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Notation

a.s. : Almost surely, or with probability one.
A := B : A is defined by B or A is denoted by B.

A(x) ≡ B(x) : A(x) and B(x) are identically equal, i.e. A(x) = B(x) for all x.
∅ : The empty set.
IA : The indicator function of a set A, that is IA(x) = 1 if x ∈ A or

otherwise 0.
σ(C) : The σ-algebra generated by C.
a ∨ b : The maximum of a and b.
a ∧ b : The minimum of a and b.

f : A→ B : The mapping f from A to B.
R+ : The set of all nonnegative real numbers, that is R+ = [0,∞).
Rn : The n-dimensional Euclidean space.
Bn : The Borel σ-algebra on Rn.

Rn×m : The space of real n×m-matrices.
|x| : The Euclidean norm of a vector x.

ẋ(t) : ẋ(t) = dx(t)
dt
.

AT : The transpose of a vector or matrix A.

Vx : Vx = ∇V = (Vx1 , · · · , Vxn) =
(
∂V
∂x1
, · · · , ∂V

∂xn

)
.

Vxx : Vxx = (Vxixj)n×n =
(

∂2V
∂xi∂xj

)
n×n

.

C(D;Rn) : The family of continuous Rn-valued functions defined on D.
Cm(D;Rn) : The family of continuously m-times differentiable Rn-valued

functions defined on D.
C2,1(D × R+;R) : The family of all real-valued functions V (x, t) defined on

D × R+ which are continuously twice differentiable in x ∈ D and
once differentiable in t ∈ R+.

Lp(Ω;Rn) : The family of Rn-valued random variables X with E|X|p <∞.
Lp([a, b];Rn) : The family of Borel measurable functions h : [a, b]→ Rn such that∫ b

a
|h(t)|pdt <∞.

Lp([a, b];Rn) : The family of Rn-valued Ft-adapted processes f(t)a≤t≤b such that∫ b
a
|f(t)|pdt <∞ a.s..

Mp([a, b];Rn) : The family of processes f(t)a≤t≤b in Lp([a, b];Rn) such that

E
∫ b
a
|f(t)|pdt <∞.

Other notation will be explained where it first appears.
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Abstract

This thesis considers the deterministic SIS epidemic model, which has applications to
transmission of real-life diseases, such as pneumococcus, gonorrhea and tuberculosis. En-
vironmental noise can affect the deterministic system significantly. There are various types
of noise which can be incorporated into the deterministic dynamics according to different
situations. The effect of three types of noise on the deterministic SIS epidemic model
have been examined in this thesis, which has not been discussed in previous literature.

Firstly, assuming that there exists environmental noise in the disease transmission
coefficient, we extend the classical SIS epidemic model from a deterministic framework to
a stochastic one by incorporating white noise using the parameter perturbation technique,
and formulate it as a stochastic differential equation (SDE) for the number of infectious
individuals I(t). For the model to make sense, we then prove that this SDE has a unique
global positive solution I(t) and establish conditions for extinction and persistence of I(t)
and compare these with the corresponding conditions for the deterministic SIS epidemic
model. We also discuss perturbation by stochastic noise. In the case of persistence we
show the existence of a stationary distribution and derive expressions for its mean and
variance. Secondly, assuming that the parameters in the SIS epidemic model experience
an abrupt change around the point of threshold value, we incorporate telegraph noise
in the deterministic model. We then establish the explicit solution of the stochastic SIS
epidemic model, which is useful in performing computer simulations. We also obtain the
conditions for extinction and persistence for this model. Afterwards, we take a further
step of incorporating both types of the aforementioned noise in the SIS epidemic model.
We not only show the existence of a unique global positive solution but also examine the
asymptotic properties, including extinction and persistence. The results are illustrated
by computer simulations, including examples based on real life diseases for the first and
second stochastic models. Computer simulations based on the explicit solution and the
Euler–Maruyama scheme are compared for the SIS model with telegraph noise.

Furthermore, statistical inference is always essential in disease analysis. That is the
motivation for us to conduct parameter estimation for the SDE SIS model with white noise
introduced. Three estimation methods, least squares estimation, the pseudo-Maximum
Likelihood Estimation (pseudo-MLE) method and the Bayesian approach are applied to
the SDE SIS model. Our main contribution in least squares estimation and pseudo-MLE
is variance estimation. We obtain not only the point estimators but also the interval
estimators and the joint confidence regions for both estimation techniques. Additionally
we investigate the factors which influence variance in estimation. As for the Bayesian
approach, although strong results have been obtained by using the MCMC technique, we
use a different method where analytic results are obtained without the need to deal with

ix



the significant computational cost. Computer simulations are performed to illustrate
our theory. The three estimation methods are compared both analytically and in the
simulation examples.
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Chapter 1

Introduction and Literature Review

1.1 Epidemic Modelling

Mathematical modelling of infectious diseases is a tool to investigate the mechanisms for
the spread of diseases and to make predictions in order to control an epidemic. The first
such model for an infectious disease was that for smallpox by the well-known mathemati-
cian, Daniel Bernoulli, in 1760 [46]. His calculations from this model showed that the
universal inoculation against smallpox could increase the expectation of life. Later Sir
Ronald Ross studied the spread of malaria and developed the important idea that one
did not need to eradicate all mosquitoes to eliminate the disease. Modern epidemiology
aims to model the spread of a disease and show that if certain conditions are met, then a
disease will become extinct.

Epidemics are commonly modelled by using deterministic compartmental model-
s where the population amongst whom the disease is spreading is divided into several
compartments. The possible compartments are the susceptible compartment S, the ex-
posed compartment E (in which individuals are exposed but not yet infectious), the
infectious compartment I and the removed compartment R (in which individuals have
permanent or temporary immunity). The classical Kermack-McKendrick model [51] is
sometimes used for modelling common childhood diseases where a typical individual s-
tarts off susceptible, at some stage catches the disease and after a short infectious period
becomes permanently immune. This is sometimes called the SIR (susceptible-infected-
removed) model. However some diseases, in particular some sexually transmitted and
bacterial diseases, do not have permanent immunity. For these diseases individuals s-
tart off susceptible, at some stage catch the disease and after a short infectious pe-
riod become susceptible again. There is no protective immunity. For these diseases
SIS (susceptible-infected-susceptible) models are appropriate [47]. Based on the ideas
of these two fundamental compartmental models, more models have been developed to
give a better description for certain diseases. For example, for some diseases such as
scarlet fever [6] and measles [91], individuals experience a latent stage for a period of
time between being exposed to the disease and becoming infectious. The latent period is
neither short nor negligible compared with the infectious period. These diseases can be
modelled by the SEIR (Susceptible-Exposed-Infective-Removed) or the SEIS (Susceptible-
Exposed-Infective-Susceptible) models. For some special cases, where the diseases have no
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recovery, for example HIV [15], SI (Susceptible-Infective) or SEI (Susceptible-Exposed-
Infective) models can be proposed. SIR and SEIR models can be generalised to SIRS
(Susceptible-Infective-Removed-Susceptible) and SEIRS (Susceptible-Exposed-Infective-
Removed-Susceptible) type respectively by including the possibility that immunity is only
temporary and allowing removed individuals to become susceptible again.

During the initial stage of research on these compartmental models, one common
assumption being made to simplify the problem is that the diseases spread in a popu-
lation with constant size. This assumption is reasonable if the disease spreads through
the population in a short duration or if the disease spreads over many years with limited
effects on mortality so births are being approximately balanced by the deaths. However
the assumption fails to hold when there are many disease-related deaths. Examples of
such diseases which substantially reduce the population sizes can be found in [6]. Re-
cently studies of epidemic models that incorporate disease-caused death and varying total
population size have become one of the important areas in epidemic modelling and a lot
of research has been conducted on these topics (see e.g. [16, 22, 41, 42, 43, 88]).

1.2 SIS Epidemic model

The SIS epidemic model is one of the simplest epidemic compartmental models. It can
be applied to many real life diseases which we will explain in detail in this section. In
this thesis, we will concentrate on this simple epidemic model and develop various types
of stochastic version from this deterministic model and then conduct statistical inference
on the SDE SIS model. First we give a definition for the deterministic SIS model [47]. If
S(t) denotes the number of susceptibles and I(t) the number of infecteds at time t, then
the SIS model can be described by the following two differential equations:{

dS(t)
dt

= µN − βS(t)I(t) + γI(t)− µS(t),
dI(t)
dt

= βS(t)I(t)− (µ+ γ)I(t),
(1.2.1)

with initial values S0 + I0 = N . N is the total size of the population amongst whom the
disease is spreading. Here µ is the per capita death rate, and γ is the rate at which infected
individuals become cured, so 1/γ is the average infectious period. The parameter β is the
disease transmission coefficient, so that β = λ/N where λ is the per capita disease contact
rate. The parameter λ is the average number of adequate contacts of an infective per day.
An adequate contact is one which is sufficient for the transmission of an infection if it
is between a susceptible and an infected individual. This is one of the simplest possible
epidemic models and because it is so simple it and its variants are commonly studied. For
example, SIS models are discussed by Brauer et al. [13]. Ianelli, Milner and Pugliese [49]
study age-structured epidemic models, as do Feng, Huang and Castillo-Chavez [28]. Li,
Ma and Zhu [59] analyse backward bifurcation in an SIS epidemic model with vaccination
and Van den Driessche and Watmough [92] study backward bifurcation in an SIS epidemic
model with hysteresis. There are many other examples of SIS epidemic models in the
literature.

In their excellent monograph Hethcote and Yorke [47] outline several mathematical
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models for gonorrhea with increasing levels of complexity. The simplest of these is the
above model (1.2.1) with µ set to zero (i.e. no demography). As S + I = N , the total
population is constant, the two models with and without demographics are equivalent; just
replace γ in the model with no demography by µ+ γ to get the model with demography.

This is a very simple model for gonorrhea. It assumes that the population is homoge-
neous (so is more suitable for a homosexual than a heterosexual population) and mixing
is homogeneous, whereas in practice sexual mixing is extremely heterogeneous. It also
ignores the small but non-zero disease incubation period and assumes that contact rates
remain constant and do not vary seasonally. Lajmanovich and Yorke [56] and Nold [76]
discuss heterogeneously mixing SIS epidemic models for the spread of gonorrhea. The
model (1.2.1) also ignores screening. Hethcote and Yorke define the contact number to
be σ = λ/γ, so in our model σ = βN/(µ+ γ).

If Ĩ = I/N is the fraction of the population infected at time t then they show that in
our notation the solution is

I(t) =


[

β
βN−µ−γ (1− e−(βN−µ−γ)t) + 1

I0
e−(βN−µ−γ)t

]−1

, if βN
µ+γ
6= 1,[

βt+ 1
I0

]−1

, if βN
µ+γ

= 1.
(1.2.2)

It is straightforward to show that σ has the usual interpretation as the basic repro-
duction number R0. This is the expected number of secondary cases produced by a single
newly infected individual entering a disease-free population at equilibrium. In such a
situation each newly infected individual remains infectious for time 1/(µ+ γ) and during
this period infects βN of the N susceptibles present. Hence

R0 = σ =
βN

µ+ γ
. (1.2.3)

From now on we denote this R0 by RD
0 to emphasise that it is R0 for the deterministic

model. It is a straightforward consequence of equations (1.2.2) that [47]:

• If RD
0 ≤ 1, limt→∞ I(t) = 0.

• If RD
0 > 1, limt→∞ I(t) = N

(
1− 1

RD0

)
.

Another disease for which it is possible to use an SIS model is pneumococcal carriage.
Streptococcus pneumoniae (S.pneumoniae) is a bacterium commonly found in the throat
of young children. When an individual carries pneumococcus the infectious carriage nor-
mally lasts around seven weeks [93] and at the end of this carriage period the individual is
susceptible again. R0 for pneumococcal carriage and transmission is 1.8-2.2 [96]. Lipsitch
[61] discusses mathematical models for the transmission of S.pneumoniae with multiple
serotypes and vaccination. Lamb, Greenhalgh and Robertson [57] discuss a mathematical
model for the transmission of a single serotype of S.pneumoniae with vaccination. If we
have only a single serotype and no vaccination then the disease can be modelled by equa-
tions (1.2.1). Other bacterial diseases, for example tuberculosis, can also be modelled by
SIS models [28].
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1.3 Environmental Noise in Epidemic Modelling

We have briefly introduced some deterministic epidemic models and their applications to
certain diseases in the previous two sections. Indeed the foundations of epidemic mod-
elling are largely based upon deterministic equations for the dynamics of populations.
However, deterministic models are only suitable when the numbers of susceptibles and
infectives are both large [7]. Usually disease outbreaks start from only a few cases, and
therefore incorporating stochasticity into the deterministic compartmental models is nec-
essary. There are various types of noise which can be incorporated into the deterministic
dynamics according to different situations. Four types of noise will be discussed in detail
in this section.

1.3.1 Demographic Noise

In recent years event-based (demographic) stochasticity has been used increasingly by
applied researchers. Much research suggests that demographic stochastic effects, due
to the random nature of population events, can lead to significant deviations of disease
spread from the description of the deterministic model (see e.g. [8, 30, 84]).

One common way to model the stochastic population with demographic noise is per-
formed by using stochastic integer-based event-driven simulations. It is widely favored
primely because it describes the supposed behaviour of the real system, where the popula-
tion is composed with an integer number of susceptible or infected individuals. However,
large numbers of replicate simulations are required to establish confidence in results since
the dynamics through only one simulation are not necessarily representative of aver-
age behaviour. The computational cost can be significant. A number of approximation
methods, moment closure techniques [73, 74] and diffusion approximations [54, 55], have
overcome the problems from the requirement of performing large amounts of simulations.
However, such methods are generally more accurate when the population size is large,
where introducing the stochasticity is not so necessary. Due to this disadvantage of a
stochastic event-driven simulation approach, Keeling and Ross [50] presented a Markov
process model for the SIS and SIR models by using the Kolmogorov forward equation to
simultaneously consider the probability of each possible state occurring. This equation
is linear and has a natural matrix formulation and by solving this equation a complete
description of all possible behaviours of the stochastic system can be obtained.

Alternatively, Allen [1] presented a stochastic differential equation (SDE) SIS epidem-
ic model with demographic stochasticity, which is an approximation to its corresponding
continuous time Markov chain model. This is done using the following procedure: The
discrete stochastic SIS model is constructed by determining the possible changes with
their corresponding transition probabilities for a small time interval. Then the expect-
ed change and the covariance matrix for the change are determined. This information
leads to the SDE for the system. Also, McCormack and Allen [71] construct a similar
SDE approximation to an SIS multihost epidemic model and explore the stochastic and
deterministic models numerically. The latter stochastic model is obtained by assuming
that events occurring at a constant rate in the deterministic model occur according to a
Poisson process with the same rate.
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1.3.2 White Noise

White noise is another type of environmental noise which will affect the population sys-
tem significantly (see e.g. [37, 66, 67, 68]). Parameter perturbation is a routine method
to incorporate white noise into a deterministic system. Dalal, Greenhalgh and Mao [21]
have previously used the technique of parameter perturbation to examine the effect of
environmental stochasticity in a model of AIDS and condom use. They found that the
introduction of stochastic noise changes the basic reproduction number of the disease and
can stabilise an otherwise unstable system. Ding, Xu and Hu [23] apply a similar tech-
nique to a simpler model of HIV/AIDS transmission. Other previous work on parameter
perturbation in epidemic models seems to have concentrated on the SIR model. Torna-
tore, Buccellato and Vetro [90] discuss an SDE SIR system with and without delay with
a similar parameter perturbation as we shall discuss here. The system for the SDE SIR
model with no delay is

dS̃(t) = [µ− β̃S̃(t)Ĩ(t)− µS̃(t)]dt− σ̃S̃(t)Ĩ(t)dB(t),

dĨ(t) = [β̃S̃(t)Ĩ(t)− (µ+ γ)Ĩ(t)]dt+ σ̃S̃(t)Ĩ(t)dB(t),

dR̃(t) = [γĨ(t)− µR̃(t)]dt,

(1.3.1)

where B(t) is a Brownian motion. Here S̃, Ĩ and R̃ denote respectively the susceptible,
infected and removed fractions of the population, rather than absolute numbers, so that
β̃ in this model corresponds to βN in (1.2.1). They study the stability of the disease-free
equilibrium (DFE). They find that

0 < β̃ < min

{
γ + µ− σ̃2

2
, 2µ

}
is a sufficient condition for the asymptotic stability of the DFE. Their computer simu-
lations for the SDE SIR model agree well with the analytical results and show that the
introduction of noise into the system raises the threshold to µ+ γ + (σ̃2/2), so if

min

{
µ+ γ − σ̃2

2
, 2µ

}
< β̃ < γ + µ+

σ̃2

2

then the DFE E0 = (S(0), I(0), R(0)) = (1, 0, 0) is stable and the disease does not occur,
whereas if β̃ > γ+µ+(σ̃2/2) then the DFE is unstable. These results are similar to those
of [21]. Chen and Li [19] study an SDE version of the SIR model both with and without
delay, but introduce stochastic noise in a different way than Tornatore, Buccellato and
Vetro [90] do. Lu [63] studies an SIRS model and extends their results by including the
possibility that immunity is only temporary and improving the analytical bound on the
sufficient condition for the stability of the DFE to β < µ+ γ − (σ̃2/2).

For an epidemic model, it is important to include the effect of environmental variation
in the disease transmission coefficient. Whilst several papers study the effect of stochastic
parameter perturbation on SIR and SIRS epidemic models, we are not aware of any
literature addressing this issue in SIS epidemic models. This is the motivation for us to
examine the effect of white noise in the SIS epidemic model in Chapter 3.
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1.3.3 Telegraph Noise

Some parameters in the deterministic population dynamic system may experience an
abrupt change around the point of a threshold value. This abrupt change can be incor-
porated into the system in terms of telegraph noise. Telegraph noise can affect the pop-
ulation system significantly (see e.g. [25, 83]). It is therefore critical to discover whether
the presence of such noise does affect population systems significantly.

For example, consider a predator-prey Lotka-Volterra model{
ẋ1(t) = x1(t)(a1 − b1x2(t)),
ẋ2(t) = x2(t)(−c1 + d1x1(t)),

(1.3.2)

where a1, b1, c1 and d1 are positive numbers. It is well known that the population develops
periodically if there is no influence of environmental noise (see e.g. [35, 86]). However, if
the factor of telegraph noise is taken into account, the system will change significantly.
Telegraph noise can be illustrated as a switching between two or more regimes of environ-
ment, which differ by factors such as nutrition or rainfall (see e.g. [25, 83]). The switching
is memoryless and the waiting time for the next switch has an exponential distribution.
We can hence model the regime switching by a finite-state Markov chain. To make it
simple, assume that there are only two regimes and the system obeys equation (1.3.2)
when it is in regime 1, while it obeys another predator-prey Lotka-Volterra model{

ẋ1(t) = x1(t)(a2 − b2x2(t)),
ẋ2(t) = x2(t)(−c2 + d2x1(t))

(1.3.3)

in regime 2. The switching between these two regimes is governed by a Markov chain
r(t) on the state space S = {1, 2}. The population system under regime switching can
therefore be described by the stochastic model{

ẋ1(t) = x1(t)(ar(t) − br(t)x2(t)),
ẋ2(t) = x2(t)(−cr(t) + dr(t)x1(t)).

(1.3.4)

This system is operated as follows: If r(0) = 1, the system obeys equation (1.3.2) till time
τ1 when the Markov chain jumps to state 2 from state 1; the system will then obey equation
(1.3.3) from time τ1 till time τ2 when the Markov chain jumps to state 1 from state 2.
The system will continue to switch as long as the Markov chain jumps. If r(0) = 2, the
system will switch similarly. In other words, equation (1.3.4) can be regarded as equations
(1.3.2) and (1.3.3) combined, switching from one to the other according to the law of the
Markov chain. Equations (1.3.2) and (1.3.3) are hence called the subsystems of equation
(1.3.4).

Clearly, equations (1.3.2) and (1.3.3) have their unique positive equilibrium states
as (p1, q1) = (c1/d1, a1/b1) and (p2, q2) = (c2/d2, a2/b2), respectively. Recently, Takeuchi
et al. [87] revealed a very interesting and surprising result: If the two equilibrium states
of the subsystems are different, then all positive trajectories of equation (1.3.4) always
exit from any compact set of R2

+ with probability one; on the other hand, if the two
equilibrium states coincide, then the trajectory either leaves from any compact set of R2

+

or converges to the equilibrium state. In practice, the two equilibrium states are usually
different, whence Takeuchi et al. [87] show that equation (1.3.4) is neither permanent nor
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dissipative. This is an important result as it reveals the significant effect of environmental
noise on the population system: both subsystems (1.3.2) and (1.3.3) develop periodically,
but switching between them makes them become neither permanent nor dissipative.

Markovian environments are also very popular in many other fields of biology. As
examples Padilla and Adolph [79] present a mathematical model for predicting the ex-
pected fitness of phenotypically plastic organisms experiencing a variable environment and
discuss the importance of time delays in this model, and Anderson [2] discusses optimal
exploitation strategies for an animal population in a Markovian environment. Additional-
ly Peccoud and Ycart [80] propose a Markovian model for the gene induction process, and
Caswell and Cohen [18] discuss the effects of the spectra of the environmental variation
in the coexistence of metapopulations.

Motivated by Takeuchi et al. [87], we will examine the effect of telegraph noise on
the SIS epidemic model in Chapter 4. To the best knowledge of the author, there is no
existing literature regarding incorporating this type of noise into compartmental epidemic
models.

1.3.4 Combination of White and Telegraph Noise

Some recent research has examined the effect of taking both white and telegraph noise
simultaneously into modelling. For example, Basak, Bisi and Ghosh [9] discussed the
stability of a general linear SDE with Markovian switching and later Mao and Yuan [69]
discussed the general non-linear case. Luo and Mao [64, 65] examined the combined effect
of both types of noise in a more applied ecological model, the predator-prey Lotka-Volterra
model, where the types of white noise introduced are different in the two papers. The
white noise they introduced in [64] is dependent on the population sizes while the white
noise in [65] is not. They showed in [64] that incorporating such two types of noise in the
deterministic system will suppress the explosion of the population which is a desirable
property. They showed in [65] that large white noise will force the population to become
extinct while the population is bounded when the white noise is relatively small. Li
et al. [60] considered the stochastic logistic population model with regime switching and
obtained the sufficient and necessary conditions for stochastic permanence and extinction.

From the literature review, we see that including both types of noise into the de-
terministic system affects the system significantly. However there is no existing research
regarding incorporating these two types of noise into deterministic epidemic models. Our
research in Chapter 5 is aimed at developing a stochastic SIS model with regime switching
and also to examine the new conditions for the permanence and extinction of the system.

1.4 Statistical Inference in Stochastic Compartmen-

tal Epidemic Models

Statistical inference is always essential in disease analysis since the parameter estimates
can be used to characterise the infection process and also provide information on key in-
dicators of disease spread, such as the basic reproduction number, which is often regarded
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as a threshold indicating whether an epidemic is likely to persist or die out. Therefore
providing the model used is sufficiently realistic, estimation of model parameters can help
to inform the disease control policies. In general parameter estimation in stochastic dif-
ferential equations (SDEs) is a non-trivial problem [10, 48]. Many SDEs are non-linear,
making simpler approaches to estimation impossible to implement. Recently, many au-
thors have discussed parameter estimation techniques for stochastic models. For example,
Young [95] reviews parameter estimation methods for continuous time models. Nielsen,
Madsen and Young [75] updates this to include newer methods for discretely observed
SDEs. Timmer [89] discusses the relation between Maximum Likelihood Estimators (M-
LEs) and quasi-MLEs and compares the quasi-MLE approach with the ∆t = δt approach
in simulations. Kristensen, Madsen and Young [53] considers the stochastic ‘grey box’
model and presents the approximate MLE approach based on the normal approxima-
tion and use of the extended Kalman filter and a software package CTSM. Bishwal [10]
discusses the asymptotic properties of MLEs and Bayes estimators of real valued drift
parameters in SDEs.

In Chapter 4, we will apply pseudo-MLE and least squares estimation to the SDE SIS
epidemic model which we will derive in Chapter 3. This SDE is non-linear so applying
either estimation techniques is not a trivial problem. Although the application of these
two estimation techniques to the SDEs have been widely discussed in previous research, as
far as the author knows, variance estimation has not been touched in most of the papers.
In Chapter 4, we will obtain not only the point estimators but also the interval estimators
and also the joint confidence regions for both estimation techniques. Afterwards we will
investigate the factors which influence variance in estimation.

The Bayesian approach has recently been a more popular way to apply statistical
inference to stochastic models since it can include previous information in the estimation
procedure [48]. An advanced computational technique, i.e. the Markov Chain Monte Car-
lo (MCMC) method (see e.g.[32]) has been developed, which enables Bayesian inference
to be applied for a broad spectrum of stochastic models. Although the MCMC method
has been well established in the recent literature, it still needs further development before
it can be routinely applied to the different models, and also the computational cost for the
analysis can be significant. In this paper we apply the Bayesian approach to the stochas-
tic SIS model, where an analytical expression is obtained for the posterior distribution as
well as the Bayesian estimators, so that intensive computation is not needed.

Bayesian inference for stochastic compartmental models using the MCMC method
has been discussed extensively in previous papers. Different MCMC algorithms have been
developed to tackle stochastic models where the noise is modelled in different ways. One
common way to develop the stochastic compartmental model is to represent the transitions
between the classes of the model as stochastic processes, which we have mentioned in
the last section. The choice of these stochastic processes can make the MCMC method
very difficult to apply. Many efforts have been made to design a MCMC algorithm
to apply Bayesian inference to more realistic but more complicated stochastic models.
For example Streftaris and Gibson [85] extend a Markovian SIR model which allows
the infectious period of an individual to follow a Weibull distribution and design an
efficient independence-type Metropolis-Hastings algorithm to obtain parameter estimates
within a Bayesian framework. Furthermore, Boys and Giles [12] extend the Markovian
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SEIR model to let the rate parameter of the exponential distribution for describing the
infectious period be a step function in time and then develop a reversible jump MCMC
methodology to apply Bayesian inference. There is also much more research concerning
how a MCMC algorithm can be developed to enable Bayesian inference for different
stochastic compartmental models (see eg. [45, 77, 78]).

We mentioned in the last section that parameter perturbation is another technique
to introduce stochastic noise. In Chapter 3, we will extend the classical SIS epidem-
ic model to a stochastic version to include the effect of environmental variation in the
disease transmission coefficient. There is no previous literature regarding Bayesian esti-
mation using the MCMC method to this kind of stochastic compartmental model derived
by parameter perturbation. Note that there is existing research dealing with Bayesian
inference for diffusion processes using the MCMC method, among which strong results
have been obtained. Roberts and Stramer [82] develop efficient MCMC algorithms to deal
with the Bayesian inference for non-linear univariate diffusion processes. Later Golightly
and Wilkinson [36] extended the method to tackle multivariate problems. It seems that
the MCMC method is well established for diffusion problems. However the problem we
deal with in this paper is different. In the two papers [36, 82], it was assumed that the
time gap between the two closest observations was too large to be used as a time step
for the Euler method. Therefore m latent time steps were introduced between every pair
of adjacent observations, which made the analytical method very complicated to apply.
For our stochastic epidemic SIS model, we assume that sufficient close observations are
available for the Euler method to be applied to discretise the path of the process, so that
the discretised form of the process has a likelihood that is useable. Therefore we can
proceed to use analytical Bayesian inference in this thesis for the stochastic SIS epidemic
model. Our main contribution in Chapter 5 is to apply Bayesian inference analytically
for a certain type of stochastic compartmental model instead of using a data imputation
method, and this has not been discussed previously.

In summary, in this chapter we have introduced a few compartmental models which
are widely used to model epidemics. The deterministic SIS epidemic model is one of the
simplest possible epidemic models, which has applications to the transmission of real-life
diseases, such as pneumococcus, gonorrhea and tuberculosis. It is important to include
the effect of environmental noise to the SIS epidemic model. We have reviewed four
commonly used types of noise and the effect of these on the deterministic model in this
chapter. We are not aware of any literature incorporating white noise, telegraph noise and
the combination of these two types of noise in the SIS epidemic models. Therefore we are
going to examine the effect of including these three types of noise into the SIS epidemic
model in Chapters 3-5 respectively. Furthermore, statistical inference is always essential
in disease analysis. That is the motivation for us to conduct parameter estimation for our
SDE SIS model with white noise introduced. Estimation methods have been reviewed
in this chapter. Three estimation methods, least squares estimation, the pseudo-MLE
method and the Bayesian approach will be applied to our SDE SIS model in Chapters
6 and 7. These three estimation methods have been widely discussed in the existing
literature. However, our main contribution in least squares estimation and pseudo-MLE
is variance estimation. For the Bayesian approach, although strong results have been
obtained for general SDE problems by using MCMC techniques, we use a different method
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where analytic results will be obtained without the need to deal with the significant
computational cost. In the next chapter we will give some background information about
stochastic calculus which will be very useful for the work we are going to carry out in the
subsequent chapters.
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Chapter 2

Stochastic Calculus

The purpose of this chapter is to give an introduction to the theory of Itô SDEs and SDEs
with Markovian switching. The main topics discussed in this chapter include random
variables, stochastic processes, Brownian motion, stochastic integration, SDEs, SDEs with
Markovian switching and the stability theory. There are many books available on both
theory and application of SDEs [5, 31, 33, 68, 69]. The contents of this chapter are mainly
based on [68] and [69].

2.1 Random Variables

A random variable is a real-valued function defined on the set of outcomes of a random
experiment. Random variables are important in understanding the stochastic theory be-
cause a stochastic integral is a random variable and the solution of a stochastic differential
equation at any fixed time is a random variable as well. In this section, probability space,
random variables and expectation are introduced.

A process that has random outcomes is called a random experiment. The set of all
possible outcomes of a random experiment is called the sample space and is denoted as
Ω. A combination of outcomes, a subset of Ω, is called an event. In general not every
subset of the sample space is an observable or interesting event. Therefore we only group
these observable or interesting events as a family F of subsets of Ω. For the purpose of
probability theory, such a family F should have the following properties:

1. ∅ ∈ F , where ∅ denotes the empty set;

2. A ∈ F ⇒ AC ∈ F , where AC = Ω− A is the complement of A in Ω;

3. {Ai}i≥1 ⊂ F ⇒
⋃∞
i=1Ai ∈ F .

A family F with these three properties is called a σ-algebra. The pair (Ω,F) is called a
measurable space, and the elements of F are called F-measurable sets. If C is a family
of subsets of Ω, then there exists a smallest σ-algebra σ(C) on Ω which contains C. This
σ(C) is called the σ-algebra generated by C. If Ω = Rn and C is the family of all open sets
in Rn, then Bn = σ(C) is called the Borel σ-algebra and the elements of Bn are called the
Borel sets.
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A random function X is a real-valued function that assigns the value X(ω) ∈ R
to each outcome ω ∈ Ω, that is X : Ω → R. The random function X is said to be
F-measurable if

{ω : X(ω) ≤ a} ∈ F for all a ∈ R.

Any F -measurable random function X : Ω → R is called a random variable on (Ω,F).
An Rn-valued function X(ω) = (X1(ω), · · · , Xn(ω))T is said to be F-measurable if all
the elements Xi are F -measurable. Similarly, an n ×m matrix-valued function X(ω) =
(Xij(ω))n×m is said to be F-measurable if all the elements Xij are F -measurable.

The indicator function IA of a set A ⊂ Ω is defined by

IA(ω) =

{
1 for ω ∈ A,
0 for ω 6∈ A.

A probability measure P on a measurable space (Ω,F) is a function P : F → [0, 1]
such that

1. P(Ω) = 1;

2. for any disjoint sequence {Ai}i≥1 ⊂ F (i.e. Ai ∩ Aj = ∅ if i 6= j)

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai).

The triple (Ω,F ,P) is called a probability space.

If (Ω,F ,P) is a probability space, we set

F̄ = {A ⊂ Ω : ∃ B,C ∈ F such that B ⊂ A ⊂ C, P(B) = P(C)}.

Then F̄ is a σ-algebra and is called the completion of F . If F = F̄ , the probability space
(Ω,F ,P) is said to be complete.

Next we indroduce the concept of expectation. Let (Ω,F ,P) be a probability space.
If X is a real-valued random variable and is integrable with respect to the probability
measure P, then the number

EX =

∫
Ω

X(ω)dP(ω)

is called the expectation of X (with respect to P).

For p ∈ (0,∞), let Lp = Lp(Ω;Rn) be the family of Rn-valued random variables X
with E|X|p <∞.

We now give the definition of conditional probability. Let A,B ∈ F with P(B) > 0.
The conditional probability of A under condition B is

P(A|B) =
P(A ∩B)

P(B)
.

We also introduce a more general concept of conditional expectation. Let X ∈ L1(Ω;R).
Let G ⊂ F be a sub-σ-algebra of F so (Ω,G) is a measurable space. In general X is not
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G-measurable. We now seek an integrable G-measurable random variable Y such that it
has the same values as X on average in the sense that

E(IGY ) = E(IGX) i.e.

∫
G

Y (ω)dP(ω) =

∫
G

X(ω)dP(ω) ∀ G ∈ G.

By the Radon-Nikodym theorem, there exists one such Y , almost surely unique. It is
called the conditional expectation of X under the condition G, and we write

Y = E(X|G).

2.2 Stochastic Processes

Let (Ω,F ,P) be a probability space. A filtration is a family {Ft}t≥0 of increasing sub-σ-
algebras of F (i.e. Ft ⊂ Fs ⊂ F for all 0 ≤ t < s <∞). The filtration is said to be right
continuous if Ft =

⋂
s>tFs for all t ≥ 0. When the probability space is complete, the

filtration is said to satisfy the usual conditions if it is right continuous and F0 contains
all P-null sets.

From now on, unless otherwise specified, we let (Ω,F , {Ft}t≥0,P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions.

A stochastic process is a family of Rn-valued random variables {Xt}t∈I with parameter
set (or index set) I and set space Rn. The parameter set I is usually the halfline R+ =
[0,∞), but it may also be an interval [a, b], the nonnegative integers or even subsets of
Rn. Note that for each fixed t ∈ I we have a random variable

Ω 3 ω → Xt(ω) ∈ Rn.

On the other hand, for each fixed ω ∈ Ω we have a function

I 3 t→ Xt(ω) ∈ Rn,

which is called a sample path of the process, and we shall write X.(ω) for the path.
Sometimes we will write X(t, ω) instead of Xt(ω), and the stochastic process may be
regarded as a function of two variables (t, ω) from I ×Ω to Rn. Similarly, one can define
matrix-valued stochastic processes etc. We often write a stochastic process {Xt}t≥0 as
{Xt}, Xt or X(t).

An Rn-valued stochastic process {Xt}t≥0 is said to be continuous (resp. right contin-
uous, left continuous) if for almost all ω ∈ Ω function Xt(ω) is continuous (resp. right
continuous, left continuous) on t ≥ 0. It is said to be integrable if for every t ≥ 0, Xt is an
integrable random variable. It is said to be {Ft}−adapted (or simply, adapted) if for every
t, Xt is Ft-measurable. A real-valued stochastic process {At}t≥0 is called an increasing
process if for almost all ω ∈ Ω, At(ω) is non-negative increasing right continuous on t ≥ 0.

A random variable τ : Ω→ [0,∞] (it may take the value∞) is called an {Ft}-stopping
time (or simply, stopping time) if {ω : τ(ω) ≤ t} ∈ Ft for any t ≥ 0.

We now give the useful definition of a martingale. An Rn-valued {Ft}-adapted inte-
grable process {Mt}t≥0 is called a martingale with respect to {Ft} (or simply, martingale)
if

E(Mt|Fs) = Ms a.s. for all 0 ≤ s < t <∞.
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A stochastic process X = {Xt}t≥0 is called square-integrable if E|Xt|2 <∞ for every
t ≥ 0. IfM = {Mt}t≥0 is a real-valued square-integrable continuous martingale, then there
exists a unique continuous integrable adapted increasing process denoted by {〈M,M〉t}
such that {M2

t − 〈M,M〉t} is a continuous martingale vanishing at t = 0. The process
{〈M,M〉t} is called the quadratic variation of M .

A right continuous adapted process M = {Mt}t≥0 is called a local martingale if
there exists a nondecreasing sequence {τk}k≥1 of stopping times with τk ↑ ∞ a.s. such
that {Mτk∧t −M0}t≥0 is a martingale. While every martingale is a local martingale, the
opposite is not true.

Now we state the strong law of large numbers.

Theorem 2.1 Let M = {Mt}t≥0 be a real-valued continuous local martingale vanishing
at t = 0. Then

lim sup
t→∞

〈M,M〉t
t

<∞ a.s. =⇒ lim
t→∞

Mt

t
= 0 a.s.

2.3 Brownian Motion and the Stochastic Integral

In 1827 the biologist Robert Brown made an observation on pollen grains in water through
a microscope and he noted that the grains moved through the water but the mechanisms
that caused the motion could not be determined. This transport phenomenon is therefore
called Brownian Motion.

In mathematics, Brownian motion is described by the Wiener process which is a
continuous-time stochastic process. The probability distribution of the position of the
particle at time t+ dt, given that its position at time t is p, follows a normal distribution
with mean p + µdt and variance σ2dt, where the parameter µ is the drift velocity and
the parameter σ is the power of the noise. Hence we can see clearly that the process is
Markovian (see section 2.4 below).

Definition 2.2 Let (Ω,F ,P) be a probability space with a filtration {Ft}t≥0. A (stan-
dard) one-dimensional Brownian motion is a real-valued continuous {Ft}-adapted process
{Bt}t≥0 with the following properties:

1. B0 = 0 a.s.;

2. for 0 ≤ s < t < ∞, the increment Bt − Bs is normally distributed with mean zero
and variance t− s;

3. for 0 ≤ s < t <∞, the increment Bt −Bs is independent of Fs.

Some important properties of Brownian motion are summarised below:

1. {−Bt} is a Brownian motion with respect to the same filtration {Ft}.
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2. Let c > 0. Define

Xt =
Bct√
c

for t ≥ 0.

Then {Xt} is a Brownian motion with respect to the filtration {Fct}.

3. {Bt} is a continuous square-integrable martingale and its quadratic variation 〈B,B〉t =
t for all t ≥ 0.

4. The strong law of large numbers states that

lim
t→∞

Bt

t
= 0 a.s..

5. For almost every ω ∈ Ω, the Brownian sample path B.(ω) is nowhere differentiable.

Definition 2.3 An m-dimensional process {Bt = (B1
t , · · · , Bm

t )}t≥0 is called an
m-dimensional Brownian motion if every {Bi

t} is a one-dimensional Brownian motion,
and {B1

t },· · · ,{Bm
t } are independent.

We now define the stochastic integral∫ t

0

f(t)dBs

with respect to an m-dimensional Brownian motion {Bt} for a class of n × m-matrix-
valued stochastic processes {f(t)}. Since for almost all ω ∈ Ω, the Brownian sample
path B.(ω) is nowhere differentiable, the integral cannot be defined in an ordinary way.
However, we can define the integral for a large class of stochastic processes by making use
of the stochastic nature of Brownian motion.

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the
usual conditions. Let B = {Bt}t≥0 be a one-dimensional Brownian motion defined on the
probability space adapted to the filtration.

Definition 2.4 A real-valued stochastic process g = {g(t)}a≤t≤b is called a simple (or
step) process if there exists a partition a = t0 < t1 < · · · < tk = b of [a, b], and bounded
random variables ξi, 0 ≤ i ≤ k − 1 such that ξi is Fti-measurable and

g(t) = ξ0I[t0,t1](t) +
k−1∑
t=1

ξiI(ti,ti+1](t). (2.3.1)

We denote the family of all such processes by M0([a, b];R).

Definition 2.5 For a simple process g with the form of (2.3.1) in M0([a, b];R), define∫ b

a

g(t)dBt =
k−1∑
i=0

ξi(Bti+1
−Bti)

and call it the stochastic integral of g with respect to the Brownian motion {Bt} or the
Itô integral.
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We now extend the integral definition from simple processes to processes inM2([a, b];R).

Definition 2.6 Let f ∈M2([a, b];R). The Itô integral of f with respect to {Bt} is defined
by ∫ b

a

f(t)dBt = lim
k→∞

∫ b

a

gk(t)dBt in L2(Ω,R),

where {gk} is a sequence of simple processes such that

lim
k→∞

E
∫ b

a

|f(t)− gk(t)|2 dt = 0.

Some properties of the stochastic integral are summarised below:

Theorem 2.7 Let f, g ∈M2([a, b];R), and α, β be two real numbers. Then

1.
∫ b
a
f(t)dBt is Fb-measurable;

2. E
∫ b
a
f(t)dBt = 0;

3. E
∣∣∣∫ ba f(t)dBt

∣∣∣2 = E
∫ b
a
|f(t)|2 dt;

4.
∫ b
a
|αf(t) + βg(t)|dBt = α

∫ b
a
f(t)dBt + β

∫ b
a
g(t)dBt.

We now define the Itô formula, which is not only useful in evaluating the Itô integrals
but also plays a key role in stochastic analysis. Let B(t) = (B1(t), ..., Bm(t))T , t ≥ 0 be
an m-dimensional Brownian motion defined on the complete probability space (Ω,F ,P)
adapted to the filtration {Ft}t≥0.

Definition 2.8 An n-dimensional Itô process is an Rn-valued continuous adapted process
x(t) = (x1(t), · · · , xn(t))T on t ≥ 0 of the form

x(t) = x(0) +

∫ t

0

f(s)ds+

∫ t

0

g(s)dB(s),

where f = (f1, · · · , fn)T ∈ L1(R+;Rn) and g = (gij)n×m ∈ L2(R+;Rn×m). Then x(t) has
a stochastic differential dx(t) on t ≥ 0 given by

dx(t) = f(t)dt+ g(t)dB(t).

We now state the multi-dimensional Itô formula.

Theorem 2.9 Let x(t) be an n-dimensional Itô process on t ≥ 0 with the stochastic
differential

dx(t) = f(t)dt+ g(t)dB(t),

where f ∈ L1(R+;Rn) and g ∈ L2(R+;Rn×m). Let V ∈ C2,1(Rn×R+;R). Then V (x(t), t)
is a real-valued Itô process with its stochastic differential given by

dV (x(t), t) =

[
Vt(x(t), t) + Vx(x(t), t)f(t) +

1

2
trace

(
gT (t)Vxx(x(t), t)g(t)

)]
dt

+ Vx(x(t), t)g(t)dB(t) a.s.
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We now state the Gronwall inequality which will be useful in our research.

Theorem 2.10 Let T > 0 and c ≥ 0. Let u(·) be a Borel measurable bounded nonnegative
function on [0,T], and let v(·) be a nonnegative integrable function on [0,T]. If

u(t) ≤ c+

∫ t

0

v(s)u(s)ds for all 0 ≤ t ≤ T,

then

u(t) ≤ c exp

(∫ t

0

v(s)ds

)
for all 0 ≤ t ≤ T.

2.4 Markov Processes and the Generalised Itô For-

mula

In this section we introduce some basic concepts regarding the Markov process. An n-
dimensional Ft-adapted process X = {Xt}t≥0 is called a Markov process if the following
Markov property is satisfied: for all 0 ≤ s ≤ t <∞ and A ∈ B(Rn),

P(X(t) ∈ A|Fs) = P(X(t) ∈ A|X(s)).

Equivalently, for any bounded Borel measurable function ϕ : Rn → R and 0 ≤ s ≤ t <∞,

E(ϕ(X(t))|Fs) = E(ϕ(X(t))|X(s)).

An n-dimensional process {Xt}t≥0 is called a strong Markov process if the following
strong Markov property is satisfied: for any bounded Borel measurable function ϕ : Rn →
R, any finite {Ft}-stopping time τ and t ≥ 0,

E(ϕ(X(t+ τ))|Fτ ) = E(ϕ(X(t+ τ))|X(τ)).

Especially, in the homogeneous case, this becomes

E(φ(X(t+ τ))|Fτ ) = EX(τ)φ(X(t)).

A stochastic process {Xt}t≥0 defined on a probability space (Ω,F ,P), with values in
a countable set Ξ (to be called the state space of the process), is called a continuous-
time Markov chain if for any finite set 0 ≤ t1 < t2 < · · · < tn < tn+1 of ‘times’, and
corresponding set i1, i2, · · · , in−1, i, j of states in Ξ such that P{X(tn) = i,X(tn−1) =
in−1, · · · , X(t1) = i1} > 0, we have

P{X(tn+1) = j|X(tn) = i,X(tn−1) = in−1, · · · , X(t1) = i1} = P{X(tn+1 = j|X(tn) = i}.

If for all s, t such that 0 ≤ s ≤ t < ∞ and all i, j ∈ Ξ the conditional probability
P{X(t) = j|X(s) = i} depends only on t − s, we say that the process X = {X(t)}t≥0 is
homogeneous. In this case, then, P{X(t) = j|X(s) = i} = P{X(t− s) = j|X(0) = i}, and
the function

Pi,j(t) =: P{X(t) = j|X(0) = i}, i, j ∈ Ξ, t ≥ 0,

is called the transition function or transition probability of the process. The function
Pi,j(t) is called standard if limt→0 Pii(t) = 1 for all i ∈ Ξ.
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Theorem 2.11 Let Pi,j(t) be a standard transition function, then γi := limt→0[1−Pii(t)]/t
exists (but may be ∞) for all i ∈ Ξ.

A state i ∈ Ξ is said to be stable if γi <∞.

Theorem 2.12 Let Pi,j(t) be a standard transition function, and let j be a stable state.
Then γij = P ′ij(0) exists and is finite for all i ∈ Ξ.

Let γii = −γi and Γ = (γij)i,j∈Ξ. Γ is called the generator of the Markov chain. If
the state space is finite which we can take to be S = {1, 2, ..., N}, then the process is
called a continuous-time finite Markov chain. From now on, unless otherwise specified,
we assume that all Markov chains are finite and all states are stable. For such a Markov
chain, almost every sample path is a right continuous step function.

Theorem 2.13 Let P (t) = (Pij(t))N×N be the transition probability matrix and Γ =
(γij)N×N be the generator of a finite Markov chain. Then

P (t) = etΓ.

A continuous -time Markov chain X(t) with generator Γ = (γij)N×N can be repre-
sented as a stochastic integral with respect to a Poisson random measure. Let ∆i,j be
consecutive, left closed, right open intervals of the real line each having length γij such
that

∆12 = [0, γ12),

∆13 = [γ12, γ12 + γ13),
...

∆1N =

[
N−1∑
j=2

γ1j,
N∑
j=2

γ1j

)
,

∆21 =

[
N∑
j=2

γ1j,
N∑
j=2

γ1j + γ21

)
,

∆22 =

[
N∑
j=2

γ1j + γ21,

N∑
j=2

γ1j + γ21 + γ23

)
,

...

∆2N =

[
N∑
j=2

γ1j +
N−1∑

j=1,j 6=2

γ2j,
N∑
j=2

γ1j +
N∑

j=1,j 6=2

γ2j

)

and so on. Define a function
h : S× R→ R

by

h(i, y) =

{
j − i if y ∈ ∆ji,

0 otherwise.
(2.4.1)
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Then

dX(t) =

∫
R
h(X(t−), y)ν(dt, dy), (2.4.2)

with initial condition X(0) = i0, where ν(dt, dy) is a Poisson random measure with
intensity dt× µ(dy), in which µ is the Lebesgue measure on R.

Let B(t) = (B1(t), ..., Bm(t))T , t ≥ 0 be an m-dimensional Brownian motion defined
on the complete probability space (Ω,F ,P) adapted to the filtration {Ft}t≥0. Let r(t),
t ≥ t0, be a right-continuous Markov chain on the probability space taking values in a
finite state space S = 1, 2, · · · , N with generator Γ = (γij)N×N given by

P(r(t+ δ) = j|r(t) = i) =

{
γijδ + o(δ) if i 6= j,

1 + γiiδ + o(δ) if i = j,

where δ > 0. Here γij ≥ 0 is the transition rate from i to j if i 6= j while

γii = −
∑
j 6=i

γij.

We assume that the Markov chain r(·) is Ft-adapted but independent of the Brownian
motion B(·).

Let x(t) be an n-dimensional Itô process on t ≥ 0 with the stochastic differential

dx(t) = f(t)dt+ g(t)dB(t),

where f ∈ L1(R+;Rn) and g ∈ L2(R+;Rn×m). The Itô formula established in the last
section shows that a C2,1(Rn×R+;R)-function V maps the Itô process x(t) onto another
Itô process V (x(t), t). However, here we will consider the paired process (x(t), r(t)) so we
define a new function V : Rn × R+ × S, which will map (x(t), r(t)) onto another process
V (x(t), t, r(t)). Let C2,1(Rn × R+ × S;R) denote the family of all real-valued functions
V (x, t, i) on Rn × R+ × S which are continuously twice differentiable in x and once in t.
If V ∈ C2,1(Rn × R+ × S;R), define an operator LV from Rn × R+ × S to R by

LV (x, t, i) = Vt(x, t, i) + Vx(x, t, i)f(t) +
1

2
trace[gT (t)Vxx(x, t, i)g(t)] +

N∑
j=1

γijV (x, t, j),

where

Vt(x, t, i) =
∂V (x, t, i)

∂t
, Vx(x, t, i) =

(
∂V (x, t, i)

∂x1

, · · · , ∂V (x, t, i)

∂xn

)
and

Vxx(x, t, i) =

(
∂2V (x, t, i)

∂xi∂xj

)
n×n

.

We now state the generalised Itô formula, which reveals how V maps the paired
process (x(t), r(t)) onto a new process V (x(t), t, r(t)).
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Theorem 2.14 If V ∈ C2,1(Rn × R+ × S;R), then for any t ≥ 0

V (x(t), t, r(t)) =V (x(0), 0, r(0)) +

∫ t

0

LV (x(s), s, r(s))ds

+

∫ t

0

Vx(x(s), s, r(s))g(x(s), s, r(s))dB(s)

+

∫ t

0

∫
R

(V (x(s), s, i0 + h(r(s), l))− V (x(s), s, r(s)))µ(ds, dl),

where the function h is defined by (2.4.1) and µ(ds, dl) = ν(ds, dl)−µ(dl)ds is a martingale
measure while ν and µ have been defined in (2.4.2).

2.5 Stochastic Differential Equations

In this section we present some concepts regarding SDEs which are essential to our re-
search. We define a general version of SDE and specify the existence and uniqueness
criteria for the solution.

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the
usual conditions. Let B(t) = (B1(t), ..., Bm(t))T , t ≥ 0 be an m-dimensional Brownian
motion defined on the space. Let 0 ≤ t0 < T < ∞. Let x0 ∈ L2

Ft0
(Ω,Rn), i.e. an Ft0-

measurable Rn-valued random variable such that E|x0|2 <∞. Let f : Rn × [t0, T ]→ Rn

and g : Rn × [t0, T ] → Rn×m be both Borel measurable. Consider the n-dimensional
stochastic differential equation of Itô type

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t), t0 ≤ t ≤ T (2.5.1)

with initial value x(t0) = x0. By the definition of the stochastic differential, this equation
is equivalent to the following stochastic integral equation

x(t) = x0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

g(x(s), s)dB(s) ∀t ∈ [t0, T ]. (2.5.2)

We first give the definition of the solution.

Definition 2.15 An Rn-valued stochastic process {x(t)}t0≤t≤T is called a solution of e-
quation (2.5.1) if it has the following properties:

1. {x(t)} is continuous and Ft-adapted;

2. {f(x(t), t)} ∈ L1([t0, T ];Rn) and {g(x(t), t)} ∈ L2([t0, T ];Rn×m);

3. equation (2.5.2) holds for every t ∈ [t0, T ] with probability one.

A solution {x(t)} is said to be unique if any other solution {x̄(t)} is indistinguishable
from {x(t)}, that is

P{x(t) = x̄(t) for all t0 ≤ t ≤ T} = 1.
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We now state the conditions that guarantee the existence and uniqueness of the
solution to equation (2.5.1).

Theorem 2.16 Assume that there exist two positive constants K̄ and K such that (Lip-
schitz condition) for all x, y ∈ Rn and t ∈ [t0, T ]

|f(x, t)− f(y, t)|2 ∨ |g(x, t)− g(y, t)|2 ≤ K̄|x− y|2;

(Linear growth condition) for all (x, t) ∈ Rn × [t0, T ]

|f(x, t)|2 ∨ |g(x, t)|2 ≤ K(1 + |x|2).

Then there exists a unique solution x(t) to equation (2.5.1) and the solution belongs to
M2([t0, T ];Rn).

Explicit solutions are usually not obtainable for most of SDEs. It is therefore impor-
tant to construct approximate solutions. There are various ways to do this [52]. We use
the Euler-Maruyama (EM) approximate solutions to equation (2.5.1), which are defined
as follows: Let {xk}nk=0 be the observations from (2.5.1). Given a step size ∆t and defining
x(t0) = x0, and then for small time intervals k∆t ≤ t ≤ (k + 1)∆t

xj = xj−1 + ∆tf(xj−1, tj−1) + g(xj−1, tj−1)∆Wk,

where ∆Wk = Wk+1 −Wk is an increment of a Wiener process and follows N(0,
√

∆t).

Now we construct the explicit solution to the general n-dimensional linear stochastic
differential equation

dx(t) = (F (x)x(t) + f(t))dt+
m∑
k=1

(Gk(t)x(t) + gk(t))dBk(t) (2.5.3)

on [t0, T ], where F (·), G(·) are n× n-valued functions, f(·), g(·) are Rn-valued functions.
We shall assume that F, f, Gk, gk are all Borel-measurable and bounded on [t0, T ].
Therefore, by the existence-and-uniqueness Theorem 2.16, the linear equation (2.5.3) has
a unique continuous solution in M2([t0, T ];Rn) for every initial value x(t0) = x0, which
is Ft0-measurable and belongs to L2(Ω;Rn).

Consider the linear stochastic differential equation

dx(t) = F (t)x(t)dt+
m∑
k=1

Gk(t)x(t)dBk(t) (2.5.4)

on [t0, T ]. As assumed,

F (t) = (Fij(t))n×n Gk(t) = (Gk
ij(t))n×n

are all Borel-measurable and bounded. For every j = 1, ..., n, let ej be the unit column-
vector in the xj-direction, i.e.

ej = (0, · · · , 0, 1︸ ︷︷ ︸
j

, 0, · · · , 0)T .
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Let Φj(t) = (Φ1j(t) · · · ,Φnj(t))
T be the solution of equation (2.5.4) with initial value

x(t0) = ej. Define the n× n matrix

Φ(t) = (Φ1(t) · · · ,Φn(t)) = (Φij)n×n.

We call Φ(t) the fundamental matrix of equation (2.5.4). The following theorem states
that any solution of equation (2.5.4) can be expressed in terms of Φ(t) and that is why
Φ(t) is called the fundamental matrix.

Theorem 2.17 Given the initial value x(t0) = x0, the unique solution of equation (2.5.4)
is

x(t) = Φ(t)x0.

Let us turn to the general n-dimensional linear stochastic differential equation (2.5.3).
We now state the variation of constants formula.

Theorem 2.18 The unique solution of equation (2.5.3) can be expressed as

x(t) = Φ(t)

(
x0 +

∫ t

t0

Φ−1(s)

(
f(s)−

m∑
k=1

Gk(s)gk(s)

)
ds+

m∑
k=1

∫ t

t0

Φ−1(s)gk(s)dBk(s)

)
,

where Φ(t) is the fundamental matrix of the corresponding homogeneous equation (2.5.4).

2.6 Stochastic Differential Equations with Markovian

Switching

We now discuss SDEs with Markovian switching which will be very useful when we conduct
our research in Chapter 5.

Let B(t) = (B1(t), ..., Bm(t))T , t ≥ 0 be an m-dimensional Brownian motion defined
on the complete probability space (Ω,F ,P) adapted to the filtration {Ft}t≥0. Let r(t),
t ≥ t0, be a right-continuous Markov chain which has the same definition as in section 2.4.
We assume that the Markov chain r(·) is Ft-adapted but independent of the Brownian
motion B(·). Consider an SDE with Markovian switching of the form

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dB(t), t0 ≥ t ≥ T (2.6.1)

with initial data x(t0) = x0 ∈ L2
Ft0

(Ω;Rn) and r(t0) = r0, where r0 is an S-valued Ft0-
measurable random variable and

f : Rn × R+ × S→ Rn and f : Rn × R+ × S→ Rn×m.

Definition 2.19 An Rn-valued stochastic process {x(t)}t0≤t≤T is called a solution of
equation (2.6.1) if it has the following properties:

1. {x(t)}t0≤t≤T is continuous and Ft-adapted;
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2. {f(x(t), t, r(t))}t0≤t≤T ∈ L1([t0, T ];Rn) while {g(x(t), t, r(t))}t0≤t≤T ∈
L2([t0, T ];Rn×m);

3. for any t ∈ [t0, T ], the equation

x(t) = x(t0) +

∫ t

t0

f(x(s), s, r(s))ds+

∫ t

t0

g(x(s), s, r(s))dB(s)

holds with probability 1.

Theorem 2.20 Assume that there exist two positive constants K̄ and K such that

(Lipschitz condition) for all x, y ∈ Rn and t ∈ [t0, T ] and i ∈ S

|f(x, t, i)− f(y, t, i)|2 ∨ |g(x, t, i)− g(y, t, i)|2 ≤ K̄|x− y|2;

(Linear growth condition) for all (x, t, i) ∈ Rn × [t0, T ]× S

|f(x, t, i)|2 ∨ |g(x, t, i)|2 ≤ K(1 + |x|2).

Then there exists a unique solution x(t) to equation (2.6.1) and the solution belongs to
M2([t0, T ];Rn).

2.7 Stochastic Stability

Stability of a system means the insensitivity of the system to small changes in the initial
value of the system. Stability is a desired property for a system to have. The main
technique to show the stability of the solutions to SDEs or SDEs with Markovian switching
is the method of Lyapunov functions which is discussed in detail in the books of Mao [68]
and [69]. In this section we are going to introduce the definitions of only a few types of
stability. We will then examine these types of stability for our stochastic version of SIS
epidemic models in the subsequent chapters.

We consider the n-dimensional SDE which is defined in equation (2.5.1). We shall
assume that the assumptions of the existence-and-uniqueness Theorem 2.16 are fulfilled.
Hence, for any given initial value x(t0) = x0 ∈ Rn, equation (2.5.1) has a unique global
solution which is denoted by x(t; t0, x0). We know that the solution has continuous sample
paths and each of its moments is finite. Assume furthermore that

f(0, t) = 0 and g(0, t) = 0 for all t ≥ t0.

So equation (2.5.1) has the solution x(t) ≡ 0 corresponding to the initial value x(t0) = 0.
This solution is called the trivial solution or equilibrium position.

We now define three different types of stability.

Definition 2.21 1. The trivial solution of equation (2.5.1) is said to be stochastically
stable or stable in probability if for every pair of ε ∈ (0, 1) and r > 0, there exists a
δ = δ(ε, r, t0) > 0 such that

P{|x(t; t0, x0)| < r for all t ≥ t0} ≥ 1− ε

whenever |x0| ≤ δ.
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2. The trivial solution is said to be stochastically asymptotically stable if it is stochas-
tically stable and, moreover, for every ε ∈ (0, 1), there exists a δ0 = δ0(ε, t0) > 0
such that

P{ lim
t→∞

x(t; t0, x0) = 0} ≥ 1− ε

whenever |x0| ≤ δ0.

3. The trivial solution is said to be stochastically asymptotically stable in the large if it
is stochastically stable and, moreover, for all x0 ∈ Rn

P{ lim
t→∞

x(t; t0, x0) = 0} = 1.

Definition 2.22 The trivial solution of equation (2.5.1) is said to be almost surely expo-
nentially stable if

lim sup
t→∞

1

t
log |x(t; t0, x0)| ≤ 0 a.s.

for all x0 ∈ Rn.

Definition 2.23 The trivial solution of equation (2.5.1) is said to be pth moment expo-
nentially stable if there is a pair of positive constants λ and C such that

E|x(t; t0, x0)|p ≤ C|x0|pe−λ(t−t0) on t ≥ t0

for all x0 ∈ Rn. When p = 2, it is usually said to be exponentially stable in mean square.

Now we consider the non-linear SDE with Markovian switching which is defined in
equation (2.6.1). We assume that conditions in Theorem 2.20 are fulfilled so that equation
(2.6.1) has a unique global solution, which is denoted by x(t; t0, x0, r0). We shall let
f(0, t, i) ≡ 0 and g(0, t, i) ≡ 0 so equation (2.6.1) has the trivial solution x(t; t0, 0, i) = 0
or the equilibrium state zero. We now discuss the exponential stability.

Definition 2.24 For p > 0, the trivial solution of equation (2.6.1) or, simply, equation
(2.6.1), is said to be pth moment exponentially stable if the pth moment Lyapunov exponent

lim sup
t→∞

1

t
(E|x(t; t0, x0, r0)|p) < 0

for all (t0, x0, r0) ∈ R+ × Rn × S. When p = 2, it is said to be exponentially stable in
mean square. Moreover, it is said to be almost surely exponentially stable if the sample
Lyapunov exponent

lim sup
t→∞

1

t
(E|x(t; t0, x0, r0)|) < 0 a.s.

for all (t0, x0, r0) ∈ R+ × Rn × S.

Theorem 2.25 If for each i ∈ S, there are constant triples αi, ρi and θi, such that

xTf(x, t, i) ≤ αi|x|2,
|g(x, t, i)| ≤ ρi|x|,
|xTg(x, t, i)| ≥ θi|x|2,

24



for all (x, t) ∈ Rn × R+, the solution of equation (2.6.1) satisfies

lim sup
t→∞

1

t
log(|x(t; t0)|) ≤

N∑
j=1

πj

(
αj +

1

2
ρ2
j − θ2

j

)
a.s.

for all x0 ∈ Rn. In particular, the non-linear SDE with Markovian switching (2.6.1) is
almost surely exponentially stable, if

N∑
j=1

πj

(
αj +

1

2
ρ2
j − θ2

j

)
< 0.

Next we give the definition for moment and almost sure asymptotic stability.

Definition 2.26 For p > 0, the trivial solution of equation (2.6.1) or, simply, equation
(2.6.1), is said to be asymptotically stable in pth moment if

lim sup
t→∞

(E|x(t; t0, x0, r0)|p) = 0

for all (t0, x0, r0) ∈ R+×Rn×S. When p = 2, it is said to be asymptotically stable in mean
square. Moreover, it is said to be almost surely asymptotically stable or asymptotically
stable with probability one if

lim sup
t→∞

x(t; t0, x0, r0) = 0 a.s.

for all (t0, x0, r0) ∈ R+ × Rn × S.

Now we state the definition for stability in probability and we shall also use the
notation Sδ = {x ∈ Rn : |x| < δ}.

Definition 2.27 1. The trivial solution of equation (2.6.1) is said to be stochastically
stable or stable in probability if for every triple of ε ∈ (0, 1), ρ > 0 and t0 ≥ 0, there
exists a δ = δ(ε, ρ, t0) > 0 such that

P{|x(t; t0, x0, i)| < ρ for all t ≥ t0} ≥ 1− ε

for any (x0, i) ∈ Sδ × S.

2. The trivial solution is said to be stochastically asymptotically stable or asymptotically
stable in probability if it is stochastically stable and, moreover, for every pair of
ε ∈ (0, 1) and t0 ≥ 0, there exists a δ0 = δ0(ε, t0) > 0 such that

P{ lim
t→∞

x(t; t0, x0) = 0} ≥ 1− ε

whenever (x0, i) ∈ Sδ0 × S.

3. The trivial solution is said to be stochastically asymptotically stable in the large if
it is stochastically stable and, moreover,

P{ lim
t→∞

x(t; t0, x0, i) = 0} = 1 ∀(t0, x0, i) ∈ R+ × Rn × S.

25



In this chapter, we have reviewed some background knowledge about the stochastic
theory which will be very useful for our following research work. In the next chapter
we extend the classical SIS epidemic model model from a deterministic framework to
a stochastic one, with white noise being incorporated by the parameter perturbation
technique.
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Chapter 3

A Stochastic Differential Equation
SIS Epidemic Model

3.1 Introduction

The deterministic SIS epidemic model is one of the simplest possible epidemic models,
which has applications to transmission of real life diseases, such as pneumococcus, gon-
orrhea and tuberculosis. Recall that in section 1.2 we discussed the SIS epidemic model
in detail, where the model is defined in equation (1.2.1) and its corresponding basic re-
production number RD

0 is defined in equation (1.2.3). Due to the random nature of the
population system, environmental noise such as white noise can affect the population sys-
tem significantly. Recall that in section 1.3.2, we reviewed the existing literature regarding
introducing white noise into deterministic compartmental models and its influence on the
deterministic system. We found that the common technique for introducing white noise is
parameter perturbation and the introduction of white noise changes the conditions for the
system to become extinct. The stochastic version of the SIR and SIRS epidemic models
obtained by parameter perturbation have been discussed in the previous research but we
are not aware of any literature addressing this issue in SIS epidemic models. This chapter
is an attempt to fill this gap.

This chapter will be organised as follows: in section 3.2, we formulate the SIS epidemic
model as a stochastic differential equation (SDE) for the number of infectious individuals
I(t). In section 3.3, we prove that this SDE has a unique global positive solution I(t).
In sections 3.4 and 3.5, we establish conditions for extinction and persistence of I(t) and
then we discuss perturbation by stochastic noise. In section 3.6, we show the existence of
a stationary distribution and derive expressions for its mean and variance for the case of
persistence. The results are illustrated by computer simulations, including two examples
based on real life diseases, which are discussed in section 3.7. We draw conclusions and
outline the future work required in section 3.8.
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3.2 Stochastic Differential Equation SIS Model

Throughout this chapter, we let (Ω,F , {Ft}t≥0,P) be a complete probability space with
a filtration {Ft}t≥0 satisfying the usual conditions and we let B(t) be a scalar Brownian
motion defined on the probability space. Let us now consider the second equation of
(1.2.1). To establish the stochastic differential equation (SDE) model, we naturally re-
write this equation in the differential form

dI(t) = [βS(t)I(t)− (µ+ γ)I(t)]dt. (3.2.1)

Here [t, t+dt) is a small time interval and we use the notation d· for the small change
in any quantity over this time interval when we intend to consider it as an infinitesimal
change, for example dI(t) = I(t+ dt)− I(t) and the change dI(t) is described by (3.2.1).
Consider the disease transmission coefficient β in the deterministic model. This can be
thought of as the rate at which each infectious individual makes potentially infectious
contacts with each other individual, where a potentially infectious contact will transmit
the disease if the contact is made by an infectious individual with a susceptible individual.
Thus the total number of new infections in the small time interval [t, t+ dt) is

βS(t)I(t)dt

and a single infected individual makes

βdt

potentially infectious contacts with each other individual in the small time interval [t, t+
dt).

Now suppose that some stochastic environmental factor acts simultaneously on each
individual in the population. In this case β changes to a random variable β̃. Each infected
individual makes precisely

β̃dt = βdt+ σdB(t)

potentially infectious contacts with each other individual in [t, t+dt). Here dB(t) = B(t+
dt)−B(t) is the increment of a standard Brownian motion. Thus the number of potentially
infectious contacts that a single infected individual makes with another individual in
[t, t+ dt) is normally distributed with mean βdt and variance σ2dt. Hence E(β̃dt) = βdt
and var(β̃dt) = σ2dt. As var(β̃dt)→ 0 as dt→ 0 this is a biologically reasonable model.
Indeed this is a well-established way of introducing stochastic environmental noise into
biologically realistic population dynamic models. See [26, 29, 33, 38, 58, 63, 90] and many
other references.

To motivate our assumption we argue as follows: Suppose that the number of po-
tentially infectious contacts between an infectious individual and another individual in
successive time intervals [t, t+ T ), [t+ T, t+ 2T ), . . . , [t+ (n− 1)T, t+ nT ) are indepen-
dent, identically distributed random variables and n is very large. Then by the Central
Limit Theorem the total number of potentially infectious contacts made in [t, t + nT )
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has approximately a normal distribution with mean nµ0 and variance nσ2
0, where µ0 and

σ2
0 are respectively the mean and variance of the underlying distribution in each of the

separate time intervals of length T . Thus it is reasonable to assume that the total number
of potentially infectious contacts has a normal distribution whose mean and variance scale
as the total length of the time interval as in our assumptions.

Therefore we replace βdt in equation (3.2.1) by β̃dt = βdt+ σdB(t) to get

dI(t) = S(t)I(t)(βdt+ σdB(t))− (µ+ γ)I(t)dt. (3.2.2)

Note that βdt now denotes the mean of the stochastic number of potentially infectious
contacts that an infected individual makes with another individual in the infinitesimally
small time interval [t, t+dt). Similarly, the first equation of (1.2.1) becomes another SDE.
That is, the deterministic SIS model (1.2.1) becomes the Itô SDE{

dS(t) = [µN − βS(t)I(t) + γI(t)− µS(t)]dt− σS(t)I(t)dB(t),
dI(t) = [βS(t)I(t)− (µ+ γ)I(t)]dt+ σS(t)I(t)dB(t).

(3.2.3)

This SDE is called an SDE SIS model.

Given that S(t) + I(t) = N , it is sufficient to study the SDE for I(t)

dI(t) = I(t)
(

[βN − µ− γ − βI(t)]dt+ σ(N − I(t))dB(t)
)

(3.2.4)

with initial value I(0) = I0 ∈ (0, N). In the following sections we will concentrate on this
SDE only.

3.3 Existence of Unique Positive Solution

The SDE SIS model (3.2.4) is a special SDE. In order for the model to make sense, we need
to show at least that this SDE SIS model does not only have a unique global solution but
also the solution will remain within (0, N) whenever it starts from there. The existing
general existence-and-uniqueness theorem on SDEs, Theorem 2.16, can not be applied
to this special SDE in order to guarantee these properties. It is therefore necessary to
establish such a new theory.

Theorem 3.1 For any given initial value I(0) = I0 ∈ (0, N), the SDE (3.2.4) has a
unique global positive solution I(t) ∈ (0, N) for all t ≥ 0 with probability one, namely

P{I(t) ∈ (0, N) for all t ≥ 0} = 1.

Proof. Regarding equation (3.2.4) as an SDE on R, we see that its coefficients are locally
Lipschitz continuous. It is known (see e.g. [66, 67, 68]) that for any given initial value
S0 ∈ (0, N) there is a unique maximal local solution I(t) on t ∈ [0, τe), where τe is the
explosion time. Let k0 > 0 be sufficiently large for 1/k0 < I0 < N − (1/k0). For each
integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, τe) : I(t) 6∈ (1/k, N − (1/k))},
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where throughout this thesis we set inf ∅ = ∞. Clearly, τk is increasing as k → ∞. Set
τ∞ = limk→∞ τk, whence τ∞ ≤ τe a.s. If we can show that τ∞ =∞ a.s., then τe =∞ a.s.
and I(t) ∈ (0, N) a.s. for all t ≥ 0. In other words, to complete the proof all we need
to show is that τ∞ = ∞ a.s. If this statement is false, then there is a pair of constants
T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.

Hence there is an integer k1 ≥ k0 such that

P{τk ≤ T} ≥ ε for all k ≥ k1. (3.3.1)

Define a function V : (0, N)→ R+ by

V (x) =
1

x
+

1

N − x
.

By the Itô formula which is stated in Theorem 2.9, we have, for any t ∈ [0, T ] and k ≥ k1,

EV (I(t ∧ τk)) = V (I0) + E
∫ t∧τk

0

LV (I(s))ds, (3.3.2)

where LV : (0, N)→ R is defined by

LV (x) = x

(
− 1

x2
+

1

(N − x)2

)
[βN − µ− γ − βx]

+ σ2x2(N − x)2

(
1

x3
+

1

(N − x)3

)
. (3.3.3)

It is easy to show that

LV (x) ≤ µ+ γ

x
+

βN

N − x
+ σ2N2

(
1

x
+

1

N − x

)
≤ CV (x), (3.3.4)

where C = (µ+ γ) ∨ (βN) + σ2N2. Substituting this into (3.3.2) we get

EV (I(t ∧ τk)) ≤ V (I0) + E
∫ t∧τk

0

CV (I(s))ds ≤ V (I0) + C

∫ t

0

EV (I(s ∧ τk))ds.

The Gronwall inequality (Theorem 2.10) yields that

EV (I(T ∧ τk)) ≤ V (I0)eCT . (3.3.5)

Set Ωk = {τk ≤ T} for k ≥ k1 and, by (3.3.1), P(Ωk) ≥ ε. Note that for every ω ∈ Ωk,
I(τk, ω) equals either 1/k or N − (1/k), and hence

V (I(τk, ω)) ≥ k.

It then follows from (3.3.5) that

V (I0)eCT ≥ E
[
IΩk(ω)V (I(τk, ω))

]
≥ k P(Ωk) ≥ εk.

Letting k →∞ leads to the contradiction

∞ > V (I0)eCT =∞,

so we must therefore have τ∞ =∞ a.s., whence the proof is complete.
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3.4 Extinction

In the study of population systems, extinction and persistence are two of the most impor-
tant issues. We will discuss the extinction of the SDE SIS model (3.2.4) in this section
but leave its persistence to the next section.

Theorem 3.2 If

RS
0 := RD

0 −
σ2N2

2(µ+ γ)
=

βN

µ+ γ
− σ2N2

2(µ+ γ)
< 1 and σ2 ≤ β

N
, (3.4.1)

then for any given initial value I(0) = I0 ∈ (0, N), the solution of the SDE (3.2.4) obeys

lim sup
t→∞

1

t
log(I(t)) ≤ βN − µ− γ − 0.5σ2N2 < 0 a.s., (3.4.2)

namely, I(t) tends to zero exponentially almost surely. In other words, the disease dies
out with probability one.

Proof. By the Itô formula in Theorem 2.9, we have

log(I(t)) = log(I0) +

∫ t

0

f(I(s))ds+

∫ t

0

σ(N − I(s))dB(s), (3.4.3)

where f : R→ R is defined by

f(x) = βN − µ− γ − βx− 0.5σ2(N − x)2. (3.4.4)

However, under condition (3.4.1), we have

f(I(s)) = βN − µ− γ − 0.5σ2N2 − (β − σ2N)I(s)− 0.5σ2I2(s),

≤ βN − µ− γ − 0.5σ2N2,

for I(s) ∈ (0, N). It then follows from (3.4.3) that

log(I(t)) ≤ log(I0) + (βN − µ− γ − 0.5σ2N2)t+

∫ t

0

σ(N − I(s))dB(s). (3.4.5)

This implies that

lim sup
t→∞

1

t
log(I(t)) ≤ βN−µ−γ−0.5σ2N2+lim sup

t→∞

1

t

∫ t

0

σ(N−I(s))dB(s) a.s. (3.4.6)

But by the large number theorem for martingales (see Theorem 2.1), we have

lim sup
t→∞

1

t

∫ t

0

σ(N − I(s))dB(s) = 0 a.s.

We therefore obtain the desired assertion (3.4.2) from (3.4.6).

It is useful to observe that in the classical deterministic SIS model (1.2.1), I(t) tends
to 0 if and only if RD

0 ≤ 1; while in the SDE SIS model (3.2.3), I(t) tends to 0 if
RS

0 = RD
0 − 0.5σ2N2/(µ + γ) < 1 and σ2 ≤ β/N . In other words, the conditions for I(t)

to become extinct in the SDE SIS model are weaker than in the classical deterministic
SIS model. The following example illustrates this result more explicitly:
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Example 3.3 Throughout the thesis we shall assume that the unit of time is one day
and the population sizes are measured in units of one million, unless otherwise stated.
With these units assume that the system parameters are given by

β = 0.5, N = 100, µ = 20, γ = 25, σ = 0.035.

So the SDE SIS model (3.2.4) becomes

dI(t) = I(t)
(

[5− 0.5I(t)]dt+ 0.035(100− I(t))dB(t)
)
. (3.4.7)

Noting that

RS
0 =

βN

µ+ γ
− σ2N2

2(µ+ γ)
=

50

45
− 12.25

90
= 1.111− 0.136 < 1,

and σ2 = 0.001225 ≤ β

N
= 0.005,

we can therefore conclude, by Theorem 3.2, that for any initial value I(0) = I0 ∈ (0, 100),
the solution of (3.4.7) obeys

lim sup
t→∞

1

t
log(I(t)) ≤ −1.125 a.s.

That is, I(t) will tend to zero exponentially with probability one.

On the other hand, the corresponding deterministic SIS model (1.2.1) becomes

dI(t)

dt
= I(t)(5− 0.5I(t)). (3.4.8)

For RD
0 > 1, it is known that, for any initial value I(0) = I0 ∈ (0, 100), this solution has

the property

lim
t→∞

I(t) = N

(
1− 1

RD
0

)
= 10 (section 1.2).

The computer simulations in Figure 3.1, using the EM method, support these results
clearly, illustrating extinction of the disease.
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Figure 3.1: Computer simulation of the path I(t) for the SDE SIS model (3.4.7) and
its corresponding deterministic SIS model (3.4.8), using the EM method with step size
∆ = 0.001, using initial values (a) I(0) = 90 and (b) I(0) = 1.

In Theorem 3.2 we require the noise intensity σ2 ≤ β/N . The following theorem
covers the case when σ2 > β/N :

Theorem 3.4 If

σ2 >
β

N
∨ β2

2(µ+ γ)
, (3.4.9)

then for any given initial value I(0) = I0 ∈ (0, N), the solution of the SDE SIS model
(3.2.4) obeys

lim sup
t→∞

1

t
log(I(t)) ≤ −µ− γ +

β2

2σ2
< 0 a.s., (3.4.10)

namely, I(t) tends to zero exponentially almost surely. In other words, the disease dies
out with probability one.

Proof. We use the same notation as in the proof of Theorem 3.2. It is easy to see that
the quadratic function f : R→ R defined by (3.4.4) takes its maximum value f(x̂) at

x = x̂ :=
σ2N − β

σ2
.

By condition (3.4.9), it is easy to see that x̂ ∈ (0, N). Compute

f(x̂) = βN − µ− γ − 0.5σ2N2 +
(σ2N − β)2

2σ2
= −µ− γ +

β2

2σ2
,

which is negative by condition (3.4.9). It therefore follows from (3.4.3) that

log(I(t)) ≤ log(I0) + f(x̂)t+

∫ t

0

σ(N − I(s))dB(s).
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This implies, in the same way as in the proof of Theorem 3.2, that

lim sup
t→∞

1

t
log(I(t)) ≤ f(x̂) a.s.,

as required. The proof is hence complete.

Note that condition (3.4.9) implies that RS
0 ≤ 1.

Example 3.5 We keep the system parameters the same as in Example 3.3 but let σ =
0.08, so the SDE SIS model (3.2.4) becomes

dI(t) = I(t)
(

[5− 0.5I(t)]dt+ 0.08(100− I(t))dB(t)
)
. (3.4.11)

It is easy to verify that the system parameters obey condition (3.4.9). We can therefore
conclude, by Theorem 3.4, that for any initial value I(0) = I0 ∈ (0, 100), the solution of
(3.4.11) obeys

lim sup
t→∞

1

t
log(I(t)) ≤ −45 +

0.52

2× 0.082
= −25.4688 a.s.

That is, I(t) will tend to zero exponentially with probability one. The computer simula-
tions shown in Figure 3.2 support these results clearly.
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Figure 3.2: Computer simulation of the path I(t) for the SDE SIS model (3.4.11) and
its corresponding deterministic SIS model (3.4.8), using the EM method with step size
∆ = 0.001, with initial values (a) I(0) = 90 and (b) I(0) = 1.

3.5 Persistence

Theorem 3.6 If

RS
0 :=

βN

µ+ γ
− σ2N2

2(µ+ γ)
> 1 (3.5.1)
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then for any given initial value I(0) = I0 ∈ (0, N), the solution of the SDE SIS model
(3.2.4) obeys

lim sup
t→∞

I(t) ≥ ξ a.s. (3.5.2)

and
lim inf
t→∞

I(t) ≤ ξ a.s. (3.5.3)

where

ξ =
1

σ2

(√
β2 − 2σ2(µ+ γ)− (β − σ2N)

)
(3.5.4)

which is the unique root in (0, N) of

βN − µ− γ − βξ − 0.5σ2(N − ξ)2 = 0. (3.5.5)

That is, I(t) will rise to or above the level ξ infinitely often with probability one.

Proof. Recall the definition (3.4.4) of function f : R → R. By condition (3.5.1), it is
easy to see that equation f(x) = 0 has a positive root and a negative root. The positive
one is

1

σ2

(√
(β − σ2N)2 + 2σ2(βN − µ− γ − 0.5σ2N2)− (β − σ2N)

)
=

1

σ2

(√
β2 − 2σ2(µ+ γ)− (β − σ2N)

)
= ξ.

Noting that

f(0) = βN − µ− γ − 0.5σ2N2 > 0 and f(N) = −µ− γ < 0,

we see that ξ ∈ (0, N) and

f(x) > 0 is strictly increasing on x ∈ (0, 0 ∨ x̂), (3.5.6)

f(x) > 0 is strictly decreasing on x ∈ (0 ∨ x̂, ξ), (3.5.7)

while
f(x) < 0 is strictly decreasing on x ∈ (ξ,N). (3.5.8)

We now begin to prove assertion (3.5.2). If it is not true, then there is a sufficiently
small ε ∈ (0, 1) such that

P(Ω1) > ε, (3.5.9)

where Ω1 = {lim supt→∞ I(t) ≤ ξ−2ε}. Hence, for every ω ∈ Ω1, there is a T = T (ω) > 0
such that

I(t, ω) ≤ ξ − ε whenever t ≥ T (ω). (3.5.10)

Clearly we may choose ε so small (if necessary reduce it) that f(0) > f(ξ−ε). It therefore
follows from (3.5.6), (3.5.7) and (3.5.10) that

f(I(t, ω)) ≥ f(ξ − ε) whenever t ≥ T (ω). (3.5.11)

35



Moreover, by the large number theorem for martingales (Theorem 2.1), there is a Ω2 ⊂ Ω
with P(Ω2) = 1 such that for every ω ∈ Ω2,

lim
t→∞

1

t

∫ t

0

σ(N − I(s, ω))dB(s, ω) = 0. (3.5.12)

Now, fix any ω ∈ Ω1 ∩ Ω2. It then follows from (3.4.3) and (3.5.11) that, for t ≥ T (ω),

log(I(t, ω)) ≥ log(I0) +

∫ T (ω)

0

f(I(s, ω))ds+ f(ξ − ε)(t− T (ω))

+

∫ t

0

σ(N − I(s, ω))dB(s, ω). (3.5.13)

This yields

lim inf
t→∞

1

t
log(I(t, ω)) ≥ f(ξ − ε) > 0,

whence
lim
t→∞

I(t, ω) =∞.

But this contradicts (3.5.10). We therefore must have the desired assertion (3.5.2).

Let us now prove assertion (3.5.3). If it were not true, then there is a sufficiently
small δ ∈ (0, 1) such that

P(Ω3) > δ, (3.5.14)

where Ω3 = {lim inft→∞ I(t) ≥ ξ + 2δ}. Hence, for every ω ∈ Ω3, there is a τ = τ(ω) > 0
such that

I(t, ω) ≥ ξ + δ whenever t ≥ τ(ω). (3.5.15)

Now, fix any ω ∈ Ω3 ∩ Ω2. It then follows from (3.4.3) and (3.5.8) that, for t ≥ τ(ω),

log(I(t, ω)) ≤ log(I0) +

∫ τ(ω)

0

f(I(s, ω))ds+ f(ξ + δ)(t− τ(ω))

+

∫ t

0

σ(N − I(s, ω))dB(s, ω). (3.5.16)

This, together with (3.5.12), yields

lim sup
t→∞

1

t
log(I(t, ω)) ≤ f(ξ + δ) < 0,

whence
lim
t→∞

I(t, ω) = 0.

But this contradicts (3.5.15). We therefore must have the desired assertion (3.5.3). The
proof is therefore complete.

Example 3.7 Assume that the system parameters are given by

β = 0.5, N = 100, µ = 20, γ = 25, σ = 0.03.
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That is, we keep all the system parameters the same as in Example 3.3 except that σ is
reduced to 0.03 from 0.035. So the SDE SIS model (3.2.4) becomes

dI(t) = I(t)
(

[5− 0.5I(t)]dt+ 0.03(100− I(t))dB(t)
)
. (3.5.17)

Noting that

RS
0 =

βN

µ+ γ
− σ2N2

2(µ+ γ)
=

50

45
− 0.1 > 1,

we compute

ξ =
1

σ2

(√
β2 − 2σ2(µ+ γ)− (β − σ2N)

)
= 1.2179.

We can therefore conclude, by Theorem 3.6, that for any initial value I(0) = I0 ∈ (0, 100),
the solution of (3.5.17) obeys

lim inf
t→∞

I(t) ≤ 1.2179 ≤ lim sup
t→∞

I(t) a.s.

In comparison, we recall that the solution of the corresponding deterministic SIS model
(1.2.2) has the property

lim
t→∞

I(t) = N

(
1− 1

RD
0

)
= 10.

The computer simulations in Figure 3.3 support these results clearly, showing fluctuation
around the level 1.2179.
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Figure 3.3: Computer simulation of the path I(t) for the SDE SIS model (3.5.17) and
its corresponding deterministic SIS model (3.4.8), using the EM method with step size
∆ = 0.001 and initial values (a) I(0) = 90 and (b) I(0) = 1.

Example 3.8 To further illustrate the effect of the noise intensity σ on the SDE SIS
model, we keep all the parameters in Example 3.7 unchanged but reduce σ to σ = 0.01,
namely we have

β = 0.5, N = 100, µ = 20, γ = 25, σ = 0.01.
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So the SDE SIS model (3.2.4) now becomes

dI(t) = I(t)
(

[5− 0.5I(t)]dt+ 0.01(100− I(t))dB(t)
)
. (3.5.18)

Noting that

RS
0 =

βN

µ+ γ
− σ2N2

2(µ+ γ)
=

50

45
− 0.011 > 1,

we compute

ξ =
1

σ2

(√
β2 − 2σ2(µ+ γ)− (β − σ2N)

)
= 9.1751.

We can therefore conclude, by Theorem 3.6, that for any initial value I(0) = I0 ∈ (0, 100),
the solution of (3.5.18) obeys

lim inf
t→∞

I(t) ≤ 9.1751 ≤ lim sup
t→∞

I(t) a.s.

The computer simulations in Figure 3.4 support these results clearly, illustrating persis-
tence and that the effect of reducing the standard deviation σ is to increase the level ξ,
which becomes closer to the limiting value of the corresponding deterministic SIS model.
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Figure 3.4: Computer simulation of the path I(t) for the SDE SIS model (3.5.18) and
its corresponding deterministic SIS model (3.4.8), using the EM method with step size
∆ = 0.001 and initial values (a) I(0) = 90 and (b) I(0) = 1.

These computer simulations indicate strongly that ξ will increase to N(1− (1/RD
0 )),

which is the equilibrium state of the deterministic SIS model (1.2.1), as the noise intensity
σ decreases to zero. This is of course not surprising. The following proposition describes
this situation rigorously:

Proposition 3.9 Assume that RS
0 > 1 and regard ξ defined by (3.5.4) as a function of σ

for

0 < σ <

√
2(βN − µ− γ)

N
:= σ̂.
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Then ξ is strictly decreasing and

lim
σ→0

ξ = N

(
1− 1

RD
0

)
and lim

σ→σ̂
ξ =

{
0, if 1 ≤ RD

0 ≤ 2,

N
(
RD0 −2

RD0 −1

)
, if RD

0 > 2.

Proof. Compute

dξ

dσ
=

1

2

(β2

σ4
− 2(µ+ γ)

σ2

)− 1
2
(
− 4β2

σ5
+

4(µ+ γ)

σ3

)
+

2β

σ3
,

=
−2β2 + 2σ2(µ+ γ) + 2β

√
β2 − 2σ2(µ+ γ)

σ3
√
β2 − 2σ2(µ+ γ)

,

=
−(
√
β2 − 2σ2(µ+ γ)− β)2

σ3
√
β2 − 2σ2(µ+ γ)

.

Since σ > 0 we have
√
β2 − 2σ2(µ+ γ) − β 6= 0. We therefore have that dξ

dσ
< 0

which implies that ξ is strictly decreasing as σ increases. Moreover, by the well-known
L’Hopital’s rule,

lim
σ→0

ξ = lim
σ→0

[−(β2 − 2σ2(µ+ γ))−
1
2 (µ+ γ) +N ] = −µ+ γ

β
+N = N

(
1− 1

RD
0

)
as desired. Furthermore, it is obvious that

lim
σ→σ̂

ξ =

√
β2 − 2σ̂2(µ+ γ)− β + σ̂2N

σ̂2
.

The numerator equals
|βN − 2(µ+ γ)|

N
+
βN − 2(µ+ γ)

N
,

so if 1 ≤ RD
0 ≤ 2 we have limσ→σ̂ ξ = 0, but if RD

0 > 2 we have limσ→σ̂ ξ = N
(
RD0 −2

RD0 −1

)
.

The proof is complete.

Note that Proposition 3.9 implies that for RS
0 > 1, ξ lies between the deterministic

equilibrium value (and limiting value)

N

(
1− 1

RD
0

)
for I(t) and

max

(
0, N

(
1− 1

RD
0 − 1

))
.

If RD
0 is large then ξ will be close to but beneath the deterministic equilibrium value for

I(t).
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Example 3.10 The computer simulations of the solution to the SDE SIS model in the
persistent case also suggest for higher σ that the distribution of the solution is skewed, as
there are larger oscillations above ξ than below ξ, while for lower σ the oscillations about
ξ appear to be more symmetrically distributed. This is confirmed by the histograms in
Figure 3.5, showing the distribution of I(t) in the case of β = 0.5, N = 100, µ = 20, γ = 25,
and σ= 0.03, 0.02, 0.01, 0.005 and 0.001, respectively. The simulations were run for
100,000 iterations with step size ∆ = 0.001, i.e. for 100 time steps, and the first 90,000
iterations were discarded to allow for I(t) to reach its recurrent level. The distribution is
positively skewed for σ = 0.03 and 0.02, but as σ reduces it becomes more symmetric about
ξ, so that the distribution appears closer to a normal distribution. The corresponding
sample skewness coefficients are 4.8774, 0.9319, 0.1692, 0.1798, and −0.2106.
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Figure 3.5: Histograms of the values of the path I(t) for the recurrent SDE SIS model
(3.2.4), for parameter values β = 0.5, N = 100, µ = 20, γ = 25, I(0) = 90, and differing
values of σ= 0.03, 0.02, 0.01, 0.005 and 0.001. The values are for the last 10,000 iterations
of 100,000 iterations using step size ∆ = 0.001.

Testing these data for normality, all tests used were highly significant, conclusively
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rejecting normality in all cases. This is not surprising in view of the very large sample
sizes (10,000), as even moderate deviations from the tested distribution will be significant,
however the normal QQ plots in Figure 3.6 suggest that these data are not far from being
normally distributed for smaller values of σ.
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Figure 3.6: Normal quantile-quantile plots of the values of the path I(t) for the recurrent
SDE SIS model (3.2.4), for parameter values β = 0.5, N = 100, µ = 20, γ = 25, and
differing values of σ=0.01, 0.005 and 0.001, corresponding to the last three histograms in
Figure 3.5.

3.6 Stationary Distribution

In the previous section we showed that I(t) will fluctuate around the level ξ ∈ (0, N)
with probability 1 when RS

0 > 1. The computer simulations also strongly indicate that
the SDE SIS model (3.2.4) has a stationary distribution. To be more precise, let PI0,t(·)
denote the probability measure induced by I(t) with initial value I(0) = I0, that is

PI0,t(A) = P(I(t) ∈ A), A ∈ B(0, N),

where B(0, N) is the σ-algebra of all the Borel sets A ⊂ (0, N). If there is a probability
measure P∞(·) on the measurable space ((0, N),B(0, N)) such that

PI0,t(·)→ P∞(·) in distribution for any I0 ∈ (0, N) as t→∞,
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we then say that the SDE (3.2.4) has a stationary distribution P∞(·) (see e.g. [44, 69]).
To show the existence of a stationary distribution, let us first cite a known result from
Has’minskii [44, pp.118–123] as a lemma.

Lemma 3.11 The SDE SIS model (3.2.4) has a unique stationary distribution if there is
a strictly proper sub-interval (a, b) of (0, N) such that E(τ) <∞ for all I0 ∈ (0, a]∪ [b,N),
where

τ = inf{t ≥ 0 : I(t) ∈ (a, b)},

and, moreover,

sup
I0∈[ā,b̄]

E(τ) <∞ for every interval [ā, b̄] ⊂ (0, N).

It should be pointed out that in the original Has’minskii theorem, there is one more
condition which states that the square of the diffusion coefficient of the SDE (3.2.4),
namely σ2I2(N − I)2, is bounded away from zero for I ∈ (a, b). But this is obvious for
the SDE, hence there is no point in stating this condition.

Theorem 3.12 If RS
0 > 1, then the SDE SIS model (3.2.4) has a unique stationary

distribution.

Proof. We will use the same notation as used in the proofs of Theorems 3.2 and 3.6. Fix
any 0 < a < ξ < b < N . We observe from (3.5.6)–(3.5.8) that

f(x) ≥ f(0) ∧ f(a) > 0 if 0 < x ≤ a and f(x) ≤ f(b) < 0 if b ≤ x < N. (3.6.1)

Define τ as in Lemma 3.11. For any I0 ∈ (0, a), it then follows from (3.4.3) and (3.6.1)
that

log(a) ≥ E(log(I(τ ∧ t)) ≥ log(I0) + (f(0) ∧ f(a))E(τ ∧ t), ∀t ≥ 0.

Letting t→∞ yields

E(τ) ≤ log(a/I0)

f(0) ∧ f(a)
, ∀I0 ∈ (0, a). (3.6.2)

Similarly, for any I0 ∈ (b,N),

log(b) ≤ E(log(I(τ ∧ t)) ≤ log(I0)− |f(b)|E(τ ∧ t), ∀t ≥ 0.

Letting t→∞ yields

E(τ) ≤ log(N/b)

|f(b)|
, ∀I0 ∈ (b,N). (3.6.3)

The conditions in Lemma 3.11 follow clearly from (3.6.2) and (3.6.3). Hence the SDE SIS
model (3.2.4) has a unique stationary distribution. The proof is complete.

The following theorem gives the mean and variance of the stationary distribution.
Such explicit formulae are particularly useful in the test of computer simulations.
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Theorem 3.13 Assume that RS
0 > 1. Let m and v denote the mean and variance of the

stationary distribution of the SDE SIS model (3.2.4). Then

m =
2β(RS

0 − 1)(µ+ γ)

2β(β − σ2N) + σ2(βN − µ− γ)
(3.6.4)

and

v =
m(βN − µ− γ)

β
−m2. (3.6.5)

Proof. Fix any I0 ∈ (0, N). It follows from (3.2.4) that

I(t) = I0 +

∫ t

0

I(s)[βN − µ− γ − βI(s)]ds+

∫ t

0

σ(N − I(s))dB(s).

Dividing both sides by t, letting t→∞ and applying the ergodic property of the stationary
distribution (see e.g. [44, 62]) and the large number theorem for martingales (Theorem
2.1), we obtain

0 = (βN − µ− γ)m− βm2, (3.6.6)

where m2 denotes the second moment of the stationary distribution. Similarly, dividing
both sides of (3.4.3) by t and letting t→∞ we get

lim
t→∞

log(I(t))

t
= βN − µ− γ − 0.5σ2N2 − (β − σ2N)m− 0.5σ2m2 a.s. (3.6.7)

This, together with Theorem 3.6, implies that

lim
t→∞

log(I(t))

t
= 0 a.s.

Writing βN − µ− γ − 0.5σ2N2 = (RS
0 − 1)(µ+ γ), we then have

0 = (RS
0 − 1)(µ+ γ)− (β − σ2N)m− 0.5σ2m2. (3.6.8)

Substituting (3.6.6) into (3.6.8) yields

0 = (RS
0 − 1)(µ+ γ)− (β − σ2N)m− σ2(βN − µ− γ)m

2β
.

This implies assertion (3.6.4). Moreover, it follows from (3.6.6) that

m2 =
m(βN − µ− γ)

β
.

Hence

v = m2 −m2 =
m(βN − µ− γ)

β
−m2,

which is the other assertion (3.6.5). The proof is therefore complete.
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Example 3.14 We now use the same parameter values β = 0.5, N = 100, µ = 20 and
γ = 25 for both σ = 0.02 and 0.001 and show the results of running 1,000 simulations
of the path I(t) for the recurrent SDE SIS model, for a longer run of 200,000 iterations
with step size ∆ = 0.001, but storing only the last of these I(t) values in each case.
Figure 6.1 shows the histogram of the last 10,000 samples from a single run of 200,000
iterations, beside the histogram of the last I(t) values from each of the 1,000 simulations,
and also the corresponding two empirical cumulative distribution functions (ecdfs), for
comparison, for both values of σ. In each of the two cases, the corresponding histograms
are similar and the ecdfs are close to each other.

The similarity of these distributions in each case of σ may be taken as an illustration
of the existence of the stationary distribution of I(t), and that in the simulations the
probability distribution of I(t) has more or less reached this stationary distribution. From
(3.6.4) and (3.6.5), for these parameter values the mean and variance of the stationary
distribution are 6.493506 and 22.76944 respectively when σ = 0.02, compared to the two
sample means of 7.306251 and 6.557697 and the corresponding unbiased sample variances
of 19.50794 and 23.18525, for the first and second histograms respectively. For σ =
0.001, the mean and variance of the stationary distribution are 9.991898 and 0.08094976,
compared to the two sample means of 10.01330 and 9.98392 and unbiased sample variances
of 0.06149254 and 0.07802619 respectively for the lower two histograms in Figure 3.7.
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Figure 3.7: Histograms of the values of the path I(t) for the recurrent SDE SIS model
(3.2.4) for the last 10,000 samples of a single run of 200,000 iterations (left plot in each
row) and also for the last iteration from each of 1,000 such runs (middle plot in each row),
and the empirical cumulative distribution plot of each of these (right plot in each row;
the black line corresponds to the first histogram and the blue line to the second one), for
parameter values β = 0.5, N = 100, µ = 20, γ = 25, and σ = 0.02 (top row) and σ = 0.001
(bottom row).
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3.7 Two More Realistic Examples

As slightly more realistic examples to illustrate our theory, we suggest two SIS epidemic
models with parameters estimated from actual disease situations. In this section the unit
of time is still one day, but the population values are not scaled as previously:

Model A Gonorrhea amongst homosexuals [47].
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Figure 3.8: Computer simulation of the path I(t) for Model A using the EM method with
step size ∆ = 0.001 and initial value I(0) = 1, 000. The deterministic case means σ = 0,
while for the stochastic case we use (a) σ = 10−6, (b) σ = 10−5, (c) σ = 1.5× 10−5.

In this model, the parameters are given by N = 10, 000, RD
0 = 1.4, µ = (1/(40 ×

365.25))/day = 6.84463 × 10−5/day (average sexually active lifetime), γ = (1/55)/day
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= 0.018182/day (based on Yorke, Hethcote and Nold [94]). Benenson [11] says that
the infectious period is several months, but is not more precise, while Hethcote and
Yorke ([47], Table 5.1) take 1/γ = 20-40 days for men and 80-160 days for women), and
β = (µ+ γ)RD

0 /N = 2.55504× 10−6/day.

Note that RD
0 = 1.4. Hence for the corresponding deterministic SIS model (1.2.1),

we have
lim
t→∞

I(t) = 2, 857

for any initial value I0 ∈ (0, 10, 000). It is also easy to compute, for the SDE SIS model
(3.2.4),

RS
0 = 1.4− 2.739659× 109σ2.

To see the effect of the noise intensity, we consider three different values of σ: 10−6, 10−5

and 1.5× 10−5. The corresponding values of RS
0 are 1.397, 1.126 and 0.784, respectively.

By Theorem 3.6 we see that the SDE SIS model is persistent in the first two cases.
However, in the last case, verifying σ2 = 2.25 × 10−10 < β/N = 2.55504 × 10−10 we
conclude by Theorem 3.2 that the SDE SIS model is extinctive. The computer simulations
shown in Figure 3.8 support these results clearly. Figure 3.9 shows the level ξ and the
value of the mean m in (3.6.4) as a function of σ in the range given by Proposition 3.9.
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Figure 3.9: Plot of level of ξ (solid curve) and the mean m in (3.6.4) (dotted curve) against
the value of σ in the range given in Proposition 3.9, for Model A. The horizontal dotted

lines show the levels 0 and N
(

1− 1
RD0

)
as limiting values for ξ.
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Figure 3.10 shows histograms of the approximate stationary distribution of the two
persistent cases (a) and (b) in Figure 3.8, resulting from the last two million iterations
(last 2,000 days) for case (a) and the last four million iterations (4,000 days) for case (b).
Both appear skewed to the right. The sample mean and unbiased sample variance are
2,901.894 and 31,045.18 respectively for case (a), compared to the theoretical mean and
variance of the stationary distribution of 2,847.062 and 28,522.01 from (3.6.4) and (3.6.5).
For case (b) the sample mean and unbiased sample variance are 1,051.77 and 2,125,489,
compared to 1,354.592 and 2,035,258 from (3.6.4) and (3.6.5).
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Figure 3.10: Histograms of the values of the path I(t) for Model A for Figure 3.8(a) and
3.8(b), using the last two million iterations (2,000 days) for case (a) and the last four
million iterations (4,000 days) for case (b).

Model B Pneumococcus amongst children under 2 years in Scotland (Lamb, Greenhalgh
and Robertson [57]).

In this model, the parameters are given byN = 150,000, γ = 1/(7.1 wk) = 0.02011/day
(Weir [93]), µ = 1/(104 wk) = 1.3736 ×10−3/day, and β = 2.0055 ×10−6/wk = 2.8650
×10−7/day (Zhang et al. [96]). (Farrington [27] has RD

0 = 1.5, which gives β = 2.1486
×10−7/day.)

It is easy to compute RD
0 = 2. Hence for the corresponding deterministic SIS model

(1.2.1), we have
lim
t→∞

I(t) = 75, 000

for any initial value I0 ∈ (0, 150, 000). It is also easy to compute, for the SDE SIS model
(3.2.4),

RS
0 = 2− 5.23655× 1011σ2.

To see the effect of the noise intensity, we consider three different values of σ: 10−6, 1.3×
10−6 and 1.5 × 10−6. The corresponding values of RS

0 are 1.476, 1.115 and 0.822, re-
spectively. By Theorem 3.6 we see that the SDE SIS model is persistent in the first two
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cases. However, in the last case, verifying σ2 = 2.25× 10−12 > (β/N) ∨ (β2/2(µ + γ)) =
1.910347 × 10−12 we conclude by Theorem 3.4 that the SDE SIS model is extinctive.
The computer simulations shown in Figure 3.11 support these results clearly. In Figure
3.11(c) the deterministic simulation goes off the scale but is the same as in the other two
simulations. Figure 3.12 shows the level ξ and the value of the mean m in (3.6.4) as a
function of σ in the range given by Proposition 3.9.
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Figure 3.11: Computer simulation of the path I(t) for Model B using the EM method with
step size ∆ = 0.001 and initial value I(0) = 50, 000. The deterministic case means σ = 0,
while for the stochastic case we use (a) σ = 10−6, (b) σ = 1.3× 10−6, (c) σ = 1.5× 10−6.
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Figure 3.12: Plot of level of ξ (solid curve) and the mean m in (3.6.4) (dotted curve)
against the value of σ in the range given in Proposition 3.9, for Model B. The horizontal

dotted lines show the levels 0 and N
(

1− 1
RD0

)
as limiting values for ξ.

Figure 3.13 shows histograms of the approximate stationary distribution of the two
persistent cases (a) and (b) in Figure 3.11, resulting from the last two million iterations
(the last 2,000 days). The first appears symmetric, the second positively skewed. The
sample mean and unbiased sample variance are 61,448.49 and 647,526,916 respectively
for case (a), compared to the theoretical mean and variance of the stationary distribution
of 58,856.32 and 950,958,848 from (3.6.4) and (3.6.5). For case (b) the sample mean and
unbiased sample variance are 45,633.17 and 1,494,311,814, compared to 25,718.33 and
1,267,792,373 from (3.6.4) and (3.6.5).
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Figure 3.13: Histograms of the values of the path I(t) for Model B for Figure 3.11(a) and
3.11(b), using the last two million iterations (2,000 days) in each case.

3.8 Discussion

Consider the stochastic SIS epidemic model in a neighbourhood of the DFE (I = 0).
Then equation (3.2.4) becomes approximately

dI = [βN − (µ+ γ)]Idt+ σNIdB(t),

with solution

I(t) = I0 exp

[(
βN − (µ+ γ)− 1

2
σ2N2

)
t+ σNB(t)

]
.

Hence as limt→∞ |B(t)|/t = 0 [68] we expect that if

RS
0 =

βN

µ+ γ
− σ2N2

2(µ+ γ)
< 1,

then the approximate solution will die out, but if RS
0 > 1 then the approximate solution

will diverge from the DFE. Thus in this sense RS
0 is the natural interpretation of R0 in

the SDE SIS model (3.2.4), although it is negative unless σ2 < 2β/N .

This is almost what we have shown. Theorems 3.2 and 3.4 show that if either

(i) RS
0 < 1 and σ2 ≤ β

N
or (ii) σ2 >

β

N
∨ β2

2(µ+ γ)
,

the disease will die out, whereas Theorem 3.6 shows that if RS
0 > 1 then the disease will

persist. It is natural to make the following conjecture:
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Conjecture 3.15 If

RS
0 < 1 and

β2

2(µ+ γ)
≥ σ2 >

β

N
, (3.8.1)

then the disease will die out with probability one.

While we have not so far been able to prove this, Example 3.16 provides an illustration
of it.

Example 3.16 We now use the system parameters

β = 0.5, N = 100, µ = 10, γ = 8,

and now let σ = 0.0825, so that condition (3.8.1) is satisfied, and so the SDE SIS model
(3.2.4) becomes

dI(t) = I(t)
(

[32− 0.5I(t)]dt+ 0.0825(100− I(t))dB(t)
)
. (3.8.2)

Figure 3.14 shows two simulations of the path I(t), both becoming extinctive quickly. In
Figure 3.14(b) the deterministic trajectory is as in Figure 3.14(a) although off the scale.
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Figure 3.14: Computer simulation of the path I(t) for the SDE SIS model (3.8.2) and
its corresponding deterministic SIS model (3.4.8), using the EM method with step size
∆ = 0.001, using initial values (a) I(0) = 90 and (b) I(0) = 1.

An alternative approach to including environmental stochasticity outlined by Allen [1]
is to model the per capita disease transmission coefficient as a time dependent stochastic
process β(t). The problem is discretised with a small timestep ∆t so that β(n∆t) follows a
random walk with state-dependent transition probabilities. These transition probabilities
include both a diffusion term which causes the random walk to diverge and a mean-
reverting term which drives the process back to a given mean value, say β0. Under these
assumptions the limiting process as ∆t→ 0, β(t), follows an Ornstein-Uhlenbeck SDE
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dβ = γ(β0 − β)dt+ σdB(t).

This differential equation can be solved exactly and for large times the disease transmission
coefficient is approximately normally distributed with mean β0 and variance σ2/(2γ) [1].

In our method of including environmental stochasticity the total number of poten-
tially infectious contacts between an infected individual and another individual in the
infinitesimally small time interval [t, t+ dt) is given by

β̃dt = β0dt+ σdB(t)

(where β̃ is as in section 3.2 and β0 is the given value as above) which implies that∫ t

0

β̃dt = β0t+ σB(t)

i.e. the total number of potentially infectious contacts between them in [0, t) has a normal
distribution with mean β0t and variance σ2t. This is a well-established method [26, 29,
33, 38, 58, 63, 90], although both methods are biologically reasonable.

One way to compare the two approaches for including environmental stochastici-
ty in the disease transmission coefficient β̃ is to consider the average value of the pa-
rameter β̃ over a small time interval ∆t, i.e., let βa = 1

∆t

∫ t+∆t

t
β̃dt for large time t.

The well-established method used in this chapter gives mean E(βa) = β0 with vari-
ance V (βa) = σ2/∆t that blows up as ∆t goes to zero. However, the method us-
ing an Ornstein-Uhlenbeck SDE gives the same mean E(βa) = β0 but with variance
V (βa) = σ2/(2γ) +O(∆t) that approaches the constant value σ2/(2γ) as ∆t goes to zero.

In this chapter we have looked at an SDE version of the classical SIS epidemic model,
with noise introduced in the disease transmission term. We showed that the SDE had a
unique positive global solution and established conditions for extinction and persistence
of disease. A key parameter was the basic reproduction number RS

0 , which was less than
the corresponding deterministic version RD

0 . Theorems 3.2 and 3.4 show that if RS
0 ≤ 1,

under mild extra conditions the disease would die out. Theorem 3.6 shows that if RS
0 > 1

then the disease will persist. We also showed (Theorem 3.12) that if RS
0 > 1 then the

model has a unique stationary distribution and derived expressions for its mean and
variance (Theorem 3.13). We made a conjecture about the disease behaviour if RS

0 ≤ 1
and the conditions of Theorems 3.2 and 3.4 are not satisfied. Throughout the chapter
we have illustrated our theoretical results with computer simulations, including two sets
with realistic parameter values for gonorrhea amongst homosexuals and pneumococcus
amongst young children.

Most of the contents of this chapter have been published in [39]. In the next chapter
we examine the effect of telegraph noise on the SIS epidemic model.
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Chapter 4

The SIS Epidemic Model with
Markovian Switching

4.1 Introduction

We still consider the SIS epidemic model (1.2.1) in this chapter. All the details about
the SIS epidemic model can be found in section 1.2 including the solutions of the system
(1.2.2) and the basic reproduction number RD

0 (1.2.3). In this chapter we will discuss the
effect of telegraph noise on the SIS epidemic model. Recall that telegraph noise can be
illustrated as a switching between two or more regimes of environment. The switching
is memoryless and the waiting time for the next switch has an exponential distribution,
which can be modelled by a finite state Markov chain. In section 1.3.3 we used an example
of a predator-prey Lotka-Volterra (LV) model to explain the significant effect of telegraph
noise on the biological model, and also, we briefly reviewed the existing literature regarding
the Markovian environments in the fields of biology. Motivated by these, we examine the
effect of telegraph noise in the SIS epidemic model.

It is easy to see that I(t) in (1.2.1) obeys the scalar Lotka–Volterra model

dI(t)

dt
= I(t)[βN − µ− γ − βI(t)], (4.1.1)

which has the explicit solution as equation (1.2.2).

And we can conclude (see e.g. [86]):

• If RD
0 ≤ 1, limt→∞ I(t) = 0.

• If RD
0 > 1, limt→∞ I(t) = βN−µ−γ

β
. In this case, I(t) will monotonically decrease or

increase to βN−µ−γ
β

if I(0) > βN−µ−γ
β

or < βN−µ−γ
β

, respectively, while I(t) ≡ βN−µ−γ
β

if I(0) = βN−µ−γ
β

.

Taking into account the environmental noise, the system parameters µ, β and γ may
experience abrupt changes. In the same fashion as in Takeuchi et al. [87], we may model
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these abrupt changes by a Markov chain. As a result, the classical SIS model (1.2.1)
evolves to a stochastic SIS model with Markovian switching of the form{

dS(t)
dt

= µr(t)N − βr(t)S(t)I(t) + γr(t)I(t)− µr(t)S(t),
dI(t)
dt

= βr(t)S(t)I(t)− (µr(t) + γr(t))I(t),
(4.1.2)

where r(t) is a Markov chain with a finite state space. The main aim of this chapter
is to discuss the effect of the noise in the form of Markov switching. This chapter is
organised as follows: To make the theory more understandable, we begin with the special
case where the Markov chain has only two states as in Takeuchi et al. [87]. In section 4.2,
we establish the explicit solution of the stochastic SIS epidemic model, which is useful in
performing computer simulations. In sections 4.3, 4.4 and 4.5 we establish the conditions
for extinction and persistence for the stochastic SIS epidemic model and compare these
with the corresponding conditions for the deterministic SIS epidemic model. In section 4.6,
we perform computer simulations based on the explicit solution and the Euler–Maruyama
scheme to illustrate our theory. We then generalise our theory to the general case where
the Markov chain has a finite number of states, M , in section 4.7. We then include a more
realistic example using appropriate parameter values for the spread of S.Pneumoniae in
children in section 4.8. We draw a conclusion for this chapter in section 4.9.

4.2 SIS Model with Markovian Switching

Throughout this chapter, we let (Ω,F , {Ft}t≥0,P) be a complete probability space with a
filtration {Ft}t≥0 satisfying the usual conditions. We first define the Markovian switching
for our model (4.1.2). Recall that we give the background knowledge about Markov
chains in section 2.4, which will be very useful here. Let r(t), t ≥ 0, be a right-continuous
Markov chain on the probability space taking values in the state space S = {1, 2} with
the generator

Γ =

(
−ν12 ν12

ν21 − ν21

)
.

Here ν12 > 0 is the transition rate from state 1 to 2, while ν21 > 0 is the transition rate
from state 2 to 1, that is

P{r(t+ δ) = 2|r(t) = 1} = ν12δ + o(δ) and P{r(t+ δ) = 1|r(t) = 2} = ν21δ + o(δ),

where δ > 0. We know from the review in section 2.4 that almost every sample path of
r(·) is a right continuous step function with a finite number of sample jumps in any finite
subinterval of R+. More precisely, there is a sequence {τk}k≥0 of finite-valued Ft-stopping
times such that 0 = τ0 < τ1 < · · · < τk →∞ almost surely and

r(t) =
∞∑
k=0

r(τk)I[τk,τk+1)(t). (4.2.1)

Moreover, given that r(τk) = 1, the random variable τk+1 − τk follows the exponential
distribution with parameter ν12, namely

P(τk+1 − τk ≥ T |r(τk) = 1) = e−ν12T , ∀T ≥ 0,
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while given that r(τk) = 2, τk+1 − τk follows the exponential distribution with parameter
ν21, namely

P(τk+1 − τk ≥ T |r(τk) = 2) = e−ν21T , ∀T ≥ 0.

The sample paths of the Markov chain can therefore be simulated easily using these
exponential distributions (we will illustrate this in section 4.6 below). Furthermore, this
Markov chain has a unique stationary distribution Π = (π1, π2) given by

π1 =
ν21

ν12 + ν21

, π2 =
ν12

ν12 + ν21

. (4.2.2)

Now we return to the stochastic SIS epidemic model (4.1.2). We assume that the
system parameters βi, µi, γi (i ∈ S) are all positive numbers. Given that I(t) + S(t) = N ,
we see that I(t), the number of infectious individuals, obeys the stochastic Lotka–Volterra
model with Markovian switching given by

dI(t)

dt
= I(t)[αr(t) − βr(t)I(t)], (4.2.3)

where
αi := βiN − µi − γi, i ∈ S. (4.2.4)

It is sufficient to study equation (4.2.3) in order to understand the full dynamics of the
stochastic SIS epidemic model (4.1.2), hence we will concentrate on this equation only in
the remainder of this chapter. The following theorem shows that this equation has an
explicit solution for any given initial value in (0, N).

Theorem 4.1 For any given initial value I(0) = I0 ∈ (0, N), there is a unique solution
I(t) on t ∈ R+ to equation (4.2.3) such that

P(I(t) ∈ (0, N) for all t ≥ 0) = 1.

Moreover, the solution has the explicit form

I(t) =
exp

( ∫ t
0
αr(s)ds

)
1
I0

+
∫ t

0
exp

( ∫ s
0
αr(u)du

)
βr(s)ds

. (4.2.5)

Proof. Fix any sample path of the Markov chain. Without loss of generality we may
assume that this sample path has its initial value r(0) = 1, as the proof is the same if
r(0) = 2. We first observe from (4.2.1) that r(t) = 1 for t ∈ [τ0, τ1). Hence equation
(4.2.3) becomes

dI(t)

dt
= I(t)[α1 − β1I(t)]

on t ∈ [τ0, τ1). But this equation has a unique solution on the entire set of t ∈ R+ and the
solution will remain within (0, N). Hence the solution of equation (4.2.3), I(t), is uniquely
determined on t ∈ [τ0, τ1) and, by continuity, for t = τ1 as well. Obtaining I(τ1) ∈ (0, N),
we further consider equation (4.2.3) for t ∈ [τ1, τ2), which has the form

dI(t)

dt
= I(t)[α2 − β2I(t)].
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This equation has a unique solution on t ≥ τ1 and the solution will remain within (0, N).
Hence the solution of equation (4.2.3), I(t), is uniquely determined on t ∈ [τ1, τ2) and, by
continuity, for t = τ2 as well. Repeating this procedure, we see that equation (4.2.3) has
a unique solution I(t) on t ∈ R+ and the solution remains within (0, N) with probability
one.

After showing I(t) ∈ (0, N), we may define

y(t) =
1

I(t)
, t ≥ 0,

in order to obtain the explicit solution. Compute

dy(t)

dt
= − 1

I(t)2

dI(t)

dt

= − 1

I(t)2
I(t)(αr(t) − βr(t)I(t))

= βr(t) −
αr(t)
I(t)

= βr(t) − αr(t)y(t).

By the well-known variation-of-constants formula (Theorem 2.18), we have

y(t) = Φ(t)
(
y(0) +

∫ t

0

Φ−1(s)βr(s) ds
)
,

where Φ(t) = e−
∫ t
0 αr(s) ds. This yields the desired explicit solution (4.2.5) immediately.

4.3 The Basic Reproduction Number

Naturally we wish to examine the behaviour of the stochastic SIS epidemic model (4.2.3)
and we may ask what is the corresponding basic reproduction number RS

0 . Recall in
section 1.2 that the basic reproduction number is the expected number of secondary cases
caused by a single newly-infected case entering the disease-free population at equilibrium.

In our case the disease-free equilibrium (DFE) is S = N, I = 0. The individuals can
be divided into two types, those who arrive when r(t) = 1, and those that arrive when
r(t) = 2. Suppose that a newly infected individual enters the DFE when the Markov
chain is in state 1. Then the next events that can happen are that the individual dies at
rate µ1, recovers at rate γ1 or the Markov chain switches at rate ν12. Hence the expected
number of individuals infected before the first switch is

β1N

µ1 + γ1 + ν12

.

The expected number of individuals infected between the first and second switches is

ν12

µ1 + γ1 + ν12

β2N

µ2 + γ2 + ν21
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and between the second and third switches

ν21

µ2 + γ2 + ν21

ν12

µ1 + γ1 + ν12

β1N

µ1 + γ1 + ν12

= p
β1N

µ1 + γ1 + ν12

where p =
ν12ν21

(µ1 + γ1 + ν12)(µ2 + γ2 + ν21)
.

Hence this individual infects in total

m11 =
β1N

µ1 + γ1 + ν12

(1 + p+ p2 + . . . ) =
β1N

µ1 + γ1 + ν12

1

1− p

individuals while the Markov chain is in state 1 and

m12 =
ν12

µ1 + γ1 + ν12

β2N

µ2 + γ2 + ν21

1

1− p

individuals while the Markov chain is in state 2.

Similarly we can derive the expected number of individuals infected by a single newly
infected individual entering the DFE when the Markov chain is in state 2. We deduce
that the next generation matrix giving the expected number of secondary cases caused
by a single newly infected individual entering the DFE is(

m11 m12

m21 m22

)
=

1

1− p

(
a1 p1a2

p2a1 a2

)
,

where a1 =
β1N

µ1 + γ1 + ν12

, a2 =
β2N

µ2 + γ2 + ν21

, p1 =
ν12

µ1 + γ1 + ν12

and

p2 =
ν21

µ2 + γ2 + ν21

.

The basic reproduction number for the stochastic epidemic model is the largest eigen-
value of this matrix

R̃S
0 =

a1 + a2 +
√

(a1 + a2)2 − 4a1a2(1− p)
2(1− p)

. (4.3.1)

However we do not pursue this further here.

4.4 Extinction

In this section we will establish extinction conditions. Recall that for the deterministic
SIS epidemic model (4.1.1), the basic reproduction number RD

0 was also the threshold
between disease extinction and persistence, with extinction for RD

0 ≤ 1 and persistence
for RD

0 > 1. Recall in section 2.7 for the stochastic model, there are different types of
extinction and persistence, for example almost sure extinction, extinction in mean square
and extinction in probability. In the rest of this chapter we examine a threshold
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T S0 =
π1β1N + π2β2N

π1(µ1 + γ1) + π2(µ2 + γ2)
(4.4.1)

for almost sure extinction or persistence of our stochastic epidemic model. However
this threshold is different to R̃S

0 (4.3.1) which might be more relevant to other types of
extinction or persistence with different conditions.

We will see later that the stochastic SIS model (4.2.3) will become extinct with
probability one if T S0 < 1. Before we state this result, let us state a proposition which
gives an equivalent condition for T S0 < 1 in terms of the system parameters αi and the
stationary distribution of the Markov chain.

Proposition 4.2 We have the following alternative condition on the value of T S0 :

• T S0 < 1 if and only if π1α1 + π2α2 < 0;

• T S0 = 1 if and only if π1α1 + π2α2 = 0;

• T S0 > 1 if and only if π1α1 + π2α2 > 0.

The proof of this proposition is straightforward, so is omitted. We can now state our
theory on extinction.

Theorem 4.3 If T S0 < 1, then, for any given initial value I0 ∈ (0, N), the solution of the
stochastic SIS epidemic model (4.2.3) obeys

lim sup
t→∞

1

t
log(I(t)) ≤ α1π1 + α2π2 a.s. (4.4.2)

By Proposition 4.2, we hence conclude that I(t) tends to zero exponentially almost surely.
In other words, the disease dies out with probability one.

Proof. It is easy to see that

d log(I(t))

dt
= αr(t) − βr(t)I(t). (4.4.3)

This implies that, for any t > 0,

log(I(t))

t
≤ log(I(0))

t
+

1

t

∫ t

0

αr(s)ds,

since βr(t) > 0 and I(t) ∈ (0, N). Letting t→∞ we hence obtain

lim sup
t→∞

1

t
log(I(t)) ≤ lim sup

t→∞

1

t

∫ t

0

αr(s)ds.

However, by the ergodic theory of the Markov chain (see e.g. [3]) we have

lim
t→∞

1

t

∫ t

0

αr(s)ds = α1π1 + α2π2 a.s.
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We therefore must have

lim sup
t→∞

1

t
log(I(t)) ≤ α1π1 + α2π2 a.s.,

as required.

Let us now make a few comments. First of all, let us recall that the stochastic SIS
model (4.2.3) can be regarded as the result of the following two subsystems:

dI(t)

dt
= I(t)[α1 − β1I(t)] (4.4.4)

and
dI(t)

dt
= I(t)[α2 − β2I(t)], (4.4.5)

switching from one to the other according to the law of the Markov chain. If both α1 < 0
and α2 < 0, then the corresponding RD

0 values for both subsystems (4.4.4) and (4.4.5) are
less than 1, whence both subsystems become extinct. In this case, T S0 for the stochastic
SIS model (4.2.3) is less than one, hence it will become extinct, and of course this is
not surprising. However, if only one of α1 and α2 is negative, say α1 < 0 and α2 > 0,
for example, one subsystem (4.4.4) becomes extinct but the other (4.4.5) is persistent.
However, if the rate of the Markov chain switching from state 2 to 1 is relatively faster
than that from 1 to 2, so that α1π1 +α2π2 < 0, then the overall system (4.2.3) will become
extinct. This reveals the important role of the Markov chain in the extinction.

We next recall that in the deterministic SIS model (4.1.1) the disease will always go
extinct even if RD

0 = 1. The reader may ask what happens to the stochastic SIS model
(4.2.3) if the corresponding T S0 = 1. Although we have a strong feeling that the disease
will always become extinct, we have not been able to prove it so far. In Section 4.6.3 we
show some simulations to illustrate this case.

4.5 Persistence

Let us now turn to the case when T S0 > 1. The following theorem shows that the disease
will be persistent in this case.

Theorem 4.4 If T S0 > 1, then, for any given initial value I0 ∈ (0, N), the solution of the
stochastic SIS model (4.2.3) has the properties that

lim inf
t→∞

I(t) ≤ π1α1 + π2α2

π1β1 + π2β2

a.s. (4.5.1)

and

lim sup
t→∞

I(t) ≥ π1α1 + π2α2

π1β1 + π2β2

a.s. (4.5.2)

In other words, the disease will reach the neighbourhood of the level π1α1+π2α2

π1β1+π2β2
infinitely

many times with probability one.
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Proof. Let us first prove assertion (4.5.1). If this were not true, then we can find an
ε > 0 sufficiently small for P(Ω1) > 0 where

Ω1 =

{
ω ∈ Ω : lim inf

t→∞
I(t) >

π1α1 + π2α2

π1β1 + π2β2

+ ε

}
. (4.5.3)

On the other hand, by the ergodic theory of the Markov chain, we have that P(Ω2) = 1,
where for any ω ∈ Ω2,

lim
t→∞

1

t

∫ t

0

(
αr(s)−βr(s)

[π1α1 + π2α2

π1β1 + π2β2

+ ε
])
ds

= π1

(
α1 − β1

[π1α1 + π2α2

π1β1 + π2β2

+ ε
])

+ π2

(
α2 − β2

[π1α1 + π2α2

π1β1 + π2β2

+ ε
])

= −(π1β1 + π2β2)ε. (4.5.4)

Now consider any ω ∈ Ω1 ∩ Ω2. Then there is a positive number T = T (ω) such that

I(t) ≥ π1α1 + π2α2

π1β1 + π2β2

+ ε ∀t ≥ T.

It then follows from (4.4.3) that

log(I(t)) ≤ log(I0) +

∫ T

0

(αr(s) − βr(s)I(s))ds+

∫ t

T

(
αr(s) − βr(s)

[π1α1 + π2α2

π1β1 + π2β2

+ ε
])
ds

for all t ≥ T . Dividing both sides by t and then letting t→∞, we obtain that

lim sup
t→∞

1

t
log(I(t)) ≤ −(π1β1 + π2β2)ε,

where (4.5.4) has been used. This implies that

lim
t→∞

I(t) = 0.

But this contradicts (5.2.3). The required assertion (4.5.1) must therefore hold.

The procedure to prove assertion (4.5.2) is very similar. In fact if (4.5.2) were not
true, we can then find an ε > 0 sufficiently small for P(Ω3) > 0, where

Ω3 =

{
ω ∈ Ω : lim sup

t→∞
I(t) <

π1α1 + π2α2

π1β1 + π2β2

− ε
}
. (4.5.5)

By the ergodic theory we also have that P(Ω4) = 1, where for any ω ∈ Ω4,

lim
t→∞

1

t

∫ t

0

(
αr(s)−βr(s)

[π1α1 + π2α2

π1β1 + π2β2

− ε
])
ds

= π1

(
α1 − β1

[π1α1 + π2α2

π1β1 + π2β2

− ε
])

+ π2

(
α2 − β2

[π1α1 + π2α2

π1β1 + π2β2

− ε
])

= (π1β1 + π2β2)ε. (4.5.6)
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If we consider any ω ∈ Ω3 ∩ Ω4, there is a positive number T = T (ω) such that

I(t) ≤ π1α1 + π2α2

π1β1 + π2β2

− ε ∀t ≥ T.

From (4.4.3) we have that

log(I(t)) ≥ log(I0) +

∫ T

0

(αr(s) − βr(s)I(s))ds+

∫ t

T

(
αr(s) − βr(s)

[π1α1 + π2α2

π1β1 + π2β2

− ε
])
ds

for all t ≥ T . Dividing both sides by t and then letting t→∞ while using (4.5.6) as well,
we obtain that

lim inf
t→∞

1

t
log(I(t)) ≥ (π1β1 + π2β2)ε.

This implies that
lim
t→∞

I(t)→∞,

which contradicts (4.5.5). Therefore assertion (4.5.2) must hold.

To reveal more properties of the stochastic SIS model, we observe from Proposition
4.2 that T S0 > 1 is equivalent to the condition that π1α1 +π2α2 > 0. This may be divided
into two cases: (a) both α1 and α2 are positive; and (b) only one of α1 and α2 is positive.
Without loss of generality, we may assume that 0 < α1/β1 = α2/β2 or 0 < α1/β1 < α2/β2

in Case (a), while α1/β1 ≤ 0 < α2/β2 in Case (b). So there are three different cases to
be considered under condition T S0 > 1. Let us present a lemma in order to show another
new result.

Lemma 4.5 The following statements hold with probability one:

(i) If 0 < α1/β1 = α2/β2, then I(t) = α1/β1 for all t > 0 when I0 = α1/β1.

(ii) If 0 < α1/β1 < α2/β2, then I(t) ∈ (α1/β1, α2/β2) for all t > 0 whenever I0 ∈
(α1/β1, α2/β2).

(iii) If α1/β1 ≤ 0 < α2/β2, then I(t) ∈ (0, α2/β2) for all t > 0 whenever I0 ∈ (0, α2/β2).

Proof. Case (i) is obvious. To prove Case (ii), we may assume, without loss of generality,
that r(0) = 1. Recalling (4.2.1) and the properties of the deterministic SIS model (4.1.1)
which we stated in section 4.1, we see that I(t) will monotonically decrease during the
time interval [τ0, τ1] but never reach α1/β1, whence I(t) ∈ (α1/β1, α2/β2). At time τ1,
the Markov chain switches to state 2 and will not jump to state 1 until time τ2. During
this time interval [τ1, τ2], I(t) will monotonically increase but never reach α2/β2, whence
I(t) ∈ (α1/β1, α2/β2) again. Repeating this argument, we see that I(t) will remain within
(α1/β1, α2/β2) forever. Similarly, we can show Case (iii).

In the following study we will use the Markov property of the solutions (see section
2.4). For this purpose, let us denote by PI0,r0 the conditional probability measure gener-
ated by the pair of processes (I(t), r(t)) given the initial condition (I(0), r(0)) = (I0, r0) ∈
(0, N)× S.
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Theorem 4.6 Assume that T S0 > 1 and let I0 ∈ (0, N) be arbitrary. The following
statements hold with probability one:

(i) If 0 < α1/β1 = α2/β2, then limt→∞ I(t) = α1/β1.

(ii) If 0 < α1/β1 < α2/β2, then

α1

β1

≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤ α2

β2

.

(iii) If α1/β1 ≤ 0 < α2/β2, then

0 ≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤ α2

β2

.

Proof. Case (i). If I0 = α1/β1, then I(t) = α1/β1 for all t ≥ 0, whence the assertion
holds. If I0 < α1/β1, it is easy to see that I(t) increases monotonically on t ≥ 0, hence
limt→∞ I(t) exists. By Theorem 4.4, we therefore have

lim
t→∞

I(t) =
π1α1 + π2α2

π1β1 + π2β2

a.s.

But, given α1/β1 = α2/β2, we compute

π1α1 + π2α2

π1β1 + π2β2

=
π1α1 + π2α1β2/β1

π1β1 + π2β2

=
α1

β1

.

We therefore have limt→∞ I(t) = α1/β1 a.s. Similarly, we can show this for I0 > α1/β1.

Case (ii). If I0 ∈ (α1/β1, α2/β2), then the assertion follows from Lemma 4.5 directly.
Let us now assume that I0 ≥ α2/β2. Given 0 < α1/β1 < α2/β2, it is easy to show that

α1

β1

<
π1α1 + π2α2

π1β1 + π2β2

<
α2

β2

.

Consider a number

κ ∈
(π1α1 + π2α2

π1β1 + π2β2

,
α2

β2

)
,

and define the stopping time

ρκ = inf{t ≥ 0 : I(t) ≤ κ}.

By Theorem 4.4 we have
P(ρk <∞) = 1,

while by the continuity of I(t) we have I(ρκ) = κ. Set

Ω̄ =
{
α1/β1 ≤ lim inf

t→∞
I(t) ≤ lim sup

t→∞
I(t) ≤ α2/β2

}
and denote its indicator function by IΩ̄. By the strong Markov property, we compute

P(Ω̄) = E(IΩ̄) = E(E(IΩ̄|Fρκ)) =

E(E(IΩ̄|I(ρκ), r(ρκ))) = E(PI(ρκ),r(ρκ)(Ω̄)) = E(Pκ,r(ρκ)(Ω̄)).
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But, by Lemma 4.5, Pκ,r(ρκ)(Ω̄) = 1 and hence we have P(Ω̄) = 1 as required. Similarly,
we can show that P(Ω̄) = 1 for I0 ≤ α1/β1.

Case (iii). It is obvious that 0 ≤ lim inft→0 I(t), while the assertion that lim inft→0 I(t)
≤ α2/β2 can be proved in the same way as Case (ii) was proved. The proof is therefore
complete.

Under the condition T S0 > 1, the theorem above shows precisely that I(t) will tend
to α1/β1 with probability one if α1/β1 = α2/β2. However, it is quite rare to have α1/β1 =
α2/β2 in practice. It is therefore more useful to study the case when, say, α1/β1 < α2/β2

in a bit more detail. In the proof above, we have in fact shown a slightly stronger result
than Theorem 4.6 states, namely we have shown that

P(I(t) ∈ (0 ∨ (α1/β1), α2/β2) for all t ≥ ρκ) = 1. (4.5.7)

It would be interesting to find out how I(t) will vary within the interval (0∨(α1/β1), α2/β2)
in the long term. The following theorem shows that I(t) can take any value up to the
boundaries of the interval infinitely many times (though never reach them) with positive
probability.

Theorem 4.7 Assume that T S0 > 1 and 0 < α1

β1
< α2

β2
, and let I0 ∈ (0, N) be arbitrary.

Then for any ε > 0, sufficiently small for

α1

β1

+ ε <
π1α1 + π2α2

π1β1 + π2β2

<
α2

β2

− ε,

the solution of the stochastic SIS epidemic model (4.2.3) has the properties that

P
(

lim inf
t→∞

I(t) <
α1

β1

+ ε
)
≥ e−ν12T1(ε), (4.5.8)

and
P
(

lim sup
t→∞

I(t) >
α2

β2

− ε
)
≥ e−ν21T2(ε), (4.5.9)

where T1(ε) > 0 and T2(ε) > 0 are defined by

T1(ε) =
1

α1

(
log
(β1

α1

− β2

α2

)
+ log

(α1

β1

+ ε
)
− log

(εβ1

α1

))
(4.5.10)

and

T2(ε) =
1

α2

(
log
(β1

α1

− β2

α2

)
+ log

(α2

β2

− ε
)
− log

(εβ2

α2

))
. (4.5.11)

Proof. Let T > 0 be arbitrary. Define the stopping time

σ1 = inf{t ≥ T : I(t) ∈ (α1/β1 + ε, α2/β2 − ε)}.

By Theorem 4.4, we have P(σ1 < ∞) = 1, while we see from the proof of Theorem 4.6
that

P(I(t) ∈ (α1/β1, α2/β2) for all t ≥ σ1) = 1. (4.5.12)
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To prove assertion (4.5.8), we define another stopping time

σ2 = inf{t ≥ σ1 : r(t) = 1}.

Clearly, P(σ2 < ∞) = 1 and by the right-continuity of the Markov chain, r(σ2) = 1. By
the memoryless property of an exponential distribution, the probability that the Markov
chain will not jump to state 2 before σ2 + T1(ε) is

P(Ω1) = e−ν12T1(ε), (4.5.13)

where Ω1 = {r(σ2 + t) = 1 for all t ∈ [0, T1(ε)]}. Now, consider any ω ∈ Ω1 and consider
I(t) on t ∈ [σ2, σ2 + T1(ε)]. Note that it obeys the differential equation

dI(t)

dt
= I(t)(α1 − β1I(t)),

with initial value I(σ2) ∈ (α1/β1, α2/β2). By the explicit solution of this equation (1.2.2),
we have

I(σ2 + T1(ε)) =
[
e−α1T1(ε)

( 1

I(σ2)
− β1

α1

)
+
β1

α1

]−1

.

On the other hand, by (4.5.10), we have[
e−α1T1(ε)

(β2

α2

− β1

α1

)
+
β1

α1

]−1

=
α1

β1

+ ε.

Since I(σ2) < α2/β2, we must therefore have

I(σ2 + T1(ε)) <
α1

β1

+ ε.

Consequently

P
(

inf
T≤t<∞

I(t) <
α1

β1

+ ε
)
≥ P(Ω1) = e−ν12T1(ε). (4.5.14)

Noting that (
lim inf
t→∞

I(t) <
α1

β1

+ ε
)

=
⋂

0<T<∞

(
inf

T≤t<∞
I(t) <

α1

β1

+ ε
)
,

we can let T → ∞ in (4.5.14) to obtain assertion (4.5.8). Similarly, we can prove the
other assertion (4.5.9).

Theorem 4.8 Assume that T S0 > 1 (namely π1α1 + π2α2 > 0) and α1

β1
≤ 0 < α2

β2
. Let

I0 ∈ (0, N) be arbitrary. Then for any ε > 0, sufficiently small for

ε <
π1α1 + π2α2

π1β1 + π2β2

<
α2

β2

− ε,

the solution of the stochastic SIS model (4.2.3) has the properties that

P
(

lim inf
t→∞

I(t) < ε
)
≥ e−ν12T3(ε), (4.5.15)
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and
P
(

lim sup
t→∞

I(t) >
α2

β2

− ε
)
≥ e−ν21T4(ε), (4.5.16)

where T3(ε) > 0 and T4(ε) > 0 are defined by

T3(ε) =
1

α1

(
log
(β2

α2

− β1

α1

)
− log

(1

ε
− β1

α1

))
(4.5.17)

and

T4(ε) =
1

α2

(
log
(2

ε
− β2

α2

)
+ log

(α2

β2

− ε
)
− log

(
ε
β2

α2

))
. (4.5.18)

Proof. Let T > 0 be arbitrary. Define the stopping time

σ3 = inf{t ≥ T : I(t) ∈ (ε, α2/β2 − ε)}.

By Theorem 4.4, we have P(σ3 < ∞) = 1, while we see from the proof of Theorem 4.6
that

P(I(t) ∈ (0, α2/β2) for all t ≥ σ3) = 1. (4.5.19)

To prove assertion (4.5.15), we define another stopping time

σ4 = inf{t ≥ σ3 : r(t) = 1}.

Clearly, P(σ4 < ∞) = 1 and by the right-continuity of the Markov chain, r(σ4) = 1. By
the memoryless property of an exponential distribution, the probability that the Markov
chain will not jump to state 2 before σ4 + T3(ε) is

P(Ω2) = e−ν12T3(ε), (4.5.20)

where Ω2 = {r(σ4 + t) = 1 for all t ∈ [0, T3(ε)]}. Now, consider any ω ∈ Ω2 and consider
I(t) on t ∈ [σ4, σ4 + T3(ε)]. Note that it obeys the differential equation

dI(t)

dt
= I(t)(α1 − β1I(t)),

with initial value I(σ4) ∈ (0, α2/β2). By the explicit solution of this equation (1.2.2), we
have

I(σ4 + T3(ε)) =
[
e−α1T3(ε)

( 1

I(σ4)
− β1

α1

)
+
β1

α1

]−1

.

On the other hand, by (4.5.17), we have[
e−α1T3(ε)

(β2

α2

− β1

α1

)
+
β1

α1

]−1

= ε.

Since I(σ4) < α2/β2, we must therefore have

I(σ4 + T1(ε)) < ε.

Consequently

P
(

inf
T≤t<∞

I(t) < ε
)
≥ P(Ω2) = e−ν12T3(ε). (4.5.21)
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Noting that (
lim inf
t→∞

I(t) < ε
)

=
⋂

0<T<∞

(
inf

T≤t<∞
I(t) < ε

)
,

we can let T →∞ in (4.5.21) to obtain assertion (4.5.15).

To prove the other assertion (4.5.16) we define the stopping time

σ5 = inf{t ≥ T : r(t) = 2},

where T > 0 is arbitrary. Clearly P(σ5 <∞) = 1. We define another stopping time

σ6 = inf
{
t ≥ σ5 : r(t) = 2, I(t) ≥ 1

2

(π1α1 + π2α2

π1β1 + π2β2

)}
.

Suppose that I(t) < 1
2

(
π1α1+π2α2

π1β1+π2β2

)
when t = σ5, I(t) will eventually increase across this

level by Theorem 4.4. Note that I(t) increases monotonically when r(t) = 2 whilst it
decreases monotonically when r(t) = 1. If r(t) switches back to state 1 before I(t)
increases over this level and starts decreasing, since the lim supt→∞ I(t) ≥ π1α1+π2α2

π1β1+π2β2
, I(t)

will increase across this level later on i.e. r(t) = 2 when I(t)=1
2

(
π1α1+π2α2

π1β1+π2β2

)
. Therefore

we have P(σ6 <∞) = 1. And by the right-continuity of the Markov chain, r(σ6) = 2. By
the memoryless property of an exponential distribution, the probability that the Markov
chain will not jump to state 1 before σ6 + T4(ε) is

P(Ω3) = e−ν21T4(ε), (4.5.22)

where Ω3 = {r(σ6 + t) = 2 for all t ∈ [0, T4(ε)]}. Now, consider any ω ∈ Ω3 and consider
I(t) on t ∈ [σ6, σ6 + T4(ε)]. Note that it obeys the differential equation

dI(t)

dt
= I(t)(α2 − β2I(t)),

with initial value I(σ6) ≥ 1
2

(
π1α1+π2α2

π1β1+π2β2

)
> ε

2
. By the explicit solution of this equation

(1.2.2), we have

I(σ6 + T4(ε)) =
[
e−α2T4(ε)

( 1

I(σ6)
− β2

α2

)
+
β2

α2

]−1

.

On the other hand, by (4.5.18), we have[
e−α2T4(ε)

(2

ε
− β2

α2

)
+
β2

α2

]−1

=
α2

β2

− ε.

Since I(σ6) > ε
2
, we must therefore have

I(σ6 + T4(ε)) >
α2

β2

− ε.

Consequently

P
(

sup
T≤t<∞

I(t) >
α2

β2

− ε
)
≥ P(Ω3) = e−ν21T4(ε). (4.5.23)
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Noting that (
lim sup
t→∞

I(t) >
α2

β2

− ε
)

=
⋂

0<T<∞

(
sup

T≤t<∞
I(t) >

α2

β2

− ε
)
,

we can let T →∞ in (4.5.23) to obtain assertion (4.5.16).

Define

RD
01 =

β1N

µ1 + γ1

and RD
02 =

β2N

µ2 + γ2

.

Note that if αj > 0 then RD
0j > 1 for j = 1, 2 and

αj
βj

= N

(
1− 1

RD
0j

)
is the endemic level of disease after a long time in the SIS model (1.2.1) with β = βj, µ =
µj and γ = γj. If α1 ≤ 0 then RD

01 ≤ 1 and disease eventually dies out in the corresponding
SIS model. So in general in the first model the disease prevalence eventually approaches
0∨ (α1/β1) and in the second model the disease prevalence eventually approaches α2/β2.
These are the two levels between which the disease oscillates in the Markov chain switching
model.

4.6 Simulations

In this section we shall assume that all parameters are given in appropriate units as in
Chapter 3.

4.6.1 Extinction case

Example 4.9 Assume that the system parameters are given by

µ1 = 0.45, µ2 = 0.05, γ1 = 0.35, γ2 = 0.15, β1 = 0.001, β2 = 0.004, N = 100,

ν12 = 0.6, and ν21 = 0.9.

So α1 = −0.7, α2 = 0.2, π1 = 0.6, and π2 = 0.4 (see section 4.2 for definitions).

Noting that
α1π1 + α2π2 = −0.34,

we can therefore conclude, by Theorem 4.3, that for any given initial value I(0) = I0 ∈
(0, N), the solution of (4.2.3) obeys

lim sup
t→∞

1

t
log(I(t)) ≤ −0.34 < 0 a.s.

That is, I(t) will tend to zero exponentially with probability one.
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The computer simulation in Figure 4.1(a) supports this result clearly, illustrating
extinction of the disease. Furthermore, α1 < 0 while α2 > 0 in this case, which means
that one subsystem dies out while the other subsystem is persistent. Figure 4.1(a) shows
some decreasing then increasing behaviour early on, but the general trend tends to zero,
illustrating extinction for the system as a whole. The EM method with step size ∆ = 0.001
is also applied to approximate the solution I(t). The two lines are very close to each other,
showing that the EM method gives a very good approximation to the true solution in this
case.
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Figure 4.1: Computer simulation of I(t) and its corresponding Markov chain r(t), using
the parameter values in Example 4.9 for (a) and in Example 4.10 for (b), I(0) = 60 for
both cases, and the exponential distribution for the switching times of r(t), with r(0) = 1.
The black line is for I(t) using formula (4.2.5) and the red line is for the EM method with
step size ∆ = 0.001. (The two lines are very close to each other, so we hardly see the
black line in the plot.)

Example 4.10 Assume that the system parameters are given by

µ1 = 0.45, µ2 = 0.05, γ1 = 0.35, γ2 = 0.15, β1 = 0.006, β2 = 0.0015, N = 100,
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ν12 = 0.6, and ν21 = 0.9.

So α1 = −0.2, α2 = −0.05, π1 = 0.6, and π2 = 0.4 (see section 4.2 for definitions).

Noting that
α1π1 + α2π2 = −0.14,

we can therefore conclude, by Theorem 4.3, that for any given initial value I(0) = I0 ∈
(0, N), the solution of (4.2.3) obeys

lim sup
t→∞

1

t
log(I(t)) ≤ −0.14 < 0 a.s.

That is, I(t) will tend to zero exponentially with probability one. The computer simulation
in Figure 1(b) supports this result clearly, illustrating extinction of the disease. Both α1

and α2 are less than zero in this case, which means that both subsystems die out. Figure
4.1(b) shows a trend of decreasing all the time but at different speeds, which reveals that
property. As before, the EM method with step size ∆ = 0.001 gives a good approximation
in this case as well.

4.6.2 Persistence case

Example 4.11 Assume that the system parameters are given by

µ1 = 0.45, µ2 = 0.05, γ1 = 0.35, γ2 = 0.15, β1 = 0.01, β2 = 0.012, N = 100,

ν12 = 0.6, and ν21 = 0.9.

So α1 = 0.2, α2 = 1, π1 = 0.6, and π2 = 0.4.

Noting that
α1π1 + α2π2 = 0.52,

we can therefore conclude, by Theorem 4.6, that for any given initial value I(0) = I0 ∈
(0, N), the solution of (4.2.3) obeys

α1

β1

= 20 ≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤ 83.33 =
α2

β2

.

That is, I(t) will eventually enter the region (20, 83.33) if I(0) is not in this region, and
will be attracted in this region once it has entered. Also, by Theorem 4.7, I(t) can take
any value up to the boundaries of (20, 83.33) but never reach them.

The computer simulations in Figure 4.2(a), (b) and (c), using different initial values
I(0), support these results clearly. As before, the EM method with step size ∆ = 0.001
gives a good approximation of the true solution.
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Figure 4.2: Computer simulation of I(t) and its corresponding Markov chain r(t), using
the parameter values in Example 4.11, with I(0) = 15 for (a), I(0) = 60 for (b) and
I(0) = 90 for (c), and the exponential distribution for the switching times of r(t), with
r(0) = 1. The black line is for I(t) using formula (4.2.5) and the red line for the EM
method with step size ∆ = 0.001. (The two lines are very close to each other, so we
hardly see the black line in the plot.) The horizontal lines in the plot of I(t) indicate
levels α1

β1
and α2

β2
.

Example 4.12 Assume that the system parameters are given by

µ1 = 0.45, µ2 = 0.05, γ1 = 0.35, γ2 = 0.15, β1 = 0.004, β2 = 0.012, N = 100,

ν12 = 0.6, and ν21 = 0.9.

So α1 = −0.4, α2 = 1, π1 = 0.6, and π2 = 0.4.

Noting that
α1π1 + α2π2 = 0.16,
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we can therefore conclude, by Theorem 4.6, that for any given initial value I(0) = I0 ∈
(0, N), the solution of (4.2.3) obeys

0 ≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤ 83.33 =
α2

β2

.

That is, I(t) will eventually enter the region (0, 83.33) if I(0) is not in this region, and
will be attracted in this region once it has entered. Also, by Theorem 4.8, I(t) can take
any value up to the boundaries of (0, 83.33) but never reach them.

The computer simulations in Figure 4.3 support this result clearly.
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Figure 4.3: Computer simulation of I(t) using the parameter values in Example 4.12
and its corresponding Markov chain r(t), using formula (4.2.5) (black line) and the EM
method with step size ∆ = 0.001 (red line) for I(t), with I(0) = 60, and the exponential
distribution for the switching times of r(t), with r(0) = 1. (The two lines are very close
to each other, so we hardly see the black line in the plot.) The horizontal lines in the plot
of I(t) indicate the levels 0 and α2

β2
.

4.6.3 T S
0 =1 Case

Example 4.13 Assume that the system parameters are given by

µ1 = 0.45, µ2 = 0.05, γ1 = 0.35, γ2 = 0.15, β1 = 0.006, β2 = 0.005, N = 100,

ν12 = 0.6, and ν21 = 0.9.

So α1 = −0.2, α2 = 0.3, π1 = 0.6, and π2 = 0.4.

Note that
α1π1 + α2π2 = 0

in this case, which is equivalent to T S0 = 1. As mentioned in section 4.4, we have not been
able to prove the behaviour of I(t) in this case. However, the simulation results in Figure
4.4 confirm our suspicion that the disease will always become extinct.
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Figure 4.4: Computer simulation of I(t) using the parameter values in Example 4.13,
using formula (4.2.5) for I(t), with I(0) = 60, and the exponential distribution for the
switching times of r(t), with r(0) = 1.

4.7 Generalisation

We have discussed the simplest case where the Markov chain has only two states, in the
previous sections. Now we are going to generalise the results to the case where the Markov
chain r(t) has finite state space S = {1, 2, ...,M}. The generator for r(t) is defined as

Γ = (νij)M×M ,

where νii = −
∑

1≤j≤M,j 6=i νij, and νij > 0 (i 6= j) is the transition rate from state i to j,
that is

P{r(t+ δ) = j|r(t) = i} = νijδ + o(δ),

where δ > 0. As before, there is a sequence {τk}k≥0 of finite-valued Ft-stopping times
such that 0 = τ0 < τ1 < · · · < τk →∞ almost surely and

r(t) =
∞∑
k=0

r(τk)I[τk,τk+1)(t).

Moreover, given that r(τk) = i, the random variable τk+1 − τk follows the exponential
distribution with parameter −νii, namely

P(τk+1 = j|τk = i) =
νij
−νii

, j 6= i, P(τk+1 − τk ≥ T |r(τk) = i) = eνiiT , ∀T ≥ 0.

Furthermore, the unique stationary distribution of this Markov chain Π = (π1, π2, ..., πM)
satisfies {

ΠΓ = 0∑M
i=1 πi = 1.

Following a similar procedure we still can show that for any given initial value I(0) =
I0 ∈ (0, N), there is a unique solution I(t) on t ∈ R+ to equation (4.2.3) such that

P(I(t) ∈ (0, N) for all t ≥ 0) = 1,
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and the solution still has the form (4.2.5).

In the general finite state space Markov chain case it is possible to derive an explicit
expression for the basic reproduction number RS

0 in the stochastic Markov switching model
analogous to (4.3.1) expressed as the largest eigenvalue of a positive matrix. We define
T S0 for the general case as

T S0 =

∑M
k=1 πkβkN∑M

k=1 πk(µk + γk)
.

Similarly to Proposition 4.2, we have the following alternative conditions on the value of
T S0 :

Proposition 4.14 We have the following alternative condition on the value of T S0 :

• T S0 < 1 if and only if
∑M

k=1 πkαk < 0;

• T S0 = 1 if and only if
∑M

k=1 πkαk = 0;

• T S0 > 1 if and only if
∑M

k=1 πkαk > 0.

If T S0 < 1, similarly to Theorem 4.3, we can show:

Theorem 4.15 If T S0 < 1, for any given initial value I0 ∈ (0, N), the solution of the
stochastic SIS model (4.2.3) obeys

lim sup
t→∞

1

t
log(I(t)) ≤

M∑
k=1

πkαk a.s.

By the more general condition stated above, we hence conclude that I(t) tends to zero
exponentially almost surely. This means that the disease dies out with probability one.

For the case that T S0 > 1, Theorem 4.4 can be generalised as follows:

Theorem 4.16 If T S0 > 1, for any given initial value I0 ∈ (0, N), the solution of the
stochastic SIS model (4.2.3) has the properties that

lim inf
t→∞

I(t) ≤
∑M

k=1 πkαk∑M
k=1 πkβk

a.s.

and

lim sup
t→∞

I(t) ≥
∑M

k=1 πkαk∑M
k=1 πkβk

a.s.,

which means the disease will reach the neighbourhood of the level
∑M
k=1 πkαk∑M
k=1 πkβk

infinitely many

times with probability one. This shows that the disease will be persistent in this case.

Lemma 4.5 can be generalised as follows:
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Lemma 4.17 Without loss of generality we assume that α1/β1 ≤ α2/β2 ≤ ... ≤ αM/βM
and the following statements hold with probability one:

(i) If 0 < α1/β1 = α2/β2 = ... = αM/βM , then I(t) = α1/β1 for all t > 0 when
I0 = α1/β1.

(ii) If 0 < α1/β1 ≤ α2/β2 ≤ ... ≤ αM/βM , then I(t) ∈ (α1/β1, αM/βM) for all t > 0
whenever I0 ∈ (α1/β1, αM/βM).

(iii) If αj/βj ≤ 0 (for some j ∈ (1,M − 1)) and α1/β1 ≤ α2/β2 ≤ ... ≤ αM/βM then
I(t) ∈ (0, αM/βM) for all t > 0 whenever I0 ∈ (0, αM/βM).

Theorem 4.6 can be generalised as follows:

Theorem 4.18 Assume that T S0 > 1 and let I0 ∈ (0, N) be arbitrary. The following
statements hold with probability one:

(i) If 0 < α1/β1 = α2/β2 = ... = αM/βM , then limt→∞ I(t) = α1/β1.

(ii) If 0 < α1/β1 ≤ α2/β2 ≤ ... ≤ αM/βM , then

α1

β1

≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤ αM
βM

.

(iii) If αj/βj ≤ 0 (for some j ∈ (1,M − 1)) and α1/β1 ≤ α2/β2 ≤ ... ≤ αM/βM , then

0 ≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤ αM
βM

.

These stronger results indicate that I(t) will enter the region (0 ∨ (α1/β1), αM/βM) in
finite time and with probability one will stay in this region once it is entered.

Theorem 4.7 can be generalised as follows:

Theorem 4.19 Assume that T S0 > 1 and 0 < α1/β1 ≤ α2/β2 ≤ ... ≤ αM/βM , and let
I0 ∈ (0, N) be arbitrary. Then for any ε > 0, sufficiently small for

α1

β1

+ ε <

∑M
k=1 πkαk∑M
k=1 πkβk

<
αM
βM
− ε,

the solution of the stochastic SIS model (4.2.3) has the properties that

P
(

lim inf
t→∞

I(t) <
α1

β1

+ ε
)
≥ eν11T1(ε),

and
P
(

lim sup
t→∞

I(t) >
αM
βM
− ε
)
≥ eνMMT2(ε),
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where T1(ε) > 0 and T2(ε) > 0 are defined by

T1(ε) =
1

α1

(
log
(β1

α1

− βM
αM

)
+ log

(α1

β1

+ ε
)
− log

(
ε
β1

α1

))
(4.7.1)

and

T2(ε) =
1

αM

(
log
(β1

α1

− βM
αM

)
+ log

(αM
βM
− ε
)
− log

(
ε
βM
αM

))
. (4.7.2)

Also, Theorem 4.8 can be generalised as follows:

Theorem 4.20 Assume that T S0 > 1, that is
∑M

k=1 πkαk > 0, and αj/βj ≤ 0 (for some
j ∈ (1,M − 1)). Let I0 ∈ (0, N) be arbitrary. Then for any ε > 0, sufficiently small for

ε <

∑M
k=1 πkαk∑M
k=1 πkβk

<
αM
βM
− ε,

the solution of the stochastic SIS model (4.2.3) has the properties that

P
(

lim inf
t→∞

I(t) < ε
)
≥ eν11T3(ε),

and
P
(

lim sup
t→∞

I(t) >
αM
βM
− ε
)
≥ eνMMT4(ε).

Here T3(ε) > 0 and T4(ε) > 0 are defined by

T3(ε) =
1

α1

(
log
(βM
αM
− β1

α1

)
+ log

(
ε
α1

β1

)
− log

(α1

β1

− ε
))

(4.7.3)

and

T4(ε) =
1

αM

(
log
(2

ε
− βM
αM

)
+ log

(αM
βM
− ε
)
− log

(
ε
βM
αM

))
. (4.7.4)

Theorem 4.19 and Theorem 4.20 show that I(t) will take any value arbitrarily close
to the boundaries (0 ∨ (α1/β1), αM/βM) but never reach them.

The proofs are all very similar to the simple case, so they are omitted here.

To prove (4.7.4) analogously to the simple case we define the stopping times

σ5 = inf{t ≥ T : r(t) = M}

where T > 0 is arbitrary and

σ6 = inf

{
t ≥ σ5 : r(t) = M, I(t) ≥ 1

2

(∑M
k=1 πkαk∑M
k=1 πkβk

)}
.

By Theorem 4.16 if I(t) ever goes beneath 1
2

∑M
k=1 πkαk∑M
k=1 πkβk

it will eventually increase above

this level. Hence I(t) is above this level when the Markov chain switches state infinitely
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often. Each time that this happens it is either initially in state M , or switches to state
M with probability at least

q = min
n∈[1,2,...M−1]

νnM
−νnn

> 0.

Therefore each time after σ5 that I(t) reaches the level 1
2

∑M
k=1 πkαk∑M
k=1 πkβk

we will have a value of

t ≥ σ5 with r(t) = M and I(t) above the level 1
2

∑M
k=1 πkαk∑M
k=1 πkβk

with probability at least q. So

considering the first X times after σ5 that I(t) reaches this level

P (σ6 <∞) ≥ 1− (1− q)X .

Letting X → ∞ we deduce that P (σ6 < ∞) = 1. The proof proceeds as in the simple
case.

4.8 A Slightly More Realistic Example

As a slightly more realistic example to illustrate the two state case, we consider S. pneu-
moniae amongst children under two years in Scotland. This may display a phenomenon
called capsular switching, such that when an individual is co-infected with two strains (or
serotypes) of pneumococcus, the outer polysaccharide capsule that surrounds the genetic
pneumococcal material may switch, thus giving serotypes with possibly different infec-
tivities and infectious periods [14, 20]. In reality the situation is very complicated, with
many pneumococcal serotypes and sequence types (sequence types are ways of coding the
genetic material). This is thought to be due to genetic transfer of material between the
two serotypes.

Example 4.21 We illustrate our model by applying it with suitable parameter values to
two strains of pneumococcus with switching between them, although the real situation is
much more complicated than the model allows. The parameter values used are taken from
Lamb, Greenhalgh and Robertson [57] as:

N = 150,000, γ1 = γ2 = 1/(7.1 wk) = 0.1408/wk = 0.02011/day [93],

µ = 1/(104 wk) = 9.615 ×10−3/wk = 1.3736 ×10−3/day,

β1 = 1.5041 ×10−6/wk = 2.1486 ×10−7/day corresponding to RD
01 = 1.5 [27],

β2 = 2.0055 ×10−6/wk = 2.8650 ×10−7/day corresponding to RD
02 = 2 [96].

So α1 = 0.0107454/day and α2 = 0.0214914/day. We set

ν12 = 0.06/day and ν21 = 0.09/day.

So π1 = 0.6, and π2 = 0.4.

From these values, T S0 is about 1.7 in this case. Noting that

α1π1 + α2π2 = 0.0150438 > 0,
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we can therefore conclude, by Theorem 4.6, that for any given initial value I(0) = I0 ∈
(0, N), the solution of (4.2.3) obeys

α1

β1

= 50011.17 ≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤ 75013.61 =
α2

β2

.

That is, I(t) will eventually enter the region (50,011.17, 75,013.61) if I(0) is not in this
region, and will be attracted in this region once it has entered. The computer simulations
in Figure 4.5 support this result clearly.

We vary the values for the transition rates ν12 and ν21. Figure 4.6 shows how the
different values of the transition rates affect the behaviour of I(t). We notice that it takes
longer to switch between the two states when the transition rates are small, so I(t) is more
likely to approach the boundaries.
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Figure 4.5: Computer simulation of I(t) using the parameter values in Example 4.21 and
its corresponding Markov chain r(t), using formula (4.2.5) for I(t), with I(0) = 48, 500
for (a), I(0) = 60, 000 for (b) and I(0) = 76, 500 for (c), and the exponential distribution
for the switching times of r(t), with r(0) = 1. The horizontal lines in the plot of I(t)
indicate the levels α1

β1
and α2

β2
.
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Figure 4.6: Computer simulation of I(t) using the parameter values in Example 4.21, with
ν12 = 0.6/day and ν21 = 0.9/day for (a), and ν12 = 0.006/day and ν21 = 0.009/day for
(b), using formula (4.2.5) for I(t) with I(0) = 60, 000, and the exponential distribution
for the switching times of r(t), with r(0) = 1. The horizontal lines in the plot of I(t)
indicate the levels α1

β1
and α2

β2
(which the values of I(t) never quite reach).

4.9 Summary

In this chapter, we have introduced telegraph noise to the classical SIS epidemic model
and set up the corresponding stochastic SIS model. We have established the explicit
solution for the stochastic SIS model and also established conditions for extinction and
persistence of the disease. For the stochastic Markov switching model a threshold value
T S0 was defined for almost sure persistence or extinction. We started with the special case
in which the Markov chain has only two states and then generalised our theory to the
general case where the Markov chain has M states. Theorem 4.15 shows that if T S0 < 1,
the disease will die out. Theorem 4.16 shows that if T S0 > 1, then the disease will persist.
We also showed Theorem 4.18 that if T S0 > 1 the number of infectious individuals will
enter (0∨(α1/β1), αM/βM) in finite time, and with probability one will stay in the interval
once entered, and moreover the number of infectious individuals can take any value up to
the boundaries of (0∨ (α1/β1), αM/βM) but never reach them (Theorems 4.19 and 4.20).

For j = 1, 2, . . .M , define RD
0j =

βjN

µj+γj
. Note that if αj > 0 then RD

0j > 1 and

αj
βj

= N

(
1− 1

RD
0j

)
is the long-term endemic level of disease in the SIS model (1.2.1) with β = βj, µ = µj and
γ = γj. If αj ≤ 0 then RD

0j ≤ 1 and disease eventually dies out in the same SIS model.
Hence 0 ∨ (α1/β1) is the smallest and αM/βM is the largest long-term endemic level of
disease in each of the M separate SIS models between which the Markov chain switches.
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We have not been able to prove extinction for the case when T S0 = 1, but the com-
puter simulation shows that the disease would die out after a long period of time, as we
suspect. We have illustrated our theoretical results with computer simulations, including
an example with realistic parameter values for S.Pneumoniae amongst children.

Most of the contents of this chapter have been published in [40]. Next, we are going
to examine the combined effect of incorporating both white noise and the noise in the
form of Markovian switching in the SIS epidemic model.
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Chapter 5

A Stochastic Differential Equation
SIS Epidemic Model with Markovian
Switching

5.1 Introduction

In this chapter, we still consider the SIS epidemic model (1.2.1). The introduction of the
SIS epidemic model (1.2.1) can be found in section 1.2. The solutions of the system is
shown in (1.2.2) and the basic reproduction number RD

0 is defined in (1.2.3). In Chapters
3 and 4, we examined the effect of white noise and telegraph noise respectively in the
SIS epidemic model. We found that the introduction of stochastic noise changes the
basic reproduction number of the original deterministic SIS model (1.2.1) in both cases.
We take a further step in this chapter to examine the effect of taking both white and
telegraph noise into account simultaneously. In section 1.3.4, we reviewed some recent
research which considered combining the influence of both types of environmental noise
into modelling and shows the significant effect of combined noise on the deterministic
system.

We now briefly outline how we obtain the stochastic SIS model incorporating both
types of noise as follows: We first use the parameter perturbation technique to introduce
the white noise to (1.2.1) as in Chapter 3, so the deterministic SIS model (1.2.1) becomes
the Itô SDE (3.2.3). Next we consider the telegraph noise. Recall that in Chapter 4 we
model the regime switching by a finite-state Markov chain. Now we take into account
the telegraph noise in the SDE SIS model (3.2.3). Assuming that there are M different
environmental regimes operating within the population system, the system parameters µ,
β, γ and σ may experience abrupt changes between regimes. As a result, the SDE SIS
model (3.2.3) becomes a SDE SIS model with Markovian switching of the form{

dS(t) = [µr(t)N − βr(t)S(t)I(t) + γr(t)I(t)− µr(t)S(t)]dt− σr(t)S(t)I(t)dB(t),
dI(t) = [βr(t)S(t)I(t)− (µr(t) + γr(t))I(t)]dt+ σr(t)S(t)I(t)dB(t),

(5.1.1)

where r(t) is a Markov chain on the state space S = {1, 2, ...,M} and has the same
definition as in section 4.7.
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The main aim of this chapter is to discuss the effect of the two noise types, namely
white noise and the noise in the form of Markov switching, adding to the system simultane-
ously as in model (5.1.1). We will not only show the existence of a unique global positive
solution (section 5.2) but also examine the asymptotic properties, including extinction
(section 5.3) and persistence (section 5.4). Computer simulations will be performed to
illustrate the theory and the conclusions will be drawn in section 5.5.

5.2 Stochastic Differential Equation SIS Model with

Markovian Switching

We assume that the system parameters βi, µi, γi and σi (i ∈ S) are all positive numbers.
Given that I(t) + S(t) = N , we see that I(t), the number of infectious individuals with
initial value I(0) = I0 ∈ (0, N), obeys

dI(t) = I(t)
(

[αr(t) − βr(t)I(t)]dt+ σr(t)(N − I(t))dB(t)
)

(5.2.1)

where αi := βiN − µi− γi. It is sufficient to study equation (5.2.1) for understanding the
behaviour of the stochastic SIS epidemic model with Markovian switching in (5.1.1). So
in the following sections we will concentrate on this equation only.

As I(t) in (5.2.1) is the number of infected people at time t, for the model to make
sense, we need to show that this SDE SIS model with Markovian switching not only has a
unique global solution but also that the solution will remain within (0, N) if it starts from
there. The existing general existence-and-uniqueness theorem on SDEs with Markovian
switching (Theorem 2.20) is not applicable to our model (5.2.1). Therefore we use the
following theorem to show the required property for our model (5.1.1).

Theorem 5.1 For any given initial value I(0) = I0 ∈ (0, N), there is a unique global
positive solution I(t) ∈ (0, N) for all t ≥ 0 to equation (5.2.1) such that

P{I(t) ∈ (0, N) for all t ≥ 0} = 1.

Proof. Since the coefficients of the equation (5.2.1) are locally Lipschitz piecewise
continuous, it is known (see e.g. [64]) that for any given initial value I0 ∈ (0, N) there is
a unique maximal local solution I(t) on t ∈ [0, τe), where τe is the explosion time. Let
k0 > 0 be sufficiently large so that I0 lies in the interval [1/k0, N −1/k0]. For each integer
k ≥ k0, we define the stopping time

τk = inf{t ∈ [0, τe) : I(t) 6∈ (1/k, N − (1/k))}.

Clearly, τk increases as k → ∞. We set τ∞ = limk→∞ τk, whence τ∞ ≤ τe a.s. If we can
show that τ∞ = ∞ a.s., then τe = ∞ a.s. and I(t) ∈ (0, N) a.s. for all t ≥ 0. In other
words, to complete the proof all we need to show is that τ∞ =∞ a.s. If this statement is
false, then there is a pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.
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Hence there is an integer k1 ≥ k0 such that

P{τk ≤ T} ≥ ε for all k ≥ k1. (5.2.2)

We define a function V : (0, N)× [0,∞)→ [0,∞) by

V (x, t) =
1

x
+

1

N − x
.

By the Itô formula (Theorem 2.9), we have, for any t ∈ [0, T ] and k ≥ k1,

EV (I(t ∧ τk), t) = V (I0, t0) + E
∫ t∧τk

0

LV (I(s), s)ds, (5.2.3)

where LV : (0, N)× [0,∞)→ R is defined by

LV (x, t) = x

(
− 1

x2
+

1

(N − x)2

)
[βr(t)N − µr(t) − γr(t) − βr(t)x]

+ σ2
r(t)x

2(N − x)2

(
1

x3
+

1

(N − x)3

)
. (5.2.4)

We shall use f̂ to denote mini∈S fi and f̌ to denote maxi∈S fi, where {fi}i∈S is a
constant vector. It is easy to show that

LV (x, t) ≤ µ̌+ γ̌

x
+

β̌N

N − x
+ σ̌2N2

(
1

x
+

1

N − x

)
≤ K1V (x, t), (5.2.5)

where K1 = (µ̌ + γ̌) ∨ (β̌N) + σ̌2N2. From here we can show that τ∞ = ∞ a.s. in the
same way as in the proof of Theorem 3.1. So the proof is complete.

5.3 Extinction

We will discuss extinction conditions for our model (5.2.1) in this section. It was shown
in Chapter 3 that for the SDE SIS epidemic model (3.2.3), if RS

0 = βN
µ+γ
− σ2N2

2(µ+γ)
< 1,

under mild extra conditions, the disease will die out, and if RS
0 > 1 then the disease will

persist. Naturally we wish to establish a similar theory on extinction and persistence for
the SDE SIS epidemic model with Markovian switching (5.2.1) in terms of a corresponding
threshold parameter. For the SIS epidemic model with Markovian switching in Chapter
4, we defined the threshold

T S0 =

∑M
i=1 πiβiN∑M

i=1 πi(µi + γi)
.

We showed that the disease would die out for T S0 < 1 and persist if T S0 > 1. Recalling
the definition of RS

0 above for the SDE SIS epidemic model (3.2.3), we would attempt to
define the corresponding TMC

0 by

TMC
0 =

∑M
i=1 πi(βiN − 0.5σ2

iN
2)∑M

i=1 πi(µi + γi)
. (5.3.1)
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In the rest of the chapter we examine this threshold (5.3.1) for almost sure extinction and
stochastic permanence of our model (5.2.1). Before we show the conditions for extinction,
we state a proposition which gives an equivalent condition on the value of TMC

0 .

Proposition 5.2 We have the following alternative conditions on the value of TMC
0 :

• TMC
0 < 1 if and only if

∑M
i=1 πi

(
αi − 1

2
σ2
iN

2
)
< 0;

• TMC
0 = 1 if and only if

∑M
i=1 πi

(
αi − 1

2
σ2
iN

2
)

= 0;

• TMC
0 > 1 if and only if

∑M
i=1 πi

(
αi − 1

2
σ2
iN

2
)
> 0.

The proof of this proposition is straightforward, so we omit it here. We now state
our theorems on extinction.

Theorem 5.3 If

TMC
0 < 1 and σ2

i ≤
βi
N
, i ∈ S, (5.3.2)

then, for any given initial value I(0) = I0 ∈ (0, N), the solution of the SDE (5.2.1) obeys

lim sup
t→∞

1

t
log(I(t)) ≤

M∑
i=1

πi

(
αi −

1

2
σ2
iN

2

)
< 0 a.s., (5.3.3)

namely, I(t) tends to zero exponentially almost surely. In other words, the disease dies
out with probability one.

Proof. By the Itô formula, we have

log(I(t)) = log(I0) +

∫ t

0

f(I(s), s, r(s))ds+

∫ t

0

σr(s)(N − I(s))dB(s), (5.3.4)

where f : (0, N)× [0,∞)× S→ R is defined by

f(x, t, i) = αi − βix−
1

2
σ2
i (N − x)2. (5.3.5)

However, under condition (5.3.2), we have

f(I(s), s, r(s)) = αr(s) −
1

2
σ2
r(s)N

2 − (βr(s) − σ2
r(s)N)I(s)− 1

2
σ2
r(s)I

2(s),

≤ αr(s) −
1

2
σ2
r(s)N

2,

for I(s) ∈ (0, N). It then follows from (5.3.4) that

log(I(t)) ≤ log(I0) +

∫ t

0

(
αr(s) −

1

2
σ2
r(s)N

2

)
ds+

∫ t

0

σr(s)(N − I(s))dB(s). (5.3.6)
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By the ergodic theory we have that

lim sup
t→∞

1

t

∫ t

0

(
αr(s) −

1

2
σ2
r(s)N

2

)
ds =

M∑
1=1

πi

(
αi −

1

2
σ2
iN

2

)
a.s.

Therefore from (5.3.6)

lim sup
t→∞

1

t
log(I(t)) ≤

M∑
1=1

πi

(
αi −

1

2
σ2
iN

2

)
+ lim sup

t→∞

1

t

∫ t

0

σr(s)(N − I(s))dB(s) a.s.

(5.3.7)
But note that ∣∣∣∣∫ t

0

σr(s)(N − I(s))dB(s)

∣∣∣∣2 ≤ ∫ t

0

σ̌2N2ds = σ̌2N2t.

So ∣∣∣∣1t
∫ t

0

σr(s)(N − I(s))dB(s)

∣∣∣∣2 ≤ σ̌2N2

t
→ 0 as t→∞.

Hence we have

lim sup
t→∞

1

t

∫ t

0

σr(s)(N − I(s))dB(s) = 0.

By Proposition 5.2, we therefore obtain the desired assertion (5.3.3) from (5.3.7).

Example 5.4 We only consider the case where the Markov chain has M = 2 states in
our simulation examples. With the same units we assumed in Chapter 3, the system
parameters are given by

µ1 = 0.95, µ2 = 0.55, γ1 = 0.95, γ2 = 0.55, β1 = 0.02, β2 = 0.01, σ1 = 0.01,

σ2 = 0.005, N = 100, ν12 = 0.8 and ν21 = 0.5.

So α1− 1
2
σ2

1N
2 = −0.40, α2− 1

2
σ2

2N
2 = −0.225, π1 = 0.3846, and π2 = 0.6154 (see section

4.2 and 4.7 for definitions).

Noting that (
α1 −

1

2
σ2

1N
2

)
π1 +

(
α2 −

1

2
σ2

2N
2

)
π2 = −0.2923,

and

σ2
1 = 1× 10−4 <

β1

N
= 2× 10−4, σ2

2 = 2.5× 10−5 <
β2

N
= 1× 10−4,

we can therefore conclude by Theorem 5.3 that for any given initial value I(0) = I0 ∈
(0, N), the solution of (5.2.1) obeys

lim sup
t→∞

1

t
log(I(t)) ≤ −0.2923 < 0 a.s.

That is, I(t) will tend to zero exponentially with probability one.

The computer simulation in Figure 5.1(a), using the EM method supports this result
clearly, illustrating extinction of the disease. We also note that α1 − 1

2
σ2

1N
2 < 0 with
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Figure 5.1: (a) Computer simulation of the path I(t) for the SDE SIS model with Marko-
vian switching (5.2.1) using the EM method with step size ∆t = 0.001, using parameter
values from Example 5.4 and initial value I(0) = 5; (b) the corresponding Markov chain
r(t), using the exponential distribution for the switching times of r(t), with r(0) = 1.

σ2
1 <

β1

N
while α2− 1

2
σ2

2N
2 < 0 with σ2

2 <
β2

N
in this case, which means that both subsystems

die out (see Theorem 3.2). The overall system is of course extinct in this case. In the next
example we will examine the situation where one subsystem becomes extinct and another
one persists.

Example 5.5 Assume that the system parameters are given by

µ1 = 0.95, µ2 = 0.55, γ1 = 0.95, γ2 = 0.55, β1 = 0.02, β2 = 0.016, σ1 = 0.01,

σ2 = 0.005, N = 100, ν12 = 0.5 and ν21 = 0.8.

So α1 − 1
2
σ2

1N
2 = −0.40, α2 − 1

2
σ2

2N
2 = 0.375, π1 = 0.6154, and π2 = 0.3846 .

Noting that (
α1 −

1

2
σ2

1N
2

)
π1 +

(
α2 −

1

2
σ2

2N
2

)
π2 = −0.1019,

and

σ2
1 = 1× 10−4 <

β1

N
= 2× 10−4, σ2

2 = 2.5× 10−5 <
β2

N
= 1.6× 10−4,

we can therefore conclude, by Theorem 5.3, that for any given initial value I(0) = I0 ∈
(0, N), the solution of (5.2.1) obeys

lim sup
t→∞

1

t
log(I(t)) ≤ −0.1019 < 0 a.s.

87



0 20 40 60 80 100

0
10

20
30

40
50

t

I(
t)

(a)

0 20 40 60 80 100

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

t

r(
t)

(b)

Figure 5.2: (a) Computer simulation of the path I(t) for the SDE SIS model with Marko-
vian switching (5.2.1) using the EM method with step size ∆t = 0.001, using parameter
values from Example 5.5 and initial value I(0) = 5; (b) the corresponding Markov chain
r(t), using the exponential distribution for the switching times of r(t), with r(0) = 1.

That is, I(t) will tend to zero exponentially with probability one.

The computer simulation in Figure 5.2(a) supports this result clearly, illustrating
extinction of the disease. In this case, α1− 1

2
σ2

1N
2 < 0 with σ2

1 <
β1

N
while α2− 1

2
σ2

2N
2 > 0

and this means that the first subsystem dies out while the second one persists (see Theorems
3.2 and 3.6). We see that ν21 > ν12 which means that the transition rate from subsystem
two (persistent) to subsystem one (extinct) is relatively faster than from subsystem one
to subsystem two and therefore the overall system becomes extinct. We see clearly from
Figure 5.2(b) that at time periods 18 to 26, the system stays in state 2 for a longer period
and if we check the same time period in Figure 5.2(a) the system is drawn back to a high
occurrence of disease in that period. However after that most time is spent in state 1 and
therefore the disease dies out.

In Theorem 5.3 we require the noise intensity to be such that σ2
i ≤ βi/N , i ∈ S. The

following theorem covers the case when σ2
i > βi/N :

Theorem 5.6 If

σ2
i >

βi
N
∀ i ∈ S,

M∑
i=1

πi

(
− µi − γi +

β2
i

2σ2
i

)
< 0, (5.3.8)

then for any given initial value I(0) = I0 ∈ (0, N), the solution of the SDE SIS model
with Markovian switching (5.2.1) obeys

lim sup
t→∞

1

t
log(I(t)) ≤

M∑
i=1

πi

(
− µi − γi +

β2
i

2σ2
i

)
< 0 a.s., (5.3.9)
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namely, I(t) tends to zero exponentially almost surely. In other words, the disease dies
out with probability one.

Proof. We use the same notation as in the proof of Theorem 5.3. It is easy to see that
the quadratic function f : (0, N)× [0,∞)× S→ R defined by (5.3.5) takes its maximum
value for each (t, r(t)) ∈ [0,∞)× S at

x(t) = x̃(t) :=
σ2
r(t)N − βr(t)

σ2
r(t)

.

By condition (5.3.8), it is easy to see that x̃ ∈ (0, N). Compute

f(x̃, t, r(t)) = βr(t)N − µr(t) − γr(t) −
1

2
σ2
r(t)N

2 +
(σ2

r(t)N − βr(t))2

2σ2
r(t)

= −µr(t) − γr(t) +
β2
r(t)

2σ2
r(t)

.

(5.3.10)

It therefore follows from (5.3.4) that

log(I(t)) ≤ log(I0) +

∫ t

0

f(x̃, s, r(s))ds+

∫ t

0

σr(s)(N − I(s))dB(s).

This implies, in the same way as in the proof of Theorem 5.3, that

lim sup
t→∞

1

t
log(I(t)) ≤ lim sup

t→∞

1

t

∫ t

0

f(x̃, s, r(s))ds a.s., (5.3.11)

which tends to
∑M

i=1 πifi(x̃) a.s. by the ergodic theory of Markov chains. Here

fi(x) = βiN − µi − γi − βix−
1

2
σ2
i (N − x)2.

Therefore from (5.3.10) and (5.3.11)

lim sup
t→∞

1

t
log(I(t)) ≤ −

M∑
i=1

πi

(
µi + γi −

β2
i

2σ2
i

)
,

as required. The proof is hence complete.

Noting that condition (5.3.8) implies that TMC
0 ≤ 1.

Example 5.7 Assume that the system parameters are given by

µ1 = 0.5, µ2 = 0.1, γ1 = 0.4, γ2 = 0.2, β1 = 0.05, β2 = 0.02, σ1 = 0.04,

σ2 = 0.03, N = 100, ν12 = 0.8 and ν21 = 0.5.

So α1 − 1
2
σ2

1N
2 = −3.9, α2 − 1

2
σ2

2N
2 = −2.8, π1 = 0.3846, and π2 = 0.6154 .
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Figure 5.3: (a) Computer simulation of the path I(t) for the SDE SIS model with Marko-
vian switching (5.2.1) using the EM method with step size ∆t = 0.001, using parameter
values from Example 5.7 and initial value I(0) = 5; (b) the corresponding Markov chain
r(t), using the exponential distribution for the switching times of r(t), with r(0) = 1.

It is easy to verify that the system parameters obey condition (5.3.8). We can therefore
conclude, by Theorem 5.6, that for any given initial value I(0) = I0 ∈ (0, N), the solution
of (5.2.1) obeys

lim sup
t→∞

1

t
log(I(t)) ≤ −0.0935 < 0 a.s.

That is, I(t) will tend to zero exponentially with probability one.

The computer simulation in Figure 5.3(a) supports this result clearly, illustrating
extinction of the disease.

We state another extinction condition in the following theorem.

Theorem 5.8 If
M∑
i=1

πi

(
αi +

1

2
σ2
iN

2

)
< 0 (5.3.12)

then for any given initial value I(0) = I0 ∈ (0, N), the solution of the SDE (5.2.1) obeys

lim sup
t→∞

1

t
log(I(t)) ≤

M∑
i=1

πi

(
αi +

1

2
σ2
iN

2

)
< 0 a.s., (5.3.13)

namely, I(t) tends to zero exponentially almost surely. In other words, the disease dies
out with probability one.
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Proof. Equation (5.2.1) can be written in the following form:

dI(t) = f(I(t), t, i)dt+ g(x(t), t, i)dB(t), (5.3.14)

where f(I(t), t, i) = I(t)
(
βiN − µi − γi − βiI(t)

)
and g(x(t), t, i) = σiI(t)(N − I(t)).

Using the fact that I(t) ∈ (0, N) and βi, µi and γi are all nonnegative, we have that

I(t)·f(I(t), t, i) = βiNI(t)2−µiI(t)2−γiI(t)2−βiI(t)3 ≤ (βiN−µi−γi)|I(t)|2 = αi|I(t)|2,

|g(x(t), t, i)| = |σiI(t)(N − I(t))| ≤ σiN |I(t)|,

|I(t) · g(x(t), t, i)| = σiI(t)2(N − I(t)) ≥ 0 · |I(t)|2.

By Theorem 2.25 we can immediately obtain the extinction condition as (5.3.12).

By Proposition 5.2 we see clearly that the extinction condition (5.3.12) is stronger
than the condition TMC

0 < 1.

Example 5.9 Assume that the system parameters are given by

µ1 = 0.9, µ2 = 0.8, γ1 = 0.9, γ2 = 0.8, β1 = 0.02, β2 = 0.01, σ1 = 0.002,

σ2 = 0.001, N = 100, ν12 = 0.8 and ν21 = 0.5.

So π1 = 0.3846, and π2 = 0.6154.

Noting that (
α1 +

1

2
σ2

1N
2

)
π1 +

(
α2 +

1

2
σ2

2N
2

)
π2 = −0.2816,

we can therefore conclude, by Theorem 5.8, that for any given initial value I(0) = I0 ∈
(0, N), the solution of (5.2.1) obeys

lim sup
t→∞

1

t
log(I(t)) ≤ −0.2816 < 0 a.s.

That is, I(t) will tend to zero exponentially with probability one.

The computer simulation in Figure 5.4(a) supports this result clearly, illustrating
extinction of the disease.

5.4 Persistence

To show persistence of the system, unlike the technique we used for the stochastic SIS
models in the previous two chapters, the M-matrix technique is applied here since in this
way we can show persistence of the system with fewer conditions. Before stating our
theory on persistence, we first give the definition of stochastic permanence [60].
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Figure 5.4: (a) Computer simulation of the path I(t) for the SDE SIS model with Marko-
vian switching (5.2.1) using the EM method with step size ∆t = 0.001, using parameter
values from Example 5.9 and initial value I(0) = 5; (b) the corresponding Markov chain
r(t), using the exponential distribution for the switching times of r(t), with r(0) = 1.

Definition 5.10 SDE (5.2.1) is said to be stochastically permanent if for any ε ∈ (0, 1),
there exist positive constants C1 = C1(ε) and C2 = C2(ε) such that

lim inf
t→∞

P{I(t) ≤ C1} ≥ 1− ε

and
lim inf
t→∞

P{I(t) ≥ C2} ≥ 1− ε,

where I(t) is the solution of the SDE (5.2.1) with I(0) ∈ (0, N).

Lemma 5.11 If TMC
0 > 1, i.e. by Proposition 5.2

M∑
i=1

πi

(
αi −

1

2
N2σ2

i

)
> 0,

then there exists a constant θ > 0 such that the matrix

A(θ) = diag(ξ1(θ), ξ2(θ), ..., ξM(θ))− Γ (5.4.1)

is a non-singular M-matrix, where

ξi(θ) = θbi − θ2 1

2
N2σ2

i ,

for ∀i ∈ S and here for convenience we write bi = αi − 1
2
N2σ2

i .
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Proof. The method of proof is very similar to that of Lemma 3.4 in [60]. So we omit the
proof here and just use the results.

Lemma 5.12 If there exists a constant θ > 0 such that A(θ) (5.4.1) is a nonsingular
M-matrix, the solution I(t) of the SDE (5.2.1) has the property that

lim sup
t→∞

E

(
1

Iθ(t)

)
≤ K3, (5.4.2)

where K3 will be defined later in (5.4.12)

Proof. We define U(t), t ≥ 0, that

U(t) =
1

I(t)
. (5.4.3)

By the Itô formula (Theorem 2.9), we have

dU(t) =
(
−U2(t)I(t)(αr(t) − βr(t)I(t)) + U3(t)I2(t)σ2

r(t) (N − I(t))2) dt
− U2(t)I(t)σr(t)(N − I(t))dB(t),

(5.4.4)

which can be simplified as

dU(t) =

(
−αr(t)U(t) + βr(t) + σ2

r(t)

1

U(t)
− 2σ2

r(t)N +N2σ2
r(t)U(t)

)
dt

− U(t)σr(t)

(
N − 1

U(t)

)
dB(t).

(5.4.5)

For a vector x ∈ RM we write x >> 0 to mean that xi ≥ 0 for i = 1, 2, · · · ,M .
We assume that A(θ) is a nonsingular M-matrix, so for given θ, there is a vector ~q =
(q1, q2, ..., qM)T >> 0 such that

~λ = (λ1, λ2, ..., λM)T = A(θ)~q >> 0,

which is

qi

(
θbi − θ2σ

2
iN

2

2

)
−

M∑
j=1

νijqj > 0, (5.4.6)

for all 1 ≤ i ≤M .

We define the function V as

V (U(t), i) = qi (1 + U(t))θ . (5.4.7)

By the generalized Itô formula (Theorem 2.14), we have

EV (U(t), r(t)) = V (U(0), r(0)) + E

∫ t

0

LV (U(s), r(s))ds,
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where

LV (U, i) = qiθ(1 + U)θ−1

(
−αiU + βi + σ2

i

1

U
− 2σ2

iN +N2σ2
iU

)
+

1

2
qiθ(θ − 1) (1 + U)θ−2 (UσiN − σi)2 +

M∑
j=1

νijqj (1 + U)θ ,

(5.4.8)

which is equal to

(1 + U)θ−2

(
qiθ(1 + U)

(
−αiU + βi + σ2

i

1

U
− 2σ2

iN +N2σ2
iU

)

+
1

2
qiθ(θ − 1) (UσiN − σi)2 +

M∑
j=1

νijqj (1 + U)2

)
.

(5.4.9)

This can be expanded as

1

U
(1 + U)θ−2

(
U3

(
−αiqiθ +N2σ2

i qiθ +
1

2
N2σ2

i qiθ
2 − 1

2
N2σ2

i qiθ +
M∑
j=1

νijqj

)

+ U2

(
− αiqiθ +N2σ2

i qiθ + βiqiθ − 2Nσ2
i qiθ −Nσ2

i qiθ
2 +Nσ2

i qiθ + 2
M∑
j=1

νijqj

)

+ U

(
βiqiθ − 2Nσ2

i qiθ + σ2
i qiθ +

1

2
σ2
i qiθ

2 − 1

2
σ2
i qiθ +

M∑
j=1

νijqj

)
+ qiσ

2
i θ

)
,

which is less than or equal to

1

U
(1 + U)θ−2

(
− U3

(
qi

(
biθ −

1

2
N2σ2

i θ
2

)
−

M∑
j=1

νijqj

)

+ U2

(
qiθ
(
N2σ2

i + βi
)

+ 2
M∑
j=1

νijqj

)
+ U

(
qiθ

(
βi +

1

2
σ2
i +

1

2
σ2
i θ

)
+

M∑
j=1

νijqj

)
+ qiσ

2
i θ

)
.

(5.4.10)

Now we choose a constant K2 which is sufficiently small such that for 1 ≤ i ≤M

~λ−K2~q >> 0,

which is

qi

(
θbi − θ2σ

2
iN

2

2

)
−

M∑
j=1

νijqj −K2qi > 0. (5.4.11)

Again by the generalised Itô formula (Theorem 2.14), we have

E
(
eK2tV (U(t), r(t))

)
= V (U(0), r(0)) + E

∫ t

0

L
(
eK2sV (U(s), r(s))

)
ds,
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where
L
(
eK2tV (U, i)

)
= K2e

K2tV (U, i) + eK2tLV (U, i).

Substituting expression (5.4.10) into this gives that L
(
eK2tV (U, i)

)
is less than or

equal to

eK2t
1

U
(1 + U)θ−2

(
K2qi (1 + U)2 U − U3

(
qi

(
biθ −

1

2
N2σ2

i θ
2

)
−

M∑
j=1

νijqj

)

+ U2

(
qiθ
(
N2σ2

i + βi
)

+ 2
M∑
j=1

νijqj

)
+ U

(
qiθ

(
βi +

1

2
σ2
i +

1

2
σ2
i θ

)
+

M∑
j=1

νijqj

)
+ qiσ

2
i θ

)
,

which is equal to

eK2t
1

U
(1 + U)θ−2

(
− U3

(
qi

(
biθ −

1

2
N2σ2

i θ
2

)
−

M∑
j=1

νijqj −K2qi

)

+ U2

(
qiθ
(
N2σ2

i + βi
)

+ 2
M∑
j=1

νijqj + 2K2qi

)

+ U

(
qiθ

(
βi +

1

2
σ2
i +

1

2
σ2
i θ

)
+

M∑
j=1

νijqj +K2qi

)
+ qiσ

2
i θ

)
.

We can write this as
L
(
eK2tV (U, i)

)
≤ q̂K2K3e

K2t,

where

K3 =
1

q̂K2

max1≤i≤M

(
sup 1

N
≤x≤+∞

(
1

x
(1 + x)θ−2

(
− x3

(
qi

(
biθ −

1

2
N2σ2

i θ
2

)

−
M∑
j=1

νijqj −K2qi

)
+ x2

(
qiθ
(
N2σ2

i + βi
)

+ 2
M∑
j=1

νijqj + 2K2qi

)

+ x

(
qiθ

(
βi +

1

2
σ2
i +

1

2
σ2
i θ

)
+

M∑
j=1

νijqj +K2qi

)
+ qiσ

2
i θ

))
, 1

)
.

(5.4.12)

From here we can obtain the required assertion (5.4.2) in the same way as in the proof of
Lemma 3.6 in [60]. So the proof is complete.

Theorem 5.13 If TMC
0 > 1, i.e.

M∑
i=1

πi

(
αi −

1

2
N2σ2

i

)
> 0,

then the SDE (5.2.1) is stochastically permanent.
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Proof. By Lemma 5.11 and Lemma 5.12 and by the same method as in the proof of

Theorem 3.2 in [60] if we set C2 =
(

ε
K3

) 1
θ
, we have that

lim inf
t→∞

P{I(t) ≥ C2} ≥ 1− ε.

The other part of Definition 5.10 required for Theorem 5.13 follows from the fact that
I(t) ∈ (0, N) for t ≥ 0.

Example 5.14 We keep the system parameters the same as in Example 5.5 but let

ν12 = 0.8, and ν21 = 0.5.

So α1− 1
2
σ2

1N
2 and α2− 1

2
σ2

2N
2 are the same as in Example 5.5 but the values for π1 and

π2 exchange, i.e. π1 = 0.3846 and π2 = 0.6154.

Noting that (
α1 −

1

2
σ2

1N
2

)
π1 +

(
α2 −

1

2
σ2

2N
2

)
π2 = 0.08,

we can therefore conclude, by Theorem 5.13 and Definition 5.10, that the SDE (5.2.1) is
stochastically permanent.

The computer simulation in Figure 5.5(a) supports this result clearly, illustrating
persistence of the disease. In this case, as in the situation in Example 5.5, we have
α1 − 1

2
σ2

1N
2 < 0 with σ2

1 < β1

N
while α2 − 1

2
σ2

2N
2 > 0 and this means that the first

subsystem dies out while the second one persists (see Theorems 3.2 and 3.6). But in this
case, ν12 > ν21 which means that the transition rate from subsystem one (extinctive) to
subsystem two (persistent) is relatively faster than from subsystem two to subsystem one
and therefore the overall system is persistent. This illuminates the important effect of the
rates of switching between the states of the overall system.

5.5 Summary

In this chapter, we have combined the effects of both white and telegraph noise on the
classical SIS epidemic model and set up the SDE SIS model with Markovian switching.
We have shown the existence of a unique global positive solution for the SIS model incor-
porating both types of noises and also established conditions for extinction and persistence
of the disease. For the SDE SIS model with Markovian switching, a threshold value TMC

0

was defined for almost sure extinction and stochastic permanence. Theorems 5.3, 5.6 and
5.8 show that if TMC

0 < 1, and with other three different conditions, the disease will die
out. Theorem 5.13 shows that if TMC

0 > 1, the disease will persist. We have illustrated
our theoretical results with computer simulations.

We now conduct statistical inference for the SDE SIS model (3.2.4) in the next chap-
ter.
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Figure 5.5: (a) Computer simulation of the path I(t) for the SDE SIS model with Marko-
vian switching (5.2.1) using the EM method with step size ∆t = 0.001, using parameter
values from Example 5.14 and initial value I(0) = 5; (b) the corresponding Markov chain
r(t), using the exponential distribution for the switching times of r(t), with r(0) = 1.
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Chapter 6

Parameter Estimation for the
Stochastic SIS Epidemic Model

6.1 Introduction

In this chapter we estimate the parameters in the stochastic SIS epidemic model as for-
mulated in (3.2.3) as an SDE model. Given that S(t) + I(t) = N , it is sufficient to study
the SDE for I(t) (3.2.4), therefore in this chapter we will concentrate on this SDE only.
This SDE is non-linear, and pseudo-Maximum Likelihood Estimation and least squares
parameter estimation will be applied. A short literature review regarding the estimation
methods in SDEs has been included in section 1.4. Application of Approximate Likelihood
Estimation and least squares parameter estimation to SDEs have been widely discussed
in previous research. However, variance estimation has not been discussed in most of the
papers, which is the main contribution of our research in this chapter. We obtain not
only the point estimators but also the interval estimators for parameters and the joint
confidence regions taking the correlation among the parameters and the overall degree of
confidence into account. Also, we investigate the factors which influence the width of the
confidence intervals and the area of the confidence regions both analytically and in our
simulation examples.

The organisation of this chapter is as follows: In section 6.2 we apply the least squares
estimation approach to our problem and obtain the point estimators, interval estimators
and confidence regions for the model parameters β, η = µ + γ and σ2. We consider the
cases of parameter estimation for both one sample of data and multiple samples. We
also investigate the factors which influence the width of the confidence intervals and the
areas of the confidence regions. Simulation examples are given to illustrate our theory.
In section 6.3 we discuss the pseudo-MLE method. We obtain the maximum likelihood
estimators and exact and approximate confidence regions, and again consider the case of
multiple samples. Also we compare the pseudo-MLEs with the least squares estimators
both analytically and in our simulation examples. In section 6.4 we summarise the findings
in the chapter.
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6.2 Least Squares Estimation

Least squares estimation and approximate least squares estimation method have been
discussed in [75] and [89]. In this section, we apply least squares estimation in a dif-
ferent way. We use the EM scheme to approximate the path of the process such that
the discretised form of the process can be rearranged as a regression model. Then the
regression theory can immediately be applied to estimate the model parameters. In this
section point estimators and 100(1−α)% confidence intervals as well as 100(1−α)% joint
confidence regions will be obtained for our model parameters. Simulation examples will
be given to illustrate our theory.

6.2.1 Regression Model

Let {Ik}nk=0 be observations from process (3.2.4). Given a stepsize ∆t and setting I0 =
I(0), the EM scheme produces the following discretisation over small intervals [k∆t, (k+
1)∆t]

Ik+1 − Ik = Ik(βN − µ− γ − βIk)∆t+ σ(N − Ik)Ik∆Wk, (6.2.1)

where ∆Wk = Wk+1 −Wk.

Equation (6.2.1) can be rewritten as

yk+1 = ηuk+1 + c+ σZk+1, (6.2.2)

where yk+1 = Ik+1−Ik
Ik(N−Ik)

√
∆t

, η = µ+ γ, uk+1 = −
√

∆t
N−Ik

, c =
√

∆tβ and Zk+1 ∼ N(0, 1). We

can get the observations (yi, ui)
n
i=1 if data points {Ik}nk=0 and stepsize ∆t are provided. We

then write the model as yi = ηui + c+ εi (i = 1, 2, ..., n), where εi ∼ N(0, σ). This looks
like a simple linear regression model but with the difference that y = (y1, y2, ..., yn) is a
random variable instead of a response variable which is conditional on u = (u1, u2, ..., un).
However we still can use the regression theory to estimate η and β since estimation is
based on the least squares method, i.e. to minimise

∑n
i=1 (yi − ηui − c)2, which is not

affected by whether y is a random variable or not.

Rawlings (1998) [81] discusses multiple linear regression in the general matrix form

Y = Xθ + ε, (6.2.3)

where

Y =


y1

y2
...
yn

 , X =


1 x11 x12 · · · x1p

1 x21 x22 · · · x2p
...

...
...

. . .
...

1 xn1 xn2 · · · xnp

 , θ =


θ0

θ1
...
θp

 , ε =


ε1

ε2
...
εn

 .

The calculations work equally well for (6.2.2), which can be written in the matrix
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form (6.2.3), where Y and ε remain the same while X and θ become

X =


√

∆t u1√
∆t u2
...

...√
∆t un

 , θ =

(
β
η

)
.

6.2.2 Point Estimators

We use the formulae in the multiple linear regression theory to derive the estimators for
η and β as(

β̂
η̂

)
= θ̂ = (XTX)−1(XTY)

=
1

n∆t
∑
u2
k −∆t (

∑
uk)

2

(√
∆t
∑
u2
k

∑
yk −

√
∆t
∑
uk
∑
ukyk

n∆t
∑
ukyk −∆t

∑
uk
∑
yk

)
.

(6.2.4)

Here
∑

represents
∑n−1

k=0 as does the
∑

below.

Then we have point estimators as

β̂ =

∑
u2
k

∑
yk −

∑
uk
∑
ukyk

n
√

∆t
∑
u2
k −
√

∆t (
∑
uk)

2 (6.2.5)

and

η̂ =
n
∑
ukyk −

∑
uk
∑
yk

n
∑
u2
k − (

∑
uk)

2 , (6.2.6)

which are equal to

β̂ =

∑
1

(N−Ik)2

∑ Ik+1−Ik
Ik(N−Ik)

−
∑

1
N−Ik

∑ Ik+1−Ik
(N−Ik)2Ik

n
∑

∆t
(N−Ik)2 −

(∑ √
∆t

N−Ik

)2 (6.2.7)

and

η̂ =

∑ Ik+1−Ik
Ik(N−Ik)

∑
1

N−Ik
− n

∑ Ik+1−Ik
(N−Ik)2Ik

n
∑

∆t
(N−Ik)2 −

(∑ √
∆t

N−Ik

)2 . (6.2.8)

We consider a time interval of total length T divided into n subintervals each of length
∆t so n∆t = T . Hence as n → ∞ and ∆t → 0 with n∆t = T , the sums approach the
integrals, i.e.

n−1∑
k=0

∆t

(N − Ik)2 →
∫ T

0

1

(N − I)2 dt

n−1∑
k=0

Ik+1 − Ik
Ik(N − Ik)

→
∫ I(T )

I(0)

1

I(N − I)
dI etc.
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Hence we have that as n→∞, β̂ and η̂ tend to

β̂ =

∫ T
0

1
(N−I(t))2 dt ·

∫ I(T )

I(0)
1

(N−I)I dI −
∫ T

0
1

N−I(t) dt ·
∫ I(T )

I(0)
1

(N−I)2I
dI

T
∫ T

0
1

(N−I(t))2 dt−
(∫ T

0
1

N−I(t) dt
)2

and

η̂ =

∫ I(T )

I(0)
1

(N−I)I dI ·
∫ T

0
1

N−I(t) dt− T
∫ I(T )

I(0)
1

(N−I)2I
dI

T
∫ T

0
1

(N−I(t))2 dt−
(∫ T

0
1

N−I(t) dt
)2 .

6.2.3 Variance of Estimated Parameters

Confidence interval estimators of parameters give more information than simple point
estimators. To obtain interval estimators for the parameters β and η, we need to calculate
the variance of θ̂ using the formula

var(θ̂) = (XTX)−1σ2, (6.2.9)

where σ2 can be estimated using the residual mean square

σ̂2 =
(Y −Xθ̂)T (Y −Xθ̂)

n− p
, (6.2.10)

where p is the number of parameters and is 2 in this case. Equation (6.2.10) can be
simplified as

σ̂2 =
YTY −YTXθ̂

n− 2
(6.2.11)

if we substitute θ̂ = (XTX)−1(XTY) in (6.2.10).

Then equation (6.2.11) can be written as

σ̂2 =
1

n− 2

(∑
y2
k −

(√
∆t
∑

yk

)
β̂ −

(∑
ykuk

)
η̂

)
. (6.2.12)

Substituting (6.2.4) in (6.2.12) we get

σ̂2 =

n
∑
y2
k

∑
u2
k −

∑
y2
k (
∑
uk)

2 −
∑
u2
k (
∑
yk)

2 − n (
∑
ykuk)

2 + 2
∑
uk
∑
yk
∑
ykuk

(n− 2)
(
n
∑
u2
k − (

∑
uk)

2 ) ,

(6.2.13)
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which is

1

(n− 2)

(
n
∑

∆t
(N−Ik)2 −∆t

(∑
1

N−Ik

)2
)

(
n
∑ (Ik+1 − Ik)2

Ik
2 (N − Ik)2

∑ 1

(N − Ik)2 −
∑ (Ik+1 − Ik)2

Ik
2 (N − Ik)2

(∑ 1

N − Ik

)2

−
∑ 1

(N − Ik)2

(∑ Ik+1 − Ik
Ik(N − Ik)

)2

− n
(∑ Ik+1 − Ik

Ik (N − Ik)2

)2

+ 2
∑ 1

N − Ik

∑ Ik+1 − Ik
Ik(N − Ik)

∑ Ik+1 − Ik
Ik (N − Ik)2

)
.

(6.2.14)

Theorem 6.1 The estimator σ̂2 = σ̂2
n in (6.2.12) (we write it this way to show the

dependence on n) is an asymptotically unbiased estimator for σ2 in (6.2.2), i.e.

σ̂2
n → σ2 a.s.

as n→∞.

Proof.

σ̂2 =
RSS

n− p
=

1

n− 2

∑
(yk − ŷk)2 , (6.2.15)

where RSS is the sum of squares of residuals for model (6.2.2) and p is the number of
parameters to be estimated.

After substituting for β̂ and η̂ using (6.2.5) and (6.2.6)

yk − ŷk = yk

−
∑

i u
2
i

∑
i yi −

∑
i ui
∑

i uiyi
∆

− (n
∑

i uiyi −
∑

i ui
∑

i yi)uk
∆

,

where ∆ = n
∑

i u
2
i − (

∑
i ui)

2 and
∑

i represents
∑n−1

i=0 here and throughout the rest of
the chapter.

Since yk = β
√

∆t+ ηuk + σZk,

yk − ŷk = β
√

∆t+ ηuk + σZk

−
∑

i u
2
i

∑
i(β
√

∆t+ ηui + σZi)−
∑

i ui
∑

i ui(β
√

∆t+ ηui + σZi)

∆

− [n
∑

i ui(β
√

∆t+ ηui + σZi)−
∑

i ui
∑

i(β
√

∆t+ ηui + σZi)]uk
∆

.

Therefore σ̂2 can be simplified as

σ2

n− 2

∑(
Zk −

ukn
∑

i uiZi − uk
∑

i Zi
∑

i ui +
∑

i ui
2
∑

i Zi −
∑

i ui
∑

i uiZi
∆

)2

,
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which is equal to

σ2

n− 2

∑(
Zk

2 +

(
nuk

∑
i uiZi − uk

∑
i Zi
∑

i ui
∆

)2

+

(∑
i ui

2
∑

i Zi −
∑

i ui
∑

i uiZi
∆

)2

− 2Zk
nuk

∑
i uiZi − uk

∑
i Zi
∑

i ui
∆

− 2Zk

∑
i ui

2
∑

i Zi −
∑

i ui
∑

i uiZi
∆

+ 2
(ukn

∑
i uiZi − uk

∑
i Zi
∑

i ui) (
∑

i ui
2
∑

i Zi −
∑

i ui
∑

i uiZi)

∆2

)
.

This can be simplified as

σ2

n− 2

(∑
Zk

2 +
1

∆2

(∑
uk

2
(∑

Zk

)2 (∑
uk

)2

− n2
(∑

ukZk

)2∑
uk

2

− n
(∑

uk
2
)2 (∑

Zk

)2

+ n
(∑

ukZk

)2 (∑
uk

)2

− 2
(∑

uk

)3∑
Zk
∑

ukZk + 2n
∑

uk
∑

ukZk
∑

uk
2
∑

Zk

))
,

which equals

σ2

n− 2

(∑
Zk

2 +
−n (

∑
ukZk)

2 −
∑
uk

2 (
∑
Zk)

2 + 2
∑
uk
∑
ukZk

∑
Zk

n
∑
uk2 − (

∑
uk)

2

)
.

This can be written as

σ2

n− 2

(∑
Zk

2 − A · (
∑
ukZk)

2∑
uk2

− A · (
∑
Zk)

2

n
+B ·

∑
ukZk√∑
uk2
·
∑
Zk√
n

)
, (6.2.16)

where

A =
n
∑
u2
k

n
∑
u2
k − (

∑
uk)

2 , B = 2 ·
√
n
√∑

u2
k

∑
uk

n
∑
u2
k − (

∑
uk)

2 .

Note that ∑
Zk√
n
∼ N(0, 1) and

∑
ukZk√∑
u2
k

∼ N(0, 1),

since Zk ∼ N(0, 1) and the Zk are independent. Moreover (
∑
Zk)2

n
and (

∑
ukZk)2∑
u2
k

have mean

1 and variance 2.

Therefore

σ2

n− 2

(
− A · (

∑
ukZk)

2∑
uk2

− A · (
∑
Zk)

2

n
+B ·

∑
ukZk√∑
uk2
·
∑
Zk√
n

)
→ 0 a.s

as n→∞.

Also Z2
k has mean 1 and variance 2 since Zk ∼ N(0, 1). Therefore 1

n

∑
Z2
k → N(1, 2

n
)

as n→∞ by the Central Limit Theorem.
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Hence σ̂2 → σ2 with probability one as n → ∞ as required. Using σ̂2 to estimate
σ2 in (6.2.9) we have

var(θ̂) = var

(
β̂
η̂

)
=

1

n∆t
∑
u2
k −∆t (

∑
uk)

2

( ∑
u2
k −

√
∆t
∑
uk

−
√

∆t
∑
uk n∆t

)
σ̂2.

(6.2.17)

6.2.4 Interval Estimation

By the standard least squares theory, if the number of observations n is large, the dis-
tribution of the parameter estimators will be almost normal. Then the approximate
100(1− α)% confidence intervals (CIs) for β and η respectively are

β̂±zα/2
√
var(β̂) =

∑
u2
k

∑
yk −

∑
uk
∑
ukyk

n
√

∆t
∑
u2
k −
√

∆t(
∑
uk)2
±zα/2

√ ∑
uk2σ̂2

n∆t
∑
u2
k −∆t(

∑
uk)2

(6.2.18)

and

η̂ ± zα/2
√
var(η̂) =

n
∑
ukyk −

∑
uk
∑
yk

n
∑
u2
k − (

∑
uk)2

± zα/2

√
n∆tσ̂2

n∆t
∑
u2
k −∆t(

∑
uk)2

, (6.2.19)

where σ̂2 is the estimation of σ in (6.2.14) and zα/2 is the upper α/2 value of the standard
normal random variable, e.g. z0.025 = 1.96 for a 95% CI.

We notice that as n→∞, the 100(1− α)% CIs tend to∫ T
0

1
(N−I(t))2 dt ·

∫ I(T )

I(0)
1

(N−I)I dI −
∫ T

0
1

N−I(t) dt ·
∫ I(T )

I(0)
1

(N−I)2I
dI

T
∫ T

0
1

(N−I(t))2 dt−
(∫ T

0
1

N−I(t) dt
)2

± zα/2

√√√√√
∫ T

0
1

(N−I(t))2 dt · σ2

T
∫ T

0
1

(N−I(t))2 dt−
(∫ T

0
1

N−I(t) dt
)2

(6.2.20)

and ∫ I(T )

I(0)
1

(N−I)I dI ·
∫ T

0
1

N−I(t) dt− T
∫ I(T )

I(0)
1

(N−I)2I
dI

T
∫ T

0
1

(N−I(t))2 dt−
(∫ T

0
1

N−I(t) dt
)2

± zα/2

√√√√ Tσ2

T
∫ T

0
1

(N−I(t))2 dt−
(∫ T

0
1

N−I(t) dt
)2 ,

(6.2.21)

respectively.
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Theorem 6.2 The asymptotic widths of the CIs for both β and η, which are

2× zα/2

√√√√√
∫ T

0
1

(N−I(t))2 dt · σ2

T
∫ T

0
1

(N−I(t))2 dt−
(∫ T

0
1

N−I(t) dt
)2

and

2× zα/2

√√√√ Tσ2

T
∫ T

0
1

(N−I(t))2 dt−
(∫ T

0
1

N−I(t) dt
)2 ,

are strictly decreasing as T increases.

Proof. Considering first the width of the CI for β,∫ T
0

1
(N−I(t))2 dt

T
∫ T

0
1

(N−I(t))2 dt−
(∫ T

0
1

N−I(t) dt
)2 =

1

T − (
∫ T
0

1
N−I(t) dt)

2∫ T
0

1

(N−I(t))2
dt

. (6.2.22)

Then the derivative of the denominator is equal to

d

dT

T −
(∫ T

0
1

N−I(t) dt
)2

∫ T
0

1
(N−I(t))2 dt


= 1−

2
∫ T

0
1

N−I(t) dt
1

N−I(T )

∫ T
0

1
(N−I(t))2 dt− 1

(N−I(T ))2

(∫ T
0

1
N−I(t) dt

)2

(∫ T
0

1
(N−I(t))2 dt

)2

=

(∫ T
0

1
(N−I(t))2 dt− 1

N−I(T )

∫ T
0

1
N−I(t) dt

)2

(∫ T
0

1
(N−I(t))2 dt

)2 ≥ 0.

Given a sample path I(t) defined on the interval [0, T ] with I(0) > 0, we deduce that
I(T ) ∈ (0, N) in Theorem 3.1. The only way that the denominator of (6.2.22) is not
strictly increasing is if∫ T

0

1

(N − I(t))2 dt =
1

N − I(T )

∫ T

0

1

N − I(t)
dt

on an interval [T, T + ε] for some ε > 0.

So if ∆T is small enough

(N − I(T + ∆T ))

∫ T+∆T

0

1

(N − I(t))2 dt =

∫ T+∆T

0

1

N − I(t)
dt (6.2.23)

and

(N − I(T ))

∫ T

0

1

(N − I(t))2 dt =

∫ T

0

1

N − I(t)
dt. (6.2.24)
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Subtracting (6.2.24) from (6.2.23) we have

[(N − I(T + ∆T ))− (N − I(T ))]

∫ T+∆T

0

1

(N − I(t))2 dt

+ (N − I(T ))

(∫ T+∆T

0

1

(N − I(t))2 dt−
∫ T

0

1

(N − I(t))2 dt

)

=

∫ T+∆T

0

1

N − I(t)
dt−

∫ T

0

1

N − I(t)
dt,

which is equal to

(−I(T + ∆T ) + I(T ))

(∫ T

0

1

(N − I(t))2 dt+
∆T

(N − I(T ))2 + o(∆T )

)

+ (N − I(T ))

(
∆T

(N − I(T ))2 + o(∆T )

)
=

∆T

N − I(T )
+ o(∆T ).

This equals

− I(T )
(

(βN − η − βI(T ))∆T + σ(N − I(T ))[B(T + ∆T )−B(T )] + o(∆T )
)

∫ T

0

1

(N − I(t))2 dt = o(∆T ).

Dividing by
√

∆T we have

−I(T )

(
(βN − η − βI(T ))

√
∆T + σ(N − I(T ))

B(T + ∆T )−B(T )√
∆T

)
= o(
√

∆T ).

Letting the time step ∆T be very small and choosing ε0 > 0, ∃ ∆T0 ≤ 1 such that for
∆T < ∆T0 the o(

√
∆T ) term is between −ε0σI(T )(N − I(T ))

√
∆T and +ε0σI(T )(N −

I(T ))
√

∆T , hence must lie between −ε0σI(T )(N − I(T )) and ε0σI(T )(N − I(T )).

Hence the term

B(T + ∆T )−B(T )√
∆T

∈

(
βN − η − βI(T )

σ(N − I(T ))
− ε0,

βN − η − βI(T )

σ(N − I(T ))
+ ε0

)
.

But B(T+∆T )−B(T )√
∆T

∼ N(0, 1) so the probability that it lies in the above interval tends to
zero as ε0 → 0. Hence

P

(∫ T

0

1

(N − I(t))2 dt =
1

N − I(T )

∫
1

N − I(t)
dt on [T, T + ε] for some ε > 0

)
= 0.

So the denominator of (6.2.22) is strictly increasing and the width of the CI for β is
strictly decreasing in T . Similarly we can prove the case for η.

In the same way as for the simple linear SDE case, the asymptotic widths of the CIs
here do not depend on the size of time step ∆t but only on the total time period T , and
are decreasing as T increases.
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6.2.5 Joint Confidence Region

We have obtained univariate CIs for each parameter β and η in the last section. However
individual CIs do not take into account the correlation among the parameters. Also, they
do not reflect the overall degree of confidence. Joint confidence regions take both issues
into account. So we will obtain a joint confidence region for β and η in this section.

A 100(1 − α)% joint confidence region for the general regression model (6.2.3) is
obtained from the following inequality [81]

(θ − θ̂)T (XTX)(θ − θ̂) ≤ pσ̂2Fα,p,ν (6.2.25)

where Fα,p,ν is the value of the F -distribution with degrees of freedom p and ν that leaves
probability α in the upper tail, p is the number of parameters and ν is the degrees of
freedom associated with σ̂2.

Our case only involves two parameters so the 100(1−α)% joint confidence region for
β and η can be written as((

β̂
η̂

)
−
(
β
η

))T
(var(β̂, η̂))−1

((
β̂
η̂

)
−
(
β
η

))
≤ 2Fα,2,n−2. (6.2.26)

After substituting (6.2.17) in (6.2.26), it can be easily calculated as

n∆t
(
β̂ − β

)2

+ 2
√

∆t
∑

uk(β̂ − β)(η̂ − η) +
∑

uk
2 (η̂ − η)2 ≤ 2σ̂2Fα,2,n−2, (6.2.27)

where β̂ and η̂ are known in (6.2.5) and (6.2.6).

We compute that

4∆t
(∑

uk

)2

− 4n∆t
∑

u2
k = 4∆t

((∑
uk

)2

− n
∑

u2
k

)
. (6.2.28)

Defining the vectors in Rn

a = (1, 1, ..., 1) and b = (u1, u2, ..., un) .

then |a|2|b|2 ≥ |a ·b|2 as |a ·b| = |a||b|cosθ, where θ is the angle between a and b. Then
we have |a|2 = n, |b|2 =

∑
u2
k and |a · b| = (

∑
uk)

2. So (6.2.28) is strictly negative since
the angle between a and b is not 0. Therefore the boundary of the 100(1 − α)% joint
confidence region is an ellipsoid.

Substituting the definition of uk in (6.2.27), a 100(1 − α)% joint confidence region
can be calculated as

n∆t
(
β̂ − β

)2

− 2
√

∆t
∑ √

∆t

N − Ik
(β̂ − β)(η̂ − η) +

∑ ∆t

(N − Ik)2 (η̂ − η)2 ≤ 2σ̂2Fα,2,n−2,

(6.2.29)
where β̂ and η̂ are as in (6.2.7) and (6.2.8).
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Example 6.3 With the same units as in the examples in Chapter 3, we assume that the
parameters are given by T = 1, I(0) = 10, β = 0.5, µ = 20, γ = 25, N = 100, and σ2 =
0.03 for the model (3.2.4). T = 1 here represents one year.

We simulate I(t) using the above parameters by the EM method with a very small
step size ∆t = 0.001 and save these I(t) as our true dataset. Then we sample every 10th
data point in the dataset to obtain the sample for our parameter estimation, so n = 100
observations and ∆t = 0.01 for our sample.

With the sample we obtained, with α = 0.05 we find the boundary of the 95% joint
confidence region for β and η by using (6.2.27) and the univariate 95% CIs for each of
them by using (6.2.18) and (6.2.19), and also the point estimators by using (6.2.5) and
(6.2.6), which are shown in Figure 6.1(a). The ellipsoid in the figure represents the 95%
joint confidence region while the grey lines represent the univariate CIs. We see that
most of the ellipsoid lies in the square which represents the univariate CIs, but the area
of the ellipsoid is much smaller than the square. It indicates the advantage of the joint
confidence region that it drops out many of the extreme values in the univariate CIs and
is more efficient. We see that the ellipsoid is centered at the point estimates of β and η.
The red point which represents the true value of β = 0.5 and η = 45 lies in the ellipse.

Example 6.4 Assume that the parameters are given by I(0) = 10, β = 0.5, µ = 20, γ =
25, N = 100, and σ2 = 0.03 for the model (3.2.4), as in Example 6.3.

In order to see the influence of different interval lengths T on the 95% joint confidence
region, we now vary the value of the interval length T as T = 5, T = 20 and T = 50
and use the same method as in Example 6.3 to simulate a dataset for each T and sample
from each of them. When we increase T we increase the number of observations n in
proportion to T to keep ∆t fixed. We then obtain the three 95% joint confidence regions
for the different values of T , which are shown in Figure 6.1(b). We see that the area of the
95% joint confidence region becomes smaller with larger T (larger sequence of observations
n). The red point which represents the true value of β = 0.5 and η = 45 lies in all the
ellipses.

6.2.6 Estimation from Improved Regression Model with More
DataSets

The CIs for both β and η are dependent on the sample path. If more datasets are available,
we can expand the original regression model to get better parameter estimation.

Assuming that we have m datasets each of size n, we can put all these datasets in
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Figure 6.1: (a) is the 95% joint confidence region for β and η obtained using the parameter
values in Example 6.3 with T = 1. The ellipsoid in the figure represents the 95% joint
confidence region, while the grey vertical and horizontal lines represent the univariate CIs
for each of β and η. The black point marked in the figure is the point estimate for β and
η, and the red point represents the true values of β = 0.5 and η = 45; (b) is the 95% joint
confidence region for β and η using the parameter values in Example 6.4, with T = 5
(black), T = 20 (grey) and T = 50 (blue). The red point represents the true value of
β = 0.5 and η = 45.
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the regression model (6.2.2), so that Y, X, θ and ε become

Y =



y11

y12
...
y1n

y21

y22
...
y2n
...
ym1

ym2
...

ymn



, X =



√
∆t u11√
∆t u12
...

...√
∆t u1n√
∆t u21√
∆t u22
...

...√
∆t u2n
...

...√
∆t um1√
∆t um2
...

...√
∆t umn



, θ =

(
β
η

)
, ε =



ε11

ε12
...
ε1n

ε21

ε22
...
ε2n
...
εm1

εm2
...

εmn



.

using the same formula as in (6.2.4) we have(
β̂
η̂

)
= θ̂ = (XTX)−1(XTY)

=
1

mn∆t
∑∑

u2
ij −∆t (

∑∑
uij)

2

(√
∆t
∑∑

u2
ij

∑∑
yij −

√
∆t
∑∑

uij
∑∑

uijyij
mn∆t

∑∑
uijyij −∆t

∑∑
uij
∑∑

yij

)
,

(6.2.30)

where
∑∑

=
∑m

i=1

∑n−1
j=0 and similarly below.

In the same way, we can get

σ̂2 =
YTY −YTXθ̂

mn− 2

=
1

mn− 2

(∑∑
y2
ij −

(√
∆t
∑∑

yij

)
β̂ −

(∑∑
yijuij

)
η̂

)

=
1

(mn− 2)
(
mn∆t

∑∑
u2
ij −∆t (

∑∑
uij)

2 ) ·
(
mn∆t

∑∑
y2
ij

∑∑
u2
ij

−∆t
∑∑

y2
k

(∑∑
uij

)2

−∆t
∑∑

u2
ij

(∑∑
yij

)2

−mn∆t
(∑∑

yijuij

)2

+ 2∆t
∑∑

uij
∑∑

yij
∑∑

yijuij

)
.

(6.2.31)

When proving σ̂2 is an asymptotically unbiased estimator of σ2, the procedure is
similar to the one we used before. We use an equation similar to (6.2.15),

σ̂2 =
1

mn− 2

∑∑
(yij − ŷij)2 .
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After almost identical working to that used before, we can simplify σ̂2 as in (6.2.16),
except that the

∑
now represents

∑m
i=1

∑n−1
j=0 and the denominator under σ2 is mn− 2.

We know that n→∞ implies mn→∞.

So following almost the same procedure for the proof as before, we can prove that
σ̂2 → σ2 with probability one as n→∞.

Using formula (6.2.9) and σ̂ in (6.2.31) to estimate σ we have

var(θ̂) = var

(
β̂
η̂

)
=

1

mn∆t
∑∑

u2
ij −∆t (

∑∑
uij)

2

(∑∑
u2
ij −
√

∆t
∑∑

uij
−
√

∆t
∑∑

uijmn∆t

)
σ̂2.

(6.2.32)
If the number of observations is large, the 100(1 − α)% CIs for β and η estimated from
the regression model with m datasets are

β̂ ± zα/2
√
var(β̂)

=

∑∑
u2
ij

∑∑
yij −

∑∑
uij
∑∑

uijyij

mn
√

∆t
∑∑

u2
ij −
√

∆t (
∑∑

uij)
2 ± zα/2

√ ∑∑
uij2σ̂2

mn∆t
∑∑

u2
ij −∆t (

∑∑
uij)

2

(6.2.33)

and

η̂ ± zα/2
√
var(η̂)

=
mn

∑∑
uijyij −

∑∑
uij
∑∑

yij

mn
∑∑

u2
ij − (

∑∑
uij)

2 ± zα/2

√
mn∆tσ̂2

mn∆t
∑∑

u2
ij −∆t (

∑∑
uij)

2 ,

(6.2.34)

respectively.

As n→∞, the 100(1− α)% CIs tend to∑∫ T
0

1
(N−Ii(t))2 dt ·

∑∫ Ii(T )

Ii(0)
1

(N−Ii)Ii dIi −
∑∫ T

0
1

N−Ii(t) dt ·
∑∫ Ii(T )

Ii(0)
1

(N−Ii)2Ii
dIi

mT
∑∫ T

0
1

(N−Ii(t))2 dt− (
∑∫ T

0
1

N−Ii(t) dt)
2

± zα/2

√√√√ ∑∫ T
0

1
(N−Ii(t))2 dt · σ2

mT
∑∫ T

0
1

(N−Ii(t))2 dt− (
∑∫ T

0
1

N−Ii(t) dt)
2

(6.2.35)

and ∑∫ Ii(T )

Ii(0)
1

(N−Ii)Ii dIi ·
∑∫ T

0
1

N−Ii(t) dt−mT
∑∫ Ii(T )

Ii(0)
1

(N−Ii)2Ii
dIi

mT
∑∫ T

0
1

(N−Ii(t))2 dt− (
∑∫ T

0
1

N−Ii(t) dt)
2

± zα/2

√
mTσ2

mT
∑∫ T

0
1

(N−Ii(t))2 dt− (
∑∫ T

0
1

N−Ii(t) dt)
2
,

(6.2.36)

respectively. Here
∑

represents
∑m

i=1 .
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Example 6.5 Assume that the parameters are given by I(0) = 10, β = 0.5, µ = 20, γ =
25, N = 100, and σ2 = 0.03 for the model (3.2.4), as previously.

In this example we compare the following three methods in terms of the efficiency of
interval estimation. Method 1: One observer is assigned to record I(t) at one location four
times more densely than the comparison during T . Method 2: Two observers are assigned
to record I(t) with the same time steps as the comparison at four locations during T and
these four samples are combined for estimation. Method 3: one observer is assigned to
record I(t) with the same time steps as the comparison during time period 4T . To achieve
this purpose we design the experiment as follows:

We obtain three datasets as in Example 6.3, five times. The first four datasets use
the model parameters above and T = 25, while the fifth dataset uses T = 100. Then we
sample every twentieth data point in the first dataset to obtain sample A, so n = 1, 250
and ∆t = 0.02 for this case. We use sample A as the benchmark. For Method 1, we
obtain sample B by sampling every fifth data point in the first dataset, so n = 5, 000 and
∆t = 0.005 for this case. We then use (6.2.18) and (6.2.19) to obtain the 95% CIs for
β and η. For Method 2, we sample every twentieth data point in the second to fourth
datasets to get samples C, D, E and combine them with sample A to obtain four samples
each of n = 1, 250 and ∆t = 0.02. For samples A, C, D and E combined together we
have n = 5, 000 observations in total and ∆t = 0.02. We then use estimators from the
regression model with more datasets using (6.2.33) and (6.2.34) to obtain the 95% CIs
for β and η (with α = 0.05, zα/2 = 1.96). For Method 3, we sample every twentieth data
point in the fifth data set to obtain sample F so n = 5, 000 and ∆t = 0.02 for this case.
The results are displayed in Table 6.1.

We see from Table 6.1 that Method 1 (sample B), using a sample from one location
with denser observations, does not give smaller CIs for both β and η, while Method 2
(samples A, C, D and E), using more samples at different locations, decreases the width
of the CIs significantly and improves the efficiency of estimation. Method 3 (sample
F), using a sample with longer observations at one location, also gives narrower CIs.
Therefore we conclude from this example that both Methods 2 and 3 improve the efficiency
of estimation. We have repeated our simulations with different model parameter values
and the conclusions are the same.

By substituting (6.2.32) in (6.2.26), we can easily work out the joint 100(1 − α)%
confidence region for β and η for the regression model with m datasets of size n as

mn∆t(β̂ − β)2 + 2
√

∆t
∑∑

uij(β̂ − β)(η̂ − η) +
∑∑

uij
2(η̂ − η)2 ≤ 2σ̂2Fα,2,mn−2,

(6.2.37)
where β̂ and η̂ are given in (6.2.30).

We compute that

4∆t
(∑∑

uij

)2

− 4mn∆t
∑∑

u2
ij = 4∆t

((∑∑
uij

)2

−mn
∑∑

u2
ij

)
.

(6.2.38)
As for the regression model with one dataset in section 6.2.5, we can prove that (6.2.38)
is strictly negative. Therefore the boundary of the 100(1 − α)% joint confidence region
for the regression model with m datasets is still an ellipse.
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Table 6.1: CIs for Example 6.5; results are repeated three times.

CI for β Width of CI CI for η Width of CI

Sample A (n = 1, 250,
∆t = 0.02)

(0.36, 1.12) 0.76 (32.06, 106.58) 74.52
(0.32, 0.78) 0.46 (24.78, 71.42) 42.64
(0.15, 0.60) 0.45 (10.84, 54.63) 43.79

Sample B (n = 5, 000,
∆t = 0.005)

(0.41, 1.13) 0.72 (36.77, 107.53) 70.76
(0.31, 0.72) 0.41 (26.16, 65.84) 39.68
(0.19, 0.62) 0.43 (14.35, 56.29) 41.94

Sample A, C, D and E
(4× n = 1, 250, ∆t = 0.02)

(0.36, 0.68) 0.32 (30.98, 62.92) 31.94
(0.39, 0.62) 0.23 (33.68, 56.15) 22.47
(0.38, 0.59) 0.22 (32.62, 53.50) 20.88

Sample F (n = 5, 000,
∆t = 0.02)

(0.43, 0.76) 0.33 (37.72, 71.73) 34.01
(0.33, 0.63) 0.30 (28.28, 58.07) 29.79
(0.38, 0.60) 0.22 (33.12, 54.34) 21.22

Example 6.6 Assume that the parameters are given by T = 1, I(0) = 10, β = 0.5, µ =
20, γ = 25, N = 100, m = 10 and σ2 = 0.03 for the model (3.2.4).

We simulate I(t) using the above parameters by the EM method with a very small
step size ∆t = 0.001, m = 10 times and save these I(t) as ten sets of true data. Then
we sample every tenth data point in each dataset to obtain ten samples for our parameter
estimation, so n = 100 and ∆t = 0.01 for each of our samples.

We find the boundary of the 95% joint confidence region for β and η using (6.2.38)
and the univariate 95% CIs for each of them using (6.2.33) and (6.2.34), and also the
point estimates using (6.2.30). These are shown in Figure 6.2(a).

We see that most of the ellipse lies in the square which represents the univariate CIs,
but the area of the ellipse is much smaller than that of the square. This indicates the
advantage of the joint confidence region, i.e. it does not include many of the extreme
values in the univariate CIs and is more efficient. Also we see that the ellipse is centered
at the point estimate of β and η. The red point which represents the true value of β = 0.5
and η = 45 lies in the ellipse.

Example 6.7 Assume that the model parameters are given by T = 1, I(0) = 10, β =
0.5, µ = 20, γ = 25, N = 100 and σ2 = 0.03 for the model (3.2.4).

In order to examine the influence of different m on the 95% joint confidence region,
we vary the value of m as m = 1, m = 2 and m = 5 and use the same method as in
Example 6.6 to simulate datasets for each m and sample from each of them. We then
obtain three 95% joint confidence regions for the different m, which are shown in Figure
6.2(b). We see that the area of the 95% joint confidence region becomes smaller as m
becomes larger. Also the red point which represents the true value of β = 0.5 and η = 45
lies in all the ellipses.
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Figure 6.2: (a) shows the 95% joint confidence region for β and η from (6.2.37) and m = 10
datasets generated using the parameter values in Example 6.6. The ellipse in the figure
represents the 95% joint confidence region, while the grey lines represent the univariate
95% CIs for each of β and η. The black point marked in the figure is the point estimate
for β and η and the red point represents the true value of β = 0.5 and η = 45; (b) shows
the 95% joint confidence region for β and η using the parameter values in Example 6.7,
with m = 1 (black), m = 2 (grey) and m = 5 (blue). The red point represents the true
value of β = 0.5 and η = 45.
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6.3 Pseudo Maximum Likelihood Estimation

In this context, the explicit expressions for MLEs for φ = (β, η, σ2) are not attainable, pri-
marily because it is very difficult to find the corresponding likelihood function. Therefore
we are unable to use the exact Maximum Likelihood Method. An approximation scheme,
the pseudo-likelihood method, will be applied here to obtain estimators for β, η and σ2.
The pseudo-likelihood method has been discussed in [17, 48]. We apply the method in
the same way but on a different model. We use the Euler method, which approximates
the path of the process, so that the discretised form of the process has a likelihood that
is useable and so can be maximised with respect to the parameter values.

6.3.1 Pseudo MLE

The Euler scheme discretises the process as (6.2.1). The increments Ik+1 − Ik are con-
ditionally independent Gaussian random variables with mean Ik(βN − η − βIk)∆t and
variance σ2Ik

2(N − Ik)2∆t. Therefore the transition density of the process can be written
as

p(Ik+1, (k + 1)∆t|Ik, k∆t)

=
1√

2πσ2Ik
2 (N − Ik)2 ∆t

exp

(
− 1

2

[Ik+1 − Ik − Ik(βN − η − βIk)∆t]2

σ2Ik
2 (N − Ik)2 ∆t

)
,

(6.3.1)

where p(Ik+1, (k+1)∆t|Ik, k∆t) represents the conditional probability density that I[(k+
1)∆t] = Ik+1 given that I(k∆t) = Ik. Then a pseudo-likelihood is obtained as

Ln(φ) =
n∏
k=1

 1√
2πσ2Ik

2 (N − Ik)2 ∆t
exp

(
− 1

2

[Ik+1 − Ik − Ik(βN − η − βIk)∆t]2

σ2Ik
2 (N − Ik)2 ∆t

) .

(6.3.2)
Taking the logarithm of (6.3.2) we have the log pseudo-likelihood

ln(φ) =− 1

2

∑
[ln(2π∆t) + ln σ2 + ln I2

k + ln (N − Ik)2]

− 1

2

∑ [Ik+1 − Ik − Ik(βN − η − βIk)∆t]2

σ2Ik
2 (N − Ik)2 ∆t

.
(6.3.3)

The corresponding partial derivatives with respect to β, η and σ2 are

∂ln(φ)

∂β
= −

∑ Ik+1 − Ik − Ik(βN − η − βIk)∆t
σ2Ik

2 (N − Ik)2 ∆t
· (−IkN∆t+ I2

k∆t), (6.3.4)

∂ln(φ)

∂(η)
= −

∑ Ik+1 − Ik − Ik(βN − η − βIk)∆t
σ2Ik

2 (N − Ik)2 ∆t
· Ik∆t, (6.3.5)

∂ln(φ)

∂σ2
= − n

2σ2
+

1

(σ2)2
· 1

2∆t
·
∑ [Ik+1 − Ik − Ik(βN − η − βIk)∆t]2

Ik
2 (N − Ik)2 . (6.3.6)
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By setting all the partial derivatives equal to zero and solving these simultaneously, we
find β̂, η̂ and σ̂2 where the pseudo-likelihood function changes direction. We find that β̂,
η̂ have the same expressions as the least squares estimators in (6.2.7) and (6.2.8), while

σ̂2 is almost the same as the least squares estimator (6.2.14) except that it has n in the
denominator instead of (n− 2). We notice that β̂, η̂ and σ̂2 are a unique solution to the
partial derivative equations derived from (6.3.4), (6.3.5) and (6.3.6), and the likelihood
function (6.3.2) tends to zero at the boundary. Since the values of the likelihood function
are always positive, we conclude that the turning point (β̂, η̂, σ̂2) maximises the pseudo-
likelihood function (6.3.2). Therefore φ̂ = (β̂, η̂, σ̂2) are the pseudo-MLEs for (3.2.4).

In the following sections we construct joint confidence regions for the pseudo-MLEs
that we have obtained.

6.3.2 Exact Joint Confidence Region

We know that the MLEs are exactly the same as the least squares estimators, except for a
minor difference in the estimation of σ2. If we want to find a joint 100(1−α)% confidence
region for θ = (β, η) then we have already found this in the least squares case in (6.2.27)
and (6.2.37) (for both m = 1 and m > 1) by obtaining an exact 95% confidence region
for θ as

(θ − θ̂)T
(
var(β̂, η̂)

)−1

σ2(θ − θ̂) ≤ σ2χ2
α,2, (6.3.7)

where χ2
α,2 is the upper α point of the χ2 distribution on two degrees of freedom, and

then estimating σ2 by σ̂2. Note that we use σ̂2 in (6.2.14) instead of σ̂2 from the pseudo-
MLE since the least squares estimator for σ2 is unbiased and is slightly better than the
pseudo-MLE. Arnold (1998) [4] argues that if plug-in estimates are used for the variance,
it is sensible to change the distribution from χ2

2 to 2F2,n−2 [24], to balance out the loss of
accuracy because of the substitution that increases the area of the region. We replace σ2

by σ̂2 and therefore it is more sensible to use 2F2,n−2 here. Then it will lead to the same
analytic form of the 100(1− α)% joint confidence region for β and η as the least squares
case in (6.2.26).

We already know the exact confidence region for β and η but we did not obtain the
confidence region for all three pseudo-MLEs. In the following sections we construct large
sample 100(1 − α)% joint confidence regions for all three pseudo-MLEs and for β and η
as well for purposes of comparison. There are two ways to construct the asymptotic joint
confidence region. The first method is based on the assumption that the pseudo-MLEs
are approximately multivariate normally distributed, while the second is based on the
likelihood ratio test statistic.

6.3.3 Asymptotic joint confidence regions based on the approx-
imate multivariate normality of pseudo-MLEs

We can regard one data point as X = (x0, x1, ..., xn), which is a complete run with the
initial data I0 and the transition probability as in (6.3.1). If we obtain m data points
X = (x0, x1, ..., xn) all with the same initial value and the same transition probability,
then our m observations are independently and identically distributed and all with the
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pseudo-likelihood function as given in (6.3.2). Within this framework, we can apply the
asymptotic maximum likelihood theory.

If m = 1 (i.e. we have only one run) or m is very small this is not very helpful as
the asymptotic theory requires the number of observations (m here) to be very large in
order to be valid. In this case we use the exact confidence region as in (6.2.26) for the
pseudo-MLE case. If m is large, we can then use the asymptotic pseudo-MLE theory and
the likelihood ratio test which we will introduce in the next section.

First we find a joint confidence region for φ = (β, η, σ2). It is well known that the
multivariate pseudo-MLEs, the φ̂ in our case, are asymptotically normally distributed
[4, 72], i.e.

φ(m) ∼ N (3)

(
φ,

1

m
Σ(φ)

)
approximately, (6.3.8)

where

Σ−1(φ) = σij(φ) = −E
{

∂2

∂φi∂φj
ln f(X;φ)

}
, (6.3.9)

the Fisher information matrix.

Here

f(X;φ) =
n∏
k=1

 1√
2πσ2Ik

2 (N − Ik)2 ∆t
exp

(
− 1

2

[Ik+1 − Ik − Ik(βN − η − βIk)∆t]2

σ2Ik
2 (N − Ik)2 ∆t

) ,

so that

ln f(X;φ) =− 1

2

∑
[ln(2π∆t) + ln σ2 + ln I2

k + ln (N − Ik)2]

− 1

2

∑ [Ik+1 − Ik − Ik(βN − η − βIk)∆t]2

σ2Ik
2 (N − Ik)2 ∆t

.

The associated quadratic form

U =
3∑
i=1

3∑
j=1

mσij(φ)(φ̂i − φi)(φ̂j − φj) (6.3.10)

has an approximate chi-square distribution with three degrees of freedom for large m.

Because φ̂ is a strongly consistent estimate of φ, the statistics U will still have an
asymptotic chi-square distribution with σij(φ) being substituted by σij(φ̂).

This will give a three dimensional confidence region for φ = (β, η, σ2). To actually
evaluate this asymptotic confidence region for our case is very complicated. The equation

(6.3.9) is very difficult to calculate since it involves the approximation of E
(

1
(N−Ik)2

)
, and

also it will bring in extra error from the approximation, so we do not use this confidence
region in our examples.

On the other hand we could assume that σ is known and that we are trying to estimate
θ = (β, η). This is parallel to the estimation procedure that we used in the least squares
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problem (estimating σ by σ̂ and getting a two dimensional confidence region for β and
η). Then

θ(m) ∼ N (2)

(
θ,

1

m
Σ(θ)

)
approximately,

where

Σ−1(θ) = σij(θ) = −E
{

∂2

∂θi∂θj
ln f(X;θ)

}
. (6.3.11)

The associated quadratic form

U ′ =
2∑
i=1

2∑
j=1

mσij(θ)(θ̂i − θi)(θ̂j − θj) (6.3.12)

has an approximate chi-square distribution with two degrees of freedom for large m.

Note that θ̂ is the MLE θ̂(σ) = (β̂(σ), η̂(σ)) with σ known and solves

∂

∂β
lnLn(θ) = 0 and

∂

∂η
lnLn(θ) = 0.

Here Ln(θ) is given by (6.3.2) except that σ is regarded as known.

If σ is actually unknown, we can substitute σ by its least squares estimator σ̂. Then
the distribution for that statistic U ′ is 2F2,mn−2 [24]. We should use mn − 2 here rather
than m− 2 as the estimator σ̂2 is the average of mn− 2 sums of squares. Also we should
use the least squares estimator, not the pseudo-MLE for σ̂, for the same reason as in
section 6.3.2, although the results using the pseudo-MLE will be very close. If m is large,
2F2,mn−2 will be approximately the same as a chi-square distribution with two degrees
of freedom and the asymptotic confidence region will then approach the exact confidence
region.

We are unable to work out this asymptotic confidence region numerically for the same
reason as in the three dimensional case.

6.3.4 Joint confidence regions based on the likelihood ratio
statistic

Another approximate confidence region is based on the likelihood ratio test statistic [4].
Suppose that we have m independent observations X1,X2, ...,Xm with common density
f(X|φ). Then we can approximate the 100(1− α)% confidence region for φ by

{φ : −2 logRn(φ) < χ2
α,3}. (6.3.13)

Here

Rn(φ) =
Lm(φ)

Lm(φ̂)
,

where the vector φ̂ contains the pseudo-MLEs for φ, the parameters,

Lm(φ) =
m∏
j=1

Ln,j(φ) (6.3.14)
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and Ln,j(φ) =

n∏
k=1

 1√
2πσ2Ik,j

2 (N − Ik,j)2 ∆t
exp

(
− 1

2

[Ik+1,j − Ik,j − Ik,j(βN − η − βIk,j)∆t]2

σ2Ik,j
2 (N − Ik,j)2 ∆t

) .

So a 100(1− α)% confidence region for φ is

m∑
j=1

n∑
k=1

(
ln

2√
2πσ̂2Ik,j

2 (N − Ik,j)2 ∆t
− ln

2√
2πσ2Ik,j

2 (N − Ik,j)2 ∆t

+
[Ik+1,j − Ik,j − Ik,j(βN − η − βIk,j)∆t]2

σ2Ik,j
2 (N − Ik,j)2 ∆t

)
−mn < χ2

α,3.

Again if σ2 is assumed known, a similar argument shows that a 100(1−α)% confidence
region for θ is

m∑
j=1

n∑
k=1

(
[Ik+1,j − Ik,j − Ik,j(βN − η − βIk,j)∆t]2

σ2Ik,j
2 (N − Ik,j)2 ∆t

− [Ik+1,j − Ik,j − Ik,j(β̂N − η̂ − β̂Ik,j)∆t]2

σ2Ik,j
2 (N − Ik,j)2 ∆t

)
< χ2

α,2.

(6.3.15)

Here again θ̂ is the MLE θ̂(σ) = (β̂(σ), η̂(σ)) with σ known, and solves

∂

∂β
lnLm(θ) = 0 and

∂

∂η
lnLm(θ) = 0.

In these equations Lm(θ) is given by (6.3.14) but regarded as a function of θ = (β, η)
with σ known rather than as a function of φ = (β, η, σ).

Again if we replace the unknown σ by σ̂ (the least squares estimator), then the
distribution should be 2Fα,2,mn−2.

Then (6.3.15) can be written as

m∑
j=1

n∑
k=1

(
[Ik+1,j − Ik,j − Ik,j(βN − η − βIk,j)∆t]2

σ2Ik,j
2 (N − Ik,j)2 ∆t

− (mn− 2)

)
< 2Fα,2,mn−2,

which is equivalent to

1

σ̂2

(
m∑
j=1

n∑
k=1

(Ik+1,j − Ik,j)2

Ik,j (N − Ik,j)2 ∆t
+ β2mn∆t+ η2

m∑
j=1

n∑
k=1

∆t

(N − Ik,j)2 + ηβ
m∑
j=1

n∑
k=1

−2∆t

N − Ik,j

+ β
m∑
j=1

n∑
k=1

−2(Ik+1,j − Ik,j)
Ik,j(N − Ik,j)

+ η
m∑
j=1

n∑
k=1

2(Ik+1,j − Ik,j)
Ik,j (N − Ik,j)2

)
− (mn− 2) < 2Fα,2,mn−2.

This can be simplified as
m∑
j=1

n∑
k=1

y2
k,j + β2nm∆t+ η2

m∑
j=1

n∑
k=1

u2
k,j + ηβ2

√
∆t

m∑
j=1

n∑
k=1

uk,j + β(−2
√

∆t)
m∑
j=1

n∑
k=1

yk,j

+ η(−2)
m∑
j=1

n∑
k=1

uk,jyk,j − (mn− 2)σ̂2 < 2σ̂2Fα,2,mn−2,
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with uk and yk defined in (6.2.2).

This can be written as

mn∆t
(
β − β̂

)2

+
m∑
j=1

n∑
k=1

u2
j,k (η − η̂)2+2

√
∆t

m∑
j=1

n∑
k=1

uk,j(β−β̂)(η−η̂) < 2σ̂2Fα,2,mn−2−D,

(6.3.16)
where

D = −mn∆tβ̂2 −
m∑
j=1

n∑
k=1

u2
j,kη̂

2 − 2
√

∆t
m∑
j=1

n∑
k=1

uk,jβ̂η̂ +
m∑
j=1

n∑
k=1

y2
k,j − (mn− 2)σ̂2.

The region (6.3.16) has the same form as the exact confidence region (6.2.37) apart from
the substraction of a constant D on the right hand side. We have shown that (6.2.38) is
strictly negative and therefore the 100(1−α)% confidence region for θ (6.3.16) is an ellipse
centered at the pseudo-MLE β̂ and η̂. We numerically compare the exact 95% confidence
region for θ with the asymptotic confidence region obtained by using the likelihood ratio
test in the following example, and establish the size of the difference D in this case.

Example 6.8 Assume that the parameters are given by T = 5, I(0) = 10, β = 0.5, µ =
20, γ = 25, N = 100, m = 100 and σ2 = 0.03 for the model (3.2.4).

We use the same method as in Example 6.6 to simulate m = 100 datasets and sample
from them. With the samples we obtained, we calculate both the 95% joint confidence re-
gion for β and η (6.2.37) and the asymptotic confidence region obtained using the likelihood
ratio test (6.3.16). These confidence regions are shown in Figure 6.3. The two confidence
regions are almost identical and the difference between them can hardly be seen. We cal-
culated D, the difference between the two confidence regions as shown in (6.3.16), which
is very small, −2.373× 10−12 in this case.

6.4 Summary

In this chapter we have applied the pseudo-MLE and the least squares method to estimate
the parameters in the stochastic SIS model. For the least squares method, we started
with the case in which only one dataset is available and then improved our method by
considering the case where more than one dataset is available. We have obtained the
point estimators, 100(1− α)% CIs and 100(1− α)% joint confidence regions for β and η
for both cases. We also investigated which factors influence the width of the CIs and the
areas of the confidence regions. Theorem 6.2 states that the asymptotic widths of the CIs
for both β and η strictly decrease as the total time period T increases and do not depend
on the size of the time step ∆t. Example 6.5 shows that a sample from one location with
denser observations does not give narrower CIs, while using more than one sample taken
at different locations and getting a sample with a longer period of observation at one
location decreases the width of CIs significantly and improves the efficiency of estimation.
Examples 6.4 and 6.7 show that the area of the confidence region decreases with increasing
total time period T and increasing number of samples m.
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Figure 6.3: (a) shows the exact 95% joint confidence region for β and η (6.2.37) using
the parameter values in Example 6.8; (b) shows the approximate likelihood ratio based
confidence region using (6.3.16).

We have also obtained pseudo-MLEs which are almost the same as the point esti-
mators from the least squares case, with a minor difference in the estimators of σ2. For
obtaining the confidence region for the pseudo-MLEs we considered the following two
cases: When the number of samples m is small, we obtained the exact confidence region
for β and η in the pseudo-MLE case based on the least squares method. When m is large,
we used the asymptotic MLE theory and the likelihood ratio test to obtain the large sam-
ple confidence regions for both the three dimensional case (using all three pseudo-MLEs)
and the two dimensional case (estimating β and η assuming that σ is known). We only
calculated numerically the asymptotic confidence region based on the likelihood ratio test
for β and η. Example 6.8 shows that the numerical asymptotic confidence region using
the likelihood ratio test for β and η is almost identical to the exact confidence region.

Comparing the least squares estimation method and the pseudo-MLE method, we
find that although the pseudo-MLE is more popular for parameter estimation for SDEs,
least squares estimation gave the same point estimators and joint confidence region as the
pseudo-MLE and is easier to apply. In our case least squares estimation is advantageous.
Most of the contents of this chapter have been formed into a paper and submitted to the
journal of Statistical Inference for Stochastic Processes.

The Bayesian approach is another popular way to estimate the parameters for SDEs.
We will apply the Bayesian estimation to our stochastic SIS model in the next chapter.
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Chapter 7

Bayesian Estimation of Parameters
for the SDE SIS Epidemic Model

7.1 Introduction

In this chapter, we still consider the SDE SIS model (3.2.3) we derived in Chapter 3.
As for the previous chapter we concentrate on the the SDE for I(t) (3.2.4) and apply
Bayesian estimation to this SDE. A short literature review regarding Bayesian inference
in stochastic epidemic modelling has been conducted in section 1.4, where we found that
although many researchers have contributed to the Bayesian inference for the stochastic
compartmental model by using the MCMC technique, the noise is introduced in a different
way. For the case where Bayesian inference is applied to general SDEs, strong results have
been obtained by using the MCMC technique. However the computational cost can be
significant. We use a different method for our problem where analytic results will be
obtained and is easier to apply.

The organisation of this chapter is as follows: In section 7.2, we set up a conjugate
prior and obtain the joint posterior distribution for the model parameters. We maximise
this joint posterior distribution with respect to the parameters and obtain the Bayesian
estimators. We compare the Bayesian estimators with the point estimators obtained by
the least squares approach both analytically and also in simulations. In section 7.3 we
obtain confidence intervals for the Bayesian estimators by deriving the marginal distri-
butions from the joint posterior density. In section 7.4 we obtain the joint confidence
region for the Bayesian estimators. In both sections 7.3 and 7.4 we compare the results
with the least squares case using simulation examples. In section 7.5 we discuss Bayesian
estimation for the case where more datasets are available, and a summary is given in
section 7.6.

7.2 Bayesian Estimation

In practice, we often have some information about parameters before data is collected.
The Bayesian approach is advantageous in this situation since it can include previous
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information in the model in the form of a prior distribution.

There are several ways to set a prior distribution [34]. For mathematical convenience,
we construct a prior distribution that leads to a simple posterior distribution for our
model. The property that the posterior distribution has the same form of distribution as
the prior distribution is called conjugacy. In order to obtain a neat theoretical expression
for the posterior distribution, we will derive the Bayesian estimators for our problem
with a conjugate prior. In practice, if the information that is available contradicts the
conjugate prior, it will be necessary to use a more realistic prior distribution. However the
posterior distribution may then be very difficult to obtain. In this case, an approximating
scheme such as the MCMC method can be applied to obtain an approximate posterior
distribution.

Before applying the Bayesian technique, we require the likelihood function for our
parameters. However the exact likelihood function is very difficult to derive. An approx-
imation solution, the pseudo-likelihood, which has been obtained in (6.3.2) will be used
here.

We now derive the posterior density for our parameters based on the pseudo-likelihood
function (6.3.2). We know that the conjugate prior for the two-parameter univariate
normal sampling model N(µ, σ2) has the product form p(σ2)p(µ|σ), where the marginal
distribution of σ2 is scaled inverse-χ2 and the conditional distribution of µ given σ2 is
normal [34]. In a similar way we can set up the prior distribution for our model and find
the posterior distribution.

Theorem 7.1 We choose the following prior distribution on the parameters

β|λ ∼ N(µ10, (k10λ)−1), where λ = 1
σ2 ,

η|β, λ ∼ N(µ20 + ξ0β, (k20λ)−1),

λ ∼ Γ(α0, β0).

Also, we suppose that our data is I0, I1, ..., In and then set x1 = I1−I0, x2 = I2−I1,
..., xn = In − In−1. The posterior density of the parameters (η, β, λ) given the data has
the form

λᾱ0−1e−β̄0λ · λexp

(
− λ

2

(
k̄10 (β − µ̄10)2 + k̄20

(
η − µ̄20 − ξ̄0β

)2
))

, (7.2.1)

where
ᾱ0 = α0 +

n

2
, (7.2.2)

β̄0 = β0 +
ψ

2
, (7.2.3)

ψ = k10µ
2
10 + k20µ

2
20 +

∑ xk+1
2

Ik
2 (N − Ik)2 ∆t

−

(
k20µ20 −

∑ xk+1

Ik(N−Ik)2

)2

k20 +
∑

∆t
(N−Ik)2

− k̄10µ̄
2
10, (7.2.4)

k̄10 = k10 + k20ξ0
2 + n∆t−

(
k20ξ0 +

∑
∆t

N−Ik

)2

k20 +
∑

∆t
(N−Ik)2

, (7.2.5)
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µ̄10 =
m̄10

k̄10

, (7.2.6)

m̄10 = k10µ10 − k20ξ0µ20 +
∑ xk+1

Ik(N − Ik)
+

(
k20ξ0 +

∑
∆t

N−Ik

)
·
(
k20µ20 −

∑ xk+1

Ik(N−Ik)2

)
k20 +

∑
∆t

(N−Ik)2

,

(7.2.7)

k̄20 = k20 +
∑ ∆t

(N − Ik)2 , (7.2.8)

µ̄20 =
k20µ20 −

∑ xk+1

Ik(N−Ik)2

k20 +
∑

∆t
(N−Ik)2

, (7.2.9)

and

ξ̄0 =
k20ξ0 +

∑
∆t

N−Ik
k20 +

∑
∆t

(N−Ik)2

. (7.2.10)

Here
∑

represents
∑n−1

k=0 as does
∑

below.

Proof. The posterior distribution of the parameters (η, β, λ) given the data D is

P (η, β, λ|D) = P (D|η, β, λ)P (η|β, λ)P (β|λ)P (λ)

∝ λ
n
2 exp

(
− λ

2

∑ (xk+1 − βIk(N − Ik)∆t+ ηIk∆t)
2

Ik
2(N − Ik)2∆t

)

· λexp

(
− λ

2

(
k10(β − µ10)2 + k20(η − µ20 − ξ0β)2

))
· λα0−1e−β0λ,

(7.2.11)

which is equal to

λα0+n
2
−1e−β0λ · λexp

(
− λ

2

(
(k10 + k20ξ

2
0 + n∆t)β2 +

(
k20 +

∑ ∆t

(N − Ik)2

)
η2

− 2β

(
k10µ10 − k20ξ0µ20 +

∑ xk+1

Ik(N − Ik)

)
− 2η

(
k20µ20 + k20ξ0β −

∑ xk+1

Ik (N − Ik)2 + β
∑ ∆t

N − Ik

)
+ k10µ

2
10 + k20µ

2
20 +

∑ x2
k+1

Ik
2 (N − Ik)2 ∆t

))
.
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This can be written as

λα0+n
2
−1e−β0λ · λexp

(
− λ

2

(
(
k20 +

∑ ∆t

(N − Ik)2

)
·

(
η −

k20ξ0 +
∑

∆t
N−Ik

k20 +
∑

∆t
(N−Ik)2

β −
k20µ20 −

∑ xk+1

Ik(N−Ik)2

k20 +
∑

∆t
(N−Ik)2

)2

+ β2

k10 + k20ξ
2
0 + n∆t−

(
k20ξ0 +

∑
∆t

N−Ik

)2

k20 +
∑

∆t
(N−Ik)2

− 2β

(
k10µ10 − k20ξ0µ20

+
∑ xk+1

Ik(N − Ik)
+

(
k20ξ0 +

∑
∆t

N−Ik

)
·
(
k20µ20 −

∑ xk+1

Ik(N−Ik)2

)
k20 +

∑
∆t

(N−Ik)2

)

+ k10µ
2
10 + k20µ

2
20 +

∑ xk+1
2

Ik
2 (N − Ik)2 ∆t

−

(
k20µ20 −

∑ xk+1

Ik(N−Ik)2

)2

k20 +
∑

∆t
(N−Ik)2

))
,

which equals

λα0+n
2
−1e−β0λ · λexp

(
−λ

2

(
k̄20

(
η − µ̄20 − ξ̄0β

)2
+ k̄10 (β − µ̄10)2 + ψ

))
.

This can easily be simplified as (7.2.1).

We see that (7.2.1) has the same parametric form as the prior distribution so our
prior density is a conjugate prior for this problem and gives the density of the posterior
estimators.

Note that we shall show that k̄20, ᾱ0, β̄0 and k̄10 are positive, so that the posterior
distribution (7.2.1) is proper.

Clearly k̄20 and ᾱ0 are strictly positive.

In order to show that k̄10 > 0, it is sufficient to show that

(k20ξ
2
0 + n∆t)

(
k20 +

∑ ∆t

(N − Ik)2

)
≥
(
k20ξ0 +

∑ ∆t

N − Ik

)2

,

or equivalently

k20ξ
2
0

∑ ∆t

(N − Ik)2 +n∆tk20+n∆t
∑ ∆t

(N − Ik)2−2
∑ ∆t

N − Ik
k20ξ0−

(∑ ∆t

N − Ik

)2

≥ 0,

which is equal to

k20∆t
∑(

ξ0

N − Ik
− 1

)2

+ ∆t2

(
n
∑ 1

(N − Ik)2 −
(∑ 1

N − Ik

)2
)
≥ 0. (7.2.12)

Note that in this section
∑

represents
∑n−1

k=0 for Ik and
∑n

k=1 for uk and yk.
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The first term in (7.2.12) is clearly positive and the second term is also positive by
the Cauchy-Schwartz inequality. So the result follows.

To show that β̄0 > 0, it is sufficient to show that ψ ≥ 0. We shall do this by using the
least squares theory. Indeed it turns out that the posterior Bayesian estimator is a least
squares estimator with two extra terms added to take account of the prior distribution.
We still use the multiple linear regression model in the general matrix form (6.2.3), where
ε remains the same while Y, X and θ become

Y =



√
k10µ10√
k20µ20

y1

y2
...
yn


, X =



√
k10 0

−ξ0

√
k20

√
k20√

∆t u1√
∆t u2
...

...√
∆t un


, θ =

(
β
η

)
.

We can treat X as the data and Y as the response variable in a new least squares
regression problem.

We use the formulae in the multiple linear regression theorem again, as in (6.2.4) to
derive θ = (XTX)−1(XTY), where

XTX =

(
k10 + k20ξ

2
0 + n∆t −k20ξ0 +

∑
uk
√

∆t

−k20ξ0 +
∑
uk
√

∆t k20 +
∑
u2
k

)
and

XTY =

(
k10µ10 − k20ξ0µ20 +

∑
yk
√

∆t
k20µ20 +

∑
ukyk

)
.

So

(XTX)−1 =
1

Det(XTX)

(
k20 +

∑
u2
k k20ξ0 −

∑
uk
√

∆t

k20ξ0 −
∑
uk
√

∆t k10 + k20ξ
2
0 + n∆t

)
,

where

Det(XTX) = (k10 + k20ξ
2
0 + n∆t)

(
k20 +

∑
u2
k

)
−
(
−k20ξ0 +

∑
uk
√

∆t
)2

= (k10 + k20ξ
2
0 + n∆t)

(
k20 +

∑ ∆t

(N − Ik)2

)
−
(
k20ξ0 +

∑ ∆t

N − Ik

)2

.

Hence

(XTX)−1 =
1(

k20ξ0 +
∑

∆t
(N−Ik)2

)
k̄10

(
k20 +

∑
u2
k k20ξ0 −

∑
uk
√

∆t

k20ξ0 −
∑
uk
√

∆t k10 + k20ξ
2
0 + n∆t

)
.

Therefore

β̂ =
1(

k20ξ0 +
∑

∆t
(N−Ik)2

)
k̄10

((
k20 +

∑
u2
k

)(
k10µ10 − k20ξ0µ20 +

∑
yk
√

∆t
)

+
(
k20ξ0 −

∑
uk
√

∆t
)(

k20µ20 +
∑

ukyk

))
,
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which is equal to

1

k̄10

((
k10µ10 − k20ξ0µ20 +

∑ xk+1

Ik(N − Ik)

)

+

(
k20ξ0 +

∑
∆t

N−Ik

)(
k20µ20 −

∑ xk+1

Ik(N−Ik)2

)
k20ξ0 +

∑
∆t

(N−Ik)2

)
= µ̄10.

Similarly

η̂ =
1(

k20 +
∑

∆t
(N−Ik)2

)
k̄10

((
k20ξ0 −

∑
uk
√

∆t
)(

k10µ10 − k20ξ0µ20 +
∑

yk
√

∆t
)

+
(
k10 + k20ξ

2
0 + n∆t

) (
k20µ20 +

∑
ukyk

))
,

which is equal to

1

k̄10

k20ξ0 +
∑

∆t
N−Ik

k20 +
∑

∆t
(N−Ik)2

(
k10µ10 − k20ξ0µ20 +

∑ xk+1

Ik(N − Ik)

)

+
1(

k20 +
∑

∆t
(N−Ik)2

)
k̄10

(
k20µ20 −

∑ xk+1

Ik(N − Ik)2

)k̄10 +

(
k20ξ0 +

∑
∆t

N−Ik

)2

k20 +
∑

∆t
(N−Ik)2

 .

This can be rearranged as

ξ̄0

k̄10

(
k10µ10 − k20ξ0µ20 +

∑ xk+1

Ik(N − Ik)

)
+
µ̄20

k̄10

(
k̄10 + ξ̄0

(
k20ξ0 +

∑ ∆t

N − Ik

))
,

which is equal to

µ̄20 +
ξ̄0

k̄10

(
k10µ10 − k20ξ0µ20 +

∑ xk+1

Ik(N − Ik)

+

(
k20ξ0 +

∑ ∆t

N − Ik

)
k20µ20 −

∑ xk+1

Ik(N−Ik)

k20 +
∑

∆t
(N−Ik)2

)
= µ̄20 +

ξ̄0

k̄10

m̄10 = µ̄20 + ξ̄0µ̄10.

Now we define the estimator of σ2 to be the same as in (6.2.11) but adjusted for
dimension, so

σ̂2 =
YTY −YTXθ̂

n
,

where

YTY = k10µ
2
10 + k20µ

2
20 +

∑ x2
k+1

I2
k (N − Ik)2 ∆t

,
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and

YTXθ̂ =
(
k10µ10 − k20ξ0µ20 +

∑
yk
√

∆t
)
µ̄10 +

(
k20µ20 +

∑
ukyk

)
(µ̄20 + ξ̄0µ̄10),

which is equal to(
k10µ10 − k20ξ0µ20 +

∑ xk+1

Ik(N − Ik)

)
µ̄10 +

(
k20µ20 −

∑ xk+1

Ik (N − Ik)2

)
(µ̄20 + ξ̄0µ̄10).

This can be written as

(m̄10 − ξ̄0µ̄20k̄20)µ̄10 + µ̄20k̄20(µ̄20 + ξ̄0µ̄10) = k̄10µ̄
2
10 + k̄20µ̄

2
20.

Hence ψ = YTY −YTXθ̂ = nσ̂2 ≥ 0. So β̄0 is strictly positive.

Now we have proved k̄10, k̄20, ᾱ0 and β̄0 are strictly positive so the posterior distri-
bution (7.2.1) is a proper distribution. Therefore the proof is complete.

Now we examine the connection between the Bayesian estimators and the least squares
estimators. We expect that the two estimators will be very close if the sample size n is
very large, since the larger the available datasets are, the smaller the influence of the
prior information on the posterior density. The connection between the two estimation
approaches is stated in the following theorem:

Theorem 7.2 The Bayesian estimators for ϕ = (β, η, σ2), which maximise the joint
posterior distribution, are

β̂ = µ̄10, (7.2.13)

η̂ = µ̄20 + ξ̄0µ̄10, (7.2.14)

σ̂2 =
β̄0

ᾱ0

, (7.2.15)

respectively. Furthermore, β̂ and η̂ will tend to the least squares estimators (6.2.7) and
(6.2.8) respectively as n becomes infinitely large, while σ̂2 will tend to a form almost the
same as the least squares estimators (6.2.14) except that n rather than n − 2 appears in
the denominator as n becomes infinitely large.

Proof. To obtain the Bayesian estimators for ϕ = (β, η, σ2), we take the partial deriva-
tives of the logarithm of the joint posterior density (7.2.1) with respect to β, η and λ.

The logarithm of the function is

l(ϕ) = ᾱ0logλ− β̄0λ−
λ

2
(k̄10(β − µ̄10)2 + k̄20(η − µ̄20 − ξ̄0β)2).

The corresponding partial derivatives are

∂l(ϕ)

∂β
= −λk̄10(β − µ̄10) + λk̄20ξ̄0(η − µ̄20 − ξ̄0β), (7.2.16)

∂l(ϕ)

∂η
= −λk̄20(η − µ̄20 − ξ̄0β), (7.2.17)

∂l(ϕ)

∂λ
=

ᾱ0

λ
− β̄0 −

1

2
(k̄10(β − µ̄10)2 + k̄20(η − µ̄20 − ξ̄0β)2). (7.2.18)
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By setting all the partial derivatives equal to zero and solving these simultaneously,
we find β̂, η̂ and σ̂2 where the joint posterior density changes direction. We find that the
Bayesian estimators β̂, η̂ and σ̂2 are as in (7.2.13), (7.2.14) and (7.2.15). We notice that
β̂, η̂ and σ̂2 are a unique solution to the partial derivative equations (7.2.16), (7.2.17) and
(7.2.18), and the posterior density (7.2.1) tends to zero at the boundary. Since the values
of the posterior density are always positive, we conclude that the turning point (β̂, η̂, σ̂2)
must maximise the posterior distribution (7.2.1).

Now we prove that β̂, η̂ and σ̂2 tend to the corresponding least squares estimators
when n becomes large. We prove this for the β̂ case first. When n becomes large (7.2.13)
tends to ∑ xk+1

Ik(N−Ik)

∑
∆t

(N−Ik)2 −
∑

∆t
N−Ik

∑ xk+1

Ik(N−Ik)2

n∆t
∑

∆t
(N−Ik)2 −

(∑
∆t

N−Ik

)2 ,

which equals ∑ xk+1

Ik(N−Ik)

∑
1

(N−Ik)2 −
∑

1
N−Ik

∑ xk+1

Ik(N−Ik)2

n
∑

∆t
(N−Ik)2 −∆t

(∑
1

N−Ik

)2 .

This is exactly as in (6.2.7) for the least squares model.

For the case of η̂, when n becomes large (7.2.14) tends to

−

∑ xk+1

Ik(N−Ik)2∑
∆t

(N−Ik)2

+

∑ xk+1

Ik(N−Ik)

∑
1

(N−Ik)2 −
∑

1
N−Ik

∑ xk+1

Ik(N−Ik)2

n
∑

∆t
(N−Ik)2 −∆t

(∑
1

N−Ik

)2 ·
∑

∆t
N−Ik∑

∆t
(N−Ik)2

,

which is equal to ∑ xk+1

Ik(N−Ik)

∑
1

N−Ik
− n

∑ xk+1

Ik(N−Ik)2

n
∑

∆t
(N−Ik)2 −∆t

(∑
1

N−Ik

)2 .

This is exactly as in (6.2.8) for the least squares model.

As for the case of σ̂2, when n is infinitely large (7.2.15) tends to

1

n


∑ xk+1

2

Ik
2 (N − Ik)2 ∆t

−

(∑ xk+1

Ik(N−Ik)2

)2

∑
∆t

(N−Ik)2

−

(∑ xk+1

Ik(N−Ik)
−
∑ ∆t

N−Ik

∑ xk+1

Ik(N−Ik)2∑ ∆t

(N−Ik)2

)2

n∆t−
(∑ ∆t

N−Ik

)2∑ ∆t

(N−Ik)2

 ,
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which is equal to

1

n

(
n
∑

∆t
(N−Ik)2 −∆t

(∑
1

N−Ik

)2
)

(
n
∑ xk+1

2

Ik
2 (N − Ik)2

∑ 1

(N − Ik)2 −
∑ xk+1

2

Ik
2 (N − Ik)2

(∑ 1

N − Ik

)2

−
∑ 1

(N − Ik)2

(∑ xk+1

Ik(N − Ik)

)2

− n
(∑ xk+1

Ik (N − Ik)2

)2

+ 2
∑ 1

N − Ik

∑ xk+1

Ik(N − Ik)
∑ xk+1

Ik (N − Ik)2

)
.

This is exactly as in (6.2.14) for the least squares model, but with n on the denominator
instead of n− 2.

We make the following remarks.

Remark 7.3 When we set up the prior distribution, we have chosen to specify the dis-
tribution of β conditional on λ, then the distribution of η on β, λ. It is of concern that
this is apparently asymmetric. However we notice that

k10(β − µ10)2 + k20(η − µ20 − ξ0β)2

= β2(k10 + k20ξ
2
0) + η2k20 − 2βηξ0k20 + (−2µ10k10 + 2µ20k20ξ0)β − 2µ20k20η

+ k10µ
2
10 + k20µ

2
20,

which can be written as

(k10 + k20ξ
2
0)

(
β − ηξ0k20

k10 + k20ξ2
0

+
µ20k20ξ0 − µ10k10

k10 + k20ξ2
0

)2

+ η2

(
k20 −

ξ2
0k

2
20

k10 + k20ξ2
0

)
+ η

(
−2µ20k20 +

2ξ0k20

k10 + k20ξ2
0

(µ20k20ξ0 − µ10k10)

)
+ k10µ

2
10 + k20µ

2
20 −

(µ20k20ξ0 − µ10k10)2

k10 + k20ξ2
0

,

which can be simplified as

(k10 + k20ξ
2
0)

(
β − ηξ0k20

k10 + k20ξ2
0

+
µ20k20ξ0 − µ10k10

k10 + k20ξ2
0

)2

+ η2 k10k20

k10 + k20ξ2
0

− 2η
k10k20

k10 + k20ξ2
0

(µ10ξ0 + µ20) +
k10k20

k10 + k20ξ2
0

(µ10ξ0 + µ20)2 ,

which is equal to

(k10 + k20ξ
2
0)

(
β − η ξ0k20

k10 + k20ξ2
0

+
µ20k20ξ0 − µ10k10

k10 + k20ξ2
0

)2

+
k10k20

k10 + k20ξ2
0

(η − (µ10ξ0 + µ20))2 ,

which is
k̂10(β − ξ̂0η + µ̂10)2 + k̂20 (η − µ̂20)2 , (7.2.19)
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where k̂10 = k10 + k20ξ
2
0, ξ̂0 = ξ0k20

k10+k20ξ2
0
, µ̂10 = µ20k20ξ0−µ10k10

k10+k20ξ2
0

, k̂20 = k10k20

k10+k20ξ2
0

and µ̂20 =

(µ10ξ0 + µ20).

This is of the same form with β and η reversed. To express it in another way, it is the
same to choose to specify the prior distribution for η conditional on λ first and then the
distribution of β conditional on η, λ. Therefore the apparent asymmetry is not a problem.
Also in this case, the prior distribution on the parameters will be

η|λ ∼ N

(
µ̂10,

(
k̂10λ

)−1
)

,

β|η, λ ∼ N

(
µ̂20 + ξ̂0β,

(
k̂20λ

)−1
)
,

λ ∼ Γ(α0, β0),

where µ̂10, k̂10, µ̂20, ξ̂0 and k̂20 are defined in (7.2.19).

Remark 7.4 If we use the posterior distribution from one stage as the prior distribution
for the next stage we should obtain the same answer as if we had used the same prior
distribution but observed both stages sequentially.

We consider the simplest case first. Suppose that we have two data points D1, D2,
and the prior distribution on η, β and λ is P (η, β, λ) and the likelihood for the first stage
(the probability of observing D1 given η, β and λ) is

P (D1|η, β, λ).

Then the posterior distribution for η, β and λ is

P (η, β, λ|D1) = c1P (D1|η, β, λ)P (η, β, λ),

where c1 is a normalising constant.

Using this as the prior for the next stage, the posterior distribution for η, β and λ at
the second stage is

P (η, β, λ|D2) = c2P (D2|η, β, λ)P (D1|η, β, λ)P (η, β, λ),

where c2 is another normalising constant.

This is equal to

c2λ
1
2 exp

(
−λ

2

(x2 − βI1(N − I1)∆t+ ηI1∆t)

I2
1 (N − I1)2 ∆t

)
· λ

1
2 exp

(
−λ

2

(x1 − βI0(N − I0)∆t+ ηI0∆t)

I2
0 (N − I0)2 ∆t

)
· P (η, β, λ),

which is equal to

c2λexp

(
−λ

2

2∑
k=1

(xk − βIk−1(N − Ik−1)∆t+ ηIk−1∆t)

I2
k−1 (N − Ik−1)2 ∆t

)
· P (η, β, λ),

where xk = Ik − Ik−1.
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This is equal to
c2P (D1, D2|η, β, λ)P (η, β, λ),

which is exactly the same posterior distribution as if we had started with the same prior
distribution and observed both stages together.

Another way to see this is to look at the equations which define k̄10, k̄20, µ̄10, µ̄20, ξ̄0,
β̄0, i.e.

k̄20 = k20 +
n∑
k=1

∆t

(N − Ik−1)2 ,

k̄20ξ̄0 = k20ξ0 +
n∑
k=1

∆t

N − Ik−1

,

k̄10 + k̄20ξ̄
2
0 = k10 + k20ξ

2
0 + n∆t,

k̄10µ̄10 − k̄20µ̄20ξ̄0 = k10µ10 − k20µ20ξ0 +
n∑
k=1

xk
Ik−1(N − Ik−1)

and

β̄0 +
1

2
k̄10µ̄

2
10 +

1

2
k̄20µ̄

2
20 = β0 +

1

2
k10µ

2
10 +

1

2
k20µ

2
20 +

1

2

n∑
k=1

x2
k

I2
k−1 (N − Ik−1)2 ∆t

.

We get the same result if we start with k10, k20, µ10, µ20 and β0 and add two obser-
vations sequentially as if we start with the same values and add two observations simul-
taneously.

Example 7.5 With the same units as in the examples in Chapter 3, we assume that the
parameters are given by I(0) = 10, β = 0.5, µ = 20, γ = 25, N = 100, and σ = 0.03 for
the model (3.2.4).

We simulate I(t) using the above parameters by the EM method with a very small step
size, ∆t = 0.001, and save these I(t) as our true dataset. Then we sample every tenth
datapoint in the dataset to obtain the sample for our parameter estimation, so n = 100
observations and ∆t = 0.01 for our sample.

Also we assume two sets of parameters for the prior distribution defined in Theorem
7.1, which are:

Prior A: µ10 = 0.5, k10 = 0.052, µ20 = 40, ξ0 = 10, k20 = 0.0052, α0 = 103, β0 = 1.

Prior B: µ10 = 0.3, k10 = 0.052, µ20 = 30, ξ0 = 10, k20 = 0.0052, α0 = 103, β0 = 1.

We see that prior A gives mean values for β and η which are the same as the true
values β = 0.5 and η = 45, while prior B gives mean values β = 0.3 and η = 33 which
are quite different from the true values (see Theorem 7.1 for the mean values).
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We vary the value of T as T = 1, T = 20, T = 100 and T = 200 and use the same
method mentioned above to simulate a dataset for each T and sample from each of them.
When we increase T we increase n in proportion to T , keeping ∆t fixed. For each T , we
obtain the least squares estimates using (6.2.7), (6.2.8) and (6.2.14) and the Bayesian
estimates using (7.2.13)-(7.2.15) for the three parameters and for both priors. The results
are shown in Table 7.1.

We see that using a good prior (prior A) helps to give more accurate parameter
estimates when T is small and the least squares estimates are not good. Also the Bayesian
estimates for β and η with the different prior distributions become closer as T increases,
which means that the prior distribution has less influence on the Bayesian estimates when
T is large.

Parameter estimates based on different sample paths will be different. In order to
examine the robustness of our estimation, we simulate our true datasets 60 times for each
T using the above method and sample from each of them. We obtain 60 least squares
estimates and Bayesian estimates for each parameter for each T and then calculate the
mean value and the standard deviation for each parameter. The results are shown in Table
7.2.

We see from the mean values that the conclusion is consistent with the one sample
case above. We also observe that the standard deviations for the least squares estimates
are much larger than those for the Bayesian estimates when T is small. This difference
between the standard deviations becomes smaller when T becomes large, but overall the
Bayesian estimates are more robust (less variable) than the least squares estimates.

Table 7.1: Least squares and Bayesian parameter estimates from one sample for Example
7.5: the true values of β, η and σ are 0.5, 45 and 0.03 respectively.

Time Least squares estimates Prior A Prior B

T=1 β̂ = 2.95 0.44 0.37
η̂ = 282.17 46.11 34.33
σ̂ = 0.028 0.031 0.031

T=20 β̂ = 0.79 0.49 0.39
η̂ = 75.31 45.51 34.50
σ̂ = 0.032 0.032 0.032

T=100 β̂ = 0.53 0.50 0.40
η̂ = 48.25 45.43 35.83
σ̂ = 0.032 0.032 0.032

T=200 β̂ = 0.52 0.52 0.49
η̂ = 47.20 46.63 43.64
σ̂ = 0.032 0.032 0.032
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Table 7.2: Statistical summary of parameter estimates from 60 samples for Example 7.5.

Time Parameter Least squares estimates Prior A Prior B
mean sd. mean sd. mean sd.

T=1 β 1.25 1.03 0.51 0.037 0.39 0.034
η 116.46 99.44 45.31 1.41 34.33 1.17
σ 0.030 0.0024 0.032 0.00011 0.032 0.00011

T=20 β 0.61 0.22 0.50 0.030 0.41 0.027
η 55.42 21.35 45.31 2.77 36.10 2.25
σ 0.032 0.00055 0.032 0.00028 0.032 0.00028

T=100 β 0.53 0.10 0.51 0.030 0.44 0.032
η 48.37 10.39 45.77 2.91 39.22 2.98
σ 0.032 0.00031 0.032 0.00026 0.032 0.00026

T=200 β 0.53 0.068 0.51 0.037 0.47 0.037
η 47.45 6.73 46.15 3.64 41.59 3.57
σ 0.032 0.00018 0.032 0.00017 0.032 0.00017

T=800 β 0.50 0.028 0.50 0.024 0.49 0.023
η 45.39 2.82 45.31 2.39 43.70 2.30
σ 0.032 0.000096 0.032 0.000094 0.032 0.000094

T=1200 β 0.50 0.026 0.51 0.023 0.49 0.023
η 45.66 2.51 45.58 2.26 44.40 2.22
σ 0.032 0.000094 0.032 0.000092 0.032 0.000092

7.3 Confidence Intervals

In this section we obtain 100(1−α)% confidence intervals (CIs) for the Bayesian estimators
by deriving the marginal distributions from the joint posterior distribution. The following
theorem shows the marginal distributions for the Bayesian estimators.

Theorem 7.6 The marginal distributions of the joint posterior density (7.2.1) for the
parameters (β, η, λ) have the following forms:

β ∼ µ̄10 +

√
β̄0

k̄10ᾱ0

t2ᾱ0 , (7.3.1)

η ∼ µ̂20 +

√
β̄0

k̂20ᾱ0

t2ᾱ0 (7.3.2)

and
λ ∼ Γ(ᾱ0, β̄0) (7.3.3)

Proof. The joint posterior density ignoring the normalising constant has the form (7.2.1).
The joint density can be decomposed as

β|λ ∼ N(µ̄10,
(
k̄10λ

)−1
),

η|β, λ ∼ N(µ̄20 + ξ̄0β,
(
k̄20λ

)−1
),
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λ ∼ Γ(ᾱ0, β̄0).

So it is clear that (7.3.3) holds. To obtain the marginal distribution for β, we integrate
(7.2.1) with respect to λ and η over their domains, i.e.

∫ ∞
−∞

∫ ∞
0

λᾱ0−1 · λexp

(
− λ

2

(
2β̄0 + k̄10 (β − µ̄10)2 + k̄20

(
η − µ̄20 − ξ̄0β

)2
))

dλdη.

We consider the inner integral first (with respect to λ). We set Z = Aλ where A =
1
2

(
2β̄0 + k̄10 (β − µ̄10)2 + k̄20

(
η − µ̄20 − ξ̄0β

)2
)
. Then the inner integral becomes∫ ∞

0

exp(−Z)

(
Z

A

)ᾱ0 1

A
dZ = A−ᾱ0−1

∫ ∞
0

exp(−Z)Z ᾱ0dZ ∝ A−ᾱ0−1 (7.3.4)

since
∫∞

0
exp(−Z)Z ᾱ0dZ is an unnormalised gamma integral. Now we consider the outer

integral, which is∫ ∞
−∞

A−ᾱ0−1dη =

∫ ∞
−∞

(
1

2

(
2β̄0 + k̄10 (β − µ̄10)2 + k̄20

(
η − µ̄20 − ξ̄0β

)2
))−ᾱ0−1

dη,

which is equal to(
1

2

(
2β̄0 + k̄10 (β − µ̄10)2))−ᾱ0−1 ∫ ∞

−∞

(
1 +

k̄20

2β̄0 + k̄10 (β − µ̄10)2

(
η − µ̄20 − ξ̄0β

)2
)−ᾱ0−1

dη.

This can be written as

1

B

(
1

2

(
2β̄0 + k̄10 (β − µ̄10)2))−ᾱ0−1 ∫ ∞

−∞

(
1 +

C2

2ᾱ0 + 1

)−ᾱ0−1

dC, (7.3.5)

where B =
√

k̄20(2ᾱ0+1)

2β̄0+k̄10(β−µ̄10)2 and C = B · (η − µ̄20 − ξ̄0β). This is proportional to

1

B

(
1

2

(
2β̄0 + k̄10 (β − µ̄10)2))−ᾱ0−1

since
∫∞
−∞

(
1 + C2

2ᾱ0+1

)−ᾱ0−1

dC is an unnormalised t2ᾱ0+1 integral where 2ᾱ0 + 1 is the

degrees of freedom of the t distribution.

Omitting the constants, this is proportional to

(
2β̄0 + k̄10 (β − µ̄10)2)−ᾱ0− 1

2 ∝
(

1 +
k̄10

2β̄0

(β − µ̄10)2

)−ᾱ0− 1
2

.

Then (7.3.1) follows.

In a similar way, we can get the marginal distribution for η as∫ ∞
−∞

∫ ∞
0

λᾱ0−1 · λexp

(
− λ

2

(
2β̄0 + k̄10 (β − µ̄10)2 + k̄20

(
η − µ̄20 − ξ̄0β

)2
))

dλdη.
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The inner integral is the same as the β case so it can be simplified as∫ ∞
−∞

(
1

2

(
2β̄0 + k̄10 (β − µ̄10)2 + k̄20

(
η − µ̄20 − ξ̄0β

)2
))−ᾱ0−1

dβ.

This can be written as∫ ∞
−∞

(
1

2

(
2β̄0 + k̂10(β − ξ̂0η + µ̂10)2 + k̂20 (η − µ̂20)2

))−ᾱ0−1

dβ,

where k̂10, ξ̂0, µ̂10, k̂20 and k̂10 are defined in remark 7.3 (7.2.19) with k10, k20, ξ0, µ10 and
µ20 in the expression being changed to k̄10, k̄20, ξ̄0, µ̄10 and µ̄20.

Following the same procedure as in the β case, we have that the marginal distribution
for η is proportional to (

1 +
k̂20

2β̄0

(η − µ̂20)2

)−ᾱ0− 1
2

.

Then (7.3.2) follows.

Example 7.7 Assume that the parameters are given by I(0) = 10, β = 0.5, µ = 20, γ =
25, N = 100, and σ = 0.03 for model (3.2.4), as in Example 7.5.

We assume the two sets of priors, Prior A and Prior B are as in Example 7.5.

We vary the value of T as T = 1, T = 20, T = 100 and T = 200 and use the same
method mentioned in Example 7.5 to simulate a dataset for each T and sample from each
of them. When we increase T we increase n in proportion to T , keeping ∆t fixed. With the
sample obtained, with α = 0.05 we find the Bayesian 95% CIs for β and η using (7.3.1)
and (7.3.2) for both priors and for each T by using the appropriate percentage points from
the t2ᾱ0 distribution. For comparison, we also obtain the 95% CIs for β and η by the least
squares method using (6.2.18) and (6.2.19) for each T . The results are shown in Table
7.3.

We see that both the good prior (prior A with mean values at the true values of the
parameters) and less good prior (prior B with mean values further away from the true
values of the parameters) help decrease the width of the 95% CI when T is small, and the
95% CIs for the parameters using the least squares method are very wide. The 95% CIs
for β and η with different prior distributions become closer as T increases, which means
that the prior distribution has less influence on the Bayesian interval estimates when T
is large.

7.4 Joint Confidence Region

We have obtained a joint confidence region for β and η using least squares estimation in
section 6.2.5. For comparison purposes, we obtain a joint confidence region for only β
and η instead of all three parameters in the Bayesian case.
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Table 7.3: Least squares and Bayesian confidence intervals for Example 7.7.

Least squares method Prior A Prior B
T=1 β (0.07, 1.69) (0.34, 0.64) (0.26, 0.59)

width of CI 1.62 0.30 0.33
η (4.51, 147.41) (29.29, 53.86) (21.86, 49.12)

width of CI 142.90 24.57 27.26
T=20 β (0.20, 0.99) (0.34, 0.58) (0.27, 0.53)

width of CI 0.79 0.24 0.26
η (16.61, 94.56) (30.09, 53.58) (23.16, 48.78)

width of CI 77.95 23.49 25.62
T=100 β (0.34, 0.62) (0.37, 0.56) (0.34, 0.53)

width of CI 0.28 0.19 0.19
η (29.35, 56.85) (32.42, 50.94) (28.72, 48.18)

width of CI 27.50 18.52 19.46
T=200 β (0.40, 0.57) (0.40, 0.55) (0.38, 0.53)

width of CI 0.17 0.15 0.15
η (34.62, 51.66) (35.26, 49.35) (33.31, 47.81)

width of CI 17.04 14.09 14.50

Theorem 7.8 A 100(1− α)% joint confidence region for β and η is

k̄10 (β − µ̄10)2 + k̄20

(
η − µ̄20 − ξ̄0β

)2 ≤ r̄, (7.4.1)

where
r̄ = 2β̄0(α

− 1
ᾱ0 − 1). (7.4.2)

Proof. The proof process is as follows: We first obtain the equation for the contour of the
unnormalised joint density for β and η by setting it equal to a constant. We show that
the contour of the joint posterior density is an ellipse centered at the Bayesian estimators.
We then standardise the ellipse, to centre it at the origin and make its major and minor
axes coincide with the Cartesian axes. We then obtain the area of the ellipse as πab
where a and b are the lengths of the semi-major and semi-minor axes of the standardised
ellipse, which makes the integral

∫ ∫
f(β, η) dregion easier to calculate. After solving

this integral and normalising the joint posterior for β and η we obtain the height of the
distribution so that the volume of the distribution which lies between the height and the
top of the distribution is 1−α. Then the 100(1−α)% joint confidence region is the region
enclosed by the contour of the joint posterior density at that height.

We obtain the unnormalised joint posterior for β and η by integrating (7.2.1) with
respect to λ over its domain. We can easily find from (7.3.4) that the unnormalised joint
posterior for β and η is

f(β, η) =

(
1

2

(
2β̄0 + k̄10 (β − µ̄10)2 + k̄20

(
η − µ̄20 − ξ̄0β

)2
))−ᾱ0−1

.
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If we set the unnormalised joint posterior density for β and η, f(β, η), equal to a
constant r, this defines a contour of f(β, η), which is

k̄10 (β − µ̄10)2 + k̄20

(
η − µ̄20 − ξ̄0β

)2
= r′, (7.4.3)

where r′ = 2rᾱ0+1 − 2β̄0 and with the condition that r′ > 0, which is r > β̄−ᾱ0−1
0 .

Equation (7.4.3) can be expanded as

k̄10

(
β2 − 2µ̄10β + µ̄2

10

)
+ k̄20

(
η2 + µ̄2

20 + ξ̄0β
2 − 2µ̄20η − 2ξ̄0βη + 2ξ̄0µ̄20β

)
= r′,

which is equal to

(k̄10+k̄20ξ̄
2
0)β2+(−2µ̄10k̄10+2ξ̄0µ̄20k̄20)β+k̄20η

2−2µ̄20k̄20η−2ξ̄0k̄20βη+µ̄2
10k̄10+µ̄2

20k̄20 = r′.
(7.4.4)

We check that(
−2ξ̄0k̄20

)2 − 4k̄20(k̄10 + k̄20ξ̄
2
0) = 4ξ̄2

0 k̄
2
20 − 4k̄10k̄20 − 4ξ̄2

0 k̄
2
20 = −4k̄10k̄20,

which is strictly negative, so the region of f(β, η) is an ellipse.

Also equation (7.4.4) can be written as

A1(β − β̂)2 + 2B1(β − β̂)(η − η̂) + C1 (η − η̂)2 − r′ = 0, (7.4.5)

where
A1 = k̄10 + k̄20ξ̄

2
0 , (7.4.6)

B1 = −ξ̄0k̄20, (7.4.7)

C1 = k̄20, (7.4.8)

and β̂ and η̂ are the Bayesian estimators for β and η as in (7.2.13) and (7.2.14). We notice
that this ellipse is centered at the Bayesian estimators β̂ and η̂ .

Now we convert the ellipse (7.4.5) to the standard form. We first do the conversion
β = β′ + β̂ and η = η′ + η̂, so equation (7.4.5) becomes

A1β
′2 + 2B1β

′η′ + C1η
′2 − r′ = 0. (7.4.9)

We then do the conversion β′ = β′′cosφ + η′′sinφ and η′ = η′′cosφ − β′′sinφ, where

φ = 1
2
arctan

(
2B1

C1−A1

)
, and equation (7.4.9) becomes

A1 (β′′cosφ+ η′′sinφ)
2

+ 2B1(β′′cosφ+ η′′sinφ)(η′′cosφ− β′′sinφ) + C1 (η′′cosφ− β′′sinφ)
2

= r′,

which is equal to

β′′2(A1cos
2φ− 2B1cosφsinφ+ C1sin

2φ) + η′′2(A1sin
2φ+ 2B1sinφcosφ+ C1cos

2φ)

+ β′′η′′(2A1cosφsinφ+ 2B1cos
2φ− 2B1sin

2φ− 2C1cosφsinφ)− r′ = 0,

(7.4.10)
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where the coefficient of β′′η′′ is equal to

(A1 − C1)sin2φ+ 2B1cos2φ = (A1 − C1)cos2φ

(
tan2φ+

2B1

A1 − C1

)
= 0.

Therefore (7.4.10) becomes

A2β
′′2 +B2η

′′2 − r′ = 0, (7.4.11)

where
A2 = A1cos

2φ− 2B1cosφsinφ+ C1sin
2φ (7.4.12)

and
B2 = A1sin

2φ+ 2B1cosφsinφ+ C1cos
2φ. (7.4.13)

We check that A2 can be written as

A1

(
cos2φ− 2

B1

A1

cosφsinφ+
B2

1

A2
1

sin2φ

)
− B2

1

A1

sin2φ+ C1sin
2φ,

which is equal to

A1

(
cosφ− B1

A1

sinφ

)2

+

(
C1 −

B2
1

A1

)
sin2φ,

where A1 = k̄10 + k̄20ξ̄
2
0 > 0 and

C1 −
B2

1

A1

= k̄20 −
ξ̄2

0 k̄
2
20

k̄10 + k̄20ξ̄2
0

=
k̄10k̄20 + ξ̄2

0 k̄
2
20 − ξ̄2

0 k̄
2
20

k̄10 + k̄20ξ̄2
0

=
k̄10k̄20

k̄10 + k̄20ξ̄2
0

> 0.

Therefore A2 > 0 and similarly B2 > 0.

Equation (7.4.10) then can be written as

β′′2(√
B2r′

)2 +
η′′2(√
A2r′

)2 = 1. (7.4.14)

We see that the semi-major and the semi-minor axis lengths of the ellipse in (7.4.14) are√
B2r′ and

√
A2r′ and the area of (7.4.14) is πr′

√
A2B2.

From (7.2.1), (7.4.3) and (7.4.11), we see that the joint density for (β, η, λ) is equiv-
alent to

λᾱ0−1e−β̄0λ · λexp

(
− λ

2

(β′′2
B2

+
η′′2

A2

))
.

It is straightforward to obtain the normalised joint density for (β, η, λ), which is√
1

2πB2

√
1

2πA2

β̄ᾱ0
0

Γ(ᾱ0)
λᾱ0−1e−β̄0λ · λexp

(
− λ

2

(β′′2
B2

+
η′′2

A2

))
.

This can be written as
1

2π
√
A2B2

β̄ᾱ0
0

Γ(ᾱ0)
λᾱ0exp(−λA∗), (7.4.15)

139



where A∗ = β̄0 + β′′2

2B2
+ η′′2

2A2
= β̄0 + r′

2
.

Hence the normalised joint marginal density for (β, η) is

f ∗(β, η) =
1

2π
√
A2B2

β̄ᾱ0
0

Γ(ᾱ0)

Γ(ᾱ0 + 1)

A∗(ᾱ0+1)
=

ᾱ0

2π
√
A2B2

β̄ᾱ0
0

A∗(ᾱ0+1)
. (7.4.16)

So the 100(1− α)% joint confidence region for β and η is given by

1− α =

∫ ∫
f ∗(β, η)dregion =

∫ r̄

0

f ∗(β, η)π
√
A2B2dr

′.

Substituting (7.4.16) and A∗ in (7.4.15) into the above equation we have

1− α =
ᾱ0

2π
√
A2B2

β̄ᾱ0
0

∫ r̄

0

(
r′

2
+ β̄0

)−ᾱ0−1

π
√
A2B2dr

′ =
ᾱ0β̄

ᾱ0
0

2

∫ r̄

0

(
r′

2
+ β̄0

)−ᾱ0−1

dr′.

Let r′′ = r′

2
and so dr′ = 2dr′′. The above equation becomes

1− α = ᾱ0β̄
ᾱ0
0

∫ r̄
2

0

(
r′′ + β̄0

)−ᾱ0−1
dr′′ = β̄ᾱ0

0

(
β̄−ᾱ0

0 −
(
β̄0 +

r̄

2

)−ᾱ0
)
.

After solving this last equation, we obtain the height r̄ of the distribution so that the
volume of the distribution which lies between the height and the top of the distribution
is 1− α, which is defined in (7.4.2).

Therefore a 100(1 − α)% joint confidence region for β and η can be easily obtained
as the form (7.4.1).

Example 7.9 Assume that the parameters are given by I(0) = 10, β = 0.5, µ = 20, γ =
25, N = 100, and σ = 0.03 for the model (3.2.4), as in Example 7.5.

Also we assume two sets of priors, Prior A and Prior B, as in Example 7.5.

We vary the value of T as T = 20 and T = 200 and use the same method as in
Example 7.5 to simulate a dataset for each T and sample from each of them. When we
increase T we increase n in proportion to T , keeping ∆t fixed. With the sample obtained,
with α = 0.05 we find the Bayesian 95% confidence region for β and η by (7.4.1) for both
priors and for each T . For comparison, we also obtain the 95% confidence region for β
and η by the least squares method using (6.2.29) for each T . The results are shown in
Figure 7.1 and Figure 7.2.

We see that in both cases using a prior does help decrease the size of the 95% con-
fidence regions when T is small, and the 95% confidence region for the parameters using
the least squares method is quite large. The 95% confidence regions for β and η with
the different prior distributions become closer as T increases, which means that the prior
distribution has less influence on the Bayesian confidence region when T is large.
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Figure 7.1: (a) shows the 95% joint confidence region for β and η using the parameter
values in Example 7.9 with prior A and T = 20. The results of both the Bayesian method
(black) and least squares method (blue) are shown; (b) the 95% joint confidence region
for β and η using the parameter values in Example 7.9 with prior A and T = 200. The
results of both the Bayesian method (black) and least squares method (blue) are shown.
The red point in both figures represents the true values β = 0.5 and η = 45.
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Figure 7.2: (a) shows the 95% joint confidence region for β and η using the parameter
values in Example 7.9 with prior B and T = 20. The results of both the Bayesian method
(black) and least squares method (blue) are shown; (b) the 95% joint confidence region
for β and η using the parameter values in Example 7.9 with prior B and T = 200. The
results of both the Bayesian method (black) and least squares method (blue) are shown.
The red point in both figures represents the true values β = 0.5 and η = 45.
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7.5 Bayesian estimation with m datasets

In this section we will discuss the Bayesian estimation in the case where we can repeat
the experiment and obtain more datasets. Assuming that we have m datasets each of size
n, a pseudo-likelihood for the parameters ϕ = (β, η, σ2) will become

Ln(ϕ) =

m∏
i=1

n−1∏
j=0

 1√
2πσ2Iij

2 (N − Iij)2 ∆t
exp

(
− 1

2

[Ii,j+1 − Iij − Iij(βN − η − βIij)∆t]2

σ2Iij
2 (N − Iij)2 ∆t

) ,

(7.5.1)

modifying (6.3.2).

If the prior distribution in Theorem 7.1 stays unchanged and we substitute this like-
lihood into P (D|η, β, λ) in (7.2.11), we see clearly that for the m dataset case, the steps
for all the proofs stay the same except that all instances of n change to mn and all the
sums of the xk and Ik terms run from k = 0 to m(n− 1) instead of from k = 0 to n− 1.
Then Theorem 7.1 can easily be rewritten for the m dataset case.

Then ifm datasets are available, the Bayesian estimators in Theorem 7.2, the Bayesian
interval estimators in Theorem 7.6 and the Bayesian joint confidence region in Theorem
7.8 have the same expressions except that the definitions for ᾱ0, k̄10, µ̄10, k̄20, µ̄20 and ξ̄0

in Theorem 7.1 are changed.

7.6 Summary

In this chapter we have applied the Bayesian method to estimate the parameters in the
stochastic SIS model. We set up a conjugate prior and obtained the joint posterior distri-
bution for the model parameters in Theorem 7.1. We then maximised the joint posterior
distribution with respect to the parameters β, η and σ2 and obtained the Bayesian es-
timators. We compared the Bayesian estimators with the least squares estimators in
Theorem 7.2, which states that the Bayesian estimators will tend to the corresponding
least squares estimators when the sample size is infinitely large. The Bayesian estimators
and least squares estimators were also compared in numerical examples using two sets of
priors. Example 7.5 shows that a good prior helps the estimation when the sample size
is small, and the prior distribution has less influence on the Bayesian estimates when the
sample size (the observation period here) is large.

We obtained the 100(1−α)% CIs for the Bayesian estimators by deriving the marginal
distributions for these. The CIs using the Bayesian approach were compared with those
from the least squares method in Example 7.7, which shows that both good and less good
priors help to decrease the width of the 95% CIs when the sample size is small. The 95%
CIs with the different prior distributions become closer as the sample size increases and
the prior has less influence.

In Theorem 7.8 we also obtained the 100(1−α)% joint confidence region for β and η.
Example 7.9 shows that both good and less good priors help to decrease the size of the

143



95% confidence region when the sample size is small, and the 95% confidence regions for
β and η with different prior distributions become closer as the sample size increases. The
case of Bayesian estimation when more datasets are available is discussed briefly in section
7.5. Most of the contents of this chapter have been formed into a paper and submitted
to the Journal of Mathematical Biology.

In the next chapter, we will draw conclusions for this thesis and discuss further
research work.
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Chapter 8

Conclusions and Discussion

This thesis has discussed three stochastic versions of the SIS epidemic model and the
statistical inference to the SDE SIS model. The deterministic SIS epidemic model is one
of the simplest possible epidemic models, which has applications to the transmission of
real-life diseases, such as pneumococcus, gonorrhea and tuberculosis. It is important to
include the effect of environmental noise in the SIS epidemic model. In Chapter 1, we have
reviewed four commonly used types of noise and the effect of these on the deterministic
model. The effect of white noise in compartmental epidemic models has been extensively
discussed. However, to our knowledge there is no existing literature which discusses
this issue for the SIS epidemic model. This thesis was intended to fill this gap. The
effect of telegraph noise and the combination of white noise and telegraph noise has been
examined in biological models in previous papers and the significant effect of these two
types of environmental noise was revealed. This was the motivation to incorporate these
two types of noise into the SIS epidemic model. Furthermore, statistical inference is
vital in epidemic modelling since the parameter estimates can be used to characterise the
infection process and also provide information on key indicators of disease spread which
will be of great assistance to the implementation of any disease control policy. That was
the motivation for us to conduct parameter estimation for the SDE SIS model with white
noise introduced in the second part of this thesis.

Estimation methods have been reviewed in Chapter 1. Three estimation methods,
least squares estimation, pseudo-MLE method and the Bayesian approach have been
applied to the SDE SIS model. Literature review shows that although least squares and
the pseudo-MLE method have been widely discussed, variance estimation for these two
methods has not been discussed previously, while we have discussed this in detail in this
thesis. As for the Bayesian approach, although strong results have been obtained for the
general SDE problems by using the MCMC technique in the existing literature, for the
particular model we deal with, it was possible for our alternative approach to be applied
where analytic results have been obtained.

In Chapter 2 we summarised some theory which was essential for the research carried
out in this thesis. We started with basic probability theory. We then defined the stochastic
process, which is an important concept since the solutions of the SDEs are stochastic
processes. Brownian motion was then introduced, which is a mathematical representation
of randomness, and its properties were discussed. Afterwards, stochastic integrals which
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are a component of SDEs were defined and the important Itô formula was then introduced.
Some fundamental concepts for Markov chains were then reviewed and the generalised Itô
formula was given. We then defined a general version of the SDE and SDE with Markovian
switching and also specified the corresponding existence and uniqueness criteria for the
solutions. We also constructed the explicit solution for the general linear SDE. Finally
we provided definitions of various types of stochastic stability which have been examined
for the stochastic models we derived.

In Chapter 3, we derived an SDE version of the classical SIS epidemic model, with
white noise introduced in the disease transmission term by a well established method,
parameter perturbation. We proved that the SDE had a unique positive global solution
and established conditions for extinction and persistence of disease. A key parameter, the
basic reproduction number RS

0 , was defined and it was shown that if RS
0 ≤ 1, under mild

extra conditions the disease will die out, while if RS
0 > 1 then the disease will persist. The

threshold RS
0 is less than the corresponding deterministic version RD

0 , which means the
conditions for I(t) to become extinct are weaker in the SDE SIS model. For the persistent
case, the effect of the noise intensity σ on the SDE SIS model has been examined and it
was shown that the level which I(t) fluctuates around strictly decreases with increasing
noise intensity. The range for the level was derived as well, which stayed beneath the
deterministic equilibrium. We also showed for the persistent case that the model has a
unique stationary distribution and derived expressions for its mean and variance. We made
a conjecture about the disease behaviour if RS

0 ≤ 1 and the other extinction conditions are
not satisfied. The simulation results confirmed our conjecture. We have also illustrated
our theoretical results with computer simulation in this chapter, including two realistic
models for gonorrhea amongst homosexuals and pneumococcus amongst young children.

In Chapter 4, we introduced telegraph noise to the SIS epidemic model and derived
the stochastic SIS model with Markovian switching. We established the explicit solution
for the stochastic SIS model and also the conditions for extinction and persistence of the
disease. A threshold value T S0 was defined for the Markovian switching model to examine
almost sure persistence or extinction. We started with the special case where the Markov
chain has only two states and then generalised our results to the general case where the
Markov chain has a finite number of states. It is shown that if T S0 < 1, the disease will die
out, while if T S0 > 1 the disease will persist. From the definition for T S0 and RD

0 , we can
further illustrate that if not all subsystems are extinctive, then relatively faster transition
rates from a persistent subsystem to an extinctive subsystem, such that T S0 < 1, will
make the overall system become extinct. This reveals the important roles of the Markov
chain in extinction. We also showed that if T S0 > 1 the number of infectious individuals
will enter a certain domain (0 ∨ (α1/β1), αM/βM) in finite time with probability one
and will stay in the interval once it has entered, where (0 ∨ (α1/β1) is the smallest and
αM/βM) is the largest long-term endemic level of disease in each of the M separate SIS
models between which the Markov chain switches. Moreover, the number of infectious
individuals can take any value up to the boundaries of (0 ∨ (α1/β1), αM/βM) but never
reach them. We have not been able to prove extinction for the case when T S0 = 1, but the
simulation result shows extinction of the disease after a long period of time. Again we
have illustrated our theoretical results with computer simulations, including an example
with realistic parameter values for S.Pneumoniae amongst children.
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In Chapter 5, we take a further step of combining the effect of both white and tele-
graph noise in the SIS epidemic model. We set up the SDE SIS model with Markovian
switching and showed the existence of a unique global positive solution for this model. A
threshold value TMC

0 was defined for almost sure extinction and stochastic permanence. It
was shown that if TMC

0 < 1, and with other three different conditions, the disease will die
out, while if TMC

0 > 1, the disease will persist. We have illustrated our theoretical results
with computer simulations. The extinction conditions we have shown for this model are
rather strong, so we hope to improve the results in a later stage of research.

The three stochastic SIS models that we have developed have applications in different
situations. The stochastic SIS model with white noise introduced is used in situations
where there is environmental influence on the transmission coefficient, while the stochas-
tic SIS model with telegraph noise introduced is used in situations where there is abrupt
change on all model parameters. The stochastic SIS model incorporating the above men-
tioned two types of noise can be used to describe both situations. For the stochastic SIS
model with white noise introduced, unlike the telegraph noise case, we only introduced the
noise in one parameter. This is mainly because the disease transmission coefficient is more
likely to be affected by environmental influences compared to the other model parameters,
i.e. the death rate and the cure rate. A threshold value, which is used to indicate whether
the system will be extinctive or persistent, was derived for each stochastic model. The
threshold value for the stochastic model with white noise introduced combines the influ-
ence of noise intensity into the original threshold value for the deterministic model, while
the threshold value for the stochastic SIS model with telegraph noise introduced combines
the influence of the Markov chain into the original deterministic threshold value. For the
stochastic SIS model incorporating both types of noise, the threshold value combines both
influences. Regarding the techniques we used to show extinction and persistence of the
system for the three models, unlike the technique we used for the first two models, the
M-matrix technique was applied to the stochastic SIS model with the combined types of
noise. This is because, by applying the M-matrix technique, we can show persistence of
the system without additional conditions.

In Chapter 6, we applied the pseudo-MLE and the least squares method to estimate
the parameters in the SDE SIS model. For the least squares method, we started with
the case in which only one dataset is available and then improved our estimation by
considering the case where more datasets are available. We have obtained the point
estimators, 100(1−α)% CIs and 100(1−α)% joint confidence regions for β and η for both
cases. We also investigated the factors which influence the efficiency of the estimation.
By doing so, we showed that the asymptotic widths of the CIs for both β and η strictly
decrease as the total time period T increases and do not depend on the size of the time step
∆t. Simulation examples also show that the efficiency of the estimation is not improved
with denser observations (smaller time step) but is improved with a larger numbers of
samples m or one sample with a longer observation period T . Pseudo-MLEs are also
obtained, which are almost the same as the point estimators from the least squares case,
with a minor difference in the estimators of σ2. For obtaining the confidence region for
the pseudo-MLEs, the following two cases were considered: When the number of samples
m is small, the exact confidence region for β and η was obtained based on the variance
estimation from the least squares results. When m is large, the asymptotic MLE theory
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and the likelihood ratio test approach were applied to obtain the large sample confidence
regions for both the three dimensional case (using all three MLEs) and the two dimensional
case (estimating β and η assuming that σ is known). We only calculated numerically the
asymptotic confidence region based on the likelihood ratio test for β and η, which shows
that the numerical asymptotic confidence region using the likelihood ratio test for β and
η is almost identical to the exact confidence region.

In Chapter 7, we have applied the Bayesian method to estimate the parameters in
the stochastic SIS model. We set up a conjugate prior and obtained the joint posterior
distribution for the model parameters. We then maximised the joint posterior distribution
with respect to the parameters and obtained the Bayesian estimators. The Bayesian esti-
mators were compared with the least squares estimators analytically, which showed that
the Bayesian estimators will tend to the corresponding least squares estimators when the
sample size is infinitely large. The 100(1− α)% CIs for the Bayesian estimators were ob-
tained by deriving the marginal posterior distributions. The 100(1−α)% joint confidence
region for β and η has also been obtained by integrating the joint posterior distribution.
Numerical simulations have been conducted to compare the Bayesian estimation and the
least squares estimation. The simulation results show that both good and less good pri-
ors help to improve the efficiency of estimation and the estimation results from the two
methods become closer as the sample size increases, when the prior has less influence.
The case of Bayesian estimation when more datasets are available is discussed briefly as
well.

Comparing the three estimation methods, the Bayesian method is advantageous when
reliable prior information is available and the sample size is small. The least squares
estimation is generally better than the pseudo-MLE method in our case since the least
squares estimation gave the same point estimators and joint confidence region as the
pseudo-MLE and is easier to apply, although approximating MLE methods are more
preferred in the existing literature.

Due to the random nature of the population system, a lot of attention has been paid
to incorporating stochastic noise into deterministic systems in recent research. The in-
troduction of the stochastic part to the model complicates the system significantly but
the randomness incorporated may possibly explain the real-life situation better. Three
different types of noise have been incorporated in the deterministic SIS model in this
thesis. The model is non-linear, which means the standard stochastic theory cannot be
directly applied. The methodology that we used in developing the stochastic model and
examining the asymptotic properties, including extinction and persistence, can be applied
to other biological or epidemic models. Particularly, telegraph noise and a combination
of white and telegraph noise have not been discussed in epidemic models in the existing
literature. It would be interesting to see how these two types of noise can affect other
epidemic models. There are other types of environmental noise including the one we dis-
cussed in section 3.8, which we can pursue further for the SIS epidemic model. Stochastic
SIS models with demographic noise have been developed recently [1]. Compared to our
stochastic SIS models, the procedure for deriving a stochastic SIS model with demograph-
ic noise is more complicated and the existence of a positive solution has not been shown.
Also, compartmental models with varying total population size have become one of the
important research areas. Our techniques, which were used to develop a stochastic SIS
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model with white noise, can be applied to the SIS model with varying total population
size and we expect more extinction conditions related to population size N(t).

Three parameter estimation methods have been applied to the SDE SIS model in this
thesis. The methods were applied to this specific model but all are based on the fact
that the noise introduced follows a normal distribution. Therefore the methodology we
applied in the statistical inference part of the thesis can be applied to other SDEs. It is
hoped that this thesis has made a useful contribution in this respect.
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