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Abstract

This thesis is concerned with the effects of fractional derivatives in predator-prey-
like systems, including models of plant water interaction. In Chapter 3, a fractional
order predator-prey model is introduced, and we show how fractional derivative
order can change the system from monostable to bistable. The observable domains
of attraction of the two stable points will also be considered, in particular how
they change as the fractional order is changed. In Chapter 4, we will generalise the
predator-prey model studied in Chapter 3 by considering different fractional orders
for each species. This system is referred to as an incommensurate system. We will
explain how the different fractional orders affect the stability of this model. Then,
in order to see if this change in stability is a more general result, we will consider a
plant-herbivore incommensurate system and study the stability of this system. We
will also find an approximate analytical solution for the characteristic equation of
the incommensurate system when the two fractional orders α and β are similar and
both close to the critical value of the fractional order of the commensurate system.
In this case, we are able to map out the stable and unstable boundary as a function
of both parameters. We will compare the analytical and numerical solutions in
these two incommensurate systems. In Chapter 5, we consider two different models
of the interaction between surface water, soil water and plants. The first is similar
to the model of Dagbovie and Sherratt, without spatial derivatives. We study
the steady states of this model and observe the effect of adding the fractional
order on the system. In the second model the soil water equation is replaced with
the more realistic the Richards equation. In this model, we will also study the
steady state and dynamic behaviour in the integer model and then consider the
incommensurate fractional system. In this case, we see that a fractional order can
affect the transient behaviour of the system.
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Chapter 1

Introduction

Mathematical models allow us to describe the real world by translating from fields
such as experimental physics, chemistry, environment science or the social sci-
ences into mathematical equations. Models have been used by mathematicians
for thousands of years to improve our understanding of the world and how their
components are interrelated. They have been used to model and predict various
systems in fields such as meteorology, biomedicine and other real-life disciplines [9].
When a mathematical model can be made to mimic real-life systems accurately
and reliably, they can help us to develop our understanding of science, enable us
to assess the effects of changes to a system, and help us to plan and make decisions
strategically [122].

Once formulated, a model can provide qualitative and quantitative results.
Qualitative results demonstrate the behaviour of the system without finding the
exact solution. On the other hand, quantitative results depend on finding the
solution of the mathematical model and then studying these solutions, which are
sometimes only relevant to specific conditions. A motivation for using models in
the ecological system we will study is that modelling is easier than experimenta-
tion or field trials and we cannot often do experiments over large scales and time
[122].

In this thesis we consider ecological models which include competition, coop-
eration, and predator-prey interactions. They model the dynamics of populations
by using ordinary and partial differential equations. The models we consider are
based on the classical Lotka-Volterra model, which was introduced in [39], and is
comprised of two ordinary differential equations representing interactions of the
predator and prey species. The classical Lotka-Volterra model is probably the
simplest form of prey-predator interaction and can be written as two coupled dif-
ferential equations, namely

dx

dt
= ax− bxy,
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dy

dt
= dxy − cy,

where x is the number or proportion of prey, y is the number or proportion of
predators and a, b, c and d are positive real parameters describing the evolution
and interaction of the two species. This model assumes that the prey population
increases without the presence of predators at a rate a, that the predator popula-
tion will die out without the presence of prey species at a rate c, that predators
can consume an unlimited amount of the prey species modelled by the parameters
b and d, and that there are no complicating environmental factors that would in-
terfere with these interactions.

Researchers have introduced many other models based on the Lotka-Volterra
system to model the interactions of herbivores and plants and other systems of
interaction such as plants and water. These extended models may consider other
variables and other methods of interactions, and they can contain more than two
interacting species. They often extend the Lotka-Volterra system to improve how
growth, death, predation, harvesting and multiple species are modelled. Tradi-
tionally, all biological models have used the integer first order derivative as shown
above and there is a huge literature dealing with such models; some of which can
be found in the reviews [56, 123] the references therein. In this thesis we will con-
sider a way of incorporating memory into the behaviour of biological populations.

In general, integer derivative models do not include memory effects, and cal-
culate the rate of change of dependent variables using time derivatives evaluated
at the present time [38, 63, 79]. However, some integer models do address mem-
ory using delay differential equations, where delayed effects or variations in the
state of the current system depend on the state of the system at a specific time in
the past. In predator-prey models, which consider aspects of population (i.e. con-
ception, gestation and reproduction), the use of delayed differential equations is
effective [38, 63, 79]. In fact, some of the dynamics that occur in ecological sys-
tems are more dependent on the past state than the current, so consideration of
the past time is certainly necessary to understanding these processes in the sys-
tem [37, 56]. In addition, systems with multiple delays (i.e. birth-death, gestation-
reproduction) can be modelled using a system of such delayed differential equations
[40]. However, if one or more of the species have some form of memory, fractional
differentiation, which has a non-local property, can be a way of including memory
[22, 28, 62, 78, 91].

Fractional calculus, the theory of integrals and derivatives of arbitrary orders
[57], has been in use for more than 300 years, but it is only recently that it has
been applied to physics, engineering and other fields of study. It has recently
been shown that, in some situations, fractional derivatives in dynamical systems
can more accurately describe real-life situations [118]. Before introducing the
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modelling systems that use fractional derivatives, we will first introduce a short
historical review of fractional calculus.

From an early age, we learn that exponents represent the idea of algebraic or
numerical quantities that are multiplied repeatedly. When we consider exponents
of non-integer value, the concept of multiplying a number by itself, i.e. 2.6 times,
is more difficult to imagine. In the 17th century, mathematicians wondered if it
is possible to find a derivative of a fractional order and in 1695, Leibniz wrote
to L’Hopital and considered the meaning of derivatives, when generalised to non-
integer order. In that letter, L’Hopital asked about the meaning of the 1/2 order
derivative, and Leibniz responded by saying the answer would be logically unac-
ceptable but he predicted that “useful consequences” would arise from it one day
[62]. This famous discussion marked the beginning of fractional calculus.

During the next three centuries, many great mathematicians would make signif-
icant contributions to this new field of study. In the 18th and early 19th centuries,
Euler, Lagrange, Laplace, Lacroix and Fourier introduced definitions of fractional
derivatives for any non-integer order. In 1738, when Euler generalised the factorials
of a number to the Gamma function, he noticed that the derivative dpxa/dxp can
have a meaning when p is non-integer [109]. In 1772, Lagrange similarly noticed
that the law of exponents for differential operators of integer order can be ex-
tended to any arbitrary order [78]. In 1812, Laplace’s work followed Euler’s with a
detailed definition of the fractional derivative [78] and, in 1819, Lacroix developed
the nth derivative for the function f(x) = xn by generalising the factorial used for
the Gamma function and gave the order 1/2 derivative for the function f(x) = x
[78]. In 1822, Fourier then provided a more practical definition for derivatives of
both the power function and then for any function [78].

After these initial investigations into the theoretical nature of fractional deriva-
tives, Abel, Liouville, Riemann, Grunwald and Letnikov used fractional operators
to solve specific physical applications. In 1823, Abel used fractional operations
to solve a physical problem, the tautochrone problem, which concerns the deter-
mination of the curve for which the time taken for a particle to reach a point is
independent of its initial position [21]. Abel combined integration and differentia-
tion and extended it to a non-integer order in order to solve this problem. Then,
in 1832, Liouville provided a detailed study of fractional derivatives defined in
the form of an infinite series, and applied these derivatives to solve various linear
differential equations [109]. In 1847, Riemann introduced a form of fractional in-
tegration, although not published until 1876, where he generalised a Taylor series
in formulating his definition. After that, Grunwald and Letnikov approached frac-
tional differentiation as the limit of a sum based on their use of finite differences
[109].
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By the late 19th century, Riemann and Liouville’s definitions had become the
most well-known and well-used definitions in the literature. A combination of
these definitions is the Riemann-Liouville fractional derivative and was introduced
in Sonin’s 1869 paper entitled “On differentiation with arbitrary index” [78]. Al-
though other definitions for fractional derivatives or integrals were also detailed,
i.e. by Laurent in 1884, Nekrassov in 1888, and Krug in 1890 [62], the most notable
subsequent definition has been the Caputo derivative introduced in 1967 [16]. We
will further discuss the Caputo definition below and in the next chapter.

We will also see in the next chapter that modelling systems using fractional
derivatives can generalise integer models in order to include information from
past time. Since integer order derivatives do not consider memory effects, and in
fact can produce incomplete explanations when researchers have attempted to use
them in this way, fractional differential equations have been employed [89, 90],
often using the Caputo fractional derivative, to do this. The Caputo derivative is
a particularly effective form of fractional derivative because the derivative of any
constant is zero and it allows the use of the usual initial and boundary conditions
to frame problems [8]. The former property means that the equilibrium states in
a Caputo fractional derivative system are exactly the same as the equilibria of the
integer order system.

There are many examples where mathematicians and other researchers have
modelled real world processes using the Caputo fractional derivative. In the field
of engineering, one example is the study of viscoelastic fluids which introduces the
tautochrone problem, which has been described earlier in this section [21]. Two
studies demonstrate the usefulness of the Caputo derivative in fractional advection-
dispersion equation in the field of groundwater hydrology where they were used to
model the movement of solutes added to water to trace its flow within a porous
medium [8, 47]. In addition, Caputo and other researchers studied diffusion in a
porous biomembrane [18, 19] by introducing a derivative of fractional order, the
Caputo derivative, to the Fick equation. The Caputo derivative allowed them to
determine the concentration profile’s dependency on time, in biophysical processes
within the cell, in order to produce a simplified model that can be useful where the
role of drug release is a major factor in drug delivery systems. Further, the Caputo
derivative was used to model sedimentation in water reservoirs [20] in order to im-
prove reservoir efficiency and to enable hydrologists to predict reservoir lifetime.
This was done by generalizing the diffusion equation through the introduction of a
distributed order fractional derivative which allowed the measurement of changes
in sediment deposit over time. Also, in the field of geophysics and fluid mechanics,
a modified Caputo derivative was used in constitutive equations to model a type of
plastic media (i.e. any material that remains in the changed state after removing
resistance) for the purpose of determining its usefulness in disposing of radioac-
tive waste [17]. In this study, the addition of a form of the Caputo derivative
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generated constitutive memory equations that allowed them to analyze different
properties of a plastic media, namely polycrystalline halite. In all these studies,
the Caputo fractional derivative has been used where memory must be considered
[96] and demonstrates the usefulness of fractional calculus in practical applications.

Some other examples of practical applications of fractional derivatives in vari-
ous fields are considered here. In mathematical medicine and biology, researchers
have used fractional order models to study immune response to HIV infection,
where changes to the fractional order reflect changes in the patients’ epidemic sta-
tus. Infection and proliferation rates of immune response cells were also simulated
accurately in the study [90]. The same researchers also used a different fractional
order model to study coinfection rates of HIV and TB in relation to a multi-drug
resistant strain of TB and treatments to coinfected patients. They calculated the
reproduction number and undertook numerical simulations of relevant parameters
to conclude that the fractional order in this model was linked to patients’ health
history [89]. Furthermore, two models of biological systems, showing the behaviour
of immune system response to tumours and HIV infection, were investigated by
formulating fractional models and where the threshold parameter R0, the mini-
mum infection parameter, was used to obtain the stability of the systems. They
determined that fractional order derivatives added additional complexity to the
behaviour of the models. As a result, researchers of infectious disease have used
them to model additional parameters in relation to tumour response [102]. Further
investigation of tumours led researchers in one study to compare two Gompertz
tumour growth models, one using an integer derivative and one using a fractional
derivative, to study immune system response to long-term tumour growth in mice.
It was determined that the fractional model better fit their experimental data
on tumour growth by comparing the predictive capability of the models [12]. In
another study, researchers studied the immune response to the long-term growth
of tumours in a human population [7]. In this study, according to Arshad et al.,
the fractional model was determined to best fit their data because these types of
equations can describe past evolution of the function. They conclude that addi-
tional advantages of the fractional model over the integer model were the ability to
track the progression of the growth of different tumours and to adjust the model
to each patient’s medical needs. In epidemiology, researchers studied the spread of
influenza type A, a type of flu virus which can lead to global pandemics, through
human populations by developing a fractional order SIRC model using the Caputo
derivative based on a SIRC model developed using ordinary differential equations
[36]. They state that like the original, this model takes into account susceptible,
infected, recovered and cross-immune individuals, but takes advantage of the non-
local property of fractional differential equations to consider memory effects, by
studying the qualitative behaviour of the model, and then simulating and find-
ing a numerical solution [36]. Further work in epidemiology has been done by
researchers studying a 2009 dengue epidemic in west Africa. They reformulated
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a SIR model from a system of ordinary differential equations to a fractional one
using the Riemann-Liouville derivative to provide a more realistic model that con-
siders memory effects [92]. In their study, both the original and the modified
model account for susceptible, infected and recovered individuals in the area. The
researchers compared the results for both models using numerical simulation and
found that the fractional model provided more accurate results [92]. In psychology,
researchers investigated the type of memory that can be modeled with a fractional
derivative by taking test data from other researchers and showing that the model
can be used effectively to study human memory [33]. They determined that there
are two types of memory, one of which can be modeled using fractional derivatives,
and they studied two aspects of human memory retention using this model [33].
A more in-depth review of each model that has been considered in our work will
be provided in the appropriate chapters within this thesis.

This thesis is organized in the following way. Chapter 2 covers the basic con-
cepts and mathematical principles of fractional derivatives on which our work is
founded. The chapter outlines approaches and specific functions that are needed
to understand the properties of fractional calculus. In Chapter 3 we consider
the behaviour of a fractional order predator-prey model and study the static and
dynamic properties of the system, where nonlinear interactions between the two
species can lead to multiple stable states. We find that this multistability de-
pends upon the fractional order of the time derivative. These results yield richer
dynamics compared to the integer order model, and we find that the parameters
and memory effect of the species contribute to important behaviour that may be
realistically observed. The work done in Chapter 3 has also been published in
Letters in Biomathematics as “Derivative-order-dependent stability and transient
behaviour in a predator–prey system of fractional differential equations” [4]. In
Chapter 4, we consider the case where the fractional orders of the predator and
prey populations are different, which is termed an incommensurate system. We
found an approximate analytical solution for the characteristic equation of the in-
commensurate system using a perturbation from the solution of the characteristic
equation of the commensurate system found in Chapter 3. The stability condition
in the incommensurate fractional system is found to be a function of the two frac-
tional orders, and an approximate analytical solution for the stability boundary is
determined. We use a numerical method to find the solution of the incommensu-
rate system and compare with the analytical results for two different predator prey
systems. The first incommensurate system we investigate is the same model we
discussed in Chapter 3 and we illustrate how the stability of this system changes
if the fractional orders are not the same. The second incommensurate system, a
plant-herbivore model, was then studied in a similar way.

Chapter 5 continues the work of the final model in Chapter 4 by considering
two further, and more complex models of plant biomass. The first model is that of
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Dagbovie and Sherratt [24] but with no spatial dimensions, which includes three
differential equations representing plant biomass, surface water and soil water. We
then investigated the effect of a fractional derivative included in the biotic element,
the plant biomass. The second model also includes the three elements of biomass,
surface water and soil water, but the soil water is modelled using the classical
Richards’ equation and the biomass equation includes a term that depends on
the total water uptake rate by roots within the soil depth. For this system, we
have investigated the effect of the fractional derivative on the dynamics of the
biomass as the rainfall changes. The behaviour of the steady state solution for
this model was presented at the 2018 British Applied Mathematics Colloquium.
Finally, Chapter 6 summarises significant results from this thesis and discusses
how they may be developed and extended in future research.
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Chapter 2

Theoretical Background of
Fractional Derivatives

2.1 Introduction

In this chapter, the basic concepts and definitions of fractional derivatives, will be
introduced, in order to form the basis of the material presented in the following
chapters. Here we include the main results that are relevant to this thesis, but
a more complete introduction to fractional calculus can be found in references
[78, 91], from which much of the material in this chapter is taken.

2.2 Basic Definitions

In this section, various definitions that are needed in the rest of this chapter are
highlighted. We start by listing special functions that will be used in the definitions
and analysing of fractional derivatives.

2.2.1 Special Functions

The Euler Gamma function [13] is a generalised form of the factorial function and
is defined by

Γ(z) =

∫ ∞
0

tz−1e−tdt,

where Re(z) > 0. The Gamma function can be extended to negative num-
bers through analytic continuation. For our work the important properties of
the Gamma function are that it reduces to the factorial function for integer z,
Γ(n+ 1) = n! for all n ∈ N, and satisfies Γ(z + 1) = zΓ(z).

The Mittag-Leffler function [48] plays an important role in fractional differen-
tial equations since it is the basis for the eigenfunctions of fractional derivatives,
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and therefore is a generalisation of the exponents function ez in integer systems.

The Mittag-Leffler function is defined as,

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
,

where z ∈ C, α > 0. If α = 1, we see that E1(z) = ez. The two-parameter
Mittag-Leffler function Eα,β(z), generalises this function and is defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
,

where z ∈ C, α > 0 and β > 0.

2.2.2 Fractional Derivatives and Fractional Integrals

In this section we firstly consider the classical integer order derivative and then
consider how this can be generalised to a fractional order derivative.
The first derivative of a function f(x) is defined as

f ′(x) = Df(x) = lim
h→0

f(x)− f(x− h)

h
,

and the nth derivative can then be calculated by iterating the first derivative n
times to obtain,

f (n)(x) = Dnf = lim
h→0

h−n
n∑
k=0

(−1)k
(
n

k

)
f (x− kh) , (2.1)

where the binomial coefficient is

(
n

k

)
=

n!

k!(n− k)!
. The summation upper limit

is n although, since the binomial coefficient is zero for k > n the upper limit could
be replaced by infinity. Using (2.1) we can generalise the derivative to a fractional
order by replacing the integer n with any positive real number α, to define the αth
derivative. In this way we obtain the Grünwald-Letnikov [62] fractional derivative
given by

f (α)(x) = Dαf(x) = lim
h→0

h−α
∞∑
k=0

(−1)k
(
α

k

)
f (x− kh) , (2.2)

where

(
α

k

)
=

Γ(α + 1)

Γ(k + 1)Γ(α− k + 1)
. The summation upper limit is now infinity

since the Gamma function is defined for all values of k. Note that, while f ′(x) only
takes information from f(x) and f(x−h), the derivative f (α)(x) takes information
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from an infinite number of times before.

For integration, which can be defined as negative derivatives, we have

D−1f(x) = If(x) =

∫ x

a

f(t)dt,

where we here set t = a as the lower integral limit.
Using Cauchy’s formula for repeated integration [83, 91], we then obtain

D−nf(x) = Inf(x) =

∫ x

a

dx1

∫ x1

a

dx2...

∫ xn−1

a

f(t)dt

=
1

(n− 1)!

∫ x

a

(x− t)n−1f(t)dt.

We can then generalise the derivative of order −n, i.e. the integral of order n, by
replacing n in Cauchy’s formula with α. This leads to a definition of the fractional
integral,

Iαa f(x) =
1

Γ(α)

∫ x

a

f(t)

(x− t)1−αdt, (2.3)

where x > a and α > 0, which is termed the Riemann-Liouville fractional inte-
gral [62]. This form of fractional integral is popular, and has been used many
times, because it has many similar properties to the standard integral [78]. This
includes the identity property, I0

af(x) = f(x), linearity, Iαa (λf(x) + γg(x)) =
λIαa f(x) + γIαa g(x), where λ and γ ∈ C, and the composition and commutative
properties Iαa (Iβa f(x)) = Iβa (Iαa f(x)) = Iα+β

a (f(x)) and a useful Laplace transform
L(Iαa f(x))(s) = F (s)/sα.

The fractional derivatives which are most commonly used are both based on
the Riemann-Liouville fractional integral and are termed the Riemann-Liouville
fractional derivative and the Caputo fractional derivative. The Riemann-Liouville
fractional derivative [78], for the function f(x) is defined by RLDα

a f(x), for x > a
and α > 0, and is equivalent to the composition of a (n − α)th-order integration
and a nth order differentiation thus,

RLDα
a f(x) = DnIn−αf(x).

Equivalently, we have

RLDα
a f(x) =


1

Γ(n− α)

dn

dxn

∫ x

a

(x− t)n−α−1f(t)dt if n− 1 < α < n, n ∈ N
dn

dxn
f(x) if α = n.

(2.4)
The Riemann-Liouville fractional derivative also has many similar properties to
the standard integer derivative [57] such as the identity property, RLDα

a (Iαa f(x)) =
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f(x), RLD0
af(x) = f(x), the property of composition with integer order deriva-

tive, RLDn
a (RLDα

a (f(x))) = RLDn+α
a (f(x)), and linearity, RLDα

a (λf(x) + γg(x)) =
λRLDα

a f(x) + γRLDα
a g(x), where λ and γ ∈ C. However, some other proper-

ties are not in general the same as the integer derivative, such as commutativity
with the integer order derivative, RLDn

a (RLDα
a (f(x))) 6= RLDα

a (RLDn
a (f(x))). Also,

RLDα
a (c) =

c

Γ(1− α)
(x − a)−α, where c is a constant, so that the derivative of

a constant is not zero; RLDα
a (x − a)γ =

Γ(γ + 1)

Γ(γ − α + 1)
(x − a)γ−α; RLDα

a (eλx) =

x−αE1,1−α(λx) where E1,1−α is the two-parameter Mittag-Leffler function and

L(RLDα
0 (f(x)))(s) = sαF (s)−

n−1∑
k=0

sk(RLDα−k−1
a (f(0))),

where L is the Laplace transform operator. Although the Riemann-Liouville frac-
tional derivative has many useful properties, and is often used, the fact that the
derivative of a constant is not zero means that the evaluation of equilibria in dy-
namical systems becomes more complicated.

The other often used fractional derivative is the Caputo fractional derivative
[16] which is defined as

cDα
a f(x) = In−αDnf(x),

where x > a and α > 0 or equivalently

cDα
a f(x) =


1

Γ(n− α)

∫ x

a

(x− t)n−α−1f (n)(t)dt if n− 1 < α < n, n ∈ N
dn

dxn
f(x) if α = n.

(2.5)
The Caputo fractional derivative also has many similar properties to the standard
integer derivative [57] such as the identity property, cD0

af(x) = f(x), the property
of composition with integer order derivatives, cDα

a (cDn
a (f(x))) = cDα+n

a (f(x)),
linearity, cDα

a (λf(x) + γg(x)) = λcDα
a f(x) + γcDα

a g(x), where λ and γ ∈ C. How-
ever, some other properties are not in general the same as the integer deriva-
tive, such as the commutativity with integer order derivative, cDα

a (cDn
a (f(x))) 6=

cDn
a (cDα

a (f(x))), cDα
a (x−a)γ =

Γ(γ + 1)

Γ(γ − α + 1)
(x−a)γ−α where γ > −1, cDα

a (eλx) =

λnxn−αE1,n−α+1(λx), where E1,1 is the two-parameter Mittag-Leffler function and
L(cDα

0 (f(x)))(s) = sαF (s)−
∑n−1

k=0 s
α−k−1(Dk

a(f(0))), n−1 < α ≤ n where L is the
Laplace transform operator. However, the key property that leads to the Caputo
derivative being useful is that cDα

a (c) = 0 for a constant c.

The Riemann-Liouville fractional derivative and the Caputo fractional deriva-
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tive are related by [68],

cDα
a (f(x)) = RLDα

a (f(x))−
n−1∑
k=0

xk−α

Γ(k + 1− α)
f (k)(0),

and when f (k)(0) = 0, we obtain

cDα
a (f(x)) = RLDα

a (f(x)),

and so, in this case, the Riemann-Liouville and Caputo derivatives are equal. For
both classical and fractional equations, additional conditions to generate solutions
must be determined. While the Caputo fractional derivative conditions, which are
the same as the ones for classical ordinary differential equations, are state initial
conditions, the ones for Riemann-Liouville fractional derivatives are made up of
fractional derivatives which cannot be easily compared to real life. Therefore, the
Riemann-Liouville fractional derivative is less often useful for modelling real world
phenomena [31]. Also, as mentioned above when we need to study the steady state
of a system, the Caputo derivative is useful in finding an equilibrium point since
the derivative of the constant is zero [57]. For these reasons, the Caputo fractional
derivative will be selected in this thesis in the differential equations. As we will
see in the next sections, in this thesis we will generalise first order derivatives
by fractional derivatives of order α ∈ (0, 1], so that n = 1, and where we take
a = 0 so that memory effects are included through the fractional derivative by
including information for all t from zero to present time. As the fractional order

α approaches zero we can see from (2.2) that the factor h−α
(
α
k

)
means means

that the fractional derivative receives more weight or influence from the system
state further as we go back in time. Thus variations of α will model changes in
memory, from long term (α→ 0) to short term (α→ 1).

2.3 Fractional Order Dynamical Systems

Many biological systems possess a distributed form of memory rather than memory
of discrete moments in the past. Therefore, integer order or time delay models may
not be as realistic or effective as fractional models, as mentioned in [7, 102]. The
general form of any fractional model is

Dαkyk(t) = fk(y1, y2, ......, yn), (2.6)

with initial conditions yk(t0) = bk, k = 1, ..., n. The yk are the species populations,
the αk are the fractional derivative orders, the fk are functions of yk, and the bk
are the initial values of the populations yk at time t = t0.
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Fractional dynamical systems such as (2.6) are a generalization of classical clas-
sical dynamical systems of integer order, i.e. where α = 1. When all the species
are biological organisms and have the same memory parameterised by the frac-
tional derivative order α, the system is called commensurate. When the species
are biological organisms but have different memory, or when some of the species
are biological organisms and others are non-biological, the system is called incom-
mensurate.

The functions fk in (2.6) model changes in the species yk and in interactions
between the species over time. One of the most common components of fk is the
term that describes the logistic growth [121], which has been used to model many
different biological systems [80, 87]. Logistic growth can be described as the lim-

ited physical growth of a population yk taking the form fgrowth = ryk

(
1− yk

K

)
,

where r is the growth rate and K is the carrying capacity. As Figure 2.1(a) shows,
in this case the growth rate is only positive for populations between 0 and K, and
if the prey population goes above K, the growth rate is negative because there is
not enough food to support all the prey, and as a result some die. The solution
of a logistic growth differential equation is characterised by the logistic function,
which show exponential growth rate, until a population reaches carrying capacity,
and is shown in Figure 2.1(b).
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Figure 2.1: The logistic growth function. (a) The growth rate of prey. (b) The
solution to a logistic growth equation.

A common function used to model the interaction between two species through
predation, specifically between a population of prey and predators, was introduced
by Holling [54, 55] and includes three possible response forms, Holling type I,
Holling type II and Holling type III [26], see Figure 2.2. They are all of the form
fpred = g(yk−1)yk, where fpred is a term in fk for the predator species yk, the prey
species are yk−1, and where g(yk−1) is the growth due to predation rate that can
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take any one of the Holling type functions. The form of g(yk−1) is chosen depend-
ing on the response of the predator to a given prey supply, as can be seen in the
Lotka–Volterra predator–prey model [51].

Holling type I behaviour assumes a linear increase in consumption with prey
density. It also assumes that there is no delay between the time when a preda-
tor consumes a prey and then consumes another. Moreover, it assumes that the
consumption of prey does not affect the predator’s search for more prey. It is the
simplest of the functional responses and has the form g(yk−1) = ayk−1, where a
is the predation rate. For this type, the rate at which prey yk−1 is captured and
consumed by the predator yk is directly proportional to the density of the prey.
This type of functional response was used by Lotka and Volterra in their classical
work.

A Holling type II relationship models a continually decreasing consumption
rate with increasing prey density and where prey consumption eventually reaches
a constant value [26] due to the predator’s limited capacity to process food. A type
II relationship is similar to a type I except that each predator requires handling
time for each individual of the prey species that is consumed which reduces the
available time to search for more prey [26]. The predation interaction can be of

the form g(yk−1) =
ayk−1

yk−1 + b
where a/b is the predation rate when the levels of

prey, yk−1, are small and a is the maximum growth rate of the predator species
when there are many available prey. The parameter b is the half saturation point,
i.e. the value of yk−1 at which the predation rate is half the maximum value.

A Holling type III function is similar to the type II behaviour at high levels
of prey density, but for low prey numbers the form of predation rate reduces to
zero, modelling the learning, searching and prey switching behaviour of predators.
Learning and searching in predator behaviour refers to the way they naturally
improve their efficiency in finding and attacking prey as prey density increases.
Prey switching occurs in ecosystems where there are two or more prey species and
one predator species. If the prey species are at equal densities, the predator will
prey on either one randomly. However, if the density of one of the prey species
decreases, the predator will switch to the other more common species more often.
The form of predation rate decreasing to zero can be explained by the predator
finding prey so rarely that it has not had enough experience to enhance its ability to

capture and kill prey species. This response is represented by g(yk−1) =
ay2

k−1

y2
k−1 + b2

,

where b is again the half saturation point.
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Figure 2.2: Holling type functional responses where Holling type I (red curve),
Holling type II (green curve) and Holling type III (blue curve).

Here we have just highlighted a few of the terms that commonly contribute
to the predator-prey functions fk. There are many other terms that are used to
model the complex interactions of species, but we will describe those when we
meet them in later chapters.

In this thesis, it will often be necessary to solve the system of fractional differ-
ential equations using a numerical method. For this we use a method based on the
Adams-Bashforth-Moulton method [29, 30, 32]. This method uses a Volterra inte-
gral equation form of the initial value problem and a time-iterative scheme. Stan-
dard quadrature techniques are used to solve the integrals, which alone is called the
one-step Adams Moulton method, with an explicit time stepping method, known
as the one-step Adams-Bashforth method. The combination of these two schemes
is known as the Adams-Bashforth-Moulton method. Full details of this method
are given in [30]. For a more complete discussion on this numerical method, an
error analysis and stability result are covered by Sweilam et al. [115] and Gar-
rappa [42]. Also, the work of Leedle [65] that contains a summary of results for
standard and higher order Adams-Bashforth-Moulton methods, including the re-
sult that the error is proportional to h1+α, where h is the time step value and α < 1.

In this thesis, the Matlab code flmm2 [43] (Matlab version 2018), which em-
ploys the Adams-Bashforth-Moulton suggested by Lubich in [71] and studied in
[44], is used for solving the commensurate system. This code utilizes three implicit
generalised methods including the trapezoidal rule, the Newton-Gregory formula
and a backward differentiation formula. Finally, the behaviour of the incommen-
surate system is investigated by using the code FDE-PI1-Ex.m which was also
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introduced by Garrappa in [45].

2.3.1 Stability in Fractional Dynamical Systems

As is standard, we consider a point (y∗1, y
∗
2, ..., y

∗
n) to be an equilibrium point

of the system when the Caputo fractional time derivatives are zero, i.e. when
fk(y

∗
1, y
∗
2, ......, y

∗
n) = 0. A stable equilibrium is then characterized by all solutions

with a nearby initial condition remaining nearby. In all other cases, an equilibrium
point is unstable. An asymptotically stable equilibrium is characterized by a stable
equilibrium where the system state approaches the equilibrium point asymptoti-
cally as time approaches infinity. Although the position of equilibria is exactly the
same as in the integer derivative case, the stability is determined by a criterion
that can depend on the orders of the fractional derivatives.

For integer systems, stability is determined through the eigenvalues of the
Jacobian J evaluated at the equilibrium point, as is standard. However for a
fractional derivative system, the eigenfunction of the system is not the exponential
function eλt but the Mittag-Lefler function Eα ((λt)α) [3, 23, 28, 69, 73]. Using
this eigenfunction, the stability of a commensurate system is then determined by
finding the eigenvalues λ from the equation

det (J − λαI) = 0. (2.7)

This means that, if Λ are the eigenvalues from the equivalent system of integer
differential equations, so that det(J−ΛI) = 0, then λ can be determined from the
relationship Λ = λα.

For a stable equilibrium point the condition is Re(λ) < 0, or equivalently
|arg(λ)| > π/2 for the fractional system. Therefore, since Λ = λα the condition of
the stability of the commensurate system can be written in terms of the eigenvalues
of the integer system, Λ, where Λ must satisfy |arg(Λ)| > απ/2. A representation
of this condition is given in Figure 2.3. It is clear from Figure 2.3 that for real
eigenvalues, i.e. those lying in the real axis, the value of α will not affect whether
the eigenvalues lie in the stable or unstable region. However, for complex eigenval-
ues, so that Im(λ) 6= 0, the value of α will determine whether λ lies in the stability
region.

Crucially, if α is reduced towards zero, none of the eigenvalues λ will be within
the unstable region. We therefore expect that reducing α will, in general, tend to
stabilise the system.
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Figure 2.3: The region of the stability for a fractional system, |arg(Λ)| > απ/2
(coloured gray), 0 < α < 1.

In terms of the stability of the incommensurate system, the condition of the
stability is required that all the roots of the following characteristic equation

det (J − diag [λα1 , λα2 , . . . , λαn ]) = 0, (2.8)

have negative real parts. The characteristic equation (2.8) can then be transformed
to an integer-order polynomial equation if all values of αi are rational numbers.
So, assuming αi = vi/ui, where the greatest common divisor for ui and vi equals
1, and λ = ΛM , where M is the lowest common multiple at the denominators ui,
(2.8) can be written as

det
(
J − diag

[
ΛMα1 , ΛMα2 , . . . ,ΛMαn

])
= 0. (2.9)

Since all Mαi are then integers, (2.9) is a polynomial. Consequently, if | arg Λ| >
π/2M , then the incommensurate system is asymptotically stable [27].
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Chapter 3

A Fractional Order
Predator-Prey Model

In this chapter, the static and dynamic behaviour of a fractional order predator–
prey model are studied, where the nonlinear interactions between the two species
lead to multiple stable states. As has been found in many previous systems,
the stability of such states can be dependent on the fractional order of the time
derivative, which is included as a phenomenological model of memory-effects in the
predator and prey species. However, what is less well understood is the transient
behaviour and dependence of the observed domains of attraction for each stable
state on the order of the fractional time derivative. These dependencies are in-
vestigated using analytical (for the stability of equilibria) and numerical (for the
observed domains of attraction) techniques. Results reveal far richer dynamics
compared to the integer order model. We conclude that, as well as the species and
controllable parameters, the memory effect of the species will play a role in the
observed behaviour of the system. All the results in this chapter are published in
Letters in Biomathematics [4].

3.1 Introduction

In the field of biology, mathematical modeling has been used to consider the inter-
action between populations of predators and prey. Numerous studies have looked
at these systems but perhaps the most influential are those of the chemist and
statistician Lotka and the mathematician Volterra [39, 56]. They introduced the
first mathematical model of interacting predator-prey populations, which has since
been analysed and extended by many authors [39]. More complicated predator-
prey models have been introduced, and many researchers have sought to modify
the Lotka-Volterra model so that it can be better applied to real-world ecological
systems.

For instance, Harrison [52], Magal et al. [72] and Kar et al. [59], have adapted
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the Lotka-Volterra model to study prey-predator relationships that exhibit a Holling
Type II functional response [26]. Harrison [52] modified the standard predator-
prey model and then used experimental data to determine which systems best fit
his model’s predictions. Magal et al. [72] studied the associated system of equa-
tions to consider the predation of leafminers by a parasite, and Kar et al. [59]
modified the work done by Magal et al. where Kar et al. introduced harvesting
terms and studied the system without diffusion terms.

In this chapter, we consider a fractional derivative generalisation of a relatively
standard model of population dynamics and investigate the observed domains of
attraction for the various stable equilibrium points as a function of the fractional
order of the derivatives. By the term ‘observed domains of attraction’ we do not
consider the true asymptotic domains of attraction, i.e. the sets of initial condi-
tions for which the system achieves each of the equilibrium states at infinite time,
but rather we classify the initial conditions as being associated with the equilib-
rium state they are closest to (using the Euclidean distance in state-space) after
a fixed observation time. It is these domains that we investigate while varying
the fractional order of the time derivatives. Even though the model of memory is
phenomenological, the aim in this chapter is to show that the fractional derivative
order can play a significant role in determining the size of the domain of attrac-
tion, and thus this effect could be observed in the real-life dynamics of interacting
populations. We speculate that changes in fractional order, that may occur when
memory functions change in time or through environmental effects, have the po-
tential to alter the long-term dynamics of a system, particularly when there are
two possible stable states.

In the next section, we introduce the fractional order differential equations to be
considered as a model of a two-species predator–prey system. In Sections 3.3 and
3.4, the equilibrium states and the stability of these states are investigated, and in
Section 3.5 numerical solutions of the system, found using an Adams-Bashforth-
Moulton predictor-corrector scheme, are presented in order to show the effect of
fractional order on the dynamics. Finally, conclusions are provided in Section 3.6.

3.2 Predator-Prey Model

In real life, an ecosystem consists of many different species all interacting with each
other to varying degrees. In this chapter we take, as an example model, a two-
species predator–prey model that was introduced in [59], where the authors created
a model using growth, functional responses and harvesting terms because these
terms were thought to mimic the behaviour in a real ecosystem. The dynamics of
the population density of the prey (x) and predator (y) were taken to obey the
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equations,

dx

dt
= r1x

(
1− x

k1

)
− mxy

1 + ax
− h1x, (3.1)

dy

dt
= r2y

(
1− y

k2

)
+ q

mxy

1 + ax
− h2y, (3.2)

where x(t) and y(t) are the prey and predator populations at time t, respectively,
and we take initial conditions x(0) = x0 and y(0) = y0. In these equations the first
terms on the right-hand sides of both equations (3.1) and (3.2) represent the logis-
tic growth of the species with r1 and r2 being the intrinsic growth rates and k1 and
k2 being the respective environmental carrying capacities, that is the maximum
values, of the prey and predator populations respectively, if no other effects were
present. The second terms on the right-hand sides of (3.1) and (3.2) represent the
predation of the prey by the predator through a Holling type II functional response
[26], where m is the decrease of prey per time per predator, that is the percentage
of prey killed in each unit of time for each predator, which is effectively the effi-
ciency of the predator’s ability to capture prey, the parameter a is related to the
predator’s efficiency in capture and consumption of the prey, and q is an efficiency
constant, where 0 ≤ q ≤ 1 and represents the proportion of the prey biomass that
the predator can utilise for growth. The last terms in (3.1) and (3.2), h1 and h2,
represent the harvesting rate of the prey and predator population, respectively,
although it is possible for these terms to be incorporated into adjusted birth rates
and carrying capacities if necessary.

For mathematical simplicity, and to reduce the number of independent param-
eters in the system, we first nondimensionalise (3.1) and (3.2) using the nondi-
mensionalised independent variables

t̄ = r1t, X =
x

k1

, Y =
y

k2

.

Nondimensionalised time is now relative to the growth rate r1. Equations (3.1)
and (3.2) can now be written as the following equations

r1k1
dX

dt̄
= k1r1X(1−X)− mk1k2XY

1 + ak1X
− h1k1X,

r1k2
dY

dt̄
= k2r2Y (1− Y ) +

qk1k2XY

1 + ak1X
− h2k2Y,

which simplify to

dX

dt̄
= X(1−X)− K1XY

1 + IX
− E1X, (3.3)

dY

dt̄
= RY (1− Y ) +

K2XY

1 + IX
− E2Y, (3.4)
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where E1 =
h1

r1

, E2 =
h2

r1

, R =
r2

r1

, K1 =
k2m

r1

, K2 =
k1mq

r1

and I = ak1 are positive

nondimensional constants. The constants E1 and E2 are the ratios of harvesting to
prey birth rate for the prey and predators which, as we will see later, are important
to the stability of the populations of each species. Therefore, if the harvesting rate
is larger than the growth rate of prey then E1 > 1 and E2 > 1. The constant R is
a ratio of the birth rates of the two species and, to a large extent, is responsible
for determining the ratio of predator and prey population numbers at equilibrium.
The two parameters K1 and K2 can be thought of as nondimensionalised carry-
ing capacities for the two species, scaled by the ratio of birth rate and predation
factors. The final parameter I is a rescaled and nondimensional version of the
parameter a which measures the efficiency of the predator’s search and feeding
process.

The aim of this chapter is to study the dynamic properties of a generalisa-
tion of the system described in (3.3) and (3.4) through the introduction of the
Caputo fractional derivative of order α, Dα

t . As indicated in Chapter 2, these
fractional derivatives are introduced to model memory effects in the predator and
prey populations. We write this generalised system as

cDα
t X = X(1−X)− K1XY

1 + IX
− E1X, (3.5)

cDα
t Y = RY (1− Y ) +

K2XY

1 + IX
− E2Y, (3.6)

with the initial conditions X(0) = X0 and Y (0) = Y0, α ∈ (0, 1], i.e. such that
memory effects are assumed to include all information from an initial time t = 0
until the present time t. The model, and the simulations, assume that the system
is constant (at the initial condition) for t < 0. In (3.5) and (3.6), we have dropped
the ¯ from t̄ for convenience.

3.3 Equilibrium Points

Since we know the Caputo derivative of a constant function is zero, we know the
equilibrium points for the fractional model are the same as equilibrium points for
the integer-order model [59]. The equilibrium points can therefore be found by
solving the following steady-state situation for (3.5) and (3.6):

0 = X

(
1−X − K1Y

1 + IX
− E1

)
, (3.7)

0 = Y

(
R(1− Y ) +

K2X

1 + IX
− E2

)
. (3.8)
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Using (3.7), we see that solutions are X = 0 or 1−X − K1Y

1 + IX
−E1 = 0. When

X = 0, (3.8) gives Y (R(1− Y )− E2) = 0, so that either Y = 0 or Y = 1 − E2

R
.

Considering (3.8), we see Y = 0 or R(1− Y ) +
K2X

1 + IX
− E2 = 0. If Y = 0, then

(3.7) gives us X = 0 or X = 1− E1. If X 6= 0 and Y 6= 0, we therefore have

1−X − K1Y

1 + IX
− E1 = 0, (3.9)

R(1− Y ) +
K2X

1 + IX
− E2 = 0. (3.10)

From (3.10), we have

Y =
1

R

[
R− E2 +

K2X

1 + IX

]
, (3.11)

which with (3.9), gives us

X3 + C2X
2 + C1X + C0 = 0, (3.12)

where

C0 =
1

I2
(E1 − 1)− K1

I2

(
E2

R
− 1

)
, (3.13)

C1 =
2

I
(E1 − 1)− K1

I

(
E2

R
− 1

)
+

1

I2

(
K1K2

R
+ 1

)
, (3.14)

C2 = (E1 − 1) +
2

I
. (3.15)

Therefore, the equilibrium points are

P0 = (0, 0) the extinction state, (3.16)

P1 = (1− E1, 0) the predator-free state, (3.17)

P2 =

(
0, 1− E2

R

)
the prey-free state, (3.18)

P3i = (X∗, Y ∗) for i = 1, 2, 3 the coexisting population states, (3.19)

where the coexisting population states, i.e. for which X∗ 6= 0 and Y ∗ 6= 0, satisfies
(3.12) and (3.11), respectively.

The extinction state, P0, where prey and predator populations are zero, the
predator-free state, P1, and the prey-free state, P2, all always exist but if the
predator-free and prey-free states are to be physically meaningful we must have
E1 < 1 and E2 < R, respectively. These conditions are equivalent, in dimensional
terms, to the limitations that the harvesting rates of the prey and predator are
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less than the intrinsic growth rates so that h1 < r1 and h2 < r2. The coexistence
states, P3i, are more complicated and are now discussed in detail.

From (3.11) we see that, for a physically realistic coexistent state we must,
as well as having X∗ > 0, have that the harvesting of predators is less than
an enhanced growth rate of predators, E2 < R + K2X

∗/(1 + IX∗), to ensure
that Y ∗ > 0. For these coexistence states we therefore see that a higher level of
harvesting is possible, compared to the prey-free state, because the nonzero prey
population can support the presence of a predator population even with relatively
high levels of harvesting. In order to determine the number of real roots of (3.12),
we will consider the discriminant of the equation (see, for instance, discussion of
the Cardano formula in [125]), namely

∆ = C2
1C

2
2 − 4C3

1 − 4C0C
3
2 − 27C2

0 + 18C0C1C2. (3.20)

If ∆ > 0, then there are three real roots, and if ∆ < 0 then there is only
one real root. Because we are interested in the system that has multiple physical
equilibrium points, we should determine the number of real and positive roots of
(3.12) by using the sign of the discriminant in (3.20) and Descartes’ Rule of Signs
[5].

We have concentrated on the case with as many existing P3i states as possi-
ble, since this case will provide more possibilities to transfer between states. In
particular, we will later see that the stability of P0, P1 and P2 are not affected by
changing the fractional order α, but a change of stability is possible for P3i by
changing α. From the discriminant and using Descartes’ Rule of Signs we find
that it is possible to have three positive coexistence states, when ∆ > 0, and the
change of signs in (3.12) is equal to three, i.e. C2 < 0 , C1 > 0, C0 < 0, which is
equivalent to a condition on the prey harvesting rate, M1 < E1 < min(M0,M2),
where

M0 = 1 +K1

(
E2

R
− 1

)
, (3.21a)

M1 = 1 +
K1

2

(
E2

R
− 1

)
− 1

2I

(
K1K2

R
+ 1

)
, (3.21b)

M2 = 1− 2

I
. (3.21c)

It should be noted that these conditions for three coexisting P3i states are necessary
but not sufficient, so that even if these conditions are met, we might not have three
coexistence states (there could be only one positive root of (3.12)).

3.4 Stability

Determining whether an individual equilibrium point is stable is undertaken by
considering the eigenvalues of the Jacobian matrix, J(X, Y ) at the equilibrium
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point (X, Y ). For our system in (3.5) and (3.6) the Jacobian matrix is

J(X, Y ) =

 (1− E1)− K1Y

(1 + IX)2
− 2X

−K1X

1 + IX
K2Y

(1 + IX)2
(R− E2) +

K2X

(1 + IX)
− 2Y R

 .
(3.22)

The stabilities of the three equilibrium points P0, P1 and P2 have previously been
reported [59] but are summarised here for completeness.

The eigenvalues of the Jacobian matrix at the extinction state P0 = (0, 0) are
Λ1 = 1 − E1 and Λ2 = R − E2. If E1 > 1 and E2 > R, then the system will be
stable around P0. This result is to be expected and shows that if the harvesting
rates are greater than the intrinsic growth rates of the predator and prey species
then the extinction state is stable and that if at least one of the harvesting rates
is less than the corresponding growth rate, then the extinction state is unstable.

The eigenvalues of the Jacobian matrix at the predator-free state P1 = (1 −

E1, 0) are Λ1 = E1 − 1 and Λ2 = R − E2 +
K2 (1− E1)

1 + I (1− E1)
. If P1 is physical, so

that E1 < 1, then the condition for stability is E2 > R +
K2(1− E1)

1 + I(1− E1)
, i.e. the

predator-free state is stable if it exists and the predator harvesting rate is suffi-
ciently large.

The eigenvalues of the Jacobian matrix at the prey-free state P2 = (0, 1−E2/R)
are Λ1 = M0 − E1, where M0 is given in (3.21a), and Λ2 = E2 − R. If the
prey-free state P2 exists, so that E2 < R, then the condition for stability is that
the prey harvesting rate is sufficiently large, E1 > M0 which is equivalent to

E2 < R

(
1 +

E1 − 1

K1

)
i.e. that the predator harvesting rate is sufficiently small.

The results of the stability, shown in Chapter 2, mean that, since the eigenval-
ues, which are the solutions of the characteristic equation for the integer model,
of the extinction state P0 = (0, 0), the predator-free state P1 = (1 − E1, 0) and
the prey-free state P2 = (0, 1 − E2/R) are all always real, their stability will be
unaffected by the fractional derivative order.

We can summarise the existence and stability conditions for P0, P1 and P2 and
the existence conditions for P3 as follows

1. The predator-free and prey-free states, P1 and P2, may co-exist, but they
will never both be stable.
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2. If the prey-free state P2 is a stable equilibrium point, then the interior equi-
librium points P3i, i = 1, 2, 3, do not all exist.

3. If the extinction state P0 is a stable equilibrium point, then the predator-free
and prey-free states, P1 and P2, do not exist and the interior equilibrium
points P3i, i = 1, 2, 3, do not all exist. This is because the condition for
stability of P0, E1 > 1, contradicts the condition for having three positive
solutions for (3.12).

4. When E1 < 1 and E2 > R +
K2(1− E1)

1 + I(1− E1)
, then P1 is a stable equilibrium

point and it is possible for at least one co-existence state to exist because
C0 < 0 and C2 > 0 may be positive if E1 > 1− 2/I.

5. When E1 < min(1,M0) and E2 < R+
K2(1− E1)

1 + I(1− E1)
, then P0, P1 and P2 are

all unstable, but it is still possible for at least one co-existence state to exist
because E1 < M0 which means C0 < 0. Indeed it is possible to have three
positive solutions for (3.12) P3i.

We will now consider the stability of P3i. In contrast to the P0, P1 and P2 states,
the stability of the coexistence states P3i, i = 1, 2, 3, where the populations of both
prey and predator are nonzero, can be affected by the fractional derivative order.
The eigenvalues of the Jacobian matrix, (3.22), corresponding to the coexistence
equilibrium points P3i, i = 1, 2, 3, in (3.19) are the roots of the characteristic
equation

Λ2 + fΛ + g = 0, (3.23)

where

f = X∗ − K1IY
∗X∗

(1 + IX∗)2
+RY ∗, (3.24)

g = RY ∗X∗ +
K1Y

∗X∗

(1 + IX∗)2

(
K2

1 + IX∗
−RIY ∗

)
, (3.25)

and (X∗, Y ∗) is one of the three solutions to (3.11) and (3.12). Therefore, the
stability condition of the interior equilibrium points P3i depends on f and g.

We are then able to derive the following results:

(i) If f > 0 and g > 0, then, by the Routh-Hurwitz criterion, (3.23) has two
roots with negative real parts, so the equilibrium point is asymptotically
stable for all α ∈ (0, 1].

(ii) If f > 0 and g < 0, then g < f 2/4, so (3.23) has real roots, and there is one
change of sign in the coefficients of (3.23). Therefore, by the Routh-Hurwitz
criterion, (3.23) has one root with positive real part and the equilibrium
point is unstable for all α ∈ (0, 1].
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(iii) If g < f 2/4, then (3.23) has real roots and if f < 0, then there is at least
one change of sign in the coefficients of the polynomial in (3.23) so that, by
the Routh-Hurwitz criterion, there is at least one positive real root and the
equilibrium point is unstable for all α ∈ (0, 1].

(iv) If g > f 2/4 and f < 0, then (3.23) has two complex conjugate roots with
real part −f/2 > 0. Then, using the stability criterion for the fractional
order system, the condition for stability is |argΛ| > απ/2, α ∈ (0, 1], so

|arg Λ| =
∣∣∣∣tan−1

(
−
√

4g

f 2
− 1

)∣∣∣∣ > απ

2
,

which can equivalently be written as

∣∣∣∣cos−1

(
− f

2
√
g

)∣∣∣∣ > απ

2
. Because of

α ∈ (0, 1] the condition can be written as α <
2

π
cos−1

(
−f
2
√
g

)
. Therefore,

the maximum value of α for which stability is ensured is

α∗ =
2

π
cos−1

(
− f

2
√
g

)
. (3.26)

Thus, if f < 0 and g > f 2/4, the system in (3.5) and (3.6) is asymptotically
stable if and only if α ∈ (0, α∗), and when α ≥ α∗ the system is unstable with
complex eigenvalues. The system therefore undergoes a bifurcation when the
fractional order α increases above the critical value α∗.

3.5 Numerical Simulation

In this section, we investigate the numerical solution of the system in (3.5) and
(3.6), paying attention to the critical fractional derivative order, α∗, below the
value of which one of the unstable equilibrium points becomes stable. We will see
that, although for α > α∗ only one equilibrium point is stable, for certain initial
states the system can remain close to an unstable equilibrium point. As α reduces,
the area of initial state space for which the system remains close to this unstable
point grows until, when α = α∗, the unstable point becomes stable. We therefore
see that both above and below this critical value, the transient behaviour and the
observed domains of stability for the equilibria can significantly change as a func-
tion of the fractional derivative order.

The estimated values of the parameters that are used in the numerical sim-
ulation are taken from the models of Harrison [52], where he uses a standard
differential equation predator-prey model to qualitatively predict the outcome of
a predator-prey experiment, and Magal et al. [72], where they use two differential

26



equations to model the spread of hosts (leafminers) and parasites in a biological
system. Harrison’s model is given by the following equations

dx

dt
= ρ

(
1− x

k

)
x− ωxy

Φ + x
,

dy

dt
=

σxy

Φ + x
− γy,

and the parameter values are provided in Table 3.1.

Table 3.1: Values and ecological interpretations of the parameters in Harrison’s
model [52]. Note that d denotes days and µL denotes microlitres. In [52] the unit
of millilitre is used, however, through comparison with Magal et al. [72] it is clear
that the units for the density should be per microlitre in our application.

Parameter Estimated Value Unit Interpretation

x and y (µL)−1 the density of prey and predator
ρ 2− 3 d−1 growth rate of prey
k 0.9 (µL)−1 carrying capacity of prey
ω 0.01− 0.05 d−1 maximum rate of prey consumption
Φ 0.003− 0.3 (µL)−1 half saturation constant
σ 5− 50 d−1 conversion rate from prey to predator
γ 0.002 d−1 harvesting rate of predator

The model of Magal et al. is

dx

dt
= r1x

(
1− x

k1

)
− Exy

1 + Ehx
,

dy

dt
= r2y

(
1− y

k2

)
+

Eγyx

1 + Ehx
,

and Table 3.2 provides values and an ecological interpretation of these parameters.

Table 3.2: Values and ecological interpretations of the parameters in the model of
Magal et al. [72]. Parameters are written in units consistent with [52].

Parameter Estimated Value Unit Interpretation

x and y (µL)−1 the density of prey and predator
r1 3 d−1 growth rate of leafminers
r2 0.1 d−1 growth rate of parasitoids
k1 1 (µL)−1 carrying capacity of leafminers
k2 0.0029 (µL)−1 carrying capacity of parasitoids
E 200.2 (µL)d−1 encounter rate
γ 10 no unit conversion efficiency
h 5 d harvesting time
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Table 3.3: Parameter values used in our numerical simulations where the harvest-
ing rates are taking to be similar to the harvesting rates, h1 and h2, in [52].

Parameter Estimated Value Unit Reference Interpretation

x and y (µL)−1 the density of prey and predator
r1 3 d−1 [72] growth rate of prey
r2 0.1 d−1 [72] growth rate of predator
a 1001 µL [72] the rate of consumption of the prey
k1 1 (µL)−1 [72] carrying capacity of prey
k2 0.0029 (µL)−1 [72] carrying capacity of predator
m 200.2 (µL)d−1 [72] decreasing rate of prey per predator
q 10 no unit [72] efficiency constant
h1 0.001 d−1 [52] harvesting rate of prey
h2 0.01 d−1 [52] harvesting rate of predator

Table 3.3 gives the values of parameters used in our numerical simulations
(which are typical for systems where the size of predator populations are much
larger than prey populations such as in parasitic-predation on host prey [6]).
The corresponding values of the nondimensionlised parameters are R = 0.0333,
K1 = 0.1935, K2 = 667.3333, I = 1001, E1 = 0.0003 and E2 = 0.0033. Although
we write only 4 decimal places, we work to a higher accuracy in our numerical work.

Numerical solutions of (3.5) and (3.6) are found using the Adam-Bashforth-
Moulton method for parameter values in Table 3.3, and with a timestep size h =
2−8 days. Various possible values of h (from 2−5-2−10 days) were investigated and
this value, h = 2−8 days, was chosen so that the area of the domains of stability
changed by less than 5% for timesteps less than this. Smaller values of h could
be used, for greater accuracy, but would lead to significantly longer computational
times and therefore the value of 5% accuracy was chosen.
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Figure 3.1: The positions and stabilities of the equilibrium points of the system
(3.5) and (3.6), using parameter values from Table 3.3.

For these parameter values, the physically relevant equilibrium points are
P0 = (0, 0), P1 = (0.9997, 0), P2 = (0, 0.9009), P31 = (0.9956, 20.9009), P32 =
(0.0005, 8.0015) and P33 = (0.0015, 12.9395) as shown in Figure 3.1. For the pa-
rameters we use, ∆ = 8.9167×1017, M0 = 0.8256, M1 = −1.0229 and M2 = 0.9980.
Since ∆ > 0 and M1 < E1 < min(M0,M2), we may have the coexisting population
states. Indeed this is what we find. The states P0, P1, P2 and P33 are all unstable.
The P31 equilibrium point is stable for all values of α, with the eigenvalues of the
Jacobian matrix at P31 being negative Λ1 = −0.9915 and Λ2 = −0.6960. Also,
for the same parameter values, the eigenvalues of the Jacobian matrix at P32 are
complex conjugates with positive real part, Λ1,2 = 0.0436 ± 0.2372i, so that for
the integer derivative order system the point P32 is unstable. As mentioned in
Chapter 2, as the derivative order reduces, the region |arg(λ)| > απ/2 eventually
expands to include the P32 complex conjugate Jacobian eigenvalues, so that for
α ∈ (0, α∗), where α∗ = 0.88406, the point P32 is stable. This means that for the
integer derivative system, i.e. α = 1, there is only one stable equilibrium point,
P31, a state in which there are significant levels of prey and predator, but for the
fractional derivative system with a fractional derivative order less than the critical
value α < α∗ there exists a further stable equilibrium point P32, a state in which
the prey level is almost zero.

We demonstrate this change in stability in Figure 3.2, which shows the evolu-
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tion of the system from the same initial condition X(0) = 0.0005, Y (0) = 8.0 but
for two fractional derivative order values, either side of the critical value, for the
integer order system α = 1 (Figure 3.2(a)) and α = 0.8 (Figure 3.2(b)). In Figure
3.2(a), the equilibrium point P32 is unstable and the system evolves to the only
stable equilibrium point, P31. However, for the lower value of α, Figure 3.2(b)
shows that, whilst the equilibrium point P31 is still stable, for the same initial
values of prey and predator populations the system evolves to the, now stable,
equilibrium point P32.
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Figure 3.2: The trajectories when (a) α = 1 > α∗, where the system evolves
to the stable equilibrium point P31 (not shown in the trajectory plot), and (b)
α = 0.8 < α∗, where the system evolves to the fractional-derivative–stabilised
equilibrium point P32 (red point).

Changing the fractional derivative order therefore gives the possibility of tran-
sitioning from a monostable system to a bistable system. This transition occurs
though a Hopf-like bifurcation. However, in this fractional derivative system, a
limit cycle that would appear during a Hopf bifurcation, does not exist and tra-
jectories in the phase plane can pass across a closed cycle or separatrix. A closed
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cycle can exist, although trajectories do not approach this closed cycle asymptot-
ically, so this is not termed a limit cycle.

In Figure 3.3, we show the phase plane trajectories for prey and predator
populations from an initial state of X(0) = 0.0005 and Y (0) = 8.0 for six different
values of the fractional derivative order above the critical value α∗ = 0.88406. In all
plots within Figure 3.3, we see that the equilibrium point P32 is unstable, with the
trajectory eventually reaching the only stable equilibrium point P31. However as
the fractional derivative order changes, the transient behaviour, before the system
converges to the stable point P32, changes. Even though P32 is unstable, the Hopf-
like bifurcation leads to oscillations in the prey and predator populations. The
number of cycles around P32 is seen to increase as the fractional derivative order
decreases, as shown in Figure 3.4. Therefore, for a certain amount of time, even if
α > α∗, the system stays close to P32 for a while. When the fractional derivative
order has reduced below the critical value α∗, the phase plane trajectory would
asymptotically approach P32 in an oscillatory fashion, with an infinite number of
cycles around the equilibrium point. This approach to an infinite number of cycles
is also seen in Figure 3.4.
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(f) α = 0.8842, number of cycles = 150
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(e) α = 0.8854, number of cycles = 48
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(b) α = 0.9500, number of cycles  = 2
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(c) α = 0.8960, number of cycles = 8
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(d) α = 0.8900, number of cycles = 15
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Figure 3.3: Phase plane trajectories for the predator–prey populations for the
initial state X(0) = 0.0005, Y (0) = 8.0 but for various values of the fractional
derivative order α. The red point marks the unstable equilibrium point P32 =
(0.0005, 8.0015). As α decreases (from (a) through to (f)) the number of cycles
around P32 increases.
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Figure 3.4: The number of cycles around the equilibrium point P32 as the frac-
tional derivative order α varies as was illustrated in Fig. 3.3, this number of cycles
approach to an infinite number of cycles when α has reduced below the critical
value α∗.

The change in transient behaviour can also be seen when we consider the state
of the system after a fixed time t = tend. Because we have two equilibrium points,
when α < α∗, we are interested in finding out when the trajectory goes to either
P31 or P32, and how these depend on the choice of the initial condition. Figure 3.5
shows this behaviour for only two different initial conditions, where α = 0.85 < α∗.
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Figure 3.5: Phase plane trajectories for α = 0.85 < α∗. (a) X(0) = 0.0015,
Y (0) = 12 and the red point is P31. (b) X(0) = 0.0015, Y (0) = 16 and the red
point is P32.
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To illustrate this change in transient behaviour for more initial states, we will
now vary the initial state and consider the final state at t = tend = 500 (equivalent
to a dimensional t = 167 days), labelling each initial point depending on whether
the final state is closer to P31 or P32. Figure 3.6 shows the results of this process
of labelling the initial states depending on whether the final state is closer to P31

(coloured green) or P32 (coloured white). For values of the initial state X0 greater
than 0.1, the system final state, at tend, is always closer to P31 and would therefore
be coloured green. For the value of the fractional derivative order used for Figure
3.6, α = 0.75 < α∗, i.e. below the critical value, we see that both P31 and P32 are
stable, although the domain of attraction of P31 is much larger than P32. Figure
3.7 then shows an enlarged version of Figure 3.6, indicating how the domain of
attraction of P32 changes as the fractional derivative order changes.

From Figure 3.7(d-f) we see that for fractional derivative orders less than the
critical value, for which both P31 and P32 are stable, we have a region of the space
of initial states where the system is closer to P31 when t = tend and a region where
the system is closer to P32. When the fractional derivative order is greater than the
critical value Figure 3.7(a-c) we might expect, since the equilibrium point P32 is
now unstable, that the white region in these plots would collapse. However, since
these regions are labelled after a fixed time t = tend, and because of the Hopf-like
bifurcation that leads to oscillatory behaviour around P32, we see that, for a range
of initial conditions, the system remains close to P32. It is interesting to note that
for relatively large values of the fractional derivative order, i.e. in Figure 3.7(a,b)
there are two disconnected white regions.
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Figure 3.6: Observed domains of attraction for α = 0.75 < α∗. If the initial
states X0, Y0 are chosen from the green region, the system will be closer to the
equilibrium point P31 at t = tend, and for initial states within the white region, the
system will be closer to the equilibrium point P32 (red point) at t = tend.
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Figure 3.7: Observed domains of attraction for various values of the fractional
derivative order α. If the initial states X0, Y0 are chosen from the green region,
the system will be closer to the equilibrium point P31 at t = tend, and for initial
states within the white region, the system will be closer to the equilibrium point
P32 at t = tend. For (a), (b), (c) the value of the fractional derivative order is
α > α∗ and for (d), (e), (f) α < α∗.
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3.6 Conclusions

In this chapter, for the predator-prey system that was under consideration, con-
ditions of stability and bifurcation have been obtained and, importantly, it was
found that through the variation of the fractional order α it is possible to transi-
tion from a monostable system to a bistable system. In the bistable system, the
two stable equilibrium points (P31 and P32) have very different levels of predator
and prey populations - for the parameters used here we find prey/predator ratios
of X/Y = 0.04760 and X/Y = 0.00006 for the two bistable states. The presence
of increased memory (corresponding to a reduction in α) in the predator and prey
has therefore opened up the possibility of very different stable states and, at the
boundary of the domain of attraction, a sensitivity to small variations in system
parameters, such as birth, death or harvesting rates, can lead to a drastic change
in the prey/predator ratio. Even when the system has only one stable state, the
observed domains of attraction (the domains for which the system will remain
close to either equilibrium point after a fixed time) can be memory dependent.

We have concentrated on a particular model, with the same parameters as
used in [72]. For these parameter values, the domain of attraction for P32 is much
smaller than that of P31 and so may not be readily observable in real life. However,
we would suggest that the main effects, on stability and domains of attraction, of
altering the fractional derivative order would be present for any similar system
where there is more than one stable state possible. A key observation from Figure
3.7 is that, both for fractional derivatives below and above the critical value α∗,
the observed domain of attraction changes significantly as α changes.

Further extension of this model, to an incommensurate fractional system, for
which the predator and prey populations have different fractional derivative orders,
will be dealt with in the next chapter.
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Chapter 4

Incommensurate Predator-Prey
Model

If we consider a model of two or more interacting species, that may have different
levels of memory, i.e. long or short-term memories, one way to represent the system
is to model them by using an incommensurate fractional order system of differential
equations. As mentioned in Chapter 2, such an incommensurate system will have
the following general form

Dαkyk(t) = fk(y1, y2, ......, yn),

where αk ∈ (0, 1] is the fractional order for the kth species with k = 1, ..., n, and
yk(t0) = bk, is the initial state for the kth species.

Incommensurate fractional systems such as this have not received as much at-
tention as commensurate fractional systems. There have been a number of papers
that study incommensurate systems from the perspective of synchronisation, a
phenomenon that may occur when two or more dissipative chaotic systems are
coupled [129]. However, this effect is typically only investigated through numer-
ical simulations that are based on the stability criteria of linear fractional order
systems, such as the work presented in [84] (and references 19-24 in [84]). In these
works, the underlying aim is to control synchronisation in an n-dimensional frac-
tional dynamical system by choosing a suitable control function [2]. Researchers
have focused on investigating many kinds of synchronisation such as hybrid pro-
jective [61, 132], H-infinity observer-based [127], Q-S [84], master-slave, complete,
chaos, and robust [2], although analytic results explaining how incommensurate
fractional derivatives affect the systems are lacking. Other researchers have fo-
cused on general types of incommensurate dynamical systems. In 2008, Petras
[88] analysed the stability criteria of linear and nonlinear fractional systems, using
examples to explain how to apply the criteria for the stability of specific values
of the fractional orders. In 2012, Datsko and Lucbko [25] investigated the incom-
mensurate system based on the van der Pol-FitzHugh-Nagumo system for different
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fractional orders. They showed that the stability behaviour depends on the choice
of fractional orders, and that by changing system parameters, different limit cycles
will occur. They found a simple limit cycle, limit cycles with intersections, and
limit cycles that are similar to strange attractors. In 2016, Yude et al. [58] applied
the stability theorem of incommensurate fractional orders systems for two different
systems: the Lotka-Volterra predator-prey system [1, 130] and the Chen system
[116, 117]. The eigenvalues for each equilibrium point were examined, and the
stability results were illustrated numerically. Stability results for a linear system
which contains the Caputo derivative were obtained by Brandibur and Kaslik in
2017 [14]. In this work, they focused on the Morris-Lecar neuronal model after
replacing the integer derivative in the first equation of the model by the fractional
Caputo derivative.

In 2018, Brandibur and Kaslik [15] investigated a fractional derivative form of
the FitzHugh-Nagumo model. They explored stability conditions for this system,
and how fractional orders affected Hopf-bifurcations. In 2019, El-Saka et al. [34]
investigated an incommensurate fractional order version of a predator-prey bio-
logical model, first introduced in [70]. Hopf-bifurcations were examined for this
system and the theoretical results were verified by several numerical examples. In
all these works, very few analytical results were represented.

In this chapter, two incommensurate fractional systems will be considered.
In Section 4.1, we find an approximate analytical solution for the characteristic
equation of the incommensurate system when the two fractional orders α and β
are similar using perturbation theory [81] and the solution of the characteristic
equation of the commensurate system. Then, the condition for the stability of
the incommensurate fractional system is determined as a function of the two frac-
tional orders, and the approximate analytical solution for the stability boundary
is found. The method used to find the numerical solution for this equation for
incommensurate fractional orders is also introduced and used to compare to the
analytical results. Two incommensurate predator-prey systems are investigated:
in Section 4.2.1, the incommensurate system of the same predator-prey model
studied in Chapter 3 will be investigated to consider the effect of having two dif-
ferent fractional orders; in Section 4.2.2, an alternative incommensurate system is
introduced to compare the results with those found in Section 4.2.1.

4.1 Characteristic Equation of the Incommensu-

rate System

In this section, we will find approximate analytical solutions for the eigenvalues
that satisfy the characteristic equation of the incommensurate system, assuming
that the fractional orders are similar. We will then consider the stability boundary
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based on these eigenvalues. The eigenvalues of the Jacobian matrix are the solution
of the characteristic equation, for example if we have two species in the system the
Jacobian matrix will be of the form

J(X, Y ) =

[
J11 J12

J21 J22

]
.

The characteristic equation for the incommensurate system is then

(λα − J11) (λβ − J22)− J12J21 = 0. (4.1)

4.1.1 Eigenvalues of the Incommensurate System

The stability of equilibrium points in an incommensurate fractional derivative
system is determined by the eigenvalues solutions to the characteristic equation
(4.1). Here we now consider solutions of this equation when α and β are similar.
We will take fractional orders α, β ∈ (0, 1), such that α = n1/m1 and β = n2/m2

are rational numbers. Since the rational numbers are dense in the real numbers,
we need only consider rational values of α and β. We set a common denominator
α = n/M and β = m/M , and the characteristic equation (4.1) can then be written
as (

λ
n
M − J11

) (
λ

m
M − J22

)
− J12J21 = 0. (4.2)

We will now consider values of α and β that are similar, specifically that m = n+1,
so that with the substitution Λ = λ

1
M , we obtain

(Λn − J11)
(
Λn+1 − J22

)
− J12J21 = 0. (4.3)

The difference between α and β is therefore 1/M and so, if we take that M is large
enough, we are able to allow β to be arbitrarily close to α. As M increases then,
since α is fixed, so must n increase. Therefore, the limit β → α is equivalent to

n → ∞, or 1/n → 0. For a commensurate system, with α = β =
n

M
, the system

reverts to
(Λn − J11) (Λn − J22)− J12J21 = 0. (4.4)

Comparing these two equations we see that (4.3) has 2n+ 1 solutions while (4.4)
has 2n solutions. In the following section, we will first find the 2n solutions of (4.3)
that are close to the solutions of (4.4), and then find the one extra solution. After
that, the stability boundary for equilibrium, as a function of α and β, will be found.

Since β → α as n→∞, we expect 2n of the 2n + 1 solutions of (4.3) to tend
to the 2n solutions of (4.4) as n → ∞. We will therefore look for 2n solutions
of (4.3), Λ, as perturbations of the roots of (4.4), which we denote by Λ∗. The

standard form of perturbation would be Λ = Λ∗ +
1

n
Λ̄1 +

1

n2
Λ̄2 + ... although for

ease of computation we have chosen the similar form (4.5). We therefore set

Λn = (Λ∗)n +
1

n
(Λ̄1)n +

1

n2
(Λ̄2)n +O

(
1

n3

)
, (4.5)
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and we seek the analytic forms of Λ̄1 and Λ̄2. An approximate perturbation so-
lution is then obtained by truncating the series and keeping only the first three
terms, the leading order solution, the first-order perturbation correction and the
second-order perturbation correction.

For simplicity, let ∆ = Λn, so that Λn+1 = ∆1+ 1
n , and we can rewrite (4.3),

and (4.4) as the following equations:

(∆− J11)
(
∆1+ε − J22

)
− J12J21 = 0, (4.6)

(∆− J11) (∆− J22)− J12J21 = 0, (4.7)

where ε = 1/n. In this case, the up-to second order perturbation of (4.5) can be
written in the following form

∆ = ∆∗ + ε∆̄1 + ε2∆̄2, (4.8)

where ∆∗ derives from one of the 2n solutions of (4.4). Rewriting (4.6) as

∆ε+1 (∆− J11)− J22∆ + J11J22 − J12J21 = 0, (4.9)

and using (4.8), we obtain(
∆∗ + ε∆̄1 + ε2∆̄2

)ε+1 ((
∆∗ + ε∆̄1 + ε2∆̄2

)
− J11

)
=J22

(
∆∗ + ε∆̄1 + ε2∆̄2

)
− J11J22 + J12J21.

(4.10)

Using the Taylor expansion for
(
∆∗ + ε∆̄1 + ε2∆̄2

)ε+1
about ε = 0, (4.10) can be

written as(
∆∗ +

(
∆̄1 + ∆∗ ln ∆∗

)
ε+

(
2∆̄2 + 2∆̄1 + 2∆̄1 ln ∆∗ + ∆∗ (ln ∆∗)2) ε2

2!
+ . . .

)
×
((

∆∗ + ε∆̄1 + ε2∆̄2

)
− J11

)
= J22

(
∆∗ + ε∆̄1 + ε2∆̄2

)
− J11J22 + J12J21.

(4.11)
The leading order, O(1), terms in (4.11), disappear because ∆∗ satisfies (4.7). By
comparing the coefficients of ε on both sides of (4.11), we obtain

∆∗∆̄1 +
(
∆̄1 + ∆∗ ln ∆∗

)
∆∗ − J11

(
∆̄1 + ∆∗ ln ∆∗

)
= J22∆̄1,

thus the first order correction term is

∆̄1 =
∆∗ ln ∆∗ (J11 −∆∗)

2∆∗ − J11 − J22

. (4.12)

Comparing coefficients of ε2 on both sides of (4.11), we obtain

∆∗∆̄2 +
(
∆̄1 + ∆∗ ln ∆∗

)
∆̄1 +

(
2∆̄1 + 2∆̄2 + 2∆̄1 ln ∆∗ + ∆∗(ln ∆∗)2) ∆∗

2

−
(
2∆̄2 + 2∆̄1 + 2∆̄1 ln ∆∗ + ∆∗(ln ∆∗)2) J11

2!
= J22∆̄2,
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and thus the second order correction term is

∆̄2 =

−∆̄2
1 − ∆̄1∆∗ ln ∆∗ − (∆∗ − J11)

(
∆̄1 + ∆̄1 ln ∆∗ +

∆∗(ln ∆∗)2

2

)
2∆∗ − J11 − J22

, (4.13)

which, using (4.12) becomes

∆̄2 =
1

2 (J11 − 2∆∗ + J22)3

[
∆∗ ln ∆∗(J11 −∆∗)

[
ln ∆∗(J2

11 − 2J11∆∗ − J2
22 + 2∆∗2)

+ 2(J11 −∆∗)(J11 − 2∆∗ + J22)
]]
.

(4.14)
From (4.12) and (4.14), the approximate analytical form (4.8) can be written as

∆ =∆∗ + ε

[
∆∗ ln ∆∗ (J11 −∆∗)

2∆∗ − J11 − J22

]
+ ε2

[
1

2 (J11 − 2∆∗ + J22)3

[
∆∗ ln ∆∗(J11 −∆∗)

[
ln ∆∗(J2

11 − 2J11∆∗ − J2
22 + 2∆∗2) + 2(J11 −∆∗)(J11 − 2∆∗ + J22)

]]]
.

(4.15)
We know that ∆ = Λn = λ

n
M = λα and ∆∗ = (Λ∗)n = (λ∗)

n
M = (λ∗)α, therefore

(4.15) can be written as

λα =(λ∗)α + ε
(λ∗)α ln(λ∗)α(J11 − (λ∗)α)

2 (λ∗)α − J11 − J22

+ ε2 1

2(J11 − 2(λ∗)α + J22)3

[
(λ∗)α ln(λ∗)α

(J11 − (λ∗)α)
[

ln(λ∗)α
(
J2

11 − 2J11 (λ∗)α − J2
22 + 2 ((λ∗)α)

2
)

+ (J11 − (λ∗)α)

(J11 − 2(λ∗)α + J22)
]]
,

(4.16)
where λ∗ is a solution for the commensurate system, i.e.,

(λ∗)α =
J11 + J22 ±

√
J11

2 + J22
2 − 2J11J22 + 4J12J21

2
. (4.17)

In order to find the extra root of (4.3), we consider the functions

f2n(Λ) = Λ2n − (J11 + J22)Λn + J11J22 − J12J21,

and
f2n+1(Λ) = Λ2n+1 − J11Λn+1 − J22Λn + J11J22 − J12J21.

Assuming, as in the last section, that 2n roots of f2n+1 are close to the roots of
f2n we can find the sign of the additional root by using Descartes’ Rule of Signs
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[5]. The number of the changes of signs of terms in f2n will be compared to the
number of the changes of signs of terms in f2n+1. If f2n and f2n+1 have the same
number of the changes of signs (the same number of positive roots modulo 2), then
the single extra root for f2n+1 will necessarily be negative, and thus will not alter
the stability of the system.

The first and last coefficients in f2n and f2n+1 are identical, thus, we will focus
on the other coefficients which depend on J11 and J22. There are four different pos-
sibilities for the signs of these coefficients. J11, J22 > 0; J11, J22 < 0; J11 < 0 < J22;
J22 < 0 < J11.

If J11 and J22 are both positive or are both negative, then the number of the
changes of signs has not increased, so that the number of positive roots has not
increased and therefore, the extra root cannot be positive. For the other two cases,
the sign of J11 + J22 affects the number of positive roots. Table 4.1 shows all the
possibilities of the number of roots that we could get. We see from Table 4.1 that,
in going from f2n to f2n+1, we may have either zero or two additional positive
roots. However, only one root is added in going from f2n to f2n+1. Therefore
we have proven that the extra root cannot be positive. The extra root does not,
therefore, affect the stability of the system.
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4.1.2 Stability Boundary

In this section, we focus on the 2n eigenvalues solutions of (4.16) since the extra
root investigated in the last section will never cause the system to be unstable. We
will consider situations when we have complex eigenvalues in the commensurate
case, so that stability is alpha-dependent, and then assume that the incommen-
surate system has complex eigenvalues, which will at least be the case when the
system is close to commensurate. Therefore, by using (4.17), we can rewrite the
solution of the commensurate system as (λ∗)α = x± iy, where

x =
J11 + J22

2
and y =

1

2

(
−J11

2 − J22
2 + 2J11J22 − 4J12J21

) 1
2 .

To determine the stability of the equilibrium point we are interested in | arg λ| and
therefore we may consider just one of the complex conjugate solutions, (λ∗)α =
x+ iy. The form of λα is then

λα = (x+ iy) + ε (x1 + iy1) + ε2 (x2 + iy2) , (4.18)

where x1, y1, x2 and y2 are related to J11, J12, J21 and J22 which we provided in

Appendix A.1. The condition for stability is | arg λ| > π

2
. Therefore, from (4.18),

if we consider only the first order correction, the condition for stability is

|arg ((x+ εx1) + (y + εy1) i)| > π

2
α. (4.19)

Using the Taylor series expansion for
y + εy1

x+ εx1

, we have

arg ((x+ εx1) + i (y + εy1)) = tan−1 y + εy1

x+ εx1

= tan−1
[y
x

+
(y1

x
− x1y

x2

)
ε+ · · ·

]
.

Using the Taylor series expansion for tan−1, we obtain

arg ((x+ εx1) + i (y + εy1)) = tan−1N1 +
N2

1 +N1
2 ε,

where N1 =
y

x
and N2 =

y1

x
− x1y

x2
. Since ε =

β

α
− 1, (4.19) can be written as∣∣∣∣tan−1N1 +

N2

1 +N1
2

(
β

α
− 1

)∣∣∣∣ > π

2
α, (4.20)

which is the condition for the stability, dependent on α and β. If we consider the
second order correction, the stability condition is∣∣arg

(
(x+ εx1 + ε2x2) +

(
y + εy1 + ε2y2

)
i
)∣∣ > π

2
α, (4.21)
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which, again using Taylor series, becomes

arg
((
x+ εx1 + ε2x2

)
+ i
(
y + εy1 + ε2y2

))
=tan−1N1 +

N2

1 +N1
2 ε

+
2N3 + 2N3N1

2 − 2N1N2
2(

1 +N1
2
)2 ε2,

where N3 =

(
y2

x
− x1y1 + x2y

x2
+
x2

1y

x3

)
. This condition, as a function of α and β,

can then be written as∣∣∣∣∣tan−1N1 +
N2

1 +N1
2

(
β

α
− 1

)
+

2N3 + 2N3N1
2 − 2N1N2

2(
1 +N1

2
)2

(
β

α
− 1

)2
∣∣∣∣∣ > π

2
α.

(4.22)
Equations (4.20) and (4.22) now give us approximations for the boundary of the
stability region, β = β(α), close to the critical order for the commensurate system
α∗. Those two critical curves, derived from (4.20) and (4.22), respectively, are

β = β1 (α) = α (D1α +D2) , (4.23)

and

β = β2(α) =

(1− M2

2M1

)
∓

√(
1− M2

2M1

)2

− 1

M1

(
M1 −M2 −

π

2
α + tan−1N1

)α,

(4.24)
where

D1 =
π

2

(
1 +N2

1

N2

)
,

D2 = 1− 1 +N2
1

N2

tan−1N1,

M1 =
2N3 + 2N3N1

2 − 2N1N2
2(

1 +N1
2
)2 ,

M2 =
N2

1 +N1
2 .

4.2 Numerical Solution

In this section, we will numerically find the solution of (4.1) using Matlab (fsolve)
for particular predator-prey systems, and compare the stability boundary for a
particular equilibrium point to the approximate analytical results (4.23) and (4.24).
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4.2.1 Predator-Prey Incommensurate System

The first system we will consider is the incommensurate version of the predator-
prey system that was introduced in Chapter 3, namely

cDα
t X = X(1−X)− K1XY

1 + IX
− E1X, (4.25)

cDβ
t Y = RY (1− Y ) +

K2XY

1 + IX
− E2Y, (4.26)

with the initial conditions X(0) = X0 and Y (0) = Y0, where 0 < α < 1 and
0 < β < 1.

In Chapter 3, we found that the commensurate system is asymptotically stable
around the equilibrium point P32 for all fractional derivative orders in the interval
(0, α∗) where α∗ can be determined from the system parameters. In this section,
we will investigate how α∗ changes as β is allowed to change for the same param-
eter values used in the previous chapter.

Using the command fsolve in Matlab, we consider changes in the eigenvalue
λ0 = 0.0436 + 0.2372i, which is the eigenvalue that leads to the instability in the
integer system (α = 1, β = 1) at P32, as α and β change. Two example situations
are given below after which we consider a more general case. If we retain integer
order prey dynamics but allow fractional order predator dynamics, so that α = 1
and 0 < β < 1, then the complex eigenvalue of the system is shown in Figure 4.1(a,
b). The real part of the eigenvalue is always positive and so the system, (4.25) and
(4.26), will never be stable around P32 for any value of β when α = 1. If we retain
integer order predator dynamics but allow fractional order prey dynamics, so that
β = 1 and 0 < α < 1, then the complex eigenvalue of the system (see Figure 4.1(c,
d)) swaps from having positive real part to negative real part. The system (4.25)
and (4.26), can therefore be stable when β = 1 if α reduces below a critical value
α∗ =0.8922.
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Figure 4.1: One of the complex conjugate solutions (eigenvalues) to the charac-
teristic equation (4.1) for the incommensurate system, (4.25) and (4.26) at the
equilibrium point P32. In (a) and (c) the real parts (red line) and the imaginary
parts (green line), while (b) and (d) show the Argand diagram.

The more general situation, when both α and β vary is shown in Figure 4.2.
In Figure 4.2 the green region indicates that the equilibrium point P32 is unstable,
i.e. there is an eigenvalue with positive real part. The white region in Figure 4.2
indicates that P32 is stable, i.e. all eigenvalues have negative real part. Therefore,
for values of the prey fractional order, α, close to one, the incommensurate system
will not be stable, but as we reduce α we move to the white region, and we can get
a stable equilibrium point. The dashed line in Figure 4.2 shows that the unstable
region (green) can be separated into two sub-regions depending on the kind of
instability the incommensurate system exhibits around P32. For (α, β) above the
dashed line in the green region, the unstable eigenvalue is complex and so the
trajectories will spiral around the equilibrium point as they evolve away from
P32, and when (α, β) is below the dashed line in the green region, the unstable
eigenvalue is real and so the trajectories will not spiral around the equilibrium point
as they evolve away from P32. In Figure 4.2 the line α = β, i.e. the commensurate
system is shown as well as the point α∗, the critical value of the fractional order
below which the commensurate system is stable.
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Figure 4.2: The regions of stability for various values of the fractional derivative
order. For fractional orders, for the incommensurate system (4.25) and (4.26)
chosen from the white region, the system will be stable around the equilibrium
point P32. For fractional orders chosen from the green region, the system will be
unstable around the equilibrium point P32. The line α = β, i.e. the commensurate
system is shown as well as the point α∗, the critical value of the fractional order
below which the commensurate system is stable.

As we proved in the previous chapter, for α > α∗, the commensurate system
(α = β) is unstable around the equilibrium point P32. However, from Figure 4.2
we see that the incommensurate system might be stable when α > α∗ and β > α∗

if α and β are chosen to be in the white region. This is illustrated in Figure 4.3(a)
when α = 0.89 > α∗, where P32 is stable for β > β2 and the form of the unstable
behaviour changes upon passing β1. Figure 4.3(b-d) indicates how the stability
around the equilibrium point vary as β changes. If β = 0.95, the incommensurate
system can be stable when β > β2, see Figure 4.3(b). If β = 0.6, i.e. above
the dashed line in the green region, the incommensurate system will be unstable
around trajectories that spiral around the equilibrium point as they evolve away
from P32, see Figure 4.3(c). If β = 0.3, below the dashed line in the green region,
the incommensurate system will also be unstable but does not spiral around the
equilibrium point as it evolves away from P32, see Figure 4.3(d).
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Figure 4.3: The behaviour of the incommensurate system, (4.25) and (4.26), when
α = 0.89 > α∗. (a) One of the complex conjugate solutions (eigenvalues) to the
characteristic equation (4.1) at the equilibrium point P32. The real parts (red line)
and the imaginary parts (green line). (b), (c) and (d) illustrate the phase plane
trajectories when β = 0.95, β = 0.6 and β = 0.3, respectively, where the red point
is P32.

In the commensurate system when α < α∗, the system is stable around the
equilibrium point P32. However, when α 6= β it is possible for the incommensurate
system to be unstable for α < α∗ if β is chosen to be small enough, so that (α, β)
is in the green region of Figure 4.2. Figure 4.4(a) illustrates this behaviour when
α = 0.60 < α∗, where we see a change in behaviour as β reduces. The form of
the unstable behaviour changes when passing β1 and P32 is stable for β > β2. If
β = 0.95, the incommensurate system is stable, as seen in Figure 4.4(b), and if
β = 0.35, above the dashed line in the green region, the incommensurate system
will be unstable and will spiral away from the equilibrium point, see Figure 4.4(c).
If β = 0.2, under the dashed line in the green region, the incommensurate system
will also be unstable without spiralling around the equilibrium point P32, see Figure
4.4(d).
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Figure 4.4: The behaviour of the incommensurate system, (4.25) and (4.26), when
α = 0.6 < α∗. (a) One of the complex conjugate solutions (eigenvalues) to the
characteristic equation (4.1) at the equilibrium point P32. The real parts (red line)
and the imaginary parts (green line). (b), (c) and (d) illustrate the phase plane
trajectories when β = 0.95, β = 0.35 and β = 0.2, respectively, where the red
point is P32.

To confirm that the approximation analytical solution for the line β(α), the
boundary between stable and unstable regions, in Figure 4.2, we plot the two
approximation solutions (4.23) and (4.24) with the numerical solution in Figure
4.5. In this figure, we see that β = β1 (α) (red curve) and β = β2 (α) (blue
dashed curve) are good approximation to the stability boundary found numerically,
particularly close to α = β = α∗, as to be expected.

51



*

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.5: The curves β = β1(α) (red curve) and β = β2(α) (blue dashed curve)
and the numerically determined stability boundary from Figure 4.2.

To summarise, we have shown both numerically and analytically that, in the
incommensurate system (4.25) and (4.26), decreasing the predator fractional order
β, can change a stable equilibrium point to an unstable point. This can not happen
in the equivalent commensurate system, where decreasing the fractional order will
only ever stabilise an unstable point. In order to examine if this is a more general
result, it will be interesting to consider another incommensurate system, as we will
do in the following section.

4.2.2 Plant-Herbivore Incommensurate System

Models of plant–herbivore interactions are often based on predator–prey models
[74, 75] with the plants taking the role of prey and the herbivores taking the role
of predator. In this section we will study a plant-herbivore model that includes a
Holling type III predation rate, which has been used to study the effect of limited
nutrients in a plant-herbivore system. Specifically, we used the model derived by
Saha et al. [108]

dx

dt
= rx

(
1− x

k

)
− mx2y

n+ x2
, (4.27)

dy

dt
=

emx2y

n+ x2
− hy, (4.28)

where x(t) represents the plant biomass (the “prey”) and y(t) represents the num-
ber of herbivores (the “predator”) at time t. The per capita birth rate of plants
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is r
(

1− x

k

)
where r is a positive constant, the linear birth rate, and k is a posi-

tive constant representing the carrying capacity of the environment. In (4.27) and
(4.28), the amount of plants eaten by the herbivore follows a Holling type III func-
tion, representing a system where the number of prey is low, and therefore harder
to find. This type of interaction is suitable for some plant-herbivore systems and
has been shown to be successful at describing interactions in these types of sys-
tems [108]. In this Holling type III function, m is the maximum uptake rate for
herbivores, n is related to the half saturation plant density and e is the conversion
factor that satisfies the condition 0 < e < 1. The term hy in (4.28) represents the
loss of herbivores through natural death or harvesting of the herbivore at a rate
h. Saha et al. nondimensionalised (4.27) and (4.28) leading to

dX

dT
= qX

(
1− X

q

)
− aX2Y

1 +X2
(4.29)

dY

dT
=

bX2Y

1 +X2
− γY, (4.30)

with the initial conditions X(0) = X0 and Y (0) = Y0, and where X = x/
√
n,

Y = y/
√
n and T = r

√
nt/k. The parameters in (4.29) and (4.30) have the follow-

ing expressions q = k/
√
n, a = mk/(r

√
n), b = emk/(r

√
n) and γ = hk/(r

√
n),

and are all real positive constants since k,m, e and r are positive and e < 1. The
equilibrium points of (4.29) and (4.30), that are found in [108], are E0 = (0, 0),
the trivial equilibrium, E1 = (q, 0) the herbivore-free state and E2 = (X∗, Y ∗) =(√

γ

b− γ
,
(q −X∗)(1 +X∗2)

aX∗

)
, the coexisting plant-herbivore state.

The existence and the stability of the three equilibrium points were also found
in [108]. The two equilibrium points E0 and E1 always exist. However, E2 exists
only when b > γ and X∗ < q. E0 is always an unstable equilibrium point and E1

is stable when E2 does not exist. Thus, if E2 exists, then E1 is unstable.

In terms of investigating the stability around E2, the characteristic equation is

λ2 +

(
q − qX∗2 + 2X∗3

1 +X∗2

)
λ+

2bX∗2(q −X∗)
(1 +X∗2)2

= 0,

and the condition for having complex eigenvalues, which we are interested in is
q1 < q < q2, where

q1 =
2 (2b(X∗)2 − (X∗)3 + (X∗)5)− 2

√
2
√
b(X∗)7 + 2b2(X∗)4 − b(X∗)3

(1− (X∗)2)2
,

and

q2 =
2 (2b(X∗)2 − (X∗)3 + (X∗)5) + 2

√
2
√
b(X∗)7 + 2b2(X∗)4 − b(X∗)3

(1− (X∗)2)2
.
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The real part of the complex eigenvalues is positive when q − qX∗2 + 2X∗3 < 0.
This condition has two possibilities which are q < q0 when X∗ < 1 (b > 2γ) or

q > q0 when X∗ > 1 (b < 2γ), where q0 =
2γ

2γ − b

√
γ

b− γ
.

For the values of parameters in Table 4.2, the two eigenvalues for E2 are shown
in Figure 4.6. The system has complex eigenvalues when q1 < q < q2, q1 = 3.58
and q2 = 10.59, and since b = 1.2 < 2γ = 2, the real part of the eigenvalues is
positive when q > q0 = 5.59.

Table 4.2: Parameter values used in our numerical simulations where they are the
same values of the parameters in [35, 108].

Parameter Value Unit

a 1.25 Dimensionless
b 1.2 Dimensionless
γ 1 Dimensionless
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Figure 4.6: Real (red line) and imaginary (green line) part of eigenvalues of the
integer system of the second equilibrium point E2. Complex eigenvalues exist when
q1 < q < q2 and the real parts of the complex eigenvalues is positive when q > q0,
where q1 = 10.59, q2 = 3.58 and q0 = 5.59 for the parameters we have used.

As in the previous section, we will now assume that the memories of the two
species are different. The effect on the stability of the E2 equilibrium point of
having these two fractional orders will then be explored. In this case, the plant-
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herbivore interactions are described by the following incommensurate system:

cDα
TX = qX

(
1− X

q

)
− aX2Y

1 +X2
, (4.31)

cDβ
TY =

bX2Y

1 +X2
− γY, (4.32)

with the initial conditions X(0) = X0 and Y (0) = Y0 and where 0 < α < 1 and
0 < β < 1.

The fractional commensurate system based on (4.29) and (4.30) was introduced
by El-Shahed et al. [35] where they found that E2 is a stable equilibrium point if
α ∈ (0, α∗), where α∗ = 0.606. In this section, we will investigate how the critical
fractional order changes as β is allowed to be different from α.

Using the command fsolve in Matlab, we consider changes in the unstable
eigenvalue, λ0 = 0.8032 + 1.1296i, in the integer system at E2 when a = 1.25, b =
1.2, γ = 1 and q = 8, as α and β change. Two example situations, for when only
one of α and β change, are given below, after which we consider a more general case.

If we retain integer order prey dynamics but allow fractional order predator
dynamics, so that α = 1 and 0 < β < 1, then the complex eigenvalue of the
system (see Figure 4.7(a, b)) swaps from having positive real part to negative real
part as β decreases. The system (4.31) and (4.32), can therefore be stable when
α = 1 if we reduce β sufficiently. If we retain integer order predator dynamics
but allow fractional order prey dynamics, so that β = 1 and 0 < α < 1, then the
complex eigenvalue of the system is shown in Figure 4.7(c, d). The real part of
the eigenvalue is always positive and so the system, (4.31) and (4.32), will never
be stable around E2 for any value of α when β = 1.
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Figure 4.7: One of the complex conjugate solutions (eigenvalues) to the charac-
teristic equation (4.1) for the incommensurate system, (4.31) and (4.32) at the
equilibrium point E2. In (a) and (c) the real parts (red line) and the imaginary
parts (green line) while (b) and (d) show the Argand diagram.

From these example variations in α and β we see that, although reducing β
can lead to the stabilisation of the E2 equilibrium point, when β = 1 reducing α
does not have a similar effect. The more general situation, when both α and β
vary is shown in Figure 4.8, where the green region indicates that E2 is unstable,
i.e. there is an eigenvalue with positive real part, and the white region indicates
that E2 is stable, i.e. there are only eigenvalues with negative real part. The
dashed line in Figure 4.8 shows that the unstable region (green) can be separated
into two regions depending on the kind of instability the incommensurate system
exhibits around E2. For (α, β) on the right side of the dashed line, the unstable
eigenvalues have nonzero imaginary part and the trajectories will spiral around the
equilibrium point as they evolve away from E2, and when (α, β) is on the left side
of the dashed line the imaginary part of the eigenvalue is zero, thus the trajectories
will not spiral around the equilibrium point as they evolve away from E2.
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Figure 4.8: The regions of stability for various values of the fractional derivative
order. For fractional orders chosen from the white region, the system will be stable
around the equilibrium point E2. For fractional orders chosen from the green
region, the system will be unstable around the equilibrium point E2. The line
α = β, i.e. the commensurate system, is shown as well as the point α∗, the critical
value of the fractional order below which the commensurate system is stable.

El-Shahed et al. showed in [35] that for α > α∗ the commensurate system
(α = β) is unstable around the equilibrium point E2. However, from Figure 4.8 we
see that the incommensurate system may be stable when α > α∗ when (α, β) are
chosen to be in the white region. Figure 4.9(a,b) illustrates this when α = 0.8 > α∗

and β = 0.2. In addition, in the commensurate system when α < α∗, the system is
stable around the equilibrium point E2. However, in the incommensurate system,
if α < α∗, it is possible for the incommensurate system to be unstable if (α, β) are
chosen to be in the green region. Figure 4.9(c,d) illustrates this when α = 0.2 < α∗

and β = 0.80.
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Figure 4.9: (a) and (c) One of the complex conjugate solutions (eigenvalues) to the
characteristic equation (4.1) for the incommensurate system, (4.31) and (4.32), at
the equilibrium point E2 when α = 0.8 > α∗ and α = 0.2 < α∗, respectively, the
real parts (red line) and the imaginary parts (green line). (b) and (d) The phase
plane trajectories when β = 0.2 and β = 0.8, respectively, where the red point is
the equilibrium point E2.

As we see from Figure 4.8, there is a range of values of β, i.e. when β = 0.65,
where there are two critical values of α. By increasing α for a fixed value of β, one
of the eigenvalues will initially be complex with positive real part, then complex
with negative real part and then again complex with positive real part. This
behaviour is illustrated in Figure 4.10, when β = 0.65. In Figure 4.10 we see that
the incommensurate system is unstable around the second equilibrium point E2,
when α = 0.1 (Figure 4.10(b)), is asymptotically stable around E2 when α = 0.3
(Figure 4.10(c)), i.e. when (α, β) is in the white region, and unstable around E2

when α = 0.95 (Figure 4.10(d)). It should also be noted that the instability for
α = 0.1 and α = 0.95 is different since these points lie on opposite sides of the
dashed line in Figure 4.8. For α = 0.1 the trajectory will not spiral out from E2

but at α = 0.95 it will.
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Figure 4.10: The behaviour of the incommensurate system, (4.31) and (4.32) when
β = 0.65. (a) One of the solutions (eigenvalues) to the characteristic equation (4.1)
at the equilibrium point E2 as α varies, the real parts (red line) and the imaginary
parts (green line). (b), (c) and (d) illustrate the phase plane trajectories when
α = 0.1, α = 0.3 and α = 0.95, respectively, where the red point is E2.

To confirm that the approximate analytical solution for the boundary between
stable and unstable regions, β(α), in Section 4.1.2, is close to the numerical solu-
tion, we plot the two approximation solutions (4.23) and (4.24) with the numerical
solution, in Figure 4.11. In this Figure, we see that β = β1 (α) (red curve) and
β = β2 (α) (blue dashed curve) are good approximation to the stability boundary
found numerically, particularly near to α = β = α∗, as expected.
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Figure 4.11: Confirmation that the analytical curves β = β1(α) (red curve) and
β = β2(α) (blue dashed curve) are close to the contour that separates the stable
region (coloured white) and unstable region (coloured green).

From the examples above we can say that the incommensurate system, (4.31)
and (4.32), is an example showing that decreasing the fractional order β, may
change unstable behaviour to stable behaviour. This is illustrated in Figure 4.8
if we choose any vertical line α = constant. The same behaviour happens in
the commensurate system. However, in the commensurate system, decreasing the
order α will never create an unstable system, while this behaviour can happen in
the incommensurate system, as seen in Figure 4.8, if we choose any horizontal line
β = constant below the value β = 0.74.

4.3 Conclusions

In this chapter, we have found approximate analytical solutions, using perturbation
theory, for the eigenvalues of the characteristic equation of the incommensurate
system for fractional orders that are close to commensurate. Then, we compared
them to the numerical solutions showing that the approximate analytical solutions
are good approximation to the general system when α and β are close to α∗. We
can apply the approximate analytical solution that we found for the characteristic
equation for the incommensurate system to any system which has two interacting
species. For the incommensurate systems we have considered, we have found that
it is possible to achieve stable incommensurate systems which would be unstable
for a commensurate system. The two systems show us that reducing α can either
have a stabilising or destabilising effect and similarly reducing β can lead to a
stabilising or destabilising of the system.
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Chapter 5

Models of Soil Water Uptake by
Plant Roots

5.1 Introduction

Knowing how plants and water interact in desert environments has become more
important as the global population continues to increase and land suitable for
arable farming becomes scarcer. Producing crops while conserving water ensures
that land continues to support human populations. In every environment, the
amount of rainfall directly impacts the water that lies at the surface of the land,
which we call surface water, and the water within the soil, which we call soil water,
and which then affects the rate at which plants grow since they directly depend on
the amount of water accessible to them, mainly through their root structures within
the soil. Furthermore, understanding how much water is available to and then used
by plants, in a particular period of time, is crucial to agricultural planning. As a
result, mathematical models have emerged as an essential research tool in ecology
to understand how plants, water and soil interact [100]. Many of these models are
similar to the predator-prey models we have considered in previous chapters, with
the plants playing the role of predators and the water the prey. For this reason,
this chapter focuses on specific models that reflect this interaction between plants
and water. Here we will focus attention on a particular set of models of plant, wa-
ter, soil interactions and review the relevant papers below. There are many papers
in the literature that consider plant-soil interactions and can be read for further
information. Mathematical models of plant-soil interaction are reviewed in [105],
soil, water and plant interactions are considered in [64, 128] and references therein.

The flow of water on slopes, the rates at which water is able to infiltrate the
soil, erosion and salt deposited by the wind are among the different factors that
have been researched. These factors have been investigated experimentally, obser-
vationally, and by building mathematical models [11, 76, 77, 101]. Some examples
of how mathematical models have been used to investigate soil, plant and water
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interactions will be explored further, and here we will briefly review the literature
directly related to the model that is studied in this chapter. In 1997, Rietkerk
and van de Koppel [101], studied stable states and threshold effects in a particular
ecosystem by examining water, nutrients and levels of herbivory. In their study,
the equilibria were highly dependent on herbivore consumption. When consump-
tion was low, the system had two equilibria, one of which was stable and the other
was unstable, whereas when it was higher, there were three, two of which were
stable and one that was unstable. During this study, they particularly examined
the water infiltration rate, which cannot exceed the rate of rainfall, and which
increases as plant density increases until it reaches a maximum, which is the point
at which the system has maximum plant biomass. Moreover, in 2000 Scott et
al. [111] conducted extensive studies on where the plants in a specific area were
getting their water. They concluded that an increase in the evaporation rates of
certain plants was due to an increase in rainfall and concluded that a lack of water
causes seasonal plant dormancy.

In terms of models that specifically incorporate the functions of roots, in 2001
HilleRisLambers et al. [53] developed a model to account for plant density, surface
water and soil water as a function of time and space. In the same year, Roose et
al. [104] studied the impact of root size and distribution, and soil water movement
on nutrient uptake. Further, in 2004, Roose et al. [103] considered water uptake
from plant roots in unsaturated soil by studying the flow of water both within the
root and inside the soil using a mathematical model. In 2007, Gilad et al. [46]
adapted a model to study plant biomass and water available to plants by consid-
ering how vegetation adapts to changing conditions, such as variations in water
uptake by plant roots and increased water infiltration. In addition, in 2008, Roose
et al. [105] reviewed mathematical models used to model water and nutrient up-
take, presented the analytical results from these models, and explored how single
root models can be expanded to encompass entire root systems. However, in all of
these models the complex interaction and feedback between biomass, root growth
and soil water dynamics were not fully incorporated.

One of the most significant variables in an ecosystem is water, and the primary
source of water in many situations is usually rainfall. Of particular importance in
many situations is temporal change in rainfall, over daily, monthly or yearly cycles.
The importance of rainfall within an ecosystem cannot be understated since it cru-
cially affects which plants grow, how much they grow [53, 66, 67, 82, 120, 126],
and, over time, can actually lead to changes in climate that may further affect
rainfall distributions [60]. Two examples of models that study how plant biomass
is affected by rainfall are modelled by von Hardenberg et al. [126] and Rietkerk
et al. [99]. Because little work had been done on the impact of rainfall on plant
productivity [112, 124], Guttal et al. [50], filled an important gap by adapting a
model to include the seasonal changes of rainfall and the biological productivity
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of plants. Their study, on specific types of vegetation, showed that changes in
rainfall had particular effects on the growth rate of plants as they adapted to wet
and dry seasons, and that where plants grew, water is more easily absorbed than
in areas bare of vegetation [107].

To continue this work on the interaction between rainfall and vegetation, mod-
els that consider characteristic vegetation patterns, such as the Dagbovie and
Sherratt model [24], have been developed. In such work, the effect of varying rain-
fall patterns on vegetation on slopes was investigated. Their work highlights the
importance of mathematical models by modeling certain landscape-scale patterns
that can occur in particular environments, something that could not easily be done
with either experimentation or fieldwork. Although Dagbovie and Sherratt study
spatial vegetation patterns, which are not our focus, the model they use depends
on the interaction between the three fundamentals we do consider in our work,
i.e. surface water, plants and soil water. As such, their model provides the basis
for the work in this chapter.

In this chapter, we consider two models of vegetation in a semi-arid envi-
ronment. In Sections 5.2 and 5.3, we study the integer and fractional forms of
Dagbovie and Sherratt’s model, after excluding the spatial dimensions. Then, in
Section 5.4, we introduce a new model that has similar biomass and surface water
equations, with the Richards equation representing the soil water equation in this
system. Then, the equilibrium solutions for this system are found in Section 5.5.
After that, in Section 5.6 we find the dynamical solution for the Richards equa-
tion. We conclude by using a single mode form of solution to investigate the static
and dynamic behaviour of this system. In Sections 5.8 to 5.10, we illustrate the
numerical simulation for the critical value of rainfall, and we investigate two dif-
ferent situations for this system depending on the rainfall conditions, constant and
time-dependent. Finally, in Section 5.11, we study the fractional derivative model
for soil water uptake, concentrating on how the results of the previous sections are
changed when we include a fractional derivative, modelling memory effect, in only
the biomass evolution equation.

5.2 Biomass-Surface Water-Soil Water (BHW )

Model

The model of Dagbovie and Sherratt [24] was used to describe the behaviour of veg-
etation in a semi-arid environment. In their paper, they considered the mechanism
for banded vegetation to occur. Here we have adapted their model by excluding
the spatial dimensions in order to concentrate on the interaction of plant biomass
and water.
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We will later build on this model, including a more accurate model of soil
water. The model consists of a set of equations for the plant biomass B(t) (kg
m−2), the surface water H(t) (m) and the water in the soil W (t) (m), all of which
are functions of time,

dB

dt
= cg

(
W

W + k1

)
B − dB, (5.1)

dH

dt
= −IH

(
B + kΩ

B + k

)
+ r, (5.2)

dW

dt
= IH

(
B + kΩ

B + k

)
− g

(
W

W + k1

)
B − eW, (5.3)

with the initial conditions B(0) = B0, H(0) = H0 and W (0) = W0. We will
term this model the BHW model. Figure 5.1 shows the basic elements in the
biomass-surface water-soil water model with its flow diagram.

g
ro
w
th

B(t)

water 

ter Evaporation or drainage

rain

death

Figure 5.1: The basic elements in the BHW model with its flow diagram.

It should be noted that we are using different notation than the original paper
by Dagbovie and Sherratt for consistency with later sections.

In the equation for plant biomass, (5.1), the term cg

(
W

W + k1

)
B indicates

plant growth, where c is the conversion factor of water uptake into new biomass,
g is the maximum water uptake per unit of biomass and k1 is a half-saturation
constant for water uptake W (t). The second term in equation (5.1), −dB, models
the death of plants, where d is the death rate.

The equation for surface water, (5.3), contains the removal of surface water by
infiltration and rainfall, r, which we will here take to be constant (although we
will allow time dependent rainfall in later sections).

In the last equation, (5.2), the term −g
(

W

W + k1

)
B models the water uptake

by plants in order to grow and is associated with the first term in equation (5.1).
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The term IH

(
B + kΩ

B + k

)
indicates the infiltration of surface water into the soil

region. The parameter k is the saturation constant for water infiltration, I is the
maximum infiltration rate and IΩ is the water infiltration rate without plants.
The parameter e determines the specific rate of evaporation and drainage. In the
following section we will introduce the possible equilibrium points of this model
and investigate their existence.

5.2.1 Equilibrium Points

The equilibrium points of the system (5.1), (5.2) and (5.3) are the solutions to the
following equations

0 = cg

(
W

W + k1

)
B − dB,

0 = IH

(
B + kΩ

B + k

)
− g

(
W

W + k1

)
B − eW,

0 = −IH
(
B + kΩ

B + k

)
+ r.

They are two equilibrium points, one in which there is no biomass present, which we
term the desert state, and one with biomass present, which we term the vegetated
state. These are, respectively

E1 = (Bd,Wd, Hd) =
(

0,
r

e
,
r

ΩI

)
, (5.4)

E2 = (Bv,Wv, Hv) =

(
r − eWv

gWv

(Wv + k1),Wv,
r

I

Bv + k

Bv + kΩ

)
, (5.5)

where Wv =
dk1

cg − d
.

Since r, e,Ω > 0 then the desert state E1 is always a possible state. If we
also assume that the biomass growth factor are such that cg > d then the vege-
tated state is possible if r > eWv, i.e. the rainfall is greater than a critical value
r0 = eWv. We will from now on assume that cg > d.

Notice that we can rewrite the components of vegetated state as functions of

r. The first component is Bv =

(
Wv + k1

gWv

)
r− e

g
(Wv +k1), so that biomass grows

linearly with rainfall. The second component Wv =

(
dk1

cg − d

)
is a constant with

respect to rainfall. The third component, Hv, is more complicated but can be
written as

Hv =
r((r − eWv)(Wv + k1) + kgWv)

I((r − eWv)(Wv + k1) + kgWvΩ)
, (5.6)
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from which we see that Hv = 0 when r = 0 or r = r0 −
kgWv

Wv + k1

.

Considering the asymptotic form of Hv in equation (5.6) as r → ∞ [114], we

see that Hv =
r

I
+
kgWv(1− Ω)

I(Wv + k1)
+ O

(
1

r

)
, where Ω < 1 (because the infiltra-

tion cannot be more than the amount of water that we have), so that the line

H =
r

I
+
kgWv(1− Ω)

I(Wv + k1)
is an oblique asymptote. The function Hv(r) also has a

vertical asymptote, at r = eWv −
kgWvΩ

Wv + k1

.

In order to understand if the surface water goes up or down when rainfall in-
creases, we consider the possibility of turning points in the graph Hv(r) in equation
(5.6). Using Maple, we found the first derivative of Hv, with respect to r, which
equals zero at two values of r. Therefore, we see that the turning points occur at
values of the rainfall,

r1 = r0 −
dkΩ

c
+

d

c(cg − d)

√
k (Ω− 1) (cg − d) (k (cg − d) Ω− ck1 e),

and

r2 = r0 −
dkΩ

c
− d

c(cg − d)

√
k (Ω− 1) (cg − d) (k (cg − d) Ω− ck1 e) < r0,

and these turning points only occur if k (cg − d) Ω− ck1 e < 0. Calculation of the
second derivative leads to

H ′′v (r1) =
2c (cg − d)

dI
√
k (Ω− 1) (cg − d) (k (cg − d) Ω− ck1 e)

> 0,

and

H ′′v (r2) =
−2c (cg − d)

dI
√
k (Ω− 1) (cg − d) (k (cg − d) Ω− ck1 e)

< 0.

So that, (r1, Hv(r1)) is a minimum and (r2, Hv(r2)) is a maximum. If the minimum
in surface water is to the left of the critical rainfall for Bv, i. e. r0 > r1, then as the
rainfall increases, the surface water always increases. However, if the minimum in
surface water is to the right of the critical rainfall for Bv, i. e. r0 < r1, then the
surface water initially decreases, before reaching a minimum and then increases.

5.2.2 Stability

As usual, determining whether an individual equilibrium point is stable is under-
taken by considering the eigenvalues of the Jacobian matrix, J(B,W,H) at an
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equilibrium point (B,W,H). For the system (5.1), (5.2) and (5.3) the Jacobian
matrix is:

J(B,W,H) =


−d+

cgW

k1 +W

cgk1B

(k1 +W )2
0

− gW

k1 +W
+
Ik(1− Ω)H

(k +B)2
−e− gk1B

(k1 +W )2

(kΩ +B)I

k +B

−Ik(1− Ω)H

(k +B)2
0 −(kΩ +B)I

k +B

 .

The eigenvalues that correspond to E1 are λ1 = −e, λ2 = −dk1e+ dr − cgr
k1e+ r

and

λ3 = −ΩI. Thus, λ1, λ3 < 0 and λ2 < 0 when r < r0 and so if the system is
asymptotically stable around E1, then the second equilibrium point E2 does not
exist.

Now, if we assume that E2 exists (so that E1 is unstable), then the Jacobian
matrix at E2 will be

J(E2) =

 0 G1 0
G2 G3 G4

G5 0 G6

 ,
where

G1 =
k1c(r − eWv)

Wv(Wv + k1)
> 0,

G2 =
−gWv

Wv + k1

+
r

kΩ +Bv

− r

k +Bv

=
−gWv

Wv + k1

+
rk(1− Ω)

(kΩ +Bv)(k +Bv)
,

G3 = −e− r − eWv

Wv

+
r − eWv

Wv + k1

= −e− (r − eWv)

(
k1

Wv(Wv + k1)

)
< 0,

G4 =
(kΩ +Bv)I

k +Bv

> 0,

G5 =
r

k +Bv

− r

kΩ +Bv

=
rk(Ω− 1)

(k +Bv)(kΩ +Bv)
< 0,

G6 = −(kΩ +Bv)I

k +Bv

< 0.

The eigenvalues of J(E2) are the roots of the following characteristic equation

λ3 + a1λ
2 + a2λ+ a3 = 0,

where a1 = −G3 − G6, a2 = G3G6 − G1G2, and a3 = G1(G2G6 − G4G5). Since
cg − d > 0 and r > r0, we have a1 > 0 and a3 > 0. The Routh-Hurwitz criterion
guarantees that the integer system will be locally asymptotically stable around
E2 if a1 > 0 and a1a2 > a3. We already have a1 > 0, thus if a1a2 > a3, the
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system will be locally asymptotically stable around E2. Therefore, it is possible
for the system to be stable or unstable around E2. The condition a1a2 > a3, or
equivalently G3(−G3G6 + G1G2 − G2

6) + G1G4G5 > 0, could be rearranged for r,
although this expression is complicated.

5.2.3 Numerical Simulation

Using the same parameters used in [24] except the value of g we now consider
the numerical solution of the system. In [24] Dagbovie and Sherratt chose g =
5.7870×10−7m kg−1m2 s−1 but in our work we have used the values shown in Table
5.1 since this value leads to a change in the stability of E2 at a realistic value of
the rainfall r. The values of the components of E1 and E2 versus the rainfall r are
illustrated in Figure 5.2. The values of the components of the equilibrium points
E1 and E2 have positive values when r > r0 where r0 = eWv = 6.3047×10−9 ms−1

is the critical value of r. For the rainfall parameter r, Rietkerk et al. [99] gave a
range of values between 0 and 3.4722× 10−8 ms−1.

Table 5.1: Parameters values used in our numerical simulations of the system (5.1),
(5.2) and (5.3).

Parameter Value Unit Parameter Value Unit

B plant biomass kg m−2 k1 0.005 m
W soil water m I 2.3148×10−6 s−1

H surface water m k 0.03 kg m−2

c 10 kg m−3 Ω 0.2 no unit
g 3.4722×10−6 m kg−1m2 s−1 e 2.3148×10−6 s−1

r varied ms−1 d 2.89×10−6 s−1
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Figure 5.2: The equilibrium values for the system (5.1)-(5.3) as a function of
rainfall r for the equilibrium points E1 (a) and E2 (b). The black lines indicate
the value of plant biomass B, green lines indicate the soil water value W and
blue lines indicate the surface water H. The red line in (b) indicates the critical
value r0 = 6.3047× 10−9 ms−1 above which E2 exists. The red point is the point
(r1, Hv(r1)) for which the surface water has a minimum.

We will now investigate, numerically, the eigenvalues of the Jacobian matrix
and the stability of system (5.1), (5.2) and (5.3) around the two equilibrium points
for a range of values of r. The eigenvalues of the Jacobian matrix of system around
E1, for 0 < r < 3.4722 × 10−8, are illustrated in Figure 5.3(a). We see that one
of the eigenvalues is positive when r > r0, so that the system will only be stable
around E1 when r < r0. Figure 5.3(b) illustrates a trajectory, showing stability
when r = 4.9768 × 10−10 ms−1. However, the system will be unstable around E1

when r > r0, and Figure 5.3(c) illustrates the instability when r = 2.5545× 10−8

ms−1.
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Figure 5.3: (a) The three eigenvalues of the Jacobian matrix of system (5.1)-(5.3)
around E1 when 0 < r < 1.7361× 10−8, represented by the pink, the blue and the
green line. The vertical dashed line is r0 = 6.3047×10−9 ms−1 at which one of the
eigenvalues changes sign. (b) Trajectory of the system when r = 4.9768× 10−10 <
r0 showing asymptotic stability around the desert state E1 = (0, 0.0002, 0.001)
(red point). (c) Trajectory of the system when r = 2.5545 × 10−8 > r0 showing
the instability around the desert state E1 = (0, 0.011, 0551) (red point).

The eigenvalues of the Jacobian matrix of the system around E2 for r0 <
r < 7 × 10−9 are illustrated in Figure 5.4(a-c). The first eigenvalue is negative
for all values of r that are chosen, see Figure 5.4(a), while the second and third
eigenvalues can be complex, with the sign of the real part being dependent on r,
see Figure 5.4(b, c). Figure 5.4(d) shows the value of the conditions a1a2− a3 > 0
versus r showing that the classical Routh-Hurwitz condition is not satisfied for a
range of the values of r. Thus, for r > r0, it is possible for the system to be stable
or unstable around E2. As an example, Figure 5.5(a) shows that the system is
asymptotically stable around E2 when r = 2.5545×10−8 ms−1, while Figure 5.5(b)
shows that the system is unstable around E2 when r = 6.5277× 10−9 ms−1.
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Figure 5.4: The real (blue) and imaginary (green) parts of the eigenvalues of the
Jacobian of the system (5.1)-(5.3) at E2. (a) The first eigenvalue is real and
negative for all r > r0. (b) and (c) The second and third eigenvalues, which can
be complex with negative or positive real part. (d) The value of a1a2 − a3 as a
function of rainfall.
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Figure 5.5: (a) The system (5.1)-(5.3) is asymptotically stable around E2 =
(0.0665, 0.0027, 0.0116), when r = 2.5545 × 10−8 ms−1. (b) The system (5.1)-
(5.3) is unstable around E2 = (0.0007, 0.0027, 0.0091), when r = 6.5277 × 10−9

ms−1.

In summary, from the discussions above, we see that the possibilities for the
stability of the equilibrium points of the integer system are as follows:

1. If r < r0, E1 exists and is stable, and E2 does not exist.

2. If r > r0, E1 exists and is unstable, and E2 exists and it is possible for the
system to be stable or unstable around E2 depending on the value of r that
is chosen.

In the next section we will consider the effect of introducing a fractional derivative
to the stability of these equilibrium points.

5.3 Fractional BHW Model

The introduction of fractional derivatives cannot change the stability around E1

because all the eigenvalues for this point are real. However, if E2 is unstable, with
an eigenvalue having positive real part, then, as we have seen in previous chapters,
it may be possible for the fractional order system to induce stability around this
point. In the following fractional system, we introduce a fractional derivative, of
order ρ, only in the plant biomass equation because it is the only species that is
biotic:

cDρ
tB = cg

W

W + k1

B − dB, (5.7)

dW

dt
= IH

B + kΩ

B + k
− g W

W + k1

B − eW, (5.8)

dH

dt
= −IHB + kΩ

B + k
+ r. (5.9)
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5.3.1 Numerical Simulation

For the values of the parameters used above, Figure 5.4 shows that there are some
values of r that allow positive real parts for the complex roots of the characteristic
equation at E2 and here we take r = 6.5277 × 10−9 ms−1. The effect of the
fractional order on the stability of the system around E2 is shown in Figure 5.6.
In Figure 5.6(a) we see that for ρ < 0.99931, the system will become stable. For
ρ = 0.9975, Figure 5.6(b) shows that the incommensurate system, (5.7), (5.8) and
(5.9), will be asymptotically stable around E2.
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Figure 5.6: (a) Real part of the complex conjugate solutions (eigenvalues) to the
characteristic equation for the incommensurate system, (5.7)-(5.9), at the equilib-
rium point E2. (b) Trajectory of the incommensurate system (5.7)-(5.9) showing
asymptotic stability around E2 when ρ = 0.9975.

We have therefore shown that, for a relatively simple model of plant-water
interaction, the fractional order, i.e. the memory effect, of the plants can have an
effect on the stability of the system.

5.4 BHΦ Model

We will now look at a more complicated but more realistic model than that in
the previous section. We now model the soil water through the depth of soil
and consider water uptake by roots, modelled as a function of depth and root
density. In later sections we then consider the growth of soil-rooted vegetation as
being dependent on the flux of water from various sources (rain, surface water,
soil water or groundwater) within the soil. In the next section we will illustrate
how Richards’ equation is linearized and coupled to the equation for the biomass
of rooted vegetation.
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5.4.1 Richards’ Equation

The transport of water in soil has been studied for very many years, and is impor-
tant for the transport of solutes in soil, rates of biological processes, water supply
to organisms, the process of transpiration, the maintenance of soil water levels,
and the amount of runoff and other environmental functions. The ability of plants
to grow in soil is strongly affected by the status of water in any given area. In
particular, how plant roots uptake water from the surrounding soil is an important
variable in the water balance [94]. As a result, accurate simulations of soil water
transport and flow at different scales are essential to various soil-related fields such
as hydrology, plant science, and environmental protection [86, 94].

Ninety years ago, Richards published an equation based on a theory of the
movement of water in unsaturated soils, and is still the basis of most physical soil
water models [97, 98]. The classical form of Richards’ equation is given as

∂

∂z

(
K(Ψ)

(
∂Ψ

∂z
+ 1

))
=
∂θ

∂t
,

where Ψ is the pressure head [m] (soil water content is then described in terms
of Ψ) and it is negative in unsaturated soil, K(Ψ) is the hydraulic conductivity
[ms−1], the variable z is the vertical coordinate throughout the soil profile, t is
time [s], and θ is the volumetric water content. Note that Ψ is zero when the soil
is fully saturated, and negative when it is partially saturated.

Richards’ equation is an attempt to describe how water is distributed in un-
saturated soil [94, 95], however, Pachepsky et al. demonstrated that Richards’
equation is not general enough to explain the movement of water in all types of
soil [86]. Attempts to generalise Richards’ equation have been made by many
authors, for instance by introducing an empirical dependence of the diffusivity on
time or distance [49, 85]. Such generalisations of Richards’ equation have been able
to accurately describe the scaling of soil water content that was observed during
experimentation [86]. One generalisation of Richards’ equation is

∂

∂z

(
K(Ψ)

(
∂Ψ

∂z
+ 1

))
− S(z) = C(Ψ)

∂Ψ

∂t
, (5.10)

where S(z) is a root water uptake function [s−1] and C(Ψ) is the differential water

capacity [m−1], C(Ψ) =
∂θ

∂Ψ
, where θ is the volumetric water content. Sirvastava

and Yeh [113] assumed θ to be the form

θ = θr + (θs − θr)e(αΨ), (5.11)

where θs is the water content at saturation (the maximum amount of the water
within the soil space), θr is the residual water content (water that remains trapped
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by the soil and the roots) and α is the soil pore size distribution parameter [m−1],
which represents the reduction in the rate of the hydraulic conductivity as pore
size changes.

Because of the nonlinear relationship between hydraulic conductivity and the
pressure head, analytically solving Richards’ equation in this form is difficult. To
aid mathematical analysis, a transformation to a linear form is one of the methods
often used. Since water uptake by roots is related to many variables such as root
depth, water content and salinity, solving Richards’ equation analytically with
a sink term to describe root uptake is difficult. As a result, many analytical
approaches assume that root water uptake is a specific function of root depth
[10, 93, 106, 110]. For example, in 2005, Yuan and Lu linearized Richards’ equation
and used specific forms of S(z), and then found the analytical solution [131].
For this work they used exponential water retention and hydraulic conductivity
relationships to linearize Richards’ equation.

5.4.2 Linearization of Richards’ Equation

We assume that the pressure head has the initial condition

Ψ(z, 0) = Ψ0(z), (5.12)

and that the boundary conditions are

Ψ(−L, t) = Ψ1, (5.13)

and [
K(Ψ)

(
∂Ψ

∂z
+ 1

)]
z=0

= i(t), (5.14)

where Ψ1 is the pressure head at the lower boundary z = −L (i. e. at the water
table) [m], i(t) is the time dependent flux due to infiltration at the soil surface
[ms−1] (so that positive flux means infiltration of water into the soil at z = 0).

For mathematical convenience, the hydraulic conductivity K is assumed to be
an exponential function of the pressure head [131] so that

K(Ψ) = Kse
(αΨ), (5.15)

where Ks [ms−1] is the hydraulic conductivity at saturation (when Ψ = 0). The
matric potential [41] is then defined as the integral of the hydraulic conductivity,
which can be simplified using (5.15),

Φ(z, t) =

∫ Ψ

−∞
K(Ψ)dΨ =

Ks

α
e(αΨ), (5.16)
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where Φ varies from Ks/α at full saturation to zero as Ψ → −∞. Richards’
equation (5.10) may then be written in terms of the matric potential, using Ψ =(

1

α

)
ln

(
αΦ

Ks

)
from (5.16) and C(Ψ) = α2(θs−θr)

Φ

Ks

from (5.11), in the following

form
∂Φ

∂t
= D

∂2Φ

∂z2
+Dα

∂Φ

∂z
−DS, (5.17)

where D =
Ks

α(θs − θr)
[m−2s−1] is the diffusivity and is related to the hydraulic

conductivity at saturation and the difference of soil water content.

In equation (5.17), which governs the soil water in our model, the first two
terms on the right hand side relate to water diffusion. The last term in equation
(5.17) models the removal of water by roots. We would expect that if the diffusivity
is small, then the water cannot diffuse well in the soil and the actual uptake of
water by roots would be reduced.

5.4.3 Model Formulation

In our model of biomass-water interaction we consider three variables: the plant
biomass B(t), the surface water depth H(t) and the matric potential for the soil
water Φ(z, t). The model will therefore be termed the BHΦ model. The three
equations governing B, H and Φ are based on the biomass and surface water equa-
tions in (5.1) and (5.2), but with the soil water now being modelled by Richards’
equation,

dB

dt
= cV − dB, (5.18)

dH

dt
= −IH

(
B + kΩ

B + k

)
+ r(t). (5.19)

∂Φ

∂t
= D

∂2Φ

∂z2
+Dα

∂Φ

∂z
−DS, (5.20)

The first equation, for the biomass, is similar to equation (5.1) but with the soil

water dependence of biomass growth now being dependent on V =
∫ 0

−L S(z, t)dz

[ms−1], the total water uptake rate by roots within the soil depth. In (5.18), c
[kgm−3] is the biomass that can be produced per volume of water. The parameter
d [s−1] in equation (5.18) is the natural rate of death of biomass. Equation (5.19)
models the surface water H and is equivalent to the equation (5.2) except the
rainfall here r(t) is now taken as a function of time. The last equation, (5.20), is
described in the previous section, where −L < z < 0.
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5.4.4 Initial Conditions and Boundary Conditions

Equations (5.18), (5.19) and (5.20) will be solved subject to the initial conditions

B(0) = B0, H(0) = H0, (5.21)

and

Φ(z, 0) = Φ0(z) =
Ks

α
eαΨ0(z). (5.22)

The boundary conditions for (5.20) are

Φ(−L, t) = Φ1 =
Ks

α
e(αΨ1), (5.23)[

∂Φ

∂z
+ αΦ

]
z=0

= IH

(
B + kΩ

B + k

)
, (5.24)

so that we have the infiltration of water, i(t), into the soil at the top of the surface
due to surface water infiltration.

5.4.5 Models of Water Uptake

To complete the model in (5.18-5.20), we need to specify the rate of water uptake
by roots, represented by the function S = S(z, t). In previous work [131], S was
taken to be independent of the matric potential Φ. However, this assumption can
lead to root uptake of water even when no water is present. Therefore, we will
now assume S to be a function of Φ, as well as z and t. The aim of studying
this model is to assess the effect of changing the form of root water uptake on the
growth of soil-rooted vegetation. Given that S will be non-negative, and reduce
to zero when either there are no roots or when there is no water, we write the root
uptake function as a simple linear function of the matric potential

S = S0(z, t)Φ(z, t),

where S0(z, t) is a function of the root density function χ(B, z), itself a function
of depth and the amount of biomass,

S0 =
Rmaxα

Ks

χ(B). (5.25)

In (5.25) Rmax is the uptake value at saturation, when Φ =
Ks

α
. Although in this

work we consider S0 ≥ 0, it should be noted that the case S0 < 0, means that the
amount of water in the soil increases, and S0Φ will be a production term, a case
that would model a form of irrigation.

77



We could consider three different simple models for χ(B): water uptake by
roots being a constant function and independent of biomass,

χ(B) = χ0, (5.26)

where χ0 is a constant root density; water uptake by roots being a linear function
of the biomass:

χ(B) = χ0
B

B0

, (5.27)

where B0 is a value of the biomass when the root density is χ0 (a reference quan-
tity); or water uptake by roots being a function of biomass that saturates at large
values of B,

χ(B) = χ0 tanh
B

B0

, (5.28)

so that as B → 0, χ→ χ0
B

B0

and as B →∞, χ→ χ0.

Of the three possible forms of χ(B) described above, the first (5.26) results
in a biomass-independent form of the root density. We do not believe this is
biologically realistic since larger plant density will lead to larger root density.
The third possibility (5.28) is perhaps the most realistic biologically, but leads to
less analytically tractable equations in the analysis below. We therefore take a
pragmatic approach and select the root density function given by equation (5.27),
noting however, that in principle the framework below allows for any root density
function to be used.

5.5 Equilibrium Solutions for the BHΦ

The equilibrium points can be found by solving the following steady-state versions
of (5.18)-(5.20),

0 = cV − dB, (5.29)

0 = −IH
(
B + kΩ

B + k

)
+ r0, (5.30)

0 =
d2Φs

dz2
+ α

dΦs

dz
− S0Φs, (5.31)

where V =
∫ 0

−L S0Φsdz and we have assumed a constant rainfall r(t) = r0 in
(5.19). The steady state versions of (5.29)-(5.31) lead to B = cV/d and H =
r0

I

(
B + k

B + kΩ

)
and so B and H depend on the steady state matric potential Φs

though V .
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We will now find the steady-state solution of the matric potential Φs, that
satisfies the ordinary differential equation (5.31), where S0 is given by (5.25) and
(5.27). Although S0 depends on B, and thus on V , which in turn depends on Φs,
it is a constant and thus we may solve equation (5.31) and later determine the
value of S0 implicitly. In this case the boundary conditions (5.23) and (5.24) will
be

Φs(−L) = Φ1 =
Ks

α
e(αΨ1), (5.32)

and [
dΦs

dz
+ αΦs

]
z=0

= IH

(
B + kΩ

B + k

)
= r0. (5.33)

The solution of the steady-state equation (5.31) is

Φs(z) = c1e
Λ1z + c2e

Λ2z, (5.34)

where

Λ1 =
−α +

√
δ

2
and Λ2 =

−α−
√
δ

2
, (5.35)

and δ = α2 + 4S0. Using the boundary conditions in equations (5.32) and (5.33),
we then find

c2 =
αr0 − (Λ1 + α)Kse

αΨ1eΛ1L

α ((Λ2 + α)− (Λ1 + α)e(Λ1−Λ2)L)
, (5.36)

c1 =

(
Ks

α
eαΨ1 −

(
αr0 − (Λ1 + α)Kse

αΨ1eΛ1L

α ((Λ2 + α)− (Λ1 + α)e(Λ1−Λ2)L)

)
e−LΛ2

)
eLΛ1 . (5.37)

Using this solution for Φs, we can find V thus

V =

∫ 0

−L
S0

(
c1e

Λ1z + c2e
Λ2z
)
dz,

= S0

[
c1

Λ1

eΛ1z +
c2

Λ2

eΛ2z

]0

−L

= S0c1

(
1− e−Λ1L

Λ1

)
+ S0c2

(
1− e−Λ2L

Λ2

)
= Vs(S0)

(5.38)

where Λ1 and Λ2 are given in (5.35), c1 is given in (5.37), c2 is given in (5.36)
and which all depend on S0 though δ. We may then calculate S0 using one of the
root density models. For instance, using (5.27), S0 is determined by the implicit

equation S0 =
Rmaxα

Ks

χ0
cVs(S0)

dB0

.

Given the solution for Φs it is now possible to find the solutions for B from
(5.29) by considering the function

F (B) = cV − dB, (5.39)
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with V given by (5.38). Before finding the roots of F (B) analytically, we plot
F (B) to understand the behaviour of this function. Using the same values of
the parameters that are shown in Table 5.1, together with the parameters given
in Table 5.2, Figure 5.7 shows different possibilities for the function F (B), for
different values of r0.

Table 5.2: Parameters used for the evaluation of critical rainfall expressions (5.18),
(5.19) and (5.20). Both the water contents and root density are dimensionless
quantities. However, we use m3m−3 for θs and θr because this indicates a volume
of water per volume of soil and, similarly, the unit m2m−2 for χ0 indicates surface
area of roots per surface area of soil.

Parameter Value Unit Reference

Ks 2.78×10−6 m s−1 [131]
B0 1×10−2 kg m−2 [24]
θs 0.45 m3m−3 [131]
L 0.691 m Estimated
θr 0.20 m3m−3 [131]
χ0 0.05 m2m−2 Estimated
Rmax 1.1574×10−7 s−1 Estimated
α 1 m−1 [131]
Ψ1 0 m [131]
qn changeable no unit roots of (5.58)
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Figure 5.7: The function F (B) for different values of r0: r0 = −3rc (blue curve),
r0 = rc (orange curve), r0 = 5rc (yellow curve) and r0 = 10rc (purple curve).
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Figure 5.7 shows that as we increase r0, F (B) changes from having one solution
B1 = 0 to two solutions B1 and B2 > 0. The second solution B2 emerges from
B1 = 0 at a critical value of the rainfall, which we will now determine. We consider
the Taylor expansion of F (B) about B = 0,

F (B) = F (0) +
F ′(0)

1!
B +

F ′′(0)

2!
B2 +O(B3),

so that, since F (0) = 0, as well as the solution at B = B1 = 0, we have an ap-
proximate solution of F (B) = 0 at B = B2 = −2F ′(0)/F ′′(0).

The two equilibrium solutions are therefore

P1 = (Φs1(z), B1, H1) = (Φs1(z), 0, r0/IΩ), (5.40)

and

P2 =(Φs2(z), B2, H2)

=(Φs2(z),−2F ′(0)/F ′′(0), r0(B2 + k)/I(B2 + kΩ)),
(5.41)

where Φs1(z) is given by (5.34) when B = 0, Φs2(z) is given by (5.34) when B = B2,

F ′(0) = c
Rmaxαχ0

KsB0

((
L

α
+

(1− eαL)

α2eαL

)
r0 −

Kse
αΨ1(1− eαL)

α2eαL

)
− d, (5.42)

and

F ′′(0) =− c(−4eα(L+Ψ1)αL+ 2eα(2L+Ψ1) − 2eαΨ1)χ2
0R

2
maxe

−2αL

α2B2
0Ks

− c((α2L2 − 4)e2αL + (6αL+ 2)eLα + 2)χ2
0R

2
maxe

−2αLr0

α2B2
0K

2
s

.

(5.43)

We then find the critical value of r0 to be the value when F ′(0) = 0, namely

rc =

(
Ks

cRmaxχ0

)(
cRmaxχ0e

(αΨ1)(e−αL − 1) + dαB0

Lα + e−αL − 1

)
. (5.44)

For the values of parameters used previously, rc = 6.8016× 10−9ms−1. Therefore,
there is one solution when r0 ≤ rc (for instance the blue curve, when r0 = −3rc,
or the orange curve, when r0 = rc, in Figure 5.7) and two solutions when r0 > rc
(for instance the yellow curve, when r0 = 5rc or the purple curve, when r0 = 10rc,
in Figure 5.7).

For parameter values which give rc < 0, this means that even with no rain a
solution with positive biomass is possible, because the plants get sufficient water
from the water table. The situation of having negative rainfall r0 < 0 could be
interpreted as the system losing water to the atmosphere i.e. evaporation from the
surface water.
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5.5.1 Depth Dependence of the Critical Value of Rainfall

In this section, we analytically investigate how the critical rainfall found in the pre-
vious section, equation (5.44), varies with the depth of the water table, L, which
can vary significantly in different parts of the world.

From (5.44) we first see that limL→∞ rc = 0 and limL→0 rc =∞. We can inter-
pret these results in terms of the soil water draining into the water table at z = −L
and not being available to root uptake. When L → 0, the roots are limited to
a shallow soil layer and soil water enters and quickly drains into the water table.
Alternatively, with L → ∞ roots can spread within a large area of soil and thus
the total amount of soil water available for the roots is large.

The series expansion for rc around L = 0 (i.e. when the water table is shallow),
using (5.44) is found to be

rc(L) =
2dB0Ks

cRmaxχ0α

1

L2
+ 2

(
dB0α− 3Kse

(αΨ1)cRmaxχ0

3cRmaxχ0α

)
Ks

L

+
6Kse

(αΨ1)cRmaxχ0 + αKsdB0

18cRmaxχ0

+O(L),

(5.45)

Therefore, for shallow water tables, we predict that the critical rainfall, above
which plant biomass can be sustained, is to first order similar to 1/L2. Equation
(5.45) also shows the dependence of rc on various other parameters. For instance,

rc is proportional to
KsB0

cRmaxχ0α
which is related to the effectiveness of roots to

take up water and convert it to biomass through equations (5.25) and (5.27). The
critical rainfall is also directly proportional to the death rate of biomass, so that,
as expected, a higher death rate leads to a higher critical rainfall for biomass to
be sustained.

Figure 5.8 illustrates the critical rainfall, rc, and the first three terms for the
series expansion of rc around zero from equation (5.45). These terms are good
approximations for rc around zero. As explained above, when there are more roots
as L increases, more water can be contained in the soil and used to support growth,
and therefore the required rainfall to support biomass growth increases when L is
close to zero.
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Figure 5.8: The critical value of rainfall rc as a function of L, given by (5.44), and
approximation using terms from the series expansion of rc, (5.45).

We now consider the series expansion for rc around L = ∞. Rearranging
(5.44), we obtain

rc =

(
Ks

cRmaxχ0

)cRmaxχ0e
(αΨ1)(e−αL − 1) + dαB0

Lα

(
1 +

e−αL − 1

Lα

)
 , (5.46)

and if we set δ = −(e−αL − 1)/αL, (5.46) can be expanded in power of δ,

rc =

(
−Kse

(αΨ1)δ +
KsdαB0

cRmaxχ0(αL)

)(
1 + δ + δ2 + δ3 + ...

)
=

(
−Kse

(αΨ1)

(
1− e−αL

αL

)
+

KsdαB0

cRmaxχ0(αL)

)(
1 +

(
1− e−αL

αL

)
+

(
1− e−αL

αL

)2

+ ...

)
.
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Therefore, the expansion is equivalent to

rc(L) =

[(
−Kse

(αΨ1) +
αKs

cRmaxχ0

dB0

)(
1

αL
+

1

(αL)2
+

1

(αL)3
+ ...

)]

+

[
Kse

(αΨ1) 1

αL
+

(
2Kse

(αΨ1) − αKs

cRmaxχ0

dB0

)
1

(αL)2

+

(
3Kse

(αΨ1) − 2αKs

cRmaxχ0

dB0

)
1

(αL)3
+ ...

]
e−(αL)

+

[
−Kse

(αΨ1) 1

(αL)2
+

(
−3Kse

(αΨ1) +
αKs

cRmaxχ0

dB0

)
1

(αL)3
+ ...

]
e−2(αL)

+...

(5.47)

The largest term in equation (5.47) is

(
−Kse

(αΨ1) +
αKs

cRmaxχ0

dB0

)
1

αL
and so we

find

rc(L) =
Ks

α

(
αdB0

cRmaxχ0

− e(αΨ1)

)
1

L
+O(L−2).

Figure 5.9 shows plots of rc from (5.44), the blue curve, and the various ap-
proximations of rc from (5.47), i.e. the series expansion when L → ∞. The red
curve in Figure 5.9 is the first term, the green curve is the first two terms, and the
purple curve is the first three terms in (5.47). All three are good approximations
of the exact rc = rc(L) when L→∞.
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Figure 5.9: The critical value of rainfall rc as a function of L, given by (5.44), and
approximation using terms from the series expansion of rc, (5.47). Note that the,
blue, purple and green lines lie virtually on top of one another.

5.6 Dynamical Solutions for the BHΦ Model

We now consider the dynamic Richards’ equation, first forming the equation with
homogeneous boundary conditions, and then considering an approximate Fourier
series solution. To simplify the boundary conditions we take

Φ = φ+M1z +M2, (5.48)

and assuming that φ(z, t) satisfies the boundary conditions φ(−L, t) = 0 and[
∂φ

∂z
+αφ

]
z=0

= 0, we find that using equations (5.23) and (5.24), the coefficients

M1 and M2 are

M1 =
σ(B,H)− αΦ1

1 + αL
, (5.49)

and

M2 =
Φ1 + Lσ(B,H)

1 + αL
, (5.50)

where σ(B,H) = IH

(
B + kΩ

B + k

)
. Therefore,

Φ = φ+

(
σ(B,H)− αΦ1

1 + αL

)
z +

Φ1 + Lσ(B,H)

1 + αL
. (5.51)
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It is then straightforward to show, using (5.20), that φ(z, t) satisfies

∂φ

∂t
−D∂

2φ

∂z2
−Dα∂φ

∂z
+DMBφ = g(z, t), (5.52)

where M =
Rmaxαχ0

KsB0

, and

g(z, t) = DαM1(t)−DMM1(t)B(t)z −DMM2(t)B(t)−M3(t)(z + L), (5.53)

and M3(t) =
σ̇(B,H)

1 + αL
, where σ̇ =

dσ

dt
and remembering that B(t), H(t) are to be

determined using equations (5.18) and (5.19), respectively. This equation will be
solved with the initial conditions φ0(z) = Φ0(z)−M1r0z −M2r0 where

M1r0 =
r0 − αΦ1

1 + αL
, (5.54a)

M2r0 =
Φ1 + Lr0

1 + αL
, (5.54b)

and r0 = r(0) = σ(B(0), H(0)) = IH(0)

(
B(0) + kΩ

B(0) + k

)
. The boundary conditions

for φ(z, t) are then
φ(−L, t) = 0 (5.55)

and [
∂φ

∂z
+ αφ

]
z=0

= 0. (5.56)

The total water uptake rate V in (5.18) is then given by

V =

∫ 0

−L
MB(t)φ(z, t) dz −MB(t)M1(t)

L2

2
+MB(t)M2(t)L. (5.57)

We now consider the approximation to the solution of (5.52) using a Fourier series
form, namely

φ(z, t) =
∞∑

n=−∞

An(t) sin(qnz) +Bn(t) cos(qnz).

From the boundary conditions (5.55) and (5.56), we obtain −An(t) sin(qnL) +
Bn(t) cos(qnL) = 0 and Bn(t) = −qnAn(t)/α, which lead to the condition on the
wave numbers

qn = −α tan(qnL), n ∈ Z. (5.58)

Since q0 = 0, the first term in the simulation will be zero since sin q0 = 0 and
B0 = 0. Therefore, using Bn = −qnAn/α, we have

φ(z, t) =
∞∑
n=1

An(t)
(

sin(qnz)− qn
α

cos(qnz)
)
.
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For simplicity, we will use only the first mode

φ(z, t) = A1(t)
(

sin(q1z)− q1

α
cos(q1z)

)
, (5.59)

and we will later investigate if this is a good approximation by comparing the
results with the full model in the steady state.

Using (5.59) in (5.52), gives(
Ȧ1 +Dq2

1A1 +DMB(t)A1

)(
sin(q1z)− q1

α
cos(q1z)

)
−Dαq1A1

(
cos(q1z) +

q1

α
sin(q1z)

)
= (DαM1 −DMM2B −M3L)

− (DMM1B +M3) z.

(5.60)

As is standard in determining mode dynamics, we now multiply (5.60) by(
sin(q1z)− q1

α
cos(q1z)

)
,

and integrate all terms, we obtain(
Ȧ1 +Dq2

1A1 +DMBA1

)∫ 0

−L

(
sin(q1z)− q1

α
cos(q1z)

)2

dz

−Dαq1A1

∫ 0

−L

(
cos(q1z) +

q1

α
sin(q1z)

)(
sin(q1z)− q1

α
cos(q1z)

)
dz

= (DαM1 −DMM2B −M3L)

∫ 0

−L

(
sin(q1z)− q1

α
cos(q1z)

)
dz

− (DMM1B +M3)

∫ 0

−L
z
(

sin(q1z)− q1

α
cos(q1z)

)
dz.

(5.61)

By directly finding all the integrals in (5.61), we get an equation for the first
mode amplitude A1,

G11Ȧ1 +
(
Dq2

1G11 +DMBG11 −Dαq1G12

)
A1 = (−DMM1G14 −DMM2G13)B(t)

+ (−M3G14 + (DαM1 −M3L)G13) ,

(5.62)

where G11, G12, G13 and G14 are given in (B.5), (B.6), (B.7) and (B.8) in Appendix
B.2, respectively. For simplicity of notation, we set

U11 =
Dq2

1G11 −Dαq1G12

G11

, (5.63)

U12 = DM, (5.64)

R11 =
−DMM1G14 −DMM2G13

G11

, (5.65)
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and

R12 =
−M3G14 + (DαM1 −M3L)G13

G11

. (5.66)

Then, (5.62) can be written as

Ȧ1 = − (U11 + U12B)A1 +R11B +R12. (5.67)

The form of V in (5.18) is given now by (5.57), where φ is given by the first mode
of the Fourier series

V =M
A1(t)

q1

(
−1 + cos(Lq1)− q1

α
sin(Lq1)

)
B(t)

+

(
−L

2

2
MM1(t) + LMM2(t)

)
B(t).

Therefore,

V = ζB + γ1
A1

q1

B, (5.68)

where ζ = M

(
−L

2

2
M1 + LM2

)
and γ1 = M

(
−1 + cos(Lq1)− q1

α
sin(Lq1)

)
.

The initial conditions for the mode amplitudes A1(t) can be found by using (5.22)

A1(0)
(

sin(q1z)− q1

α
cos(q1z)

)
= φ0(z, 0), (5.69)

multiplying by the mode
(

sin(q1z)− q1

α
cos(q1z)

)
, and then integrating to obtain

A1(0)G11 =

∫ 0

−L

(
sin(q1z)− q1

α
cos(q1z)

)
φ0(z, 0)dz.

Therefore, the initial conditions for the single mode will be

A1(0) =
1

G11

∫ 0

−L

(
sin(q1z)− q1

α
cos(q1z)

)
Φ0(z)dz− r0 − αΦ1

1 + αL

G14

G11

−Φ1 + Lr0

1 + αL

G13

G11

.

(5.70)
We now have three equations in our model for the first mode amplitude A1(t),
B(t) and H(t), in equations (5.18), (5.19) and (5.67), respectively, with the initial
conditions (5.21) and (5.70), where V is given by (5.68).
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5.7 Equilibrium Solution for the Single Mode

BHΦ Model

The equilibrium points can be found by solving the steady-state situation for
(5.18), (5.19) and (5.67)

0 = c

(
ζB + γ1

A1

q1

B

)
− dB, (5.71)

0 = −IH
(
B + kΩ

B + k

)
+ r0, (5.72)

0 = − (U11 + U12B)A1 +R11B +R12, (5.73)

where

ζ = M

(
−L

2

2
M1r0 + LM2r0

)
, (5.74)

R11 =
−DMM1r0G14 −DMM2r0G13

G11

, (5.75)

R12 =
DαM1r0G13

G11

, (5.76)

and M1r0 and M2r0 are given by (5.54a) and (5.54b). From (5.73), we obtain

A1 =
R11B +R12

U11 + U12B
. (5.77)

and then from (5.71) we obtain

0 = c

(
ζB +

γ1

q1

(
R11B +R12

U11 + U12B

)
B

)
− dB.

Therefore, B = B1 = 0 or B = B2 =
q1U11(d− cζ)− cγ1R12

cγ1R11 − q1U12(d− cζ)
, and substituting B1

and B2 into (5.72) and (5.77), we have two equilibrium points

P1 = (A11, B1, H1) =

(
R12

U11

, 0,
r0

IΩ

)
, (5.78)

P2 = (A12, B2, H2) =

(
q1(d− cζ)

cγ1

, B2,
r0(B2 + k)

I(B2 + kΩ)

)
. (5.79)

From (5.59) we have at P1

φs11 = A11

(
sin(q1z)− q1

α
cos(q1z)

)
,

and at P2,

φs12 = A12

(
sin(q1z)− q1

α
cos(q1z)

)
.
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Thus, from (5.51) we have two steady state solutions for the PDE (5.20), namely

Φs11 = φs11 +M1r0z +M2r0 , (5.80)

and
Φs12 = φs12 +M1r0z +M2r0 . (5.81)

As in the previous section we consider the existence of the equilibrium point using
the function

F1(B) = c

(
ζB + γ1

A1

q1

B

)
− dB. (5.82)

Using the same values of the parameters shown in Table 5.1 and Table 5.2, we plot
the function F1(B) for different values of r0, see Figure 5.10.
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Figure 5.10: The function F1(B) for different values of r0: r0 = −3rc1 (blue curve),
r0 = rc1 (orange curve), r0 = 5rc1 (yellow curve) and r0 = 10rc1 (purple curve).

The critical value of rainfall when Φ depends only on the first mode can be
found by using (5.82) where A1 is given by (5.77). The same process for finding
the only critical rainfall in the full model leads to the value when the solution
depends on one mode,

rc1 =
−cKs(G11L

2MU11αq1 − 2DG13α
2γ1 + 2G11LMU11q1)e(αΨ1)

αc(G11L2MU11q1 + 2DG13αγ1)

+
2dα(1 + αL)q1G11U11

αc(G11L2MU11q1 + 2DG13αγ1)
.

(5.83)

For the values of parameters used above, rc1 = 2.0431× 10−8ms−1, and F1(B)
has one solution when r0 ≤ rc1 (for instance the blue curve, when r0 = −3rc1, or
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the orange curve, when r0 = rc1, in Figure 5.10) and two solutions when r0 > rc1
(for instance the yellow curve, when r0 = 5rc1 or the purple curve, when r0 = 10rc1,
in Figure 5.10).

5.8 Numerical Simulation of the BHΦ Model

In order to investigate the approximation to only one mode for Φ, we will consider
the equilibrium and dynamical solution of (5.18), (5.19) and (5.67). We first com-
pare numerically the full steady state solution, Φs and the solution contains only
the first mode, Φs1. We choose the same values of the parameters that are shown
in Table 5.1 and Table 5.2 and, using (5.58), we obtain q1 = 2.7739.

If r0 = 2rc1 > rc, rc1, then we will have two equilibrium points P1 which has zero
biomass and P2 which has nonzero biomass. Figure 5.11(a), shows the equivalent
solutions Φs, from (5.34) with zero biomass, and Φs11, from (5.80). Figure 5.11(b),
shows the solution for nonzero biomass. It should be noted that for the parameter
value, r0 = 2rc1, the biomass is relatively small and the plots (a) and (b) in Figure
5.11 are therefore similar. The agreement between these steady states is a good
approximation and suggests that the single mode approximation may be sufficient.
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Figure 5.11: The steady state solution Φs (blue curve) and the approximate single
mode steady state solution (green curve) for (a) the zero biomass state P1, and
(b) the nonzero biomass state P2.

We now compare the values of the nonzero biomass equilibrium points, B2

for the full and single mode solutions. Figure 5.12 shows that as the value of r0

increases, the value of B2 also increases, as expected, and that the two models
show good agreement.
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Figure 5.12: The value of B2 as a function of rainfall. The blue and green lines are
the values of B2 for the full solution and the single mode solution, respectively.

The close agreement between the full solution and the single mode solution
suggests that further modes are not necessary for an accurate model.

5.9 Dependence of rc on Soil Parameters

The numerical calculation of the critical rainfall uses the same values of the pa-
rameters that are shown in Table 5.1, and Table 5.2. Figure 5.13 shows the values
of critical rainfall when 0.3 < L < 10. We see that for L > Lc = 0.6919 the critical
value of rainfall is negative, i.e. biomass is supported by the soil even when there
is water being removed from the system ( i.e. by evaporation). For L > Lc the
amount of soil water taken into the plants by the roots is sufficient for growth even
without rainfall, and for L < Lc the reduced amount of roots, and therefore water
from roots, means biomass cannot be supported for r < rc.
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Figure 5.13: Critical values of rainfall as a function of L: rc (blue curve) for the
full solution of Φ, and rc1 (green curve) for a single mode.

Also, Figure 5.14(a) shows the values of the critical rainfall as a function of the
soil pore-size distribution parameter α. When α is greater than a critical value,
the critical value of the rainfall is positive. Figure 5.14(b) shows the values of
critical rainfall as a function of the reference root density χ0, where now below
a critical value of χ0 the critical rainfall is positive as similarly chosen to ensure
positive critical rainfall values.
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Figure 5.14: Critical values of rainfall as a function of (a) α and (b) χ0. rc (blue
curve) for the full solution of Φ, and rc1 (green curve) for a single mode.

Both of these results are to be expected. For large values of α the soil water can
be easily drained into the water table and so higher rainfall is needed to sustain
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biomass. However, large values of root density allow more efficient uptake of water
to sustain biomass.

5.10 The Dynamical Solution for the Single Mode

BHΦ Model

From the previous sections, we have seen that a single mode solution is a good
approximation for the equilibrium solution to the problem. We now consider
the dynamical solution of (5.67), although care must be taken as there are time
derivatives hidden in R12, and (5.67) is in fact equivalent to the following equation,

dA1

dt
= − (U11 + U12B)A1 +R11B +R13 +R14

dB

dt
+R15

dH

dt
, (5.84)

where

R13 =
DαG13M1

G11

, (5.85)

R14 = − G14 + LG13

G11(1 + αL)

(
−IHk(1− Ω)

(B + k)2

)
, (5.86)

and

R15 = − G14 + LG13

G11(1 + αL)

(
I(B + kΩ)

B + k

)
. (5.87)

Using (5.18) and (5.19), we then obtain the following equation for A1 which we
consider in the numerical simulations, together with the two equations (5.18) and
(5.19)

dA1

dt
=− (U11 + U12B)A1 +R11B +R13

+R14

(
c

(
ζB + γ1

A1

q1

B

)
− dB

)
+R15

(
−IH

(
B + kΩ

B + k

)
+ r(t)

)
,

(5.88)

where U11, U12, R11, R13, R14 and R15 are given by (5.63), (5.64), (5.65), (5.85),
(5.86) and (5.87) respectively. The amplitude A1 is, perhaps, not the most phys-
ically relevant or experimentally measurable measure of the soil water, and so we
will consider the total water content in the soil. By using (5.16), (5.51) and (5.59)
in (5.11), and assuming the soil water depends on a single mode A1, we obtain the
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total water content in the soil Θ, the integral of θ through the soil,

Θ =

∫ 0

−L

(
θr + (θs − θr)

α

Ks

(
A1(t)(sin(q1z)− q1

α
cos(q1z)) +M1z +M2

))
dz

= θrL+ (θs − θr)
α

Ks

[
− A1(t)

q1

(1− cos(q1L) +
q1

α
sin(q1L))−M1

L2

2
+M2L

]
.

(5.89)

We will now look at various rainfall scenarios, when r(t) is a constant, and when
r(t) changes over time.

5.10.1 Instantaneous Change in Constant Rainfall

Rather than consider the equilibrium state that could result from constant rainfall,
we now investigate the transient dynamics as the rainfall changes from one con-
stant value to another. In our study we consider two examples of such a scenario.
In the first scenario, we consider the constant rainfall value r0 going from a low
value to a high value and passing through the critical value rc1. The idea here
is to investigate the behaviour of the system going from a drought situation with
low biomass to a high rainfall situation and we will investigate how much initial
biomass B0 must be planted, to obtain a high level of biomass in a short time.

In this numerical simulation we use the values of the parameters in Table 5.1
and Table 5.2, and q1 = 2.7739. The behaviour of the system is investigated for an
abrupt increase in rainfall, so that for t ≤ 0 the rainfall is constant at a low value
r0 = 0.5rc1 = 1.0215 × 10−8ms−1 and for t > 0 the rainfall is at a high value of
r0 = 2rc1 = 4.0862×10−8ms−1. We choose the initial condition as the equilibrium
point Y0 = P1 = (A11, B0, H1) = (1.0086 × 10−7, B0, 0.0220), the value of A1 and
H1 obtained from the state when r0 = 0.5rc1. The value of the initial biomass B0

has values which are 0 ≤ B0 ≤ B2, where B2 here is the biomass for the second
equilibrium point P2 when r0 = 2rc1, i.e. B2 = 0.1178.

For t > 0, when r0 = 2rc1, as shown in previous sections, there are two
equilibrium points which are P1 = (A11, B1, H1) = (9.9753 × 10−8, 0, 0.0882) and
P2 = (A12, B2, H2) = (1.0252 × 10−7, 0.1178, 0.0182). The numerical simulation,
described in detail below, shows that the equilibrium point P1 is unstable while
P2 is stable point.

Figure 5.15 describes the dynamic response of the system as rainfall increases,
and for three different initial biomass values B0 = 0, 0.25B2, 0.75B2. If the initial
value of biomass is zero, the biomass does not become nonzero even with increased
rainfall. Since plant growth depends on the presence of existing plants for prop-
agation. The values of surface water and soil water content adapt due to the
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increased rainfall and the system equilibrates to the new zero biomass state P1,
as seen in Figure 5.15(a, b) where in this figure, the simulation stopped when the
surface water reached 95% of H1, which is around 65 days. The black dashed line
in (a) is H = H1. The steady state of total water content Θ is 0.26340, the black
dashed line in (b), which is the value of Θ when A1 is the component of the first
equilibrium point when r0 = 2rc1.

By increasing only the initial biomass value B0, the system now starts with
existing plants and eventually approaches the nonzero biomass equilibrium P2.
Figure 5.15(c, e) shows that the system stabilises around P2 for B0 = 0.25B2 and
B0 = 0.75B2, respectively. Figure 5.15(c, e) shows that the biomass takes around
15 years and 7 years, respectively, to get 95% of B2.

From Figure 5.15(c, e) we see, in comparison to Figure 5.15(a), the surface
water H is rapidly absorbed by the soil and, as the plants start to use this water
to grow, the soil water content goes down, see Figure 5.15(d, f). The inset in
Figure 5.15(d) shows that the soil water content initially increases because of the
rapid infiltration of the surface water, before eventually decreasing as it is used
by the plants. When there is initially more biomass, this increase in soil water
content is not present, as shown in Figure 5.15(f).
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Figure 5.15: The dynamic behaviour of the system for r0 = 2rc1 where the biomass
(green curve), the surface water (cyan curve) and the soil water content are plotted
as functions of time and the black dashed lines are the equilibrium value of B, H
and Θ. In (a) and (b) B0 = 0, in (c) and (d) B0 = 0.25B2, and in (e) and (f)
B0 = 0.75B2.

Figure 5.16(a) shows the time, in years, to approachB2 as we changeB0. We see
that the period of time to reach B2 decreases as B0 increases. For example, if the
system is started with B0 = 25% of B2, it will reach 95% of the equilibrium biomass
after approximately 15 years. While if the system is started with B0 = 75% of
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B2, it will reach 95% of the equilibrium biomass in approximately 7 years. Figure
5.16(b) shows the contour plot of biomass for different initial values of biomass,
and time. As is to be expected, this figure shows that increasing biomass after a
drought by planting a large amount of biomass would be a successful strategy.

Figure 5.16: The dynamic behaviour of the system for r0 = 2rc1. (a) The trajec-
tories of the biomass for different initial values of biomass, where the black circle
is B0 = 0 and the red circle is B2. (b) The biomass contour (as a percentage of
B2) as a function of time and initial biomass.

In the second scenario, we consider the constant rainfall value r0 from a high
value to a low value and passing through the critical value rc1. This case is the
opposite of the previous one, where, for the time before t = 0, we have a period of
rainy weather, and there is a lot of biomass. If the rain then suddenly stops, the
behaviour of the system will change and we expect the level of biomass to reduce.
The idea here is to investigate the behaviour of the system where it goes from
a high rainfall situation to a drought situation and we will investigate how long
the biomass takes to reach a very low level. These results may be useful to those
designing an irrigation system for periods of drought.

The behaviour of the system is investigated for an abrupt decrease in rainfall, so
that for t ≤ 0 the rainfall is constant at a high value r0 = 2rc1 = 4.0862×10−8ms−1

and for t > 0 the rainfall is at a low value of r0 = 0.5rc1 = 1.0215×10−8ms−1. We
choose the initial condition as Y0 = (A12, B0, H2) = (1.0252 × 10−7, B0, 0.0182),
where the values of A12, H2 are obtained from the equilibrium state when r0 = 2rc1
(the equilibrium point when B 6= 0), and the value of the initial biomass B0 has
values varying from 0 to 2B2, where B2 here is the biomass for the equilibrium
state when r0 = 2rc1, i.e. B2 = 0.1178. For t > 0, when r0 = 0.5rc1, as shown in
the previous sections, there is one equilibrium point, the state with no biomass,
which is P1 = (A11, 0, H1) = (1.0086 × 10−7, 0, 0.0220), the numerical simulation,
described in detail below, confirms that this is the only stable equilibrium point.
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Figures 5.17 and 5.18 show the biomass, surface water and soil water content
as a function of time for the various values of initial biomass. We see that when
the drought arrives, at t = 0, the values of the biomass and the surface water
decrease, except in the case B0 = 0 where with no biomass the value of B stays at
zero. In all other cases the soil water content increases as the surface water moves
into the soil. We see that, for a short time after t = 0, and for B0 = 0, 0.5B2

and 0.75B2, the soil water content increases. This increase is due to the surface
water infiltrating into the soil, increasing the soil water content. Even though
the biomass will be taking water from the soil, the small amount of biomass and
the inefficiency of root extraction in these cases mean that overall the soil water
content increases, at least initially. For longer time periods the soil water content
then goes down over a period of days as the biomass now acts to take water from
the soil. Over a much longer period of years, the system recovers to have a higher
soil water content and finds an equiliubrium value only over a period of tens of
years.

For the cases B0 = B2, 1.5B2 and 2B2 the process is almost the same except
the initial period of increased soil water content in the first day or two is now not
present, presumably because the increased levels of biomass lead to higher root
extraction of water and an immediate decrease of the soil water content.
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Figure 5.17: The dynamic behaviour of the system for r0 = 0.5rc1 where the
biomass (green curve), the surface water (cyan curve) and the soil water content
are plotted as functions of time and the black dashed lines are the equilibrium
value of B, H and Θ. In (a) and (b) B0 = 0, in (c) and (d) B0 = 0.25B2, and in
(e) and (f) B0 = 0.75B2.
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Figure 5.18: The dynamic behaviour of the system for r0 = 0.5rc1 where the
biomass (green curve), the surface water (cyan curve) and the soil water content
are plotted as functions of time and the black dashed lines are the equilibrium
value of B, H and Θ. In (a) and (b) B0 = B2, in (c) and (d) B0 = 1.5B2, and in
(e) and (f) B0 = 2B2.

Figure 5.19 summarises the long-term behaviour of the biomass for different
values of the initial biomass conditions. Each trajectory of B(t) takes a different
amount of time to lose, say, 95% of the biomass. Figure 5.19(b) shows the contour
plot of biomass for different initial values of biomass, and time. As is to be ex-
pected, this figure shows that the system collapses quickly to P1, the zero biomass
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state, when the initial values of the biomass are close to zero and more slowly
when the initial values of B are bigger values.

0 5 10 15 20 25

time (years)

0

0.05

0.1

0.15

0.2

0.25

B
(k

g
m

-2
)

2B
2

0 5 10 15 20 25

time (years)

0

20

40

60

80

100

120

140

160

180

200

B
0
=

 %
 B

2

0

10

20

30

40

50

60

70

80

90

(a) (b)

Figure 5.19: The dynamic behaviour of the system for r0 = 0.5rc1. (a) The
trajectories of the biomass for different initial values of biomass. (b) The biomass
contour (as a percentage of B2) as a function of time and initial biomass.

5.10.2 Time Dependent Rainfall

In real life rainfall is not constant, and for this reason, we will also model the
situation when r = r(t). As an example of a time-dependent rainfall, we will

consider r(t) =
rm
2

(1 + cosωt), where rm is the maximum value of the rain and ω

is the frequency that determines the rainfall period T = π/2ω. Figure 5.20 shows
an example of this form of r(t).
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Figure 5.20: Rainfall function r(t) =
rm
2

(1+ cosωt), when rm = 2 and ω = 1. The

minimum rainfall is r = 0 and the maximum is r = rm.

We will now consider different values of ω, and therefore different periods T
to understand the behaviour of the system under different rainfall forcing. In the
following simulations, two possible cases for the value of rm will be considered
rm = 4rc1 and rm = 0.5rc1. The dynamic behaviour is then studied for different
periods: T = 1 day, 1 week, 30 days and 6 months (the term month in the simula-
tion is equal to 30 days). The maximum running time for the simulation is chosen
to make sure the system settles down to a periodic state around the equilibrium
point. In the following simulations one year is equal to 365 days.

Figure 5.21 shows the behaviour of the system when we set rm = 4rc1 and for
periods T = 1 day, 1 week, 30 days and 6 months. From Figure 5.21(a, c, e, g) we
see that the surface water reacts at a similar time scale as the rainfall, although
the surface water is delayed if the rain water has a rapid frequency (1 day) and
follows the rainfall more closely if the rainfall has a longer period. These figures
also show that the biomass does not change over a short period of time. In Figure
5.21(b, d, f, h), we see that the biomass reaches a regular periodic state around
the equilibrium point within 10 or 20 years, although the surface water already
settles down in a much shorter period of time.

When rm = 0.5rc1, a rainfall below the critical value, which causes the surface
water to decrease at the beginning of the simulation, Figure 5.22 shows the be-
haviour of the system for the periods T = 1 day, 1 week, 30 days and 6 months.
From Figure 5.22(a), we see that for a short rainfall period, the surface water does
not react on a similar time scale to the rainfall. However, when the rainfall occurs
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over a longer period, i.e. in Figure 5.22(c, e, g), the surface water reacts at a similar
time scale to the rainfall. These plots also show that the biomass changes over
a relatively long period of time. In contrast to the case when rm = 4rc1, Figure
5.22(b, d, f, h) shows that the surface water changes significantly only over a long
period time, i.e. 20 years. The plots also suggest that the system settles down to a
periodic state around the equilibrium point that would occur in a constant rainfall
situation.
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Figure 5.21: The dynamic behaviour of biomass (green curve), surface water (blue
curve) and the rainfall (cyan curve) where rm = 4rc1. (a) and (b) T = 1 day. (c)
and (d) T = 1 week. (e) and (f) T = 30 days. (g) and (h) T = 6 months. Note
the plots on the left and right hand sides are for different timescales.
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Figure 5.22: The dynamic behaviour of biomass (green curve), surface water (blue
curve) and the rainfall (cyan curve) where rm = 0.5rc1. (a) and (b) T = 1 day. (c)
and (d) T = 1 week. (e) and (f) T = 30 days. (g) and (h) T = 6 months. Note
the plots on the left and right hand sides are for different timescales.
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From the previous figures we see that the growth of biomass depends on the
cycle period of the rainfall. For a short cycle, i.e. one day, the plants grow as
the rainfall increases and then die again when it stops although there is no time
for them to die completely because the rain returns the next day. Consequently,
the oscillations in biomass are not large. However, for a larger cycle, i.e. 30 days,
there are large oscillations in the biomass since the time scale for plant growth
and death is closer to the period of rainfall. Therefore, for a short rain cycle and
over a short period of time, the amount of plant matter stays almost constant. For
a longer cycle, the biomass changes as the rainfall changes. This effect, where a
rapid rain oscillation stabilises the biomass to be almost constant, is often termed
high frequency stabilisation. Over a longer period (years) the average biomass
does change and eventually the average biomass reaches an equilibrium.

We now compare the results of the model with constant rainfall to the model
with periodic rainfall. To make this comparison we set r0 = rm/2 so that in both
cases the average rainfall over time T is rmT/2. Figure 5.23 shows the evolution of
the biomass for constant and periodic rainfall models, for different values of rm and
for T = 1 day, 1 week, 30 days and 6 months. We see that, apart from the biomass
oscillation, for large T described above, there is very little overall difference in the
long time evolution of the biomass.
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Figure 5.23: Biomass trajectory for different values of rm, for both the periodic
rainfall model (coloured lines) and the constant rainfall model (black dashed line)
for (a) T = 1 day, (b) T = 1 week, (c) T = 30 days and (d) T = 6 months.

In the next section we will consider how the introduction of a fractional deriva-
tive in the evolution equation for biomass will change the system behaviour.

5.11 Fractional BHΦ Model

The aim of this section is to study the dynamical properties of a generalisation of
the system described in (5.18), (5.19) and (5.20) through the introduction of the
Caputo fractional derivative of order ρ, cDρ

t . As fractional derivatives have been
used to model memory, and only biotic components can have the form of memory
we are considering, we will add the fractional order to the biomass but not to the
water components. The incommensurate fractional model of the interaction of soil
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water model can therefore be written as

cDρ
tB = cV − dB, (5.90)

dH

dt
= −IH

(
B + kΩ

B + k

)
+ r(t), (5.91)

∂Φ

∂t
= D

∂2Φ

∂z2
+Dα

∂Φ

∂z
−DS, (5.92)

where V =
∫ 0

−L S(z)dz, with the same initial conditions and the boundary con-
ditions as the integer model. For the dynamic behaviour, we focus on the model
with only single mode A1, thus the fractional incommensurate system will
include the equations (5.90), (5.91) and (5.88).
Or will be

cDρ
tB = cV − dB,
dH

dt
= −IH

(
B + kΩ

B + k

)
+ r(t),

dA1

dt
= − (U11 + U12B)A1 +R11B +R13

+ R14

(
c

(
ζB + γ1

A1

q1

B

)
− dB

)
+ R15

(
−IH

(
B + kΩ

B + k

)
+ r(t)

)
,

where U11, U12, R11, R13, R14 and R15 are given by (5.63), (5.64), (5.65), (5.85),
(5.86) and (5.87) respectively. The equilibrium points for the fractional model are
the same as the equilibrium points for the integer-order model, and are given by
(5.78) and (5.79).

As we have seen in the integer model, the two possible equilibrium points (when
r0 > rc1), are P1, a saddle point, and P2, which has real negative eigenvalues so
it is a stable point. We have numerically determined that the eigenvalues in
this situation are real, and so replacing the integer derivative with a fractional
derivative does not affect the stability. The fractional system will always be stable
around P2. However, we will consider the transient, time dependent behaviour for
various rainfall scenarios, when r(t) is a constant and when r(t) changes over time
and consider how the fractional derivative affects the system.

5.11.1 Instantaneous Change in Constant Rainfall

Here we consider the same two cases discussed for the integer derivative system in
the Section 5.10.1. We will use the same values of the parameters that are shown
in Table 5.1 and Table 5.2, and the same value of the wave number, q1 = 2.7739.
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In the first situation we consider a value of r0 greater than rc1 where the initial
condition is the equilibrium state for a value of r0 below rc1 while changing the
initial value of the biomass. In this case the rainfall therefore switches from a low
to a high value. The constant value of rainfall r0 = 2rc1 is chosen as the high
value of rainfall, for which there are two equilibrium points, P1 = (A11, B1, H1) =
(9.9753×10−8, 0, 0.0882) and P2 = (A12, B2, H2) = (1.0252×10−7, 0.1178, 0.0182).
The equilibrium point P1 is an unstable point (saddle point) while P2 is a stable
point for the system. The behaviour of the system is now investigated for a range
of different initial conditions.

We first choose the initial condition to be the zero biomass equilibrium point
for r0 = 0.5rc1, (A11, B1, H1) = (1.0086 × 10−7, 0, 0.0220). In this case and for all
fractional orders we considered, the same results of the integer system are obtained
since the biomass value remains at zero. Figure 5.24 shows the numerical solution
for a range of values of ρ in this case.

Figure 5.24: The dynamic behaviour of the fractional system where (a) the biomass
B (green curve) and the surface water H (cyan curve), and (b) the soil water
content Θ, for r0 = 2rc1, initial condition I0 = (1.0086 × 10−7, 0, 0.0220), and
fractional orders ρ = 0.5, 0.6, 0.7, 0.8, 0.9, 1.

We now consider changing the initial biomass value B0. We consider B0 =
aB2 where 0 < a < 1, and where B2 is the equilibrium value for the higher
value of rainfall. This system models the situation where, after a period of low
rainfall, biomass is introduced as the rainfall increased to r0 > rc1. Figure 5.25
and Figure 5.26, show the cases when a = 0.25 and a = 0.75, respectively. We see
a similar behaviour as the integer system. However, the time needed to approach
the equilibrium point P2 increases as the fractional order, ρ, decreases. This delay
in reaching equilibrium for smaller values of ρ indicates that memory is acting in a
similar way to inertia. There is an effective memory of the initial state that leads
to prolonged effective drought behaviour.
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Figure 5.25: For initial condition I0 = (1.0086 × 10−7, 0.25 × B2, 0.0220), where
B2 = 0.1178, the dynamic behaviour of the fractional system where (a) the biomass
B, (b) the surface water H and (c) the soil water content Θ, for r0 = 2rc1 and for
fractional orders ρ = 0.7 (blue curves), ρ = 0.8 (orange curves), ρ = 0.9 (yellow
curves) and ρ = 1 (purple curves).

111



0 500 1000 1500 2000

time (years)

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

B
(k

g
m

-2
)

0 500 1000 1500 2000

time (years)

0.018

0.0185

0.019

0.0195

0.02

0.0205

0.021

0.0215

0.022

0.0225

H
 (

m
)

0 500 1000 1500 2000

time (years)

0.263

0.26305

0.2631

0.26315

0.2632

0.26325

0.2633

0.26335

0.2634

(a) (b)

(c)

Figure 5.26: For initial condition I0 = (1.0086 × 10−7, 0.75 × B2, 0.0220), where
B2 = 0.1178, the dynamic behaviour of the fractional system where (a) the biomass
B, (b) the surface water H and (c) the soil water content Θ, for r0 = 2rc1 and for
fractional orders ρ = 0.7 (blue curves), ρ = 0.8 (orange curves), ρ = 0.9 (yellow
curves) and ρ = 1 (purple curves).

The behaviour shown in Figures 5.25 and 5.26 can be seen for a range of initial
biomass and this is summarised in Figure 5.27. In this figure, we show a contour
plot of the biomass value, as a % of the long-time equilibrium biomass value,
i.e. for the P2 equilibrium point, as a function of initial biomass B0, and time.
As the fractional order decreases, the time taken to reach 90% of the equilibrium
biomass value increases, i.e. the system is slower in its approach to equilibrium.
The fractional derivative order is therefore acting as ‘inertia’ in the system.

112



Figure 5.27: Contour plot of the biomass value, as a % of the equilibrium biomass
value of P2, as a function of initial biomass B0, and time for fractional derivative
orders (a) ρ = 0.95. (b) ρ = 0.90. (c) ρ = 0.85.

In the second situation we consider a value of r0 less than rc1 and where the
initial condition is the equilibrium state for value of r0 above rc1 while changing
the initial value of the biomass. In this case, the rainfall therefore switches from a
high to a low value.

In the second case, the constant value of rainfall r0 = 0.5rc1 is chosen as the
low value of rainfall, for which there is one equilibrium point, P1 = (A11, 0, H1) =
(1.0086× 10−7, 0, 0.0220), which is a stable point. The behaviour of the system is
now investigated for a range of different initial conditions. In this case, we choose
the initial condition to have the components, A1 and H, for the nonzero biomass
equilibrium point for r0 = 2rc1, i.e. I0 = (A12, B0, H2) = (1.0252×10−7, B0, 0.0182)
where B0 = aB2, where 0 ≤ B0 ≤ 2B2 with B2 = 0.1178 is the equilibrium biomass
for r0 = 2rc1.

We first choose the initial condition to be I0 = (1.0252 × 10−7, 0, 0.0182). In
this case, and for all fractional orders, the results are the same as for the integer
system. Since the biomass value remains at zero, the fractional order, which only
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enters the biomass equation, does not change the system, and Figure 5.28 shows
the numerical solution for a range of values of ρ in this case.

Figure 5.28: The dynamic behaviour of the fractional system where (a) the biomass
B (green curve) and the surface water H (cyan curve), and (b) the soil water
content Θ, for r0 = 0.5rc1, initial condition I0 = (1.0252 × 10−7, 0, 0.0182), and
fractional orders ρ = 0.5, 0.6, 0.7, 0.8, 0.9, 1.

We now consider nonzero initial biomass values of B0. This system models
the situation where, after a period of high rainfall, the biomass is then reduced
as the rainfall decreased to r0 < rc1. Figure 5.29 and Figure 5.30 show the cases
when B0 = 0.5B2 and 1.5B2, respectively. In these figures, for all fractional orders,
the value of the biomass decreases to the integer system equilibrium value. These
figures also show that the surface water and water content in the soil decreased at
the beginning of the simulation and then increased to approach the integer system
equilibrium values. However, the time needed to approach the equilibrium point P1

increases as the fractional order, ρ, decreases. This delay in reaching equilibrium
for smaller values of ρ indicates that memory is acting in a similar way to inertia.
This means that the loss of biomass is smaller for smaller α which again means
the longer the memory is then the slower the loss of biomass.
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Figure 5.29: For initial condition I0 = (1.0252 × 10−7, 0.50 × B2, 0.01824), where
B2 = 0.1178, the dynamic behaviour of the fractional system where (a) biomass
B, (b) surface water H, and (c) the soil water content Θ, for r0 = 0.5rc1 and for
fractional orders ρ = 0.7 (blue curves), ρ = 0.8 (orange curves), ρ = 0.9 (yellow
curves) and ρ = 1 (purple curves).
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Figure 5.30: For initial condition I0 = (1.0252 × 10−7, 1.50 × B2, 0.01824), where
B2 = 0.1178, the dynamic behaviour of (a) biomass B, (b) surface water H, and (c)
the water content Θ for r0 = 0.5rc1 and for fractional orders ρ = 0.7 (blue curves),
ρ = 0.8 (orange curves), ρ = 0.9 (yellow curves) and ρ = 1 (purple curves).

The behaviour shown in Figures 5.28 to 5.30 is then summarised in Figure
5.31, where we show a contour plot of the biomass value, as a % of the long-time
equilibrium biomass value, i.e. for the P2 equilibrium point for the rainfall value
for t < 0, as a function of initial biomass B0, and time. As the fractional order
decreases, the time taken to reach any particular level of the initial biomass value
increases, i.e. the system is slower in its approach to equilibrium. Therefore, as in
the previous case, the fractional order is acting as ‘inertia’ in the system.
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(a) (b)
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Figure 5.31: Contour plot of the biomass value, as a % of the initial equilibrium
biomass value of P2, as a function of initial biomass B0, and time for fractional
derivative orders (a) ρ = 0.90. (b) ρ = 0.85. (c) ρ = 0.80.

5.11.2 Time Dependent Rainfall

Consider now the effect of the fractional derivative on the model with periodic
rainfall. As in the integer derivative case, we expect the important factors to be
rm and T . Therefore, in the simulations, we consider two values of rm, rm > rc1
and rm < rc1. The dynamic behaviour is then studied for different periods of time,
T , namely T = 1 day, 1 week, 30 days and 6 months. As in the integer system, the
maximum values of the rainfall that are considered in the following simulations,
are rm = 4rc1 and rm = 0.5rc1.

For rm = 4rc1 case, we choose the initial conditions for the soil and surface water
as the equilibrium point when r0 = 0.5rc1. For the biomass, as in the integer case,
we assume a level of biomass to be related to the biomass of the second component
of the second equilibrium point when r0 = 2rc1, which is B2 = 0.1178. This system
investigates how, in a fractional system, after drought conditions a large amount
of biomass initially grows when rain occurs. Figure 5.32 shows the behaviour of
the fractional system in this model with the average biomass oscillating about the
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equilibrium value when we run the system for long periods of time.
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Figure 5.32: The dynamic behaviour of the biomass in the fractional system, for
the fractional orders ρ = 0.7 (blue curves), ρ = 0.8 (orange curves), ρ = 0.9 (yellow
curves) and ρ = 1 (purple curves) where rm = 4rc1. (a) T = 1 day. (b) T = 1
week. (c) T = 30 days. (d) T = 6 months.

For the rm = 0.5rc1 case, we choose the initial condition as the stable equilib-
rium point when r0 = 2rc1 in order to model a situation where a period of drought
(rm < rc1) occurs after a period of rainfall (rm > rc1). Figure 5.33 shows the be-
haviour of the fractional system in this model with the average biomass oscillating
about the equilibrium value when we run the system for long periods of time, the
plot looks the same but at higher T a difference is seen.
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Figure 5.33: The dynamic behaviour of the biomass and the surface water in the
fractional system, for the fractional orders ρ = 0.7 (blue curves), ρ = 0.8 (orange
curves), ρ = 0.9 (yellow curves) and ρ = 1 (purple curves) where rm = 0.5rc1. (a)
T = 6 months. (b) T = 1 year. (c) T = 3 years. (d) T = 5 years.

In the fractional system we have therefore seen similar behaviour to the integer
system, with the biomass value stabilising to oscillate around the biomass value of
the equilibrium point when the rainfall is a constant.

Figure 5.34 shows the long-term behaviour of the biomass for different values
of rm and fractional order, where we see that the average biomass when r = r(t)
is the same value of the biomass when rainfall is constant and r0 = rm/2. It is
again clear that reducing ρ leads to a delay in B reaching its long-term behaviour,
i.e. the fractional order is behaving as a type of inertia in the system.
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Figure 5.34: Biomass trajectory as a function of time for the time dependent for
different values of rm, for both the periodic rainfall model (coloured lines) and
the constant rainfall model (black dashed line ) when T = 6 months for different
fractional orders. (a) ρ = 1. (b) ρ = 0.9. (c) ρ = 0.8. (d) ρ = 0.7.

5.12 Conclusion

In this chapter we have developed models of plant-water-soil interactions and con-
sidered effects of memory, modelled by a fractional derivative, in the plant biomass
equation.

In the first model we considered, the interaction of the biomass, surface water
and soil water were considered in a similar way to Dagbovie and Sherratt [24] but
without spatial derivatives. The stability of the integer system was considered and
it was found that in an incommensurate version of this model, one of the unstable
equilibrium points could be stable in a fractional system.
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The second model we considered includes a more accurate representation of
the soil water and the uptake by plant roots of this soil water. In this system soil
water was modelled through the Richards equation. We were able to analytically
find the steady state solution and, in a simplified case, the transient solution for
this model. We then numerically investigated two cases for time-dependent rain-
fall, the first one being when the rainfall is constant and the second being when it
depends on time. We found that the long-term behaviour of the biomass can be
related to the time-averaged rainfall value.

In the final section of this chapter, we studied the incommensurate form of
the previous system, where a fractional order replaced the order one derivative
in the only biotic component, the biomass, in order to model memory effects. In
this model, since, when it existed, the only non-trivial state was always stable,
the presence of a fractional derivative did not affect the stability of the system.
The key differences between the fractional and integer model were therefore only
observed in the long-term behaviour. When the fractional order is decreased the
system takes longer to approach a regular periodic solution.

The main results in this chapter are in the development of new, integer and
fractional, differential equation models of plant-water interaction. The single mode
Richards equation model would certainly be interesting to consider in further work.
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Chapter 6

Conclusion

6.1 Overall Conclusions

This thesis has shed light on the effects of fractional derivatives on the stability
of various mathematical models. In particular, it has investigated commensurate
and incommensurate predator-prey models to show these effects. In the begin-
ning, we recalled that the Lotka-Volterra model can be viewed as the foundation
of all subsequent predator-prey models. We formulated integer differential equa-
tion models into those using fractional derivatives. In general, the reformulated
models are useful for considering distributed memory effects, in particular finding
stable equilibrium points that are unstable in the integer model or investigating
the fractional order dependence of the time taken to approach equilibrium point.

In Chapter 3, by studying a fractional order predator-prey model, we found
that through the variation of the fractional order it is possible to transition from a
monostable to a bistable system. By bistable system, we are referring to a system
with two stable equilibrium points. The transient behaviour of this fractional sys-
tem, in particular the dependence of trajectories on the initial states, was found.
Moreover, we found the observed domains of attraction of the two stable points
changed as the fractional order was changed [4].

Chapter 4 gives a more complete investigation of the predator-prey model stud-
ied in Chapter 3 by extending this model using an incommensurate fractional sys-
tem. An incommensurate system is a more realistic situation where each of the
species has different fractional orders. We have shown that in this incommensurate
system, decreasing the predator fractional order can change a stable equilibrium
point to an unstable point, which cannot happen with the commensurate system,
where decreasing the fractional order will only ever stabilise an unstable point. In
order to determine if this change in stability is a more general result, we decided
to consider another system, a model of plant-herbivore interaction. Our findings
demonstrated that decreasing the predator fractional order may change the sta-
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bility in the same way as in the commensurate system. In contrast, we found that
decreasing the prey fractional order in the incommensurate system would create
an unstable system, which is not be true in a commensurate system. We found an
approximate analytical solution for the characteristic equation of the incommen-
surate system when the two fractional orders α and β are similar and were able to
find an approximate analytic form of the stability boundary.

In Chapter 5, we adapted two models that consider the interaction between
surface water, soil water and biomass. First, we used Dagbovie and Sheratt’s
model, without spatial derivatives. Then, we studied the stability of an equiva-
lent incommensurate system which showed that in a fractional system one of the
unstable points would become stable, so that the fractional derivative affects the
stability of this model. Second, we adapted another model, similar to the Dag-
bovie and Sherratt model except that the soil water equation was replaced with
the Richards equation. This equation is a more accurate depiction of soil water
dynamics. We found the steady state solution for the Richards equation and its
dynamical solution by using the Fourier series. We also found that a single mode
was a good approximation for this solution. As a result, we developed a model
containing three equations, and subsequently, investigated the equilibrium points
for this system. The dynamic behaviour of the whole system was investigated for
two rainfall states, constant rainfall and time-dependent rainfall. After that, we
replaced the integer derivative in the biomass equation with a Caputo fractional
derivative which resulted in an incommensurate system. However, in this system
the fractional derivative did not affect the stability of the equilibrium points be-
cause the unstable equilibrium does not have complex eigenvalues. The only effect
which resulted from the fractional system is in the time for the system to approach
equilibrium. It should be noted that the work in this chapter has not been an area
of focus in any previous studies.

The transient behaviour in commensurate systems studied in Chapter 3 has
many useful possible applications. For example, the study of two different breeds
of animals with possibly different inherent memory, modeled as different values
of α to determine which breed stabilizes at a certain equilibrium, could use our
model to determine which one would be preferable. Similarly, the incommensurate
systems discussed in Chapter 4 could have ecological applications in that under-
standing the differences in memory between two species (i.e. the values of α and
β) provides greater insight and accuracy when studying the complexities of a par-
ticular ecosystem. Chapter 5, which focuses on interactions of biomass, surface
water and soil water, can also prove useful in the study of rainfall in semi-arid
regions, where the amount of surface and soil water is affected by many factors,
but most of all rainfall. Our model could help determine the amount of biomass
that is needed to protect an area that has been affected by drought so that the
system is sustainable until the next occurrence of rain. It would also be useful in

123



agriculture and crop production to determine plant productivity under different
rainfall conditions.

6.2 Future Work and Extensions

The work in this thesis can be extended in many ways. In our system, both our
predator and prey were healthy, but a possible future area of focus is where diseases
affect the predator–prey interaction. This would involve introducing new species
into our equations, and the model would then be extended to an ecoepidemic model
with healthy prey, infected prey, healthy predators, and infected predators. This
addition to our models would be useful in the field of ecology because it would
reflect a realistic ecosystem where predators might only catch infected prey or only
avoid infected prey because these prey are in some way unacceptable. It would
be possible to allow infected and healthy populations a different value of memory.
More realistic models would mean that ecologists and wildlife biologists are better
able to predict future occurrences of disease in ecosystems.

In terms of our work in Chapter 3, further investigation of the fine structure of
the boundaries of the domain of attraction is necessary, although this will also de-
pend on the value of tend that is used. This investigation may, for instance, uncover
fractal domains of attraction such as those found in systems of delay-differential
equations [119]. Of course, without a satisfactory link between a model of memory
function and the fractional derivative model of population dynamics this is only
speculation, but an understanding of the changes in the domains of attraction as
a function of α may prove useful for a comparison between experimental or field
trial work and theoretical models.

In terms of the BHΦ model that is introduced in Chapter 5, we could add a
spatial derivative as Dagbovie and Sherratt do in their model. We could also have
used the fractional form of the Richards equation by adding the fractional spatial
derivatives, which are often used to model the porous nature of soil. Further mod-
els of the root density dependence on B could also be considered.

In summary, although we have developed a deeper understanding of the effects
of commensurate and incommensurate fractional predator-prey systems, there is
much to be discovered in future work.
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Appendix A

Appendix of Chapter 4

A.1 The Value of the Real and Imaginary Parts
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Appendix B

Appendix of Chapter 5

B.1 Proving F ′′(0) is Negative

We investigate the sign of F ′′(0) to understand when B2 is a physical solution.
From (5.39), we have
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From (5.25), (5.35), (5.36) and (5.37), in (B.2) we then obtain
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If we put x = αL, then (B.3) can be written as
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If we set Y1 = −4xex + 2e2x − 2, the functional form of the first term in (B.4),
then by using the series expansion for Y ′1 , we obtain

Y ′1 = 4ex
(
x2

2!
+
x3

3!
+ ...

)
,

which shows that Y ′1 > 0 for all x > 0. Therefore, Y1 shown in Figure B.1(a) will
always be positive. Setting Y2 = (x2 − 4)e2x + (6x+ 2)ex + 2, the functional form
of the second term in (B.4), then by using the series expansion for Y ′2 , we obtain

Y ′2 = ex
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3
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7

20
x5 + ...
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,

which shows that Y ′2 > 0 for all x > 0. Therefore, Y2 shown in Figure B.1(b) will
be always positive. Therefore, F ′′(0) < 0.

Y
1

Y
2

x x

(a) (b)

Figure B.1: Plots of Y1 (a) and Y2 (b) as functions of x.
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B.2 The Value of G11, G12, G13 and G14.

Here we will find the integrals in (5.61). The first integral is:∫ 0
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The second integral is:∫ 0
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The fourth integral, which we found by using the integral by parts method, is∫ 0
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