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i 

ABSTRACT  

Many offshore wind turbines (OWTs) are approaching the end of their estimated 

operational life soon. It is challenging to develop a general decommissioning procedure 

for all OW farms. Therefore, this research aims to comprehend the available end-of-life 

(EoL) scenario for OWTs to decide on their application procedures and propose an 

innovative systematic framework for considering the EoL scenario. 

The first part of the research critically reviewed the various end-of-life strategies for 

offshore wind farms, available technological options and the influencing factors that can 

inform such decisions. The study proposed a multi-attribute framework for supporting 

optimum choices in terms of main constraints, such as the possibility of end-of-life 

strategies based on unique characteristics and influencing factors. 

In the selection of techno-economic, the primary procedure parameters influencing the 

three major end-life strategies, i.e. life extension, repowering, and decommissioning, are 

discussed, and the benefits and issues related to the influencing variables are also 

identified. In the next part, an initial comparative assessment between two of these 

scenarios, repowering and decommissioning, through a purpose-developed techno-

economic analysis model calculates relevant key performance indicators.  

With numerous OW farms approaching the end of service life, the discussion on planning 

the most appropriate EoL scenario has become popular. Planning and scheduling those 

main activities of EoL scenarios depends on forecasting leading environmental indicators 

such as significant wave height. This research proposes a novel probabilistic 

methodology based on multivariate and univariate time series forecasting of machine 

learning (ML) models, including LSTM, BiLSTM, and GRU.  

In the end, the role of optimum selection of end-of-life scenarios is investigated to 

achieve the highest profitability of offshore wind farms. Various end-of-life scenarios 

have been evaluated through a TOPSIS technique as a multi-criteria decision-making 

procedure to determine an appropriate way according to environmental, financial, safety 

Criteria, Schedule impact, and Legislation and guidelines. 

Keywords: Offshore Wind Turbine; Decommissioning; End-of-life scenarios; Decision 

making; Levelized Cost of Energy; Machine learning, Forecasting 
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CHAPTER 1 

 Background  

 

Offshore wind power is a relatively new technology compared to onshore wind 

power, and its development was mainly motivated. The first offshore wind (OW) 

farm was installed in 1991 in Denmark [1]. Although the estimated lifetime of the 

offshore wind turbine (OWT)  is about 20-25 years, the significance of 

decommissioning is often ignored by the owners [1], [2]. Current research around 

OWTs is majorly focused on offshore wind power's development, construction, 

maintenance, and operational aspects. This is even though about 70,000 MW of 

Europe’s installed wind power will reach its estimated end of life by 2030, as seen 

in Figure 1. This translates to an increase of more than 460% in demand for 

decommissioning activities within the next ten years. It is, therefore, imperative 

to consider the end-life scenarios in the design and development stages of the 

OW farms to avoid unexpectedly higher costs and associated environmental 

impacts of offshore wind power [3]. 

 

Figure 1.European wind power reaching the end of life[4]. 
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Decommissioning is defined as disassembling the wind turbine farm to return the 

site to its pre-installation phase as much as possible [1], [2], [5]. The first 

decommissioning of an OW farm was done in 2016 due to the difficulty of finding 

spare parts and the enormous costs associated with repairs and upgrades after 

15 years of its operation. Due to the commercialisation of many offshore projects 

in the early 2000s [2] and the upcoming end-life dates for the installed OWTs [6], 

many decommissioning projects are expected in the coming years. 

The decommissioning process is influenced by several factors, such as the 

number and types of wind turbines, types of foundations, weather, and seabed 

conditions [1], [2], [7]. This presents a difficulty with developing a generic 

procedure for OW farms’ decommissioning. It translates to the fact that each OW 

farm will have an exclusive and unique decommissioning scheme [2]. 

Decommissioning is divided into three main stages, i.e. planning, permitting, and 

implementation. Decommissioning can presumably be done in a few months; 

however, the whole process would most likely be completed in up to three years 

[8]. 

Decommissioning is a technology- and energy-intensive process. There are 

significant emissions of greenhouse gases as well as huge amounts of waste that 

cannot be recycled. Reusing an existing platform is recommended to reduce 

environmental pollution and high decommissioning expenses, which have 

potential effects on the deep draught vessels [8], [9], [10]. This highlights the 

importance of designing and selecting appropriate strategies for 

decommissioning an OW farm. 
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  Problem statement 

The selection of the most appropriate end-of-life strategy for an offshore wind 

farm is influenced by several factors, such as the number and types of wind 

turbines, types of foundations, weather, and seabed conditions as well as 

available technologies and environmental requirements. This presents a 

challenge when developing generic decision-making frameworks, meaning that 

each OW farm and even different wind turbines across the farm should be 

assigned a unique strategy to ensure the maximisation of profit while fulfilling 

technological, cost and environmental constraints. Previous research in this 

domain has not simultaneously considered the service life extension with other 

end-life scenarios.      

This research focuses on the techno-economic comparison of decommissioning 

and repowering with the latter option depending on a higher level assessment of 

the technology rather than a detailed integrity assessment, even at a unit level, 

which is required for the service life extension option. Consideration of service 

life extension requires evaluation of failure rates of maintenance-significant 

components, e.g. drive train components, along with their variance throughout 

the asset's service life, which are difficult to retrieve considering the lack of data 

from operational OW farms. This information is not generally required to the same 

extent for a repowering strategy, and also, considering that technology has 

significantly advanced since the first generation of wind farms, this paper focuses 

on repowering as a competitive EoL scenario.  
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 Aim and objectives 

This research aims to review the end-life strategies for wind turbines, their merits, 

and demerits, then categorise the appropriate methods. The study determines 

the optimum EoL strategy regarding the condition of the farm based on the 

complexity of asset life due to several uncertainties such as cost and 

environment. The optimum EoL plan can be achieved by accurate forecasting of 

cost and environmental elements such as significant wave height. The result of 

accurate significant wave height forecasts helps decide whether to launch service 

vessels for offshore wind turbines farm. 

 

The thesis aims to deliver the following objectives: 

 

• Perform a detailed review and develop a framework that will consider 

multiple criteria in the decision-making process, presenting and 

discussing available technologies and strategies, as well as influencing 

factors such as schedule, cost and environmental impact. 

 

• Performs an initial comparative assessment between two of these 

scenarios, repowering and decommissioning, through a techno-economic 

analysis model which calculates relevant key performance indicators. 

The economic model of risk aversion is further adapted to calculate the 

certainty equivalent of LCoE (levelized cost of energy) based on each of 

the examined end-of-life scenarios and a stochastic expansion of the 

deterministic model. 

 

• Forecasting leading environmental parameters such as significant wave 

height is critical in scheduling and preparing those main activities 

involved in planning EoL scenarios. This research studies the role of ML 

algorithms in significant wave height forecasting to predict accurately. It 

demonstrates the importance of feature selection in proposed 

multivariate or univariate time series forecasting and argues that a strong 
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correlation does not necessarily have a strong causality of results 

accuracy. 

• Investigate the various end-of-life strategies for offshore wind farms and 

the influencing criteria for optimised decisions. Different end-of-life 

scenarios have been evaluated through a TOPSIS technique as a multi-

criteria decision-making procedure to determine an appropriate way 

according to environmental, financial, and safety criteria, schedule 

impact, and legislation and guidelines. 
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 Structure of thesis 

 

A general overview of the thesis structure is presented in Figure 2 and outlined 

in some more detail in the following: 

 

Figure 2.Flowchart of the thesis structure. 
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The insufficiency of systematic research on end-of-life strategies of offshore wind 

farms has been the main challenge regarding the decision-making process. A 

detailed study of the literature has revealed a lack of appropriate frameworks 

which can oversee decisions on available strategies based on the particular 

characteristics and influencing factors such as the number and types of WTs, 

types of foundations, and weather. The study assessed the different end-of-life 

strategies for offshore wind farms, known technical possibilities, and the 

influencing factors that declare such findings to deal with this issue. In addition, 

various alternatives have been qualitatively evaluated through SWOT analysis. 

In the second part, this research suggested a multi-attribute framework for 

allowing optimum decisions regarding significant conditions, such as the 

possibility of end-of-life strategies based on the unique features and influencing 

elements. The framework provides the opportunity to internal and external 

stakeholders to maximize the profitability of asset farms while reducing those 

main risks involved in the safety, technical, and environmental factors. 

The third chapter investigated repowering and decommissioning as possible EoL 

scenarios as OFWs approach the end of their nominal service life. The chapter 

provides a framework for preliminary analysis on the extension of a techno-

economic model that accounts for the typical actions and costs related to each 

option. LCoE has been used to consider the consequential cost of each 

alternative. The model developed stochastically to account for uncertain inputs, 

and the concept of RP was employed to quantitatively evaluate the impact of the 

results on the decision maker. 

It is challenging to determine the optimum EoL strategy regarding the condition 

of the farm. The owner found it difficult to decide whether the repowering or 

decommissioning strategy for the end of the farm or beneficial to have a specified 

period as service life extension before any decision. The process was complex 

due to several uncertainties involved in the decision-making. This chapter 

introduces a methodological framework to guide decision-makers based on a 

comparative study of widely-applied Multi-Criteria Decision Making (MCDM) 

techniques to solve the complexity issue. The TOPSIS analysis as the MCDM 
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method applies to select the EoL strategy. Attempts to find the most influential 

criteria should be defined for TOPSIS analysis by a literature review and 

brainstorming with experts. This provides an integrated evaluation of several 

economic, social, environmental, and technical criteria. 

The planning method of EoL scenarios depends on supporters such as previous 

project experience, vessel selection, availability of trained crew and experts, 

weather and wave conditions, and distance to the port. The harsh environment 

can limit the operability of vessels during marine construction work. A harsh 

environment can restrict the accessibility of infrastructure in offshore farm zones, 

cause economic damage, and threaten human life. The enormous growth in the 

cost of any decision-related EOL operation might result from an inaccurate 

forecast of significant wave height. The accuracy of this forecasting provides the 

opportunity to mitigate those uncertainties involved in planning the EoL 

scenarios. This chapter proposed a novel probabilistic methodology based on 

multivariate and univariate time series forecasting of machine learning (ML) 

models, including LSTM, BiLSTM, and GRU, regarding significant wave height 

forecasting. 
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Chapter 2  

2 A multi-attribute review toward effective planning of 

end-of-life strategies for offshore wind farms 

 

 Introduction  

Offshore wind farms are probably the most rapidly developing technology, aiming 

to contribute actively to the net-zero targets that have been established for the 

next decades. This is due to the increased wind shear available offshore, the 

larger units and farms that can be deployed, and the reduced competition for 

alternative uses of the marine environments [2], [11]. Research since the first 

installation of offshore wind farms, which took place in 1991 in Denmark, mainly 

focused on qualifying technologies around the development, construction, 

operation and maintenance of offshore wind energy assets with a view to 

reducing costs (especially capital expenditure, CAPEX), while the fate of the 

assets after their nominal design lifetime which is about 20-25 years has received 

less attention, although it is expected that suboptimal decisions should reduce 

the value extracted and eventually may cost significantly to asset operators [1], 

[2]. 

Onshore wind energy has accumulated some experience during the past 

decades, with around 70,000 MW of Europe’s installed wind power reaching its 

estimated end of life by the year 2030 [4]. This translates to more than 460% in 

demand for decommissioning activities within the next ten years. Although many 

lessons can be transferred to offshore wind energy assets, it should be noted that 

not all aspects have been resolved, particularly with the way that composite 

materials can be disposed of. The offshore environment involves a number of 

parameters and influencing factors that need to be considered in order to support 

decisions related to end-of-life strategies. In fact, it is imperative to consider the 

end-life scenarios in the design and development stages in order to avoid 
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unexpectedly higher costs and associated environmental impacts of offshore 

wind power [3]. 

Decommissioning, which is the ultimate end of life strategy to be considered for 

an asset, is defined as the process of disassembling the wind turbine to return 

the site to its pre-installation phase, to the extent possible [1], [5]. The first 

decommissioning of an OWF was done in 2016 to the Vindeby wind farm in 

Denmark, due to the difficulty in finding spare parts, technology obsolesce, and 

the considerable costs associated with repairs and upgrades after 25 years of its 

operation. Due to the development of many offshore projects in the early 2000s 

and the approaching end-life dates for the installed OWTs [6], many 

decommissioning projects are expected in the coming years. Decommissioning 

is a technology- and energy-intensive process. There are significant emissions of 

greenhouse gases and vast amounts of waste that cannot be recycled. Reusing 

an existing platform is recommended to reduce environmental pollution and high 

decommissioning expenses, which have potential effects on the deep draught 

vessels [8], [9], [10]. This highlights the importance of designing and selecting 

appropriate strategies for decommissioning an OW farm. 

Alternative strategies that can proceed with decommissioning can be repowering 

and service life extension. Service life extension accounts for evaluating the 

asset's current integrity state, intending to assess its residual service life and 

issue a certificate of fitness for purpose for an additional period. Repowering is 

the process of changing critical sub-systems/components of an asset, such as 

generator and blades, potentially with more technologically advanced parts which 

can harvest more energy potential while maintaining subsystems designed for 

longer nominal life, such as the tower and balance of plant (BOP). The confidence 

influences both processes in evaluating the integrity of the structure after 20-25 

years of operation and, in the case of repowering, the capacity of the electrical 

infrastructure to handle the maximum load.  

The selection of the most appropriate end-of-life strategy for an offshore wind 

farm is influenced by several factors, such as the number and types of wind 

turbines, types of foundations, weather, and seabed conditions, as well as 
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available technologies and environmental requirements. This presents a 

challenge when developing generic decision-making frameworks, meaning that 

each wind farm and even different wind turbines across the farm should be 

assigned with a unique strategy that will ensure profit maximisation while fulfilling 

technological, safety and environmental constraints.  

This chapter aims to perform a multi-attribute review toward effective planning of 

end-of-life strategies for offshore wind farms. For this, alternative strategies and 

associated technological options are presented, together with associated 

influencing factors to be considered, resulting in a decision support framework 

that can inform decisions. Previous research in this domain has not considered 

all of the available strategies considered; service life extension, repowering or 

decommissioning. Hence this research can provide the context for future studies 

that can quantify the technical and economic assessment of specific case studies 

and scenarios, which will subsequently facilitate planning and reduce the 

uncertainty of end-of-life operations.  
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 End of Life Strategies  

This section will present the different end-of-life strategies for offshore wind 

energy assets, starting from decommissioning and moving to service life 

extension and repowering, presenting other processes and decision alternatives 

that need to be considered. 

 

  Decommissioning  

The decommissioning process can be defined as the reversal of the installation 

process, thus it is expected to have similar constraints [7], but with the additional 

complexity of the marginal value of the asset. The decommissioning process 

starts with disconnecting the wind turbine from the grid and de-energizing it 

followed by the blade, nacelle, and tower removal [12]. The foundation may either 

be partially or fully removed. Partial removal of the foundation leaves some parts 

in place, such as the scour protection, cables, or even a part of the actual 

foundation, while total removal is based on the idea of bringing back the site to 

its pre-installation state [13].  

 

 Turbine removal 

Defining the stages of deconstruction process that typically occur in offshore wind 

farms is imperative. The different options for the disassembly process are 

generally similar to those for the installation process, with the size of turbines and 

the weight of modules standing as key influencing factors [14]. Typically, after 

isolating and de-energising the turbine from the grid, the turbine's disassembly 

involves removing lubricants, blades, hub nacelle, and the tower. Disassembling 

is presumably as costly as an installation because similar vessels (such as heavy 

lift or dynamic positioning vessel) are needed. The removal of a turbine can be 

done in 1 to 6 lifts and then all the components can be transported for reuse, 

recycling or disposal [15], [16]. A reduced number of lifting operations can reduce 
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safety risks and expected duration but usually require larger vessels which come 

at a higher cost and lead time. 

After removal of the rotor, any chemical liquid (such as gear or motor oil) should 

be collected and removed from the turbine or kept inside the nacelle to reduce 

the risk of spillage or dropped objects. The removal of bolts and apparatuses can 

then be done using standard practices or angle grinders and plasma cutters, 

followed by the cutting of interconnecting cables to adjacent structures. 

Furthermore, preparation for the removal of the foundation can be done when the 

tower is being lifted. Important factors to consider are risks to personnel involved, 

operating time exposure, costs and environmental conditions while deciding the 

removal options [2], [9]. 

 

 Foundation  

The operation selection depends on the type of foundations as specific vessels 

are needed due to lifting heavy foundations/modules. Initially, the J tubes, which 

are responsible for the output of cables from the foundation for connection to the 

inter-array cables, are removed, allowing internal access to the foundation (this 

is an optional step as, depending on the method, the J-tube can be removed 

together with the foundation). The foundation may either be partially or fully 

removed.  

Partial removal accounts for cutting of the foundation no less than 2 m below the 

mud line while leaving the remaining parts on the ground. After removing the 

foundation, it is necessary to cover the hole by landfilling. This is based on the 

assumption that after 20-25 years since initially disturbing the local environment, 

a new natural ecosystem has been developed, and it is unnecessary to cause a 

new disturbance [1], [17]. This approach is becoming prevailing due to lower risks 

and costs involved as removing certain components, such as the pile and cables, 

can cause a significant environmental disturbance.   
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Several methods are implemented to remove the foundation, including but not 

limited to external cutting, internal cutting, and the use of explosives. Cutting of 

the monopile is carried out in various steps based on the cutting stage involved, 

i.e. external cutting or internal cutting. Internal cutting involves dredging or 

pumping away the mud to create an execution pit to enable the cutting and 

removal of the pile. After this step, it would be possible to cut the monopile and 

remove it. The pit should be filled with mud again after the execution of the job 

[13], [14]. 

The type of foundation plays a critical role in the removal operation. The 

decommissioning processes for various types of foundations are presented 

herewith: 

2.2.1.2.1 Monopiles  

An initial inspection of the piles at the site is recommended to determine the lifting 

equipment and attachments required. The inspection can be done by divers or 

remotely operated vehicles (ROVs). The vessels, such as a floating crane or a 

jack-up barge, can be mobilised and assembled for operation at the site [17]. The 

crane hooks are attached to the foundation, and the piles are cut under the 

seabed. The distance between the seabed and cutting position is based on the 

type of seabed and the decommissioning procedure used. The pile size, weight, 

and depth of penetration at the seabed are influencing the removal process. Apart 

from this, the total foundation removal for the monopiles involves a higher risk to 

personnel, increased costs, and adverse environmental effects due to the need 

for more complex excavation processes. Specialized equipment is needed for 

such an excavation as greater depths below the seabed need to be reached.  

Tow cutting using diamond wire cutting or ultra-high-pressure water jetting can 

be used for the cutting process, depending on the method’s effectiveness in 

preventing unnecessary damage and its ability to remove debris from the site. 

The detached foundation is then loaded onto the chosen transportation vessel 

and shipped when the vessel has its full capacity [1], [10], [14]. Tow cutting may 

undertake external or internal cut strategies [3], [10], [14]. Seabed depth and the 
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possibility of excavation surrounding the seabed are two main factors impacting 

the external pile cutting. However, internal cutting is preferable as it is not affected 

by water currents; it can be implemented from above the platform and through 

the pile top [18].  

Selection of the cutting procedure should be aimed at enabling a single lift to save 

the costs of repeated vessel hiring for the transportation of decommissioned 

monopile and the transition piece; however, it is essential to consider the water 

depth limitation while selecting the appropriate strategy [19]. Each of the available 

methods has its own set of financial and environmental risks. Issues arising in 

either strategy have significant impacts on the project completion timelines due 

to the need for necessary repairs, remote operation of the system, and confined 

space [2], [20], [21]. Apart from these, the pile diameter and wall thickness also 

affect the cutting times. The part of the monopile that remains under the seabed 

after partial removal of the foundation limits any future operation with jack-up legs 

and presents a potential risk for the fisher nets. The cutting methods can be 

replaced by using new strategies and operations, such as vibration, internal 

dredging, jet grouting, buoyancy force, and air pressure [21] - [23]. These 

methods contribute to the full decommissioning of the foundation. 

Vibratory pile driving is another common method of pile installation and removal. 

The process is based on reducing shear resistance and the resistance of the pile 

shaft by using a vibrio hammer (connected to the pile head) at 10 to 40 Hz to 

stimulate the soil to an acceptable liquefaction level. The crane then pulls out the 

pile and hammer [21] [22]. Internal dredging, airlifting, and excavation are used 

to remove the soil inside the monopile. A high-pressure jet from the jet nozzles of 

the dredging toll weakens the sand, clay, and debris, while the jet pressure is 

determined by the soil condition and density [22], [23]. External jet drilling or jet 

grouting uses a cutting fluid composed of water, soil, and binder suspension to 

cut and destroy the surrounding soil and granular structure when used at 

pressures of 30 to 60 MPa [22], [23]. Moreover, the problem of breakout 

resistance could be overcome using the buoyancy force or air pressure. The 

implementation of the buoyancy force allows the removal of the pile out of the 
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seabed, while the in-built air pressure in a pile guides the pile to a crane by using 

a gripper [22], [23]. 

 

2.2.1.2.2 Jacket  

Jacket foundations are valid options as we transition to deeper waters and before 

floating foundations become economically feasible [24], [25]. Jacket legs are 

normally smaller in size than monopiles. Hence the requirements for cutting are 

more limited. Initially, each leg is cut at the selected level below the seabed, 

followed by lifting. The legs include the pile under the seabed, the sub-pipe under 

the structure, and the grout among them to fill the space. Before cutting the legs, 

it is essential to install the rigging equipment on the jacket from the crane vessel. 

After excavating the seabed near the foundation, a diamond wire cutting tool is 

used with the help of ROVs. The process may proceed via one-cut, one-lift or 

two-cuts, or two lifts depending on the depth of the sea and the overall weight of 

the jacket; however, the former strategy is preferable due to less time and 

preparation required. The jacket can easily be lifted and transported by a vessel 

after the legs are cut  [1], [19], [26]. 

 

2.2.1.2.3 Gravity-based 

Gravity-based foundations have been successfully deployed, mainly in shallow 

water wind farms, due to their suitability to work in rocky or sandy soils, their high 

bearing capacity, where pile driving can be complicated, and their potential for 

reduced costs [27]. It is necessary to provide the base structure integrity as well 

as the lifting attachment. The ballast which belongs to the base should be 

removed and disposed of, and then the vessel capable of suction dredging needs 

to be mobilised. The process should be inspected by ROVs or divers for 

confirmation. The foundation can be lifted out from the seabed by disaggregating 

compacted sediments which are under the foundation. After lifting and vessel-

loading of the foundation, the seabed is monitored for debris to remove [1], [19]. 
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2.2.1.2.4  Bucket/suction 

A suction bucket is open at the bottom and completely sealed at the top, like an 

upturned bucket. It is penetrated into the seabed to a certain depth under its own 

weight, with the outlet valves on the top open to allow water inside the caisson to 

escape [28]. The foundation can be separated from the seabed by pumping 

pressure into the bucket. The structure becomes buoyant by pumping the 

seawater or ballast inside the foundation, making it easier to transfer the structure 

on the vessel for transportation. This method has a low environmental impact as 

no excavation or cutting is required, and the foundation is fully removed from the 

root. 

 

 Transition piece 

This structure is used to connect the lower part of the tower to the foundation by 

using a bolted flange or grouted connection. It includes elements such as J tube 

cable guides, access ladders and a platform weighing around 300 tonnes [1], 

[29]. The lifting operation will only be possible after disconnecting and cutting the 

cables connected to the tower and foundation. While cutting the J-tube, the 

cutting tool should be fitted with the airtight platform of transition pieces. The 

transition piece will be cut when the crane is in a position to support the load. The 

transition piece and foundation can be lifted together as well; however, this lift 

may become heavier than 1000 tonnes and thus require more safety measures 

and specialised cranes [2], [14]. 
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  Cables  

There are two types of cables; inter-array cables and export cables buried more 

than a meter under the seabed. Buried cables do not pose a significant risk to 

marine life and hence have a less environmental impact [30]. Further, removing 

the buried cables is a cost-intensive process as constant monitoring with ROVs 

is required to ensure minimum damages to and from the cable. Flow execution 

and grapnels are used to take out the cable from the seabed at crossings of the 

buried cables, followed by cutting of the selected length. Afterwards, the cut 

cables are weighed while the rest are returned to the seabed or lifted onto the 

vessel. 

Complete removal of the cables is challenging because of its negative 

environmental effects regarding seabed damages and disruption. Leaving the 

cables in situ and buried is an appropriate choice; however, it is possible to reuse 

or refurbish the cables made of copper, aluminium, and cross-linked polyethene, 

which can be used as electrical insulation [19]. It is important to note that more 

research is required to develop methods of pulling out the cables cost-effectively 

and with lower environmental risk. 

 Scour protection  

Scour is the phenomenon caused by the movement of the seabed and 

jeopardizes the operating capacity of offshore structures since it compromises 

their stability [31]. Scour protection prevents the exposure of piles during this 

movement and as assets reach the end of their service life, scour protection may 

be left on the site or removed. Removing it will require dredging and shipping to 

potentially reuse it at another site. Removal of scour protection has similar 

environmental risks associated with its installation.  
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 Cutting methods 

Decommissioning the OW farms requires extensive cutting work. Various 

techniques are used for cutting, such as diamond wire cutting, water jetting, and 

explosives, while other techniques may also be feasible depending on the type 

of farm: 

• Diamond wire: It uses friction between moving diamond wire and the 

structure. This method can be used for any type and shape, and it is 

recommended based on oil and gas decommissioning experience to cut 

the horizontal parts and cables [32]. Key advantages of this method 

include no vibrations and low pollution. However, proper access to the 

cutting location is an important consideration [5]. 

• Water jetting: It uses a high-pressure water jet to cut any material. It can 

be easily automated; however, the process becomes expensive and 

unsafe due to the components flying off. Therefore, this method is suitable 

for vertical piles [32]. 

• Explosives: It uses explosive products in the lined or unlined cavity. Less 

time is required for the process of structure demolition using explosives, 

and it is controllable too. The risks involved with this method are high due 

to exploration and the need for many accurate plans. 

 

 

 

 

 

 



 

21 

 Vessel options  

Using appropriate logistics arrangements for the decommissioning process is 

essential in the planning phase of an operation. The selection of vessel(s) should 

be based on the low risk, cost, and time of operation. Various types of vessels 

are available; however, it is challenging to select a suitable one. Important 

considerations for this include the farm's number of turbines, the foundation's 

weight and the method used for its removal, water depth and the seabed's type, 

and the vessel's availability in the market. The latter element is particularly 

relevant as it is expected that the same vessels will compete for installation and 

decommissioning operations in the next few years. Apart from selecting a suitable 

vessel, it is also important to select an appropriate transportation strategy, which 

is influenced by the distance to the port as well as the number of wind turbines 

on the farm. 

The Jack-up vessel is a mobile platform with a buoyant hull, jib crane, and several 

movable legs. This type of vessel comes at a high cost and requires provisions 

for mobilisation and demobilisation. The barge vessel is a flat-bottomed boat 

which transports heavy components. The availability of lifting vessels and the 

weather conditions can negatively impact the decommissioning operation's time 

and cost. 

 

  Service life extension 

Despite having more challenges to overcome regarding the safety, efficacy, 

costs, and social and environmental issues, extending the service life of the asset 

is an interesting option for the owners of the offshore industry, investors, 

developers, and operators, as it can maximise the value of their assets [33], [34], 

[36]. This is a common approach for offshore oil&gas assets where the nominal 

service life of 25 years has been extended to 40-45 years. The possible life 

extension strategies reviewed in the literature for OWTs include reusing, 
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retrofitting, replacement, reconditioning, remanufacturing, and add-on 

safety/process control measures [34]–[37]. 

The offshore wind turbine might have residual life at the end of its nominal service 

life. Considering that many of the critical subsystems may be approaching or 

already passed to the wear-out failure rate region in a hypothetical bathtub curve, 

rigorous inspection and maintenance should take place, identifying the most 

critical internal parts, such as generator and blades, in an optimal technology 

qualification scheme [38], [39]. In some cases, the energy production of a wind 

turbine reduces to 75% at the end of its life [33]. However, with an established 

supply chain and detailed log of asset integrity KPIs (key performance indicators), 

the potential of extending the operation of the asset by five years or more is an 

economically plausible option. In some cases, this extension could be longer and 

more beneficial due to modern, low-cost wind turbine inspection and 

maintenance techniques [2]. The profitability of the OWF based on its current 

condition is an important aspect to consider while selecting extension strategies. 

The life extension involves the replacement/maintenance of minor components 

in the farm, such as rotors, blades, gearboxes, etc. [34]. 

Identifying the main life extension requirements of offshore wind turbines is very 

important. According to the UK Continental Shelf (UKCS), the offshore energy 

deviation within the health and safety executive (HSE) is applied for this 

identification. It has developed two HSE programmes, namely KP3: asset 

integrity [40] and KP4: ageing and life extension [41], regarding OWTs in the UK. 

Application of life extension strategy saves the investment costs; however, it is 

necessary to prepare an integrated plan to anticipate and manage the equipment 

condition as well as the rate of degradation during its extended life [36], [37], [42]. 

Better inspection and O&M activities of the OWTs increase the chances of having 

successful life extension plans [33]. Structural Health Monitoring and Condition 

Monitoring (SHM/CM) systems, as part of Condition Based Maintenance (CBM), 

are essential to have a successful life extension [33], [43]–[45]. The failure modes 

and risk identification and assessment of the factors influencing O&M costs can 

be implemented to determine the possibility of wind turbine life extension [33]. 
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The Petroleum Safety Authority (PSA) of Norway has provided requirements, 

activities, and issues of ageing assessment and life extension in the OWTs in a 

comprehensive report [46]. The integrity of load-bearing structures in life 

extension is discussed in NORSOK N-006 (2009).  Furthermore, two standards 

were also developed, namely NORSOK Y-002 (2010) and NORSOK U-009 

(2011), for life extension management of transportation systems and subsea 

systems [34], [37], [47]. 

  Repowering 

Although designed for a period of 20-25 years, some critical components mainly 

related to the foundations and electrical infrastructure (also referred to as the 

BOP), are designed for longer lives. For instance, the foundation can have a life 

exceeding 50 years, while the transmission cables and internal arrays can remain 

in operable condition for nearly 40 years. Despite the reusability of some 

components, the site needs to be monitored for about two years after 

decommissioning to ensure its suitability for the installation of a new OW farm. 

In the case of repowering, keeping the existing foundation and original electrical 

systems can save costs while installing more giant wind turbines with 

modifications to some components, such as drive trains and electronic devices, 

for efficiency improvements are vital features of repowering. These bigger OWTs 

can be direct drive, i.e. without a gearbox, and produce power exceeding 6 MW. 

A significant weight reduction is achieved by excluding the gearbox in the nacelle, 

while chances of technical failure related to the gearing mechanism are also 

minimized [9]. Repowering may be executed either partially or fully. The full 

repowering considers the replacement of the previous offshore wind turbine with 

the new one; nevertheless, service life extension has involved the installation of 

minor components in the OW farm, such as rotors, blades, and gearboxes.  

Repowering has developed into practice for onshore wind energy assets in 

Germany and Denmark due to sustainability concerns and the potential expense 

savings from recycling or reusing the disassembled spares. Relevant studies 

have shown a possible energy cost reduction of 12.93%[48]. In a separate 
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consideration of partial repowering, a selected number of units can be repowered, 

constrained by the total capacity that the electricity infrastructure can 

accommodate. 

The profitability of full and partial repowering has been shown by using the net 

present value (NPV) in [49]. An optimisation approach can be used to analyse 

the economic feasibility of either of the repowering approaches. LCoE can be 

used as the evaluation index for investment in repowering.  

 Factors influencing the selection of end-of-life scenarios 

Evaluation of the end-of-life strategies must be based on appropriate criteria and 

influencing factors. These criteria allow decision-makers to aggregate the 

performance of decision alternatives towards well-informed decisions. It is 

imperative that the selection, assessment, and ranking of these criteria align with 

the stockholder's expectations, both internally and externally [50]. A wide range 

of criteria can be considered regarding the decommissioning of OWFs, such as 

potential environmental, financial and schedule impacts.  

 

  Environmental impact  

The OWF is an artificial reef during its lifetime as marine biota colonises it. This 

can be observed in the biofouling of buoys [13], [51], functioning communities 

around shipwrecks [52], [53], oil rig bases [52]–[54], and growth of the epibiota, 

such as mussels and barnacles, on man-made structures as well as natural 

materials [13]. There is extensive research regarding the process of habitat 

colonisation in the marine environment. The installation of a wind turbine changes 

the environment and ecology, and it establishes a new equilibrium. Although the 

presence of wind turbine structures can benefit the marine ecosystem, 

decommissioning will certainly return the site to its original state, but at the cost 

of ecological disruption similar to the first one [9], [10]. 
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Artificial reefs develop on the monopile foundations as well as the armouring. 

These reefs impact the marine environment in a three-dimensional manner; the 

micro-scale, which includes the material, texture and heterogeneity of the 

construction materials; the mesoscale, which includes the revetments and scour 

protection; and the macro scale, which covers the wind farm [55]. The foundations 

of an OW farm provide a potential net habitat gain during 25 years of a lifetime 

that would be disrupted by decommissioning the farm. A new ecological 

community will develop over time after decommissioning; however, it will be 

different from the pre-installation habitat [55], [56]. Therefore, as per the 

guidelines of the UK government for removing the foundations of OWTs, it is 

preferable to leave scour protection in place during decommissioning to prevent 

repeated disruptions to the marine ecology. 

The sustainability and environmental impacts are important considerations in cost 

determination. Four disposal methods for the materials from decommissioning of 

wind turbines can be adopted; scrap, reuse, refurbish and landfill. Offshore wind 

turbines and their monopile foundations indicatively account for 3.4 Megatons of 

steel, 192.393 kilotons of cast iron, and nearly 12.710 kilotons of copper [9]. This 

shows how important it is to have a structured procedure for the recycling of 

OWTs. 

Steel components of the wind turbine are suitable for scrapping and recycling, 

but the economic aspect needs to be considered first. The value of recycling can 

be determined by the component’s weight, dismantling/cutting and transportation 

costs, and the price of scrap metals. Dismantling/cutting and transportation of 

steel and metals are expensive activities. Therefore, it is recommended to 

compare the costs of resale with recycling. Moreover, cutting the monopiles adds 

to the cost of breaking the grout into pieces, making recycling the only 

economically feasible course of action [10], [57]. 

The marine environment introduces corrosion in the materials of wind turbines. A 

corroded component and its assembly and disassembly process make selecting 

a refurbishing strategy difficult [14]. Steel components are gathered in the 

shipyards in the oil and gas industry. Scrapping introduces possible profitability 
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from steel. Landfilling the material can opt if there is no way of recycling, 

scrapping, or reusing it; the value stream of raw materials should be considered, 

though, ensuring that landfill becomes the ultimate solution. The blades, plastic 

parts from power cables, some parts of the nacelle, and the grout are candidates 

for landfilling due to the absence of cost-effective technological solutions [57]. 

Blade recycling is a recognised challenge, and it is a key topic of current interest 

research, also considers the cast amounts of composite materials that need to 

be decommissioned from onshore wind turbines. This process may use various 

methods, such as biotechnological, chemical, electro-chemical, fluidised bed, 

high voltage fragmentation, mechanical, microwave pyrolysis, and pyrolysis [58]. 

There are two main considerations for the recycling of wind turbine blades; the 

first is about the economic aspects of the methods used, and the second is 

related to the recycling location. An anticipated increase in decommissioning of 

OW farms, combined with landfilling restrictions in the European countries [1], [9], 

[59], calls for further research in the pertinent field to recommend feasible 

recycling techniques that also account for transportation costs of the 

decommissioned wind turbine blades.  

About 80%-90% of the material of the total weight of a wind turbine can be 

recycled, but there is still no suitable method to recycle the rotor blades. Nearly 

20% of the decommissioning cost can be paid by applying recycling strategies. 

The nacelle, hub, and ancillary materials such as handrails, boat landing, ladders, 

etc. can be disassembled and recycled as scrap materials, while the internal 

equipment of the monopiles and transition pieces can be cut into smaller pieces 

for sale [59]. The scrap metal price volatility significantly influences the 

decommissioning cost; therefore, considering the timing of scrapping is essential 

from an economic point of view [9]. 
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 Financial impact 

Estimation of cost is the most important aspect of the selection of an end of life 

strategy. Accurate evaluation is a difficult task primarily because of the following 

factors: 

• Limited experience in decommissioning of offshore wind farms 

• Changing legislation and regulatory framework 

• Supply chain bottlenecks 

• Challenges in fair comparison of all three strategies due to lack of reliable 

data 

Cost is the most influential factor when deciding between the end-of-life 

strategies; however, considerations for safety and potential risks should also be 

included. The process of calculating the decommissioning cost is similar to the 

installation cost; however, it is essential to add costs related to cleaning and 

monitoring the site [35]. This is so because, for a wind farm site distributed as 0.1 

– 0.3 km2 per MW, the debris accumulated over a time of 25 years would be 

significant [10]. The estimated cost of decommissioning a 240 MW OWF is 

£40,000 [13], which includes the total removal of OWTs and the foundations and 

cables 1 to 2 meters under the seabed. However, the cost of waste management 

and post-monitoring is not included in this estimate. For an OWF with 25 years of 

estimated life, the decommissioning costs can lie between 3% [7] or 2.5% [13] of 

the total cost of a wind farm. Decommissioning costs have been estimated to be 

between £34,000 and £38,000 per MW and £23M to £60M for a whole farm [1]; 

however, recent research by DNV GL has concluded that decommissioning costs 

could reach 200,000 to 600,0000 per MW, which is nearly 70% of the installation 

cost. Evidently, there is significant uncertainty regarding the estimated cost of 

decommissioning, and it is difficult to find original research that presents a 

detailed breakdown of the decommissioning cost. It is important to note that the 

foundation removal, even without the cable removal costs, accounts for 35% of 
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the total decommissioning cost. Experience with decommissioning of OWT 

farms, implementation of newer technologies, and applying the experience from 

the oil and gas sector might reduce these costs to adequate limits. 

As far as service life extension and repowering is concerned, costs can 

significantly vary depending on the asset's integrity status and the extent to which 

the full capacity of the OWF is considered. For this purpose, common CAPEX 

models can be used to assess costs and revenue [60], [61].    
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 Schedule Impact 

Estimating the time for various end-of-life-related activities is a challenging 

process. Major contributors to schedule impact include the following: 

• Lack of site-specific information: Early experience in planning such 

processes has shown that the original decommissioning plans, which 

usually form part of the planning phase of a wind farm project, are not 

sufficient to capture the specificities of an asset after 20-25 years of 

operation, and hence delays may occur.  

• Vessel selection and availability: As mentioned earlier, there is a high 

demand for vessels to deploy wind farms that meet the current targets for 

decarbonisation of the energy mix [62]. Considering that the same vessels 

are required for end-of-life operations, the lead time of such vessels can 

cause further delays.  

• Weather conditions: Offshore operations are normally planned around the 

summer period as weather conditions may restrict the use of vessels and 

certain lifting operations when wind speed and wave height exceed 

operational limits. This impact on installations and O&M activities is shown 

in [63], while a similar approach can be followed for decommissioning.  

• Type and number of turbines and foundations: End-of-life operations are 

at large repetitive, and the total duration is directly related to the number 

of stations that will be treated. 

• Distance to the port: Receipt of large modules following a 

decommissioning process or storage of components for repowering poses 

certain handling and storage requirements that limit the number of ports 

that can be utilised. The distance from an appropriate port will denote the 

travel time and ultimately affect the total time of operations.  

The project management team should consider all the important aspects while 

estimating the time required for each decommissioning activity. The 
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decommissioning time should not exceed 60% of the installation time. Previous 

researchers have used an overly optimistic method for estimating the 

decommissioning time of OWTs, adversely affecting the total cost and schedule 

estimations of the ongoing and future decommissioning projects [3]. It should be 

noted that although decommissioning can presumably be done in a few months, 

the whole process would most likely be completed in up to three years [8], taking 

into account the influencing factors mentioned above. 
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  Lessons from the oil and gas industry 

The removal of a wind turbine is an expensive process. Therefore, finding cost-

effective and time-efficient methods is imperative. The methods used by oil and 

gas sector for cutting the platform structure can also be applied to the 

decommissioning of OWTs. The first step involves the removal of fluids and 

hazardous materials in the nacelle (similar to the topside). Further, the turbine's 

tower is cut and fell into the sea, identical to the reefing-in-place method used for 

removing oil/gas platforms in the ocean. Significant challenges to using this 

method include the following: 

• safety of personnel and marine life (i.e. ensure that no additional risks are 

introduced during the operation) 

• integrity of the structure (i.e. avoid breaking the turbine components),  

• flotation (i.e. avoid sinking of the components) 

•  weight (i.e. the need for heavy-lifting vessel)  

Foundation removal of an OWT is similar to the oil/gas platform removal from the 

seabed. The jacket structure is pulled out from the seabed and barged onshore 

for recycling or reuse at another site. Subsea pipeline removal methods, such as 

using diamond cutting wire and high-pressure abrasive water jet used in the 

oil/gas industry can be applied to remove OWT cables from the seabed. Cable 

laying vessels, ROVs, or divers can be utilised for this purpose in shallow waters. 

There are two methods used to serve the structure attached to the seabed: 

mechanical severance and explosive severance. Mechanical severance includes 

various cutting techniques, such as abrasive-water jets, sand cutters, diamond-

wire saws, carbide-cutters, shears, and guillotine saws. It is time-consuming and 

requires personnel, i.e. divers, and additional equipment. The risk of injury to 

personnel and higher cost limit the use of mechanical severance to certain 

scenarios. The use of diamond-wire and sand cutters recently has helped to 

improve the underlying safety and cost issues [64]. 
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Explosive severance is a reliable method to cut conductors, well casings, jackets, 

and piles.  Usage of this method depends on the platform's configuration and 

location and the diameter and wall thickness of the pipe. Explosive severance 

must be more controllable, using a detonator or otherwise, per the health and 

safety requirements. Newer technologies, such as modern blasting caps, have 

made the process more controllable and less risky to the personnel. While the 

condition of less personnel, equipment, time, and cost are the main advantages 

of explosive severance, the adverse environmental impacts, such as fish-killing 

as a result of the explosion, make mechanical severance a method of choice [8], 

[64]. Moreover, when combined with heavy lifting equipment, this method can 

significantly reduce the time and cost of OWTs decommissioning. 

With respect to reefing methods used for removing oil and gas platforms, either 

explosive or mechanical severance can be used for this purpose. The structure 

may be fully removed, using explosives to cut the conductors, pilings, and support 

legs 5 m under the seafloor and towing the facility to shore. The system may also 

be left in place horizontally after toppling it using the explosives or cutting it [8], 

[64]. The platform structure may also partially be removed by cutting it at 26 

meters under the waterline and placing the cut part beside the existing one. 

  Conclusion  

 

With many offshore wind turbines (OWTs) coming to the end of their estimated 

service life, there is an increasing need for developing and evaluating end-of-life 

strategies that can maximize these assets’ value while simultaneously satisfying 

the stakeholders' requirements. This chapter aims to perform a detailed review 

and consider multiple criteria in the decision-making process, presenting and 

discussing available technologies and strategies and influencing factors such as 

schedule, cost and environmental impact. Service life extension, repowering and 

decommissioning are included in this review as the main end-of-life strategies. 
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Chapter 3 

3 Decommissioning vs Repowering of offshore wind 

farms – a techno-economic assessment 

 

 Techno-economic assessment  

 Introduction 

The offshore wind industry in Europe is a key driver toward achieving the EU set 

goals for sustainable power generation in the next few years, with more than 

22GW installed from 5,047 grid-connected wind turbines across 12 countries by 

the end of 2019 [65]. The trend to move production into deeper waters and further 

offshore is based on the higher and steadier wind shear, increased availability of 

space and less social impact than onshore. Since the first offshore installation in 

1991, the Vindeby Offshore Wind Farm (OWF), there has been a continuous 

trend to install more units of higher capacity within a wind farm; however, with 

many of the first generation installations approaching or having already exceeded 

their nominal service life, the discussion on the selection of the optimal end of life 

(EoL) scenario has become very relevant as such decisions can increase 

profitability, potentially reducing costs. Normally, decommissioning should be 

considered even at the planning stage of the wind farm; however, before this 

occurs, repowering or service life extension may be pursued, taking into account 

any residual capacity of key wind farm components, as suggested by Topham et 

al. [9].  

The current academic literature about EoL scenarios is limited, forcing operators 

of wind farms to adopt their own practices when supporting relevant decisions. 

While in other industries, systematic approaches have been established to 

support EoL decisions, this is not currently the case for OWFs [66]–[69]. Luengo 

and Kolios [33] have reviewed in detail the risks involved in service life extension 

based on a detailed failure mode identification and with a view to qualifying which 
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are the key components to drive such decisions. It is claimed that extending 

efficient operation and increasing the overall energy production may significantly 

increase the return on investment and reduce the LCoE.  

Topham and MacMillan [1] investigated key stages of the decommissioning 

phase, such as the disassembling procedure for the wind turbine and lifting, and 

cutting methods for the removal process of foundations and cables, with a view 

to comparing various transportation strategies to reduce the decommissioning 

cost. Fowler et al. [70] studied the benefits of leaving offshore infrastructures in 

the ocean, mainly from an environmental point of view, while in a similar study 

Topham et al. evaluated the environmental impact of recycling wind turbines [9]. 

Judge et al. have developed a life cycle financial analysis model for OWFs, 

exclusively investigating decommissioning [71], while Myhr et al. [72], proposed 

a framework based on Multi-Criteria Decision Analysis (MCDA) techniques to 

select the most appropriate decommissioning methods for OWFs. In addition to 

this, Gjødvad and Ibsen have introduced a tool to assign the decommissioning 

process to stakeholders [73]. Sun et al. studied OWF layout optimization based 

on the decommissioning strategy [74]. Beauson et al. studied offshore wind 

decommissioning regulations for the USA. Beauson and Brøndsted have focused 

on the fate of offshore wind turbine (OWT) blades, based on the first wind farm in 

the world that will undergo decommissioning [75], and Lichtenegger et al. have 

focused on the blade waste that OWTs are expected to generate, pointing out 

the significance of the problem [76]. In a different study, Hou et al. [77] determined 

that repowering is considered a sustainable alternative solution to increase the 

OWT life. Cabboi et al. have analysed technical issues related to 

decommissioning, investigating novel methods for vibration-assisted 

decommissioning of a slip-joint [78]. Hinzmann et al. have summarised problems 

and solutions in typical issues associated with decommissioning offshore 

monopiles [23], while Topham et al. have summarised the challenges of 

decommissioning based on European best practices [79]. 
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With respect to repowering, Hou et al. presented a method for optimization of 

OWF repowering through the selection of different ways of replacing wind 

turbines [2]. Himpler and Madlener, studied economics and optimal timing of 

repowering and presented a case study application in Denmark [80], while Sun 

et al. investigated OWF repowering in the context of Hong Kong [81]. Bezbradica 

et al. applied multi-criteria decision analysis for the ranking of a number of wind 

farm repowering scenarios for a case study in Gotland [82]. Finally, Safaei et al. 

presented a model for finding the best topology and optimal time for repowering 

systems based on cost and availability functions [83].  

A number of studies have investigated the techno-economic feasibility of OWF 

with only a few considering in detail EoL scenarios  [60], [72], [84]–[89]. Kaiser 

and Snyder proposed a model to calculate the cost of decommissioning and 

installation based on data from European OWFs [90], [91]. Common key 

performance indicators (KPIs) to systematically assess the cost of OWFs include 

Net Present Cost (NPC), Life Cycle Cost (LCC) and Levelized Cost of Energy 

(LCoE). The NPC concept is used to show the total present value of cash flow, 

including the initial cost of all the components, any replacement cost, 

maintenance cost, investment cost and discount cost during the lifetime of the 

system [92]. LCoE is a common economic metric for comparing different energy 

technologies [61]. The LCoE shows the cost of produced energy rather than 

determining the potential profit of an investment, which can be estimated through 

other economic metrics such as the return of investment and internal rate of 

return [93]. LCoE is calculated in £/kWh or £/MWh and is used to evaluate the 

feasibility of a power generation technology commercially and compare its 

implementation with other technologies considering LCCs and power production. 

Net Present Value (NPV) aims to account for the time value of money, which is a 

particularly important factor, considering the length of these investments. A 

detailed techno-economic model incorporating both concepts has been 

presented by Ioannou et al. [60] and will stand as a basis for subsequent work in 

this research.  
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It should be noted that a number of variables influence the LCC modelling of 

investment, and considering that the offshore wind energy market is still 

developing, considerable uncertainty can be introduced in the analysis [94], [95]. 

To this end, it is meaningful to transition from a deterministic to a stochastic 

assessment, expressing the calculated KPIs instead of single values in joint 

probability density functions, which accumulate the effects of the randomness of 

specific variables [96]–[98]. This approach would allow the assignment of certain 

confidence levels to the cost analysis results.  

This chapter aims to develop a framework for a preliminary analysis and 

comparison of two key EoL scenarios: repowering and decommissioning, to 

present the impact of key influencing factors from a deterministic and stochastic 

approach, also adopting the economic model of risk aversion to calculate the 

certainty equivalent of LCoE based on each of the examined EoL scenarios. To 

achieve this, results from a detailed techno-economic assessment have been 

extended to calculate the LCoE based on the Capital expenditure (CAPEX), 

Operational and maintenance expenditure (OPEX), Decommissioning and 

disposal (D&D) or Cost of repowering (REPOW), to inform the decision of the 

optimal strategy. The novelty of this approach lies in the fact that a high-fidelity 

cost model is applied, and two of the EoL scenarios are compared directly based 

on their NPV and LCoE. With a few hundred wind turbines expected to reach the 

end of their nominal service life in the next five years, outcomes of this work can 

inform current best practices on supporting decisions related to EoL scenario 

selection and can stand as the basis for more advanced numerical studies which 

will account for higher fidelity calculations of the operations and maintenance 

(O&M) costs and also involve service life extension as an alternative EoL 

scenario. It should be noted here that service life extension has not been 

considered in this analysis, as the approach to quantification of the underlying 

costs would be different and would demand a fully integrated cost model with 

detailed modelling of the O&M phase requirements; further, this option highly 

depends on the current condition of the wind turbine units and representative 

component reliability data, which is beyond the scope of this research. 



 

37 

 End life scenarios  

Once the 20-25 years of nominal service life of a wind farm lapse, a decision is 

required from the operator as to what would be the optimal EoL scenario and how 

it should be selected considering associated costs and risks. Operators need to 

evaluate the current condition of their assets, and the state of the technology that 

was originally procured, and maximise the value of their initial investment. Similar 

decisions have been made over the past decades in the offshore oil & gas 

industry, with platforms originally designed for 20 years and eventually ceasing 

operations after 40+ years from commissioning [99]. Error! Reference source 

not found. 3 presents the most common EoL scenarios for OWFs, which will be 

further discussed in this section. 

 

Figure 3. End of life scenarios of offshore wind farms. 
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 Decommissioning  

The decommissioning process is known as the final stage of an OWF project as 

even if operations are extended, eventually, the deployment area should return 

to its original, before-installation conditions [1], [2], [5]. Technically, the process 

is implemented reversely to the installation process, e.g. using vibrations to 

remove the piles from shallow water installations. Vindeby was the first wind farm 

to be decommissioned by Dong Energy, a process which was completed in 

September 2017 after 25 years of operation. The driver behind choosing this 

strategy was associated with the difficulty of finding spare parts as the technology 

was becoming obsolete and costs of repairs and upgrades were not sustainable 

[1], [2].  

Planning of the decommissioning process is essential in order to reduce 

operational risks and reduction of costs. Weather and seabed conditions are 

crucial to this end. The type and number of foundations, the capacity of the wind 

turbines and distance to port are key factors influencing the process. 

Decommissioning starts with the turbine removal phase, which includes 

disconnecting and de-energizing the wind turbine from the grid, dismantling the 

blade, nacelle and tower [12] and transportation to shore for recycling or disposal 

where appropriate. With respect to the foundation, two strategies can be 

considered: partial or full removal. The partial removal of the foundation can be 

done with the external or internal cutting of the foundation, normally two metres 

below the mud line and is more relevant to heavy foundations deployed in deep 

waters. In this strategy, parts such as the cables and scour protection should be 

considered separately, taking into account the option that will cause the least 

disturbance to the environment [10], [100]. In full removal, the whole foundation 

is de-piled using vibrations and transferred to the port facilities on a barge. 
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 Repowering 

Current practice has shown that core components of an OWF, such as cables, 

foundations and offshore substations, do not have a similar service life to the 

turbines. This implies that after 20 years, there can still be some capacity in the 

OWF, and the cost of harvesting its value should be investigated before making 

EoL strategy selection decisions. It should be noted here that the high cost of the 

decommissioning process raises an additional argument in favour of delaying this 

process for as long as possible. 

Repowering can be applied to the whole wind farm or part of it, potentially with 

more modern turbines of higher capacity [77]. New generation OWTs have direct 

drive technology without gearbox, producing more energy with an average 

capacity of 6MW [101]. Reducing the weight of the nacelle and component 

failures reduces loads and operational costs and hence increases the profitability 

of the initial investment. Repowering allows the OWF operator to use the existing 

foundation and the original electrical system, commonly known as the balance of 

plant (BOP). Installing higher capacity WTs, as well as modifying some key 

components, such as drive trains or electronic equipment to improve their 

efficiency, will extend the operational life of the OWF with a limited additional cost 

of installation [5], [19], [30]. It should be noted that the extent to which repowering 

can occur can often be restricted by the capacity of the offshore substation and 

cable infrastructure. 
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 Service life extension 

Extending the life of assets is always an interesting option for OWF owners as 

they can continue to operate as usual, provided they have sufficient information 

on their integrity status. Available data from monitoring schemes and inspection 

reports are a key requirement as the 20 years of operation often stipulates the 

design service life of major components, such as the drive train, and such repair 

or replacement activities bear high costs to the operators; therefore, identifying 

the most critical parts such as the generator and blades could help reduce 

inspection and maintenance costs [45], [48]. Although operational data are not 

excessively available from operational wind turbines, it is expected that the failure 

rates and associated costs will increase during the second half of their service 

life, and it is also anticipated that the costs for inspections, monitoring and 

maintenance will also increase during this latter part of their operation, and 

certainly within the extended period, especially related to the modification and 

replacement of critical components [102]. A failure mode-based, risk identification 

and evaluation exercise of the factors influencing operation and maintenance 

(O&M) costs are pertinent to optimizing service life extension strategies [33], [38], 

[103].  

Service life extension can potentially add five or more years of additional 

operation before deciding on repowering or decommissioning at the end of this 

period [77].  The rapid technological evolution of wind turbines’ inspection and 

maintenance programmes and relevant certification schemes can enable service 

life extension, increasing the profits from existing OWFs with less investment [34], 

[36].  
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  Boundaries of this study 

This research focuses on the techno-economic comparison of decommissioning 

and repowering with the latter option depending on a higher level assessment of 

the technology rather than a detailed integrity assessment, even at a unit level, 

which is required for the service life extension option. Consideration of service 

life extension requires evaluation of failure rates of maintenance-significant 

components, e.g. drive train components, along with their variance throughout 

the asset's service life, which are difficult to retrieve considering the lack of data 

from operational wind farms. This information is not generally required to the 

same extent for a repowering strategy, and also, considering that technology has 

significantly advanced since the first generation of wind farms, this research 

focuses on repowering as a competitive EoL scenario.  
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  Methodology 

 

 Techno-economic analysis framework 

 

This section documents the framework for the techno-economic evaluation of the 

two EoL scenarios: the foundation of the specific features that are included in the 

analysis and the KPIs that will be investigated. As mentioned earlier, the results 

of this analysis are based on an existing techno-economic model presented by 

Ioannou et al. [60], which also included a sensitivity analysis illustrating key 

influencing factors to standard KPIs, as presented in Error! Reference source 

not found., while Error! Reference source not found., presents in a flow chart 

the key concepts of the methodology developed in this research and how these 

will interact during the analysis.  
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Figure 4.Structure of basic model and key influencing parameters. 
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Figure 5.Overview of analysis framework. 

 

 

The analysis starts with the definition of the EoL scenarios, which for this case, 

are the concepts of repowering and decommissioning. Next, the KPIs will be 

selected, as presented in the following subsection. The core techno-economic 

analysis framework, which was presented in Figure 5, is then extended, with the 

inclusion of the EoL module, which will calculate the additional costs of each 

alternative, in addition to the initial CAPEX (capital expenditure), OPEX 

(operational expenditure), FinEx (financing expenditure) and OWF (offshore wind 

farm) modules. The developed EoL module based on the KPIs, as well as the 

role of energy production based on the asset's whole life, provides the 

deterministic result of LCoE, and it will stand as a basis for the stochastic 

expansion of the initial model. For this, once the stochastic variables have been 

determined, appropriate statistical properties are assigned, together with the 



 

45 

number of simulations that will run for the Monte Carlo Simulations (MCSs). Then, 

following an iterative algorithm, the KPIs are calculated, and the results are 

expressed in histograms, allowing the risk aversion parameters to be calculated. 

Once this has been completed, a sensitivity analysis will take place to determine 

the impact of key variables on the selected KPIs. 

 

  Key performance indicators 

 Levelized Cost of Energy 

The levelized cost of electricity considers the costs and power output throughout 

the whole life of an energy asset. The global weighted average LCoE for offshore 

wind in 2018 has been estimated at $0.127/kWh, according to IRENA [104]. For 

the accurate estimation of the cost of energy in this study, a high-fidelity LCC 

analysis was performed, considering the different phases of the asset’s 

development and operation: Development and Consenting (D&C), Production 

and Acquisition (P&A), Installation and Commissioning (I&C), Operation and 

Maintenance (O&M) and Decommissioning (DECOM).  
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The total levelized cost of electricity of the OWF can be calculated by levelling 

and discounting the investment as well as the O&M cost during its lifetime and 

then dividing it by the annual electricity production technology [105]. Eq. (1) 

presents the fundamental definition of LCoE [106]. 

 

                                                                         

1 

                                      

where, 𝐶𝑡𝑜𝑡,𝑡 is the total cost during year t ($), 𝐴𝐸𝑃𝑡 is the electricity production 

during year t (Wh), 𝑖  denotes the discount rate, and 𝑇 represents the design life 

of the asset. The discount rate is identified based on the market value of both 

equity and debt, the so-called Weighted Average Cost of Capital. It is necessary 

to consider the project risk as well as the return yield. The discount rate has been 

identified as a key parameter affecting the LCoE value in various studies [60], 

[94], [95]. The equation of LCoE can be modified based on the type of analysis. 

The deprecation tax shield and salvage value at the end of the asset life should 

be considered in the total life cost of an asset.  

To accurately predict the LCoE, a life cycle cost model of an OWF has been 

developed, and the sensitivity of important parameters such as availability, 

distance to the shore and load factor was considered in [72]. For this research, 

the initial model is expanded considering the EoL costs for each option, and 

additional stochastic functionality is added through MCSs to allow for the 

stochastic calculation of the KPIs. Similar applications of the integration of MCS 

to compare the LCoE has been presented for coal-fired power plants as well as 

the generation of natural gas [107]–[109]. Further, the LCoE of various sources 

of energy has been stochastically calculated based on MCS in [110]. Even though 

there are studies associated with the cost estimation of partial and full 

decommissioning, the literature review has indicated that no research is 

    LCoE ($/Wh)  =
Σt=1
T  

Ctot,t
(1+r)t

Σt=1
T  

AEPt
(1+i)t
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associated with the detailed economic consideration of the EoL scenarios based 

on the whole life of the OWF [106]. 

Based on various methods to calculate the LCoE, this chapter  also considers the 

concept of net present value (NPV) based on summing the discounted capital, 

operational expenditure in each year of the OWF’s life and the associated 

expenditure, which depends on the examined EoL scenarios, taking into account 

the actual value of money which considers the timing of the transactions, as 

shown in Eq.(2). 

𝑵𝑷𝑽𝑻𝒐𝒕𝒂𝒍 𝑪𝒐𝒔𝒕 = ∑
𝑪𝑨𝑷𝑬𝑿𝒏+𝑶𝑷𝑬𝑿𝒏+𝑫𝑬𝑪𝑶𝑴

(𝟏+𝒊)𝒏
𝑻
𝒏=𝟎                                                            2 

                                                                        

As mentioned above, to calculate LCoE, the discounted electricity output has to 

be estimated based on Eq. (3). As such, by dividing the NPV of the OWF lifetime 

cost shown in Eq. (1), into the NPV of produced energy in the OWT farm, the 

LCoE is calculated as: 
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                                                                           4 

 

LCoE is calculated in this study parametrically based on the different EoL 

scenarios for fixed-bottom OWTs. The LCoE can be estimated separately for 

each case, considering respectively OPEX, CAPEX, decommissioning or 

repowering cost and expected yield of the OWF. 

 

 

 

                                                                  

 𝑁𝑃𝑉𝑌𝑖𝑒𝑙𝑑 = ∑
𝐴𝐸𝑃𝑛

(1+𝑖)𝑛
𝑇
𝑛=1     

                                              

LCoE =   
𝑁𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡

𝑁𝑃𝑉𝑌𝑖𝑒𝑙𝑑
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 Capital expenditure (CAPEX) 

Capital expenditure covers the costs associated with the building and 

commissioning of the OWF. It is divided into three main categories: Development 

and consenting (D&C), Production and acquisition (P&A), and Installation and 

commissioning (I&C). This is translated into the following equation: 

 

                                                                  5 

 

 

 

It should be noted that in order to improve the accuracy of the cost consideration, 

several critical factors, such as geographical location and meteorological 

conditions, capacity factor, reliability, availability and accessibility of 

transportation, should be taken into consideration [35].  

 

 

  Operational expenditure and maintenance (OPEX) 

The costs during the O&M phase are associated with planned and unplanned 

maintenance and account for interventions that aim to ensure safety and reliability 

and the continuous operation of the OWF. Operational costs further involve rental 

payments, insurance costs, and project management. 
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A detailed description of the key characteristics of O&M models and calculation 

tools can be found in [111], while multiple groups to date have proposed different 

approaches and have engaged in various comparative analyses [112]–[114]. 

 

 

CAPEX =  CP&A + CD&C + CI&C 

          𝑂𝑃𝐸𝑋 =  𝐶𝑟𝑒𝑝𝑎𝑖𝑟 + 𝐶𝑟𝑒𝑛𝑡 + 𝐶𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 + 𝐶𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡    
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 Decommissioning and disposal cost 

 

Decommissioning and disposal is the final stage of the wind turbine life cycle and 

is assumed to be the reverse of commissioning and installation processes. It 

covers the costs associated with the removal of the wind turbine (nacelle, tower, 

and transition piece) as well as the balance of the plant (foundations, scour 

protection, cables, and substations) (𝐶𝑅𝑒𝑚𝑜𝑣𝑎𝑙), site clearance 𝐶𝑆𝑖𝑡𝑒 𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒, 

transportation to the disposal sites 𝐶𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 , port preparation 

(𝐶𝑃𝑜𝑟𝑡 𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ), disposal process 𝐶𝐷𝑖𝑠𝑝𝑜𝑠𝑎𝑙 , and finally hiring vessels costs 

𝐶𝐻𝑖𝑟𝑖𝑛𝑔 𝑣𝑒𝑠𝑠𝑒𝑙𝑠 𝑎𝑛𝑑 𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙  [35]. The disposal process of an OWT depends on the 

waste management strategies, and the main available disposal options include 

reuse, recycling, incineration with energy recovery and disposal in a landfill site 

[101].  

 

 

            7 

 

 

For the purpose of this work, costs of full and partial decommissioning are 

calculated based on assumptions from [3]. More specifically, full 

decommissioning is assumed to be 30% more expensive than partial 

decommissioning, and the ratio between partial decommissioning through the 

internal and external cutting of the foundation is assumed to be 1.052. The 

difference between partial decommissioning through internal and external cutting 

is negligible, therefore, the internal cutting of the foundation has been 

investigated in the subsequent parts of this work. In the case of decommissioning 

as the qualifying EoL strategy, the maximum value of 𝑇 in 𝑁𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡  and 

𝑁𝑃𝑉𝑌𝑖𝑒𝑙𝑑  would be based on the nominal life of the asset, i.e. 20 years. The total 

duration of the decommissioning process itself is assumed to be one year at the 

end of the 20 years. 

 

DECOM =  CRemoval + CTransportation + CDisposal + CSite Clearance

+ CHiring vessels and personnel + CPort preparation  



 

50 

 Repowering Cost 

When assuming repowering as the EoL strategy, the Repowering Cost (REPOW) 

is estimated instead of DECOM. The assumed initial service life of 20 years is 

considered, after which the OWF will be repowered, in this case, with a turbine of 

the same capacity. Error! Reference source not found. illustrates this strategy 

and the calculation of LCoE for each part of the asset life in the repowering case. 

The maximum value of time 𝑇1  in 𝑁𝑃𝑉𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡  and   𝑁𝑃𝑉𝑌𝑖𝑒𝑙𝑑 , which are the main 

parameters of 𝐿𝐶𝑂𝐸1 , would be based on the nominal life of the asset, which in 

this case is assumed to be 20 years. The total duration of the repowering process 

is assumed to be one year added at the end of the nominal service life of the 

asset. In the case of asset life extension for a further 20 years, the LCoE would 

be assumed for the next 20 years (𝑇2), which is denoted as  𝐿𝐶𝑂𝐸2 . 

 

 

 

 

Figure 6.Repowering Strategy for an OWF. 

 

The costs of the repowering process of OWFs with same capacity turbines 

include the cost of removing the current wind turbine (𝐶𝑅𝑒𝑚𝑜𝑣𝑎𝑙), transportation 

(𝐶𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 ), disposal (𝐶𝐷𝑖𝑠𝑝𝑜𝑠𝑎𝑙), new wind turbine acquisition (𝐶𝑁𝑒𝑤 𝑊𝑇), 

hiring vessels and personnel (𝐶𝐻𝑖𝑟𝑖𝑛𝑔 𝑣𝑒𝑠𝑠𝑒𝑙𝑠 𝑎𝑛𝑑 𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙), operation (𝐶𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ) 

and maintenance (𝐶𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒), as shown below: 

       

                 8 REPOW =  CRemoval + CInstallation new WT + CNew WT  + COperation  

+ CMaintenance    
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 Energy production  

The amount of energy produced depends on the technology type, capacity factor 

and the system scale. Energy performance is key in computing the LCoE during 

the wind farm's life. The capacity factor (CF) plays a crucial role in the energy 

performance estimation and is defined as the ratio of the real energy production 

to the maximum potential energy outcome. OWF reliability would influence the 

capacity factor indirectly, implying that a higher power plant capacity would 

reduce the LCoE; however, it is essential to consider the demand for energy from 

the power plant. To calculate the annual energy production (AEP) of the OWF, 

different power curve modelling techniques can be implemented [115]: 

 

     𝐏𝐒(𝐯) =
𝟏

𝟐
𝛒𝛑𝐑𝟐𝐂𝐩,𝐦𝐚𝐱𝐯

𝟑                                                                                                    2 

 

Where, 𝜌 is the density of air (1.225kg/m3), 𝑅 is the radius of the rotor, 𝐶𝑝,𝑚𝑎𝑥 is 

the coefficient of the maximum effectiveness of power, and 𝑣  is the instantaneous 

wind speed. The simulated power curve, 𝑃𝑠𝑖𝑚(𝑣𝑎), is based on the mean wind 

speed as shown in Eq. (10). The  𝑃(𝑣, 𝑣𝑎) shows the probability distribution of 

wind speed based on the turbulence intensity factor and 𝑣𝑎 [116], [117]. 

                                                                 

                                                              3    

 

The AEP of the wind farm can then be calculated as: 
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Psim(va) = ∫ PS(

∞

0

v)P(v, va)dv 

𝐴𝐸𝑃 = 𝑍  (1 − 𝜂𝑤)ℎ𝜂𝐴∫ 𝑃𝑊(

∞

0

𝑣𝑎)𝑃𝑠𝑖𝑚(𝑣𝑎)𝑑𝑣𝑎 
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where, 𝑍 is the number of turbines, ℎ is the number of hours in a year, 𝜂𝑤 

represents the factor accounting for wake losses, 𝜂𝐴 is the availability of the wind 

farm and 𝑃𝑤(𝑣𝑎) signifies the Weibull distribution as a function of 𝑣𝑎. The AEP is 

assumed to be constant in this study. The net AEP, which is computed based on 

these inputs, is 1,734,792 MWh/year. 

 

 Stochastic expansion of the techno-economic model 

 

As mentioned earlier, the input variables of the LCoE are often characterised by 

considerable uncertainties, which deterministic models are not able to handle 

systematically. Even adopting a scenario analysis including the assumption of 

upper and lower inputs for each variable, distinguishing 

conservative/unconservative scenarios for LCoE, this approach would not be 

able to support decisions under uncertainty. Therefore, to achieve a meaningful 

assessment, a systematic approach should be considered in order to quantify the 

cumulative impact of these uncertainties. Based on reviewing KPIs, the uncertain 

variables with a significant impact on the LCoE can be modelled stochastically 

and then MCS can be employed to compute the LCoE through a joint probability 

distribution histogram. The MCS approach generates sets of inputs of the 

stochastic values, which feed an iterative calculation loop of calculating output 

KPIs through the deterministic model. This approach can efficiently consider 

multiple stochastic variables; however, it becomes inefficient when calculating 

low probabilities of failure.  Estimating LCoE through a stochastic analysis has 

proved to be more insightful than a deterministic approach since, instead of 

returning a deterministic value with limited context, it can provide an LCoE value 

with an associated confidence interval (CI). 

 

The result as a stochastic distribution provides an opportunity for quantitative 

analysis of the risk or uncertainty in comparison to average LCoE. The constant 

in relation to the risk aversion utility function is implemented in this research 

based on [118] and [110] to calculate the certainty equivalent of LCoE for each 
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EoL scenario. The certainty equivalent indicates a fixed value of LCoE which the 

decision maker should be indifferent towards, relative to the uncertain LCoE that 

they face. Moreover, the uncertainty or risk premium (RP) indicates the amount 

of money that should be paid to reduce the uncertainty and is used as a method 

to monetize the risk of investment in terms of an uncertain outcome. To calculate 

a certainty equivalent LCoE for each EoL scenario, it is necessary to find the 

uncertainty or RP. Eq. (12) shows RP as function of risk aversion of LCoE, 𝑟 as 

the number of iterations and the gamma value𝛾. The LCoE value is obtained 

based on each iteration within the MCS.  

 

It is assumed that a gamma 𝛾 coefficient of relative risk aversion, equal to 2, is 

used in the analysis. The case of a more risk averse decision maker may be 

modelled through increasing the value of gamma [110]. After computing the RP 

for each EoL scenario, Eq. (13) is implemented to calculate the certainty 

equivalent 𝐶𝑒𝑞.   

 

 

 

                                    12 
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The relative risk aversion is assumed to be constant due to being positive as well 

as decreasing the utility function of the LCoE. The higher certainty equivalent 

would be based on the higher risk aversion and the RP.   
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∑ LCOEr
1

r
−

(

 
 
(
∑
(LCOE)
1 − γ

r
1

1−γ

r
× (1 − γ)

)

 
 

(1−γ)

 

         Ceq =
∑ LCOEr
1

r
+ RP 



 

54 

  Results  

  Case Study  

This section presents the assumptions and characteristics used in this paper, 

aiming to refer to a realistic but hypothetical OWF deployed in UK waters. The 

cost of labour and vessels, environmental conditions, wind turbine, monopile 

foundation and the capacity of the wind turbine are assumed to be the same as 

in [60], which is the basis of this study, and account for a 504 MW wind farm 

capacity, with a nominal service life of 20 years, five years of construction time, 

availability between 92.2-92.5% and an interest rate of 8%. The distance to the 

port is assumed to be 36 km, water depth 26 m, and the turbine characteristics 

are as follows: Rotor diameter 107 m, Hub height 77.5 m, Pile diameter 6 m, 

Rated power 3.60 MW, Cut-in speed 4 m/s and Cut-out speed 25 m/s. The key 

assumptions with respect to CAPEX (k£) and OPEX (k£/y) are presented in 

Tables 1 and 2. The reader is referred to [60] for the detailed methods and data 

that are utilised for estimating each field of the table; this information is not 

presented here to avoid repetition. 
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Table 1.CAPEX (k£) and OPEX (k£/y) estimation in OWF 

Total D&C costs 205,750 Total I&C costs 305,742 

Project management 

cost 

42,327 Installation of wind turbines (tower, hub, 

nacelle and blades) 

62,619 

Legal cost 16,698 Installation cost of foundations 102,224 

Environmental 

surveys cost 

19,162 Installation cost of cables 115,070 

Engineering cost 1,144 Installation cost of substation 3,991 

Contingency cost 126,419 Installation cost of scour protection 873 

Total P&A costs 1,040,230 Insurance cost during installation 20,966 

Wind turbine cost 546,056 Total O&M costs 56,597 

Foundation cost 212,699 Repair cost 28,403 

Cables cost 120,525 Rent cost                                                                                                           5,040 

Offshore substation 

(x2) 

121,337 Insurance cost                                                                                                   7,338 

Onshore substation 30,334 Project management cost 15,816 

SCADA cost 9,278  
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Table 2.Repowering Cost (k£) 

The total cost of Repowering process 707,035 

Turbine cost  546,056 

Removal cost 41,763 

Installation cost 62,619 

Operation and maintenance 56,597 

 

 

 

 Deterministic analysis result 

 

LCoE is calculated parametrically in order to allow multiple iterations to run in an 

efficient way. Results for the three scenarios that have been studied in this work 

are presented in a stack bar chart in Error! Reference source not found.. It is 

indicated that the repowering option has the lowest LCoE compared to the other 

scenarios. The output reduction of energy of the OWF after the installation is 1.6 

± 0.2% for each year [119]. The repowering strategy provides the opportunity to 

the owner of the wind farm to improve the efficiency of energy production by 

avoiding further energy losses with less investment cost (reduction of the 

maintenance cost, installation cost, as well as existing current structure). More 

specifically, for the case where the same capacity of a wind turbine is selected, 

the recalculated LCoE, which accounts for after the end of the nominal service 

period, becomes 65.8 £/MWh. The repowering strategy would reduce the LCoE 

of the OWF by nearly 35% compared to partial decommissioning and 36.5% 

compared to full decommissioning.  The estimated expenditure of partial and 

complete decommissioning is close, as shown in Figure 7.. However, this relies 

on those dependent variables in deterministic cost modelling, such as cutting 

technique, number of OWT or even duration of involved activities. Improvement 

or any innovative approach can directly impact this consequence. 
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Figure 7.Estimated LCoE for EoL scenarios investigated. 
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 Stochastic analysis result  

Following the expansion of the deterministic model to account for uncertain 

inputs, a total of 100,000 iterations was executed, considering the statistical 

properties listed in Error! Reference source not found.. In the absence of real 

data, normally distributed variables were chosen; it should be noted, however, 

that the developed algorithm could equally easily treat statistical distributions of 

any type. A fixed CoV of 0.1 was chosen for this analysis. Error! Reference 

source not found. presents the normalized probability histograms of LCoE 

based on the different EoL scenarios which were investigated in this exercise.  

 

Table 3.Mean values (μ) and standard deviations of variables (𝝈) 

Variable Distribution       Characteristic values 

P&C costs (£000s/MW) Normal 𝜇 = 205,750, 𝜎 = 20,575 

P&A costs (£000s/MW) Normal 𝜇 = 1,040,229, 𝜎 = 104,022 

Total I&C costs (£000s/MW) Normal 𝜇 = 305,742, 𝜎 = 30,574 

O&M costs (£000s/MW/yr) Normal 𝜇 = 56,597, 𝜎 = 5,659 

Repowering process Cost (£) Normal 𝜇 = 707,035, 𝜎 = 70,703 

Full Decommissioning Cost (£) Normal 𝜇 = 159,718, 𝜎 = 15,971 

Partial Decommissioning Cost (£) Normal 𝜇 = 122,860, 𝜎 = 12,286 
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(a)  

 

 

 

(b) 

 

 

 

(c) 

Figure 8. Stochastic assessment of LCOE, (a)Repowering, (b) Partial 

decommissioning, (c) Full decommissioning. 
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For the case of repowering, the mean value for LCoE is £68.4/MWh and is bound 

within a 90% CI from values £55-£84.3/MWh based on 20 years’ additional 

service life. Similarly, for partial decommissioning, the mean value is £102/MWh 

and in the 90% CI within values of £82.3-127.6/MWh. Finally, the mean value for 

the case of full decommissioning is £105.2/MWh, and in the 90% CI within values 

£84.3-130.2/MWh. The variance of repowering (𝜎 = 8.99) is more minor 

compared to the others (𝜎 = 13.94 and 𝜎 = 14.12, respectively), showing that the 

LCoE values are grouped closely around the mean (expected value). It can be 

observed that the results between partial and full decommissioning are very close 

to each other. 

 

 Sensitivity analysis 

Due to the parametric nature of the model, a sensitivity analysis is performed in 

order to qualify the highest contributors to the stochastic calculation of LCoE. 

Results are presented in a series of tornado plots in Error! Reference source 

not found., where inputs (influencing factors) are ranked accordingly. More 

specifically, for the repowering option, energy yield is found to have the highest 

impact, followed by the discount rate and P&A costs. For partial 

decommissioning, energy yield is again the prevailing option, followed by P&A 

and discount rate, and finally, for full decommissioning, energy yield is again the 

prevailing factor, followed by P&A and discount rate values. This indicates the 

function of energy yield in the drop of LCoE. Investigating the increasing level of 

energy production based on the repowering strategy is necessary. It assists the 

investors in justifying financing and dealing with challenges such as losing energy 

due to unavailable turbines. 

 

 

 

 

 

 



 

61 

 

 

(a) 

 

(b) 

 

(c) 

Figure 9.Sensitivity analysis LCOE, (a) Repowering, (b) Partial 

decommissioning, (c) Full decommissioning. 
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 Risk aversion concept  

Error! Reference source not found. presents the impact of LCoE variability on 

the risk averse decision maker. The uncertainty premium shows the amount of 

money the decision-maker must pay to reduce the uncertainty and shows the risk 

monetization of investment in the case of uncertain results. The distribution of 

LCoE based on various EoL scenarios was determined in the previous step. The 

wider distribution shows the higher uncertainty premiums and is calculated 

through𝐶𝑒𝑞. The certainty equivalent measures the price which the decision 

maker must pay due to being indifferent towards the related uncertainty. 

Repowering has the lowest RP and 𝐶𝑒𝑞 compared to the other options, with the 

amounts of 1.136 £/MWh and 69.821 £/MWh, respectively. 

 

Table 4.The RP and 𝑪𝒆𝒒  for EoL scenarios in OW farm 

End Life Scenarios  
RP (£/MWh) ∑ 𝐿𝐶𝑂𝐸𝑟

1

𝑟
   (£/MWh) 𝐶𝑒𝑞  (£/MWh) 

Partial Decommissioning 1.815 103.017 104.832 

Repowering 1.136 68.685 69.821 

Full Decommissioning 1.823 105.254 107.077 
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 Conclusions  

Offshore wind turbines are normally designed for a nominal service life of 20 to 

25 years; however, with a significant number of units approaching the second half 

of their service life, the discussion on selecting the most appropriate end of life 

scenario becomes ever more relevant. Scenarios to be investigated mainly 

include decommissioning, repowering or service life extension, while such 

decisions depend on a number of criteria which should be taken into account and 

should ultimately inform a techno-economic and risk assessment. This paper 

performs an initial comparative evaluation between two of these scenarios, 

repowering and decommissioning, through a purpose-developed techno-

economic analysis model which calculates relevant key performance indicators. 

The economic model of risk aversion is further adopted to calculate the certainty 

equivalent of LCoE (Levelized Cost of Energy) based on each of the examined 

end-of-life scenarios and a stochastic expansion of the deterministic model. An 

application to a typical, hypothetical offshore wind farm qualifies the full 

repowering scenario as the prevailing option, under the assumptions considered, 

with a lower amount of risk premium (1.136 £/MWh) and certainty equivalent 

(69.821 £/MWh) in comparison to other scenarios, reducing LCoE by nearly 35% 

compared to partial decommissioning and 36.5% compared to full 

decommissioning. 
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Chapter 4 

4 Selecting appropriate End-of-life scenarios for 

offshore wind farms based on multi-criteria decision-

making method 

 

 Introduction  

 

The offshore wind farm is a moderately new technology, and its development was 

inspired mainly by the increasing markets for more promising energy-production 

efficiency[2]. The offshore wind industry is expected to rise considerably to meet 

the decarbonisation purpose in 2050. the critical role of end-of-life (EoL) 

strategies in offshore wind industries are often ignored, even though their 

evaluated lifetime stands about 20-25 years[1], [2]. In Europe, about 30% of OWT 

were over 15 years in  2020. The number of OW farms reaching their planned 

service life will increase between 2021 and 2030. Thus, it is vital to evaluate the 

position of these EoL strategies, including service lifetime extension, repowering, 

decommissioning, or the combination of them for offshore farms. Three main 

stages, planning, permitting, and implementation, are defined to deliver each EoL 

process. Effective EoL methods planning relies on considering those main 

influencing elements such as schedule and planning, risk and safety, cost, and 

environment to maximize assets’ value.  

Regarding the economic consideration of EoL strategies, Jadali [120] delivers the 

first detailed farmwork, which computes relevant key performance indicators to 

investigate an initial comparative review between two scenarios, repowering and 

decommissioning, via a purpose-developed techno-economic analysis. Planning 

and estimating the duration of activities involved in any EoL scenario is 

challenging due to a lack of experience. The planning procedure of EoL scenarios 

depends on contributors such as previous project experience, number and types 

of wind turbines,  foundation types, vessel selection, availability of trained crew 
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and experts, assessment of weather and wave conditions, and distance to the 

port [1], [3]. This presents complexity with developing a generic procedure for OW 

farms’ decommissioning. To solve this issue, Jadali [121] suggested a multi-

attribute framework for supporting optimum decision regarding main conditions, 

such as the possibility of EoL strategies based on the individual characteristics 

and influencing factors. The research provided the framework to maximize the 

profitability of asset farms while decreasing those risks involved in the safety, 

technology, environment, and facilitating planning. 

 

There is an issue with the high uncertainty-related decision-making of EoL 

strategies in OW farm due to insufficiency of experience and data. For instance, 

The Lely and Vindeby offshore wind farms reached their initially designed   

service life [1], [71], [79]. The asset's lifetime in the Vindeby farm operated based 

on a service life extension strategy until 26 years. However, it was challenging to 

implement the service life extension scenarios for another farm.  

The preferable selection of  EoL scenarios has become very appropriate as such 

a decision can reduce costs and enhance profitability. Typically, the 

decommissioning should be assumed even at the planning step of the offshore 

wind farm [9]; however, before decommissioning happens, repowering or service 

life extension may be sought, considering any residual capacity of essential wind 

farm elements. The owner found it difficult to decide whether the repowering or 

decommissioning strategy for the end of the farm or beneficial to have a specified 

period as service life extension before any decision. The process was found to 

be complex due to several uncertainties involved in the decision-making. To solve 

this issue, this paper introduces a methodological framework to guide decision-

makers based on a comparative study of widely-applied Multi-Criteria Decision 

Making (MCDM) techniques. In the first step, a comprehensive literature review 

identifies the main EoL strategies in the offshore wind farm to achieve this aim 

and objectives. After this stage, the TOPSIS analysis as the MCDM method 

applies to select the EoL strategy. The TOPSIS method has been selected for 

this research; considering its verified applicability, it provides a simple and 
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effective tool for dealing with multiple criteria and is computationally efficient. 

These observations encouraged using the TOPSIS technique for the EoL 

strategies. Attempts to find the most influential criteria should be defined for 

TOPSIS analysis by a literature review and brainstorming with experts. This 

provides an integrated evaluation of several economic, social, environmental, 

and technical criteria. The data would be collected based on the designed 

questionnaire. The data obtained through experts' opinions are presented 

together with results from the implementation of each method deterministically. A 

review of the results is carried out to emphasise the differences and 

discrepancies to draw practical conclusions.  

 

 End of life scenarios  

 

Before the nominal service life of OW farm lapses, a classification is required 

from the possible EoL strategies. The current condition of assets, the updated 

state of the procured technology initially, and maximizing their initial investment 

would help the operator make optimal decisions. Figure 10 presents the essential 

EoL strategies which are considered in this research as alternatives. 

 

 

 

Figure 10.End of life scenarios of offshore wind farms. 
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 Multi-criteria decision making in offshore wind turbine  

 

Multi-criteria decision-making (MCDM) is the operational research technique to 

optimise the quantifiable or non-quantifiable/qualitative multiple criteria. Different 

MCDM such as Technique for Order Preference by Similarity to Ideal Solution 

(TOPSIS), Decision Making Trial and Evaluation Laboratory (DEMATEL), 

Preference Ranking Organization Method for Enrichment Evaluations 

(PROMETHEE), ELimination Et Choix Traduisant la REalitéwas (ELECTRE) and 

VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje), is used to solve 

the various ranges of decision-making matters in the offshore wind energy.  

MCDM methods have evolved increasingly comment in the decision-making of 

renewable energy power plants regarding site selection, support structures and 

risk assessment. It provides  consideration of various multiple conflicting aims 

and decision-maker preferences [122], [123], [131]–[136], [124]–[131]. The 

research review has been provided in [137] regarding the MCDM  issues 

associated with power generation optimization, technology, policy, and site 

selection in marine and offshore applications. The TOPSIS method presents a 

systematic assessment for benchmarking offshore wind turbine support 

structures by considering several criteria to select the preferable support 

structures[131], [131]–[134], [138]. 

A fuzzy-based MCDM methodology is implemented to select the site for offshore 

wind farms. Those main parameters, including depth, height, environmental 

issues, proximity to facilities, and economic aspects, are identified and selected 

as the decision-making criteria. The accuracy of the analysis was increased in 

this research by integrating interdependent relationships among the criteria[139]. 

Multi-criteria site selections based on the geographical information system and 

bespoke site-selection support tools for offshore renewable energy platforms 

concentrating on the availability of energy resources have been studied in[140]. 

The results show the leading prospect for offshore renewable energy platforms 

focused to the north and west due to acceptable depth conditions and substantial 
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resources; however, there are still problems concerning the constructability and 

accessibility of the location. An interval type-2 fuzzy set has been developed 

based on MCDM  to evaluate Ireland's most promising offshore wind sites 

regarding technical, economic, environmental, and social criteria [141]. A fuzzy-

MADM method is based on a three-layer decision-making framework of the 

Analytic Hierarchy Process implemented in [127] to comprehensively assess the 

feasibility of installation and maritime safety feasibility for offshore wind farm site 

selection. 
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 Criteria Selection  

 

Defining the optimization parameters to evaluate the EoL strategies as 

alternatives in decision-making is necessary. It helps to consider those varieties 

of technical and non-technical criteria to select the optimum solution. This part of 

the research identifies quantitative attributes associated with the reviewing 

literature and qualitative features based on the expert’s opinion due to limited 

data availability. [3], [50].  Figure 11 presents the main criteria of this research. 

 

 

 

Figure 11.Criteria selection. 
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 Environmental Impact   

 

 Marine ecosystem and Habitat colonisation 

 

The wind farm can be known as an artificial reef during its lifetime. Much research 

was done regarding habitat colonisation in the marine environment[13], [51]–[54], 

[100]. These reefs impact the marine environment on three scales, the micro-

scale, involving material, texture, and heterogeneity of the construction materials; 

the mesoscale, including the revetments and scour protection; and the macro 

scale, covering the wind farm [55]. OWT installation and decommissioning have 

harmful and beneficial environmental consequences and create a new 

equilibrium. Complete decommissioning would help return to the previous 

situation [9], [10]; however, this will negatively impact the development of net 

habitat gain around 25 years lifetime of an asset. After decommissioning, there 

will be a new community; however, it will be different from the previous habitat 

and challenging to come back to the situation before installation [55], [56]. 

Excluding shipping of fisheries for safety reasons around OW farm increases 

local rates of fish during 20 years of asset life.   

 

 Life-cycle greenhouse gas (GHG) emissions  

 

In this research, life-cycle greenhouse gas (GHG) emissions are associated with 

four stages: manufacturing, transportation and erection, operation, dismantling, 

and disposal. Each step contained several processes.  
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 Financial criteria 

 

 Net present value (NPV)  

Net present value (NPV) is evaluated based on the cash flow of composing 

expected revenue and expenditure items. The value of cash is modified due to 

inflation. NPV provides an opportunity to have the final value of an asset over 

plant life at present. It can be used to measure the feasibility of a business. A 

positive NPV means that revenue is more significant than expenditure as well as 

the profitability of the investment [142]. 

 

 Technological  Obsolescence 

The availability of spare parts will be essential during operation. The Yttre 

offshore wind farm was decommissioned due to a lack of spare parts. This made 

the continuance of OWT operation too expensive. 

 

 

 

 

 

 

 

 

 

 

 



 

72 

 Safety Criteria  

 

 Training, essential equipment, and work environment  

 

 

The probability of an accident is the fundamental parameter used in the risk 

assessment method. It is challenging to propose the probability calculation 

method based on the accident rate in project or workplace exposure limits to 

assess the safety of EoL strategies in offshore wind turbines. Training skilled 

technicians should deliver activities related to repowering and decommissioning 

in the OWT. The OSHA standard mentions the importance of training in reducing 

risk 850 times, especially in fatalities and failure equipment in Lifting, working at 

heights, falling objects, nacelle electrical and mechanical, and contact with a 

substance. Improving and modifying the courses associated with technical 

training in OWT could significantly influence risk reduction. Most training courses 

are not designed based on the specific safety criteria in OWT; they are based on 

broad industrial experience and construction topics. The experimental  part of 

training would be valued after any theoretical course[143]. The collision among 

the vessels could be a known risk of failure of the decommissioning process. This 

could happen as a result of human error or harsh environmental conditions. 
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 Schedule Impact 

Time estimating for various end-of-life-related activities is challenging due to a 

lack of experience and data. Significant contributors to schedule impact include 

the following: 

 

 Lack of data regarding the remaining useful life of an 

asset  

 

The availability of reliable data is essential for assessing the structural integrity of 

wind farms. It provides an accurate estimation of the residual life of the assets 

and more clarification regarding the options of end-of-life strategies.  

 

 Vessel selection and availability 

 

Planning is essential to access the appropriate logistics for the decommissioning 

process. The Vessel selection should be based on the operation's type of 

process, cost, and duration. The high demand for vessels to deploy wind farms 

to meet the current targets for decarbonizing energy mix [62] limits the availability 

of vessels. In addition, the forecasting duration of activities involved in EoL 

strategies can be challenging in construction projects due to the harsh 

environment. 
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 Weather conditions 

When wind speed and wave height exceed operational limits, harsh 

environmental conditions restrict vessels and certain lifting operations.  

 

 Legislation and guidelines 

 

Variability of the removal legislation and guidelines in different countries 

significantly influences the planning for EoL strategies, and it is harmful to the 

environment. The increasing demand for decommissioning OWFs in the coming 

years calls for bridging the research gap in this field and highlights the vital role 

of legislation planning. 

 

 Methodology 

This section introduces the framework for investigating the EoL strategies in OWT 

farm and applying the TOPSIS as a multi-criteria decision method under 

deterministic inputs to rank the appropriate process. Error! Reference source 

not found.. A flow chart presents the critical concepts of the methodology and 

interaction during the analysis.  
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Figure 12.Critical concepts of the methodology. 

 

 TOPSIS Method 

 

The TOPSIS method is known as a standard method to optimise the problems. 

The method selected for this study is due to the suitability of its basic concept for 

this analysis. TOPSIS method is able to rank those EoL strategies against 

individual criteria automatically. The method takes into account both quantitative 

and qualitative criteria to provide the realisation of objective benchmarking 

among EoL strategies. TOPSIS is based on the idea that the preferred choice 

should have the shortest geometric distance from the positive ideal solution (PIS) 

and the most extended geometric distance from the perfect negative solution 

(NIS). [144]. Hwang and Yoon[145] developed the TOPSIS method, and the short 

distance assumed between the positive ideal solutions and optimised result and 

the longest distance between the perfect negative solutions and optimized result. 

The decision-making can be optimised on the condition of being close to the ideal 

solution area. It aims to translate qualitative and quantitative data into a 

geometrical problem and optimize criteria according to weighting[146] . 
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 . 

The process of the TOPSIS method to rank a set of options includes: 

Step 1 – decision matrix. 

Concocting an evaluation matrix consisting of m alternatives and n criteria, with 

the intersection of each option and criteria given 𝒇𝒊𝒋 , we therefore have a matrix 

(𝒇𝒊𝒋)𝑚×𝑛 

Step 2 – Normalising the decision matrix. 

Normalising the decision matrix by applying the formula below: 

                                                                                   15                                                              

 

                  𝑅 = (𝒓𝒊𝒋)𝑚×𝑛  Using the normalisation method                                                                

Step 3 – Create the weighted normalised decision matrix Vij. 

The relative weighting factor should be applied to a normalised matrix 

characterising the variables as positive or negative.    

                                                                             16 

         

 

𝑊𝑖 is the 𝑖 th weight of alternative and ∑ 𝑊𝑖
𝒏
𝒊=𝟏 =1 

Step 4 - Calculate ideal and negative-ideal solutions. 

The positive ideal solutions (PIS) and negative ideal solutions (NIS) are the best 

and worst results.  

rij =
𝒇𝒊𝒋 

√∑  𝒇𝒊𝒋 2
𝑚
𝑗=1

                                                                                                                        

Vij =Wi * rij                                                                                                                                                                                                
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Step 5 – Distance Measures. 

The n-dimensional equivalent of Pythagoras’ theorem would be used to calculate 

the relative distance of each result from the NIS and PIS. 

 

𝑫𝒊
+ = √∑ (𝒂𝒊𝒋+ − 𝒂𝒊𝒋)2

𝑚
𝑖=0     and   𝑫𝒊

− = √∑ (𝒂𝒊𝒋− − 𝒂𝒊𝒋)2
𝑚
𝑖=0                                         18 

Step 5– Comparison. 

The final scores are implemented to rank interaction methods according to their 

performance, distinguishing the most suitable concept. 

  

                                                                       19 

 

 

 

 

 

 

 

 

 

       𝑥𝑖𝑗
+=max

0≤𝑗≤1
( 𝒙𝒊𝒋 )    and   𝑥𝑖𝑗

−=min
0≤𝑗≤1

(𝒙𝒊𝒋 )                                                                        17 

 

  𝑃𝑖 =
𝐷𝑖−

𝐷𝑖−+𝐷𝑖+
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 Result and discussion 

 

 Case study  

 

In this case study, we collected data to consider monopile foundation from a panel 

of senior academicians and industrial practitioners involved in the wind energy 

field. The study investigated OW farm deployed in UK waters. The study 

investigated OW farm deployed in UK waters. The selected wind farm has a 504 

MW capacity, assuming 20 years of nominal service life, five years of construction 

time, and availability between 92.2-92.5%. The expenditure of labour and vessels 

and environmental conditions are assumed to be the same as in [147] .The 

distance to the port is supposed to be 36 km, water depth 26 m, and the turbine 

elements are as follows: Rotor diameter 107 m, Hub height 77.5 m, Pile diameter 

6 m, Rated power 3.60 MW, Cut-in speed four m/s and Cut-out speed 25 m/s  

[147]. 

 

 Discussion  

 

As shown in Figure 10, five possible alternatives are identified based on the 

literature review. The attributes of each option are then exported in excel 

spreadsheet format, providing the decision matrix to evaluate such opportunities. 

Tables 6 shows those allocated weights by the group of experts involved in this 

decision process and the TOPSIS matrix. 

NPV is recognized with the highest weight, and it follows with the availability of 

data for residual life estimation of subsystems. The type and number of turbines 

and foundations is the lowest among those criteria. This result indicates that 

experts pay close attention to technical performance and cost in selecting EoL 

strategies in offshore wind turbines. TOPSIS implies that the best alternative is 

most comparable to the ideal scheme but is far from the worst scenario in the 
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scheme sorting stage. Even though the combination of service life extension and 

full decommissioning has nearly the same average score as full 

decommissioning, the combination of service life extension and partial 

decommissioning are selected as the best alternatives, as it is shown in table 5. 

While both repowering and partial decommissioning are not far from each other, 

they are the lowest options compared to the rest. To further illustrate the 

effectiveness of our research, we compare it with the result of this research [3]. 

The partial removal with the external cut method was selected as the most 

suitable method, as it confirms our result. However,  Jadali [147] constructed an 

initial comparative assessment between two of these methods, repowering and 

decommissioning, using a techno-economic analysis model that computes 

essential performance indicators. The full repowering method was a suitable 

option compared to other strategies, reducing LCoE by nearly 35% compared to 

partial decommissioning and 36.5% to full decommissioning. The result confirms 

the need for research to investigate the type of repowering strategies for the farm. 

Apart from this, the baseline decision matrix and weight are based on expert 

opinion. Currently, there is a lack of experience regarding EoL strategies in OW 

farms, which negatively influences the reliability of human judgment. The level of 

energy production based on the repowering strategy should be considered an 

essential factor. This confirms the benefits of quantitative criteria in MCDM to 

achieve more reliable results. 

 

Table 5.Shows the result of the TOPSIS method. 

Alternatives  𝑷𝒊  

Partial Decommissioning (internal Cut) 0.464 

Full Decommissioning  0.551 

Repowering 0.480 

Service life extension +Full Decommissioning   0.550 

Service life extension +Partial Decommissioning  0.588 
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 Sensitivity analysis 

 

This section observes those weight's impacts on the result by increasing 20% of 

each weight and maintaining the rest the same. As it is shown in figure 13, in 

most cases, the primary choice would be Service life extension +Partial 

Decommissioning; however, the selection is changed to Full Decommissioning 

by a 20 % increase of NPV. This confirms the vital role of the economic aspect in 

End-of-life decisions in OW farm. 

 

Figure 13.Sensitivity analysis of a 20% weight increase. 
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 Conclusion  

 

Many Offshore wind turbines are approaching the second half of their service life, 

and the discussion on selecting the most appropriate end-of-life scenario in the 

next few years has become one of the major concerns for all the stakeholders. 

This study has reviewed the different end-of-life strategies for offshore wind farms 

and the influencing criteria for optimised decisions. 

Different alternatives have been assessed through a TOPSIS method as a multi-

criteria decision-making procedure to select an appropriate way according to 

environmental, financial, safety Criteria, Schedule impact, and Legislation and 

guidelines. Setting the right end-of-life scenario helps internal and external 

stakeholders maximize asset farms' profitability. This comprehensive study 

shows that the combination of service life extension and partial decommissioning 

are chosen as the best alternatives. While both repowering and partial 

Decommissioning are not far from each other, they are the lowest options 

compared to the rest. NPV is recognized as the most substantial influence, and 

the type and the number of turbines and foundations are the weakest among 

those criteria.   Due to the limited experience in wind farms that have already 

reached the end of their nominal service life, further research is needed to 

consider the role of various classifications of repowering strategies on end-life 

strategy selection. 
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Chapter 5 

5 Multivariate and univariate time series forecasting of 

ML models 

 Introduction  

 

The first-generation installations of offshore wind turbines (OWT) are 

approaching their nominal service life. Any discussion on effective planning of 

end-of-life (EoL) strategies for OW farms to maximize assets’ value should take 

into account those main influencing factors such as schedule and planning, risk 

and safety, cost, and environmental impact. Regarding the economic 

consideration of EoL strategies, Jadali [120] provides the first detailed model, 

which calculates relevant key performance indicators to investigate an initial 

comparative assessment between two of these scenarios, repowering and 

decommissioning, through a purpose-developed techno-economic analysis. 

Planning and time estimation of activities involved in any EoL scenario is 

challenging due to a lack of experience. The planning process of EoL scenarios 

depends on contributors such as previous project experience, vessel selection, 

availability of trained crew and experts, assessment of weather and wave 

conditions, and distance to the port [1], [3]. The mitigation of operational risks and 

costs is known as the main achievement of this stage. Weather and seabed 

conditions' harsh environment can limit the accessibility of offshore farms and the 

vessel's stability during marine construction work, such as installation, 

maintenance, life extension, decommissioning, or repowering. Local wave 

climate and sea-state forecasting are considered critical in deciding whether 

access can be achieved safely[148], [149]. The lack of sufficient wave condition 

data due to the limited length of its records at nearshore regions is another 

challenge for designing, planning, and constructing ocean structures. 
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Accurate forecasting of significant wave height prediction is essential for the 

planning and operation maritime activities regarding hazard warnings and safety 

[150]. Having reliable estimation of wave height as a vital parameter in wind farms 

provides this opportunity to have safer with less cost regarding the marine 

transportation, crew transfer, and decommissioning or repowering process.  

Characterizing waves helps to have reliable forecasting; however, it is difficult 

due to its stochastic nature. The uncertain, nonlinear, and non-stationary physical 

process of wave generation estimates wave height prediction challenging. 

Time-series models were implemented for probabilistic forecasting of wave 

height based on recent observations[151], and a cost-loss model was provided 

to show these forecasts' values. Wave height limits were investigated for various 

vehicle forms, including helicopters and various sea vessels [152]. The role of 

wave height limits was studied to find the service vessel's duration in the offshore 

farm's maintenance. A novel method has been discussed to generate density 

forecasts of significant wave height and peak wave period for producing 

probabilistic forecasts of safety-critical access conditions during crew transfers. 

It is found that probabilistic access forecasts of vessel motion during crew transfer 

up to 5 days ahead[153]. 

An economic impact metric for evaluating wave height forecasters' utility for 

offshore access has been introduced [154]. The metric presents the financial cost 

of two types of forecast error, including using the vessel to transfer the crew if it 

is impossible to access the farm and losing output due to failure to complete 

turbine repair. 

The current academic literature is limited to detailed planning EoL scenarios for 

OW farms by considering the role of significate wave height forecasting even over 

a short duration. In general, ocean wave forecasting research is divided into two 

main categories. The first category is physics-based models based on the 

physics-based equations[155]–[158]. The majority of research regarding 

developing several forecasting approaches to ocean wave prediction is related to 

physics-based models. The physical concepts, such as environmental 

interactions and climatic pressure, would be exerted to forecast waves' 
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behaviour. The frequency spectra of ocean waves are reproduced in [159]to 

predict the wave energy.  

The three wave generation numerical models were implemented to parameterise 

wave interactions. The linear wave interactions are implemented to construct the 

first-generation model's spectral wave structure. The coupled discrete spectral 

structures are in such a way that the wave nonlinearities can parameterize. The 

discrete spectral structures related in Second-generation models like JONSWAP 

parameterize the wave nonlinearities. The third generation is known as mature 

wave models such as WAM, simulating waves nearshore(SWAN), and 

WAVEWATCH-III[160]–[162]. The disadvantage of numerical models for 

predicting waves could be expensive and time-consuming and low generalization 

ability or overestimation. Implementing numerical models to measure several 

parameters that can affect wave height for different points is not easy. The 

modelling procedure should be defined based on the impact of those complex 

parameters and high computational complexity in various local conditions to 

reduce numerical forecasting errors.  

The second category includes the time series and statistical models[163]–

[167]. The model-based data drive methods have been more interesting recently 

due to the advent of ML techniques. Artificial intelligence (AI) and machine 

learning (ML) methods are closer to the classical time series approach. ML 

techniques such as  Support Vector Machines and Deep Neural Networks are 

based on the data structure [168], [169]. This makes uncertain forecast 

circumstances easier due to their ability to investigate any nonlinear and complex 

functions. 

The ability of nonlinear modelling is known as an advantage of implementing ML-

based approaches. This provides the model for forecasting wave height by 

considering the relationships between wave height and other meteorological and 

oceanographic variables [170]. Short-term and fast wave height prediction with 

better results can achieve by implementing the ML model compared to the 

numerical model; however, it is crucial to consider the role of appropriate feature 

selection for accurate forecasting. Recurrent Neural Networks (RNNs) are among 
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the most potent tools for estimating any nonlinear and complex functional relation 

between wave height and other meteorological and oceanographic variables. 

RNNs show the temporal dynamic behaviour of data based on their internal 

memories; therefore, RNNs are a suitable framework for forecasting complex 

systems. 

There are massive studies regarding ML algorithms; however, there is limited 

research to our knowledge; previous studies focused on feature selection's role 

in increasing wave high forecasting accuracy. In the above literature, no research 

has considered wave height's role in scheduling and planning EoL strategies for 

OW farms. This chapter investigates ML algorithms' role in wave height 

forecasting methods to predict future wave heights accurately enough to assist 

with EoL scenario planning in OW farms. The numerical models of predicting 

waves are used as input variables in those models, without consideration of 

effects from other relevant variables such as wind, pressure, and temperature, 

which conflicts with the physical process of waves. Apart from this, it has been 

argued that a forecasting model's cost and running time could be impacted 

negatively concerning irrelevant features. In this research, to solve these issues 

as well as improve the accuracy of forecasting, multivariate time series 

forecasting is proposed based on various models, including Long short-term 

memory (LSTM), Bidirectional long short-term memory (BiLSTM), and Gated 

recurrent unit (GRU) to consider those main features and their role in the 

accuracy of forecasting. Even though the comparative performance study of deep 

learning (DL) models is usually problem-dependent, this chapter gives more 

insight into time series forecasting methods and supplements the other 

comparative studies with a relatively novel application of the variety of DL 

architectures. The results are compared with univariate time series forecasting to 

understand the critical role of various predictors in having an optimum impact. 

Apart from this, Pearson correlation analysis has been used to have a feature 

selection for those suggested methods to understand better the input's role 

affects the output.  
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 Methodology  

 

A diagram shows the details of this research's proposed multi-step wave height 

prediction methodology.  LSTM, BiLSTM, and GRU models can be implemented 

to forecast a time series according to historical data.    

 

 

Figure 14.Methodology accurate forecasting of significant wave height. 
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 Data preparation  

 

The actual values used to train and test the ML algorithms refer to those essential 

predictors in forecasting wave height. Before applying ML techniques, the input 

data must be cleaned and normalized. Different peaks and non-stationary 

components due to uncertainty and fluctuating weather conditions are central 

issues in historical data, known as the main reason for high forecast error due to 

inadequate model training [171]. Feature extraction and identification is one of 

the most critical steps in wave height forecasting. It is necessary to identify which 

selected parameters from the user data and the associated meteorological 

variables include the most relevant information helping to provide an accurate 

forecast. 

This research, after data visualization, takes action regarding concerns such as 

missing data and intervention to improve the quality of data and data consistency. 

Two separate parts are proposed based on feature selections, as shown in figure 

14. The correlations between wave height and the other parameters are analyzed 

before normalizing and running the predictive models in one of the stages. For 

this purpose, Pearson correlations were used to determine which parameters 

impact each other most. This research tries to show the importance of feature 

selection in proposed multivariate or univariate time series wave height 

forecasting and argues that a strong correlation does not necessarily have a 

strong causality of results accuracy. 
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 Univariate and Multivariate Input features 

The time series prediction aims to use the existing target variable values to 

predict future values. Time series analysis can be further classified into univariate 

and multivariate according to the number of observed variables. 

A single feature would be used in the univariate models to predict the future value. 

The advantage of implementing the univariate model is known as a small and 

lighter model that does not need extra data and future engineering; however, the 

model is limited to the use of a single variable. They exhibit more sensitivity to 

noise and reduced stability for recursive models. The multivariable type of modes 

is implemented multiple variables simultaneously and describes the features' 

interrelationships. The multivariate time series analysis design modifies from 

system to system, making the process more complex and challenging than 

univariate time series analysis. The correlation analysis and factor analysis helps 

reduce the attribute space from large numbers to smaller numbers of factors 

[172]. 

 

 

 

 

 

 

 

 

 



 

90 

 Normalization of data  

It is essential to use a method to convert the datasets to normalized and 

smoothed data before training them. Normalization of data helps to adjust the 

negative impact of the data noise and improve the neural network's performance 

in efficiency and speed. This research applied min-max normalisation to 

normalise the features in the range [0,1] of the following equation 20 [173]. 

 

                                                                            20 

 

where 𝑋𝑖(t) is ith training data and 𝑋𝑖𝑛(t) denotes its normalized data.  

 

 Recurrent neural networks models  

An accurate prediction result can be achieved based on the previous data; 

however, there is a possibility that recent data is not following the general trends 

recognized based on the earlier data. This issue is called long-term 

dependencies. A multilayer perceptron (MLP), as well as RNN, is not able to solve 

this problem. MLP is not able to consider the data as the time series. They have 

a network delay recursion as the main attribute of RNN, a description of systems' 

dynamic performance. However, RNN would not be able to learn the recent trend 

of data with distant past data[174]. It introduced the LSTM as one of the 

developed variations of the RNN model to solve this problem of RNN. This 

research's network models include LSTM, BiLSTM, and GRU. 

 

 

 

𝑋𝑖𝑛(t)=
𝑋𝑖(t)−𝑀𝑖𝑛𝑋𝑖(t)

𝑀𝑎𝑥𝑋𝑖(t)−𝑀𝑖𝑛𝑋𝑖(t)
                                                                                                        



 

91 

 Long short-term memory (LSTM) neural networks 

 

The LSTM shows the ability to solve the long-term dependency problem by 

efficiently decreasing gradient issues' vanish. In case there is sequential data, 

the future result should be based on the current and previous values of the input.   

The main advantage of LSTM is the use of gates to manage its memory by 

choosing to update or not the information that goes through the cell. The LSTM 

network can learn long-term dependencies from an input sequence due to the 

advantage of its internal memory cells. An example of an LSTM cell is described 

in Figure 15. The information will be added or removed according to the cell state 

defined by three gates: forgot gate, input gate, and output gate.  

 

 

Figure 15.Long short-term memory (LSTM) neural networks. 
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Forget Gate(𝑓𝑡): the decision regarding that information should be discarded from 

the cell state would be made in Forget Gate(𝑓𝑡). The process is done with the 

sigmoidal layer combining previous output at t-1 with period ℎt−1 and input𝑥𝑡. The 

output of this forgets Gate is either 0 or 1, which is then multiplied by its internal 

state.  

   𝑓𝑡=𝜎1 (𝑤𝑓 .[ ℎ𝑡−1, 𝑥𝑡]+ 𝑏𝑓 )                                                                                                  21 

Input gate (𝐼𝑡): the decision would be made in this gate regarding the type of 

information that should be stored in the cell state. In the first part, the information 

of previous output and present input is passed to the sigmoidal layer σ2, and 

decisions would be made regarding the updating. The value of this input gate is 

assumed to be either 0 or 1, and it multiplies with the output of the candidate 

layer. 

 

                                                                              22 

 

The second part is the candidate layer. Tanh activation function implemented to 

its last output and current input and returns a candidate vector and then the new 

cell state (𝐶𝑡) would be achieved based on the previous internal statement.  

 

                                                             23 

24 

 

 

 

𝐼𝑡=𝜎2 (𝑤𝑖 .[ ℎ𝑡−1, 𝑥𝑡]+ 𝑏𝑖 )   

𝑐𝑡
′=tanh(𝑤𝑐  .[ ℎ𝑡−1, 𝑥𝑡]+ 𝑏𝑐 )        

𝐶𝑡=𝑓𝑡 ∗  𝐶𝑡−1, +𝑖𝑡*𝐶𝑡
′                                                                                                                     
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Output gate (𝑂𝑡): The output gate selects the part of cell states as the output[175]. 

In the final part, the cell state ℎ𝑡would be achieved by tanh multiplies with 𝑂𝑡 . 

 

                                                                   25 

 

                                                   26 

                                                                                                                                                             

 Gated recurrent unit (GRU) 

The gated recurrent unit (GRU) was known as another model implemented to 

solve the vanishing/exploding gradient issue in the standard recurrent neural 

network (RNN). Learning long-term and short-term dependencies from the input 

is known as the advantage of this model in dealing with time series problems. 

It is assumed three types of layers for the GRU network, including an input layer, 

a hidden layer, and an output layer. An update gate and a reset gate are located 

in the hidden layer. The GRU network structure is shown in Figure 16. 

 

Figure 16.Representation of a GRU cell. 

 

𝑂𝑡=𝜎3 (𝑤0 .[ ℎ𝑡−1, 𝑥𝑡]+ 𝑏0 ) 

ℎ𝑡=𝑂𝑡 ∗ tanh 𝐶𝑡                                                                                                              
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                                                                    27      

 

As it is shown in the formula, 𝑈𝑡 is known as the update gate,  output σ(·) is the 

sigmoid activation function, 𝑤𝑧 are the weights of the update gate, ℎ𝑡−1 is the 

output of the last hidden layer, 𝑥𝑡 is the input of this hidden layer. The update 

gate of GRU has the duty to specify the amount of information that should pass 

from the previous time steps to the future. 

                                                                       4 

 

The reset gate output 𝑟𝑡 is computed as shown in equation (8) where σ(·) is the 

sigmoid activation function, 𝑤𝑡  are the weights of the reset gate, ℎ𝑡−1, is the 

output of the last hidden layer, 𝑥𝑡 is the input of this hidden layer. The GRU 

reset gate helps determine what should be removed from the previous time 

steps. 

                                                                                                                       29 

 

 

The current memory content ℎ̃𝑡 is calculated by Where tanh(·) is the tanh 

activation function, w are the weights, 𝑟𝑟 is the output of the reset gate, ℎ𝑡−1, is 

the output of the last hidden layer, 𝑥𝑡 is the input of this hidden layer. 

 

 

 

  𝑈𝑡 = 𝜎(𝑤𝑧  .[ ℎ𝑡−1, 𝑥𝑡])                                                                                                                                                                                                                          

  𝑟𝑡 = 𝜎(𝑤𝑟 .[ ℎ𝑡−1, 𝑥𝑡])                                                                                                                                                                                                                        

  ℎ̃𝑡 =tanh(𝑤. [𝑟𝑟 . ℎ𝑡−1, 𝑥𝑡])                                                                                                                                                                                                                                                                                                                        
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The final memory at the current time step ℎ𝑡 , is calculated by 

 

                                                                5 

where 𝑧𝑟 is the output of the update gate, ℎ𝑡−1 is the output of the last hidden 

layer, ℎ𝑡−1, is the current memory content[176]. 

 Bi-directional long short-term memory (BiLSTM)  

The structure of LSTM would be deformed, and this includes forward and 

backward LSTM layers. The past and future information of data can be 

considered at the same time[176]. Figure 17 shows the structure of the BiLSTM 

neural network. It is assumed memory block contains two LSTM layers in 

BiLSTM. 

 

Figure 17.Structure of the BiLSTM network. 

 

 

 

 

  ht = (1 − zt)ht−1 + zth̃t                                                                                    
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As can be seen in Figure 17 each memory block contains two LSTM layers, 

including forwarding and backward LSTM layers with opposite time sequences. 

The one output would be achieved as a result of connecting these two hidden 

layer states. Forward and backward LSTM layers receive the past and future 

information of the input sequence [176]. The current time step ℎ𝑡−1, is calculated 

by 
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ℎ𝑡 ⃗⃗ ⃗⃗  =𝐿𝑆𝑇𝑀 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ℎ𝑡−1, 𝑥𝑡 , 𝑐𝑡−1 ), 

t ∈ [1,T]                              

ℎ𝑡 ⃗⃗ ⃗⃗  =𝐿𝑆𝑇𝑀 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(ℎ𝑡−1, 𝑥𝑡 , 𝑐𝑡−1 ), 

t ∈ [1,T]     

ℎ𝑡=[ℎ𝑡 ⃗⃗ ⃗⃗  , ℎ𝑡⃖⃗ ⃗⃗ ]   
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 Performance metrics 

It is essential to evaluate the accuracy of forecasting those proposed models. The 

root means square error (RMSE), and the mean absolute error (MAE) are 

selected as the model performance metrics to evaluate accuracy. The RMSE and  

MAE can be described as : 

                                                  

                                                      34                                        
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where n is the number of test samples, 𝑌𝑖 

is the actual data and  𝑌�̂� is the predicted data[176]. 

 

 

 

 

 

 

 

 

 

 

RMSE(𝑌𝑖 , 𝑌�̂�) = √
1

𝑛
∑ (𝑌𝑖 − 𝑌�̂�)2
𝑁
𝑖=1  

MAE(𝑌𝑖 , 𝑌�̂�)  = ∑ (𝑌𝑖 −
𝑁
𝑖=1

𝑌�̂�)
2                                                                                                  
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 Model configuration and validation  

Greater Gabbard is a 504 MW wind farm located on sandbanks 23 kilometres (14 

mi) off the coast of Suffolk in England, selected to forecast significant wave 

height. The table shows those import measurements of significant wave height 

(Hs). The data recorded by the buoys and is from 1979 to 2020. 

 

Table 7.Selected features of wave 

 

 

 

 

  

 

 

 

Before applying suggested forecasting models, the input data must be cleaned 

to avoid noise, inadequate model training, and high forecast error. In the first 

step, all data is loaded as appropriate data types. The dataset includes columns 

of date with a time step of 3 hours.  

Selected features of wave 

U10 Wind speed hourly at 10m 

Hs significant wave height (Hm0) 

U10d wind direction at 10m 

Hsd mean wave direction 

Pd peak wave direction 

Tz zero crossing wave period (Tm0,2) 

Tm mean wave period (Tm-1,0) 

Tp peak period 
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Figure 18.Histogram of the wave height. 

Figure 18 shows the histograms of Hs; the unbalanced nature of the data can be 

clearly seen. Wind, swell seas, and possibly other sources like currents would 

impact wave characteristics such as height. 
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In the first step, we run the model without feature selection in the part of data 

preparation. The result of the prediction was analyzed for three hourly load 

predictions. Table 8 represents those important cases for consideration in the first 

part. 

Table 8.Main data scenarios based on predictor 

 

Univariate and multivariate time series forecasting techniques were employed to 

ensure a fair assessment procedure based on deterministic forecast 

assessment and walk-forward cross-validation (WFCV). The internal 

architectures for these models are discussed in the methodology part. In this 

study, these high parameters represent the number of layers, the units of 

layers, the activation functions, and the dropout values. The dropout is a sort of 

neural network optimizer used to avoid overfitting problems. The training and 

validation plots are illustrated for those cases in the first part in figures 19, 20, 

and 21, respectively. 

 

 Input assumption Output assumption Abbreviation 

Multivariable case 1 Removal of (Hs) Hs MVR 

Multivariable case 2 All features Hs MV 

Univariable Hs Hs UV 
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Figure 19. Training and validation loss plots for Multivariable case1. 
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Figure 20.Training and validation loss plots for Multivariable case2. 
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Figure 21.Training and validation loss plots for univariable. 
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Figure 22.Comparison of the various modes of predictions result in univariable 

case 3. 
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Figure 23.Comparison of the various modes of pre-dictions result in 

Multivariable case 1. 
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Figure 24. Comparison of the various modes of pre-dictions result in 

Multivariable case 2. 
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The training loss of the MV model reduces with the increase of the iteration 

number until it stabilizes. The reduction rate's stability depends on those futures 

involved in the models, which is changed from 0.0005 to below 0.00065 for all 

three models. The BiLSTM model found a high rate of train loss reduction 

compared to the others in the various scenarios. Also, as the validation loss 

presented in figures 19, 20, and 21, respectively, the BiLSTM has the lowest loss 

value and the highest convergence speed among all the models. We found a 

significant value in the training conversion and loss reduction for the BiLSTM. 

Figure 22 to figure 24 present the plot of the different discussed hourly prediction 

DL models with WFCV. As shown, the predicted values follow the actual output 

in the BiLSTM. The BiLSTM outperforms the other models in terms of various 

assumptions. However, The simulation graph cannot represent an accurate, 

reliable evaluation of those forecasting models based on different scenarios; 

therefore, the score measures are implanted to quantify the resulting forecasting 

model. 
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Univariate model, multivariate model without wave height, and multivariate with 

all the features have been used to forecast wave height in this research. Table 

10 shows the results for three hour-ahead predictions of our experiments for the 

recurrent neural networks: 

Table 9.Accuracy of forecasting those main data scenarios based on various ML 

models 

 MVW MV U 

 GRU LSTM BiLSTM GRU LSTM BiLSTM GRU LSTM BiLSTM 

Mean 

Absolute 

Error 

(MAE) 

0.1051 0.0915 0.0895 0.0857 0.0882 0.0794 0.0972 0.0978 0.0971 

Root 

Mean 

Square 

Error 

(RMSE) 

0.1480 0.1313 0.1302 0.1323 0.1358 0.1219 0.1542 0.1573 0.1508 

 

It has been calculated the MAE and RMSE to consider the accuracy of 

performance of those models in multivariate and univariable data assumptions. 

According to most error measures, The BiLSTM was found with a high level of 

accuracy in time series forecasting compared to GRU and LSTM. The BiLSTM 

model achieves the lowest RMSE( 0.1219) and MAE (0.0794) to implement all 

variables as inputs. At the same, MAE and RMSE of the GRU model would 

decrease   2.9172% and 2.6455%, respectively, compared with the LSTM model. 

We can see the same trend regarding the performance of the two mentioned 

models in univariable conditions; however, the univariate model's result confirms 

that ignoring the impact of other variables such as wind speed would lead to less 

optimal forecasts with higher errors in forecasted weight height.  
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In the model without assuming weight height as input, BiLSTM still provides a 

better result; however, among GRU and LSTM, the LSTM model found better 

forecasting results regarding reducing MAE  and RMSE with 14.8634% and 

12.719%, respectively.  

In the second phase, we run the model based on feature selection. To achieve 

the result, based on training data, the correlation coefficient (CC) was calculated 

among various variables, as shown in Figure 33; correlation analysis illustrated 

the degree of relevance features and wave height. It can be summarized that the 

correlations between features and wave height are not varied highly. The 

correlations between different features should be considered as well. The Tm(s) 

found with highly correlated with Tp(s) and Tz(s). It is also considered with the 

Hsd(deg), and the Pd(deg) as these parameters influence the weight height. 

 

 

Figure 25.Correlation analysis. 

 



 

110 

Table 10.Accuracy of forecasting those main data scenarios based on correlation 

analysis 

 MV without [Tm(s), HS] MV without [Tm(s)] 

 GRU LSTM BiLSTM GRU LSTM BiLSTM 

Mean Absolute Error 

(MAE) 

0.1083 0.0962 0.0903 0.0890 0.0864 0.0795 

Root Mean Square 

Error (RMSE) 

0.1538 0.1406 0.1313 0.1368 0.1329 0.1226 

 

After identification and removal of the highly correlated feature, Tm(s), the 

multivariable model would run based on two different assumptions, including the 

removal of Tm(s) and removal of Tm(s) and H(s) as input. As shown in Table 11, 

BiLSTM can result in more petite MAE (0.0795) and RMSE (0.1226). The result 

confirms that the new condition (removal of Tm(s)) would increase MAE and 

RMSE results by 0.125% and 0.574 %, respectively. The result confirms the 

benefit of feature selection in result achievement in less time and cost 

consumption.   
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 Conclusion  

With a substantial number of OW farms approaching the end of service life, the 

discussion on planning the most appropriate end-of-life (EoL) scenario has 

become popular. The need for planning and scheduling those main activities of 

EoL scenarios depends on forecasting leading environmental indicators such as 

significant wave height. This paper proposed a novel probabilistic methodology 

based on multivariate and univariate time series forecasting of machine learning 

(ML) models, including LSTM, BiLSTM, and GRU. The accuracy of this 

forecasting provides the chance to mitigate those uncertainties and risks involved 

in planning the EoL scenarios regarding offshore wind accessibility. The research 

investigated the interaction of those quantitatively main features in forecasting 

the hourly wave height. For better understanding, feature selection in various 

scenarios based on correlation coefficient was implemented to improve the result 

accuracy with less time and cost consumption. The BiLSTM model achieves the 

lowest RMSE and MAE in inputting various variables. 
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Chapter 6 

6  Discussion 

 

  Literature 

Having reviewed potential end-of-life strategies and associated influencing factors 

through relevant literature, it becomes evident that decision support frameworks 

should balance costs and associated risks to maximise profitability while 

simultaneously fulfilling stakeholders' requirements. In this section, initial findings are 

discussed, strategies are compared and then synthesised herein into a generic 

decision support framework. Finally, associated uncertainties to the decision process 

is discussed. 

 

  SWOT analysis 

Following the presentation of strategies and methods, Figure 34 categorises the 

various possibilities of end-life strategies into four main groups: repowering, leaving in 

place, partial removal and full removal. 

Following this categorisation, a SWOT analysis has been conducted on the various 

possibilities of end-life strategies to evaluate their strengths, weaknesses, 

opportunities, and threats (Table 12). Thus, the advantages and disadvantages of the 

suggested cases can be assessed, informed by current literature and experts’ 

opinions.  
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Figure 26.Categorisation of end of life scenarios. 

 

As outlined in Table 12, repowering, limited by the type of wind turbine, improves 

energy production efficiency by reducing the maintenance cost, installation cost, and 

reuse of the existing structure. Wind farms estimate the annual output loss at 1.6 ± 

0.2% [119]. Moreover, the current wind turbine foundation may not be suitable for a 

bigger wind turbine with higher energy output. To counter this issue, the turbine may 

be retrofitted using pins and drilling holes on the monopile, grout, and the transition 

piece [177]. Although renewable energy is an infinite source, energy harvesting is 

limited by the end-life estimation for the equipment and, in the case of OW farms, 

finding the most suitable location for optimum wind energy extraction. The sites 

selected previously for the OWTs have a better chance of being the optimum location 

for wind extraction; therefore, it is always reasonable to seek ways of utilising the exact 

location. Before reusing the site, several essential aspects must be considered, such 

as cost-benefit analysis and other pertinent issues that require further research. 

Total removal is expensive compared to other end-life options, but it helps restore 

marine traffic and fishing activity. Partial removal can be considered after repowering 

options are exhausted. It concentrates more on ecological benefits, such as habitat 

life, and presents several advantages over the repowering option. Further research 

must be conducted to develop appropriate selection criteria between partial removal 

End of life 
strategies

Repowering

Refurbishment

Partial 
repowering

Life extension

Full Repowering

Leaving in place

Leave in place 
intact

Topple in place

Partial removal 
(Internal or 

external cut)

transport to 
shore 

Reuse

Recycle

Scrap

Relocate to 
shallow water

Relocate to 
deep water

Full removal

Transport to 
shore

Reuse

recycle
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and repowering. Moreover, consideration of the economic aspect only for decision-

making is only part of the decision-making process; however, it is essential to consider 

other factors involved in the project, such as risks related to operating time, 

environmental impact, number of heavy lifts, specialised equipment (logistics), health 

and safety, and insurance. To the best of the author’s knowledge, currently, there is 

no research comparing these factors with each other or assessing their impacts on the 

project.  

Leaving in place is a controversial end-life scenario due to its legal implications and 

actual environmental impact. It may not be considered an independent strategy, but it 

can be viewed in conjunction with the structure's condition, possible modification to 

the system, removal options, etc.  

An OWT may be removed as a single structure, enabled by a heavy-lifting vessel, 

such as the Pioneering Spirit, which can deal with most offshore turbines. This vessel 

can accurately cut the selected location of the wind turbine and effectively lift heavy 

parts. It is flexible and can be modified based on the requirements [178]. After lifting 

the top side of a wind turbine, the decommissioning process is followed by lifting the 

transition piece and foundation together with the rest of the wind turbine. Minimum 

disassembling is required for this method; therefore, it can be finished without delays 

that may occur due to unfavourable environmental conditions. The implementation of 

this process is expensive due to the higher cost of vessels and high risks involved; 

however, the risks are limited due to the absence of hazardous liquid, unlike the 

scenario in oil/gas structure removals. 

The use of flotation is recommended by applying buoyancy techniques (flotation 

chambers or bags) on the foundation piece to reduce the need for heavy-lift cranes 

during the foundation removal and towing to the shore [32]. 

Vessel availability is another challenge in this industry. Using the same vessels for 

installation and decommissioning incurs lower costs; however, the increasing demand 

for vessels in the OWT and the oil and gas industry for building or decommissioning 

activities makes the availability of vessels a challenge. This is further worsened by the 

limited time of the year that the vessels can operate due to extreme weather 
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conditions. Effective management of these resources is key to executing the 

installation/ decommissioning activities of OWTs successfully. One of the ways this 

can be done is to plan the decommissioning activities based on the capability of 

available vessels and ship-building capacity.  

Variability of the removal legislation and guidelines in different countries significantly 

influences the planning for decommissioning. Lack of this guidance might be harmful 

to the environment as well. The increasing demand for decommissioning OWTs in the 

coming years calls for bridging the research gap in this field and highlights legislation's 

important role in planning. 
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Table 11.SWOT analysis of end-of-life strategies 

SWOT Leaving in place Repowering Total removal Partial removal 

S
tr

e
n
g
th

s
 

Less cost and time Improving the technology  

Restoration of previous 

habitat, all fishing and 

shipping activities  

Less environmental 

impacts at scour protection 

and foundation 

Less environment 

damages  

Increasing power output 

capacity and productive  

Recycling or reusing the 

equipment  

Less time and cost 

operation 

Less complex removal 

methods  
Free and inexhaustible energy 

Minimize the impacts on 

the marine ecosystem by 

removing the foundation 

and cables 

Less complexity, and noise   

Less vessels  

Less cost, shorter installation 

time, more environmental 

friendliness comparing with 

new wind farms 

  
Recycling or reusing the 

dismantled spares. 

  Less vessels and planning    Less complex technology  

  Avoid maintenance cost   Less risk of personnel 

comparing with full removal  

  Information availability from 

existing wind farm 

    

  Install bigger WTs or change 

some components 

    

  Optimize the use of available 

land to increase the power  

    

W
e

a
k
n
e

s
s
e

s
 

Programme of ongoing 

monitoring negative 

impacts on shipping, 

fishing 

Lack of experience   
Negative impacts on 

current habitats 
Cost of sit monitoring  

Lack of experience   Need the optimized plan  
Complexity of process 

heavy lifting 

Lack of experience and 

knowledge  

Shadow water issues 

based on toppling 
  Expensive method Vessel availability issues 

It depends on the 

regulation of countries  
  

Complex technology for 

removal  

Limitation of future 

development site 
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No option for recycling 

or reusing the 

equipment 

  

Cable removal  

Spread of non-indigenous 

and/or invasive species by 

leaving components in 

place 

    Lack of vessel Cable and  

  

  Inspection needs before 

and after the removing the 

foundation  

Inspection needs before 

and after the cutting the 

foundation  

    Lack of experience    

  

  Two-year period of 

monitoring and 

remediation 
  

    Site clearance    

    High risk to personnel    

O
p
p
o
rt

u
n
it
ie

s
 

  

Adopting farm with new 

technology 

New opportunities such as 

the aggregate dredging  

Commercial activities such 

as crustacean ranching   

Increasing the life of wind 

turbine between 5 to 25 years 

Possibility to have an 

Aquaculture 
  

T
h

re
a

ts
 

Negative environment 

effects 

The modification of energy at 

the market price 
The liabilities of financial 

Collision risk of fishing 

gears 

Environment emissions   
Alienation of certain user 

groups 
Spread of non-indigenous  

Shipping interruption      Species 

Cable issues      Alienation of certain user 

groups 
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 Development of a decision support framework for the 

selection of end-of-life strategies 

Having reviewed state of the art in end-of-life strategies and their associated 

influencing factors, a generic decision support framework shown in Figure 35 is 

proposed here to ensure a systematic approach that will consider all key aspects 

and influencing factors.  

 

 

Figure 27.Decision support framework. 

The process starts with identifying available data for assessing the integrity of the 

wind farm as an asset. The absence of such data or inability to estimate the 

residual life of the assets limits the options of end-of-life strategies for 

decommissioning as no quantitative analysis can take place to quantify the risks 

and benefits of alternative methods. The same stands for the case where the 

evaluation of the service life extension potential returns as an outcome in a brief 
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period, which cannot justify the extension. If it is economically and technically 

feasible to extend service life, continuing to use the assets through their standard 

operational management process, and after evaluation of environmental, 

schedule and cost risks, service life extension should be chosen as the most 

appropriate option. If these risks cannot be evaluated and/or controlled, this 

should inform the techno-economic assessment and explore the strategies 

further. If this option is not economically or technically feasible, the option of 

repowering some or all of the units should be explored. If related risks can be 

evaluated and controlled, these options qualify; if not, decommissioning should 

be selected as the preferred option. 

The framework presented above aims to structure the decisions of stakeholders, 

linking the top question with the primary option that are listed on the bottom. It is 

deliberately intended to stand as a generic framework that should balance costs 

and risks through appropriate quantitative assessments. It should be noted that 

it is essential to involve internal and external stakeholders, organisational 

strategies, and the applicable regulatory frameworks that could enable or make 

specific strategies less favourable.  
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  Uncertainties on influencing factors 

Providing accurate estimations for environmental impact, schedule and cost 

impacts plays a vital role in selecting end-of-life strategies. Lack of data and 

experience, specifically from offshore wind energy assets, are the main limitations 

for an accurate estimation at the moment. Cost estimations published so far seem 

to be very often and sometimes cannot be generalised to conclude applicable to 

assets deployed in different conditions. Assumptions around factors such as the 

cost of cable removals, seabed monitoring, and increased maintenance 

requirements during the extended period can introduce significant uncertainty in 

calculating the updated life cycle costs. Availability of vessels imposes a further 

delay on schedule and cost due to the limited fleet that can handle heavy lifting 

operations. Operational limits of vessels will also introduce schedule uncertainty. 

Finally, restoring the natural environment to its pre-deployment condition 

presents requirements such as site monitoring and remedial actions that can 

impact costs and schedules.  

This study developed a framework that will consider multiple criteria in the 

decision-making process, presenting and discussing available technologies and 

strategies, as well as influencing factors such as schedule, cost and 

environmental impact. Service life extension, repowering and decommissioning 

are included in this study as the leading end-of-life strategies considered by asset 

owners.  
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 Decommissioning vs Repowering of offshore wind farms – 

a techno-economic assessment 

 

 

With many OWT approaching the second half of their service life, determining 

the most applicable end-of-life scenario becomes crucial. This chapter proposes 

a techno-economic framework for the study and comparison of two critical end-

of-life scenarios: repowering and decommissioning. Service life extension has 

not been evaluated in this study as the approach of quantifying the underlying 

costs would be different and demand a fully integrated cost model with detailed 

modelling of the O&M phase.  In the case of accepting the repowering strategy 

as EoL scenarios, the initial service life of 20 years is assumed for the farm, and 

then  OWF will be repowered with a turbine of the same capacity. There might 

be other repowering strategies; however, the current one is identified as more 

practical for the study regarding technical assumption, the determined cost of 

components and the installation process. 

Results from a detailed economic assessment have been developed to 

calculate the LCOE based on the Capital expenditure (CAPEX), Operational 

and maintenance expenditure (OPEX), Decommissioning and disposal (D&D) 

or Repowering cost to achieve an optimal strategy. Several variables influence 

the techno-economic framework for comparison of two critical end-of-life 

scenarios in terms of investment planning, such as an unstable energy market. 

To this end, it is meaningful to transition from a deterministic to a stochastic 

assessment. The uncertainty in the analysis is considered systematically as 

results are presented and discussed deterministically and stochastically. 

 

Results from the deterministic analysis clearly show that the option of repowering 

is the prevailing one as, although it involves the cost of acquisition of the new 

turbine and critical components, it has a reduced P&A cost compared to the 

decommissioning option. The results of the stochastic analysis reveal that the 

AEP and the energy yield parameter play a significant role in calculating LCoE 
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across the different scenarios. This implies that these parameters should be 

evaluated as accurately as possible, and at the same time, underlying 

uncertainties should be reduced, narrowing the scatter around the expected 

values. The certainty equivalent indicates a fixed value of LCoE, which the 

decision maker should be indifferent towards, relative to the uncertain LCoE they 

face. At the same time, the RP suggests the amount of money that should be 

paid to decrease the uncertainty. Among the different options, repowering again 

performs better with a lower value of RP and certainty equivalent. A full 

repowering scenario is found as an overall chance under the assumptions 

viewed, with a lower risk premium and certainty equivalent to other methods.The 

decision of the most appropriate EoL scenario should be based on risk, and 

techno-economic assessment and the proposed approach considers both 

factors. There are, however, practical issues that the decision maker should 

consider. For repowering, the capacity of the critical infrastructure should denote 

the extent to which repowering can be realised, both in aspects of the number of 

positions considered and the maximum capacity that the offshore substation can 

accommodate. Decommissioning should ensure that partial or full removal should 

be based on sound reasoning, and the process should be optimized to reduce 

operations and associated costs. Although the decommissioning process is 

considered part of the D&D stage, the specificities of investment and related 

assets, which account for the deployment location and integrity of the structures, 

should inform the final decommissioning plan. 
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 Selecting appropriate End-of-life scenarios for offshore 

wind farms based on multi-criteria decision-making method 

 

The selection of preferable EoL strategies has become very applicable as such 

a decision can increase profitability and reduce costs. Typically, the 

decommissioning should be considered even at the planning stage of the wind 

farm; however, before decommissioning occurs, repowering or service life 

extension may be pursued, taking into account any residual capacity of key wind 

farm components. This chapter identifies and determines the optimum EoL 

strategy regarding the condition of the farm. The decision regarding selecting the 

appropriate end-life scenario for the OW farm is involved various uncertainties, 

such as environmental factors. It is challenging for the owners to determine 

whether the repowering or decommissioning strategy for the end of the farm or 

beneficial to have a specified period as service life extension before any decision. 

The decision process is complex due to several uncertainties involved in the 

decision-making. To solve this issue, we introduce a methodological framework 

to guide decision-makers based on a comparative study of Multi-Criteria Decision 

Making (MCDM) techniques. In the first step, a comprehensive literature review 

identifies the main EoL strategies in the OW farm to achieve this aim and 

objectives. After this stage, the TOPSIS analysis as the MCDM method applies 

to select the EoL strategy.  

Attempts to find the most influential criteria should be defined for TOPSIS 

analysis by a literature review and brainstorming with experts. The data would be 

collected based on the designed questionnaire. For the TOPSIS method, which 

is deterministic, the criteria would be assumed to the fixed value. It would be 

tough to consider whole aspects of it to real model cases because modelling 

would be based on the expert’s idea, and his judgment might be unclear; in 

addition, it would be challenging to match human judgment with an exact numeric 

value. 
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NPV is recognized with the highest weight and follows with data availability for 

residual life estimation of subsystems. The type and number of turbines and 

foundations are the lowest among those criteria. This result indicates that experts 

pay close attention to technical performance and cost in selecting EoL strategies 

in offshore wind turbines. TOPSIS implies that the best alternative is comparable 

to the ideal scheme but is far from the worst scenario in the scheme sorting stage. 

Even though the combination of Service life extension and full decommissioning 

has nearly the same average score as full decommissioning, the combination of 

service life extension and partial decommissioning are selected as the best 

alternatives. While both repowering and partial Decommissioning are not far from 

each other, they are the lowest options compared to the rest. To further illustrate 

the effectiveness of our research, we compare it with the result of this research 

[4].  The result confirms the need for research to investigate the type of 

repowering strategies for the farm. Apart from this, the baseline decision matrix 

and weight are based on expert opinion. Currently, there is a lack of experience 

regarding EoL strategies in OW farms, which negatively influences the reliability 

of human judgment. The level of energy production based on the repowering 

strategy should be considered an essential factor. This confirms the benefits of 

quantitative criteria in MCDM to achieve more reliable result. 
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 Multivariate and univariate time series forecasting of ML 

models 

 

The planning procedure of EoL scenarios depends on contributors such as 

previous project experience, type of vessel selection, availability of trained crew 

and experts, weather and wave conditions, and distance to the port.The harsh 

environment can limit the operability of vessels during marine construction work. 

Storm waves can destroy infrastructure in offshore farm zones, cause economic 

damage, and threaten human life. The massive increase in the cost of any 

decision-related EOL operation might result from an inaccurate forecast of 

significant wave height. The approximate forecast of the wave height negatively 

influences the cost by limiting accessibility to the turbines, increasing the transfer 

time related to labour and vessels. Significant wave heights can be categorized 

into three main stages: mild level when considerable wave heights are less than 

1 m, moderate when multiple wave heights are between 1 and 2.5 m, and 

extreme when significant wave heights are more than 2.5 m. In general, the 

feasibility of construction, especially the lifting process by a floating crane, 

depends on the condition of the wave height. A higher quality of wave forecast 

will undoubtedly contribute to finding the suitable time for the construction 

activities regarding the EOL strategy and optimum lifting power. The result of 

accurate significant wave height forecasts helps decide whether to launch service 

vessels for offshore wind turbines farm. 

This work benefits from a novel probabilistic methodology based on multivariate 

and univariate time series forecasting of ML models, including LSTM, BiLSTM, 

and GRU, to assess significant wave height accuracy. These ML models are 

suitable frameworks to forecast complex systems due to using a dynamic 

behaviour of data based on their internal memories. The research presents a 

comparative performance of several ML methods regarding the accuracy-based 

multivariate and univariate time series forecasting in terms of the interaction of 

those quantitatively main features.  This makes uncertain forecast circumstances 
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easier due to their ability to investigate any nonlinear and complex function 

between significant wave height as output and other meteorological and 

oceanographic predictors as inputs. Apart from this, it considered the role of 

appropriate predictive variables selection for accurate forecasting.  

 

In the first step, the model runs without feature selection in the part of data 

preparation. The MAE and RMSE were implemented to consider the accuracy of 

execution of those models in multivariate and univariable data assumptions. 

According to most error measures, The BiLSTM has a high level of accuracy in 

time series forecasting compared to GRU and LSTM. The BiLSTM model has the 

lowest RMSE( 0.1219) and MAE (0.0794) to implement all variables as inputs. At 

the same, MAE and RMSE of the GRU model would drop by 2.91715% and 

2.6455%, respectively, compared with the LSTM model. Univariable conditions 

have the same trend regarding the performance of the two mentioned models. 

However, the univariate model's result proves that neglecting the influence of 

other variables such as wind speed would lead to smaller optimal forecasts with 

higher errors.In the second phase, the model is run based on feature selection. 

The correlation coefficient (CC) was implemented among different variables. The 

correlations between features and wave height are not varied highly.  

After identification and removal of the highly correlated feature, Tm(s), the 

multivariable model would run based on two different assumptions, including the 

removal of Tm(s) and removal of Tm(s) and H(s) as input. BiLSTM can result in 

more petite MAE (0.0795) and RMSE (0.1226). The result demonstrates the 

benefit of feature selection in result achievement in less time and cost 

consumption.
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Chapter 7  

7 Conclusion  

 

 A multi-attribute review toward effective planning of end-of-

life strategies for offshore wind farms 

 

With many offshore wind turbines approaching the end of their estimated 

operational life soon, there is an increasing demand for developing and 

evaluating end of life strategies that can maximise assets’ value while 

simultaneously satisfying stakeholders' requirements. This study aims to develop 

a framework that will take into account multiple criteria in the decision-making 

process, presenting and discussing available technologies and strategies, as well 

as influencing factors such as schedule, cost and environmental impact. Service 

life extension, repowering and decommissioning are included in this study as the 

main end of life strategies considered from asset owners. These are translated 

into four procedures applicable to offshore wind farms; repowering, 

abandonment, partial removal, and complete removal. A SWOT analysis is finally 

conducted to compare the different characteristics of the proposed procedures. 

The constraints contributing to the uncertainty of the processes as well as lessons 

learnt from the oil& gas industry are also discussed. 
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 Decommissioning vs Repowering of offshore wind farms – 

a techno-economic assessment 

 

Offshore wind turbines are normally designed for a nominal service life of 20 to 

25 years; however, with a significant number of units approaching the second half 

of their service life, the discussion of selecting the most appropriate end-of-life 

scenario becomes ever more relevant. Scenarios to be investigated mainly 

include decommissioning, repowering or service life extension, while such 

decisions depend on a number of criteria which should be taken into account and 

should ultimately inform a techno-economic assessment. This paper performs an 

initial comparative evaluation between two of these scenarios, repowering and 

decommissioning, through a purpose-developed techno-economic analysis 

model which calculates relevant key performance indicators. This is presented 

with a view to evaluating the impact of key influencing factors from a deterministic 

and stochastic approach while further adopting the economic model of risk 

aversion to calculate the certainty equivalent of LCOE based on each of the 

examined end-of-life scenarios. Applying to a typical, hypothetical offshore wind 

farm qualifies the full repowering scenario as the prevailing option under the 

assumptions considered, with a lower amount of risk premium and certainty 

equivalent to other scenarios. 
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 Selecting appropriate End-of-life scenarios for offshore 

wind farms based on  multi-criteria decision-making method 

 

Many Offshore wind turbines are approaching the second half of their service life, 

and the discussion on selecting the most appropriate end-of-life scenario in the 

next few years has become one of the major concerns for all the stakeholders. 

This study has reviewed the different end-of-life strategies for offshore wind farms 

and the influencing criteria for optimised decisions. 

Different alternatives have been assessed through a TOPSIS method as a multi-

criteria decision-making procedure to select an appropriate way according to 

environmental, financial, safety Criteria, Schedule impact, and Legislation and 

guidelines. Setting the right end-of-life scenario helps internal and external 

stakeholders maximize asset farms' profitability. This comprehensive study 

shows that the combination of service life extension and partial decommissioning 

are chosen as the best alternatives. While both repowering and partial 

Decommissioning are not far from each other, they are the lowest options 

compared to the rest. NPV is recognized as the most substantial influence, and 

the type and the number of turbines and foundations are the weakest among 

those criteria. 
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 Comparative performance of Multivariate time series 

forecasting based on various DL models to consider effective 

planning of end-of-life strategies for offshore wind farms 

 

Accuracy forecasting significant wave height is one of the primary needs for 

planning and scheduling those main activities of EoL scenarios. This short or 

long-term forecasting accuracy provides the chance to mitigate uncertainties in 

planning the EoL scenarios regarding offshore wind accessibility and operation. 

This work benefits from a novel probabilistic methodology based on multivariate 

and univariate time series forecasting of ML models, including LSTM, BiLSTM, 

and GRU, to assess significant wave height accuracy. These ML models are 

suitable frameworks to forecast complex systems due to using a dynamic 

behaviour of data based on their internal memories. Paper presents a 

comparative performance of several ML methods regarding the accuracy-based 

multivariate and univariate time series forecasting in terms of the interaction of 

those quantitatively main features.  This makes uncertain forecast circumstances 

easier due to their ability to investigate any nonlinear and complex function 

between significant wave height as output and other meteorological and 

oceanographic predictors as inputs. Apart from this, it considered the role of 

appropriate predictive variables selection for accurate forecasting. The BiLSTM 

model achieves the lowest RMSE and MAE in terms of implementation of various 

variables.  
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 Contribution to knowledge 

This research contributes to understanding in a novel, scientifically sound form 

and provides value to stakeholders. Three scientific journals and four peer-

reviewed scientific conference papers have been successfully published. 
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Section: A multi-attribute review toward effective planning of end-of-life strategies for offshore wind farms. 

Novelty 

This study performs a detailed review and 

develops a framework that will evaluate 

multiple criteria in the decision-making 

process regarding selecting end-of-life 

strategies.  The research discussed 

available technologies, methods and 

factors such as schedule, cost and 

environmental impact in the methodology 

of end-of-life strategies selection.  Service 

life extension, repowering and 

decommissioning are included in this 

review as the main end-of-life strategies. 

 

Value 

A detailed study of the literature has shown an insufficiency of 

suitable frameworks which can oversee decisions on available 

strategies based on the particular characteristics and influencing 

factors. 

The study assessed the different end-of-life strategies for offshore 

wind farms, known technical possibilities and the influencing factors 

that declare such findings to deal with this issue. In addition, 

Different options have been qualitatively evaluated via a SWOT 

analysis. In the second part, This research indicated a multi-attribute 

framework for allowing optimum decisions regarding significant 

conditions, such as the possibility of end-of-life strategies based on 

certain features and influencing factors. 

This systematic literature review concentrates on the most relevant 

subjects published in high-quality science journals regarding end-life 

scenarios of OWF since 2010. 

Scientific soundness 

The study is not just of interest to 

researchers and academics but also 

provides the opportunity to internal and 

external stakeholders to maximis the 

profitability of offshore farms while 

decreasing those significant risks involved in 

the safety, technical, and environmental 

aspects. The paper has already been cited  

and read  many times based on the stats 

from Elsevier (2022), Mendeley (2022), and 

ResearchGate (2022). 
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Section:  Selecting appropriate End-of-life scenarios for offshore wind farms based on multi-criteria decision-making method. 

Novelty 

This work identifies and determines the 

optimum EoL strategy regarding the 

condition of the farm. The owner found it 

difficult to decide whether the repowering 

or decommissioning strategy for the end of 

the farm or beneficial to have a specified 

period as service life extension before any 

decision. The research introduces a 

methodological framework based on a 

comparative study of widely-applied Multi-

Criteria Decision Making (MCDM) 

techniques. 

Value 

In the first step, the main EoL strategies in the offshore 

wind farm have been specified based on the 

comprehensive literature review. The research 

investigated the most effective criteria through a 

literature review and brainstorming with experts. The 

questionnaire has been designed to gather the data, 

and then TOPSIS analysis as the MCDM approach 

involves determining the appropriate EoL approach. 

The result delivers an integrated evaluation of several 

economic, social, environmental, and technical criteria. 

Scientific soundness 

The research presents a methodological 

framework based on a comparative study of the 

Multi-Criteria Decision Making (MCDM) 

technique. Setting the privilege end-of-life 

scenario supports internal and external 

stakeholders maximize asset farms' profitability. 

The preferable selection of EoL scenarios 

decreases costs and enhances asset profitability 

in the offshore farm.  The outcome would be 

beneficial for both the researchers and the owner 

of an offshore farm concerning the challenge of 

whether the repowering or decommissioning 

strategy for the end of the farm or beneficial to 

have a specified period as service life extension. 



 

134 

 

 

 

Section: Decommissioning vs Repowering of offshore wind farms – a techno-economic assessment. 

Novelty 

Comparative assessment between two of 

these EoL strategies, repowering and 

decommissioning through a techno-

economic model. 

Value 

Research developed a techno-economic computation 

framework base on LCOE to assess the consequence of 

key influencing factors from a deterministic and stochastic 

technique. It adopted the economic model of risk aversion 

to calculate the certainty equivalent of LCOE based on 

individually of the studied end-of-life scenarios. LCOE is 

computed based on the Capital expenditure (CAPEX), 

Operational and maintenance expenditure (OPEX), 

Decommissioning and disposal (D&D) or Repowering cost 

in order to encounter the optimal strategy. Furthermore,  A 

plausibility assessment, as well as the shift from a 

deterministic to a stochastic computation to deal with 

considerable uncertainty regarding the number of variables 

that influence cost modelling, approved the suggested 

framework. 

Scientific soundness 

 

The study is attractive for researchers and 

academics.  Outcomes of this work will be 

advantageous for the owner of OW farm to have a 

clear financial assessment associated with end-of-

life scenario selection. 

The article has already been mentioned  and reads 

multiple times based on the stats from Elsevier 

(2022), Mendeley (2022), and ResearchGate 

(2022). 
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Section: Comparative performance of Multivariate time series forecasting based on various deep learning models to consider effective planning of end-of-

life strategies for offshore wind farms. 

Novelty 

This Planning and scheduling activities involved in the 

preferred end-of-life (EoL) scenario has become 

challenging. Major environmental parameters such as 

significant wave height can have a negative influence 

on the process of planning. In this research, a novel 

probabilistic methodology based on various models, 

including Long short-term memory (LSTM), 

Bidirectional long short-term memory (BiLSTM), and 

Gated recurrent unit (GRU), proposed to consider 

those main features as multivariate and univariate 

time series in the accuracy of forecasting significant 

wave height. This research reveals the value of 

feature selection in suggested multivariate or 

univariate time series wave height forecasting and 

claims that a strong correlation does not necessarily 

have a substantial causality of results 

accuracy.techniques. 

Value 

In this research, a novel probabilistic methodology 

based on various models, including LSTM, BiLSTM 

and GRU proposed to consider those main features 

as multivariate and univariate time series in the 

accuracy of forecasting significant wave height. 

This research takes action regarding missing data and 

intervention to improve the quality of data and data 

consistency. Two separate sections have been 

assumed based on the various cases to understand 

better the role of feature selection.Pearson 

correlations were used to determine the correlations 

among features. This helps to determine which 

parameters have the highest impact on each other.  It 

is vital to approve the accuracy of forecasting those 

proposed models. The root means square error 

(RMSE) and the mean absolute error (MAE) are 

selected as the model performance metrics to 

evaluate the accuracy. 

Scientific soundness 

Accurate forecasting of significant wave 

height prediction is essential for the 

planning and operating of maritime 

activities regarding hazard warnings and 

safety. Having reliable estimation of wave 

height as a vital parameter in wind farms 

provides this opportunity to have safer with 

less cost regarding the marine 

transportation, crew transfer, and 

decommissioning or repowering process. 

Characterizing waves helps to have 

reliable forecasting; however, it is difficult 

due to its stochastic nature. The uncertain, 

nonlinear, and non-stationary physical 

process of wave generation estimates 

wave height prediction challenging. 
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7.6 Future research  

The optimal end-of-life strategy is a decision that should evaluate prices and risks 

and be supported by available data and a multi-criteria approach, considering 

influencing factors and available technological options. Due to the limited 

experience in wind farms having already reached the end of their nominal service 

life, further research on how such decisions could be better supported, e.g. 

through detailed integrity assessment frameworks, extended life cycle cost 

evaluation models or additional technological options. 

Techno-economic assessment benefits from high-fidelity cost modelling for 

assessing the two scenarios, taking into account key influencing factors 

contributing to cumulative costs rather than informing decisions through a 

qualitative assessment. This topic is timely as the number of wind turbines 

approaching the end of their nominal service life is rapidly growing. Limitations of 

this work are the restricted literature on the techno-economic assessment of EoL 

scenarios, the scarcity of data related to service life extension and 

decommissioning processes, and the lack of accurate reliability data, which 

would authorise consideration of other methods. To this end, and to further 

advance the proposed concept, several additional topics can be investigated to 

create a more holistic impact assessment model: 

           The analysis can also include service life extension as an alternative 

scenario through a fully integrated techno-economic model and reliability failure 

data currently unavailable.  

           More representative modelling of stochastic variables, considering more 

data becoming available from the first full-scale wind farms to be 

decommissioned, can add further value to the current findings and serve the 

purpose of validating this approach.  

           Investigation of the sensitivity of each EoL alternative to critical influencing 

factors related to the deployment location, such as distance from the port, water 
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depth and wind shear, can provide valuable insights into the most relevant 

strategies. The result of MCDM regarding EoL strategies in OW farms confirms 

the need for research to investigate the type of repowering strategies for the farm. 

Apart from this, the decision matrix and weight foundation are based on an expert 

view. A survey was conducted of 10 experts with seven to twenty years of 

effective practical experience and scientific background in the offshore renewable 

energy industries and marine environmental science. The survey participants 

contained: three offshore engineers, two academic renewable energy 

experts,two marine environmental scientists and two commercialisation experts 

with an energy economics background and one principal researcher with 

expertise in UK energy and resource law. 

Currently, there is a lack of background regarding EoL strategies in OW farms, 

which negatively impacts the reliability of human decisions. The level of energy 

production based on the repowering strategy should be considered an essential 

factor. In the coming study, it is essential to provide the MCDM regarding optimal 

end-of-life strategy selection based on more quantitative criteria and compare the 

result with this research. 

This work uses a novel probabilistic methodology based on multivariate and 

univariate time series forecasting of ML models, including LSTM, BiLSTM, and 

GRU, to forecast significant wave height accuracy. These ML models are 

appropriate frameworks to indicate complex systems due to using a dynamic 

behaviour of data based on their internal memories. The novel probabilistic 

methodology could be developed further by applying other ML models-based 

time-series methods to forecasting significant wave height. In addition, correlation 

analysis is implemented to avoid the irrelevant variables in meteorology and 

oceanography to unnecessarily increase the cost, running forecasting time of a 

prediction system and degrade its generalisation. Accurate forecasting is 

essential for the planning and operating of maritime activities regarding hazard 

warnings and safety. Having reliable estimation of wave height as a vital 

parameter in wind farms delivers this opportunity to have safer with less cost 
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regarding the marine transportation, crew transfer, and decommissioning or 

repowering process.In future work, it is necessary to find a method to avoid 

irrelevant variables based on the causal analysis to improve the accuracy of the 

result. 
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Appendix: Comparative performance of Multivariate 

time series forecasting based on various deep learning 

models to consider effective planning of end-of-life 

strategies for offshore wind farms. 

The distribution of selected features during the one, three, and twenty years 

studied is shown in Table 7 and figures 28 to 35. This helps to understand better 

the modification of those features regarding time and provides more clarification 

regarding ML model selection for forecasting. 
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Figure 28.Distribution of significant wave height during the one, three, and 

twenty years period of studies.  
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Figure 29.Distribution of Wind speed during the one, three, and twenty years 

period of studies. 
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Figure 30.Distribution of wind direction during the one, three, and twenty-year 

period of studies. 
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Figure 31.Distribution of peak wave direction during the one, three, and twenty 

years period of studies. 
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Figure 32.Distribution of zero-crossing wave period during the one, three, and 

twenty years period of studies. 
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Figure 33.Distribution of mean wave period during the one, three, and twenty 

years period of studies. 
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Figure 34.Distribution of peak period during the one, three, and twenty-year 

period of studies. 
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Figure 35.Distribution of mean wave direction during the one, three, and twenty 

years period of studies. 
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Figures 28 to 35 illustrate the change in those essential features based on each 

year's season. The winter and spring months show a high increase in those 

selected parameters. The figures confirm that these features do not change much 

from year to year between 3 and 20 years. 
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Appendix: Process of the TOPSIS method 
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Alternatives Si+ Si- Pi Rank  

Partial 
Decommissioning 

(internal Cut) 

0.181136981 0.157028366 0.464353806 5 

Full Decommissioning  0.175240651 0.215830118 0.551895296 2 

Repowering 0.206011658 0.190710787 0.480715899 4 

Service life extension 
+Full 

Decommissioning   

0.172399384 0.211040479 0.550387426 3 

Service life extension 
+Partial 

Decommissioning  

0.144636638 0.206475353 0.58806124 1 
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Appendix: Create GRU model in python 

 

def create_gru(units): 

    model = Sequential() 

    # Input layer of forecasting of significant wave height model1 

    model.add(GRU (units = units, return_sequences = True,  

                 input_shape = [X_train1.shape[1], X_train1.shape[2]])) 

    model.add(Dropout(0.2))  

    # Hidden layer of forecasting of significant wave height model1 

    model.add(GRU(units = units))                  

    model.add(Dropout(0.2)) 

    model.add(Dense(units = 1))  

    #Compile forecasting of significant wave height model1 

    model.compile(optimizer='adam',loss='mse') 

    

    return model 

model_gru = create_gru(64) 
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Appendix:  Create LSTM in python 

def create_model(units, m): 

    model = Sequential() 

    # First layer of LSTM Model for forecasting of significant wave height  

    model.add(m (units = units, return_sequences = True,  

                 input_shape = [X_train2.shape[1], X_train2.shape[2]])) 

    model.add(Dropout(0.2))  

    # Second layer of LSTM Model for forecasting of significant wave height  

    model.add(m (units = units))                  

    model.add(Dropout(0.2)) 

    model.add(Dense(units = 1))  

    #Compile model for forecasting of significant wave height 

    model.compile(loss='mse', optimizer='adam') 

     

     

    return model 

model_lstm = create_model(64, LSTM) 
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Appendix:  Create BiLSTM model in python  

def create_bilstm(units): 

    model = Sequential() 

    # Input layer for forecasting of significant wave height Model 3 

    model.add(Bidirectional(LSTM(units = units, return_sequences=True),  

                            input_shape=(X_train3.shape[1], X_train3.shape[2]))) 

    # Hidden layer for forecasting of significant wave height  

    model.add(Bidirectional(LSTM(units = units))) 

    model.add(Dense(1)) 

    #Compile model3 for forecasting of significant wave height  

    model.compile(optimizer='adam',loss='mse') 

    return model 

 

model_bilstm = create_bilstm(64) 
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