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Abstract

In this thesis we formulate an abstract model to describe ultrasonic transducers, taking

into account a high-temperature regime as well as dynamics at the boundary. We use an

abstract boundary trace theory to extend from a known thermo-piezo-electromagnetic

system, and encode boundary dynamics directly within our model. Using the theory

of evolutionary equations invented by Rainer Picard, we establish the well-posedness

of our system. Well-posedness in this context corresponds to both Hadamard well-

posedness and causal dependence on given data. Moreover, we conduct a systematic

investigation into different arrangements of complicated boundary dynamics which lead

to a well-posed system. Motivated by a set of known piezo-electric boundary conditions,

we formulate and consider novel generalised impedance like boundary conditions. Fur-

thermore, we formulate and analyse a specific example of these generalised boundary

dynamics, which account also for the influence of heat at the boundary. The resulting

example pertains to all three physical aspects of our system, and thus harnesses the

full generality afforded by our system.
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Chapter 1

Introduction

1.1 Evolutionary Equations

The field of evolutionary equations is a relatively fresh area of research in mathematical

analysis. The world was first introduced to the theory back in 2009 with the publication

of Rainer Picard’s seminal paper [Pic09]. Although, the first stone in the path to evo-

lutionary equations was paved some twenty years prior with key observations contained

in [Pic89]. Since then it has been the sole focus of at least two research monographs,

three PhD theses as well as two habilitation theses. The field played a supporting —

but no less substantial — role in at least one other PhD thesis and research monograph.

Moreover, there have been over fifty research articles published in the area. The exact

routes taken by these articles are almost as varied as their total number might suggest.

In a moment we will briefly outline some of these research trends.

At its core, the field of evolutionary equations concerns itself with problems of the

form

(∂tM(∂t) +A)U = F. (1.1)

We first regard this prototypical equation with a high-level view. The unbounded

operator ∂t denotes a specific realisation of the time derivative, whereas the operator

M(∂t) enjoys holomorphic and continuous properties. The role of this latter operator

will be to encode the material parameters of the physical system being modelled. The

operator A is unbounded, skew-selfadjoint and will account for the spatial aspects of
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the system. Lastly, the function U is our unknown and F is a given right-hand side.

A suitable Hilbert space provides the setting. Later in Chapter 2 we will review these

key components with a concise low-level mathematical view.

The cornerstone of the theory of evolutionary equations is established by Picard’s

Theorem. This result, first presented in [Pic09, Solution Theory, p. 1770], encapsulates

the entire solution theory of the field. Under what amounts to very mild conditions,

Picard’s Theorem guarantees both standard Hadamard well-posedness as well as causal

dependence on given data. Causal dependence pertains to a mathematical means of

reflecting a given physical phenomenons bias and evolution in a set direction of time.

We will recall this notion of causality in greater mathematical detail shortly (see Propo-

sition 2.2.5 and Remark 2.2.6). As we will note, causality emerges as an indispensable

ingredient for well-posedness in the setting of evolutionary equations. Moreover, this

solution theory is very easy to apply, with much of the required work amounting to

little more than simple algebra.

It turns out that many of the quintessential partial differential equations (PDEs) of

mathematical physics can be reformulated to fit within the archetype of (1.1). For in-

stance, it is well-known that the heat equation, wave equation and Maxwell’s equations

can each be regarded from the perspective of evolutionary equations. Furthermore,

these phenomena and more can be combined via appropriate material couplings, and

easily treated by the theory as a coupled system (see [Pic09, Section 4] and [STW22, Sec-

tion 6.2, Chapter 7] for a plethora of such, and other, applications).

As mentioned, research trends in evolutionary equations are themselves incredi-

bly diverse. For instance, work has been done to treat stochastic partial differen-

tial equations (SPDEs) with techniques from the field (c.f. [SW17]). Here, the au-

thors demonstrated the power of the theory by successfully attacking the nonstandard

stochastic Maxwell equations as well as some time fractional SPDEs. The subsequent

article [PTW18] further developed this framework. Moreover, there have been consider-

able advances made in the area of asymptotic homogenisation. In [NVW21] the authors

used evolutionary equations to establish a setting for handling the periodic and stochas-

tic homogenisation of PDEs. The use of this framework was showcased by the authors
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for several ubiquitous equations including elliptic PDEs. Various other instances of the

advances made in this direction can be found in [Wau16b], [CW18] and [CW19]. The

notion of a nonlinear evolutionary equation has also been studied. Fundamental to

this zone of investigation is the replacement of the skew-selfadjoint operator A in (1.1)

by a maximal monotone relation (see for instance [STW22, Definition, p. 276]). This

generalisation allows one to apply the theory of evolutionary equations to tackle certain

nonlinear problems in mathematical physics (c.f. [Tro12], [Tro13], [Tro20] and [TW14]).

The ubiquity of their application, coupled with an accessible solution theory and the

ability to handle coupled systems, are some of the main draws to apply this theory to

the problem of our thesis.

1.2 Ultrasonic Transducers and Motivation

Piezo-electric ultrasonic transducers are versatile measurement devices at the heart of

many and ubiquitous applications. Ultrasonic transducers operate by emitting a wave

towards a given material. The wave then proceeds to travel through the material being

tested, before being received again by the transducer device. The resulting mechanical

wave is then transformed into an electrical signal for analysis. Piezo-electric transducers

enjoy usage across a range of diverse fields of study, although conventional applications

of these devices mostly comprise medical imaging and non-destructive testing.

With regards to medical imaging, the most well-known example of these instruments

lies in ultrasound technologies (see for instance [HAF83], [SZ96] and [WL11]). Piezo-

electric ultrasonic transducers provide an attractive option for medical diagnostics on

account of their cost-effectiveness, portability and non-invasiveness (c.f. [KYO11] and

[LR17]). However, there exists a host of other clinical scenarios which rely upon the

use of this technology, albeit to a variety of different ends (c.f. [ATH+95], [PIWS04],

[LKBP15], [HC95], [KAC+12] and [BMJ11]).

Ultrasonic transducers are also frequently utilised in the area of non-destructive

testing, as well as in the evaluation of safety critical systems. Instances of such sys-

tems can be found all around us. They include industrial and nuclear power plants

(c.f. [Che12] and [KMC+99]), aerospace structures (c.f. [SH06] and [GS12]) as well as
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oil pipelines (c.f. [LZDZ12], [AAAR+15] and [LRL+13]). In the realm of non-destructive

testing, ultrasonic instruments are used to assess the integrity and stability of a given

system. Their use here can lead to the discovery of defects including cracks in the

material of the structure (see for instance [HDW05], [TMG15], [TMLG15], [TGN+15]

and [RJR95]).

The prospective modelling of such devices is clearly of practical and economic

importance. When such models are used to attune material and manufacturing de-

sign parameters, the question of the associated systems well-posedness is paramount

(c.f. [OMOH08a], [OMOH08b], [OMO+08], [MW11] and [WM16]). The establishment

of a well-posed model allows one to consider the corresponding inverse problem, which

is conducive to deducing those parameters (c.f. [Ohn90], [LON04], [KLMK06], [LKS08]

and [FSC+20]). With ultrasonic transducers providing the backbone to a span of di-

verse and nontrivial applications, it is no wonder that they are the focus of much

contemporary interdisciplinary interest.

Evolutionary equations have already been used to model ultrasonic transducer de-

vices. The first effort to model ultrasonic transducers with this theory is contained

in [MPTW16]. There, the authors constructed a coupled thermo-piezo-electromagnetic

system and, among other objectives, addressed the question of its well-posedness under

a set of homogeneous boundary conditions. The inclusion of a thermal aspect in the

coupled system of [MPTW16] is by no means a trivial one, as it provides some moti-

vation to consider the behaviour of an ultrasonic instrument under a high-temperature

regime. Various industrial applications necessitate the usage of piezo-electric transduc-

ers at incredibly high temperatures. For instance, some nuclear power plants are cooled

by heavy liquid metals including sodium, lead-bismuth and lead, which have melting

temperatures of 97.99 ◦C, 123.5 ◦C and 327.5 ◦C, respectively (c.f. [KV21], [GPP+09]

and [TPVV16]). Such considerations are of crucial importance to the fabrication of

ultrasonic devices for use in non-destructive testing. This is because the piezo-electric

transducer of interest could become damaged after continuous use under strenuous

thermal conditions. This is particularly true for the use of piezo-electric transducers

in the manufacturing process of molten materials including plastic. In this scenario, a
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piezo-electric transducer would be required to measure properties like liquid density at

temperatures over 220 ◦C (c.f. [KSR+15] and [KŠM+13]). Besides adversely impacting

on the accuracy of any measurement readings, the failure to adequately accommodate

for a high-temperature regime can drive up production costs. Further references detail-

ing the usage of ultrasonic transducers at high temperatures abound, and can be found

for instance in [KMC+99], [KV21], [BPP79], [FWW89], [SKC07], [OJMS05], [HPH03]

and [JLP00].

A second effort to model a piezo-electric transducer with the theory of evolutionary

equations can be found in [Pic17]. This article focused on a coupled piezo-electric sys-

tem without the influence of temperature. However, it did implement some complicated

and interesting piezo-electromagnetic boundary dynamics, which we now recall. Pre-

sented in their original formulation (c.f. [AN11, Section 1] or [Pic17, Subsection 4.3.1]),

the following piezo-electromagnetic impedance boundary conditions

n×H − n× Q̃∗∂tu+ n× (E × n) = 0 on ∂Ω,

T · n− Q̃ (n× E) +
(
1 + α̃∂−1

t

)
∂tu = 0 on ∂Ω,

(1.2)

were considered. We clarify the meaning of these boundary conditions before discussing

the meaning of an impedance boundary condition. Broadly speaking (see Chapter 4 for

the precise details) E and H are the electric and magnetic fields, respectively, whereas

u is the displacement of the underlying elastic body, Ω, and T is a suitable realisation

of the accompanying stress tensor. Here, n is the outward unit normal, whereas Q̃ and

α̃ are given (continuous and linear) boundary mappings with

Q̃ : Vγt → H1/2(∂Ω)3 and α̃ : H1/2(∂Ω)3 → H1/2(∂Ω)3.

The boundary traces and spaces Vγt and H1/2(∂Ω)3 are later recalled and examined

in detail (c.f. Proposition 3.1.6), but in essence allow us to translate different types of

boundary data between both elastic and electromagnetic parts of the system. Specific

regularity assumptions are made in [AN11, Section 2, p. 4] which ensure that the

boundary conditions (1.2) are well-defined as equations on L2(∂Ω).
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Impedance boundary conditions are also known as Leontovich boundary conditions,

with much of the initial groundwork being set by M. Leontovich in the early 1940s

(c.f. [Leo44]). At its core, an impedance boundary condition is one which establishes a

relationship between the tangential components of the electric and magnetic fields. The

exact nuance of this connection is underpinned by an impedance function or operator,

which depends on the electromagnetic properties of the underlying material (c.f. [Sen60,

Section 1]). Leontovich boundary conditions are frequently implemented to more read-

ily solve problems in electromagnetic scattering (see for instance [Ure14], [DAOC23]

and [CC23]). More specifically, they enable one to ignore any internal complexity

of the material being studied. Instead, one needs only to determine the electromag-

netic fields on the surface of the medium (c.f. [Moh82] and [Hop95]). The inclusion of

an impedance type boundary condition often looks to complicate the formulation of a

problem. The specific impedance boundary conditions recalled above in (1.2) are math-

ematically stimulating since they are given as a separate PDE, posed on the boundary

of the domain. For more details on electromagnetic impedance boundary conditions

and the classical impedance operator, consult [LY12, Equation 1.40], [BK15, Subsec-

tion 4.1.5.1], [YI18, Chapter 1] and [BL22, Equation 1.31].

In order to accommodate for such complicated boundary dynamics, the author

of [Pic17] deigned to use the mathematical framework provided by abstract bound-

ary data spaces (c.f. [PTW16, Section 5.2], [PTW14, Section 4] and [Tro14, Subsec-

tion 2.2, Section 4]). This theory provides a means of treating boundary value problems

which bypasses the need to assume any regularity of the boundary. This enables one

to consider boundary value problems for arbitrary open sets. Far from being a purely

academic exercise, the author of [Pic17] noted how their use of abstract boundary data

space theory meant that the modelling of ultrasonic transducers with a fractal geome-

try (c.f. [OMOH08a], [MW11], [MMO+11], [AM15] and [BAM16]) was also covered by

their system.
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1.3 Research Aims

The overall goal of this thesis is to unite the disparate trajectories outlined in the

previous section, and advance the modelling of ultrasonic transducers by evolutionary

equations. More precisely, the aims of this thesis are to:

1. Extend the thermo-piezo-electromagnetic system used to model ultrasonic trans-

ducers presented in [MPTW16]. This will be achieved by applying the methodol-

ogy and outlook of [PSTW16] and [Pic17]. In doing so, it is our aim to construct a

model for ultrasonic transducers which takes into account both boundary dynam-

ics (including impedance boundary conditions) and a high-temperature regime.

2. Identify those patterns of well-posed boundary behaviour covered by our extended

system of thermo-piezo-electromagnetism. We will collate our findings into a cat-

alogue, in an effort to make the identification of well-posed patterns of boundary

dynamics clear and accessible to a broad audience.

3. Abstract from the piezo-electric impedance boundary conditions (1.2) to obtain

a generalised impedance like boundary condition. We will also construct a novel

example of nontrivial dynamic boundary conditions. These will involve the in-

fluence of heat at the boundary as well as the piezo-electromagnetic impedance

effect of (1.2). As such, the example we have in mind will draw upon each of the

thermal, elastic and electromagnetic aspects of our extended system.

As noted, the underlying example of impedance boundary conditions, (1.2), are of key

interest to us. Indeed, they are interesting from a mathematical standpoint on account

of their complexity, appearing as a separate PDE on the boundary. Moreover, there

is very little in the way of literature which combines any notion of electromagnetic,

elastic and thermal impedance. Indeed, the notion of thermal impedance exists, and

its derivation mirrors that of electromagnetic impedance. Although, from applications

it seems as if the form of any thermal impedance function is little more than a varia-

tion on the same scalar quotient (c.f. [BJRV+21] and the references therein). As far as

the author is aware, there is nothing in the way of literature which addresses thermal
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impedance like boundary conditions involving a combination of Dirichlet and normal

componential boundary data. As such, we are influenced by the shape of the under-

lying piezo-electromagnetic boundary dynamics from [AN11, Section 1], and driven to

formulate and consider our own novel, generalised impedance like boundary conditions.

We will employ a nonstandard approach to our modelling efforts. It is common to

first construct a model to a given problem before embarking on its thorough analysis.

We, however, are not setting out with a specific problem in mind. Instead, our aim is

to build an abstract model and derive assumptions on the material parameters required

to obtain a well-posed system. By doing so, we will divine the form that well-posed

problems might assume. In some way then, our route to modelling travels in the

direction opposite to that which is more frequently pursued. We perform the analysis

first before asking what specific phenomenon our system might model.

1.4 Outline of Thesis

The thesis is organised as follows. We begin in Chapter 2 with a concise tour of the

essential theory of evolutionary equations. Our aim is to recall the key results and

mathematical constructions required to make sense of the prototypical evolutionary

equation, (1.1). The first key idea is covered in Section 2.1 and focuses on the afore-

mentioned realisation of the time derivative, which will be used throughout the setting.

In Section 2.2 we recall how to make sense of functions of this operator, and thus

justify the expression M(∂t) appearing in (1.1). The spatial operators to appear in

our study are then covered in Section 2.3. These operators will eventually be used to

formulate our A in (1.1). Finally, in Section 2.4 we recall and re-present the central

solution theory encapsulated by Picard’s Theorem, which appears as Theorem 2.4.4 in

this work.

Our recollection of the necessary preliminary material continues in Chapter 3. Start-

ing with Section 3.1 we succinctly review the well-known classical theory of boundary

traces and spaces. This will afford us a clearer recollection of their abstract analogues —

the aforementioned abstract boundary data spaces — in Section 3.2. In Subsection 3.2.1

we compare both of the recalled classical and abstract perspectives on boundary traces,
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before setting the stage for their subsequent application in Subsection 3.2.2.

The aim of Chapter 4 is to formulate and present our extended model for thermo-

piezo-electromagnetism with boundary dynamics and a high-temperature regime. In

Section 4.1 we recall the last preliminaries on congruence transforms, which will be

needed in the proof of our systems well-posedness. In Section 4.2 we recall and re-prove

the well-posedness result for the underlying thermo-piezo-electromagnetic system with

homogeneous boundary conditions from [MPTW16, Theorem 3.1]. In the current work,

this is re-presented in Theorem 4.2.1. By doing so, we also establish the fundamental

material parameters and constituent relations which will underpin our own extended

model. Additionally, we will highlight key modelling assumptions which will provide

a reference point when discussing our own model. In Section 4.3 we establish our

extended model for thermo-piezo-electromagnetism with boundary dynamics and a

high-temperature regime. The goal of Section 4.4 is to address the question of our

systems well-posedness, and this we do in the proof of the central solution theory of

this thesis, Theorem 4.4.6.

Chapter 5, is devoted to the catalogue of well-posed patterns of boundary behaviour

mentioned in our research aims. The construction of this catalogue will follow a system-

atic investigation into those patterns of boundary behaviour which lead to a well-posed

system. We first set the stage for our investigation in Section 5.1 with the recollection

of some additional prerequisites. In Section 5.2 we consider the possible inclusion and

recovery of Robin, Dirichlet and Neumann boundary conditions from within our model.

In Sections 5.3 and 5.4 we continue our investigation with a thorough analysis of dif-

ferent and complicated patterns of boundary behaviour. We classify the corresponding

variations in boundary dynamics by different subcases, and regard them in detail in

Subsections 5.3.1 to 5.3.3 and Subsections 5.4.1 to 5.4.3, respectively. Finally, in Sec-

tion 5.5 we extend the piezo-electric impedance boundary conditions (1.2) to a novel

example of thermo-piezo-electromagnetic boundary dynamics. We will then address

the question of well-posedness for this specific example.

The final Chapter 6 summarises the achievements of the thesis before concluding

with an outline of several possible avenues of future research.
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Chapter 2

A Brief Tour of Evolutionary

Equations

The aim of this chapter is to collect the key components of the theory of evolution-

ary equations needed to establish and analyse our model for thermo-piezo-electro-

magnetism. The main result of this chapter is Picard’s Theorem (Theorem 2.4.4),

which encapsulates the solution theory of evolutionary equations. On account of the

open access publication of [STW22], we do not feel obliged to repeat the proofs of any

of the results we now recall. The interested reader is invited to consult the proofs as

indicated there and elsewhere. The seminal paper of Rainer Picard, [Pic09], is one such

source that much of the material of this chapter can be traced back to. Other standard

references for the field include [PM11] and [MPTW20]. For the most part we will follow

the presentation of [STW22].

2.1 The Time Derivative

The first stop on our tour of evolutionary equations is the establishment of time dif-

ferentiation as a normal operator. To that end we start by setting the mathemat-

ical stage of this thesis by recalling the Bochner–Lebesgue spaces. In what follows

let (Ω, Σ, µ) be a σ-finite measure space. Standard references for these spaces in-

clude [Mik78], [DU77], [Yos95] as well as the more contemporary [ABHN11, Chapter 1]

11



and [STW22, Section 3.1]. With the help of a particular Bochner–Lebesgue space, we

will realise the time derivative as a normal operator. Sources for the time derivative in

this context include [Pic89] and the more recent [STW22, Section 3.2]. We begin with

two definitions (c.f. [STW22, Definitions p. 31]).

Definition 2.1.1. A function f : Ω → X is called simple if ran(f) is finite and

f(t) =
∑
x∈X

x · 1Af,x
(t)

where Af,x := f−1[{x}] is measurable and of finite measure if x ∈ X \ {0}. By S(µ;X)

we denote the vector space of simple functions. ♢

Definition 2.1.2. A function f : Ω → X is called Bochner-measurable if there exists

a sequence (fn)n∈N in S (µ;X) such that limn→∞ fn(t) = f(t) for µ-almost every t ∈

Ω. ♢

The next definition (c.f. [STW22, Definition p. 33]) introduces the spaces we alluded

to above.

Definition 2.1.3. For p ∈ [1,∞] define

Lp(µ;X) := {f : Ω → X; f Bochner-measurable , ∥f∥X ∈ Lp(µ)}.

The Bochner–Lebesgue spaces are defined as Lp(µ;X) := Lp(µ;X) /∼ where ∼ denotes

the equivalence relation of equality µ-almost everywhere. ♢

As a generalisation of the scalar Lebesgue spaces, it is not surprising that many

familiar results prevail in the setting of Bochner–Lebesgue spaces (c.f. [Yos95], [DU77],

[Mik78] as well as the accessible [ABHN11, Chapter 1]). When equipped with the norm

defined by (c.f. [ABHN11, p. 14])

∥f∥p :=


(∫

Ω
∥f(t)∥pX dµ(t)

) 1
p

, if p <∞,

ess-supt∈Ω ∥f(t)∥X , if p = ∞,
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the Bochner–Lebesgue spaces become normed vector spaces. For p ∈ [1,∞] they are in

fact Banach spaces. Moreover, when p = 2 and X = H is a Hilbert space, then so too

is L2(µ;H) with its inner product defined by

⟨f, g⟩L2(µ;H) :=

∫
Ω
⟨f(t), g(t)⟩H dµ(t).

The proofs of the latter two claims follow in a manner directly analogous to that of

their scalar counterparts (c.f. [STW22, Proposition 3.1.4]). Suppose now that ν ∈ R

and A ∈ B(R), the Borel-σ-algebra of R. We introduce the measure

µ2,ν(A) :=

∫
A
e−2νt dλ(t)

and define the exponentially weighted space

L2,ν(R;H) := L2(µ2,ν ;H).

It is not hard to see that the inclusion of a given function f in L2,ν(R;H) is granted if

and only if both f is Bochner-measurable and

∫
R
∥f(t)∥2H dµ2,ν(t) =

∫
R
∥f(t)∥2He−2νt dt

is finite. The space L2,ν(R;H) will allow us to realise the time derivative as a nor-

mal operator. To that end, we define a particular class of multiplication operators

(c.f. [STW22, Definition p. 73]).

Definition 2.1.4. Let V : R → K be a measurable function. We define the multiplic-

ation-by-V operator as

V (m): dom(V (m)) ⊆ L2(R;H) → L2(R;H)

f 7→ (t 7→ V (t)f(t))

where

dom(V (m)) := {f ∈ L2(R;H); (t 7→ V (t)f(t)) ∈ L2(R;H)} .

13



Moreover, whenever V is the identity operator on R, then we will denote the operator

V (m) by m alone, and refer to it as the multiplication-by-the-argument operator. ♢

With this in mind, we continue by recalling the following proposition (c.f. [STW22,

Corollary 3.2.5]) which deals with a specific multiplication operator.

Proposition 2.1.5. Let ν ∈ R. The mapping

exp(−νm): L2,ν(R;H) → L2(R;H)

f 7→
(
t 7→ e−νtf(t)

)
is unitary.

Following the presentation of [STW22, Definitions pp. 43–44, 46], we introduce the

time derivative operator via the definition of its inverse. In the following definition we

denote by ‘∗’ the usual operation of convolution.

Definition 2.1.6. Let ν ̸= 0.

(i) We define the operator Iν : L2,ν(R;H) → L2,ν(R;H) by Iν := 1[0,∞)∗ if ν ∈ R>0

and Iν := −1(−∞,0]∗ if ν ∈ R<0.

(ii) We define the time derivative on L2,ν(R;H) by ∂t,ν := I−1
ν .

(iii) Moreover, we define ∂t,0 := exp(−νm)(∂t,ν − ν) exp(−νm)−1. ♢

The properties of Iν allow us to infer those of ∂t,ν . In particular, one readily obtains

that ∥Iν∥ ≤ 1/|ν|, that Iν is injective and that C1
c (R;H) ⊆ ran(Iν) (see [STW22,

Proposition 3.2.3]). It then follows that ∂t,ν is densely defined, closed and extends the

action of the classical time derivative (for more details see [STW22, p. 45]). We could

of course instead define the time derivative by a more rudimentary and standard means

(c.f. [STW22, Proposition 4.1.1]).

Proposition 2.1.7. Let ν ∈ R and f, g ∈ L2,ν(R;H). Then, f ∈ dom(∂t,ν) and

∂t,νf = g if and only if for all ϕ ∈ C∞
c (R) we have

−
∫
R
ϕ′(t)f(t) dt =

∫
R
ϕ(t)g(t) dt

14



for almost every t ∈ R.

Before recalling the last result of this subsection, we first recall the formal definition

of the adjoint of an unbounded linear operator (see [RS81, VIII.1, p. 252]).

Definition 2.1.8. Let A : dom(A) ⊆ H → H be a densely defined linear operator

on a Hilbert space H. Then, y ∈ dom(A∗) if and only if there exists z ∈ H for all

x ∈ dom(A) such that ⟨Ax, y⟩ = ⟨x, z⟩. ♢

The next result (c.f. [STW22, Corollary 3.2.6]) establishes the most important prop-

erties of the time derivative.

Proposition 2.1.9. Let ν ∈ R. Then, the adjoint of the time derivative is the operator

∂∗t,ν = −∂t,ν + 2ν. Moreover, ∂t,ν is a normal operator and Re ∂t,ν = ν.

The well-known spectral theorem for normal operators ensures that the time deriva-

tive is unitarily equivalent to a multiplication operator. The question as to the exact

form of the unitary operator under which this equivalence is achieved provides us with

the next stop on our tour.

2.2 The Fourier–Laplace Transformation andMaterial Law

Operators

The (unitary) Fourier–Laplace transformation will allow us to obtain a spectral rep-

resentation of the time derivative as a multiplication operator. By its usage, we will

be able to assign a functional calculus to ∂t,ν . The class of functions we will apply

to the time derivative is known as material law. The use of this class will allow us

to encode physical properties within our eventual PDE system, and will encompass

fundamental constitutive relations, specific material parameters and any underlying

material couplings. The following use of the Fourier–Laplace transformation can be

originally traced back to [Pic89], although, we will follow the presentation of [STW22,

Sections 5.1 and 5.2]. The following material law and corresponding operator concepts

can be found in [STW22, Section 5.3].
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We recall the space Cb (R;H) := {f : R → H, continuous and bounded} together

with the ∥·∥∞-norm in preparation of the next definition (c.f. [STW22, Definition p. 67]).

Definition 2.2.1. Let H be a Hilbert space. We define the Fourier transformation on

L2 (R;H) as the unique continuous extension onto L2(R;H) of the operator

F : L1 (R;H) ∩ L2 (R;H) → Cb (R;H)

f 7→
(
s 7→ 1√

2π

∫
R
e−ist f(t) dt

)
. ♢

We emphasise that F is unitary on L2(R;H) on account of Plancherel’s Theorem

(see [STW22, Theorem 5.1.4]). Armed with the above definition we now define the

Fourier–Laplace transformation (c.f. [STW22, Definition p. 72]).

Definition 2.2.2. Let ν ∈ R. The Fourier–Laplace transformation is defined by

Lν : L2,ν (R;H) → L2 (R;H)

f 7→ F exp(−νm)f. ♢

As the composition of two unitary operators, it is clear that the Fourier–Laplace

transformation is itself unitary. Moreover, for ψ ∈ C∞
c (R;H) ⊆ L1 (R;H) and t ∈ R,

we have

(Lνψ) (t) =
1√
2π

∫
R
e−(it+ν)s ψ(s) ds.

As such, the Fourier–Laplace transformation can be thought of as a shifted version of

the Fourier transform recalled above. As was hinted at, the Fourier–Laplace transform

crucially yields a spectral representation of the time derivative as a multiplication

operator (c.f. [STW22, Theorem 5.2.3] and recall Definition 2.1.4).

Theorem 2.2.3. Let ν ∈ R. Then ∂t,ν = L∗
ν(im + ν)Lν and σ(∂t,ν) = {it+ ν : t ∈ R}.

In particular, the operator im + ν acts as multiplication by t 7→ it + ν. We next

define the function class of interest (c.f. [STW22, Definition, p. 74]).

Definition 2.2.4. We call a mapping M : dom(M) ⊆ C → L(H) a material law if
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(i) dom(M) ⊆ C open and M complex differentiable,

(ii) there exists some ν ∈ R such that the half-plane CRe>ν ⊆ dom(M) and

∥M∥∞,CRe>ν
:= sup

z∈CRe>ν

∥M(z)∥ <∞.

Additionally, we define the abscissa of boundedness of M by

sb(M) := inf{ν ∈ R : CRe>ν ⊆ dom(M) and ∥M∥∞,CRe>ν
<∞}. ♢

We now apply the spectral representation of the time derivative to this function

class. The resulting operator family, together with their key properties, is summarised

in the next result (c.f. [Pic09, Theorem 2.10], [STW22, Proposition 5.3.2 and Proposi-

tion 8.1.4]).

Proposition 2.2.5. Let M : dom(M) ⊆ C → L(H) be a material law and suppose

that ν > sb(M). Then, the following statements hold true:

(i) The operator

M(im + ν) : L2(R;H) → L2(R;H)

f 7→ (t 7→M(it+ ν)f(t))

is bounded.

(ii) The operator defined by

M(∂t,ν) := L∗
νM(im + ν)Lν

is continuous with ∥M(∂t,ν)∥ ≤ ∥M∥∞,CRe>ν
.

(iii) The operator M(∂t,ν) is causal i.e. for all a ∈ R and for all f, g ∈ L2,ν(R;H)

such that f = g on (−∞, a], then M(∂t,ν)f =M(∂t,ν)g on (−∞, a].

(iv) The operator M(∂t,ν) is autonomous i.e. M(∂t,ν)τh = τhM(∂t,ν) for each h ∈ R,
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where τh denotes the translation operator

τh : L2,ν (R;H) → L2,ν (R;H)

f 7→ (t 7→ f (t+ h)) .

Remark 2.2.6. (i) The operator defined in the second item of Proposition 2.2.5 will

be referred to in the sequel as material law operator.

(ii) As indicated in our introduction, causality (see also [Pic09, Definitions 2.8, 2.9]) is

a notion which ensures the physical meaningfulness and relevancy of our solutions.

Many physical processes exhibit and evolve according to some inherent direction

of time [Wau15, Section 0]. As a mathematical notion, causality provides one such

means of modelling this phenomenon. In essence, causality means that previous

and current outputs do not depend on any future inputs [JP00, Section 2, p. 4].

It turns out that one cannot avoid holomorphy in the definition of a material

law, and nor can it be exempted in the construction of causal operators (for more

details see [STW22, Chapter 8] or [Wau16a, Chapter 2]). ▽

The next result (c.f. [STW22, Theorem 5.3.6]) demonstrates that the action of a

material law operator is independent of the actual choice of ν. This result will help us

to more readily prove the main result of this chapter in Section 2.4.

Theorem 2.2.7. Let M : dom(M) ⊆ C → L(H) be a material law. Then, for ν, µ >

sb(M) and f ∈ L2,ν(R;H) ∩ L2,µ(R;H) we have M(∂t,ν)f =M(∂t,µ)f .

2.3 Spatial Operators

We begin by defining the rudimentary spatial operators essential to our setting. We

will later re-examine them when we come to consider boundary traces in Chapter 3 of

this thesis. The standard definitions and results recalled here can be found in [STW22,

Chapters 6 and 7]. A plethora of alternative sources for this material exist including

the definitive references [Eva22], [Neč11], [Tem01], and [GR86].
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2.3.1 Scalar Spatial Operators

We start by defining the scalar gradient, divergence and curl operators (c.f. [STW22,

Definition p. 85]).

Definition 2.3.1. Let Ω ⊆ Rd be open. We define the operators

gradc : C
∞
c (Ω) ⊆ L2(Ω) → L2(Ω)

d

ϕ 7→ (∂jϕ)j∈{1,...,d} and

divc : C
∞
c (Ω)d ⊆ L2(Ω)

d → L2(Ω)

(ϕj)j∈{1,...,d} 7→
∑

j∈{1,...,d}

∂jϕj

and set

grad := −div∗c , div := − grad∗c , grad0 := −div∗ and div0 := − grad∗ .

Let Ω ⊆ R3 be open. We define the operator

curlc : C
∞
c (Ω)3 ⊆ L2 (Ω)

3 → L2 (Ω)
3

(ϕj)j∈{1,2,3} 7→


∂2ϕ3 − ∂3ϕ2

∂3ϕ1 − ∂1ϕ3

∂1ϕ2 − ∂2ϕ1


and set

curl := curl∗c and curl0 := curl∗ . ♢

The next result establishes fundamental properties of these operators (c.f. [STW22,

Proposition 6.1.1]).

Proposition 2.3.2. The operators

grad, grad0, div, div0, curl and curl0

are each densely defined and closed. As such, the domains of these operators each form
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a Hilbert space when taken with their respective graph norm.

Next, we clarify the notation we will use to specify the domains of these spatial

operators. We define

H1 (Ω) := dom (grad) ,

H1
0 (Ω) := dom (grad0) ,

H (div,Ω) := dom (div) ,

H0 (div,Ω) := dom (div0) ,

H (curl,Ω) := dom (curl) and

H0 (curl,Ω) := dom (curl0) .

Each of these spaces will be familiar to the reader as the standard (spatial) Sobolev

spaces. This point is made precise in the next result (c.f. [STW22, Theorem 6.1.2]).

Theorem 2.3.3. Let Ω ⊆ Rd be open. Let f ∈ L2 (Ω), g ∈ L2 (Ω)
d, F ∈ L2 (Ω)

3 and

G ∈ L2 (Ω)
3. Then, the following statements hold true:

(i) f ∈ H1 (Ω) and g = grad f if and only if for all ϕ ∈ C∞
c (Ω) and j ∈ {1, · · · , d}

−
∫
Ω
f · ∂jϕ =

∫
Ω
gj · ϕ.

(ii) f ∈ H1
0 (Ω) and g = grad0 f if and only if there exists a sequence (fk)

∞
k=1 in

C∞
c (Ω) such that fk → f in L2 (Ω) and grad fk → g in L2 (Ω)

d as k → ∞.

(iii) g ∈ H (div,Ω) and f = div g if and only if for all ϕ ∈ C∞
c (Ω)

−
∫
Ω
g · gradϕ =

∫
Ω
f · ϕ.

(iv) g ∈ H0 (div,Ω) and f = div0 g if and only if there exists a sequence (gk)
∞
k=1 in

C∞
c (Ω)d such that gk → g in L2 (Ω)

d and div gk → f in L2 (Ω) as k → ∞.
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(v) F ∈ H (curl,Ω) and G = curlF if and only if for all Φ ∈ C∞
c (Ω)3

∫
Ω
F · curl Φ =

∫
Ω
G · Φ.

(vi) F ∈ H0 (curl,Ω) and G = curl0 F if and only if there exists a sequence (Fk)
∞
k=1

in C∞
c (Ω)3 such that Fk → F in L2 (Ω)

3 and curlFk → G in L2 (Ω)
3 as k → ∞.

Remark 2.3.4. (i) The second item in the statement of Theorem 2.3.3 highlights that

dom (grad0) is precisely the closure of C∞
c (Ω) when computed with respect to the

H1 (Ω)-norm (i.e. the graph norm of grad c.f. [Eva22, Chapter 5, Theorem 2]).

The fourth and sixth items above underline similar observations.

(ii) When ∂Ω enjoys sufficient regularity (e.g. when ∂Ω is Lipschitz) then membership

of a function in either of H1
0 (Ω), H0 (div,Ω) or H0 (curl,Ω) necessitates the sat-

isfaction of an appropriate homogeneous boundary condition (c.f. [Eva22, Chap-

ter 5, Theorem 2] or [Tem01, Theorem 1.3]). More precisely, if f ∈ H1
0 (Ω)

then f satisfies the Dirichlet boundary condition f |∂Ω = 0 and thus vanishes

at the boundary. Similarly, if g ∈ H0 (div,Ω) then g satisfies the Neumann

boundary condition g|∂Ω · n = 0 where n denotes the outward unit normal.

In words, this means that the normal component of g vanishes at the bound-

ary. If F ∈ H0 (curl,Ω) then F satisfies the homogeneous boundary condition

F |∂Ω × n = 0 with its tangential vector field vanishing at the boundary.

(iii) If Ω is assumed only to be an open subset of Rd, without the imposition of

any boundary regularity, then one can still construct each of the spatial oper-

ators grad0,div0 and curl0 introduced above. On the one hand, that H1
0 (Ω),

H0 (div,Ω) and H0 (curl,Ω) are the closures of the respective C∞
c -type spaces

continues to hold true. On the other hand, the homogeneous boundary con-

ditions indicated in the last item cannot be realised without the imposition of

sufficient boundary regularity. Indeed, for an arbitrary open subset Ω ⊆ Rd the

existence of the outward unit normal is not assured. In this case, the above

homogeneous boundary conditions need to be taken in an abstract sense. This
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observation is the starting point for considering particular generalised boundary

conditions, which do not require the imposition of any boundary regularity. We

will revisit this in Chapter 3. ▽

2.3.2 The Symmetric Gradient and Row-wise Divergence

Elasticity theory necessitates certain extensions of the scalar gradient and divergence

operators encountered above. Recall that Rd×d denotes the space of real d× d square

matrices. We start with two basic definitions (c.f. [STW22, Definition p. 103]).

Definition 2.3.5. We define the space of real symmetric square matrices by

Rd×d
sym :=

{
A ∈ Rd×d : A = AT

}
⊆ Rd×d.

The subspace Rd×d
sym ⊆ Rd×d is closed. ♢

Definition 2.3.6. Let Ω ⊆ Rd be open. We define the space of real symmetric matrices

of compactly supported continuously differentiable functions by

C∞
c (Ω)d×d

sym :=C∞
c

(
Ω;Rd×d

sym

)
=
{
(Φjk)j,k∈{1,...,d} ∈ C∞

c (Ω)d×d : ∀j, k ∈ {1, . . . , d} , Φjk = Φkj

}
and the space of real symmetric matrices of square-integrable functions by

L2 (Ω)
d×d
sym :=L2

(
Ω;Rd×d

sym

)
=
{
(Φjk)j,k∈{1,...,d} ∈ L2 (Ω)

d×d : ∀j, k ∈ {1, . . . , d} , Φjk = Φkj

}
. ♢

We can now define the operators of interest (c.f. [STW22, Definition p. 104]).

Definition 2.3.7. Let Ω ⊆ Rd be open. We define the symmetric gradient as

Gradc : C
∞
c (Ω)d ⊆ L2 (Ω)

d → L2 (Ω)
d×d
sym

(ϕj)j∈{1,...d} 7→
1

2
(∂kϕj + ∂jϕk)j,k∈{1,...d}
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and the row-wise divergence as

Divc : C
∞
c (Ω)d×d

sym ⊆ L2 (Ω)
d×d
sym → L2 (Ω)

d

(Φjk)j,k∈{1,...d} 7→

(
d∑

k=1

∂kΦjk

)
j∈{1,...d}

.

Moreover, we define

Grad := −Div∗c , Div := −Grad∗c , Grad0 := −Div∗ and Div0 := −Grad∗ . ♢

The next result establishes the basic properties of these extended spatial operators.

In both statement and proof, it is entirely analogous to Proposition 2.3.2.

Proposition 2.3.8. The operators

Grad, Grad0, Div, and Div0

are each densely defined and closed. As such, the domains of these operators each form

a Hilbert space when taken with their respective graph norm.

As for the domains of these extended operators we define

H(Grad,Ω) := dom(Grad),

H0(Grad,Ω) := dom(Grad0),

H(Div,Ω) := dom(Div) and

H0(Div,Ω) := dom(Div0).

The inclusion of a function in either of H0(Grad,Ω) or H0(Div,Ω) requires the satis-

faction of a suitable (abstract) homogeneous boundary condition (c.f. Remark 2.3.4).
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2.4 Solution Theory

Before re-presenting the central well-posedness result of evolutionary equations, Pi-

card’s Theorem (Theorem 2.4.4), we need to make some additional preparations. We

first recall the following result (c.f. [STW22, Exercise 6.5]), which we will use in the

proof of Theorem 2.4.4.

Proposition 2.4.1. Let H be a Hilbert space and A : dom(A) ⊆ H → H be a skew-

selfadjoint linear operator. Additionally, let M : dom(M) ⊆ C → L(H) be holomorphic

and, for z ∈ dom(M) and some c ∈ R>0, such that ReM(z) ≥ c. Then, the mapping

dom(M) ∋ z 7→ (M(z) +A)−1 is also holomorphic.

For what follows, we will also require the following auxiliary result which is redo-

lent of the well-known lemma of Lax–Milgram (see [STW22, Proposition 6.3.1 and Re-

mark 6.3.2]).

Proposition 2.4.2. Let H be a Hilbert space and B : dom(B) ⊆ H → H be a densely

defined and closed linear operator such that dom(B∗) ⊆ dom(B). Assume that there

exists c ∈ R>0 such that for all ϕ ∈ dom(B) we have Re⟨ϕ,Bϕ⟩H ≥ c∥ϕ∥2H . Then,

B−1 ∈ L(H) and ∥B−1∥ ≤ 1/c.

Second, we clarify some notation and recall an additional result that we will use in

the proof of Theorem 2.4.4. For a given Hilbert space H, ν ∈ R and closed operator

A : dom(A) ⊆ H → H we define its corresponding lifted operator by

Aµ : L2(µ; dom(A)) ⊆ L2(µ;H) → L2(µ;H)

[Ω ∋ ω 7→ f(ω) ∈ dom(A)] 7→ [Ω ∋ ω 7→ Af(ω) ∈ H] .

The corresponding lifted operator is the extension of A to H-valued square-integrable

functions. Moreover, for given σ-finite measure spaces (Ω0,Σ0, µ0) and (Ω1,Σ1, µ1) and

unitary operator F : L2(µ0) → L2(µ1), we define the (extended) measure-translating
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operator by

FH : L2(µ0;H) → L2(µ1;H)

[Ω0 ∋ ω 7→ f(ω) ∈ H] 7→ [Ω1 ∋ ω 7→ Ff(ω) ∈ H] .

With these preparations one readily obtains the following (c.f. [STW22, Exercise 6.2]).

Proposition 2.4.3. Let H0, H1 be Hilbert spaces and (Ω0,Σ0, µ0), (Ω1,Σ1, µ1) be σ-

finite measure spaces. For i ∈ {0, 1} denote by Aµi the corresponding lifted operator

and by FHi denote the measure-translating unitary operator. Then

FH1Aµ0F∗
H0

= Aµ1 .

In the sequel we will make no distinction between A and its corresponding lifted

operator, Aµ. We will denote both by A, leaving it to context to reveal which is meant.

Our summary of evolutionary equations now culminates with a re-presentation of

the main solution theory of the field (c.f. [Pic09, Solution Theory, p. 1770] or [STW22,

Theorem 6.2.1]).

Theorem 2.4.4. Let ν0 ∈ R, H be a Hilbert space, M : dom(M) ⊆ C → L(H) be a

material law such that sb(M) < ν0 and A : dom(A) ⊆ H → H be skew-selfadjoint. For

z ∈ CRe≥ν0 assume that Re zM(z) ≥ c for some c ∈ R>0. Then, for all ν ≥ ν0 the

operator ∂t,νM(∂t,ν) +A is closable and

Sν := (∂t,νM(∂t,ν) +A)
−1 ∈ L (L2,ν(R;H)) .

Additionally, Sν is such that ∥Sν∥L(L2,ν(R;H)) ≤ 1/c. Moreover, for all F ∈ dom(∂t,ν) we

have SνF ∈ dom(∂t,ν)∩dom(A). Furthermore, Sν is causal and eventually independent

of ν i.e. for η, ν ≥ ν0 and F ∈ L2,ν(R;H) ∩ L2,η(R;H) it follows that SνF = SηF .

Proof. Let ν ≥ ν0. First, we show that ∂t,νM(∂t,ν)+A is closable for each choice of ν ≥

ν0. On account of unitary equivalence, we will instead establish that the operator (im+
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ν)M(im+ν)+A is closable. To that end, suppose (un)
∞
n=1 in dom((im+ν)M(im+ν)+A)

and f ∈ L2(R;H) such that un → 0 and ((im + ν)M(im + ν) +A)un → f in L2(R;H)

as n→ ∞. For arbitrary R ∈ R>0, we have 1[−R,R]un ∈ dom((im+ ν)M(im+ ν) +A).

Moreover,

((im + ν)M(im + ν) +A)1[−R,R]un = 1[−R,R]((im + ν)M(im + ν) +A)un

converges to 1[−R,R]f as n → ∞. Compact support ensures that the operator (im +

ν)M(im+ ν)) is bounded on L2([−R,R];H). Thus (im+ ν)M(im+ ν)+A is closed on

L2([−R,R];H) and it follows that 1[−R,R]f = 0. As R ∈ R>0 was chosen arbitrarily,

it follows that f = 0. As such, the operator (im + ν)M(im + ν) + A is closable on

L2(R;H). Now, let z ∈ CRe≥ν and define B(z) := zM(z) +A. It then follows that

dom(B(z)) = dom(zM(z)) ∩ dom(A) = dom(A)

since we have assumed M to be a material law. As we have assumed A to be skew-

selfadjoint, it follows thatA∗ is a densely defined linear operator (for details see [STW22,

Lemma 2.2.7]). Additionally, this assumption allows us to compute B(z)∗ = (zM(z))∗−

A and obtain

dom(B(z)∗) = dom((zM(z))∗) ∩ dom(A) = dom(A),

from which it follows that dom (B(z)∗) = dom (B(z)). As such, B(z) must also be

densely defined and closed. Next, let ϕ ∈ dom(B(z)) and use the remaining statement

assumption to compute

Re ⟨ϕ,B(z)ϕ⟩H = Re ⟨ϕ, zM(z)ϕ⟩H ≥ c⟨ϕ, ϕ⟩H .

By Proposition 2.4.2, it follows that B(z)−1 ∈ L(H) with ∥B(z)−1∥ ≤ 1/c. As such,

the mapping

S : CRe≥ν ∋ z 7→ B (z)−1
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assumes values in L(H). Moreover, S is holomorphic (c.f. Proposition 2.4.1) and

is hence also a material law with ∥S(∂t,ν)∥ ≤ 1/c. Furthermore, S(∂t,ν) is causal

(c.f. Item (iii) of Proposition 2.2.5) and independent of the particular choice of ν

(c.f. Theorem 2.2.7). Next, instead of showing that S (∂t,ν) = (∂t,νM(∂t,ν) +A)
−1

,

we will instead equivalently (c.f. Proposition 2.4.3) show that

S (im + ν) = ((im + ν)M(im + ν) +A)
−1
.

We first show the inclusion S (im + ν) ⊇ ((im + ν)M(im + ν) +A)
−1

. Let (f, u) ∈

((im + ν)M(im + ν) +A)
−1

. Since ((im + ν)M(im + ν) +A)
−1

is closed, there exists

a sequence ((fn, un))
∞
n=1 in ((im + ν)M(im + ν) + A)−1 such that (fn, un) → (f, u) in

L2,ν(R;H)2 as n→ ∞. For n ∈ N we have

fn = (im + ν)M(im + ν)un +Aun = B (im + ν)un,

from which it follows that (fn, un) ∈ B (im + ν)−1 = S (im + ν). Since S(im + ν) is

closed, it then follows that limn→∞(fn, un) = (f, u) ∈ S(im+ν) which yields the claim.

Now consider the remaining inclusion, S(im + ν) ⊆ ((im + ν)M(im + ν) +A)
−1

. Let

n ∈ N, f ∈ L2(R;H) and define

gn(·) := S (im + ν)1[−n,n](·)f(·).

As S (im + ν) is continuous, it is clear that limn→∞ gn = S (im + ν) f . Moreover, for

n ∈ N we have gn ∈ dom ((im + ν)M(im + ν)). To see this, notice that M(im+ ν)gn ∈

L2(R;H) as M(im + ν) ∈ L (L2(R;H)). Recall that the operator (im + ν) is a priori

unbounded since the induced multiplication factor (it+ ν) is unbounded in the limit as

t→ ∞. As such, we need to confirm that

(im + ν)M(im + ν)gn =
[
t 7→ (it+ ν)M(it+ ν)S (it+ ν)1[−n,n](t)f(t)

]
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is well-defined in L2(R;H). To that end we compute

∫
R

∣∣(it+ ν)M(it+ ν)S (it+ ν)1[−n,n](t)f(t)
∣∣2 dt

=

∫
[−n,n]

|(it+ ν)M(it+ ν)S (it+ ν) f(t)|2 dt,

which is finite on account of compact support. It also follows immediately from the

definition of S(im + ν) that gn(t) = S(it+ ν)1[−n,n](t)f(t) ∈ dom(A) for almost every

t ∈ R. With this in mind, we next establish that gn ∈ L2 (R; dom(A)). We compute

∫
R
∥(it+ ν)M(it+ ν)gn(t) +Agn(t)∥2H dt

=

∫
R
∥ ((it+ ν)M(it+ ν) +A) gn(t)∥2H dt

=

∫
R
∥ ((it+ ν)M(it+ ν) +A)S (it+ ν)1[−n,n](t)f(t)∥2H dt

=

∫
R
∥1[−n,n](t)f(t)∥2H dt

≤∥f∥2L2(R;H)

from which it follows a posteriori that gn ∈ L2(R; dom(A)). Putting this all together,

we have gn ∈ dom((im + ν)M(im + ν) +A) as well as that

((im + ν)M(im + ν) +A) gn(·) = 1[−n,n](·)f(·)

almost everywhere. On passing to the limit on both sides of this equality, we obtain

(im + ν)M(im + ν) +AS(im + ν)f = f.

This is equivalent to (S(im + ν)f, f) ∈ (im + ν)M(im + ν) +A, which is in turn

equivalent to (f, S(im + ν)f) ∈ (im + ν)M(im + ν) +A
−1

. Finally, we show that if

f ∈ dom(∂t,ν) then Sνf ∈ dom(∂t,ν)∩ dom(A). Let f ∈ dom(∂t,ν). Then, by definition

of the operators involved, it follows a posteriori that (im + ν)Lνf ∈ L2(R;H). For
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t ∈ R we compute

AS(it+ ν)Lνf(t) = A ((it+ ν)M(it+ ν) +A)−1 Lνf(t)

= Lνf(t)− (it+ ν)M(it+ ν)S(it+ ν)Lνf(t)

from which it follows a posteriori that S(im + ν)Lνf ∈ L2(R; dom(A)). By Proposi-

tion 2.4.3 it then follows that S(∂t,ν)f ∈ L2,ν(R; dom(A)). It follows similarly that (im+

ν)S(im + ν)Lνf ∈ L2(R;H), from which we deduce that S(∂t,ν)f ∈ L2,ν(R; dom(∂t,ν))

which shows the claim.

Remark 2.4.5. (i) We specify some nomenclature and notation for what is to follow.

Let H be a Hilbert space and T ∈ L(H). If there exists some c ∈ R>0 such

that ReT ≥ c, then we call T positive-definite. We will also refer to such a T as

accretive. As such, we will refer to the condition ReT ≥ c as the corresponding

positive-definiteness or accretivity condition. If T ∈ L(H) is additionally self-

adjoint, then it is immediate that the accretivity condition simply reads T ≥ c.

Irrespective of whether T is selfadjoint or not, should the exact value of c ∈ R>0

prove irrelevant to us, we will instead write T ≫ 0 for the positive-definiteness

condition.

(ii) The accretivity condition in Theorem 2.4.4 could instead be formulated more

rigorously as requiring Re⟨ϕ, zM(z)ϕ⟩H ≥ c∥ϕ∥2H for ϕ ∈ H and z ∈ CRe≥ν

(see [STW22, Definition, p. 89]). ▽
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Chapter 3

Classical and Abstract Trace

Spaces

In this chapter we consider the problem of boundary traces. We begin by recapping the

well established theory for classical traces in the case of a bounded Lipschitz domain,

Ω ⊆ Rd. This will allow us to properly motivate and introduce abstract boundary trace

spaces which will prove to be an incredibly useful tool in what follows for the remainder

of this thesis. In particular, they will allow us to formulate and discuss boundary value

problems for arbitrary open subsets, Ω ⊆ Rd.

3.1 Classical Trace Spaces

In this section we recall the classical boundary traces for the spatial operators consid-

ered in Section 2.3. Even though we will formulate our thermo-piezo-electromagnetic

model with tools from an abstract boundary trace theory, the classical perspective

still serves as an important motivation. The notions and results recalled here are en-

tirely standard and already familiar from the study of PDEs. As such, most of the

results recalled here are done so without proof. Definitive references for this material

include [Neč11], [Tar07], [Eva22, Section 5.5], [Tem01, Chapters 1, 2], [Soh12, Chap-

ter 1] and [GR86, Chapters 1, 2]. Useful summaries of the key ideas used here can be

found, for example, in [ABDG98, Section 2] and [TW09, Section 13.6]. For boundary
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traces relating to H(curl,Ω), the key reference is [BCS02]. However, there are also the

accessible presentations afforded by [PSTW16, Section 2] and [WS13, Section 4]. For

boundary traces relating to the gradient and divergence, we base our present presenta-

tion in particular on that of the contemporary references [GR86], [Tem01] and [KA03].

We begin by recalling a density result (c.f. [GR86, Theorem 2.4], [Tem01, Theo-

rem 1.1], [KA03, Theorem 3.6] or [STW22, Theorems 12.1.1, 12.2.1]).

Proposition 3.1.1. Let Ω ⊆ Rd be a bounded Lipschitz domain. The set

D :=
{
ϕ : Ω → R : ∃ψ ∈ C∞

c (Rd) : ψ|Ω = ϕ
}

is dense in H1 (Ω). Moreover, the set Dd is dense in H (div,Ω).

We first recall the boundary trace of H1 (Ω) (c.f. [KA03, Theorem 3.6], [MQS21,

Theorem A.12] or [BF12, Theorem III.2.19]).

Proposition 3.1.2. Let Ω ⊆ Rd be a bounded Lipschitz domain. The operator

γ : D ⊆ H1 (Ω) → L2 (∂Ω)

u 7→ u|∂Ω

is linear, densely defined and continuous. Thus, γ admits a unique continuous extension

to H1(Ω), again denoted by γ.

Remark 3.1.3. (i) The boundary trace of H1 (Ω) is more commonly referred to in

the literature as the Dirichlet trace.

(ii) The Dirichlet trace (as presented) fails in general to be surjective. This is usually

remedied by restricting its codomain to ran(γ) =: H1/2(∂Ω). Doing so allows us

to characterise the space of possible boundary values forH1(Ω) functions. Indeed,

it follows that H1/2(∂Ω) together with the norm

∥γf∥H1/2(∂Ω) := inf
g∈H1(Ω)

{
∥g∥H1(Ω) : γg = γf

}
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is isomorphic (by a quotient space argument for H1(Ω)/ ker(γ)) to (ker γ)
⊥H1(Ω) ,

and is thus itself a Hilbert space. For more details, see for instance [KA03,

pp. 358–359].

(iii) It is not hard to see that ker(γ) = H1
0 (Ω) = dom(grad0). Indeed, this is precisely

the space of those H1-functions with vanishing trace, known also as trace-zero

functions (c.f. Item (i) from Remark 2.3.4). ▽

In the following let n denote the outer unit normal. We next consider the bound-

ary trace of H(div,Ω), known more commonly as the Neumann trace (c.f. [KA03,

p. 360, Theorem 6.13], [MQS21, Theorem A.14] or [BF12, p. 248]).

Proposition 3.1.4. Let Ω ⊆ Rd be a bounded Lipschitz domain. The operator

γ·n : Dd ⊆ H (div,Ω) → H1/2 (∂Ω)′ =: H−1/2 (∂Ω)

q 7→ (γq) · n

is linear, densely defined and continuous. Thus, γ·n admits a unique continuous exten-

sion to H(div,Ω), again denoted by γ·n. Additionally, γ·n is surjective. Furthermore,

for f ∈ H1(Ω) and q ∈ H(div,Ω) we have the integration by parts formula

⟨div q, f⟩L2(Ω) + ⟨q, grad f⟩L2(Ω)d = (γ·nq) (γf) . (3.1)

It is well known that the boundary traces recalled for H1(Ω) and H(div,Ω) can

even be used to establish suitable boundary traces for H(Grad,Ω) and H(Div,Ω)

(c.f. [GSN86], [DD12, Chapter 7] or [BF12, pp. 248–249, Lemma IV.3.3]).

Proposition 3.1.5. Let Ω ⊆ Rd be a bounded Lipschitz domain. Then,

H (Grad,Ω) ≃ H1 (Ω)d and H (Div,Ω) ≃ H (div,Ω)d ∩ L2 (Ω)
d×d
sym ⊆ H (div,Ω)d .
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Thus, the (d-dimensional) Dirichlet trace

γ : H (Grad,Ω) → H1/2 (∂Ω)d

(ui)
d
i=1 7→ (ui|∂Ω)di=1

is linear, continuous and surjective. Moreover, the (d-dimensional) Neumann trace

γ·n : H (Div,Ω) → H−1/2 (∂Ω)d

(Φi,j)
d
i,j=1 7→ ((γΦi,j) · n)di,j=1

is linear, continuous and surjective. Furthermore, for f ∈ H(Grad,Ω) and q ∈ H(Div,Ω)

we have the integration by parts formula

⟨Div q, f⟩L2(Ω)d + ⟨q,Grad f⟩L2(Ω)d×d
sym

=

d∑
i=1

(γ·nq) (γf) . (3.2)

In preparation for the last boundary traces we will require, we introduce the space

Lτ
2 (∂Ω) :=

{
f ∈ L2 (∂Ω)

3 : f · n = 0
}

of tangential vector fields on the boundary, ∂Ω. We consider two boundary traces of

H(curl,Ω) (c.f. [PSTW16, Definition 2.15, Remark 2.4], [BCS02, Section 2] or [WS13,

Section 4]).

Proposition 3.1.6. Let Ω ⊆ R3 be a bounded Lipschitz domain. We define the tan-

gential trace and tangential components trace operators as

γτ : H
1 (Ω)3 ⊆ H(curl,Ω) → ran(γτ ) ⊆ Lτ

2 (∂Ω)

q 7→ (γq)× n
(3.3)

and

πτ : H
1 (Ω)3 ⊆ H(curl,Ω) → ran(πτ ) ⊆ Lτ

2 (∂Ω)

q 7→ −n× (n× γq),
(3.4)
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respectively. The image spaces ran(γτ ) =: Vγ and ran(πτ ) =: Vπ are Hilbert spaces when

considered together with the respective norms

∥q∥Vγ
:= inf

p∈H1(Ω)3

{
∥γτp∥H1/2(∂Ω)3 : γτp = q

}
and

∥q∥Vπ
:= inf

p∈H1(Ω)3

{
∥πτp∥H1/2(∂Ω)3 : πτp = q

}
.

Both γτ and πτ are linear, surjective, densely defined and continuous and thus can be

uniquely and continuously extended to operators

γτ : H (curl,Ω) → V ′
π and πτ : H (curl,Ω) → V ′

γ.

Furthermore, for p, q ∈ H1(Ω)3 we have the integration by parts formula

⟨curl p, q⟩L2(Ω)3 + ⟨p, curl q⟩L2(Ω)3 = ⟨πτp, γτq⟩Lτ
2 (∂Ω). (3.5)

3.2 Abstract Boundary Data Spaces

The notion of an abstract boundary trace space was first introduced in [PTW16, Sec-

tion 5.2], and provides a means of bypassing boundary regularity requirements when

addressing boundary value problems. This is of course in direct contrast to the classical

situation recalled in the previous section, where one had to at least assume ∂Ω Lips-

chitz. We now recall the main ideas and results from the theory of abstract boundary

data spaces, which we will employ when formulating our own model for thermo-piezo-

electromagnetism with boundary dynamics. Indeed, the importance that these spaces

hold for us cannot be understated. Whilst the ideas and results considered here can be

originally traced back to [PTW16, Section 5.2], they were also more recently treated

in [Pic17, Section 4.1] and [STW22, Chapter 12]. Useful summaries can also be found

in [PTW14, Section 4] and [Tro14, Subsection 2.2, Section 4].

We start with the recollection of an elementary result, which we will use frequently

in the sequel (c.f. [PTW15, Lemma 3.2], [STW22, Lemma 11.3.3]).
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Lemma 3.2.1. Let H be a Hilbert space and V ⊆ H a closed subspace. Let the operator

ιV : V → H

x 7→ x,

denote the canonical embedding of V into H. Then, ιV ι
∗
V : H → H is the orthogonal

projection on V and ι∗V ιV : V → V is the identity on V .

Proof. First determine the form of ι∗V . Let x ∈ H with decomposition x = y + z for

y ∈ V and z ∈ V ⊥. Suppose v ∈ V and compute

⟨ιV v, x⟩H = ⟨v, y⟩H = ⟨v, πV x⟩H ,

where πV : H → H denotes the genuine orthogonal projection on V . The action of ι∗V

can thus be identified with that of πV . We next determine ιV ι
∗
V and compute

ιV ι
∗
V x = ιV πV x = y.

As ιV is the canonical embedding of V into H, this computation realises y as an element

of H and establishes that ιV ι
∗
V is well-defined as a mapping from H to H. Boundedness

follows immediately with ∥ιV ι∗V ∥ ≤ 1. Let x1, x2 ∈ H with decompositions x1 = y1+z1

and x2 = y2 + z2 for y1, y2 ∈ V and z1, z2 ∈ V ⊥. Then, compute

⟨ιV ι∗V x1, x2⟩H = ⟨y1, y2 + z2⟩H = ⟨y1, y2⟩H = ⟨y1 + z1, y2⟩H = ⟨x1, ιV ι∗V x2⟩H .

Hence ιV ι
∗
V is selfadjoint. Idempotency follows from direct computation. The claim for

ι∗V ιV : V → V also follows immediately from direct computation.

Remark 3.2.2. The use of genuine in the preceding proof might seem superfluous, but

it is important to distinguish between the true orthogonal projection and an operator

whose action merely coincides with it. Indeed an orthogonal projection is defined as

a bounded, selfadjoint idempotent operator. One immediately encounters issues upon

endeavouring to establish these properties for ι∗V . ▽
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We highlight this latter point with an elementary example.

Example 3.2.1. Let H1, H2 and H3 be Hilbert spaces and denote by H the Hilbert

space formed by their direct sum. Suppose T ∈ L (H) with block operator representa-

tion

T =


0 0 0

0 t22 0

0 0 t33

 , (3.6)

for selfadjoint and invertible t22 ∈ L (H2) and t33 ∈ L (H3). Clearly T is selfadjoint and

we can decompose H = ker (T ) ⊕ ran (T ), with ker (T ) = H1 and ran (T ) = H2 ⊕H3.

In this case, ιran(T ) is the operator

ιran(T ) =


0 0

1H2 0

0 1H3

 : ran (T ) → H

x2
x3

 7→


0

x2

x3


(3.7)

where 1H2 and 1H3 are the identity operators on H2 and H3, respectively. Its adjoint

is

ι∗ran(T ) =

0 1H2 0

0 0 1H3

 : H → ran (T )


y1

y2

y3

 7→

y2
y3

 .

(3.8)

From here we determine

ι∗ran(T )ιran(T ) =

1H2 0

0 1H3

 , (3.9)
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which is indeed the identity operator on ran (T ), and

ιran(T )ι
∗
ran(T ) =


0 0 0

0 1H2 0

0 0 1H3

 , (3.10)

which is the genuine orthogonal projector along ran (T ) in H. Whilst the action of

ι∗ran(T ) coincides with that of ιran(T )ι
∗
ran(T ), the operator ι∗ran(T ) is neither selfadjoint

nor idempotent. In fact, it cannot be selfadjoint and fails to be idempotent since the

product ι∗ran(T )ι
∗
ran(T ) is undefined. △

Recall the spatial operators introduced in Section 2.3 together with their respective

domains. We begin by detailing the following orthogonal complements (c.f. [PTW16,

Lemma 5.1] or [STW22, Proposition 12.2.4]).

Proposition 3.2.3. Let Ω ⊆ Rd be open. Then

H1
0 (Ω)

⊥H1(Ω) =
{
u ∈ H1(Ω): gradu ∈ dom(div), div gradu = u

}
,

H0 (div,Ω)
⊥H(div,Ω) = {q ∈ H (div,Ω) : div q ∈ dom(grad), grad div q = q} ,

H0 (Grad,Ω)⊥H(Grad,Ω) = {u ∈ H(Grad,Ω): Gradu ∈ dom(Div), DivGradu = u} ,

H0 (Div,Ω)⊥H(Div,Ω) = {q ∈ H (Div,Ω) : Div q ∈ dom(Grad), GradDiv q = q}

and when d = 3

H0 (curl,Ω)
⊥H(curl,Ω) = {q ∈ H (curl,Ω) : curl q ∈ H (curl,Ω) , − curl curl q = q} .

Proof. We only compute H0 (curl,Ω)
⊥H(curl,Ω) as the other characterisations follow anal-

ogously. Suppose q ∈ H0 (curl,Ω)
⊥H(curl,Ω) . By definition of the orthogonal complement,

it follows for all p ∈ H0 (curl,Ω) that

0 = ⟨p, q⟩H(curl,Ω) = ⟨p, q⟩L2(Ω)3 + ⟨curl0 p, curl q⟩L2(Ω)3 .

Here, we have recalled curl |H0(curl,Ω) = curl0. We reformulate the above equality for
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all p ∈ H0 (curl,Ω) as

⟨curl0 p, curl q⟩L2(Ω)3 = −⟨p, q⟩L2(Ω)3 .

Recall that y ∈ dom (curl∗0) if and only if there exists z ∈ L2(Ω)
3 for all x ∈ dom (curl0)

such that ⟨curl0 x, y⟩L2(Ω)3 = ⟨x, z⟩L2(Ω)3 (c.f. Definition 2.1.8). This implies that

curl q = y ∈ dom (curl∗0) and that −q = curl∗0 curl q. Recalling that curl is closed

(c.f. Proposition 2.3.2), together with curl0 := curl∗ (c.f. Definition 2.3.1), allows us to

deduce the claim.

Remark 3.2.4. The spaces formed from the orthogonal complements in Proposition 3.2.3

are precisely our abstract boundary data spaces. We introduce the notation

H1
0 (Ω)

⊥H1(Ω) =: BD (grad) ,

H0 (div,Ω)
⊥H(div,Ω) =: BD (div) ,

H0 (Grad,Ω)⊥H(Grad,Ω) =: BD (Grad) ,

H0 (Div,Ω)⊥H(Div,Ω) =: BD (Div) and

H0 (curl,Ω)
⊥H(curl,Ω) =: BD (curl)

where “BD” is naturally suggestive of “boundary data”. Using the characterisations

provided by Proposition 3.2.3, we might equivalently regard our boundary data spaces

as the null spaces

BD (grad) = N (1− div grad) ,

BD(div) = N (1− grad div) ,

BD(Grad) = N (1−DivGrad) ,

BD(Div) = N (1−GradDiv) and

BD (curl) = N (1 + curl curl) .

In the literature the use of this notation is common, for instance, to [PTW16] and

[Pic17]. ▽
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The next result summarises what happens when we restrict our spatial operators

to their corresponding abstract boundary data space (c.f. [PTW16, Theorem 5.2] or

[STW22, Proposition 12.4.1]).

Proposition 3.2.5. The mappings

gradBD : BD (grad) → BD(div)

u 7→ gradu,

divBD : BD (div) → BD(grad)

q 7→ div q,

GradBD : BD (Grad) → BD(Div)

u 7→ Gradu,

DivBD : BD (Div) → BD(Grad)

q 7→ Div q and

curlBD : BD (curl) → BD(curl)

q 7→ curl q

are unitary with div∗BD = gradBD, Div∗BD = GradBD and curl∗BD = − curlBD.

Proof. We prove the assertion for curlBD only as the other assertions follow from an

analogous reasoning. We first show that curlBD is well-defined and assumes values in

BD (curl). Suppose q ∈ BD(curl). By Proposition 3.2.3 it then follows that curl q ∈

dom (curl) and that − curl curl q = q. Applying the operator curl to the latter equality

yields

− curl curl curl q = curl q.

As the right-hand side resides in H (curl,Ω), it follows a posteriori that the left-hand

side must reside there also. Thus, we deduce that curl curl q ∈ H (curl,Ω) also. Re-

naming q̂ := curl q, we obtain

− curl curl q̂ = q̂

with curl q̂ ∈ H (curl,Ω), which yields the claim. We next show that curlBD is unitary.
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We first establish that curlBD preserves the norm. Let q ∈ BD(curl) and compute

⟨curl q, curl q⟩BD(curl) = ⟨curl q, curl q⟩L2(Ω)3 + ⟨curl curl q, curl curl q⟩L2(Ω)3

= ⟨curl q, curl q⟩L2(Ω)3 + ⟨−q,−q⟩L2(Ω)3

= ⟨q, q⟩BD(curl).

In the second equality we have used the characterisation provided by the assumption

that q ∈ BD(curl) (c.f. Proposition 3.2.3). The surjectivity of curlBD follows from the

fact that it is in fact bijective. Indeed, noting that curlBD is defined everywhere on

BD (curl) and such that − curl curl q = q for q ∈ BD(curl), we infer that curlBD is

bijective with curl−1
BD = − curlBD. Thus, curlBD is unitary. This in fact yields skew-

selfadjointness as well. Since curlBD unitary, we have curl∗BD = curl−1
BD = − curlBD.

Remark 3.2.6. In [PTW16] and [Pic17] the notation ˙curl is encountered in place of

curlBD. We will also bear in mind the original (equivalent) formulation of the above

operators as

gradBD := ι∗div grad ιgrad,

divBD := ι∗grad div ιdiv,

GradBD := ι∗Div Grad ιGrad,

DivBD := ι∗GradDiv ιDiv and

curlBD := ι∗curl curl ιcurl

as introduced in [PTW16, Section 5.2] and recalled, for instance, in [Pic17, Section 4.1].

Having such an explicit formulation to hand, in which one can work directly with the

properties of the orthogonal projectors and canonical embeddings (c.f. Lemma 3.2.1)

involved, will prove useful in the sequel. ▽

In the current abstract scenario we can even formulate integration by parts formulae

analogous to (3.1), (3.2) and (3.5) (c.f. [STW22, Proposition 12.4.2]).
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Proposition 3.2.7. Let Ω ⊆ Rd. For u ∈ H1(Ω) and q ∈ H(div,Ω) we have

⟨div q, u⟩L2(Ω) + ⟨q, gradu⟩L2(Ω)d =
〈
divBD ι

∗
divq, ι

∗
gradu

〉
BD(grad)

=
〈
ι∗divq, gradBD ι

∗
gradu

〉
BD(div)

.
(3.11)

Moreover, for u ∈ H(Grad,Ω) and q ∈ H(Div,Ω) we have

⟨Div q, u⟩L2(Ω)d + ⟨q,Gradu⟩L2(Ω)d×d
sym

= ⟨DivBD ι
∗
Divq, ι

∗
Gradu⟩BD(Grad)

= ⟨ι∗Divq,GradBD ι
∗
Gradu⟩BD(Div) .

(3.12)

If d = 3, then for q, p ∈ H(curl,Ω) we have

⟨curl q, p⟩L2(Ω)3 − ⟨q, curl p⟩L2(Ω)3 = ⟨curlBD ι
∗
curlq, ι

∗
curlp⟩BD(curl)

= −⟨ι∗curlq, curlBD ι
∗
curlp⟩BD(curl) .

(3.13)

Proof. We prove the third assertion relating to curl. The remaining assertions follow

by analogy. Suppose p, q ∈ H(curl,Ω). Consider the decompositions q = q0 + q1 and

p = p0 + p1 for q0, p0 ∈ H0(curl,Ω), q1 = ι∗curlq and p1 = ι∗curlp. By the action of the

orthogonal projector, we have q1, p1 ∈ BD(curl) (c.f. Lemma 3.2.1). Compute

⟨curl q, p⟩L2(Ω)3 − ⟨q, curl p⟩L2(Ω)3

= ⟨curl0 q0, p⟩L2(Ω)3 + ⟨curl q1, p⟩L2(Ω)3 − ⟨q0, curl p⟩L2(Ω)3 − ⟨q1, curl p⟩L2(Ω)3

= ⟨curl q1, p⟩L2(Ω)3 − ⟨q1, curl p⟩L2(Ω)3

= ⟨curl q1, p0⟩L2(Ω)3 + ⟨curl q1, p1⟩L2(Ω)3 − ⟨q1, curl0 p0⟩L2(Ω)3 − ⟨q1, curl p1⟩L2(Ω)3

= ⟨curl q1, p1⟩L2(Ω)3 − ⟨q1, curl p1⟩L2(Ω)3

= ⟨curl q1, p1⟩L2(Ω)3 + ⟨curl curl q1, curl p1⟩L2(Ω)3

= ⟨curl q1, p1⟩BD(curl)

= ⟨curlBD ι
∗
curlq, ι

∗
curlp⟩BD(curl) .

In the first and fourth equalities we have applied the adjoint (c.f. Definition 2.3.1). In

the sixth equality we have used the corresponding boundary data space characterisa-
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tion (c.f. Proposition 3.2.3). The outstanding equality follows from applying curl∗BD

(c.f. Proposition 3.2.5).

Remark 3.2.8. Comparing the above abstract integration by parts formulae with their

classical counterparts reveals something of a relation between the two perspectives.

Take for instance the first integration by parts formula, (3.11). On comparison with

(3.1), it could be argued that divBD ι
∗
div ought to be taken as the formal replacement

of the Neumann trace, γ·n. At the same time, it would seem like ι∗grad should formally

replace the Dirichlet trace, γ. On account of the latter observation, this would seem

like a natural pair of replacements to make. At the same time however, (3.11) would

also suggest that γ·n could be replaced by ι∗div and γ by gradBD ι
∗
grad. It is still unclear

as to how precisely the abstract boundary traces introduced should be considered as

generalisations of the classical ones recalled earlier. This is why we talk about formal

replacements and not generalisations. We will take this observation further in the next

subsection. ▽

3.2.1 Comparing Classical and Abstract Boundary Spaces

In this subsection we survey the deeper connection between the classical and abstract

boundary trace spaces. Whilst Proposition 3.2.7 can be elementarily compared with

each of (3.1), (3.2) and (3.5), we want to examine how exactly the abstract spaces con-

sidered can be regarded as an abstraction of the classical trace spaces regarded earlier.

The next result clarifies this (c.f. [STW22, Theorem 12.4.3], [PTW14, Theorem 4.5]

or [Tro14, Corollary 4.4]).

Theorem 3.2.9. Let Ω ⊆ Rd be a bounded Lipschitz domain. Then the operators

γ|BD(grad) : BD (grad) → H1/2 (∂Ω) ,

γ·n|BD(div) : BD (div) → H−1/2 (∂Ω) ,

γ|BD(Grad) : BD (Grad) → H1/2 (∂Ω)d and

γ·n|BD(Div) : BD (Div) → H−1/2 (∂Ω)d
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are bounded and bijective. When d = 3, then the operators

γτ |BD(curl) : BD (curl) → V
′
π and

πτ |BD(curl) : BD (curl) → V
′
τ

are bounded and injective.

Proof. We prove the assertion for the tangential trace. We first show that ker(γτ ) =

H0(curl,Ω). For the first inclusion, suppose q ∈ H0(curl,Ω). Then, there exists a

sequence (ϕn)
∞
n=1 in C∞

c (Ω)3 such that ϕn → q in H(curl,Ω) as n → ∞ (c.f. Theo-

rem 2.3.3). By continuity of γτ and Item (iii) from Proposition 3.1.2, 0 = γτϕn → γτq

as n → ∞. For the second inclusion, assume p, q ∈ H1(Ω)3 such that γτq = 0. Using

the integration by parts formula (3.5) yields

⟨curl p, q⟩L2(Ω)3 − ⟨p, curl q⟩L2(Ω)3 = ⟨πτp, γτq⟩Lτ
2 (∂Ω) = 0,

which we reformulate as

⟨curl p, q⟩L2(Ω)3 = ⟨p, curl q⟩L2(Ω)3 .

This implies that q ∈ dom(curl∗) = dom(curl0) (c.f. Definition 2.1.8). By definition of

BD(curl) = H0(curl,Ω)
⊥H(curl,Ω) (c.f. Remark 3.2.4), it follows that ker(γτ |BD(curl)) =

{0}. Hence γτ |BD(curl) injective. The continuity of the restricted trace γτ |BD(curl) follows

from the continuity of γτ . The density of H1(Ω)3 in H(curl,Ω) allows us to deduce the

claim for p, q ∈ H(curl,Ω). The claim for the tangential components trace follows by

direct analogy. Surjectivity of γ|BD(grad) follows by definition of H1/2(∂Ω) = ran(γ).

Surjectivity of γ·n|BD(div) follows from Proposition 3.1.4. The assertions for γ|BD(Grad)

and γ·n|BD(Div) follow analogously.

Remark 3.2.10. Both of the restricted tangential and tangential components traces can

in fact be made bijective. This is done in [BCS02, Theorem 4.1] by replacing the target

spaces V
′
τ and V

′
π with a particular pair of corresponding subspaces. The technical

details are left to the interested reader to consider in the aforenoted reference. ▽
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Theorem 3.2.9 affords us a particularly precise perspective on the connection be-

tween the classical and abstract boundary spaces introduced. Under sufficient boundary

regularity assumptions, Theorem 3.2.9 emphasises that there is no difference between

the boundary values obtained from either the classical or abstract perspective (at least

with respect to the restricted Dirichlet and Neumann traces). A similar but more

restricted view can be afforded to the boundary values of H(curl,Ω) in light of Re-

mark 3.2.10. In either case, it is interesting to observe how the above restrictions of the

classical traces arise as the natural mappings between both spaces (and perspectives)

of boundary values.

Taking this discussion further, let us consider the relation between the classical and

abstract traces themselves. The following is based on (c.f. [Pic17, p. 11, (16)]). Let

Ω ⊆ Rd be a bounded Lipschitz domain, and suppose f ∈ H1 (Ω) and q ∈ H (div,Ω).

Recalling the integration by parts formula (3.11), we test against ι∗gradf in the inner

product and compute

⟨ι∗gradf,divBD ι
∗
divq⟩BD(grad)

= ⟨f,div q⟩L2(Ω) + ⟨grad f, q⟩L2(Ω)d

= ⟨γf, γ·nq⟩L2(∂Ω)

= ⟨(γιgrad) ι∗gradf, (γ·nιdiv) ι∗divq⟩L2(∂Ω)

= ⟨(γιgrad) ι∗gradf,R−1
H1/2 (γ·nιdiv) ι

∗
divq⟩H1/2(∂Ω)

= ⟨ι∗gradf, (γιgrad)
∗R−1

H1/2 (γ·nιdiv) ι
∗
divq⟩BD(grad).

(3.14)

The second equality is the classical integration by parts formula (3.1). Having assumed

sufficient boundary regularity, it follows that the two different formulae must coin-

cide. In the fourth equality we follow the dual space perspective by invoking the Riesz

mapping, R−1
H1/2 . For arbitrary q ∈ H (div,Ω) it follows that

divBD ι
∗
divq = (γιgrad)

∗R−1
H1/2 (γ·nιdiv) ι

∗
divq

⇐⇒ RH1/2 ((γιgrad)
∗)

−1
divBD ι

∗
divq = (γ·nιdiv) ι

∗
divq

= γ·nq.

(3.15)
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This can be taken as further motivation to replace the Neumann trace, γ·n, by the oper-

ator divBD ι
∗
div (c.f. Remark 3.2.8). Recalling that ran(divBD) ⊆ BD(grad) (c.f. Propo-

sition 3.2.5), it would seem that the operator (γιgrad)
∗R−1

H1/2 arises to compensate for

this fact. As such, it is hard to consider these formal replacements as proper generalisa-

tions of the corresponding classical traces. Computations similar to (3.14) are provided

in [Pic17, Subsection 4.3.1] which further motivate the replacement by DivBD ι
∗
Div and

curlBD ι
∗
curl of γ·n and γτ , respectively.

There are other examples which highlight the need for such a compensation. In

[STW22, Proposition 12.5.3] the Robin boundary condition γ·nH = − i γu, for H ∈

H(div,Ω) and u ∈ H1(Ω) on a bounded Lipschitz domain, is considered. However, this

boundary condition turns out not to be the same as divBD ι
∗
BD(div)H = − i ι∗BD(grad)u.

For more insight, consider the examples regarded in [PTW16, Section 6], [Tro14, Sec-

tion 5] and [PTW14, Section 5].

3.2.2 The Application of Abstract Boundary Traces

In this subsection we gather together the tools necessary to encode boundary dynam-

ics directly within an evolutionary equation. To that end we will rely heavily on the

notions and methodology introduced in [PSTW16, Sections 1, 2.3.2]. As we next out-

line, successfully encoding any boundary dynamics within an evolutionary system will

precipitate an extension of the evolutionary equation of interest. Let Ω ⊆ Rd be open.

For a given evolutionary equation

(∂t,νM (∂t,ν) +A)

u
v

 =

f
g

 ∈ L2,ν (R;H1 ⊕H2)

we will consider the extended system

(∂t,νM (∂t,ν) +A)


u v

τv


 =


fg
h


 ∈ L2,ν (R;H1 ⊕H2 ⊕Htrace) . (3.16)
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Here, Htrace is an auxiliary Hilbert space upon which we will formulate boundary

dynamics pertaining to the underlying evolutionary system. In the context of abstract

boundary trace spaces, Htrace can be any of the boundary data spaces recalled in

Proposition 3.2.3. Both the material law operator M(∂t,ν) and spatial operator A will

need to be suitably extended to accommodate for the introduction of Htrace, as well

as the boundary condition to be formulated there. Whilst it is entirely possible to use

classical boundary trace spaces to arrive at an analogous extension, we will focus solely

on the application of abstract boundary data spaces to that end. In order to properly

realise this extension, we first recall some additional preparations. In what follows, let

X and Y be Hilbert spaces. We begin with a definition (c.f. [STW22, Definition, p. 133]

or [PSTW16, Definition 1.3]).

Definition 3.2.11. Let C : dom(C) ⊆ X → Y be a densely defined and closed linear

operator. We define the operator C⋄ : Y → dom(C)′ by C⋄ := C ′◦RY where C ′ denotes

the dual to C. ♢

Remark 3.2.12. (i) By definition we have

(C⋄y) (x) =
(
C ′ (RY y)

)
(x) = (RY y) (Cx) = ⟨y, Cx⟩Y

for x ∈ dom(C) and y ∈ Y .

(ii) Particular properties of the operator C⋄ follow immediately by definition or direct

computation (c.f. [STW22, Proposition 9.2.2]). Indeed, it is not hard to see that

C⋄ is linear, bounded and such that C∗ ⊆ C⋄. Thus, the action of C⋄ in some

way generalises that of C∗. The operator (C∗)⋄ : X → dom((C∗)′) is called the

extrapolated operator of C. One can also show that C ⊆ (C∗)⋄, so that the action

of (C∗)⋄ similarly generalises that of C. ▽

In the following we specialise to when the target Hilbert space Y is given as a direct

sum of Hilbert spaces. We consider Y =
⊕n

i=1 Yi, where for i ∈ {1, . . . , n}, Yi is itself
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a Hilbert space. For i ∈ {1, . . . , n} we define Ci := ι∗Yi
C (c.f. Lemma 3.2.1), and obtain

Cx = C1x⊕ · · · ⊕ Cnx =


C1x
...

Cnx

 =


C1

...

Cn

x ∈


Y1
...

Yn

 = Y (3.17)

for x ∈ X. The column operators arising here provide a hint as to the form of the

extension to be employed in the formulation of the extended evolutionary equation

(3.16). We next consider how to compute the adjoint of such an operator. This point

is encapsulated in the next two vitally important results. The first can be found

as [PSTW16, Theorem 1.6].

Theorem 3.2.13. Let C : dom(C) ⊆ X → Y be a densely defined and closed linear

operator such that (3.17) holds for x ∈ X. Then

C∗ =
(
C⋄
1 · · · C⋄

n

)
∩ (Y ⊕X)

=

{
((y1, . . . , yn), x) ∈ Y ⊕X : x =

n∑
i=1

C⋄
i yi ∈ X

}
.

Proof. We first determine the form of C⋄ here. Let x ∈ dom(C) and y ∈ Y =
⊕n

i=1 Yi.

It follows by definition of (·)⋄ that

(C⋄y) (x) = ⟨y, Cx⟩Y =
n∑

i=1

⟨yi, Cix⟩Yi =
n∑

i=1

(C⋄
i yi) (x) .

Thus, C⋄y =
∑n

i=1C
⋄
i yi with C⋄ =

(
C⋄
1 · · · C⋄

n

)
. As for the first inclusion of the

remaining claim, it is clear by definition that both C∗ ⊆ C⋄ and C∗ ⊆ Y ⊕X. Thus,

C∗ ⊆
(
C⋄
1 · · · C⋄

n

)
∩ (Y ⊕X).

For the second inclusion, suppose (y, x) ∈ Y ⊕ X. Then, by definition of the adjoint
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(c.f. Definition 2.1.8),

(y, x) ∈ C∗ ⇐⇒ ∀ϕ ∈ dom(C), ⟨y, Cϕ⟩Y = ⟨x, ϕ⟩X

⇐⇒ ∀ϕ ∈ dom(C), (C⋄y) (ϕ) = ⟨x, ϕ⟩X ,

from which it follows that x = C⋄y =
∑n

i=1C
⋄
i yi ∈ X.

Our second crucial result can be found as [PSTW16, Corollary 1.8], and its proof

follows immediately from the preceding theorem.

Corollary 3.2.14. Let C : dom(C) ⊆ X → Y be a densely defined and closed linear

operator such that (3.17) holds for x ∈ X. Assume there exists a densely defined and

closed linear operator C̊1 such that


C̊1

0
...

0

 ⊆


C1

C2

...

Cn

 = C.

Then,

C∗ = C⋄ ∩
(
C̊∗
1 0 · · · 0

)
⊆
(
C̊∗
1 0 · · · 0

)
.

With these initial preparations to hand, we can now collect those results which

will allow us to arrive at the extension indicated in (3.16). We first recall [PSTW16,

Lemma 2.22], which provides characterisations of the operators (ι∗grad)
⋄, (ι∗Grad)

⋄ and

(ι∗curl)
⋄.

Lemma 3.2.15. We have

(
ι∗grad

)⋄
= (1 + grad⋄ grad) ιgrad,

(ι∗Grad)
⋄ = (1 + Grad⋄Grad) ιGrad and

(ι∗curl)
⋄ = (1 + curl⋄ curl) ιcurl.

Proof. We derive the first equality only, with the others following by direct analogy.
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The assertion will follow immediately by definition of (·)⋄ and the graph norm. For

ψ ∈ H1(Ω) and ϕ ∈ BD(grad), compute

(
ι∗grad

)⋄
(ϕ)(ψ) = ⟨ϕ, ι∗gradψ⟩BD(grad)

= ⟨ιgradϕ, ψ⟩H1(Ω)

= ⟨ιgradϕ, ψ⟩L2(Ω) + ⟨grad ιgradϕ, gradψ⟩L2(Ω)d

= (1 + grad⋄ grad) (ιgradϕ)(ψ).

Our next result is an auxiliary one and will help us to more readily prove the main

result of this subsection, Theorem 3.2.17.

Lemma 3.2.16. Let Ω ⊆ Rd be open. Suppose ψ ∈ H (div,Ω). Then, the following

statements are equivalent:

(i) (div+grad⋄)ψ = 0,

(ii) ψ ∈ H0 (div,Ω),

(iii) ιdivι
∗
divψ = 0.

Suppose ψ ∈ H (Div,Ω). Then, the following statements are equivalent:

(i) (Div+Grad⋄)ψ = 0,

(ii) ψ ∈ H0 (Div,Ω),

(iii) ιDivι
∗
Divψ = 0.

Let Ω ⊆ R3 be open and suppose ψ ∈ dom (curl). Then, the following statements are

equivalent:

(i) (curl⋄− curl)ψ = 0,

(ii) ψ ∈ dom (curl0),

(iii) ιcurlι
∗
curlψ = 0.
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Proof. We show the chain of equivalences for ψ ∈ H(div,Ω) only. The other sets of

equivalences follow by direct analogy. Suppose ψ ∈ H (div,Ω) is such that

(div+grad⋄)ψ = 0.

For ϕ ∈ H1(Ω), compute

0 = (div+grad⋄) (ψ)(ϕ)

= (divψ) (ϕ) + (grad⋄ ψ) (ϕ)

= ⟨divψ, ϕ⟩L2(Ω) + ⟨ψ, gradϕ⟩L2(Ω)d ,

which we reformulate as

⟨ψ, gradϕ⟩L2(Ω)d = −⟨divψ, ϕ⟩L2(Ω).

We have ψ ∈ dom (grad∗) = H0 (div,Ω) if and only if there exists z ∈ L2(Ω) for all

x ∈ H1(Ω) such that ⟨ψ, gradx⟩L2(Ω)d = ⟨z, x⟩L2(Ω) (c.f. Definition 2.1.8). Choosing

z := −divψ ∈ L2(Ω) and x := ϕ ∈ H1(Ω), it follows that ψ ∈ H0 (div,Ω). The

implication (ii) =⇒ (i), on the other hand, follows immediately. Since ιdivι
∗
div is

the orthogonal projection onto BD (div) (c.f. Lemma 3.2.1), the remaining equivalence

between (ii) and (iii) is also immediate.

Our main result for this subsection is the following (c.f. [PSTW16, Theorem 2.24]).

Theorem 3.2.17. We have the inclusion

grad

ι∗grad

∗

⊆ (−div 0), and

dom

grad

ι∗grad

∗ = {(q, τq) ∈ dom(div)× BD(grad) : ι∗divT + gradBD τq = 0} .
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Moreover, we have the inclusion

−Grad

ι∗Grad

∗

⊆ (Div 0), and

dom

−Grad

ι∗Grad

∗ = {(T, τT ) ∈ dom(Div)× BD(grad) : ι∗DivT −GradBD τT = 0} .

Furthermore, we have the inclusion

curl

ι∗curl

∗

⊆ (curl 0), and

dom

curl

ι∗curl

∗ = {(H, τH) ∈ dom(curl)× BD(curl) : ι∗curlH + curlBD τH = 0} .

Proof. We prove the assertion for the extended column operator relating to the scalar

gradient and divergence only. The other assertions follow analogously. Recalling that

H1
0 (Ω) ⊆ H1(Ω), it is clear that we have

grad0

0

 ⊆

grad

ι∗grad

 .

Applying Corollary 3.2.14, we obtain

grad

ι∗grad

∗

⊆

grad0

0

∗

=
(
−div 0

)
.

On the other hand, from Theorem 3.2.13 it follows that (q, τq) ∈ dom

grad

ι∗grad

∗ if

and only if q ∈ H(div,Ω), and

−div q = grad⋄ q + (ι∗grad)
⋄τq

= grad⋄ q + (1 + grad⋄ grad)ιgradτq.

Here we have used Lemma 3.2.15 to obtain the second equality. Next, we reformulate
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the latter equality as

−div q − grad⋄ q = (1 + grad⋄ grad)ιgradτq

= (div grad+grad⋄ grad)ιgradτq

= (div+grad⋄) grad ιgradτq,

where in the second equality here we have applied Proposition 3.2.3. We reformulate

the last equality so as to obtain that

(div+grad⋄)q + (div+grad⋄) grad ιgradτq = 0

⇐⇒ (div+grad⋄)(q + grad ιgradτq) = 0,

from which point our auxiliary result Lemma 3.2.16 yields the equivalent statement

ιdivι
∗
div(q + grad ιgradτq) = 0

⇐⇒ ιdiv(ι
∗
divq + gradBD τq) = 0.

The injectivity of ιdiv then yields the desired boundary condition.

Remark 3.2.18. We emphasise that the conditions present in the respective domains

of the adjoints of the extended column operators are a kind of abstract boundary

condition. In particular, these boundary conditions are to be taken in addition to any

boundary condition we might formulate on the respective Htrace space. ▽

In the next chapter we will apply the notions and results recalled here to arrive at

our extended system of thermo-piezo-electromagnetism.
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Chapter 4

Our Model for

Thermo-Piezo-Electromagnetism

with Boundary Dynamics

The aim of this chapter is to present the focal point of this thesis; our full thermo-

piezo-electromagnetic model encoding dynamics on the boundary. The thermo-piezo-

electromagnetic system studied in [MPTW16, Sections 2, 3] provides the basis we will

use to formulate our own extended model. Using the theory of abstract boundary data

spaces (see Chapter 3) and the methodology of [Pic17], we will extend the system of

[MPTW16] and formulate individual boundary equations corresponding to the thermal,

elastic and electromagnetic parts of the model. In particular, these boundary equations

will be encoded directly within our model and will function as part of the system itself.

We will then address the question of evolutionary well-posedness for our system. Our

discussion will culminate in the presentation and proof of our own central solution

result, Theorem 4.4.6. Besides presenting our main solution theory, the present chapter

will serve to set the stage for us to explore those patterns of boundary behaviour which

are evolutionarily well-posed and accomodated for by our model. We will explore

this question in the subsequent and final chapter of this thesis. We begin with a

slight detour, however, and recall the idea of congruence transforms as used extensively

throughout [Pic17] and [MPTW16]. We also briefly recall a specific preliminary result.
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4.1 Congruence Transforms

In this subsection we will briefly recall the notion of a congruence transform. At the

same time we will use this opportunity to clarify the nomenclature and notation that

we will employ in the sequel. As it will turn out, we will be concerned with applying

Picard’s Theorem (recall Theorem 2.4.4) to a large block operator system. Congruence

transforms provide an elementary but no less useful tool which will allow us to distill

key data from this system. The notion of a congruence is entirely standard in linear

algebra, with the idea itself being adopted from there. Indeed, see [Pic17, Definition 2.4]

or any standard linear algebra reference including [Had61, p. 253, Definition], [Her91,

p. 352, Definition] or [SGL+20, Definition 8.3.1] .

Definition 4.1.1. Let H be a Hilbert space, S, T ∈ L (H) and let C ∈ L (H) be

bijective. We call T and S congruent if

C T C∗ = S. (4.1)

Here, C is called congruence transformation. ♢

Remark 4.1.2. (i) Following the nomenclature used in [Pic17] and [MPTW16], we

will refer to the action of simultaneously composing an operator T ∈ L(H) by C

and C∗ as a symmetric Gauss step.

(ii) We will also use the nomenclature “T is congruent to the operator S under the

congruence transform C” to mean that T and S are congruent. We will employ

the preposition under when indicating that congruence with respect to which T is

congruent to S, and will specify whether the congruence has been achieved under

a symmetric Gauss step or permutation as a congruence transformation.

(iii) We will refer to (4.1) as congruent form. One might instead regard the (equiva-

lent) congruent form

C−1 S
(
C−1

)∗
= T. ▽
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In the next proposition we collect some facts relating to how congruent forms pre-

serve certain operator properties. We omit their proof as they follow immediately by

definition.

Proposition 4.1.3. Let H be a Hilbert space and suppose S, T ∈ L (H) are congruent

under C ∈ L (H). Then the following statements hold true.

(i) Additionally suppose T selfadjoint (skew-selfadjoint). Then S is also selfadjoint

(skew-selfadjoint).

(ii) Additionally suppose T positive-definite (non-negative). Then S is also positive-

definite (non-negative).

(iii) ReS = C (ReT ) C∗.

As suggested by the language in Item (i) of Remark 4.1.2, congruence transforms

will primarily play the role of a generalised form of Gaussian elimination. In this case,

the form that the congruence should take will be immediate (following the intuition

afforded by scalar Gaussian elimination). On the other hand, they might instead assume

the role of a permutation block operator.

For a given 2 × 2 block operator we have the following factorisation under the as-

sumption that one of the diagonal operator coefficients is continuously invertible. On

account of the block structure, this can of course be extended beyond 2 × 2 block

operator matrices. We omit the proof as it follows from direct computation. The

notion of this decomposition is completely standard; see for instance [J+21, Theo-

rem 2.B.1], [Gen07, Subsection 3.8.7], [Zha11, Section 7.3], [Zha04, Lemma 1.4], [HP14,

Theorem 2.2] or [TB22, Exercise 20.3].

Proposition 4.1.4. Let H1, H2 be Hilbert spaces. Let A ∈ L (H1) with continuous

inverse, B ∈ L (H2, H1) and D ∈ L (H2). Then

 1 0

−B∗A−1 1

 A B

B∗ D

1 −A−1B

0 1

 =

A 0

0 D −B∗A−1B

 . (4.2)
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Remark 4.1.5. (i) The continuous invertibility of A ∈ L (H1) is guaranteed for in-

stance in the situation of Proposition 4.1.6 when A≫ 0.

(ii) The operator

D −B∗A−1B

obtained by this symmetric Gauss step is known as the Schur complement of A

in the block operator  A B

B∗ D

 .

(iii) Of course, one could instead assume D ∈ L (H2) continuously invertible and

analogously obtain the congruent block operator

A−BD−1B∗ 0

0 D


under the symmetric Gauss step provided by the congruence transform

1 −BD−1

0 1

 .

(iv) In (4.2) the congruence transform is provided by the operator

 1 0

−B∗A−1 1


which is clearly invertible. Its operator inverse is provided by

 1 0

B∗A−1 1

 .

Such a congruence transform is known in the literature as a Frobenius ma-
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trix or Gauss matrix on account of the fact that it generalises the action of

Gaussian elimination (for the use of this nomenclature, see for instance [Pla10,

Bermerkung 4.16, Wert 4], [FH07, p. 211] or [Lun10, p. 82]). ▽

Finally, in preparation for what is to follow in the remainder of this thesis, we recall

the following result [STW22, Proposition 6.2.3 (b)]. It provides us with a useful criterion

for continuous invertibility of bounded operators via accretivity (c.f. Remark 2.4.5).

Proposition 4.1.6. Let T ∈ L (H), c ∈ R>0 and assume that ReT ≥ c. Then

T−1 ∈ L (H) such that ∥T−1∥ ≤ 1
c and ReT−1 ≥ c∥T∥−2.

4.2 The Underlying Model

Our aim in this section is to recall the key components of [MPTW16, Sections 2, 3]

which will serve as the basis for the construction of our own extended model. Our

aim in this direction is twofold. We first remind ourselves of the formulation of the

model for thermo-piezo-electromagnetism as an evolutionary equation with homoge-

neous boundary conditions considered there. Second, we will recall in detail the key

evolutionary well-posedness result, [MPTW16, Theorem 3.1]. This recollection is not

simply to the end of providing a complete display of the ideas behind the formulation

of our own model however. It is in fact to the end of some interesting comparisons and

discussions, which we take up later in Remark 4.4.2.

We first recall the basic equations presented in [MPTW16, Section 2] underpinning

what will turn out to be a coupled thermo-piezo-electromagnetic system. The basic

system is made up of the equation of elasticity, Maxwell’s equations and the heat

equation. In the following let Ω ⊆ R3 be open and nonempty. We have the equation of

elasticity

∂2t ρ∗u−Div T = F0, (4.3)

where u : R×Ω → R3 denotes the displacement of the elastic body, Ω, and T : R×Ω →

R3×3
sym (c.f. Definition 2.3.5) the stress tensor. The function ρ∗ : Ω → R describes the

density of Ω, and F0 : R×Ω → R3 is an external balancing force. Maxwell’s equations
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are

∂tB + curlE = F3, (4.4)

∂tD − curlH = F2 − σE, (4.5)

where E,H,B,D : R×Ω → R3 are, respectively, the electric field, the magnetic field, the

magnetic flux density, and the electrical displacement. The functions F2, F3 : R×Ω →

R3 denote given current sources whereas σ : Ω → R describes the electrical resistance.

The heat equation is

∂tΘ0η + div q = F4, (4.6)

where η : R × Ω → R is the entropy density, q : R × Ω → R3 describes the heat flux,

F4 : R× Ω → R denotes a given external heat source, and Θ0 : Ω → R is the reference

temperature with Θ0,Θ
−1
0 ∈ L∞(Ω).

Coupling between the thermal, elastic and electromagnetic aspects of the problem

will occur when the above equations are complemented by suitable constitutive material

relations. In [MPTW16, Section 3] this was achieved by utilising the material relations

described in [Min74], which we now recall. In [Min74, Section 2] there are first provided

the material relations

T = C Gradu− eE − λθ, (4.7)

D = e∗Gradu+ εE + pθ, (4.8)

B = µH, (4.9)

η = λ∗Gradu+ p∗E + αΘ−1
0 θ, (4.10)

where C ∈ L(L2(Ω)
3×3
sym) (c.f. Definition 2.3.6) denotes the elasticity tensor, ε, µ ∈

L(L2(Ω)
3) are respectively the permittivity and permeability, α := ρ∗c ∈ L(L2(Ω))

describes the product of the mass density ρ∗ ∈ L∞(Ω) and the specific heat capacity

c ∈ L(L2(Ω)) whereas θ : R × Ω → R denotes the temperature. Here, the operators

e ∈ L(L2(Ω)
3;L2(Ω)

3×3
sym), λ ∈ L(L2(Ω);L2(Ω)

3×3
sym) and p ∈ L(L2(Ω);L2(Ω)

3) act as

coupling parameters.
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Denoting the strain tensor by E := Gradu and replacing the temperature, θ, by

the relative temperature, Θ−1
0 θ, as the unknown temperature function, the material

relations then become

T = CE − eE − (λΘ0)Θ
−1
0 θ, (4.11)

D = e∗E + εE + (pΘ0)Θ
−1
0 θ, (4.12)

B = µH, (4.13)

Θ0η = (Θ0λ
∗) E + (Θ0p

∗)E + γ0Θ
−1
0 θ, (4.14)

where the shorthand γ0 := Θ0α has been introduced. In adapting the above ma-

terial relations to be suitable for the evolutionary equation perspective, the authors

of [MPTW16] solve for the strain tensor, E , so that (4.11) through (4.14) become

E = C−1T + C−1eE + C−1 (λΘ0)Θ
−1
0 θ, (4.15)

D = e∗C−1T +
(
ε+ e∗C−1e

)
E +

(
pΘ0 + e∗C−1λΘ0

)
Θ−1

0 θ, (4.16)

B = µH, (4.17)

Θ0η = Θ0λ
∗C−1T +

(
Θ0p

∗ +Θ0λ
∗C−1e

)
E +

(
γ0 +Θ0λ

∗C−1λΘ0

)
Θ−1

0 θ. (4.18)

Approaching our PDE problem with the evolutionary equation perspective in mind, we

complement each of the given basic system equations with an appropriate constitutive

relation. This is a key facet of the evolutionary equation approach. The (standard)

constitutive relations used in the sequel can be found for instance in [STW22, Sec-

tions 6.2, 7.1, 7.2]. The equation of elasticity, (4.3), is usually complemented by a

suitable strain-stress relation. In this case, it is already implicitly present in (4.7)

above. Indeed, setting the coupling parameters e = λ = 0 here allows us to recover a

version of Hooke’s Law,

T = C Gradu, (4.19)

in the context of elasticity (c.f. Subsection 2.3.2). Maxwell’s equations, (4.4) and (4.5),

are usually complemented by three constitutive relations, the first two of which couple

the electric displacement, D, with the electric field, E, and the magnetic field, H, with
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the magnetic flux density, B, respectively. The former of these is similarly already

implicitly provided by (4.8), which can be more clearly recognised upon setting the

coupling parameters e = p = 0. The latter is indeed precisely (4.9). The third con-

stitutive relation underpinning Maxwell’s equations is provided by Ohm’s law which

relates the electrical charge to the electric field via the electrical resistivity. This is pre-

cisely the −σE term present in (4.5) (c.f. [STW22, Section 6.2]). Finally, the authors

of [MPTW16] complement the heat equation, (4.6), with a version of Fourier’s law. In

particular, they assume that the Maxwell-Cattaneo-Vernotte modification holds, which

relates the heat flux and temperature via

∂tκ1q + κ−1
0 q + grad θ = 0 (4.20)

for operators κ0, κ1 ∈ L(L2 (Ω)
3). It is clear that this is a generalisation of Fourier’s

law since one readily recovers the usual form of this constitutive relation upon setting

κ1 = 0.

With the above preparations made we can now present the full system. As an

evolutionary equation we have

(
∂t,νM̂0 + M̂1 + Â

)
Û = F̂

on L2,ν(R; Ĥ) where

Ĥ := L2 (Ω)
3 ⊕ L2 (Ω)

3×3
sym ⊕ L2 (Ω)

3 ⊕ L2 (Ω)
3 ⊕ L2 (Ω)⊕ L2 (Ω)

3 , (4.21)

with the operators M̂0, M̂1 and Â to be specified next. In this formulation, we have

the material operators

M̂0 =



ρ∗ 0 0 0 0 0

0 C−1 C−1e 0 C−1λΘ0 0

0 e∗C−1
(
ε+ e∗C−1e

)
0

(
pΘ0 + e∗C−1λΘ0

)
0

0 0 0 µ 0 0

0 Θ0λ
∗C−1

(
Θ0p

∗ +Θ0λ
∗C−1e

)
0
(
γ0 +Θ0λ

∗C−1λΘ0

)
0

0 0 0 0 0 κ1


, (4.22)
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M̂1 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 σ 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 κ−1
0


, (4.23)

and the spatial operator

Â =



0 −Div 0 0 0 0

−Grad0 0 0 0 0 0

0 0 0 − curl 0 0

0 0 curl0 0 0 0

0 0 0 0 0 div0

0 0 0 0 grad 0


, (4.24)

with unknown

Û =
(
v, T,E,H,Θ−1

0 θ, q
)

(4.25)

and given right-hand side

F̂ = (F0, 0, F2, F3, F4, 0) . (4.26)

In (4.25) the function v := ∂tu is treated as the first unknown for the equation of

elasticity, (4.3), instead of the displacement, u. This is a standard trick and has been

employed so as to treat the equation of elasticity as a first order in time equation

(c.f. [STW22, Sections 6.2, 7.1, 7.2]).

At this point we would like to remind ourselves, and the reader, about the boundary

conditions satisfied by the spatial operator (4.24) above. The operator Â satisfies a set

of abstract homogeneous boundary conditions. Considering the action of the spatial

operator (4.24) on the unknown (4.25), it is clear that we need to additionally assume

v ∈ H0 (Grad,Ω), E ∈ H0 (curl,Ω) and q ∈ H0 (div,Ω) (see Item (ii) and Item (iii)

from Remark 2.3.4). It is then clear that (4.24) is skew-selfadjoint by construction

(c.f. Definition 2.3.1).

With the underlying model of thermo-piezo-electromagnetism with homogeneous
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boundary conditions from [MPTW16, Sections 2, 3] now recalled, we turn our attention

to the second of our aims for this subsection. To recall in detail the statement and proof

of the systems evolutionary well-posedness, [MPTW16, Theorem 3.1].

Theorem 4.2.1 (Theorem 3.1, [MPTW16]). Let Ω ⊆ Rd be open and Ĥ as in (4.21).

Additionally, let M̂0, M̂1 ∈ L(Ĥ) be as in (4.22), (4.23) and Â as in (4.24). Assume

ρ∗, ε, µ, C, γ0, κ1 selfadjoint and non-negative. Furthermore, assume ρ∗, µ, C, γ0 ≫ 0

as well as

ν
(
ε−Θ0pγ

−1
0 p∗Θ0

)
+ σ ≫ 0 (4.27)

and

νκ1 + κ−1
0 ≫ 0 (4.28)

for large enough ν ∈ R>0. Then, for all ν ∈ R>0 sufficiently large, the operator

∂t,νM̂0 + M̂1 + Â (4.29)

is densely defined and closable in L2,ν(R; Ĥ). The respective closure is continuously

invertible with causal inverse being eventually independent of ν.

Proof. The assertion follows from applying Theorem 2.4.4 to the material law given by

M(z) := M̂0 + z−1M̂1 (4.30)

and spatial operator Â. In the discussion above we noted how Â is skew-selfadjoint by

construction. As such, we need only focus on establishing

zM(z) ≫ 0

uniformly in z ∈ CRe≥ν for large enough ν ∈ R>0. By several of the statement assump-

tions it is sufficient to consider the question of positive-definiteness for the sub-block
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operator

ν


C−1 C−1e C−1λΘ0

e∗C−1 ε+ e∗C−1e pΘ0 + e∗C−1λΘ0

Θ0λ
∗C−1 Θ0p

∗ +Θ0λ
∗C−1e γ0 +Θ0λ

∗C−1λΘ0

+


0 0 0

0 σ 0

0 0 0

 . (4.31)

Under a symmetric Gauss step provided by the congruence transform

C1 =


1 0 0

−e∗ 1 0

−Θ0λ
∗ 0 1

 , (4.32)

we see that (4.31) is congruent to the operator

ν


C−1 0 0

0 ε pΘ0

0 Θ0p
∗ γ0

+


0 0 0

0 σ 0

0 0 0

 . (4.33)

From here, we need only consider the sub-block operator

ν

 ε pΘ0

Θ0p
∗ γ0

+

σ 0

0 0

 . (4.34)

A second symmetric Gauss step provided by the congruence transform

C2 =

1 −pΘ0γ
−1
0

0 1

 , (4.35)

reveals that the operator (4.34) is congruent to

ν

ε−Θ0pγ
−1
0 p∗Θ0 0

0 γ0

+

σ 0

0 0

 , (4.36)

which is positive-definite by the remaining statement assumptions.
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Remark 4.2.2. (i) The statement assumptions allow for the case obtained when

ε = Θ0pγ
−1
0 p∗Θ0,

provided that the electrical resistance, σ, is large enough to compensate in (4.27).

Such a case wherein the effect of the dielectricity, ε, is neglected arises in the study

of eddy currents. The resulting system obtained is referred to as the eddy current

approximation (see for instance the standard reference [RV10], the more recent

[PP17], [Wau16a, Section 5.3], [Pic09, Subsection 4.1.1] or [STW22, Section 6.2].

(ii) Both of the positive-definite conditions (4.27) and (4.28) could have instead (and

equivalently) been presented as requiring

∃ c0 ∈ R>0 : ν
(
ε−Θ0pγ

−1
0 p∗Θ0

)
+Reσ ≥ c0

and

∃ c1 ∈ R>0 : νκ1 +Reκ−1
0 ≥ c1,

respectively. Indeed, recalling Remark 2.4.5 confirms the coincidence in notation.

▽

4.3 Formulating Our Extended Model

Having recalled the underlying thermo-piezo-electromagnetic system under homoge-

neous boundary conditions from [MPTW16] in Section 4.2, the stage is set for the

formulation of our own extended model. We will realise this extension by the applica-

tion of tools from the abstract boundary data space framework, as reviewed earlier in

Chapter 3. We will extend from the system in Section 4.2 by first introducing three aux-

iliary Hilbert spaces, one for each of the elastic, electromagnetic and thermal aspects of

the model. Upon each of these three spaces we will formulate a boundary equation gov-

erning the boundary dynamics of the respective material part of the model. Concerning

ourselves with the use of abstract boundary data spaces, the auxiliary Hilbert spaces
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will be familiar to us from Proposition 3.2.3. By encoding these additional spaces and

equations from within our system itself, we will actually enlargen the underlying six

dimensional model to a nine dimensional one. In doing so we apply the methodology

used in [Pic17] which was based on the observations and findings of [PSTW16].

We first recall the evolutionary equation from Section 4.2. There we had

(
∂t,νM̂0 + M̂1 + Â

)


v

T

E

H

Θ−1
0 θ

q


=



F0

0

F2

F3

F4

0


∈ L2,ν(R; Ĥ) (4.37)

with the Hilbert space

Ĥ =L2 (Ω)
3 ⊕ L2 (Ω)

3×3
sym ⊕

L2 (Ω)
3 ⊕ L2 (Ω)

3⊕

L2 (Ω)⊕ L2 (Ω)
3 .

(4.38)

We extend the above system by formally replacing

T ∈ H(Div,Ω), H ∈ H(curl,Ω) and q ∈ H(div,Ω)

in the vector of unknowns (4.25) by

T

τT

 ∈ L2 (Ω)
3×3
sym ⊕ BD(Grad) , (4.39)

H
τH

 ∈ L2 (Ω)
3 ⊕ BD(curl) and (4.40)

 q

τq

 ∈ L2 (Ω)
3 ⊕ BD(grad) , (4.41)
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respectively. In order to accommodate for the formal replacements in our vector of

unknowns, the remaining parts in the evolutionary equation (4.37) need to be suitably

amended. As our extended evolutionary equation we obtain

(∂t,νM0 +M1 (∂t,ν) +A)



vT

τT


EH
τH


Θ−1

0 θ q

τq





=



F0 0

f1


F2F3

f3


F4 0

f5





∈ L2,ν (R;H) , (4.42)

where now we have the Hilbert space

H =L2 (Ω)
3 ⊕ L2 (Ω)

3×3
sym ⊕ BD(Grad)⊕

L2 (Ω)
3 ⊕ L2 (Ω)

3 ⊕ BD(curl)⊕

L2 (Ω)⊕ L2 (Ω)
3 ⊕ BD(grad) ,

(4.43)

with the correspondingly extended operators A, M0 and M1 (∂t,ν) to be defined in

a moment. We point out that replacing T by (4.39), H by (4.40) and q by (4.41)

is done without the loss of any generality. One could instead replace the unknowns

v,E and Θ−1
0 θ in an analogous manner. Any difference in the form of the resulting

block structure of (4.42) would be purely formal, and could be undone via congruence

transforms as permutation operators.

In defining each of A, M0 andM1 (∂t,ν) in turn, we will take the time to specify any

important properties that they exhibit. We will also note any pertinent mathematical

and modelling perspectives underpinning their construction and formulation. We have

as our spatial operator

66



A :=

0 −

−Grad

ι∗Grad

∗

0
(
0 0

)
0

(
0 0

)
−Grad

ι∗Grad

 0 0

0 0

 0

0

 0 0

0 0

 0

0

 0 0

0 0


0

(
0 0

)
0 −

curl

ι∗curl

∗

0
(
0 0

)
0

0

 0 0

0 0

 curl

ι∗curl

 0 0

0 0

 0

0

 0 0

0 0


0

(
0 0

)
0

(
0 0

)
0 −

grad

ι∗grad

∗

0

0

 0 0

0 0

 0

0

 0 0

0 0

 grad

ι∗grad

 0 0

0 0





.
(4.44)

It is clear from construction that A is skew-selfadjoint. Recall that the domains of

the nonzero column adjoint operators in (4.44) each provide an additional boundary

condition (c.f. Theorem 3.2.17) and must be taken into account. As these boundary

conditions are in some way inherent to the system, we will refer to them in the sequel as

inherent boundary conditions. Descending the upper diagonal stair of adjoint operators

in A, recall that the corresponding inherent boundary conditions are

ι∗DivT −GradBD τT = 0, (4.45)

ι∗curlH + curlBD τH = 0 and (4.46)

ι∗divq + gradBD τq = 0, (4.47)

respectively. We point out, upon recalling Theorem 3.2.17 that the action of A can
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actually be computed with the help of the restriction

A ⊆

0
(
−Div 0

)
0

(
0 0

)
0

(
0 0

)−Grad

ι∗Grad

 0 0

0 0

 0

0

 0 0

0 0

 0

0

 0 0

0 0


0

(
0 0

)
0

(
− curl 0

)
0

(
0 0

)0

0

 0 0

0 0

 curl

ι∗curl

 0 0

0 0

 0

0

 0 0

0 0


0

(
0 0

)
0

(
0 0

)
0

(
div 0

)0

0

 0 0

0 0

 0

0

 0 0

0 0

 grad

ι∗grad

 0 0

0 0





.
(4.48)

We now turn our attention to the material operators M0 and M1 (∂t,ν). We begin by

specifying some notation. We first introduce the blocks

M0,33 :=

C−1 0

0 α33

 ,M0,36 :=

C−1e 0

0 α36

 , M0,39 :=

0 0

0 α39

 ,

M0,66 :=

µ 0

0 α66

 ,M0,69 :=

0 0

0 α69

 ,M0,99 :=

κ1 0

0 α99

 .

(4.49)

We assume that the coefficients

α33 ∈ L(BD(Grad)), α66 ∈ L(BD(curl)), α99 ∈ L(BD(grad)) (4.50)

are selfadjoint. Moreover we assume

α36 ∈ L(BD(curl),BD(Grad)), α39 ∈ L(BD(grad),BD(Grad)) (4.51)

and

α69 ∈ L(BD(grad),BD(curl)). (4.52)
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Doing so we obtain the operator

M0 :=

ρ∗
(
0 0

)
0

(
0 0

)
0

(
0 0

)0

0

 M0,33

0

0

 M0,36

C−1λΘ0

0

 M0,39

0
(
0 0

)
ε+ e∗C−1e

(
0 0

)
pΘ0 + e∗C−1λΘ0

(
0 0

)0

0

 M0,36
∗

0

0

 M0,66

0

0

 M0,69

0
(
Θ0λ

∗C−1 0
)

Θ0p
∗ +Θ0λ

∗C−1e
(
0 0

)
γ0 +Θ0λ

∗C−1λΘ0

(
0 0

)0

0

 M0,39
∗

0

0

 M0,69
∗

0

0

 M0,99



.
(4.53)

By construction M0 is selfadjoint. The operator coefficients αij , for i, j ∈ {3, 6, 9},
allow us to involve the time derivative explicitly when formulating dynamics on the

boundary. Recall that for our model boundary dynamics are posed on the auxiliary

Hilbert spaces introduced in our extension above. We consider M1(z) next. We define

the block operator

M1 (z) :=

0
(
0 0

)
0

(
0 0

)
0

(
0 0

)0

0

 M1,33 (z)

0

0

 M1,36 (z)

0

0

 M1,39 (z)

0
(
0 0

)
σ

(
0 0

)
0

(
0 0

)0

0

 M1,63 (z)

0

0

 M1,66 (z)

0

0

 M1,69 (z)

0
(
0 0

)
0

(
0 0

)
0

(
0 0

)0

0

 M1,93 (z)

0

0

 M1,96 (z)

0

0

 M1,99 (z)



(4.54)

and assume, for i, j ∈ {3, 6, 9}, that the mapping z 7→ M1,ij(z) is holomorphic, and

that ∥M1,ij∥∞,CRe>ν
<∞. In our application, the sub-block operators M1,ij(z) assume

the form

M1,ij (z) :=

0 0

0 Kij (z)

 , (4.55)
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when i, j ∈ {3, 6, 9} with (i, j) ̸= (9, 9), and

M1,99 (z) :=

κ−1
0 0

0 K99 (z)

 , (4.56)

when (i, j) = (9, 9). We assume that the Kij(z) boundary coefficients are linear,

bounded and individually map between the same abstract boundary data spaces as the

corresponding αij coefficient does (recall the blocks (4.49) and the mappings (4.50),

(4.51) and (4.52)). For i, j ∈ {3, 6, 9}, the mapping z 7→ Kij(z) absorbs the previous

holomorphicity assumption. In a similar way, we assume ∥Kij∥∞,CRe>ν
< ∞. It is

not hard to see that under these assumptions M1(z) is a material law. Hence, we can

replace z by ∂t,ν in the underlying block operator and obtain

M1 (∂t,ν) =

0
(
0 0

)
0

(
0 0

)
0

(
0 0

)0

0

 M1,33 (∂t,ν)

0

0

 M1,36 (∂t,ν)

0

0

 M1,39 (∂t,ν)

0
(
0 0

)
σ

(
0 0

)
0

(
0 0

)0

0

 M1,63 (∂t,ν)

0

0

 M1,66 (∂t,ν)

0

0

 M1,69 (∂t,ν)

0
(
0 0

)
0

(
0 0

)
0

(
0 0

)0

0

 M1,93 (∂t,ν)

0

0

 M1,96 (∂t,ν)

0

0

 M1,99 (∂t,ν)



(4.57)

where, for i, j ∈ {3, 6, 9} and (i, j) ̸= (9, 9), we have the block operators

M1,ij (∂t,ν) =

0 0

0 Kij (∂t,ν)

 (4.58)

and, when (i, j) = (9, 9),

M1,99 (∂t,ν) =

κ−1
0 0

0 K99 (∂t,ν)

 . (4.59)
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This yields the full material law operator (c.f. Proposition 2.2.5)

M (∂t,ν) :=M0 + ∂−1
t,ν M1 (∂t,ν) (4.60)

appearing in (4.42). At this point, we would like to make a minute observation. In

the formulation of our material law operator (4.60), one could dispense with the αij

boundary coefficients present inM0, and instead combine their purpose with that of the

Kij(∂t,ν) coefficients present in M1 (∂t,ν). It is the authors opinion that this difference

is one merely in notation and taste.

In summary our extended system (4.42) encodes the following equations for each

aspect of our thermo-piezo-electromagnetic model. Starting with the equations related

to the elastic part we have

∂tρ
∗v −Div T = F0, (4.61)

∂tC
−1T + ∂tC

−1eH + ∂tC
−1λΘ0

(
Θ−1

0 θ
)
−Grad v = 0, (4.62)

(∂tα33 +K33 (∂t,ν)) τT + (∂tα36 +K36 (∂t,ν))τH

+(∂tα39 +K39 (∂t,ν))τq + ι∗Gradv = f1.
(4.63)

The equations corresponding to the electromagnetic aspect of the problem read

∂t
(
ε+ e∗C−1e

)
E + ∂t

(
pΘ0 + e∗C−1λΘ0

)
Θ−1

0 θ + σE − curlH = F2, (4.64)

∂te
∗C−1T + ∂tµH + curlE = F3, (4.65)

(∂tα
∗
36 +K63 (∂t,ν)) τT + (∂tα66 +K66 (∂t,ν))τH

+(∂tα69 +K69 (∂t,ν))τq + ι∗curlE = f3.
(4.66)
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Lastly, the equations corresponding to the thermal part of the problem are

∂t
(
Θ0λ

∗C−1
)
T + ∂t

(
Θ0p

∗ +Θ0λ
∗C−1e

)
E

+∂t
(
γ0 +Θ0λ

∗C−1λΘ0

)
Θ−1

0 θ + div q = F4,
(4.67)

(
∂tκ1 + κ−1

0

)
q + grad

(
Θ−1

0 θ
)
= 0, (4.68)(

∂tα
∗
39 +K93 (∂t,ν)

)
τT + (∂tα

∗
69 +K96 (∂t,ν))τH

+(∂tα99 +K99 (∂t,ν))τq + ι∗grad
(
Θ−1

0 θ
)
= f5.

(4.69)

As noted earlier, one cannot forget to take into account the presence of the inherent

boundary conditions (4.45), (4.46) and (4.47). We can re-present the model entirely in

terms of the original unknowns by substituting these boundary conditions into (4.63),

(4.66) and (4.69), respectively. That is to say, one can transcribe our system equations

entirely bereft of the presence of the dummy boundary τT , τH and τq variables.

4.4 Evolutionary Well-posedness

In this section we prove that our extended model for thermo-piezo-electromagnetism

with boundary dynamics is well-posed as an evolutionary equation. The heart of the

proof lies in the application of Picard’s Theorem (Theorem 2.4.4) to the block operator

system (4.42). At this juncture we recall the importance of Picard’s Theorem. Indeed

the solution theory of evolutionary equations is entirely encapsulated by Theorem 2.4.4.

In particular, its application will allow us to establish Hadamard well-posedness as well

as causal dependence on given data for our system (c.f. Remark 2.4.5).

As we will see in our own solution result, Theorem 4.4.6, many of the assumptions

required to apply Picard’s Theorem are already satisfied by our system. Indeed this is

by construction. However the assumptions required to ensure that the operator

Re zM(z) = Re z
(
M0 + z−1M1 (z)

)
(4.70)

is positive-definite are perhaps not so obvious. Here M0 and M1 (z) are as specified

in (4.53) and (4.54), respectively. In particular, it is this positive-definite question
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that we address in a systematic manner in our proof. In Lemma 4.4.1 we initially

identify an operator congruent to (4.70). The congruent form obtained will allow us

to determine conditions sufficient to assure the required accretivity in two steps. In

Lemma 4.4.3 we first establish the required conditions corresponding to the material

part of our system independent of z. Then in Lemma 4.4.4 we ascertain the conditions

needed for the remaining material part of our system dependent on z. Our solution

theory, Theorem 4.4.6, combines all three auxiliary results together with some addi-

tional observations to establish our extended model’s well-posedness as an evolutionary

equation.

Lemma 4.4.1 (Congruent Form). Let ν ∈ R>0 and z ∈ CRe>ν . Let M0 be as in (4.53),

M1 (z) as in (4.54) and assume µ − e∗C−1e and m̃0,55 to be continuously invertible.

Then the operator νM0 +ReM1 (z) is congruent to

νM̃0 +Re M̃1 (z)

= ν


ρ∗ 0 0 0

0 M̃0,22 0 0

0 0 M̃0,66 0

0 0 0 κ1

+Re


0 0 0 0

0 M̃1,22 0 0

0 0 M̃1,66 (z) 0

0 0 0 κ−1
0


(4.71)

under symmetric Gauss steps and permutations as congruent transformations. Here we

obtain the sub-block operator

M̃0,22 =


C−1 0 0 0

0 µ− e∗C−1e 0 0

0 0 m̃0,44 0

0 0 0 m̃0,55

 (4.72)

where

m̃0,55 = γ0 −Θ0λ
∗C−1e

(
µ− e∗C−1e

)−1
e∗C−1λΘ0 (4.73)
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and

m̃0,44 = ε+ e∗C−1e−
(
pΘ0 + e∗C−1λΘ0

)∗ (
m̃0,55

)−1 (
pΘ0 + e∗C−1λΘ0

)
. (4.74)

In (4.4.1) we also obtain the sub-block operators

M̃0,66 =


α33 α36 α39

α∗
36 α66 α69

α∗
39 α∗

69 α99

 , (4.75)

M̃1,22 =


0 0 0 0

0 0 0 0

0 0 σ 0

0 0 0 0

 , (4.76)

and

M̃1,66 (z) =


K33 (z) K36 (z) K39 (z)

K63 (z) K66 (z) K69 (z)

K93 (z) K96 (z) K99 (z)

 . (4.77)

Proof. There are a total of six congruence transforms to be applied in order to arrive

at the target congruent form indicated in the statement of Lemma 4.4.1. The first

congruence is provided by an elementary permutation of the entire system. We have

C1 (νM0 +ReM1 (z)) C∗
1 = ν C1M0C∗

1 +Re C1M1 (z) C∗
1

= ν Ñ1 +ReM̃ (z)
(4.78)
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under the permutation

C1 =



1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0



, (4.79)

with Ñ1 and M̃ to be specified next. In (4.78) we have

Ñ1 =


ρ∗ 0 0 0

0 Ñ1

′

0 0

0 0 M̃0,66 0

0 0 0 κ1

 (4.80)

with

Ñ1

′

=


ε+ e∗C−1e 0 0 pΘ0 + e∗C−1λΘ0

0 C−1 C−1e C−1λΘ0

0 e∗C−1 µ 0

Θ0p
∗ +Θ0λ

∗C−1e Θ0λ
∗C−1 0 γ0 +Θ0λ

∗C−1λΘ0

 (4.81)

and where M̃0,66 is as it already appears in the statement of Lemma 4.4.1. We also

have in (4.78)

M̃ (z) =


0 0 0 0

0 M̃ ′
0 0

0 0 M̃1,66 (z) 0

0 0 0 κ−1
0

 (4.82)
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where

M̃ ′
=


σ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 (4.83)

and M̃1,66 (z) is already of the form indicated in the statement of Lemma 4.4.1. As

such, we need now only occupy ourselves with the task of determining the intermediary

congruence transforms under which the sub-block operator Ñ1

′

in (4.78) is congruent

to M̃0,22 in (4.72). The first of these intermediary sub-block congruences is given by

the permutation operator

C2 =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 , (4.84)

under which we have

C2 Ñ1

′

C∗
2 = Ñ2 (4.85)

with

Ñ2 =


C−1 0 C−1e C−1λΘ0

0 ε+ e∗C−1e 0 pΘ0 + e∗C−1λΘ0

e∗C−1 0 µ 0

Θ0λ
∗C−1 Θ0p

∗ +Θ0λ
∗C−1e 0 γ0 +Θ0λ

∗C−1λΘ0

 . (4.86)

From here we apply the second intermediary sub-block congruence, given by the oper-

ator

C3 =


1 0 0 0

0 1 0 0

−e∗ 0 1 0

−Θ0λ
∗ 0 0 1

 , (4.87)
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under which

C3 Ñ2 C∗
3 = Ñ3 (4.88)

where we have

Ñ3 =


C−1 0 0 0

0 ε+ e∗C−1e 0 pΘ0 + e∗C−1λΘ0

0 0 µ− e∗C−1e −e∗C−1λΘ0

0 Θ0p
∗ +Θ0λ

∗C−1e −Θ0λ
∗C−1e γ0

 . (4.89)

From here it is sufficient to consider the sub-block operator

Ñ3

′

=


ε+ e∗C−1e 0 pΘ0 + e∗C−1λΘ0

0 µ− e∗C−1e −e∗C−1λΘ0

Θ0p
∗ +Θ0λ

∗C−1e −Θ0λ
∗C−1e γ0

 . (4.90)

Under the permutation as a congruence transform given by

C4 =


0 1 0

1 0 0

0 0 1

 (4.91)

we obtain the congruent form

C4 Ñ3

′

C∗
4 = Ñ4 (4.92)

with

Ñ4 =


µ− e∗C−1e 0 −e∗C−1λΘ0

0 ε+ e∗C−1e pΘ0 + e∗C−1λΘ0

−Θ0λ
∗C−1e Θ0p

∗ +Θ0λ
∗C−1e γ0

 . (4.93)

At this point we recall M̃ ′
as specified in (4.83). It is at the symmetric application of
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the congruence transform

C̃4 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


that we simultaneously obtain

C̃4 M̃
′ C̃∗

4 = M̃1,22, (4.94)

with M̃1,22 as given in the statement of Lemma 4.4.1. With this, we have obtained the

entirety of the congruent form M̃1 (z) as specified in (4.71). From (4.93) we then apply

the symmetric Gauss step as a congruence transform provided by

C5 =


1 0 0

0 1 0

Θ0λ
∗C−1e

(
µ− e∗C−1e

)−1
0 1

 , (4.95)

under which

C5 Ñ4 C∗
5 = Ñ5 (4.96)

where we have

Ñ5 =


µ− e∗C−1e 0 0

0 ε+ e∗C−1e pΘ0 + e∗C−1λΘ0

0 Θ0p
∗ +Θ0λ

∗C−1e m̃0,55

 (4.97)

with

m̃0,55 = γ0 −Θ0λ
∗C−1e

(
µ− e∗C−1e

)−1
e∗C−1λΘ0. (4.98)

From here we need only consider the sub-block

Ñ5

′

=

 ε+ e∗C−1e pΘ0 + e∗C−1λΘ0

Θ0p
∗ +Θ0λ

∗C−1e m̃0,55

 . (4.99)
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The application of another symmetric Gauss step as a congruence transform given by

C6 =

1 −
(
pΘ0 + e∗C−1λΘ0

) (
m̃0,55

)−1

0 1

 (4.100)

yields

C6 Ñ5

′

C∗
6 = Ñ7 (4.101)

in which we have

Ñ7 =

m̃0,44 0

0 m̃0,55

 (4.102)

where

m̃0,44 = ε+ e∗C−1e−
(
pΘ0 + e∗C−1λΘ0

)∗ (
m̃0,55

)−1 (
pΘ0 + e∗C−1λΘ0

)
. (4.103)

With this final congruence we arrive at M̃0,22 as specified in (4.72) which completes the

proof.

Remark 4.4.2. (i) On account of the additional rows (and corresponding columns)

added to accomodate for boundary dynamics, the congruence transforms applied

above appear slightly different to those employed in [Pic17, Theorem 3.2]. The

displacement caused by the addition of these rows and columns is the reason

for obtaining “distorted” versions of the block operators recalled in the proof of

Theorem 4.2.1.

(ii) Recall Item (i) from Remark 4.2.2 on the eddy current approximation. It is im-

portant to note that the manner in which we have applied our congruence trans-

forms above in Lemma 4.4.1 and Lemma 4.4.3 is nontrivial. Indeed, the pattern

we have employed allows us to retain the option of eddy current approximation

in our model for thermo-piezo-electromagnetism with dynamic boundary condi-

tions. Recall the operator (4.90) obtained above in the proof of Lemma 4.4.1.
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There we had

Ñ3

′

=


ε+ e∗C−1e 0 pΘ0 + e∗C−1λΘ0

0 µ− e∗C−1e −e∗C−1λΘ0

Θ0p
∗ +Θ0λ

∗C−1e −Θ0λ
∗C−1e γ0

 . (4.104)

For what we would like to elucidate in this remark, suppose we additionally as-

sumed that the operator ε be continuously invertible (which happens, for instance,

when ε ≫ 0). If instead of applying the permutation as a congruence transform

(4.91) we applied the operator

C4 =


1 0 0

0 1 0

−
(
Θ0p

∗ +Θ0λ
∗C−1e

) (
ε+ e∗C−1e

)−1
0 1

 (4.105)

then we would obtain the operator

Ñ4 =


ε+ e∗C−1e 0 0

0 µ− e∗C−1e −e∗C−1λΘ0

0 −Θ0λ
∗C−1e γ̃0

 (4.106)

as congruent to Ñ3

′

, where we have introduced

γ̃0 := γ0 −
(
pΘ0 + e∗C−1λΘ0

)∗ (
ε+ e∗C−1e

)−1 (
pΘ0 + e∗C−1λΘ0

)
. (4.107)

From here it is sufficient to consider the sub-block operator

Ñ4

′

=

µ− e∗C−1e −e∗C−1λΘ0

−Θ0λ
∗C−1e γ̃0

 (4.108)

which is in turn congruent to the operator

Ñ5 =

µ− e∗C−1e 0

0 γ̃
′
0

 (4.109)
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where we have introduced

γ̃
′
0 := γ0 −

(
e∗C−1λΘ0

)∗ (
µ− e∗C−1e

)−1
e∗C−1λΘ0

−
(
pΘ0 + e∗C−1λΘ0

)∗ (
ε+ e∗C−1e

)−1 (
pΘ0 + e∗C−1λΘ0

)
.

(4.110)

The approach outlined in this remark could still be employed to establish suffi-

cient conditions under which our model be well-posed as an evolutionary equation.

However, should one want to retain the possibility of an eddy current approxi-

mation (again, see Item (i) from Remark 4.2.2), then the alternative approach

suggested would obscure such a possibility. Whilst it would still be possible to

choose the operator ε ‘close’ to e∗C−1e, the limit case ε = −e∗C−1e is excluded.

(iii) In the statement of Lemma 4.4.1 we assumed both µ − e∗C−1e and m̃0,55 to

be continuously invertible. With regards to the full model system however, this

assumption will already be satisfied on account of a wider positive-definite as-

sumption (c.f. Item (i) of Remark 4.1.5 and Lemma 4.4.3). ▽

Our second auxiliary result addresses the accretivity required for that part of the

model independent of any boundary considerations. In other words, for that part of

the model independent of z. Whilst this might be obvious from the previous congruent

form, we should like to formalise it here.

Lemma 4.4.3. Let ν ∈ R>0 and let M̃0,22, m̃0,55, m̃0,44 and M̃1,22 be as in (4.72),

(4.73), (4.74) and (4.76), respectively. Assume ρ∗, ε, µ, C, γ0, κ1 selfadjoint and non-

negative. Furthermore, assume ρ∗, C, m̃0,55, µ− e∗C−1e≫ 0 as well as

ν m̃0,44 + σ ≫ 0 (4.111)

and

νκ1 + κ−1
0 ≫ 0 (4.112)
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for large enough ν ∈ R>0. Then the block operator

ν


ρ∗ 0 0

0 M̃0,22 0

0 0 κ1

+Re


0 0 0

0 M̃1,22 0

0 0 κ−1
0

 (4.113)

is accretive for all ν ∈ R>0 sufficiently large.

Proof. Immediately it is clear that the first and last rows of (4.113) are accretive by

assumption. The required accretivity for the remaining sub-block will follow after

considering the congruent form obtained in Lemma 4.4.1. Indeed, we have

νM̃0,22 +Re M̃1,22

= ν


C−1 0 0 0

0 µ− e∗C−1e 0 0

0 0 m̃0,44 0

0 0 0 m̃0,55

+Re


0 0 0 0

0 0 0 0

0 0 σ 0

0 0 0 0


(4.114)

which is likewise accretive by the statement assumptions.

The third of our auxiliary results addresses the positive-definiteness of that sub-

block of the model accounting for the boundary dynamics of the system. In other

words, for the part of the system dependent on z. Recall from Lemma 4.4.1 that both

M̃0,66 and M̃1,66 (z) handle the boundary dynamics of our system via the sub-block

operator

νM̃0,66 +Re M̃1,66 (z) . (4.115)

Before considering if the block operator (4.115) is positive-definite, we introduce some

notational simplifications. First of all recall that, when written out in full, (4.115) has

the form

ν


α33 α36 α39

α∗
36 α66 α69

α∗
39 α∗

69 α99

+Re


K33 (z) K36 (z) K39 (z)

K63 (z) K66 (z) K69 (z)

K93 (z) K96 (z) K99 (z)

 . (4.116)
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Upon computing the real-part of M̃1,66 (z), the operator (4.116) coincides with the

block operator


να33 +ReK33 (z) L36 (z) L39 (z)

L36 (z)
∗ να66 +ReK66 (z) L69 (z)

L39 (z)
∗ L69 (z)

∗ να99 +ReK99 (z)

 (4.117)

where, for notational ease, we have introduced for i, j ∈ {3, 6, 9}

κij (z) :=
1

2
(Kij (z) +Kji (z)

∗) . (4.118)

Clearly, we have for all i, j ∈ {3, 6, 9}

κij (z)
∗ = κji (z) . (4.119)

In (4.117) we define for i, j ∈ {3, 6, 9} the operator

Lij (z) := ναij + κij (z) , (4.120)

and similarly it is clear that for all i, j ∈ {3, 6, 9} we have

Lij (z)
∗ = Lji (z) . (4.121)

Moreover, we define the operators

U11 (z) := να33 +ReK33 (z) , (4.122)

U22 (z) := να66 +ReK66 (z)− L36 (z)
∗ U−1

11 (z)L36 (z) , (4.123)

U33 (z) := να99 +ReK99 (z)− L39 (z)
∗ U−1

11 (z)L39 (z)− L∗ (z)U−1
22 (z)L (z) (4.124)

and finally introduce

L (z) := L69 (z)− L36 (z)
∗ U−1

11 (z)L39 (z) . (4.125)
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With these notational simplifications to hand we provide our next auxiliary result.

Lemma 4.4.4. Let ν ∈ R>0 and z ∈ CRe>ν . Let M̃0,66 and M̃1,66 (z) be as in (4.76)

and (4.77), respectively. Assume

να33 +ReK33 (z) ≫ 0, (4.126)

να66 +ReK66 (z)− L36 (z)
∗ U−1

11 (z)L36 (z) ≫ 0, (4.127)

να99 +ReK99 (z)− L39 (z)
∗ U−1

11 (z)L39 (z)− L∗ (z)U−1
22 (z)L (z) ≫ 0, (4.128)

for ν ∈ R>0 sufficiently large. Then the block operator

ν M̃0,66 +Re M̃1,66 (z)

=


να33 +ReK33 (z) L36 (z) L39 (z)

L36 (z)
∗ να66 +ReK66 (z) L69 (z)

L39 (z)
∗ L69 (z)

∗ να99 +ReK99 (z)


is accretive for all ν ∈ R>0 sufficiently large.

Proof. The discussion prior to the statement of Lemma 4.4.4 establishes equality be-

tween the operator (4.115) and (4.117), the latter of which we take as our starting

point. Our aim is to obtain a suitable congruent form to which we can apply the state-

ment assumptions from above. The desired congruent form will be obtained after the

application of two symmetric Gauss steps. The first symmetric Gauss step is provided

by the block operator

C1 (z) =


1 0 0

−L36 (z)
∗ U11 (z)

−1 1 0

−L39 (z)
∗ U11 (z)

−1 0 1

 . (4.129)

Under the congruence transform C1 (z) we obtain the congruent form

C1 (z)
[
νM̃0,66 +Re M̃1,66 (z)

]
C1 (z)∗ = Ñ1 (z) , (4.130)
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where we have the block operator

Ñ1 (z) =


U11 (z) 0 0

0 Ñ22 (z) Ñ23 (z)

0 Ñ23 (z)
∗ Ñ33 (z)

 , (4.131)

wherein

Ñ22 (z) := να66 +ReK66 (z)− L36 (z)
∗ U11 (z)

−1 L36 (z) , (4.132)

Ñ33 (z) := να99 +ReK99 (z)− L39 (z)
∗ U11 (z)

−1 L39 (z) , (4.133)

Ñ23 (z) := L69 (z)− L36 (z)
∗ U11 (z)

−1 L39 (z) . (4.134)

From this point it suffices to consider the sub-block operator

Ñ1

′

(z) =

 Ñ22 (z) Ñ23 (z)

Ñ23 (z)
∗ Ñ33 (z)

 . (4.135)

The second congruence transform is provided by the block operator

C2 (z) =

 1 0

−L (z)∗N22 (z)
−1 1

 , (4.136)

under which we obtain the congruent form

C2 (z) Ñ1

′

(z) C2 (z)∗ = Ñ2 (z) , (4.137)

where

Ñ2 (z) =

U22 (z) 0

0 U33 (z)

 . (4.138)

From here we can apply the remaining statement assumptions in order to derive the

desired accretivity claim.

Remark 4.4.5. (i) Notice that each of the operators first appearing on the main-
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diagonal of (4.117)

να33 +ReK33 (z) , να66 +ReK66 (z) , να99 +ReK99 (z) ,

are selfadjoint. Indeed, that the αii are selfadjoint for i ∈ {3, 6, 9} follows from the

fact that (4.53) is selfadjoint by construction. Moreover, recall that for a Hilbert

space H and T ∈ L(H) that the real-part of T is defined as ReT := 1
2(T + T ∗).

As such, it follows immediately by definition that the real-part of an operator is

itself selfadjoint.

(ii) Assumption (4.126) guarantees the existence and continuity of the inverse opera-

tor U11 (z)
−1 by Proposition 4.1.6. An analogous statement holds for assumption

(4.127) and the inverse U22 (z)
−1. As such, both the congruence transform (4.129)

and congruent form obtained in (4.136) involving these inverses are well-defined.

(iii) In (4.123) there arises the operator

L36 (z)
∗ U−1

11 (z)L36 (z)

on account of the congruence transform applied. Similarly, in (4.124) there arises

the operator

L39 (z)
∗ U−1

11 (z)L39 (z) + L∗ (z)U−1
22 (z)L (z) .

All of these are non-negative operators by definition. As such, the assumptions

(4.127) and (4.128) could be restated so as to require

να66 +ReK66 (z) ≫ L36 (z)
∗ U−1

11 (z)L36 (z) ,

να99 +ReK99 (z) ≫ L39 (z)
∗ U−1

11 (z)L39 (z) + L∗ (z)U−1
22 (z)L (z) ,

uniformly in z ∈ CRe≥ν for sufficiently large ν ∈ R>0.

(iv) It is perhaps interesting to note that the congruent form obtained in Lemma 4.4.4

coincides with that obtained by an LDL∗ decomposition (see [GVL13, Theo-

rem 4.1.3], [DR06, Satz 3.34] or any of the references mentioned at the beginning
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of Section 4.1). Indeed, recalling the operator (4.117), we have


να33 +ReK33 (z) L36 (z) L39 (z)

L36 (z)
∗ να66 +ReK66 (z) L69 (z)

L39 (z)
∗ L69 (z)

∗ να99 +ReK99 (z)



=L (z)


U11 (z) 0 0

0 U22 (z) 0

0 0 U33 (z)

L (z)∗ ,

(4.139)

where L (z) is the congruence transform provided by the block operator

L (z) =


1 0 0

L36 (z)
∗ U−1

11 1 0

L39 (z)
∗ U−1

11 L (z)∗ U−1
22 1

 . (4.140)

We have avoided using the means afforded by an LDL∗ decomposition in the

prequel as the operator L in the factorisation need not be an atomic matrix (see

Item (iv) of Remark 4.1.5). With that in mind, such an operator L (or more

particularly L (z) above) cannot be regarded as a symmetric Gauss step, as we

defined in Section 4.1. ▽

We now combine all three of our auxiliary results together with some additional

observations to state and prove our main result of interest.

Theorem 4.4.6. Let ν ∈ R>0 and z ∈ CRe>ν . Let Ω ⊆ Rd be open and H as in (4.43).

Additionally, let M0, M1(z) ∈ L(H) be as in (4.53), (4.54), and A as in (4.44). In

particular, let m̃0,44 and m̃0,55 be as in (4.74) and (4.73), respectively. Moreover, let

U11(z), U22(z) and U33(z) be as in (4.122), (4.123), and (4.124), respectively. Assume

ρ∗, ε, µ, C, γ0, κ1 selfadjoint and non-negative. Furthermore, assume ρ∗, C, m̃0,55, µ−

e∗C−1e, U11(z), U22(z), U33(z) ≫ 0 as well as

ν m̃0,44 + σ ≫ 0 (4.141)
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and

νκ1 + κ−1
0 ≫ 0 (4.142)

for large enough ν ∈ R>0. Then, for all ν ∈ R>0 sufficiently large, the operator

∂t,νM0 +M1(∂t,ν) +A (4.143)

is densely defined and closable in L2,ν(R;H). The respective closure is continuously

invertible with causal inverse being eventually independent of ν.

Proof. The assertion follows from applying Theorem 2.4.4 to the material law

M(z) :=M0 + z−1M1(z) (4.144)

and spatial operator A. From the discussion in the presentation of our model in Sec-

tion 4.3, it is clear that A is skew-selfadjoint by construction. As such, we need only

focus on establishing

zM(z) ≫ 0

uniformly in z ∈ CRe≥ν for large enough ν ∈ R>0. However, this follows immedi-

ately from the congruent forms and sub-block positive-definite estimates provided by

Lemma 4.4.1, Lemma 4.4.3 and Lemma 4.4.4.
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Chapter 5

Catalogue of Boundary

Behaviours Covered by the

Model

In this chapter we will conduct a systematic investigation of the boundary dynamics

captured by the thermo-piezo-electromagnetic model proposed by this thesis. Recalling

the evolutionary equation behind our extended model, (4.42), it is clear (if not by

design) that the boundary dynamics of our system are accounted for by the sub-block

operator equation

(
∂t,ν M̃0,66 + M̃1,66 (∂t,ν)

)
τT

τH

τq

+


ι∗Gradv

ι∗curlE

ι∗grad
(
Θ−1

0 θ
)
 =


f1

f3

f5

 . (5.1)

Here, the fixed column operator of orthogonal projections can be traced back to the

action of the extended spatial operator, A (c.f. (4.44)). There are however several
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degrees of freedom in the (arbitrary) operator coefficients of the sub-block operator

∂t,ν M̃0,66 + M̃1,66 (∂t,ν)

= ∂t,ν


α33 α36 α39

α∗
36 α66 α69

α∗
39 α∗

69 α99

+


K33 (∂t,ν) K36 (∂t,ν) K39 (∂t,ν)

K63 (∂t,ν) K66 (∂t,ν) K69 (∂t,ν)

K93 (∂t,ν) K96 (∂t,ν) K99 (∂t,ν)

 (5.2)

derived from the material relation blocks M0 and M1 (∂t,ν) as defined in (4.53) and

(4.57), respectively. Our investigation will be characterised by the consideration of

different cases corresponding to different patterns of choice in the operator coefficients

of (5.2). Each pattern of choice will allow us to recover a different set and arrangement

of boundary conditions for our model. These are catalogued below. We will not entirely

reinvent our general well-posedness result Theorem 4.4.6 for each case. Instead we will

offer an alternative proof to the auxiliary result Lemma 4.4.4 which was used in our

solution theory to address the accretivity of the sub-block operator

ν M̃0,66 +Re M̃1,66 (z)

= ν


α33 α36 α39

α∗
36 α66 α69

α∗
39 α∗

69 α99

+Re


K33 (z) K36 (z) K39 (z)

K63 (z) K66 (z) K69 (z)

K93 (z) K96 (z) K99 (z)

 .
(5.3)

Each of the cases catalogued here can be thought of as a kind of corollary to our main

solution theory. However we have endeavoured to provide an alternative direct proof

to Lemma 4.4.4 for each case with the ends of variety and accessibility in mind.

Furthermore, we close this chapter with the presentation and consideration of an

example of particular interest. With this example we realise one of the aims of this

thesis. Namely, to further extend the piezo-electromagnetic impedance boundary con-

ditions originally considered (in terms of classical traces) in [AN11, Section 1]. These we

recalled earlier in (1.2). The basis for our own extension is provided by that presented

in [Pic17, Subsection 4.3.1] wherein the boundary conditions (1.2) were translated to

the setting of abstract boundary data spaces. The focus of the extension presented here
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is to account for the influence of a high-temperature regime. We begin by establishing

some additional notation.

5.1 Additional Preliminaries

Recall from (4.43) that our full thermo-piezo-electromagnetic model incorporating

boundary dynamics is posed on the Hilbert space

H =L2 (Ω)
3 ⊕ L2 (Ω)

3×3
sym ⊕ BD(Grad)⊕

L2 (Ω)
3 ⊕ L2 (Ω)

3 ⊕ BD(curl)⊕

L2 (Ω)⊕ L2 (Ω)
3 ⊕ BD(grad) .

(5.4)

In what follows it will be convenient to specify the subspace of H upon which the

systems boundary dynamics are formulated. As such, we define

HBD := BD (Grad)⊕ BD(curl)⊕ BD(grad) (5.5)

as the direct sum of the three auxiliary (abstract boundary data) Hilbert spaces. Re-

call sub-block operator equation (5.1). Each successive row in (5.1) corresponds to the

respective boundary equation for the piezo, electromagnetic and thermal aspects of the

system, with each governing the boundary dynamics for that part of the model. Differ-

ent choices of the operator coefficients in (5.2) will allow us to recover correspondingly

different boundary dynamics. To that purpose, we introduce some notation which will

help us to more readily recover such varying boundary conditions. For i ∈ {3, 6, 9} we

consider a general boundary equation of the form

(
∂t,να̃3i +Ki3 (∂t,ν)

)
τT + (∂t,να̃6i +Ki6 (∂t,ν)) τH + (∂t,ναi9 +Ki9 (∂t,ν)) τq + ι̃∗i = f

(5.6)
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where f is the given right-hand side and we specify

α̃3i =


α33 for i = 3,

α∗
36 for i = 6,

α∗
39 for i = 9,

α̃6i =


α36 for i = 3,

α66 for i = 6,

α∗
69 for i = 9,

ι̃∗i =


ι∗Gradv for i = 3,

ι∗curlE for i = 6,

ι∗grad
(
Θ−1

0 θ
)

for i = 9.

Notice that when i = 3 in (5.6) we obtain the boundary equation relating to the

equation of elasticity (c.f. (4.45)). Similarly, taking i = 6 or i = 9 in (5.6) yields the

boundary equations relating to Maxwell’s equations (c.f. (4.46)) or the heat equation

(c.f. (4.47)), respectively. By definition it is clear that our general boundary equation,

(5.6), is formulated on HBD.

Finally, we recall the next result (c.f. [STW22, Proposition 7.1.4]) which provides

us with a useful characterisation for accretivity (c.f. Remark 2.4.5) which we will use

frequently in what follows.

Proposition 5.1.1. Let H be a Hilbert space and N0, N1 ∈ L(H) with N0 selfadjoint.

Assume that there exist c0, c1 ∈ R>0 such that ⟨x,N0x⟩ ≥ c0∥x∥2 for all x ∈ ran (N0)

and that Re ⟨y,N1y⟩ ≥ c1∥y∥2 for all y ∈ ker (N0). Then, for all 0 < c
′
1 < c1 there

exists ν0 > 0 such that for all ν ≥ ν0 we have νN0 +ReN1 ≥ c
′
1.

5.2 Robin, Dirichlet and Neumann Boundary Behaviour

In this section we consider the problem of modelling elementary boundary dynamics.

By elementary, we refer to those boundary conditions which are rudimentary in the

common mathematical sense. In particular, we will consider how Robin-type boundary

conditions can be recovered. We will also look at the “problem” of accounting for

Dirichlet and Neumann boundary conditions within our extended system.

5.2.1 Recovering Robin Boundary Conditions

We claim that Robin-type boundary conditions are the most rudimentary type of

boundary behaviour which can be accounted for by our extended system. They are

rudimentary in that they are the mathematically simplest form of boundary condition
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that can be recovered directly from within our model by an elementary pattern of

choice in the boundary coefficients of (5.2). We now demonstrate how straightforward

this pattern of choice is, as well as how it can be applied to recover a Robin boundary

condition from the general boundary equation (5.6).

We first consider the problem of recovering a Robin-type boundary condition for

the thermal part of our extended system. As we will make frequent use of them from

now on, we invite the reader to recall the inherent boundary conditions as presented

in (4.45), (4.46) and (4.47). Fix i = 9 in (5.6) and set the given right-hand side and

all remaining operator coefficients from M̃0,66 and M̃1,66 (∂t,ν) equal to zero save for

K99 (∂t,ν) = 1. This results in the greatly simplified boundary equation

τq + ι∗grad
(
Θ−1

0 θ
)
= 0 ⇐⇒ ι∗grad

(
Θ−1

0 θ
)
= −τq. (5.7)

Whilst the equivalent reformulation in the latter part of (5.7) might seem redundant,

it allows us to highlight an important observation. On account of the action of ι∗grad

as orthogonal projector on BD(grad) we can identify ι∗grad(Θ
−1
0 θ) as the value of the

relative temperature on the boundary. At the same time τq can be thought of as

a dummy variable in BD(grad) ⊆ H1(Ω). As such, (5.7) can be understood as the

specification of the value of Θ−1
0 θ on the boundary as −τq. In other words is −τq the

Dirichlet boundary value of Θ−1
0 θ. We then substitute (5.7) into the inherent boundary

condition for the heat equation, (4.47), and obtain the boundary condition

ι∗divq − gradBD

(
ι∗grad

(
Θ−1

0 θ
))

= 0. (5.8)

This is a Robin boundary condition. To see this note firstly, with a perspective entirely

analogous to that above, that ι∗divq is the Dirichlet boundary term of the heat flux

q ∈ H(div,Ω). Secondly by Proposition 3.2.5 we have gradBD(ι
∗
grad(Θ

−1
0 θ)) ∈ BD(div),

which can be identified as the Neumann boundary term.

Indeed, there is nothing stopping us from applying an analogous pattern of choice

to both the piezo and electromagnetic boundary equations to recover Robin boundary

conditions there also. Fix i = 3 in (5.6) and set the right-hand side and all opera-
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tor coefficients equal to zero except for K33 (∂t,ν) = 1. This results in the simplified

boundary equation

τT + ι∗Gradv = 0 (5.9)

which yields the Robin boundary condition

ι∗DivT +GradBD (ι∗Gradv) = 0 (5.10)

when substituted into the corresponding inherent boundary condition, (4.45). Similarly,

fixing i = 6 in (5.6) and applying an analogous pattern of choice reduces the general

boundary equation to

τH + ι∗curlE = 0. (5.11)

When (5.11) is substituted into the matching inherent boundary condition, (4.46), we

obtain

ι∗curlH − curlBD (ι∗curlE) = 0 (5.12)

as the corresponding Robin boundary condition.

Remark 5.2.1. (i) We emphasise the dichotomy between the boundary equation as

it appears encoded in the block operator system and the corresponding Robin

boundary condition. The boundary equation (any of (5.7), (5.9) or (5.11))

are what we recover directly from our extended model for thermo-piezo-electro-

magnetism. The presence of the inherent boundary condition (any of (4.47),

(4.45) and (4.46)) allows us to recover the corresponding Robin boundary con-

dition via substitution, even though the Robin boundary condition itself (any of

(5.8), (5.10) or (5.12)) is not what appears directly in our extended system. The

correspondence between the two however is unambiguous.

(ii) The unitary property of the restricted spatial operators (recall Proposition 3.2.5)

involved in the formulation of the inherent boundary conditions means that each

of the above Robin boundary conditions can be viewed from another (unitarily

equivalent) perspective. We show this for the Robin boundary condition for

the piezo aspect of the system. Notice that (5.10) is posed in BD (Div). After
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applying Grad∗BD = DivBD to (5.10) one instead (and equivalently) considers the

Robin boundary condition

Div ι∗DivT + ι∗Gradv = 0 (5.13)

framed now in BD (Grad). Likewise, the above Robin boundary conditions for

both the thermal and electromagnetic parts can instead also be considered equiv-

alently as

div ι∗divT − ι∗gradv = 0 (5.14)

and

− curlBD ι
∗
curlH + ι∗curlE = 0, (5.15)

respectively. ▽

5.2.2 Full Robin Boundary Behaviour

In this case we consider the boundary behaviour characterised by Robin boundary

dynamics across all three of the piezo, electromagnetic and thermal components of

the system. Dealing only with Robin-type boundary conditions, this will prove to

be the simplest of all of our cases covered by the model. Applying the pattern of

choice discussed in Subsection 5.2.1 to each of the boundary equations (recall (5.6))

corresponding to the piezo, electromagnetic and thermal parts of the system, we arrive

at the following set of boundary conditions. In the abstract boundary data space

framework, we have

ι∗DivT +GradBD (ι∗Gradv) = 0, (5.16)

ι∗curlH − curlBD (ι∗curlE) = 0, (5.17)

ι∗divq − gradBD

(
ι∗grad

(
Θ−1

0 θ
))

= 0. (5.18)
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Using the inherent boundary conditions (recall (4.45), (4.46) and (4.47)), we can encode

these boundary conditions as the block operator equation

∂t,ν

0 0 0

0 0 0

0 0 0

+


1 0 0

0 1 0

0 0 1




τT

τH

τq

+


ι∗Gradv

ι∗curlE

ι∗grad
(
Θ−1

0 θ
)
 =


0

0

0

 . (5.19)

The well-posedness of the corresponding thermo-piezo-electromagnetic system under

these boundary dynamics as an evolutionary equation then depends on the accretivity

of the operator

z M̃0,66 + M̃1,66 (z)

= z


0 0 0

0 0 0

0 0 0

+


1 0 0

0 1 0

0 0 1

 .
(5.20)

Even though this material law is clearly positive-definite, we should like to formalise

this fact for our catalogue, and do so with the next result.

Corollary 5.2.2. Let ν ∈ R>0, z ∈ CRe>ν and HBD be as in (5.5). Let M̃0,66 and

M̃1,66 (z) be as in (5.20). Then the operator z M̃0,66 + M̃1,66 (z) is accretive for all

ν ∈ R>0 sufficiently large.

Proof. The assertion follows immediately since

Re


1 0 0

0 1 0

0 0 1

 =


1BD(Grad) 0 0

0 1BD(curl) 0

0 0 1BD(grad)

 (5.21)

is the identity operator on HBD and is positive-definite by definition.

Remark 5.2.3. (i) Assuming it exists, denote by n the outward unit normal. In the
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setting of classical traces the above boundary conditions correspond formally to

T · n+ v = 0 on ∂Ω, (5.22)

Ht − n× Et = 0 on ∂Ω, (5.23)

q · n−Θ−1
0 θ = 0 on ∂Ω. (5.24)

In this classical perspective, both boundary equations (5.22) and (5.24) explicitly

involve (versions of) the Neumann trace. This is because both of the operators

gradBD and GradBD arising in the corresponding abstract boundary data space

formulation are unitary. To see how this arises for the thermal Robin boundary

condition, recall the abstract boundary data space formulation and compute

ι∗divq − gradBD

(
ι∗grad

(
Θ−1

0 θ
))

= 0 ⇐⇒ divBD ι
∗
divq − ι∗grad

(
Θ−1

0 θ
)
= 0. (5.25)

The latter equation here indeed formally corresponds to (5.24) in the classical

setting. An analogous computation holds for identifying (5.22) from (5.16).

(ii) In this case, were we to additionally allow for the inclusion of the diagonal operator

coefficients α33, α66 and α99 in the sub-block operator equation (5.1) we would

obtain∂t,ν

α33 0 0

0 α66 0

0 0 α99

+


1 0 0

0 1 0

0 0 1




τT

τH

τq

+


ι∗Gradv

ι∗curlE

ι∗grad
(
Θ−1

0 θ
)
 =


0

0

0

 .

(5.26)

The corresponding boundary equations would then read

(∂t,να33 + 1)τq + ι∗grad
(
Θ−1

0 θ
)
= 0,

(∂t,να66 + 1)τT + ι∗Gradv = 0,

(∂t,να99 + 1)τH + ι∗curlE = 0.

(5.27)

It is obvious (c.f. Lemma 4.4.4) that the corresponding system is well-posed as an
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evolutionary equation when for i ∈ {3, 6, 9} one assumes ναii+1 ≫ 0 for ν ∈ R>0

sufficiently large. ▽

5.2.3 Homogeneous Dirichlet and Neumann Boundary Conditions

As was indicated in Item (ii) and Item (iii) from Remark 2.3.4, abstract homogeneous

Dirichlet and Neumann boundary conditions are usually accommodated for by specific

assumptions on the domains of the spatial operators in use. Indeed it is these assump-

tions which yield the skew-selfadjointness of the spatial operator (4.24) in Section 4.2

which is required to apply Picard’s Theorem.

Unlike the Robin-type boundary conditions considered above, homogeneous Dirich-

let and Neumann boundary conditions cannot be recovered directly from our extended

system for thermo-piezo-electromagnetism. We have already seen above how Robin

boundary conditions could be recovered directly from the sub-block operator (5.2) by

a specific pattern of choice in its operator coefficients. A formal modification of the

block structure of the extended model is however required in order to capture any ho-

mogeneous Dirichlet or Neumann boundary behaviour. We elucidate this point with

an example.

Example 5.2.1. Recall the extended system proposed in Chapter 4. However, instead

of modelling arbitrary inhomogeneous boundary dynamics for the elastic part of the

system, consider homogeneous Dirichlet boundary data. This is usually modelled by

assuming that u ∈ dom (Grad0) (c.f. Item (ii) of Remark 2.3.4). Modelling this bound-

ary behaviour amounts simply to replacing the piezo block in our extended system

(4.42) with the corresponding block already employed in the underlying system (4.37)
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(c.f. Section 4.2). Doing so we obtain the evolutionary equation

(∂t,νM0 +M1 (∂t,ν) +A)



v

T

EH
τH


Θ−1

0 θ q

τq





=



F0

0

F2F3

f3


F4 0

f5





∈ L2,ν (R;H) (5.28)

posed now on the Hilbert space

H =L2 (Ω)
3 ⊕ L2 (Ω)

3×3
sym ⊕

L2 (Ω)
3 ⊕ L2 (Ω)

3 ⊕ BD(curl)⊕

L2 (Ω)⊕ L2 (Ω)
3 ⊕ BD(grad) ,

(5.29)

with the appropriately amended constituent block operators to be specified next. Notice

how dispensing with the auxiliary boundary data space for the elastic part of our system

precipitates a drop in the dimension of the extended system by one. In this case, we

have

M0 =

ρ∗ 0 0
(
0 0

)
0

(
0 0

)
0 C−1 0

(
C−1e 0

)
C−1λΘ0

(
0 0

)
0 0 ε+ e∗C−1e

(
0 0

)
pΘ0 + e∗C−1λΘ0

(
0 0

)0

0

 e∗C−1

0

 0

0

 M0,66

0

0

 M0,69

0 Θ0λ
∗C−1 Θ0p

∗ +Θ0λ
∗C−1e

(
0 0

)
γ0 +Θ0λ

∗C−1λΘ0

(
0 0

)0

0

 0

0

 0

0

 M0,69
∗

0

0

 M0,99



(5.30)
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as well as

M1 (∂t,ν) =



0 0 0
(
0 0

)
0

(
0 0

)
0 0 0

(
0 0

)
0

(
0 0

)
0 0 σ

(
0 0

)
0

(
0 0

)
0

0

 0

0

 0

0

 M1,66 (∂t,ν)

0

0

 M1,69 (∂t,ν)

0 0 0
(
0 0

)
0

(
0 0

)
0

0

 0

0

 0

0

 M1,96 (∂t,ν)

0

0

 M1,99 (∂t,ν)



(5.31)

and

A =



0 −Div 0
(
0 0

)
0

(
0 0

)
−Grad0 0 0

(
0 0

)
0

(
0 0

)
0 0 0 −

curl

ι∗curl

∗

0
(
0 0

)
0

0

 0

0

 curl

ι∗curl

 0 0

0 0

 0

0

 0 0

0 0


0 0 0

(
0 0

)
0 −

grad

ι∗grad

∗

0

0

 0

0

 0

0

 0 0

0 0

 grad

ι∗grad

 0 0

0 0





. (5.32)

Of course, it is not hard to show that this amended system is also well-posed as an

evolutionary equation. △

Remark 5.2.4. From our view the need to formally modify the block structure in order to

accommodate for such boundary conditions is no real shortcoming. Indeed, the task of

modifying the model in this way is an unlaborious task. We are much more concerned

about the potential provision afforded by the model to cater to scenarios involving

much more complicated boundary dynamics. It is also worth bearing in mind that,
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within the realm of evolutionary equations, both the consideration and implementation

of homogeneous Dirichlet and Neumann boundary conditions are already very well-

known. Indeed, consider any of the examples presented in [STW22, Chapters 6, 7]. ▽

5.3 Mixed Boundary Behaviour I

In this case we consider the first of two situations concerning mixed-type boundary

behaviour. This particular scenario is characterised by non-standard inhomogeneous

boundary behaviour for one part of the system, and Robin boundary dynamics for

the remaining two parts. This first instance of mixed boundary behaviour consists of

three subcases, with each corresponding to a different arrangement of the aforemen-

tioned boundary dynamics across the piezo, electromagnetic and thermal components

of the system. With the difference across each subcase being (mathematically speak-

ing) purely symbolic, it suffices to prove that the real-part condition holds for any one

of the three subcases without the loss of any generality.

5.3.1 Subcase (i)

This subcase comprises non-standard inhomogeneous boundary behaviour for the piezo

part of the system, and Robin boundary behaviour for the remaining electromagnetic

and thermal parts. Allowing the operator coefficients in the piezo boundary equation

(c.f. (5.6)) to be arbitrary, and applying the pattern of choice discussed in Subsec-

tion 5.2.1 to the electromagnetic and thermal boundary equations, we arrive at the

following set of boundary conditions. In the abstract boundary data space setting we

have

(∂t,να33 +K33 (∂t,ν))DivBD ι
∗
DivT +K36 (∂t,ν) curlBD ι

∗
curlH

−K39 (∂t,ν) divBD ι
∗
divq + ι∗Gradv = f1,

(5.33)

curlBD ι
∗
curlH + ι∗curlE = 0, (5.34)

−divBD ι
∗
divq + ι∗grad

(
Θ−1

0 θ
)
= 0. (5.35)

101



With the use of the inherent boundary conditions (recall (4.45), (4.46) and (4.47)),

these boundary conditions can be encoded as the block operator equation

∂t,ν

α33 0 0

0 0 0

0 0 0

+


K33 (∂t,ν) K36 (∂t,ν) K39 (∂t,ν)

0 1 0

0 0 1




τT

τH

τq

+

+


ι∗Gradv

ι∗curlE

ι∗grad
(
Θ−1

0 θ
)
 =


f1

0

0

 .

(5.36)

Evolutionary well-posedness of the corresponding thermo-piezo-electromagnetic system

under these boundary dynamics depends only on the positive-definiteness of the oper-

ator

z M̃0,66 + M̃1,66 (z)

= z


α33 0 0

0 0 0

0 0 0

+


K33 (z) K36 (z) K39 (z)

0 1 0

0 0 1

 (5.37)

and is established in the next result.

Corollary 5.3.1. Let ν ∈ R>0, z ∈ CRe>ν , and HBD be as in (5.5). Let M̃0,66 and

M̃1,66 (z) be as in (5.37). Assume there exists c33 ∈ R>0 such that α33 ≥ c33. Then the

operator z M̃0,66 + M̃1,66 (z) is accretive for all ν ∈ R>0 sufficiently large.

Proof. The assertion will follow from applying Proposition 5.1.1 to the material law

given by

M(z) := M̃0,66 + z−1M̃1,66 (z) (5.38)

which will allow us to establish the positive-definiteness of zM(z) uniformly in z ∈

CRe≥ν for large enough ν ∈ R>0. In the situation of Proposition 5.1.1 we have N0 =

M̃0,66 and N1 = M̃1,66 (z). We first show that the restriction of M̃0,66 to its range is

positive-definite. This restriction will be realised by the application of operators of the
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form indicated in Lemma 3.2.1. To that end we introduce the operator

ι
ran

(
M̃0,66

) : ran
(
M̃0,66

)
→ HBD

x1 7→


x1

0

0


(5.39)

which has the block operator representation

ι
ran

(
M̃0,66

) =


1BD(Grad)

0

0

 . (5.40)

Its adjoint is the operator with the block operator representation

ι∗
ran

(
M̃0,66

) =
(
1BD(Grad) 0 0

)
. (5.41)

The restriction of M̃0,66 to ran
(
M̃0,66

)
is then realised as

ι∗
ran

(
M̃0,66

) M̃0,66 ιran
(
M̃0,66

) = α33. (5.42)

For x ∈ ran
(
M̃0,66

)
we then compute

〈
x, ι∗

ker
(
M̃0,66

) M̃0,66 ιker
(
M̃0,66

)x
〉

= ⟨x, α33x⟩ ≥ c33∥x∥2, (5.43)

where we have used our statement assumption. Thus M̃0,66 is positive-definite on

ran
(
M̃0,66

)
. Next we need to show that the restriction of M̃1,66 (z) to ker

(
M̃0,66

)
is

also positive-definite. To that end we compute

Re


K33 (z) K36 (z) K39 (z)

0 1 0

0 0 1

 =


ReK33 (z)

1
2K36 (z)

1
2K39 (z)

1
2K36 (z)

∗ 1 0

1
2K39 (z)

∗ 0 1

 . (5.44)

103



Just as we have done above, in order to realise the specific restriction of this operator

we introduce

ι
ker

(
M̃0,66

) =


0 0

1BD(curl) 0

0 1BD(grad)

 : ker
(
M̃0,66

)
→ HBD

y2
y3

 7→


0

y2

y3


(5.45)

together with its adjoint

ι∗
ker

(
M̃0,66

) =

0 1BD(curl) 0

0 0 1BD(grad)

 . (5.46)

The restriction of M̃1,66 (z) to ker
(
M̃0,66

)
is then realised as the identity operator

ι∗
ker

(
M̃0,66

) M̃1,66 (z) ιker
(
M̃0,66

) =

1BD(curl) 0

0 1BD(grad)

 (5.47)

which is positive-definite by definition, with a bound provided by the positive unit.

By Proposition 5.1.1 it follows that for all choices of the scalar c
′
1 ∈ (0, 1) there exists

ν0 ∈ R>0 such that for all ν ≥ ν0 the operator zM(z) is accretive uniformly in z ∈

CRe≥ν .

Remark 5.3.2. Assuming it exists, denote by n the outward unit normal. The above

boundary conditions would correspond to

(∂t,να33 +K33 (∂t,ν)) (T · n) +K36 (∂t,ν) (n×Ht)

−K39 (∂t,ν) (q · n) + v = f1 on ∂Ω,
(5.48)

(n×Ht) + Et = 0 on ∂Ω, (5.49)

− (q · n) + Θ−1
0 θ = 0 on ∂Ω (5.50)
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in the setting of classical traces. ▽

As indicated and explained in the introduction to this section, the remaining two

subcases for our first instance of mixed boundary behaviour are detailed without proof.

Indeed, one can work in a manner analogous to that employed in the proof of Corol-

lary 5.3.1.

5.3.2 Subcase (ii)

The second subcase consists of non-standard inhomogeneous boundary behaviour for

the electromagnetic part of the system, as well as Robin boundary behaviour for the re-

maining piezo and thermal parts. A completely analogous pattern of choice of operator

coefficients in the boundary equations yields the abstract boundary conditions

DivBD ι
∗
DivT + ι∗Gradv = 0, (5.51)

K63 (∂t,ν)DivBD ι
∗
DivT + (∂t,να66 +K66 (∂t,ν)) curlBD ι

∗
curlH

+K69 (∂t,ν) divBD ι
∗
divq + ι∗curlE = f3,

(5.52)

−divBD ι
∗
divq + ι∗grad

(
Θ−1

0 θ
)
= 0 (5.53)

which we encode as the block operator equation

∂t,ν

0 0 0

0 α66 0

0 0 0

+


1 0 0

K63 (∂t,ν) K66 (∂t,ν) K69 (∂t,ν)

0 0 1




τT

τH

τq

+

+


ι∗Gradv

ι∗curlE

ι∗grad
(
Θ−1

0 θ
)
 =


0

f3

0

 .

(5.54)
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Evolutionary well-posedness of the matching thermo-piezo-electromagnetic system is

determined by the accretivity of the block operator

z M̃0,66 + M̃1,66 (z)

= z


0 0 0

0 α66 0

0 0 0

+


1 0 0

K63 (z) K66 (z) K69 (z)

0 0 1

 (5.55)

and is encapsulated by the next result.

Corollary 5.3.3. Let ν ∈ R>0, z ∈ CRe>ν , and HBD be as in (5.5). Let M̃0,66 and

M̃1,66 (z) be as in (5.55). Assume there exists c66 ∈ R>0 such that α66 ≥ c66. Then the

operator z M̃0,66 + M̃1,66 (z) is accretive for all ν ∈ R>0 sufficiently large.

Remark 5.3.4. Assuming it exists, denote by n the outward unit normal. The set of

boundary conditions regarded in this subcase would correspond to

(T · n) + v = 0 on ∂Ω, (5.56)

K63 (∂t,ν) (T · n) + (∂t,να66 +K66 (∂t,ν)) (n×Ht)

−K69 (∂t,ν) (q · n) + Et = f3 on ∂Ω,
(5.57)

− (q · n) + Θ−1
0 θ = 0 on ∂Ω (5.58)

in the setting of classical traces. ▽

5.3.3 Subcase (iii)

The third and final subcase is composed of non-standard inhomogeneous boundary

dynamics for the thermal part of the system, and Robin boundary conditions for the

outstanding piezo and electromagnetic parts. Again, an analogously systematic choice
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of operator coefficients yields the abstract boundary conditions

DivBD ι
∗
DivT + ι∗Gradv = 0, (5.59)

curlBD ι
∗
curlH + ι∗curlE = 0, (5.60)

K93 (∂t,ν) DivBD ι
∗
DivT +K96 (∂t,ν) curlBD ι

∗
curlH

− (∂t,να99 +K99 (∂t,ν)) divBD ι
∗
divq + ι∗grad

(
Θ−1

0 θ
)
= f5

(5.61)

which we encode as∂t,ν

0 0 0

0 0 0

0 0 α99

+


1 0 0

0 1 0

K93 (∂t,ν) K96 (∂t,ν) K99 (∂t,ν)




τT

τH

τq

+

+


ι∗Gradv

ι∗curlE

ι∗grad
(
Θ−1

0 θ
)
 =


0

0

f5

 .

(5.62)

Like before, the evolutionary well-posedness of the corresponding thermo-piezo-electro-

magnetic system depends on the positive-definiteness of the block operator

z M̃0,66 + M̃1,66 (z)

= z


0 0 0

0 0 0

0 0 α99

+


1 0 0

0 1 0

K93 (z) K96 (z) K99 (z)

 (5.63)

and is formalised in the next result.

Corollary 5.3.5. Let ν ∈ R>0, z ∈ CRe>ν , and HBD be as in (5.5). Let M̃0,66 and

M̃1,66 (z) be as in (5.63). Assume there exists c99 ∈ R>0 such that α99 ≥ c99. Then the

operator z M̃0,66 + M̃1,66 (z) is accretive for all ν ∈ R>0 sufficiently large.

Remark 5.3.6. Assuming it exists, denote by n the outward unit normal. The boundary
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conditions considered above correspond to

(T · n) + v = 0 on ∂Ω, (5.64)

(n×Ht) + Et = 0 on ∂Ω, (5.65)

K93 (∂t,ν) (T · n) +K96 (∂t,ν) (n×Ht)

− (∂t,να99 +K99 (∂t,ν)) (q · n) + Θ−1
0 θ = f5 on ∂Ω

(5.66)

in the classical boundary trace setting. ▽

5.4 Mixed Boundary Behaviour II

In this case we consider the second of our mixed-type boundary behaviour scenarios.

This instance is characterised by non-standard inhomogeneous boundary behaviour for

two parts of the system, and Robin boundary dynamics for the remaining part. As

such, this second instance of mixed boundary behaviour is seemingly more complicated

than that considered previously. Like before however, this instance of mixed boundary

behaviour consists of three subcases. Again, each subcase here corresponds to a different

placement of the distinct boundary dynamics across the piezo, electromagnetic and

thermal aspects of the system. Similarly, and without the loss of any generality, it

suffices to prove accretivity for any one of these three subcases.

5.4.1 Subcase (i)

This subcase comprises non-standard inhomogeneous boundary behaviour for the elec-

tromagnetic and thermal parts of the system, and Robin boundary behaviour for the

remaining piezo part. We proceed in a manner analogous to the preceding mixed

boundary behaviour case. Allowing the operator coefficients in the electromagnetic

and thermal boundary equations (c.f. (5.6)) to be arbitrary, and applying the pattern

of choice discussed in Subsection 5.2.1 to the piezo boundary equation, we arrive at the

following set of boundary conditions. In the setting of abstract boundary data spaces
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we have

DivBD ι
∗
DivT + ι∗Gradv = 0, (5.67)

K63 (∂t,ν)DivBD ι
∗
DivT + (∂t,να66 +K66 (∂t,ν)) curlBD ι

∗
curlH

− (∂t,να69 +K69 (∂t,ν)) divBD ι
∗
divq + ι∗curlE = f3,

(5.68)

K93 (∂t,ν) DivBD ι
∗
DivT + (∂t,να

∗
69 +K96 (∂t,ν)) curlBD ι

∗
curlH

− (∂t,να99 +K99 (∂t,ν)) divBD ι
∗
divq + ι∗grad

(
Θ−1

0 θ
)
= f5.

(5.69)

With the use of the inherent boundary conditions (recall (4.45), (4.46) and (4.47)), the

above boundary conditions can be encoded as the block operator equation

∂t,ν

0 0 0

0 α66 α69

0 α∗
69 α99

+


1 0 0

K63 (∂t,ν) K66 (∂t,ν) K69 (∂t,ν)

K93 (∂t,ν) K96 (∂t,ν) K99 (∂t,ν)




τT

τH

τq

+

+


ι∗Gradv

ι∗curlE

ι∗grad
(
Θ−1

0 θ
)
 =


0

f3

f5

 .

(5.70)

Evolutionary well-posedness of the corresponding thermo-piezo-electromagnetic system

under these mixed-type boundary dynamics depends then only on the accretivity of the

operator

z M̃0,66 + M̃1,66 (z)

= z


0 0 0

0 α66 α69

0 α∗
69 α99

+


1 0 0

K63 (z) K66 (z) K69 (z)

K93 (z) K96 (z) K99 (z)

 (5.71)

which is proven in the next result.

Corollary 5.4.1. Let ν ∈ R>0, z ∈ CRe>ν , and HBD be as in (5.5). Let M̃0,66

and M̃1,66 (z) be as in (5.71). Assume there exist c66, c̃99 ∈ R>0 such that α66 ≥

c66, α99 − α∗
69α

−1
66 α69 ≥ c̃99. Then the operator z M̃0,66 + M̃1,66 (z) is accretive for all
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ν ∈ R>0 sufficiently large.

Proof. The proof follows the same line of reasoning as that of Corollary 5.3.1. Applying

Proposition 5.1.1 to the material law given by

M(z) := M̃0,66 + z−1M̃1,66 (z) (5.72)

will allow us to establish the desired accretivity of zM(z) uniformly in z ∈ CRe≥ν

for large enough ν ∈ R>0. Once again, in the situation of Proposition 5.1.1 we have

N0 = M̃0,66 and N1 = M̃1,66 (z). To that end we first show that the restriction of M̃0,66

to its range is positive-definite. To actualise this restriction we introduce the operator

ι
ran

(
M̃0,66

) =


0 0

1BD(curl) 0

0 1BD(grad)

 : ran
(
M̃0,66

)
→ HBD

x2
x3

 7→


0

x2

x3


(5.73)

together with its adjoint

ι∗
ran

(
M̃0,66

) =

0 1BD(curl) 0

0 0 1BD(grad)

 : HBD → ran
(
M̃0,66

)

y1

y2

y3

 7→

y2
y3

 .

(5.74)

The restriction of M̃0,66 to ran
(
M̃0,66

)
is then realised as

ι∗
ran

(
M̃0,66

) M̃0,66 ιran
(
M̃0,66

) =

α66 α69

α∗
69 α99

 (5.75)
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which, via a rudimentary symmetric Gauss-step, is itself congruent to

α66 0

0 α99 − α∗
69α

−1
66 α69

 . (5.76)

For x ∈ ran
(
M̃0,66

)
we compute

〈
x, ι∗

ran
(
M̃0,66

) M̃0,66 ιran
(
M̃0,66

)x
〉

=

〈x1
x2

 ,

α66 0

0 α99 − α∗
69α

−1
66 α69

x1
x2

〉

=⟨x1, α66x1⟩+ ⟨x2,
(
α99 − α∗

69α
−1
66 α69

)
x2⟩

≥min {c66, c̃99} ∥x∥2,

where we have used both of our statement assumptions. Hence M̃0,66 is positive-

definite on its range as required. Secondly, we show that the restriction of M̃1,66 (z) to

ker
(
M̃0,66

)
is positive-definite. We compute

Re


1 0 0

K63 (z) K66 (z) K69 (z)

K93 (z) K96 (z) K99 (z)

 =


1 1

2K63 (z)
∗ 1

2K93 (z)
∗

1
2K63 (z)

∗ ReK66 (z) κ69 (z)

1
2K93 (z)

∗ κ69 (z)
∗ ReK99 (z)

 (5.77)

where, to the end of simplicity, we have recalled the κij (z) notation for i, j ∈ {3, 6, 9}

from (4.118). The appropriate restriction will be realised after introducing the operator

ι
ker

(
M̃0,66

) : ker
(
M̃0,66

)
→ HBD

y 7→


y

0

0


(5.78)
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which exhibits the block operator representation

ι
ker

(
M̃0,66

) =


1BD(Grad)

0

0

 . (5.79)

Its adjoint is the operator with the block operator representation

ι∗
ker

(
M̃0,66

) =
(
1BD(Grad) 0 0

)
. (5.80)

The restriction of M̃1,66 (z) to ker
(
M̃0,66

)
is then given by

ι∗
ker

(
M̃0,66

) M̃1,66 (z) ιker
(
M̃0,66

) = 1BD(Grad). (5.81)

For y ∈ ker
(
M̃0,66

)
we then compute

〈
y, ι∗

ker
(
M̃0,66

) Re M̃1,66 (z) ιker
(
M̃0,66

)y
〉

= ∥y∥2, (5.82)

so that M̃1,66 (z) is positive-definite on ker
(
M̃0,66

)
with bound provided by the positive

unit. By Proposition 5.1.1 it follows for all choices of c
′
1 ∈ (0, 1) that there exists ν0 ∈

R>0 so that for all ν ≥ ν0 the operator zM(z) is accretive uniformly in z ∈ CRe≥ν .

Remark 5.4.2. Assuming it exists, denote by n the outward unit normal. The boundary

conditions above correspond to

T · n+ v = 0 on ∂Ω, (5.83)

K63 (∂t,ν) (T · n) + (∂t,να66 +K66 (∂t,ν)) (n×Ht)

− (∂t,να69 +K69 (∂t,ν)) (q · n) + Et = f3 on ∂Ω,
(5.84)

K93 (∂t,ν) (T · n) + (∂t,να
∗
69 +K96 (∂t,ν)) (n×Ht)

− (∂t,να99 +K99 (∂t,ν)) (q · n) + Θ−1
0 θ = f5 on ∂Ω

(5.85)

in the setting of classical traces. ▽
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As noted and justified in the introduction to this section, the remaining two subcases

in this scenario of mixed boundary behaviour are provided without proof. The above

proof of Corollary 5.4.1 can be easily amended to fit either of the remaining subcases.

5.4.2 Subcase (ii)

Our second subcase consists of non-standard inhomogeneous boundary behaviour for

the piezo and thermal parts of the system, as well as Robin boundary behaviour for the

remaining electromagnetic part. A completely analogous pattern of choice in the oper-

ator coefficients of the corresponding boundary equations yields the abstract boundary

conditions

(∂t,να33 +K33 (∂t,ν))DivBD ι
∗
DivT +K36 (∂t,ν) curlBD ι

∗
curlH

− (∂t,να39 +K39 (∂t,ν)) divBD ι
∗
divq + ι∗Gradv = f1,

(5.86)

curlBD ι
∗
curlH + ι∗curlE = 0, (5.87)(

∂t,να
∗
39 +K93 (∂t,ν)

)
DivBD ι

∗
DivT +K96 (∂t,ν) curlBD ι

∗
curlH

− (∂t,να99 +K99 (∂t,ν)) divBD ι
∗
divq + ι∗grad

(
Θ−1

0 θ
)
= f5

(5.88)

which are encoded as the block operator equation

∂t,ν

α33 0 α39

0 0 0

α∗
39 0 α99

+


K33 (∂t,ν) K36 (∂t,ν) K39 (∂t,ν)

0 1 0

K93 (∂t,ν) K96 (∂t,ν) K99 (∂t,ν)




τT

τH

τq

+

+


ι∗Gradv

ι∗curlE

ι∗grad
(
Θ−1

0 θ
)
 =


f1

0

f5

 .

(5.89)
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Evolutionary well-posedness of the corresponding thermo-piezo-electromagnetic system

is then determined solely by the positive-definiteness of the block operator

z M̃0,66 + M̃1,66 (z)

= z


α33 0 α39

0 0 0

α∗
39 0 α99

+


K33 (z) K36 (z) K39 (z)

0 1 0

K93 (z) K96 (z) K99 (z)

 (5.90)

and is encapsulated in the next result.

Corollary 5.4.3. Let ν ∈ R>0, z ∈ CRe>ν , and HBD be as in (5.5). Let M̃0,66

and M̃1,66 (z) be as in (5.90). Assume there exist c33, c̃99 ∈ R>0 such that α33 ≥

c33, α99 − α∗
39α

−1
33 α39 ≥ c̃99. Then the operator z M̃0,66 + M̃1,66 (z) is accretive for all

ν ∈ R>0 sufficiently large.

Remark 5.4.4. Assuming it exists, denote by n the outward unit normal. The boundary

dynamics regarded above coincide with the following boundary conditions

(∂t,να33 +K33 (∂t,ν)) (T · n) +K36 (∂t,ν) (n×Ht)

− (∂t,να39 +K39 (∂t,ν)) (q · n) + v = f1 on ∂Ω,
(5.91)

(n×Ht) + Et = 0 on ∂Ω, (5.92)(
∂t,να

∗
39 +K93 (∂t,ν)

)
(T · n) +K96 (∂t,ν) (n×Ht)

− (∂t,να99 +K99 (∂t,ν)) (q · n) + Θ−1
0 θ = f5 on ∂Ω

(5.93)

in the classical setting. ▽

5.4.3 Subcase (iii)

Our final mixed-type subcase is composed of non-standard inhomogeneous boundary

dynamics for the piezo and electromagnetic parts of the system, and Robin boundary

conditions for the outstanding thermal part. Again, an analogously systematic choice
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of operator coefficients yields the following set of abstract boundary conditions

(∂t,να33 +K33 (∂t,ν))DivBD ι
∗
DivT + (∂t,να36 +K36 (∂t,ν)) curlBD ι

∗
curlH

−K39 (∂t,ν) divBD ι
∗
divq + ι∗Gradv = f1,

(5.94)

(∂t,να
∗
36 +K63 (∂t,ν))DivBD ι

∗
DivT + (∂t,να66 +K66 (∂t,ν)) curlBD ι

∗
curlH

−K69 (∂t,ν) divBD ι
∗
divq + ι∗curlE = f3,

(5.95)

−divBD ι
∗
divq + ι∗grad

(
Θ−1

0 θ
)
= 0 (5.96)

which are encoded as∂t,ν

α33 α36 0

α∗
36 α66 0

0 0 0

+


K33 (∂t,ν) K36 (∂t,ν) K39 (∂t,ν)

K63 (∂t,ν) K66 (∂t,ν) K69 (∂t,ν)

0 0 1




τT

τH

τq

+

+


ι∗Gradv

ι∗curlE

ι∗grad
(
Θ−1

0 θ
)
 =


f1

f3

0

 .

(5.97)

Like before, the evolutionary well-posedness of the corresponding thermo-piezo-electro-

magnetic system depends on the accretivity of the block operator

z M̃0,66 + M̃1,66 (z)

= z


α33 α36 0

α∗
36 α66 0

0 0 0

+


K33 (z) K36 (z) K39 (z)

K63 (z) K66 (z) K69 (z)

0 0 1

 (5.98)

and is the focus of the next result.

Corollary 5.4.5. Let ν ∈ R>0, z ∈ CRe>ν , and HBD be as in (5.5). Let M̃0,66

and M̃1,66 (z) be as in (5.98). Assume there exist c33, c̃66 ∈ R>0 such that α33 ≥

c33, α66 − α∗
36α

−1
33 α36 ≥ c̃66. Then the operator z M̃0,66 + M̃1,66 (z) is accretive for all
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ν ∈ R>0 sufficiently large.

Remark 5.4.6. Assuming it exists, denote by n the outward unit normal. The boundary

conditions considered correspond to

(∂t,να33 +K33 (∂t,ν)) (T · n) + (∂t,να36 +K36 (∂t,ν)) (n×Ht)

−K39 (∂t,ν) (q · n) + v = f1 on ∂Ω,
(5.99)

(∂t,να
∗
36 +K63 (∂t,ν)) (T · n) + (∂t,να66 +K66 (∂t,ν)) (n×Ht)

−K69 (∂t,ν) (q · n) + Et = f3 on ∂Ω,
(5.100)

− (q · n) + Θ−1
0 θ = 0 on ∂Ω (5.101)

in the setting of classical boundary traces. ▽

5.5 An Abstract Example

We conclude this chapter with the presentation of an example of particular interest.

Our example consists of a set of abstract boundary conditions which make full use of the

scope for thermo-piezo-electromagnetic boundary data afforded by our solution result,

Theorem 4.4.6. The piezo-electromagnetic impedance boundary conditions originally

considered in [AN11, Section 1] (recalled earlier in (1.2)) form the basis for this example.

With this example we realise one of the aims of this thesis, which is to extend these

boundary conditions to accommodate for the influence of a high-temperature regime.

We begin this section by first recalling the translation of these boundary conditions

to the language and setting of abstract boundary data spaces, as achieved in [Pic17,

Subsection 4.3.1]. In this setting the boundary conditions (1.2) take the form

curlBD ι
∗
curlH − curlBDQ

∗ι∗Gradv + ι∗curlE = 0,

DivBD ι
∗
DivT −Q curlBD ι

∗
curlE +

(
1 + α∂−1

t,ν

)
ι∗Gradv = 0.

(5.102)

In this formulation, the originally given boundary mappings Q̃ and α̃ (c.f. (1.2)) have
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been replaced by the arbitrary (bounded) boundary operators

Q : BD(curl) → BD(Grad) and α : BD(Grad) → BD(Grad),

respectively. In the case of a bounded Lipschitz domain however, the underlying bound-

ary mappings Q̃ and α̃ could be recovered via

Q : BD(curl) → BD(Grad)

H 7→ γ−1Q̃γtH
(5.103)

and

α : BD(Grad) → BD(Grad)

v 7→ γ−1α̃γv,
(5.104)

respectively. This translation will serve as the starting point for the formulation of

our own example. In doing so we will be careful to highlight important observations

underpinning any modelling decisions made. Indeed, we collate these observations in

Remark 5.5.1. We will also indicate the required choices in the operator coefficients

of (5.2) needed to recover the boundary dynamics of this example from within our

extended system. Just as was done with the preceding boundary cases investigation,

we will offer an alternative and direct proof of the required positive-definiteness needed

to establish evolutionary well-posedness of the extended system under these boundary

conditions.

5.5.1 Formulating New Boundary Conditions

Extending the boundary conditions (5.102) in a particular manner will yield a novel

set of impedance boundary conditions suitable for full thermo-piezo-electromagnetic

boundary data. We will achieve this in part by augmenting the boundary conditions

(5.102) with the addition of a new boundary condition for thermal data. In addition, the

existing two equations for piezo and electromagnetic boundary data will be enhanced

by the inclusion of new thermal boundary terms. These points will be explored further
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in Remark 5.5.1 below. Using (5.102) as the starting point, we arrive at the following

set of novel boundary conditions. We present

curlBD ι
∗
curlH − curlBDQ

∗ι∗Gradv + ι∗curlE + βι∗gradΘ
−1
0 θ = 0, (5.105)

DivBD ι
∗
DivT −Q curlBD ι

∗
curlE +

(
1 + α∂−1

t,ν

)
ι∗Gradv +Qβι∗gradΘ

−1
0 θ = 0, (5.106)

−divBD ι
∗
divq − β∗Q∗ι∗Gradv − β∗ι∗curlE + ι∗gradΘ

−1
0 θ = 0, (5.107)

where there has been introduced the arbitrary (bounded) boundary operator

β : BD(grad) → BD(curl).

Like before, this new boundary operator could be traced back to an underlying (bounded

and linear) boundary mapping β̃ : H1/2(∂Ω) → Vγt via

β :


BD(grad) → BD(curl)

u 7→ γ−1
t β̃γu

in the instance of a bounded Lipschitz domain. With the help of the inherent boundary

conditions (recall (4.45), (4.46) and (4.47)) we can encode the new boundary conditions

(5.105) as the block operator equation


τq

τH

τT

+


1 −β∗ −β∗Q∗

β 1 − curlBDQ
∗

Qβ −Q curlBD

(
1 + α∂−1

t,ν

)


ι∗grad

(
Θ−1

0 θ
)

ι∗curlE

ι∗Gradv

 =


0

0

0

 . (5.108)

The next remark is offered to contextualise the modelling decisions behind the formu-

lation of the abstract boundary conditions just presented.

Remark 5.5.1. There are several key observations which justify the proposed extension

of the boundary conditions (5.102). These we now outline.

(i) Firstly, notice that the original piezo and electromagnetic boundary conditions

in (5.102) are posed on BD (Grad) and BD (curl), respectively. Indeed, one can
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see this more clearly upon recalling Proposition 3.2.5 and Lemma 3.2.1, being

careful to note the action of the orthogonal projectors involved. Should one

wish to extend these boundary conditions to account for the role of temperature,

then there needs to be formulated an entirely new equation for boundary data

pertaining to the thermal part of the system. In a manner analogous to the

formulation of the underlying piezo and electromagnetic boundary conditions,

any new thermal equation needs then to be framed within BD (grad). Indeed the

last and entirely new equation in (5.105) is posed there.

(ii) Secondly, notice that each of the original, underlying boundary conditions in

(5.102) involve both of the respective unknowns for the corresponding part of the

system. In particular, the electromagnetic boundary condition explicitly involves

both the electric field, E, and the magnetic field, H, whereas the piezo boundary

condition explicitly involves the stress tensor, T , as well as the introduced un-

known v := ∂tu (c.f. Section 4.2). As such, any new equation for the thermal part

of the system should expressly involve the heat flux, q, and relative temperature,

Θ−1
0 θ, which our new equation does.

(iii) Thirdly and finally, the original boundary conditions (5.102) need to be suit-

ably modified in order to accommodate and couple with the newly implemented

thermal boundary data. Indeed such a coupling already exists in the original

boundary conditions between piezo and electromagnetic boundary data and is

achieved by the action of the underlying boundary operators Q and α. To see

this more clearly, consider the boundary spaces they map between as well as the

action of the orthogonal projectors involved. For our extended set of boundary

conditions, the newly introduced boundary operator β allows us to achieve this

with the relative temperature, Θ−1
0 θ. Indeed, notice how in the first two equa-

tions of (5.105) β translates thermal boundary data to the respective realms of

electromagnetic and piezo boundary data. Although in the latter of these cases

one additionally needs to make use of Q in order to properly realise and justify

the translation. ▽
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For the sake of completeness we would like to indicate how our new boundary

conditions can be recovered from the operator coefficients in the sub-block operator

(5.2). Taking the block operator formulation of our boundary equations (5.108) as our

starting point, we first compute and apply the inverse (the existence of which we later

show in (5.120) with the help of Proposition 4.1.6 for large enough ν ∈ R>0) to instead

equivalently consider


1 −β∗ −β∗Q∗

β 1 − curlBDQ
∗

Qβ −Q curlBD

(
1 + α∂−1

t,ν

)


−1
τT

τH

τq

+


ι∗Gradv

ι∗curlE

ι∗grad
(
Θ−1

0 θ
)
 = 0.

Here, the computed inverse


1 −β∗ −β∗Q∗

β 1 − curlBDQ
∗

Qβ −Q curlBD

(
1 + α∂−1

t,ν

)


−1

=


K99 (∂t,ν) K96 (∂t,ν) K93 (∂t,ν)

K69 (∂t,ν) K66 (∂t,ν) K63 (∂t,ν)

K39 (∂t,ν) K36 (∂t,ν) K33 (∂t,ν)


has for diagonal coefficients

K33 (∂t,ν) =
(
1 +Qβ (Qβ)∗ + α∂−1

t,ν − [Qββ∗ −Q curlBD] (1 + ββ∗)−1

· [β (Qβ)∗ −Q curlBD])
−1
,

(5.109)

K66 (∂t,ν) = (1 + ββ∗)−1 + (1 + ββ∗)−1 [β (Qβ)∗ − curlBDQ
∗]K33 (∂t,ν)

· [Qββ∗ −Q curlBD] (1 + ββ∗)−1 ,
(5.110)

K99 (∂t,ν) = 1 +
[
−β∗ (1 + ββ∗)−1 β +

[
β∗ (1 + ββ∗)−1 [β (Qβ)∗ − curlBDQ

∗]

− (Qβ)∗]K33 (∂t,ν)
[
Qβ − [Qββ∗ −Q curlBD] (1 + ββ∗)−1 β

]]
,

(5.111)
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and for off-diagonal coefficients

K96 (∂t,ν) = −
[[
(Qβ)∗ − β∗ (1 + ββ∗)−1 [β (Qβ)∗ − curlBDQ

∗]− β∗
]

·K33 (∂t,ν) [Qββ
∗ −Q curlBD]] (1 + ββ∗)−1 ,

(5.112)

K69 (∂t,ν) = − (1 + ββ∗)−1 [β − [β (Qβ)∗ − curlBDQ
∗]

·K33 (∂t,ν)
[
Qβ − [Qββ∗ −Q curlBD] (1 + ββ∗)−1 β

]]
,

(5.113)

and

K93 (∂t,ν) = −
[
β∗ (1 + ββ∗)−1 [β (Qβ)∗ − curlBDQ

∗]− (Qβ)∗
]
K33 (∂t,ν) , (5.114)

K39 (∂t,ν) = −K33 (∂t,ν)
[
Qβ − [Qββ∗ −Q curlBD] (1 + ββ∗)−1 β

]
, (5.115)

as well as

K63 (∂t,ν) = − (1 + ββ∗)−1 [β (Qβ)∗ − curlBDQ
∗]K33 (∂t,ν) , (5.116)

K36 (∂t,ν) = −K33 (∂t,ν) [Qββ
∗ −Q curlBD] (1 + ββ∗)−1 , (5.117)

where the skew-symmetry of curlBD (recall Proposition 3.2.5) means that the inverse

is only ever ‘almost’ symmetric. In this example there are only zero coefficients in

the sub-block operator M̃0,66. Hence it can be ignored when addressing the question

of accretivity. With these coefficients computed, the actual form of the material law

operator M (∂t,ν) in this instance can be fully realised.

5.5.2 Evolutionary Well-posedness

The next result summarises the evolutionary well-posedness of our extended thermo-

piezo-electromagnetic system under the newly formulated set of boundary conditions.

Much like in the preceding catalogue of evolutionarily well-posed cases, there is no need

to completely reinvent our main solution result, Theorem 4.4.6. Like before, we simply

provide an alternative proof to the auxiliary result Lemma 4.4.4, which addressed the

accretivity of the sub-block operator governing boundary dynamics. As noted, since

M̃0,66 = 0 we need only concern ourselves with the accretivity of the block operator
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M̃1,66 (z).

Corollary 5.5.2. Let ν ∈ R>0, z ∈ CRe>ν , and HBD be as in (5.5). Then the operator

M̃1,66 (z) =


K33 (z) K36 (z) K39 (z)

K63 (z) K66 (z) K69 (z)

K93 (z) K96 (z) K99 (z)

 (5.118)

is accretive for all ν ∈ R>0 sufficiently large.

Proof. We will use Proposition 4.1.6 to indirectly establish the positive-definiteness of

zM(z) uniformly in z ∈ CRe≥ν for large enough ν ∈ R>0. Here the (simplified) material

law is

M(z) := z−1M̃1,66 (z) . (5.119)

The indirect means employed here is convenient as it allows us to avoid making any

recourse to the cumbersome block operator inverse computed above. For x ∈ BD(Grad)

compute

〈
x, 1 + Re

(
αz−1

)
x
〉
BD(Grad)

= ∥x∥2BD(Grad) +
〈
x,Re

(
αz−1

)
x
〉
BD(Grad)

= ∥x∥2BD(Grad) +Re
〈
x,
(
αz−1

)
x
〉
BD(Grad)

≥ ∥x∥2BD(Grad) − ∥α∥ |z−1|∥x∥2BD(Grad)

≥
(
1− ∥α∥

ν

)
∥x∥2BD(Grad)

which in turn we use to compute

Re


1 −β∗ −β∗Q∗

β 1 − curlBDQ
∗

Qβ −Q curlBD

(
1 + αz−1

)
 =


1 0 0

0 1 0

0 0 Re
(
1 + αz−1

)


≥ min

{
1, 1− ∥α∥

ν

}
= 1− ∥α∥

ν
.

(5.120)
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By Proposition 4.1.6 we can use this bound to estimate the real-part of the inverse,

which is actually just the operator M̃1,66 (z). Indeed

Re


1 −β∗ −β∗Q∗

β 1 − curlBDQ
∗

Qβ −Q curlBD

(
1 + αz−1

)


−1

≥
(
1− ∥α∥

ν

)∥∥∥∥∥∥∥∥∥


1 −β∗ −β∗Q∗

β 1 − curlBDQ
∗

Qβ −Q curlBD

(
1 + αz−1

)

∥∥∥∥∥∥∥∥∥
−2

(5.121)

which yields the desired positive-definiteness.

Remark 5.5.3. (i) Assuming it exists, denote by n the outward unit normal. As

was done in the preceding catalogue of cases, we conclude the consideration of

this example by pointing out that in the classical setting these new boundary

conditions correspond formally to

n×Ht − n× Q̃∗v + Et + β̃
(
Θ−1

0 θ
)
= 0 on ∂Ω,

T · n− Q̃ (n× Et) +
(
1 + α̃∂−1

t,ν

)
v + Q̃β̃

(
Θ−1

0 θ
)
= 0 on ∂Ω,

−q · n+ β̃∗Q̃∗v + β̃∗Et +Θ−1
0 θ = 0 on ∂Ω.

(ii) The same computation of the bound and real-part condition in the proof of Corol-

lary 5.5.2 is retained when a simpler Robin-type boundary condition is considered

instead. Indeed, in this case the corresponding block operator encoding boundary

dynamics reads


τq

τH

τT

+


1 0 0

0 1 − curlBDQ
∗

0 −Q curlBD

(
1 + α∂−1

t,ν

)


ι∗grad

(
Θ−1

0 θ
)

ι∗curlE

ι∗Gradv

 = 0,

for which it is clear that the same real-part calculation holds. As such, the cor-

responding system continues to enjoy evolutionary well-posedness. This example
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falls in particular within the scope of the second instance of mixed boundary

behaviours, as examined in Section 5.4. ▽
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Chapter 6

Conclusion and Future Work

6.1 Summary

As we come to the end of the present work, let us recall what we have achieved. First,

we used the setting provided by the theory of evolutionary equations to formulate and

pose our own extended system for thermo-piezo-electromagnetism. We extended from a

known thermo-piezo-electromagnetic system under homogeneous boundary conditions,

first presented in [MPTW16, Sections 2, 3] (c.f. Section 4.2). Using the tools afforded to

us by abstract boundary data space theory, we encoded boundary dynamics from within

our model system. To this end we followed the methodology of [PSTW16, Sections 1,

2.3.2] and [Pic17, Subsections 4.1, 4.3] (recalled here in Section 3.2 and exhibited in

Section 5.5, respectively). Armed with the workhorse solution theory of evolutionary

equations, Picard’s Theorem (c.f. Theorem 2.4.4), we established the well-posedness of

our extended system in Theorem 4.4.6.

Second, we conducted a systematic investigation into different patterns and ar-

rangements of boundary dynamics across the three physical aspects of our system. The

results were disambiguated according to varying levels of formal complexity, and cat-

alogued in Chapter 5. In Section 5.2 we argued how Robin boundary conditions were

the most rudimentary type of boundary condition catered to by our model. We also

addressed the ‘problem’ of directly recovering elementary homogeneous Dirichlet and

Neumann boundary conditions from within our extended model. However, we did in-
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dicate how they can be recovered by a simple yet formal modification of our system.

Then, in Sections 5.3 and 5.4, we ascertained the different placements of boundary

dynamics which lead to our system being well-posed. The boundary dynamics con-

sidered comprised an arrangement of Robin and general impedance type boundary

conditions. The arrangements regarded were ordered according to subcases, and de-

tailed throughout Subsections 5.3.1 to 5.3.3 and 5.4.1 to 5.4.3. To the ends of variety

and accessibility, we provided an alternative proof of well-posedness for each of the

parent cases (c.f. Corollaries 5.3.1 and 5.4.1).

Thirdly and finally, in Section 5.5 we extended the impedance (Leontovich) bound-

ary conditions first introduced in [AN11, Section 1] and later developed in [Pic17, Sub-

section 4.3.1]. Our particular extension provides an abstraction of these impedance

boundary conditions. This abstraction accounts not only for the classical piezo-electro-

magnetic impedance boundary effect, but also for the influence of heat dynamics at the

boundary. In Subsections 5.5.1 and 5.5.2 we addressed the most abstracted extension

of the underlying boundary conditions. However, in Item (ii) of Remark 5.5.3 we indi-

cated the form of the simplest generalisation of these impedance boundary conditions

to the setting provided by our model.

Our modelling approach deviated from that of the norm. Usually, one models a

phenomenon first before undertaking the corresponding analysis. Nonetheless, our ap-

proach sketched a blueprint for what potential systems might look like, and provided

assumptions for material parameters which will lead immediately to a well-posed sys-

tem.

6.2 Avenues of Future Research

Whilst the boundary conditions formulated in Section 5.5 are mathematically interest-

ing in their own right, we emphasise that they are an abstract example. As was noted

in Remark 5.5.1, the construction of these boundary conditions followed several con-

nected observations on the shape of the underlying piezo-electric impedance boundary

conditions from [AN11, Section 1] and [Pic17, Subsection 4.3.1]. The task of finding a

physically relevant set of boundary conditions, which also fit within the schema afforded
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by our extended model, remains an open topic of research. To the best of the authors

knowledge — and efforts — no comparable boundary conditions which fall within the

scope of the generalised impedance type boundary condition harnessed by our model

prevail in the literature. Should the search for inspiration from physically relevant

applications continue to prove fruitless, then the task will turn to the formulation of

potentially physically relevant boundary conditions. The use of “potentially physically

relevant” is not offered as a euphemism for “abstract”. Rather, it pertains to the

conceptually sensible and physically meaningful formulation of boundary conditions,

despite being done from a hypothetical vantage point. It is the authors expectation

that effective collaboration and standardised nomenclature between applied and pure

schools will bridge the gap, and catalyse such formulations.

Perhaps it goes without saying, but translating our model and its central well-

posedness result, Theorem 4.4.6, from the language of abstract boundary data spaces

to that of classical boundary traces, might help with this endeavour. Providing poten-

tial collaborators hailing from the realms of applied mathematics and engineering with

findings in a common mathematical language could better engender fruitful collabora-

tions. Despite being used effectively to address the well-posedness of a piezo-electric

system with boundary dynamics in [Pic17], it cannot be assumed that abstract bound-

ary trace theory be known by the wider ultrasonics community. Classical boundary

traces, however, are much more widely known. As such, the reformulation of the key

ideas of this thesis in terms of classical traces might abet the search for physically

relevant boundary conditions.

However, as we recalled in the introduction to this thesis, there is a connection

between the use of an abstract boundary data space formulation and piezo-electric

transducers. In [Pic17] the author remarked how the use of abstract boundary traces

covered the modelling of ultrasonic devices with a fractal boundary (c.f. [OMOH08a],

[MW11], [MMO+11], [AM15] and [BAM16]). As is common throughout the modelling

of ultrasonic devices, the systems employed in the papers cited here centre on a piezo-

electric model. Perhaps there is scope then to extend these models to take into account

the influence of a high-temperature regime, and apply the framework established in
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this thesis. Moreover, one could investigate the (potential, if not yet realised) use of

such fractal piezo-electric transducer devices in harsh and corrosive environments. En-

vironments not entirely unlike those of a nuclear or industrial plant, as indicated in the

introduction. Indeed, much of the literature in this realm of application underlines the

need to manufacture ultrasonic transducers which can operate at, and withstand, op-

pressive temperatures (again, see for instance [KMC+99], [KV21], [BPP79], [FWW89],

[SKC07], [OJMS05], [HPH03] and [JLP00]).

It should be noted that the modelling of ultrasonic transducers is but one use case

in the broader area of piezo-electric material modelling. As such, it could prove fruitful

to consider the application of the system proposed in this thesis to areas related to,

but beyond the sole scope of, piezo-electric transducers. Indeed, whilst the modelling

of ultrasonic transducers focuses almost exclusively on their piezo-electric properties,

the modelling of smart materials and composite structures often additionally includes

temperature as standard. Smart materials are structures whose physical boundary

and properties can be altered with changing temperature regimes, electrical input and

physical stresses (c.f. [GT92] and [Sch08]). For instance, [CYO19] models a thermo-

piezoelectric actuator device with an emphasis on the underlying thermo-piezo material

coupling. One can find similar thermo-piezoelectric systems which additionally consider

a mechanical wave (c.f. [KW12] and [LKW+13]). A wealth of related and seemingly

promising applications prevail, and include [KWW12], [SCBCB+13], [MS14], [BGK15]

as well as [KLW15].

Emerging trends in the modelling of piezo-electric and smart materials offer us

promising future candidates for the boundary conditions we seek. However, it may still

prove necessary to formulate theoretical but no less physically sensible and inspired

boundary conditions, which fit within the framework afforded by our extended system of

thermo-piezo-electromagnetism. An endeavour, no doubt, which will require no modest

amount of creativity. And one which will benefit immensely from effective collaboration

between manufacturers, engineers as well as applied and pure mathematicians.
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Nauk SSSR, Ser. Fiz, 8:16–22, 1944.

[LKBP15] Li Liu, Jason Kutarnia, Petra Belady, and Peder C. Pedersen. Obstetric

ultrasound simulator with task-based training and assessment. IEEE

Transactions on Biomedical Engineering, 62(10):2480–2497, 2015.

[LKS08] Tom Lahmer, Barbara Kaltenbacher, and V. Schulz. Optimal measure-

ment selection for piezoelectric material tensor identification. Inverse

Problems in Science and Engineering, 16(3):369–387, 2008.

135



Bibliography

[LKW+13] Chen Liu, Liao-Liang Ke, Yue-Sheng Wang, Jie Yang, and Sritawat

Kitipornchai. Thermo-electro-mechanical vibration of piezoelectric

nanoplates based on the nonlocal theory. Composite Structures, 106:167–

174, 2013.

[LON04] Hassel Ledbetter, Hirotsugu Ogi, and Nobutomo Nakamura. Elastic,

anelastic, piezoelectric coefficients of monocrystal lithium niobate. Me-

chanics of Materials, 36(10):941–947, 2004.

[LR17] Wonseok Lee and Yongrae Roh. Ultrasonic transducers for medical diag-

nostic imaging. Biomedical Engineering Letters, 7(2):91–97, 2017.

[LRL+13] Lam Hong Lee, Rajprasad Rajkumar, Lai Hung Lo, Chin Heng Wan, and

Dino Isa. Oil and gas pipeline failure prediction system using long range

ultrasonic transducers and Euclidean-Support Vector Machines classifica-

tion approach. Expert Systems with Applications, 40(6):1925–1934, 2013.

[Lun10] Jan Lunze. Regelungstechnik 1: Systemtheoretische Grundlagen, Anal-

yse und Entwurf einschleifiger Regelungen. Springer-Lehrbuch. Springer-

Verlag, eighth edition, 2010.

[LY12] Mikhail A. Lyalinov and Zhu N.Y. Yan. Scattering of Wedges and Cones

with Impedance Boundary Conditions. Electromagnetic Waves. Institu-

tion of Engineering and Technology, 2012.

[LZDZ12] Han Wu Liu, Shan Ping Zhan, Yun Hui Du, and Peng Zhang. Study

on pulsed eddy current nondestructive testing technology for pipeline

corrosion defects based on finite element method. Applied Mechanics

and Materials, 120:36–41, 2012.
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