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Abstract  
 

The aim of this project is to develop an analytical tool through Finite Element Method 

to understand and guide the design of thermal insulation materials. In particular, 

fibrous mat and aerogel particle-filled resin are focused in the context of subsea pipe-

in-pipe (PiP) application for oil and gas extraction. The former has become part of a 

novel combination with superinsulating material – aerogel, and found its commerical 

use in the annulus region of the PiP. The latter is considered to be a form of upgrade 

to the current nylon-based centraliser stabilising the PiP configuration under hydrolic 

pressure from the deep seawater.  

The use of porous materials (e.g. fibrous matt and foam) as thermal insulation has a 

long history,  A randomly orientated fibre mat is effective insulation due to the lack of 

a straight heat conduction pathway and relatively small pores in the fibrous structure. 

Recent development of superinsulating materials involves combining fibrous mat with 

aerogel, which has resulted in a flexible and less compressible aerogel-fibre blanket 

with lower thermal conductivity (14 – 20 mw/mK) than typical conventional fibrous 

counterparts (35 – 50 mw/mK). However, a fundamental understanding of how the 

fibrous mat interacts the aerogel has not been extensively studied.  The use of porous 

particle-filled resin composites, particularly with  aerogel particles, has received less 

studies in thermal cases and  a similar understanding of such integration must be 

developed in order to inform the design process. 

The rationale for carrying out this research was to create a range of simulations that 

can be easily used to predict the effect of changing properties of these above 

composites on their thermal and mechanical performance. The use of simulations is 

less time consuming and allows more parameters to be easily varied to see what the 

optimal fibre design is for specific applications. 
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In order to simulate the effects of varying the composition of the mats, an algorithm to 

generate a random fibre mat was produced, based on the work of Arambakam and 

Tafreshi [1]. This fibre positioning was done in MathWorks’ MATLAB, which was used 

to generate a script for producing a 3D geometry that can be incoporated in ANSYS 

APDL. This geometry was then used as the basis for a 3D finite element method 

model that utilised ANSYS Mechanical to mesh and solve the simulation. The same 

fibre generation process was used for both the mechanical and the thermal 

simulations, but with the bounding region being differently shaped to accommodate 

representing the standard experimental techniques used to measure these values. 

Simulations were carried out to investigate the effect of various parameters of the fibre 

mat. Specifically, the fibre orientation and the volume fraction of the mat were the 

main parameters of importance, with the orientation both in and out of the plane of 

heat transfer being investigated. The ratio of straight fibres to sinusoidal fibres was 

also investigated as a key parameter affecting the heat transfer, with the volume of 

straight fibres to total fibre volume being used to determine the “straight fibre fraction” 

of the fibres. The effect of the fibre length and diameter were also investigated, though 

it was found that on the scales investigated, they had very little effect on the thermal 

conductivity.  

A study into using fully random fibres, where the fibre can be represented by a 

continuous curve in 3D space that varies in direction throughout the length, was 

carried out. However, the high level of complexity of this fibre configuration along with 

the large number of fibre intersections meant that meshing the geometry produced 

was very difficult. Some successful meshes were produced; however, they included 

a number of elements that was too large to successfully produce a solution using finite 

element analysis. 
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For aerogel particle-filled resin, an effort was made to investigate the effect of 

dispersing particles of aerogel through a resin matrix, in an effort to reduce the thermal 

conductivity of the matrix. The results of this showed that it was theoretically possible 

to achieve significantly lower thermal conductivity. The material properties generated 

from the FE simulations were then used in modelling the centraliser to determine the 

insulations effectiveness in pipe in pipe insulation. These simulations included the 

particle simulation data to guide the addition of aerogel particles in the resin matrix to 

further reduce the conductivity. 

The work carried out in this project created an alternative approach to generating and 

manipulating geometry (shape and size distribution) and spatial position within a 

representative volume element (RVE) of composites. This has enabled a micro-scale 

modelling for obtaining such properties as thermal conductivity and modulus of the 

fibrous matt in itself as well as the particle-filled resin composites. An excellent 

agreement was found between the modelling results and experimental data. 
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1 Introduction 

1.1 Background  

Low temperatures on seabed and long transport distances currently pose serious 

challenges to the oil and gas industry for crude oil extraction in ultra-deep water (that 

is, water deeper than roughly 1500m). Pipelines used in the operation of oil 

exploitation need to be thermally insulated to limit heat loss and prevent wax being 

deposited on the inside of the pipeline. If the temperature inside the pipe gets too low, 

these deposits can begin to build up and eventually clog the pipeline [2]. Current 

thermal insulation systems typically involved multi-layered structures made of several 

materials with substantial thickness in order to meet required insulation and flow 

assurance. There also exists a monolithic insulation by using pre-moulded rigid foam 

(e.g. polyurethane) around the inner pipeline. This reduces the complexity of 

installation process compared to the multi-layered insulation structures but have the 

disadvantage of performance drop. Nevertheless, all these insulation materials 

typically can only achieve a thermal conductivity of 25 – 30 mW/mK. This inevitably 

leads to thick pipes and overall heavy production infrastructures, which cause great 

difficulties and a tremendous cost in transportation and installation of the pipelines. 

Being able to reduce the diameter of the pipes required allows a significantly greater 

amount of pipe to be transported on board a ship at a time and hence for the pipe to 

be laid faster. Since the hire of ships and crew is one of the big expenses in laying 

new pipelines, reducing the cost here leads to large savings overall. 

Centralises – spacer between inner and outer pipes -  must be used in subsea oil and 

gas applications and they work via an outer pipe that protects the pipe and prevents 

the sea water degrading the performance of the insulation. In order to maintain the 

separation between the inner and the outer pipe, centralisers are used periodical, 

which are typically made of a low conductivity material that is significantly stronger 
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than the insulation. Unfortunately, this has a trade off in that they are typically around 

10 times more heat conducting than the insulation is. 

The use of aerogel-based composites is becoming more popular here as a result. The 

extremely low thermal conductivity and density of aerogel mean that less insulation is 

required, and lighter piping can be manufactured. As bulk aerogel tends to be very 

fragile, increasing the flexibility means that manufacturing and transporting a pipe in 

pipe insulation system becomes easier. This work largely looks at two ways to create 

such a composite: aerogel/fibre composites, where the aerogel is used as a matrix 

material around a fibre blanket, and particulate aerogel composites, where particles 

of aerogel are dispersed through a plastic matrix. 

The World’s insulation markets are a profitable industrial trade; the global market for 

thermal insulation materials is worth an estimated US$ 38 billion and annual projected 

growth rate around 8%. There currently exists a worldwide need for superinsulation 

solutions enabled by novel super-insulating materials – aerogels. The aerogels 

sector, being an emerging market, has seen tremendous annual growth rates from 50 

to 70% in recent years and similar developments are expected in the near future. 

Recent market studies project worldwide sales of aerogel products in excess of US$ 

500 million. The rapid growth and development in improved insulation materials is 

driven by the political agenda in energy and environment, economic sustainability, 

and ever-increasing urbanisation.  

Unlike conventional insulation materials (for example, polyurethane foam or glass 

wool), an aerogel is a nano-porous solid material consisting of an open-cell network 

with numerous exceptional characteristics, including extremely low thermal 

conductivity (~0.015 W/mK), low bulk density (~0.1 g/cm3), and high specific surface 

area (~1000 m2/g). This unique combination of characteristics has enabled NASA, in 

the late 1990s, to employ aerogels on three outer space missions utilizing their super-
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insulating properties and large specific surface areas. Since then, aerogels have 

attracted a lot of R&D attention and use has now spread into many areas such as oil 

& gas, construction, automotive, and aerospace sectors. The material currently 

dominating the aerogel insulation market is silica-based and requires a relatively 

expensive synthetic route to produce high quality products. Silica-based aerogels also 

suffer from poor mechanical properties (including low strength and toughness) 

inhibiting their use in structural applications. Moreover, the fragile silica aerogels tend 

to break down during handling and shed small dust particles causing health and safety 

issues. More recently, a new polyimide aerogel has been developed at NASA’s Glenn 

Research Centre and represents a revolutionary advance over the fragile silica 

aerogels currently on the market. This technology has been exclusively licenced by 

our industrial sponsor, Blueshift International Materials (Blueshift), who has set the 

target of developing novel polymer-aerogels for the thermal insulation market. 

Table 1.1 summarises the thermophysical properties of commonly seen insulation 

materials, and the comparison of thermal performance is plotted in Figure 1.1. It is 

well indicated that vacuum insulation panel (VIP) provides the best thermal insulation 

performance among all listed materials, with almost ten times better than conventional 

insulation materials such as EPS or mineral wool. Similar to foamy organic materials 

such as EPS or extruded polystyrene (XPS), its low thermal stability may limit its use 

in many applications. Fibrous inorganic materials such as glass wool and rock wool 

exhibit superior thermal stability with excellent fire resistance grade.However,  their 

thermal insulation performance is lower than the foamy organic materials. Silica 

aerogels possess excellent thermal insulation and stability; however, one of the 

significant drawbacks is the cost, as shown in Table 1.2. Nevertheless, 

superinsulation materials such as VIP and silica aerogels still offer the great potential 

of dominating the global insulation market in the upcoming future.  
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Table 1.1 Thermophysical properties of the commonly seen insulation material, λ: 

thermal conductivity at 20℃, dry material; ρ: bulk density; Tmax: maximum service 

temperature; σ: compressive stress at 10% deformation except for foam concrete 

and foam geopolymer 

Insulation 

material 
λ [mW/m.K] ρ [kg/m3] Tmax [℃] σ [kPa] 

Fire resistance 

grade 

VIP 4-8 65-300 90 45-120 - 

Silica aerogels 4-20 3-350 750 0-5000 A 

PUR-PIR 19-30 25-100 120 100-500 B2 

XPS 25-35 20-80 75 150-700 B2 

EPS 29-41 10-50 80 60-260 B2 

Glass wool 30-46 8-150 500 15-80 A 

Rock wool 33-46 13-240 750 15-80 A 

Foam glass 38-61 100-200 >400 
400-

1600 
A 

Expanded 

perlite 
40-60 50-400 

1260-

1343 
- A 

Foam concrete 80-250 200-700 1000 >100 A 

Foam 

geopolymer 
>58 >200 1300 >330 - 
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Figure 1.1 Thermal conductivity of commonly seen insulation materials (dry, at 20℃) 

Table 1.2 Specific material cost of an insulating layer with an R-value of 10 m2KW-1 

Insulation material λ [mW/m.K] Cost [€/m2] 

VIP 8 247 

Silica aerogels 12 547 

PUR-PIR 25 59 

XPS 33 46 

EPS 35 32 

Glass wool 38 43 

Rock wool 40 36 

Foam glass 50 50 

 

1.2  Aim and objectives 

The main aim of this research was to develop predictive models so that the thermal, 

and some of the mechanical properties, of aerogel containing composite materials 

could be determined based on their structure. Specifically, randomly arranged fibre-

aerogel composites and aerogel particle-based composites where investigated, 

where the degree of randomness in the fibres could be controlled. The fibres 

investigated came in two variants: straight fibres and sinusoidal fibres, which could be 

generated either alone or mixed together. The particles considered where all spherical 

in shape, though the diameter could be allowed to vary using either normal or uniform 

distributions, or alternately using a more complex univariate multimodal Gaussian 

distribution.  

The main section of the work was investigating modelling randomly orientated fibrous 

mats, with a focus on the thermal properties of them and how the structure of the mats 

affects the conductivity of heat through the mat. The mechanical properties of the mat, 
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both in terms of the Young’s modulus and the overall composite strength, were also 

considered, albeit in less detail 

1.3 Outline of thesis 

This chapter serves as an introduction to the aims, objectives and outline of the thesis. 

The next chapter (Chapter 2) covers a literature review of the physics and engineering 

underpinning the thesis. The research topics covered by the thesis are discussed in 

depth in Chapters 3-8. Each of these features a more in-depth literature review looking 

at chapter specific research. Chapter 3 investigates the thermal performance of single 

fibre type blankets, with a focus on how the parameters of the blanket affect the 

thermal conductivity through the blanket. It also contains a significant section 

underpinning the modelling system used in Chapters 4-6. Chapter 4 covers the 

mechanical performance of single fibre type blankets, and how the design of the 

blanket affects the stiffness of it. Chapter 5 covers the effect of mixing the two fibre 

types together, and is relatively concise as a result. Chapter 6 then goes on to 

investigate the performance of the blanket when used in aerogel based composites. 

Chapter 7 introduces aerogel particle filled composites, with a focus on modelling 

spherical particles. It features a second algorithm to generate a random geometry. 

Finally, the parameters investigated in the preceeding chapters are used to 

investigate a bulk model of the centraliser, and determine how it behaves. Final 

conclusions are present in Chapter 9, and some areas of future work are laid out in 

Chapter 10. Following this are a series of Appendices containing the MATLAB codes 

used in various stages of the research. 
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2 Literature review 
 

The literature review presented in this section is intended to provide a brief overview 

of several common aspects underling all subsequent chapters. There is a more 

focused literature review specifically dedicated to each chapter in accordance to the 

topic in that chapeter. 

2.1 Composites overview 

Composite materials are materials comprised of two or more different materials. For 

example, glass fibres are commonly used as reinforcements for polymers, where the 

high tensile strength of the fibres improves the mechanical properties of the resin 

significantly, while adding minimal cost and weight to the material. Fibres, particles, 

and platelets are all commonly used to produce composites, but a wide range of 

different kinds of inclusion exist. Composite materials are common in nature, as seen 

in materials like wood (cellulose fibres within a matrix of lignin) and bones, composed 

of a honey-comb like matrix arranged in a range of ways depending on which bone it 

is [3]. Development of composite materials began in the 1940s, when Owens Corning 

began patenting various methods to create glass fibres [4-7], before picking up steam 

in the 1960s when ‘Composite Materials’ became a field of study on its own [3]. 

Fibre based composites can be manufactured to be either continuous or 

discontinuous in nature; where continuous fibres are typically either woven or 

unidirectional; and discontinuous are typically chopped or formed into a mat [8]. Often 

continuous fibre composites are constructed into laminates featuring discrete layers, 

whereas chopped mats are typically found in non-laminated composites [9]. Glass 

fibres are the most commonly used fibre reinforcement [10], though carbon fibres are 

very common too. Alternative reinforcements to fibres include plates and particles; 
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with particles being particularly common in attempts to increase the thermal 

conductivity of the composite in metal based composites [11]. 

Aerogels are extremely porous solid gels originally developed by Kistler in 1932 [12], 

using a process of supercritical drying. Silica aerogels are the most widely researched 

and commercially available aerogel, though a wide range of other materials have been 

used including metal foams and hydrocarbons [13]. The high porosity of the aerogel 

means they have extremely low thermal conductivities, typically below 20mW/mK, 

and densities in the sub 0.2gcm-3 range [13]. 

The most common application for aerogels is thermal insulation, but they have also 

been used in a wide range of applications from acoustic insulation to catalysts [14]. 

 

2.2 Heat transfer overview 

This work focusses on the heat transfer through thermal insulation. While some 

consideration is done for the mechanical performance of it, as the insulation is 

intended to be used in pipe-in-pipe insulation, understanding the thermal properties 

prove to be more important. In order to understand the importance of the thermal 

properties, an understanding how heat transfer is necessary. 

There are three main mechanisms for heat transfer: conduction, convection, and 

radiation. Thermal conduction is an internal mechanism of heat transfer which occurs 

when particles collide with each other within a body, or through the transfer of 

electrons in, for example, a metal. Convection occurs within fluids and occurs when 

the fluid physically moves heat away from the higher temperature location. Radiation 

is heat transfer carried out by atoms emitting photons of energy which are then 

reabsorbed. 
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Figure 2.1: 2D schematic of the heat transfer setting being discussed; where T1 and 

T2 are different temperatures being applied to the region. 

If we consider a two dimensional system as shown in Figure 2.1, and apply the 

general thermodynamic energy equation in two dimensions, shown in Equation (1),  

then it can be shown that the temperature distribution across the purely conductive 

system is linear. This result will be used several times in the development of theory. 

Fourier’s law will also be used, without proof, in its one and two-dimensional 

constitutive form. 

 ∂ρE

∂t
+

∂ρuE

∂x
+

∂ρvE

∂y
= ρS + kx

∂2T

∂x2
+ky

∂2T

∂y2
− P [

∂u

∂x
+

∂v

∂y
] + ∅  (1) 

The heat transfer due to convection within a fibre composite is generally negligible 

(Section 3.2.4 discusses this in more depth), since fibrous insulations are usually 

designed to limit the bulk flow of fluid. As a result, the velocity terms are both 

approximately 0 and can be neglected to simplify Equation (1). In addition, it can be 

assumed there is no internal heat source, and that the temperature variance in the y 

direction can be neglected. This means that Equation (1) can be simplified to Equation 

(2). Integrating this produces Equation (3), which in turn can be integrated to produce 

Equation (4).  

x 

y 

T2 
T1 
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 ∂2T

∂x2
= 0  

(2) 

 
∫

∂2T

∂x2
dx =

∂T

∂x
=  C  

(3) 

 
∫

𝜕𝑇

𝜕𝑥
𝑑𝑥 = 𝑇(𝑥) = 𝐶𝑥 + 𝐷 

(4) 

By applying boundary conditions to Equations (3) and (4), Equation (5) can be 

derived. 

 T(x) = T1 − (T1 − T2)
x

L
 (5) 

Using this knowledge, the temperatures may be related to the heat flux using Fourier’s 

law of 1D conduction: 

 T(x) = T1 − (
q

K
) x   (6) 

These results are used to develop thermal boundary conditions and theory in 

adiabatic conditions. Therefore, heat transfer within a nonwoven may be 

approximated by a conduction only model. This model may be decomposed into 

conduction in fibres, and conduction in interstitial air and solid materials such as 

aerogel. 

2.3 Micromechanics overview 

The mechanical properties of fibrous composites are primarily influenced by the 

mechanical properties of the constituent materials. Embedding fibres into a matrix, 

typically polymer but ceramic and metal are relatively common too, enhances the 

mechanical properties of the matrix due to the added strength of the fibres. 

This section provides a review of the mechanics of fibrous composites, specifically 

from a micromechanics perspective. Describing the mechanical properties of fibrous 

composites is challenging due to the anisotropy and inhomogeneity, which mean the 

strength and stiffness at any point in the specimen will vary depending on which 
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component the point is in. It can be more practical to identify average properties of 

the material using a law of mixture which allow it to be treated as a homogeneous 

material, since this reduces the complexity of the situation significantly. The 

anisotropy will remain, since they are a factor of the material properties being 

dependent on the fibre arrangement within the composite, and the fibres are strongest 

in the transverse direction. 

The 3D elastic behaviour of isotropic linear material can be described by Hooke’s law 

using the compliance matrix shown in Equation (7). Inverting this matrix produces the 

stiffness matrix, shown in Equation (8). This shows how the stresses and strains within 

the material are related. 

 

[
 
 
 
 
 
𝜀𝑥

𝜀𝑦

𝜀𝑧
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𝛾𝑧𝑥
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(8) 

In the anisotropic case, however, the stress and strains vary a lot more: the isotropic 

case features no interactions between the shear and direct stress, whereas in the 

anisotropic case, the shear moduli can affect the direct strain and vice versa. This is 

can be seen in the compliance (Equation (9)) and stiffness (Equation (10)) matrices 

for anisotropic materials. 
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Through consideration of the symmetry of the matrix and by relating the constants to 

the elastic and shear moduli, it can be reduced to 21 elastic constants,  shown in 

Equation (11). Any elastic material with 21 independent constants is defined as fully 

anisotropic, and the behaviour can be characterised if all of them are known. This 

requires empirical methods to determine the values of the constants. The matrix can 

be simplified further if the material possesses some elastic symmetry. 

 

𝐶 =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16

𝐶12 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26

𝐶13 𝐶23 𝐶33 𝐶34 𝐶35 𝐶36

𝐶14 𝐶24 𝐶34 𝐶44 𝐶45 𝐶46

𝐶15 𝐶25  𝐶35 𝐶45 𝐶55 𝐶56

𝐶16 𝐶26 𝐶36 𝐶46 𝐶56 𝐶66]
 
 
 
 
 

 (11) 

 

2.3.1 Orthotropic 

Orthotropic materials have three planes of symmetry across their primary axes; and 

are often a good way to represent unidirectional laminated composites where the 

material behaviour through the plies, along the fibres and across the fibres are all 

uniquely different. This allows the stiffness matrix to be reduced to twelve 

components, as shown in (12). The direct stress components remain coupled to each 

other; but the shear components are not, with shear strains only being produced from 

shear stresses. 
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𝐶 =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶13 𝐶23 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66]

 
 
 
 
 

  (12) 

 

2.3.2 Transversely isotropic 

If the material has the same properties in only one plane, then the behaviour is 

transversely isotropic. A single ply of a unidirectional fibre composite is often 

transversely isotropic, since the properties in the axial direction of the fibres are the 

same due to the symmetry of the fibres, whereas the transverse direction has 

significantly different properties. In this case, the stiffness matrix can be reduced to 

five constants of elasticity, as shown in Equation (13). 

 

𝐶 =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶11 𝐶13 0 0 0
𝐶13 𝐶13 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0
0 0 0 0 0 𝐶11 − 𝐶12]

 
 
 
 
 

  (13) 

2.3.3  Isotropic 

Isotropic materials have properties which are independent of the orientation and the 

same in any direction. Most bulk materials, like glass and metals, are isotropic in 

nature. In this case, their elastic behaviour can be described using two elastic 

constants, as shown in Equation (14). 

 

𝐶 =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶11 𝐶12 0 0 0
𝐶12 𝐶12 𝐶11 0 0 0
0 0 0 𝐶11 − 𝐶12 0 0
0 0 0 0 𝐶11 − 𝐶12 0
0 0 0 0 0 𝐶11 − 𝐶12]

 
 
 
 
 

 (14) 
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2.4 Subsea piping overview 

This section examines in further detail the design considerations that apply to subsea 

piping. These considerations are what motivated the work carried out here, and in 

turn, were used to determine what was simulated.  

2.4.1 Heat loss in subsea piping thermodynamics 

The heat loss in subsea piping is a complex process which involves a range of fluid 

behaviours, from the effect of the movement of the sea around the pipeline to the 

effect of phase changes within the oil itself, including the effects of precipitation 

building up inside the pipeline. As a simplification, the properties looked at were 

considered to be temperature independent, as the heat loss can be assumed to take 

place within a liquid phase only. This assumption is plausible since the liquid phase 

typically have significant larger diameter than the wall of the pipe. 

2.4.2 Radial heat loss 

As discussed in Section 2.2 the heat loss of a subsea pipe may be examined using 

Fourier’s law in radial form. By performing an energy balance on a circular oil control 

volume, the rate of change of temperature in the internal fluid per unit length may be 

directly related to the geometry. A more realistic scenario of a dual walled subsea 

pipe is considered, in which the inner wall contains the fluid, and the external wall 

supplies the pressure boundary for the sea. The cavity between the internal and 

external walls is filled with thermal insulation. 

The rate of change of temperature per unit length may be found using Equation (15) 

[15]. 
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  (15) 

It is assumed, in the derivation of this equation, that pipelines are sufficiently long that 

all heat loss is eventually dissipated radially. Therefore, there is no need for a second 

coupling equation to account for heat loss in the axial direction. 

 

Figure 2.2: Schematic illustration of PiP insulation, with a simplified 2D geometry on 

the left, and a more complex, realistic geometry on the right showing multiple pipes 

bundled together. 

 

This geometry is based on the Subsea 7 S.A. cable bundle geometry, simplified into 

a single polar setup, shown in Figure 2.2. 

 

T1 

T2 

T3 

T4 
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2.4.3 Axial temperature gradient 

Based on the rate of change of temperature per unit length, the final temperature of 

the crude oil may be found using Equation (16), assuming a linear temperature 

distribution – shown to be appropriate in Section 2.4.2. 

 
𝑇5 = −

𝑑𝑇

𝑑𝐿
𝐿 + 𝑇1  

(16) 

 

2.4.4 Cost saving as a result of improved insulation 

 

Figure 2.3: Temperature - Viscosity curves of several types of crude oil. These may 

be used to estimate the pumping power based on an average oil temperature [15]. 

 

Using the temperatures calculated previously, the required pumping power may be 

found using crude oil viscosity curves, shown in Figure 2.3, and Equation (17) [16]. 

 
𝑃 = 𝑄∆𝑃 = (𝜋

𝐷2

4
�̅�) (

32𝜇𝐿�̅�

𝐷2
) = 8𝜋𝐿�̅�2𝜇(𝑇1, 𝑇5) 

(17) 

With a functional estimate of the pumping power required for a particular insulation, 

the cost benefit of that particular analysis across a well lifetime may be estimated.  
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A basic cost model, shown in Equation (18), accounts for the reduced pump power 

consumption cost, the reduced cost associated with a lower failure rate, and the 

potential for increased capital costs associated with a well overhaul, to measure the 

lifetime influence of improved insulation [16]. 

 ∆£ = 𝑡𝑤𝑃𝐿(𝜀𝑃𝐿𝑃𝑃£ + ∆𝐹𝑟𝐹£) − 𝐶𝐶 (18) 

2.4.5 Precipitation/Phase change issues with heat loss 

As mentioned in the previous section, any major heat loss to pumped crude oil not 

only increases the viscosity, but also causes chemical issues, which may increase 

the pipeline and pump failure rate. These issues are summarised below. 

 Solids deposition 

Solid deposition occurs when the temperature drops below the hydrate/wax transition 

temperature and hydrates change phase, attaching to a pipe inner wall. In any single 

instance this is not problematic; however, it quickly leads to a build-up of other 

deposits such as grit, scale, and asphalt.  

This build up can lead to blockages and create a turbulent flow around the deposition 

vortex, accelerating erosion. Additionally, depending on the composition of the 

deposited hydrates, this can also lead to accelerated corrosion of the internal pipe 

wall. 

 Hydrate deposition 

Hydrates are hard crystalline, water based, ice-like substances, with a structure which 

is dependent on the relative gas composition. Circumstances leading to their 

formation are complex to predict. Crucially, hydrate formation leads to an increased 

pressure drop and a reduced delivery of water at outlet flow. This leads to greater 

pumping loads and increased erosion on pump components and pipe walls. 
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The circumstances under which hydrate formation generally occurs are high-

pressure, relatively low-temperature, high water concentration (>10%), in a 

completely turbulent highly salient flow. As a result, the most effective way to reduce 

hydrate deposition is to reduce the heat loss. 

 Wax and paraffin deposition 

Wax and paraffin deposits may be hard or soft, depending on the relative composition 

of the extracted crude. Unlike hydrate deposition, which typically occurs at the end of 

a wells cycle, wax/paraffin deposits occur during the initial oil extraction. They are 

characterised by a large pressure drop and can be formed in crude oil and associated 

liquid condensates. 

There are a limited number of theoretical models to predict wax and paraffin 

deposition conditions. Instead, experimental tests to determine the Wax Appearance 

Temperature (WAT) / cloud point of stock oil must be performed. A typical WAT of 

crude oil is around 50ºC, therefore keeping the working fluid at a temperature in 

excess of this is beneficial. 

 Scale deposition 

Scale deposits are generally rigid mineral deposits and occur due to solubility changes 

of brine undergoing temperature or pressure change. Normal scale deposits consist 

of calcium, magnesium, and salt scales. There are also scales due to the 

incompatibility of waters, for example injected seawater or aquifer water, which 

generally causes sulphate scaling. However, these are less dependent on 

temperature compared to those due to solubility changes.  

2.5 Summary 

It has shown that there is an emerging demand for high-performance insulation 

materials that can be adopted in a wide range of applications. The current high-
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performance insulation strategies are constrained by a few options commercially 

available including vacuum insulated panel and rigid porous plastic. Aerogels present 

an exciting avenue in the field of passive heat insulation but their implementation has 

not been extensively explored in different applications. The deep-sea operations (e.g. 

oil & gas extraction) have provided a timely opportunity to study key material design 

parameters underpinning some novel concept of aerogel composites including fibre-

reinforced aerogel and aerogel particle filled polymer.    

A number of common technical aspects involved in the development of aerogel 

composites for thermal applications. It spans from basic thermodynamic framework 

to design principles in anisotropic materials. It is can be seen that the literature in this 

area is quite scarce because in part aerogel composite is still a largely under 

development and material internal structure is complicated by dissimilar materials 

constitution with a significant amount of nano-to-micro scale pores randomly 

dispersed throughput the solid phase.      
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3 Thermal Modelling of Geometries Containing A Single 
Fibre Type 

3.1 Introduction 

This chapter investigates the properties of single fibre type blends of composite 

blankets. The aim is to create a modelling tool with the ability to manipulate individual 

fibre characteristics (e.g. size, shape, and composition) as well as the fibre content 

(e.g. fibre volume fraction) in order to form a defined fabric microstructure. Such fabric 

microstructure can then be used to investigate the effect of fibre-related parameters 

on fabric thermal and mechanical performance. This work looks at two kinds of fibre: 

straight fibres and sinusoidal fibres. 

These kinds of fibre geometry are often used as thermal insulation, as the relatively 

large pores within them are good at capturing a large volume of air, and preventing 

said air from undergoing significant bulk movement, thus preventing convective heat 

transfer within the fibre mat [16]. 

This chapter deals with each fibre type being individually modelled, with a mixture of 

the two being considered in Chapter 5; and the fibres surrounded by aerogel is 

investigated in Chapter 6. The thermal conductivity is being investigated, with a focus 

on predicting the optimal fibre properties to minimise the thermal conductivity while 

minimising the impact on the mechanical properties. In this work, the straight fibres 

are generally modelled as being made of glass fibre, while the sinusoidal fibres are 

modelled as being made of PET fibres. 

3.2 Literature Review 

3.2.1 Straight Fibres in Thermomechanical Modelling 

Work on predicting the properties of fibrous insulation has been ongoing, with a large 

focus on deriving analytical and empirical relations between the properties, 
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particularly the volume fraction, of a fibrous mat and the thermal conductivity of it, 

since the 1950s. While initially the focus was on deriving empirical and analytical 

relations which could be calculated fairly easily; the increase in available computing 

power meant that in recent years the focus has been more on numerical methods that 

produce more data and a deeper insight into the behaviour of composite materials. 

 

Figure 3.1: Boundary conditions that were used by Arambakam et al. [1] in order to 

simulate the heat transfer through their fibrous material 

 

The work of R. Arambakam et al in designing a simple method of simulating fibres [1] 

was used extensively here. They developed an algorithm that allows the generation 

of fibres in random orientations, with the option of controlling the angle of the fibres 

and the volume fraction of fibres added to the geometry. This allowed a three 

dimensional geometry such as that shown in Figure 3.1 to be generated in a 

computationally inexpensive manner. They then carried out simulations of the heat 

transfer through the material, with it being kept between two flat plates and symmetry 

conditions being used on the boundaries of the material. This was done using ANSYS 

Fluent, a computational fluid dynamics program, with a focus on the way the heat 

flows through the air surrounding the fibres and also the conduction through the fibres. 
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Arambakam et al never looked into the mechanical properties of fibrous mats 

produced in this manner, which is likely to be a function of their fibre generation 

method producing the fibres in isolation and lacking a mechanism to prevent rigid 

body movement occurring when forces are applied. 

A huge range of parameters have to be considered to accurate model fibre-based 

porous composites, including the direction, porosity, and conductivity of the fibres as 

well as the influence of air, water and ventilation on wet fabrics, as well as the 

anisotropy of the fibres. Woo et al [16] derived an analytic formulation that attempts 

to take all these properties into account: 

 
𝑘𝑐 = 𝑘𝑎𝑠𝑖𝑛(𝜑𝑃𝑖)

2 + 𝑘𝑓2𝑐𝑜𝑠 (
𝜑𝛼𝑣𝑓

1 + 𝛼
)
2

+
𝑠𝑖𝑛(𝜑(1 − 𝑃𝑖)

2)2

𝑣𝑓

𝑘f1
+

(1 − 𝑣𝑓)(1 + 𝛼)

𝑘𝑎

 (19) 
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𝜋
)
2 𝑣𝑓

2𝛼

(1 + 𝛼)2)

𝐿
2𝑑

  
(20) 

where kc is the thermal conductivity through the fabric, ka is the thermal conductivity 

of air, kf1 and kf2 are the thermal conductivities of the fibres along the across their 

axes, vf is the fibre volume fraction, α is the anisotropy factor, L is the fabric thickness, 

and d is the fibre diameter, and φ is associated with the polar orientation parameter.  

While this provides a comprehensive approach that includes the factors of a range of 

properties, it also includes a number of terms which are difficult to measure, including 

the thermal conductivity across the axis of a fibre. 

They did some comparisons of the experimental and predicted values, and obtained 

a good level of agreement, as long as they assumed the polar orientation parameter 

and anisotropy factor values were 0.06 and 1.5, respectively. These values were 

never justified, and come with the assumption that as a result, they were chosen due 
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to them providing accurate results over being representative of the experimental 

samples. 

The work of Fricke et al. [17] covers calculating the radiative component of the thermal 

conductivity of thin, low density test specimens typically manufactured using fibre 

boards. The fibre boards have densities of the order of 10 kg/m3, and are of a 

thickness/layup/design so that the heat transfer through them is largely done by two 

components: the infrared radiation and the conduction through the air gaps (with the 

solid conduction through the fibres being basically negligible: this is a good 

approximation for fibre boards but not fibre mats in general. The photon diffusion 

approximation breaks down, which means that it appears that direct radiation transfer 

between the boundaries of the material can happen (it appears that the “photon 

diffusion approximation” implies that there is no net internal radiation transfer as there 

is too much material in the way, leading to the heat just flowing around randomly 

rather than in a general “hot” to “cold” way, and so when the assumption breaks down, 

it is because there is a significant amount of internal heat transfer via radiation). 

The authors specifically investigated the behaviour of organic fibres, with the spectral 

transmission and reflection measurements occurring at wavelengths between 2 and 

40 μm in size. 

The thermal conductivity for these low density materials is not considered a material 

property because of it is dependence on the geometry (specifically, the thickness of 

the test specimen affects the thermal conductivity so that the thermal conductivity is 

not just dependant on the materials the test specimen is made of; and the emissivity 

of the test machine is also important). As such, it is common to refer to the 

experimental thermal conductivity as the “apparent conductivity” or “pseudo-

conductivity”. 
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The aim of the paper was to come up with an analytical expression to determine the 

conductivity of the fibre board.  The radiation parameters were obtained using 

“calorimetric” experiments, with a mean test temperature between 285 and 305K (10-

30°C), with thicknesses from 33 to 100mm and densities between 8 and 25kg/m3. The 

emissivity of the surfaces was 0.92, although they also ran the tests using foil covered 

specimens with an emissivity of 0.06. The “special design and calibration of the heat 

flow meter apparatus” ensured the experimental error was small enough that the 

thermal resistance was within 0.5% of the certified value for the reference material 

they used to ensure the apparatus was correctly calibrated. As a result, the expected 

accuracy is to within 2% of the actual value of thermal conductivity here. 

 

Figure 3.2: Measured thermal (pseudo-) conductivity, λ, of organic fibre boards as 

function of cubed mean temperature, 𝑇𝑅; from [17]. 
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Figure 3.2 shows a comparison of the pseudo-conductivity for a range of test 

specimens, and it shows that there is a massive increase in the pseudo-conductivity 

when the test specimen is used in an air atmosphere as opposed to an evacuated 

atmosphere. The results suggest that fibre diameter is not important when the 

specimen is in an evacuated state but is important when dealing with test specimens 

in an air atmosphere. They also appear to have significant temperature dependence, 

with a variation from around 0.05 to 0.065 occurring over a temperature range of ~50 

K (using standard thermal conductivity units). The large increase in the conductivity 

which occurs from adding in air, which is larger than the conductivity of air, is likely to 

be due to the “coupling between radiation and air/solid conduction heat transfer” 

through an interaction between phonon and photon. 

The total extinction coefficient was determined based on the relative scattering and 

absorption cross-sections for the fibres, as well as the porosity of the fibre board and 

the fibre diameter. The specific extinction can also be determined by taking the 

extinction coefficient and dividing it by the density. The cross sections depend on the 

complex index of refraction (which in turn depends on the fibre diameter and the 

wavelength of light) as well as the angle of the fibres relative to the incoming radiation. 

Apparently, fibres typically scatter well in the “forward” direction, and so it is common 

to consider the effect of the fibre angle by scaling the extinction cross section by an 

anisotropy factor. Sometimes, the intensity function (which appears to describe how 

what the light hitting the specimen is doing in terms of intensity and is a function of 

the direction) is normalised with respect to the albedo. 

Since the fibre direction in the test specimens is likely to be randomly orientated, all 

these aspects have to be integrated across every possible direction, which makes this 

process complex to carry out. The effective specific extinction coefficient varies a 

significant amount as the wavelength changes (roughly between 7 and 24 m2/kg). 
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Fricke et al did calculate the Rosseland mean spectral extinction coefficient, but they 

noted that there was some uncertainty as to how accurate this was since the fibre 

diameter seemed to have some variation. Specifically, they found that the diameter 

tended to increase near fibre crossings, and so they measured it to be either between 

30 and 50 micrometres or between 35 and 45 micrometres. 

They also studied the effect of measuring the spectral extinction coefficient using 

optical methods. It mentions that this method is most important when the refractive 

index of the material being tested is unknown. It depends on knowing the effective 

optical thickness of the material, which can theoretically be determined from the 

optical thickness and the anisotropy factor. The optical thickness is defined as the 

natural log of the ratio of incident to transmitted radiation on the material. 

In 2008, Floury, Carson and Pham [18] carried out a Finite Element Method simulation 

investigating both square particles and square fibres to determine the thermal 

conductivity. They investigated both fully random fibre orientations and loosely 

aligned in the z-direction fibre orientations (where the fibres are only randomly 

orientated in two dimensions and not all three). They demonstrated that FEM 

simulations could produce results with a good agreement to theoretical models, but 

their focused on using it for simulating food items meat that no experimental validation 

exists. While this method is useful for modelling composites in general, adapting it to 

use differently shaped fibres would be necessary since most conventional fibre 

composites use cylindrical fibres. 

Wang  et al [19] developed a novel theoretical method based on existing models to 

predict the conductivity of composites under all conditions. It allows a mix of 

composite structures to be analysed using a single equation. However, the cost of 

this was that an extensive derivation process is required to figure out how to relate 

the structural conductivities to each other. It also necessitates assuming either a pure 
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parallel or pure series component for fibre-based composites: this can be somewhat 

compensated for by assuming there is a weighting of the two and the true case is 

somewhere in between. The largest gap presented here is that the new model is only 

ever compared to the theoretical models it was partially derived from and not to 

experimental data. However, since the theoretical models are well established and 

their accuracy is generally known, this should be sufficient to assume the model is 

relatively accurate. 

While all the methods presented so far allow the thermal conductivity to be predicted 

if material properties are known, they do not allow specific investigation of how heat 

flows through a blanket and can obscure insights related to particular fibre blanket 

features that can significantly impact the thermal conductivity. 

The work of M. Wang et al [20] allowed for the creation of simple, 2D lattices 

representing a plane through a composite material. This allows for the creation of 

relatively computationally simple thermal simulations to predict how heat flows 

through composites, both featuring highly orientated fibres and very random fibre 

mats. However, the 2D nature means that the effect of the fibre orientation in the plane 

of the heat transfer direction cannot be studied. They found that the system would 

produce symmetrical conductivities as long as the orientation was completely random: 

namely, biasing it so that fibres are more likely to lie along the x-axis than the y-axis 

(for example) would in turn cause a higher conductivity in the x-direction than the y-

direction. 

While their work should produce accurate results, they did not carry out a validation 

process here: neither experimental nor theoretical methods were used to compare 

with their results. This is understandable since it is hard to create a purely 2D 

experimental setup; but a lot of simple thermal models (including the series/parallel 

models and models derived from them) allow the calculation of thermal conductivity 
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in 2D planes relatively easily as long as e.g., the porosity (a key factor in this 

simulation) is known.  

P. Kanouté  et al [21] carried out a comprehensive review of multiscale models for 

predicting how 3D composite structures behave mechanically at both the micro and 

macroscales. While they exclusively focus on mechanical behaviour of composites in 

the review, they highlight a number of approaches to simulations that are informative 

here. Specifically, they validate the approach chosen on some levels, since modelling 

the microstructure is determined to be a standard method for determining the 

properties of the material. While a true multiscale modelling approach was not carried 

out here; the model created could be used to feed data directly into a macroscale 

model. 

Kuksenko et al [22] investigated simulating the mechanical behaviour of wavy fibres. 

A hyperelastic model was used to describe the material behaviour present in the 

fibres, where test examples were not intended to represent real fibres. Their findings 

show that the fibre radius has no significant effect on the mechanical response of the 

composite, with a possible exception for when the properties of the fibre are very 

different than the matrix. However, their findings are mostly focussed on straightening 

the fibres and not the effect the fibres have on the material properties of the 

composite.  

Towards the end, they consider the effect of including multiple fibres, in two different 

regular arrangements and a random periodic arrangement. They find that, at least in 

considerations of how the fibres are stretching, the arrangement of fibres has little 

effect in general, except if the fibres are relatively similar to the matrix mechanically. 

However, they do not run any simulations of the effect the arrangement of fibres has 

in Load Case 2 or 3 (see Figure 3.3) which are the two load cases where the response 

of the fibre is likely to be more affected by the fibre arrangement present. 
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Figure 3.3: The three load cases used by Kusenko, Böhm and Drach[22], originally 

Figure 2 in their paper. (a) is referred to as Load Case 1, which deals with 

elongation of the fibre(s); (b) is Load Case 2, which deals with direct force across 

the cross section of the fibre(s); and (c) is Load Case 3, which covers shear across 

the cross section of the fibre(s). 

 

The only validation of their results comes from a comparison to a micromechanical 

model created by Karami  et al [23], which uses a different hyperelastic model for 

simulating the fibres than Kusenko et al did. Kusenko et al switched to using the same 

hyperelastic model to ensure their results could be more easily compared to the work 

of Karami et al, but it raises questions of how much of an impact the hyperelastic 

model they used for all of their results is having here. It is worth noting that Karami et 

al validated their model off experimental data and found a good fit to the data. The 

work of Karami et al only considers one fibre arrangement: the hexagonal distribution 

which Kusenko considered as one of their two periodic arrangements. 

3.2.2 Simulation of Randomly Orientated Sinusoidal Fibres 

The work of Fisher et al [24], in characterising fibre waviness in nano-tube reinforced 

composites shows very clear results indicating that the waviness of the fibres was 
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causing a significant degradation in the mechanical properties of the composite, 

particularly when the fibres are much stronger than the matrix material is. 

These works on the material properties of wavy fibres have significant implications to 

the current work and suggest that using sinusoidal fibres for greater thermal 

conductivity performance will in turn have a significant impact on the mechanical 

performance of the composites. None of these cases are definitive here: hyperelastic 

models and nanofibers do not, necessarily, correspond to the fibres under study; but 

the results are very suggestive in this case. 

The work of Yu et al [25] investigated the percolation threshold in both straight and 

wavy fibres. In this research, percolation would be a significant detriment: it would 

imply the existence of a path through the composite that would allow efficient heat 

transfer through it, and in turn would cause the thermal conductivity to increase 

significantly. Their findings indicate that the percolation threshold is higher the wavier 

the fibres are, which in turn implies that wavy fibres have some value in allowing a 

higher volume fraction to be reached before percolation occurs and there is a path in 

the heat transfer direction entirely through the fibres. 

3.2.3 Mathematical Models for Heat Transfer in Porous Insulation 

There are five practical models which may be used to estimate the thermal 

conductivity of a nonwoven or porous insulation (although there are other less 

applicable models):  

 Parallel  

 Series  

 Clayton 

 Pilling 

 Disorder 
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Parallel and Series models provide physical upper and lower bounds on the thermal 

conductivity, directly from basic thermodynamic theory. However, these models are 

least accurate to describe effective thermal conductivity of a geometry that does not 

have different constitutive elements arranged in either parallel or series. Clayton and 

Pilling are industrial standards, whilst the Disorder Model allows for any possible 

intermediate value to be taken between the theoretical upper and lower limits. 

Nonwoven models are generally expressed as a function of volume fraction (Equation 

(21)). For the case of multiple fibre types, a second function, composition, is defined 

(Equation (22)). 

 
𝑣𝑓 =

VFibre

VTotal
= 1 −

VAir

VTotal
 

(21) 

 
θ =

VGlass−Fibre

VGlass−Fibre + VPET−Fibre
   

 

where vf  is the fibre volume fraction, VFibre and VAir are the fibre volume 

and air volume in the fabric, VTotal = VFibre + VAir, and θ = glass fibre 

volume fraction in a hybrid fabric composed of both glass and PET 

fibres. 

 

 

(22) 
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Figure 3.4: Comparative graph showing the individual thermal conductivities as a 

function of volume fraction, for the case of an air-glass fibre blend. 

 

 Model 1: Parallel Model 

 

Figure 3.5: Representative analogies for conductive heat transfer in nonwoven 

fabrics showing parallel (Model 1) and series (Model 2) style heat transfer for the 

case of a 2D air glass fibre blend. 
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Figure 3.5 illustrates the difference between the parallel and series models of heat 

transfer: in this case, parallel means the fibres are parallel to the heat transfer 

direction, analogously to parallel resistors, and the heat flow is split between the fibres 

and the matrix. In the series case, the heat transfer has to alternate between the fibres 

and the matrix. Both of these cases are simplifications of real fibre geometries,  

The Parallel model, shown in  Equation (23), simplifies the geometry of a nonwoven 

significantly and acts as an upper limit on the heat transfer present, as the fibre 

alignment means that the majority of the heat transfer can occur through the most 

thermally conductive component of the composite. 

𝑘 = 𝑘𝑓𝑣𝑓 + 𝑘𝑎(1 − 𝑣𝑓)   (23) 

 Model 2: Series Model 

The Series model, shown in Equation (24), behaves as an effective lower bound for 

the heat transfer through the composite material, as it requires the heat to pass 

through all of the least thermally conductive component of the composite. It is, in 

general, more accurate than the parallel model [26], though it still acts as an 

oversimplification of the material in most cases [27].  

 
𝑘 =

𝑘𝑓𝑘𝑎

𝑘𝑎𝑣𝑓 + 𝑘𝑓(1 − 𝑣𝑓)
  

(24) 

It is possible to combine the Series and Parallel model using a ratio to indicate how 

much the composite is like both, using for example Equation (25). Typically, these 

coefficients would be derived experimentally, though it is possible to derive them 

theoretically. 

 
𝑘Hybrid = A[𝑘𝑓𝑣𝑓 + 𝑘𝑎(1 − 𝑣𝑓)] + B [

𝑘𝑓𝑘𝑎

𝑘𝑎𝑣𝑓 + 𝑘𝑓(1 − 𝑣𝑓)
]   

(25) 
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In Equations (23-25), k represents thermal conductivity and subscript f and a 

designate fibre and air respectively. vf is fibre volume fraction and A and B are volume 

percentages of parallel and series arrangements respectively in a hybrid model. 

These terms also apply to the following equations including Equations (26-29). 

 Model 3: Clayton Model 

The Clayton model, shown in Equation (26) [28] was derived based on the formation 

of a unit cell of a carbon composite material.  It provides a good approximation of the 

thermal conductivity of non-woven models, and performs similarly conservatively to 

the Series model, particularly at low thermal conductivities. At higher volume fractions, 

it becomes more similar to the parallel model, representing that the higher level of 

fibre content means the heat transfer can proportionally be more through the fibres 

[28].  

 

𝒌 =
𝒌𝒂

𝟒
[√(𝟏 − 𝒗𝒇)

𝟐
(
𝒌𝒇

𝒌𝒂
− 𝟏)

𝟐

+ 𝟒(
𝒌𝒇

𝒌𝒂
) − (𝟏 − 𝒗𝒇) (

𝒌𝒇

𝒌𝒂
− 𝟏)]

𝟐

 (26) 

 Model 4: Pilling Model 

The Pilling Model, shown in Equation (27) [29], was derived using an analogy between 

elastic behaviour and thermal behaviour, and is generally accurate at low volume 

fractions. It is, however, a conservative model that tends to underestimate the 

conductivity. It was designed for carbon fibre reinforced composites at temperatures 

between 80 and 270K and is reasonably accurate in that condition. 

 

𝑘 = 𝑘𝑓 [
(1 − 𝑣𝑓) + (1 + 𝑣𝑓) [

𝑘𝑓

𝑘𝑎
]

(1 + 𝑣𝑓) + (1 − 𝑣𝑓) [
𝑘f
𝑘𝑎

]
] (27) 
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 Model 5: Disorder Model 

 

Figure 3.6: The range of possible values of the general Disorder Model, with the 

upper and lower values matching exactly the values of models 1 and 2 respectively, 

as Z varies. 

 

The Disorder model, shown in Equation (28),  uses a statistical coefficient, Z, to take 

into account the effect the fibre orientation has on the thermal conductivity. This is 

quantified in Figure 3.6, using the standard component conductivities in Table 3.2). 

The meaning of values for the coefficient are indicated in where β is the fibre 

orientation with respect to the direction of heat transfer. 

Table 3.1. 

 
𝑘 = 𝑘𝑎 +

(𝑘𝑓 − 𝑘𝑎)

1 +
𝑣𝑓

1 − 𝑣𝑓

(

 
 

1 + Z(

𝑘𝑓

𝑘𝑎
− 1

𝑘𝑓

𝑘𝑎
+ 1

)

)

 
 

 

(28) 
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The Z coefficient is found by assessing the relative contributions of Models 1 and 2  

[30, 31]. Models 1 and 2 are for 𝑘β=90 and 𝑘β=0 respectively.  

 
Z ≈ (1 + (

𝑘β=90

𝑘β=0
− 1) sin2 β) 

(29) 

where β is the fibre orientation with respect to the direction of heat transfer. 

Table 3.1: Z-Value comparison table indicating what various Z values mean 

Z Value Equivalent Angle Meaning 

0 0° Fibres are orientated parallel to heat flux (as in the 

Parallel model) 

2/3 30° Fibres are randomly distributed uniformly in 3D 

5/6 45° Fibres are distributed equally between parallel and 

perpendicular to the heat flux direction 

1 90° Fibres are orientated perpendicularly to the heat flux 

(as in the Series Model) 

 

 Limitations of temperature independent modelling 

Conduction theory generally assumes that the thermal conductivity of a material is 

independent of its temperature. This assumption is often accurate for ceramic and 

metallic solids, particularly when the temperature difference is small, but it is not 

generally valid for gasses [32]. 

This is because the lack of strong inter molecular bonding within gasses means that 

increasing temperatures allows a significantly larger amount of atomic movement, and 

in turn causes the heat transfer through the gas to increase. This can be quantified 

using the kinetic theory of gases combined with Fourier’s constitutive law for one-

dimensional conduction. 
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As a result, the thermal conductivity of a gas is a function of two independent 

variables, as shown in Equation (30): the mean particle speed, 𝑉Molecule  (defined in 

Equation (31)), and the mean free path of the gas, γMFP.  

 
𝑘𝑔 =

NVMolecule
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅γMFPCv

3Na
 

(30) 

 

VMolecule
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = √

3TR

mm
 

(31) 

where T is the temperature, R is the gas constant, mm is the mass of molecule, and 

N is the Avogadro number. 

The manner by which the mean free path affects the thermal conductivity will be 

discussed further in the next section. However, both the mean free path and the mean 

particle speed are functions of the temperature. 

For this reason, it is generally incorrect to ignore the temperature dependent effects 

present within the simulations, particularly if there is a significant temperature 

difference across the simulation. In practice, working with exact relationships like 

above is impractical, and tabulated data can be used instead. 

In this work, the tabulated data was curve fitted to produce an average thermal 

conductivity for the air. Several correlations [33, 34] exist which allow for a continuous 

value to be determined (with an accuracy of ±0.15%), one of which is shown in 

Equation (32). A true, correctly weighted average may be found using integration, as 

shown in Equation (33). 

 
𝑘(T) =

2.3340 ∙ 10−3√T23

164.54 + T
 

(32) 

 

𝑘average = [
1

TUpper − TLower
] ∫ [

2.3340 ∙ 10−3√T3

164.54 + T
] dT

TUpper

TLower

 

(33) 
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A short MATLAB script has been written to perform this integration to provide the true 

average thermal conductivity used in simulations, which produced an air conductivity 

value of 27.1 mW/mK. 

 Mean Free Path 

As shown in Equation (30), the thermal conductivity of a gas is a function of the mean 

free path. In macroscopic models, this effect may be neglected; however, the scale of 

individual fibres is extremely small and so it may be of interest here. In general, the 

limit of continuum mechanics (namely, the ability to treat gas as a bulk material) for 

air is around 0.1 µm. Since the diameter of a fibre is around 8-14 µm in the 

simulations, this effect should be negligible but was briefly investigated to ensure it 

was [35]. 

The application of kinetic theory, mean free path mechanics and molecular dynamics 

means that it can be shown the thermal conductivity is a function of the mean collision 

distance, as shown in Equations (34) and (35) [36]; 

 
𝑘(mfp) =

𝑘∞

1 +
4Cp

CP + CV

Kn
Pr 

  (34) 

 Kn =
γmfp

lcollision
 

(35) 

Estimating the collision in these conditions is difficult, so an average empirical 

relationship for fibrous materials was used, partially based on the Disorder model 

(Section 3.2.3.5), which is shown in Equation (36). Once this is known, the mean free 

path can be calculated using Equation (37). 

 

 
lcollision = Z

dfib

𝑣𝑓
 

(36) 
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γmfp =

𝑘bT

√2πdm
2 P(T)

 
(37) 

This allows Equation (34) to be used to determine the thermal conductivity of bulk air 

at microscopic scales, with correlations being used for the specific heat capacity, 

specific enthalpy, pressure and Prandtl number.  

This simplification assumes the thermal accommodation is negligible, which is true as 

long as the gas is not at low pressures [37, 38]. Since the blanket can be assumed to 

be at standard atmospheric pressure, this assumption is accurate. 

Figure 3.7 shows the comparison of the thermal conductivity of air when determined 

using Equation (32) and when determined using Equation (34). It can be seen that 

the mean free path effects on this scale are, as predicted, negligible. This means it is 

appropriate to treat the air as a continuum in this work. 

 

Figure 3.7:  Comparison of the thermal conductivity of air when it’s treated as a 

continuous and non-continuous fluid at the length scale of the simulations 
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3.2.4 Heat Transfer by Convection 

Thermal insulation in general attempts to minimise the convective heat transfer within 

it. Traditional convection (both natural and forced) relies on there being a bulk 

movement of air, and inhomogeneous fibre structures are designed to limit this as 

much as possible to reduce the heat transfer condition to just conduction and 

radiation. 

Convection was briefly investigated to ensure that it could be neglected. Two 

methodologies were utilised here: one using order of magnitude analysis and one 

using an assessment of whether a boundary layer could form upon the fibres [39]. 

 Order of Magnitude Analysis 

In order to demonstrate that convection was negligible, a comparison with the 

conduction was carried out to show that convective heat transfer was less than 10% 

of the magnitude of the conductive heat transfer. In this case, the Nusselt number is 

the property of interest, as it compares the relative size of both mechanisms of heat 

transfer. 

Evaluating a theoretical Nusselt number directly is challenging without good 

experimental data, which means that heat transfer correlations were used instead. 

This is made more challenging as they are typically for relatively high Rayleigh 

numbers; whereas the lack of directed flow within a composite blanket usually means 

the Rayleigh number would be low: particularly when coupled with the extremely small 

scales being investigated.  

The selected correlation, shown in Equation (38) [33], only requires knowledge of the 

Grashof and Prandtl numbers. The Grashof number was calculated using Equation 

(74) [40], which represents the worst-case geometry arrangement: a vertically 

orientated fibre which is the full length of the bounding region. In this case, the wall 



66 
 

temperature was 80°C and the bulk temperature was 4°C, with the Prandtl number 

being that of air (0.711). 

 

Nu =
4

3
[
Gr

4
]

1
4
[

0.75√Pr

(0.609 + 1.221Pr0.5 + 1.238Pr)
1
4

] 

(38) 

 
Gr =  

𝑔𝛽𝑅(𝑇𝑤 − 𝑇∞)𝑙3

𝜈2
 

(39) 

This produces a Nusselt number of 0.22, which implies that in the worst case the 

convection within the simulation is about 1/5th of the conduction. Since this worst case 

is generally to be avoided, it can be assumed the convection is, in most cases, 

significantly smaller and hence can be treated as being negligible. 

 

 

 Boundary Layer Formation 

While the previous method indicates that the convection is negligible, it works under 

the assumption that convection can occur within the material. However, this is not 

necessarily the case. If the convective boundary layer cannot form, due to the lack of 

space within the composite, then convection cannot occur within the material [41].  
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Figure 3.8: Two infinite, flat plates at different temperature (black), with a fluid 

between them (blue) 

If the case of two infinite plates separated by an interstitial fluid, as shown  in  

Figure 3.8, is considered, where T1 and T2 are at different temperatures, then 

convection between the two plates can only occur if a convective boundary layer can 

be formed. As such, as long as it can be demonstrated that the boundary layer 

thickness, LB, is comparable in size to the distance between fibres, LC, it can be 

determined that convection cannot occur. 

 
N1 =

LB 

LC
> 5 

(40) 

It can be shown that for small lengths, the velocity boundary layer in a natural 

convection problem is linear and proportional with its vertical position along the body1: 

 

LB = LFib [
3.93

√Pr
] [

0.952 + Pr

Gr
]

1
4
 

(41) 

 
LC = Z

dfib

α
  

(42) 

 
N1 =

LB 

LC
= 21  

(43) 

Based on these two methodologies convection is considered completely negligible in 

the analysis. 

3.2.5 Heat Transfer by Radiation  

 Order of Magnitude Analysis 

Radiative heat transfer is dependent on the view factor, and also has a much more 

significant dependence on the temperature than conduction and convection have, 

since the temperature difference is to the fourth power. In order to demonstrate that 

                                                

1 Note that whilst in mean free path assessments, ‘worst case’ was a lowest value, in this case 
the ‘worst case’ is the highest value and therefore, it is the highest value that has been used.  
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radiation can be neglected, an order of magnitude analysis was carried out to 

determine how big its effect is in comparison with the conductive heat transfer. 

For glass fibre, the emissivity of the surface is approximately 0.85 [42], and the view 

factor was treated as being the same as in the case of a flat surface enclosed within 

a larger surface, that is, 0.2. This allows Equation (44) to be used to determine the 

radiative conductivity, and how large it is in comparison to the air conductivity. 

 

 
𝑁2 =

𝑘𝑎

𝑘𝑟
=

𝑘𝑎

[
𝜎 ∙ ∆𝑥 ∙ (𝑇1

2 + 𝑇2
2) ∙ (𝑇1 + 𝑇2)

1
𝐹1−2

+ 2(
1 − 𝜀

𝜀
)

]

≈ 85 

(44) 

 

Figure 3.9: Comparison of the magnitude of the components of heat transfer through 

a blanket, with the convection and radiation being treated as conduction equivalents 

here. 
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Figure 3.10: The results from Figure 3.9 zoomed in so that the difference at high 

temperatures is clearer, with the Solid Conduction removed; note that the y-axis is 

no longer logarithmic 

 

Figure 3.9 shows the relative effective thermal conductivities of convection and 

radiation, compared with the average thermal conductivity of air and glass fibres. This 

a strongly temperature dependant phenomena which does not become significant 

until approximately 85°C, as can be seen more clearly in Figure 3.10. 

 The Diffusion Approximation 

It can be assumed that thermal radiation can only travel short distances inside a fibre 

before being scattered or absorbed, and so that bulk fibres are optically thick (i.e., that 

the amount of transmitted thermal radiation through either glass fibres or PET fibres 

is negligible). 

 

This assumption means the diffusion approximation for radiation can be used to allow 

the radiative heat flux to be represented in terms of Fourier’s Law of Conduction [43, 
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44], as shown in Equation (45). Since the fibres are optically thick, we can assume 

the refractive index (N) is approximately equal to 1, which means that it can be 

simplified to Equation (46). 

 
qr = −kr

dT

dx
= −(

16

3

𝜎𝑒N
2T3

σR
)

dT

dx
 

(45) 

 
qr = −(

16

3

𝜎𝑒

σR
T3)

dT

dx
 

(46) 

 

In this equation, σR is the Rosseland mean extinction coefficient, sometimes referred 

to as the Extinction coefficient or the attenuation coefficient. The calculation of the 

Rosseland coefficient is beyond the scope of this project, however, it is assumed to 

be comparable to that of Carbtex fibres because of the similar geometric arrangement 

and surface finish. Also, Carbtex fibres much like insulation-based glass fibres are 

optically thick due to the low-grade manufacturing process and so this assumption is 

considered valid for the current applications [30]. 

 
N3 =

𝑘𝑎

𝑘𝑟
=

𝑘𝑎

16
3

σ
σR

T3
≈ 200  

(47) 

3.3 Fibre Geometry Generation 

The first step in the fibre generation process is to define a fixed region of space to 

generate the fibres within, and a fixed number of fibres to attempt to insert into the 

region of space. The next step is to determine what kind of fibre to insert: this is done 
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by comparing the ratio of straight fibres to total fibres against the desired ratio of 

straight fibres2.  

Next, the position of one end of the fibre and two orientations are generated, with the 

position being bounded to be close to but not necessarily within the fixed region. This 

choice was made to ensure that the fibre distribution through the region was more 

even and not clustered on the centre. The two orientations define the “in-plane” and 

“out-of-plane” orientation, where the out-of-plane orientation controls how vertical the 

fibres are, and the in-plane angle controls their angle in the horizontal plane. In this 

case, vertical is the heat transfer direction, and horizontal is perpendicular to that. The 

fibre diameter and length are then generated, and the fibre orientation is used to 

determine where the end of the fibre is in 3D space, as described in Appendix A.1. 

 

Figure 3.11: An example of a straight fibre (left) and curled fibre (right) geometry 

once it has been imported into ANSYS Workbench (x direction: horizontal and y 

direction: vertical) 

                                                

2 There’s a line in the code that needs to changed if a purely straight or purely curled fibre 
simulation is required: “if gfvol/totvol <= gfr || isnan(gfvol/totvol) == 1” inserts a straight 

fibre first; whereas “if gfvol/totvol < gfr” inserts a curled fibre first 



72 
 

 

The calculation of the x position of the fibre always produces a positive x value, which 

in turn would bias the fibre direction and make the mat less random, so the sign of the 

x-position of the final point is randomly flipped approximately half the time. 

 All of these parameters are assigned based on a uniform distribution between two 

fixed values, which can be the same if no variation in parameters is desired, for 

example, if every fibre in the simulation should have the same diameter. While the 

effect of it was not investigated, it is also easy to change the uniform distribution into 

a normal distribution, where the variation is centred on a chosen mean value and the 

expected variation from the mean is used to control how wide the distribution is. 

 The initial height of the fibre is very high and significantly outside the bounding box, 

and the fibre is then lowered into it until it reaches another fibre. This is done to ensure 

that the fibre starts completely out of the bounding region and can be successfully 

lowered into it without being already touching or underneath a different fibre. This 

process is done by iterating through the previously placed fibres and finding out which 

one is the shortest vertical distance from the new fibre. This is done by treating the 

existing fibre and the new fibre as being two, two dimensional lines, and then 

computing where the two lines intersect. Once this is done, linear interpolation can be 

used to determine what the z-positions in each fibre at the intersection point is. Once 

this is known, trigonometry is used to calculate how much of the vertical distance 

between the fibres is within each fibre, meaning the total distance between the fibres 

can be found as the difference in the z-positions minus the distance within the fibres 

(since the centre lines of the fibres should not intersect, merely the outside of the 

fibres). Once the minimum distance between the new fibre and an existing one is 

known, the fibre is lowered by the vertical distance so that they touch, and then slightly 
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further to ensure the fibres intersect3. If there are no existing fibres underneath the 

new fibre, then it can be instead lowered until one end of the fibre touches the bottom 

of the bounding region. Note that in the case of a horizontal fibre, the whole fibre 

volume will end up touching the bottom of the bounding region in this case. 

The final stage of the fibre generation process is to clip the fibre. For the horizontal 

fibres in the simulation, the Liang-Barsky algorithm is used (since it is simpler and 

faster to run, but it is also a 2D algorithm and does not cope with the fibres having 

variation in 3D) [45, 46], while for the fully 3D fibres, the Kodituwakku-Wijeweera 

method [46] was used instead. This method is relatively fast, but unfortunately relies 

on a gradient computation for the lines which, in fibres which are flat, produces a 

division by 0 error and as a result, it only works for fibres where the ends are at 

different x, y and z positions.  

The clipping process is carried out to ensure that the fibres remain within the desired 

region; since the initial point can be generated outside the region and the final point’s 

orientation is not constrained to be in the direction of the region, it is possible for a 

fibre to be either partially or fully outside the bounding region. If the fibre is fully outside 

it, it is marked for deletion, whereas if it is partially outside the region, it is clipped to 

be within the bounding region. The algorithm behind clipping process is essentially to 

find the interception between individual fibres with the bounding region and remove 

the segment of fibre outside the bounding region while keeping the rest of the fibre 

inside the region. After clipping, the length of the fibre is recomputed, partially for 

                                                

3 Overlapping the fibres in this manner is a significant difference from the physical reality of a 
fibre mat, but was done because two fibres touching provides a very small contact area that 
is extremely prone to simulation errors due to the nature of finite element analysis; and a 
general underestimation of the thermal conductivity of the sample by adding many bottlenecks 
into the geometry that would in reality have larger contact areas due to fibre movement. 
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calculating the volume of the fibre for estimating the volume fraction and partially to 

ensure the fibre has not become very short. In general, a length less than 1/10th of the 

initial fibre length was considered very short4, and any fibre meeting this criterion was 

deleted. This is done because the meshing algorithm used considered such fibres to 

be more important than usual and tended to create a high density mesh on them, 

while in reality such fibres are not of much importance to the heat transfer in the mat 

and are unrepresentative of a mat with relatively long fibres. 

Once the mathematical positioning has been conducted, the fibre matrix in MATLAB 

is processed into a valid APDL script that allows a 3D geometry to be produced. For 

each straight fibre, the APDL script follows a simple process: 

1. Move the working plane to the initial point of the fibre 

2. Rotate the working plane so the z-axis points along the fibre 

3. Add a cylinder there with a length and diameter equal to the fibre 

length/diameter 

Once this is done, APDL produces an IGES file representing the entire fibre geometry 

that can be imported into ANSYS Workbench and solved with appropriate boundary 

conditions applied. 

                                                

4 The definition of “very short” can be customised very easily to allow for investigation of shorter 
fibre simulations or simulations featuring very long fibres more easily. 
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Figure 3.12: Fibre insertion algorithm, illustrating how a three-dimensional fibre 

geometry is created by the algorithm 
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For sinusoidal fibres, the process was carried out a very similar, albeit with some key 

differences. The first difference is that a “fake diameter” was used throughout to 

represent the sinusoidal fibre as a single cylinder with a radius equal to the amplitude 

of the fibres. This was done as the “fake diameter” allows the positioning of the 

sinusoidal fibre to be calculated as if it was a straight fibre, including using it as if it 

was the actual fibre diameter; since it means that the positioning of the crimps does 

not need to be known before the fibre can be placed. The main reason for doing this 

is to simplify the generation process: the clipping algorithms can shorten the fibre, so 

placing the fibre before crimping it means that partial crimps do not need to be 

considered. The trade off of this simplification is that it means the sinusoidal fibres 

effectively take up the entire “fake diameter” space, and so they cannot be packed as 

efficiently. As this algorithm is mainly looking at thermal conductivity, and particularly 

reducing it, this was deemed to be an acceptable trade-off. 

The other major fibre generation difference with the sinusoidal fibres is that the fibres 

are more complex to generate a 3D computer model of since they cannot be 

represented as a simple cylinder. The current system basically calculates where the 

turning points of the fibre are and then produces a spline between points representing 

them. Once this is done, a circle is swept along the centre line to produce a 3D 

sinusoidal fibre with an approximately constant radius. 

 

Figure 3.13: Approximation of a crimped fibre (blue) as three different line segments 

(purple, dark red) 
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Since the actual shape of the fibre is not fully determined until it is rendered in APDL, 

calculating the exact volume fraction in MATLAB is not possible. Instead, the volume 

of a fibre, and in turn the volume fraction, can be estimated by treating each fibre as 

a series of straight line segments, as shown in Figure 3.13. Each straight-line segment 

extends from the centre line of the fibre by the “fake diameter” and is considered to 

have a diameter equal to the true diameter of the fibres. As a result, the total fibre 

volume can be approximated as a number of cylinders based on the number of 

“crimps” present in the fibre. 

A visual comparison of how the orientation of the fibres for both fibre types, and mixed 

fibres, is shown in  

Figure 3.14. The left most column represents fibres that are close to unidirectional, 

the middle column is random in-plane but “flat” out of plane; and the final column is 

fully random fibres. The first two rows contain the straight and sinusoidal fibres 

respectively while the final row is a mixture of the two fibre types. These results 

demonstrate how fabric architecture can be manipulated through the developed the 

codes and the capability can represent the simplest fibre format such as regular fibre 

packing in woven fabrics as well as the more complex pattern found in nonwoven 

fabrics.    

The MATLAB codes used to generate the geometry are included in Appendix C, with 

the subsections containing required functions for the main algorithm to run. 
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Figure 3.14: Visual comparison of the fibre geometries that are possible to be 

generated 
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3.4 Simulation Setup 

The first step in simulating fibre geometries is to import the individual geometry files 

into DesignModeler. Generally, a box is created at this stage to embed the fibres in 

(and to represent a matrix material: throughout this work, this is typically either air, 

aerogel or a polymer matrix), with a  recommendation to ensure the box is significantly 

larger than the fibre geometry being generated5. The fibres can then be inserted, one 

type at a time, using the ‘Slice Material’ option (which creates a hole in the matrix 

which corresponds with the location of the fibres; using ‘Add Material’ would overlap 

the fibre and the matrix). Once one fibre type has been inserted, the fibres can be 

grouped together into one part to allow material properties to be assigned to it as a 

whole, instead of requiring each fibre to have properties assignments individually. 

After the fibres have been successfully inserted, the bounding region can be resized 

to the intended size for it. 

It can be worth setting the ‘Fluid/Solid’ property for the bounding region to ‘Fluid’, as 

that causes ANSYS Mechanical to render it semi-transparently instead of fully 

opaquely, and does not have any other effects on the simulation except if ANSYS 

Fluent is to be utilised. 

Once the geometry has been generated, DesignModeler can be closed. The materials 

to be used in the simulation can be defined at this stage using ‘Engineering Data’; 

typically the properties shown in Table 3.2 are used throughout, though some 

Chapters use alternative properties. 

                                                

5 Very occasionally, the geometry generated is larger than expected, or close to intersecting 
the sides of the box, and DesignModeler can fail to import them as a result. 
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Table 3.2: General thermal properties 

Material Isotropic Thermal Conductivity (mW/mK) 

Air 24.2 

Glass Fibre 850 

PET Fibre 150 

 

The fibre/fibre and fibre/air contact settings used throughout this work assume that 

perfect contact exists, that is, that there is no interfacial thermal resistance. While this 

is just an approximation of the interface that is not fully accurate, it does appear to not 

cause a significant amount of inaccuracy in the simulations, particularly since most 

are occurring at a fairly low volume fraction which means the interface is a relatively 

very small component of the simulation. It also means that complex experimental 

measurements are not required to determine what the interfacial properties are. 

 

Figure 3.15: The standard boundary conditions used for thermal simulations 
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The boundary conditions are shown in Figure 3.15; where the top and bottom are 

treated as being kept at a fixed temperature of 80°C and 4°C respectively. The other 

faces of the bounding region are treated as perfect insulators; so that no heat can 

transfer across them. These temperatures were chosen as they are reflective of the 

conditions the actual material would be exposed to in subsea pipe-in-pipe insulation. 

The thermal validation carried out later uses equivalent boundary conditions, albeit 

with alternative temperatures applied. This validation uses the same mechanism to 

generate a geometry and the same contact settings. 

3.4.1 Fibre Volume Fraction Simulations 

Table 3.3: Geometry and mesh properties of the straight fibre volume fraction 

models 

Volume Fraction (%) Bounding Region Size (mm) # of Fibres # of Elements 

(solid70) 

1.47 6.09 128 3,094,083 

2.92 3.04 59 948,423 

5.74 1.52 31 331,588 

13.23 0.72 13 189,653 

 

Table 3.4: Geometry and mesh properties of the sinusoidal fibre volume fraction 

models 

Volume Fraction (%) Bounding Region Size (mm) # of Fibres # of Elements 

1.35 4.14 16 518,147 

2.83 3.19 18 403,909 

4.83 2.04 6 339,986 

9.59 2.20 33 540,435 
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The properties used to generate a geometry for the single fibre type volume fraction 

simulations are shown in Table 3.3 (straight) and Table 3.4 (sinusoidal). The inexact 

volume fraction here is a consequence of the volume fraction that is generated being 

uncontrolled: it varies randomly depending on the fibre positioning, which in turn 

depends on the allowable fibre orientation and the size of the bounding region most, 

though the fibre length and diameter contribute in addition. 

In turn this explains why the bounding region size was changed through these 

simulations: in order to alter the volume fraction significantly, the bounding region size 

needs to be changed to control how densely packed the fibres end up becoming. The 

orientation was kept the same as it was believed to have a larger influence on the 

heat transfer through the simulation: while the bounding region does affect how many 

fibres are inside the geometry, it should not affect the results directly as long as there 

are sufficient fibres within the region to ensure it is representative. However, the 

orientation controls how common fibre/fibre contact is, which in turn is representative 

of how easily heat can be transferred through the system. 

Table 3.5: Mesh settings used in both the straight and sinusoidal fibre volume 

fraction modelling 

Property Value 

Relevance 40 

Size Function Adaptive 

Relevance Centre Medium 

Transition Slow 

Span Angle Centre Medium 

 

The mesh settings used in this simulation are shown in Table 3.5. These settings 

were, broadly, used throughout as they produced a good trade off were the number 
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of elements was large enough to ensure the simulation was accurate while not being 

so large that the computational time became excessive. In some cases, either due to 

the geometry making the meshing process harder, or due to these settings producing 

excessive numbers of elements, these settings were changed. 

3.4.2 In-Plane Angle Simulations 

The next set of simulations that were carried out where the ‘In-Plane Angle’ ones. In 

this set, the fibres where changed from being approximately unidirectional (low 

maximum in-plane angle) to being fully random in 2D (high maximum in-plane angle). 

Table 3.6: Geometric properties of the straight fibre simulations in the ‘In-Plane 

Angle’ Case 

Max In-Plane 

Angle (°) 

Volume Fraction (%) Bounding Region Size (mm) # of Fibres 

360 2.48 0.41 148 

180 2.60 0.401 142 

90 2.46 0.42 140 

45 2.63 0.401 150 

45 3.41 0.401 206 

36 3.41 0.416 209 

36 4.32 0.406 241 

30 3.97 0.42 244 
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Table 3.7: Geometric properties of the sinusoidal fibre simulations in the ‘In-Plane 

Angle’ Case 

Max In-Plane 

Angle (°) 

Volume Fraction (%) Bounding Region Size (mm) # of Fibres 

360 0.05 4.2 83 

180 0.05 4.0001 78 

90 0.05 4.15 67 

45 0.05 4.0001 86 

45 0.06 4.1 118 

36 0.05 4.0001 98 

36 0.07 4.0001 125 

30 0.07 4.0001 111 

 

The geometric properties used in these simulations are shown in Table 3.6 and Table 

3.7. There are some duplicate rows here as the packing density (number of fibres per 

volume) increased, which was caused by the orientation being narrowed, and so the 

volume fraction became larger. Specifically, this occurs because randomly orientated 

fibres take up comparatively more space than closely orientated ones. 

A sample at 0° was not included purely because the algorithm to generate fibres was 

not designed for unidirectional fibre geometry building, and the distance between 

fibres was miscalculated there which led to a large degree of fibre/fibre overlap 

throughout the entire length of the fibres. This also caused the volume fraction present 

to become very large, in addition to the number of fibres present, which in turn meant 

that solving such a case was not practical. 
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Table 3.8: Mesh properties and settings for the straight fibres 

# Of 

Elements 

Relevance Size 

Function 

Relevance 

Center 

Transition Span Angle 

Center 

210,777 0 Adaptive Coarse Fast Coarse 

3,730,796 -80 Adaptive Coarse Slow Fine 

1,591,158 0 Adaptive Medium Slow Medium 

195,099 0 Adaptive Coarse Fast Coarse 

4,917,188 40 Curvature Coarse Fast Medium 

1,658,673 -40 Curvature Coarse Fast Medium 

302,546 0 Adaptive Coarse Fast Coarse 

307,902 0 Adaptive Coarse Fast Coarse 

 

Table 3.9: Mesh properties and settings for the sinusoidal fibres 

# Of 

Elements 

Relevance Size 

Function 

Relevance 

Center 

Transition Span 

Angle 

Center 

296,893 0 Adaptive Coarse Fast Coarse 

480,706 -80 Adaptive Medium Slow Medium 

263,429 0 Adaptive Coarse Fast Coarse 

296,803 -80 Adaptive Coarse Fast Coarse 

420,736 -80 Adaptive Coarse Fast Coarse 

283,917 0 Adaptive Coarse Fast Coarse 

496,249 0 Adaptive Coarse Fast Coarse 

439,411 0 Adaptive Coarse Fast Coarse 
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The mesh settings used in the In-Plane Angle simulations are shown in Table 3.8 and 

Table 3.9. The high number of elements produced, particularly for the sinusoidal 

fibres, means that coarser mesh settings were used than in the Volume Fraction 

simulations to ensure that a similar number of elements was used. Some of the 

sinusoidal simulations used an alternative size function as the adaptive one could not 

create a mesh upon their surfaces. 

3.4.3 Out-of-Plane Angle Simulations 

These simulations aimed to investigate the effect that increasing the verticality of the 

fibres would have on the thermal conductivity of the samples. In this case, the max 

out of plane angle was varied while the minimum angle was kept at 0. This means 

that a distribution of out of plane angles was created. In effect, this is a study of how 

increasing the 3D randomness affects the thermal properties, as the 2D randomness 

was left at the maximum. 

Table 3.10: The geometric and mesh properties of the straight fibre simulations 

Max Angle 

(°) 

Volume 

Fraction (%) 

Bounding Region 

Size (mm) 

# of 

Fibres 

# of 

Elements 

0 3.42 0.201 54 877,490 

30 3.73 0.205 52 1,229,918 

36 3.99 0.201 54 574,339 

45 3.97 0.204 57 255,918 

60 3.78 0.206 50 803,660 

90 2.54 0.201 33 677,732 

120 2.37 0.201 32 361,114 

180 2.32 0.205 36 967,429 
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Table 3.11: The geometric and mesh properties of the sinusoidal fibre simulations 

Max Angle 

(°) 

Volume 

Fraction (%) 

Bounding Region 

Size (mm) 

# of 

Fibres 

# of 

Elements 

0 3.98 4 68 1,346,157 

30 3.92 4 62 224,160 

36 4.07 4 67 238,540 

45 4.01 4 64 244,036 

60 2.57 4 41 149,541 

90 2.46 4 46 1,214,401 

120 2.49 4 18 431,835 

180 2.58 4 39 409,088 

 

The properties used to generate the simulation geometries are shown in Table 3.10 

and Table 3.11. A change in the volume fraction exists as the packing density 

becomes much smaller when the fibres are more random as fibres at a vertical angle 

effectively take up more space within the geometry.  Compromising by allowing the 

volume fraction to change was the most effective way to allow this study to be 

completed, particularly since the volume fraction simulations mean that its effect on 

the results is well known. 
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Table 3.12: The mesh settings used in the straight fibre simulations 

Max 

Angle (°) 

Relevance Size 

Function 

Relevance 

Center 

Transition Span Angle 

Center 

0 100 Uniform Fine Fast None 

30 100 Uniform Fine Slow None 

36 60 Uniform Fine Fast None 

45 0 Adaptive Coarse Slow Coarse 

60 60 Uniform Fine Slow None 

90 100 Uniform Fine Fast None 

120 40 Uniform Fine Fast None 

180 100 Curvature Fine Fast Coarse 

 

Table 3.13: The mesh settings used in the sinusoidal fibre simulations 

Max 

Angle (°) 

Relevance Size 

Function 

Relevance 

Center 

Transition Span Angle 

Center 

0 100 Adaptive Fine Fast Coarse 

30 0 Adaptive Coarse Fast Coarse 

36 0 Adaptive Coarse Fast Coarse 

45 0 Adaptive Coarse Fast Coarse 

60 0 Adaptive Coarse Fast Coarse 

90 -60 Proximity Coarse Fast Coarse 

120 60 Proximity Coarse Slow Fine 

180 60 Adaptive Medium Fast Coarse 

 

The mesh settings used in these simulations are shown in Table 3.12 and Table 3.13. 

These, in general, use less refined mesh settings than the standard values, as the 
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standard setting produced a mesh with too many elements to be solved without taking 

excessive time. In some cases, alternative meshing functions had to be used due to 

the geometry proving challenging for the standard settings to mesh. 

 

3.4.4 Bounding Region Size Simulations 

This set of simulations aimed to investigate the effect that changing the relative size 

of the fibres to the size of the bounding region had on the thermal conductivity. 

Table 3.14: The geometric and meshing properties of the straight fibre samples 

used in the Bounding Region size simulations 

Bounding Region Size 

(mm) 

Volume Fraction 

(%) 

# of 

Fibres 

# of 

Elements 

2 2.92 26 360502 

2.5 2.98 44 642175 

3 2.95 97 918620 

3.5 2.99 150 713589 

4 2.99 211 932408 

5 2.99 387 706804 

6 2.95 651 637520 

 

The properties used to generate a geometry for the bounding region size simulations 

are shown in Table 3.14. The volume fraction was controlled here, as well as the 

generation length of the fibres (though, due to the clipping present within the 

simulation, the actual fibre length will vary randomly), so that is largely an investigation 

of how increasing the number of fibres in the simulation affects the results. 
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Table 3.15: Mesh settings used in the bounding region size investigation 

Relevance Size 

Function 

Relevance 

Center 

Transition Span Angle 

Center 

40 Adaptive Medium Slow Medium 

40 Adaptive Medium Slow Medium 

0 Adaptive Medium Slow Medium 

-40 Adaptive Medium Slow Medium 

-20 Adaptive Medium Slow Medium 

0 Adaptive Medium Fast Medium 

-40 Adaptive Medium Fast Medium 

 

The settings used to generate the mesh are shown in Table 3.15; with the other 

parameters being kept as default. The decrease in relevance is done to compensate 

for the increase in fibres causing an increase in the number of elements, partially to 

ensure that each simulation had roughly the same number of elements and partially 

to prevent the simulations having too many elements to be solved. 

 

3.4.5 Fibre Diameter Simulations 

The effect of the fibre diameter was investigated as it is one of the comparatively 

simple parameters to vary within a fibre blanket, since it can be adjusted by using 

alternative fibres in the composite. 
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Table 3.16: Geometric properties of the straight fibre simulations 

Diameter 

(µm) 

Volume 

Fraction (%) 

Bounding Region 

Size (mm) 

# of Fibres # of Elements 

4 2.41 0.20 112 600224 

6 2.45 0.20 46 391707 

8 2.49 0.40 116 645747 

10 2.49 0.40 71 88178 

12 2.50 0.40 49 345778 

14 2.28 0.61 77 513974 

20 2.35 0.92 71 259419 

25 2.44 0.91 49 123673 

30 2.46 1.00 48 1050811 

 

Table 3.17: Geometric properties of the sinusoidal fibre simulations 

Diameter 

(µm) 

Volume 

Fraction (%) 

Bounding Region 

Size (mm) 

# of Fibres # of Elements 

12 1.46 0.40 23 107714 

14 1.32 0.42 15 75157 

16 1.42 0.64 27 119736 

18 1.42 0.62 16 93966 

20 1.45 0.62 17 78281 

22 1.45 0.62 15 64088 

30 1.40 0.97 21 75099 

 

The properties used to generate geometries for the diameter simulations are shown 

in Table 3.16 and Table 3.17. The volume fraction was controlled to ensure that the 
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simulations would be as similar as possible, which in turn meant that the bounding 

region had to be changed as the thicker diameter fibres could not be packed as 

efficiently. The number of fibres varies largely as a result of the randomness inherent 

in the system, and because less fibres are needed to achieve the same volume 

fraction in the same volume. There is not a strong downwards trend in the number of 

fibres present because the total simulation volume is increasing. 

 

Table 3.18: Mesh properties used in the straight fibre simulations 

Diameter 

(µm) 

Relevance Relevance 

Centre 

Transition Span Angle 

Center 

4 60 Fine Fast Coarse 

6 100 Fine Fast Coarse 

8 100 Fine Fast Coarse 

10 -20 Coarse Fast Coarse 

12 100 Fine Fast Coarse 

14 100 Fine Fast Coarse 

20 100 Coarse Fast Coarse 

25 100 Coarse Fast Coarse 

30 60 Fine Slow Medium 
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Table 3.19: Mesh properties used in the sinusoidal simulations 

Property Value 

Relevance 100 

Size Function Adaptive 

Relevance Center Coarse 

Transition Fast 

Span Angle Center Coarse 

 

The mesh settings used for this simulation are summarised in Table 3.18 and Table 

3.19; with unmentioned parameters being kept as default. In particular, the straight 

fibre simulations used the Adaptive Size Function. 

 

3.5 Results and Discussion 

In order to investigate the effect a range of parameters has on the thermal 

conductivity; each parameter was varied, and a simulation was run to determine what 

the conductivity was. 

Specifically, the effects of the volume fraction; the straight fibre fraction; the fibre 

length (relative to the size of the representative volume); the fibre diameter and the 

fibre orientation were investigated, which are primary contributors to the conductivity 

of the mat.   
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Figure 3.16: The variation of the conductivity with respect to the volume fraction 

 

From Figure 3.16, it can be seen that increasing the volume fraction tends to cause 

the thermal conductivity to increase. The PET fibres appear to have a slower increase 

in the conductivity than the glass fibres do, which appears to be because of the shape 

of the fibres affecting how efficiently they are packed. At very low volume fractions, 

the effects of convection and radiation would become more prominent and allow a 

higher level of heat transfer through the blanket, which is not considered in the model. 

Specifically, at the lower volume fractions, the size of the pores become larger and 

the bulk movement of air begins to occur. Radiation becomes more important at lower 

volume fractions simply because the radiation can more easily pass through the 

fibrous mat with fewer fibres in the way. Volume fractions higher than 12% were not 
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considered, because the results indicate that increasing the volume fraction further 

would just lead to the conductivity increasing further. 

 

Figure 3.17 : The effect of varying the max in-plane angle on the thermal 

conductivity 

 

The in-plane orientation appears to not have any significant effect on the conductivity 

until the fibres become close to unidirectional in orientation, according to the results 

shown in Figure 3.17. This is largely down to how efficient the solid conduction is, with 

a high range of angles meaning that in general, heat has to transfer horizontally along 

the fibre for a significant distance before it can transfer vertically upwards, since the 

contact points tend to be further apart. However, once the fibres become 

approximately unidirectional, the optimum heat transfer path allows a much more 

vertical transfer of heat through the fibre mat. 
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Figure 3.18: The effect of varying the max out-of-plane angle on the thermal 

conductivity 

 

The out-of-plane orientation has a much more significant effect on the thermal 

conductivity as shown in Figure 3.18. This is largely because more vertical fibres allow 

the heat to transfer easily upwards through them, which in turns causes the 

conductivity of the material to increase. The results suggest that a small level of out-

of-plane fibres can be beneficial however, which is probably because it leads to the 

formation of larger air voids that offset the solid conductivity. At higher angles, the 

more vertical fibres lead to such a large increase in solid conductivity that larger void 

sizes are less relevant. 
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Figure 3.19: The effect of varying the relative fibre length on the thermal conductivity 

 

 

Figure 3.20: The effect of varying the fibre diameter on the thermal conductivity 
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The fibre length relative to the size of the representative volume and the fibre diameter 

both appear to have no significant effects on the conductivity, as shown in Figure 3.19 

and Figure 3.20. This is expected because while larger fibres can transfer heat more 

effectively through them, the volume fraction has been conserved and so fewer fibres 

are present in the test region. This reduction in absolute fibre numbers means that 

there is less contact between the fibres and the optimum heat transfer path is less 

efficient. It looks like increasing the diameter further for both fibre types would lead to 

a large increase in the conductivity, but part of this is likely to be a stacking issue with 

the fibre geometry. Once the diameter starts getting too large, the amount of fibres 

that can fit into the representative volume begins to drop to the point where too few 

fibres are within it for the results to be representative. 

 

3.6 Experimental Validation of The Thermal Simulations 

The numerical model was validated against results obtained using a Netzsch Heat 

Flow Meter, for the case of a pure glass fibre blanket (straight fibre fraction of 1), and 

a pure PET blanket (straight fibre fraction of 0). Specifically, the thermal conductivity 

value for a range of mean temperatures (-20-90) and a fixed temperature difference 

was measured using a heat flow meter for both a PET blanket and a glass fibre 

blanket, and this was compared to a model with appropriate fibre properties and 

dimensions so that the accuracy could be determined. 

3.6.1 Experimental Setup 

A 30 cm by 30 cm sample of needle punched glass fibres, and an equivalently sized 

sample made of PET fibres, was measured in a Netzsch 436 Lambda Heat Flow 

Meter with the mean temperature being varied from -20°C to 70°C and being 

measured in 10°C intervals, and with a temperature difference of 20°C between the 
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upper and lower plates. The heat flow meter uses two parallel plates a known distance 

apart and with a fixed temperature at each plate, and measures the heat flux based 

on the electric potential in a thermocouple at each allowing the overall heat transfer 

through the sample to be obtained, and hence the thermal conductivity to be output.  

 

3.6.2 Results Comparison 

In order to accurately create a computer model of the experiment, the fibre geometry 

that is generated has to accurately represent the fibre geometry used in the 

experiment. As a result, the diameter and length of both the PET fibres and the glass 

fibres was measured, as well as the orientation of the fibres. The heat flow meter 

needs the dimensions of the sample as well as the mass and calculates the density 

from this. Since the density of a fibre and the density of air are known, the volume 

fraction of the fibre mat may be calculated so that a model with the same volume 

fraction can be used for simulation purposes. Since the representative volume is 

thinner than the test specimen, the temperature difference was scaled so that the heat 

transfer experienced by the sample was the same as for the experimental sample, 

assuming the experimental sample was a bulk material.  

Table 3.20: Geometric properties for the thermal validation 

Material Volume 

Fraction (%) 

Bounding Region 

Size (mm) 

# of Fibres # of Elements 

GF 6.16 0.13 41  844,840  

PET 7.17 0.22 35  953,117  
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Table 3.21: Mesh settings used for the thermal validation 

Material Relevance Size Function Relevance 

Center 

Transition Span 

Angle 

Center 

GF 60 Uniform Fine Slow - 

PET -20 Proximity and 

Curvature 

Fine Fast Fine 

 

The same geometry and mesh settings, generated using the properties shown in 

Table 3.20 and  Table 3.21, was used for all the data points so that the only difference 

in the models was the temperature gradient applied. 

 

Figure 3.21: Comparison of the PET experimental and model results 

 

20

25

30

35

40

45

50

-40 -20 0 20 40 60 80

T
h

er
m

a
l 

C
o
n

d
u

ct
iv

it
y
 (

m
W

/m
.K

)

Temperature (°C)

Experimental

PET Model



101 
 

 

Figure 3.22: Comparison of the Glass fibre experimental and model results 

 

The results of the modelling for the PET fibres are shown in Figure 3.21; from which 

it can be seen that the model is representing the experiments to within 7%. While the 

absolute values are only partially accurate, the model is accurately demonstrating the 

trends present in the material. This suggests that the main inaccuracy in the PET 

model is that the conductivity of the fibres has been overestimated. The slight 

divergence from the trend that the experimental results show at the higher 

temperature results suggests that radiation heat transfer may be beginning to have a 

larger effect, which is not being taken into account by the either model, but appears 

to be having a larger effect in the PET model. The results of the glass fibre modelling 

are shown in Figure 3.22; from which it can be seen that there is a great deal of 

accuracy present in the pure glass fibre model. The model appears to be following 

the trends accurately. 
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3.7 Conclusions 

The validation carried out here suggests that the model, and the modelling approach, 

are likely producing accurate results for both the fibre blankets. There is a high level 

of agreement between the model data and the experimental data, and in general both 

sets of data follow the same trends. 

In turn, this suggests but does not prove that the thermal conductivity values produced 

are accurate, and the trends within are likely to be so.  As a result, in general a low 

volume fraction composite is better for thermal properties but worse mechanically; 

and the optimum depends on what is desired most. The orientation generally causes 

the material to be stiffest when the fibres are in the direction that forces are applied 

in; whereas the fibres being orientated in the direction of heat transfer is undesirable 

in thermal insulation purposes.  

The diameter of the fibres, at least over the range investigated here, appear to have 

little effect on the thermal or mechanical properties of the composite. It is possible that 

this occurs as a result of the comparatively small range of diameters investigated, or 

because the model I not taking some nuance of the conductivity into account that is 

important here. 

The simulations produced by the model are generally computationally light to solve, 

though the random nature of the geometries produced here mean that it is possible 

for fibres to be close to contacting in a way that produces thin sections that make the 

computation time large. The lack of control over parameters such as the volume 

fraction in the simulation also means that it can be difficult to produce geometries 

when a specific setup is required; especially if the out-of-plane orientation is allowed 

to produce large values. 
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3.8 Future Work 

This work did not investigate the effect that the interface between the fibres and the 

matrix (either the air or the epoxy resin) had on the properties. In both thermal and 

mechanical cases, this could have a large effect when fibre volume fraction is high, 

as it controls how easily heat can flow between the two materials and how well the 

stress in the material can be transferred from the matrix to the fibres. For most of 

cases studied in this project, the fibre volume fraction is in the low range and the effect 

of the fibre-matrix interface on fabric thermal conductivity is probably not significant. 

Nevertheless, future work should be carried out to confirm this. 

The effects of convection and radiation were both believed to be negligible and not 

included here, but there is room for a further study to identify whether there are any 

cases where this is not true and, in turn, add in mechanisms to allow it to be 

considered when necessary. Theoretically, this could perhaps be predicted at the 

geometry generation stage, since it would likely be a property of the geometry instead 

of the materials used, though it would also increase the computation time. 
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4 Mechanical Modelling of Geometries Containing a 
Single Type of Fibre 

4.1 Introduction 

In order to fully understand the trade-offs of using low thermal conductivity materials 

in PIP insulation, it is important to also understand the mechanical behaviour of the 

material. For example, a stiffer blanket requires less centralisers to ensure the inner 

and outer pipe remain separate, and in turn this means the blanket does not need to 

be as low in thermal conductivity.  

This chapter primarily deals with exploring the mechanical properties of a single fibre 

type and focusses in turn on predicting the Young’s Modulus of the geometry. The 

effect of the orientation, the fibre diameter and the volume fraction are all investigated 

here, with validation against numerical models to demonstrate the effectiveness of 

the simulations. 

The simulation methodology is very similar to that of Chapter 3, with the main change 

being in how the actual simulations are carried out, and the shape of the geometry 

being generated. The materials being looked at here are the same still: straight fibres 

representing glass fibres and sinusoidal fibres which represent PET fibres. 

4.2 Literature Review 

In ductile, homogeneous materials, there is often a distinct yield strength: a point 

where the elastic deformation applied to the material becomes plastic instead, 

resulting in permanent deformation. Typically, this is approximated as occurring at 

0.2% strain, particularly in metals. 

Composite materials behave differently: relatively small applied loads can have 

permanent effects due to local stress concentrations acting on the fibres and the 
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distribution of fibres changing upon loading. As a result, composite materials  are 

especially susceptible to stiffness and strength degradation. 

There are two main approaches take to analysing composite materials: the 

micromechanical and the macromechanical [47]. The micromechanical approach 

focuses on fibres at an individual level and involves modelling the fibre/matrix 

interaction. This extends towards describing damage as the changes which take place 

within these materials and the interaction between the components. To contrast, the 

macromechanical approach aims to treat the composite as if it were a homogeneous 

material using averaged properties, with a single strength value being used instead 

to define failure. Young’s Modulus Predictions 

4.2.1  Self-consistent Micromechanics Model (Hill) 

Hill [48] began the development of composite micromechanics by approximating the 

engineering constants. Hill showed the elastic constants for transversely isotropic 

materials were independent from the geometry of the composite and could be related 

by universal relations. The generalised stiffness matrix was created by assuming 

perfect alignment of continuous fibres within an embedded phase in a composite 

model:  

 

𝐶 =

[
 
 
 
 
 
𝑛 𝑙 𝑙 0 0 0
𝑙 𝑘 + 𝑚 𝑘 + 𝑚 0 0 0
𝑙 𝑘 + 𝑚 𝑘 + 𝑚 0 0 0
0 0 0 𝑦 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇]

 
 
 
 
 

 (48) 

If the system has two planes of symmetry, 𝑛 and 𝑙 are independent of 𝑘. If the material 

is transversely isotropic, 𝑦 and 𝑚 are equal, and only three independent composite 

moduli exist. 
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4.2.2 Rule of Mixtures 

Being able to derive the stiffness and strength properties from the constituent 

properties is desirable as it means the mechanical properties can be easily 

determined theoretically without requiring extensive prototyping and experimentation. 

For continuous, straight fibres, the ‘rule of mixtures’ can be used (Equation (49)); 

which reduces the overall Young’s modulus of the material down to the modulus of 

the components and the ratio of the fibre to matrix. 

 𝐸𝑛 = 𝑣𝑓𝐸𝑓 + 𝑣𝑚𝐸𝑚 (49) 

When the load is transverse to the fibre direction, the  ‘inverse rule of mixtures’, as 

shown in Equation (50), is a more accurate approximation of the Young’s modulus of 

the materials. 

 1

𝐸𝑡
=

𝑣𝑓

𝐸𝑓
+

𝑣𝑚

𝐸𝑚
  

(50) 

While neither rule of mixtures model is fully accurate, they do provide a reasonable 

upper and lower bound for the actual composite modulus, particularly in the case of 

randomly orientated fibres which typically behave somewhere between the two cases. 

Halpin [49] improved on these results by incorporating experimental results into the 

equations, shown in Equations (51) and (52).  

 
𝐸𝑛 =

𝐸𝑚(1 + 𝜂𝑣𝑓)

(1 − 𝜂𝑣𝑓)
 (51) 

 

η =
(
𝐸𝑓

𝐸𝑚
− 1)

(
𝐸𝑓

𝐸𝑚
+ 𝜉)

 (52) 

The equation for the modulus in any direction can be found through the use of an 

experimentally derived fitting parameter, 𝜉. 
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𝐸𝑡 =

𝐸𝑚(1 + 𝜉𝜂𝑣𝑓)

(1 − 𝜂𝑣𝑓)
  

(53) 

This same relation can be used to relate the overall shear modulus to the component 

shear moduli. The Poisson’s ratio can also be derived using it. 

4.2.3 Eshelby and Mori–Tanaka Method 

Eshelby derived this model to allow the mechanical characterisation of elliptical 

inclusions within an infinitely large matrix [50]. Assuming that the stress-strain field 

within the inclusions was uniform, analytical solutions can be found to allow the 

functions to be solved easily. 

Mori and Tanaka revised the Eshelby model to consider the volume fraction, and the 

effect of the mechanical properties of the inclusion, which allowed it to be utilised in 

fibre composites [51]. Specifically, an elliptical inclusion cannot transfer a stress 

through it, whereas a fibre can, so the Eshelby model requires modification to include 

a mechanism to model the interfacial stresses and the stress transfer. 

The Mori-Tanaka method approximates the inhomogeneity of the composites through 

the use of an average matrix stress across the entire infinite geometry. The matrix 

stress can be determined from the loading boundary conditions at an inhomogeneity, 

and the effective mechanical properties of the composite can be found be relating the 

average fibre strain to the average matrix strain. This is done using the strain 

concentration tensor in Equation (54). 

 
𝐴 = (𝐼 + ℝ(𝑃𝑚 − 𝑃𝑓))

−1
 

(54) 

 �̅� = 𝑃𝑚 + 𝑣𝑓(𝑃𝑓 − 𝑃𝑚): 𝐴 (55) 
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4.2.4  Shear Lag Model 

Cox [52] developed a shear-lag model to estimate the composite modulus when the 

fibres are orientated axially to the loading direction. It assumes the stress forms in the 

fibre entirely from the shear stress at the interface between the fibre and the matrix. 

In turn, it assumes the shear stress at an arbitrary point in the matrix is the same as 

that at an arbitrary point in the fibre which is the same depth into the fibre as the first 

point.  

The parameter �̅�, which can be found using Equation (56), describes the behaviour 

of the shear and normal stress relative to the position in the fibre. Using this, and the 

parameter 𝜆 , found using Equation (57), allows the composite moduli to be found via 

Equation (58). 

 

�̅� =
√

2𝐺𝑚

𝑟𝑓
2𝑃𝑓 ln (

𝑅
𝑟𝑓

)
   (56) 

 

𝜆 = 1 −
𝑡𝑎𝑛ℎ (

�̅�𝐿
2

)

�̅�l
2

  (57) 

 𝑃 = 𝜆𝑣𝑓𝑃𝑓 + 𝑣𝑚𝑃𝑚  (58) 

 

The fibre arrangement can be considered in the shear lag model using the function 

R, defined in Equation (59).  

 

𝑅 = 𝑟𝑓√
𝑇𝑅

𝑣𝑓
  (59) 

4.2.5 Christensen and Waals 

Christensen and Waals [53] developed a model to predict the elastic modulus of a 

composite material when it consists of short, randomly orientated fibres. The volume 
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fraction is the main property that controls the elastic modulus here, with the fibre 

distribution being of lesser importance. This means that treating it at a macroscopic 

level, instead of dealing with the micromechanics, is valid. 

This theory was derived from the stress-strain constitutive equations by determining 

an average value for the ratios of the stress-strain constituents. The resulting equation 

relates the overall stiffness to the components Young’s, bulk and shear moduli and 

the Poisson’s ratio. 

 E

=
[𝐸11 + 𝐾23 (4𝑣𝑝1

2 + 8𝑣𝑝1
+ 4)] [𝐸11 + 𝐾23 (4𝑣𝑝1

2 − 4𝑣𝑝1
+ 1) + 6(µ12 + µ23)]

3 [2𝐸11 + 𝐾23 (8𝑣𝑝1
2 + 12𝑣𝑝1

+ 7) + 2(µ12 + µ23)]
  

(60

) 

Simpler versions of this can be derived via the use of experimental results and by 

plotting Equation (60) to allow the creation of best fit models.   

By plotting this equation and with the aid of experimental results the theory can be 

stripped down to two more manageable forms. One is for random fibre geometries in 

two dimensions, shown in Equation (61). 

 E ≈  𝐸𝑓

𝑣𝑓

6
+ 𝐸𝑚(1 + 𝑣𝑓) 

(61) 

Another is for random fibre geometries in three dimensions, shown in Equation (62). 

 E ≈  𝐸𝑓

𝑣𝑓

6
+ 𝐸𝑚 (1 + 𝑣𝑓 [1 + 𝑣𝑝𝑚

])  (62) 

The advantage of these equations is that they only rely on the volume fraction of the 

composite, and generally well-known material properties. The main downside is that 

assumptions used in the derivation of these equations mean they are only reliable for 

fibre volume fractions below 20%; though this is not a significant impediment in this 

work due to the low volume fractions typically looked at. 
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4.2.6 Manera 

Manera [54] derived a model based on Puck’s equations, using the method of least 

squares to simplify them, and eliminating terms that are generally negligible. The 

result of this is the model shown in in Equation (63). 

 
E = 𝑣𝑓 (

16

45
𝐸𝑓 + 2𝐸𝑚) +

8

9
𝐸𝑚  

(63) 

Due to the assumptions made to eliminate terms, it’s only suitable in specific cases: 

namely, when the volume fraction is between 10% and 40%; when the resin matrix 

has a Young’s Modulus between 2 and 4GPa; and when the fibres are between 5 and 

30 microns long and have an aspect ratio of more than 300. These assumptions are 

generally applicable in this work, albeit the volume fraction is often lower than the 

minimum value. 

4.2.7 Pan 

Pan [55] derived an equation to determine the modulus which utilised the area fraction 

of the fibres, 𝐴𝑓. This parameter can be used to help describe the orientation of the 

fibres, which is important in general and particularly in the case of random, short fibre 

composites. The generalised form is showin in Equation (64). 

 E =  𝐸𝑓𝛺(𝜃,𝛷)𝑣𝑓 + 𝐸𝑚[1 − 𝛺(𝜃,𝛷)𝑣𝑓 ] (64) 

Where in a particular direction the probability density function is defined as: 

 𝛺(𝜃,𝛷)

(𝜃, 𝛷)
=

𝐴𝑓

𝑣𝑓
 

(65) 

For the case of fibres which are random in 2D (i.e., aligned in the 3rd dimension), 

Equation (66) can be used; while Equation (67) is valid for fully random fibre 

geometries. 

 E = 𝐸𝑓

𝑣𝑓

𝜋
+ 𝐸𝑚 (1 −

𝑣𝑓

𝜋
) 

(66) 
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 E = 𝐸𝑓

𝑣𝑓

2𝜋
+ 𝐸𝑚 (1 −

𝑣𝑓

2𝜋
)  (67) 

To summarise, it can be seen from the literature above that a range of 

micromechanical models have been developed to assess material stiffness of fibre-

matrix composites. However, it appears that none takes consideration of individual 

fibres. This is quite understandable given the stiffness is an effectively bulk effect 

typically determined by the microstructure. However, the property such as material 

strength is often determined by local structural details and would benefit from a more 

detailed modelling approach considering individual fibre architecture.  

 

4.3 Simulation Setup 

Table 4.1: Material properties used in the mechanical simulations 

Material Young’s 

Modulus (GPa) 

Poisson’s 

Ratio 

Tensile 

Strength (MPa) 

Fibre 

Diameter (µm) 

Glass 

Fibre 
72 0.21 1950 6 

PET Fibre 2.8 0.37 80 14 

Epoxy 

Matrix 
3.9 0.35 45.7 - 

 

The mechanical properties used throughout the simulations are listed in Table 4.1. As 

the simulations are intended to allow comparison between the geometric properties, 

the accuracy of the material properties here is not hugely important. As such, generic 

properties for the three materials were used in place of ones corresponding to specific 

composite compositions. 



112 
 

The fibre alignment for the mechanical simulations was constrained so the fibres were 

all roughly orientated in the direction the stress was applied in.  

 

Figure 4.1: Illustration of the boundary conditions applied to the mechanical 

simulations 

 

Table 4.2: Boundary conditions used in the mechanical simulations 

Label Parameter 

A 4N force 

B Displacement support restricting movement in the same direction as A 

C Fixed support to prevent rigid body motion 

 

The boundary conditions used in these simulations are shown in Figure 4.1 and Table 

4.2. The 4N force chosen here was largely an arbitrary choice designed to be a 
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relatively small load on the sample. The fixed support is in the centre of the face to 

ensure that it does not introduce a moment around the bottom of the sample; and the 

movement in the tensile direction is fixed to 0 to replicate. 

 

4.4 Results and Discussion 

4.4.1  Volume Fraction 

The first analysis that should be the most significant factor contributing to the 

mechanical properties is the volume fraction. The boundary region was reduced in 

stages and the number of fibres chosen appropriately to control the volume fraction. 

Results were taken from ANSYS to Microsoft Excel to calculate and plot the 

composite’s Young’s Modulus and tensile yield strength.  

 

Figure 4.2: Young's modulus of the composite at varying volume fractions of glass 

fibre 
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There is a moderate amount of variation in the results, but a trend line does show an 

overall rise of stiffness as the volume fraction increases. It is difficult to go beyond the 

upper and lower values of volume fraction used. Attempting to achieve higher volume 

fractions produces too few fibres; since the geometry has to be further reduced in size 

to force them closer together on average; whereas decreasing the volume fraction 

further means a much larger increase in the number of fibres present (as the bounding 

region becomes larger). This causes a corresponding increase in the computing 

power required. 

The equation of the trend line in Figure 4.2 suggests that at a volume fraction of 0%, 

the modulus of the simulation would be around 4.45GPa. The epoxy used has a 

modulus of 3.94GPa, which suggests that the simulation is behaving relatively 

accurately. 

4.4.2 Fibre Orientation 

The effect of the fibre orientation was also investigated. Specifically, the effect of 

varying the fibre angle in one direction was studied (since the geometry is 

symmetrical, the actual variation here would be the same regardless of which direction 

it is, as long as only one direction was varied). 

 

Figure 4.3: Same set of fibres viewed from two different orientations, with the fibres 

being visibly uniform in one plane. The arrow indicates the direction the force is 

applied in. 
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The through-plane fibre orientation is kept uniform and the in-plane is varied in steps 

of 15 degrees. The volume fraction was kept near 5% but not exactly as the code 

cannot be controlled that way. Each angle was repeated for 3 results and an average 

value was plotted. 

 

Figure 4.4: Young’s modulus against random in-plane orientation6 

There is a downwards trend in the results which appears to level off at 90°, which is 

to be expected as increasing the angle beyond this point should not change the fibre 

distribution as the fibres would already be at their most random. 

There is a downwards trend seeming to level off at 90 degrees as it should since the 

plane cannot become more random than that. The trend line fits well to a polynomial 

trend line but there is no known reason for this type of relationship. The randomness 

                                                

6 Error bars indicating one standard devation are present here; the high degree of simularity 
between each sample means they are not visible. 
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lowers the stiffness, and this is expected as fewer fibres are in the prime orientation 

of directly facing the load. 

4.4.3 Fibre Diameter 

The fibre diameter was changed from 8 microns to 16 microns and variation in volume 

fraction was minimised. 

 

Figure 4.5: Young’s Modulus against the diameter of the fibres used. 

 

There is no trend here, so results suggest fibre diameter alone does not affect the 

modulus of elasticity. Variation here is suspected to be due to the difference in volume 

fraction as it could not be kept completely constant. It was limited from 4.9% to 5.1% 

in MATLAB, but this resulted in a true range of around 4.5% to 5.5%. No apparent 

change in fibre diameter results is useful as it provides another method of controlling 

the volume fraction.  
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4.5 Theoretical Validation of Mechanical Simulations 

To verify if the model is providing a reasonable output the volume fraction results are 

compared individually to the theoretical models previously mentioned. The theoretical 

models were added to excel and increments of volume fraction were inputted then 

plotted. 

4.5.1 Rule of Mixtures 

 

Figure 4.6: Comparison of the FEA results with the Rule of Mixtures and Inverse 

Rule of Mixtures results 

 

The first comparison was to the two Rule of Mixtures models, shown in Figure 4.6, 

which behave as upper and lower bounds for the Young’s Modulus value. It can be 

seen here that the FEA results fall within these bounds, which suggests that the model 

is behaving accurately. The gap between the bounds is, particularly at higher volume 

fractions, fairly large and so the model fitting within them does not guarantee accuracy 

here. This is due to the fact that at higher fibre volume fraction, the fibre architecture 
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is subjected to more “artificial” alterations brought about by the fibre generation 

process. 

The model appears to be beginning to exceed the upper bound at very low volume 

fractions, though the difference between the bounds at these values is minimal and it 

may just be due to the random nature of the simulations. 

A large degree of agreement is present in the trend of the FEA results and the Inverse 

Rule of Mixtures results, even if the FEA results are shifted upwards; which is 

unexpected as the random orientation here should be closer to the standard rule of 

models geometry. 

 

 

4.5.2 Christensen and Waals 
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Figure 4.7: Comparison of the FEA results with the 2D and 3D Christensen and 

Waals model results 

The FEA results in Figure 4.7 are showing reasonable agreement with the 

Christensen and Waals model, particularly at the higher volume fractions. This is a 

good sign as the Christensen and Waals model is supported by experimental 

evidence, and the close agreement here implies the FEA results are behaving 

accurately. There is some overestimation at lower conductivities, though the cause is 

uncertain. It seems likely that the simulations are overestimating the Modulus by 

overestimating the effect of the fibres, as the trend here implies the simulation 

modulus would be above the young’s modulus of the epoxy resin at a volume fraction 

of 0. 

4.5.3 Manera 

Manera’s equation has also been plotted. There is less agreement here than with 

Christensen and Waals other than the region of intersection at about 4% volume 

fraction. Remembering that Manera’s equations are supposed to be valid in the range 

of 10% to 40% is unexpected as the results suggest increasing divergence before 

10% is even reached. 
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Figure 4.8: Comparison of the FEA results with the Manera model results 

 

4.5.4  Pan 

Finally, Pan’s theory is compared to the FEA data points. Pan’s correlation seems 

better than Manera but not quite as close as Christensen and Waals. Pan could also 

be useful to compare to fibre orientation if more time were spent understanding the 

statistical theory underlying it. 
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Figure 4.9: Comparison of the FEA results to the 2D and 3D Pan models. 

 

4.5.5  Validation Summary 

Overall, the theory suggests that the FEA simulation is producing realistic data. The 

range is limited however, and more data especially at higher volume fractions would 

be key to properly testing the FEA validity as it seems as though the gradient of the 

FEA trend line is not high enough, assuming the theories are accurate. 

4.6 Conclusions 

The Finite Element data is producing a good fit against most of the theoretical models 

it was tested against, particularly at the relatively low volume fractions considered. 

That said, the data was only modelled at low volume fractions, and so there may be 

more of a discrepancy at higher volume fractions. 
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It can be seen that mechanically the orientation and volume fraction are the dominant 

parameters here, where they have a more significant effect on the fibre properties 

than the other factors such as fibre diameter and length. 

 

4.7 Future Work 

The effect of the fibre properties on the strength of composites was not investigated 

here either. While the effect on Young’s Modulus can be predicted relatively easily, 

the effect on the strength requires the development of a robust failure criterion that 

can adequately determine when failure occurs within the system. 
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5 Modelling of Fibre Geometries Containing Straight and 
Curved Fibre Types 

5.1  Introduction 

In order to determine the effect of having a mixture of straight and curled fibres within 

the simulation, a series of simulations to evaluate the effect of varying the “straight 

fibre fraction” was done. The straight fibre fraction is defined as indicated in Equation 

(68). The volumetric ratio was used here so that the ratio could be more easily 

calculated within the MATLAB code: while specifying a density for both fibre types 

could be done to allow the fibre masses to be calculated, it was decided to not 

introduce an additional two variables for simplicity. 

 
Straight fibre fraction = 

Straight fibre volume

Total fibre volume
 

(68) 

In order to calculate the total fibre volume, the volume of each individual fibre has to 

be calculated. This is relatively straightforward for the straight fibres, which can be 

calculated using Equation (69), which is just the formula for calculating the volume of 

a cylinder. The exact volume of the curled fibres was not able to be easily 

approximated since the exact shape of the spline is determined by APDL and not the 

MATLAB generating code; however it was approximated using Equation (70). This 

approximates the volume of the curled fibre as being composed of 𝑛 different cylinders 

extending from the centre line to a distance equal to the “fake diameter”, which is the 

amplitude of the fibres. 

 𝑉𝑆𝐹 =
𝜋

4
∙ 𝐷𝑆𝐹

2 ∙ 𝐿𝑆𝐹  (69) 

 

𝑉𝐶𝐹 =
𝜋

4
∙ 𝐷𝐶𝐹

2 ∙ 𝑛√(
𝐿𝐶𝐹

𝑛
)
2

+ 𝐷Fake
2   (70) 
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5.2 Simulation Setup 

The same algorithm outlined in Chapter 3 was utilised here, where the straight fibre 

fraction was varied as desired to setup a series of geometries that could be used to 

investigate the effect that blending the fibres together has on the overall conductivity. 

Three simulations where carried out here: two to investigate blends of two geometries 

of fibre blended together when they are all the same material, and one to investigate 

a blend of two different fibre types and materials. 

The value generated in MATLAB is an approximation since the volume of the curled 

fibres is not precisely known until it has been generated in APDL. The fibre ratio can 

be controlled to some degree, though the stochastic nature of the fibre generation 

means that the volume of the fibres varies depending on the positioning of the fibre 

with respect to the boundary region and the fibre length. 

The properties of the geometry used are shown in Table 5.1. The fibre ratio here has 

been calculated from the actual volumes of fibres in the simulation; and in general, is 

consistent with the desired fibre ratio; with only 0.35 being somewhat different. This 

discrepancy is due to a curled fibre failing to generate properly, and the simulation 

putting an additional straight fibre in. The in-plane orientation for the fibres was 

allowed to vary fully; while the out-of-plane orientation was constrained to 0°, so that 

all the fibres were perpendicular to the direction of heat transfer. This is more 

representative to typical insulation fabrics while keeping geometrical simplicity without 

compromising the accuracy.  

Table 5.1: The properties of the geometries used in the mixed fibre modelling 

simulations 

Fibre 

Ratio 

Volume 

Fraction (%) 

Boundary Size 

(mm) 

# of Straight 

Fibres 

# of Curled 

Fibres 
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0 2.34 3.15 0 34 

0.35 2.20 3.15 16 35 

0.5 2.32 0.31 27 35 

0.71 2.27 0.31 37 23 

1 2.49 0.30 52 0 

 

As in Chapter 3, the contact settings were kept to their default, so that fibre/matrix 

contact was treated as having infinite conductivity. This also means that any fibre/fibre 

contact that exists has the same assumption. 

The mesh settings used throughout the mixed fibre simulations are shown in Table 

5.2. These are based on the standard ones used throughout this work to ensure the 

results throughout are consistent.  

Table 5.2: Mesh settings used in the mixed fibre modelling simulations 

Setting Value 

Relevance 0 

Size Function Adaptive 

Relevance Centre Medium 

Transition Slow 

Span Angle Centre Medium 

Automatic Mesh Based Defeaturing On 

Defeature Size Default 

 

These settings produced a mesh corresponding with the numbers in Table 5.3; where 

the same geometry and mesh were used for all three simulation types. 

Table 5.3: The number of elements present in each mixed fibre simulation 
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Fibre Ratio Number of Elements Number of Nodes 

0 835103 1260736 

0.3 752023 1123559 

0.5 899729 1333972 

0.7 677312 1098433 

1 578414 1020947 

 

5.3 Results and discussion 

 

Figure 5.1: The effect of varying the mixing ratio on the thermal conductivity 

 

The results of the simulation are shown in Figure 5.1. The results at 0 and 1 make 

sense: when the simulation is pure straight fibres, the mixed and GF results are the 

same because they both have the same conductivity; and the same is true when the 

simulation only contains curled fibres. The general trends also make sense: as the 

mixed fibres becomes more dominated by straight fibres, it becomes closer to the 
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glass fibre result, whereas at low fibre ratios, the results are much more similar to the 

PET fibre results. 

 

The relatively small variation in the thermal conductivity here is interesting: the PET 

has a conductivity that’s approximately 5.5 times lower than the glass fibres 

conductivity; and so the expectation would be that changing this conductivity would 

have a much larger impact on the thermal conductivity than it does. The comparatively 

low change is likely due to the relatively low volume fraction that the simulations are 

taking place at: since the fibres are only taking up approximately 2.5% of the volume 

of the material, their effect on the conductivity is minimal compared to the effect of the 

conduction through the air around the fibres. 

 

Figure 5.2: The variation of the conductivity based on the volume fraction 
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ratio, as shown in Figure 5.2, does not show a strong trend: for all three materials, the 

conductivity is approximately constant regardless of the volume fraction. The 

geometry generation was controlled to attempt to keep the volume fraction as similar 

as possible throughout the simulations, and so there is not a wide range of volume 

fractions here. The relative lack of correlation here implies that the fibre ratio is having 

a large effect on the results, since the volume fraction and the fibre ratio are the two 

big parameters expected to affect the heat transfer through the simulated geometry. 

5.4 Conclusions 

The results show that, from a thermal perspective, blending the fibre types does not 

typically reduce the conductivity beyond that which could be obtained with a single 

fibre type. The validation done implies that as the single fibre blankets are being 

modelled accurately, combining them is likely also producing accurate results. 

The different materials are behaving somewhat differently here, though the two pure 

fibre types are following the same general trend. The mixed fibre simulation is 

following a different trend, which is to be expected as it has to bridge from the lower 

conductivity PET fibre results to the higher conductivity glass fibre as the relative ratio 

of those two changes. 

5.5 Future Work 

A more in-depth look at the effect of mixing the fibre types could be carried out to 

investigate whether the orientation of the fibres has a more significant effect when the 

fibres are non-straight, for example. The results obtained so far indicate that the 

overall composite is likely to behave very similar to the individual components. 

This work only looked at a mix of two fibre types, but theoretically the principles could 

be expanded to a blend of multiple types of straight/sinusoidal fibres. Indeed, the 

geometry generation process the algorithm developed here uses can easily be 
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changed to allow alternative fibre geometries, including square or hexagonal cross 

sectioned fibres. This could be done with both the straight and the sinusoidal fibres. 

The mechanical properties were not investigated and examining the trade-off between 

the thermal and mechanical performance could be investigated. This would allow a 

better understanding of when, and why, mixed fibre blankets like this should be 

utilised. 

While more complex fibre shapes where briefly investigated over the course of this 

work, truly random fibre geometries were never simulated, and adding that in would 

allow a greater degree of flexibility in the fibre composite modelling performed here. 

The difficulty with that is that meshing the very complex geometries of a truly random 

fibre is challenging and not something that commercial meshing algorithms are 

designed to handle. Indeed, meshing can be a challenge even with these 

comparatively simple fibre geometries, since the random nature of the fibre 

geometries means that they can end up being close to contacting or the edge of the 

bounding region, for example. 

  



130 
 

6 Modelling of Aerogel/Fibre Composites 

6.1 Introduction 

In this chapter, composites consisting of straight fibres mixed with a range of aerogel 

types are modelled, and the results of this discussed. The aim is to explore the 

creation of flexible, aerogel composites where the fibre reinforcement helps overcome 

the inherent brittleness of aerogel materials. 

Polyimide aerogels were investigated at the request of the sponsoring company, 

Blueshift International Materials, who commercially produce both powder and stock 

shapes from them. They are a novel polymer based aerogel originally developed by 

NASA for use in high temperature, flexible insulation [56]. Resorcinol-formaldehyde 

(RF) aerogels are the benchmark of polymer aerogels, with a low conductivity and 

large body of research behind them; with silica aerogels being the benchmark for all 

aerogels, with more research and a lower conductivity than polymer aerogels have. 

Composites using Silica, Resorcinol-Formaldehyde and Polyimide based aerogels 

were examined. Silica is the industry standard aerogel and has been extensively 

studied; but is prone to producing hazardous dust which is also hydrophobic and 

unpleasant to handle without using gloves. RF aerogels are easier to manufacture 

and produce less dust. Polyamide aerogels have high temperature stability and are 

good in high temperature applications. While they are all different materials, all three 

feature the very low thermal conductivities typically associated with aerogels, with 

silicon aerogels typically having the lowest conductivity and polyamide aerogels the 

highest. The cost of this is that they all have the same highly porous structure which 

causes them to be mechanically weak. 

The addition of a fibre blanket helps to improve this by providing a flexible scaffolding 

matrix that the aerogel structure can be supported by, with a minimal impact on the 

actual thermal conductivity of the material. This allows more mechanically stable 
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aerogel systems to be used in cases where minimising the thermal conductivity is not 

the only requirement. 

In subsea applications, this makes assembling the PiP easier as the insulation layer 

can be wrapped around the pipe; whereas solid aerogel needs to be precisely shaped 

and machine to fit the pipe without having air gaps. 

6.2 Simulation Setup 

The effect of varying a range of fibre properties on the three different kinds of aerogel 

was investigated. Silicon aerogel, with a thermal conductivity of 17mW/mK, and 

Polyamide aerogel, with a  thermal conductivity of 30mW/mK, were modelled, as well 

as two speculative conductivity values for resorcinol-formaldehyde. 

The speculative values where calculated from the measured thermal conductivity of 

a RF aerogel/PET fibre composite blanket, which were believed to represent the 

upper and lower bound for the thermal conductivity. These values were obtained by 

rearranging the Series (Equation (24)) and Parallel (Equation (23)) models to allow 

the aerogel conductivity to be determined. This produced Equation (71) for the Series 

model, and Equation (72) for the Parallel model. 

 
𝑘𝑎 =

𝑘𝑐 − 𝑣𝑓𝑘𝑓

1 − 𝑣𝑓
 

(71) 

 
𝑘𝑎 =

1 − 𝑣𝑓

1
𝑘𝑐

−
𝑣𝑓

𝑘𝑓

 
(72) 

Experimental thermal conductivity data for an RF aerogel/PET fibre composite was 

produced. The RF aerogel used 50% calcium carbonate and 50% sodium carbonate 

as a catalyst, with a resorcinol to catalyst ratio of 650, and 30% solids during the sol-

gel process (i.e., it was 70% deionised water). The measurement of the conductivity 

was done on a 30cm by 30cm blanket using a Netzsch 436/3/1E Heat Flow Meter. 
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Figure 6.1: Comparison of the derived lower and upper bounds for the thermal 

conductivity, where Experimental is the experimentally derived blanket conductivity. 

 

From this, and knowledge of the conductivity of the PET blanket, an approximation of 

the aerogel conductivity can be produced so that the material can be treated as a two-

phase system. An upper and lower bound for this conductivity were calculated, the 

results of which are shown in Figure 6.1. 

In this case, the series model is tending to produce a lower component conductivity 

than the parallel model is as a result of the series model tending to overestimate the 

conductivity. In turn, for the series model to produce the same conductivity value as 

the parallel model, it needs a lower component conductivity. The experimental 

conductivity is the blanket conductivity and not specifically the aerogel conductivity 

here; and ‘aerogel conductivity’ is something of a misnomer as it is actually a 

combination of the conductivity of the aerogel and the air in the pores inside the 

blanket. 
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Various fibre properties were simulated to test their effect on the aerogel conductivity. 

Specifically, the volume fraction and the fibre diameter, length and orientation were 

considered, with Chapter 7 looks at the effect that varying the aerogel particles have 

on the composite material when the matrix is considered to be a bulk material. 

6.2.1 Volume fraction 

The volume fraction being used here is the volume of the fibres in the composite: the 

rest of the composite is assumed to be an aerogel/air mixture. Four volume fractions 

were simulated for the four material properties: 1.5%, 3%, 6% and 12%. This was 

chosen to give a broad overview of the behaviour of the system. The same geometry 

generation method was used here as laid out in Chapter 3, which in turn means that 

the same limitations that prevent high volume fraction geometries being generated 

then are preventing higher volume fractions here. The parameters used for the 

geometry are shown in Table 6.1: the size of the bounding region is being varied here 

as the volume fraction is not a directly controlled parameter and instead depends on 

how well the fibres are packed. In turn, decreasing the size of the bounding region 

causes the number of fibres to decrease. 

Table 6.1: The volume fraction simulations' geometry parameters 

Volume Fraction Bounding Region Side Length (mm) # of Fibres 

1.5% 6.07 125 

3% 3.06 67 

6% 1.52 34 

12% 0.72 18 

 

The contact settings were kept to the default ones, which produce no interfacial layer 

and no interfacial thermal resistance. The mesh settings used throughout with one 
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exception are listed in Table 6.2; with the one exception being the ‘Relevance’ for the 

1.5% sample, which was set to -100. This change was entirely done to limit the 

number of elements present in the simulation, as a relevance of 40 produced too 

many elements to be ran on the computer hardware available. 

The consequence of using the same mesh settings for all four geometries is that the 

number of elements varies significantly through the four simulations, as shown in 

Table 6.3. This was deemed to be acceptable as it means the actual mesh sizing 

between the simulations was more consistent, instead of having significantly smaller 

elements on the smaller geometries, since the fibre size is the same in all the 

simulations. 

Table 6.2: Volume fraction mesh settings 

Mesh Setting Value 

Relevance 40 

Size Function Adaptive 

Relevance Centre Medium 

Smoothing Medium 

Transition Slow 

Span Angle Centre Medium 

 

Table 6.3: Element count for the volume fraction simulations 

Volume fraction # of Elements # of Nodes 

1.5% 1148135 1797502 

3% 948423 1858412 

6% 331588 735710 
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12% 189653 360028 

 

 

Figure 6.2: Comparison of the mesh used for the 1.5% sample (a) and the 12% 

sample (b) 

 

 

Figure 6.3: Example of the mesh produced on a fibre in the 1.5% VF simulation 
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Figure 6.4: Example of the mesh produced on a fibre in the 12% VF simulation 

 

As can be seen in  

 

Figure 6.2, Figure 6.3 and Figure 6.4, the mesh used on the geometries was kept as 

similar as possible. The stochastic nature of the geometry means that the mesh 

cannot be exactly the same in every simulation, since the fibre geometry itself 

changes, but the algorithm to produce a mesh was kept tuned to the same parameters 

as far as possible to ensure that the results are comparable. 

6.2.2 Orientation 

Both the in-plane orientation and the out-of-plane orientation were investigated here. 

The results are, as in previous examinations, defined by the maximum angle allowed, 

with the minimum being kept at 0°. The parameters used to generate a geometries 

for in-plane and out-of-plane orientated fibres are shown in Table 6.4 and Table 6.5 

respectively. 
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The maximum out-of-plane orientation allowed was 90°, since this is when fibres 

become vertical, and increasing it further does not allow more variation due to 

symmetry. 

Table 6.4: Geometry and mesh properties of the in-plane orientation simulations 

Maximum Angle 

(°) 

Volume Fraction 

(%) 

Side Length 

(μm) 

# of 

Fibres 

# of 

Elements 

30 6.87 400 244 307902 

36 6.53 400 241 1144043 

36 6.90 400 209 302546 

45 4.94 400 187 1049099 

45 6.55 400 150 1246000 

90 4.85 400 140 997491 

180 4.84 400 142 833542 

360 4.84 400 148 210777 

 

Table 6.5: The geometry and mesh parameters for the out-of-plane angle 

simulations 

Maximum Angle 

(°) 

Volume Fraction 

(%) 

Side Length 

(μm) 

# of 

Fibres 

# of 

Elements 

0 4.06 200 54 464377 

15 3.94 200 52 1136727 

18 4.03 200 54 513210 

22.5 4.09 200 57 495630 

30 3.92 200 50 459856 

30 2.57 200 37 253911 



138 
 

45 2.45 200 33 281767 

90 2.42 200 36 324144 

 

6.2.3 Bounding Region Size 

In order to investigate whether the fibre length had any effect on the simulation results, 

the bounding region size was varied. This changes the relative size of the bounding 

region to the fibres and is equivalent to changing the fibre length in effect. The 

parameters used for this are listed in Table 6.6. 

Table 6.6: Geometric properties for the bounding region size simulations 

Side Length (μm) Volume Fraction (%) # of Fibres # of Elements 

2 3.00 26 360502 

2.5 3.02 46 642175 

3 3.04 107 918620 

3.5 3.01 166 713589 

4 3.04 228 932408 

5 3.02 424 706804 

6 2.97 694 637520 

 

6.2.4 Fibre Diameter 

The diameter simulations were carried out using random in-plane only fibre 

geometries. The key geometry generation properties are shown in Table 6.7. 

Increasing the side length was necessary to ensure that the overall volume fraction 

within the simulation remained constant. 
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Table 6.7: Simulation parameters for the diameter simulations 

Diameter 

(μm) 

Volume Fraction 

(%) 

Side Length 

(μm) 

# of 

Fibres 

# of 

Elements 

4 2.52 200 116 600224 

6 2.50 200 51 391707 

8 2.50 400 118 645747 

10 2.50 400 74 88178 

12 2.51 400 49 345778 

14 2.51 600 79 513974 

20 2.51 900 74 259419 

25 2.46 900 51 123673 

30 2.51 1000 49 1050811 

 

The mesh generation properties were kept as consistent as possible, though the 

relevance was varied to ensure that the number of elements did not become 

excessive and prevent the simulation being solved. The parameters used are shown 

in Table 6.8, with the other mesh settings being kept at their default values. 

Table 6.8: Summarised meshing parameters for the diameter simulations 

Mesh Setting Value 

Size Function Adaptive 

Relevance Centre Fine 

Smoothing Medium 

Transition Fast 

Span Angle Centre Coarse 
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6.3 Results 

 

 

Figure 6.5: Comparison of the effect changing the volume fraction has on the four 

composite materials being studied here (note the results for silica and RF lower 

bound are overlapping) 

 

The summarised results for the volume fraction simulations are shown in Figure 6.5. 

The difference between the four simulated materials is behaving much as would be 

expected: the lower bound for the RF aerogel thermal conductivity and the Silica 

aerogel thermal conductivity are both very similar, and the polyimide conductivity is 

the highest of the four. The trends within the data make sense too: at higher volume 

fractions, there is more high conductivity fibres for the heat to flow through, and also 

more fibre/fibre contact so that the heat transfer path can be more efficient. 
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Figure 6.6: The effect of varying the maximum in-plane angle on the thermal 

conductivity (note the results for silica and RF lower bound are overlapping) 

 

The investigation into the effect of the orientation on the thermal conductivity in 

general produces similar conclusions as with pure fibre blankets in Section 3. The 

thermal conductivity in the in-plane results, shown in Figure 6.6, is highest at low 

angles due to the high level of ordering present in the geometry. Above approximately 

90°, the conductivity remains more constant as the increase in max allowable angle 

is covered by symmetry and does not strongly add to the randomness of the fibres. 

The general trend of the results is as expected again, with the materials with higher 

conductivities producing higher overall thermal conductivities, and the conductivity 

dropping as the increased randomness causes the optimal heat transfer path through 

the material to become longer. 
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Figure 6.7: The effect of varying the maximum out-of-plane angle on the thermal 

conductivity 
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Figure 6.8: Comparison of the effect the number of elements (top) and the volume 

fraction (bottom) has on the thermal conductivity in the out-of-plane angle 

simulations 
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While the expected behaviour for the out-of-plane simulations is that the thermal 

conductivity will increase as the maximum angle increases, since the fibres have a 

higher conductivity than the matrix and them being increasingly in-plane should allow 

for an easier heat transfer through them, the results shown in Figure 6.7 indicate that, 

in general, the opposite trend occurs. This is not easily explainable as an error caused 

by, for example, the volume fraction changing in the simulation, as Figure 6.8 shows 

that neither the volume fraction nor the number of elements changing are producing 

a significant trend which could reasonably be biasing the results. The results behaving 

unexpectedly is unlikely attributed to a single parameter but is perhaps indicative of 

deeper issues within the simulation process.  

 

Figure 6.9: Comparison of the effect of varying the diameter on the four composites 

investigated. (note the results for silica and RF lower bound are overlapping) 

 

The effect the fibre diameter has on the simulations appears to be largely negligible 

here, based on the results in Figure 6.9. While a slight downwards trend does exist, 
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there is not enough data to call it significant. The individual materials behave much 

as expected: with the highest conductivity aerogel also producing the highest overall 

thermal conductivity. 

 

Figure 6.10: Effect of varying the relative fibre length on the conductivity 

 

The effect of varying the size of the generation region is shown in Figure 6.10; where 

it can be seen that it causes the overall conductivity to increase. Since this 

corresponds to an increase in the fibre length, it is plausible that this occurs because 

it leads to an increase in fibre/fibre contact and hence more efficient heat transfer 

paths through the geometry than in a smaller region. 

6.4 Validation 

In order to validate the model, a geometry representative of an actual PET fibre/RF 

aerogel composite was created. 

The same heat flow meter used in the previous section to obtain an overall 

conductivity was also used to produce a set of data relating the temperature to the 

thermal conductivity of the sample. This was done as the temperature is capable of 
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being adjusted without having to produce specifically designed fibre blankets; 

whereas any other property of the composite blanket would require a significant 

amount of time to produce due to the length of the sol-gel process. 

The standard testing conditions for this were a compressive load of 13.8kPa, and a 

temperature difference of 20°C between the hot and cold plates of the heat flow meter. 

The test was done at the mean temperatures indicated in Table 6.9. 

 

Table 6.9: Experimental results for the PET fibre/RF aerogel composite blanket 

Mean Temperature (°C) Thermal Conductivity (mW/mK) 

-20 17.54 

-10 18.24 

0 19.25 

10 20.06 

20 21.05 

30 21.93 

40 22.83 

50 23.79 

60 24.80 

70 25.99 
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Figure 6.11: FEA geometry used for the simulation; the box around the fibres was 

treated as an aerogel/air mix of appropriate conductivity. 

 

The geometry used to model the aerogel composites is shown in Figure 6.11, and 

consists of a 200µm sided matrix containing 23 curled fibres. The matrix was given 

properties consistent with either the parallel or series model derived thermal 

conductivity, shown in Figure 6.1. The boundary between the fibres and the simulated 

aerogel was treated as having infinite thermal conductivity, that is to say, the 

interfacial layer poses no resistance to heat transfer through it. 

As the simulations were done in ANSYS Mechanical, the exact element types were 

not specified for the meshing process. The mesh settings used are listed in Table 

6.10, with all other mesh settings being kept as the default settings. This produced a 

mesh containing 745k elements, with 1.15 million nodes, with approximately 74% of 

them representing the aerogel. 
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Table 6.10: Mesh settings used in the validation 

Parameter Value 

Relevance -40 

Size Function Proximity and Curvature 

Smoothing Low 

Transition Fast 

Span Angle Center Fine 

 

In order to ensure the heat flow through the much thinner FEA sample was the same 

as the heat flux through the larger blanket, Fourier’s law of conduction was applied, 

and the two heat fluxes equated to each other, which is shown in Equation (73). Since 

the conductivity of the experimental blanket can be assumed to be equivalent to the 

conductivity of the simulation, that term can be neglected; and since the size of the 

simulation sample is already known, the temperature difference across it to produce 

the same mean temperature as the experimental data can be found. 

 
𝑘𝑒

∆𝑇𝑒

𝐿𝑒
= 𝑘𝑠

∆𝑇𝑠

𝐿𝑠
 

(73) 

This calculation indicates that a temperature difference of 0.658°C across the sample 

would be representative. This means that to replicate a mean temperature of 20°C in 

the experimental data, the upper and lower temperature constraints in the model 

would be 20.329 °C and 19.671°C, respectively. The sides of the box were treated as 

being perfectly insulated, which is generally unrepresentative but should not introduce 

significant errors as the principlal heat transfer direction is vertically. 
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Figure 6.12: Comparison of the Experimental results with those obtained via the 

FEA using thermal conductivity values derived from the series and parallel models 

 

The results of the simulation are shown graphically in Figure 6.12, and in tabulated 

form in Table 6.11. While both models are overestimating the conductivity, the series 

model conductivity is significantly more accurate and reaches values within 10% of 

the experimental values. The parallel model conductivity is a lot less accurate, only 

being within approximately 40% of the experimental conductivity on average. This is 

somewhat to be expected: the derivation of it in Figure 6.1 implies that, as it is much 

closer to the blanket conductivity, it is overestimating the conductivity of the aerogel 

component alone. This is born out in part by the series model conductivity following 

the trend of the overall conductivity better both as an individual component and also 

when used in the full model of the blanket conductivity. 

0

5

10

15

20

25

30

35

40

45

-40 -20 0 20 40 60 80

T
h

er
m

a
l 

C
o
n

d
u

ct
iv

it
y
 (

m
W

/m
K

)

Mean Temperature (°C)

Experimental

Series Model

Parallel Model



150 
 

Table 6.11: Thermal validation results 

Mean Temperature (°C) Thermal Conductivity (mW/mK) 

Experimental Series Parallel 

-20 17.54 19.48 26.30 

-10 18.24 20.10 27.63 

0 19.25 21.11 29.30 

10 20.06 21.87 30.76 

20 21.05 22.81 32.41 

30 21.93 23.69 33.94 

40 22.83 24.55 35.50 

50 23.79 25.49 37.12 

60 24.8 26.50 38.79 

70 25.99 27.75 40.66 

 

6.5 Conclusions 

The results of the simulations behave, generally, much as expected. The validation 

results also suggest a high degree of confidence in the results: in particular, the trends 

present here are likely to be accurate even if the actual overall conductivity values are 

not. The validation results however, imply that the results should, in general, be within 

around 10% of the actual conductivity, though the nature of stochastically generated 

geometries means that there will be some variation between the results of each 

geometry even with the same variables behind the generation. 

The lower bound for the RF aerogel and the Silica aerogel consistently produced very 

similar results throughout this: this is largely due to the thermal conductivity of both 

the materials being very similar but it is a good sign that the model is not doing 
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anything hugely unexpected. The polyimide aerogel and the upper limit for the RF 

aerogel both behaved as expected in general too; with the polyimide aerogel 

producing the highest overall thermal conductivity. 

In general, the results here are mirroring the same behaviour seen in Section 3; 

though this very simple model is neglecting some important parameter such as how 

well the fibre and the aerogel will bond together to produce a composite. 

Unfortunately, this is extremely complicated to predict at the microscale level and 

would likely require carrying out molecular dynamics simulations to fully consider. This 

means it is hard to tell exactly how much of an effect the fabric blanket layup is having 

on the aerogel formation without carrying out extensive experimental testing or 

simulations to identify it. 

The validation results are behaving as expected here due to the way the two 

speculative values for the RF conductivity where derived. Since the Parallel model 

tends to overestimate the total conductivity, it will in turn tend to produce a lower 

component conductivity than the Series model. This is required because the same 

conductivities in both models would produce a higher conductivity in the Parallel 

model, so to get the same conductivity out of the Parallel model, the component 

conductivities have to be lower; and since the PET conductivity is fixed here, it means 

the RF aerogel conductivity in the Parallel model is the one that has to be lower.  

The experimental conductivity of the RF aerogel not being between the two models is 

somewhat surprising even if the series model appears to be accurately representing 

the trend in the conductivity change. It is possible that a miscalibration in the 

temperature data for the HFM is causing issues here with the mean temperature being 

slightly off. This would not have a huge effect on the experimental data but would 

affect the simulation data more due to the comparatively smaller temperature range 

that it takes place over. 
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6.6 Future Work 

This is a surface level look into the effect of combining aerogels and fibre blankets as 

a composite. The next chapter delves more rigorously into modelling aerogels than 

this one does; but there is room to combine the upcoming work with the fibre model 

to produce a more accurate simulation of an aerogel/fibre composite. This would allow 

for a better understanding of the importance of the way the structure of the aerogel 

affects the properties of the composite, and also allow investigation into how well the 

fibre/aerogel bond together, and what effect this has on the thermal conductivity of 

the whole. 

Only the thermal properties, and only those featuring one kind of fibre, were 

investigated here: a more thorough examination of the trade-off between the 

mechanical and thermal properties of the blanket, including investigation of the 

flexibility of the blanket and the effect that flexing it has on the thermal conductivity, 

could be undertaken. This would likely be most effectively done via experimental 

testing, but a dynamic physical model could allow it to be done via FEA or MD 

simulations. 
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7 Modelling of Aerogel Particle Filled Composites 

7.1 Introduction 

The influence of particles dispersed through a solid matrix was investigated. The 

purpose was to investigate whether they would be able to lower the conductivity of 

the matrix significantly and also to investigate whether this would in turn cause the 

mechanical properties of the matrix to be lowered significantly. 

Specifically, the particles under consideration here were manufactured from a larger 

block and sieved into a specific size, which means that while the shape may be 

roughly spherical, there is a distribution of particle sizes present. As a result, 

accurately modelling their size requires a model that can take this diameter 

distribution into account. 

7.2 Literature Review 

Research into embedding particles into a matrix has been studied extensively in some 

regards. The experimental measurement of the properties of these composites has 

been carried out for a wide range of materials: from cement [58] to high density 

polyethylene [59, 60] to silica aerogel based composites [61]. A focus on increasing 

the thermal conductivity is often seen (so that electrically insulating heat sinks can be 

produced) [62]. 

R.C. Progelhof, J.L. Throne and R.R. Ruetsch together carried out a relatively 

comprehensive review of theoretical models and empirical correlations that can be 

used to determine the conductivity of composites [63]. Their work shows that in 

general, simple theoretical models can produce accurate results in some conditions 

but that most are unsuited to covering every possible case. However, their work only 

considers composites where the matrix conductivity is lower than the particle 
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conductivity; namely ones where increasing the thermal conductivity of the composite 

is the desired behaviour. 

Their work partially relies on the experimental data obtained by D.W. Sundstrom and 

Y. Lee [65], which they believe to be accurate to about 3%. This was obtained using 

a thermoconductometer, which measures the conductivity of the sample based on 

how quickly heat is transferred from a hot liquid at the bottom through a silver plate, 

the sample, an upper plate and a second, different liquid. Since the temperature of 

the liquids can be determined based solely on when they carry out phase changes, 

the temperature difference is known. The conductivity can then be correlated to how 

long it takes the upper liquid to produce a set amount of vapour. The main concern 

produced by this is that the indirect nature of the conductivity measurement (since it 

is determined by a correlation with known data rather than being able to be 

determined directly) suggests a possible level of inaccuracy.  

The work of Han, Wood et al [60] is illustrative as to the properties that affect the 

thermal behaviour of a particle based composite. They experimentally measured the 

thermal conductivity of a small range of materials, and varied properties of the 

particles. One of their significant findings was that the size of the particles did not 

appear to be impactful on the conductivity significantly, with the volume fraction being 

a much more significant impactor. Further their findings suggest that a large interfacial 

mismatch in the mechanical modulus of the particles (which they correlate with the 

speed of sound through the material, which in turn is related to the ease with which 

“phonons” of thermal energy can transfer through it [66]) caused large thermal contact 

resistances. This is suggested because more mechanically dissimilar materials had a 

lower increase in thermal conductivity despite the particles having comparable or 

higher thermal conductivities. While this is definitely indicative of this being the case, 

it seems like Han et al lacks sufficient evidence to definitively prove it. 
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However, they were investigating the addition of particles to increase the thermal 

conductivity rather than decrease it, which means some uncertainty exists as to how 

the trends affect materials when the matrix is more thermally conductive than the 

particles are. 

The results showing that size of the particles not affecting the conductivity contradicts 

the work of D.P.H. Hasselman and K.Y. Donaldson [67], who found a significant effect 

on the conductivity of an aluminium matrix reinforced with silicon-carbide particles. 

Their results showed that smaller particles caused the thermal conductivity to 

decrease, with the aim of increasing the conductivity of the aluminium matrix. Figure 

7.1 is of particular interest as it shows that adjusting the particle size from 28μm to 

0.7μm caused the conductivity to drop almost in half at low temperatures. It appears 

that the largest particle size has a more significant temperature correlation than the 

smallest particle size, with the smallest behaving almost the same as the matrix with 

respect to the conductivity variation. 
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Figure 7.1: Temperature dependence of the thermal conductivity of unreinforced 

aluminium matrix and 40 vol% particulate-SiC-reinforced aluminium matrix 

composites and unreinforced matrix for a range of values of SiC particle size, from 

[67]. 

 

 It is worth noting, however, that Han et al were working with composites at a volume 

fraction of 10% to 30% when comparing the effect of changing the particle size, 

whereas Hasselman and Donaldson were working with composites at a volume 

fraction of 40%. This higher volume fraction has the potential to lead into significant 

amounts of percolation: where there are enough particles that conduction between 

the particles begins to have an important effect. At low volume fractions, it can be 

assumed the particles are not contacting, or that the contact is relatively unimportant 

to the overall thermal conductivity. However, once the percolation threshold has been 

reached, it becomes more accurate to consider the particles as a single component 

rather than a series of discrete particles. 

Ghosh, Singh and Maity [68] looked into the thermal performance of fibre blankets 

made of jute fibres experimentally using a variation on a heat flow meter design. They 

found that for crimped fibres, increasing the level of “crimp percentage”, defined as 

shown in Equation (74), led to the thermal conductivity dropping. 

 
Crimp% = 

Extended length − Initial Length 

Initial Length
 × 100   

(74) 

 

However, the method of crimping used would produce random, uncontrolled crimping 

as opposed to regular crimping. While this means it is somewhat indicative that this 

can help improve the thermal performance of a periodically crimped fibre, it is not 

definitive. They also investigated the effect of porosity on the conductivity and found 
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that increasing porosity generally led to an increase in conductivity. The range of 

porosities investigated was relatively small: from 95% to 98%, but there was a 

significant increase in conductivity from 0.378 to 0.414 W/mK. The minimum 

conductivity was also not at the lowest porosity: 95.43% has a conductivity of 

0.398W/mK, with 96.35% porosity being the 0.378W/mK value. This trend is 

interesting: theoretically, increasing the porosity here should decrease the fibre 

content and hence decrease the thermal conductivity. It is possible that the high levels 

of porosity present here mean that convection can more easily occur within the pores. 

The  Nielsen model [63, 64] is shown in Equation (75): 

 𝑘𝑐

𝑘𝑚
=

1 + 𝐴𝐵𝑣𝑝

1 − 𝐵𝜓𝑣𝑝
 

(75) 

 

Where A, B and ψ are defined as: 

 𝐴 = 𝐾𝐸−1 (76) 

 

B =

𝑘𝑝

𝑘𝑚
− 1

𝑘𝑝

𝑘𝑚
+ 𝐴

 (77) 

 
ψ = 1 + 𝑣𝑝 (

1 − 𝜙𝑚

𝜙𝑚
2 ) (78) 

 

𝜙𝑚 is the maximum packing efficiency the particles can have; and is used here as a 

measure of how efficiently the particles are packed in here. The generalised Einstein 

coefficient, 𝐾𝐸, is determined by the type of particle system that is being modelled. 

For randomly dispersed particles, 𝜙𝑚 = 0.637 and 𝐴 = 1.5 [64]. 

The Geometric mean model can be used to determine the overall thermal conductivity 

using Equation (79): 



158 
 

 𝑘𝑐 = 2𝑣𝑝 log2(𝑘𝑝)+(1−𝑣𝑝) log2(𝑘𝑚) (79) 

 

7.3 Geometry Generation 

The generation for this follows a very similar pattern to the fibre generation method. 

In order to make generating the geometry easier and the simulations to be carried out 

faster, the particles were assumed to be spherical in shape and the validation of this 

assumption depends on how aerogel powders are synthesised.  The first step in 

generating a dispersed particle geometry was to define a bounding region into which 

the particles would be placed.  

Next, a particle was generated with a random initial position and a defined radius. The 

distance from the particle to the edge of each side of the bounding region was tested 

to ensure the particle was fully within the bounding region. If it was, then it was tested 

against all the previously positioned particles to confirm that it was not overlapping 

with any of them, which was done iteratively until either all the previous particles had 

been tested or it was found to be overlapping with one particle. 

Finally, the particle was saved, and the loop started over until the volume fraction of 

particles had exceeded the desired volume fraction. At this point, a scatter plot of 

where the particles are can be generated using MATLAB, as shown in Figure 7.2. It 

should be noted that the diameter of the circle is not representative of the diameter of 

the particle. The MATLAB codes used to generate a particle-based geometry are 

included in Appendix G. 
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Figure 7.2: MATLAB scatter graph showing the particle positions after generation in 

3D, with the positions being defined in micrometres 

 

Because the particle geometry is less complex than the fibre geometry, it is exported 

as an ANSYS Design Modeller script which works by creating arcs of the same radius 

as the circles and then revolving them to produce a full sphere. Each revolve is a 

“slice material” operation, which means that a hole in the resin is produced where the 

spheres are to ensure that the two materials are not overlapping. An example of the 

geometry produced this way is shown in Figure 7.3, where the particles have been 

generated with a normal distribution for the diameter. 
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Figure 7.3: 3D geometry produced by the algorithm in Design Modeller 

 

This method is relatively simple to carry out from a computational perspective; since 

the longest calculation is an application of Pythagoras’s Theorem in 3D in order to 

work out the distance between the centres of two spheres; which can then be 

compared to the two radii to determine whether they overlap. Spheres overlapping 

were found to be a significant problem as ANSYS had difficulties meshing the 

interface between the two spheres and the matrix, since the geometry here creates a 

very thin matrix section at the point of intersection.  
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Figure 7.4: Both graphs show a histogram of the particle size so that the distribution 

of sizes can be seen; the top is at a volume fraction of 10% and the bottom is at a 

volume fraction of 40%. 
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While in general, the diameter of every particle was fixed to one single value, an 

investigation of a normal distribution centred on 50µm diameter particles was done to 

investigate the effect of the volume fraction. This led to the encountering of a 

distribution issue at higher volume fractions. Specifically, the larger particle sizes 

become progressively harder to insert as the box becomes more full of spheres, which 

is exacerbated by preventing them from touching to prevent singularities occurring at 

the very thin points in the matrix between at the point where the spheres stop 

contacting. This means that the smaller particles become easier to insert in the 

geometry and as a result, are more likely to be successfully inserted into it, which in 

turn leads to the geometry having a higher proportion of smaller particles than desired, 

as can be seen in Figure 7.4. 

 

Figure 7.5: Example temperature plot for the particles, with the air around the 

particles being hidden, the top face being constrained to 30°C and the bottom face 

being constrained to 10°C. 
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Unfortunately solving this is not straightforward using the current method of particle 

generation, as the highly random nature of particle insertion means that it is very hard 

to ensure that space is kept for larger particles to be inserted without in turn biasing 

the distribution towards more regular patterns than desired. It is possible to generate 

a histogram of the particle size distribution which allows this issue to be detected once 

the initial MATLAB script has finished running. The actual volume fraction at which 

the distribution begins to change from the desired distribution is dependent on the 

size of the spheres compared to the size of the bounding region, with relatively small 

spheres having a higher volume fraction obtainable before this becomes an issue. 

Similarly, this can be an issue when a fixed diameter is specified since it is possible 

for the geometry to become full so that no more spheres of that size can be inserted, 

which in turns means that the code will never complete. This can be limited by 

counting how many iterations have passed since the last successful particle was 

positioned and exiting once it reaches a certain amount, such as 1000. 

7.4 Simulation Setup 

7.4.1 Thermal Simulations 

The same cuboidal geometry was used here as in Chapter 3, to ensure a large surface 

area for the heat to transfer through. The radius of the particles was kept the same 

within each geometry, and the same within each set of simulations (except the 

simulations looking at the effect the radius has on the thermal conductivity of the 

samples). 

The thermal simulations for the particle-based composites looked at four matrix 

materials: Epoxacast, Polyester 41 (Poly 41), Isophthalic Polyester (Iso) and 

Orthophthalic Polyester 40 (Ortho 40). These materials were chosen by Blueshift 
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International Materials, with them all having both good mechanical properties and 

relatively low thermal conductivities. 

The particles used in this simulation were made out of AeroZero aerogel and were 

intended to replicate the effect of grinding and sieving a block of AeroZero and 

distributing the resulting particles in a composite material. Various sieve levels can be 

used to produce a range of different particle size distributions, which can be replicated 

using complex particle size distributions. These distributions were not used here so 

that the effects of varying the fibre parameters could be more easily identified, since 

the variation would cause a larger degree of ‘noise’ in the results obtained. 

 

7.4.2 Mechanical Simulations 

The samples used for the mechanical simulations, as in Chapter 4, were shaped to 

replicate standard tensile test specimens for composite materials, as shown in Figure 

7.6. The properties used to generate these samples are given in Table 7.1. The 

volume fractions are lower than anticipated here because some of the particles 

generated by MATLAB ended up failing to generate in ANSYS. For the 1% sample, 

this was only two particles, but as the number of particles in the simulation increased, 

the number that failed to generate reached 69 in the 20% sample. This increase is 

likely down to the much larger number of particles present in the simulation, since it 

means problematic geometry features such as particles overlapping, and 

particle/bounding region contact are more likely to occur. 

The particle radius was kept the same in the tests here to minimise the effect that the 

packing has and eliminate the effects of the size distribution being slightly different in 

each sample.  
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Figure 7.6: The geometry for the 20% VF sample. Note the two lines on the bottom 

left face that allow the centre to be selected as a point. 

  

Table 7.1: The properties of the geometries used in the mechanical simulations 

Volume 

Fraction (%) 

Particle 

Diameter 

(mm) 

X-Length 

(mm) 

Y-Length 

(mm) 

Z-Length 

(mm) 

# of 

Particles 

0 0.05 0.50 1.00 5.00 0 

0.96 0.05 0.50 1.00 5.00 46 

4.94 0.05 0.50 1.00 5.00 236 

9.72 0.05 0.50 1.00 5.00 464 

18.56 0.05 0.50 1.00 5.00 886 

 

The mesh settings used for this simulation are shown in Table 7.2. Due to the large 

variation in the number of particles present in the simulation, the ‘Relevance’ value 

(which controls how small the elements are) was varied across the simulations. The 
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other values were kept the same to ensure that the meshes for each simulation were 

as close to each other as possible for random geometries to be. 

Table 7.2: Mesh settings for the mechanical particle simulations 

Property Value 

Size Function Adaptive 

Relevance Centre Medium 

Transition Slow 

Span Angle Center Medium 

Automatic Mesh Based Defeaturing On 

Defeature Size Default 

 

The mesh produced for each simulation is quantified in Table 7.3. The 0% volume 

fraction sample contains far fewer elements than the other as it is topologically 

equivalent to a standard tensile test specimen and contains no spherical inclusions. 

Table 7.3: Mesh information for the individual simulations 

Volume Fraction (%) Relevance # of Elements # of Nodes 

0 0 1280 6761 

0.96 100 699501 959019 

4.94 60 654198 942598 

9.72 0 948564 1390076 

18.56 -100 5590608 8169857 
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7.5 Results 

 

Figure 7.7: Effect on conductivity as the number of pores increases; while also 

investigating how having 4 larger pores and one small one and 4 small pores and 1 

large pore change the conductivity. 

 

The first thing investigated here was the effect that simply including a series of pores 

within a geometry had on the results. In this case, a very simple set of test cases were 

produced to allow the effect of just changing the size of the pores while keeping the 

pore volume constant was considered. This lead to the results shown in Figure 7.7; 

where it can be seen that larger pores tend to produce higher overall thermal 

conductivity than smaller pores, and in turn implying that adding more particles can 

cause the thermal conductivity to drop. 
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Figure 7.8: Comparison of the effect having more pores has on the Thermal 

Conductivity 

 

This is further confirmed by the data shown in Figure 7.8, which shows the trend is 

relatively linear as the number of pores included in the 2D simulation is increased. 

This leads to the hypothesis that, in general, including spherical inclusions could 

reduce the overall thermal conductivity in a composite. 
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Figure 7.9: Comparison of the simulated thermal conductivities for three particle 

sizes with the expected upper and lower bounds for the conductivity, which were 

found using the rule of mixtures models for parallel and series composites 

 

Figure 7.10: Same comparison as in Figure 7.9 but with the Nielsen Model and the 

Geometric Mean Model added 
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The results of the simulation for a range of particle diameters are shown in Figure 7.9. 

The Upper and Lower bounds are based on the parallel and series models 

respectively (see Chapter 3). The actual particle diameters are having less of an 

impact here than the volume fraction is, with all the simulations producing pretty 

similar results at the same volume fraction. The actual results appear to be behaving 

as expected here; particularly when compared to the additional theoretical models 

present in Figure 7.10. There is a good general agreement between the simulations, 

the geometric mean model, and the Nielson model, with the geometric mean model 

appearing more accurate at lower volume fractions and the simulation results more 

accurate at higher volume fractions. 

Despite this agreement, the trends in the simulated data do not follow the trends 

present in any of the theoretical models well: the curvature is most reminiscent of the 

lower bound, while the other three models are much more linear in nature. It is, 

however, tailing off quicker than the lower bound is, so while the curve is more similar, 

it is not the same. 
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Figure 7.11: This is comparing how the addition of various fractions of aerogel filler 

to three kinds of matrix reduces the conductivity, with the conductivities being 

normalised so that the important thing is the change from 0% filler and not the 

absolute change. 

 

A further comparison of the effect the material properties have in the simulations is 

given in Figure 7.11. The data here has been normalised so that the relative 

conductivity indicates what fraction of the matrix conductivity the overall conductivity 

is: namely, a value of 1 implies the overall conductivity and the matrix conductivity are 

the same; and a value of 0.5 implies the overall conductivity is half of the matrix 

conductivity. 

The trend of all three simulations fits most closely with the lowest geometric mean 

conductivity, and indeed, while the simulations do show some variation between the 

conductivities tested, the difference is a lot more minimal than it is for the geometric 

mean model. 

In order to further validate the modelling results, they were compared to experimental 

results produced using the same experimental setup described in Chapter 3. Four 

materials were used initially: two 3 mm thick isophthalic polyester blankets, one filled 

with particles to a weight fraction of 10%; and a second experiment using two such 

blankets to give a total thickness of 6mm for the samples. It can be seen that there is 

a high degree of correlation between the modelling results and the experimental 

results, particularly for the thicker sample. This discrepancy can be partially explained 

by the relative thinness of the 3 mm sample: at this level, the surface resistance in the 

experimental results is expected to be playing a significant part in causing the thermal 

conductivity of the sample to appear lower than it is. 
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Figure 7.12: Comparison of the experimental and modelling results for the 

Isophthalic Polyester material 
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Figure 7.13: Comparison of the simulation and experimental results for Polyester 41 

 

Figure 7.14: Comparison of the simulation and experimental results for Polyester 41 
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Simulation results for the Polyester 41 are shown in Figure 7.13 and Figure 7.14. As 

before, the model is producing results very close to the experimental results; the 

general trend is not quite exact here, but it is similar. In particular, the second chart 

shows more variation in the trends in the modelled data than the experimental one, 

but it does accurately represent the bilinear relationship between the temperature and 

the conductivity shown in the experimental data. 

 

 

Figure 7.15: Comparison of the simulation and experimental results for Ortho 40 

 

As with the isophthalic polyester, the orthopthalic polyester results are relatively close, 

when the experimental and modelling results are compared (as shown in Figure 7.15). 

The simulation is continuing to overestimate the thermal conductivity here; though at 

higher temperatures, this is less of an overestimate. 
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An investigation in the thermal performance of layered composites was also, briefly, 

looked at. Specifically, carbon fibre and aramid fibres were investigated at the behest 

of Blueshift International Materials, where the materials were constructed from a 

laminate containing either 0, 9 or 18 layers of AeroZero film within it. This film is a low 

conductivity, flexible film that is approximately 5mm thick, which is added to the 

laminate to lower its overall conductivity.  

 

Figure 7.16: Comparison of simulation and experimental data for the carbon fibre 

composites 
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Figure 7.17: Comparison of simulation and experimental data for the aramid 

composites 

The results of these simulations are shown in Figure 7.16 and Figure 7.17. The 

modelling results are pretty close to the experimental results in both cases, which is 

generally predicted for the much more developed field of laminate composite 

simulation. This is particularly true for the carbon fibre composite, with slight 

discrepancies existing for the aramid, particularly at the highest and lowest 

temperatures. This discrepancy is approximately 2% at most, and generally much 

smaller, indicating the mode is accurately predicting the thermal conductivity. 
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Figure 7.18: Modelling results indicating how the mechanical properties change as 

the volume fraction changes 

 

Following the heat transfer modelling, a series of mechanical simulations were carried 

out so that the trade-off between the thermal properties and the mechanical properties 

could be identified. Figure 7.18 shows how the four main materials Young’s Moduli 

are being affected by the change in volume fraction. The trend for all four materials is 

very similar and much as expected: introducing the less mechanically stiff aerogel 

particles into the system causes the overall Young’s Modulus to drop, and more of 

them causes this effect to be larger. 

0

1

2

3

4

5

6

0 4 8 12 16 20

Y
o
u

n
g
's

 M
o
d

u
lu

s 
(G

P
a
)

Volume Fraction (%)

Epoxacast Nylon

Polyester 41 Polyester Isopthalic



178 
 

 

Figure 7.19: Normalised Young’s modulus against volume fraction 

 

 The normalised data in Figure 7.19 shows that the significant difference in the 

Young’s Modulus behaviour between the samples is largely down to the matrix 

material having different Modulus values; since the normalised data shows that all the 

materials are following the same general trend. This is to be expected due to the 

relatively simplistic way the simulation is setup, since the contact between the 

particles and the matrix is being treated as perfect: in the actual materials, the 

behaviour at the interface would be more complex as, for example, partial debonding 

can occur, and the stress transfer at the interface would be less complete. 

7.6 Conclusions 

The comparison of the simulation results in conjunction with the experimental results 

implies a high degree of confidence in the thermal conductivity simulations. As the 

analytical models for the mechanical properties show a high degree of agreement with 

the simulation results, it is likely that the Young’s Modulus predictions are accurate 

too. 
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From this we can see that the Polyester 41 sample is producing a good compromise: 

the Young’s Modulus values for it in Figure 7.18 are the highest of the four materials 

investigated at all the volume fractions while the thermal conductivity results for it in 

Figure 7.13 are some of the lowest thermal conductivity results present here. 

The trade-off for the volume fraction is more difficult to resolve it highly depends on 

just how much more important low thermal conductivity is than mechanical 

performance. 

7.7 Further Research 

As with the fibre modelling, the interface between the particles and the matrix was 

considered to be perfectly conductive and bonded: namely, there could be no 

matrix/particle separation under loading, and the heat transfer across the boundary 

was assumed to be the same. Realistically, neither of these assumptions are true, 

and a more complex modelling approach could be taken to handle the interface more 

accurately. The difficult here is experimentally determining appropriate values to 

model the interface. 

This research also considered the particles of aerogel to be perfect spheres. This is 

an approximation due to the complexity of the particle shape, and a better 

approximation could be done by allowing for example elliptical particles, or particles 

of a fully random 3d geometry. Characterising the particle shape can be done to allow 

a more representative particle distribution to be used. 

8 Macro Modelling of PiP Centraliser/Spacer 

8.1 Introduction 

The investigation in the last chapter has shown that the thermal conductivity of a 

polymer resin can be reduced by incorporating aerogels. In particular, the effect of 
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aerogels on thermal and mechanical property of the polymer resin can be well 

described by FEA and some analytical models found in the literature. It is worth noting 

that all the models presented insofar do not take into account of any change of aerogel 

in itself when it is mixed with liquid resin and subsequently immobilized after the rein 

is solidified. This is a crucial assumption and its validity will very much depend on how 

aerogels/resin composites are processed. It is perfectly possible for the resin to 

infiltrate the pores in the aerogel during mixing if the resin has a low viscosity, aerogel 

surface energy is higher and the resin, and shear force is too high. If pores can be 

preserved beyond the mixing stage, there is also a possibility of pores collapse due 

to thermal residual stress related to resin curing cycle. Clearly, these are all relevant 

to the final structure-performance of aerogel/polymer composites and would require 

a detailed investigation. However, it would also need a comprehensive experimental 

programme to properly study these above factors largely associated with material 

manufacturing and processing. Hence, this is out of scope of this current project, 

which will assume an ideal scenario where no pores filled by the resin or damaged by 

thermal residual stresses during resin cure cycle.  

It follows that the optimum material and conditions were found in Chapter 7 will be 

used to model the thermal and mechanical performance of a centraliser in this 

chapter. This allowed the predictions from that chapter to be validated, but it also 

means that their results can be validated through the use of experimental testing on 

a physical centraliser. This testing was primarily focussed on the mechanical 

performance of the centraliser, as the centraliser ended up failing under the expected 

mechanical load conditions. The current centraliser is made of casted nylon and a 

wide range of other alternative polymers filled with aerogel (e.g. AeroZero) as in the 

last chapter will be used to compare the nylon counterpart in this chapeter. 
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The experimental testing done on the centraliser used three load cycles. The first two 

are to load it to the desired loads, 200 kN and 350 kN, keep it there for five minutes 

and then release the load. Between cycles, five minutes was granted to allow the 

centraliser to relax. The loading speed used was 1mm/min. The third cycle follows the 

same steps at 400 kN except after the load has been applied for 5 minutes, an axial 

load was applied and increased until the centraliser slides onto the outer pipe; at 

which point the load is released. The force is applied in two locations, shown in Figure 

8.1, creating two load cases that are referred to as Test 1 and Test 2 throughout this 

document. 

 

Figure 8.1: The load position in the two tests; with Test 1 on the left and Test 2 on 

the right. The experimental test rig uses a circular arc that covers approximately one 

quarter of the centraliser to do the test, as opposed to a point load as these images 

suggest. 

 

Initial simulation work carried out only simulated Test 1; and the results of that 

simulation, based on the experimentally derived material properties for the DCPD, 

indicated that the centraliser would be capable of withstanding the required load. With 

this, the clearance was given to progress on to experimental testing using DCPD 
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centralisers manufactured by Subsea 7. The centraliser passed the Test 1 conditions 

at all three load levels. However, during the final loading cycle of Test 2, the centraliser 

fractured at the EHTF cut-out, as shown in Figure 8.2. A second centraliser was tested 

using the same process, which was stopped at the end of the second load cycle. At 

this point, a level of buckling and cracking had already started to happen, and the third 

load cycle was not done. 

 

 

Figure 8.2: Image of the failed centraliser, showing that it has broken at the heating 

wire cut out 

In order to determine whether the unexpected failure occurring during Test 2 was due 

to the new design of the centraliser, or the DCPD not being strong enough to 

withstand the necessary loading conditions, a series of simulations were conducted. 

The geometry used in the simulation was the same as the centraliser as shown Figure 

8.1, with an internal supporting steel ring and an externally applied force in the location 

of the applied load in both tests.  

8.2 Simulation Setup 

 



183 
 

 

Figure 8.3: Side on profile of the centraliser 

 

 

Figure 8.4: Centraliser at an angle so the EHTF cut outs can be seen more clearly; 

note also the lines on the base that allow the centre of those faces to be selected. 

 

Two sets of simulations were carried out here: the first was before the centraliser 

experiments were run and the second was a more realistic version designed to copy 

the experiments and investigate why it failed. The first set of simulations looked at a 

wide range of materials in order to investigate what the optimum composition was and 

were carried out at a lower overall force than the second set of simulations. 

Materials in the first set of simulations can be divided into two categories: particle-

based composites, and laminated composites. In the first case, AeroZero particles 
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were dispersed throughout a matrix randomly, as in the simulations in Chapter 7. In 

the second, laminated glass fibre, carbon fibre and aramid samples were modelled, 

with a variable number of thin sheets of AeroZero between layers. The materials used 

here were selected by Blueshift International Materials, and generally were expected 

to be good compromises between the thermal requirements for the centraliser and 

the mechanical performance required to ensure it can keep the inner and outer pipe 

separate through the life span of the pipeline. 

The properties used for the first set of simulations are shown in Table 8.1. The 

samples with volume fractions listed contain AeroZero particles dispersed through 

them, with 0% and 10% being included for both so that the effect adding AeroZero 

had on the composites could be understood better.  
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Table 8.1: Mechanical material properties for the initial centraliser modelling 

Material Volume Fraction 

of AZ (%) 

Young’s Modulus 

(GPa) 

Poisson’s 

Ratio 

Hydrex 0 3.25 0.35 

Hydrex 10 3.39 0.35 

Polyester Isophthalic 0 3.79 0.35 

Polyester Isophthalic 10 3.7 0.35 

Polyester 41 0 4.95 0.35 

Polyester 41 10 5.51 0.35 

Polyester 41 50 3.2 0.35 

Epoxacast 0 3.94 0.35 

Epoxacast 10 4.55 0.35 

0 Layers Glass - 3.62 0.35 

9 Layers Glass - 4.21 0.35 

18 Layers Glass - 3.61 0.35 

Glass - 26.56 0.35 

Carbon - 78.5 0.35 

Aramid - 21.41 0.35 

 

These simulations were carried out using the mesh settings listed in Table 8.2; which 

produced a mesh containing 1,462,551 elements for the centraliser geometry. 
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Table 8.2: The mesh properties used for the first set of centraliser simulations 

Property Value 

Relevance 100 

Size Function Proximity and Curvature 

Relevance Center Fine 

Transition Slow 

Span Angle Center Fine 

 

 

Figure 8.5: Experimental setup for the centraliser testing; showing the circular 

loading bracket at the top and the inner pipe and partial outer pipe, both of which act 

as supports for the centraliser during testing. 

 

The boundary conditions for the second simulation set were chosen to replicate the 

experimental setup, which is shown in Figure 8.5, as closely as possible. It can be 
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seen that the force is applied directly to the centraliser across an area that is 

approximately one quarter of the diameter of the centraliser: with the outer pipe 

supporting a large amount of the lower centraliser. In both tests simulated, the outer 

pipe was represented as a displacement boundary condition constraining part of the 

exterior of the centraliser to have no displacement in the y-direction. The inner pipe 

was simulated as being “flexible” (meaning it was allowed to deform under loading), 

while also being constrained to have no displacement in the normal direction (i.e., 

towards the centre line of the cylinder). 

Table 8.3: Elastic material properties used in the simulation; with the bulk and shear 

moduli being calculated from them (and hence not shown) 

Material Poisson’s Ratio Young’s Modulus (GPa) 

Nylon  0.3 3.71 

DCPD 0.3 2.55 

 

The elastic properties of both materials are shown in Table 8.3; however since the 

centraliser has a large force applied to it, which causes a significant amount of plastic 

deformation to occur, isotropic hardening data was added as well to allow this 

behaviour to be more accurately modelled. 



188 
 

 

Figure 8.6: The bilinear isotropic hardening data used by the DCPD during the 

simulation 

 

Figure 8.7: The multilinear isotropic hardening data used for the Nylon during testing 

 

Several isotropic models were used here, with a final settling on using a bilinear model 

for both materials. Some investigation was done in using a multilinear model for the 
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nylon, with the model being shown in Figure 8.7; however, it was decided to not use 

this as the main model as the DCPD experience significant stress reduction after yield 

which ANSYS is unable to handle as a multilinear model. A bilinear model was instead 

used, where the initial linear stage represented by the Young’s modulus was used to 

the yield point, and then a second modulus value was used to represent the change 

in material behaviour at this point. For DCPD, this is shown in Figure 8.6; and for 

Nylon, it is shown in Figure 8.7. 

Subsea 7 used a model which, after the material reached yield, levelled off so that the 

stress was constant as the strain increased. This was tested with both materials under 

both test conditions. 

The multilinear model is likely to be the most accurate model used here, with the 

caveat that it is also influenced by the effect of the testing machine compressing 

instead of the test samples. This effect is likely to be significant only at very high 

stresses where all the methods will have similar issues. However, it could not be used 

for the DCPD since the experimental results for that have a significant stress 

relaxation occurring immediately after yield. ANSYS Mechanical is incapable of 

modelling this kind of behaviour using multilinear isotropic hardening behaviours, 

since it is unable to determine what the appropriate strain to match the stress is when 

multiple strains are possible. This simplification also means that the model will 

produce significantly inaccurate results when the stress in the material exceeds 

approximately 130MPa, since the actual DCPD material begins to rapidly increase in 

stress here and the simulation is assuming a much slower increase in stress.  
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8.3  Test 1: Central Loading 

 

Figure 8.8: Diagram showing where the 250kN force was applied in Test 1; with the 

inner pipe also being fixed to no displacement in the normal direction (i.e., towards 

the centre of the pipe) 

 

Figure 8.9: Diagram showing where the lower centraliser was constrained to not 

displace in the x-direction to replicate being supported by the lower pipe. 

 

In this loading case, the outer face of the lower centraliser half was fixed so that it 

could not move in the x-direction, while a force of 250kN was applied to a large section 
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of the outer face of the upper centraliser, as shown in Figure 8.8 and Figure 8.9. The 

bolts were treated as “Flexible”, meaning that they could deform and take stresses; 

whereas the nut and washer attached to the bolt were “Rigid” because their behaviour 

should not be significant in this test. As this test is mostly looking at the effect on the 

centraliser, the bolt tightening was not considered, and neither were the threads on 

either the bolt or the nut.  

 

8.4  Test 2: Loading Across the Gap 

 

Figure 8.10: Diagram showing where the force of 250kN was applied to the 

centraliser and that the inner pipe has been constrained to 0m of displacement in 

the normal direction 

 



192 
 

 

Figure 8.11: Diagram showing how the other side of the centraliser is constrained, 

with half being fixed to 0m of displacement in the y-direction, and the bolt flange 

being fixed fully to prevent rigid body motion 

 

The inner pipe, bolts, nuts and washers were treated the same as in Test 1, with the 

exception of the bolt on the opposite side of where the load was applied, which was 

treated as “Rigid” in order to reduce the complexity of the simulation and help prevent 

rigid body motion occurring. In this case, the force of 250kN was applied in the y-

direction, with the inner pipe being fixed to no displacement in the normal direction, 

and the bottom side of the centraliser being constrained to no displacement in the y-

direction. The inner face of each side of the bolt cut out was also fully fixed to prevent 

rigid body movement occurring in either centraliser. These conditions are shown in 

Figure 8.10 and Figure 8.11. 
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8.5 Results and discussion 

Table 8.4: Summarised simulation results; showing that the DCPD generally has 

bigger stresses and strains than the Nylon does; with the difference in strain in both 

cases being very significant 

 Test 1 Test 2 

Material Model Max 

Stress 

(MPa) 

Max 

Displacement 

(mm) 

Max 

Stress 

(MPa) 

Max 

Displacement 

(mm) 

Nylon Multilinear 166 2.70 222 8.85 

Bilinear 160 2.37 240 6.28 

Trilinear 87 3.62 N/A N/A 

DCPD Bilinear 159 2.88 227 6.27 

Trilinear 99 3.11 N/A N/A 

 

The simulation results have been summarised in Table 8.4.  The multilinear and 

bilinear models for the nylon are producing relatively similar results, which suggest 

that the bilinear model is a reasonably accurate way to represent the material 

properties here. The difference between Test 1 and Test 2 is huge here: it is very 

apparent that Test 2 is a significantly harder to past test; and both materials are 

experiencing a large amount of stress that is very likely to cause them to fail in this 

load condition. 
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Figure 8.12: Comparison of the maximum stress in the centraliser (probed value); 

and the stress distribution at the cut out where the centraliser is thinnest; with the 

nylon centraliser on the left, and the DCPD one on the right. The slice used for this 

comparison is not at exactly the same place, which contributes to some of the 

differences in the geometry and stress in the two images. 

 

In Figure 8.12, the difference in the stresses at the region of the centraliser where the 

cut out for the heating wires and the cut out for the bolt to be attached are shown. 

Both centralisers are experiencing a similar stress distribution, with low stresses on 

either side of the bolt cut out, and a high stress band in seen on the far side of the 

centraliser at the cut out there. 
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Figure 8.13: The DCPD centraliser in Test 2 load conditions, angled to allow a better 

view of the overall geometry than in Figure 8.12 

8.6 Conclusions 

The results indicate that the DCPD is likely to be stronger in Test 2 load conditions 

than the nylon is. The bilinear model used in both simulations treats the plastic 

deformation as being linear which is only approximately true, and only approximately 

true for relatively small stresses (up to around 130 MPa). Due to the stress relaxation 

in the DCPD under experimental conditions, this second linear section ends up 

indicating a higher amount of strain occurs for the same stress. This is reflected in the 

very similar amounts of displacement experienced in both materials while the DCPD 

also experiences significantly less stress. 

 It is clear that Test 2 goes significantly beyond the point where the experimental data 

remain reliable when the equipment fixture itself has a dominate effect on the 

measured stiffness. Using material data in such a large strain range will artificially 

cause higher stress level and in turn pre-mature failure. Thus, the material data after 

yield is likely to lead to underestimated  structure integrity. Nevertheless, this is in turn 
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leads to the conclusion that the simulation is showing both materials would fail under 

the provided load conditions as observed in the actual tests. 

The trilinear stress-strain behaviour adopted in the simulations further this: the 

successful solving of Test 1 is indicative that both materials would pass this test. The 

inability of Test 2 to solve is indicative that neither the Nylon nor the DCPD would 

pass this test since it is clear the stress is high enough to take it into the constant 

stress zone, which in this model is generally considered to be a failure. 

The simulation data is showing a larger amount of maximum deformation than the 

experimental results have. However, it is unclear whether this is because of the 

simulation exaggerating the deformation or because the deformation of the actual 

centraliser is only measured at a single location. This means it is not necessarily an 

accurate measure of the full deformation experienced in the centraliser. It is also 

plausible that the simulated inner pipe is deforming more than the inner pipe in the 

experimental setup, and hence allowing the centraliser to deform more in the 

simulations. This does imply that the stress and strain values reported here may be 

inaccurate, but since both materials are experiencing the same load conditions in the 

simulation, the results can be interpreted comparatively at minimum since the effect 

of the inner pipe is standardised between them. 
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9 Conclusions 
 

Chapter 1 has shown that there is an emerging demand for high-performance 

insulation materials that can be adopted in a wide range of applications. The current 

high-performance insulation strategies are constrained by a few options commercially 

available including vacuum insulated panel and rigid porous plastic. Aerogels present 

an exciting avenue in the field of passive heat insulation but their implementation has 

not been extensively explored in different applications. The deep-sea operations (e.g. 

oil & gas extraction) have provided a timely opportunity to study key material design 

parameters underpinning some novel concept of aerogel composites including fibre-

reinforced aerogel and aerogel particle filled polymer.    

Chapter 2 has summarised a number of common technical aspects involved in the 

development of aerogel composites for thermal applications. It spans from basic 

thermodynamic framework to design principles in anisotropic materials. It is can be 

seen that the literature in this area is quite scarce because in part aerogel composite 

is still a largely under development and material internal structure is complicated by 

dissimilar materials constitution with a significant amount of nano-to-micro scale pores 

randomly dispersed throughput the solid phase.      

Chapter 3 has shown that a robust simulation method has been produced, through 

which the behaviour of two fibre types can be independently modelled and produce 

results that, per the validation carried out, appear to be accurate within 10% in 

general, though it is unclear how accurate this is when extrapolated over the full range 

of parameters that can be varied.  

The optimal thermal performance here was achieved when the fibres where at a low 

volume fraction, with a large degree of in-plane randomness but no out-of-plane 

randomness. The diameter and fibre length both contributed relatively little to the 
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thermal properties, though it is possible that the simplicity of the simulation here is 

eliding their effect. 

Chapter 4 indicates that increasing the volume fraction of the composites improves 

their mechanical performance: meaning that the trade off between the mechanical 

and thermal performance is very dependent on the volume fraction of the composites. 

To a lesser extent, the orientation negatively effects the mechanical performance, with 

more fibres being aligned in the direction the force is applied in being beneficial 

mechanically, but detrimental thermally. 

Chapter 5 investigated the effect mixing the straight and curled fibres together had on 

the overall properties of the composite. It was found that the curled fibres performed 

worse thermally than the straight fibres did, though it is believed that the mechanical 

performance can be increased when sinusoidal fibres are introduced. This is caused 

by the greater degree of mechanical interlinking that adds further rigidity to the fibre 

composite. 

Chapter 6 investigated how basic fibre/aerogel composites behave, indicating that in 

general, the same design considerations identified in Chapters 3 and 4 apply to 

aerogel/fibre composites too. 

Chapter 7 demonstrated that aerogel particles could be reasonable approximated 

using spherical inclusions. In addition, the effect of increasing the volume fraction and 

adjusting the diameter distribution of the inclusions was simulated, showing that the 

diameter distribution does not have a huge effect on the results but that the volume 

fraction does. In particular, a higher volume fraction leads to better thermal 

performance but degraded mechanical performance, which is much as expected. 

Chapter 8 investigated bulk modelling of the centraliser design, and showed that the 

failure of the centraliser was likely a combination of the new material being weaker 
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than the old material and the new centraliser design featuring more significant stress 

concentrations than the old design, leading to the failure experienced in the 

experimental testing. It is believed, though not proven, that the reduction in the 

material properties was merely a contributing factor and not the root cause of the 

failure. 
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10 Future Work 
 

The results obtained from this project have constructed an initial framework with the 

ability to manipulate individual fibres spatially. This has enabled the possibility to 

investigate several key fibre parameters to form a variety of fabric architectures 

ranging from regular fibre packing typically found in high-performance fibre reinforced 

composites to more chaotic fibre arrangement in nonwoven fibrous insulation 

products. Consequently, this work opens up a great many opportunities for analytical 

and design operations in both cases. 

Future work can build on this to further improve the modelling approach and expend 

the capability of this computational tool for wider exploitation. The following areas 

desire more studies. 

1) The algorithm and codes developed in this work have some limitations. For 

instance, the method of generating fibres in a defined volume has an intrinsic 

issue of tightly controlling fibre volume fraction. Although this does not 

necessarily present a problem of varying fibre content as seen in this project, 

it can make parametric study more consistent by strictly controlling the fibre 

content as the most influential material parameter for final property.  

2) There are some simplifications made throughput this work. For example, 

curled fibres are set to follow a mathematically scripted pattern. In reality, this 

is most likely not to be the case based on the fact of how these fibres are 

manufactured. Future work on this can take on a more statistical approach 

and bring in some random element to fibre shapes. 

3) With respect to the aerogel particle filled polymer, the aerogel modelling relied 

on either bulk aerogel or spherical particle approximations, whereas 

realistically aerogel composites would not strongly resemble either of these 
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cases. As a result, a more in-depth treatment of aerogel particle filled polymer 

could be carried out by implementing a distribution of particle size and shape.  

4) In addition, a lot of the mechanical investigation was focussed on the Young’s 

modulus of the samples; but a deeper investigation into failure could be carried 

out. This would involve determining what appropriate failure conditions are in 

the samples. However, this is difficult to achieve in all cases, for example: in 

the particle filled composites case, a single particle getting crushed does not 

necessarily mean that the entire composite fails, particularly if the aim is good 

thermal performance, in which case a more complex simulation that accurately 

models the behaviour of the aerogels would be necessary so that a coupled 

thermal/mechanical simulation could be carried out and the point where the 

mechanical degradation of the material causes a significant increase in the 

thermal properties can be found. 

5) There are, indeed, some cases here where the Young’s Modulus was not 

investigated: in particular, the mixed fibre composites. These simulations 

could be carried out to fill in the data and determine better what the trade-off 

is in that case.   
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A Derivations 

A.1 Fibre Final Position 

The initial point of each fibre is initially assumed to be (0,0,0) to simplify the 

calculation; the end point is then sifted relative to (0,0,0) based on the position of the 

initial point. The length of the fibre in 3D can be calculated entirely from the position 

of the final point in this case, as per Pythagoras’s theorem in three dimensions:  

 𝑙 = √𝑥2 + 𝑦2 + 𝑧2 (80) 

The in plane (𝜃IP) and out-of-plane (𝜃OOP) angles can be related to the final point 

positions using two-dimensional trigonometry as shown: 

 𝑦 = 𝑥 ∙ tan(𝜃IP) 

𝑧 = 𝑥 ∙  tan(𝜃OOP) 

(81) 

Substituting these two identities in allows us to rearrange Equation (80) into a form 

that allows us to calculate 𝑥 as shown: 

 

𝑥 =  √
𝑙2

1 + tan(𝜃IP)2 + tan(𝜃OOP)2
 

(82) 

This calculation always produces a positive 𝑥 value, when in reality a negative 𝑥 value 

is just as acceptable and as a result, at the end of the final position calculation, there’s 

a 50% chance that the 𝑥-coordinate will be flipped and become negative. Once the 𝑥 

value is known, Equation (81) can be used to calculate the 𝑦 and 𝑧 values, which are 

then added to the initial (𝑥, 𝑦, 𝑧) co-ordinates to get the actual position of the final point. 

B Fibre Rotation 
 

Some work was one on rotating the fibres upon reaching this point. Specifically, the 

point of contact was considered to be a “pivot point” and the length of the fibre on 
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each side of the pivot computed. The longer side was then lowered until it collided 

with either another fibre or the bottom of the bounding region. This presented some 

problems with significant fibre overlap occurring at the pivot location; and the 

calculation for where the fibre hits the bottom of the bounding region turned out to be 

extraordinarily complex and required solving using Maxima, an open source program 

for doing symbolic maths in. The solution provided by it can be calculated using 

MATLAB code fairly easily despite the complexity. The fibre overlap was a more major 

factor in not using the code, because it made actually generating a fibre mat in APDL 

very challenging as it was not well suited to this level of complexity. Also no consensus 

was reached on the appropriate action to take when the fibre was both too high in the 

geometry for the rotation to allow it to touch the bottom of the region but also did not 

have a fibre below it, meaning that the current model just leaves it where it is instead 

of rotating it. 
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C Fibre Generation 
 

%% WARNING: this script overwrites the csv files for the fibres silently 
  
% Introduction 
% 
% This code will generate a fibre distribution inside a 3D cuboid bound between 
two points. All the variables are defined in this script, so it takes no 
% arguments and produces a range of outputs. It creates two main outputs: a 
CSV file parsable by APDL so that APDL can reproduce the fibre 
% distribution; and a 3D scatter plot showing each of the fibres as a different 
line. The fibre matrix and other set variables are accessible once the 
% script has finished running. This scatter plot doesn't include the diameter of 
the fibres, so checking whether excessive fibre overlap is occurring is difficult 
% to do until the geometry is imported into APDL. 
  
% Data on each fibre is stored in a separate row of the "fibre" matrix. This stores 
the following information: the fibre number, the fibre diameter, the [x,y,z] 
% co-ordinate of each end point of the fibre and the length of the fibre. The fibre 
number is constant (i.e., the 206th fibre to be generated will always be 
% numbered 206) and so it doesn't always correspond to number of the row in 
the fibre matrix. The diameter also never changes; but the positions will (almost 
certainly) change 
% during clipping and when moving the fibre. Also, the length can change if the 
fibre is shortened by clipping. 
  
% The generation process follows a four step process: 1) Generate a fibre 
initially, with a random length, diameter and single endpoint. The orientation is 
% randomised and the other end point is found using the length of the fibre and 
two angles. 2) Find the closest fibre vertically below the new fibre, and move the 
new fibre 
% to be in contact with it. 3) Clip the fibre to the bounding box, and recalculate 
the length. 4) Delete any fibres completely out of the box or which are too 
% short. 
  
% In order to reduce the number of fibres checked for intersection, a quadrant 
system is used. Specifically, for each fibre the intersection points with the x 
% and y axis are calculated, and then checked to see which quadrants the fibre 
is in. If the fibre is wholly in one quadrant, then this is also detected.  This 
% is one of many really cool things the code does. 
  
% Once the generation process has finished, we proceed to produce an APDL file 
to generate a full 3D geometry of the fibres, which can be used to run 
% simulations on the fibres. This file is saved in one of two places. If the folder 
the script is in was added to MATLAB’s path, then it will be saved in the 
% $USER/Documents/MATLAB folder. If the folder the script is in is set as the 
folder (the 'Change Folder' option), then it will be saved in that folder. 
% Rerunning the script will overwrite this file, as long as it isn't currently in use 
by another program. 
  
% At the end of the generation process, the volume fraction is also calculated 
using two different methods. The first is the 'Volume Counting' method, where 
the 
% volume of each fibre is added up and the ratio of the fibre volume to bounding 
region volume is calculated. The second is the 'Monte Carlo' method, where 
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% random points are generated and then tested to see if they're on a fibre. The 
first method is very quick to calculate, but tends to overestimate the volume 
% fraction, since some fibre overlap is created to improve the accuracy of 
thermal insulation. The 'monte Carlo' method is much slower, but more accurate. 
The 
% difference between the two methods can be as much as 10 times. 
  
% The script uses a range of functions originally written by other people, which 
were modified to work better for our uses. 
% 'lineSegmentIntersect.m' was originally produced by  U. Murat Erdem, and 
released under the BSD license. The original source is found here: 
% http://uk.mathworks.com/matlabcentral/fileexchange/27205-fast-line-segment-
intersection 
% It has been modified to use only two line segments, instead of a series of line 
segments, and also so that it calculates the distance in the z-direction 
% between two cylinders which intersect in the x-y direction. Also, the output has 
been changed to only be either the distance or 0 rather than a range of 
% information about the intersection. 
  
% 'clipped_line.m' was originally produced by Peter Krushe, and can be found 
here: http://www.mass-communicating.com/code/2013/05/12/line-clipping.html 
% This is a matlab implementation of the Liang-Barsky clipping algorithm. The 
version used doesn't plot the results; and also outputs a single vector of the 
% results instead of two vectors. 
  
  
%Generation conditions 
%---------------------------------------------------------------------------------------------------------------
------------------------------------ 
% Basically just so I can easily check whether I've run the script to test changes 
etc. 
disp(datestr(now)) 
  
% Fibres to generate; includes deleted fibres but not vertical fibres. 
numfibres = 3000; 
  
% Vertical fibres to generate. Due to the largely uncontrolled manner of fibre 
generation, the actual number of vertical fibres will be less. 
vertfibres = 0; 
  
totfibres = numfibres+vertfibres; 
  
% Boolean tolerance for APDL. 
btol = 2e-8; 
  
% Tolerance for MCVF calculation. 1e-5 seems to be a good level to have this at, 
since the results look accurate and don't take much time to obtain. 
mctol = 1e-5; 
  
%[smallest,biggest] for next two arrays 
% fibrediameterrange = [70e-6, 70e-6]; 
% fibrelengthrange = [2e-2 2e-2]; 
  
  
% [mean value, %deviation] for next two arrays; used to generate a normal 
distribution centred on first value with a standard deviation equal to the second 
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% value percent of the first (e.g, [10, 1] would generate a normal distribution at 
10, with a standard deviation of 1% of 10, or 0.1). 
  
gffibrediameterrange = [8e-6, 0]; 
  
petfibrediameterrange = [8e-6, 0]; 
  
% Multiply actual diameter by this to account for crimping; basically we spend a 
lot of time treating the PET fibres as being the fake diameter so that we can 
% ignore the curved shape of the fibres, which is hella complicated, until we 
actually need to make them curved. 
fakepetdiameterinc = 10; 
  
% Number of crimps. Less realistic, easier coding. 
crimps  = 10; 
  
% Ratio of glass fibres to total fibres. Note that since some fibres are deleted, the 
actual ratio will vary. It's possible that one kind of fibre is easier to 
% fit into the bounding region than the other, so this value may be very 
inaccurate but this is usually only the case when very few fibres are generated. 
  
% Note that you may need to manually edit the code if this is either 0 or 1 to 
ensure the right fibre type is inserted first. Otherwise, it doesn't matter which 
% is first. 
  
gfr = 1; 
  
% Planeangle is the range of allowed in-plane angles. Specifically, this is the 
angle between the x-axis and the fibre in the x-y plane. 
% Specified as two angles.i 
planeanglerange = [0 pi*2]; 
  
% Inclination is the out-of-plane angle of each fibre. Measured in radians. 
Specifically, an inclination of 0 is 'horizontal' (i.e, z is constant along the fibre 
length), and an inclination of pi 
% is 'vertical' (i.e, x,y are the same and only z varies along fibre length). 
% Specified as an angle and a percent standard deviation. 
inclination = [0 0]; 
  
% 3D cuboid region of the form [x1, y1, z1, x2, y2, z2]; specifying diagonally 
opposite corners. Note that the first point has to be [0,0,0] for the block 
% calculation to produce an air block encolosing the fibres. 
boundingregion = [0,0,0,4.5e-3,4.5e-3,4.5e-3]; 
flips = 0; 
  
% Note that fibres are deleted if they are too short compared to the first number. 
This means that if it is much larger than the size of the bounding box, 
% most/all of the fibres will be deleted. 
brr = 2; 
  
gffibrelengthrange = [brr*boundingregion(5), 5]; 
% gffibrelengthrange = [brr*20, 0]; 
petfibrelengthrange = gffibrelengthrange; 
  
% Calculate the actual standard deviation rather than % deviation. 
% % deviation is used because it makes having some variation easier to do when 
varying parameters since it doesn't need to be recalculated. 
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% The actual deviation is more useful though, since we can use it as an RNG 
parameter. 
gfdiamstd = gffibrediameterrange(1)*(gffibrediameterrange(2)/100); 
gflengthstd = gffibrelengthrange(1)*(gffibrelengthrange(2)/100); 
petdiamstd = petfibrediameterrange(1)*(petfibrediameterrange(2)/100); 
petlengthstd = petfibrelengthrange(1)*(petfibrelengthrange(2)/100); 
  
  
% Minimum allowable fibre length. Short fibres tend to force a higher density 
mesh (at least on that fibre) while also not contributing much to the overall heat 
% transfer (since they're likely to only be in contact with one other fibre). 
% Currently, we just use one minimum length; but we can expand to two if that is 
necessary. 
% minlength = min(gffibrelengthrange(1),petfibrelengthrange(1))/5; 
% minlength = gffibrelengthrange(1)/4; 
minlength = boundingregion(6)/2; 
  
% Fibre generation is centered on the centre of the bounding region, so we 
ensure that the density doesn't drop off at the edges by generating fibres over a 
% larger area than the size of the x-y plane of the bounding region. This controls 
how much larger that area is. 
fuzzfactor = 0.5; 
  
% Ensure that the fibre is definitely completely out of the bounding region, and 
that all the generated fibres will be once they're stacked. 
% This is mostly useful when the fibres are horizontal, so that the Liang-Barsky 
clipping algorithm is used, since the 3D clipping algorithm will clip in the 
% z-direction as well. 
initialheight = 10*boundingregion(6); 
  
%Preinitialise fibre and deletion matrices for maximum speed. Note that the 
deletion matrix is initially set to the maximum possible size, since the number of 
%fibres to be deleted is unknown. 
fibre=zeros(totfibres,10); 
% fibretop=zeros(totfibres,12); 
deletion = zeros(totfibres,1); 
  
% Pre-allocate quadrants for speed. 
quadrant1 = zeros(totfibres,1); 
quadrant2 = zeros(totfibres,1); 
quadrant3 = zeros(totfibres,1); 
quadrant4 = zeros(totfibres,1); 
  
% Pre-calculate quadrant boundaries 
qbx = (boundingregion(4)-boundingregion(1))/2; 
qby =  (boundingregion(5)-boundingregion(2))/2; 
  
origfibre = zeros(size(fibre,1),size(fibre,2)); 
lengdel = 0; 
clipdel = 0; 
  
gfvol = 0; 
totvol = 0; 
  
gfcount = 0; 
totcount = 0; 
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impossiblecount = 0; 
screwyrotation = 0; 
% Generate geometry 
%---------------------------------------------------------------------------------------------------------------
------------------------------------ 
for iter=1:totfibres 
    % Randomly generating the diameter and length based on the min/max 
diameter and length. 
     
    %   diameter = randb(fibrediameterrange(1),fibrediameterrange(2)); 
    %   length = randb(fibrelengthrange(1),fibrelengthrange(2)); 
    % Generate two initial angles, indicating the angle between x and y,z. 
    initialanglexy = randb(planeanglerange(1), planeanglerange(2)); 
     
     
    % We want to generate the specified number of fibres using the standard fibre 
generation parameters (so, specified inclination, slightly larger bounding 
    % region). We also want to generate a small number of vertical fibres to 
represent the needle punched fibres. 
    if iter <= numfibres 
        % Generate fibres initially either inside or just outside the boundingregion, 
so that some fibres can start outside and enter the region. Weighted so that 
        % the centre of the bounding region should correspond with the average 
initial position. Both PET and Glass can be generated this way. 
        initialposition = [randb(-
fuzzfactor*boundingregion(4),(1+fuzzfactor)*boundingregion(4)),randb(-
fuzzfactor*boundingregion(5),(1+fuzzfactor)*boundingregion(5))]; 
        initialanglexz = randb(inclination(2),inclination(1)); 
        if gfvol/totvol <= gfr || isnan(gfvol/totvol) == 1 
%       if gfvol/totvol < gfr 
            maxdiameter = abs(gfdiamstd*randn(1)+gffibrediameterrange(1)); 
            length = gflengthstd*randn(1)+gffibrelengthrange(1); 
            % 0 ==> same as max, not that the real diameter is 0. This is just 
because PET fibres are complicated and I use two diameters to describe them. 
            realdiameter = 0; 
            gf = 1; 
        else 
            realdiameter = abs(petdiamstd*randn(1)+petfibrediameterrange(1)); 
            length = petlengthstd*randn(1)+petfibrelengthrange(1); 
            maxdiameter = fakepetdiameterinc*realdiameter; 
            gf = 0; 
        end 
        % The end point is constrained by two angles and a length. The relation 
between the three distances and the length is found using pythagoras's theorem, 
and basic 
        % trigonometry can be used to related the angle between x and y with the 
lengths. This gives a system of three equations which can be solved 
simultaneously 
        % for x,y and z 
        a = 1+tan(initialanglexy)^2+tan(initialanglexz)^2; 
        finalposition(1) = sqrt(length^2/a); 
        finalposition(2) = finalposition(1)*tan(initialanglexy); 
        finalposition(3) = finalposition(1)*tan(initialanglexz); 
         
        % The x-position is always positive. So, generate a random float between 0 
and 1 and if it's above 0.5, then we flip the sign. This means that approximately 
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        % 50% of the time, the x-position becomes negative. The other values can 
be negative if need be. 
        if rand(1) >= 0.5 
            finalposition(1) = -finalposition(1); 
        end 
         
        %The final position is currently relative to (0,0,0). Add in the initial position 
so that we can get accurate results. 
        finalposition = [finalposition(1)+initialposition(1) 
finalposition(2)+initialposition(2) finalposition(3)+initialheight]; 
    else 
        % These are the only different lines between the two fibres, since we want 
to add the needlepunch fibres in the same way; and also clip them to be in 
        % the box as well. This ensures that the fibre doesn't clip through other 
fibres as well. 
        % Needlepunch vibres are verticle, so force them to be within the bounding 
region in the x-y direction. 
        initialposition = 
[randb(boundingregion(1),boundingregion(4)),randb(boundingregion(2),bounding
region(5)),boundingregion(6)+initialheight]; 
        % Verticle fibre ==> fixed angle of pi/2. 
        initialanglexz = pi/2; 
        realdiameter = 0; 
        length = gflengthstd*randn(1)+gffibrelengthrange(1); 
        finalposition = [initialposition(1:2), initialposition(3)+length]; 
        maxdiameter = abs(gfdiamstd*randn(1)+gffibrediameterrange(1)); 
        gf = 1; 
    end 
    % Add all the fibre data together to produce the fibre data, without calculating 
where the fibre is vertically 
    
fibre(iter,:)=[iter,maxdiameter,initialposition(1),initialposition(2),initialheight,final
position(1:3),length,realdiameter]; 
     
    if fibre(iter,10) == 0 
        fibretheta = 90-atand((fibre(iter,8)-fibre(iter,5))/(fibre(iter,6)-fibre(iter,3))); 
        a = fibre(iter,2)/2*sind(fibretheta); 
        b = fibre(iter,2)/2*cosd(fibretheta); 
    end 
     
    % Figure out where the fibre crosses the quadrant boundaries. Note that we 
go really far out the bounding region to ensure that we can split everything into 
    % four quadrants accurately; which is basically because this needs a finite 
distance but we want infinite separation. 
    [~,yint] = polyxpoly(fibre(iter,[3,6]),fibre(iter,[4,7]), [qbx qbx], [-
100*boundingregion(5), 100*boundingregion(5)]); 
    [xint,~] = polyxpoly(fibre(iter,[3,6]),fibre(iter,[4,7]), [-100*boundingregion(4), 
100*boundingregion(4)], [qby, qby]); 
     
    % No intersection with quadrant walls --> Wholly in one quadrant. Compare 
x,y co-ordinates with quadrant boundaries to determine which quadrant. 
    if isempty(yint) && isempty(xint) 
        if fibre(iter,3) > qbx 
            if fibre(iter,4) > qby 
                quadrant1(iter) = 1; 
            else 
                quadrant4(iter) = 1; 
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            end 
        elseif fibre(iter,4) > qby 
            quadrant2(iter) = 1; 
        else 
            quadrant3(iter) = 1; 
        end 
    else 
        % Only two checks are required since a straight line can't cross both the 
+ve and -ve sides of one axis. 
        % If it crosses the +ve y axis, then it must be in quadrants 1 and 2. If -ve y-
axis, then 3 and 4. 
        if yint > qby 
            quadrant1(iter) = 1; 
            quadrant2(iter) = 1; 
        elseif yint < qby 
            quadrant3(iter) = 1; 
            quadrant4(iter) = 1; 
        end 
        % +ve x ==> quadrants 1 and 4. -ve x ==> quadrants 2 and 3. 
        if xint > qbx 
            quadrant1(iter) = 1; 
            quadrant4(iter) = 1; 
        elseif xint < qbx 
            quadrant2(iter) = 1; 
            quadrant3(iter) = 1; 
        end 
    end 
    % Set the minimum distance to a large number and closestfibre to 0 so that 
any closer fibres are counted and the right fibre is used for the height 
    % calculation 
    mindistance = 3000000; 
    closestfibre = 0; 
    %   % This loop figures out where the closest fibre is, if it exists, and then 
positions the next fibre above it 
    for x = 1:iter-1 
         
        % Check whether the fibres intersect (2D, so we're ignoring the fact that 
one fibre will be much higher than the other) 
        % First, figure out if the two fibre share at least one common quadrant. If 
not, then they can't intersect. 
        if (quadrant1(x) == 1 && quadrant1(iter) == 1) || (quadrant2(x) == 1 && 
quadrant2(iter) == 1) || (quadrant3(x) == 1 && quadrant3(iter) == 1) || 
(quadrant4(x) == 1 && quadrant4(iter) == 1) 
            if fibre(iter,5) == fibre(iter,8) 
                [y,xint,yint,zint] = 
lineSegmentIntersect(fibre(iter,3:8),fibre(x,3:8),fibre(iter,2)/1.8,fibre(x,2)/1.8); 
            elseif fibre(x,10) == 0 && fibre(iter,10) == 0 
                [y,xint,yint,zint] = 
lineSegmentIntersect(fibre(iter,3:8),fibre(x,3:8),fibre(iter,2)/1.8,fibre(x,2)/1.8); 
            elseif fibre(x,10) ~= 0 && fibre(iter,10) == 0 
                [y,xint,yint,zint] = 
lineSegmentIntersect(fibre(iter,3:8),fibre(x,3:8),fibre(iter,2)/1.8,fibre(x,10)/1.8); 
            elseif fibre(x,10) == 0 && fibre(iter,10) ~= 0 
                [y,xint,yint,zint] = 
lineSegmentIntersect(fibre(iter,3:8),fibre(x,3:8),fibre(iter,10)/1.8,fibre(x,2)/1.8); 
            elseif fibre(x,10) ~= 0 && fibre(iter,10) ~= 0 
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                [y,xint,yint,zint] = 
lineSegmentIntersect(fibre(iter,3:8),fibre(x,3:8),fibre(iter,10)/1.8,fibre(x,10)/1.8); 
            end 
        else 
            % No shared quadrants ==> no intersection. 
            y = 0; 
        end 
        if y ~= 0 
            %The previous if statement should determine whether there's an 
intersection (non-zero y) or not; 
            if y < mindistance 
                % Fibre x is the current closest fibre. So now we record which one it is, 
and the distance to it. 
                closestfibre = x; 
                mindistance = y; 
                pivx = xint; 
                pivy = yint; 
                pivz = zint; 
            end 
        end 
    end 
    % No closest fibre 
    if closestfibre == 0 
        % x is set as the minimum fibre height. 
        x = boundingregion(3)+fibre(iter,2)/2; 
        % Figure out which end of the fibre is closer to being at the minimum 
height, then how far it has to move to get there 
        [~,tmp] = min(fibre(iter,[5,8])); 
        if tmp == 1 
            change = fibre(iter,5) - x; 
        else 
            change = fibre(iter,8) - x; 
        end 
        % Finally, move both ends of the fibre the same distance. This should 
preserve the fibre gradient while translating it as far downwards as allowed 
        fibre(iter,5) = fibre(iter,5) - change; 
        fibre(iter,8) = fibre(iter,8) - change; 
    else 
        % Mindistance tells us how close the nearest fibre is vertically. Move the 
new fibre by the separation distance. 
        fibre(iter,5) = fibre(iter,5)-mindistance; 
        fibre(iter,8) = fibre(iter,8)-mindistance; 
        pivratio = 
(vecleng3d([fibre(iter,3:5),pivx,pivy,pivz])/(vecleng3d(fibre(iter,3:8)))); 
    end 
     
    origfibre(iter,:) = fibre(iter,:); 
   
    % Applying boundary region 
    %-----------------------------------------------------------------------------------------------------------
------------------------------------------------ 
     
    [fibre(iter,:), deletion] = clip(fibre(iter,:),[boundingregion(1:3)-
boundingregion(4)/100,boundingregion(4:5)+boundingregion(4)/100 
boundingregion(6)],minlength,iter,deletion);    
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    % Move deleted fibres away from the region of interest. This prevents other 
fibres being stacked on top of them, 
    if deletion(iter) ~= 0 
        if vecleng3d(fibre(iter,3:8)) < minlength 
            lengdel = lengdel+1; 
        else 
            clipdel = clipdel+1; 
        end 
        fibre(iter,3:8) = 90000; 
        % Also set it to be not in any of the four quadrants. This ensures we never, 
ever computer the distance to the deleted fibre. 
        quadrant1(iter) = 0; 
        quadrant2(iter) = 0; 
        quadrant3(iter) = 0; 
        quadrant4(iter) = 0; 
    else 
        if gf == 1 
            newfibrevol = pi*(fibre(iter,2)/2)^2*fibre(iter,9); 
            gfvol = gfvol+newfibrevol; 
        else 
            newfibrevol = 
pi*(fibre(iter,10)/2)^2*8*sqrt((fibre(iter,9)/8)^2+(fibre(iter,2)/2)^2); 
        end 
        totvol = totvol+newfibrevol; 
        %       if gf == 1 
        %           gfcount = gfcount+1; 
        %       end 
        %       totcount = totcount+1; 
        % Recalculate the lines 
        fibretheta = 90-atand((fibre(iter,8)-fibre(iter,5))/(fibre(iter,6)-fibre(iter,3))); 
        % Check fibre type and use the right fibre diameter 
        if fibre(iter,10) == 0 
            a = fibre(iter,2)/2*sind(fibretheta); 
            b = fibre(iter,2)/2*cosd(fibretheta); 
        else 
            a = fibre(iter,10)/2*sind(fibretheta); 
            b = fibre(iter,10)/2*cosd(fibretheta); 
        end 
    end 
     
    % Display the number of iterations every 1000 iterations, so we can check 
progress is occuring. 
    % Note that the time  to do 1000 iterations increases each time, since there 
are more fibres to compute distance to. 
    if mod(iter,1000) == 0 
        fprintf('%i\n',iter); 
    end 
end 
  
  
% For the 3D clipping algorithm, we clip to above the top of the bounding box. So 
this just makes sure the fibre is completely within the bounding box. 
for iter = 1:size(fibre,1) 
    %   [fibre(iter,:),deletion] = 
clip(fibre(iter,:),[boundingregion(1:3)+fibre(iter,2)/2,boundingregion(4:6)-
fibre(iter,2)/2],minlength,iter,deletion); 



221 
 

    [fibre(iter,:),deletion] = 
clip(fibre(iter,:),boundingregion(1:6),minlength,iter,deletion); 
end 
  
% Remove all 0 entries from the deletion matrix so that we don't break the script 
(fibre(0,:) is undefined because matlab counts from 1) 
%fprintf('Length Deletion: %i; Clip Deletion: %i\n',lengdel,clipdel); 
deletion = deletion(deletion~=0); 
  
% Actually delete all the rows we don't need. 
fibre(deletion,:) = []; 
  
% Abort if there are no fibres now. Only happens if the length means that fibres 
can't fit into the boundingregion without being short. 
if size(fibre,1) == 0 
    return 
end 
  
  
deletion = zeros(size(fibre,1),1); 
for iter = 1:size(fibre,1) 
    fibre(iter,:) = clip(fibre(iter,:),[boundingregion(1:3)+fibre(iter,2)/2, 
boundingregion(4:6)-fibre(iter,2)],minlength,iter,deletion); 
    if vecleng3d(fibre(iter,3:8)) < minlength 
        deletion(iter) = iter; 
    end 
end 
% Clear out the deleted fibres. 
deletion = deletion(deletion~=0); 
fibre(deletion,:) = []; 
 
% % Same as above, but done by adding up the fibre volume and finding the 
ratio of that to the bounding region volume. 
dupsvf2 = vcvf(fibre,boundingregion); 
 
% Write results to file 
% --------------------------------------------------------------------------------------------------------------
------------------------------------- 
% 
% Open file in loop with delay, so if the file is in use, the script will wait until it's 
available again. 
% Also displays how many times it loops so that we can be confident that it's not 
looping infinitely. 
fid = -1; 
count = 0; 
while fid < 0 
    % Open a file for editing. 'fid' is the file id, and allows us to interact with the 
file. 
    % The file is saved in the directory shown just above the editor window in 
MATLAB. This is usually either the folder the script is in, or the 
Documents\MATLAB 
    % folder. 
    fid = fopen('1gf.csv','wt'); 
    if fid < 0 
        % If the file didn't open, wait 5 seconds and try again. 
        pause(5) 
    end 
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    count = count+1; 
    if count ~= 1 
        % Print the wait count so that it's easy to tell if there's an issue opening the 
file. 
        fprintf('Count: %i\n',count); 
    end 
end 
  
% End and clear any currently started simulations, and move into preprocessing. 
fprintf(fid,'finish\n'); 
fprintf(fid,'/CLEAR\n'); 
fprintf(fid,'/PREP7\n'); 
  
% Wrap it in a do loop, set to loop just once. This allows us to exit the script more 
easily. 
% fprintf(fid,'*do,yellow,1,1,1\n'); 
  
% The easiest way to create a cylinder in an arbitrary direction in APDL is to 
change the working plane to the desired cylinder direction and then just specify 
% the radius and length of the cylinder. Since multiple fibre additions are used 
(at least 2: one to initially add them, then they get subtracted from a block 
% and then re-added, but if the block is split into multiple blocks, then there can 
be a large number of fibre additions), a new fibre matrix is set up so we can 
% easily just read off the fibre matrix. This should also improve the run time, 
since everything only needs to be computed once. 
neofibre = zeros(size(fibre,1),8); 
for k=1:size(fibre,1) 
    % Horizontal fibres 
    if fibre(k,5) == fibre(k,8) 
        angles = [atand((fibre(k,7)-fibre(k,4))/(fibre(k,6)-fibre(k,3))) 
atand((fibre(k,8)-fibre(k,5))/(fibre(k,7)-fibre(k,4))) atand((fibre(k,6)-
fibre(k,3))/(fibre(k,8)-fibre(k,5)))]; 
    elseif fibre(k,3) == fibre(k,6) && fibre(k,4) == fibre(k,7) 
        angles = [0 0 0]; 
    else 
        angle1 = angle(fibre(k,6)-fibre(k,3),fibre(k,7)-fibre(k,4)); 
        newpos = xyleng([fibre(k,6)-fibre(k,3),fibre(k,7)-fibre(k,4),0,0]); 
        angle2 = angle(newpos, fibre(k,8)-fibre(k,5)); 
        angles = [angle1 angle2 0]; 
    end 
    neofibre(k,:) = [fibre(k,3:5),fibre(k,2)/2,fibre(k,9),angles]; 
end 
  
gfcount = 0; 
avert = 0; 
for k = 1:size(neofibre,1) 
    if fibre(k,10) == 0 
        % To ensure the working plane is just translated from (0,0,0), we also have 
to specify where the x-axis and y-axis is pointing. This is done relative to the 
        % new position, so we just add one to the x position and y position for each. 
        
fprintf(fid,'wplane,1,%.8f,%.8f,%.8f,%.8f,%.8f,%.8f,%.8f,%.8f,%.8f\n',neofibre(k,1:
3),neofibre(k,1)+1,neofibre(k,2:3),neofibre(k,1),neofibre(k,2)+1,neofibre(k,3)); 
        % Now rotate the working plane so that the z-axis points along the fibre 
length 
        fprintf(fid,'wprota,%f,%f, %f\n',neofibre(k,6:8)); 
        % No realdiameter ==> glass fibre, so make a nice cylinder 
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        fprintf(fid,'cylind,%.12f,0,%.12f,0,0,0\n',neofibre(k,4),neofibre(k,5)); 
         
        % Count how many fibres are vertical. 
        % This is accurate as long as inclination = [0 0] (i.e, all non-vertical fibres 
are horizontal. 
        % This is a horrible, terrible asusmption in a lot of cases, but works when I 
need it to. 
         
        if fibre(k,5) ~= fibre(k,8) 
            avert = avert+1; 
        end 
         
        gfcount = gfcount+1; 
    end 
end 
  
% Select everything again. Just to make sure it all visible and stuff. 
fprintf(fid,'vsel,all\n'); 
  
fprintf(fid,'igesout,1gf,iges\n'); 
  
gfratio = gfvol/totvol; 
% gfratio = gfcount/size(fibre,1); 
fprintf('GF ratio: %.6f; VF: %.6f; |f: %i; impossiblecount: %i, screwedup: 
%i\n',gfratio,dupsvf2,avert,impossiblecount,screwyrotation); 
  
fclose('all'); 
  
fid = -1; 
count = 0; 
while fid < 0 
    % Open a file for editing. 'fid' is the file id, and allows us to interact with the 
file. 
    % The file is saved in the directory shown just above the editor window in 
MATLAB. This is usually either the folder the script is in, or the 
Documents\MATLAB 
    % folder. 
    fid = fopen('2petf.csv','wt'); 
    if fid < 0 
        % If the file didn't open, wait 5 seconds and try again. 
        pause(5) 
    end 
    count = count+1; 
    if count ~= 1 
        % Print the wait count so that it's easy to tell if there's an issue opening the 
file. 
        fprintf('Count: %i\n',count); 
    end 
end 
  
% End and clear any currently started simulations, and move into preprocessing. 
fprintf(fid,'finish\n'); 
fprintf(fid,'/CLEAR\n'); 
fprintf(fid,'/PREP7\n'); 
  
nkp = 1; 
lkp = 1; 
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akp = 1; 
tmp = curvedfibres(fibre,neofibre,crimps,fid,nkp,lkp,akp,angles); 
% Reset working plane to (0,0,0) and standard directions. 
fprintf(fid,'wpstyl,defa\n'); 
  
% Select everything again. Just to make sure it all visible and stuff. 
fprintf(fid,'vsel,all\n'); 
  
% Write the geometry to apdl.iges. This will be saved in the directory you've 
chosen as a working directory in APDL. 
fprintf(fid,'igesout,2petf,iges\n'); 
  
% Close the file 
fclose('all'); 
  
  
% Create a 3d plot of the fibres so that things like the uniformity of the fibre 
distribution, and how much fibre clustering is occurring, can be seen visually. 
% Note that this doesn't show the fibre diameter, so it's not that useful for 
checking for appropriate levels of intersection. 
figure(1) 
plot3(fibre(:,[3,6])',fibre(:,[4,7])',fibre(:,[5,8])'); 
  
% 
% figure(2) 
% plot3(fibre(:,[3,6])',fibre(:,[4,7])',fibre(:,[5,8])'); 
  
% For debugging purposes, it can be handy to see how the fibres change once 
clipped or moved downwards. 
% figure(2) 
% plot3(origfibre(:,[3,6])',origfibre(:,[4,7])',origfibre(:,[5,8])'); 
% title('Original Fibre'); 

 

C.1 clipped_line.m 

Note that the following MATLAB code needs to be saved as ‘clipped_line.m’ and 

located in a path that MATLAB can find. This is an implementation of a 2D Clipping 

Algorithm used by the main fibre generation algorithm. 

function out = clipped_line(vx1, vx2, v1, v2) 
% Liang-Barsky Algorithm for line clipping. See 
% http://en.wikipedia.org/wiki/Liang%E2%80%93Barsky_algorithm 
% 
% Take a 2-D line from vx1 to vx2, and clip to rectangle with corners at 
% v1, v2. 
%  
% Inputs must be vectors of length 2. 
% The output is a vector of length 4 of the form [x1 y1 x2 y2], where (x1,y1) and 
(x2,y2) are the end points of the line after clipping 
% Or NaN in the case where the whole line is outside the rectangular clipping 
area 
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    if length(vx1) ~= 2 || length(vx2) ~= 2 || length(v1) ~= 2 || length(v2) ~= 2 
        error('All inputs must be vectors of length 2.'); 
    end 
  
    x0 = vx1(1); 
    x1 = vx2(1); 
    y0 = vx1(2); 
    y1 = vx2(2); 
     
    x_min = min(v1(1), v2(1)); 
    x_max = max(v1(1), v2(1)); 
    y_min = min(v1(2), v2(2)); 
    y_max = max(v1(2), v2(2)); 
  
    out = nan(1,4); 
     
    dx = x1 - x0; 
    dy = y1 - y0; 
     
    p = [ -dx;  
           dx;  
          -dy; 
           dy ]; 
  
    q = [ x0 - x_min;   % negative => left of window  
          x_max - x0;   % negative => right of window  
          y0 - y_min;   % negative => below window 
          y_max - y0;   % negative => above window 
        ]; 
               
    if ~isempty(find(p == 0 & q < 0, 1, 'first')) 
        return; 
    end 
     
    u1 = 0; 
    u2 = 1; 
     
    for i = 1:4 
        if p(i) < 0 
            u1 = max(u1, q(i)/p(i)); 
        end 
        if p(i) > 0 
            u2 = min(u2, q(i)/p(i)); 
        end 
    end 
     
    if u1 > u2  % line is outside 
        return; 
    end 
     
    out(1) = x0 + dx*u1; 
    out(2) = y0 + dy*u1; 
  
    out(3) = x0 + dx*u2; 
    out(4) = y0 + dy*u2; 
end 
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C.2 clip.m 

Note that the following MATLAB code needs to be saved as ‘clip.m’ and located in a 

path that MATLAB can find. This is an implementation of a 3D Clipping Algorithm used 

by the main fibre generation algorithm. 

function [newfibre,deletion] = clip(fibrer,br,minleng,iter,deletion) 
    if fibrer(5) >= br(6) && fibrer(8) >= br(6) 
        deletion(iter) = iter; 
        clipf = nan(6); 
    elseif fibrer(5) == fibrer(8) 
        clipf = [clipped_line(fibrer(3:4),fibrer(6:7),br(1:2),br(4:5)) 0 0]; 
        clipf = [clipf(1:2) fibrer(5) clipf(3:4) fibrer(8)]; 
    elseif fibrer(4) == fibrer(7) 
        clipf = [clipped_line(fibrer([3,5]),fibrer([6,8]),br([1,3]),br([4,6])) 0 0]; 
        clipf = [clipf(1) fibrer(4) clipf(2:3) fibrer(7) clipf(4)]; 
    elseif fibrer(3) == fibrer(6) 
        clipf = [clipped_line(fibrer(4:5),fibrer(7:8),br(2:3),br(5:6)) 0 0]; 
        clipf = [fibrer(3) clipf(1:2) fibrer(6) clipf(3:4)]; 
    else 
        clipf = clip3d(fibrer(3:5),fibrer(6:8),br(1:3),br(4:6)); 
    end 
    %clip3d returns NaN if the whole fibre is out the bounding region, so it can be 
safely deleted. Actually, it needs to be deleted to prevent it interfering 
    %with future results 
    if isequal(isnan(clipf),zeros(size(clipf,1),size(clipf,2))) ~= 1 
        deletion(iter) = iter; 
    else 
        fibrer(3:8) = clipf; 
        %Fibre is likely shorter now, so update the length value. Saves iterating 
through them again later. 
        fibrer(9) = vecleng3d(fibrer(3:8)); 
    end 
    % Remove very short fibres since it tends to lead to a high mesh density on 
that fibre, and also not much heat transfer in the fibre 
    if fibrer(9) <= minleng 
        deletion(iter) = iter; 
    end 
    newfibre = fibrer; 
end 

 

C.3 curvedfibres.m 

Note that the following MATLAB code needs to be saved as ‘curvedfibres.m’ and 

located in a path that MATLAB can find. This is the code which converts the sinusoidal 

fibres from cylinders into sinusoidal shapes in APDL. 

function fb = curvedfibres(dupfibre,neofibre,crimps,fid,nkp,lkp,akp,angles) 
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% In general, when I talk about a direction, I mean relative to the rotated axis. So 
'x-direction' is assuming z points along the fibre. Note that the 
% x-direction isn't really more constrained than that... 
% Loop through the matrix again 
  
maxcrimplen = max(dupfibre(:,9))/crimps; 
  
for k=1:size(dupfibre,1) 
    if dupfibre(k,10) ~=0 
        
fprintf(fid,'wplane,1,%.8f,%.8f,%.8f,%.8f,%.8f,%.8f,%.8f,%.8f,%.8f\n',neofibre(k,1:
3),neofibre(k,1)+1,neofibre(k,2:3),neofibre(k,1),neofibre(k,2)+1,neofibre(k,3)); 
        fprintf(fid,'wprota,%f,%f, %f\n',neofibre(k,6:8)); 
        fprintf(fid,'csys,4\n'); 
        fprintf(fid,'k,%i,0,0,0\n',nkp); 
        nkp = nkp+1; 
        nkpo = nkp; 
         
        crimps = ceil(dupfibre(k,9)/maxcrimplen); 
        if crimps < 6 
            crimps = crimps+3; 
        end 
         
        crimplen = neofibre(k,5)/(crimps-1); 
        diam = dupfibre(k,2)/2; 
         
        for l=2:crimps-1 
            if l == 2 
                fp = [diam,0,crimplen*(l-1)]; 
            end 
            fprintf(fid,'k,%i,%.8f,%.8f,%.8f\n',nkp,diam,0,crimplen*(l-1)); 
            nkp=nkp+1; 
            diam = -diam; 
        end 
        fprintf(fid,'k,%i,%.8f,%.8f,%.8f\n',nkp,0,0,neofibre(k,5)); 
        fprintf(fid,'ns_=%i\n',nkpo-1); 
        fprintf(fid,'nf_=%i\n',nkp); 
        fprintf(fid,'nl_=nf_-ns_\n'); 
        fprintf(fid,'*cfopen,spl_ine,mac\n'); 
        fprintf(fid,'*cfwrite,FLST,3,nl_,3\n'); 
        fprintf(fid,'*do,i_,ns_,nf_-1\n'); 
        fprintf(fid,'*cfwrite,FITEM,3,i_\n'); 
        fprintf(fid,'*enddo\n'); 
        fprintf(fid,'*cfwrite,BSPLIN, ,P51X\n'); 
        fprintf(fid,'*cfclose\n'); 
        fprintf(fid,'spl_ine.mac\n'); 
  
     
        angles = [0 90-atand((fp(3)-neofibre(k,3))/(fp(2)-neofibre(k,2))) atand((fp(1)-
neofibre(k,1))/(fp(2)-neofibre(k,2)))]; 
  
        fprintf(fid,'cyl4,%f,%f,%f\n',0,0,dupfibre(k,10)/2);  
        fprintf(fid,'vdrag,%i,,,,,,%i\n',akp,lkp); 
        nkp = nkp+9; 
        lkp = lkp+13; 
        akp = akp+6; 
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    end 
    fb = 0; 
end 
  
  

  
 

C.4 lineSegmentIntersect.m 

Note that the following MATLAB code needs to be saved as ‘lineSegmentIntersect.m’ 

and located in a path that MATLAB can find. This is the code that determines whether 

two fibres would meet in the x-y plane, and then determines the amount of z 

displacement required to make that happen. 

% XY1 and XY2 give the two lines being tested. XY1 = [x1 y1 z1 x2 y2 z2] and 
the same for XY2, so that each line is defined by two end points. 
% Deals specifically with segments, so intersection only occurs if the intersection 
point is between the end points 
  
% Obtained from: http://uk.mathworks.com/matlabcentral/fileexchange/27205-
fast-line-segment-intersection/content/lineSegmentIntersect.m 
  
function [distance, xint,yint,zint] = lineSegmentIntersect(XY1,XY2,R1,R2) 
%%% Prepare matrices for vectorized computation of line intersection points. 
%------------------------------------------------------------------------------- 
  
%Get the x,y,z co-ordinates 
X1 = XY1(1); 
X2 = XY1(4); 
Y1 = XY1(2); 
Y2 = XY1(5); 
Z1 = XY1(3); 
Z2 = XY1(6); 
X3 = XY2(1); 
X4 = XY2(4); 
Y3 = XY2(2); 
Y4 = XY2(5); 
Z3 = XY2(3); 
Z4 = XY2(6); 
  
% Find the direction vector from each x set 
X4_X3 = (X4-X3); 
Y1_Y3 = (Y1-Y3); 
Y4_Y3 = (Y4-Y3); 
X1_X3 = (X1-X3); 
X2_X1 = (X2-X1); 
Y2_Y1 = (Y2-Y1); 
  
% Magic 
numerator_a = X4_X3 * Y1_Y3 - Y4_Y3 * X1_X3; 
numerator_b = X2_X1 * Y1_Y3 - Y2_Y1 * X1_X3; 



229 
 

denominator = Y4_Y3 * X2_X1 - X4_X3 * Y2_Y1; 
  
% Gradients of parametric line between end points; if u_a and u_b are between 0 
and 1, then there's a point of intersection. Using the known x and y values and 
these gives the x,y position of the intersection point 
u_a = numerator_a / denominator; 
u_b = numerator_b / denominator; 
  
  
% If INT_B = 0, no points of intersection. Otherwise, it's at INT_X, INT_Y 
if (u_a >= 0) && (u_a <= 1) && (u_b >= 0) && (u_b <= 1) 
     
    % Compute point of intersection and check whether it exists 
    xint = X1+X2_X1*u_a; 
    yint = Y1+Y2_Y1*u_b; 
     
    % Find the corresponding height using linear interpolation (No error since 
they're lines) 
    zl1 = polint(X1,X2,xint,Z1,Z2); 
    zl2 = polint(X3,X4,xint,Z3,Z4); 
    zint = zl2; 
     
    % Cylinders are hard. This *should* give the vertical distance inside the 
cylinder. 
    fl1 = R1*cosd(atand((Z2-Z1)/(sqrt((Y2-Y1)^2+(X2-X1)^2)))); 
    fl2 = R2*cosd(atand((Z4-Z3)/(sqrt((Y4-Y3)^2+(X4-X3)^2)))); 
     
    % The centrelines cross when fibre 1 is moved downwards by the difference 
between their z co-ordinates at the point of intersection. 
    % However, fibres have a diameter, so we need to take into account how 
much of the difference is contained within the fibres. 
    distance = abs(zl2-zl1)-((fl1+fl2)*1.4); 
else 
    % No points of intersection ==> No min distance. 
    distance = 0; 
    xint = 0; 
    yint = 0; 
    zint = 0; 
end 
end 

  
 

C.5 polint.m 

Note that the following MATLAB code needs to be saved as ‘polint.m’ and located in 

a path that MATLAB can find. This is the code that finds the z co-ordinate where the 

two fibres meet based on linear interpolation along the fibre length (point-line-

intercept). 

function z3 = polint(x1,x2,x3,z1,z2) 
    d1 = x3-x2; 
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    d2 = z2-z1; 
    d3 = x2-x1; 
    z3 = z2+(d1*d2)/d3; 
end 

 

C.6 randb.m 

Note that the following MATLAB code needs to be saved as ‘randb.m’ and located in 

a path that MATLAB can find. This code uniformly generates a random number 

between two values. 

%Input two numbers and return a uniform random number between the two 
numbers. 
function z = randb(low,high) 
    z = (high-low)*rand(1)+low; 
end 

 

C.7 vecleng.m 

Note that the following MATLAB code needs to be saved as ‘vecleng.m’ and located 

in a path that MATLAB can find. This code calculates the length of a 2D line segment 

from the endpoints. 

% Find the length of the vector from (x1,y1) to (x2,y2). 
function l = vecleng(x1,y1,z1,x2,y2,z2) 
    l = sqrt((x1-x2).^2+(y1-y2).^2+(z1-z2).^2); 
end 

 

C.8 vecleng3d.m 

Note that the following MATLAB code needs to be saved as ‘vecleng3d.m’ and located 

in a path that MATLAB can find. This code calculates the length of a 3D line segment 

from the endpoints. 

% Find the length of the vector from (x1,y1,z2) to (x2,y2,z2). 
function l = vecleng3d(x) 
    l = sqrt((x(1)-x(4)).^2+(x(2)-x(5)).^2+(x(3)-x(6)).^2); 
end 
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C.9 vcvf.m 

Note that the following MATLAB code needs to be saved as ‘vcvf.m’ and located in a 

path that MATLAB can find. This code calculates the volume of a fibre, taking into 

account whether it’s cylindrical or sinusoidal in shape. 

 

function vf = vcvf(fibre,br) 
    fibrevol = 0; 
    for k = 1:size(fibre,1) 
        if fibre(k,10) == 0 
            fibrevol = (pi/4*(fibre(k,2)^2)*fibre(k,9))+fibrevol; 
        else 
            fibrevol = 
pi*(fibre(k,10)/2)^2*8*sqrt((fibre(k,9)/8)^2+(fibre(k,2)/2)^2)+fibrevol; 
        end 
    end 
     
    brvol = prod(br(4:6)); 
     
    vf = fibrevol/brvol*100; 
end 
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D General MATLAB Codes 

D.1 Temperature Dependant Air Thermal Conductivity 

clc 
clear all  
%Thermal Conductivity of Air Vs Temperature 
T_Lower=4;      % Degrees C 
T_Upper=80;     % Degrees C 
T=0:1:84; 
k=((2.334*10^(-3)).*((T+273).^(1.5)))./(164.54+T+273.15); 
plot(T,k) 
hold on 

 
plot([T_Lower,T_Lower],[0.018,0.034],'--r') 
plot([T_Upper,T_Upper],[0.018,0.034],'--r') 
title('Thermal Conductivity of Air') 
xlabel('Temperature (C)','Fontsize',14,'fontname','Helvatica') %Create x label 

 
ylabel('Instantaneous Thermal Conductivity 
(W/mK)','Fontsize',14,'fontname','Helvatica') %create y label  
%legend('Model of Fibres Oriented Parallel to Heat Direction', 'Model of Fibres 
Oriented Perpendicular to Heat Direction') %create legend and content of legend  
grid 'on' %add gridlines 

 
set (gca,'XTick',[-100:5:140]) 
%set (gca,'YTick',[0:0.001,0.05]) 
K_Ave=(k(T_Upper)+k(T_Lower))./2; 

D.2 Boundary Layer Thickness 

%Boundary Layer Thickness Natural Convection 
clc 
clear all 
close all 
x=0:5e-6:2e-4; 
Gr=0.04; 
Pr=0.711; 
t=x*(3.93./sqrt(Pr))*(((0.952+Pr)./(Gr)).^0.25); 
plot(x,t) 

D.3 Closed Variable Fibre Geometries 

clc 
clear all  
close all 
  
for i=1:10 
A=2*(rand(1,15)-0.5); %note the normalised random number to prevent 
clustering around y=Kx 
h=10; 
Theta=0:1/10:10; 
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x=(1/2.5)*(A(1,1)*cos(Theta)+A(1,2).*sin(Theta)+A(1,3).*sin(Theta).*cos(Theta)
+A(1,4).*sin(Theta).*sin(Theta)+A(1,5).*cos(Theta).*cos(Theta)); 
y=(1/2.5)*(A(1,6)*cos(Theta)+A(1,7).*sin(Theta)+A(1,8).*sin(Theta).*cos(Theta)
+A(1,9).*sin(Theta).*sin(Theta)+A(1,10).*cos(Theta).*cos(Theta)); 
z=(1/2.5)*(A(1,11).*cos(Theta)+A(1,12).*sin(Theta)+A(1,13).*sin(Theta).*cos(The
ta)+A(1,14).*sin(Theta).*sin(Theta)+A(1,15).*cos(Theta).*cos(Theta)) 
%z=cos(Theta)+sin(Theta) 
  
plot(x,y) 
  
grid on 
hold on 
end 
  
xlabel('X Direction','Fontsize',14,'fontname','Helvatica') %Create x label 
ylabel('Y Direction','Fontsize',14,'fontname','Helvatica') %create y label  
zlabel('Z Direction','Fontsize',14,'fontname','Helvatica') %create y label  
grid 'on' %add gridlines 
set (gca,'XTick',[-1:0.2:1]) 
set (gca,'YTick',[-1:0.2:1]) 
set (gca,'ZTick',[-1:0.2:1]) 
 

D.4 Thermal Models 1-4 

%Thermal Conductivity Parallel Perpendicular Comparison 
  
clear all 
close all 
clc 
  
%V_Fibre=1; 
%V_Total=10; 
  
K_Air=0.0278; 
K_Fibre=0.85; 
  
%Alpha=(V_Fibre./V_Total); 
Alpha=0:0.01:1; 
  
K_Paralell=(Alpha*K_Fibre+(1-Alpha)*(K_Air)); 
K_Planar1=(K_Air*K_Fibre)./(K_Air*Alpha+K_Fibre*(1-Alpha)); 
K_Planar2=K_Air*(((sqrt((1-Alpha).^2*((K_Fibre./K_Air)-1).^2+4*(K_Fibre/K_Air))-
(1-Alpha)*((K_Fibre./K_Air)-1))./2)); 
K_Planar3=K_Air.*((1-Alpha)+(1+Alpha).*(K_Fibre./K_Air))./(((1-
Alpha).*(K_Fibre./K_Air))+(1+Alpha)); 
%K_Mean=A*K_Paralell+B*K_Planar; 
  
plot(Alpha,K_Paralell,Alpha,K_Planar1,Alpha,K_Planar2,Alpha,K_Planar3) 
xlabel('Volumetric Ratio of Fibres to Total 
Volume','Fontsize',14,'fontname','Helvatica') %Create x label 
ylabel('Mean Thermal Conductivity (W/mK)','Fontsize',14,'fontname','Helvatica') 
%create y label  
legend('Theoretical Paralel Model', 'Theoretical Serise Model','Clayton 
Model','Pilling Model') %create legend and content of legend  
grid 'on' %add gridlines 
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%set (gca,'XTick',[0:0.1:1]) 
%set (gca,'YTick',[0:0.1:1]) 
hold on 
 

D.5 Comparison Between Conductivity Models for Conduction, 

Convection and Radiation 

clc 
clear all 
close all 
 
T_2=0:1:200; 
T_1=74+T_2; 
K_Air=0.027; 
K_Fibre=0.85; 
  
L=2*10^-4; 
Sigma=5.67*10^-8; 
Pr=0.711; 
mu=1.9*10^-5; 
T_Film=(T_1+T_2)./2; 
B=1./(T_Film+273); 
g=9.81; 
Gr=(g.*B.*(T_1-T_2)*L.^3)./(mu.^2) 
%Ra=Pr*Gr; 
%Nu=(0.825+0.387*((Pr*Gr).^(1./6))./(((1+(0.492./Pr).^(9/16)).^(8/27)))); 
g_Pr=(0.75*Pr.^(0.5))./((0.609+1.22*(Pr.^0.5)+1.238.*Pr).^0.25); 
Nu=(4./3)*((Gr./4).^0.25)*g_Pr; 
H=Nu.*(K_Air./L); 
F=0.2; 
e=0.75; 
  
K_Conv=H*L; 
K_Rad=((Sigma).*(pi*2*8e-6).*(T_1.^2+T_2.^4).*(T_1+T_2))/(2.*((1-e)./e)+1./F); 
  
K_Tot=K_Air+K_Fibre+K_Conv+K_Rad; 
K_Air_Norm=K_Air./K_Tot; 
K_Fibre_Norm=K_Fibre./K_Tot; 
K_Conv_Norm=K_Conv./K_Tot; 
K_Rad_Norm=K_Rad./K_Tot; 
  
%plot(T_2,K_Air_Norm,T_2,K_Fibre_Norm,T_2,K_Conv_Norm,T_2,K_Rad_Norm) 
%plot(T_2,K_Air_Norm) 
plot(T_2,(K_Air),T_2,(K_Fibre),T_2,(K_Conv),T_2,(K_Rad)) 
%plot(T_2,K_Conv) 
xlabel('Upper Temprature (C)','Fontsize',14,'fontname','Helvatica') %Create x 
label 
ylabel('Equivalent Conductivity (W/mK)','Fontsize',14,'fontname','Helvatica') 
%create y label 
legend('Air, K Value', 'Fibre, K Value', 'Convection, K Value', 'Radiation, K Value') 
%create legend and content of legend  
set (gca,'YScale','log'); 
grid 'on' %add gridlines 
%set (gca,'XTick',[0::1]) 
%set (gca,'YTick',[0:0.1:1]) 
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D.6 Convective Heat Transfer Correlation 

 %ECorrect Evaluation of HTC for convection 
clc 
clear all 
close all 
Gr=0.04; 
Pr=0.711; 
gpr=0.75.*(Pr.^1/2)./(0.609+1.221.*sqrt(Pr)+1.238.*Pr) 
Nu=(4./3).*((Gr/4).^(1/4)).*gpr 

D.7 Mean free Path Mechanics Assessment 

 %conductivity as a function of mean free path 
clc 
clear all 
close all 
  
T=287:1:367; 
  
K_T=((2.334.*10^-3).*T.^(1.5))./(164.54+T); 
CP=1030.5-0.19975.*T+(3.9734.*10.^-4).*T.^2; 
CV=CP./1.4; 
Pr=0.7; 
  
  
KB=1.38.*10.^-23; 
DC=(0.8.*364+0.2.*346).*1e-12; 
  
P_T=1.0125.*(CP-CV).*T; 
  
L_MFP=KB.*T./(sqrt(2).*pi.*DC.*DC.*P_T); 
  
Z=0.3; 
D=8e-6; 
f=0.1; 
L_Col=Z.*(D/f); 
Kn=L_MFP./L_Col; 
  
K=K_T./(1+((4.*CP)./(CP+CV)).*(Kn./Pr)); 
plot(T,K_T,T,K) 
  
title('Thermal Conductivity') 
xlabel('Temprature (K)','Fontsize',14,'fontname','Helvatica') %Create x label 
ylabel('Thermal Conductivity (W/mK)','Fontsize',14,'fontname','Helvatica') 
%create y label  
legend('Bulk Gas', 'Molecular Dynamics Prediction') %create legend and content 
of legend  
grid 'on' %add gridlines 
set (gca,'XTick',[0:10:1000]) 
set (gca,'YTick',[0:0.001:3]) 
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D.8 3D open Nonlinear Fibres 

 %Creation of Normalised Nonlinear Fibres 
  
clear all 
close all  
clc 
format long 
N=50;    % 
c=10 
  
for c=1:N 
TH=0:0.1:pi; 
A=2*(rand(100,100)-0.5); 
L=4 
  
x=((2e-
4)./L)*(((A(1,1).*sin(TH)+A(2,1).*cos(TH)+A(3,1).*sin(TH).*cos(TH)+A(4,1).*(cos(T
H)).*(cos(TH))+A(5,1).*(sin(TH)).*(sin(TH))))+2.5); 
x(x<0)=[]; 
x(x>2e-4)=[]; 
L_x=length(x); 
  
y=((2e-
4)./L)*(((A(6,1).*sin(TH)+A(7,1).*cos(TH)+A(8,1).*sin(TH).*cos(TH)+A(9,1).*(cos(T
H)).*(cos(TH))+A(10,1).*(sin(TH)).*(sin(TH))))+2.5); 
y(y>2e-4)=[]; 
y(y<0)=[]; 
L_y=length(y); 
  
z=((2e-
4)./L)*(((A(11,1).*sin(TH)+A(12,1).*cos(TH)+A(13,1).*sin(TH).*cos(TH)+A(14,1).*(
cos(TH)).*(cos(TH))+A(15,1).*(sin(TH)).*(sin(TH))))+2.5); 
z(z>2e-4)=[]; 
z(z<0)=[]; 
L_z=length(z); 
  
C=[L_x,L_y,L_z]; 
K=min(C); 
  
   x=x(1,1:K); 
   y=y(1,1:K); 
   z=z(1,1:K); 
  
   %Volume of fibres 
   for i=1:K-1 
   F_Dia=8*(10^-6); 
   V_elements=[1:K]; 
   L_elements=[1:K]; 
  
   L_elements(i)=sqrt((x(i)-x(i+1))^2+(y(i)-y(i+1))^2+(z(i)-z(i+1))^2); 
   V_elements=(pi./4)*(F_Dia^2)*L_elements; 
   V_tot=sum(V_elements); 
   FIBRE_MATRIX(4,i,:)=(V_elements(i)); 
   end 
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    for i=1:K 
    Fibre_Matrix(1,i,c)=x(i); 
    Fibre_Matrix(2,i,c)=y(i); 
    Fibre_Matrix(3,i,c)=z(i); 
    Fibre_Matrix(4,i,c)=V_tot; 
    end 
     
   plot3(x,y,z) 
   hold on 
  
end 
  
xlabel('x Direction (m)','Fontsize',14,'fontname','Helvatica') %Create x label 
ylabel('y Direction (m)','Fontsize',14,'fontname','Helvatica') %create y label  
zlabel('z Direction (m)','Fontsize',14,'fontname','Helvatica') %create y label  
grid 'on' %add gridlines 
  
   % for i=1:K-1 
   %F_Dia=8*(10^-6); 
    %V_elements=[1:K]; 
    %L_elements=[1:K]; 
  
    %L_elements(i)=sqrt((x(i)-x(i+1))^2+(y(i)-y(i+1))^2+(z(i)-z(i+1))^2); 
    %V_elements=(pi./4)*(F_Dia^2)*L_elements; 
    %V_tot=sum(V_elements); 
    %FIBRE_MATRIX(4,i,:)=(V_elements(i)); 
    %end 
     
    %FIBRE_MATRIX=zeros(4,K,N); 

D.9  Disorder Coefficient 

clc 
clear all 
close all 
  
  
TH=0:pi./1000:pi./2; 
ALPHA=0.001; 
KA=0.0285; 
KF=0.85; 
K_1=(KA.*KF)./(KA.*ALPHA+KF.*(1-ALPHA)); 
K_2=KF.*ALPHA+KA.*(1-ALPHA); 
K=(1+((K_1./K_2)-1).*(sin(TH)).^2); 
plot(TH,K) 
hold on 
  
TH=0:pi./1000:pi./2; 
ALPHA=0.05; 
KA=0.0285; 
KF=0.85; 
K_1=(KA.*KF)./(KA.*ALPHA+KF.*(1-ALPHA)); 
K_2=KF.*ALPHA+KA.*(1-ALPHA); 
K=(1+((K_1./K_2)-1).*(sin(TH)).^2); 
plot(TH,K) 
hold on 
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TH=0:pi./1000:pi./2; 
ALPHA=0.1; 
KA=0.0285; 
KF=0.85; 
K_1=(KA.*KF)./(KA.*ALPHA+KF.*(1-ALPHA)); 
K_2=KF.*ALPHA+KA.*(1-ALPHA); 
K=(1+((K_1./K_2)-1).*(sin(TH)).^2); 
plot(TH,K) 
hold on 
  
TH=0:pi./1000:pi./2; 
ALPHA=0.5; 
KA=0.0285; 
KF=0.85; 
K_1=(KA.*KF)./(KA.*ALPHA+KF.*(1-ALPHA)); 
K_2=KF.*ALPHA+KA.*(1-ALPHA); 
K=(1+((K_1./K_2)-1).*(sin(TH)).^2); 
plot(TH,K) 
hold on 
  
TH=0:pi./1000:pi./2; 
ALPHA=0.7; 
KA=0.0285; 
KF=0.85; 
K_1=(KA.*KF)./(KA.*ALPHA+KF.*(1-ALPHA)); 
K_2=KF.*ALPHA+KA.*(1-ALPHA); 
K=(1+((K_1./K_2)-1).*(sin(TH)).^2); 
plot(TH,K) 
hold on 
  
  
TH=0:pi./1000:pi./2; 
ALPHA=1; 
KA=0.0285; 
KF=0.85; 
K_1=(KA.*KF)./(KA.*ALPHA+KF.*(1-ALPHA)); 
K_2=KF.*ALPHA+KA.*(1-ALPHA); 
K=(1+((K_1./K_2)-1).*(sin(TH)).^2); 
plot(TH,K) 
hold on 
  
title('Statistical Average Angle Correlation') 
xlabel('Angle (Rads)','Fontsize',14,'fontname','Helvatica') %Create x label 
ylabel('Z Coefficient','Fontsize',14,'fontname','Helvatica') %create y label  
legend('Alpha=0.001', 'Alpha=0.05', 'Alpha=0.1', 'Alpha=0.5', 'Alpha=0.7', 
'Alpha=1=0') %create legend and content of legend  
grid 'on' %add gridlines 
set (gca,'XTick',[0:0.1:2]) 
set (gca,'YTick',[0:0.1:3]) 
axis([0 1.6 0 1.1]) 
  

D.10  Model 5  

%Orientation Model 
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clc 
clear all 
close all  
A=0:0.005:1; 
K_Air=0.0242; 
K_Fibre=0.85; 
B=K_Air./K_Fibre; 
  
for i=0:5 
    Z=0.2*i; 
  
K_Ave=K_Fibre*(1+((B-1)./(1+(A./(1-A)).*(1+Z.*((B-1)./(B+1)))))); 
plot(A,K_Ave) 
hold on 
end  
  
%plot(T_2,K_Conv) 
title('Orientation Dependant Model','Fontsize',16,'fontname','Helvatica') 
xlabel('Volume Fraction','Fontsize',14,'fontname','Helvatica') %Create x label 
ylabel('Equivalent Conductivity (W/mK)','Fontsize',14,'fontname','Helvatica') 
%create y label 
legend('Z=0', 'Z=0.2', 'Z=0.4', 'Z=0.6', 'Z=0.8', 'Z=1') %create legend and 
content of legend  
grid 'on' %add gridlines 
%set (gca,'XTick',[0::1]) 
%set (gca,'YTick',[0:0.1:1]) 
  

D.11  Optimization of Radiation Model 

clc 
clear all  
close all 
  
  
x=0.000016:((2e-4)./500000):2e-4; 
T_1=(4+(3.85*10^5).*x); 
  
r=8e-6; 
h=x./r; 
F_1_2=(sqrt(h.^2-4)-h+2*asin(2./h))./(2*pi); 
E=0.85; 
sigma=5.67E-8; 
  
q=(sigma).*((T_1+273).^4-(277).^4)./((1./F_1_2)+2.*((1-E)./E)); 
  
plot(x,q) 
hold on 
  
x=0:((2e-4)./500000):0.000016; 
T_1=(4+(3.85*10^5).*x); 
F_1_2=-1.9801e+04.*(x-0.000016)+0.18168219358181; 
q=(sigma).*((T_1+273).^4-(277).^4)./((1./F_1_2)+2.*((1-E)./E)); 
plot(x,q) 
  
title('Radiative Optimisation') 
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xlabel('Position Along Bounding Region (m)','Fontsize',14,'fontname','Helvatica') 
%Create x label 
ylabel('Radiative Heat Flux (W/m^2)','Fontsize',14,'fontname','Helvatica') 
%create y label  
legend( 'Tabulated View Factor','Interpolated View Factor') %create legend and 
content of legend  
grid 'on' %add gridlines 
set (gca,'XTick',[0:3e-4./20:3e-4]) 
set (gca,'YTick',[0:0.5:10]) 
 

D.12  A-B Hybrid Model 

%Script Estimating the Thermal Conductivity System And Range Of Values 
  
clear all 
close all 
clc 
syms A B  
[A,B] = meshgrid(0:0.1:1,0:0.1:1); 
  
V_Fibre=1; 
V_Total=10; 
  
K_Air=0.0242; 
K_Fibre=0.85; 
  
Alpha=(V_Fibre./V_Total); 
  
K_Paralell=(Alpha*K_Fibre+(1-Alpha)*(K_Air)); 
K_Planar=(K_Air*K_Fibre)./(K_Air*Alpha+K_Fibre*(1-Alpha)); 
  
K_Mean=A*K_Paralell+B*K_Planar; 
contour(A,B,K_Mean,20); 
[C,h]=contour(A,B,K_Mean,10); 
clabel(C,h) 
xlabel('Value of A','Fontsize',14,'fontname','Helvatica') %Create x label 
ylabel('Value of B','Fontsize',14,'fontname','Helvatica') %create y label  
grid 'on' %add gridlines 
set (gca,'XTick',[0:0.1:1]) 
set (gca,'YTick',[0:0.1:1]) 

D.13  Model using 3 Distinct Conductivities 

%Triple model 
  
A=0:0.01:1; 
  
K_A=0.0245; 
K_G=0.85; 
K_P=0.15; 
  
for B=0:5 
    K_1=(K_P.*K_G)./((K_G.*0.2.*B)+K_P.*(1-0.2.*B)); 
    K=K_1.*K_A./(K_1.*A+(1-A).*K_A); 
    plot(A,K) 
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    hold on 
end 
title('Model 2, Extension to 3 Materials') 
xlabel('Volume Ratio (Air/total)','Fontsize',14,'fontname','Helvatica') %Create x 
label 
ylabel('Thermal Conductivity (W/mK)','Fontsize',14,'fontname','Helvatica') 
%create y label  
legend('B=0', 'B=0.2', 'B=0.4', 'B=0.6', 'B=0.8', 'B=1') %create legend and 
content of legend  
grid 'on' %add gridlines 
set (gca,'XTick',[0:0.1:2]) 
set (gca,'YTick',[0:0.1:3]) 
 

D.14  Stiffness of Hybrid Composition 

clc 
clear all  
close all 
  
  
B=0:0.01:1; 
E_PET=4.3; 
E_GF=64; 
P=0.71; 
  
for i=1:5 
    A=0.1.*i 
E_B=A.*(E_PET.*(1-B)+(E_GF.*P).*B); 
semilogy(B,E_B) 
hold on 
end 
  
xlabel('Composition','Fontsize',14,'fontname',' Helvetica') %Create x label 
ylabel('Youngs Modulus (MPa)','Fontsize',14,'fontname','Helvetica') %create y 
label  
legend( '\alpha=0.1','\alpha=0.2','\alpha=0.3','\alpha=0.4','\alpha=0.5') %create 
legend and content of legend  
grid 'on' %add gridlines 
%set (gca,'XTick',[0:3e-4./20:3e-4]) 
%set (gca,'YTick',[0:0.5:10]) 
axis([0,1,.43,25]) 
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E APDL Codes 

E.1 Summing Fluxes in ANSYS  

RESUME  
SET,LAST 
inres,all 
etable,flux,tf,sum,avg 
etable,flux2,tf,x,avg 
etable,flux3,tf,y,avg 
etable,flux4,tf,z,avg 
ssum,flux 
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F Extended Simulation Setup 
 

 

 

Figure 14: The initial box generation settings (left) and the slice settings (right) for 

fibre importing 
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G Particle Generation 

G.1 randomspheres.m 

The following MATLAB code is the initial algorithm used to generate spherical 

particles, and the script that should be run to generate a geometry. This 

implementation uses a normal distribution centred on a single radius value with a % 

variation (i.e, 10% variation means most of the particles are within 10% of the radius 

selected). 

% This script generates a set of randomly positioned spheres within a bounding 
region 
% The spheres shouldn't intersect with the edges of the bounding region, are 
randomly distributed through it 
% 
% The script produces two outputs: 4sphere.csv, which allows the spheres to be 
imported into APDL and a scatter plot showing the locations of the spheres 
% Note that the script assumes (and tells APDL!) the sizes are in microns! 
  
%rngstate = rng; 
  
% Mean sphere diameter and % variation from it, 0 means uniform diameters 
sphererad = [20 10]; 
sphereradstd = sphererad(1)*(sphererad(2)/100); 
  
% bounding region, note it's assumed to be a cuboid from an (x,y,z) point to a 
second (x,y,z) point 
boundingregion = [0 0 0 10e-1 10e-1 10e-1]; 
dbx = boundingregion(4)-boundingregion(1); 
dby = boundingregion(5)-boundingregion(2); 
dbz = boundingregion(6)-boundingregion(3); 
  
vbr = abs(dbx*dby*dbz); 
% The % volume fraction aimed for, controls how long the script runs for 
% Note that since each sphere has a volume, the script will generate a volume 
fraction slightly 
% higher than the desired value 
% WARNING!!! If this is too high, the script may never complete, and higher 
values --> longer run times 
desiredvf = 5; 
  
% Set the current volume fraction to 0 so the while loop runs and produces an 
accurate volume fraction 
actualvf = 0; 
vsphere = 0; 
  
% Set loop iteration counter to 1 so we know how many particles we've added 
etc! 
iter = 1; 
  
  



245 
 

sphere = zeros(1,5); 
% Sphere generation loop!!! 
while actualvf < desiredvf 
    delete = 0; 
    x = 1; 
    % generate a temporary particle that we can do stuff to before deciding 
whether to keep it or not! 
    tempparticle = [iter, 
randb(boundingregion(1),boundingregion(4)),randb(boundingregion(2),boundingr
egion(5)),randb(boundingregion(3),boundingregion(6)), 
abs(sphereradstd*randn(1)+sphererad(1))]; 
     
    if abs(tempparticle(2) - boundingregion(1)) <= tempparticle(5) 
        delete = 1; 
    elseif abs(tempparticle(2) - boundingregion(4)) <= tempparticle(5) 
        delete = 1; 
    elseif abs(tempparticle(3) - boundingregion(2)) <= tempparticle(5) 
        delete = 1; 
    elseif abs(tempparticle(3) - boundingregion(5)) <= tempparticle(5) 
        delete = 1; 
    elseif abs(tempparticle(4) - boundingregion(3)) <= tempparticle(5) 
        delete = 1; 
    elseif abs(tempparticle(4) - boundingregion(6)) <= tempparticle(5) 
        delete = 1; 
    else 
        while x <= size(sphere,1) && delete == 0 
            dist = 
vecleng(tempparticle(2),tempparticle(3),tempparticle(4),sphere(x,2),sphere(x,3),
sphere(x,4)); 
            if dist < tempparticle(5)+sphere(x,5) 
                delete = 1; 
            end 
            x = x+1; 
        end 
    end 
  
    if delete ~= 1 
        sphere(iter,:) = tempparticle; 
        vsphere = vsphere+4/3*pi*tempparticle(5)^3; 
        actualvf = vsphere/vbr*100; 
        iter = iter+1; 
    end 
end 
  
%Open a file to write DesignModeller commands into; starts with a 4 just so it 
shows up higher when alphabetically sorted 
fid = fopen('1sphere.js','wt'); 
  
% End and clear any currently started simulations, and move into preprocessing. 
fprintf(fid,'function plane1SketchesOnly(p){\n'); 
fprintf(fid,'p.Plane = agb.GetActivePlane();\n'); 
fprintf(fid,'p.Origin = p.Plane.GetOrigin();\n'); 
fprintf(fid,'p.XAxis = p.Plane.GetXAxis();\n'); 
fprintf(fid,'p.XAxis = p.Plane.GetYAxis();\n'); 
  
% Move the working plane to the centre of the sphere, and then create an 
appropriately sized sphere centred there. 
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q = 1; 
for k=1:size(sphere,1) 
    % Make a new plane centered on the sphere with a predictable name 
    fprintf(fid,'p.pl%i = agb.PlaneFromPlane(p.Plane);\n',k); 
    fprintf(fid,'p.pl%i.AddTransform(agc.XformGlobalXOffset,%f);\n',k,sphere(k,2)); 
    fprintf(fid,'p.pl%i.AddTransform(agc.XformGlobalYOffset,%f);\n',k,sphere(k,3)); 
    
fprintf(fid,'p.pl%i.AddTransform(agc.XformGlobalZOffset,%f);\n\n',k,sphere(k,4)); 
     
    % Start a new sketch for the spline in the new plane and give it a generic 
name 
    fprintf(fid,'p.Sk%i = p.pl%i.newSketch();\n',q,k); 
    fprintf(fid,'p.Sk%i.Name = "Sketch%i"\n',q,q); 
    fprintf(fid,'with(p.Sk%i){\n',q); 
    q = q+1; 
    % Add a spline that gets revolved into a sphere 
    fprintf(fid,'p.ea%i = ArcCtrEdge(0,0,%f,0,%f,0);\n}\n\n',k,-
sphere(k,5),sphere(k,5)); 
    % Start a new sketch for the line in the new plane and give it a generic name 
    % <Doing both in the same sketch leads to the revolve failing 
    fprintf(fid,'p.Sk%i = p.pl%i.newSketch();\n',q,k); 
    fprintf(fid,'p.Sk%i.Name = "Sketch%i"\n',q,q); 
    fprintf(fid,'with(p.Sk%i){\n',q); 
    q = q+1; 
    % Line to revolve the spline around! 
    fprintf(fid,'p.l%i = Line(%f,0,%f,0);\n}\n\n',k,-sphere(k,5),sphere(k,5)); 
end 
fprintf(fid,'p.Sk%i = p.Plane.newSketch();\n',q); 
fprintf(fid,'p.Sk%i.Name = "Sketch%i"\n',q,q); 
fprintf(fid,'with (p.Sk%i){\n',q); 
fprintf(fid,'p.Line12 = Line(0,0,0,%f);\n',boundingregion(5)); 
fprintf(fid,'p.Line13 = 
Line(0,%f,%f,%f);\n',boundingregion(5),boundingregion(4),boundingregion(5)); 
fprintf(fid,'p.Line14 = 
Line(%f,%f,%f,0);\n',boundingregion(4),boundingregion(5),boundingregion(4)); 
fprintf(fid,'p.Line15 = Line(%f,0,0,0);\n}\n',boundingregion(4)); 
  
fprintf(fid,'return p;\n}\n'); 
fprintf(fid,'var XYPlane = agb.GetXYPlane();\n'); 
fprintf(fid,'agb.SetActivePlane(XYPlane);\n'); 
fprintf(fid,'var ps1 = plane1SketchesOnly(new Object());\n'); 
fprintf(fid,'var ext1 = agb.Extrude(agc.Add, ps1.Sk%i, agc.DirNormal, 
agc.ExtentFixed, %f,agc.ExtentFixed, 0.0, agc.No, 0.0, 
0.0);\n',q,boundingregion(6)); 
  
for k = 1:size(sphere,1) 
    fprintf(fid,'var rev%i = 
agb.Revolve(agc.Slice,ps1.Sk%i,ps1.l%i,agc.DirNormal,360,0,agc.Yes,0,0);\n',k,2*
k-1,k); 
end 
fprintf(fid,'agb.Regen();\n'); 
  
% Close the file 
fclose('all'); 
  
fprintf('Actual volume fraction: %f\n',actualvf); 
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figure(1) 
scatter3(sphere(:,2),sphere(:,3),sphere(:,4)) 
  
disp(datestr(now)) 

 

G.2 randomspheresDM.m 

This is an example alternate generation code for the particle modelling. This version 

uses a more complex random number generation process to produce a particle 

distribution based on a multimodal distribution. As a result, it needs a matrix with two 

rows to define the particle radius: the first is the modal peaks and the second is the 

variance (square of the standard deviation). 

% This script generates a set of randomly positioned spheres within a bounding 
region 
% The spheres shouldn't intersect with the edges of the bounding region, are 
randomly distributed through it 
% 
% The script produces two outputs: 4sphere.csv, which allows the spheres to be 
imported into APDL and a scatter plot showing the locations of the spheres 
% Note that the script assumes (and tells APDL!) the sizes are in microns! 
  
% rngstate = rng; 
  
% Mean sphere diameter in first row, variance in second row, min/max radius as 
minr and maxr 
sphererad = [16 32 32; 5 7 30]; 
minr = 5; 
maxr = 78; 
  
% spherediamrange = [50 100]; 
% spherestd = spherediamrange(1)*(spherediamrange(2)/100); 
  
% bounding region, note it's assumed to be a cuboid from an (x,y,z) point to a 
second (x,y,z) point 
boundingregion = [0 0 0 600 600 600]; 
dbx = boundingregion(4)-boundingregion(1); 
dby = boundingregion(5)-boundingregion(2); 
dbz = boundingregion(6)-boundingregion(3); 
  
vbr = abs(dbx*dby*dbz); 
% The % volume fraction aimed for, controls how long the script runs for 
% Note that since each sphere has a volume, the script will generate a volume 
fraction slightly 
% higher than the desired value 
% WARNING!!! If this is too high, the script may never complete, and higher 
values --> longer run times 
desiredvf = 5; 
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% Set the current volume fraction to 0 so the while loop runs and produces an 
accurate volume fraction 
actualvf = 0; 
vsphere = 0; 
  
% Set loop iteration counter to 1 so we know how many particles we've added 
etc! 
iter = 1; 
deleteinrow = 0; 
  
sphere = zeros(1,5); 
% Sphere generation loop!!! 
while actualvf < desiredvf 
    delete = 0; 
    x = 1; 
    radius = mmrn(sphererad(1,:),sphererad(2,:),1,'limit',[minr maxr]); 
    % generate a temporary particle that we can do stuff to before deciding 
whether to keep it or not! 
%   tempparticle = [iter, 
randb(boundingregion(1),boundingregion(4)),randb(boundingregion(2),boundingr
egion(5)),randb(boundingregion(3),boundingregion(6)), 
abs(spherestd*randn(1)+spherediamrange(1))]; 
    tempparticle = [iter, 
randb(boundingregion(1),boundingregion(4)),randb(boundingregion(2),boundingr
egion(5)),randb(boundingregion(3),boundingregion(6)), radius]; 
     
    if abs(tempparticle(2) - boundingregion(1)) <= tempparticle(5) 
        delete = 1; 
    elseif abs(tempparticle(2) - boundingregion(4)) <= tempparticle(5) 
        delete = 1; 
    elseif abs(tempparticle(3) - boundingregion(2)) <= tempparticle(5) 
        delete = 1; 
    elseif abs(tempparticle(3) - boundingregion(5)) <= tempparticle(5) 
        delete = 1; 
    elseif abs(tempparticle(4) - boundingregion(3)) <= tempparticle(5) 
        delete = 1; 
    elseif abs(tempparticle(4) - boundingregion(6)) <= tempparticle(5) 
        delete = 1; 
    else 
        while x <= size(sphere,1) && delete == 0 
            dist = 
vecleng(tempparticle(2),tempparticle(3),tempparticle(4),sphere(x,2),sphere(x,3),
sphere(x,4)); 
            if dist < tempparticle(5)+sphere(x,5) 
                delete = 1; 
            end 
            x = x+1; 
        end 
    end 
  
    if delete ~= 1 
        sphere(iter,:) = tempparticle; 
        vsphere = vsphere+4/3*pi*tempparticle(5)^3; 
        actualvf = vsphere/vbr*100; 
        iter = iter+1; 
        deleteinrow = 0; 
    else 
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        deleteinrow = deleteinrow+1; 
        mod(deleteinrow,1000) == 0 && fprintf('deleted: %i; current vf: %.2f; 
spheres: %i\n',deleteinrow,actualvf,size(sphere,1)); 
    end 
end 
  
%Open a file to write DesignModeller commands into; starts with a 4 just so it 
shows up higher when alphabetically sorted 
fid = fopen('2sphereDM.js','wt'); 
  
% End and clear any currently started simulations, and move into preprocessing. 
fprintf(fid,'function plane1SketchesOnly(p){\n'); 
fprintf(fid,'p.Plane = agb.GetActivePlane();\n'); 
fprintf(fid,'p.Origin = p.Plane.GetOrigin();\n'); 
fprintf(fid,'p.XAxis = p.Plane.GetXAxis();\n'); 
fprintf(fid,'p.XAxis = p.Plane.GetYAxis();\n'); 
  
% Move the working plane to the centre of the sphere, and then create an 
appropriately sized sphere centred there. 
q = 1; 
for k=1:size(sphere,1) 
    % Make a new plane centered on the sphere with a predictable name 
    fprintf(fid,'p.pl%i = agb.PlaneFromPlane(p.Plane);\n',k); 
    fprintf(fid,'p.pl%i.AddTransform(agc.XformGlobalXOffset,%f);\n',k,sphere(k,2)); 
    fprintf(fid,'p.pl%i.AddTransform(agc.XformGlobalYOffset,%f);\n',k,sphere(k,3)); 
    
fprintf(fid,'p.pl%i.AddTransform(agc.XformGlobalZOffset,%f);\n\n',k,sphere(k,4)); 
     
    % Start a new sketch for the spline in the new plane and give it a generic 
name 
    fprintf(fid,'p.Sk%i = p.pl%i.newSketch();\n',q,k); 
    fprintf(fid,'p.Sk%i.Name = "Sketch%i"\n',q,q); 
    fprintf(fid,'with(p.Sk%i){\n',q); 
    q = q+1; 
    % Add a spline that gets revolved into a sphere 
    fprintf(fid,'p.ea%i = ArcCtrEdge(0,0,%f,0,%f,0);\n}\n\n',k,-
sphere(k,5),sphere(k,5)); 
    % Start a new sketch for the line in the new plane and give it a generic name 
    % <Doing both in the same sketch leads to the revolve failing 
    fprintf(fid,'p.Sk%i = p.pl%i.newSketch();\n',q,k); 
    fprintf(fid,'p.Sk%i.Name = "Sketch%i"\n',q,q); 
    fprintf(fid,'with(p.Sk%i){\n',q); 
    q = q+1; 
    % Line to revolve the spline around! 
    fprintf(fid,'p.l%i = Line(%f,0,%f,0);\n}\n\n',k,-sphere(k,5),sphere(k,5)); 
end 
fprintf(fid,'p.Sk%i = p.Plane.newSketch();\n',q); 
fprintf(fid,'p.Sk%i.Name = "Sketch%i"\n',q,q); 
fprintf(fid,'with (p.Sk%i){\n',q); 
fprintf(fid,'p.Line12 = Line(0,0,0,%f);\n',boundingregion(5)); 
fprintf(fid,'p.Line13 = 
Line(0,%f,%f,%f);\n',boundingregion(5),boundingregion(4),boundingregion(5)); 
fprintf(fid,'p.Line14 = 
Line(%f,%f,%f,0);\n',boundingregion(4),boundingregion(5),boundingregion(4)); 
fprintf(fid,'p.Line15 = Line(%f,0,0,0);\n}\n',boundingregion(4)); 
  
fprintf(fid,'return p;\n}\n'); 
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fprintf(fid,'var XYPlane = agb.GetXYPlane();\n'); 
fprintf(fid,'agb.SetActivePlane(XYPlane);\n'); 
fprintf(fid,'var ps1 = plane1SketchesOnly(new Object());\n'); 
fprintf(fid,'var ext1 = agb.Extrude(agc.Add, ps1.Sk%i, agc.DirNormal, 
agc.ExtentFixed, %f,agc.ExtentFixed, 0.0, agc.No, 0.0, 
0.0);\n',q,boundingregion(6)); 
  
for k = 1:size(sphere,1) 
    fprintf(fid,'var rev%i = 
agb.Revolve(agc.Slice,ps1.Sk%i,ps1.l%i,agc.DirNormal,360,0,agc.Yes,0,0);\n',k,2*
k-1,k); 
end 
fprintf(fid,'agb.Regen();\n'); 
  
% Close the file 
fclose('all'); 
  
fprintf('Actual volume fraction: %f\n',actualvf); 
  
figure(1) 
scatter3(sphere(:,2),sphere(:,3),sphere(:,4)) 
  
disp(datestr(now)) 
 

G.3 mmrn.m 

Note that the following MATLAB code needs to be saved as ‘mmrn.m’ and located in 

a path that MATLAB can find. This is the code that the alternate radius distribution 

uses to generate a more complex set of random numbers. 

function [X,gmix] = mmrn(mus,vars,N,varargin) 
% UMGRN = univariate multimodal Gaussian random number generator. The 
% function generates random variables from a mixture of N Gaussian 
% distribution. 
% 
%   [X,gmix] = UMGRN(mus,vars,N,'opt1','val1',...) 
% 
% Input: - mus = 1xN vector of means, 
%        - vars = 1xN vector of variances, 
%        - N = the number of random numbers, 
% 
% Output: - X = 1xN vector of random numbers with its probability density 
function is gmix. 
%         - gmix = the probability density function, i.e.: 
%             gmix(X) = 1/N * (G(X,mu(1),vars(1)) + G(X,mu(2),vars(2)) + ... + 
%                       G(X,mu(N),vars(N))) 
%           where G(X,mu,s) is the Gaussian function with mean=mu and 
variance=s. 
% 
% Optional arguments: 
%   - 'limit', [a b]. Defines data range of the output X. 
%     Default is computed optimally to cover 99% of the p.d.f. gmix. 
%   - 'with_plot', 0 | 1. Plot also the p.d.f. and the generated random numbers. 
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%     Default is 1. 
% 
% Author: Avan Suinesiaputra (avan.sp@gmail.com) 
%         Fadillah Tala (fadil.tala@gmail.com) 
  
% default values 
lim = []; 
with_plot = 0; 
  
% get optional arguments 
for i=1:2:length(varargin) 
    if( strcmpi(varargin{i},'limit') ) 
        lim = varargin{i+1}; 
    elseif( strcmpi(varargin{i},'with_plot') ) 
        with_plot = varargin{i+1}; 
    else 
        error('Unknown plot.'); 
    end 
end 
  
% calculate the optimal limit if lim is emtpy 
if( isempty(lim) ) 
    lim = [min(mus-3*vars) max(3*vars+mus)]; 
else 
    % check the limit 
    if( lim(1)>=lim(2) )  
        error('Error in the data_range argument.'); 
    end 
end 
  
% [a,b] = lim 
a = lim(1); 
b = lim(2); 
  
% check length of mus and vars 
if( length(mus)~=length(vars) ) 
    error('Inequal length of mus and vars arguments.');  
end 
  
% NOTE: Since the output is a sum of p.d.f, we must make sure that the output 
gmix must be 
% a density (integrates to one). Thus each individual Gaussian function is 
weighted by 
% 1/M, where M = the number of Gaussian function. 
  
% build the mixture of Gaussian function 
gstr = 'exp(-(x-(%f)).^2 / (2*(%f)^2)) / ((%f)*sqrt(2*pi))'; 
gmix = sprintf('1/%d * (0',length(mus)); 
for i=1:length(mus)  
    gmix = strcat(gmix,'+',sprintf(gstr,mus(i),vars(i),vars(i))); 
end 
gmix = inline(strcat(gmix,')'),'x'); 
  
  
% THE REJECTION METHOD 
  
% the inequality to be hold: f(x) <= c*g(x) forall x. 
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% we can determine c = maximum of gmix, i.e. 
1/(min(vars)*length(mus)*sqrt(2*pi)), 
%                  g(x) = the uniform p.d.f., i.e. g(x) = 1 forall x, and 
%                  f(x) is the gmix(x), the mixture of gaussian p.d.f. 
  
% calculate the constant c: 
c = 1/(min(vars)*length(mus)*sqrt(2*pi)); 
  
X = zeros(1,N); 
for i=1:N 
     
    % generate xi until it is not rejected 
    ok = 0; 
    while( ~ok ) 
     
        xi = a + (b-a)*rand;  % 1. Generate a random number X from uniform dist. 
        r = c / gmix(xi);     % 2. Calculate ratio: r = c*g(x) / f(x) 
        u = rand;             % 3. Generate a uniform randon number 
         
        ok = (u*r) < 1;       % 4. Accept if (u*r) < 1 
         
    end 
     
    % put xi in the output array X 
    X(i) = xi; 
     
end 
  
% PLOT if with_plot=1 
if( with_plot ) 
    figure; 
    hold on; 
    set(gca,'ColorOrder',circshift(get(gca,'ColorOrder'),-1)); 
    xi = a:0.01:b; 
    g = inline(sprintf('exp(-(x-mu).^2 / (2*s^2)) / 
((%d)*s*sqrt(2*pi))',length(mus)),'x','mu','s'); 
    for i=1:length(mus) Gx(i,:) = g(xi,mus(i),vars(i)); end 
    plot(xi,Gx','LineStyle',':'); 
    plot(xi,gmix(xi),'b'); 
    plot(X,zeros(size(X)),'b.'); 
end 

 

G.4 Other MATLAB Codes Required for Particle Generation 

The particle generation algorithms also require access to the veclen.m code (Section 

C.7) and the randb.m code (Section C.6). 
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H DCPD Results 

 

Figure 15: The deformation (left) and stress (right) in the DCPD centraliser in Test 1 

loading conditions using the bilinear material model. Note that the deformation is 

negative because the x-direction is outwards. 

 

 

Figure 16: The deformation (left) and stress (right) in the DCPD under Test 1 loading 

conditions using the trilinear material model. 
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Figure 17: The deformation (left) and stress (right) for the DCPD in Test 2 

Conditions using the bilinear material model. 
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I Nylon Results 

 

Figure 18: The deformation (left) and stress (right) for the Nylon in Test 1 Conditions 

using the multilinear material model. 

 

 

Figure 19: The deformation (left) and stress (right) for the Nylon in Test 1 Conditions 

using the bilinear material model. 
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Figure 20: The deformation (left) and stress (right) for the Nylon in Test 1 Conditions 

using the trilinear material model. 

 

Figure 21: The deformation (right) and stress (left) in the Nylon under Test 2 load 

conditions using the multilinear material model. 
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Figure 22: The deformation (left) and stress (right) for the Nylon in Test 2 Conditions 

using the bilinear material model. 

 

 


