

sub motion is solved while including the interaction effects between each other, i.e., 

the high frequency wave induced motions are determined by the linear first order 

wave forces according to the kinematic parameters of the ship and the relative 

incident wave angle derived from the low frequency manoeuvring motion solution, 

then provide the hydrodynamic forces including the mean second order wave loads 

back to the next step manoeuvring motion simulation. Hirano et al. (1980) laid a 

foundation for the development of methods based on two time scales model who first 

carried out the estimation of manoeuverability by using 3-DOF equations of motion in 

calm water and computing only wave drift force, but neglecting the wave induced 

motion. Later, Triantafyllou (1982) gave a systematic derivation of a two time scales 

model in dealing with the superposition of the high frequency and low frequency 

motions of moored vessels. Nonaka (1990) generalized the model to the case with 

forward speed which further demonstrated this concept of separation by time scale 

difference is reasonable. Thereafter, the two time scales approach has become a 

popular way for the analysis of manoeuvring in waves. Several recent representative 

have been presented by Skejic & Faltinsen (2008), Yasukawa & Nakayama (2009) 

and Seo & Kim (2011). Due to slight difference in implementation, the approach 

employed by Skejic & Faltinsen (2008) and Yasukawa & Nakayama (2009) can be 

considered as a sequential evaluation where the seakeeping part is evaluated after the 

manoeuvring part one by one and repeating the process until the simulation time has 

been reached, whereas Seo & Kim (2011)’s approach is regarded as the parallel 

method where the seakeeping is evaluated several times while the manoeuvring runs 

only one step time. The major difference between referred works are related to the 

chosen approaches for the seakeeping analysis. Skejic & Faltinsen (2008) and 

Yasukawa & Nakayama (2009) applied the STF method and 3D panel method 

respectively in frequency domain in which a quasi-steady behaviour for the time scale 

of the seakeeping module was considered, while Seo & Kim (2011), on the other hand, 
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solved directly the seakeeping problem in time domain with their 3D Rankine panel 

method program WISH.  

Regarding the calculation of the mean wave drift loads, there are general two classes 

of methods, i.e., one class using the conservation of momentum or energy commonly 

referred as far field methods and the other class using direct pressure integration over 

the body surface referred as near field methods. Maruo (1960) first developed a 3D far 

field method using the conservation of momentum to estimate the drift forces acting 

on a ship with zero forward speed. Similarly, Newman (1967) used the conservation 

of angular momentum to derive the expressions for the mean second order yaw 

moment based on the slender body theory. These expressions were simplified by 

Salvesen (1974) who established the method by using the STF strip method with the 

so called weak scatter assumption. The method seems to give inadequate estimates of 

the mean wave loads when the ship is not slender enough. An easy applicable method 

based on the conservation of energy was presented by Gerritsma & Beukelman (1971) 

originally valid for head sea. Loukakis & Sclavounos (1978) derived a modification of 

Gerritsma & Beukelman (1971)’s method by considering the oblique ahead sea. The 

method was able to predict the mean drift forces, but not the yaw moment. Further, 

Kashiwagi (1992) improved Newman’s (1967) method by taking into account the 

forward speed and reported that it can be troublesome in the evaluation of the mean 

yaw moment based on conservation of fluid angular momentum. On the other hand, 

Pinkster (1980) established a 3D near field direct pressure integration method in 

which the mean drift loads are derived by integrating the pressure distributed on the 

instantaneous wetted surface of floating structures without forward speed. The direct 

pressure integration method for an arbitrary body with forward speed was developed 

by Faltinsen et al. (1980). Besides, Faltinsen et al. (1980) also proposed an asymptotic 

theory applicable in cases when the ship experiences short wavelength regular waves. 

More recently, Kim & Kim (2011) calculated added resistance on a hemi-sphere and a 

barge floating in waves, and several ship types advancing in waves with forward 

speed by adopting the formulation given by Joncquez (2009) which is also based on 

the near field pressure integration. Later, Seo et al. (2013) carried out a comparative 

study on computation of second order wave drift force and Seo et al. (2014) kept on 
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their work by proposing new ways to deal with added resistance on ships in short 

waves which were concluded especially suitable for a slender body. 

Back to the mentioned representative works applying the two time scales model for 

manoeuvring in waves studies, Seo & Kim (2011) adopted the near field method to 

estimate the mean drift forces and moment, Yasukawa & Nakayama (2009) applied 

Maruo (1960)’s far field method to estimate the longitudinal added resistance 

coefficient while also used near field method for lateral drift force and yaw moment 

estimations. Skejic & Faltinsen (2008) applied four different approaches, i.e., the 

direct integration pressure method by Faltinsen et al., (1980), Salvesen (1974)’s 

method, Loukakis & Sclavounos (1978)’s method and the asymptotic theory by 

Faltinsen et al. (1980), to cover the whole wave-length to ship-length ratios where the 

ship might operate. 

At last, main differences between the methods introduced above on the combined 

seakeeping and manoeuvring analysis, in the scope of the potential flow theory, are 

given in Table 2.3 as below. 

Table 2.3 Summary of potential flow models for manoeuvring in waves 

 Unified theory Two time scales 

Motion equations Combined Separated 

(seakeeping: rapid; manoeuvring: slow) 

Time marching Convolution integral Data exchange  

(sequential or parallel) 

Wave drift loads N/A Far field or near field 

(far field only valid for mean loads) 
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3 Adopted approach and innovations 

Although one can always claim more accurate results by fully considering every detail 

of the problem with the help of more powerful computers, a balance should be found 

between the accuracy of prediction and the consumed computational time in practical 

application. Therefore, an approach taking the major issues of the problem into 

account but neglecting the minor ones should be applied which rules out the CFD 

method and leads to the methods in the scope of the potential theory.  

3.1 Adopted approach 

Based on the above literature review, the two time scales model method, which has 

more clear physical explanation and is convenient to consider the second order wave 

drift loads, will be adopted for the present study following the sequential evaluation 

approach proposed by Skejic & Faltinsen (2008) instead of the parallel approach to 

further reduce demand on computational resource. The basic manoeuvring motion 

will be expressed by a 4-DOF MMG model also due to its more clear physical 

explanation and capability of modification by parts, while the wave induced motions 

will be taken care of by a 2.5D approach more suitable for high speed vessels. 

In order to improve the accuracy and efficiency of the approach, a NURBS based high 

order BEM using Rankine type singularities which is more suitable for real ship types 

and can be extended into nonlinear problems field in the future, will be applied for 

solving the BVPs of the velocity potential established in the 2D cross sections along 

the ship, including the low frequency lateral motions. Estimation of the viscous roll 

damping effects is taken into account by adopting the empirical method given by 

Himeno (1981). Then 5-DOF (surge neglected) oscillation motions can be solved after 

deriving the first order hydrodynamic and hydrostatic forces acting on the hull 

according to the Bernoulli equation. The mean second order wave drift forces will be 

counted by the direct pressure integration for the purpose of counting other second 

order force components in the perspective of long term plan. In addition, the lift force 

associated with the manoeuvring motions neglected in 2.5D approach will be 
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considered by a special sectional correction factor with the help of the slender wing 

theory and the low aspect ratio wing theory. 

Regarding the propulsive force by the propeller, steering force by the rudder and other 

nonlinear viscous forces on the hull, empirical or semi-empirical formulae which are 

commonly used in the manoevuring research field will be applied for estimations in 

the present simulations, accompanying with several parameters obtained directly from 

available experimental data. Estimation of the calm water resistance is achieved with 

the application of a modified Holtrop-Mennen method. The modifications are seen in 

the application of the Michell’s integral for the estimation of the wave resistance.  

Finally, for the simulations of the standard manoeuvers in calm water and waves, 4th 

order Runge-Kutta scheme will be applied as it has been proved stable enough. 

3.2 Innovations of the present study 

Compard to previous works reviewed in Chapter 2, the innovations of the present 

study can be outlined as follows. 

 Developed a new prediction simulation system for the combined seakeeping and 

manoeuvring analysis which applying a 2.5D theory based approach suitable for 

solving wave induced problems at forward speeds from moderate to high. 

 A MTF radiation condition originated from the earthquake wave propagation is 

imposed on the open boundary in the formation of the 2D BEM for the 2.5D 

theory based approach. 

 Indirectly taking the 3D lift effect into account which a 2.5D theory based 

approach normally can not cover. 
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4 Seakeeping analysis based on a 2.5D 

approach 

As stated in the review, the seakeeping behaviour of an advancing ship in a seaway 

can be analysed using the 2D strip theory or the fully 3D approach. Pursuing a certain 

level of simplicity in present study by using the criteria such as the requirement of 

minimizing computational resource and accuracy within the engineering practice we 

will focus our discussion on the 2D strip theory methods.  

2D strip methods are the standard tools for the ship seakeeping analysis. In essence, 

they provide successful simplification of the complex 3D problem of a moving ship in 

waves by dividing the underwater part of the ship into a number of strips (about 20 to 

30). Each strip (ship cross section) formulates a unique 2D boundary value problem 

due to the particular shape of the cross section. The boundary value problems, once 

being solved, will provide the values of 2D coefficients. These, integrated over the 

length of the slender ship, will give an approximation of the 3D coefficients of a ship. 

This shortly explained concept originated from the work of Korvin-Kroukovsky & 

Jacobs (1957). 

The assumptions on forward speed and wavelength led to the development of 

numerous variations of strip theories for single ships, e.g., Newman (1978), Maruo 

(1989). From a broad range of methods which are less or more theoretically rigorous, 

we need to select a suitable strip theory for the present work. Taking into 

consideration the objectives of the study which require for seakeeping analysis on an 

advancing ship at speeds from moderate to relatively high, it is appropriate to choose 

the 2.5D (2D+t) theory developed by Chapman (1975), also called the high speed 

strip theory, as an adequate tool to establish following methodology for seakeeping 

analysis. 
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4.1 Mathematical description of the problem 

The ship is considered to be a rigid body, floating in the surface of an ideal fluid, 

which is homogeneous, incompressible, irrotational, non-viscosity and free of surface 

tension. Only the external loads on the underwater part of the ship are considered here 

and the effect of the above water part will be fully neglected. The above assumptions 

will hold throughout the whole present study which means that the potential fluid flow 

theory is assumed. The viscous effects will be introduced when it is necessary to do so 

like in the example of manoeuvring equations given latter. The discussion will begin 

with the description of 3D exact BVP, then through the adequate linearization, lead to 

the formulation of 2.5D theory. 

4.1.1 Coordinate system 

Assuming a ship advancing with a mean forward speed U  in regular waves on a 

straight line course, 6-DOF oscillation motions will be induced. The flow field and 

motions of the rigid ship can be described in two Cartesian right handed coordinate 

systems as shown in Fig. 4.1. An Earth fixed coordinate system 0 0 0 0( )O x y z−  with 

positive 0z  axis pointing upwards vertically is most convenient to express the incident 

wave and the position of the ship. Normally, the positive 0x  direction is set pointing 

to the ship bow at initial time. A hydrodynamic frame ( )O xyz−  whose origin O  lays 

in the plane of undisturbed free surface with positive z  axis pointing upwards through 

the center of gravity (COG) and parallel to the 0z  axis. It moves with the same mean 

forward speed U  as the ship but does not oscillate with the ship. The positive x  

direction is coincide with the navigation direction. This coordinate system is used to 

describe the flow field around the ship. The complex amplitudes of six modes of ship 

motions are defined as ( 1,...,6)j jξ =  refer to surge, sway, heave, roll, pitch and yaw 

respectively. Besides, ψ  is defined as the ship heading angle. The incident wave 

length is λ  and η  is the incident wave angle relative to the Earth fixed coordinate 

system, thereby χ ψ η= +  is the encounter heading angle.    

According to Fig. 4.1, the transformation between the Earth fixed coordinate system 

0 0 0 0( )O x y z−  and the seakeeping hydrodynamic frame ( )O xyz−  is defined as follow. 
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 =

                                  (4.1) 

where t  is the time variable. It is easy to see that for a zero heading angle 0ψ = , the 

expression (4.1) gives a standard transformation used in the seakeeping analysis.  

 

Fig. 4.1 Coordinate systems in seakeeping analysis 

 

4.1.2 Exact expression of the boundary value problem 

Based on the assumptions of the fluid stated at the beginning of this section, the fluid 

velocity can be described by the velocity potential 0 0 0( , , , )x y z tΦ  which satisfies 

Laplace’s equation 

2 0∇ Φ =                                                                   (4.2) 

in the fluid domain where 2∇  denotes the Laplace operator.  

The fluid pressure follows from Bernoulli’s equation 

2

02ap p gz
t

ρρ ρ∂Φ
− = − − ∇Φ −

∂
                                        (4.3) 
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where  denotes the absolute value, ap  is the atmospheric pressure, ρ  is the fluid 

density, g  is the acceleration of gravity. The fluid domain is bounded with the free 

surface, the vessel instantaneous wetted surface area *( )S t  and an arbitrary vertical 

control surface restricting the fluid domain. Further, by assuming a deep water, the 

fluid domain is infinitely extended in a negative vertical direction, whereas if 

assuming a water area with limited depth, a flat bottom boundary should also be set. 

Next step is to derive the free surface conditions neglecting the surface tension. On 

the free surface 0 0 0( , , )z x y tζ= , the fluid particles remain on the free surface, 

meaning that the velocity potential Φ  needs to satisfy the kinematic free surface 

condition 

0 0( ) 0D z on z
Dt

ζ ζ− = =                                                     (4.4) 

Here D Dt t= ∂ ∂ +∇Φ ⋅∇  is the material substantive derivative, which expresses the 

rate of change in time if we follow a fluid particle in space. The dynamic free surface 

condition follows from the equality between the dynamic and atmospheric pressure on 

the free surface so that 

2

0

1 0
2

g on z
t

ζ ζ∂Φ
+ ∇Φ + = =

∂
                                       (4.5) 

Further combing the kinematic free surface condition (4.4) and dynamic free surface 

condition (4.5) will eliminate the wave elevation ζ  and consequently yield the exact 

free surface condition  

( )
2

02
0

12 0
2

g on z
t t z

ζ∂ Φ ∂Φ ∂Φ + ∇Φ ⋅∇ + ∇Φ ⋅∇ ∇Φ⋅∇Φ + = = ∂ ∂ ∂ 
           (4.6) 

The boundary condition on the body surface follows from the knowledge that the 

normal velocity on the body boundary needs to be equal to the surrounding fluid 

velocity in the same direction. Then it follows 
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*V n on S
n

∂Φ
= ⋅

∂

                                                                 (4.7) 

Here, V


 is the local body boundary velocity at the point ( ), ,x y z  on the instantaneous 

wetted ship surface *S  and n  is the unit normal vector on the hull boundary with 

positive orientation pointing out of the fluid domain defined as 

( ) ( )1 2 3 4 5 6, , , , ,n n n n r n n n n= × =
  

                                              (4.8) 

where ×  denotes vector product and r xi yj zk= + +
   is the position vector of 

arbitrary point with respect to the origin of the coordinate system. 

In addition to the above conditions the deep water and radiation conditions are needed. 

The deep water condition simply states that 

00 as z∇Φ→ →−∞                                                               (4.9) 

To obtain a unique solution for the velocity potential, it is necessary to define a 

radiation condition at the borders of the fluid domain. This will ensure a dissipation of 

the energy from the radiated and reflected waves at an infinite distance from the 

source of disturbance body.  

The above stated boundary conditions with steady state assumption completely 

describe the exact 3D boundary value problem within the potential flow theory. If the 

studied flow is unsteady, initial condition should be imposed such as  

0 0 1

0 0
2

( , ;0)
( , ;0)
x y f

x y f
t

ζ
ζ

=

∂

= ∂

                                                             (4.10) 

Or 

0 0at tΦ = =                                                                   (4.11) 
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In addition, special attention should be paid to the slender ship in manoeuvring 

motion or the planning ship sailing at high speed which the hull can be considered as 

a lifting body seen from overhead view and side view respectively. Therefore, Kutta 

condition should be imposed on the trailing edge of the ship to keep the conservation 

of circulation. 

4.1.3 Simplification of the BVP 

As seen, the exact boundary value problem is mathematically intractable not only 

because the free surface condition is nonlinear but also both the free surface elevation 

and the unsteady instantaneous wetted body surface are not known a priori. Some 

simplifications through linearization should be introduced to solve the problem. By 

the linearization, it is assumed that all the quadratic terms appearing in the boundary 

conditions will be neglected. The amplitudes of incident wave and oscillations are all 

assumed to be small.  

In this way, the principle of superposition is applicable in the linearized problems. 

Then the total velocity potential Φ  on the moving body can be separated into a 

contribution from the uniformly steady incoming flow Ui−


, and a disturbance 

potential φ  which consist of a steady part and a unsteady time dependent part on the 

calm water, SΦ  and TΦ  respectively. The stated decomposition can be expressed as 

( , , , ) ( , , ) ( , , , )
( , , ) ( , , ) e

S T

i t
S T

Ux x y z t Ux x y z x y z t
Ux x y z x y z e ω

φ
φ

Φ = − + = − +Φ +Φ

= − +Φ +
                   (4.12) 

where 0.5( 1)i = −  is the imaginary unit and eω  is the encounter frequency defined later. 

The complex factor ei te ω  represents the time component of the harmonic oscillation as 

the incident wave is regular. ( , , )T x y zφ  is the unsteady spatial velocity potential, 

which may be further decomposed into three parts, i.e., an incident wave potential Iφ , 

a diffraction potential Dφ  around the constrained ship and a radiation potential Rφ , 

thus 
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φ φ ξ φ
=

= + +

= + +∑
                                         (4.13) 

where A  is the incident wave amplitude, 0φ  is the incident wave potential with unit 

wave amplitude, 7φ  is the diffraction potential in unit wave amplitude, jφ  is the 

radiation potential due to unit motion in the j -th direction.  

According to the wave theory introduced in the book by Newman (1977), the deep 

water incident wave potential is defined as 

0 0 ( cos sin )
0

0

( , , ) k z ik x yigx y z e e χ χφ
ω

− +=                                  (4.14) 

where 0k  is the wave number related to the wavelength λ  by 0 2 /k π λ= , 0ω  is the 

circular frequency of the incident wave related to the frequency of encounter eω  by 

0 0 cose k Uω ω χ= −                                           (4.15) 

As previous defined in coordinate system, χ ψ η= +  is the encounter heading angle, 

η  is the incident wave angle relative to the Earth fixed coordinate system and ψ  is 

the ship heading angle. For zero ship heading angle, i.e., 0ψ = , then the encounter 

heading angle χ  is equal to the incident wave angle η , i.e., χ η=  with the following 

definitions: 0oχ =  is following waves, 90oχ =  is port beam waves and 180oχ =  is 

head waves. 

In the next step, linearization has to be performed to simplfy the governing equations. 

Since the present study is focus on the speed range from moderate to relatively high, 

say 0.15nF ≥ , it is more appropriate to apply the N-K linearization introduced in 

Chapter 2. The linearization process will be shortly described as follows.  
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First, we assume Uφ∇ <<  and keep only linear terms in φ  in the free surface 

condition. Then one more time linearization is carried out by using the Taylor series 

expansion of terms tφ∂ ∂  and zφ∂ ∂  around the mean free surface 0z = , and again 

keep the linear terms. This gives a linearized form of the free surface condition from 

(4.6) as shown by Newman (1978). 

( ) ( )

( )

2
2

2

2

12
2

1 0 0
2

T T
T

S T
T

W W W W W
t t

W g g on z
z z

∂ Φ ∂Φ
+ ⋅∇ + ⋅∇ + ⋅∇ ⋅∇Φ

∂ ∂
∂Φ ∂Φ

+ ∇Φ ⋅∇ + + = =
∂ ∂

   

              (4.16) 

where W


 is introduced to represent the velocity vector of the steady flow, that is 

S T TUi W ∇Φ = − +∇Φ +∇Φ = +∇Φ 


                               (4.17) 

The linear free surface condition (4.16) is still too complex for practical application. 

Further simplification of excluding the effect of steady flow potential on the free 

surface condition is appropriate since the present study’s concern is on slender ships. 

Therefore, the linearized form of the fluid pressure is 

ap p U gz
t x
φ φρ ρ∂ ∂ − = − − − ∂ ∂ 

                                     (4.18) 

Similarly, the linearized dynamic free surface condition is 

0 0U g on z
t x
φ φ ζ∂ ∂
− + = =

∂ ∂
                                       (4.19) 

the linearized form of the kinematic free surface condition is 

0U on z
t x z
ζ ζ φ∂ ∂ ∂
− = =

∂ ∂ ∂
                                         (4.20) 



47 
 

Combining (4.19) and (4.20), the single expression of the linearized free surface 

condition is written as 

2 2 2
2

2 2
2 0 0U U g on z

t t x x z
φ φ φ φ∂ ∂ ∂ ∂
− + + = =

∂ ∂ ∂ ∂ ∂
                            (4.21) 

With the linearized free surface condition, now we can derive the governing equations 

of the BVP for the steady flow potential SΦ  and the normalized velocity potential jφ  

separately. Accordingly, the boundary condition is also satisfied on the mean wetted 

body surface 0S  now. 

2

2
2

2

1 0

0

0 0

0
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S S
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in the flow field

U g on z
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Un on S
n

as z
radiation condition

∇ Φ =


∂ Φ ∂Φ + = =
 ∂ ∂

∂Φ = ∂
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where  

( ) ( )
( ) ( )( )

1 2 3

4 5 6

, ,

, ,

m m m n W

m m m n r W

= − ⋅∇

= − ⋅∇ ×



                                                             (4.24) 
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are the so called jm  terms derived by Ogilvie & Tuck (1969). r  is the position vector 

with respect to the origin of the hydrodynamic coordinate system. It should be noted 

that the evaluation of the jm  terms can be difficult if the interaction with the steady 

velocity potential SΦ  is accounted for since involving the second order derivatives of 

SΦ .  

4.1.4 Formation of 2.5D approach 

The governing equation (4.23) for the normalized velocity potential jφ  is defined in 

three dimensional flow field. As mentioned in Chapter 2, most direct and accurate 

approach would be applying a 3D method no matter based on free surface Green 

function or Rankine type singularity. However, as we are looking for a more efficient 

tool which can make better use of the slenderness of the ship to reduce the complexity 

and computation time without sacrificing much accuracy, the 2.5D theory or 2D+t 

theory will be applied. 

Similar to strip theories, the 2.5D theory assumes the ship hull to be long and slender 

which means that the draft D  and beam B  are much smaller than the length L  of the 

ship, and a slenderness ratio / 1B Lε = <<  is introduced. Based on this assumption, 

the original normal vector on the body surface can be approximated by the one on the 

cross sectional contour. 

( ) ( )1 2 3 4 5 6 2 3 3 2 3 2, , , , , 0, , , , ,n n n n n n N N yN zN xN xN≈ − −                        (4.25) 

( )2,3jN j =  is component of inward unit normal vector of one point on the ship’s 

cross sectional contour. Meanwhile，the variation in the x  direction is assumed to be 

much smaller than the variation in the y  and z  direction, i.e., ,x y z∂ ∂ << ∂ ∂ ∂ ∂ . 

Therefore, the 3D Laplace equation satisfied in (4.23) can be transformed to a 2D 

Laplace equation by neglecting the term of the order ( )2O ε . In addition, when the 

steady flow is approximated by neglecting the steady velocity potential SΦ , i.e., 

W Ui≈ −
 

, the expression (4.24) gives the following jm  terms: 
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( ) 5 3 6 20 1,2,3,4 , ,jm j m Un m Un= = = = −                                 (4.26) 

Unlike in the ordinary strip theory, the sailing speed U  is defined from moderate to 

relatively high, e.g., 0.15nF ≥  in present study, and should be kept in the linearized 

free surface condition in the 2.5D theory. Moreover, no wave is induced ahead of the 

ship which indicates the Brard number, a product of the Froude number  nF U gL=  

multipling the non-dimensional encounter frequency /e e L gω ω′ = , should be 

2
27

eU
g

ωτ = >                                                              (4.27) 

as claimed by Chen & Noblesse (1998). This can be understood as the ship is moving 

faster than the generated wave from physical point of view in brief. 

Based on these assumptions, the governing equation (4.23) should be updated as 

follow. 

( )

( )

2 2

2 2
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φ φ

φ
ω φ ζ

ζ φ
ω ζ

ωφ
φ

φ
φ

φ

∂ ∂
+ = ∂ ∂

 ∂
− + = =

∂
 ∂ ∂

− − = =
∂ ∂ + =∂  =  ∂∂ − = ∂

 ∂ = = >
 ∂
∇ → →−∞
                        (4.28) 

where jζ  denotes the complex amplitude of free surface elevation in the j -th 

direction by the unit radiation and diffraction potential and fx  is the longitudinal 

position of ship forward perpendicular. 
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To solve this governing equation, a further transformation has to be performed with 

the time variables as follow. 

fx x
t

U
−

=                                                                                                               (4.29) 

( , ; ) ( , , )

( , ; ) ( , , )

e

e

i t
j j

i t
j j

y z t x y z e

y z t x y z e

ω

ω

ϕ φ

ς ζ

 =


=
                                                                                    (4.30) 

Finally, the BVP becomes 

( ) ( )

( )

2 2

2 2
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0 0

0 0

2,...,6
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e

e

j j

j
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N e j
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radiation condition

ω

ω

ϕ ϕ

ϕ
ς

ς ϕ

ωϕ
φ

ϕ
ϕ

ϕ

∂ ∂
+ = ∂ ∂

∂
+ = =

∂
∂ ∂

− = =
∂ ∂  + =∂  =  ∂ ∂ − = ∂

 ∂ = = =
 ∂
∇ → →−∞
                        (4.31) 

In this way, the original 3D BVP is successfully changed to a 2D time dependant BVP  

in a space fixed cross section plane. Then the flow field in the space fixed cross 

section plane is determined by repeatedly calculating the flow field at various 

instances after the ship’s bow begins to penetrate the plane. Note that different time 

moment is corresponding to different cross section position. Therefore, the 3D flow 

field around the ship can be obtained by determining the flow field in a series of space 

fixed control planes which are placed at equal intervals along the ship’s longitudinal 

direction as shown in Fig. 4.2. Then, the hydrodynamic forces and moments acting on 

the ship are evaluated by integrating the hydrodynamic pressure over the entire wet 

surface of the ship. If the ship advances forward for a distance equal to the interval of 
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the cross planes, then we stop the calculations at the last plane behind the ship and 

introduce a new plane in front of the ship and initialize the calculation in the new 

plane because the flow at a cross section is only influenced by the flow upstream of 

this section, but not by the flow downstream of it which is the key feature of the 2.5D 

theory. It is worth mentioning that the normal 20 stations division is not enough for 

calculations to obtain satisfied solution, and the required cross planes is related with 

the speed, i.e. lower advancing speed needs more planes. According to Ma et al. 

(2005), 60 sections are needed if the Froude number is lower than 0.2. Therefore, in 

present study the hull is divided into 80 sections with 81 space fixed control planes for 

the calculations. 

 

 Fig. 4.2 Principle of 2.5D approach drawn by Kreuzer & Sichermann (2005) 

The radiation velocity potentials jϕ  can be further decomposed into a speed 

independent and a speed dependent part as follows 

0 U
j j j

e

U
i

ϕ ϕ ϕ
ω

= +                                                                                               (4.32) 

Therefore, the hull boundary condition is divided into the two hull conditions 
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0

e
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j i t
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= ∂


∂ = ∂

                                                                                               (4.33) 

By using the simplified jm  terms (4.26), it follows that the radiation velocity 

potentials, including the speed dependent contributions, are given as 

( )0

0 0
5 5 3

0 0
6 6 2

1, 2,3, 4j j

e

e

j
U
i
U
i

ϕ ϕ

ϕ ϕ ϕ
ω

ϕ ϕ ϕ
ω

= =

 = +


 = −


                                                                                       (4.34) 

Therefore, the final BVP is finding the solution to 0
jϕ . 

Moreover, as the present study is focus on small amplitude oscillation motions, it is 

appropriate to assume that the free surface conditions satisfied by jϕ  in (4.31) may be 

satisfied along the streamlines on 0z =  generated by uniform longitudinal motion, so 

we should first determine the steady flow potential SΦ  in the 2D control planes by 

following governing equations transformed from (4.22).  

2 2

2 2

1 0

0

0 0

0 0
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S S

S
S

S S

S
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y z

U g on z
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ζ
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∂ Φ ∂ Φ
+ = ∂ ∂

 ∂Φ
+ = = ∂

∂ ∂Φ − = =
∂ ∂

∂Φ
= ∂

∇Φ → →−∞

                                                        (4.35) 
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4.2 Hydrodynamic and hydrostatic forces 

Assuming the velocity potentials have already been obtained, the hydrodynamic 

pressure acting on the point on the ship mean wetted surface 0S  is 

( )Re ,ei tT T T
e Tp U pe p i U

t x x
ω φρ ρ ω φ∂Φ ∂Φ ∂   = − − = = − −   ∂ ∂ ∂   

                             (4.36) 

where the atmospheric pressure ap  is set equal to zero.  

Due to the linearity of a seakeeping problem, the total pressure can be decomposed 

into the contributions from incident wave potential, radiation potential and diffraction 

potential respectively as follow. 
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( ) ( ) 7

0 0
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e e
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e j j e

j

ji t x i t x
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j
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t t

ω ω

φ φρ ω φ ρ ω φ ξ ρ ω φ

ϕ ϕρ ω φ ρ ξ ρ

=

− −

=

∂  ∂ = − − − − −   ∂ ∂  
∂ ∂

= − − −
∂ ∂

∑

∑



                        (4.37) 

Integrating the pressure over the whole ship, the total hydrodynamic forces F


 and 

moments OM


 with respect to the hydrodynamic frame can be derived 

( )

( ) ( )
0

0

S

O
S

F t pndS

M t p r n dS

 =



= ×


∫∫

∫∫

 

                                                                                    (4.38) 

Or be expressed in matrix form 

( ){ } ( ){ }
0

, , , k
S

F t p x y z t n dS= ∫∫                                                                         (4.39) 

Substituting (4.37) into (4.39), and due to the slenderness of the ship, which means

ds dl dx= ⋅ , then 
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( ){ } { } ( ){ } ( ){ } ( ){ }
0

Re ( , , ) Reei t
k I R D

S

F t p x y z n ds e F t F t F tω
 

 = ⋅ = + +     
∫∫       (4.40) 

where, 
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( ){ } { }

( ){ } { }

0

0 0

6
( )

2 ( )

( ) 7

( )

e

e e

x

e e

x

i t
I k

S

ji t x i t
R k j

j L S t
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∫∫

∑∫ ∫

∫ ∫

                                             (4.41) 

where ( )xS t  is the underwater contour of the cross section corresponding to time t . 

The F-K force can be directly obtained by substituting (4.14), which is 

( ){ } { }

{ }
( )

0

0 0 0

0 0

cos sin

e

e

x

i t
I k

S

ik x k z ik y i t
k

L S t

F t Ai n ds e

gA e e e n dl e

ω

χ χ ω

ρ ω φ

ρ − −

= − ⋅

= ⋅

∫∫

∫ ∫
                                             (4.42) 

Regarding the radiation force and diffraction force, from (4.36), they can be expressed 

as follow. 

( ){ } [ ]{ }
( ){ } { }7

e

e

i t
R

i t
D k

F t H e

F t A H e

ω

ω

ξ =


=
                                                                                     (4.43) 

where, 

0 0

j
kj e j k k

S S

H i n ds U n ds
x
φ

ρω φ ρ
∂

= − +
∂∫∫ ∫∫                                                                 (4.44) 

is the hydrodynamic force and moment in the k -th direction per unit oscillatory 

displacement in the j -th mode.   



55 
 

By using the variant Stokes’ formula, the second term in (4.44) can be rewritten as 

( ) ( )
( )

0 0

0 0

1

3 2 1

A

A

j
j j

S S C wl

j
j j

S S

j
C wl

U nds Un ds U dl i
x
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φ φ
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φ φ
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+

+

∂
= ∇ − × ∂

 ∂  × = − − + + ×∇  ∂
 + × ×


∫∫ ∫∫ ∫

∫∫ ∫∫

∫



  

 

                             (4.45) 

where AC  refers to the aftermost cross section or transom stern of the ship, wl  

represents waterline. It should be mentioned that, this transformation assumes the ship 

to be wall sided at the free surface. When this assumption is neglected, it needs to be 

adequately modified shown by Ronæss (2002). However, in the continuation of our 

discussion we will adopt the stated assumption.  

For a slender body, the angle between dl  at waterline and longitudinal direction is 

very small, thereby the term involving j
wl

dl iφ ×∫


 can be neglected. At the aftermost 

cross section, dl i dl N× = ⋅


. Again, due to the slenderness assumption, 1 2 3,n n n<< , 

integrations on the body surface 
0

1 j
S

Un dsφ∇∫∫ ,
0

1 j
S

Un r dsφ×∇∫∫
  can be neglected. 

Therefore, 

( ) ( )
0

0 0

3 2

A

A

j
j

S C

j
j j

S S C

U nds U Ndl
x

U r n ds U n j n k ds U r Ndl
x

φ
φ

φ
φ φ

∂
≈ − ∂

 ∂ × ≈ − − + − × ∂

∫∫ ∫

∫∫ ∫∫ ∫



   
                         (4.46) 

Substituting (4.25) and (4.26) into (4.46), we obtain a unified expression for (3.46). 

0 0 A

j
k j k j k

S S C

U n ds U m ds U N dl
x
φ

φ φ
∂

= −
∂∫∫ ∫∫ ∫


                                                          (4.47) 

Then, (4.44) can be rewritten as 
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0 0 A

kj e j k j k j k
S S C

H i n ds U m ds U N dlρω φ ρ φ ρ φ= − + −∫∫ ∫∫ ∫                                          (4.48) 

The radiation force can be further expressed in the form with added mass and 

damping coefficient. 

( ){ } [ ]{ } [ ]{ }RF t A Bξ ξ= − −                                                                             (4.49) 

where, 

( )

( )

2

1 Re

1 Im

kj kj
e

kj kj
e

A H

B H

ω

ω

 =

 = −


                                                                                       (4.50) 

‘Re’ and ‘Im’ stand for the real and imaginary part of the given expression. The 

general form of the added mass kjA  and damping coefficients kjB  for a ship with port 

starboard symmetry is given by  

( )

22 24 26

33 35

42 44 46

53 55

62 64 66

0 0
0 0 0

0 0
0 0 0

0 0

kj kj

A A A
A A

A or B A A A
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A A A

 
 
 
 =
 
 
  

                                                           (4.51) 

The hydrostatic forces and moments, also called the restoring forces and moments, 

follow from the hydrostatic and mass considerations. The hydrostatic pressure acting 

on the point on the ship mean wetted surface can be expressed as 

( )3 5 4Sp g z x yρ ξ ξ ξ= − + − +                                                                   (4.52) 

Integrating the pressure over the wetted surface 

( ){ } [ ] ( ){ }SF t C tξ= −                                                                              (4.53) 
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The only non-zero ( ), 1,...,6kjC k j =  coefficients for a ship with the lateral symmetry 

plane are 

( )
( )

33

35 53

44

55

W

y

T x B G

L y B G

C gA
C C gS

C g GM gJ g z z

C g GM gJ g z z

ρ
ρ

ρ ρ ρ

ρ ρ ρ

=
 = = −
 = ∇ = + ∇ −
 = ∇ = + ∇ −

                                                 (4.54) 

Here, Gz  and Bz  are the vertical coordinates of the center of gravity and the center of 

buoyancy, respectively. ∇  is the displaced volume of the ship. WA  is the water plane 

area. TGM  and LGM  are the transverse and longitudinal metacentric height, 

respectively. yS , xJ  and yJ  are the static moment with respect to y  axis, inertia 

moments with respect to x  axis and y  axis, respectively. 

4.3 5-DOF motions response in waves 

With all external forces derived, a differential equation of 5-DOF motions (without 

surge) can be established as follow. 

[ ] [ ]( ){ } [ ]{ } [ ]{ } { } { }I Dm A B C f F Fξ ξ ξ+ + + = = +                                        (4.55) 

where { }f  is the wave exciting force, [ ]m  is the generalized mass matrix. For a 

vessel with the lateral symmetry plane and the arbitrary vertical location of the center 

of gravity at Gz , the mass matrix is given as follow. 

[ ] 11 13

22

31 33

0 0 0
0 0 0 0

0 0
0 0 0 0
0 0 0

G

G

m mz
m

m mz I I
I

I I

− 
 
 
 = −
 
 
  

                                                               (4.56) 
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where m  is the mass of the ship, ( ), 1, 2,3kjI k j = , corresponding to roll, pitch and yaw, 

is the moment of inertia when k j=  and is the product of inertia when k j≠ . The 

explicit, exact or approximate (if a vessel mass distribution is unknown), definition of 

the kjI  can be found in the manual by Journèe & and Adegeest (2003). In addition, in 

the case of a ship with the pointed ends i.e., no transom stern, the terms 13 31I I=  are 

equal to zero. Furthermore, for a ship with lateral symmetry it also follows that the 

equation system (4.55) gives one set of the coupled heave-pitch equations and another 

set of the coupled sway-roll-yaw equations.  

If further setting the complex amplitude of the exciting forces and motions as 

{ } { } { }
{ } { } { }

a C S

a C S

f f i f

iξ ξ ξ

= +


= +
                                                                               (4.57) 

Then the motion equation of the complex amplitudes can be written as 

[ ] [ ]( ){ } [ ]{ } { }
[ ] [ ]( ){ } [ ]{ } { }

2

2

e C S C

e S C S

C m A B f

C m A B f

ω ξ ω ξ

ω ξ ω ξ

 − + − =


− + + =
                                           (4.58) 

By solving (4.58), the RAO (response amplitude operator) and the phase can be 

derived as follow. 

{ } { }
{ } ( ){ }

2 2

, arg ,
C Sa

C SA A

ξ ξξ
ξ ξ ξ

+
= ∠ =                                                (4.59) 

4.4 Numerical schemes 

Back to solving the BVPs (4.31) and (4.35), a BEM is adopted by using Green’s 

second identity. The velocity potential at a field point P  within the fluid domain can 

be represented by 
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( ) ( ),
2 , Q

P Q Q
S Q Q

G P Q
G P Q ds

n n
ϕ

πϕ ϕ
 ∂∂

= − 
∂ ∂  

∫                          (4.60) 

where ( ) ( ), ln ,G P Q r P Q=  is 2D Green function at field point P  due to a source 

point Q  on the fluid boundary, ( ),r P Q  is the distance between P  and Q . The fluid 

domain is surrounded by a closed boundary S  consisting of the body surface 0S , the 

free surface FS , the boundary at infinity RS  (right side), the bottom surface BS  (if in 

shallow water) and the symmetry line boundary below the keel KS . As seen in Fig. 

4.3, only half of the flow domain is taken into account due to the symmetry (vertical 

motions) or asymmetry (lateral motions) of the flow around the hull. By letting the 

field point P  approach S , an integral equation can be obtained as follow.  

( )

1 ln ( , ) ln ( , )
P

Q
P Q Q

S S Q Q

r P Q r P Q ds
n n

ϕ
ϕ ϕ

α −

 ∂∂
= − 

∂ ∂  
∫                         (4.61) 

where ( )PS  is a small semicircle around the point P , the internal angle α  is equal to 

π  when the surface is smooth, otherwise the angle should be calculated separately.  
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Fig. 4.3 Computational domain of a control plane 
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In the numerical calculations, the boundary of the domain is discretized into small 

straight line segments. The velocity potential and its normal derivative are assumed 

constant over the element and the boundary conditions are satisfied on the midpoint of 

each element. Equally distributed elements are used on the body surface (40 to 50 

elements), the boundary at infinity and sea bottom (if in shallow water). Further, 

elements varying in size are distributed on the symmetry line boundary. The element 

closest to the body surface has the same size as its neighboring body surface element. 

Then the elements are geometrically increasing along the symmetry line boundary, as 

they are further away from the body. The free surface boundary is divided in two 

regions. Equal elements are distributed on the first region near the body, while 

geometrically increasing elements are distributed on the other region far from the 

body. Usually more elements are distributed on the near-body region than on the other 

region. The length ratio of these two regions and the number of elements on them can 

be adjusted. Generally speaking, two rules are followed. The first rule is to use finer 

elements on regions closer to the body and to use larger elements far away from the 

body. The other rule is to control that the ratio of lengths of two adjacent elements is 

around one, so that they have similar size. The boundary at infinity are places 4 to 6 

times of beam away from the hull. 

By this discretization, the integral equation resulting from (4.61) can be discretized 

into a set of linear algebraic equations with SN  unknowns which is the total number 

of the discretized elements on the closed boundary S , of which 1n  on the body 

surface 0S , 2n  on the free surface FS , 3n  on the open boundary at infinity RS , 4n  on 

the symmetry line boundary below the keel KS . On boundaries with Dirichlet 

conditions, ϕ  is known including the free surface, the boundary at infinity and the 

symmetry line boundary below the keel in lateral motions which is 0ϕ = , whereas on 

boundaries with Neumann conditions, nϕ∂ ∂  is known including the body surface, 

the bottom surface (if in shallow water) and the symmetry line boundary below the 

keel in vertical motions which is 0nϕ∂ ∂ = . One can move the unknown terms to one 

side and the terms already known to the other side of the equation, hence, 
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where subscripts ,i j  now denote the serial numbers of the segments, the matrix 

coefficients ijS  and ijD  correspond to integrals of the Green’s function and its normal 

derivative over the length area jl∆  of the j -th segment respectively as  

 ln
j

ij ij
l

S r dl
∆

= ∫                                                                                        (4.64) 

ln

j

ij

lij

r
dl i j

nD
i jπ

∆

∂
≠ ∂= 

 =

∫                                                                   (4.65) 

Applying numerical integrations, e.g., Gauss-Legendre quadrature, to obtain the 

matrix coefficients ijS  and ijD , then algebraic equations (4.62) and (4.63) can be 

solved by Gauss elimination. 

Special care must be taken near the intersection of the body surface and the water 

surface. The velocity potential is continuous on this intersection. However, the normal 

velocity is discontinuous because the normal directions at the two sides of the 

intersection are different. A common treatment to this problem is to assume that the 

normal velocity should be known on the body surface, but unknown on the free 

surface. So the normal velocity on the intersection at the free surface side is solved 

together with the other points on the free surface.  
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In the following, more details about dealing with the free surface condition and 

radiation condition are given. 

4.4.1 Free surface condition 

On the free surface, the following approximations to free surface kinematic and 

dynamic boundary conditions satisfied by potential jϕ  in (4.31) are applied. 

( , ) ( , ) ( ,0, )
2 2 2 2

( ,0, ) ( ,0, ) ( , )
2 2

j
j j

j j j

y t y ty t y t t y t
z
y ty y t t y t g t y t

ϕ
ς ς

ϕ ϕ ς

∂ ∆ ∆ ∆ ∆
+ + = − − + ∆ ∂


∆ ∆ + ∆ + ∆ = − ∆ + +



                                   (4.66) 

where t∆  is time interval of the stepping procedure, and, 

 ( ,0, )Sy t y t
y

∂Φ
∆ = ∆

∂
                                                                             (4.67) 

This algorithm has been proved stable by Chapman (1976). 

Using the initial free surface condition, there is no fluid field disturbance at time 0t = , 

we can evaluate the free surface elevation and the fluid potential by 

( , ) ( ,0) ( ,0,0)
2 2 2

( ,0, ) ( ,0,0) ( , )
2 2

j
j j

j j j

y t ty y y
z

y ty y t y g t y

ϕ
ς ς

ϕ ϕ ς

∂ ∆ ∆ ∆
+ = + ∂


∆ ∆ + ∆ ∆ = − ∆ +



                                       (4.68) 

Apparently, the key step prior to (4.66) and (4.68) stepping is determining the steady 

flow potential first, which can be achieved by solving the BVP of (4.35) using the 

BEM introduced above together with the following free surface approximations. 
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1 1
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By substituting the starting conditions at the bow, 0, 0S SζΦ = = . Here, the subscript 

in 1,n nx x +  represent the station serial number counting from the bow.  

4.4.2 Radiation condition 

Regarding the radiation condition, Sommerfeld (1949) gave a brilliant description that 

is the sources must be sources, not sinks of energy. The energy which is radiated from 

the sources must scatter to infinity, no energy may be radiated from infinity into the 

field. To reach this target, several practical treatments have been proposed such as the 

finite difference technique by Orlanski (1976), the numerical damping beach proposed 

by Israeli & Orszag (1981) and applied to ship wave problems by Nakos et al. (1994), 

mismatching technique by moving the source points on the free surface at some 

distance downstream by Jensen et al. (1986). More recently，Das & Cheung (2012) 

and Yuan et al. (2014) applied a corrected Sommerfeld radiation condition by taking 

into account the Doppler shift effect which is available for radiation problem at very 

slow speed. 

Apart from these, Liao (1996) described a general expression of one way wave 

propagation and developed a system of local non-reflecting boundary conditions using 

the space-time extrapolation. Its initial aim is to deal with the propagation of 

earthquake wave out of artificial boundary. In this section, the MTF method about 

velocity potential ϕ  in water wave problems can be written as follows. 

Let y  axis be the normal to the artificial boundary RS  and point to the outer region of 

the model as shown in Fig.4.3. Suppose that the intersection point 0 of the y  axis and 

the artificial boundary is the radiation boundary point on RS  under consideration. 1 

and 2 are the points which are away from point 0 along its normal vector to the inner 

region. The distance between them will be discussed later.  

The outgoing waves impinging upon the radiation boundary point may be expressed 

by their apparent propagation along the y  axis,  

( ) ( ), i yi
i

y t f c t yϕ = −∑                                                                   (4.70) 
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where ( ),y tϕ  is a function of y  and t  consisting of arbitrary number of one way 

waves ( )i yif c t y− , each of them propagates along the y  axis with an apparent speed 

yic , if  are arbitrary functions. The apparent propagation of the one way waves in 

(3.70) is written (neglecting the subscript) as 

( ) ( ), yy t f c t yϕ = −                                                                         (4.71) 

Using (4.71), it is easy to see that 

( ) ( ), ,yy t t y c t tϕ ϕ+ ∆ = − ∆                                                             (4.72) 

where t∆  is the time step. Then an artificial wave speed ac  is introduced to replace 

the physical wave speed yc . Because yc  is usually unknown, whereas ac  can be 

chosen flexible in a range between 0.6 and 1.6 times of physical wave speed as 

suggested by Xu & Duan (2008). The distance between point j  and 0 is ajc t∆  along 

the normal vector of point 0 to the inner region. (4.72) is first replaced by  

( ) ( ) ( ), , ,ay t t y c t t y t tϕ ϕ ϕ+ ∆ = − ∆ + ∆ + ∆                                         (4.73) 

where the error term ( ),y t tϕ∆ + ∆  expresses the error introduced by ac  replacing yc . 

(4.73) yields 

( ) ( ) ( ), , ,ay t t y t t y c t tϕ ϕ ϕ∆ + ∆ = + ∆ − − ∆                                         (4.74) 

Substituting (4.71) into (4.74), we may write 

( ) ( )1, yy t t f c t yϕ∆ + ∆ = −                                                                    (4.75) 

where 1f  is a function of yc t y− . Following (4.73) the error term may be written as 
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( ) ( ) ( )2, , ,ay t t y c t t y t tϕ ϕ ϕ∆ + ∆ = ∆ − ∆ + ∆ + ∆                                    (4.76) 

Having replaced y  and t  in (4.74) by ay c t− ∆  and t t−∆ , respectively, the first term 

in the right hand side of (4.76) is written as   

( ) ( ) ( ), , 2 ,a a ay c t t y c t t y c t t tϕ ϕ ϕ∆ − ∆ = − ∆ − − ∆ −∆                            (4.77) 

and the error term in (4.76) is written as  

( ) ( ) ( )2 , , ,ay t t y t t y c t tϕ ϕ ϕ∆ + ∆ = ∆ + ∆ −∆ − ∆                           (4.78) 

Substitution of (4.76) into (4.73) yields  

( ) ( ) ( ) ( )2, 2 , 2 , ,a ay t t y c t t y c t t t y t tϕ ϕ ϕ ϕ+ ∆ = − ∆ − − ∆ −∆ + ∆ + ∆              (4.79) 

It is easy to see that ( )2 ,y t tϕ∆ + ∆  and the higher order error terms are all functions 

of yc t y− . Therefore, following the above formulation we can obtain  

( ) ( ) ( ) ( )
1

1

, , , ,
N

m N
a a

m

y t t y c t t y c t t y t tϕ ϕ ϕ ϕ
−

=

+ ∆ = − ∆ + ∆ − ∆ + ∆ + ∆∑            (4.80) 

where 

( ) ( ) ( )1 1, , 2 ,m m m
a a ay c t t y c t t y c t t tϕ ϕ ϕ− −∆ − ∆ = ∆ − ∆ −∆ − ∆ −∆                   (4.81) 

( ) ( ) ( )1 1, , ,N N N
ay t t y t t y c t tϕ ϕ ϕ− −∆ + ∆ = ∆ + ∆ −∆ −                                    (4.82) 

Suppose that the origin of the y  axis is the boundary point, the coordinates of 

calculating point are ay jc t= − ∆  and time t p t= ∆ , where integer p  represents the 

time level, the terms of ( ),ay c t tϕ − ∆  and ( ),m
ay c t tϕ∆ − ∆  are written as  
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( ),p
j ajc t p tϕ ϕ= − ∆ ∆                                                                                   (4.83) 

( ),m p m
j ajc t p tϕ ϕ∆ = ∆ − ∆ ∆                                                                           (4.84) 

Neglecting the error term of (4.80) and using (4.83) and (4.84), the (4.80) can be 

written as 

1
1

0 1 1
1

N
p p m p

m

ϕ ϕ ϕ
−

+

=

= + ∆∑                                                                                    (4.85) 

where 

( )
1

1 1
1 1

1

1
m

jm p m p j
j j

j

Cϕ ϕ
+

+ + −
−

=

∆ = −∑                                                                          (4.86) 

The binomial coefficients are 

( )
!

! !
m
j

mC
m j j

=
−

                                                                            (4.87) 

Substituting (4.86) into (4.85) can obtain the non-reflecting radiation condition on RS   

( ) 11 1
0

1

1
N

jp N p j
j j

j

Cϕ ϕ++ + −

=

= −∑                                                                (4.88) 

N  is the order of the MTF. In present study, 2N =  will be considered. So (4.88) is 

written as 

1 1
0 1 22p p pϕ ϕ ϕ+ −= −                                                                              (4.89)  

(4.89) is the second order radiation condition, where the subscript 0 is the point on the 

artificial boundary, 1 and 2 are the points which are ac t∆  and 2 ac t∆  away from point 

0 along its normal vector to the inner region, respectively.  
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4.4.3 Execution procedure 

After all the numerical schemes have been described, the procedure of solving the 

unsteady velocity potentials is now briefly described here. 

Step 1) At 0t = , assume that before ship’s bow penetrates the space fixed cross plane, 

the fluid is at rest, thus the potential is equal to zero on the free surface and the 

open boundary as well. At the boundary under the keel, the potential or its 

normal derivative is constantly zero because of the asymmetry or symmetry of 

the flow caused by corresponding motion. 

Step 2) At t t= , the bow starts to penetrate the cross plane and thereafter, the 2D BVP 

is solved by using the Rankine singularity based BEM. Thereby, the values of 

potential on the body surface and the normal derivative on the free surface are 

calculated. 

Step 3) Still at t t= , obtain the values of potential at internal points adjacent to the 

open boundary which is necessary in the treatment of radiation condition 

according to MTF method. Then obtain the values of potential on the open 

boundary at following step of t t t= + ∆ . 

Step 4) Determine the values of steady flow potential first, then stepping the values of 

unsteady flow potential on the free surface at t t t= + ∆  by using the numerical 

scheme of the free surface condition. 

Step 5) In order to determine the potential on the free surface at t t t= + ∆ , the free 

surface in the vicinity of the hull are again subjected to division since the hull 

shape at t t t= + ∆  varies from that at t t= . 

Step 6) Determine the values of potential at the new nodes on the free surface by 

linear interpolation of the values obtained at step 4. 

Step 7) Return to step 2 and repeating the procedure until the whole ship penetrate the 

plane. Then the time history of the hydrodynamic force acting on the hull 

section situated in the fixed cross plane can be derived. 

Step 8) Integrating the forces in all cross planes along the ship length, the total forces 

and moment can be obtained for the evaluation of motion responses.  

A brief flow chart of the seakeeping analysis module is illustrated in Fig. 4.4. 
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Fig. 4.4 Flow chart of seakeeping analysis 

4.5 Additional problems 

So far, we have already presented the regular seakeeping analysis of a slender 

displacement ship in straight moving. In the following, several additional problems 

which also occur in the scope of seakeeping analysis but usually get less attention will 

be discussed. They are related to the lateral motions, thereby are to some extent 

important to the manoeuvring analysis which will be focused on later. 

4.5.1 Viscous correction on the roll damping 

As known to all, viscous effects should not be neglected in lateral motions. Especially 

in roll motion, the amplitude of the roll displacement is significantly affected by water 

viscosity even in the case of a ship without bilge keels. Therefore, it cannot be 

computed with adequate accuracy if only the roll damping coefficient based on the 

potential flow theory is accounted for. In fact, there are five components in the 

equivalent roll damping for a ship, i.e.,  

44e BK E F L WB B B B B B= + + + +                                                              (4.90) 

 BKB  due to the bilge keels which consists of the moment due to normal forces on 

the bilge keels, the moment due to the modification of the fluid flow caused by 
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the presence of the bilge keels, the moment due to waves generated by the bilge 

keels. 

 EB  due to formation of eddies caused by viscous separation near the sharp 

corners of the cross sections.  

 FB  due to skin friction of the hull in contact with water. 

 LB  due to lift forces caused by the angle of attack on the hull when the ship 

experiences roll. 

 WB  due to the waves generated by the rolling ship. Note that this is already 

estimated by the potential flow theory presented above. 

Determination of the roll damping can be carried out by free rolling model tests or 

empirical methods such as Ikeda et al. (1978). In the present study, a relative simpler 

empirical estimation method by Himeno (1981) is adopted. The estimation formulae 

for each components are given in Appendix A. 

4.5.2 Inertia forces acting on the hull at low frequency  

The BVPs discussed above is for the high frequency wave induced motions which are 

essential in regular seakeeping analysis. Meanwhile, it is also worth to present the 

BVPs for low frequency motions, especially in lateral motions as these solutions 

approaching limiting value of zero frequency can derive the inertia forces acting on 

the hull in manoeuvring motions in the form of added mass and added moment of 

inertia. 

In this case, the free surface condition in (4.31) can be substituted by a rigid wall as 

0 0j on z
z
ϕ∂

= =
∂

                                                            (4.91) 

Therefore, the resulting BVP can be satisfied by using the mirror image of the 2D 

cross section about the undisturbed free surface plane. 

For lateral motions, the velocity potential on the body is an even function of z  and the 

normal velocity has the same value at corresponding points on the body and its mirror 
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image. So that, for example of the sway motion, the mirror image of the body is in 

phase with the real body which means that the mirror image moves in the same 

direction with the swaying body. By the way, the situation is somewhat different for 

vertical motions such as heave. Although we can still consider having a double body 

moving in infinite fluid, this double body now experiences a vertical expansion and 

contraction symmetrical about horizontal plane. A non-existence of the free surface 

implies that the body cannot generate any free surface waves, which consequently 

means that the values of the damping coefficients are zero.  

The solving of the BVPs for the velocity potentials with the rigid wall free surface 

condition (4.91) is same as the procedure described previously. 

4.5.3 Approximation for lift force 

Apart from the above mentioned inertia components, forces due to the viscosity of the 

fluid is another important component especially in the lateral motions related to the 

manoeuvring which should not be neglected in estimations. Furthermore, when a ship 

is advancing at a small drift angle, the linear part of the viscous force is dominant 

which is often referred as the lift force just like a wing seen from overhead view. 

Although this is mainly a subject in manoeuvring analysis, discussion will be 

presented here in advance since it is also vital to a seakeeping analysis as long as the 

flow around the ship is asymmetry about the center plane such as a ship approaching a 

bank or two ships overtaking each other.   .  

Firstly, a brief explanation of the principle of the lift problem is given here by 

considering a wing moving in unbounded flow field as shown in Fig. 4.5. The angle 

of attack is α  between the moving direction and the chord line from the leading edge 

to the trailing edge. If we originally establish a BVP without taking the lift effect into 

account, the streamline will flow round the trailing edge at an infinite velocity until a 

stagnation point on the leeward side of the wing. This violates the physical 

phenomena. Moreover, it will lead to a zero total hydrodynamic force on the wing 

which is known as the d’Alembert paradox. In fact, a circulation is created since the 

wing starts to move from rest. This circulation pushes the stagnation point back to the 

trailing edge, then the flow leaves the trailing edge in a smooth tangential manner. 

This may seem to contradict the Kelvin’s theorem that the circulation should be 
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constant about any material contour always containing the same fluid particles. So the 

constant must equal zero if the motion starts from rest. This apparent contradiction 

can be resolved by noting that a sufficiently large material boundary surrounding the 

wing initially and hereafter. The circulation on the wing named as the bound vortex is 

cancelled by an equal and opposite starting vortex shed from the trailing edge into the 

wake during the initial acceleration. These two vortices together with the free vortex 

originating from the ends of the bound vortex along the longitudinal direction form a 

vortex ring and the region bounded by the vortex ring is called trailing vortex sheet. 

As the circulation is restricted in the body surface and the trailing vortex sheet, flow 

field bounded by these surfaces is irrotational thereby still satisfies the Laplace 

equation. Then a lift force is induced on the wing due to the circulation of the bound 

vortex. In this way, the BVP around the wing should be revised to account for the 

circulation and ensure the flow velocity at the trailing edge has a limited value, which 

is the definition of a Kutta condition imposed on the trailing edge. It holds a general 

expression as follow. 

TE
φ∇ < ∞                                                                     (4.92) 

More specific forms can be applied in the numerical processing such as equal pressure 

on both sides of the trailing edge, equal tangential velocities on both sides of the 

tailing edge, or zero normal velocity on the extension stream line down from the 

trailing edge. Further details about the Kutta condition is given by Xu (1998). 

 

Fig. 4.5 A wing moving at constant speed in unbounded fluid domain 
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From the above description, we can clearly realize that this lift effect is a total 3D 

flow effect which represents the influence of the vortex sheet to the hull ahead of it. 

However, in the 2.5D theory, the upstream effect of the flow is completely neglected 

which means this trailing vortex cannot be felt by the hull. In order to account for this 

lift force, an indirect way by using two different methods, i.e., solving the problem 

asymptotically based on the slender wing theory described by Katz & Plotkin (1991) 

and the 3D numerical solution by distributing vortex elements based on the low aspect 

ratio wing theory described by Newman (1977). They are briefly presented as follow.  

In the slender wing theory, only the portion of the wing ahead of one cross section 

will have influence on this section, whereas the influence of the wing sections and the 

flow field behind this section is negligible. It means the effect of trailing wake is 

small. The existence of the trailing edge is not felt by the water flow in front of it. 

Such properties in the slender wing theory are quite similar as those in a 2.5D theory. 

Considering a wing consisting of the ship and its mirror image about the undisturbed 

horizontal free surface plane, the pressure jump across the wing can be given as 

follow from the slender wing theory, 

( ) ( ) ( )( )2 22 / 2p U x U x b x y
x

ρ α ∂  ∆ = − ∂  
                                    (4.93) 

where ( )b x  is the local span which actually is twice the ship draft D , and 

( ) ( )22U x u v rx= + +  is the local inflow velocity. By integrating the pressure 

spanwise, the longitudinal lift force distribution on the ship can be obtained as. 

( ) ( ) ( )2

8
L

U xdY U x b x
dx x

ρπ α ∂  =  ∂
                                                  (4.94) 

From this equation, if there is no change in ( )b x  and no rotation, there will be no lift 

due to this section.  

In the low aspect ratio wing theory, the relation between the lift force and the 

circulation is given according to the Joukowski theorem as 
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LY Uρ= Γ                                                                                       (4.95) 

where Γ  is the circulation around the wing due to the bound vortex. 

For convenience, an auxiliary body fixed reference is introduced with its origin 

located at the midpoint of the leading edge and the X  axis pointing to the trailing 

edge. A vortex distribution ( )γ ξ  is imposed on the center plane of the wing with 

constant value spanwise but varying chordwise, the two parallel free vortices extend 

to infinity with a downwash angle Θ  respect to the wing surface. Then using (4.95), 

the life force and moment on the wing are given as 

( )

( ) ( )

0

0 02 2

L

L

L L

L L

Y UD d

L LN UD d Y UD d

ρ γ ξ ξ

ρ γ ξ ξ ξ ξ ρ γ ξ ξ ξ

 = −

  = − − = +  

 

∫

∫ ∫
                 (4.96) 

Therefore, the key problem is to derive the vortex distribution ( )γ ξ . 

The Kutta condition gives the vortex strength at the trailing edge as 

( ) 0Lγ =                                                                        (4.97) 

And the body surface condition should be satisfied which means along the centerline 

of the wing surface, the normal velocity induced by the bound vortices and free 

vortices should equal the opposite value of the lateral velocity of the wing which is 

( )/ 2v L X r− − − . According to the Biot-Savart Law, the normal velocity induced by 

the bound vortex element is 

( )
( ) ( )2 22A

d DdV
X X D

γ ξ ξ
π ξ ξ

= ⋅
− − +

                                          (4.98) 

Similarly, the normal velocity induced by the free vortices is 
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( )
( ) ( )

( )

2 22 2 2

22 2

1 cos
2 tan cos

cos
tan

F

d XdV
D X D X

D

D X

γ ξ ξ ξ µ
π ξ ξ

µ
ξ

  −  = +
  + − Θ Θ + −  


=
+ − Θ

              (4.99) 

The downwash angle is chosen approximately as follow. 

( )0.5arctan /v rx uΘ = +                                                               (4.100) 

Finally, following integration equation can be established for the determination of the 

vortex distribution. 

( ) ( )
0

1 ,
2 2

LLv X r K X d
X
γ ξ

ξ ξ
π ξ

 − − − =  −  ∫                                                (4.101) 

where, 

( )
( )

( )
( ) ( )

22 22 22 2
, 1

tan cos

D XD XK X
D XX D D X

ξ ξξ
ξξ ξ

 − − = + +
 + − Θ− + Θ + − 

 (4.102) 

In this way, the total life force and moment together with the lift distribution along the 

longitudinal direction on the wing can be obtained. 

Then, the ratio between the results from these two methods can be used as a sectional 

3D correction factor as 

( )
( )

3
2.5

2

/
/

L D

L D

dY dx
f

dY dx
=                                                                     (4.103) 

Subscripts 2D  and 3D  denote the solutions by the slender wing theory and the low 

aspect ratio wing theory respectively. This sectional factor will be multiplied to the 

force distribution results by 2.5D to make the correction. 
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4.6 Summary of the chapter 

In this chapter, the exact BVP of a slender ship advancing in waves is first established 

mathematically in 3D flow field according to the physical features of the problem. 

Then by applying the Neumann-Kelvin linearizationon, the free surface condition is 

linearized on the calm water and the body surface condition is fulfilled on the mean 

wetted body surface. Further simplifications based on the slenderness assumption of 

the ship leads to the transformation of the 3D BVP into a 2D time dependent BVP 

with the speed effect kept. A 2.5D approach is introduced to solve the problem by 

applying a Rankine type singularity based BEM. Special numerical schemes are 

introduced. The free surface condition is implemented in a finite difference expression 

for time stepping and the radiation condition is fulfilled by a second order MTF 

scheme. The formulae of the resulting hydrodynamic forces and moments acting on 

the ship are given according to the Bernoulli equation with the help of the variant 

Stokes’ formula, together with the 5-DOF motions response equations established. At 

last, additional problems about the viscous correction on the roll damping, BVPs for 

the low frequency lateral motions are presented. The lift force neglected in the 2.5D 

approach is taken into account indirectly by multiplying a ratio factor based on the 

results obtained by the slender wing theory and the low aspect ratio wing theory. 
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5 BEM based on NURBS 

5.1 Introduction of NURBS 

Before computers invented, designs were drawn by hand on paper with various 

drafting tools, i.e., rulers for straight lines, compasses for circles, and protractors for 

angles. But many shapes, such as the free form curve of a ship's bow, could not be 

drawn with these tools. Although such curves could be drawn freehand at the drafting 

board, shipbuilders often needed a life-size version which could not be done by hand. 

Such large drawings were done with the help of flexible strips of wood, called splines. 

The splines were held in place at a number of predetermined points, called ducks. 

Between the ducks, the elasticity of the spline material caused the strip to take the 

shape that minimized the energy of bending, thus creating the smoothest possible 

shape that fit the constraints. The shape could be tweaked by moving the ducks. 

As computers were introduced into the design process, geometric modelling by 

mathematical expressions becomes possible and then several kinds of splines or 

surfaces were developed, e.g., cubic spline and Bezier spline. The physical properties 

of them have been investigated so that they could be used to model shapes with 

mathematical precision and reproduced where needed. However, the common 

disadvantage of these tools is lack of local control to dynamically change curve 

shapes for design requirements. Take the Bezier spline for example, moving one 

single control point would lead to the deformation of the whole shape, thus with more 

control points for higher degree curve, the curve will become unstable. Besides, the 

curve is relatively far from the control polygon which further make its precision hard 

to be ensured. For these reasons, the B-spline is invented for its local control 

characteristic and other advantages like available for degree elevation, knots insertion 

or elimination and multiple knot technique in free form shape type modelling design. 

Although the B-spline is fairly enough for normal traditional ship types modelling, it 

is unavailable for describing the conics or quadric precisely except parabola or 

paraboloid which means modern ship types like LNG with special parts would be out 

https://en.wikipedia.org/wiki/Technical_drawing
https://en.wikipedia.org/wiki/Ruler
https://en.wikipedia.org/wiki/Compass_(drafting)
https://en.wikipedia.org/wiki/Protractors
https://en.wikipedia.org/wiki/Freeform_surface
https://en.wikipedia.org/wiki/Elasticity_(physics)
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of its range. Therefore, based on B-spline and Non-rational Bezier spline, Non-

Uniform Rational B-Splines (NURBS) is developed which can accurately describe 

any shape from a simple 2D line, circle, arc, or curve to the most complex 3D free-

form surface or solid in mathematical representations uniformly which perfectly 

remedy the above mentioned disadvantage of B-spline. In 1991, the International 

Standardization Organization (ISO) issued the Standard for The Exchange of Product 

model data (STEP), and announced NURBS as the unique mathematical description 

method for the geometry definition of industrial products. Nowadays, NURBS has 

been widely used in computer aided manufacturing (CAM) and computer aided 

design (CAD) fields. 

Specifically, NURBS geometry has following six important advantages that make it 

an ideal choice for computer aided modelling.  

 Providing a common mathematical form to precisely represent standard analytical 

shapes, i.e., elementary curve or surface, and free form curve or surface 

simultaneously which means a unified database can be used to store the shape 

information of both categories. 

 Manipulating control points and the weight factor provides sufficient flexibility 

for various shapes design. 

 Stable and fairly fast calculation. 

 Obvious geometric interpretation for designers. 

 Powerful geometry processing technologies, e.g., knot insertion and elimination, 

degree elevation, decomposition, combination, etc. 

 Invariant under affine transformations such as scaling, rotation, translation and 

perspective projection. 

Although NURBS still has several disadvantages, e.g., it needs extra storage to define 

the traditional curve or curved surface, and improper weight factor chosen can lead to 

very poor parameterization, its application in present study would not be affected by 

these problems which are beyond the scope of the study and need extra efforts to be 

made on. 

https://en.wikipedia.org/wiki/Invariant_(mathematics)
https://en.wikipedia.org/wiki/Affine_transformation
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In the following, definition of NURBS will be introduced step by step from Bezier 

spline and B-spline since they are the basic of NURBS. To be specific, Bezier spline 

can be considered as a special case of B-spline while B-spline can be categorized into 

NURBS as shown in Fig. 5.1. Then fundamental algorithms of NURBS applied in the 

study will be formulated followed by modelling verification on unit circle, 

mathematical ship types and further validation on real ships. After that, an extension 

of the BEM presented in Chapter 4 using NURBS will be described. Finally, the 

developed NURBS based 2.5D seakeeping analysis tool will be validated on several 

ships by comparing with available experimental data. One more thing to announce is 

that as the present study is solving 2D BVPs in cross sections, only the 2D NURBS 

curve is applied though 3D NURBS surface can be used for complete 3D modelling. 

Fig. 5.1 Relations between splines 

5.2 Definitions of splines 

According to the relations shown in Fig. 5.1, the current section will establish the 

definitions of Bezier spline, B-spline and NURBS successively which are beneficial 

to understand the NURBS applied in present study. 

5.2.1 Bezier spline 

Firstly, let us take a look at a straight line for example. Obviously, there are only two 

control points which are the endpoints of the line as shown in the top left corner of Fig. 

5.2, so points on the line can be derived by following expression. 

0 1( ) (1 )C u u P uP= − + , 0 1u≤ ≤                                                       (5.1) 

                                              NURBS 

 

B-Spline 

 
Rational 
Bezier Bezier 
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where 0 1,P P  are the endpoints, and u  is the parameter corresponding to an arbitrary 

point on the line which can be understood as the proportion of the control point 1P . 

Secondly, if we want to draw a curve, three control points are needed as shown in the 

top right corner of Fig. 5.2. The derivation of the curve follows these steps: 

Step 1: Get point A  between the control points 0P  and 1P  by formula (5.1). 

0 1( ) (1 )A u u P uP= − + , 0 1u≤ ≤                                                     (5.2) 

Step 2: Likewise, get point B  between the control points 1P  and 2P  as well. 

1 2( ) (1 )B u u P uP= − + , 0 1u≤ ≤                                                     (5.3) 

Step 3: Finally, derive the point C  on the curve between the new straight line AB . 

2 2
0 1 2

( ) (1 ) ( ) ( )
(1 ) 2 (1 )

C u u A u uB u
u P u u P u P

= − +

= − + − + , 0 1u≤ ≤                            (5.4) 

 

Fig. 5.2 Bezier splines (internet photo) 
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Further, a Bezier curve with four control points shown in the left bottom view of Fig. 

5.2 can be derived by the steps similarly, the expression is established as follow. 

3 2 2 3
0 1 2 3( ) (1 ) 3 (1 ) 3 (1 )C u u P u u P u u P u P= − + − + − + , 0 1u≤ ≤                (5.5) 

By that analogy, for an arbitrary number of control points, following the same 

iterative procedure established above named as de Castejau algorithm, the common 

definition of the Bezier spline can be given consequently referring to the NURBS 

book by Piegl & Tiller (1997).  

Setting the space points 3 ( 0,1, , )iP R i n∈ =   as the control points, the expression of 

the degree n  Bezier spline can be given. 

,
0

( ) ( )
n

i i n
i

C u PB u
=

= ∑ , 0 1u≤ ≤                                                               (5.6) 

here, the space points iP  can also be called Bezier points, and 

,

!( ) (1 ) (1 ) , 0,1, ,
!( )!

i i n i i n i
i n n

nB u c u u u u i n
i n i

− −= − = − =
−

                     (5.7) 

is the Bezier basis function or Bernstein polynomial. Besides, connecting the control 

points with straight lines form the control polygon of the curve. 

The Bezier spline has following properties: 

 Property at the endpoints. 0(0) , (1) nC P C P= =  and the curve tangential to the 

control polygon at the endpoints which means clamped ends. 

 Property of derivative. The k -th order derivatives of the curve at the endpoints 

are only related to the first ( )1k +  control points counted from the ends. 

 Symmetrical. The same Bezier curve shape is obtained if the control points are 

specified in the opposite order. The only difference will be the parametric 

direction of the curve. The direction of increasing parameter reverses when the 

control points are specified in the reverse order. 
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 A Bezier curve will always be completely contained inside of the convex 

polygon of the control points. 

 Invariant under affine transformation and parameter transformation, but not under 

projective transformation. 

 Variation diminishing property. Any straight line will intersect legs of the control 

polygon at least as many times as it crosses the Bezier curve itself.  

 No local control of shape modification. Every point on the curve with the 

exception of the first and last ones moves whenever any interior control point is 

moved. This is the main disadvantage of the Bezier spline. 

5.2.2 B-spline 

Just due to the last disadvantage of the Bezier spline, B-spline is proposed to remedy 

it. Similar to the Bernstein polynomial of the Bezier spline which can be considered as 

a weight value of corresponding control points, the point on a B-spline with parameter 

u  is also set to be the weighted sum of the control points by means of basis functions. 

However, only a part of the control points should be taken into account here instead of 

all of them. That is to say for a certain parameter value u , the basis functions for 

several control points would have no contribution to the point ( )P u  on the B-spline. 

This is the local control property of the spline we want. 

Having this concept in mind, divide the whole parametric domain into several small 

domains by a non-descending set of knots, 0 1 0 1[ , , , ],i m mu u u u u u u= ≤ ≤ ≤  u . 

Here iu  denotes the knot, u  is the knot vector and the half open interval )1,i iu u +  is 

called i -th knot span. Note that some knots could have a same value such as 

1 1i i i pu u u+ + −= = = , then iu  is a multiple knot with multiplicity p . In addition, the 

knot vector is usually defined in the close interval [ ]0,1  with 0 0, 1mu u= = .  

Furtherly, a B-spline with degree k  means that a point on the curve ( )P u  is affected 

by ( 1)k +  control points, then the basis function of the B-spline can be defined 

according to the Cox-de Boor recursion formulae given in the book by Piegl & Tiller 

(1997). 
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                                            (5.8) 

where , ( )i kN u  is the normalized B-spline basis function of degree k . Then the 

completed B-spline expression is established as follow. 

,
0

( ) ( )
n

i i k
i

P u d N u
=

= ∑                                                                            (5.9) 

where id  now denotes the control point or vertex of the control polygon. Apparently, 

the B-spline introduced here is categorized into non-rational type. 

From the above definition, there are two observations. Firstly, basis function , ( )i kN u  

is nonzero in the interval [ )1,i i ku u + + , or equivalently, , ( )i kN u  is nonzero in ( 1)k +  

knot spans [ ) [ ) [ )1 1 2 1, , , , , ,i i i i i k i ku u u u u u+ + + + + + . The other one is that in any knot span 

[ )1,i iu u + , at most ( 1)k +  basis functions of degree k are nonzero, namely 

, 1, ,( ), ( ), , ( )i k k i k k i kN u N u N u− − +  . The relations between control points, knot vector and 

the corresponding data points on the curve can be illustrated in Fig. 5.3. 

u0 u1 uk uk+1 ui-k ui ui+1 ui+k

ui+k+1

um-k-1

um-k

um

d0 d1 di-k di dnControl
points

Knot
vector

Data
points

u0=u1=...uk=0 um-k=um-k+1=...um=1

p0 p1 pi-k ph-1 ph

n=m-k-1

h=m-2k

 
Fig. 5.3 Relations between control points, knot vector and data points 
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Moreover, the basis function , ( )i kN u  has following two properties. 

 Normative. 

, ( ) 1i kN u =∑                                                                         (5.10) 

 Differentiability. 

, 1 1, 1
,

1 1

( ) ( )
( ) i k i k

i k
i k i i k i

N u N u
N u k

u u u u
− + −

+ + + +

 
′ = − − − 

                                         (5.11) 

To sum up, B-spline has following properties similar to Bezier spline. 

 Invariant under affine transformation, parameter transformation and especially 

projective transformation. 

 Always be completely contained inside of the convex polygon of the control 

points. 

 Variation diminishing property. 

 Differentiability. Since the B-spline is piecewise curve, a spline of degree k  

within each piece are C∞ , so called smooth function, while at the knot positions 

are k pC − , p  is the multiplicity of the knot mentioned before. 

 The curve would be smoother with higher degree for the same set of control 

points. 

And the most important one, 

 Local control property due to the basis function. 

5.2.3 NURBS 

As mentioned before, in order to precisely represent elementary curves, normal non-

rational B-spline is extended to NURBS. From its name, Non-Uniform means the 

spaces between knots are nonuniform, Rational represents it is a weighted function 

can be expressed by a rational polynomial and B-Spline denotes that it inherits all the 

properties of B-spline.  

The following piecewise rational polynomial defines a NURBS curve of degree k . 
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,
0

,
0

( )
( , , ) ( )

( )

n

i i i k
i

n

i i k
i

w d N u
Q x y z Q u

w N u
=

=

= =
∑

∑
                                                   (5.12) 

Note that same nomenclatures are adopted here for the control point id  and basis 

function , ( )i kN u  since they are exactly the same ones defined in B-spline. iw  is the 

weight factor corresponding to each control point and can be simply understood as the 

attraction of each control point which is equal to the cross ratio of several specific 

points on a line constructed by a set of curves with weight factors ,0,1iw = +∞  & 

0,1iw ≠  through the control point in fact. Obviously, when the weight factor 1iw = , 

the NURBS degrades to a normal non-rational B-spline as introduced before. 

Actually, there are three equivalent expression forms for NURBS including the most 

common used expression (5.12) which explicitly indicates that NURBS is an 

extension of Bezier spline and non-rational B-spline. While the other two 

forms, expressed by rational basis function and homogeneous coordinates, clearly 

show the properties and geometric meaning of NURBS respectively. Moreover, the 

homogeneous coordinate expression of NURBS would be convenient for designers to 

apply algorithms based on non-rational B-spline in modelling operations due to the 

invariant property stated previously except for derivatives.  

In the homogeneous coordinate system, a NURBS is expressed as follow. 

{ } ,
0

( ) ( ) ( )
n

i i k
i

Q u H P u H D N u
=

 = =  
 
∑                                                 (5.13) 

where [ ],i i i iD w d w=  defines the weighted control points corresponding to the 

original ones id , { }H  represents the perspective projection transformation from one 

dimensional higher Euclidean space to current space, especially 3 dimensional space 

to 2 dimensional plane in present study as shown in Fig. 5.4. The blue line represented 

by ( )P u  is the non-rational B-spline governed by the weighed control points iD  in 
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the 3D coordinate system O XYw− , the red projection line in the projective plane 

1w =  is the defined 2D NURBS curve ( )Q u . The relation between the coordinates is 

[ ]{ } [ ], , , ,X YH X Y w x y
w w

 = =   
                                                         (5.14) 

where w  coordinate in the 3D space is the weight factor of the corresponding point in 

the 2D plane. 

w=1

X

YO

x
y

w

D0

D1
D2

D3

d0

d1 d2
d3

qi

Pi

 

Fig. 5.4 NURBS curve in homogeneous coordinates 

5.3 Construction of complex combined curve 

After introducing the definitions and properties of the splines, we can learn that 

NURBS is an ideal modelling tool in geometry construction, thereby is chosen for 

expressing the contours of ships in present study. Fundamental algorithms of NURBS 

which will be applied in the construction of contour curves are derived in detail in 

Appendix B. 

In general, a complex curve like the contour of a ship’s cross section may consist of 

straight lines, conics and cubic free form curves. Therefore, a uniform NURBS curve 

of degree 3 is suggested to be applied according to following steps. 
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Step 1) Express straight lines and conics by NURBS curves of degree 1 and 2 

respectively, then raise their degrees to 3. 

Step 2) Derive the control points of the free form curves by inverse calculation for 

interpolation to generate NURBS curves of degree 3. 

Step 3) Evaluate the ratios of each curve length to the total curve length according to 

the chords length of the control polygon constructed by the control points of 

all generated curves. 

Step 4) Divide the knot span by the evaluated ratios and recalculate the knot vectors 

of each curve. 

Step 5) Adjust the multiplicities of the knots at the junctions positions between curves 

to 3 for differentiability requirement. 

Step 6) Construct the new uniform degree 3 NURBS curve with all control points, 

weight factors and the combined knot vector. 

The above procedure only construct the contours of the ship in stations provided, 

normally 20 stations. In order to construct all the contours in 81 cross sections as 

stated in Chapter 4, several further steps have to be conducted. That is to say, water 

plane contours in longitudinal direction at different drafts have to be constructed by 

using the offset points in all stations at a same draft each time. Finally, contours in all 

cross sections can be constructed with the new derived offset points on these water 

plane contours. 

It should be pointed out that the weight factors of the data points are usually unknown 

at the beginning in practical design. In addition, if there is no conic part contained in 

the curve, the weight factors could all be set as 1 which transforms the construction 

problem to a normal non-rational B-spline one, and can be adjusted later in the human 

interaction program. 

Actually, research on NURBS modelling is an important but complicated topic in 

industrial modelling field. There are many other advanced algorithms and techniques 

have not been presented here, i.e., spline subdivision, control points repositioning and 

weight modification etc. As they are not needed to be applied and beyond the scope of 

present study, for further details an interested reader can refer to the book by Piegl & 

Tiller (1997). 
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5.4 Modelling verification and validation 

For verification of the modelling tool based on the algorithms introduced above, a unit 

circle and contours at each station of two mathematical ship types, Wigley and 

WigleyIII, will be plotted and compared with their analytical solutions. After that, real 

ship types, Series 60 and S175, will also be adopted to model their body plans for 

validation successively, according to their tables of offsets. 

5.4.1 Verification on mathematical profiles 

• Circle 

In order to express a unit circle by a NURBS of order 3, a convex polygon consists of 

9 control points with the first and last ones coincided is applied in the present 

modelling. The knot vector and the weights of the control points are 

1 1 1 1 3 30,0,0, , , , , , ,1,1,1
4 4 2 2 4 4

2 2 2 21, ,1, ,1, ,1, ,1
2 2 2 2

  =   
   =    

u

w
                                                 (5.15) 

Then the circle is plotted in Fig. 5.5 with the 9 control points added. 

 

Fig. 5.5 Unit circle by 9 control points 
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To further check the accuracy of the modelled circle, the perimeter circleC  can be 

calculated numerically by Gauss-Legrendre quadrature and compared with the 

analytical solution as presented in Table 5.1. The circle is divided into 4 segments 

corresponding to the 4 quadrants with several sets of Gauss points arranged for 

numerical integration. Here, the relative error is defined as follow in percentage. 

( . .)
Present solution Analytical solution

relative error R E
Analytical solution

−
=             (5.16) 

Table 5.1 Comparison of the circle’s perimeter with same mesh 

Analytical Gauss  Present R.E. (%) 

6.28318531 

3 pts 6.28376544 9.233e-3% 

4 pts 6.28316202 3.705e-4% 

5 pts 6.28318624 1.480e-5% 

6 pts 6.28318527 5.795e-7% 

 

From the plotted figure above and data comparison in the table, it is clearly verified 

that the accuracy of NURBS description for an elementary curve without the 

parameter π  in its expression can reach very high level with relatively large mesh 

size and few Gauss points to derive its arc length. Also from the table, with adding the 

Gauss points in each segment, the accuracy climbs extremely fast which is another big 

benefit in numerical calculation. Because this process would not increase as much 

computation time as the usual way by simple mesh refinement. 

• Wigley and WigleyIII 

A standard Wigley ship hull defined by following expression is used for verification. 

2 221 1
2
B x zy

L D
      = − −      

         
                                                            (5.17) 

where , ,L B D  represent ship length, breadth and draft respectively, and fulfill the 

relations / 10L B = , / 16L D = , 2L m=  is chosen here. Offsets at each station are 
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calculated by this expression in advance, then the inverse calculation is performed to 

derive the control points of the curve, finally the NURBS expression of the curve can 

be established for plotting the contours to compare with the analytical solutions as 

shown in Fig. 5.6. Note that the weight factors are all set to be 1 as previous stated. 

And due to the symmetry of the hull, only a quarter of the ship is taken into 

considered for verification. 

 

Fig. 5.6 Transverse profiles of the Wigley hull 

Besides, the 3D view of the profiles is also presented intuitively in Fig. 5.7.  

 

Fig. 5.7 3D view of the Wigley transverse profiles 
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Similarly, the surface expression for WigleyIII ship hull is also given below.  

2 2 22 21 1 1 0.2
2
B x z xy

L T L
          = − − +          

               
                                  (5.18) 

where 3 , 0.3 , 0.1875L m B m D m= = = , volume of displacement 30.078m∇ = . Then 

the contours and their 3D view are shown in Fig. 5.8 and Fig. 5.9 respectively. 

 
Fig. 5.8 Transverse profiles of the WigleyIII hull 

 
Fig. 5.9 3D view of the WigleyIII transverse profiles 
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From comparisons of the contours modelled by present NURBS tool with their 

analytical solutions, it is clearly verified that NURBS can precisely describe the 

geometries of ships with limited data points provided. Moreover, comparisons of 

midship section coefficients MC  and the corresponding non-dimensional curve length 

CL L  are listed in table 5.2 with 5 segments mesh on half profile and 5 Gauss points 

arranged on each segment which further verify the high accuracy of the results 

obtained by present tool. Note that Wigley and WigleyIII share same midship section 

profiles actually.  

Table 5.2 Comparisons of midship parameters 

 Analytical Present R.E. (%) 

MC  0.66666667 0.66666673 9.752e-6% 

CL L  0.16671318 0.16671349 1.880e-4% 

 

5.4.2 Validation on real ships 

For real ships validation, Series 60 and S175 with their principal particulars given in 

table 5.3 below are also modelled by the present NURBS tool as shown in Fig. 5.10 

and Fig 5.12 respectively. Their 3D views are shown in Fig 5.11 and Fig 5.13 as well. 

Table 5.3 Main particulars of Series 60 and S175 

Parameters Series 60 S175 

Length, ( )L m  400 175 

Breath, ( )B m  57.14 25.4 

Draft, ( )D m  22.86 9.5 

Block coefficient, BC  0.7 0.572 

Volume of displacement, ( )ton∇  365742 24742 

Radius of inertia for roll, xxk  - 0.33 B  

Radius of inertia for pitch, yyk  - 0.25 L  

Radius of inertia for yaw, zzk  - 0.269 L  
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Fig. 5.10 Transverse profiles of Series 60 hull with 0.7bC =   

 
Fig. 5.11 3D view of Series 60 transverse profiles with 0.7bC =  
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Fig. 5.12 Transverse profiles of S175 hull 

 
Fig. 5.13 3D view of S175 transverse profiles 
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Therefore, this tool could be applied for real ships modelling in practical design. 
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actually which are practical enough for profiles without any elementary curve parts. 

However, the weight factors can be adjusted later if necessary according to the 

curvature changing of different local areas in human computer interaction program. 

5.5 High order BEM 

Recalling the 2D BEM described in Chapter 4 for solving BVPs, the boundary of the 

flow field in a cross section plane is discretized into straight line segments with 

constant values of velocity potential and its derivatives over each segment. As 

mentioned in the literature review, apart from the discontinuity of the normal 

derivative at the join points between segments, the main disadvantage of this common 

applied low order BEM in seakeeping analysis is that large number of segments have 

to be used for the discretization of the boundary to seek results with satisfactory 

accuracy. Thus it will consume a lot of computer memories as the coefficient matrix 

in (4.62) or (4.63) is non-singular. Moreover, when a ship experiencing a wave 

induced motion at a very high frequency, the wave length of the generated wave 

would be very small, thereby a denser distribution of elements should be arranged on 

the free surface. 

As is seen from the good geometry modelling results presented in the last sub section, 

it is appropriate to apply this NURBS tool to represent the distributions of the velocity 

potential on the boundary as follow.  
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If the weight factors are all chosen as 1iw =  since no apparent elementary curve 

components appear on the boundary contours, the velocity potential and its normal 

derivative can be described by B-spline as follow. 
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=∑                                                                                    (5.20) 
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Besides, the wave elevation can also be expressed by using the B-spline basis function 

for free surface stepping. 
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=∑                                                                                    (5.22) 

In (5.20) and (5.21), the generalized velocity potential φ  can be SΦ  or jϕ . The 

elevation ζ  is also a generalized one. iφ , i nφ∂ ∂  and iζ  denote the control points of 

the velocity potential, normal derivative and wave elevation respectively. ( )1Fn +  is 

the number of control points on the free surface. Similarly, the numbers of control 

points on body surface, open boundary and symmetry line boundary under the keel 

are ( )1Sn + , ( )1Rn + , ( )1Kn +  respectively. In the calculations, the order of the spline 

is chosen as 3k =  which is quite enough.  

Substituting (5.20) and (5.21) into (4.62) and (4.63), the linear algebraic equations of 

vertical motions and lateral motions, for solving the corresponding values at control 

points will be derived as follow by (5.23) and (5.24) respectively. 
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where, 
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It should be noticed that the integral interval in (5.25) is the arc jl


 instead of the 

previous line segment jl∆ . Besides, according to the relation between the control 

points and data points given in Fig. 5.3, there are only 1 4k + =  nonzero basis 

functions at each span defined by the space between adjacent knots in the knot vector, 

the equations (5.23) and (5.24) can be rewritten as follow. 
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where the subscript s  is the span index in the knot vector of each boundary with 

another subscript j  to it to indicate the associated panel index j . 
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Together with the (5.22) been substituted back into the free surface condition (4.66) or 

(4.69), the wave elevation at the control points to form the free surface profile will 

also be derived.  
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           (5.28) 

where the superscript p  represents the time index. Noting that in the linear algebraic 

equations, boundary conditions are fulfilled at the Gauss points on each element 

instead of at the midpoint of the straight line element in the normal BEM.   

5.6 Validation of hydrodynamic coefficients 

In this subsection, the frequency dependent hydrodynamic coefficients are computed 

for a WigleyIII hull and a Series 60 ( 0.7BC = ) ship forced in vertical motions and 

lateral motions with forward speed by the NURBS based 2.5D approach described in 

Chapter 4 & 5. Results are compared with available measured experimental data or 

numerical results from publications. 

5.6.1 Vertical motions 

Firstly, added mass and damping coefficients of the WigleyIII in vertical motions are 

computed and compared with the measured value reported by Journée (1992) in Fig. 

5.14 to Fig. 5.17. The Froude numbers nF  used are 0.3 and 0.4. The non-dimensional 

form of circular frequency of oscillation and hydrodynamic coefficients are defined as 
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                                                                    (5.29) 
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where, 
0 , 2,3
1 , 4,5,6k j

for k j
m or n

for k j
=

=  =
. 

 

 

Fig. 5.14 Hydrodynamic coefficients versus eω′  due to unit amplitude heave motion 

for the WigleyIII advancing at 0.3nF =  
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Fig. 5.15 Hydrodynamic coefficients versus eω′  due to unit amplitude pitch motion for 

the WigleyIII advancing at 0.3nF =  
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Fig. 5.16 Hydrodynamic coefficients versus eω′  due to unit amplitude heave motion 

for the WigleyIII advancing at 0.4nF =  
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Fig. 5.17 Hydrodynamic coefficients versus eω′  due to unit amplitude pitch motion for 

the WigleyIII advancing at 0.4nF =  

The comparison shows that the heave and pitch hydrodynamic coefficients computed 

by the present numerical approach are in good agreement with the measured values in 

general, no matter the forward speed increasing. This normally could not be achieved 

by using strip theories, as they are based on the assumption of high frequency with 

zero forward speed or low speed. However, relative big deviations can be observed in 

the estimations of pitch damping 55B  which are probably caused by the linearization 

of the BVP on the free surface condition and body surface condition. Let bP  and sP  

represent the exact values of the vertical hydrodynamic pressure on the fore body of 

the hull and after body respectively. Meanwhile, the nonlinear behaviour of the flow 

in nature would be much stronger at the bow and stern than that along the midbody of 
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the hull. So we can assume that the deviation of the pressure only comes from the bow 

and stern denoted by bP∆  and sP∆  as shown in Fig. 5.18. When the hull is in a pitch 

motion, bP∆  and sP∆  would have similar value but opposite direction, thereby cancel 

each other out in the vertical force estimation. However, they will create a big 

deviation of moment as the arm of this moment is the ship length thus greatly enlarge 

the deviation. Moreover, as known to all, the wave damping is related to the energy 

dissipation. The amplitude of the radiation wave should decay with the wave 

propagating away from the hull in the real 3D flow field. However, when the problem 

is transferred into the 2D cross plane, the radiation condition only make sure the wave 

is radiated into infinity without reflecting but no amplitude decay assumed. Therefore 

this will result the overestimation of damping force by 2D approaches, and further 

increase the deviation in the estimation of pitch damping.   

 

Fig. 5.18 Diagram of the vertical forces on the hull in pitch 

Fig. 5.19 and Fig. 5.20 show the computed hydrodynamic coefficients of the Series 60 

( 0.7BC = ) ship advancing at 0.2nF = . Experimental results reported by Gerritsma 

(1960) are also shown for comparison. 
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Fig. 5.19 Hydrodynamic coefficients versus eω′  due to unit amplitude heave motion 

for the S60 advancing at 0.2nF =  
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Fig. 5.20 Hydrodynamic coefficients versus eω′  due to unit amplitude pitch motion for 

the S60 advancing at 0.2nF =  

Again, from the comparison, the results computed by the present approach agree 

nicely with the experimental results except for the 55B  due to the probable reason 

explained before. 

5.6.2 Lateral motions 

Apart from the hydrodynamic coefficients usually computed for ships advancing in 

waves coupled with high frequency vertical motions, we are obviously interested in 

the prediction of the lateral motions in the horizontal plane since our final discussion 

in the next Chapter will be focused on the manoeuvring analysis. In Fig. 5.21 to Fig. 

5.24, hydrodynamic coefficients in the form of manoeuvring derivatives are computed 
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for the Series 60 ( 0.7BC = ) advancing with lateral oscillations, together with the 

experimental results obtained by van Leeuwen (1964). The Froude numbers nF  used 

are 0.2 and 0.3. The subscript ‘dot’ in the figures denotes the time derivative product. 

Noting that the limiting value of these hydrodynamic coefficients at zero frequency 

can be provided for manoeuvring simulations. Relations between the seakeeping 

hydrodynamic coefficients and manoeuvring derivatives are presented as follow. 
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The non-dimensionalization of the hydrodynamic coefficients will follow the way 

common applied in manoeuvring analysis, the Prime system, which will also be 

introduced in next Chapter. Therefore, 
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Fig. 5.21 Hydrodynamic derivatives versus eω′  due to unit amplitude sway motion for 

the S60 advancing at 0.2nF =  

  



107 
 

 

 

Fig. 5.22 Hydrodynamic derivatives versus eω′  due to unit amplitude yaw motion for 

the S60 advancing at 0.2nF =  
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Fig. 5.23 Hydrodynamic derivatives versus eω′  due to unit amplitude sway motion for 

the S60 advancing at 0.3nF =  
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Fig. 5.24 Hydrodynamic derivatives versus eω′  due to unit amplitude yaw motion for 

the S60 advancing at 0.3nF =  

From comparison, the numerical results obtained by the present approach show 

significantly positive agreement with the experimental results. The small difference 

appeared in the limiting value at zero frequency can be explained that in the numerical 

calculations rigid wall free surface condition is imposed approximately while in fact 

no such plane is set in experiments. 

5.7 Validation of wave exciting force 

Considering the ship is restrained at its average position advancing in head waves, the 

following validation of diffraction problems on the Series 60 ( 0.7BC = ) are presented 

by showing the magnitude and phase of the wave exciting forces and moments acting 
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on the hull. The Froude number nF  used is 0.2. Experimental results reported by 

Gerritsma (1960) and the computed results by the 3D method by Lin & Yue (1990) 

are included for comparison. The non-dimensional forms of the magnitudes are given 

by  

3 3

5 5

/
/

F amplitude of F L gA
F amplitude of F gA

ρ
ρ

′= × ∇
 ′ = ∇

                                                                   (5.32) 

where A  is the amplitude of incident wave, ∇  is the volume of the ship. The phase 

angles are measured relative to the occurrence of wave peak. 

 

 

Fig. 5.25 Magnitude and phase of the wave exciting force and moment on the S60 

advancing at 0.2nF =  
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From comparison, the results by the present approach and by the 3D method by Lin & 

Yue (1990) all tend to agree with the measured experimental data nicely.  

5.8 Validation of RAO 

After presenting the results of hydrodynamic coefficients in radiation problems and 

wave exciting forces in diffraction problems, validations will be finally carried out on 

the wave induced motions. The recommended S175 container ship by the ITTC 

seakeeping committee will be used for calculations. RAOs of 5-DOF motions under 

different incident wave angles χ  are presented. The Froude number nF  used is set at 

0.275. And the range of the wave length is 0.5 2.5Lλ< < , corresponding to the non-

dimensional natural frequency of the incident wave 01.58 / 3.54L gω< < . The 

results from the ITTC report (1978) as a set of statistic values, named “Quartiles” are 

included for comparison. 

From Fig. 5.26, the results given by the present approach basically agree with the data 

provided by ITTC as well. Apparent deviations can be observed in sway, roll and yaw 

motions when the incident angle 60oχ = − . Less good agreement is achieved in the 

case of the amplitudes, while the phases agree reasonably well. In the roll motion, the 

difference is present because the estimation of the equivalent roll damping coefficient 

is different from the one specified by ITTC. In the sway and yaw motions, the 

deviations of the amplitudes would be due to indirect approximation of the lift force 

appeared in lateral motions. 
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(a) Sway 

 
(b) Heave 

 
(c) Roll 
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(d) Pitch 

 
(e) Yaw 

Fig. 5.26 RAOs for the S-175 container ship advancing at 0.275nF =  under different 

incident wave angles 

5.9 Summary of the chapter 

Following the development of the 2.5D approach for seakeeping analysis already 

described in Chapter 3, the NURBS is first introduced for geometry modelling of the 

hulls including the fundamental algorithms applied in the present numerical tool been 

given. Verifications of the tool on the unit circle and mathematical ship hulls are 

carried out together with validations on the two common real ship types, i.e., a Series 

60 ( 0.7BC = ) ship and a S175 container ship. Then the NURBS based BEM is 
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proposed by applying the tool in expressing the distributions of the variables on the 

boundary. 

Next, validations of the approach on the radiation problems by calculating the 

frequency dependent hydrodynamic coefficients are carried out on the WigleyIII and 

the Series 60 ( 0.7BC = ) ship advancing in calm water coupled with forced vertical 

motions and lateral motions respectively. Validations on the diffraction problems are 

also carried out on the Series 60 ship by presenting the magnitude and phase of the 

wave exciting forces in heave and pitch. Regarding the wave induced motions, 

calculations of RAOs are carried out on the S175 ship recommended by the ITTC 

which will also be applied for manoeuvring simulations in the next Chapter. In all 

these validations presented above, results are compared with available experimental 

measured data or numerical results and good agreements have been achieved, thereby 

demonstrate that the present established 2.5D NURBS based numerical tool for 

seakeeping analysis is reliable. And it put a good foundation for the next analysis of a 

ship manoeuvring in waves which also involving high frequency wave induced 

motions.   
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6 Manoeuvring in waves 

In this chapter, we will carry out the final objective of the present study which is 

analyzing the manoeuvring behaviour of a displacement ship advancing with forward 

speed in regular deep water waves. As stated before, the analysis is described by 

considering combined seakeeping and manoeuvring as a two time scales problem. The 

linear wave induced motions of a ship are assumed to occur on a more rapidly varying 

time scale than the manoeuvring. When the ship has a mean forward speed and does a 

manoeuvring in a seaway, the wave induced motions is affected by the slowly varying 

manoeuvring according to the changing kinematic parameters of the ship and the 

relative incident wave angle. On the other hand, the effect of the seakeeping on the 

manoeuvring analysis is in terms of slowly varying mean second order wave drift 

loads. In the proceeding discussion, a two time scales combined seakeeping and 

manoeuvring model will be shown applying a sequential procedure and followed by 

its implementation in case of typical maneuvers of a selected ship.    

The mathematical model of the manoeuvring motions in horizontal plane will be 

formulated firstly based on the modular concept. Evaluations of each external force 

component will be given in detail. The mean drift force which cannot be considered 

properly by the methods based on the unified theory utilizing convolution integral will 

be estimated by the direct pressure integration method. After that, a whole flow chart 

of the simulation system based on the two time scales model will be presented. Finally, 

validation of the model will be carried out on the selected ship executing two typical 

maneuvers, namely turning circle and Zig-zag, in calm water and regular waves 

respectively. The simulation results will be compared with the available experimental 

measurements. Note that the simulations here are limited to the assumptions that the 

water depth and the horizontal extent are infinite which means the shallow water and 

bank effects are not considered.  
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6.1 The mathematical model 

6.1.1 Coordinate system 

Firstly, the procedure starts with an introduction of the manoeuvring body fixed 

coordinate system shown in Fig. 6.1. It should be noted that Fig. 6.1 represents the Fig. 

4.1 in the horizontal plane as seen from above. The Earth fixed coordinate system 

0 0 0 0( )O x y z−  is still used to keep track of the global position of the ship and its 

heading angle. The incident wave direction is also described in this frame. The 

hydrodynamic frame ( )O xyz−  translating in the horizontal calm water plane at the 

mean forward speed U  is fixed with respect to the mean oscillatory position of the 

ship. Its x  axis is coincide with the direction of U . This is the frame in which the 

BVPs are formulated as described in Chapter 4 for seakeeping analysis. Another 

manoevuring body fixed frame ( )O x y z′ ′ ′ ′−  is employed with its origin set in the 

plane of undisturbed free surface and z′  axis pointing upwards passes through the 

center of gravity as well, whereas positive direction of x′  axis is always pointing to 

the bow, y′  axis is pointing to the portside. The frame translates and rotates in all 6-

DOF with the body. Apparently, this frame is a non-inertia frame which is used to 

describe the forces and moments acting on the ship in manoeuvring motions for its 

convenience of time independent characteristic. Besides, it is also convenient for the 

description of the hull surface. 

 

Fig. 6.1 Coordinate systems in manoeuvring analysis 
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Similar to those in the hydrodynamic frame, in the body fixed frame, , ,u v w  are 

defined as surge, sway and heave velocities respectively and , ,p q r  are rolling, 

pitching and yaw rates. The Euler angles between the body fixed frame and the earth 

fixed frame are , ,ψ θ φ  which denote the heading angle, pitching angle and rolling 

angle respectively. Noting that, in general , ,r q pψ θ φ≠ ≠ ≠  . In addition, , ,β δ η  are 

the drift angle, rudder angle and incident wave angle respectively with the positive 

direction shown in Fig. 6.1.  

Normally, motions of a rigid body can be described in the earth fixed frame, which is 

an inertial frame, according to the Newton’s second law. However, for the purpose of 

manoeuverability analysis, it is more convenient to establish the motion equations in 

the body fixed frame, thereby a transformation of the kinematic variables from the 

earth fixed frame to the body fixed frame has to be conducted. By following the roll-

pitch-yaw rotation convention as follow,  
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0 0 1

x x
y y
z z

x x
y y
z z

x x
y y
z z

φ φ
φ φ

θ θ

θ θ

ψ ψ
ψ ψ

     
     =     
     −     

−     
     =     
′          
′     

     ′ = −     
′ ′          

                                                                        (6.1) 

in which ( )ˆ ˆ ˆ, ,x y z  is the interim frame during the rotation, the relationship between 

linear velocities in the body fixed and the earth fixed frames can be derived in the 

form of Euler matrix. 

0

0

0

cos cos cos sin sin sin cos sin sin cos sin cos
sin cos cos cos sin sin sin sin sin cos cos sin

sin cos sin cos cos

x u
y v
z w

ψ θ ψ θ φ ψ φ ψ φ ψ θ φ
ψ θ ψ φ ψ θ φ ψ θ φ ψ φ

θ θ φ θ φ

− +     
     = + −     
     −     







 

(6.2) 
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Similarly, the relationship between the angular velocities can be given as 

1 sin tan cos tan
0 cos sin
0 sin sec cos sec

p
q
r

φ φ θ φ θ
θ φ φ
ψ φ θ φ θ

     
     = −     
         







                                                                (6.3) 

If assuming small manoeuvring angles, then, cos 1, sinψ ψ ψ≈ ≈  etc. and neglecting 

their products, e.g., 0ψφ ≈  etc., the linearized Euler matrix can be given as follow. 

0

0

0

1
1

1

x u
y v
z w

ψ θ
ψ φ
θ φ

−     
     = −     
     −     







                                                                              (6.4) 

1 0
0 1
0 1

p
q
r

φ θ
θ φ
ψ φ

     
     = −     
         







                                                                                     (6.5) 

It should be noted that the finite angular velocity transformation matrix is singular for 

the pitch angle, 90oθ = ± , but this is not a problem for the ships since they never 

operate close to this singularity.  

In the manoeuvring analysis, we are more concerned about the changing of the 

heading angle and the trajectory of the ship in horizontal plane. For most of 

conventional ships, the heave, pitch and roll motions would have weak influences on 

the horizontal motions which means 0 0, ,x yψ  are dependent of , ,u v r  only. This is the 

classical 3-DOF ship manoeuvring motions problem. However, for some modern ship 

types, e.g., container ship, ro-ro ship and high speed craft, having higher COG, the 

turning motion and wave effect may induce considerable values of heeling angle, 

thereby leads to pressure changes over the ship surface which will result significant 

different horizontal motions. Therefore, 4-DOF ship motions problem by considering 

, ,u v r  coupled with rolling velocity p  should be established for the analysis of ship 

manoeuvring in waves. By setting 0, 0w q= =  and neglecting the pitching angle θ  as 

stated above, following 4-DOF motions relationships can be derived. 
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0

0

cos cos sin
sin cos cos
cos

x u v
y u v

r
p

ψ φ ψ
ψ φ ψ

ψ φ
φ

= −
 = +
 =
 =









                                                                               (6.6) 

The time histories of the velocities and angular velocities can be first analysed in the 

body fixed frame. Then according to the relation (6.6), the position and attitude of the 

ship can be easily obtained by integrating the time derivatives in earth fixed frame 

numerically. In consequence, to establish the motion equations in the body fixed 

frame would be the first task. 

6.1.2 Motion equations 

A ship maneuvers in horizontal plane can be regarded as a special case of the 

generalized rigid body motions in infinite medium. By applying momentum theorem 

and moment of momentum theorem based on mechanics of rigid body, the motion 

equations can be derived for system dynamic analysis. In particular, there are mainly 

two ways for this derivation, one is the vector mechanics based on the Newton’s laws 

of motion and the other one is the analytical mechanics which considering the system 

as a whole and making use of the kinetic energy and potential energy to derive the 

motion equations without calculating the force components. Theoretically, these two 

ways would derive the same set of the motion equations. The first way by vector 

mechanics will be applied for the current derivation. 

a
O0 O'

z'

z0

y'

y0

x' x

O'

x'

y'
z'

VO'

V
VG

G

P

S

SO'

t0

t0+ t

G

 

Fig. 6.2 Sketch map of the rigid body (ship) motion 
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The momentum theorem and moment of momentum theorem of a rigid body are 

expressed as follow. 

a
a

dGF
dt
dHM
dt


∑ =

∑ =







                                                                                               (6.7) 

where F∑


 is the total external force, aM∑


 is the total moment about a space fixed 

point a , G


 is the total momentum of the rigid body, then aH


 is the total moment of 

momentum about the fixed point. For convenience, the origin of the earth fixed frame 

0O  can be set on this fixed point. Meanwhile, the origin of the body fixed frame O′  is 

also set on this point at an arbitrary time instance instantaneously as shown in Fig. 6.2. 

Defining , ,x y zG G G′ ′ ′  as the coordinate components of the total momentum.  

x y zG G i G j G k′ ′ ′= + +
  

                                               (6.8) 

Then, 

x y z x y z

dG G i G j G k G i G j G k
dt ′ ′ ′ ′ ′ ′= + + + + +


                                        (6.9) 

Obviously, 

x y z

GG i G j G k
t′ ′ ′

∂
+ + =

∂

 
                                                (6.10) 

which represents the partial derivative without considering the rotation of the body 

fixed frame. On the other hand, according to vector analysis, we have 
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( )

( )

( )

dii rj qk
dt
djj pk ri
dt
dkk qi pj
dt


= = −




= = −



= = −



 


 


  

                                                                                    (6.11) 

So, 

x y zG i G j G k G′ ′ ′+ + = Ω×
                                                                               (6.12) 

where, 

pi qj rkΩ = + +
  

                                                                                        (6.13) 

Thereby, the following momentum equation in the body fixed frame can be derived. 

dG GF G
dt t

∂
∑ = = +Ω×

∂


 

                                                                            (6.14) 

According to the definition of the momentum of a rigid body, 

G Vdm= ∫
 

                                                                                                  (6.15) 

where V


 represents the velocity of an arbitrary point P  on the rigid body with 

respect to the earth fixed frame, and dm  is the mass element around this point. If 

taking the COG as the reference point of the rigid body motion, then 

GV V r= +Ω×
   

                                                                                           (6.16) 

where r  represents the radius vector of the point with respect to the COG. By using 

the definition of the center of mass 0rdm =∫
  and m  is the total mass of the body, we 

can get 
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( )G GG V r dm mV= +Ω× =∫
                                                             (6.17) 

Furtherly,  

G O GV V ξ′= +Ω×
  

                                                                          (6.18) 

G G G Gx i y j z kξ ′ ′ ′= + +
  

                                                                    (6.19) 

where, OV ′


 is the velocity of the body fixed frame origin, Gξ


 is the radius vector of 

COG with respect to the origin, ( , , )G G Gx y z′ ′ ′  is the coordinate of the COG. Thus, 

O GG mV m ξ′= + Ω×
  

                                                                      (6.20) 

( )O GG m V m ξ′Ω× = Ω× + Ω× Ω×
     

                                                 (6.21) 

Substituting (6.20) and (6.21) into (6.14), the final momentum equations of the rigid 

body motion can be expressed in the body fixed frame as follow. 

{ }
{ }
{ }

2 2
( ) ( ) ( )

2 2
( ) ( ) ( )

2 2
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

I II G G G III

I II G G G III

I II G G G III

X m u qw rv x q r y pq r z pr q

Y m v ru pw y r p z qr p x qp r

Z m w pv qu z p q x rp q y rq p

 ′ ′ ′∑ = + − − + − − − +  
 ′ ′ ′∑ = + − − + − − − +   

 ′ ′ ′∑ = + − − + − − − +  

  

  

  

     (6.22) 

Where the left hand side of the equations represents the components of total external 

forces; while for the right hand side, the terms with subscript (I) represent the inertial 

force due to the acceleration of the rigid body, the subscript (II) represents the inertial 

force due to the rotation of the body fixed frame, which in fact is the centrifugal force, 

the subscript (III) represents the added inertial force due to the origin of the body 

fixed frame is different from the COG, this force can be partly categorized into 

centrifugal force and the rest part into tangential inertial force qualitatively. 
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The derivation of the moment of momentum equation would be a little more 

complicated due to the conversion of the center of the moment. In fact, the second 

equation of (6.7) is valid for a space fixed point a  as the center of the moment. 

However, the moving point O′  has to be chosen as this center for convenience. This 

is not a conflict since the origin of the body fixed frame can be set on the space fixed 

point a  at a time instance, then 

O aM M′∑ = ∑
 

                                                               (6.23) 

Similarly, 

( )O aH H S V dm′ = = ×∫
  

                                                 (6.24) 

where S


 denotes the radius vector from point a  which is also the point O′  at time 

instance 0t  to an arbitrary point P  on the rigid body. The situation would be different 

from that of /dG dt


 when deriving /OdH dt′


, since not only the variation of aH  and 

the rotation of the body fixed frame, but also the origin O′  departing from the space 

fixed point a  would contribute to the time derivative /d dt  by producing additional 

inertial moment.  

As shown in Fig. 6.2, at time 0t  the origin O′  is coincide with the space fixed point a  

then the frame 
0

( )tO x y z′ ′ ′ ′−  is also coincide with the 0 0 0 0O x y z−  frame. At time 

0t t+ ∆  the body fixed frame moves to the position 
0

( )t tO x y z +∆
′ ′ ′ ′− . By setting OS ′


 as 

the radius vector of O′  with respect to a  and ξ


 as the radius vector of P  with 

respect to O′ , then, 

0t dt OS S ξ′+ = +
  

                                                                   (6.25) 
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( ) ( )
( ) ( )( )
( ) ( )

0 0

0 0

00

a t dt t dt

O
t dt t dt

O O t dtt dt

H S V dm

S Vdm V dm

S G H

ξ

+ +

′
+ +

′ ′
++

= ×

= × + ×

= × +

∫

∫ ∫

 

  

  
                                  (6.26) 

Taking the time derivatives of both sides of the equations (6.26), and noting that 

O OdS dt V′ ′=
 

 , the following relation can be derived, 

a O
O

dH dH V G
dt dt

′
′= + ×

 


                                                                     (6.27) 

This relation clearly shows the difference between aH
  and OH ′

 . 

Similar to /dG dt


, we can further derive, 

O O
O

dH H H
dt t

′ ′
′

∂
= +Ω×

∂

 
 

                                                                    (6.28) 

Finally, the moment of momentum equation with respect to body fixed frame can be 

given, 

a O
O O O

dH HM H V G
dt t

′
′ ′ ′

∂
∑ = = +Ω× + ×

∂

 
   

                                       (6.29) 

Take a further look at the terms OH ′


 and /OH t′∂ ∂


 , then 

( ) ( ) ( )

( ) ( )
( ) ( )

( )

O a a ax y z

O

O

G O

H H i H j H k

V dm V dm

V dm dm

m V dm

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

′

′

′

′

= + +

= × = × +Ω×

= × + × Ω×

= × + × Ω×

∫ ∫
∫ ∫

∫

  

    

   

   
                                              (6.30) 

The second term can be expanded as follow, 
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( ) ( )
( )
( )

x x x y x z

y x y y y z

z x z y z z

dm I p I q I r i

I p I q I r j

I p I q I r k

ξ ξ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

× Ω× = − −

+ − + −

+ − − +

∫
  




                                                  (6.31) 

where, 

( )
( )
( )

2 2

2 2

2 2

x x

y y

z z

I y z dm

I z x dm

I x y dm

′ ′

′ ′

′ ′

 ′ ′= +

 ′ ′= +


′ ′= +

∫
∫
∫

                                                                           (6.32) 

are the moments of inertia with respect to , ,x y z′ ′ ′  axes respectively. And, 

x y y x

y z z y

z x x z

I I x y dm

I I y z dm

I I z x dm

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

 ′ ′= =

 ′ ′= =


′ ′= =

∫
∫
∫

                                                                           (6.33) 

are the products of inertia with respect to , ,x y y z z x′ ′ ′ ′ ′ ′  planes respectively. The final 

moment of momentum equations of the rigid body motion can be expressed from 

(6.29) in the body fixed frame as follow. 

( ) ( )
( ) ( )

( ) ( )

( )

2 2

( )

( )

( )

2 2

(

x x x y x z I

y y z z x y x z y z II

G G III

y y y z y x I

z z x x y z x y x z II

K I p I q I r

I I qr I rp I pq I q r

my w pv qu mz v ru pw

M I q I r I p

I I rp I pq I qr I r p

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′

 ∑ = − − 

 + − − + − − − 

′ ′+ + − − + −  

 ∑ = − − 

 + − − + − − − 

  

 

  

( ) ( )

( ) ( )
( ) ( )

)

( )

( )

2 2

( )

( )

G G III

z z x z y z I

x x y y x z y z x y II

G G III

mz u qw rv mx w pv qu

N I r I p I q

I I qp I qr I rp I p q

mx v ru pw my u qw rv

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′













′ ′+ + − − + −   

  ∑ = − − 
  + − − + − − − 
 ′ ′+ + − − + −  

 

  

 

                            (6.34) 
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Similar to (6.21), the left hand side of the equations represents the components of total 

external moments; while for the right hand side, the terms with subscript (I) represent 

the inertial moment due to the acceleration of the rotation of the rigid body, the 

subscript (II) represents the inertial moment due to the gyroscopic effect, the subscript 

(III) represents the added inertial moment due to the origin of the body fixed frame is 

different from the COG. 

Concrete to the 4-DOF manoeuvring motions considered here, the equations (6.22) 

and (6.34) can be simplified by neglecting heave and pitch which have little influence 

on the horizontal motions, then the following motion equations can be derived. 

.

( )
( )

( )
( )

2
G G

G G

x x x z G

z z x z G

m u rv x r z rp X

m v ru x r z p Y
I p I r mz v ru K
I r I p mx v ru N

′ ′ ′ ′

′ ′ ′ ′

 ′ ′− − + = ∑


′ ′+ + − = ∑


′− − + = ∑
 ′− + + = ∑



  

  

  

.                                                                 (6.35) 

In which the mass of the ship can be determined by, 

m ρ= ∇  or Bm LBDCρ=   

where ρ  is the density of water, ∇  is the displacement of the ship, , ,L B D  represents 

the length between perpendiculars, breadth and draft as usual, BC  is the block 

coefficient of the ship. 

Normally a ship is a slender body and approximately symmetrical about the midship 

section ships, then the equations can be further simplified by assuming that 0x zI ′ ′ ≈ . 

Besides, the origin of the body fixed frame can be set at the COG as well, then, (6.35) 

can be rewritten in the following simplified expression. 

( )
( )

x x

z z

m u rv X
m v ru Y
I p K
I r N

′ ′

′ ′

− = ∑
 + = ∑


= ∑
 = ∑









                                                                                      (6.36) 



127 
 

(6.35) or (6.36) is the basic model of the manoeuvring motions which can be solved 

by numerical approach if all the external forces or moments on right hand side and the 

initial state of the ship motion are known. In the present study, 0Gx =  is substituted 

into (6.35) and the 4th order Runge-Kutta scheme is applied to solve the motion 

equations, then the time histories of kinematic variables and the trajectory of the ship 

can be obtained for the assessment of ship’s manoeuverability. 

The external forces and moments acting on a manoeuvring ship can be classified into 

three groups as shown in Fig. 6.3. Note that the gravity of the ship and the buoyancy 

induced by hydrostatic force are neglected in the figure since they are equalized by 

each other.  

 

Fig. 6.3 Components of the force (moments) during maneuvers 

The first group is the control forces including the main control forces by propeller and 

rudder, and the additional forces by other equipment like anchor chain, side thruster or 

mooring lines. It is the inducement of the ship executing expected maneuvers. The 

second group is the environmental forces including wind, current and wave effect. 

The wind force is acting on the superstructure of the ship and related to the Beaufort 

wind scale, encounter angle and the centroid of the lateral area of the superstructure. 

The current force depends on the characteristic of the current which means if the 

current is uniform it will cause the ship drifting along the current. Regarding the wave 
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force, apart from the first order high frequency oscillated forces been taken care of in 

Chapter 4 & 5, there are second order forces including mean drift forces which would 

lead to ship’s deviation from its original course when advancing in regular waves and 

the low frequency slowly varying drift force if the wave condition is irregular. Under 

the action of control forces and environmental forces, the ship will start to execute 

manoeuvers in the water, then reaction force on the wetted hull surface provides the 

third group of external forces, namely the hydrodynamic forces on the hull, as the sum 

of the positive pressure and the shear stress. And it can be divided into an inertial part 

and a viscous part due to different causes. The present study only cover the force 

components from the propeller, the rudder, the wave and hydrodynamic forces on the 

hull, whereas other components are excluded.  

6.2 Modular concept 

As introduced in the literature review, the existing mathematical models related to the 

manoeuvring simulation of a single ship are nowadays mainly classified into two 

categories, i.e., the whole ship model and modular manoeuvring ship model (MMG 

model). Because of having a more clear physical explanation and more convenience 

in modification according to the imposed requirements from a simulation, the MMG 

model is the preferred choice instead of the whole ship model when the mathematical 

manoeuvring model needs to be constructed in a general and relatively simple way.  

Therefore, the manoeuvring motion equation (6.35) can be rewritten as follow by 

decomposing the external forces and moments on the right hand side . 

( )
( )

( )
( )

G P R H W

G R H W

x x G R H W

z z G R H W

m u rv z rp X X X X
m v ru z p Y Y Y
I p mz v ru K K K
I r mx v ru N N N

′ ′

′ ′

′− + = + + +
 ′+ − = + +
 ′− + = + +
 ′+ + = + +



 

 

 

                                        (6.37) 

where the subscripts , ,P R H  denote the force components on the propeller, the rudder, 

the hull respectively, and W  denote the wave drift forces. Note that the terms 
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, ,P P PY K N  are neglected in the model since they are relatively small and are included 

in the hull force part influenced by the propeller. 

One more thing need to be mentioned is the nondimensionalization of terms for the 

purpose of eliminating the scale effect based on the analog principle. There are two 

categories of nondimensionalization. The first one named Prime System is proposed 

by the Society of Naval Architects & Marine Engineers (SNAME) in 1950. The other 

one is the Bis System proposed by the Swedish State Shipbuilding Experimental Tank 

(SSPA) in 1970. Moreover, in Prime System, there are two kinds of expressions for 

reference area, i.e., 2L  recommended by ITTC and LD  widely adopted by Japanese 

MMG models. Details of these two ways are listed in Table 6.1. 

Table 6.1 Standard measurement systems 

Unit of measurement Prime system Bis system 

Mass m   31
2

Lρ  ; 21
2

L Dρ   ρ∇   

Length L   L   L   

Time t   /L U   /L g   

Linear velocity V   U   gL   

Linear acceleration a   2 /U L   g   

Angular velocity ω   /U L   /g L   

Angular acceleration α   2 2/U L   /g L   

Force F   2 21
2

U Lρ  ; 21
2

U LDρ   gρ ∇   

Moment M   2 31
2

U Lρ  ; 2 21
2

U L Dρ   g Lρ ∇  

Reference area S   2L  ; LD   2 / L∇   

 

In the present study, terms in (6.37) can be non-dimensionalized by adopting the 

Prime system as below, 
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2 4 4 4

2 2 2 2 2 2

2 2

2 2 2 2

1 1 1 1, , ,
2 2 2 2

/ , / , /
/ , / , / , /

1 1,
2 2
1 1,
2 2

x x x x z z z z x z x zm m L D I I L D I I L D I I L D

u u U v v U r rL U
u uL U v vL U r rL U p pL U

X X U LD Y Y U LD

K K U L D N N U L D

ρ ρ ρ ρ

ρ ρ

ρ ρ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′
 ′ ′ ′ ′= = = =
 ′ ′ ′= = =
 ′ ′ ′ ′ = = = =

 ′ ′= =

 ′ ′= =


       

    (6.38) 

The manoeuvring derivatives introduced later will follow the similar way to derive 

dimensionless values. 

6.2.1 Hull force 

As stated above, the forces and moments acting on the hull can be decomposed into 

an inertial part and a viscous part. Thereby, 

( )H I HV SF F F F R u= + + +
   

                                           (6.39) 

where HF


 represents the total hull force or moment, the subscripts ,I HV  denote the 

inertial force and the viscous force respectively. ( )R u  is the longitudinal resistance 

on the ship which will be estimated in next subsection. In addition, SF


 is the 

hydrostatic restoring force when the ship departs from its equilibrium position in roll, 

heave or pitch motion. In the present study, since only roll motion is considered in the 

4-DOF manoeuvring motion this restoring roll moment is derived as follow. 

sinS TK g GMρ φ= − ∇                                               (6.40) 

where TGM  is the transverse metacentric height of the ship. 

Regarding the inertia force on the hull, it is caused by the ship accelerating the water 

around it during manoeuvring, thus the water provides the reaction force on the ship. 

This inertial force can be derived through the analysis same as derivation of the rigid 

body inertial force presented before. Then, 
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I

O O
I O O

dK KF K
dt t

dI IM I V K
dt t

′ ′
′ ′

  ∂
= − = − +Ω×  ∂ 


 ∂ = − = − +Ω× + ×  ∂ 

 
  

 
    

                              (6.41) 

where , OK I ′

 
 represent the added momentum and added moment of momentum of the 

water given as follow. 

0S
K ndsρϕ= ∫
                                                                   (6.42) 

( )
0

O S
I n dsρϕ ξ′ = ×∫

                                                       (6.43) 

Where ϕ  is the velocity potential around the hull, ξ


 is the radius vector from the 

centroid to an arbitrary point on the hull, n  is the unit normal vector on the hull 

boundary with positive orientation pointing out of the fluid domain.  

By substituting the added inertial matrix  

0

k
kj jS

m ds
n
ϕρ ϕ ∂

=
∂∫                                               (6.44) 

into (6.42) and (6.43), the inertial forces and moments acting on the hull can be 

derived as follow by taking into account the symmetrical characteristic of a ship with 

respect to its central lateral plane. 

2
11 22 24 26

22 11 24 26

44 42 46

66 62 64 24 11 22 62( )

I

I

I

I

X m u m vr m pr m r
Y m v m ur m p m r
K m p m v m r
N m r m v m p m up m m uv m ur

= − + + +
 = − − − −


= − − −
 = − − − − + − −



  

  

  

                 (6.45) 

Here, added mass ijm  are corresponding to the limiting values as the frequency 

approaching zero which can be taken care of in the seakeeping analysis with the rigid 
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wall free surface condition as mentioned previously. In manoeuvring analysis, they 

are in accordance with the acceleration manoeuvring derivatives, which are, 

11 22 44 66

24 26

42 46

62 64

, , ,
,
,
,

x u y v xx p zz r

p r

v r

v p

m m X m m Y J m K J m N
m Y m Y
m K m K
m N m N

= = − = = − = = − = = −
 = − = −


= − = −
 = − = −

   

 

 

 

                   (6.46) 

If we neglect the added coupling terms which are believed small for a slender ship, 

the more common used inertial forces and moments are given as follow in view of 

practical purpose. 

11 22

22 11

44

66 11 22( )

I

I

I

I

X m u m vr
Y m v m ur
K m p
N m r m m uv

= − +
 = − −
 = −
 = − + −









                                                                               (6.47) 

By taking a further look on (6.45) and (6.47), if the ship is advancing stably in a 

straight line uniformly with a drift angle, which means 0u v p r p r= = = = = =     , 

then, 

11 220, ( )I I I IX Y K N m m uv= = = = −                                                          (6.48) 

That is to say there is no force acting on the hull, namely the d’Alembert paradox as 

mentioned before, whereas a Munk moment is still experienced by the ship when it 

moves obliquely through the potential flow field. However, this Munk moment is 

usually omitted here but counted in the viscous moment part in order to avoid be 

double counted since the model test based on the viscous force evaluation model 

introduced later could not separate this Munk moment term from the total yaw 

moment. 

In order to break the d’Alembert paradox occurred in the ideal flow, the manoeuvring 

simulation model should catch nature of manoeuvring motions so that it is necessary 

to predict the behaviour of the manoeuvring ship in real fluid by taking into account 
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the water viscosity. The water viscosity modifies the flow around an advancing ship 

causing a formation of the boundary layer and wake zone behind a ship thereby leads 

to fact the evaluation of viscous force and moment is essential. Moreover, this viscous 

part can be further divided into linear lift component and nonlinear component. 

HV L NLF F F= +
  

                                                                                   (6.49) 

where ,L NLF F  are the linear lift force and nonlinear force respectively. 

As stated in Chapter 4, the linear lift force is the result of viscous effect when an 

elongated body travels in the fluid with an attacking angle similar like a wing. The lift 

force contains following components, 

L v r

L H L

L v r

Y Y v Y r
K z Y
N N v N r

= +
 = −
 = +

                                                                                (6.50) 

where , , ,v r v rY Y N N  are called linear velocity manoeuvring derivatives, Hz  denotes the 

vertical position of the lateral force’s acting point. Note that due to the symmetry of 

the ship, there is no linear term in the longitudinal direction. 

When the amplitude of the maneuver is large such as involving large variation of the 

ship heading angle, e.g., a tight circle maneuver, only counting the linear lift force 

shown above which assumes small drift angle is inadequate. Therefore, the nonlinear 

viscous forces acting on the hull have to be evaluated. 

There are several models to evaluate the nonlinear forces based on the modular 

concept such as the cross flow model for low speed manoeuvring, second or third 

order Taylor expansion polynomial model, Inoue model and Kijima model. With the 

demand of the present study, the third order polynomial model is applied as followed 

since it is superior to the other models in view of estimation accuracy and plenty of 

experimental results can be found in relevant publications on the selected ship for 
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validation. Therefore, the nonlinear viscous forces and moments are expressed as 

follow. 

2 2

3 2 2

3 2 2

NL vr vv rr

NL rrr vvr vrr

NL H NL

NL rrr vvr vrr

X X v r X v X r
Y Y v Y v r Y v r
K z Y
N N r N v r N v r

′ ′ ′ ′ ′ ′ ′= + +
 ′ ′ ′ ′ ′ ′ ′ ′ ′= + +
 ′ ′= −
 ′ ′ ′ ′ ′ ′ ′ ′ ′= + +

                                                         (6.51) 

where the nondimensionalization follows the Prime system as well which are 

( ) ( )
( ) ( )
( ) ( )

2

2

2 2

1 2 ,

1 2 ,

1 2 ,

X LDU X v r

Y LDU Y v r

N L DU N v r

ρ

ρ

ρ

′ ′ ′=


′ ′ ′=
 ′ ′ ′=

                                                                 (6.52) 

Subscripts are dropped which means all the force components are nondimensionalized 

in this way. All the above mentioned manoeuvring derivatives including the linear 

ones and nonlinear ones can be obtained by conducting PMM tests, details of 

processing the PMM data are given in Appendix C.  

6.2.2 Resistance 

Apart from above mentioned force components acting on the hull, an advancing ship 

at the desired constant speed on a straight course experiences a steady hydrodynamic 

resistance. The evaluation of the ship calm water resistance can be performed by 

several different methods, i.e., the direct model test, referring resistance charts, the 

regression based methods and CFD calculation. 

The manoeuvring simulation of the behaviour of a ship advancing in waves which is 

the topic of the present study requires the optimal accuracy and the ability to be 

executed with as few computational resource as possible. These two requirements 

which need to be satisfied at the same time restrict our choice of the methods for the 

ship resistance estimation to the regression based methods.  

As stated at the very beginning, the CFD based methods with higher accuracy in 

respect to the resistance charts or regression analysis methods are excluded simply 

javascript:;
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because they consume a lot of computational resource. Besides, in the view of the 

above requirements obviously the direct model test methods are also excluded from 

further considerations. The resistance charts have similarity with the regression 

analysis methods, i.e., both methods only need a few ship global design parameters 

such as block coefficient, prismatic coefficient, etc. to predict the ship resistance. 

However, they are not selected because of their limited accuracy in the estimation of 

the resistance for the modern ship hull forms.  

Among various statistical regression analysis based methods for the ship resistance 

calculation, ‘Holtrop-Mennen’ method is one of the most popular and extensively 

used methods with general applicability. The method has been constantly improved 

through a series of papers by Holtrop & Mennen (1978, 1982) and Holtrop (1977, 

1978 and 1984). With the improvements based on the results from 334 model tests in 

total, the resistance prediction became reliable for different types of ships with the 

operational speed even on the Froude numbers equal or above 0.55. Therefore, the 

present study will apply this method to estimate the calm water resistance of a single 

ship. During the implementation of the method certain modifications are introduced. 

The total calm water resistance of a ship ( )R u  is expressed as a sub division into 

parts  

( ) ( )11F APP W B TR AR u R k R R R R R= + + + + + +                                 (6.53) 

where FR  is the frictional resistance, ( )11 k+  is the hull form factor, APPR  is the hull 

form factor, WR  is the wave resistance, BR  is the additional pressure resistance of 

bulbous bow near the water surface, TRR  is the additional pressure resistance due to 

transom immersion, and AR  is the model-ship correlation resistance. 

The formulation (6.53) is based on the Froude hypothesis where the frictional 

resistance FR  and the resistance due to the appendages APPR  have functional 

dependence on the Reynolds number nR UL ν= , while the rest of the terms are 
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dependent on the Froude number nF U gL=  . Here wlL L=  is the waterline length, 

and ν  is the kinematic viscosity coefficient ( 6 2 11.35 10 m sν − −= ×  for sea water at 

10o C ). 

The frictional resistance FR  is calculated as  

2
00.5F fR C S Uρ=                                                                   (6.54) 

with the friction coefficient ( )2

100.075 log 2f nC R= −  according to the ITTC 1957. 

The hull form factor ( )11 k+  is obtained from the regression analysis with the 

functional dependence on global ship parameters and given as  

 ( ) ( )( ) ( )
( ) ( ) ( )

1.06806 0.46106

1

0.364860.121563 0.6042473

1 0.93 0.487118 1 0.011

1
stern

R P

k C B L D L

L L L C −

+ = + +

⋅ ∇ −
                      (6.55) 

where RL  is a parameter defined as 

( )1 0.06 4 1R P P PL L C C lcb C= − + −                                                  (6.56) 

with longitudinal position of the center of buoyancy lcb  forward of 0.5L as a 

percentage of the waterline length. ( )P MC S L= ∇  is the longitudinal prismatic 

coefficient, while MS  is the midship section area. In the expression (6.55) sternC  is 

defined as a stern shape parameter with values according to the Table 6.2. 

Table 6.2 Stern shape parameter 

Stern section form sternC  

Pram with gondola   -25  

V section  -10  

Normal section 0  

U section  10  
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The appendage resistance APPR  is determined from  

( ) 2
20.5 1APP f APP BTeq

R C k S U Rρ= + +∑                             (6.57) 

in which APPS  is the wetted area of the particular ship appendage and 

 ( ) ( )2 21 1 APP APPeq
k k S S+ = +  ∑ ∑                                (6.58) 

is the equivalent value for the appendages with the appendage form factors ( )21 k+  

according to the Table 6.3.  

Table 6.3 Appendage form factor 

Appendage type ( )21 k+  

Rudder behind skeg   1.5-2.0  

Rudder behind stern  1.3-1.5  

Twin screw balanced rudders 2.8 

Shaft brackets  3.0 

Skegs 1.5-2.0 

Strut bossing 3.0 

Hull bossing 2.0 

Shafts 2.0-4.0 

Stabilizer fins 2.8 

Dome 2.7 

Bilge keels  1.4 

 

The term BTR  stands for the resistance of the bow thruster openings.  

2
BT T BTOR d C Uπ=                                                (6.59) 

where Td  is the bow thruster tunnel diameter and the coefficient BTOC  in the range 

from 0.003 to 0.012. 
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The estimation of the wave resistance WR  does not follow the original procedure in 

‘Holtrop-Mennen’ method. The main reason is that the original procedure calculates 

the wave resistance according to the three different expressions where each expression 

is valid in a particular range of Froude numbers. In order to overcome this practical 

difficulty the wave resistance WR  is estimated by Michell’s integral  

( ) 2

2
2

2 2

2
1

4 ,
1

vz ivx
W

cp

R U v iv x z e dzdx dλ λλρ λ ζ λ
π λ

∞
+= −

−
∫ ∫∫

  


  


                  (6.60) 

where 2v g U= and ( ),x zζ  is the offset of the body surface, cp  denotes the center 

plane of the hull. The derivation of the expression (6.60) can be found in Appendix D. 

The Michell’s integral based on the thin ship assumption can give satisfactory 

estimation of the wave resistance for very thin bodies, B D<< , at an arbitrary Froude 

number, as well as, for slender ships, ,B D L<< , at a high Froude number. The 

application of the Michell’s integral may be subjected to criticism due to fact that the 

real ships are not thin forms. However, in the scope of present study, the author 

believes that the Michell’s integral is still a good choice compared to the statistical 

regression based methods or the computationally demanding and time consuming 3D 

methods.  

The additional pressure resistance due to the bulbous bow near the free surface BR  is 

found from  

( ) ( )
23 3 1.5 20.11 1BP

B ni BT niR e F A g Fρ
−−

= +                                       (6.61) 

where, 

( )0.56 1.5B BT F BP A T h= −                                                 (6.62) 

( )0.5 20.25 0.15ni F B BTF U g T h A U= − − +                             (6.63) 
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are the bow emergence parameter and the immersion Froude number, respectively. 

Here BTA  is the transverse area of the bulbous bow above the keel line, FT  is the 

moulded draught on forward perpendicular and Bh  is the height of the center of the 

transverse bulb area where 0.6B Fh T=  is given as a recommended upper value.  

If the ship has immersed transom stern the additional pressure resistance TRR  can be 

determined from 

2
60.5TR TR A U cρ=                                                               (6.64) 

where, 

( )
6

0.2 1 0.2 5
0 5

nT nT

nT

F for F
c

for F
− <= 

≥
                                    (6.65) 

( )2nT T WPF U gA B BC= +                                          (6.66) 

nTF  is the transom stern immersion Froude number. TA  denotes the immersed part of 

the transverse area of the transom at zero speed, while ( )WP WC A LB=  is the water 

plane area coefficient with the water plane area WA . 

The model-ship correlation resistance AR  takes into account the air resistance with no 

wind AAR  and the additional frictional resistance due to the effects of the hull 

roughness FR∆ . Therefore, 

A AA FR R R= + ∆                                              (6.67) 

where, 
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( )

2
sup

2
0

0.21 2

0.5

0.5

111 404

AA air DAA

F F

F F

R C A U

R C S U

C AHR U C

ρ

ρ

=
∆ = ∆
  ∆ = ⋅ −                                                         (6.68) 

airρ  is the air density, supA  represents the projected area of the superstructure, DAAC  is 

the aerodynamic drag coefficient with a range from 0.5 to 0.7. AHR  means the 

average hull roughness in micrometers and chosen from the range of 75 mµ  to 

150 mµ  which is common for new build ships. 

The relative brief description of the ‘Holtrop-Mennen’ method presented here gives 

very limited insight into the physical features behind each component. This is because 

the main goal of this section is just to show the approach for the evaluation of the total 

resistance from a practical point of view.  

6.2.3 Propeller force 

The thrust forces provided by a single screw propeller can be estimated by following 

formulae. 

2 4
0(1 ) ( )

0
P p P P T P

P P P

X t n D K J
Y K N

ρ= −


= = =
                                                             (6.69) 

The lateral force component and moment here are neglected due to their relatively 

small quantities compared to the contributions from bare hull and rudder. Normally, 

they are included in the hull force module in a MMG model. Here, 0pt  is the thrust 

deduction factor when the ship is advancing in a straight line, which can be assumed 

to be constant during the manoeuvring motions for simplicity. An estimation formula 

is also given by Holtrop (1984) as follow if no experimental data for use. 

( ) ( )
( )

0.26240.28956

0 0.01762

0.25014
0.0015

1 0.0225p stern

P

B L BT D
t C

C lcb

 
 = +

− +
                    (6.71) 

Nomenclatures are given in the last subsection and will not be repeated here.   
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The thrust coefficient TK  can be derived by 2nd order polynomial fitting as follow 

according to the open water characteristic test results. 

2
0 1 2( )T P P PK J a a J a J= + +                                                           (6.71) 

where the advanced ratio PJ  is defined as follow. 

(1 )P
P

P P

u wJ
n D
−

=                                                                           (6.72) 

Here, ,P Pn D  are the revolution speed and the propeller diameter respectively.  

The wake coefficient Pw  changes during the manoeuvring motions in general and can 

be evaluated as 

2
0 exp( 4 )P P Pw w β= −                                                               (6.73) 

0Pw  is the wake coefficient when ship advancing straightly and can be estimated as 

follow given by Holtrop (1984) if no experimental data for use. 

( )0 9 20 11 20 19 20
1 1

0.050776 0.93405 0.27915
1 1

V
P V

A P P

CL Bw c c C c c c c
T C L C

 
= + + + − − 

(6.74) 

where, 

( )

( ) ( )

1

1

0.16 2
2 4

1
1.45 0.315 0.0225

0.006 100 0.00205 0.003 7.5 0.04

V F A

P P

A B

C k C C
C C lcb

C L L C c c−

 = + +
 = − −


= + − + −

           (6.75) 

The ( )2,3,4,8,9,11,19,20ic i =  coefficients needed are given as follow. 
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( )

( )
( ) ( )

( )

( )

31.89
2

1.5
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4

0

8

0

8 8

9
8
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32 16 24

2

0.0833333 1

c

BT BT F B

F F
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A P A

A P A P

A P

c e

c A BT A T h

T L for T L
c

otherwise

BS LD T for B T
c

S B T LD B T otherwise

c for c
c

c otherwise

T D for T D
c

T D

−=

 = + − 
≤

= 


≤= 
− −   

≤=  − −
≤

=
+

( ) ( )
( )19

20

.33333

0.12997 0.95 0.11056 0.95 0.7

0.18567 1.3571 0.71276 0.38648

1 0.015

B P P

M P

stern

otherwise

C C for C
c

C C otherwise

c C

















 



 − − − ≤ =  − − +
= +           (6.76) 

where ( )M MC S BD= is the midship section coefficient, AT  represents the moulded 

draught on aft perpendicular. Other nomenclatures have already been given in last 

subsection as well. 

Pβ  in (6.73) is the geometrical inflow angle to the propeller which can be derived as 

follow.  

P Px rβ β ′ ′= −                                                                                (6.77) 

β  is the drift angle, Px′  denotes the non-dimensional longitudinal coordinate of the 

propeller position. 

6.2.4 Rudder forces and moments 

Estimation of rudder forces is vital for accurate simulation of manoeuvring motions. 

Effective rudder forces and moment can be expressed as follows. 
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(1 ) sin
(1 ) cos

(1 ) cos
( ) cos

R R N

R H N

R H R N

R R H H N

X t F
Y a F
K a z F
N x a x F

δ
δ
δ

δ

= − −
 = − +
 = +
 = − +

                                                                      (6.78) 

Here ,R Rx z  is the longitudinal and vertical coordinate of the acting point of the rudder 

normal force respectively, Rx  usually take the value of 0.5 PPL− , while , ,R H Ht a x  are 

the coefficients representing the interaction between the hull and rudder.  

The rudder normal force NF  is expressed as follow. 

21 sin
2N R R RF A U fαρ α=                                                                               (6.79) 

where RA  denotes the rudder area and fα , denoting the rudder lift gradient coefficient, 

can be estimated by the common used formula as follow by Fujii & Tuda (1961). 

6.13
2.25

fα
Λ

=
Λ +

                                                                                              (6.80) 

Here, Λ  denotes the aspect ratio of the rudder. The non-dimensional effective rudder 

inflow velocity RU ′  can be estimated by the model developed by Yoshimura & 

Nomoto (1978). 

[ ]
2

(1 ) 1 ( )
2 (2 )

( )
(1 )

cos (1 )1

R R

P

U w CG s
s

G s
s

U ws
nP

κ κ
η

β

 ′ = − +


− − = ⋅ −


− = −
                                                                             (6.81) 

where Rw  denotes the wake coefficient at the rudder position. The parameter C  is the 

correction factor with different values for port side and starboard side rudder 

directions, 1.065 and 0.935 respectively according to the results given by Hirano 
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(1980), due to the asymmetric propeller slip stream effect. η  is the ratio of the 

propeller diameter to the rudder height RH  and P  is the propeller pitch. κ  is an 

experimental constant to reflect the acceleration effect by the propeller. 

Alternatively, based on the momentum theory the effective rudder inflow velocity can 

also be estimated as follow. 

( ) ( )

2 2

2

2

81 1 1 1 1

R R R

R R R

T
R P

P

U u v
v U

Ku u w
J

γ β

ε η κ η
π

 = +


=


  
= − + + − + −        

                                     (6.82) 

Regarding the effective rudder inflow angle Rα , it can be derived by the following 

formulae. 

0 ( / )R R R R

R R

U u
r

α δ δ γ β
β β

= − −
 ′ ′= − 

                                                                             (6.83) 

where 0δ  denotes the rudder angle with zero normal pressure on the rudder, Rγ  is the 

flow straightening coefficient and Rβ  is the effective inflow angle to the rudder with 

R′  treated as an experimental constant and can be set as a default value of 2 Rx′  for 

simplicity if no accurate experimental value provided. 

6.3 Mean wave drift loads 

As discussed in the literature review, evaluation of the mean drift loads is very 

important to the simulations of a ship manoeuvring in waves. The methods usually 

applied for the theoretical prediction of the mean second order wave loads are 

basically categorized into two types. One type of methods is a direct pressure 

integration method and the other type uses conservation of fluid momentum. In the 

present study, a direct pressure integration method will be described in some more 
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details by giving the main steps of derivation which are used in a development of the 

method.  

We start out with the expression for the fluid pressure given by the complete 

Bernoulli’s equation  

  
22 2

2
p gz U

t x x y z
φ φ ρ φ φ φρ ρ

  ∂ ∂ ∂ ∂ ∂     = − − − − + +       ∂ ∂ ∂ ∂ ∂        
                      (6.84) 

where ( )
6

2

, , e ei t i t
I D j j

j

x y z e eω ωφ φ φ φ ξ φ
=

 
= = + + 

 
∑  is the time dependent velocity 

potential decomposed into the incoming Iφ , diffracted Dφ  and a radiated wave 

potential jφ  and jξ  are the complex amplitudes of the j -th mode of motion 

( 2,...,6j = , neglected surge) as explained in Chapter 4. The pressure p  given above 

using the total velocity potential ( ), , ,Ux x y z tφΦ = − +  where the influence of the 

steady flow potential ( , , )S x y zΦ  is neglected.  

The pressure is now expanded up to the second order in the incident wave by using a 

perturbation expansion with introduction of a small perturbation slenderness 

parameter ε  which is defined as beam to length ratio. This means that we will insert 

the expanded form of the time dependent velocity potential ( ) ( )1 22φ εφ ε φ= +  into the 

expression (6.84) and collect terms proportional to the 2ε . After some manipulations, 

it can be shown that the pressure p  up to the order of 2ε  can be expressed as  

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 2 2

2 2 21 1 1

2

m

m

p gz U U
t x t x

x y z

φ φ φ φρ ρ ρ

ρ φ φ φ

   ∂ ∂ ∂ ∂
= − − − − −   ∂ ∂ ∂ ∂   

      ∂ ∂ ∂
+ +      ∂ ∂ ∂       

−

                                  (6.85) 
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where the subscript m  indicates that the variables should be evaluated on the average 

position of the wetted hull surface 0S . Now, it is easy to see that the zero, first and 

second order pressure are given by  

( )

( )
( ) ( )

( )
( ) ( ) ( ) ( ) ( )

0

1 1
1

2 2 22 2 1 1 1
2

2
m m

gz

U
t x

U
t x x y

p

p

p
z

ρ

φ φρ

φ φ ρ φ φ φρ

= −

 ∂ ∂
= − − ∂ ∂ 

        ∂ ∂ ∂ ∂ ∂
= − − − + +        ∂ ∂ ∂ ∂ ∂   







     






       (6.86) 

The expression (6.85) for the pressure p  and term ( )2p  within the expression (6.86) 

can be further simplified by noticing that 
( ) ( )2 2

m

U
t x
φ φρ

 ∂ ∂
− − ∂ ∂ 

 has no contribution 

to the mean wave loads as shown by Faltinsen & Løken (1979). Therefore we can 

write 

 
( ) ( ) ( ) ( ) ( )2 2 21 1 1 1 1

2
m

p gz U
t x x y z
φ φ ρ φ φ φρ ρ

        ∂ ∂ ∂ ∂ ∂
= − − − − + +        ∂ ∂ ∂ ∂ ∂         

       (6.87) 

and  

( )
( ) ( ) ( )2 2 21 1 1

2

2
m

p
x y z

ρ φ φ φ      ∂ ∂ ∂
= − + +      ∂ ∂ ∂       

                                                (6.88) 

The force and moment acting on the instantaneous wetted ship hull surface *S  are 

given by  

*S
F pnds= ∫
                                                                                                 (6.89) 

( )*S
M p r n ds= ×∫
                                                                                        (6.90) 
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Here, n  is the instantaneous unit normal vector to the surface element ds  in respect to 

the seakeeping coordinate system defined positively out of fluid domain. ‘×’ denotes 

vector product and r xi yj zk= + +
   is the position vector of arbitrary fixed point on 

the hull surface.  

Expanding the force and moment as a perturbation expansion series, by using 

( ) ( ) ( )

( ) ( ) ( )

* 2
0 1 2

0 1 22

0 1 22

S S S S

p p p p
n n n n

ε ε

ε ε

ε ε

= + +


= + +
 = + +
   

                                                                            (6.91) 

the forces and moments from zero to second order can be calculated by collecting 

terms of the same order in parameter ε . Performing this step, one will find that the 

zero, first and second order force can be expressed respectively as 

( ) ( ) ( )

0

0 0 0

S
F p n ds= ∫
                                                                                       (6.92) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 1

1 0 1 1 0 0 0

S S S
F n ds np p ds n sp d= + +∫ ∫ ∫
                                              (6.93) 
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p
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p p

p d

= + +

+ + +

∫ ∫ ∫
∫ ∫ ∫

   

                                          (6.94) 

Similar type of expressions can be derived for moment from the expression (6.90).  

The expanded instantaneous normal vector n  can be expressed as 

( ) ( ) ( ) ( )3
1 2, , , , , ,n n x y z R n x y z R n x y z O ε′ ′ ′ ′ ′′ ′ ′= + +′ ′ ′ ′ +

   
                         (6.95) 

from which it follows that  
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                                                                     (6.96) 

Here, ( )0n  is the normal vector relative to the seakeeping coordinate system, ( )1n  is an 

oscillatory component of ( )0n  due to the first order oscillatory angular motions and 
( )2n  is an oscillatory component of ( )0n  due to the second order oscillatory angular 

motions.  

In a similar way, for any point on the hull surface with position vector ( ), ,r x y z′ ′ ′ ′
 in 

the manoeuvring body fixed coordinate system, its motions from the ‘at rest’ position 

in the seakeeping coordinate system can be expressed as 

( ) ( ) ( ) ( )1 2 3 3
1 2 2T RR r R r O r r R r Oα α α ξ ε ξ ξ ε′ ′ ′ ′ ′= + = + + + = + + × + +

              (6.97) 

where, 
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1
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α ξ

α

 ′= +


′=
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                                                                                                (6.98) 

Tξ


 and Rξ


 are the translatory and angular motions respectively. 

In the expressions (6.96) and (6.97), 1R  represents the first order transformation 

matrix from the body fixed coordinate system to seakeeping coordinate system given 

by 

6 5

1 6 4

5 4

1
1

1
R

ξ ξ
ξ ξ
ξ ξ

− 
 = − 
 − 

                                                                                 (6.99) 
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The matrix 1R  is a linear Euler matrix for small first order angular motions, and is 

independent of the sequence of rotation, which means that it is irrelevant if we follow 

roll-pitch-yaw or yaw-pitch-roll rotation convention in the formulation of the matrix.   

However, the sequence of rotation becomes important in the case of second order 

transformation matrix 2R . So that, if we follow roll-pitch-yaw rotation convention we 

will have 

( )

( )

( )

2 2
5 6

2 2
2 4 5 4 6

2 2
4 6 5 6 4 5

1 0 0
2

1 1 0
2

1
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 
 = − + 
 
 − +
  

                                       (6.100) 

whereas if we follow yaw-pitch-roll rotation convention, then 
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2 2
2 4 6 5 6
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ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ
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 − + 
 
 = − + 
 
 − +
  

                                       (6.101) 

A difference in the expressions for the transformation matrix 2R  will have a 

consequence on the estimation of the mean second order force in heave. This means 

that one additional term which accounts for the second order motion effect in rotation 

of the axis will appear if we follow roll-pitch-yaw rotation convention, which is 

otherwise absent if we follow yaw-pitch-roll rotation convention as shown by Pinkster 

(1980). However, in the present study, this will not be present due to the fact that we 

are considering the mean wave loads in the horizontal plane. 

Now, before proceeding further, it is important to notice that the integral over the 

instantaneous wetted surface requires two kinds of adjustment. One is on the part of 
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the mean wetted hull surface 0S  up to the static waterline on the hull, while the other 

kind of adjustment is on the additional wetted area due to the wave elevation. So that,  

( ) ( )

( ) ( )
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0 0
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3
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r

r

S S L
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npnds p nds dl p dz O
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≈ ⋅∇ + +

∫ ∫ ∫ ∫

∫ ∫ ∫


 
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                                          (6.102) 

where ∇  denotes the Laplace operator here, 0L  is the waterline contour of the ship in 

its equilibrium position in calm water. The inclination of the hull surface at the 

waterline sinh µ=  is set equal to 1, since we assume that the ship hull is wall sided 

near the free surface.  

The relative wave elevation along the ship rζ  is given as 

( ) ( ) ( )1 1
3 5 4r r x yζ ζ ζ ξ ξ ξ≡ = − − +                                                                    (6.103) 

Here, ( )1ζ  includes the incident wave elevation as well as the unsteady contribution of 

the free surface elevation caused by the ship.  

Now the zero, first and second order force will be derived, respectively. The zero 

order force is the hydrostatic force due to the ship buoyancy actually. 

( ) ( ) ( ) ( ) ( )
0 0

0 0 0 0 0,0,
S S

F n ds g zn ds gVp ρ ρ= = =∫ ∫
                                                (6.104) 

Here V  is the displaced volume of the ship. Using (6.102), the first order force is  
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     (6.105) 
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The last term of (6.105) is order ( )2O ε  which need to be transferred into the 

expression for the second order force. Omitting this term we have the first order force 

up to the order of ( )O ε  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

0 0 0

1 0 1 1 01 0 0

S S S
F n ds n ds p n dsp p α= + + ⋅∇∫ ∫ ∫
                                      (6.106) 

Now, by using the above expressions for the ( )1α
 , ( )0n , ( )1n , ( )0p  and ( )1p , (6.106) can 

be rewritten as 
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The complete derivation of the second order force ( )2F


 is too extensive to be 

presented here. Therefore, we will only give some guidance steps about how to arrive 

on the final form for ( )2F


 which is suitable for further calculation.  

First of all, integral of order ( )2O ε  which appears in the expression (6.105) for the 

first order force needs to be added to the second order force given by the expression 

(6.94). So that, the second order force ( )2F


 becomes 
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         (6.108) 

By substituting expressions for the ( )0n , ( )1n , ( )2n , and ( )0p , ( )1p , ( )2p , together with 

(6.102), the second order force can be written as 
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 (6.109) 

Noticing that ( )2
2R rα ′=

   and recalling the discussion about the matrix 2R , following 

roll-pitch-yaw rotation convention, the last two integrals in (6.109) equal zero. Then, 
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           (6.110) 

Here, the first order force ( )1F


 is substituted and can be written as follow according to 

the Newton’s second law. 
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Further substituting the and ( )1
1R rα ξ ′= +
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, which can be expressed as 
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the second order force ( )2F


 can be given in the form of three components as follow. 
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where the relation (6.103) is used. 

By taking the time average (bar over the expressions) and assuming that the ship hull 

is slender, i.e., ,x y z∂ ∂ << ∂ ∂ ∂ ∂ , we can write 

 Mean second order surge force (added resistance in waves) 
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 Mean second order sway force 
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where it should be noticed that the time average of the terms ( )1 5Gzξ ξ+   and 

( )2 4Gzξ ξ−   are zero. In addition, the mean second order heave force can be also 

obtained from the expression (6.113), but it is omitted here because the present study 

does not use the mentioned force.  

The second order moments in roll, pitch and yaw can be derived in a similar way if 

one carries out in principle the same steps which are outlined above for the second 

order force. The details of this process are extremely lengthy, and therefore they are 

omitted here. After the time average and the slender assumption, ,x y z∂ ∂ << ∂ ∂ ∂ ∂

the final expressions for mean second order yaw moment is directly presented as 

follow. 

 Mean second order roll moment 

( ) ( ) ( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )

0 0

0

2 21 1
22 1

3 5 4 4 4

1 1

2 6 4

41 1

3 5

6 5

4

22 1 331 5 43

2 2x
L S

m

G

S

m

gM x y n dl n ds
y z

x
ds

mz

z U
y t x

n
x y U

z t x

I I I

ρ ρ φ φζ ξ ξ ξ

φ φξ ξ ξ

ρ
φ φξ ξ ξ

ξ ξ ξ ξ ξ ξ

    ∂ ∂ = − − + − +      ∂ ∂     

  ∂ ∂ ∂
+ − −  ∂ ∂ ∂  −   ∂ ∂ ∂ + − + −  ∂ ∂ ∂  

− − −− + +

∫ ∫

∫

   ( )6
 
 

   (6.116) 

with 4 3 2n yn zn= − . 
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 Mean second order yaw moment 
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with 6 2 1n xn yn= − . Here, one should be aware that the expression (6.116) for the 

mean second order roll moment is not utilized in the numerical calculations of 

combined seakeeping and maneuvering. The expression for the mean second order 

pitch moment can be written in a similar way, but it is omitted as it is not needed. 

The main characteristics of the direct pressure integration method can be summarized 

as follows. First of all, the method accounts for the complete Bernoulli’s equation 

expanded up to the second order. Further, it accounts for the second order effects due 

to the instantaneous vessel position and the wetted surface. Because the effect of the 

second order potential is neglected, the theory only needs information about linear 

flow variables. In the evaluation, three different quantities, i.e., the water line integral, 

the body surface integral and the hydrostatic contributions due to the rotational 

transformations between the body-fixed and seakeeping coordinate system are needed. 

All the three quantities are of similar magnitudes. Because the contributions have 

different signs, relatively small inaccuracies in each term will cause a relatively larger 

inaccuracy in the final result for the mean wave loads. Therefore, the direct pressure 

integration method is more numerically sensitive than the method based on 

conservation of energy and fluid momentum to calculate mean horizontal loads.    
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6.4 Flow chart of the two time scales model 

After the methods to obtain all the external force components acting on the ship been 

introdunced, the two time scales combined seakeeping and manoeuvring simulation 

system can be briefly illustrated in Fig. 6.4 by summarizing the interaction between 

the two sets of motion equations associated with seakeeping performance analysis and 

manoeuvring simulation respectively through data exchange. 

 

Fig. 6.4 Data exchange between seakeeping and manoeuvring 

A more detailed flow chart describing the implementation of the whole simulation 

system is presented in Fig. 6.5. Firstly, the main particulars of an investigated ship 

together with its equipped propeller and rudder are inputted for pre-processing. The 

transverse contours of the hull in all cross sections along the ship length are modeled 

with the NURBS for later use in solving BVPs in seakeeping calculations. The regular 

deep water wave characteristics and prefixed difference in the heading angle angleC  are 

specified. Then, the initial conditions concerning the manoeuvring analysis are given 

including the approach speed of the ship to the chosen maneuver, the ship position in 

respect to the Earth fixed coordinate system, rudder steering rate, etc. At the first time 
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step, 0t = , the seakeeping calculations by the 2.5D approach will provide the linear 

calm water manoeuvring derivatives and continue with the estimation of the slowly 

varying mean second order wave loads. Meanwhile, the resistance, propulsion, rudder 

and nonlinear viscous loads modules will give the rest of coefficients, such as 

resistance, thrust, rudder forces and moment, nonlinear manoeuvring derivatives 

which are needed to complete the manoeuvring equation system. In this way, the 

maneuvering equation system can proceed and give, among other manoeuvring 

parameters, the instantaneous ship heading angle ψ  which is summed up and 

compared with the prefixed difference in the heading angle angleC . If the total sum of 

ship heading angle is greater than the prefixed difference, the integer value 1 will be 

assigned to the indication parameter Act  and the instantaneous ship speed and ship 

heading angle will be recorded, otherwise we stay in the manoeuvring simulation 

system with the old wave loads input. As the time continues, the Act  parameter will 

initiate the new estimation of the mean second order wave loads depending on the 

integer value. The time loop terminates until the end of the simulation. The 

manoeuvring equation system is solved with a time integration algorithm based on the 

explicit 4th order Runge-Kutta scheme with constant time steps.  

By applying this two time scales model, not only the nature of the wave induced 

motions and manoeuvring motions in different frequencies is captured, but also the 

calculation amount is significantly reduced. 
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Fig. 6.5 Flow chart of the whole simulation system 

 

Profiles of the hull represented by NURBS in cross sections 
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6.5 Validation of the simulation system 

The S175 container ship is selected for the following validations of the present 

simulation tool based on the two time scales model by carrying out two standard 

maneuvers, namely ±35o turning circle and Zig-zag at ±10o/10o and ±20o/20o. The 

main particulars of the full scale ship and its equipped propeller and rudder are listed 

below in Table 6.4. 

Table 6.4 Main particulars of the S175 container ship 

 Parameters S175 

Hull 

Length, ( )L m  175 

Breath, ( )B m  25.4 

Draft, ( )D m  9.5 

Block coefficient, BC  0.572 

Volume of displacement, ( )ton∇  24742 

Transverse metacentric height, ( )TGM m  1.0 

Radius of inertia for roll, xxk  0.33 B  

Radius of inertia for pitch, yyk  0.25 L  

Radius of inertia for yaw, zzk  0.269 L  

Wetted surface area, ( )2
0S m   5396 

Propeller 
Diameter, ( )pD m   6.5064 

Pitch ratio 0.7348 

Rudder 

Rudder area, ( )2
RA m   32.46 

Rudder height, ( )RH m   7.7 

Aspect ratio 1.8268 

 

The approach speed of the ship is set at the Froude number 0.15nF = , and the 

propeller rpm is assumed to be constant during simulations according to the balance 

between the propulsion and resistance when the ship moving on a straight course.  
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For turning motions, experimental measurements conducted by Shanghai Jiao Tong 

University (SJTU) cited from Zhu (2015)’s work on a 1/ 57.686  scaled model with a 

rudder steering rate at 13o/s are presented for comparison, whereas for Zig-zag 

motions the experimental measurements obtained by Yasukawa (2008) on a 1/ 50  

scaled model with a rudder steering rate at 12o/s are used for comparison. 

6.5.1 Validation in calm water 

Simulations will be first carried out in calm water for standard maneuvers. In order to 

avoid the scale effects, the same scaled models as the ones used in the model tests are 

chosen in the simulations. The coefficients applied in the simulations are listed in 

Table 6.5 from Yasukawa (2006). 

Table 6.5 Coefficients used in manoeuvring simulations 

 Coefficients Values Coefficients Values Coefficients Values 

Hull 

xm′  0.0044 vvvY ′  -2.008 vvvN ′  0.0275 

vvX ′  -0.0711 vvrY ′  0.3942 vvrN ′  -0.7811 

rrX ′  0.0037 vrrY ′  -0.7461 vrrN ′  0.0287 

vrX ′  -0.0573 rrrY ′  0.0326 rrrN ′  -0.0422 

uuX ′  0.01563 Hz D   0.5   

Propeller 0pt   0.175 0Pw  0.1684 Px′  -0.47 

 0a   0.2932 1a  -0.1971 2a  -0.0481 

Rudder 

Rt   0.29 Hx′   -0.48 R′  -1.0 

Ha   0.237 ε   0.921 ( )0R vγ <  0.088 

κ  0.631 Rz D  0.7 ( )0R vγ ≥  0.193 

  

Fig. 6.6 shows the trajectories of the ship performing standard ±35o turning motions. 

Good agreements with the experimental measurements have been achieved if the lift 

effect correction been considered which indicate that the lift force is an important 

component in the force analysis during manoeuvers and the indirect way for this 3D 

effect correction is reasonable. Besides, the good results also verify that the other 
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coefficients applied in the present study are accurate and the 4th order Runge-Kutta 

scheme for the manoeuvring motion simulation is reliable. 

 
Fig. 6.6 Comparison of turning trajectories of the S175 in calm water 

Fig. 6.7 shows the time history of the heel angle during the starboard side turning. As 

seen, the angle is varying from negative values at the beginning to the positive values 

in the end which agrees with the phenomena appeared in reality. 

 
Fig. 6.7 Heel angle of the S175 in starboard side turning 

Next, Zig-zag tests at ±10o/10o and ±20o/20o are carried out. Except for intuitive 

comparison in Fig. 6.8, detailed manoeuvring parameters of the 1st and 2nd overshoot 

angles are listed in Table 6.6. 
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(a) 10o/10o 

 
(b) -10o/-10o 

 
(c) 20o/20o 

 
(d) -20o/-20o 

Fig. 6.8 Time histories of rudder and heading angles during Zig-zag motions of the 

S175 in calm water 
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Table 6.6 Comparison of overshoot angles in calm water 

 1st overshoot 2nd overshoot 

 Cal. Exp. Error Cal. Exp. Error 

10o/10o 5.5o 6.3o 12.6% 6.0o 8.1o 25.9% 

-10o/-10o 5.5o 5.6o 1.7% 6.7o 8.6o 22.1% 

20o/20o 10.7o 11.1o 3.6% 10.4o 10.6o 1.8% 

-20o/-20o 10.5o 10.6o 1.0% 10.4o 12.1o 14.0% 

 

From comparison, the simulation results roughly agree with the measurements, and 

can capture the overall tendency of the Zig-zag maneuvers. However, relative big 

deviations can be observed in the 2nd overshoot angle at ±10o/10o Zig-zag motions. 

First of all, it is difficult to ensure the accuracy in a few degrees. Secondly, all the 

results calculated by the present method are smaller than the test results. There is a 

possibility that hull damping force used in the simulations is a bit too larger than 

actual one. Moreover, the estimation formulae for rudder force is based on an 

approximated rectangle rudder which is different from the actual rudder profile, 

thereby further reduce the accuracy. 

6.5.2 Validation of mean second order loads 

Before further simulations of the standard maneuvers in waves, validation of the mean 

second order loads are carried out on the S175 ship in head sea ( )180oχ =  and beam 

sea ( )90oχ = , respectively. The incident wave length is chosen in the range of 

0.5 1.5Lλ< < . In the head sea case, the added resistance results are compared with 

the experimental results by Fuji & Takahashi (1975), while in the beam sea case, 

results are compared with the experimental results by Yasukawa & Adnan (2006). 
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Fig. 6.9 The added resistance on the S175 ship advancing in head and beam sea 

 

Fig. 6.10 The mean 2nd order sway force on the S175 ship advancing in beam sea 
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Fig. 6.11 The mean 2nd order yaw moment on the S175 ship advancing in beam sea 

From the Fig. 6.9 to Fig. 6.11, the tendency of the calculated results basically agree 

with the experimental measurements. Deviations are mainly observed at short wave 

lengths. Except for the sensitivity of the method already stated in subsection 6.3, the 

deviations can be explained by the fact that the direct integration method is applicable 

in the range of wavelengths which are longer than the cross sectional beam in the 

solution of diffraction potential. Besides, the S175 has large flare profiles at the bow 

and stern regions which conflict the assumption of wall sided body surface near free 

surface applied in the method thereby increase the deviation of the results. 

6.5.3 Validation in waves 

Turning circle 
Finally, validation are carried out on the S175 ship manoeuvring in waves with 

different wavelengths and incident angles. Fig. 6.12 and Fig. 6.13 are the trajectories 

of the ship conducting ±35o turning motions in head sea, while Fig. 6.14 and Fig. 

6.15 are the trajectories of the ship manoeuvring in beam sea. 
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Fig. 6.12 Comparison of portside 35o turning trajectories of the S175 in head sea 
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Fig. 6.13 Comparison of starboardside 35o turning trajectories of the S175 in head 

sea 

 



168 
 

 

 

Fig. 6.14 Comparison of portside 35o turning trajectories of the S175 in beam sea 
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Fig. 6.15 Comparison of starboardside 35o turning trajectories of the S175 in beam 

sea 

From the figures, we can learn that there is a drift motion during the turning 

manoeuver no matter in which the direction the wave is incoming. And the results by 

the present simulations fairly catch the tendency of the drifting measured by model 

tests. The drift distance becomes bigger with the shorter wave length which can be 

easily understood as the mean second order sway force and yaw moment are tend to 

increase according to the results already shown in Fig. 6.10 and Fig. 6.11. Besides, it 

should be noticed that the difference of the drift distance between the 0.75Lλ =  and 

1Lλ =  is small. A possible explanation would be the added resistance at 1Lλ =  is 
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bigger than that at 0.75Lλ =  when in head sea moments, though the sway force and 

yaw moment are smaller, thereby even the wave effects. 

Zig-zag 
From Fig. 6.16 to Fig. 6.23, the time histories of rudder and heading angle of the ship 

conducting series of Zig-zag motion tests in head sea and beam sea are presented. In 

each sea state, four wave lengths are imposed. 

For the head sea cases, satisfied agreement is only achieved at 0.5Lλ = , whereas 

obvious deviations can be observed at the other three wave lengths. Similar deviations 

also appear in the results by Yasukawa (2008). Again, the inaccuracy of the wave drift 

would always be the primary cause. Besides, we should notice that the heave and 

pitch motions would have remarkable amplitudes in head sea, especially at the 

wavelength around 1Lλ = . Assuming a time, the bow is penetrating a wave crest, 

while the stern is just lying on the wave trough. This will induce relative bigger 

amplitude oscillation, thereby the rudder force would be significantly affected due to 

the changing inflow speed. Beside, even partly emergence of the rudder would occur 

in the oscillation which leads to smaller rudder area in the water.  

For the beam sea cases, better agreements are achieved in contrast to the head sea 

cases. The changing of the heading deviation times is well captured by the simulation 

results especially at the wavelength 0.5Lλ =  as relative bigger mean second order 

sway force and yaw moment occurred. 
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Fig. 6.16 Time histories of rudder and heading angles during 10o/10o Zig-zag of the 

S175 in head sea 
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Fig. 6.17 Time histories of rudder and heading angles during -10o/-10o Zig-zag of the 

S175 in head sea 
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Fig. 6.18 Time histories of rudder and heading angles during 20o/20o Zig-zag of the 

S175 in head sea 
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Fig. 6.19 Time histories of rudder and heading angles during -20o/-20o Zig-zag of the 

S175 in head sea 
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Fig. 6.20 Time histories of rudder and heading angles during 10o/10o Zig-zag of the 

S175 in beam sea 
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Fig. 6.21 Time histories of rudder and heading angles during -10o/-10o Zig-zag of the 

S175 in beam sea 
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Fig. 6.22 Time histories of rudder and heading angles during 20o/20o Zig-zag of the 

S175 in beam sea 
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Fig. 6.23 Time histories of rudder and heading angles during -20o/-20o Zig-zag of the 

S175 in beam sea 
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6.6 Summary of the chapter 

In this chapter, the two time scales model is introduced for the combined seakeeping 

and manoeuvring analysis. The formation of the manoeuvring equation system is first 

established in a body fixed frame. Then, the external forces and moments acting on 

the ship are divided into several components based on the modular concept. The hull 

force, resistance, propeller force, rudder force and mean wave drift force are modeled 

as separate modules by allowing possibility to replace or update the existing 

numerical procedures in a module without affecting the other modules. The 

theoretical or semi-empirical methods covering the force components are employed 

with details presented. These methods are commonly used within the manoeuvring 

research field. Special attention is paid on the derivation of the mean wave drift force 

according to perturbation expansion. Finally, the computational algorithm for the 

whole simulation system is illustrated by a flow chart. 

Validations of the system are carried out on the S175 manoeuvring in calm water and 

waves with different incident angles and wavelengths. Validations of the mean second 

order wave loads are also carried out on the S175 in head and beam sea respectively. 

From the results, the overall satisfying agreements with the experimental results 

demonstrate that the present numerical simulation system for a ship manoeuvring in 

waves is fairly reliable. However, further improvements are required to increase the 

accuracy of the simulations. 
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7 Conclusions and future works 

7.1 Achievements and conclusions 

The behaviour of a single slender ship manoeuvring in regular waves is studied by 

numerical prediction. For this purpose, a systematic model combining the linear 

seakeeping analysis and the nonlinear manoeuvring analysis is developed on a two 

time scales approach. The approach uses the fact that the manoeuvring, in general, 

occurs at more slowly varying time scale than the linear wave induced ship motions. 

The seakeeping analysis affects the manoeuvring behaviour of a ship by introducing 

the regular wave effects with the slowly varying mean second order wave loads. On 

the other hand, the slowly time varying manoeuvring analysis affects the wave 

frequency problem by accounting for the changes in ship speed and wave direction 

during the execution of maneuver. 

The seakeeping analysis on the high frequency linear wave induced motions is carried 

out by the developed approach based on the 2.5D theory. Rankine type singularities 

are applied in the BEM to solve the established 2D BVPs in each cross station plane 

along the ship length direction. The contours of body plans and the unknown variables 

on the boundary are accurately expressed with the help of the modelling tool, i.e., 

NURBS. The BVPs are solved by a time stepping procedure from the bow to stern 

with the kinematic and dynamic conditions on the free surface implemented in a finite 

difference scheme and the radiation condition on the open boundary fulfilled by a 

second order MTF scheme. Viscous correction on the roll damping is taken into 

account by adopting a set of semi-empirical formulae. Approximation for lift force in 

lateral motion are addressed indirectly with the help of the slender wing theory and 

the low aspect ratio wing theory.  

Validation of the NURBS modelling tool is implemented on a unit circle, two Wigley 

hulls and two real ship types, i.e., Series 60 ship and S175 container ship. The 

satisfactory results of the plotted contours demonstrate the tool is perfect for geometry 

representing. Then, the 2.5D approach based on the NURBS is validated by solving 
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the radiation problem and the diffraction problem on the Wigley III and the Series 60 

ship. Furthermore, the S175 container ship is used for the validation of the free ship 

motions in waves. From all the above validation results, the present developed 2.5D 

NURBS based BEM tool is reliable for the seakeeping analysis of a slender ship 

advancing in waves with forward speed. 

Regarding the manoeuvring analysis, the motion equations are established in a body 

fixed coordinate system with the external forces and moments acting on the ship been 

treated under the modular concept. The linear manoeuvring derivatives required in the 

analysis can be taken care of by the 2.5D seakeeping analysis tool with the rigid wall 

free surface condition. Semi-empirical or empirical methods commonly used within 

the manoeuvring research field are employed to cover the estimation of resistance on 

the hull, thrust from the propeller and the steering force from the rudder. The mean 

wave drift loads are accounted for by the direct pressure integration based on the first 

order velocity potential already obtained in the seakeeping analysis of the linear wave 

induced motions. According to the validation on the S175 container ship advancing in 

head sea and beam sea, the present numerical tool can give reasonable estimated 

values for the mean wave drift loads.  

Finally, the developed system based on the two time scales model is applied on two 

scaled S175 ship models to investigate their manoeuvring characteristics under 

imposed regular deep water wave conditions. The simulations of two typical standard 

maneuvers, namely turning circle and Zig-zag maneuvers, in calm water and in 

regular wave field are carried out. The obtained calm water results concerning the 

ship’s trajectory and selected manoeuvring parameters are compared with available 

experimental measurements. Good agreement is achieved. Then, by keeping the same 

simulation conditions, the regular waves at different incident angles and wavelengths 

are imposed. Generally speaking, all the numerical simulations are satisfactory by 

comparing with the experimental measurements. A common fact of incident waves 

having a significant influence on the manoeuvring performance of a ship is captured 

by the present simulations. Relatively better results are obtained in the turning circle 

tests and can catch the tendency of the drifting in the maneuvers, while some 

differences are observed in the Zig-zag maneuvers. In comparison with the cases in 

the head sea state, Zig-zag maneuvers in beam sea show more promising results.  
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According to the presented work, the main objectives of the subject have been 

achieved which providing a practical numerical tool to study the behaviour of a 

slender ship manoeuvring in waves and can be considered as a basic platform for the 

further study in the relative field.   

7.2 Recommendations for Future work 

Due to the complexity of the problem and time constraint, the present work has just 

completed a slice of the whole subject. There are several things which should be done 

in order to make a better analysis of a manoeuvring ship in seaway. 

Firstly, the 2.5D theory applied in the present work is a classical 5-DOF theory for a 

single hull same as the strip theories which neglects the surge mode. Although the 

surge mode is considered to be negligible in context of the seakeeping analysis, it will 

be required to investigate its influence on the manoeuvring behaviour of a ship in 

waves concerning in particular the involuntary speed reduction and ship trajectory. 

Secondly, the present study is still in the scope of the linear potential flow theory such 

as the model does not account for the instantaneous wetted surface of the hull and the 

influence of the steady flow on the unsteady flow is also neglected. Considering these 

effects will improve the accuracy of the predictions. Further, an accurate evaluation of 

the mean second order wave loads is important. On one hand, contribution from the 

second order velocity potential is suggested to be included. On the other hand, 

scenario of a ship manoeuvring in a sea state where the wavelength is shorter than the 

sectional beam requires a more adequate method for the mean wave drift loads 

evaluation as the reflection of the incident wave plays an important role. Moreover, 

the present study only take into account the wave effects on the bare hull, whereas 

neglect the influence on the propeller and rudder. This leads to the improper 

estimations of the propulsive efficiency and steering ability especially in the head sea 

condition.  

The ultimate improvement of the present model can be achieved by using a 3D 

approach even a CFD method in solving the low frequency lateral motions instead of 

the 2.5D approach. Although, it is well known that a 3D approach will be time 

consuming, it will fundamentally make up the deficiencies of the 2.5D approach in 
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dealing with the 3D effects such as the lift force problem provided the computational 

time problem can be overcome in the future. 

Finally, the present model should be extended to include the shallow water effects in 

order to be able to simulate ship maneuvers in waters of restricted depth. In addition, 

wind, current and irregular waves are also in the range of consideration for the next 

step work. 
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Appendix A: Estimations of the equivalent 

roll damping components 

Bilge keel damping 

Bilge keel damping is usually the largest component in the roll damping which 

contributes more than 50% of the total value. It can be divided into two components, 

i.e., the normal force component BKNB  and the hull pressure component BKHB . Both 

components are created by the same vortices from the edge of bilge keels. The former 

one is created by the force acting on bilge keels, and the latter by the pressure over the 

hull surfaces in front and back sides of the bilge keel. They can be estimated as follow. 
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ρ  is the density of the fluid, eω  is the frequency of excitation equal to the encounter 

frequency in waves. sB , sD  are the breadth and the draft of the underwater cross 

section under consideration respectively, bL  is the length of the bilge keel. OG  is the 

distance between the roll center of the ship and the center of gravity. BKb  is the 

breadth of the bilge keel and br  is the mean distance from the roll axis to the bilge keel. 

aφ  is the roll amplitude, bR  is the bilge radius. 0H , σ  represent the half the beam 

draft ratio and area coefficient at the underwater cross section under consideration 

respectively. Furthermore, 
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where 0L′  is the constant pressure distribution length given by 
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Eddy damping 

Eddy damping is estimated by 
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The relative velocity ratio γ  is estimated by 
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The value of ψ ′  is determined by  
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The coefficient 1 3,a a  are the Lewis form parameters corresponding to the modified 

cylinder which can be determined according to the formulae given in the manual by 

Journée & Adegeest (2003). 

Friction damping 

Friction damping is estimated by 
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, ,L B D  are the length, the breath and draft of the ship respectively, BC  is the block 

coefficient of the ship. fC  is the friction coefficient, fr  is the effective bilge radius, 

0S  is the empirically estimated wetted surface area. ν  is the kinematic viscosity of 

fluid.  

Lift damping 

Lift damping is estimated by 
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MC  represents the midship cross section coefficient. 
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Appendix B: Fundamental algorithms for 

NURBS curve 

Since only the contours of ship’s cross sections are needed to be modeled for the 2D 

boundary value problem analysis in present study, the algorithms for 2D NURBS 

curve are presented. 

Evaluation of the curve 

In brief, the evaluation problem of NURBS, which is to plot a curve with a set of 

control points and corresponding weight factors already known, can be achieved 

directly by the recursion formulae (5.8) and the definition expression (5.12) with 

stable results. However, for a degree k  curve, this method requires to call the 

recursion formulae 1(2 1)k− −  times for one basis function , ( )i kN u . And for each point 

on the curve, values of ( 1)k +  basis functions are needed to be given, then leads to a 

total 1( 1)(2 1)kk −+ −  times calculations of the formulae thus results in low 

computational efficiency relatively. An alternative to reduce calculation amount is 

using the de Boor algorithm for B-spline which could also be applied to NURBS 

according to the homogeneous coordinate expression as follow. 
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Derivatives of the curve 

The differentiability of NURBS or B-spline are essential for curve modelling to fulfill 

the smoothness requirement at the first place which refers to the derivatives of the 

curve. Similar to the above, there are also two ways for the derivatives, the direct one 

and one based on de Boor algorithm. Firstly, rewrite the definition expression (5.12) 

as follow. 
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Here, ( )A u  and ( )w u  can be considered as two special B-splines. Then, the m -th 

order derivative of the curve can be presented according to Leibniz’s rule. 
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where, following iterative formulae are applied directly. 
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Particularly, the first order derivative of NURBS is 
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On the other hand, based on de Boor algorithm, the formula for r -th order derivatives 

of B-spline can be derived. 
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As shown, the r -th order derivatives of degree k  B-spline is reduced to ( )k r−  

degree. Keep this in mind and further consider the NURBS, we can similarly derive 
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Replace the terms in the formula (B.7) with (B.9), ( ) ( )mA u  and ( ) ( )mw u  can be 

derived instead of using the iterative formulae (B.5). Then the derivatives of NURBS 

can also be given by formula (B.4). 

Curve fitting 

In practical ship design, coordinates of discrete data points on the ship profiles are 

usually provided instead of control points which are mostly not on the profiles. Then a 

curve fitting procedure is necessary to create a demanded NURBS or B-spline curve 

through all these data points. Therefore, to derive the control points of the convex 

polygon would be the key step. This step can also be called as inverse computation 

which requires boundary conditions and parameterization of the data points. Normally, 

cubic curve is fairly enough for modelling application. 
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According to the relation shown in Fig. 5.3, in order to let the curve pass through the 

given data points ( 0,1, , )iq i n=  , ( 3)n +  control points ( 0,1, , 2)jd j n= +  are 

required with the knot vector 0 1 6[ , , , ] [0,1]i nu u u u += ⊂ u . Firstly, the multiplicities 

at both ends of the knot vector should be 4 to ensure the first and last control points 

are coincide with the endpoints of the curve, which implies 0 1 2 3 0u u u u= = = = , 

3 4 5 6 1n n n nu u u u+ + + += = = = . Other internal knots can be determined by adopting certain 

parameterization method. To be specific, there are four parameterization methods, i.e., 

uniform, accumulating chord length, centripetal and Foley’s as introduced by Piegl & 

Tiller (1997). In present study, the accumulating chord length parameterization is 

chosen because it is believed that it can reflect the geometric distribution of the data 

points more accurately. In this way, the knots spacing is proportional to the distance 

between the points. Thus, 
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where knots 0 1 2 3 0 0u u u u v= = = = = , 3 4 5 6 1n n n n nu u u u v+ + + += = = = = , and 3i iu v −= ,

1
1

n

i i
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= −∑  represents the sum of chords length. Besides, the data points and 

knots have one to one correspondence, 3 , 0, ,i iq u i n+⇒ =  . 

With the help of the homogeneous coordinate expression, the inverse computation can 

be transferred into non-rational B-spline category again. In addition, because of the 

local control property, only 4 adjacent control points would affect the value of the 

point on the curve. In this way, the point on the corresponding B-spline in 3D space 

can be expressed as follow. 
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Substituting the weighted data points [ ], ( 0,1, , )i i i iP h q h i n= =   with their weight 

factors ih  already known into expression (B.11), ( 1)n +  linear equations can be 

established as follow.  
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        (B.12) 

Besides, for an open curve, end points conditions, 0 0 2, n nD P D P+= = , should be 

fulfilled as mentioned above. Therefore, the linear equations can be further expressed 

in matrix form as follow. 
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However, ( 1)n +  equations cannot uniquely determine ( 3)n +  unknowns, two more 

boundary conditions should be added which leads to specific requirements at the 

endpoints such as clamped ends, natural ends, parabolically terminated, virtual knots 

or so called not-a-knot. According to the transverse profiles of ships to be modelled, 

the parabolically terminated and the clamped ends conditions are adopted here 

respectively. For the mathematical ship types, the parabolically terminated condition 

is selected, while the clamped ends condition is suitable for real ships with straight 

line ends.  

For the parabolically terminated condition or so called Bezier condition, the tangent 

vectors should be determined as follow. 
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 ∆ − = − = −
 ∆ −

  

  
                                                        (B.14) 

where, 1i i iu u+∆ = − , and, 

1 1

1 1 1

1 1 1 1

1 1 1 1 1 1

, 1 1

i i i i
i

i i i i i i

i i i i i i i i

i i i i i i i i

P PP

v v P P v v P P i or n
v v v v v v v v

− −

− − −

+ − − +

+ − − + − +

∆ ∆ ∆ ∆
= +
∆ + ∆ ∆ ∆ + ∆ ∆

− − − −
= + = −

− − − −



                      (B.15) 

On the other hand, the clamped ends condition can be given as follow. 

0 3 1 0 1 0
3 4

3 2 1 2 1
2 2

3 3( ) ( ) ( )

3 3( ) ( ) ( )
1n n n n n n

n n

P P u D D D D
u

P P u D D D D
u+ + + + +

+ +

 = = − = − ∆

 = = − = −
 ∆ −

 

 
                                    (B.16) 

Note that the tangent vectors at the endpoints of the NURBS curve in 2D plane and 

the corresponding B-spline in 3D space have following relations according to 

perspective projection. 

[ ]
[ ]

0 0 0 0 0 0

2 2 2

( ),

( ),n n n n n n

P w q w q w

P w q w q w+ + +

 = +


= +

   

   
                                                                            (B.17) 

Here, the unknown first order derivatives 0 2, nw w +   can be derived by interpolating the 

B-spline ( )w u  with the weight factors ih  of the data points firstly, and then 

calculating its derivatives by the de Boor algorithm introduced before. 

Assuming the clamped ends condition is chosen, the matrix equations can be rewritten 

as follow finally by combining (B.13) and (B.16) without the first and last control 

points for 0 0 2, n nD P D P+= =  already applied, that is, 
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1 1

2 22 2 2

1 1

1

1
n nn n n

n n

D e
D ea b c

D ea b c
D e+ +

    
    
    
     =
    
    
         

                                                           (B.18) 

where, 

( )2 2
2 3 2

1 2 3

2 1 1 2 3

1 2 1 2 3
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2 2
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1 2 3 4

( )

( ) ( )

( )( ) ( )( )

( ) ( )

i i i
i
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i

i i i i i i
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+ + +

+ + + + +

+ + + + +

+ + + + + + +

+ + +
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∆ + ∆ + ∆ −
∆ ∆ + ∆ ∆ ∆ + ∆

= +
∆ + ∆ + ∆ ∆ + ∆ + ∆

− − − −
= +

− −

∆ −
= =
∆ + ∆ + ∆ − 1

1 2 1 3 1 1( ) ( )
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i

i i i i i i i

u
e P u u P
i n

+

+ + − + + −













 = ∆ + ∆ = −

= 

                                 (B.19) 

3 4
1 0 0 0 0

2 2
1

3 3
1

3 3
n n

n n n n n

ue P P P P

ue P P P P+ +
+

∆ = + = +
 ∆ − = − = −


 

 
                                                        (B.20) 

By solving the equations (B.18), all the weighted control points of the B-spline in 3D 

space can be obtained. Sequentially, the original control points of the NURBS in 2D 

plane can be derived by perspective projection according to the relation (5.14). 

Knot insertion 

The flexibility of the curve is another important desirable property for modelling. In 

order to increasing the flexibility of a NURBS curve or non-rational B-spline, knot 

insertion is an alternative way without changing the shape of the curve. It is a key 

basic algorithm of many advanced algorithms such as local modification, subdivision 

and degree elevation which will be introduced later for generating complex curves. 
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For a NURBS curve of degree k  with ( 1)n +  control points and ( 2)n k+ +  knots, 

inserting another knot ) [ ]1 1, ,j j k nu u u u u+ +∈ ⊂ , the curve can be expressed by the 

rational polynomial of definition with new ( 2)n +  control points. 

1
* * *

,
0

1
* *

,
0

( )
( )

( )

n

i i i k
i

n

i i k
i

w d N u
Q u

w N u

+

=
+

=

=
∑

∑
                                                                        (B.21) 

where the new control points *
id  and weight factor *

iw  could be derived by following 

formulae developed from the knot insertion algorithm of B-spline curve according to 

the homogeneous coordinate expression and perspective projection as well. Thus, 

* 1 1

1

*
1

(1 )
(1 )

(1 )

i i i i i i
i

i i i i

i i i i i

a w d a w dd
a w a w

w a w a w

− −

−

−

− + = − +
 = − +

                                                               (B.22) 

where, 

1 0,1, ,

1, 2, ,

0 1, 2, , 1

i
i

i k i

i j k
u ua i j k j k j r

u u
i j r j r n

+

 = −
 −= = − + − + − −
 = − + − + +







                                 (B.23) 

Here, r  is the multiplicity of the knot to be inserted. If the inserted knot u  is a new 

one which means it does not lie on any existed knots, then 0r = ; while if the inserted 

knot already has multiplicity p , then r p= . 

Degree elevation 

Furthermore, ship profiles would be commonly consist of straight lines, conics and 

free form curves together such as the transverse profiles of parallel middle body or 

bulbous bow. Then a uniform expression of NURBS is required to describe the 

combined curve precisely with degree elevation technique. In addition, degree 
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elevation operation can also increase the flexibility of the curve like knot insertion, it 

requires larger amount of calculation but without reducing the continuity of the curve. 

As previous stated, the curve (5.12) has the differentiability class of k pC −  at a knot 

position with multiplicity p . Raising the curve degree to ( 1)k + , the curve should be 

expressed by ( 1)k +  degree B-spline basis functions. In order to keep the curve 

unchanged geometrically which means the differentiability class remains k pC − , the 

multiplicity of the knot should be raised to ( 1)p + . The original knot vector has the 

form expressed as follow. 

[ ]
0

0 1 1 0 0, , , , , , , , ,
l

n k l l

p p

u u u τ τ τ τ+ +

 
 = =
  

   
 

u                                             (B.24) 

Here, ip  represents the multiplicity of the knot iτ  which satisfies 
0

2
l

i
i

p n k
=

= + +∑ . 

Particularly, for the knots at the ends, 0 1lp p k= = + . So after one degree elevation, 

the new knot vector should be 
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0 1 0 02

1 1

, , , , , , , , ,
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+ +

+ +

 
  = =    

   
 

u                                          (B.25) 

with ( ) *

0

1 3
l

i
i

p n k
=

+ = + +∑ . Thus, the number of new unknown control points would 

be *( 1) ( 1)n n l+ = + + . Accordingly, the new knot vector determines a set of B-spline 

basis functions of degree ( 1)k + , , 1( )( 0,1, , )i kN u i n l+ = + . Then, the original curve 

can be expressed as follow. 
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, 1
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∑
                                                                         (B.26) 
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With the help of the homogeneous coordinate expression one more time, the solutions 

of the new control points *
id  and weight factor *

iw  can be derived by the formulae as 

follow equivalent to a corner cutting process of the control polygon. 

* 1 1
*

*
1

(1 )

(1 )

i i i i i i
i

i

i i i i i

a w d a w dd
w

w a w a w

− −

−

− + =

 = − +

                                                                  (B.27) 

where ( 1) , 0,1, , 1ia i k i k= + = + . 
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Appendix C: PMM tests 

Planar motion mechanism (PMM) test is a kind of captive model test conducted in a 

long and narrow towing tank for manoeuvring hydrodynamic derivatives by using 

harmonic analysis. 

Coordinate system and definitions 

Define CU  is the speed of carriage, ω  is the frequency of motion, a  is the amplitude 

of lateral motion of the carriage. 0 0 0, ,u v r  are the speed components in Earth fixed 

coordinate, , ,u v r  are the speed components in body fixed coordinate, V  is the total 

speed of the ship (≠ carriage), arctan( / )v uβ = −  is the drift angle, ψ  is the heading 

angle, 0ψ  is the angle of velocity vector in Earth fixed coordinate, and 0ψ ψ β= + . 

Then, 

0

0

0

sin
arctan( cos / ) arctan( cos ) /

C

C C

x U t
y a t

a t U t define a U
ω

ψ ω ω ε ω ε ω

=
 =
 = = =

              (C.1) 

Fig. C-1 shows the four test motions usually being conducted in PMM tests. 

v

u

x

y

y0

0

UC=V
V

y0

0

UC=u

x

y

 

v0=v

u=V

x

y

y0

0

UC

r

v=0

v0

V

y0

0

UC

r
v0

v

x

y

u
0

 

(a)                             (b)                              (c)                             (d) 

Fig. C-1. a)Oblique towing test b)Pure sway c)Pure yaw d)Yaw plus drift 
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Kinematic analysis 

From Fig. C-1, we can first derive the values of kinematic parameters in each 

coordinate system. 

In earth fixed coordinate, 

Table C-1. 

Parameters OTT Pure sway Pure yaw Yaw plus drift 
0u  CU  CU  CU  CU  

0u  0 0 0 0 

0v  0 cosa tω ω  cosa tω ω  cosa tω ω  

0v  0 2 sina tω ω−  2 sina tω ω−  2 sina tω ω−  

0r  0 0 2 2

sin
1 cos

t
t

εω ω
ε ω

−
+

 
2 2

sin
1 cos

t
t

εω ω
ε ω

−
+

 

0r  0 0 
( )

( )

2 2
2

22 2

1 1 sin
cos

1 cos

t
t

t

ε ω
εω ω

ε ω

+ +
−

+
 

( )
( )

2 2
2

22 2

1 1 sin
cos

1 cos

t
t

t

ε ω
εω ω

ε ω

+ +
−

+
 

 

In body fixed coordinate, 

Table C-2. 

Parameters OTT Pure sway Pure yaw Yaw plus drift 
u  cosCU β  CU  2 21 cosCU tε ω+  2 21 cos cosCU tε ω β+  

u  0 0 
2

2 2

sin 2
2 1 cos

C

tU
t

ε ωω
ε ω

−
+

  
2

2 2

sin 2 cos
2 1 cos

C

tU
t

ε ωω β
ε ω

−
+

  

v  sinCU β−   cosa tω ω  0 2 21 cos sinCU tε ω β− +  

v  0 2 sina tω ω−  0 
2

2 2

sin 2 sin
2 1 cos

C

tU
t

ε ωω β
ε ω+

 

r  0 0 2 2

sin
1 cos

t
t

εω ω
ε ω

−
+

 
2 2

sin
1 cos

t
t

εω ω
ε ω

−
+

 

r  0 0 
( )

( )

2 2
2

22 2

1 1 sin
cos

1 cos

t
t

t

ε ω
εω ω

ε ω

+ +
−

+
 

( )
( )

2 2
2

22 2

1 1 sin
cos

1 cos

t
t

t

ε ω
εω ω

ε ω

+ +
−

+
 

 

However, even for the tests to determine nonlinear derivatives, the drift angle or 

heading angle is up to 20 degrees, so ε  can still be treated as a small value, then we 

can omit the ( )2O ε  terms. 
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In this way, following simplified motion equations of pure yaw and yaw plus drift can 

be derived. 

Pure yaw: 2

3

, 0
0

sin /
cos /

C

C

C

u U u
v v
r a t U
r a t U

ω ω
ω ω

≈ ≈
 = =
 ≈ −
 ≈ −







   Yaw plus drift: 2

3

cos , 0
sin , 0
sin /
cos /

C

C

C

C

u U u
v U v
r a t U
r a t U

β
β

ω ω
ω ω

≈ ≈
 ≈ − ≈
 ≈ −
 ≈ −







  

Hydrodynamic models 

Total hydrodynamic forces and moment including the inertial components are 

2
x x y r H

y y x r H

z z v r H

F m u m vr Y r X
F m v m ur Y r Y
M J r N v Y ur N

= − + − +


= − − + +
 = − + + +





 



 

 

                                       (C.2) 

where, , ,x u y v z rm X m Y J N= − = − = −   . 

Kijima model 

Based on Kijima model, the viscous force components yaw moment would be 

2 2 4

2 2

2 2

( )H vv vr rr vvvv

H v r vvr vrrv v r r

H v r vvr vrrv v r r

X X u X v X vr X r X v
Y Y v Y r Y v v Y r r Y v r Y vr

N N v N r N v v N r r N v r N vr

 = + + + +
 = + + + + +


= + + + + +

                          (C.3) 

( )X u is the straight forward resistance at speed u . Therefore, 

1. In oblique towing test 

2 4( )x vv vvvv

y v v v

z v v v

F X u X v X v
F Y v Y v v

M N v N v v

 = + +
 = +


= +

                                                                     (C.4) 

Conduct the test at different drift angles up to 20 degrees, then the derivatives can be 

obtained by the least square fit.  
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2. In pure sway 

2 4( )x vv vvvv

y y v v v

z v v v v

F X u X v X v
F m v Y v Y v v

M N v N v N v v

 = + +
 = − + +


= + + 





                                                                     (C.5) 

Substitute the motion from Table A-2 into the equations, 

2 2 2 4 4 4

2 2 2

2 2 2

( ) cos cos
sin cos cos cos

sin cos cos cos

x C vv vvvv

y y v v v

z v v v v
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ω ω ω ω ω ω ω

ω ω ω ω ω ω ω

 = + +
 = + +


= − + + 

                    (C.6) 

Here, we only need to consider the side force and yaw moment, as the surge force 

component has already been derived in oblique towing test. However, for the purpose 

of completeness, surge force is still given. With simple transformation, the forces and 

moments can be expressed as follow. 

0 2 4

0 1 1 2

0 1 1 2

cos 2 cos 4
cos sin cos 2

cos sin cos 2

x C C

y C S C

z C S C

F X X t X t
F Y Y t Y t Y t
M N N t N t N t

ω ω
ω ω ω

ω ω ω
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 = + + +
 = + + +

                                         (C.7) 

Where, 
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(C.8) 
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In order to derive all these coefficients, Fourier integration could be applied based on 

the characteristics of trigonometric functions, namely Fourier series. Any periodic 

function can be treated as linear superposition of several simple harmonic functions 

with different amplitudes and phrases. So it can be expressed as follow. 

( ) ( )

( )

0

1

0

1

sin
2

cos sin
2

n n
n

n n
n

af t A n t
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ω ϕ
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∞

=

∞

=
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= + +

∑

∑
                                                (C.9) 

Where, 

2 2 ,sin ,cosn n
n n n n n

n n

a bA a b
A A

ϕ ϕ= + = =                                              (C.10) 

Therefore, the coefficients are derived according to following formulae. 
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∫

∫

                                                                   (C.11) 

Here T  is the period. Choose a stable period from 0  to T  including N  time steps, we 

have ( ); , 0,1, 2, , 1k k kF f t t k t k N= = ⋅∆ = − , Then the coefficients can be rewritten 

as follow. 
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∑

                                                                      (C.12) 

Finally the derivatives can be obtained 
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3. In pure yaw 

2 2( )x r rr

y x r r r r

z z r r r r

F Y r X u X r
F m ur Y r Y r Y r r

M J r Y ur N r N r r

 = − + +
 = − + + +


= − + + +











                                                             (C.14) 

Again substitute the motion from Table C-2 into the equations, 

2 4 2 2 2 4 2 2

2 3 2 2 4 2

3 2 2 2 4 2

sin / ( ) sin /
sin cos / sin / sin sin /

cos / sin sin / sin sin /

x r C C rr C

y x r C r C Cr r

z z C r r C Cr r

F Y a t U X U X a t U
F m a t Y a t U Y a t U Y a t t U

M J a t U Y a t N a t U N a t t U

ω ω ω ω
ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω

 = − + +
 = − − −


= − − −







(C.15) 

According to transformation, we have 
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0 2

0 1 1 2

0 1 1 2

cos 2
cos sin cos 2

cos sin cos 2

x C

y C S C

z C S C

F X X t
F Y Y t Y t Y t
M N N t N t N t

ω
ω ω ω

ω ω ω

 = +
 = + + +
 = + + +

                                           (C.16) 

Same as the procedure used in pure sway, the derivatives can be obtained as follow. 

( ) ( )

( )

( )

( )

2
2

0 2 2 4

2 2
1 11 1

3 2 3 2

2 1
2 1

22 1 2 3
1

2 2

2( ) , ;

, ; , ;

2 2 1 , :

22 ( )
2( )

2

C C
C C rr r

x S C S r CC C C C
r r z r

k
S

kC yk
S

k y r r r r
C

X UX U X X X Y
a

m a Y U N Y a UY U N UY Y J N
a a a a

choose period k t k k Z

YU F t dt
Y aF t dt Y Y

U

π
ω

ππ
ωω

π
ω

ω
ω ω

ω ω ω ω
π ω π

ωω π
ω

+

+

+

= + = − +

− +−
= = = = −

< < + ∈


−

= − ⇒ =
∫

∫







( )

( )

( ) ( )

( )

( ) ( )

( )

2 3

2 1
2 1

22 1 2 3
1

2 2 2 3

2 2
2 1

2 12 2 2 3
1

2 1 2

;

22 ( )
2( ) ;

2
2 1 2 2 , :

22 ( )
2( )

2

k
S

kC zk
S

k z r r r r
C

k
S

kC yk
S

k y r r r r
C

a

NU M t dt
N aM t dt N N

U a
or choose period k t k k Z

YU F t d
Y aF t dt Y Y

U

π
ω

ππ
ωω

π
ω

π
ω

ππ
ωω

π
ω

ω π

ωω π
ω ω π

π ω π

ωω π
ω

+

+

+

+

++

+


 



 
− 

 = − ⇒ =

+ < < + ∈

+
= − + ⇒ =

∫
∫

∫
∫

( )

( ) ( )

( )

2 3

2 2
2 1

2 12 2 2 3
1

2 1 2 2 3

;

22 ( )
2( ) ;

2

k
S

kC zk
S

k z r r r r
C

t

a

NU M t dt
N aM t dt N N

U a

π
ω

ππ
ωω

π
ω

ω π

ωω π
ω ω π

+

++

+




















      

   +   = − + ⇒ =


∫
∫ (C.17) 

4. In yaw plus drift 

2 2 2 4

2 2

2 2

( )x y r vv vr rr vvvv

y x r v r vvr vrrv v r r

z z r v r vvr vrrv v r r

F m vr Y r X u X v X vr X r X v

F m ur Y r Y v Y r Y v v Y r r Y v r Y vr

M J r Y ur N v N r N v v N r r N v r N vr

 = − + + + + +
 = − + + + + + + +


= − + + + + + + +











         (C.18) 

In the same manner, we have 
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2 2 4 2 2

2 2 2 2 4 2 2 4 4

2 3

2 2 2 4 2

sin sin sin / ( cos )

sin sin sin sin / sin
sin cos cos /

sin sin / sin sin sin sin /

x y r C C

vv C vr rr C vvvv C

y x r C

v C r C C Cv v r r

v

F m a t Y a t U X U

X U X a t X a t U X U
F m a t Y a t U

Y U Y a t U Y U Y a t t U

Y

ω ω β ω ω β

β ω ω β ω ω β
ω ω β ω ω

β ω ω β β ω ω ω

= − +

+ + + +

= −

− − − −

−





2 2 2 4 2

3 2

2 2 2 4 2

2 2 2 4 2

sin sin sin sin /
cos / sin cos
sin sin / sin sin sin sin /

sin sin sin sin /

vr C vrr C

z z C r

v C r C C Cv v r r

vvr C vrr C

U a t Y a t U
M J a t U Y a t

N U N a t U N U N a t t U

N U a t N a t U

β ω ω β ω ω
ω ω ω ω β

β ω ω β β ω ω ω

β ω ω β ω ω









⋅ − ⋅
 = −
 − − − −

 − ⋅ − ⋅



(C.19) 

Then, again rewrite the equations as follow 

0 1 2

0 1 1 2

0 1 1 2

sin cos 2
cos sin cos 2

cos sin cos 2

x S C

y C S C

z C S C

F X X t X t
F Y Y t Y t Y t
M N N t N t N t

ω ω
ω ω ω

ω ω ω

 = + +
 = + + +
 = + + +

                                              (C.20) 

Finally, the derivatives would be 

( )
( )

22
22

11
1

2 2 2 2 2

2 1 2 4
21

2

coscos
; ; ;

sin sin sin
2 2 1 , :

2 sin( ) sin sin sin
2

rr
S rx S

CS C
vr y vvr vvr

C C

k
rS vrr

k y v C Cv v
C

N aY a N Y am a Y
UX UX m Y N

a U a U a
choose period k t k k Z

YY Y aF t dt Y U Y U
U

π
ω

π
ω

ωω ω βω β

ω β β ω β ω
π ω π

β ωβ β β
ω

+

+

 
− − +− −  

 = − = =
⋅ ⋅

< < + ∈

⋅
= − + + +∫



( )

( )

2 4

2

2 42 1
21

2 2

2 4

2 42 1 2 4
21

2 2

2

22 ( ) sin sin sin
2

;
sin

2 sin( ) sin sin sin
2 2

r

C

k
r rS

kC y v C Cv v
C

vrr

k
r rS vrr

k z v C Cv v
C C

a
U

Y aYU F t dt Y U Y U
U

Y
a

N aN N aM t dt N U N U
U U

π
ω

π
ω

π
ω

π
ω

ω π
ω

ω πω β β β
ω ω

β ω π
ωβ ωβ β β

ω

+

+

 
  
 

  
− − + +      ⇒ =

⋅

 ⋅
= − + + +



∫

∫
( ) 2 42 1

21
2 2

2 4

22 ( ) sin sin sin
2

;
sin

k
r rS

kC z v C Cv v
C

vrr

N aNU M t dt N U N U
U

N
a

π
ω

π
ω

π
ω

ω πω β β β
ω ω

β ω π

+


















  


  
− − + +       ⇒ = ⋅

∫

 



207 
 

( ) ( )

( )

( )

( )

( )

2 42 2 2 4
21

2 1 2

2 42 2
21

2 1 2

2 1 2 2 , :

2 sin( ) sin sin sin
2 2

22 ( ) sin sin sin
2

k
r rS vrr

k y v C Cv v
C C

k
r rS

kC y v C Cv v
C

vrr

or choose period k t k k Z

Y aY Y aF t dt Y U Y U
U U

Y aYU F t dt Y U Y U
U

Y

π
ω

π
ω

π
ω

π
ω

π ω π

ωβ ω πβ β β
ω ω

ω
ω β β β

ω

+

+

+

+

+

+ < < + ∈

 ⋅
= − − + + −  

 


− − − + −

⇒ =

∫

∫

( )

( )

( )

( )

2 4

2 42 2 2 4
21

2 1 2

2 42 2
21

2 1 2

;
sin

2 sin( ) sin sin sin
2 2

22 ( ) sin sin sin
2

k
r rS vrr

k z v C Cv v
C C

k
r rS

kC z v C Cv v
C

vrr

a
N aN N aM t dt N U N U

U U

N aNU M t dt N U N U
U

N

π
ω

π
ω

π
ω

π
ω

π
ω

β ω π
ωβ ω πβ β β

ω ω

ω πω β β β
ω ω

+

+

+

+

 
    

⋅

 ⋅
= − − + + −  

 
  
− − − + −  

 ⇒ =

∫

∫
2 4

;
sin aβ ω π















 
     

⋅
 (C.21) 

3rd order polynominal model 

Similarly, based on 3rd order model, the viscous side force and yaw moment would 

be: 

3 3 2 2

3 3 2 2

H v r vvv rrr vvr vrr

H v r vvv rrr vvr vrr

Y Y v Y r Y v Y r Y v r Y vr
N N v N r N v N r N v r N vr

= + + + + +


= + + + + +
                                       (C.22) 

Other force components keep the same as in the Kijima model, then 

1. In oblique test 
2 4

3

3

( )x vv vvvv

y v vvv

z v vvv

F X u X v X v
F Y v Y v

M N v N v

 = + +


= +
 = +

                                                                           (C.23) 

Again, the derivatives can be obtained by the least square fit. 

2. In pure sway 
2 4

3

3

( )x vv vvvv

y y v vvv

z v v vvv

F X u X v X v
F m v Y v Y v

M N v N v N v

 = + +


= − + +
 = + + 





                                                                            (C.24) 
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By substituting the motion equations into the formulae 

2 2 2 4 4 4

2 3 3 3

2 3 3 3

( ) cos cos
sin cos cos

sin cos cos

x C vv vvvv

y y v vvv

z v v vvv

F X U X a t X a t
F m a t Y a t Y a t

M N a t N a t N a t

ω ω ω ω
ω ω ω ω ω ω

ω ω ω ω ω ω

 = + +


= + +
 = − + + 

                                  (C.25) 

Rewrite the formulae in following expressions. 

0 2 4

1 1 3

1 1 3

cos 2 cos 4
cos sin cos3

cos sin cos3

x C C

y C S C

z C S C

F X X t X t
F Y t Y t Y t
M N t N t N t

ω ω
ω ω ω

ω ω ω

 = + +
 = + +
 = + +

                                                   (C.26) 

So the derivatives would be 

2 2 4 4

0

4 4
2 4

2 2 4 4

3 3
1

1 3
2 3 3

3 3
1

1 3
2 3 3

3( ) ,
2 8

2 8, ;

3
44 , , ;

3
44 , ,

vv vvvv
C

C vvvv C
vv vvvv

C vvv
S C

v y vvv

C vvv
S C

v v vvv

X a X aX U X

X X a XX X
a a

Y Y a Y YY m Y
a a a

N N a N NN N N
a a a

ω ω

ω
ω ω

ω

ω ω ω

ω

ω ω ω

  
= − +  

 
 −

= =

 −
 = = =

 −
 = = − =                                             (C.27) 

3. In pure yaw 
2 2

3

3

( )x r rr

y x r r rrr

z z r r rrr

F Y r X u X r
F m ur Y r Y r Y r

M J r Y ur N r N r

 = − + +


= − + + +
 = − + + +











                                                                     (C.28) 

2 4 2 2 2 4 2 2

2 3 2

3 6 3 3

3 2 2

3 6 3 3

sin / ( ) sin /
sin cos / sin /

sin /
cos / sin sin /

sin /

x r C C rr C

y x r C r C

rrr C

z z C r r C

rrr C

F Y a t U X U X a t U
F m a t Y a t U Y a t U

Y a t U
M J a t U Y a t N a t U

N a t U

ω ω ω ω
ω ω ω ω ω ω

ω ω
ω ω ω ω ω ω

ω ω

= − + +


= − −
 −
 = − −
 −







                             (C.29) 
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Then, 

0 2

1 1 3

1 1 3

cos 2
cos sin sin 3

cos sin sin 3

x C

y C S S

z C S S

F X X t
F Y t Y t Y t
M N t N t N t

ω
ω ω ω

ω ω ω

 = +
 = + +
 = + +

                                                         (C.30) 

The derivatives would be 

2
2

0 2 2 4

33 6
21 3

13 2 3 3 6

33 6
21 3

13 2 3 3 6

2( ) , ;

43, , ;
4

43, ,
4

C C
C C rr r

C C C C Srrr
r r x S rrr

C

C C C C Srrr
z r r S rrr

C

U XX U X X X Y
a

Y U U U YY aY Y m a Y Y
a a U a

U N U U NN aJ N Y a N N
a a U a

ω
ωω

ω ω ω

ωω
ω ω ω


= + = − +


  − = = − − = 
 

  
= = − + + =  

  





                  (C.31) 

4. In yaw plus drift 
2 2 2 4

3 3 2 2

3 3 2 2

( )x y r vv vr rr vvvv

y x r v r vvv rrr vvr vrr

z z r v r vvv rrr vvr vrr

F m vr Y r X u X v X vr X r X v

F m ur Y r Y v Y r Y v Y r Y v r Y vr

M J r Y ur N v N r N v N r N v r N vr

= − + + + + +


= − + + + + + + +
 = − + + + + + + +











                       (C.32) 

2 2 4 2 2

2 2 2 2 4 2 2 4 4

2 3

2 3 3 3 6 3 3

sin sin sin / ( cos )

sin sin sin sin / sin
sin cos cos /

sin sin / sin sin /
s

x y r C C

vv C vr rr C vvvv C

y x r C

v C r C vvv C rrr C

vvr C

F m a t Y a t U X U

X U X a t X a t U X U
F m a t Y a t U

Y U Y a t U Y U Y a t U
Y U

ω ω β ω ω β

β ω ω β ω ω β
ω ω β ω ω

β ω ω β ω ω

= − +

+ + + +

= −

− − − −

−





2 2 2 4 2

3 2

2 3 3 3 6 3 3

2 2 2 4 2

in sin sin sin /
cos / sin cos
sin sin / sin sin /
sin sin sin sin /

vrr C

z z C r

v C r C vvv C rrr C

vvr C vrr C

a t Y a t U
M J a t U Y a t

N U N a t U N U N a t U
N U a t N a t U

β ω ω β ω ω
ω ω ω ω β

β ω ω β ω ω
β ω ω β ω ω









⋅ − ⋅
 = −
 − − − −


− ⋅ − ⋅



(C.33) 

So, we have 

0 1 2

0 1 1 2 3

0 1 1 2 3

sin cos 2
cos sin cos 2 sin 3

cos sin cos 2 sin 3

x S C

y C S C S

z C S C S

F X X t X t
F Y Y t Y t Y t Y t
M N N t N t N t N t

ω ω
ω ω ω ω

ω ω ω ω

 = + +
 = + + + +
 = + + + +

                            (C.34) 
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The cross coupling derivatives would be 

( )

( )

1
2

3 3
0 2

2 4 2 4

2 3 6
2

1 3

2 2

3 3
0 2

2 4 2 4

;
sin

2 sin sin 2
sin sin

3cos
4 ;

sin

2 sin sin 2
sin sin

S
vr y

C v C vvv C C C
vrr vrr

r rrr
x S

C C
vvr

C

C v C vvv C C C
vrr vrr

v

XX m
a

U Y Y U Y U U YY or Y
a a

Y a Y am a Y
U UY

U a

U N N U N U U NN or N
a a

N

ω β
β β

β ω β ω
ω ωω β

β ω

β β
β ω β ω

= −

− + +
= =

⋅ ⋅

− − −
=

⋅

− + +
= =

⋅ ⋅
2 3 6

2
1 3

2 2

3cos
4

;
sin

r rrr
r S

C C
vr

C

N a N aY a N
U U

U a

ω ωω β

β ω















   + + +   = − ⋅



                (C.35) 

For both models, the only unknowns is the surge added mass xm , in that case, a pure 

surge test can be carried out for the purpose of deriving a more accurate value instead 

of estimation by empirical formula, which is 

0

0 2
2

0

0 0 0 0 0

sin
cos

cos
sin

sin
0

0

C
C

C

x U t a t
u U a t

u U a t
and u a t

u a t
y v v r r

y v v r r

ω
ω ω

ω ω
ω ω

ω ω
ψ

= +
= + = +  = − 

= −  = = = = = = = = = = =




 
 

 

Thus, there is only surge force measured 

( )
( ) 2

*
0 1

sin

sin

x x

x

S

F m u X u

X u m a t

X X t

ω ω

ω

= − +

= +

= +



                                                                                   (C.36) 

Note here, *
0X  is not a constant as previous since cosCu U a tω ω= + , but we are only 

concern about the 1SX  which can derive the surge added mass 
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1
2

S
x

Xm
aω

=                                                        (C.37) 

Finally, all the derivatives need to be nondimensionalized according to the Prime 

System proposed by SNAME with the reference area of 2L  or LD . That is to say 

3 5

2 3 4

3 4 4

2 3 4 2 2

2

,
, , ;1 1

2 2

, , ;1 1 1
2 2 2

, , ;1 1 1
2 2 2

, , , ;1 1 1 1
2 2 2 2

,1
2

x y z
x y z

v r r
v r r

C C

v vr
v r v

C C

vv vr vvvvrr
vv vr rr vvvv

C

v v r r

v v r r

m m Jm m J
L L

Y Y YY Y Y
U L U L L

N NNN N N
U L U L L

X X XXX X X X
L L L L U

Y Y
Y Y

L

ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ ρ

ρ

′ ′ ′= =

′ ′ ′= = =

′ ′ ′= = =

′ ′ ′ ′= = = =

′ ′= =









4 2 5

3 5 3 6

3 4 4 5

, , ;1 1 1
2 2 2

, , , ;1 1 1 1
2 2 2 2

, , , ;1 1 1 1
2 2 2 2

vvv rrr
vvv rrr

C C

v v r r vvv rrr
vvv rrrv v r r

C C
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Appendix D: Michell’s integral 

The wave resistance WR  of a thin ship, beam B << draft D , in calm and deep water 

can be calculated by the well-known Michell’s integral. 

( )
2

22 3

2

cos
2WR U A d

π

π

π ρ θ θ θ
−

= ∫                                      (D.1) 

where the complex wave amplitude function ( )A θ  is given as 

( ) ( )
∫∫ +

∂
∂

=
cp

xvizv dzdxe
x

zxvA θθθζθ
π

θ cossec~sec~3 22,sec~2
                        (D.2) 

Here, 2v g U=  is the wave number of pure transverse waves at wave propagation 

direction angle 0θ = . The mean forward ship speed is U  and cp  denotes the center 

plane of the hull. Term ( ),x z xζ∂ ∂  is the longitudinal slope of the mean submerged 

hull surface ( ),y x zζ= ± . The wave propagation direction angles θ  are positively 

defined for waves which propagate to the port side of the ship hull.  

Due to the lateral symmetry of the hull and the surrounding flow the complex wave 

amplitude function ( )A θ  is an even function and needs only to be computed for 

positive wave propagation angles. Therefore, the expression (D.1) can be rewritten as 

( ) ( )∫ ∫==
2

0

2

0

322322 coscos
2

2
π π

θθθπρθθθρπ dAUdAURW               (D.3) 

In order to derive a variation of the above expression of the Michell’s integral which 

will be applicable for a case of the real ship offset, the wave amplitude function ( )A θ  

is transferred as follow.  
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where ,B sx x  denotes the longitudinal positions of bow and stern respectively. The 

integrals in the bracket can be obtained by integration by parts as follow. 
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Multiplying the part of expression (D.4) outside of bracket with i− , while i  is 

multiplied into the bracket, we have 
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(D.5) 

The expression can be further simplified if the ship has pointed bow and stern which 

means the second integral of the last line of (D.5) equal zero, then, 

( ) ( ) 22 4 sec sec2 sec , vz ivx
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iA v x z e dzdxθ θθ θ ζ
π

+= − ∫∫                             (D.6) 

In this way, the resistance (D.3) can be rewritten as follow. 
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     (D.7) 

Introducing secλ θ= , then, 
( )2 2

1

1
d dθ λ

λ λ
=

−


 
. Therefore, the final Michell’s 

integral can be rewritten as follow. 
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