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Abstract

Manipulation of microscopic droplets in microfluidic devices is important to many

research areas and associated industries such as pharmaceutical and chemical in-

dustries. Many underlying mechanisms for droplet formation, transportation and

interactions with other droplets or surface are still poorly understood, theoretical

models and numerical simulations are urgently required to improve our knowl-

edge of droplet behavior in microdevices. In recent years, the lattice Boltzmann

method (LBM) has emerged as a novel numerical method for multiphase flow

simulations. It is built upon the resolution of physics at a mesoscopic level and

thus can provide many advantages of molecular dynamics while having many

favorable features such as simplification of nonlinear modeling, computational ef-

ficiency and accuracy, and the capability of dealing with complex boundaries. In

this thesis, the lattice Boltzmann phase-filed models are developed and applied

to investigate the droplet dynamical behavior in microfluidic systems with and

without surfactants, with the focuses on the influence of physical parameters on

droplet formation in confined microchannels, and how the surfactant adsorption

influences the droplet deformation, breakup and coalescence.

First, we present an improved lattice Boltzmann model for a binary fluid, us-

ing the phase-field theory to describe the interfacial interactions, with the purpose

of reducing the spurious velocities and easily incorporating the wetting boundary

conditions. After extensive model analysis and validations, the model is applied

to simulate the droplet formation in a microfluidic T-junction. The influence of

capillary number, flow rate ratio, viscosity ratio and contact angle is systemati-

cally examined in the droplet generation process. Regardless of flow rate ratio,

viscosity ratio and contact angle, it is clearly observed that the transition from

the squeezing regime to the dripping regime occurs at a critical capillary number

of 0.018. In the squeezing regime, the squeezing pressure plays a dominant role in

the droplet breakup process, which arises when the emerging interface obstructs

the main channel. The droplet size depends on both the capillary number and

the flow rate ratio, but is independent of the viscosity ratio under completely

hydrophobic wetting conditions. In the dripping regime, the droplet size is signif-

icantly influenced by the viscosity ratio as well as the built-up squeezing pressure.

When the capillary number increases, the droplet size becomes less dependent on



the flow rate ratio. The contact angle also affects the droplet shape, size and de-

tachment point, especially at small capillary numbers. More hydrophobic wetting

properties are expected to produce smaller droplets. Interestingly, the droplet size

is dependent on the viscosity ratio only for less hydrophobic wetting conditions.

Considering the difference in channel geometry, the numerical simulations are

also performed to understand the dynamics of droplet formation in a microfluidic

cross-junction. Two different regimes, namely the squeezing-like regime and the

dripping regime, are clearly identified with the transition occurring at a critical

capillary number Cacr = 0.01. Generally, large flow rate ratio is expected to

produce big droplets, while increasing capillary number will reduce droplet size.

In the squeezing-like regime (Ca ≤ Cacr), droplet breakup process is dominated

by the squeezing pressure and the viscous force. The droplet size exhibits a

power-law dependence on the capillary number with the power-law exponent

independent of the flow rate ratio. In the dripping regime (Ca > Cacr), the

viscous force is dominant and the droplet size becomes quickly independent of

the flow rate ratio as the capillary number increases. In addition, the droplet size

weakly depends on the viscosity ratio in both regimes and decreases when the

viscosity of the continuous phase increases. Finally, a scaling law is established

to predict the droplet size.

It has been found by a number of experiments that the presence of surfac-

tants can significantly affect the droplet dynamical behavior in a microfluidic

system. A lattice Boltzmann phase-field model, with a generalized free energy

functional to describe the system, is proposed for simulating droplet motion with

soluble surfactants. The model can recover the Langmuir and Frumkin adsorption

isotherms in equilibrium. From the equilibrium equation of state, one can deter-

mine the interfacial tension lowering scale according to the interface surfactant

concentration. The model is able to capture short-time and long-time adsorption

dynamics of surfactants. The model is also applied to examine the effect of sol-

uble surfactants on droplet deformation, breakup and coalescence. The increase

of surfactant concentration and attractive lateral interaction can enhance droplet

deformation, promote droplet breakup, and inhibit droplet coalescence. We also

demonstrate that the Marangoni stresses can reduce the interface mobility and

slow down the film drainage process, thus acting as an additional repulsive force

to prevent the droplet coalescence.
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Chapter 1

Introduction

1.1 Background

Microfluidics is a research area that studies dynamics of fluids that are geometri-

cally restricted to small, typically sub-millimeter scales. It has developed rapidly

since the 1980s. Historically, the first applications of microfluidics were initiated

by the generalization of ink jet printing, and also to some extent by space applica-

tions, in which droplets are used to feed micro-motors. Today, rapid development

of microfabrication technologies has facilitated a broad range of microfluidic ap-

plications especially in biological and chemical analysis/synthesis and associated

industries. Microdroplet technology has recently emerged as a promising flexi-

ble platform for microfluidic functions. As samples/reagents are confined in the

droplets so that sample dilution caused by Taylor dispersion [1] can be avoided,

and mixing performance can be improved [2]. In addition, it can avoid sam-

ple/surface interaction and thus eliminate surface adsorption and cross sample

contamination. The miniaturization of the entire process enables the rapid anal-

ysis of very small quantities of droplet samples in a portable, automated and

inexpensive format [3]. Recently, microdroplet technology has enabled droplets

to be used as microreactors for chemical analysis and protein crystallization [4,5],

as molds for curing polymeric microspheres [6, 7]. Furthermore, programmable

fluidic assays for sampling glucose concentration of human physiological fluids [8]

and DNA analysis [9] have been individually demonstrated using a microdroplet

system. For all these applications, it is crucial to control and predict the flow be-

havior. Unlike in conventional devices, droplets rarely coalesce with each other in

microfluidic systems. So the flow behavior is mainly located in the region where
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various phases meet. In other words, all the important phenomena occur in the

region of the droplet formation.

Over the past few years, numerous experiments have highlighted the advances

being made in the field of droplet formation using a variety of microfluidic devices,

including geometry-dominated devices [10, 11], flow-focusing devices [12–16], T-

junctions based on cross-flowing rupturing technique [17–23] and co-flowing de-

vices [24, 25]. Due to the small length scales involved, the flow of the dissimilar

fluids falls in the laminar regime, which enables a higher degree of control of the

droplet generation process. The large surface area to volume ratio enhances the

role of surface effects. These unique characteristics can offer broad prospects in

the development of novel applications exploiting the benefits of miniaturization.

However, the droplet dynamics in microfluidic devices is very complicated. Many

coupled factors will affect the droplet generation, transportation and interaction,

e.g. the interfacial tension, the wetting properties of solid walls, the confinement

of channel geometry, the flow rates of both fluids and their viscosities. In order to

gain a full understanding of flow physics and thus improve designs of microfluidic

devices, it is essential to have comprehensive studies of such multiphase systems.

Although significant efforts have been made to understand the underlying

mechanisms of droplet generation, transportation and interaction in these con-

fined microfluidic geometries, the currently available experimental data are still

sporadic. Various materials are used to fabricate the channels with different

dimensions, while the experiments are operated under a wide range of flow con-

ditions with different fluids. Consequently, the information is fragmented, which

leads to inconclusive and even contradictory findings. In addition, experiments at

such small scale are still difficult. For example, it is challenging to accurately mea-

sure droplet size, pressure and velocity fields, and droplet deformation, breakup,

and coalescence. As the surfactants are deliberately introduced into the microflu-

idic system to keep the droplets stable, it is impractical to dynamically measure

the local surfactant concentration or interfacial tension. Theoretical approaches

(e.g. lubrication theories) can only describe the limiting droplet behavior (e.g.

pinching or film-drainage rates) of the geometrical and field variables at the on-

set of breakup and coalescence transitions based on simplified assumptions on

geometry (e.g. one-dimensionality), fluid and flow conditions. Direct numerical

simulations can accurately simulate the droplet dynamics in principle without

relying upon simplifying assumptions, and provide more detailed information on

various factors which influence the droplet behavior, and their interactions. Hope-
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fully, deeper insights into the mechanisms will be gained at a lower cost especially

with the fast development of computing power.

To numerically simulate the droplet dynamics in microfluidic devices, typ-

ically, either an interface-tracking or an interface-capturing method is applied.

In these approaches, the multiphase flows are usually simulated by solving the

Navier-Stokes equations coupled with a scalar equation to track or capture the

interface. Interface-tracking methods are not suitable for simulating droplet

breakup and coalescence, because the interface must be manually ruptured based

upon some ad-hoc criteria [26]. Interface-capturing methods can naturally deal

with droplet breakup and coalescence. Among these methods, the volume-of-fluid

(VOF) and the level set method are most common. Both of them solve a pure

advection equation for the interface in the Eulerian frame. However, the interface

reconstruction is required in VOF to determine the interfacial tension force and

calculate the flux across the interface. This process can be time-consuming and

not always physically consistent [28]. Also, most of the VOF interface recon-

struction schemes only have first order of accuracy. The level set method uses a

signed distance function to represent the interface. It requires a re-initialization

procedure to keep the distance property when large topological changes occur

around the interface. This may violate the mass conservation for each phase or

component. In addition, VOF and level set methods will experience numerical

instability at the interface region when the interfacial tension is dominant in in-

terfacial dynamics for small droplets [27]. As to the modelling the fluid-surface

interactions, VOF and level set methods often rely on explicitly finding the inter-

face position and impose the contact angle or some sophisticated predetermined

model on the interface near the wall surface, which usually has little physical

basis or needs a complicated numerical scheme.

Surfactant molecules typically consist of a hydrophilic head and a hydropho-

bic tail. They accumulate at the fluid interfaces forming a buffer zone between

the continuous phase fluid and the droplet fluid molecules, thereby lowering the

interfacial tension. In the droplet formation, surfactants can increase the droplet

stability and are also a means of modifying the surface properties which can re-

sult in control of which phase will constitute the dispersed and continuous phase.

Besides, the addition of surfactants can also result in better monodispersity, this

is due to a more focused point of necking of the liquid thread entering the main

channel. These benefits have enabled the surfactants to be widely used in nu-

merous important scientific and engineering applications [29–31]. Computational
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modelling interfacial dynamics with soluble surfactants in a multiphase system is

a daunting task, because the interaction between the surfactants and the flowfield

is highly non-linear. Most previous numerical work on surfactants has utilized

the sharp interface models with an equilibrium equation of state relating dynamic

interfacial tension to local surfactant concentration, which require complicated

algorithms and extremely high computational cost. Also, these methods are all

built upon the conservation laws at the macroscopic level, which have been devel-

oped from the original model proposed by Stone and Leal [32]. Although these

methods have been successfully applied to simulate interfacial flows in a ternary

system, i.e. oil/water emulsions with surfactants, they commonly suffer from sev-

eral drawbacks: (i) dynamic interfacial tension relies on an asserted equilibrium

equation of state, which is also assumed to be valid beyond the equilibrium states;

(ii) for interfacial flows with soluble surfactants, mass transfer between the inter-

face and the bulk fluids requires an external boundary condition, which cannot

uniquely arise from the model itself; (iii) model extension for more complicated

systems, such as ionic surfactant solutions, is not easy [33]; (iv) numerical stabil-

ity becomes a serious challenge for the flows with large topological changes, such

as droplet breakup and coalescence.

As one of the interface-capturing methods, the phase-field method resolves

the interface structure via an appropriate free energy functional based on Cahn-

Hilliard theory [81]. Interfacial events evolve naturally based on the minimization

of the interface free energy and the interface sharpness is preserved automatically.

The numerical solution does not suffer from the drawbacks of other interface-

capturing methods, such as interface reconstruction, re-initialization and mass

loss, and thus it does not require additional algorithms to correct interface fea-

tures or to remove oscillations. Meanwhile, the smooth representation of the

interface as a transition region prevents the numerical difficulties caused by the

interface singularities. Therefore, the droplet breakup, coalescence and the con-

tact line dynamics can be modelled with much ease in the phase-field model. It

also allows stable discretization of the gradient terms in the interfacial tension

force in momentum equations, which provides a numerical advantage in deal-

ing with small droplets in comparison with VOF and level set methods. As a

mesoscopic-level model, phase-field model provides the flexibility of using a free

energy based description to model complex material properties and the interac-

tion between these materials. This is of great potential for modelling the inter-

facial flows with surfactants. Due to these notable features, we aim to develop
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phase-field models to describe and understand the droplet dynamics in microflu-

idic devices. The phase-field models will be solved using a recently developed

computational approach, i.e. the lattice Boltzmann method (LBM). LBM is a

pseudo-molecular method tracking evolutions of the distribution function of an

assembly of molecules and built upon microscopic models and mesoscopic kinetic

equations. Due to its kinetic nature, the LBM has several advantages over the

traditional computational fluid dynamics (CFD) methods: reduction from second

order to first order partial equations, simplification of nonlinear modelling, com-

putational efficiency and accuracy, simple fluid interface boundary conditions,

and a mathematical framework allowing molecular level modelling. Therefore,

the LBM has developed to be a very efficient numerical tool to simulate the

droplet dynamics in microfluidic devices in which the interface between different

phases and the contact line dynamics on the solid surface are essentially at the

mesoscopic level [34], bridging the gap between the microscopic molecular world

to the macroscopic hydrodynamics.

1.2 Objectives

To describe a binary fluid, the free energy model proposed by Swift et al. [35] vio-

lates the Galilean invariance, produces large spurious velocities near the interface,

and can lead to incorrect prediction for the equilibrium contact angle when both

fluids have different viscosities [36]. To overcome these limitations, an improved

LB phase-field model will be proposed to simulate the binary fluid with a simple

wetting boundary treatment. It has been found theoretically and experimentally

that the droplet dynamical behavior can be characterized by some dimensionless

parameters in microfluidic devices. The improved lattice Boltzmann model will

be applied to investigate the influence of these dimensionless parameters on the

droplet formation in a microfluidic T-junction and cross-junction, respectively.

The simulation results will be qualitatively and quantitatively compared with

some existing experimental and simulation results with some scaling models ex-

amined. Using the traditional CFD methods for soluble surfactants is challenging

and has a few major shortcomings. Due to its intrinsic physics basis, the phase-

field model has shown promise to model and simulate the interfacial flows with

surfactants. However, significant effort is still required to improve this model for

a realistic oil/water/surfactants system. We will present a generalized phase-field

model in the framework of LBM to simulate the adsorption of surfactants at the
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interface and its effect on the droplet dynamics. In summary, the objectives of

this thesis mainly are:

1. Establishing an improved LB phase-field model for a binary fluid;

2. Investigating the droplet formation in a microfluidic T-junction and a cross-

junction and identifying the breakup mechanisms of droplets in confined

geometries;

3. Developing a generalized phase-field model for interfacial flows with soluble

surfactants, and understanding the role of surfactants in droplet deforma-

tion, breakup and coalescence.

1.3 Outline of thesis

In Chapter 2, we will first review the microfluidic methods for generating uniform

dispersed-phase droplets, focusing on those that utilize pressure-driven flows. We

will report the experimental and numerical observations with particular emphasis

on the results in the context of physical mechanisms for droplet breakup and

simple theoretical models that have been proposed. Also, we will emphasize the

influence of surfactant adsorption on droplet formation in microfluidic geometries.

Then, we will discuss the various numerical methods which have been employed to

model interfacial two-phase flows, and interfacial flows with surfactants. Finally,

this chapter will conclude with a summary of remaining challenges, and how we

are going to tackle them.

In Chapter 3, we will describe the phase-field lattice Boltzmann model for

a binary fluid. We will address the improvements in reducing the spurious ve-

locities and implementing the wetting boundary conditions. Also, a stress-free

outflow boundary condition will be proposed to conserve the total mass of flow

in the system and improve the numerical stability for flows with low Reynolds

number. In Chapter 4, the model will be extensively validated by the benchmark

cases including the Laplace’s law, the static contact angles at solid surface, the

merging and non-merging behavior of two stationary droplets without collision.

Afterwards, this model will be employed to simulate the droplet deformation,

breakup, glancing collision with coalescence and separation under simple shear

flow. Finally, we will carry out the simulations of a droplet attached on a solid
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wall in simple shear. These simulations will demonstrate that our improved LB

model is able to model contact-line motion.

In Chapter 5, 2D numerical simulations will be performed to understand the

mechanisms of droplet formation in a microfluidic T-junction. We will systemat-

ically examine the influence of capillary number, flow rate ratio, viscosity ratio,

and contact angle in the droplet generation process. In addition, we will investi-

gate how droplet generation transits from the squeezing regime to the dripping

regime.

Experimental observations have identified that the mechanisms of droplet

formation are discrepant in a microfluidic T-junction and cross-junction. As a

flow-focusing device, a cross-junction has also shown to generate highly uniform

droplets/bubbles. In Chapter 6, our model will be used to further study the in-

fluence of capillary number, flow rate ratio, viscosity ratio, and viscosity of the

continuous phase on droplet formation in a microfluidic cross-junction. A scaling

law will be established to predict the size of droplets.

The capillary effect usually plays a dominant role in a microfluidic system,

and the presence of surfactants at the interface will greatly modify interfacial ten-

sion. Therefore, surfactants are expected to significantly alter droplet dynamical

behavior in microfluidic devices. In Chapter 7, a generalized phase-field model

will be proposed for simulating droplet motion with soluble surfactants, which

can have different solubility in immiscible bulk phases. The model will be shown

to recover the well-known Langmuir and Frumkin adsorption isotherms in equi-

librium. From the equilibrium equation of state, we can determine the interfacial

tension lowering scale according to the interface surfactant concentration. The

model will also be tested against the classical Ward-Tordai problem. The model

will then be applied to examine the effect of soluble surfactants on droplet defor-

mation, breakup and coalescence in a simple shear flow. It will be shown that the

increase of surfactant concentration and attractive lateral interaction can enhance

droplet deformation, promote droplet breakup, and inhibit droplet coalescence.

We will also demonstrate that the Marangoni stresses can reduce the interface

mobility and slow down the film drainage process, thus acting as an additional

repulsive force to prevent the droplet coalescence.

The thesis will be summarized in Chapter 8, and discussions for future research

in this field are provided.
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Chapter 2

Literature review

The currently available studies on droplet dynamics in microfluidic devices are

predominantly experimental. In Section 2.1, we first present a review of previ-

ous studies of microfluidic methods for generating uniform streams of droplets,

focusing on those that utilize pressure-driven flows. In Section 2.2, the types of

droplet breakup are characterised and some parameters clarifying the mechanisms

of breakup in the confined microfluidic geometries are discussed. In Section 2.3,

we summarise the experimental and numerical work with particular emphasis on

the ones revealing the underlying physical mechanisms for droplet breakup and

simple theoretical models that have been proposed. Section 2.4 discusses the

computational problems related to the interfacial flows with and without sur-

factants. The remaining research challenges to understand the droplet breakup

process are covered in Section 2.5. Section 2.6 briefly reviews the lattice Boltz-

mann method and several popular LB multiphase models. Section 2.7 describes

the major contributions of our work.

2.1 Microfluidic methods for forming droplets

Microfluidic methods for generating droplets can be either passive or active. The

widely-used passive methods use the flowfield to deform the interface of droplets

and promote the natural growth of interface instability, which can avoid moving

parts and explicit external actuation. Based on the characteristics of the flowfield

near pinchoff, the passive microfluidic methods generally can be divided into three

categories [3]: (1) co-flowing streams, (2) cross-flowing streams in a T-shaped

junction, and (3) elongational flow in a flow-focusing geometry. Schematic illus-
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trations of the three geometries are shown in Fig. 2.1. In general, the dispersed

phase fluid is injected into a microchannel via a pressure-driven flow in which

either volumetric flow rate or pressure is controlled. A second immiscible fluid

is introduced into a separate microchannel via an independently controlled flow.

The two fluids meet at a junction, where the dispersed phase fluid extends to form

a “finger” or “jet”. The geometry of junction, the volumetric flow rates of the two

fluids and their material properties determine the local flowfield, which deforms

the droplet interface. Eventually, a droplet pinches off from the dispersed phase

finger due to interfacial instability. In comparison with other technologies, using

these microfluidic geometries to generate the droplets has a number of attractive

features such as rapidity [37, 38], stability [39], uniformity [3], controllability of

amount of reagent in each droplet [40] and low cost of chip fabrication [41].

Fig. 2.2 gives the typical images depicting the droplet breakup events in three

main microfluidic geometries, in which three different droplet formation regimes

are distinguished: squeezing, dripping, and jetting. Generally, droplet breakup

from a capillary tip immersed in a continuous co-flowing liquid generally includes

two distinct breakup regimes (see Fig. 2.2(a)): dripping, in which droplets pinch

off near the capillary tip, and jetting, in which droplets pinch off from an extended

thread downstream of the capillary tip. Three droplet formation regimes (i.e.

squeezing, dripping, and jetting) can be observed and distinguished in microfluidic

T-junctions (see Fig. 2.2(b)). In the squeezing and the dripping regime, droplet

formation starts at the junction of the microchannel. Subsequently, the droplet

grows and is deformed by the continuous phase liquid, until it is only attached to

the bulk by a thin neck. Finally, the incipient droplet detaches at the downstream

corner of the junction or slightly downstream from the junction. The difference

between the squeezing and dripping is that in the squeezing regime the incipient

droplet ultimately blocks the main channel completely, whereas in the dripping

regime the continuous phase liquid can still flow past the incipient droplet. In

the jetting regime, droplet formation starts downstream from the junction with

a long dispersed-phase jet parallel to the flow direction of the continuous phase.

The incipient droplet grows at the tip of this jet and detaches when the neck

connecting the droplet to the bulk snaps-off, obviously also downstream from the

junction. Droplet breakup via elongational flows in flow-focusing geometries can

also be separated into squeezing, dripping and jetting regimes (see Fig. 2.2(c)).

The squeezing regime is characterized by the droplet sizes that are larger than

the orifice size, and the droplet completely blocks the orifice, leading to pinching

9
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(a)

(b)

(c)

Figure 2.1: Schematic illustrations of three main microfluidic geometries used
for generating droplets: (a) co-flowing streams; (b) cross-flowing streams in a
T-shaped junction; (c) elongational flow in a flow-focusing geometry. In each
geometry the widths of the inlet and outlet streams are indicated. It is assumed
that the device is planar with a uniform depth h.

10
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(a) Co-flowing streams (left: dripping; right: jetting)

(b) T-junction (left: squeezing; middle: dripping; right: jetting)

(c) Flow-focusing (left: squeezing; middle: dripping; right: jetting)

Figure 2.2: Images of droplet breakup in each of the three main microfluidic ge-
ometries used for droplet formation. The figures are taken from Cramer et al. [42]
for (a), Zagnoni et al. [43] for (b), and Anna & Mayer [30] for (c), respectively.

of the interface inside the orifice. Once the droplet has formed, the finger of

dispersed phase fluid retracts to a position at the upstream of the orifice. When

the capillary number increases, droplet formation is in the dripping regime, where

the portion of the interface does not retract after a droplet pinches off, but rather

remains at a fixed location inside the orifice. In this case, droplets pinch off within

one characteristic diameter of the flow focusing orifice. In the jetting regime, the

dispersed phase finger extends at least three orifice diameters beyond the exit of

the orifice and resembles a long jet. The jet interface exhibits undulations that

grow until the discrete droplets pinch off. The resulting droplets are larger than

those generated in the dripping regime, and less uniform.

Different types of droplets, such as plugs, discs and drops, can be generated

in a microfluidic device, which strongly depend on the supplied flow conditions.

Plugs are in contact with all four channel walls, discs are in contact with two

parallel channel walls, and drops are not in contact with channel walls, and thus

the drops are spherical. Generally, the formation of plugs and discs is termed as

confined droplet breakup, while the formation of drops is termed as unconfined

droplet breakup.

11
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2.2 Characterization of droplet breakup in mi-

crochannel

2.2.1 Droplet breakup theory

There are three main forces acting on the emerging interface which affect the

droplet breakup in a microfluidic geometry, i.e. viscous shear stresses, capillary

pressure and squeezing pressure. The viscous shear stresses due to the continuous-

phase fluid act to deform the interface. The magnitude of the viscous shear

stresses can be estimated by the product ηcG, where ηc is the viscosity of the

continuous-phase fluid and G is a characteristic rate of shear strain that is pro-

portional to the volumetric flow rate Qc of the continuous phase and a geometric

factor. The magnitude of G depends on the specific geometry. The capillary pres-

sure resists deformation by establishing a normal pressure jump (pd − pc) ∼ σκ

across the curved interface of the emerging droplet with the local interface cur-

vature κ and the interfacial tension σ. Finally, as the emerging interface fills the

junction, the available area through which the continuous-phase fluid can pass

is restricted, leading to an increase in the pressure at the upstream of the junc-

tion. The excess pressure squeezes the neck of the emerging droplet, promoting

breakup. The magnitude of the squeezing pressure increases dramatically as the

distance between the emerging interface and the opposing wall of the microchan-

nel decreases. In addition, a large surface area to volume ratio can promote the

role of fluid-surface interaction, so that the wettability of the microchannel walls

can strongly influence the droplet formation especially in the squeezing regime.

In order to achieve consistent droplet breakup, it is important that the continuous

phase fluid preferentially wets the walls.

2.2.2 Important dimensionless numbers

The droplet formation process could be fully described by several parameters

characterising the flow and material properties of the fluids. These parameters

are the average velocities of the continuous and dispersed phases, uc and ud

respectively, the viscosities of the two fluids ηc and ηd, the interfacial tension σ,

the density ρ, and the contact angle characterizing the wetting properties of a

solution on a solid surface. Several key dimensionless numbers can be used to

analyse the relative importance of each of key forces for the droplet breakup.
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The capillary number Ca describes the relative magnitude of the viscous shear

stress compared with the capillary pressure. A simple definition for Ca is given

in terms of the average velocity uc of the continuous-phase fluid,

Ca =
ηcuc
σ
. (2.1)

This definition is chosen to be consistent with classic experiments studying the

deformation and breakup of isolated droplets in linear flows. In microfluidic

droplet formation, capillary numbers typically range from 10−3 to 10.

The Reynolds number Re indicates the importance of inertial force in com-

parison with viscous shear stress, and is defined in terms of the characteristic

length L of the microfluidic geometry,

Re =
ρucL

ηc
. (2.2)

Generally, the inlet channel width wc of the continuous phase is chosen as the

characteristic length. Small geometric length scales typically lead to Re < 1 for

microfluidics.

The Weber number We is usually used to parametrize droplet breakup pro-

cesses when inertial force and capillary pressure are more important than viscous

shear stresses. The product of the capillary number and the Reynolds number

yields the Weber number,

We = ReCa. (2.3)

Typically, inertial force is the least important among the three key forces in

microfluidics [29,44]; however, the inertia does play a role in bubble formation [14,

16].

During a droplet formation experiment, the dispersed and continuous phase

fluids are injected at different volumetric flow rates, and the flow rate ratio Q

characterizes the contrast between these two velocities:

Q =
Qd

Qc
. (2.4)

The viscosity ratio λ is an important parameter in droplet breakup, where

λ =
ηd
ηc
. (2.5)
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Finally, the Bond number Bo characterizes the relative importance of buoy-

ancy and interfacial tension, and is given by

Bo =
∆ρgL2

σ
, (2.6)

where ∆ρ is the density difference between the dispersed phase and the continuous

phase. For water droplets in oil which is considered in this thesis, the density

difference is typically small, and so the magnitude of Bo can be as small as 10−3.

Hence, buoyancy is typically negligible in microdroplet formation.

2.3 State of the art of the droplet dynamics in

microchannels

In recent years, great efforts have been devoted to exploring droplet and bubble

formation in microfluidic devices. Thorsen et al. [17] was first to report the

droplet formation in a T-junction microchannel. They found that the droplet

size decreases with the increase of continuous phase flow rate and viscosity. They

proposed a simple argument based on the original work of Taylor that the droplet

will break up when the viscous shear stresses overcome the capillary force, i.e.

Ca ≃ 1, yielding an expression for the droplet diameter d,

d ≃ 2σ

ηcG
. (2.7)

This simple argument predicts the droplet sizes within a factor of two of the mea-

sured sizes. However, it is necessary to obtain the values of shear rate empirically.

Even worse, the relationship between the shear rate G and the imposed pressures

at both inlets is not clear.

Cubaud and Ho [45] investigated the liquid-gas flows in square microchannels

with the bubbles generated in a cross-shaped mixing section. They observed that

wettability plays an important role and can significantly affect the flow patterns in

the system. Later, Cubaud et al. [13] found the bubble breakup in a cross-junction

could be understood to be due to the competition between the pressure drops in

the liquid and the gas phases. The bubble length in their experiment could be

predicted by the ratio of the gas-liquid flow rates. Garstecki et al. [14] elaborated

upon the mechanism for the bubble breakup process in the flow-focusing device
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with a small orifice, and they found that the bubble formation is due to the

pressure gradient and the breakup can be controlled by the flow rate of the liquid

phase. Garstecki et al. [20] later found that at low capillary numbers the breakup

of plugs in microfluidic T-junctions is also caused by the squeezing pressure due

to the high flow resistance to the continuous phase induced by the emerging

bubble/droplet. In the squeezing regime, it is observed that the plug length

depends predominantly on the flow rate ratio Q and not on the capillary number

Ca. Garstecki et al. argued that detachment begins once the emerging droplet

fills the channel and the droplet keeps growing due to continuous injection of the

dispersed phase fluid, so the relationship between the droplet length l and Q is

l

wc
= 1 + αQ, (2.8)

where α is a fitting constant of order unity.

The squeezing mechanism at low capillary number was numerically validated

by De Menech and co-workers [22] in a T-shaped microchannel. Also, they ob-

served that the droplet formation regime is linked to the Ca, and an increase

in Ca causes transition from the squeezing regime into the dripping regime and

subsequently into the jetting regime. Examining the influence of the capillary

number, flow rate ratio and viscosity ratio in a square channel, a distinct transi-

tion between the squeezing and dripping regimes was found at a critical capillary

number Cacr ≈ 0.015, above which the slope of the curve plotting the droplet

volume as a function of capillary number becomes significantly steeper. In the

dripping regime Ca > Cacr, the viscous shear stresses start to play an important

role in the process of breakup. Larger viscosity ratios lead to smaller droplets,

and droplet size decreases significantly as the capillary number increases. The

authors examined the pressure fluctuations upstream of the emerging interface

and found that even in the dripping regime the squeezing pressure cannot be ne-

glected since the confinement of the emerging interface always plays a role in the

process. However, Christopher et al. [23] recently observed that the droplet size

depends on the capillary number and the flow rate ratio in both squeezing and

dripping regimes. The viscosity ratio influences the droplet size only when the

viscosities are similar. When the viscosity ratio λ is less than 1/50, the resulting

droplet size is independent of the viscosity ratio and no transition to a purely

squeezing regime appears. In this case, both the droplet size and the droplet

production frequency obey power-law dependence on Ca. A scaling model was
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proposed by which the size of the droplets formed at a microfluidic T-junction

can be estimated indirectly based on the capillary number. According to this

model, the droplet breakup should occur when the sum of the viscous stresses

and the squeezing pressure exceed the capillary force resisting deformation of the

droplet. From this force balance, one can write the final dimensionless length

l̄ = l/wc of the droplet as

l̄ = b̄+
Λ

b̄
Q, (2.9)

where Λ = wd/wc is ratio of channel widths, and b̄ is the dimensionless length of

the emerging droplet, which satisfies the following equation

(1− b̄)3 = b̄Ca. (2.10)

Eq. (2.9) is equivalent to Eq. (2.8) except that in the model of Garstecki et al.,

b̄ = 1 and the fitting constant α replaces the width ratio Λ.

Figure 2.3: Patterns of droplet formation observed in a T-junction when the flow
rate of the continuous phase (Qc) is varied at a fixed flow rate of the dispersed
phase (Qd = 0.1 ml/h): (a) Qc = 0.5 ml/h; (b) Qc = 1.0 ml/h; (c) Qc = 2.0 ml/h;
(d) Qc = 22.0 ml/h. The figures are taken from Nisisako et al. [46].

Nisisako et al. [46] reported that the variation of flow pattern caused by Qc

at a constant Qd: at low Qc (i.e. low Ca), parallel flow (PF) (see Fig. 2.3(a)) is

observed in a T-junction. This changes to jetting (see Fig. 2.3(b)) at higher Qc.

Upon further increase in Qc, the flow regime changes to dripping (see Fig. 2.3(c))

at the T-junction and eventually reverts to jetting (see Fig. 2.3(d)). For con-

fined droplet breakup, Guillot and Colin [19] showed that for a given Qc, if Qd

increases, the flow pattern changes from droplets at T-junction(DTJ) to droplets
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in channel(DC). With further increase in Qd, the flow regime changes to parallel

flow(PF). They developed a semi-empirical model, supported by experiments, to

describe the transition from DTJ to PF. A phase diagram depicting the observed

transitions is shown in Fig. 2.4. The predicted transition depends primarily on

the the flow rate ratio and is derived based on a “blocking-pinching” mechanism

ruled by flow rate conservation.

Figure 2.4: Droplet breakup modes for confined plug formation in a microfluidic
T-junction. As the dispersed phase flow rate Qd increases, direct breakup near
the junction gives way to an extended thread that breaks downstream. For larger
Qd, the two streams co-flow parallel to each other. The figure is taken from
Guillot and Colin [19].

Xu et al. [47] found the bubble formation in a T-junction microchannel is also

affected by the viscosity of the continuous phase. They concluded that the capil-

lary number governs the breakup dynamics. But the bubble size is independent

of the interfacial tension. van der Graaf et al. [21,48] modeled the droplet forma-

tion in a T-junction by the numerical simulations and experimental observations.

They observed in both confined and unconfined droplet breakup, the final droplet

volume V is a result of two-stage growth. Initially, the droplet grows to a critical

volume until the drag force exerted by the continuous phase balances the capil-
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lary force. Subsequently, the droplet continues to grow for a certain period until

finally pinches-off due to the continuous injection of the dispersed phase fluid.

According to van der Graaf et al. [21], both volume contributions are functions

of Ca, and the following equation was proposed:

V = Vc,refCa
m + tn,refQdCa

n, (2.11)

where Vc,ref and tn,ref are taken from simulation results at a capillary number of

one. For T-junctions with 100×100µm channels, van der Graaf et al. found that

Vc,ref = 2.5× 10−5µL, tn,ref = 135µs, and m = n = −0.75.

Zhao et al. [49] proposed an empirical model to describe the size of droplets

formed in all the regimes (squeezing, dripping and jetting) in a T-shaped mi-

crochannel. The model was based on their own experimental data, which suggests

that the droplet size depends on the flow rates and the Weber numbers of both

continuous phase and dispersed phase:

R

DH,c

= −0.1276 ln







Wec

(

Qc
Qc+Qd

)

(

Wed

(

Qd
Qc+Qd

))0.15






+ 0.5595, (2.12)

where R is the radius of an unrestricted spherical droplet which has the same

volume as the actual droplet, DH,c is the hydraulic diameter of the continuous

phase channel, Wec is the Weber number of the continuous phase, andWed is the

Weber number of the dispersed phase. Yu et al. [50] carried out experiments and

lattice Boltzmann simulations to study the formation of gas bubbles in microflu-

idic cross-junctions with channel widths of 125 and 250µm respectively. It was

found that at high Ca (Ca > 0.03), the bubbles in bullet shapes were generally

formed by shear instability, characterized by the stretching of the gas stream.

At low Ca (Ca < 0.01), the bubbles in plug form were usually pinched off by

the pressure difference in the two phases. Umbanhowar et al. [24] experimentally

investigated the droplet formation at a capillary tip into a flowing surrounding

liquid, i.e. co-flowing streams. They measured the droplet sizes and compared

the experimental data with a scaling model, which is derived from a force balance

accounting for the viscous shear stresses of the continuous phase liquid and the

capillary pressure. The predicted droplet size is obtained by solving the non-
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dimensional equation:

d̄3 −
(

1 +
1

3Ca

)

d̄2 − Q

α
d̄+

Q

α
= 0, (2.13)

where d̄ = d/di is the droplet size scaled by the inner diameter of the capillary

tube, the capillary number Ca is defined as Ca = ηcuc/σ = ηcQc/σAc with Ac

denoting the cross-sectional area of the outer channel, and α = Ad/Ac is ratio of

two cross-sectional areas. Eq. (2.13) clearly shows that the predicted droplet size

is independent of the dispersed phase viscosity, consistent with the experimental

observations of Cramer et al. [42]. The authors argued that the dripping will

occur when the capillary pressure is more important than inertia, i.e. We < 1,

or when Qd < π(d3σ/2ρd)
1/2. Furthermore, they pointed out that as long as Qd

is low enough, Eq. (2.13) can reduce to

d̄ ≈ 1 +
1

3Ca
. (2.14)

The predicted values agree well with the experimental results over the considered

range of experimental conditions, validating the assumption that the viscous shear

stresses and the capillary pressure are dominant in droplet breakup.

Hua et al. [25] used a front-tracking/finite volume method to investigate

the droplet formation in co-flowing immiscible liquids. Two droplet formation

regimes, namely dripping and jetting, are successfully produced through the nu-

merical simulations under certain flow conditions. The correlation of the dimen-

sionless droplet size d̄ with the continuous phase flow parameters such as the

Reynolds number, capillary number, Weber number and viscosity ratio can be

obtained as d̄ ∝ Ca−1/2Re−1/6 in the dripping regime and d̄ ∝ Ca1/3We−1/2λ1/2

in the jetting regime. Utada et al. [51] used a microcapillary device to study the

transition from dripping to jetting in a two-phase co-flowing stream. The authors

observed two distinct classes of transitions from dripping to jetting. One is driven

by the viscous shear stresses from the continuous phase liquid, and the other is

driven by the inertial forces from the dispersed phase liquid. The transition can

be characterized by a state diagram that depends on both the capillary number

of the continuous phase fluid and the Weber number of the dispersed phase fluid.

Tan et al. [15] studied the formation mechanism of plug flow in an oil/water mi-

crofluidic cross-junction. They observed that the length of plugs decreases with

the increase of continuous phase and total flow rates, as well as the viscosity of
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the continuous phase, while increases slightly with the increase of dispersed phase

flow rate. Considering the equilibrium between the viscous shear stresses of the

continuous phase fluid and the capillary force, and the influence of oil/water flow

rate on the shape of the interface, a scaling equation was proposed to predict the

length of plugs
l

wc
= kQαCaβ , (2.15)

where k, α and β are fitting parameters. Tan et al. [15] found that, with the fitting

parameters k = 1.59, α = 1/5 and β = −1/5, Eq. (2.15) appears to provide a

good fit across the whole range of experimental data. Recently, Tan and co-

workers [52] investigated the formation of gas-plug-in-water in the microfluidic

T-junctions, and found that the scaling equation Eq. (2.15) can still be used to

predict the length of gas plugs.

Xu et al. [53] systematically analysed the scaling law of droplet formation

in T-junction microchannels, and divided the two-phase flow patterns by the

capillary number into three regimes: the squeezing regime (Ca < 0.002), dripping

regime (0.01 < Ca < 0.3) and transient regime (0.002 < Ca < 0.01). In the

squeezing regime, the final length of plugs is considered to be a contribution of

two steps: growth length and squeeze length. Different from the model suggested

by Garstecki et al. [20], the growth length of the plug lgrowth is not strictly equal

to wc, but is written as lgrowth = εwc with ε being a parameter dependent on the

geometry of the channel. Hence, the length of the plug can be given by

l

wc
= ε+ αQ, (2.16)

where ε and α are the fitting parameters. The authors used Eq. (2.16) to fit

the experimental data in Refs. [2, 20, 31, 54, 55] and argued that the values of ε

and α are mainly determined by the channel geometry. In the dripping regime,

a modified model was developed to predict the droplet diameter considering the

influence of growing droplet size on the continuous phase flow rate, especially

when the droplet size is comparable to the microchannel dimensions. In the

transient regime, the model initially proposed by Tan et al. [15] for the plug

formation in a cross-junction was extended to describe the plug length.

Dollet et al. [56] studied the role of the channel geometry in the bubble pinch-

off in flow-focusing devices. They observed that the bubble breakup consists

in a slow linear 2D collapse of the gas thread, ending in a fast 3D pinch-off.
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They presented an analysis based on the perturbation of the gas-liquid inter-

face, suggesting that the 2D collapse is always stable, while the 3D collapse is

always unstable, causing bubble polydispersity. During 3D pinch-off, a scaling

wm ∼ τ 1/3 between the neck width wm and the time τ before breakup indicates

that the breakup is driven by the inertia of both gas and liquid, not by capil-

lary instability. Fu et al. [16] investigated the bubble formation mechanism in

a cross-junction microchannel using a high-speed digital camera and a micro-

particle image velocimetry (µ-PIV) system. Various flow patterns, namely slug

bubble, isolate bubble and satellite bubble, were obtained in the cross-junction

by changing gas and liquid flow rates. Also, they found that the bubble (slug)

breakup process is mainly controlled by the collapse stage, during which, the

collapse rate of the thread neck and the collapse time were affected by the ratio

of the gas/liquid flow rates and the viscosity of the liquid phase. Later, Fu et

al. [57] scaled the formation of plug bubbles in two different cross-junctions with

square channels of respectively 600 × 600 and 400 × 400µm, and found that the

length of plugs could be correlated to the ratio of the gas/liquid flow rates and

the liquid Reynolds number, i.e.

l

wc
= kQαReβ . (2.17)

Furthermore, the authors found that all the experimental data for the 3D pinch-

off stage could be described by a mean power-law exponent of 0.31 ± 0.03, very

close to 1/3, i.e. wm ∝ τ 1/3, as observed by Dollet et al. [56]. Considering the

neck width of gaseous thread wm relying on the gas and liquid flow rates, liquid

viscosity and the size of the cross-junction, an extended scaling law was proposed

to describe the final pinch-off stage of the bubble formation:

wm = 18.62Q−0.15τ 1/3. (2.18)

Zhou et al. [58] used finite element method with adaptive meshing in a diffuse-

interface framework to simulate the droplet formation in a microfluidic flow-

focusing device. They argued that the mechanism for droplet breakup in the

dripping regime is a mixture of capillary instability, including the classic Rayleigh

capillary instability and an end-pinching mechanism, combined with viscous drag

on the emerging droplet from the continuous phase fluid, which stretches and thins

the neck region behind the droplet. The authors also argued that the dripping
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will give way to jetting when disturbances on the droplet interface are convected

downstream before they can be amplified. This leads to a critical Weber number

for the transition from dripping to jetting given by Wecr ∼ ρRjetV
2
jet/σλ

2
w, where

Rjet and Vjet are the radius and velocity of the jet respectively, and λw is the

wavelength of the capillary wave. They analysed this expression and concluded

that the critical Weber number for this transition scales as Wecr ∼ Q−1/2 if the

dispersed phase flow rate Qd is held fixed, or as Wecr ∼ Q3/2 if the continu-

ous phase flow rate Qc is held fixed. Utada et al. [51] argued that the transi-

tion from dripping to jetting in flow-focusing configurations will occur when the

timescale for visco-capillary pinch-off is comparable to the timescale for growth

of the jet, leading to a critical capillary number for the transition given by

Cacr = tpinch/tgrowth = ηcQd/σRjet ∼ 1. When Ca < Cacr, the interface instabil-

ity will grow as soon as the emerging jet is long enough to sustain an instability,

consistent with dripping, whereas for Ca > Cacr, viscous shear stresses on the in-

terface are large enough to suppress the instability and allow for a longer thread.

Abated et al. [59] studied the impact of inlet channel geometry on droplet for-

mation in droplet makers with T-junction style inlets and those with flow-focus

style inlets. They found, at low and moderate capillary number, the droplet for-

mation is dominated by the capillary force and mediated by the confinement of

the microchannel, and the droplet size as a function of flow rate ratio follows

a simple functional form based on the blocking-squeezing mechanism. For co-

flowing devices, Xiong et al. [60] thought that the bubble size is proportional

to the ratio of the gas/liquid flow rates. The interfacial tension and the liquid

viscosity just lead to different bubble shapes. Jensen et al. [61] presented a nu-

merical investigation of the dynamics of the bubble formation in an axisymmetric

flow-focusing device, and proposed a scaling law for the bubble size that is a func-

tion of the gas pressure, liquid flow rate, outlet channel size, interfacial tension

and liquid viscosity. Compared to the experimental observations of Garstecki et

al. [14], they found that the collapse rate of the gaseous thread is proportional

to the ratio of the interfacial tension to the viscosity. They attributed this differ-

ence to the anisotropic confinement versus the axisymmetric confinement in their

model.

Surfactants are usually used in the emulsion preparation process to adjust the

interfacial tension and stabilize the emulsion [31]. When one uses the microfluidic

devices for droplet formation, the surfactant is dissolved in one phase, usually in
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the continuous phase, and then injected into the microchannel using a syringe

pump. In this way, the dynamic adsorption of surfactant on the interface occurs

during the droplet formation, and the interfacial tension at the pinch-off moment

will be strongly influenced by the adsorption process. In many experiments on

the droplet formation, excessive surfactants are usually used to weaken the effect

of adsorption and make the interfacial tension nearly constant during the droplet

breakup process [15,55], since it is considered that the surfactant adsorption pro-

cess is much faster than the pinch-off process at high surfactant concentration.

However, the dynamic adsorption process is very important for the surfactants

with big molecular weight and poor adsorption performance or those with low

surfactant concentration. van der Graaf et al. [62] examined the effect of surfac-

tant adsorption on the droplet formation during membrane emulsification. Their

experiments showed that the dynamic interfacial tension influences the process

of droplet formation; higher surfactant concentrations lead to smaller droplets

and shorter droplet formation times. Wang et al. [63] experimentally studied

the variation of dynamic interfacial tension caused by slow adsorption of sur-

factant, as well as its influence on the droplet formation process in a T-shaped

microchannel. It was observed that the droplet size changed with the variation

of surfactant concentration when the surfactant concentration was lower than a

critical value, but hardly changed at higher concentrations, which was caused by

the unsaturated adsorption and saturated adsorption of surfactant, respectively.

The authors used the scaling model proposed by Tan et al. [15] to relate the

interfacial tension (σ) with the droplet diameter d, i.e.

d

dc
= kQαCaβ = kQα

(ηcuc
σ

)β

, (2.19)

where dc is the characteristic diameter of the microchannel. They also found

that the dynamic interfacial tension was mainly affected by the number den-

sity of the micelles, the formation time, and the convection of the two phases.

A semi-empirical equation was established to characterize those effects. Steeg-

mans et al. [64] carried out the droplet formation in microfluidic Y-junctions

and used the droplet size to quantify the dynamic interfacial tension. In their

experiments, the droplets were formed in less than milliseconds. They observed

that the surfactant concentration has a significant effect on the droplet sizes for

the surfactant concentration below the critical micelle concentration (CMC), and

further showed that the surfactant transport is dominated by convection during
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the droplet formation.

2.4 Modelling and simulation of droplet dynam-

ics

Modelling and simulation of droplet dynamics are essential to understand mul-

tiphase flows. Conventionally, multiphase flows are simulated by solving the

Navier-Stokes equations and a transport equation for the interface. In the last 25

years, several techniques have been developed to describe complex evolution of a

multiphase system, which can be classified into two major types: the interface-

tracking and the interface-capturing. The former directly ‘tracks’ the location

of the phase interface. The interface grid points moves with the interface in a

Lagrange manner. Here, we introduce two major types of interface-tracking meth-

ods: moving-mesh method [65] and the front-tracking method of Tryggvason et

al. [66]. For the moving-mesh method, the interfacial region is regarded as an

infinitely thin or sharp dividing interface. The grid for the computational domain

is selected in such a way that the interface between two phases is located along

a grid line. The Navier-Stokes equations are solved in separate domains and the

appropriate boundary conditions are applied at the interface. Through iteration,

the velocity of the interface is determined, and then the interface is moved to

a new location for the next time step. In this way, the computations continue

and the interface is exactly tracked. The major disadvantage of this method is

that a great number of grid points are required on the interfaces to accurately

describe large deformations. So dynamical remeshing is required which increases

the computational cost. Also, a strategy based upon fundamental physics which

allows for liquid breakup does not currently exist for the moving-mesh method.

This would require rupturing the interface, and then remeshing two interfaces

where only one existed. In the front-tracking method of Tryggvason et al. [66],

two sets of grids are used. A fixed grid is used to determine the fluid flow while

the interface is tracked using a lower dimensional grid, i.e. a 1D grid for 2D

flow and a 2D grid for 3D flow. Only one set of Navier-Stokes equations are

solved in the fixed grids. The fluid properties are selected separately for each

phase. The interfacial tension force needs to be transformed from the surface

force into a volumetric force at the control points. And then, it will distribute

to the fixed grids. Since no remeshing is required in the fluid domain and the
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interface-tracking is a lower dimensional problem, the computational cost will be

significantly reduced in this method. As the interface is tracked, it is still dif-

ficult to simulate the droplet coalescence and breakup. The currently available

methods for coalescence or breakup are not firmly based on physics, but instead

on artificial treatments or ad hoc criteria such as the distance between interfaces.

Contrary to the interface-tracking approach, the interface-capturing method

uses a continuous function to distinguish different phases (to be called “indicator

function” thereafter). This type of approach is able to deal with topological

changes in a natural way. The indicator function is generally chosen as the

volume fraction of one of the two phases/components, as in the volume-of-fluid

(VOF) method [27], the signed distance to the interface, as in the level-set (LS)

method [67], or the density/mass fraction of one phase or component (also called

order parameter later), as in the phase-field models (PFM) [68]. In this class

of approach, there is only one set of unified partial differential equations(PDEs)

that govern the fluid flows using Eulerian grids and the interfaces are implicitly

captured by the indicator function (known as “interface capturing”). In the

following, we will briefly review the VOF, LS and PFM methods with attentions

on the application of these methods for fluid-surface interactions (i.e. contact-line

dynamics), and the interfacial flows with surfactants.

2.4.1 Volume-of-fluid method

The VOF method uses the volume fraction of one of the fluid phases or com-

ponents (denoted as C) to characterize the interfaces. In the bulk phase (i.e.

a pure fluid), C is equal to zero or unity; in multi-fluid cells, it has a value

of 0 < C < 1. The most commonly used VOF method consists of two major

steps, i.e. the interface reconstruction step, which finds an explicit description of

the interface in each multi-fluid cell based on the volume fractions at this time

step, and the advection step, which calculates the distribution of C at the next

time step by solving an advection equation using the reconstructed interface and

the underlying velocity field. The interfacial tension force model, which takes

account of interfacial tension effects at the interface, is also very important in

modelling microdroplets. Two widely-used interface reconstruction methods are

Simple Line Interface Calculation (SLIC) [69] and the Piecewise Linear Interface

Calculation (PLIC) [70]. In the SLIC method, the volume of fluid in each cell is

treated as if its local interface is either a vertical or horizontal line. In the PLIC
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method, the local phase interface is determined by fitting a straight line in the

cell that satisfies the volume of fluid criteria, and the orientation of the straight

line is found by the distribution of one of the fluids in the neighboring cells. This

method is shown to be very robust and efficient, but only of first-order accuracy.

The volume fraction function is purely advected by the velocity field, i.e., it obeys

the equation: ∂tC + ~u · ∇C = 0. As this equation suffers discontinuity across

the interface, it is important to use sophisticated numerical schemes to solve it.

Generally, the effect of interfacial tension force is incorporated into the momen-

tum equation following the continuum surface force (CSF) model of Brackbill et

al. [71]. The normal vector and the curvature of the interface are calculated from

derivatives of this smoothed volume fraction function. The interfacial tension

force is applied using these two computed quantities, and its magnitude is pro-

portional to the interfacial tension σ. The balance of forces across the interface is

purely reflected in the pressure field, and not in C. So in addition to an interface

indicator, the other role of the volume fraction function is for the enforcement

of the interfacial tension effect, which is not obviously related to any physical

energy.

Renardy et al. [72] gave detailed discussions on how to apply the VOF method

for the multiphase/multicomponent flows involving moving contact line (CL).

They compared two different implementations to incorporate wetting in VOF

method: one extrapolated the volume fraction beyond the computational domain,

providing that its gradient is perpendicular to the interface and the normal to the

interface at the wall is determined by the known equilibrium contact angle; the

other one treated the problem as a three-phase situation, mimicking the classical

argument of Young. In addition, a suitable slip model with some slip length was

used so that the singularity problem with the CL dynamics was relieved. They

argued that the latter approach introduced an artificial localized flow, so the

extrapolation method was preferred.

Renardy et al. [73] developed a VOF method for 3D droplet deformation in

the presence of insoluble surfactants. To my best knowledge, this was the first

application of a continuum-based method to study surfactant dynamics. Their

implementation of surfactant was somewhat ad hoc and only surfactants with lin-

ear equations of state were considered. This method was applied to study droplet

deformation in shear flows in 3D. It was found that when the droplet becomes

cusp-like, the simulation becomes sensitive to the discretization parameters and

the surfactant can diffuse off the droplet interface. Although the simulations
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appear to show tip streaming, the surfactant concentration becomes very high

at the drop tips and the interfacial tension actually becomes negative. A mesh

refinement study indicated that the results depend on the temporal and spatial

step sizes. James and Lowengrub [74] developed a surfactant-conserving VOF

method to study the effects of insoluble surfactants on interfacial flows. Instead

of solving the surfactant concentration equation based on Stone’s derivation [75]

directly, the authors related the surfactant concentration to the ratio of the sur-

factant mass and interface area so that they are tracked independently. They

argued that an arbitrary equation of state relating the surfactant concentration

to the interfacial tension can be used. The method has been applied to study

the axis-symmetric droplet deformation in extensional flow, and its subsequent

retraction and breakup upon cessation of the external flow.

2.4.2 Level set method

The LS method is firstly introduced by Osher and Seithian [76]. The basic idea is

to use a smooth function (level set function) defined in the whole solution domain

to represent the interface. It is defined as a signed distance to the interface and is

purely a geometrical variable. The advantage is that the level set function varies

smoothly across the interface, which eliminates the discontinuity problem that

occurs in the VOF method. The interface tension force in the level set method

is also modelled using the continuum surface force (CSF) method [71], except

that the interface delta function is replaced by a Heaviside function. Similar to

the volume fraction function in the VOF method, the level set function used in

the LS method is purely transported by the flow velocity. In contrast to the

volume fraction, it is just an indicator and has no physical meaning. Thus,

the level set function need not satisfy the conservation law. It only needs to

consider the differentiation of the convection term. However, the level set method

requires a re-initialization procedure to restore the signed distance property when

large topological changes occur around the interface [77]. This may violate the

mass conservation for each phase or component. The way to incorporate wetting

and CL dynamics in LS is similar to the first approach described above in the

VOF method, i.e. the interface normal at the solid boundary is determined

from the contact angle. By incorporating a model of the dynamic contact angle

depending on the CL velocity, Spelt [78] extended the LS method for multiphase

flow simulations involving moving CLs with the hysteresis effect being taken into
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account. Later, Spelt [79] applied it to study shear flows over 2D droplets.

Xu et al. [80] developed a level-set method for interfacial Stokes flows with

surfactant. Their method couples surfactant transport, solved in an Eulerian

domain with Stokes flowfield, solved by the immersed interface method with

jump conditions across the interface. However, the method does not conserve the

mass automatically and the numerical scaling is used to enforce the conservation

of surfactant on the interface numerically. It was applied to study the effects of

surfactant on single droplet, droplet-droplet interactions and interactions among

multiple droplets in the Stokes flow under a steady applied shear.

2.4.3 Phase-field method

PFM originates from the theory for near-critical fluids, in which the fluid system

is fundamentally viewed as a whole and the indicator function (i.e. order param-

eter) is associated with the free energy of the system based on the Cahn-Hilliard

theory [81]. The order parameter is a conserved variable that varies continuously

over thin interfacial layers and is mostly uniform in the bulk phases. PFM re-

solves the interface structure with the interfacial region having its own physics

inside; but as the interface width becomes smaller and smaller (compared with

the macroscopic length), it can be mathematically proven that PFM approaches

the original sharp interface equations [68,82]. The equation of fluid motion which

is modified to account for the presence of a thin layer can be applied over the

entire domain. For example, the Navier-Stokes equations can be modified to in-

clude a pressure tensor accounting for the interfacial tension. The pressure tensor

can be derived by the use of reversible thermodynamic arguments. The interfa-

cial tension can be given in terms of the excess free energy which is distributed

through a 3D layer rather than being defined on a 2D surface. The order pa-

rameter is evolved according to the Cahn-Hilliard equation, where the interface

sharpness is automatically maintained by the anti-diffuse term without losing the

continuity. The interface structure is preserved as the interface evolves, so that

the method does not require additional efforts to keep the interface intact as in

other methods [83, 84]. In addition, the smooth representation of the interface

as a region with the finite thickness prevents the numerical difficulties caused

by the interface singularities. Wetting and CL dynamics can be easily incorpo-

rated in PFM through a surface energy term [85]. Some important basic issues

in numerical simulations using PFM have been studied by Jacqmin [86], and the
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CL dynamics in PFM has been excellently analyzed for a simple 2D problem by

Jacqmin [87]. Recently, it has been applied to study capillarity driven droplet

spreading by Khatavkar et al. [88] and droplet impact on a surface by Khatavkar

et al. [89].

Noticeably, van der Sman and van der Graaf [90] developed a PFM for sur-

factant adsorption onto the interface of two immiscible fluids. The model was

based on a free energy functional, partly adapted from the sharp interface model

of Diamant and Andelman [33]. It has been shown that the model can exhibit

the well-known adsorption isotherm–Langmuir isotherm. The model was applied

to simulate the classical Ward-Tordai problem [91] and the deformation of a

surfactant-laden droplet in a shear flow, which indicated that the PFM model

is very promising to model and simulate the droplet dynamics in an oil-water-

surfactant system.

2.5 Remaining research challenges

In this chapter, previous studies on droplet formation in microfluidic devices have

been reviewed. From this literature review, it can be seen that in spite of much

work already done by many researchers, the available information is still frag-

mented due to the differences in channel dimensions, flow rates and materials

(e.g. viscosities, interfacial tension, and wetting properties) used. This leads to

inconclusive and even contradictory findings as reported in the literature. The

same is true for the current models (i.e. scaling laws), which can only describe

a limited range of the droplet formation spectrum. For example, Steegmans et

al. [92] used statistical analysis to evaluate the models for describing the droplet

size in microfluidic T-junctions and found that none of the models is general

enough to describe the original data and data from other literature sources. Ob-

viously, the mechanisms which control the droplet formation remain unclear, and

the influence of various flow conditions still needs further investigation.

Meanwhile, the available numerical methods show that several approaches for

modelling the droplet dynamics in microfluidic devices have their own limita-

tions. The interface-tracking methods are not suitable for simulating the droplet

breakup and coalescence, which needs additional efforts to determine when to

rupture or merge interfaces and how to reconfigure the new interfaces. The VOF

and LS methods are able to predict the droplet topological changes, but the treat-

ment of the interface is based upon macroscopic physics where the interface is
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described by an indicator function without significant physical meanings and the

interfacial tension is calculated by the curvature of interface. Fundamentally, the

interfacial tension is a macroscopic parameter that results from microscopic inter-

action between molecules. Different from VOF and LS, PFM is another type of

interface-capturing methods where the order parameter in PFM may be related

to some physics such as the free energy and the equation of state. The main

drawback of PFM is that the discretization of fourth order derivative is required

in the calculation when one uses the traditional CFD solver. As to the modeling

of wetting and CL dynamics, VOF and LS often rely on explicitly finding the

interface position and impose the contact angle or some sophisticated predeter-

mined model on the interface near the wall; while PFM addresses this issue in a

seemingly more natural way by adding the surface energy contribution. Strictly

speaking, the interface between different phases and the CL dynamics on the solid

surface is based on the mesoscopic scale [34]. Thus, mesoscopic level studies are

expected to be more appropriate for investigating the effect of wettability of the

solid surface on water droplet dynamic behavior in the microchannels.

Although FT, VOF and LS have been successfully applied to simulate interfa-

cial flows with surfactants, these methods are built upon the conservation laws at

macroscopic level for interfacial dynamics, originating from the model proposed

by Stone [75]. Meanwhile, they commonly suffer from several drawbacks: (i)

dynamic interfacial tension relies on an asserted equilibrium equation of state,

which is also assumed to be valid beyond the equilibrium state; (ii) for interfa-

cial flows with soluble surfactants, mass transfer between the interface and the

bulk fluids requires an external boundary condition, which cannot uniquely arise

from the model itself; (iii) model extension for more complicated systems, such

as ionic surfactant solutions, is not easy [33]; (iv) numerical stability becomes

a problem for the flows with large topological changes, such as droplet breakup

and coalescence. The PFM presented by van der Sman and van der Graaf [90]

has demonstrated promising potential to simulate droplet dynamics in the pres-

ence of surfactants. However, the model is restricted to the Langmuir adsorption

with equal solubility of the surfactants in both bulk phases. Although the model

showed that the interfacial tension lowering ∆σ is proportional to kBT ln(1−ψ0)

due to surfactant adsorption onto the interface, the dependence of the propor-

tionality factor on the parameters used in the model is still unclear. Finally,

the model capability is required to be further examined and demonstrated by

simulating droplet dynamics with large topology changes.
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2.6 Lattice Boltzmann method

In light of these uncertainties and limitations in the continuum methods discussed

above, we will use the lattice Boltzmann method (LBM) to simulate the droplet

dynamics in microfluidic devices. In recent years, LBM has been developed into

an alternative and powerful tool for complex fluid systems [93]. Unlike the tra-

ditional CFD methods, which solve the conservation equations of macroscopic

properties (i.e. mass, momentum and energy) numerically, LBM models the fluid

consisting of fictive particles, and such particles perform consecutive propagation

and collision processes over a discrete lattice grid. LBM originated from the lat-

tice gas automata (LGA) method [94], which can be considered as a simplified

fictitious molecular dynamics model in which space, time, and particle veloci-

ties are all discrete. The main motivation for the transition from LGA to LBM

was the desire to remove the statistical noise by replacing the Boolean particle

number in a lattice direction with its ensemble average, i.e. the so-called par-

ticle distribution function (PDF) [95]. Furthermore, the discrete collision rule

is replaced by a continuous function known as the collision operator. In the

LBM development, an important simplification to the collision operator is using

the Bhatnagar-Gross-Krook (BGK) collision model. This lattice BGK (LBGK)

model [96] makes simulations more efficient and allows flexibility of the trans-

port coefficients. On the other hand, it has been shown that the LBM scheme

can also be considered as a special discretized form of the continuous Boltzmann

model equation. Based on Chapman-Enskog multi-scale analysis [97], one can

recover the macroscopic continuity and Navier-Stokes equations from the LBM

algorithm. In addition, the pressure field is also directly available from the den-

sity distributions and thus there is no extra Poisson equation to be solved. Due to

its intrinsic kinetic nature and local dynamics, LBM has several advantages over

other conventional CFD methods: simplification of nonlinear modeling, computa-

tional efficiency and accuracy, the capability of dealing with complex boundaries,

and a mathematical framework allowing the molecular level modeling. These ad-

vantages make the LBM especially useful for simulation of multiphase flows in

microfluidic devices [95]. Several LBM models for the simulation of multiphase

flows have been developed. These include the chromodynamic model, the pseudo-

potential model, the free-energy model, and the mean-field theory model. The

chromodynamic model [98] is based on red and blue PDFs representing two dif-

ferent fluids. The effect of interfacial tension is obtained through a perturbation
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step modeled by a collision operator added to the original collision operator, and

phase separation is maintained through a segregation step by forcing particles to

regions of the same color. However, the segregation step requires time-consuming

calculations of local maxima, and the perturbation step with the redistribution of

colored PDFs causes an anisotropic interfacial tension that induces high spurious

velocities near the interface [97]. The pseudo-potential model [99] introduces the

nearest-neighboring interaction between fluid particles to describe the intermolec-

ular potential, and the phase separation occurs with a properly chosen potential

function. However, as pointed out by He and Doolen [100], the interfacial tension

in this model is actually a numerical artifact and its value is controlled by a force

parameter, which cannot be prescribed a priori. In addition, this model does

not satisfy local momentum conservation so that the spurious velocities are high

near the interface. The free-energy model proposed by Orlandini et al. [101] and

Swift et al. [35] uses a free-energy functional to include interfacial tension effects

in a thermodynamically consistent manner. Actually, it is the PFM realized in

the framework of LBM, in other words, the free-energy model can recover to the

PFM through a Chapman-Enskog expansion under the low Mach number limita-

tion. Hence, the free-energy model is endowed with the advantages of the PFM

as stated above. However, the free-energy model suffers from the lack of Galilean

invariance [95], though the local momentum conservation is satisfied. In addition,

minimising unphysical spurious velocities at interface remains a challenge for the

free energy LB models. The mean-field theory model proposed by He et al. [100]

is valid in the nearly incompressible limit and applies to nonideal gases. In this

model, the simulation parameters are the pressure and an index function, which

is used to capture the interface and plays the same role as the indicator function

in the interface-capturing methods. Interfacial dynamics is modeled by intro-

ducing molecular interaction forces, which are approximated by the mean-field

theory. Phase separation occurs naturally owing to the instability of the super-

nodal curve of the phase diagram. The serious limitation of the mean-field theory

model is its numerical instability [102], associated with the ‘stiffness’ of the colli-

sion operator, when the ‘complex fluid’ effects are introduced by the forcing term.

Furthermore, Rannou [103] used various LB multiphase models to investigate a

fully developed two-phase Poiseuille flow in a 2D channel, and found that, the

mean-field theory model gives accurate results for the high-viscosity phase but

poor results for the low-viscosity phase. Obviously, each LB multiphase model

has its own advantages and disadvantages. The best choice of model depends
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on the problem itself and/or one’s taste. In a microfluidic device, the flows are

typically characterized by small capillary numbers, so it is necessary for a suitable

model to have good numerical stability for the microdroplet interfacial dynamics

and small spurious velocities at the interface so that the small flow velocities are

not contaminated.

2.7 Contribution of this work

In this thesis, we have developed an improved LB model, using the phase-field

theory to describe the interfacial interactions, with the purpose of reducing the

spurious velocities and to easily incorporate the complicated wetting boundary

conditions, making the model a good candidate for the simulation of droplet dy-

namics in microfluidic devices. The model has been extensively validated then

employed to investigate the influence of the physical and flow parameters in-

cluding flow rate ratio, capillary number, viscosity ratio and contact angle on the

droplet formation in surfactant-free microfluidic T-junction and cross-junction re-

spectively. Some previous experimental and numerical findings have been verified,

and some new physics has been identified. We have gained a deeper understanding

of the droplet breakup mechanisms in confined geometries. Although the PFMs

have shown promise for computation of binary mixture with surfactants, signifi-

cant effort is still required to improve the model for realistic oil/water/surfactant

systems. Therefore, we will also present a generalized PFM in the LB framework

to simulate the adsorption of surfactants and its effect on droplet dynamics.
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Phase-field lattice Boltzmann

model for a binary fluid

In this chapter, we will describe the phase-field LB model that we have used to ob-

tain the numerical results presented in the subsequent three chapters. A unifying

feature of all the phase-field models is the existence of a free-energy functional,

which not only determines the equilibrium properties, but also strongly influ-

ences the dynamics of a multiphase system. In these models, the evolution and

breakup of the interface occur naturally which can be described by the thermo-

dynamic theory such as the Cahn-Hilliard equation [104]. One notable feature

of the Cahn-Hilliard theory is that the stress singularity arising in the classical

model of moving contact lines as pointed out by Huh & Scriven [105] is removed

due to the mass transfer across the interface. Whereas other methods require

some special treatment on the contact line region to make it move. Due to its

rich physical basis, the phase-field model has been widely used to simulate droplet

deformation, coalescence, breakup and contact line dynamics [86,88,89,106–110].

The hydrodynamic equations of motion in the phase-field model can be solved in

many different ways. In this thesis, we will use a particular mesoscopic modelling

technique called the lattice Boltzmann method. It has proved to be a powerful

tool to study many complex fluids problems.

This chapter consists of three parts. Firstly, we introduce a free energy func-

tional for a binary fluid and explain how it handles the essential ingredients needed

to describe phase separation and interfacial tension. The generalisation of the

Navier-Stokes equations appropriate for the two-phase system are summarised,

with the emphasis on the improvements in reducing the spurious velocities and in-
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corporating the wetting boundary condition. Afterwards, we describe the lattice

Boltzmann algorithm that is used to solve the hydrodynamic equations. Finally,

we give the thermodynamic and hydrodynamic boundary conditions needed to

model wetting and inflow & outflow open boundaries, in which a stress-free out-

flow boundary condition is proposed to conserve the total mass of flow system

and improve the numerical stability for flows with low Reynolds number.

3.1 The phase-field theory

We consider a binary incompressible fluid consisting of oil and water molecules

with the phase ordering into an oil-rich and a water-rich phase below a critical

temperature. The Ginzburg-Landau free energy functional [35] is used to describe

the thermodynamics of the fluid,

F (ρ, φ,∇φ) =
∫

[

Ψ(φ) +
1

2
κ(∇φ)2 + ρc2s ln ρ

]

dV, (3.1)

where the total fluid density ρ is ρw + ρo with ρw and ρo being the densities of

water and oil components respectively; φ = (ρw − ρo)/ρ is the order parameter,

which represents the relative concentration of local composition [111] (note that

the fluid is understood to be a mixture of oil and water components, so the den-

sity ρw (or ρo) is a local value and defined by the average mass of oil (or water)

per unit control volume); Ψ(φ) is the bulk free energy density for a homogeneous

system, which can be chosen as a double-well form Ψ (φ) = 1
4
A(φ2 − 1)2, with A

being a positive constant controlling the interaction energy between two compo-

nents/phases; the term 1
2
κ|∇φ|2 denotes the free energy excess in the interfacial

region, which is defined as the interface energy between different phases with κ

relating to the interfacial tension; cs is the lattice speed of sound. Note that the

final term in the free energy functional does not affect the phase behavior, which

is introduced to enforce incompressibility in the LBM.

The chemical potential µ is defined as the variational derivative of the free

energy functional with respect to the order parameter, i.e.,

µ = δF/δφ = Ψ′(φ)− κ∇2φ = Aφ(φ2 − 1)− κ∇2φ. (3.2)

The equilibrium interface profile can be obtained from Eq. (3.2) at µ = 0, which

leads to two stable uniform solutions φ = ±1 representing the coexisting bulk
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phases.

For simplicity, let us consider a planar oil-water interface in a quiescent infinite

system, the order parameter profile across the interface can be given by

φ(z) = tanh(z/ξ), (3.3)

where z is the spatial location normal to the interface (z = 0), and ξ is a measure

for the thickness of interface, which is defined as

ξ =
√

2κ/A. (3.4)

Since ξ must typically be chosen of the order of a few lattice spacings in simula-

tion, models of this type are often called diffuse interface models. We define the

interface thickness to be the distance from −0.9 to 0.9 so that the equilibrium

interface thickness is 2ξ tanh−1(0.9) = 2.944ξ. This width contains 98.5% of the

interface tension stress [86].

The interfacial tension σ can be interpreted as the excess free energy per

unit interface area, and for a planar interface in equilibrium, it can be evaluated

by [112]

σ =

∫ +∞

−∞
κ

(

dφ

dz

)2

dz. (3.5)

From Eqs.(3.3)–(3.5), we can get

σ =
4κ

3ξ
. (3.6)

Equations (3.4) and (3.6) suggest that we can determine the parameters κ and A

by specifying the interfacial tension and the interface thickness.

The hydrodynamics of a binary fluid can be described by the continuity

equation (3.7), the Navier-Stokes equation (3.8) and the Cahn-Hilliard equation

(3.9) [35, 111]:

∇ · ~u = 0, (3.7)

ρ(∂t~u+ ~u · ∇~u) = −∇ · P +∇ · [η(∇~u+∇~uT)], (3.8)

∂tφ+ ~u · ∇φ = ∇ · (M∇µ), (3.9)

where ~u, P , η, and M are the fluid velocity, pressure tensor, dynamic viscosity,

and Cahn-Hilliard mobility respectively. The equilibrium properties of the fluid
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are involved in the equations of motion through the chemical potential while the

pressure can be derived via the Gibbs-Duhem relation [111]:

∇ · P = ∇(ρc2s) + φ∇µ. (3.10)

Obviously, thermodynamic equilibrium corresponds to ∇ · P = 0. A suitable

choice of pressure tensor, which fulfils Eq. (3.10) and reduces to the usual bulk

pressure if no gradients of the order parameter are present, is

P =
[

pb −
κ

2
(∇φ)2 − κφ∇2φ

]

I + κ(∇φ)(∇φ)T, (3.11)

with the bulk pressure term pb given by

pb = ρc2s + A

(

−1

2
φ2 +

3

4
φ4

)

, (3.12)

where the speed of sound cs follows that c
2
s =

dpb
dρ

.

In the free energy model developed by Swift et al. [35], the interfacial ten-

sion force is introduced by imposing additional constraints on the equilibrium

PDF. In addition to the mass and momentum conservation constraints, the equi-

librium PDF is constructed in such a way, that its second moment reproduces

the desired pressure tensor, i.e. Eq. (3.11). However, the free energy model vio-

lates Galilean invariance, as the resulting momentum equation contains an error

term, which makes the Navier-Stokes equation unable to be correctly recovered.

In addition, the unphysical spurious velocities, caused by a slight imbalance be-

tween the stresses in the interfacial region, are pronounced near the interfaces

and surfaces. Pooley et al. [36] identified that the strong spurious velocities in

the steady state lead to an incorrect equilibrium contact angle for a binary fluid

with different viscosities. In the diffuse interface methods, the key to reducing the

spurious velocities lies in the formulation of treating the interfacial tension force.

Jacqmin [86] suggested that the chemical potential form of the interfacial ten-

sion force, i.e. Eq. (3.10), guaranteed to generate motionless equilibrium states

without spurious velocities. Jamet et al. [113] later showed that the chemical

potential form can ensure the correct energy transfer between the kinetic energy

and the interfacial tension energy. Although both methods proposed by Swift et

al. [35] and Jacqmin [86] are completely equivalent mathematically, they produce

different discretization errors for the calculation of the interfacial tension force.
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Hence, the chemical potential form will be employed in our study, but a minor

modification is required to incorporate the wetting property of walls.

When the fluid-solid interaction is considered, the chemical potential at the

solid wall cannot be easily specified in order to calculate ∇µ at the fluid lattice

sites next to the wall. Luckily, Eq. (3.10) can be expressed as

∇ · P = ∇(ρc2s) + φ∇µ = ∇p− µ∇φ, (3.13)

where p = ρc2s+φµ is the modified pressure. Using Eq. (3.13), the Eqs. (3.7)-(3.9)

can be rewritten as

∇ · ~u = 0, (3.14)

ρ(∂t~u+ ~u · ∇~u) = −∇p+∇ · [η(∇~u+∇~uT)] + µ∇φ, (3.15)

∂tφ+ ~u · ∇φ = ∇ · (M∇µ). (3.16)

In the LB model, p and the interfacial force term ~FS = µ∇φ can be simply

incorporated by modifying the equilibrium distribution function and by treating

as an external body force [114], respectively.

3.2 The lattice Boltzmann algorithm

Instead of directly solving Eqs. (3.14)-(3.16), we present a LB algorithm to indi-

rectly determine the macroscopic properties. The basic idea behind LB algorithm

is to associate the PDFs, discretized in time and space according to a set of lat-

tice velocity vectors ~ei. For instance, for a two-dimensional 9-velocity model

(D2Q9) [96], the lattice velocities are chosen to be ~e0 = (0, 0), ~e1,3 = (±c, 0),
~e2,4 = (0,±c), ~e5,7 = (±c,±c) and ~e6,8 = (∓c,±c). The lattice speed c is defined

by c = δx/δt, where δx is the lattice distance, and δt is the simulation time step.

The speed of sound cs can be related to c by cs = c/
√
3.

To describe a binary fluid, we need to define two particle distribution functions

fi(~x, t) and gi(~x, t) on each lattice point. The macroscopic variables are related

to the PDFs by

ρ(~x, t) =
∑

i

fi(~x, t), ρ~v(~x, t) =
∑

i

fi(~x, t)~ei, φ(~x, t) =
∑

i

gi(~x, t), (3.17)

where ~v is defined by ρ~v = ρ~u− ~FSδt/2. The distinction between ~u and ~v occurs
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at the interface so as to introduce the interfacial tension and produce the pressure

gradient.

The time evolution equations for the PDFs, using the standard BGK (Bhatnagar-

Gross-Krook) approximation, can be broken down into two steps

Collision step : f ′
i(~x, t) = fi(~x, t)−

1

τf
[fi(~x, t)− f eqi (~x, t)] + Fi(~x, t), (3.18)

g′i(~x, t) = gi(~x, t)−
1

τg
[gi(~x, t)− geqi (~x, t)], (3.19)

Propagation step : fi(~x+ ~eiδt, t+ δt) = f ′
i(~x, t), (3.20)

gi(~x+ ~eiδt, t+ δt) = g′i(~x, t), (3.21)

where f eqi and geqi are the equilibrium distribution functions of fi and gi, defined

as a power series of the velocity, τf and τg are two independent relaxation pa-

rameters, and Fi represents the interfacial force distributions in the lattice space.

The governing physics of LB schemes is determined through the hydrodynamic

moments of the equilibrium distribution functions and the forcing terms (i.e. the

interfacial force components). The moments of f eqi , geqi and Fi are:

∑

i

f eqi = ρ,
∑

i

f eqi eiα = ρuα,
∑

i

f eqi eiαeiβ = ρuαuβ + pδαβ ,

∑

i

f eqi eiαeiβeiγ = ρc2s(δαβuγ + δαγuβ + δβγuα), (3.22)

∑

i

geqi = φ,
∑

i

geqi eiα = φuα,
∑

i

geqi eiαeiβ = φuαuβ + Γµδαβ ,(3.23)

∑

i

Fi = 0,
∑

i

Fieiα = δt(1−
1

2τf
)FSα,

∑

i

Fieiαeiβ = δt(1−
1

2τf
)(uαFSβ + uβFSα), (3.24)

where eiα is the projection of ~ei on the α-axis (α = x or y), and δαβ are Kronecker

delta.

A suitable choice for f eqi , geqi and Fi that satisfies the constraints (3.22)-(3.24)

is a power series expansion in terms of the velocity

f eqi = wi

[

Ai + ρ

(

~ei · ~u
c2s

+
~u~u : (~ei~ei − c2sI)

2c4s

)]

, (3.25)
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geqi = wi

[

Bi + φ

(

~ei · ~u
c2s

+
~u~u : (~ei~ei − c2sI)

2c4s

)]

, (3.26)

Fi = (1− 1

2τf
)wi

[

~ei − ~u

c2s
+
~ei · ~u
c4s

~ei

]

· ~FSδt, (3.27)

where the coefficients Ai and Bi are given by

Ai =

{

p/c2s (i > 0)

[ρ− (1− w0)p/c
2
s] /w0 (i = 0),

(3.28)

Bi =

{

Γµ/c2s (i > 0)

[φ− (1− w0)Γµ/c
2
s] /w0 (i = 0),

(3.29)

and wi is the weight factor with w0 = 4/9, w1−4 = 1/9 and w5−8 = 1/36.

It can be shown, using the Chapman-Enskog multiscale analysis (detailed

derivations are given in Appendix A), that Eqs. (3.18)-(3.21) can reproduce

Eqs. (3.14)-(3.16) in the continuum limit with the equilibrium distribution func-

tions and forcing term given by Eqs. (3.25)-(3.27). Therefore, our phase-field

LB model is Galilean invariant. The relaxation parameters τf and τg in the LB

algorithm are related to the physical variables in the hydrodynamic equations η

and M by

η = ρc2sδt

(

τf −
1

2

)

, M = δtΓ

(

τg −
1

2

)

, (3.30)

where Γ is a tunable parameter that appears in the equilibrium distribution func-

tion geqi . Since η and M are positive quantities, the values of the relaxation

parameters τf and τg have to be larger than 1/2.

In this thesis, the densities of two components/phases are assumed to be equal

because the density difference in the commonly-used water droplet in oil is small.

We set τg = 1/(3−
√
3) to minimize numerical errors of the convection-diffusion

scheme [115]. To account for unequal viscosities of the two phases, we define the

viscosity η as a linear function of the order parameter:

η(φ) =
1− φ

2
ηo +

1 + φ

2
ηw, (3.31)

where ηo and ηw are the viscosities of the oil and water phases. In this way,

η automatically changes across the interface with a profile similar to the tanh

function.
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3.3 Selection of lattice units

The LBM uses variables that are in lattice units. It is crucial to select the

proper units of the lattice variables. Two constraints determine the selection of

units. First, the LB simulation should be equivalent, in a well defined sense, to

the physical system. Second, the parameters should be fine-tuned in order to

have stable computation and reach the required accuracy, i.e. the grid should be

sufficiently resolved, the discrete time step sufficiently small. In a typical binary

LB simulation, there are several important parameters controlling the physics of

flows: the length scale of the system L, the magnitude of flow velocity U , the

density of fluid ρ, the viscosity η and the interfacial tension σ. To match these

lattice parameters to physical values we can choose only three quantities: a length

scale L0, a time scale T0, and a mass scale M0. These scales can be defined by

both the physical and lattice parameters:

L0 =
δphyx

δx
, T0 =

δphyt

δt
,

M0

L3
0

=
ρphy

ρ
, (3.32)

where the superscript ‘phy’ denotes the parameter in physical unit. Generally,

the lattice grid spacing δx, the simulation time step δt and the lattice density ρ

are all taken to be unity. So we have

L0 = δphyx , T0 = δphyt , M0 = ρphy(δphyx )3. (3.33)

Once the three scales are determined, a simulation parameter with dimensions

[L]n1[T ]n2[M ]n3 is multiplied by [L0]
n1[T0]

n2[M0]
n3 to give the physical value and

vice versa. In practice, a useful approach is to determine L0, T0, and M0 by

satisfying the following constraints.

The major constraint of the LBM is that it is valid for incompressible flows,

i.e. low Mach numbers and for flows with low Knudsen numbers, i.e. mean free

path is small relative to the characteristic length. In order to avoid errors due

to compressibility, the Mach number of the simulation should be chosen to be

smaller than 0.15. Mach number is determined by:

Ma =
U

cs
=
Uphy

1√
3
L0

T0

< 0.15, (3.34)

The relaxation time τf , which is associated with the fluid viscosity, has two
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constraints. The first is that it should not be much greater than 1 because as

τf increases so does the Knudsen number. Also τf should not be close to or less

than 0.5 because the instability may occur due to insufficient temporal resolution.

Generally, it is a good choice to select 0.55 < τf < 1.5. From Eq. (3.30), one can

get

0.55 < τf = 3
η

ρ
+ 0.5 = 3

ηphy

ρphy
T0
L2
0

+ 0.5 < 1.5. (3.35)

Finally, in order to produce small spurious velocities and avoid the numerical

instability, we recommend selecting

σ = σphy
T 2
0

M0

≤ 0.03ρξc2s, (3.36)

According to the physical parameters, we can select suitable L0, T0 and M0

by satisfying the above constraints, i.e. Eqs. (3.34)-(3.36). In fact, the selection

of lattice units is a special nondimensionalization, in which the lengths and the

velocities are non-dimensionalised by the grid size and
√
3 times of the speed of

sound, respectively.

3.4 Boundary conditions

Boundary treatment is one of the key issues in the LB modelling interfacial flows.

In a typical LB simulation of droplet formation in a microchannel there are sev-

eral important boundary conditions: the open inflow and outflow boundary condi-

tions, the no-slip boundary condition at the solid walls, and the wetting boundary

condition for considering the fluid-surface interaction.

No-slip boundary condition is applied at solid walls using half-way bounce-

back [95], which can prevent the boundary “mass leakage”, especially for a flow

with small velocity. To conserve the total mass of the system and to ensure the

numerical stability of solving flows with small Reynolds number, a stress-free

boundary condition is proposed to treat the outflow boundary with the mass

modification at each node introduced by considering the fully developed velocity

profile.

Assuming that the fluid node ~x is a boundary node, its links are divided

into two groups: boundary links (BL) and fluid links (FL) [116]. Without losing

generality, the outflow boundary is set at the right-hand end of the system, x =

xmax; the inflow boundary is set at the left-hand end, x = xmin; and the inlet
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velocity of fluid is directed to the right. After the collision step, the PDFs at the

inlet and outlet boundaries are first modified as

f̃i(~x, t+ δt) =

{

f ′
i∗(~x, t) if (i∗) is BL

f ′
i(~x+ ~ei∗ , t) otherwise,

(3.37)

where ~ei∗ = −~ei.
The outflow boundary is stress-free, which means that

∂ux
∂x

= 0 at x = xmax. (3.38)

In the LBM, the stress-free outflow boundary, Eq. (3.38), can be implemented by

fi(~x, t + δt) =











f̃i(~x−, t+ δt) if (i∗) is BL

f̃i(~x, t+ δt) + δf(~x, t+ δt) if i = 0

f̃i(~x, t+ δt) otherwise,

(3.39)

where ~x− = (xmax − δx, y), and δf will be defined below.

At the inflow boundary, a given constant velocity, ~uin, normal to the boundary,

is imposed by

fi(~x, t+ δt) =

{

f̃i(~x, t+ δt) + 2wiρuin/c
2
s if (i∗) is BL

f̃i(~x, t+ δt) otherwise.
(3.40)

Hence, the total net flux at all lattice sites at the inflow boundary follows

mtot =
∑

x=xmin

∑

(i∗)∈BL

2ρwiuin/c
2
s =

∑

x=xmin

ρuin. (3.41)

Assuming that the fully developed velocity profile at the outflow boundary is

~u = (ux(y), 0), the outgoing mass at site ~x = (xmax, y) can be calculated by

m(~x) = mtot
ux(y)

∑

ux(y)
. (3.42)

In order to conserve the total mass in the system, δf in Eq. (3.39) should be

δf(~x, t+ δt) =
∑

(i∗)∈BL

[f̃i(~x, t+ δt)− fi(~x−, t+ δt)]−m(~x). (3.43)

The wetting properties are important for fluid/surface interactions. Iwahara
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et al. [117] proposed an elegant way to implement the wetting boundary condition

in a vapor-liquid system. Recently, van der Graaf et al. [21] used the same wetting

boundary treatment for a liquid-liquid system. They assume that the wall is a

mixture of two fluids, thus having a certain value of the order parameter φw, so

the derivatives of the order parameter at the surface boundary can be calculated

using (9 points) regular finite difference stencils [118]. Consequently, the chemical

potential and the interfacial force term in Eq. (3.27) become dependent on the

properties of the neighboring solid lattice sites, resulting in a special case of the

Cahn boundary condition [104].

The wetting properties are usually characterized by the contact angle of a

solution on a surface. The Young’s equation gives the relation between a contact

angle and interfacial tensions. For a water droplet attached on a solid wall,

surrounded by the oil phase, the equilibrium contact angle θw is given by

cos(θw) =
σw,oil − σw,water

σ
, (3.44)

where σw,oil or σw,water is the interfacial tension between the fluid phase (oil or

water) and the solid wall.

Since the solid wall is assumed to be a mixture of two fluids, the fluid-wall

interfacial tensions can be calculated in a similar way to the fluid-fluid interfacial

tension

σw,water =

∫ +∞

zw

κ

(

dφ

dz

)2

dz, (3.45)

σw,oil =

∫ zw

−∞
κ

(

dφ

dz

)2

dz, (3.46)

with tanh(zw/ξ) = φw. Substituting Eq. (3.4) into Eqs. (3.45) and (3.46), we

have

σw,water =
κ

3ξ

(

2− 3φw + φ3
w

)

, (3.47)

σw,oil =
κ

3ξ

(

2 + 3φw − φ3
w

)

. (3.48)

Substituting the values of the interfacial tensions into Young’s law, Eq. (3.44)

becomes

cos θw =
1

2
φw

(

3− φ2
w

)

. (3.49)

From Eq. (3.49), the desired equilibrium contact angle can be obtained by assign-

ing the order parameter φw to the solid lattice sites next to the wall. It should
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be noted that in principle Eq. (3.49) is only valid for the homogeneous surfaces

and the equilibrium contact angle. However, Iwahara et al. [117] identified in

their simulations that the present wetting boundary condition can mimic hetero-

geneous surfaces with arbitrary wettabilities, it can also capture the contact line

pinning and the contact angle hysteresis etc. In contrast to the model proposed

by Briant et al. [119], this approach can be more easily implemented, in particular

for complex structured boundary and heterogeneous surface.
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Chapter 4

Validation and analysis of model

This chapter has two objectives. First, we will validate the usefulness and accu-

racy of our model by comparing our simulation results with the analytical solu-

tions. Second, we will further examine the phase-field lattice Boltzmann model

for simulating the droplet dynamical behavior, such as the droplet deformation,

break-up, coalescence, collision and contact line motions, which will indicate the

capability of our toolkit for interfacial flows of complex fluids. Comprehensive

exploration of new physics in complicated microfluidic devices will be carried out

in the subsequent chapters.

4.1 Validation of the present model

To validate the proposed phase-field LB model, two examples of a water droplet

placed in an unbounded oil-phase domain and on a solid wall are simulated. For

the first benchmark case, a two-dimensional circular droplet is initially located

at the centre of the lattice domain with 120× 120 lattices in the xy-plane. The

periodic boundary conditions are imposed at all boundaries. According to the

Laplace’s law, when the system reaches the equilibrium state, the pressure differ-

ence across the droplet interface ∆p is related to the interfacial tension σ as

∆p =
σ

R
, (4.1)

where R is the radius of the droplet. Fig. 4.1 shows the pressure difference ∆p

against 1/R using the following parameters: τf = 1.0, σ = 0.01, ξ = 1.5δx,

and Γ = 4.0. It can be found that the model predictions (“�”) are in excellent

agreement with the Laplace’s law (the solid line). Eq. (3.3) can also be used to
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Figure 4.1: Comparison of the LBM results (“�”) with the Laplace’s law (the
solid line) for pressure jump across a stationary droplet interface.

verify the accuracy of the numerical results, which can be written as

φ(x, y) = tanh
R−

√

(x− x0)2 + (y − y0)2

ξ
, (4.2)

where x0 and y0 are the coordinates of the centre of the droplet. Fig. 4.2 displays

the order parameter as a function of the distance from the droplet centre, which

is in good agreement with the theoretical equilibrium profile given by Eq. (4.2).

This shows that our method can correctly model and capture the phase interface.

However, a numerical artifact observed in many numerical methods is the pres-

ence of spurious velocities at the phase interface. This is also true in our case.

Fig. 4.3 shows the velocity vector plots in the final stage of droplet evolution for

the improved color-function model presented by Lishchuk et al. [120], the free

energy model of Swift et al. [35], and the present model, where the values of ~u are

magnified by 1.5×105 times in (a), 5×104 in (b) and 1×107 times in (c) respec-

tively. Although the improved color-function model has shown to significantly

reduce the spurious velocities in comparison with the Gunstensen’s model [98]

and the Shan-Chen model [99], it can be observed that the magnitude of the

maximal spurious velocity of the present model (1.6×10−6) is much smaller than

that of the improved color-function model (5.2× 10−5). Noticeably, although the
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Figure 4.2: The profile of order parameter along the cross section of a droplet
with R = 30δx. The discrete symbols represent the simulation results of the
present LB model and the solid line is the theoretical profile given by Eq. (4.2).

present model is essentially the same as the free energy model of Swift et al.,

building upon the Cahn-Hilliard free energy theory [81], the present model can

effectively reduce the spurious velocities at the interface (note that the maximal

spurious velocity is 3.75 × 10−4 in the model of Swift et al.) due to the smaller

discretization errror introduced in the treatment of interfacial tension force [86].

As the first example, we use the aforementioned method to obtain the corre-

sponding physical values of our LB parameters used above. We choose the length

scale L0 = 6 × 10−6 m and the time scale T0 = 6 × 10−7 s. Also, we choose

the density of fluid ρphy = 103 kg/m3. Hence it can have the mass scale M0 =

ρphyL3
0 = 2.16× 10−13 kg. For a droplet with radius R = 30 lattices, the physical

values of the simulation parameters can be given by: Rphy = RL0 = 1.8×10−4 m,

σphy = σM0

T 2

0

= 0.012.16×10−13

(6×10−7)2
= 6×10−3 N/m, η =

2τf−1

6
M0

L0T0
= 1

6
2.16×10−13

(6×10−6)(6×10−7)
=

0.01 Pa s, and ∆pphy = ∆p M0

L0T 2

0

= 105∆p = 33.53 N/m2.

To assess the fluid-solid interaction model given by Eq. (3.49) implemented in

the proposed phase-field model, we perform the static contact angle simulation

in a 200×80 domain. The initial condition is a semicircular stationary droplet

sitting along the center line on the bottom wall. The top wall is assumed to be

neutral wetting, i.e. φw = 0. The periodic boundary condition is used in the
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(a) Lishchuk’s model

(b) Swift’s model

(c) Present model

Figure 4.3: Comparison of the spurious velocities of a droplet in stationary fluid
with σ = 0.01 and R = 30δx for (a) the model of Lishchuk et al. [120], (b) the
model of Swift et al. [35], and (c) the present model. Values of ~u are magnified
by 1.5× 105 times in (a), 5× 104 times in (b), and 1.5× 107 times in (c).
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x-direction while the halfway bounce-back boundary condition is imposed at top

and bottom in the y-direction. Other parameters are chosen as: σ = 0.0025,

ξ = 1.5δx, τf = 0.8, and Γ = 4.0. We run the simulation until the shape of

droplet does not change, i.e. reaching an equilibrium state. The contact angle

is evaluated by fitting the arc of a circle to the cross section of the droplet and

determining the contact angle of this arc with the solid wall using the least-

square method. Fig. 4.4 gives the comparison of two different wetting boundary

treatments for a droplet on a solid wall with static contact angles θ = 45◦, 90◦

and 135◦, where (a) uses the method described above, and (b) uses the method

proposed by Briant et al. [119], which is based on the free energy model of Swift

et al. [35]. It can be easily seen that both methods agree qualitatively. Fig. 4.5

shows the contact angle as a function of the order parameter value of the solid

surface. The result shows good agreement with the theoretical line described by

Eq. (3.49). A recent study of Pooley et al. [36] showed that, when the two phases

have different viscosities for a binary fluid, the free energy model of Swift et al.

(using the wetting boundary condition of Briant et al. [119]) can produce incorrect

results for the equilibrium contact angle due to strong spurious velocities in the

steady state. They demonstrated that one has to resort to a multiple-relaxation-

time (MRT) algorithm (which has more complexity and higher computing cost in

contrast to the single-relaxation-time (SRT) algorithm in the free energy model

of Swift et al. [35]) in order to correctly capture the contact angle. To examine

whether the present model can produce the correct equilibrium contact angle for

both phases with different viscosities, we run simulations with τo = 0.59 and

τw = 1.4 (this choice gives the viscosity ratio λ = τw−0.5
τo−0.5

= 10), and keep the

other parameters as used above. We find that all the simulation results are the

same as those for the cases with τf = τw = τo = 0.8. This may be because the

spurious velocities are effectively suppressed in the present model. Therefore, the

present phase-field LB model is capable of simulating two-phase flow with the

presence of solid walls.
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Figure 4.4: Comparsion of the simulations of static contact angles using (a) the
present method and (b) Briant’s method [119].
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Figure 4.5: Contact angles as a function of the order parameter of the solid surface
with the simulation data points (“◦”) and the solid line from analytical theory.
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4.2 Droplet dynamics

4.2.1 Droplet deformation and breakup under simple shear

flow

Taylor deformation is often used to assess whether a multiphase model is able to

simulate dynamic problems. A droplet is placed between two parallel plates which

are moving in opposite directions to obtain the shear flow in the Stokes regime

(small Reynolds number), and droplet deformation is studied as a function of the

shear rate (expressed as the Capillary number) at a constant Peclet number. The

definitions of the Reynolds number, Capillary number and Peclet number [21,121]

are given as

Re =
γR2ρ

η
, Ca =

γRη

σ
, Peφ =

γRξ

MA
(4.3)

where γ = 2uw/H is the shear rate with uw being the velocity of moving wall, and

H being the channel height, and R is the initial radius of the droplet. For this

case, we assume that the densities and viscosities are the same for both fluids.

The simulations are run at Re = 0.1 and Peφ = 2.0 for a droplet with the radius

of 32 lattice cells in a system of 256×128 lattice cells. At the steady state, the

droplet is assumed to be an elliptic shape, which is usually characterized by the

deformation parameter Df , defined as

Df =
a− b

a+ b
, (4.4)

where a and b are the major and minor axis of the ellipse. In 2D, it is expected

that Df follows the Taylor relation for small Ca [122], which reads:

Df = f(λ)Ca, (4.5)

where λ is the viscosity ratio between droplet and matrix fluid. We also carry

out the simulations using the LB free energy model developed by Swift et al. [35]

with the same parameter settings, as well as using the VOF method with the

same physical parameters and grid size. In Fig. 4.6 we have plotted Df versus

Ca for both LBM and VOF simulations. We observe that the simulation results

of the present model are almost the same as those of Swift’s model, and the

results of the present model are slightly closer to the VOF results. In addition,

the linear dependence of Df on Ca, i.e. Eq. (4.5), is confirmed at low capillary
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Figure 4.6: Taylor deformation parameter Df as a function of the capillary num-
ber.

numbers, where Df = 1.5Ca is obtained based on the simulation results of the

present model. Fig. 4.7 shows the steady state droplet shapes for various capillary

numbers. Qualitatively, the profiles agree well with those profiles presented in

Zhou and Pozrikidis [123]: all profiles cross two points. Finally, we find that the

droplet breaks up at the critical capillary number Cacr between 0.9 and 1.0 for

Re = 1.0, which is in agreement with the finding of Zhou and Pozrikidis [123].

Fig. 4.8 shows the comparison of the droplet evolution under simple shear flow

for (a) Ca = 0.9 and (b) Ca = 1.0. The dimensionless time is defined as γt. We

notice that at Ca = 0.9 the droplet will shrink once the maximal deformation is

not enough to “pinch-off” the droplet. Also, the intermediate filament will shrink

when the daughter droplets detach from the bulk at Ca = 1.0. These indicate

that the droplet behaves elastically to some extent.
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Figure 4.7: Stable droplet shape depicted as contour lines of φ = 0, for various
capillary numbers: Ca = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.

(a) Ca = 0.9 (b) Ca = 1.0

Figure 4.8: Snapshots of the droplet evolution under simple shear flow at
λ = 1, Re = 1.0 for (a) Ca = 0.9 and (b) Ca = 1.0, taken at times
γt = {0, 6, 12, 24, 27, 30}.
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4.2.2 Coalescence of two droplets with and without colli-

sion

Coalescence of droplets dispersed in a second immiscible fluid (i.e. matrix fluid)

plays an important role in many industrial applications. These applications in-

clude emulsion stability, ink-jet printing, and coating applications. Since coales-

cence involves droplet interactions, it is intrinsically more complex than droplet

breakup and more difficult to study either theoretically or experimentally. When

the droplets are in contact, the inversion of the radius of curvature causes a

singularity, forming a liquid bridge between the droplets. To demonstrate the

ability of our model to handle singular topological changes, we first examine the

inertial coalescence of two equal-sized droplets without collision, driven by the

interfacial tension. We construct a 120×120 domain with two circular droplets

located horizontally with a gap of d. The radius of droplets is R = 20 lat-

tices (Rphy = 120 µm). The periodic boundary condition is employed at all

boundaries. The simulation parameters are chosen as: τf = 1.0 and σ = 0.002

(ηphy = 0.02 Pa s and σphy = 4.8 mN/m). The gap of the two droplet d is fixed as

5 lattices (dphy = 30 µm), while the interface thickness parameter ξ and the mo-

bility coefficient Γ are adjusted to investigate their influences on the coalescence.

Firstly, we set the interface thickness parameter as ξ = 1.2δx (ξ
phy = 7.2 µm),

and Γ = 1.0, so that the gap of the two droplets is larger than 4ξ. Simulation

results are shown in Fig. 4.9. It can be easily seen that the two droplets do not

coalesce at any time. When we maintain the interface thickness parameter at

1.2 lattices but set a larger value of Γ = 100.0, the simulation results are still

the same as the above. Actually, even when the interface thickness parameter is

increased to 1.25 lattices, the two droplets do not merge together.

The interface thickness is then set to ξ = 1.3δx (ξphy = 7.8 µm) and Γ =

10.0. This is the case where the gap of two droplets is less than 4ξ. The other

parameters are kept unchanged. The results are shown in Fig. 4.10. It can

be easily seen that the two droplets merge together and eventually into a larger

droplet. To show the influence of the mobility coefficient Γ on the coalescence, the

interface thickness parameter is maintained as ξ = 1.3δx (ξphy = 7.8 µm) and Γ

value is reduced to 0.1. The other parameters are kept unchanged. The simulation

results are shown in Fig. 4.11. The two droplets still coalesce. However, the

coalescence process is slower then the case with Γ = 10.0.
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Figure 4.9: Two stationary droplets without coalescence for ξ = 1.2δx,
d = 5.0δx and Γ = 1.0 at time step: (a)t=0, (b)t=30000, (c)t=100000,
(d)t=200000, (e)t=500000, (f)t=800000. The corresponding physical times are
tphy = {0, 9, 30, 60, 150, 240} ms.

Based on the above simulation results, we can conclude that, for the two sta-

tionary droplets without collision, the gap between the droplets and the interface

thickness are the major factors to decide whether the two droplets will coalesce

together or not. When d ≥ 4ξ, the two droplets will not coalesce. Otherwise,

they both will coalesce together. The mobility coefficient Γ does not determine

whether the two droplets will coalesce or not, but it can affect the velocity of

coalescence, i.e., a larger Γ makes the two droplets merge together more quickly.

The shear induced coalescence described in Ref. [110] is investigated here.

We only aim to examine the effect of mobility coefficient Γ (expressed as Peφ)

on coalescence. The computational domain is taken as 180×120 lattices. Two

droplets with radius R = 20δx are placed at symmetrical locations above and

below the centre line of the shear flow in such a way that they can approach

each other when the solid walls are set in motion. The initial differences in the x-

coordinate and y-coordinate of the droplets are 20 and 80 lattices respectively. As

in Yang et al. [124], the shear induced coalescence and separation can be divided

into three stages: droplet transport, film drainage and coalescence or separation.

Whether two droplets will coalesce or separate depends on the capillary number,
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Figure 4.10: The coalescence of two droplets without collision for ξ = 1.3δx, d =
5.0δx and Γ = 10.0 at time step: (a) t=0, (b) t=42000, (c) t=43000, (d) t=44000,
(e)t=45000, (f)t=47000, (g)t=50000, (h)t=60000, (i)t=150000. The correspond-
ing physical times are tphy = {0, 12.6, 12.9, 13.2, 13.5, 14.1, 15, 18, 45} ms.
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Figure 4.11: The coalescence of two droplets without collision for ξ = 1.3δx, d =
5.0δx and Γ = 0.15 at time step: (a)t=0, (b)t=100000, (c)t=106000, (d)t=107000,
(e)t=108000, (f)t=110000, (g)t=120000, (h)t=150000, (i)t=500000. The corre-
sponding physical times are tphy = {0, 30, 31.8, 32.1, 32.4, 33, 36, 45, 150} ms.
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the way of two droplets interact, and the interfacial properties. Fig. 4.12 and

Fig. 4.13 show the simulation results for Peφ = 5 and Peφ = 50, respectively. All

the other parameters are the same, which are chosen as: Ca = 0.18, Re = 0.4,

ξ = 2δx, and τf = 1.1. Fig. 4.12 shows a shear-induced collision and coalescence

at small Peφ (i.e. Peφ = 5), and Fig. 4.13 shows a shear-induced non-contact

collision at large Peφ (i.e. Peφ = 50). Obviously, the small Peφ can help droplets

to coalesce, which is consistent with the simulations given by Yu and Zhou [110]

on droplets coalescence in viscoelastic matrix under shear using a traditional

CFD solver with the phase-field model, as well as the experiments reported by

Zdravkov [125] on two polymers with a big difference in molecular weight under

planar extensional flow.

The effect of Peφ (Γ) on coalescence with collision induced by shear can be

seen more clearly in the flowfield shown in Fig. 4.14. Zero and ±0.9 order param-

eter contour lines are shown as blue solid lines, small red lines with arrow denote

the velocity vectors and green solid lines with big arrows denote the streamlines

to show the trend of fluid motion. In the shear-induced collision-coalescence

(Peφ = 5), the overlap of the diffuse interface thickness can be observed and the

matrix fluid between two droplets is drained out. Whereas in the shear-induced

collision-separation (Peφ = 50), little drainage of the matrix fluid is observed and

two droplets rotate, which can be seen from the direction of streamline. This dif-

ference can be attributed to the Marangoni stresses because of the inhomogeneous

interface thickness in the matrix film trapped between two droplets [110,125]. In

the phase-field model, the interface thickness is not uniform under shear force.

The interface thickness increases near the elongated droplet tips and decreases

near the short axes due to different stresses in different regions. As a result, the

interfacial tension should not be the same everywhere for an elongated droplet

in the flowfield. The non-uniform distribution of interfacial tension can cause

Marangoni stresses. At small Peφ, the Marangoni stresses have the same di-

rection with the drainage because of the larger order parameter value in the

contact region, while the Marangoni stresses have the opposite direction with the

drainage at large Peφ due to absence of interface overlap. It can be concluded

that interface diffusion can affect whether the coalescence with collision occurs

or not to some extent. However, we should note that the interface diffusion is (at

least) not the decisive factor. In general, the most important factor should be

the hydrodynamic forces.
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(a)

(g)

(c)

(e)

(b)

(d)

(h)

(f)

Figure 4.12: The collision-coalescence of two droplets in shear flow at time:
(a)γt = 0, (b)γt = 2, (c)γt = 4, (d)γt = 5.8, (e)γt = 6, (f)γt = 6.2, (g)γt = 6.6,
(h)γt = 30. The parameters are Ca = 0.18, Re = 0.4 and Peφ = 5.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: The non-contact collision of two droplets in shear flow at time:
(a)γt = 0, (b)γt = 3, (c)γt = 6, (d)γt = 7, (e)γt = 8, (f)γt = 9. The parameters
are Ca = 0.18, Re = 0.4 and Peφ = 50.
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Figure 4.14: The velocity fields for two droplets with collision-coalescence and
with non-contact collision. The blue solid lines show zero and ±0.9 order param-
eter contour lines, the small red lines with arrow denote the velocity vectors and
the green solid lines with big arrows denote the streamlines to show the trend of
fluid motion.

4.2.3 Contact-line motion

To show whether our method can model contact-line motion, a droplet attached

on a substrate in a shear flow is investigated. We examine the advancing contact

angle θA, the receding contact angle θR and droplet velocity ud when the shear

is induced by moving the upper wall at a constant velocity uw. As shown in

Fig. 4.15, the two walls are separated by a distance H . The lower wall is kept

stationary, and the upper walls moves towards the right with a constant velocity

uw. Periodic boundary conditions are applied in the x-direction. The advancing

and receding contact angles are both defined as the angles measured from the

droplet side of the contact line. The capillary number, Reynolds number and

Peclet number are defined as in Eq. (4.3), where the shear rate is chosen as

γ = uw/H . We run the simulations in a 256×64 lattice domain. The initial

droplet radius is R = 32 lattices and the initial droplet centre is (Xc, Yc) = (64, 0).

Both fluids have the same viscosity, which is given by η = 0.1. The interfacial

tension is set to be σ = 1×10−3. Without losing generality, here we only consider

the solid wall with neutral wetting (φw = 0).

To investigate the effect of the wall velocity on droplet motion, we only vary

the wall velocity uw (expressed as Ca) and keep all the other parameters fixed.

Note that the mobility is fixed as M = 0.5 in the current study, so the Peclet
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Figure 4.15: A schematic illustration of the simulation geometry to examine
contact-line motion. The droplet on the left is in the original shape before the
start of flow, while the one on the right is deformed by the shear flow.

Figure 4.16: The snapshots of droplet sliding on a solid wall under shear for (a)
Ca = 0.05 and Re = 0.16, (b) Ca = 0.15 and Re = 0.48, and (c) Ca = 0.225
and Re = 0.72. The time steps are taken as t0 = 0, t1 = 100000, t2 = 200000,
t3 = 300000, t4 = 400000, and t5 = 500000, respectively.
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Figure 4.17: Droplet velocity vs. moving wall velocity. The red symbols are the
simulation results ofM = 0.5, and the green symbols are the simulation results of
Peφ = 2. The solid line is a linear fitting of the simulation results with Peφ = 2.

number Peφ increases as Ca increases. When Ca is increased from 0 to 0.4 (the

corresponding wall velocity increased from 0 to 0.008), we find that the motion

of the droplet can experience two modes. One is the slip mode where the droplet

slides along the wall and steady-state exists for the droplet shape and velocity.

The other is the breakup mode where the droplet is divided into two droplets

when the capillary number increases to some critical value (Cacr > 0.25).

Fig. 4.16 shows the snapshots of droplet motion in the slip mode (i.e. Ca <

Cacr) for (a) Ca = 0.05 and Re = 0.16, (b) Ca = 0.15 and Re = 0.48, and (c)

Ca = 0.225 and Re = 0.72. Under a small shear rate the droplet deforms slowly

first, then starts to move, and finally ceases to deform when reaching a certain

shape with a constant moving velocity ud. As the capillary number increases,

the droplet deformation and the moving velocity increase. We also notice that

the height of droplets during the deformation seems to be the same as in the

initial state. To highlight the influence of Peφ on the droplet motion, we carry

out the simulations with a fixed Peclet number (Peφ = 2) and keep all the other

parameters as in the above simulations with fixed mobility M . Fig. 4.17 shows

the relationship between the wall velocity uw and droplet moving velocity ud in
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Figure 4.18: Steady flowfield (relative to the moving droplet) around a droplet
for Ca = 0.15, Re = 0.48 and M = 0.5. The red contour represents the droplet
interface, the green lines represent the streamlines, and small blue lines with
arrow represent the velocity vectors.

the slip mode for M = 0.5 (red discrete symbols) and Peφ = 2 (green discrete

symbols). The droplet velocity ud is calculated by

ud =
∑

i,j

ui,jN(φi,j)/
∑

i,j

N(φi,j), (4.6)

where the function N(φ) is defined as

N(φ) =

{

1 (φ > 0)

0 (φ ≤ 0).
(4.7)

It can be clearly seen that the droplet velocity ud exhibits a linear dependence on

the wall velocity for the fixed Peφ, i.e. ud = 0.0868uw. However, the droplet ve-

locity gradually deviates from the linear relationship as the wall velocity increases

for a fixed mobility. This is because the Peclet number increases (larger than 2)

with an increase in uw for a fixed M . So one can expect that a larger Peφ slows

down the droplet motion on the wall. It should be noted that, since the lower

wall is stationary and the droplet keeps a fixed shape upon reaching the steady

state, ud is actually the slip velocity of the contact line. To indicate the flowfield

around the droplet, a snapshot of the steady state (with the velocity vectors in a

frame moving with the droplet) is shown in Fig. 4.18. From Fig. 4.18, it can be

seen that the shear flow far above from the droplet is only slightly disturbed; as

the flows approach the droplet, the streamlines are increasingly deformed. Also,

in the lower region containing the droplet, two circulations are observed: one

is inside the droplet and the other is outside, which is relatively flat (note that

in Fig. 4.18 the outside circulation is separated into two parts on the left and

65



CHAPTER 4. VALIDATION AND ANALYSIS OF MODEL

right sides of the droplets which can be connected together because the periodic

boundary conditions are applied in the x-direction).
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Figure 4.19: Dynamic contact angles as a function of capillary number. The red
and blue symbols are the simulation results of the advancing contact angle θA
and the receding contact angle θR, and the red and blue sold lines are the linear
fitting of the simulation results θA and θR, respectively. In the simulations, the
order parameter of wall is set to be φw = 0, so that the equilibrium contact angle
is θw = 90◦, which is represented by a dashed line.

Fig. 4.19 gives the relationship between the capillary number Ca and the

dynamic contact angles θA and θR in the slip mode for M = 0.5. It is observed

again that the droplet can stay steady even though both contact angles θA and θR

deviate from the static contact angle θS (where θS = θA|Ca→0 = θR|Ca→0 = 87.15◦)

when the droplet is moving on the wall. It should be noted that all the contact

angles are calculated by the coordinates of the nearest two fluid nodes close to the

wall. Also, the wall is actually located between the first fluid node and the solid

node because a half-way bounce-back boundary condition is imposed at the wall.

Therefore, it is not surprising that the calculated static contact angle θS is slightly

smaller than its given value θw = 90◦. We can also notice θR ≤ θS ≤ θA, which is

consistent with the usual concept of contact angle hysteresis [126]. On the basis

of our simulation results, it can be found that the advancing contact angle and

the receding contact angle both approximately exhibit a linear dependence on
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Figure 4.20: The advancing contact angle θA as a function of Cacl at M = 0.5.
The discrete symbols are the simulation results and the solid line is the linear fit
of cos(θA) to Cacl.

the capillary number, i.e. θA = 87.15 + 173.07Ca and θR = 87.15− 148.11Ca.

Based on the contact-line velocity ucl (which is equal to ud as stated above),

we define a new capillary number, Cacl = uclη/σ, which we call the contact-line

capillary number in this study to differentiate with the capillary number Ca. To

lowest order in Cacl, the advancing contact angle is related to the static contact

angle θS and the capillary number Cacl by [127]

cos(θA) = cos(θS)− Cacl ln(KL/ls), (4.8)

where K is a constant, L is the length scale of the system, and ls is the effective

slip length at the three phase contact line. Fig. 4.20 gives the measured contact

angle θA as a function of Cacl at M = 0.5. As expected, our simulation results

show a linear decrease of cos(θA) with the contact-line capillary number Cacl.

Finally, Fig. 4.21 gives the evolution of the droplet in the breakup mode with

Ca = 0.3, Re = 0.96 and M = 0.5. In the process of droplet breakup the

contact-line motion is instantaneously varying, so the time-related studies are

required to understand the contact-line dynamics. This is not included in this

thesis.
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Figure 4.21: The snapshots of droplet breakup on a solid wall under shear at
Ca = 0.3, Re = 0.96 and M = 0.5 for: (a) γt=0, (b) γt=4.69, (c) γt=9.38, (d)
γt=14.06, (e) γt=21.56, (f) γt=22.03, (g) γt=26.25, and (h) γt=28.13.

4.3 Conclusions

The simulations of stationary droplet flow and static contact angle have demon-

strated that the binary phase-field LB model can easily and accurately capture

droplet behaviour. A series of simulations have been carried out on droplet defor-

mation, breakup, coalescence, collision and contact line motions in microfluidic

devices using this model. The influences of some flow and numerical parameters

on droplet dynamic behaviour are studied. The following conclusions are drawn:

1. In contrast to some existing LB multiphase models, the present model can

significantly reduce unphysical spurious velocities at the interface. In par-

ticular, it is very direct and simple to implement boundary conditions in-

cluding wetting boundary condition. The present model can overcome the

disadvantages of Swift’s free energy model for treating the wetting bound-

ary, in which strong spurious velocities in the steady state lead to incorrect

results for the equilibrium contact angle when the both fluids have different

viscosities.

2. The droplet deformation between two shearing plates shows that, the Taylor

deformation parameter is a linear function of capillary number for small

droplet deformation, and the droplet breakup occurs at a critical capillary

number 0.9 < Cacr < 1.0 for Re = 1.0.
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3. Simulation results on the coalescence of two stationary droplets driven by

interfacial tension indicate that: whether the two droplets will coalesce or

not is completely determined by their gap and the interface width. Droplets

with high diffusion ability can coalesce easier and faster when the coales-

cence occurs.

4. The coalescence process of two droplets in simple shear flow is found to be

greatly dependent on the diffuse property of the interface. For convection-

dominated case (large Peφ), the diffusion of the order parameter is greatly

inhibited, and an overlap of the interfacial layer will not happen, which

results in the final separation of two droplets.

5. The simulation results of contact line dynamics for a droplet attached to a

substrate in a shear flow show two droplet motion modes including the slip

mode and the breakup mode. In the slip mode, the droplet deforms and

finally reaches the fixed shape and moving velocity. The moving velocity of

droplet is a linear function of the wall velocity for a fixed Peclet number.

It is identified that large interface mobility (i.e. small Peclet number) can

accelerate the contact line motion. In addition, the contact angle hystere-

sis phenomenon is reproduced by the present model. The advancing and

receding contact angles both exhibit a linear dependence on the wall veloc-

ity. It is found that the advancing contact angle can be correlated with the

contact line velocity through a scaling equation.
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Droplet formation in a T-shaped

microfluidic junction

For many microfluidic microdroplet applications, it is important to generate

mono-dispersed droplets in a continuous flow. T-junctions are one of the most fre-

quently used microfluidic geometries to produce immiscible fluid segments (plugs)

and droplets. Although much experimental work has been done on understanding

droplet formation in microfluidic T-junctions, the available information is frag-

mented due to differences in channel dimensions, flow rates, and materials used.

As a numerical study can be complementary to an experimental investigation,

our multiphase LB model, using the phase-field theory to describe interfacial

interactions, is employed to investigate the droplet formation in a microfluidic T-

junction. The influence of capillary number, flow rate ratio, viscosity ratio, and

contact angle on droplet breakup, size, and detachment is to be systematically

studied.

We study droplet formation in a T-junction microchannel, as illustrated in

Fig. 5.1, consisting of a main channel with width wc and a lateral channel with

width wd. Both wc and wd are 100 µm in the current simulations. The contin-

uous phase oil is introduced at the inlet of the main channel, and the dispersed

phase water is injected into the lateral channel. To quantitatively understand

the underlying flow physics, we need 3D simulations to resolve intermolecular

interactions at the interface and their effect on the hydrodynamics. However,

to accurately resolve an interface with a typical thickness of 1nm and surround-

ing fluid flowfield, it is still not practical to use the phase-field calculation with

today’s computer technology. Therefore, we run our simulations in 2D to un-
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dQ  
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Figure 5.1: Schematic illustration of the droplet generation in a microfluidic T-
junction, where wc, wd are the widths of the main and lateral channels, and Qc

and Qd are the inlet volumetric flow rates of the continuous and dispersed phases.

derstand flow physics qualitatively. The computational domain consists of 300

× 60 lattices and each lattice spacing corresponds to 5µm. In all the cases, we

find that mesh refinement will lead to results variations no more than 5%. In

the following, we will use the subscripts ‘c’ and ‘d’ to refer to the continuous and

dispersed phases, respectively.

In the numerical solution, the interfacial thickness parameter ξ is a free pa-

rameter. In order to keep a sharp phase interface, ξ should be chosen to be a

small value. However, if ξ is too small, numerical inaccuracy and instability will

occur at the interface. For a finite interface thickness, straining flows can thicken

or thin the interface, which must be resisted by diffusion. Meanwhile, large dif-

fusion will excessively damp the flow. Therefore, appropriate balance between

the convection and diffusion effects at the interface is important which can be

described by the Peclet number, Pe:

Pe =
ucwc
MA

, (5.1)

where the average inlet velocity uc and inlet width wc of the continuous phase

are chosen to be the characteristic velocity and length of the system. In our

simulations, we compromise to have ξ of 2 lattice grids, so that the interface is

resolved typically 5 ∼ 6 grids, and Pe is of O(10) ∼ O(100).

Flow behavior in a microfluidic T-junction can be classified by a group of

dimensionless parameters, which are commonly defined by the experimentally

measurable variables e.g. the interfacial tension, the inlet volumetric flow rates

(Qc and Qd) and viscosities (ηc and ηd) of the two fluids. For a typical microfluidic

system, the Reynolds number is so small that inertial effects can be neglected.
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The Bond number is also negligibly small due to the small density difference

of the two immiscible liquids. In contrast, the capillary number (Ca), which

describes the relative importance of the viscosity and the interfacial tension, is

a most important parameter for droplet generation and defined by the average

inlet velocity uc and the viscosity ηc of the continuous phase, and the interfacial

tension σ as

Ca =
ηcuc
σ

=
ηcQc

σwc
. (5.2)

An additional important dimensionless parameter is the ratio of flow rates

(Q = Qd/Qc). The viscosity ratio (λ = ηd/ηc) and fluid/surface interaction also

play important roles in droplet formation process, which has been experimentally

observed [54,128]. In order to achieve consistent droplet breakup, it is necessary

that the continuous phase liquid should preferentially wet the walls. The magni-

tude of wettability will be described by a static contact angle θw. Here, we will

examine the roles of these parameters in droplet formation.

5.1 Influence of the capillary number

A series of simulations are performed with the interfacial tension σ = 0.0036,

the viscosity of the continuous phase ηc = 0.016 and the viscosity ratio λ =

1/4. The densities of both fluids are assumed to be unity. The contact angle

θw = 180◦ so that the continuous phase fluid completely wets the walls, while the

dispersed phase fluid is non-wetting. In order to compare our simulation results

with the experimental data [18, 46, 129], we choose Qd=0.004, 0.006 and 0.008

in the simulations. For convenience, all quantities are expressed in the lattice

units except the droplet diameter, which is in the physical unit. As described

in Section 3.3, we need to choose three reference quantities to match these LB

simulation parameters to their physical values. Specifically, L0 = 5 × 10−6 m,

T0 = 10−7 s and M0 = 1.25×10−13 kg in this study. Following the forementioned

criterion, for example, we can obtain the physical value of interfacial tension

σphy by: σphy = σM0

T 2

0

= 0.00361.25×10−13

(10−7)2
= 0.045 N m−1, and the physical value

of continuous phase viscosity ηphyc by: ηphyc = ηc
M0

L0T0
= 0.016 1.25×10−13

5×10−6·10−7 = 4 ×
10−3 Pa s.

Fig. 5.2 shows the snapshots of droplet formation in the T-junction. The

droplet deforms before detachment, and the necking of the dispersed phase is

initiated once the continuous phase fluid intrudes into the upstream side of the
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(a) (b)

Figure 5.2: The snapshots of droplet formation: (a) Ca=0.00056, Qd = 0.004;
and (b) Ca=0.059, Qd = 0.008.

lateral channel. The intrusion of the continuous phase accentuates the influence

of the contact line dynamics, which is thought to be indispensable for the droplet

detachment. Fig. 5.2 shows that the necking occurs soon after the dispersed phase

streams into the main channel when Ca is large (Ca = 0.059), while the plugs

are formed when Ca is small (Ca = 0.00056). The current simulation results

agree well with the experimental observations [18, 46]. Fig. 5.3 shows that the

droplet diameter becomes smaller when Ca increases for a fixed dispersed phase

flow rate, and is very weakly dependent on the dispersed phase flow rate. Here,

we define the diameter of a non-spherical droplet as the diameter of a spherical

droplet with the same volume.

In both experiment [48] and simulation [21], van der Graaf et al. found that

the final droplet volume is a result of a two-stage droplet growth. Initially, the

droplet grows to a critical volume Vc until the forces exerted on the interface

achieve balance. Subsequently, the droplet continues to grow for a time tn for

necking due to the continuous injection of the dispersed phase fluid. And the

final droplet volume V can be described by [48]

V = Vc + tnQd. (5.3)
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Figure 5.3: The effect of the capillary number on the droplet diameter at the
dispersed phase flow rates Qd of 4×10−3, 6×10−3 and 8×10−3 respectively. The
lines represent the power fittings of the simulation results

Vc depends only on Ca and the duration of necking tn decreases as Ca increases.

An empirical relationship was proposed to predict the droplet volume by van der

Graaf et al. [21]:

V = Vc,refCa
m + tn,refCa

nQd, (5.4)

where Vc,ref and tn,ref are the reference values at Ca = 1 (the droplet detachment

process is very fast, i.e. tn → 0); the exponents m and n depend on the device

geometry. In our simulation, we find that m = n = −0.78, while m = n = −0.75

were also reported by van der Graaf et al. [21].

5.2 Influence of the flow rate ratio

Here, we study the influence of the flow rate ratio on droplet formation in the T-

junction over a broad range of capillary numbers. Three different flow rate ratios

Q = 1/8, 1/4, and 1/2 are used in the simulations. For each flow rate ratio,

the capillary number varies from 0.004 to 0.056, typically found in microfluidic

droplet generation. The wetting conditions and the densities of both phases are

kept the same as in the previous section. The interfacial tension σ is now set to
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be 0.005. The viscosity of the continuous phase fluid ηc is 0.08, and the viscosity

ratio λ is 1/8.

As shown in Fig. 5.4, when the capillary number is low i.e. Ca = 0.006,

the incoming dispersed phase fluid tends to occupy the full width of the main

channel, and the breakup occurs at the downstream corner of the T-junction.

When the capillary number increases i.e. Ca = 0.032, 0.056, the dispersed phase

fluid occupies only part of the main channel, and smaller droplets are formed.

According to Ca, we find two distinguished droplet generation regimes i.e. the

squeezing and dripping regimes. In the squeezing regime when Ca is small, the

buildup of pressure in the upstream due to the obstruction of the main channel by

the emerging droplet plays a dominant role in “pinching off” the droplet, while

the viscous shear force becomes increasingly important in the dripping regime

when Ca increases.

Fig. 5.4 clearly shows the effect of Q and Ca on the droplet detachment point.

For small Q, i.e. Q = 1/8, the droplets are pinched off at the T-junction corner

for all the capillary numbers. However, for Q = 1/4 and 1/2, increasing Ca will

force the detachment point to move from the corner to the downstream. When

Ca is 0.006, varying Q from 1/8 to 1/2 does not change the detachment point of

the droplet. When Ca is 0.032 and 0.056, increasing Q will move the detachment

point from the T-junction corner to the downstream. In addition, we find the

droplet detachment point gradually moves downstream until a stable jet is formed

when we increase Ca and Q, which was also observed in both simulation [22] and

experiment [23].

Fig. 5.5 gives the predicted droplet diameter as a function of the capillary

number for three different flow rate ratios. The droplet grows as the flow rate

ratio increases but its diameter decreases as the capillary number increases. For

all Q, we can clearly identify two distinguished squeezing and dripping regimes

with the same critical capillary number, Cac = 0.018. In the squeezing regime,

the flow rate ratio shows significant effect on the droplet size. While in the drip-

ping regime, the effect of the flow rate ratio diminishes as Ca increases, which

was also recently reported by Menech et al. [22] using the Navier-Stokes solver

with a phase-field model. The influence of the flow rate ratio was numerically

investigated in [22] for both squeezing and dripping regimes, where the critical

capillary number of 0.015 was found for the squeezing and dripping transition.

However, the recent experimental study by Christopher et al. [23] did not ob-

serve the critical capillary number during the squeezing-to-dripping transition.
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Figure 5.4: The effect of the capillary number and the flow rate ratio in droplet
formation process with a fixed viscosity ratio, i.e. λ = 1/8: (a) Ca = 0.006; (b)
Ca = 0.032; (c) Ca = 0.056; and the flow rate ratio Q is: (i) 1/8; (ii) 1/4; and
(iii) 1/2.
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Figure 5.5: The effect of capillary number and flow rate ratio on droplet diameter
at a fixed viscosity ratio, λ = 1/8.

In our simulation, we notice that the two regimes become difficult to distinguish

as Q decreases because the droplet detachment point is always close to the down-

stream corner of the T-junction at small Q. This may explain why Christopher et

al. [23] did not observe the critical Ca during the squeezing-to-dripping transition

because they performed experiments at small viscosity ratio λ = 0.01, where the

droplet breakup always occurs at the downstream corner of the T-junction.

Many experimental studies were carried out in the squeezing regime so that the

droplets filled the main channel and formed “plug-like” or “slug-like” shapes [2,

20, 40], where the viscous shear force may be ignored and the dominant force

responsible for droplet breakup is the squeezing pressure caused by the channel

obstruction. Garstecki et al. [20] argued that the detachment begins once the

emerging droplet fills the main channel and the droplet continues to grow during

this time due to continuous injection of the dispersed phase fluid. Assuming that

the neck squeezes at a rate proportional to the average velocity of the continuous

phase fluid, and the plug fills at a rate proportional to Qd, a scaling law for the

final plug length l was established:

l/wc = 1 + αQ, (5.5)
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Figure 5.6: For small capillary number (Ca = 0.005) in the squeezing regime, our
simulation results show that the effect of the flow rate ratio on the droplet size
obeys the scaling law proposed by Garstecki et al. [20]

where α is a constant of order one, whose value depends on the widths of both

channels. Eq. (5.5) clearly shows the plug length depends only on Q. However,

our simulation results shown in Fig. 5.5 suggest that the droplet size also strongly

depends on Ca in the squeezing regime, which is consistent with the experimental

observations [23]. Therefore, the role of capillary number needs to be reflected in

the scaling law.

Although the scaling law, Eq. (5.5) does not capture the capillary number

dependency that we observe in simulations, it can predict the droplet size under

various flow rate ratios when Ca is fixed in the squeezing regime. Fig. 5.6 shows

a scaling formula of l/wc = 1 + 1.82Q when Ca = 0.005. In addition, Eq. (5.5)

indicates that the droplet length is independent of the viscosity ratio λ.

5.3 Influence of the viscosity ratio

Here, we investigate the role of the viscosity ratio in the droplet breakup process.

In the simulations, the flow rate ratio, Q is fixed at 1/4. Fig. 5.7 shows a series of

snapshots of droplet formation with λ = 1/8 and 1. At the low capillary number
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(Ca = 0.006), as shown in Fig. 5.7(a), the droplet fills the main channel and the

detachment occurs at the downstream corner of the T-junction for both viscosity

ratios. At the high capillary number (Ca = 0.032, 0.056), the large viscosity

ratio will force the position of droplet detachment point to move further to the

downstream, which is similar to the effects of Ca and Q as discussed in Section

5.2.

Fig. 5.8 shows that the critical capillary number Cac = 0.018, which distin-

guishes the squeezing and dripping regimes, is independent of the viscosity ratio.

In the squeezing regime (Ca ≤ Cac), the predicted droplet diameter is nearly

independent of the viscosity ratio, where the droplet formation is completely

controlled by the capillary force and the squeezing pressure. In the dripping

regime (Ca > Cac), the influence of viscosity ratio becomes more pronounced as

Ca increases, where the large viscosity ratio leads to smaller droplet. However,

it also shows that the influence of the viscosity ratio on the generated droplet

diameter is not as significant as in the unbounded flow [24], where the breakup of

droplets is controlled by a competition between the viscous shear force and the

capillary force in the dripping regime. This indicates that the squeezing pres-

sure caused by the confinement of geometry of a T-junction has to be taken into

account even in the dripping regime.

5.4 Influence of the contact angle

Due to high surface to volume ratio, fluid/surface interaction will significantly

affect the droplet dynamics in microchannels. In order to examine the influence

of wetting properties on droplet formation, we simulate the droplet generation at

different contact angles i.e. θw = 110◦, 130◦, 150◦ and 180◦. Fig. 5.9 shows that

the contact angle influences droplet shape, generation frequency, the distance be-

tween two neighboring droplets, and detachment point. The droplet interfaces

tend to be normal to the channel walls at small contact angles, which is consis-

tent with the theory of interface dynamics. In addition, our model can simulate

dynamic contact angle. We find that the advancing and receding contact angles

are different and both deviate from the prescribed static contact angle θw for

the dynamic droplet in motion. This phenomenon has been observed in many

experiments, and is well known as the contact angle hysteresis [130].

Fig. 5.10 shows that the droplet diameter decreases as the contact angle in-

creases, but the squeezing-to-dripping transition still occurs at the the same criti-
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Figure 5.7: The effect of the viscosity ratio in the droplet formation process at
a fixed flow rate ratio Q = 1/4, where (a) Ca = 0.006; (b) Ca = 0.032; and (c)
Ca = 0.056; and the viscosity ratio λ is 1/8 and 1 for the column (i) and (ii).
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Figure 5.8: The effect of the capillary number and the viscosity ratio on droplet
diameter at a fixed flow rate ratio, i.e. Q = 1/4.

cal capillary number i.e. Ca = 0.018 for different wetting conditions. In addition,

the droplet size is independent of the viscosity ratio in the squeezing regime, which

was also reported in the literature [20,22], is only valid for more hydrophobic wet-

ting conditions. When θw is small (at 110◦ and 130◦), we find that the droplet size

depends on the viscosity ratio. For a given contact angle θw, larger λ generally

produces slightly larger droplets in the squeezing regime but smaller droplets in

the dripping regime. Interestingly, we find that the wetting property has more

significant effect on droplet size at small Ca, and its effect diminishes gradually

when Ca increases. The reason may be that the generated droplet at a small Ca

is usually big, which has a large contact area with the channel surface, so that

the wall surface plays a more significant role in the droplet generation.

5.5 Conclusions

In this chapter, our improved phase-field lattice Boltzmann model has been ap-

plied to study the droplet formation in a microfluidic T-junction. The capillary

number, the flow rate ratio, the viscosity ratio and the contact angle have found

to be important in droplet formation, and these parameters are coupled together
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Figure 5.9: The flow patterns for different contact angles: θw is the same in each
row (110◦, 130◦, 150◦ and 180◦ from the top row to the bottom row); column (i)
Ca = 0.006, column (ii) Ca = 0.032, column (iii) Ca = 0.056; (a) λ = 1/8 and
(b) λ = 1.
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Figure 5.10: The effect of the contact angle, the capillary number and the viscosity
ratio on droplet diameter.
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to control the complex droplet generation process. We have focused on droplet

formation in the squeezing and dripping regimes. The squeezing-to-dripping tran-

sition occurs at a critical capillary number Cac = 0.018, which is independent of

the flow rate ratio, the viscosity ratio and the contact angle. Unlike unbounded

flow, the squeezing pressure not only dominates the droplet generation in the

squeezing regime but also plays an important role in the dripping regime. In the

next chapter, we will explore the mechanisms of droplet generation in a microflu-

idic cross-junction.
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Chapter 6

Droplet formation in a

microfluidic cross-junction

Although flow physics of droplet generation at T-junctions has been extensively

investigated both experimentally and numerically, significant effort is required

to understand droplet generation in a confined cross-junction. The droplet dy-

namics in a microfluidic cross-junction is also very complicated. Many coupled

factors will affect the droplet formation process, e.g. interfacial tension, wetting

properties and confinement of flow channels, fluid flow rates and viscosities, and

their influences may be different from those in T-junction due to the difference in

channel geometry. Several experimental studies has been done to investigate the

droplet formation in the microfluidic cross-junction. Cubaud et al. [13] investi-

gated the liquid/gas flows in a cross-junction and found that the bubble breakup

could be understood as the competition between the pressure drops in the liquid

and gas phases. The bubble size could be predicted by the gas/liquid flow rate

ratio. Garstecki et al. [14] investigated the mechanism for bubble breakup process

in the cross-junction with a small orifice, and observed that the collapsing rate

of the neck is quasi-stationary and proportional to the liquid flow rate. Tan et

al. [15] studied the formation mechanism of plug flow in a oil/water microfluidic

cross-junction. They found that the plug size depends on the flow rate ratio of

both fluids and the capillary number. Recently, Fu et al. [16] found that the

bubble (slug) breakup process in a cross-junction is mainly controlled by the col-

lapse stage, during which, the collapse rate of the thread neck and the collapse

time were affected by the gas/liquid flow rate ratio and the viscosity of the liquid

phase.
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Figure 6.1: The schematic diagram of droplet formation in a cross-junction mi-
crochannel, where wc, wd are the widths of the main and lateral channels, and
Qc and Qd are the inlet volumetric flow rates of the continuous and dispersed
phases.

In order to gain a comprehensive understanding for better design of microflu-

idic devices, it is necessary to systematically study the droplet generation in

cross-junctions. While many experimental investigations have helped to under-

stand the underlying physics, direct numerical simulations can provide more de-

tails on various factors and their interactions, and hopefully deeper insights at

a lower cost especially with the fast development of computing power. In this

chapter, numerical investigation on the droplet formation in a microfluidic cross-

junction is carried out to understand the mechanisms of confined droplet breakup.

The influences of the capillary number, the flow rate ratio, the viscosity ratio and

the viscosity of the continuous phase on droplet size, shape and detachment are

systematically studied. Our simulation results show that the droplet formation in

an oil/water two-phase system is noticeably different from the bubble formation

in some existing experiments, more consistent with the experimental findings of

Tan et al. [15]. Considering the balance between the viscous force and the cap-

illary force, and the influence of oil/water flow rate on the shape of interface,

the droplet diameter can be described as a function of the ratio of water/oil flow

rates and the capillary number.

6.1 Description of computational system

The schematic diagram of a cross-junction microchannel used in this study is

shown in Fig. 6.1. The microchannel consists of the main channel with width

wc = 200 µm and the two lateral channels with the same width i.e. wd =
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100 µm. The dispersed phase water is introduced at the inlet of the main channel,

and the continuous phase oil is injected into the lateral channels. We aim to

understand the droplet formation mechanism in a microfluidic cross-junction. So

we use the mesoscale phase-field model to coarsely resolve the interface and run

our simulations in 2D. The computational domain consists of 360 × 30 lattices,

where only one half domain is used in the y-direction due to the symmetry of

the problem. In all the cases, we find that mesh refinement will lead to result

variations no more than 5%.

For simplicity, we assume that the both fluids have the same densities, which

are given by ρ. It is expected that this choice has negligible influence on the

results, since in typical oil-water microfluidic system buoyancy-driven velocities

are much smaller than the actual flow velocities. We also assume the contact an-

gle θw = 180◦ so that the continuous phase fluid completely wets the walls, and

the dispersed phase fluid is non-wetting. For the selected geometrical parame-

ters wc and wd, the dynamical response of fluids in a microfluidic cross-junction

can be fully described by the experimentally measurable parameters including

the interfacial tension σ, the inlet volumetric flow rates (Qc and Qd), the fluid

viscosities (ηc and ηd) and density ρ, where the subscripts ‘c’ and ‘d’ denote the

continuous and dispersed phases respectively. Based on these six parameters, the

size of droplets formed in this microchannel can be defined by four dimensionless

numbers following the Buckingham’s Pi theorem, i.e.

d = f(Ca,Re,Q, λ), (6.1)

where d is the droplet diameter, which is defined by the diameter of a spherical

droplet with the same volume as a non-spherical droplet; Ca is the capillary

number describing relative importance of the viscosity and the interfacial tension,

and it is defined by the average inlet velocity uc and the viscosity ηc of the

continuous phase, and the interfacial tension σ as Ca = ucηc
σ

= Qcηc
2σwc

; Re is the

Reynolds number describing the ratio of inertia to viscous stresses, i.e. Re =
ρucwc
ηc

= ρQc
2ηc

; Q = Qd
Qc

is the ratio of flow rates, and λ = ηd
ηc

is the viscosity ratio.

For the flow regimes under consideration, the Reynolds number is small (Re < 1),

and it has a negligible effect on the formation of the droplet in microchannel, so

that the number of governing parameters reduces to Ca, Q and λ.

Different kinds of droplets, namely slug droplet, isolate droplet and satellite

droplet, can be generated in the cross-junction microfluidic device, which strongly
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depend on the flow conditions [16]. In the present study, we focus on formation

of slugs and isolate droplets, and examine the roles of the above dimensionless

numbers in droplet formation.

6.2 Results and discussions

6.2.1 The effect of capillary number

Fig. 6.2 shows the influence of capillary number on the droplet diameter where

the interfacial tension σ = 0.016, the viscosity of the continuous phase ηc =

0.08 and the viscosity ratio λ = 1/4. The densities of both fluids are assumed

to be unity. In order to compare our simulation results with the experimental

observations [15], we choose Qd = 0.002, 0.004 and 0.008 in the simulations. For

convenience, all quantities are expressed in the lattice units except the droplet

diameter, which is in the physical unit. To match these LB simulation parameters

to their physical values, we choose three reference quantities: a length scale L0,

a time scale T0, and a mass scale M0. In this study, L0 = 10−5 m, T0 = 10−6 s

and M0 = 10−12 kg. A simulation parameter with dimensions [L]n1[T ]n2[M ]n3

is multiplied by [L0]
n1[T0]

n2[M0]
n3 to obtain the physical value. Following this

criterion, for example, we can obtain the physical value of interfacial tension

σphy by: σphy = σM0

T 2

0

= 0.016 10−12

(10−6)2
= 0.016 N m−1, and the physical value of

continuous phase viscosity ηphyc by: ηphyc = ηc
M0

L0T0
= 0.08 10−12

10−5·10−6 = 8×10−3 Pa s.

For each Qd, we control Ca by only varying Qc. At a fixed dispersed phase flow

rate, the droplet diameter becomes smaller when Ca increases. At small Ca , the

flow rate of the dispersed phase shows a significant effect on the droplet diameter,

and larger Qd is expected to generate a larger droplet; whereas the influence of

Qd gradually weakens as Ca increases. These observations are consistent with

the experimental findings of Tan et al. [15]. Fig. 6.3 shows the snapshots of

droplet formation at a fixed Qd = 8 × 10−3 for various capillary numbers. At

large capillary number, the dispersed phase fluid breaks up easily leading to

small droplets. When the capillary number increases, the distance between two

neighboring droplets increases.
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Figure 6.2: The influence of capillary number on the droplet diameter at the
dispersed phase flow rate Qd of 2× 10−3, 4× 10−3 and 8× 10−3 respectively. The
lines represent the power fittings of the simulation results.

(a) (d)

(b) (e)

(c) (f)

Figure 6.3: The droplet generation at the dispersed phase flow rate Qd = 8×10−3

for various capillary numbers: (a) 0.002; (b) 0.003; (c) 0.004; (d) 0.01; (e) 0.02;
and (f) 0.035.
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Ca=0.0064

Ca=0.0128
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Figure 6.4: The flow patterns for various capillary numbers and the flow rate
ratios at a fixed viscosity ratio λ = 1/4: (a) Q = 1/6; (b) Q = 1/3; and (c)
Q = 1/2. Each row uses the same capillary number, which is labelled on the
right side.

6.2.2 The effect of flow rate ratio

The effect of flow rate ratio on droplet formation is investigated over a wide range

of capillary numbers. We still keep the fluid pair fixed, where the interfacial

tension is now set to be 0.01 (the corresponding physical value is 0.01 N m−1),

and the densities and viscosities of both fluids are kept the same as in the previous

section. Three different flow rate ratios, i.e. Q = 1/6, 1/3, and 1/2, are used in

the simulations. For each flow rate ratio, the capillary number varies from 0.0024

to 0.04, typically found in microfluidic droplet generation. To keep the flow rate

ratio fixed, both Qc and Qd must vary as Ca varies.

As shown in Fig. 6.4, the monodisperse droplets are regularly generated for

all capillary numbers at low flow rate ratios, i.e. Q = 1/6, 1/3. For the high

flow rate ratio Q = 1/2, the highly uniform droplets can be generated at small

capillary number i.e. Ca ≤ 0.024. For high capillary number Ca = 0.04, the

generated droplets are not uniform, where a long dispersed jet is observed with

the detachment point moving progressively downstream. In the future, we will

investigate this jetting mode in detail. For all of the cases with uniform droplets

generated, the distance between two neighboring droplets and their size decrease

when Ca increases at the same flow rate ratio Q. Increasing the flow rate ratio

can decrease the distance between two neighboring droplets at the same Ca .

Fig. 6.5 shows the predicted droplet diameter as a function of capillary num-
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Figure 6.5: The effect of capillary number and flow rate ratio on droplet diameter
at a fixed viscosity ratio, λ = 1/4. Note that, for Q = 1/2 and Ca > 0.024, the
measured droplet diameters are not plotted in this figure due to irregular droplets
are generated.

ber for three different flow rate ratios. The droplets grow as the flow rate ratio

increases but they become smaller as the capillary number increases. This trend

is consistent with the experimental observations for the droplet production in a

variety of geometries [3]. Two distinguished regimes are identified and divided

by a critical capillary number (Cacr), which is 0.01 in our simulations. For low

Ca, i.e. Ca ≤ Cacr, the flow rate can significantly affect the droplet size, and

the droplet diameter d exhibits a power-law dependence on the capillary number,

i.e. d ∝ Ca−0.147, where the power-law exponent α = −0.147 is independent of

the flow rate Q. This finding was also experimentally observed by Tan et al. [15]

for the plug generation in a cross-junction microchannel. Obviously, the forma-

tion of plugs in a cross-junction is different from the experimental observation

of Garstecki et al. [20] in microfluidic T-junctions where the plug size depends

predominantly on the flow rate ratio Q rather than the capillary number Ca.

Garstecki et al. [20] concluded that the droplet breakup is completely dominated

by the squeezing pressure, which arises when the emerging droplet obstructs the

continuous phase stream in the main channel. However, the numerical investi-

gation in Chapter 5 and a recent numerical study [131] on the plugs formed in

T-junctions observed that the droplet size is also dependent on Ca at low cap-
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Figure 6.6: A series of instantaneous states of droplet formation for (a) Q =
1/6, Ca = 0.0024; (b) Q = 1/6, Ca = 0.024; (c) Q = 1/2, Ca = 0.0024 and (d)
Q = 1/2, Ca = 0.024. The viscosity ratio λ = 1/4, and the dimensionless time
is defined as T = uc

wc
t.

illary numbers. In addition, the 3D cross-junction simulation of Wu et al. [132]

showed that, at a fixed flow rate ratio, the droplet size has no sign of approaching

a constant value as the capillary number decreases, although they did not report

the power-law dependence of droplet size on the capillary number. In the next

section, we will also show that the viscous force plays an important role in the pro-

cess of droplet generation in this regime, which we call the squeezing-like regime

in this chapter. When Ca > Cacr, the dependence of the droplet diameter on

the capillary number does not exhibit a fixed power-law behavior, and the effect

of flow ratio diminishes quickly as Ca increases. More specifically, the droplet

diameter is completely independent of the flow rate ratio when Ca ≥ 0.024. This

feature, in the dripping regime, is similar to the T-junctions [22, 133]. In the

dripping regime, the viscous force is significant, together with the capillary force,

determine the process of droplet breakup, which is significantly different from the

droplet generation in unbound flow conditions due to the confinement of channel

walls [22].

Fig. 6.6 shows a series of instantaneous states of droplet formation with four

pairs of Q and Ca: (a) Q = 1/6, Ca = 0.0024; (b) Q = 1/6, Ca = 0.024; (c)

Q = 1/2, Ca = 0.0024 and (d) Q = 1/2, Ca = 0.024. It can be seen that the

droplet formation process has three stages, i.e. expansion (i)-(iii), necking (iv)

and figuration (v)-(vi). At small capillary number i.e. Ca = 0.0024, the incoming
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dispersed phase fluid tends to occupy the full width of the outlet channel and the

dispersed phase interface has a large deviation from the solid wall at the main

channel entrance, so the squeezing pressure is pronounced when the emerging

droplet obstructs the channel. While in the dripping regime i.e. Ca = 0.024,

the dispersed phase fluid occupies only part of the outlet channel, and smaller

droplets are formed. At small Q, i.e. Q = 1/6, the droplets are pinched off

close to the junction corner for all the capillary numbers. Increasing Q will move

the detachment point further to the downstream. At small Q (see Fig. 6.5), the

two regimes i.e. the squeezing-like and dripping regimes are not distinguishable,

which was also observed experimentally in droplet generation in a T-junction by

Christopher et al. [23]. Fig. 6.6 also gives the dimensionless times corresponding

to various instantaneous states of droplet formation process. The dimensionless

time is taken as T = uc
wc
t = Qc

2w2
c
t. It can be clearly seen that the increase in Q (or

Ca) can lead to the decrease in elapsed dimensionless time for generating each

droplet.

6.2.3 The effect of viscosity ratio

The viscosity ratio is known to affect breakup of isolated droplets [134] and liquid

jets [135]. Moreover, the numerical and experimental investigations on T-junction

microchannel reveal that the effect of viscosity ratio is most pronounced in the

dripping regime and diminishes in the squeezing regime [20,22,54,133]. However,

in a cross-junction with oil-water two-phase flow, Tan et al. [15] found that the

plug size is independent of viscosity ratio and decreases when the continuous

phase viscosity increases. Christopher et al. [23] experimentally observed in the

T-junction microfluidic devices that the viscosity ratio influences the droplet size

only when the viscosities of two fluids are similar. When the viscosity ratio λ <

1/50, the resulting droplet size is independent of the viscosity ratio. In addition,

Fu et al. [16] found that the viscosity of liquid phase is one of the dominant

parameters during the bubble breakup process. To understand the complex effect

of viscosity ratio and viscosity on droplet breakup, we numerically simulated the

droplet breakup process in a cross-junction. In the simulations, the interfacial

tension is set to be 0.01 (the corresponding physical value is 0.01 N m−1). The

flow rate of the continuous phase Qc varies from 0.006 to 0.06, and the flow rate

ratio Q is fixed at 1/6 so that the droplet breakup always occurs close to the

junction as the experiment of Tan et al. [15].
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Figure 6.7: The effect of capillary number and viscosity ratio on droplet diameter
at a fixed flow rate ratio, i.e. Q = 1/6.
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Figure 6.8: The flow patterns for various ηc and Qc at a fixed flow rate ratio
Q = 1/6: (a) ηc = 0.06; (b) ηc = 0.08; and (c) ηc = 0.16. Each row uses the same
Qc, which is labelled on the right side.
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Fig. 6.7 shows that the droplet size is found to be weakly dependent on the

viscosity ratio, which is very similar to the experimental observation by Christo-

pher et al. [23] in a T-junction where the viscosity ratio is smaller than 1/50.

Fig. 6.8 shows the flow patterns for different viscosities of the continuous phase.

The droplet size and the distance between two neighboring droplets decrease as

the viscosity of the continuous phase increases at a fixed Qc (or Qd). The result is

consistent with the experimental finding in the cross-junction by Tan et al. [15].

However, it is different from the experimental observations on droplet formation

in the T-junction microchannel [20, 54] and bubble formation in a cross-junction

microchannel [13,14], where the plug length is independent of the viscosity of the

continuous phase. Tan et al. [15] argued that the difference may attribute to the

symmetrical flow route of cross-junction and small capillary number in bubble

formation. In addition, the sharp corner of T-junctions and the large density and

viscosity ratios in the bubble formation may also be responsible.

There are two mechanisms which influence plug/droplet size. One is the

dynamic breakup of interface, which can mainly be affected by the flow rate ratio

Q. The other is the balance between the viscous force and the capillary force,

which can be described by the capillary number. Tan et al. [15] proposed a scaling

law to predict the plug length, which will be similarly used to estimate droplet

sizes apart from the flow conditions in the dripping regime with large Q where

the droplet breakup occurs at further downstream of the junction. Therefore, the

droplet diameter d can be correlated as

d = kQαCaβ, (6.2)

where α and β represent the influences of two mechanisms. Our numerical simula-

tions suggest that this scaling law works well with the coefficients of k = 129.32,

α = 0.103 and β = −0.147 (see Fig. 6.9). Although the scaling law may not

be quantitatively accurate as 3D effects are not considered, our 2D simulation

results can reveal the underlying mechanisms of droplet breakup which are con-

sistent with the experimental findings [15].

6.3 Conclusions

Water droplet formation in a microfluidic cross-junction has been simulated using

the phase-field lattice Boltzmann model. The influence of capillary number, flow
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Figure 6.9: Comparison of droplet diameter between the fitting results dpre from
Eq. (6.2) and the simulation results d.

rate ratio, viscosity ratio, and viscosity of continuous phase on droplet formation

has been systematically studied over a wide range of capillary numbers. Two

different regimes, i.e. the squeezing-like and dripping regimes, are clearly iden-

tified with the transition occurring at a critical capillary number Cacr = 0.01.

However, these two regimes are difficult to distinguish when the flow rate ratio

decreases. In the squeezing-like regime, i.e. Ca ≤ Cacr, the droplet breakup is

influenced not only by the squeezing pressure but also by the viscous force. While

in the dripping regime, i.e. Ca > Cacr, the viscous force plays an increasingly

important role in the breakup process and the droplet size becomes quickly inde-

pendent of the flow rate ratio for large capillary number. As the droplet size is

weakly dependent on the viscosity ratio, a scaling law is constructed to estimate

the generated droplet size, which depends on the capillary number and the flow

rate ratio.
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Chapter 7

Phase-field modeling droplet

dynamics with soluble surfactants

7.1 Introduction

Surfactants are interfacially active agents that play an important role in many

industrial processes, ranging from crude oil recovery, manufacture of cosmetics

and pharmaceutical products, to food processing [136]. More recently, surfactants

have been widely used in microfluidic applications [29]. Commonly-used surfac-

tants are the molecules with polar head groups appended to hydrophobic tails,

which selectively adhere to fluid interfaces forming a buffer zone to reduce the sys-

tem energy. In microfluidic systems, surfactants are often used to generate small

droplets and make them kinetically stable as emulsions even though water-in-oil

and oil-in-water emulsions are thermodynamically unstable [137]. The capillary

effect usually plays a dominant role in a microfluidic system, and the presence

of surfactants at an interface will greatly modify interfacial tension. Therefore,

surfactants are expected to significantly alter droplet dynamical behavior in the

microfluidic devices [48,92,138]. A number of recent theoretical or numerical stud-

ies have reported to identify the mechanisms of droplet deformation, breakup and

coalescence in the presence of surfactants [30, 32, 80, 139–143].

Modelling interfacial dynamics with soluble surfactants in a multiphase system

is a daunting task. The surfactant molecules will self-assemble into a monolayer at

the oil/water interface, thereby lowering interfacial tension. When the bulk con-

centrations are below the critical micelle concentration (CMC) and the surfactant

lateral interactions are not important, the Langmuir adsorption can describe the
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realistic equilibrium adsorption behavior of non-ionic surfactants [144]. When

the surfactant lateral interactions cannot be neglected, the Frumkin adsorption

is more appropriate. Both advection and diffusion are important for surfactant

transport at the interface and in the bulk phases. Non-uniform surfactant con-

centration (mainly at the interface) creates non-uniform interfacial tension forces

and Marangoni stresses in the fluid, which in turn affect the flowfield. Mean-

while, the flowfield will influence the surfactant distribution. The interaction be-

tween surfactants and flowfield is highly non-linear, which poses a computational

challenge. Most previous numerical work [32, 74, 80, 145–149] on surfactants has

utilized the sharp interface models with an equilibrium equation of state relating

dynamic interfacial tension to local surfactant concentration. The sharp interface

models are built upon the conservation laws at the macroscopic level for interfa-

cial dynamics, which have been developed from the original model proposed by

Stone and Leal [32]. The models have been successfully applied to simulate in-

terfacial flows in an oil/water/surfactant system. However, these sharp interface

models suffer from several drawbacks: (i) dynamic interfacial tension relies on

an asserted equilibrium equation of state, which is also assumed to be valid be-

yond the equilibrium state; (ii) for interfacial flows with soluble surfactants, mass

transfer between the interface and the bulk fluids requires an external boundary

condition, which cannot uniquely arise from the model itself; (iii) model extension

for more complicated systems, such as ionic surfactant solutions, is not easy [33];

(iv) numerical stability becomes a problem for the flows with large topological

changes, such as droplet breakup and coalescence.

In contrast to the sharp interface model, the phase-field method, which can re-

solve the interface structure via an appropriate free energy functional, has shown

great potential to simulate the multiphase flow problems [21, 121, 133, 150–153].

In a phase-field model, the free energy not only determines the equilibrium prop-

erties, but also strongly influences the dynamics of the multiphase system. The

transport of physical quantities can be linked to the free energy by a generalized

hydrodynamic theory [154]. Hence, the phase-field models have a firm physical

basis for multiphase flows, which is contrast to the traditional computational fluid

dynamics (CFD) methods, e.g. the volume-of-fluid, level-set and front-tracking

methods. Although phase-field models have shown promise for computation of

binary mixture with surfactants [90,155,156], significant effort is still required to

improve the model for realistic oil/water/surfactant systems. In this chapter, a

generalized phase-field model, which is numerically solved in a lattice Boltzmann
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(LB) framework, is presented to simulate the adsorption of surfactants at the

interface and its effect on droplet dynamics.

7.2 Phase-field model for immiscible fluids con-

taining surfactants

The ternary system we consider consists of a non-ionic surfactant solute and two

immiscible solvents, say, oil and water. We aim to develop an improved phase-

field model that is able to capture both thermodynamic and hydrodynamic effects

associated with surfactants in realistic ternary systems.

7.2.1 Free energy theory

The thermodynamics of a system is determined by its free energy functional. The

Landau-Ginzburg free energy functional has been commonly used to describe a

binary mixture, which has been given in Chapter 3, i.e.

F =

∫

d~x

[

−A
2
φ2 +

B

4
φ4 +

κ

2
(∇φ)2

]

, (7.1)

where φ = (ρw− ρo)/ρ represents the relative concentration of the local composi-

tions. As we aim to deal with two immiscible fluids, and oil and water are most

commonly used in microfluidic applications, we use oil and water to represent

two immiscible fluids here. ρ = ρo + ρw is the total density, while ρo and ρw are

the densities of oil and water phases respectively. The first two terms in Eq.(7.1)

correspond to the bulk phase behaviour, with minima φ = ±φb = ±
√

A/B for

the oil and water respectively. The last term reflects the cost of sustaining the

oil/water interface. Hereafter, the subscripts ‘b’ and ‘0’ denote the bulk phases

and interface, and the superscripts ‘+’ and ‘-’ represent the oil and water bulk

phases, respectively.

As surfactants favor adherence to the oil/water interface and lower the in-

terfacial tension, and the interfacial tension lowering scale depends on the local

surfactant concentration. To account for the surfactant effect, additional terms

are introduced to the original Landau-Ginzburg free energy functional. Laradji
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et al. [157] proposed the free energy functional in the form of

F =

∫

d~x

[

−A
2
φ2 +

B

4
φ4 +

κ

2
(∇φ)2 + C

2
ψ2 +

W

2
ψ2φ2 − D

2
ψ(∇φ)2

]

, (7.2)

where ψ is the surfactant local concentration in an oil/water/surfactant system.

The term C
2
ψ2 prevents the surfactants from forming clusters. The local cou-

pling term W
2
ψ2φ2 guarantees small local surfactant concentration in the bulk

phases, which is introduced to numerically stabilise the diffuse interface model

for microemulsions. The last nonlocal coupling term −D
2
ψ(∇φ)2 accounts for

the energetic preference of surfactants when they are absorbed at the oil/water

interface, favoring the lowering of interfacial tension.

Theissen and Gompper [155] chose a slightly different form of free energy

functional to study the dynamics of spontaneous emulsification, where the local

coupling term is replaced by W
2
ψφ2 to deal with the same solubility of surfactant

in the bulk phases. Recently, Furtado et al. [156] applied a simpler form of

free energy functional to phenomenologically describe the surfactant effect. In

contrast to Eq. (7.2), the local coupling term vanishes and κ is expressed as a

function of ψ to relate the interfacial tension to the surfactant concentration. We

have derived the equilibrium equation of state following the free energy functional

presented by Theissen and Gompper [155] (the details are shown in Appendix B),

i.e.

σ(ψ0) =
4φ2

b

3ξ
(κ−Dψ0), (7.3)

where ξ is a parameter proportional to the interface thickness, which is given by

ξ2 =
2(κ−Dψ0)

φ2
b(B − W 2

2C
)
=

2[κ−D(ψb +
φ2
b
W

2C
)]

φ2
b(B − W 2

2C
)

. (7.4)

We note that the condition Ex = D
Wξ2

≪ 1 should be satisfied to analytically

obtain Eqs. (7.3) and (7.4). Obviously, the free energy model proposed by Theis-

sen and Gompper [155] cannot exhibit realistic adsorption isotherms such as the

Langmuir/Frumkin adsorption isotherms. Similarly, we can show that the mod-

els proposed by Laradji et al. [157] and Furtado et al. [156] fail to recover the

Langmuir/Frumkin adsorption isotherms. As both Langmuir/Frumkin adsorp-

tion isotherms are well developed for adsorption of non-ionic surfactants under

the equilibrium state with the bulk surfactant concentrations below the CMC. It

is important for any realistic model to recover these adsorption isotherms under
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the thermodynamical equilibrium state.

Diamant and Andelman [33] developed a sharp interface free energy model to

describe the surfactant adsorption at the interface between an aqueous solution

and another fluid phase. They introduced the ideal entropy of mixing into the

model and treated the bulk solution and the interface as two coupled subsystems.

The model can lead to the Frumkin adsorption isotherm in thermodynamic equi-

librium. However, hydrodynamics was not considered in their model, so it cannot

be applied to simulate droplet dynamic behavior with soluble surfactants.

Recently, van der Sman and van der Graaf [90] developed a diffuse inter-

face model for surfactant adsorption onto the interface of two immiscible fluids.

The free energy functional is partly adapted from the sharp interface model of

Diamant and Andelman [33]. The model couples the surfactant adsorption to

hydrodynamics, which demonstrates promising potential for phase-field model to

simulate droplet dynamics in the presence of surfactants. However, the model is

restricted to the Langmuir adsorption with equal solubility of the surfactants in

both bulk phases. Although the model showed that the interfacial tension lower-

ing ∆σ is proportional to kBT ln(1 − ψ0) due to surfactant adsorption onto the

interface, the dependence of the proportionality factor on the parameters used in

the model is still unclear. Finally, the model capability is required to be further

examined and demonstrated by simulating droplet dynamics with large topology

changes.

To describe a ternary system including a non-ionic surfactant solute, we pro-

pose to extend the free energy functional given by van der Sman and van der

Graaf [90] to incorporate additional functionalities, e.g. the Frumkin adsorption

isotherm, and different solubility of the surfactants. Therefore, our free energy

functional becomes:

F =

∫

d~x

{

−A
2
φ2 +

B

4
φ4 +

κ

2
(∇φ)2 + W

2
ψφ2 − D

2
ψ(∇φ)2

+ kBT [ψ lnψ + (1− ψ) ln(1− ψ)]− C

2
ψ2 − Eφψ + ρT ln ρ

}

, (7.5)

where the term involving the Boltzmann constant kB is the ideal entropy of mix-

ing of surfactant and solvent (i.e. steric effects), and solute and solvent molecules

are assumed to have the same size [158]. The term −C
2
ψ2 is the energy of lateral

interaction between two adjacent surfactants, where C > 0 is assumed to express

an overall attractive interaction [33]. Note that this term plays a different role
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here as it appears in Eq. (7.2). The value of C cannot be 0 in Eq. (7.2), whereas in

Eq. (7.5) C can be 0 when the lateral interaction is absent. The asymmetric term

proportional to E accounts for different solubility of surfactants in the oil and

water phases. The final term does not affect the phase behavior, but it is required

to enforce incompressibility of the fluid in the lattice Boltzmann model [111]. A

suitable choice, based on improving numerical stability and accuracy, is temper-

ature T = 1/3.

The chemical potentials µφ and µψ can then be obtained via the variational

derivatives of the free energy functional Eq. (7.5) with respect to φ and ψ:

µφ =
δF

δφ
= Bφ3 − Aφ− (κ−Dψ)∇2φ+D∇φ · ∇ψ +Wφψ − Eψ,(7.6)

µψ =
δF

δψ
= kBT [lnψ − ln(1− ψ)]− Cψ +

W

2
φ2 − D

2
(∇φ)2 −Eφ. (7.7)

Excess chemical potential gradients give rise to a thermodynamic force (per unit

volume) that can be expressed as the divergence of pressure tensor from the

Gibbs-Duhem equality:

~fV = −∇ ·P = −φ∇µφ − ψ∇µψ, (7.8)

with the pressure tensor P given by

P = p0I+ (κ−Dψ)(∇φ)(∇φ)T, (7.9)

where I is the second-order unit tensor, p0 is the scalar part of the pressure tensor

which can be calculated by the thermodynamic relation as [155]

p0 = ρ
δF

δρ
+ φµφ + ψµψ − f(ρ, φ,∇φ, ψ). (7.10)

Here, f(ρ, φ,∇φ, ψ) is the free energy density, i.e. the integrand in Eq. (7.5).

Using Eqs. (7.5) and (7.10), we can get

p0 = ρT − A

2
φ2 +

3B

4
φ4 − κ

2
(∇φ)2 − kBT ln(1− ψ)− C

2
ψ2

−(κ−Dψ)φ∇2φ+Dφ∇φ · ∇ψ +Wψφ2 −Eφψ. (7.11)
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7.2.2 Hydrodynamics

A dynamic multiphase system needs to be described by not only thermodynamics

but also hydrodynamics. Local conservation of fluid mass and momentum leads

to the Navier-Stokes equations for Newtonian fluids:

∂tρ+∇ · (ρ~u) = 0, (7.12)

∂t(ρ~u) +∇ · (ρ~u~u) = ∇ ·
[

ρν(∇~u+ (∇~u)T)
]

+ ~fV , (7.13)

which describe the time evolution of the hydrodynamic variables, i.e. the fluid

density ρ and the fluid velocity ~u. Here, ν = η/ρ is the kinematic viscosity and
~fV is the thermodynamic force given by Eq. (7.8). In principle, this model can

introduce a composition-dependent viscosity [21, 133].

The evolution of the solvent composition φ and the local concentration of sur-

factant solute ψ are described by the Cahn-Hilliard equations, where the diffusion

of φ and ψ is driven by gradients of chemical potentials µφ and µψ:

∂tφ+∇ · (φ~u) = ∇ · (Mφ∇µφ), (7.14)

∂tψ +∇ · (ψ~u) = ∇ · (Mψ∇µψ), (7.15)

where Mφ and Mψ are the respective mobilities of the two order parameters,

which are taken to be constants. Following Eq. (7.15), the surfactant flux ~jψ can

be written as

~jψ = −Mψ∇µψ. (7.16)

To obtain the surfactant diffusion coefficient Dψ, we can rewrite Eq. (7.16)

into

~jψ = −Mψ
∂µψ
∂ψ

∇ψ = −Mψ

[

kBT

ψ(1− ψ)
− C

]

∇ψ, (7.17)

with Dψ = Mψ

[

kBT
ψb(1−ψb)

− C
]

in the bulk phases. Here, ψb is the surfactant

concentration in the bulk phase. Once Dψ is defined, Eq. (7.15) can recover the

usual convection-diffusion equation

∂tψ +∇ · (ψ~u) = ∇ · (Dψ∇ψ), (7.18)

which has been widely used for bulk surfactant transport in the sharp interface

model [143, 149, 159].
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Similarly, the diffusivity of the interface can be defined as

Dφ =MφA(3φ
2 − 1 +Wψ) ≈ −MφA, (7.19)

with φ ≈ 0 and Wψ ≪ 1 near the interface, as the relevant diffusion only takes

place at the phase interface. Note that this “negative diffusion” maintains the

solvent composition jump across the interface.

7.2.3 Thermodynamic equilibrium

In equilibrium, the thermodynamic force ~fV becomes zero, and thereby the chem-

ical potentials are equal throughout the entire system. We analyze whether

the model can predict the equilibrium properties of the surfactant adsorption

in oil/water solvents as described by the Langmuir and Frumkin isotherms. In a

dilute solution, the bulk surfactant concentration is much smaller than unity, i.e.

ψb ≪ 1. We assume that the solvent composition profile is independent of the

surfactant loading in equilibrium, which can be represented as

φ(x) = φb tanh

(

x

ξ

)

, (7.20)

where ξ is a measure of the interface thickness as described by Eq. (B.14).

From Eq. (7.7), we can obtain the chemical potentials µ+
ψ,b and µ

−
ψ,b in the oil

and water bulk phases respectively:

µ+
ψ,b ≈ kBT lnψ+

b +
1

2
Wφ2

b − Eφb, (7.21)

µ−
ψ,b ≈ kBT lnψ−

b +
1

2
Wφ2

b + Eφb, (7.22)

where the magnitude of C is up to O(kBT ) [33]. The chemical potential at the

interface is:

µψ,0 = kBT [lnψ0 − ln(1− ψ0)]− Cψ0 −
D

2ξ2
φ2
b , (7.23)

where we have used ∂xφ = φb/ξ at the interface x = 0 following Eq. (7.20).

In equilibrium, we have µ+
ψ,b = µ−

ψ,b = µψ,0. So from Eqs. (7.21), (7.22) and

(7.23) for the chemical potentials, we can obtain the surfactant concentration
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ratio β in the oil and water bulk phases

β =
ψ+
b

ψ−
b

= e
2Eφb
kBT , (7.24)

and the equilibrium adsorption isotherm

ψ0 =
ψ±
b

ψ±
b + ψ±

c e
− C
kBT

ψ0

, (7.25)

with

ψ±
c = exp

{

− 1

2kBT

(

D

ξ2
+W

)

φ2
b ±

E

kBT
φb

}

. (7.26)

Therefore, our model can recover the Frumkin adsorption isotherm (see Eq. (7.25)),

which reduces to the well-known Langmuir adsorption isotherm if C = 0. Also,

it can be clearly seen from Eq. (7.24) that we can use the parameter E to control

the solubility of surfactant in oil-rich phase and water-rich phase. For the sake of

simplicity, we assume the same solubility of surfactant in both phases, i.e. E = 0,

in the following analysis.

In Appendix B, the equilibrium solvent composition profile is analytically

demonstrated to be independent of the surfactant loading when the suitable con-

straints are satisfied. With the solvent composition profile φ given by Eq. (7.20),

we can obtain an analytical expression for the surfactant concentration at an

arbitrary position x from Eq. (7.7)

ψ(x) =
1

1 + e
− 1

kBT
[µψ−W

2
φ2+D

2
(∂xφ)2]e

− C
kBT

ψ
, (7.27)

where µψ is determined by Eq. (7.21) or Eq. (7.22).

In the sharp interface models, the equilibrium equation of state can be derived

via integration of the Gibbs equation:

dσ = −ψ0dµψ. (7.28)

For the diffuse interface model, the excess surfactant concentration has to be

obtained by the integration over the whole diffuse interface [160], and thus the

equilibrium equation of state cannot be analytically obtained. Following van

der Sman and van der Graaf [90], we also assume that the excess surfactant

concentration is proportional to ψ0, so that the interfacial tension lowering is

104



CHAPTER 7. PHASE-FIELD MODELING DROPLET DYNAMICS WITH

SOLUBLE SURFACTANTS

proportional to that of the sharp interface with a coefficient α, i.e.

dσ = −αψ0dµψ,0. (7.29)

Substituting Eq. (7.23) into Eq. (7.29), we can obtain the equilibrium equation

of state:

∆σ = σ − σ0 = α[kBT ln(1− ψ0) +
C

2
ψ2
0 ], (7.30)

where σ0 = 4κφ2
b/3ξ is the interfacial tension of “clean” droplet i.e. ψ = 0. We

find that the coefficient α is a model-dependent constant in Eq. (7.30). In the

sharp interface model, α = 1, whereas in the diffuse interface model, α 6= 1,

due to the finite interface thickness. Therefore, α should depend on the excess

of surfactant, while it is independent of ψ0 and C/kBT . For the given values

of ψc and β, the excess surfactant concentration ψex is a function of Ex, ψ0

and ξ. As α is independent of ψ0, α only depends on Ex = D
Wξ2

once ξ is

specified. Note, unlike the widely used sharp interface model proposed by Stone

and Leal [32], the phase-field method can also describe non-equilibrium effect of

surfactant adsorption.

7.3 Lattice Boltzmann method

Lattice Boltzmann (LB) method has been widely used by researchers [98–100,161]

to model multiphase flows. As a pseudo-molecular method, it solves a discretized

version of the Boltzmann equation to track evolution of the distribution function

of an assembly of molecules [97]. Here, we will use LB method to simulate

multiphase flows described by Eqs. (7.12)-(7.15). For a ternary fluid, we define

three particle distribution functions fi, gi and hi on each site of a two-dimensional

square lattice with spacing δx. The subscript i denotes a particular lattice velocity

vector ~ei, defined by ~e0 = (0, 0), ~e1,3 = (±c, 0), ~e2,4 = (0,±c), ~e5,7 = (±c,±c) and
~e6,8 = (∓c,±c). The lattice velocity parameter c is defined as c = δx/δt with δt

being the simulation time step.

The macroscopic physical variables are obtained as moments of the PDFs

φ =
∑

i

gi, ψ =
∑

i

hi,

ρ =
∑

i

fi, ρ~u =
∑

i

fi~ei. (7.31)
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The time evolution equation for the particle distribution functions, using the

standard Bhatnagar-Gross-Krook (BGK) approximation, can be written as

fi(~x+ ~eiδt, t+ δt)− fi(~x, t) =
1

τf
[f eqi (~x, t)− fi(~x, t)], (7.32)

gi(~x+ ~eiδt, t+ δt)− gi(~x, t) =
1

τg
[geqi (~x, t)− gi(~x, t)], (7.33)

hi(~x+ ~eiδt, t+ δt)− hi(~x, t) =
1

τh
[heqi (~x, t)− hi(~x, t)], (7.34)

where τf , τg and τh are independent scalar relaxation parameters, and f eqi , geqi
and heqi are the equilibrium distribution functions for each distribution function.

The equilibrium distribution functions satisfy the conditions of mass and mo-

mentum conservation, as well as the additional constraints with the higher order

moments:

∑

i

f eqi = ρ,
∑

i

geqi = φ,
∑

i

heqi = ψ,

∑

i

f eqi ~ei = ρ~u,
∑

i

geqi ~ei = φ~u,
∑

i

heqi ~ei = ψ~u,

∑

i

f eqi ~ei~e
T
i = P+ ρ~u~uT,

∑

i

geqi ~ei~e
T
i = ΓφµφI+ φ~u~uT,

∑

i

heqi ~ei~e
T
i = ΓψµψI+ ψ~u~uT. (7.35)

Therefore, the dynamics of system is governed by the appropriate set of continuum

equations. Explicit expressions for f eqi , geqi and heqi are given in Appendix C.

Using the Chapman-Enskog expansion, the lattice Boltzmann model Eqs.(7.32)-

(7.34) can lead to Eqs. (7.12)-(7.15) in the long-wavelength and low-frequency

limit. The relaxation parameters τf , τg and τh are related to the kinematic vis-

cosity and mobilities through

ν = c2s(τf − 1/2)δt, (7.36)

Mφ = Γφ(τg − 1/2)δt, Mψ = Γψ(τh − 1/2)δt, (7.37)

where cs is the speed of sound which is c/
√
3. Note that we set τg = τh =
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1/(3−
√
3) to minimize numerical errors of the convection-diffusion scheme [115].

So Γφ (Γψ) can act as a tunable parameter to control Mφ (Mψ).

In our lattice Boltzmann multiphase model, the calculations of gradient and

Laplacian operators are required to evaluate the chemical potentials in Eqs. (7.6)

and (7.7) as well as the pressure tensor in Eq. (7.9). To minimize the discretization

error, these operators are calculated using 9-point finite difference stencils as

follows:

∇φ(~x) =
1

c2sδt

∑

i

wiφ(~x+ ~eiδt)~ei,

∇2φ(~x) =
2

c2sδ
2
t

∑

i

wi[φ(~x+ ~eiδt)− φ(~x)], (7.38)

where wi is the weight factor with w0 = 4/9, w1−4 = 1/9 and w5−8 = 1/36.

7.4 Model validation and applications

7.4.1 Equilibrium properties

First, we will numerically test the present phase-field model’s capability for pre-

diction of the profile of surfactant concentration at a planar oil-water interface.

The flow domain contains 201 × 3 square lattices in the xy-plane with an oil

phase initially located at 51 ≤ x ≤ 150. The periodic boundary conditions are

imposed at all the boundaries. We run our simulations with these parameters:

σ0 = 0.02, ξ = 3δx, ψc = 0.017, Ex = 0.17, D = κ, Mφ = 0.2, Mψ = 0.02,

ψb = {10−4, 10−3, 5 × 10−3}, C = 0 for the Langmuir adsorption, and 2kBT for

the Frumkin adsorption.

Fig. 7.1 (a) shows excellent agreement between our numerical results and the

analytical solution given by Eq. (7.27). For the two different adsorption isotherms,

the profiles of surfactant concentration exhibit a large difference only when the

value of ψ0 is large. As seen in Fig. 7.1 (b), the predicted solvent composition

profile φ(x) agrees well with the analytical solution, φ(x) = φb tanh(x/ξ), in all

the cases. Therefore, the results confirm that the solvent composition profile is in-

dependent of the surfactant loading, which is assumed in obtaining our analytical

solution. However, our numerical prediction will deviate from the analytical solu-

tion when ψ0 is sufficiently large, which may attribute to two factors. The first one

is that we cannot obtain Eq. (B.13) with χ approximated by kBT (
1
ψb

+ 1
1−ψb

)−C
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Figure 7.1: (a) Profile of the surfactant concentration for a planar oil-water
interface located at x0 = 50 (or x0 = 151) with various parameters listed in
the text. Square and circle symbols represent numerical predictions for C = 0
and C = 2kBT respectively, and the dashed and solid lines are the correspond-
ing analytical solutions. (b) Profile of the solvent composition φ: the square
symbols and circle symbols represent numerical predictions corresponding to
C = 0 and C = 2kBT respectively; the solid line is the analytical solution of
φ(x) = φb tanh(x/ξ).
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Figure 7.2: The effect of ξ on the profile of the surfactant concentration: (a)
C = 0; (b) C = 2kBT . Simulation results are represented by the discrete symbols,
and the solid lines are the analytical solutions.

due to the large surfactant excess at the interface, whereas the analytical solution

Eq. (7.27) is derived on the basis of the parameter of the interface thickness sat-

isfying ξ2 = 2κ
Bφ2

b

. Consequently, the predicted solvent composition profile cannot

follow φ(x) = φb tanh(x/ξ) with ξ = 3δx as in the present simulation. The other

factor may be due to the discretization error for the approximation of ∇ψ, which
increases rapidly as ψ0 becomes large. We have also examined the influence of

parameter ξ on the simulation results, which is shown in Fig. 7.2 for ξ = δx and

ξ = 2δx. It suggests that ξ = 2δx is still acceptable but ξ = δx is not a good

choice. To correctly capture the sharp profile of surfactant concentration across

the interface, a reasonably thick interface (ξ ≥ 2δx) is important. Considering

the numerical accuracy, we choose ξ ≥ 2δx in the following simulations.
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Understanding the interfacial tension modification due to the presence of sur-

factants is practically important. Here, we will perform numerical simulations in

a 121 × 121 domain with a droplet whose radius R is 30 lattices centred in the

middle of the flow domain. We choose D = κ, ψc = 0.017, ξ/δx = 2, Mφ = 0.1,

Mψ = 0.02, and different values for σ0, Ex, C and ψb. The profiles of φ and ψ are

initialized with the analytical solutions given by Eqs. (7.20) and (7.27). When

the droplet reaches its equilibrium, we calculate the interfacial tension σ by the

Laplace law:

∆p =
σ

R
, (7.39)

where ∆p is the pressure difference across the droplet interface with the pressure

p defined by p = 1
2
Pαα.

Eq. (7.30) shows the relation between the lowering of the interfacial tension

∆σ and the surfactant concentration at the interface. To validate this equilib-

rium relation, seven numerical simulation cases are performed with the following

parameters: (1) σ0 = 0.02, Ex = 2 and C = 0, (2) σ0 = 0.02, Ex = 1 and C = 0,

(3) σ0 = 0.01, Ex = 0.5 and C = 0, (4) σ0 = 0.01, Ex = 0.5 and C = 2kBT , (5)

σ0 = 0.01, Ex = 0.25 and C = 0, (6) σ0 = 0.01, Ex = 0.25 and C = 2kBT , (7)

σ0 = 0.01, Ex = 0.25 and C = 3kBT . In Fig. 7.3, we plot ∆σ/σ0 as a function

of ψ0, where the coefficient α in Eq. (7.30) is determined by the best fitting of

our simulation results. In all these cases, it can be observed that the lowering of

the interfacial tension follows the equation of state given by Eq. (7.30) when ψ0

is not large (ψ0 < 0.5). As we expect, the coefficient α is only dependent on Ex.

Specifically, when Ex = {0.25, 0.5, 1.0, 2.0}, the corresponding values of α are

{2.0, 2.2, 2.4, 2.8}. For a large ψ0, our simulation results deviate from the analyt-

ical solutions of Eq. (7.30), which is also caused by the two factors as discussed

in Fig. 7.1. Nevertheless, the intrinsic dependence of ∆σ on ψ0 still holds.

A numerical artifact observed in many numerical methods is the existence of

spurious velocities at the phase interface. Based on the analysis of the flowfield

for a clean droplet in quiescent fluid, van der Sman and van der Graaf [121]

have shown that the magnitude of the spurious velocities is proportional to the

interfacial tension. It is interesting to study the influence of the interfacial tension

σ0 and the surfactant concentration ψb on the spurious velocities. Fig. 7.4 shows

the maximal spurious velocities as a function of σ0 for different C and ψb at a

fixed Ex which is 0.25. It can be clearly seen that the addition of surfactant can

decrease the spurious velocities, and the large surfactant concentration leads to
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Figure 7.3: The lowering of interfacial tension ∆σ/σ0 as a function of the sur-
factant concentration at the interface ψ0. The parameters are described in the
text. Simulation results are indicated by the discrete symbols, and the lines are
the solutions of Eq. (7.30) with the coefficient α determined by the best fitting
of the simulation data.

bigger reduction of spurious velocities. For the same C and ψb, the magnitude

of spurious velocities is also proportional to σ0, which is similar to the case of a

clean droplet. Additionally, a multiphase system is always evolving towards the

direction of free energy decreasing in phase-field model. It has been found that

small droplets are prone to dissolve in a surfactant-free finite system [121]. This

is also observed in the surfactant-contaminated finite systems in our simulations.

We also find that the addition of surfactants has negligible effect on dissolution

of droplets.

7.4.2 Adsorption dynamics

Ward and Tordai [91] theoretically considered the adsorption dynamics of surfac-

tant molecules from a semi-infinite bulk surfactant solution to an interface. The

bulk phase and interface are assumed to have an initial surfactant concentration

ψb and ψ0 = 0 respectively. Surfactant molecules will diffuse from the bulk phase

to the interface due to the concentration gradient. Consequently, the surfactant

concentration at the interface will rise, while depleting the surfactants in the layer
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Figure 7.4: The maximal value of spurious velocities |~u| as a function of σ0 for
both clean and contaminated droplets.

of fluid adjacent to the interface (termed as the subsurface). Soon, the interface is

in local equilibrium with the subsurface, and the adsorption process slows down

as the surfactant molecules have to transport over longer distances from the bulk

phase to the interface. The time-dependent adsorption process can be expressed

by [91]

ψ0(t) = 2

√

Dψ

π

[

ψb
√
t−

∫

√
t

0

ψs(u)d
√
t− u

]

, (7.40)

where t is time, u is a dummy time-delay variable, and ψs(u) is the surfactant

concentration at the subsurface. We note that Eq. (7.40) is the analytical so-

lution of the classical Ward and Tordai problem with the governing equation

Eq. (7.18) in the sharp interface model, and it can be numerically solved with a

given adsorption isotherm which relates the interface excess ψ0 to ψs [162].

We apply the present phase-field model to investigate the Ward and Tordai

problem, where an oil-water planar interface with an equal surfactant diffusion

coefficient Dψ in both bulk phases. We adopt the previously used definition

of adsorption length Lad = ψeq/ψb [163, 164], where ψeq is determined by the
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Figure 7.5: Short-time behavior of the surfactant concentration at the interface.

adsorption isotherm:

ψeq =
ψb

ψb + ψce
− C
kBT

ψeq
. (7.41)

And we choose the characteristic time as L2
ad/Dψ, so that the nondimensional

time, τ , is tDψ/L
2
ad [163, 164]. Therefore, the original dimensional Eq. (7.40),

when cast into dimensionless form, becomes

ψ0(τ)

ψeq
=

2√
π

√
τ , (7.42)

for the short-time (t→ 0) adsorption behavior in the Ward and Tordai problem.

This behavior is independent of the adsorption isotherm and the bulk surfactant

concentration. The short-time adsorption behavior is examined using the model

in a 400×3 lattices domain with the following parameters: ψc = 0.017, Ex = 0.23,

ξ = 3δx and D = κ. The Langmuir adsorption (C = 0) and Frumkin adsorption

(C/kBT = {2, 3}) are considered with ψb = {10−3, 5×10−3, 10−2, 1.5×10−2} and

ψb = {10−3, 5×10−3} respectively. Halfway bounce-back boundary conditions [95]

are applied at x = ±200. The simulation results are shown in Fig. 7.5, and we can
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Figure 7.6: Evolution of surfactant concentration at the interface for the Lang-
muir adsorption with the initial bulk surfactant concentration ψb = {10−3, 5 ×
10−3, 10−2, 1.5×10−2} (the solid lines from bottom to top), as well as the Frumkin
adsorption with C = 2kBT and ψb = {10−3, 5×10−3} (the dash-dot-dot lines from
top to bottom). The dashed lines show the limiting behavior at τ → ∞ for the
Langmuir adsorption, and the square symbols represent the analytical surfactant
loadings in equilibrium.

observe that all the adsorption curves collapse into a single curve for
√
τ < 0.025:

ψ0(τ)

ψeq
≈ 2.6√

π

√
τ , (7.43)

which is indeed independent of the choice of adsorption isotherm and ψb. How-

ever, the
√
τ behavior follows a different proportionality constant from the sharp

interface model, which attributes to a finite thickness of the diffuse interface.

It can also be found that the
√
τ behavior lasts shorter for C/kBT = 3 and

ψb = 5× 10−3 compared to the other adsorption curves. This displays a stronger

nonlinear adsorption process for large value of C/kBT .

In the Ward and Tordai problem, the long-time adsorption behavior should be

obtained numerically by solving Eq. (7.40) with a given adsorption isotherm. For

the Langmuir adsorption, the long-time adsorption behavior can be approximated
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by [163]
ψ0(τ)

ψeq
≈ 1− ψc

ψc
√
πτ − ψb(1−

√
πτ)

. (7.44)

We note that the approximation of Eq. (7.44) corresponds to the long-time be-

havior in an infinite domain. Fig. 7.6 shows the simulation results of the whole

adsorption process in the finite domain with C = 0, which are represented by the

solid lines. It can be easily seen that the long-time adsorption behavior in a finite

domain is different from an infinite domain. Compared with an infinite system,

the finite system can equilibrate faster, which is more significant for a lower ψb.

In a finite system, the initial ψb will change as the surfactants are adsorbed to

the interface, leading to reduction of ψb, which will be more significant for a sys-

tem with lower initial ψb. As the diffusion coefficient is ψ-dependent in our free

energy model, the diffusion coefficient Dψ cannot be accurately approximated by

the initial bulk surfactant concentration ψb if it is small, whereas it is assumed a

constant in obtaining Eq. (7.44). As the initial ψb increases, it can be expected

that the adsorption behavior in a finite domain becomes closer to the approxi-

mation of Eq. (7.44), which is also reflected in Fig. 7.6. In addition, Fig. 7.6 also

shows the whole adsorption processes in the finite domain with C = 2kBT and

ψb = {10−3, 5 × 10−3}, which are represented by dash-dot-dot lines. In contrast

to the Langmuir adsorption, the Frumkin adsorption can equilibrate faster due

to more surfactants absorbed to the interface. Finally, we compare the simula-

tion results with the analytical solution of Eq. (7.27) when the finite system is in

equilibrium. However, we cannot directly solve Eq. (7.27) to obtain the profile of

surfactant concentration because the equilibrium bulk surfactant concentration

ψb is unknown. For a closed system, the total mass of surfactant ms should be

conserved during the process of surfactant adsorption, i.e.

∫

ψdx = ms. (7.45)

By satisfying the constraint of Eq. (7.45), we can use the two-step Newton’s

method to solve the nonlinear equation Eq. (7.27) to obtain the concentration

profile. Details are given in Appendix D. Fig. 7.6 shows good agreement between

simulation data and analytical solution for the equilibrium values of ψ0/ψeq.
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7.4.3 Surfactant effect on droplet dynamics

We have examined our model equilibrium behavior and surfactant adsorption

dynamics. In this section, we apply the present phase-field model to investigate

the droplet deformation, breakup and coalescence with the presence of surfactants

in shear flows. All simulations are performed in a 2D rectangular domain with

periodic boundary conditions on the left and right sides of the domain. The

velocity boundary conditions [165] on the top and bottom sides of the domain

are prescribed to introduce simple shear flow. The droplet is initially circular with

the radius R, while the system is initially at rest. The surfactant concentration

starts with the analytical prediction of ψ(~x) for a given ψb. The characteristic

length and velocity of simulation are chosen to be the droplet radius R and γR

respectively, where γ is the shear rate. We introduce the following dimensionless

numbers to classify the droplet dynamical behaviour:

λ =
ηd
ηm
, Re =

ργR2

ηm
, Ca =

γRηm
σ0

, (7.46)

where λ is the viscosity ratio of the droplet to the carrier fluid, which we set to be

1 here; Re is the Reynolds number; and Ca is the capillary number. When there

are surfactants, interfacial tension will vary. In this case, we use the interfacial

tension without surfactants to calculate Ca. In addition, we define the Peclet

numbers Peφ and Peψ, which are associated with the Cahn-Hilliard equations

Eq. (7.14) and Eq. (7.15) respectively, as

Peφ =
γRξ

|Dφ|
, P eψ =

γR2

Dψ
. (7.47)

In the following simulations, we choose ψc = 0.017, ξ = 2δx, Peφ = 2 and Peψ =

100 so that the physical behavior of droplets in a typical oil/water/surfactant

system can be reasonably reproduced.

Droplet deformation and breakup under shear

Here, we perform 2D simulation to examine the surfactant effect on droplet de-

formation and breakup under a shear flow. Initially, the droplet is circular with

the radius R = 32, which is placed in the center of a 256 × 128 lattice flow

domain. To study small deformation, we choose Ca = 0.1, Re = 0.1 and

σ0 = 10−3. We investigate the effects of surfactant concentration and interac-
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Figure 7.7: The stable shape of a droplet in the simple shear flow (Ca = 0.1,
Re = 0.1 and σ0 = 10−3) with the presence of surfactants (C = 0, ψb = 5×10−3,
the black dashed line; C = 0, ψb = 10−2, the black dash-dot line; C = 0, ψb =
1.5×10−2, the red dashed line; C = kBT, ψb = 10−2, the green dash-dot line; C =
2kBT, ψb = 10−2, the blue dash-dot-dot line) and in the absence of surfactants
(the black solid line).

tion coefficient c on droplet formation with two groups of parameters: C = 0 and

ψb = {5× 10−3, 10−2, 1.5× 10−2}; and C/kBT = {0, 1, 2} and ψb = 10−2. For all

the chosen parameters, it can be observed that the droplet deforms and eventu-

ally evolves to a stable elliptic shape, which is usually characterized by the Taylor

deformation parameter, Df = (a− b)/(a + b) with a and b being the major and

minor axis of the ellipse. In Fig. 7.7, we have depicted the steady state shapes

at Ca = 0.1, Re = 0.1 and σ0 = 10−3 for the clean droplet and the droplets with

surfactants. For the droplet with surfactants, we have various ψb and C. For the

Langmuir adsorption (C = 0), increasing surfactant concentration can lead to a

more prolate droplet. In addition, with the same surfactant concentration i.e.

ψb = 10−2, a large interaction coefficient C can also produce a highly enlongated

droplet. The corresponding time evolution of Taylor deformation parameter is

plotted in Fig. 7.8, which reveals the same observations.

During the droplet deformation, surfactant dilution due to the local interfacial

stretching will counter the lowering of interfacial tension, and thus preventing

the droplet from further deformation. Meanwhile, the surfactants are gradually

swept towards the droplet tips under the action of shear flow, resulting in the

non-uniform distribution of the interfacial tension where the smallest interfacial
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Figure 7.8: The time evolution of Taylor deformation parameter for a droplet in
the shear flow with Ca = 0.1, Re = 0.1 and σ0 = 10−3.

tension occurs at the droplet tips. The Marangoni force will arise due to the

gradient of interfacial tension, which resists the further migration of surfactants.

Consequently, the droplet may have a stable deformed shape. For the stable

droplet, we also calculate the droplet inclination angle θ (the angle between the

orientation of the major ellipse axis and the horizontal axis) using the method of

moments [121]. The calculated inclination angles are: θ = 35.58 degrees for the

clean droplet, for the droplet with surfactants, θ is 32.76 degrees (C = 0, ψb = 5×
10−3), 31.21 degrees (C = 0, ψb = 10−2), 30.03 degrees (C = 0, ψb = 1.5×10−2),

30.33 degrees (C = kBT, ψb = 10−2), and 28.70 degrees (C = 2kBT, ψb = 10−2),

respectively. The presence of surfactants acts to promote the droplet deformation

and reduce the droplet inclination angle.

When we increase the capillary number and the Reynolds number, the droplet

cannot evolve to a steady shape. Fig. 7.9 shows the time evolution plots of droplet

deformation in the simple shear flow with Ca = 0.5, Re = 1.0 and σ0 = 10−3.

The other parameters are kept to be the same as the above. As expected, the

droplet deforms more significantly when ψb and C increase, which is consistent

with the cases of small Ca and Re. If we continue to increase the capillary

number and Reynolds number, a critical droplet state may appear, i.e. the droplet
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Figure 7.9: The time evolution of a droplet in the shear flow (Ca = 0.5, Re = 1.0
and σ0 = 10−3) with the presence of surfactants (C = 0, ψb = 5× 10−3, the red
dashed line; C = 0, ψb = 10−2, the green dash-dot line; C = 0, ψb = 1.5× 10−2,
the blue dash-dot-dot line; C = kBT, ψb = 10−2, the black long-dash line; C =
2kBT, ψb = 10−2, the black dash-dot-dot line) and in the absence of surfactants
(the black solid line).

will breakup as the surfactant concentration exceeds a critical value. In order

to capture the underlying physics of droplet breakup, we consider a 640 × 160

computational domain with a droplet of initial radius R = 40 lattices. The

simulation starts with the clean droplet (Ca = 0.6, Re = 2.4 and σ0 = 10−3). As

the surfactant concentration increases, Fig. 7.10 shows that the droplet breakup

begins at some critical value for both C = 0 and C = 2kBT . When the droplet

breakup occurs, the increasing of ψb or C can accelerate the droplet breakup

process, and smaller daughter droplets will be generated. In addition, we notice

that the droplet will shrink again once the maximal deformation is not enough

to “pinch-off” the droplet.

Collision of two equal-sized droplets

We consider the effect of surfactant dynamics on droplet-droplet interactions in

the simple shear flow with Ca = 0.1, Re = 0.4 and σ0 = 10−3. We consider two

initially circular droplets with the radius of 40 lattices and located at (101, 141)

and (261, 101). The 2D computational domain is [1, 361]× [1, 241]. In Fig. 7.11,

the droplet evolution is shown at the times (γt) of 0, 2.5, 5.0, 5.5, 7.5 and 8.0.
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Figure 7.10: Evolution of droplet breakup in the shear flow (Ca = 0.6, Re = 2.4
and σ0 = 10−3) with the presence of surfactants (C = 0, ψb = 5× 10−3, the red
dashed line; C = 0, ψb = 10−2, the green dash-dot line; C = 0, ψb = 1.5× 10−2,
the blue dash-dot-dot line; C = 2kBT, ψb = 5 × 10−3, the black dashed line;
C = 2kBT, ψb = 10−2, the black long-dash line.) and in the absence of surfactants
(the black solid line).
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Figure 7.11: The glancing collision of two droplets in the shear flow (Ca = 0.1,
Re = 0.4 and σ0 = 10−3) with the presence of surfactants (C = 0, ψb = 5×10−3,
the red dashed line; C = 0, ψb = 10−2, the green dash-dot line; C = 2kBT, ψb =
5× 10−3, the blue dash-dot-dot line) and in the absence of surfactants (the black
solid line).
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Figure 7.12: Evolution of surfactant concentration of two colliding droplets in the
simple shear flow (Ca = 0.1, Re = 0.4, σ0 = 10−3, C = 0, and ψb = 10−2).

We find that the droplet coalescence due to collision is dramatically hindered

by the presence of surfactant molecules, which has also been experimentally ob-

served [139, 166–168]. The surfactants have little effect on the droplet behavior,

until the two droplets move close to each other. When the two droplets are in

close contact, the surfactant concentration and the adsorption isotherm have sig-

nificant influence on droplet coalescence. The increase of ψb or C prevents the

droplets from merging.

Fig. 7.12 shows the contour plot of surfactant concentration of two colliding

droplets in the simple shear flow (ψb = 10−2 and C = 0). At the beginning, the

surfactant molecules are convected towards the droplet tips. As the two droplets
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approach each other, the increased pressure in the gap between the two droplets

pushes surfactants away from the near-contact region. We can clearly see that

the surfactant concentrations are unevenly distributed along the interfaces, thus

generating the Marangoni stress that affects the droplet-droplet interaction. In

addition, the reduction of interfacial tension due to the presence of surfactants

can enhance droplet deformation, and thus affect droplet-droplet interaction as

well. The dimple forming in the near-contact region, which has been observed

during the collision of two droplets using the sharp interface model with insoluble

surfactant [80, 142], is not clear in our simulations. It is because the dimple is

produced by the a high repulsive lubrication pressure at d ≪ R (d is the gap

between two droplets), whereas the diffuse interface model underpredicts the

lubrication pressure when d/ξ < 1.5 [108].

As we know, the increase of the effective capillary number (Cae) due to the

presence of surfactants can inhibit the droplet coalescence. However, what is the

role of Marangoni stress during the droplet coalescence? To answer this question,

we have simulated two cases where the effective capillary number is the same, i.e.

Cae = 0.1, for the droplets with surfactants (C = 0, ψb = 10−2) and the clean

droplet. The other parameters are kept the same as the above. The effective

capillary number is defined by

Cae =
γRηm
σe

, (7.48)

where σe is the initial equilibrium interfacial tension, which is the same as σ0 for

the clean droplet and smaller than σ0 for the droplets with surfactants. To ensure

the two cases having the same effective interfacial tension, we need to calculate

the required σ0 for the droplets with surfactants as

σ0 =
σe

1− 0.375α
ξ lnψc

(1 + 1
Ex

)[ln(1− ψ0) +
1
2
C̃ψ2

0 ]
. (7.49)

where C̃ = C
kBT

. Therefore, the σ0 is different for the two cases.

In the present simulation, α is 2.0 for Ex = 0.25. Fig. 7.13 shows the evolution

of droplet collision with Cae = 0.1, Re = 0.4 and σe = 10−3 (in the presence of

surfactants, C = 0 and ψb = 10−2). Although the two cases have the same

effective capillary number, it can be found that the Marangoni stress induced by

non-uniform interfacial tension acts as an additional repulsive force to prevent

droplet coalescence.
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Figure 7.13: The glancing collision of two droplets in the shear flow (Cae = 0.1,
Re = 0.4 and σe = 10−3) with the presence of surfactants (C = 0, ψb = 10−2, the
solid line.) and in the absence of surfactants (the dashed line).
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Figure 7.14: (a) Velocity vectors are shown at every fifth grid point in the vicinity
of the gap at γt = 4.0 (Cae = 0.1, Re = 0.4 and σe = 10−3). The red line is the
droplet interface with the surfactants while the blue line is the interface of the
clean droplet. (b) The flowfield is shown at every eighth grid point (γt = 7.0) for
droplets collision-separation in the presence of surfactants (C = 0 and ψb = 10−2).
The red solid lines are φ contours of 0 and ±0.8, the blue lines are the streamlines.

To show the effect of Marangoni stress on the flowfield, Fig. 7.14(a) gives the

comparison of the velocity vectors in the vicinity of the gap at the drainage time

γt = 4.0 with surfactants (C = 0 and ψb = 10−2, the red arrows) and without

surfactants (the blue arrows). It can be clearly seen that the gap between the

two droplets without surfactants is narrower, which indicates that the presence

of surfactants does slow down the film drainage process and thus increases the

required drainage time prior to coalescence. It has been demonstrated that the

surfactants can immobilize the bubble interface due to the effect of Marangoni

stress during the motion of buoyancy-driven bubbles in a circular tube [143]. The

Marangoni stress can also lead to reduction of the interface mobility during the

droplet-droplet interaction, though the reduction is not as significant as that in

the bubble deformation, where the viscosity ratio of bubble to carrier fluid is

small. The Peclet number will increase as the mobility decreases, which can lead

to droplet collision-separation [110]. Fig. 7.14(b) shows the flowfield at γt = 7.0

(C = 0 and ψb = 10−2), where the streamlines are self-closed circle-like with

the two droplets rotating like rigid bodies, which was also observed by Yu and

Zhou [110].

As found from the above, the presence of surfactants can increase the droplet
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deformation and reduce the droplet inclination angle. We also know that the pres-

ence of surfactants leads to the increase of Cae, which can increase the droplet

deformation and reduce the droplet inclination angle. To understand the mecha-

nism of droplet deformation when the surfactants are present, we re-examine the

droplet deformation with three groups of different parameters: (1) clean droplet

with Ca = Cae = 0.1, Re = 0.1 and σ0 = σe = 10−3; (2) contaminated droplet

with Ca = 0.1, Re = 0.1, σ0 = 10−3, ψb = 10−2 and C = 0, so that Cae = 0.127

and σe = 7.87 × 10−4; and (3) clean droplet with Ca = Cae = 0.127, Re = 0.1

and σ0 = σe = 7.87× 10−4. The group 3 has the same effective capillary number

as the group 2, which is designed to single out the effect of the increase of Cae

on droplet deformation when the surfactants are added. Fig. 7.15 gives the evo-

lutions of the Taylor deformation parameter for the above three groups of data.

The total amount of deformation ∆ has two parts: ∆1, due to the Marangoni

stresses induced by redistribution of the surfactants, and ∆2, stemming from the

increase of Cae due to the surfactant adsorption. For the present case, it is clear

that the effect of Marangoni stresses is significant. We expect that the Marangoni

stresses are smaller for the soluble surfactants than the insoluble ones due to the

bulk diffusion, which can redistribute the surfactants through desorption from

the droplet tips and adsorption in the middle regions of the droplet. The steady

inclination angle is obtained with θ = 33.23 degrees for the group 3 in contrast

to θ = 35.58 degrees for the group 1 and θ = 31.21 degrees for the group 2.

Therefore, when the surfactants are presented, the Marangoni stresses and the

increase of Cae are responsible for the increase of the droplet deformation and

the reduction of the droplet inclination angle.

7.5 Conclusions

We have proposed a generalized free energy functional to enable the phase-

field model to capture surfactant dynamics in a multiphase system with the

bulk surfactant concentration below CMC. In comparison with the other multi-

phase/surfactant models, the present model can describe evolution of the interface

and the surfactant concentration automatically. In equilibrium, this model can

lead to the commonly-used surfactant adsorption isotherms, i.e. the Langmuir

and Frumkin isotherms. In addition, our model can deal with different solubil-

ity of surfactants in the bulk phases. The lowering of interfacial tension caused

by the surfactant concentration at the interface, is theoretically and numerically
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Figure 7.15: The time evolution of Taylor deformation parameter for a droplet
in the shear flow with Ca = 0.1, Re = 0.1 and σe = 10−3.

analysed.

For the Ward and Tordai problem, the interface surfactant loading ψ0/ψeq

follows
√
τ behavior for short time period. For long time period, we find that the

surfactant adsorption behavior in a finite system is significantly different from

an infinite system as the finite system can equilibrate faster. The surfactant

concentration ψb and the interaction coefficient C have been found to have big

impact on the droplet formation, breakup and collision in a simple shear flow. The

increase of ψb and C can promote the droplet deformation, decrease the droplet

inclination angle, and accelerate the droplet breakup. Smaller daughter droplets

are expected to emit for large ψb or C. The droplets will less likely merge when

the surfactants are introduced, and the increase of ψb and C makes the droplet

coalescence more difficult. The reasons are that the effective capillary number is

increased due to the reduction of interfacial tension, and the time required for

film drainage to the point of film rupture is increased due to the Marangoni effect.
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Summary and Conclusions

8.1 Introduction

In this thesis, the lattice Boltzmann phase-field models have been developed

and applied to investigate droplet dynamical behavior in microfluidic devices.

First, we have introduced a LB phase-field model for a binary fluid, which is

built upon the Cahn-Hilliard free energy theory. The model has been validated

against a series of test cases including stationary droplet, static contact angle,

single droplet deformation and breakup in a simple shear flow, coalescence of

two equal-sized droplets induced by the interfacial tension and a simple shear

flow, and contact line dynamics of a droplet attached on a substrate subject to

a shear flow. This model was then applied to investigate the droplet formation

in a microfluidic T-junction and subsequently in a microfluidic cross-junction.

The influences of various dimensionless parameters (including the wettability of

channel walls), which control the droplet breakup in the confined geometries, have

been systematically studied, revealing some new flow physics. Finally, a novel

phase-field model was proposed to model interfacial flows with soluble surfactants.

Its feasibility and capability have been extensively examined for the problems with

analytical solutions and the classical Ward and Tordai problem [91]. This model

was then used to investigate the influence of surfactant adsorption on the droplet

deformation, breakup and coalescence, showing great potential for simulating

surfactant adsorption dynamics in an oil/water/surfactant system.
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8.2 Summary

The major contributions of this work are:

1. Development and evaluation of a lattice Boltzmann phase-field model for

a binary fluid, which significantly reduces unphysical velocities at the in-

terface and incorporates the wetting of solid walls in a simple and efficient

way. Noticeably, this model can still produce correct results for static con-

tact angles when the two phases have different viscosities. However, the

Swift’s free energy model with the wetting boundary condition proposed by

Briant et al. [119] fails to do this due to strong spurious velocities in the

steady state [36].

2. Development of a stress-free outlet boundary condition, which introduces a

mass modification for the rest particle distribution function by considering

the effect of velocity profile. This boundary treatment can conserve the total

mass of an incompressible flow system and improve numerical stability for

the flows with low Reynolds number. Also, it can be directly applied at

the outlet boundary with an arbitrarily given contact angle, whereas the

pressure boundary condition proposed by Zou & He [165] has to be carried

out with an expansion section where the fluid has to be only one pure

single-component [169, 170].

3. Simulations of contact line motion of a droplet sitting on a stationary sub-

strate subject to a shear flow, which indicate that, for a fixed mobility in the

slip mode, the advancing and receding contact angles both exhibit a linear

dependence on the moving velocity of upper wall, and the advancing con-

tact angle θA can be related to the static contact angle θS and the contact

line capillary number Cacl by cos(θA) = cos(θS)− Cacl ln(KL/ls) [127].

4. Direct numerical simulations of droplet formation in a microfluidic T-junction.

The influence of various dimensionless parameters has been systematically

investigated, verifying some existing numerical and experimental findings

and revealing some new flow physics.

5. Direct numerical simulations of droplet formation in a microfluidic cross-

junction, showing that two different regimes, namely the squeezing-like

regime and the dripping regime, are clearly identified with the transition

occurring at a critical capillary number Cacr = 0.01. In squeezing-like
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regime (Ca ≤ Cacr), our simulation results reproduced the experimental

observations of Tan et al. [15]. Also, we identified that in the dripping

regime (Ca ≤ Cacr), the viscous force is dominant and the droplet size

quickly becomes independent of the flow rate ratio as the capillary number

increases. At small flow rate ratios, the squeezing-to-dripping transition

becomes indistinguishable for various viscosity ratios, leading the scaling

law (which correlates the generated droplet size to the flow rate ratio and

capillary number) in the squeezing-like regime to be still valid for the cases

with small flow rate ratio.

6. Development and evaluation of a novel phase-field model for interfacial flows

with soluble surfactant, showing that the model can recover the Langmuir

and Frumkin adsorption isotherms in equilibrium, and the surfactant can

have different solubility in both phases. From the equilibrium equation of

state, one can determine the interfacial tension lowering scale according to

the interface surfactant concentration. The model is able to capture short-

time and long-time adsorption dynamics of surfactants. The model has been

applied to examine the effect of soluble surfactants on droplet deformation,

breakup and coalescence in a simple shear flow. The increase of surfactant

concentration and attractive lateral interaction can enhance droplet defor-

mation, promote droplet breakup, and inhibit droplet coalescence. It has

also been demonstrated that the Marangoni stresses can reduce the inter-

face mobility and slow down the film drainage process, thus acting as an

additional repulsive force to prevent the droplet coalescence.

8.3 Future Work

In this thesis, the potential of the LB phase-field models to simulate a wide range

of droplet dynamical problems has been demonstrated. The underlying physical

mechanisms of droplet dynamics are found to be well captured by these models.

However, the current simulations have only been conducted in 2D. For realistic

microfluidic devices, “3D effects” have significant effect on droplet behavior due to

large surface-to-volume ratio. For example, the experiment of Garstecki et al. [20]

and a recent numerical study of Gupta & Kumar [131] found that the channel

depth plays an important role for the generation of plugs in T-junctions, and

small channel depth can promote the squeezing mechanism, leading to smaller
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droplets. To quantitatively describe droplet dynamics in microchannels, 3D nu-

merical simulations are required. Our current simulations are also limited to the

microchannel with specific dimensions, so 3D simulations would also be necessary

to understand the influence of the channel geometry (e.g. various groups of h/wc

and wd/wc in T-junctions) on the droplet formation.

Since the phase-field models resolve the interface structure, a few grid points

are required to accurately describe smooth variation of the order parameter across

the interface. However, for example, for a droplet of 10 µm diameter with an

interface thickness of 10 nm (a typical liquid-liquid interface is less than 10 nm),

if the geometry channel is 1000 µm long with a 200 µm2 cross-sectional area we

would need more than 1013 grid points for uniform lattice grids if the interface

is to span 5 lattices. Even worse, the time step for droplet motion needs to

be sufficiently small to avoid divergence of the solution. This is clearly beyond

the reach of today’s computer technology. Therefore, the current phase-field

simulations have to artificially enlarge the interface thickness. In this sense, it is

very desirable to incorporate some sophisticated mesh adaptation techniques for

the study of interfacial flows. When the grid is refined in interfacial regions, both

accuracy and efficiency of the simulations can be improved.

The current study of surfactant effect on the droplet dynamical behavior is still

preliminary and it would be interesting to investigate the influence of surfactants

and surfactant concentration on droplet formation in a microchannel. Although

our novel phase-field model is able to model different solubility of surfactants in

the bulk phases, numerical studies are required to examine its feasibility. It would

be desirable to apply the present model to investigate the influence of surfactant

solubility on the droplet formation in a microchannel. The neutral wetting of

walls is only considered in the simulations of the contact line motion, and it will

be interesting to simulate how wettability affects slip velocity of the contact line

and the contact angle hysteresis. Also, it deserves further study on displacement

of the contact line of a droplet on an inhomogeneous surface.

The models and computations in this thesis are limited to a binary fluid with

the same densities for both fluids. To model and simulate realistic multiphase

systems, the multiphase models with high density ratio are also required, e.g.

the density ratio of liquid-gas systems is usually larger than 100, and the density

ratio of water to air is about 1000. Modelling and simulation of multiphase flows

with high density ratio is a challenging task due to large density jump across

the interface. In recent years, several LB multiphase models [151, 171, 172] have
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been developed to simulate the multiphase flows with high density ratio, and

the wetting boundary treatment has been included in these models [173–175]. It

will be desirable to apply these models for complex droplet dynamical behavior

(e.g. bubble formation in microchannels) and test their instability and accuracy.

Another serious limitation is that the present models cannot simulate a fluid with

low viscosity (ν ≤ 0.01). Due to the use of the BGK collision approximation, the

present models are sensitive to the choice of relaxation time, τ . Smaller τ , which

implies lower viscosity, can lead to numerical instability. Multiple relaxation time

lattice Boltzmann model [176] may help extend the lower limit of viscosity. This

model is based upon using several relaxation times instead of the single relaxation

time employed in the BGK models. By using additional relaxation times, different

physical parameters can be independently adjusted. In this manner the bulk

viscosity can be adjusted independently from the shear viscosity, which can lead

to numerically stable results at lower relaxation times if selected properly.

To conclude, modelling small scale multiphase flows in confined geometries

becomes more and more important as the rapid development of micro- and nano-

fluidic technologies. It is an exciting opportunity to explore this field, but it

is also challenging due to its multidisciplinary nature, across the boundaries of

condensed matter, electronics, magnetism and optics, physical chemistry, fluid

dynamics, and numerical computation. More efforts are required to improve our

understanding of the small world so that the unique physics at these scales can

be utilized to develop future flow technologies.
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Appendix A

Chapman-Enskog expansion

The Chapman-Enskog multiscale expansion procedure is applied to derive the
macroscopic governing equations for a binary fluid.

Recall that for the LB phase-field model for a binary fluid, two sets of LB
equations are given by Eqs. (3.18)–(3.21), i.e.

fi(~x+ ~eiδt, t+ δt)− fi(~x, t) = − 1

τf
[fi(~x, t)− f eqi (~x, t)] + Fi(~x, t), (A.1)

gi(~x+ ~eiδt, t+ δt)− gi(~x, t) = − 1

τg
[gi(~x, t)− geqi (~x, t)]. (A.2)

The following expansions are applied based on the Chapman-Enskog method:

fi(~x+ ~eiδt, t+δt) = fi(~x, t)+ ǫ(∂t+eiα∂α)fi+
1

2
ǫ2(∂t+eiα∂α)(∂t+eiβ∂β)fi+O(ǫ3)

(A.3)

fi = f eqi + ǫf
(1)
i + ǫ2f

(2)
i +O(ǫ3) (A.4)

gi(~x+ ~eiδt, t+δt) = gi(~x, t)+ ǫ(∂t+eiα∂α)gi+
1

2
ǫ2(∂t+eiα∂α)(∂t+eiβ∂β)gi+O(ǫ3)

(A.5)

gi = geqi + ǫg
(1)
i + ǫ2g

(2)
i +O(ǫ3) (A.6)

where ǫ = δt, which is small compared to the macroscopic time scales.
The LB equation for the PDF fi used for the flowfield is studied first. After

the expansion, the LHS of Eq. (A.1) becomes

ǫ(∂t + eiα∂α)fi +
1

2
ǫ2(∂t + eiα∂α)(∂t + eiβ∂β)fi +O(ǫ3),

and the RHS,
1

τf

(

ǫf
(1)
i + ǫ2f

(2)
i

)

+ ǫF
(0)
i +O(ǫ3),

where Fi = ǫF
(0)
i = ǫ

(

1− 1
2τf

)

wi

(

~ei−~u
c2s

+ ~ei·~u
c4s
~ei

)

· ~FS.
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By matching the terms at different orders of ǫ, one can obtain

(∂t0 + eiα∂α)f
eq
i = − 1

τf
f
(1)
i + F

(0)
i at O(ǫ), (A.7)

∂t1f
eq
i + (∂t0 + eiα∂α)f

(1)
i +

1

2
(∂t0 + eiα∂α)(∂t0 + eiβ∂β)f

eq
i = − 1

τf
f
(2)
i at O(ǫ2).

(A.8)
Substituting (A.7) into (A.8) yields

∂t1f
eq
i + (1− 1

2τf
)(∂t0 + eiα∂α)f

(1)
i +

1

2
(∂t0 + eiα∂α)F

(0)
i = − 1

τf
f
(2)
i . (A.9)

Note that one can use the following solvability conditions for f
(k)
i (k = 1, 2, · · · ),

∑

i

f
(k)
i = 0 (k = 1, 2, · · · ), (A.10)

∑

i

f
(1)
i ~ei = −1

2
~FS,

∑

i

f
(k)
i ~ei = 0 (k = 2, 3, · · · ), (A.11)

and the conditions for the equilibrium distributions f eqi , as given by Eq. (3.22),

∑

i

f eqi = ρ,
∑

i

f eqi eiα = ρuα,
∑

i

f eqi eiαeiβ = ρuαuβ + pδαβ ,

∑

i

f eqi eiαeiβeiγ = ρc2s(δαβuγ + δαγuβ + δβγuα),

with the equilibrium PDF f eqi given by Eq. (3.25).
The zeroth and first order moments of Eq. (A.7) lead to

∂t0ρ+ ∂α(ρuα) = 0, (A.12)

∂t0(ρuα) + ∂β[(ρc
2
s + φµ)δαβ + ρuαuβ] = FSα. (A.13)

It is straightforward to prove that Eq. (A.13) is equivalent to

∂t0(ρuα) + ∂β(ρc
2
sδαβ + ρuαuβ) = −φ∂αµ. (A.14)

The moments of Eq. (A.9) lead to

∂t1ρ = 0, (A.15)

∂t1(ρuα)+

(

1− 1

2τf

)

∂βΠ
(1)
αβ+

1

2

(

1− 1

2τf

)

[∂β(uαFSβ)+∂β(uβFSα)] = 0, (A.16)
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where the second order tensor Π
(1)
αβ is defined as

Π
(1)
αβ =

∑

i

f
(1)
i eiαeiβ , (A.17)

and can be calculated by

Π
(1)
αβ =

∑

i

f
(1)
i eiαeiβ = −τf

∑

i

eiαeiβ[(∂t0 + eiγ∂γ)f
eq
i − F

(0)
i ]

= −τf
[

∂t0
∑

i

(f eqi eiαeiβ) + ∂γ
∑

i

(f eqi eiαeiβeiγ)−
∑

i

(F
(0)
i eiαeiβ)

]

= −τf
{

∂t0
[

ρuαuβ + (ρc2s + φµ)δαβ
]

+ ∂γ
[

ρc2s(δαβuγ + δαγuβ + δβγuα)
]}

+

(

τf −
1

2

)

(uαFSβ + uβFSα)

= −τf
{

[∂t0ρ+ ∂γ(ρuγ)] c
2
sδαβ + uβ

[

∂t0(ρuα) + ∂α(ρc
2
s)
]

+uα
[

∂t0(ρuβ) + ∂β(ρc
2
s)
]

+ ρc2s (∂αuβ + ∂βuα) + ∂t0 (φµδαβ)
}

+

(

τf −
1

2

)

(uαFSβ + uβFSα)

= −τf {uβ [FSα − ∂γ(ρuαuγ)− ∂α(φµ)] + uα [Fβ − ρuγ∂γ(uβ)− ∂β(φµ)]

+ ρc2s (∂αuβ + ∂βuα) + ∂t0 (φµδαβ)
}

+

(

τf −
1

2

)

(uαFSβ + uβFSα)

= −1

2
(uαFSβ + uβFSα) + τf [uα∂β(φµ) + uβ∂α(φµ)] + τf∂γ(ρuαuβuγ)

−τfρc2s (∂αuβ + ∂βuα)− τf∂t0 (φµ) δαβ.

Then, Eq. (A.16) becomes

∂t1(ρuα)− ∂β
[

ρc2s
(

τf − 1
2

)

(∂αuβ + ∂βuα)
]

+ ∂β
[(

τf − 1
2

)

∂γ (ρuαuβuγ)
]

+∂β
{(

τf − 1
2

)

[uα∂β(φµ) + uβ∂α(φµ)]
}

− ∂β∂t0
[(

τf − 1
2

)

φµδαβ
]

= 0.(A.18)

To obtain the macroscopic governing equations, one simply sums the equations
at different orders together. When Eq. (A.15) is multiplied by δt = ǫ and added
to Eq. (A.12), it is easy to find

∂tρ+ ∂α(ρuα) = 0, (A.19)

which is the exactly the continuity equation.
Similarly, when Eq. (A.18) is multiplied by δt and added to Eq. (A.13), one
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can get

∂t(ρuα) + ∂β(ρc
2
sδαβ + ρuαuβ)− ∂β

[

ρc2s
(

τf − 1
2

)

δt (∂αuβ + ∂βuα)
]

+δt∂β
{(

τf − 1
2

)

[uα∂β(φµ) + uβ∂α(φµ)]
}

− δt∂α∂t0
[(

τf − 1
2

)

φµ
]

+∂β
[(

τf − 1
2

)

δt∂γ (ρuαuβuγ)
]

= −φ∂αµ. (A.20)

The term ρuαuβuγ in Eq. (A.20) is of order O(Ma3), whereMa is the Mach num-
ber and given by Ma = u/cs. The term δt∂α∂t0

[(

τf − 1
2

)

φµ
]

is multiplied by δt,
and the chemical potential µ is a small quantity. Therefore, it may be neglected.
The similar arguments can be applied for δt∂β

{(

τf − 1
2

)

[uα∂β(φµ) + uβ∂α(φµ)]
}

and besides uα∂β(φµ) + uβ∂α(φµ) is of order O(Ma) as compared with φ∂αµ
on the RHS. Hence, they may all be neglected and Eq. (A.20) approximately
becomes

∂t(ρuα) + ∂β(ρc
2
sδαβ + ρuαuβ)− ∂β

[

ρc2s

(

τf −
1

2

)

δt (∂αuβ + ∂βuα)

]

= −φ∂αµ.
(A.21)

If the dynamic viscosity is expressed as η = ρc2s
(

τf − 1
2

)

δt, Eq. (A.21) becomes

∂t(ρuα) + ∂β(ρc
2
sδαβ + ρuαuβ)− ∂β [η (∂αuβ + ∂βuα)] = −φ∂αµ. (A.22)

This is just the momentum equation.
Next, the LB equation for the PDF gi used for the order parameter is studied.

After the expansion of Eq. (A.2) and the match of terms at different orders, one
can obtain

(∂t0 + eiα∂α)g
eq
i = − 1

τg
g
(1)
i at O(ǫ), (A.23)

∂t1g
eq
i −

(

τg −
1

2

)

(∂t0 + eiα∂α)(∂t0 + eiβ∂β)g
eq
i = − 1

τf
g
(2)
i at O(ǫ2). (A.24)

The zeroth moments of Eqs. (A.23) and (A.24) are

∂t0φ+ ∂α(φuα) = 0, (A.25)

∂t1φ−
(

τg −
1

2

)

[∂t0∂t0φ+ ∂α∂t0 (φuα)]

−
(

τg −
1

2

)

[∂β∂t0 (φuβ) + ∂α∂β (Γµδαβ + φuαuβ)] = 0 (A.26)

where the following solvability conditions for g
(k)
i (k = 1, 2, · · · ),

∑

i

g
(k)
i = 0 (k = 1, 2, · · · ), (A.27)
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∑

i

g
(k)
i eiα = 0 (k = 1, 2, · · · ), (A.28)

and the conditions for geqi , as given by Eq. (3.23), i.e.

∑

i

geqi = φ,
∑

i

geqi eiα = φuα,
∑

i

geqi eiαeiβ = φuαuβ + Γµδαβ, (A.29)

have been used. From Eq. (A.25), one can get

∂t0∂t0φ+ ∂α∂t0(φuα) = ∂t0 [∂t0φ+ ∂α(φuα)] = 0. (A.30)

Then, Eq. (A.26) is simplified as

∂t1φ =

(

τg −
1

2

)

Γ∂ααµ+

(

τg −
1

2

)

∂β [∂t0(φuβ) + ∂α(φuαuβ)] . (A.31)

By using Eqs. (A.12), (A.14) and (A.25),one can get

∂t0(φuβ) + ∂α(φuαuβ) =
φ

ρ

[

−∂β(ρc2s)− φ∂βµ
]

, (A.32)

which are the two terms after the differential operator ∂β in Eq. (A.31). Assuming
that these high order derivatives can be neglected, one can simply Eq. (A.31) as

∂t1φ =

(

τg −
1

2

)

Γ∂ααµ. (A.33)

When Eq. (A.33) is multiplied by δt and added to Eq. (A.25), one gets

∂tφ+ ∂α(φuα) =

(

τg −
1

2

)

Γδt∂ααµ. (A.34)

If the mobility is expressed as M =
(

τg − 1
2

)

Γδt, Eq. (A.34) becomes

∂tφ+ ∂α(φuα) =M∂ααµ. (A.35)

This is the approximate Cahn-Hilliard equation for order parameter φ.
To summarize, the continuity equation, the momentum equation and the

Cahn-Hilliard equation have been obtained as given by Eqs. (A.19), (A.22) and
(A.35), respectively.
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Appendix B

Analysis on the equilibrium

properties

The free energy functional is chosen as Eq. (7.5). The excess free energy per unit
interface area can be defined by

w(φ, ψ) = f(φ, ψ)− f(φb, ψb)−
∂f(φb, ψb)

∂φb
(φ− φb)−

∂f(φb, ψb)

∂ψb
(ψ − ψb), (B.1)

which satisfies the Euler-Lagrange minimization equations:

∂w

∂φ
− d

dx

(

∂w

∂∇φ

)

= 0, (B.2)

∂w

∂ψ
− d

dx

(

∂w

∂∇ψ

)

= 0. (B.3)

Defining η(x) = φ(x)/φb, and with Eqs. (B.1), (B.2) and (B.3), we obtain:

w = kBT

[

ψ ln

(

ψ

ψb

)

+ (1− ψ) ln

(

1− ψ

1− ψb

)]

− C

2
(ψ − ψb)

2

+
W

2
φ2
b(ψ − ψb)(η

2 − 1) +
B

4
φ4
b(η

2 − 1)2 +
1

2
(κ−Dψ)φ2

bη
2
x, (B.4)

Bφ3
b(η

3 − η) +Wφbη(ψ − ψb) = (κ−Dψ)φbηxx −Dφbηxψx, (B.5)

kBT

[

ψ ln

(

ψ

ψb

)

− ln

(

1− ψ

1− ψb

)]

−C(ψ−ψb)+
W

2
φ2
b(η

2−1)−D

2
φ2
bη

2
x = 0. (B.6)

When the surfactant excess is not quite large at the interface, we can rewrite
Eq. (B.6) using a linear approximation for the logarithmic part as the following
form:

χ(ψ − ψb) +
W

2
φ2
b(η

2 − 1)− D

2
φ2
bη

2
x ≈ 0, (B.7)

where χ = kBT
(

1
ψb

+ 1
1−ψb

)

− C.
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From Eq. (B.7), we obtain

ψ − ψb =
φ2
b

2χ
[W (1− η2) +Dη2x], (B.8)

ψx =
1

χ
φ2
bηx(Dηxx −Wη). (B.9)

Substituting Eqs. (B.8) and (B.9) into Eq. (B.5), we have

Bφ3
b(η

3 − η) +
Wφ3

b

2χ
η[W (1− η2) +Dη2x] = −Dφ

3
b

χ
η2x(Dηxx −Wη)

+

{

κ−Dψb −
φ2
bD

2χ
[W (1− η2) +Dη2x]

}

φbηxx. (B.10)

The interfacial profile η(x) can be obtained by the solution of Eq. (B.10).
Unfortunately, Eq. (B.10) cannot be analytically solved. To obtain an expression
for the interfacial tension σ, we omit all the high-order terms in Eq. (B.10), so
that the equation is simplified as:

Bφ3
b(η

3 − η) +
Wφ3

b

2χ
Wη(1− η2) =

(

κ−Dψb −
1

2χ
DWφ2

b

)

φbηxx. (B.11)

Therefore, we can obtain
η(x) = tanh(x/ξ), (B.12)

where

ξ2 =
2
[

κ−D
(

ψb +
φ2
b
W

2χ

)]

φ2
b

(

B − W 2

2χ

) . (B.13)

In our free energy model given by Eq. (7.5), χ can be approximated by χ ≈
kBT/ψb due to C is up to O(kBT ) and ψb ≪ 1. Therefore, Eq. (B.13) can be
approximated by:

ξ2 =
2κ

Bφ2
b

, (B.14)

which accords with our assumption that the solvent composition profile is inde-
pendent of the surfactant loading in equilibrium. When χ = C, the free energy
model proposed by Theissen and Gompper [155] can be recovered with the inter-
face thickness defined by Eq. (7.4). By integrating the excess free energy per unit
interface area i.e. Eq. (B.4) in the whole domain, we can obtain the interfacial
tension i.e. Eq. (7.3) for χ = C.
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Equilibrium distributions

Following the constraints of Eqs.(7.31) and (7.35), the equilibrium distributions,
which are assumed to be a power series in the local velocity, can be written as:

f eqi = Fi + wiρ

[

~ei · ~u
c2s

+
(~ei · ~u)2
2c4s

− ~u · ~u
2c2s

]

,

geqi = Gi + wiφ

[

~ei · ~u
c2s

+
(~ei · ~u)2
2c4s

− ~u · ~u
2c2s

]

,

heqi = Hi + wiψ

[

~ei · ~u
c2s

+
(~ei · ~u)2
2c4s

− ~u · ~u
2c2s

]

. (C.1)

for i = 1, ..., 8, where

Fi =

{

~eTi P~ei/2c
4 − (Pxx + Pyy)/12c

2 i = 1− 4,
~eTi P~ei/8c

4 − (Pxx + Pyy)/6c
2 i = 5− 8.

(C.2)

and

Gi =
1

c2s
wiΓφµφ, Hi =

1

c2s
wiΓψµψ. (C.3)

The stationary values i.e. i = 0 are chosen to conserve the mass of each species,

f eq0 = ρ−
8

∑

i=1

f eqi , geq0 = φ−
8

∑

i=1

geqi , heq0 = ψ −
8

∑

i=1

heqi . (C.4)
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Newton method for equilibrium

surfactant concentration in a

closed system

We use a two-step Newton’s method to solve the equilibrium surfactant concen-
tration in a closed system with a given total surfactant concentration ms. In
equilibrium, the surfactant concentration follows Eq. (7.27), which can be rewrit-
ten as

ψ(x) =
1

1 + ye−C̃ψ(x)ϑ(x)
, (D.1)

where ϑ(x) = exp
{

1
kBT

[

W
2
φ2 − κ

2
(∂xφ)

2 −Eφ
]

}

, y = e
− 1

kBT
µψ , and C̃ = C

kBT
.

Meanwhile, the surfactant concentration must satisfy the constraint of Eq. (7.45),
which can be expressed in a discrete form:

∑

i

ψ(xi)δx = ms. (D.2)

We introduce the notations: ψi = ψ(xi), ϑi = ϑ(xi), and directly substitute
Eq. (D.1) into Eq. (D.2). Therefore, Eqs. (D.1) and (D.2) become

ψi =
1

1 + ye−C̃ψiϑi
, (D.3)

∑

i

1

1 + ye−C̃ψiϑi
δx = ms. (D.4)

In the above equations, ψi and y are unknowns. We can use the following algo-
rithm to obtain the unknowns.

1. Set m = 0, and give y an initial guess y0.

2. Set y = ym, and use the Newton-Raphson method to iteratively solve
Eq. (D.3) until a converged solution ψmi is obtained at all the lattice points.
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CONCENTRATION IN A CLOSED SYSTEM

3. Set ψi = ψmi for all the lattice points, and then use the Newton-Raphson
method to iteratively solve Eq. (D.4) until a converged solution ym+1 is
obtained. Update m = m+ 1.

4. Repeat the solution steps (2) and (3) until the solutions satisfy the given
conditions.
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