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Abstract 

Partial discharge (PD) diagnostics is considered a major and effective tool for the monitoring 

of insulating conditions of power cables. As such, a large amount of off-line or online PD 

measurements have been deployed in power cables during the past decades. However, 

challenges still exist in PD diagnostics for power cables. Noise is one of the challenges 

involved in PD measurement. This thesis develops new algorithms based on the 

characteristics of both PD signals and noise to improve the effectiveness of wavelet-based PD 

denoising. In the meantime, it presents new findings in the application of empirical mode 

decomposition (EMD) in PD denoising.   

Wavelet-based technique has received high attention in the area of PD denoising, it still faces 

challenges, however, in wavelet selection, decomposition scale determination, and noise 

estimation. It is therefore the first area of interest in this thesis to improve the effectiveness of 

existing wavelet-based technique in PD detection by incorporating proposed algorithms. 

These new algorithms were developed based on the difference of entropy between 

transformed PD signals and noise, and the sparsity of transformed PD signals corrupted by 

noise.  

One concern commonly expressed by critics of wavelet-based technique is a pre-defined 

wavelet is applied in wavelet-based technique. EMD is an algorithm that can decompose a 

signal based on the signal itself. Thus, the second area of interest in this thesis is to further 

investigate the application of EMD in PD denoising; a technique that does not require the 

selection of a pre-defined signal to represent the “unknown” signal of interest. A new method 

for relative mode selection (RMS) was proposed based on the entropy of each intrinsic mode 

function (IMF). Although this new method cannot outperform the existing ones, it reveals that 

RMS is not as important as claimed in the application of EMD in signal denoising. Also, PD 

signals, especially those with lower magnitudes, can receive serious distortion through 

EMD-based denoising. 

Finally, comparisons between wavelet-based and EMD-based denoising were implemented in 

the following aspects, i.e., executing time, distortion, effectiveness, adaptivity and robustness. 
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Results unveil that improved wavelet-based technique is more preferable as it can present 

better performance in PD denoising.  
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1  Introduction 

1.1  Research Background 

The development of electrical power networks has been accelerated by the ever-increasing 

demand of worldwide electricity consumption. This trend seems to continuously increase in 

the near future, resulting in the need to improve current electrical power networks. As 

electrical apparatuses have been continuously penetrated into a wide spectrum of electrical 

power networks, the expected improvement is primarily dictated by the reliability of these 

apparatuses. Insulation fault is one of the primary causes of electrical apparatus failures. To 

cut the cost of operation and maintenance incurred by insulation faults, power utilities 

continuously resort to diagnostic techniques in practice. In relation to power cable systems, 

PD is considered the initial indicator of the insulation fault and may lead to eventual 

insulation breakdown in power cables [1]–[7]. PD measurement is therefore of tremendous 

importance to prevent the insulation failure of power cables and consequent outage of power 

supply.  

In the past decades, a large number of PD measurements has been deployed in power cable 

systems to investigate the characteristics of PD as well as its negative effect on insulation 

systems. Although PD measurement is a major and effective tool for the monitoring of 

insulation degradation of power cables, it still has existing challenges for its application in 

practice. Figure 1-1 briefly illustrates these challenges for the deployment of online PD 

measurement in power cable systems, 

⚫ Attenuation: High-frequency PD signal can suffer serious attenuation when it propagates 

along the power cable to both ends of the cable, where it may be picked up by sensors. 

The degree of attenuation is proportional to the travelling distance between the origins of 

PD signals and the locations of sensors placed. That is, a PD signal will suffer more 

serious attenuation if its origin is far from the locations of those sensors placed to pick it 

up. This attenuation is primarily due to dielectric loss of the solid dielectrics and the 

radial displacement current travelling through the resistance of the semiconducting layers 
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of power cables [8].  

⚫ Noise: The magnitude of PD signals generated from defects in power cables can be 

extremely small, which makes PD measurement vulnerable to noise [9]. Noise can 

reduce the credibility of PD detection as a diagnostic tool, particularly when PD signals 

are completely buried into it. Thus, how to effectively extract PD signals of interest from 

noise is of great importance for the application of PD measurement in power cable 

systems. 

⚫ PD sensor placement: Various PD sensors have been investigated for PD signal detection 

in power cables. High frequency current transformer (HFCT) is a predominant sensor 

due to its convenient installation on the earth strap at the cable termination. However, it 

may be a problem for underground cables as the access to earth strap is often limited due 

to constructional reasons [10]. Also, the number of PD sensors placed for PD detection 

depends on noise and the length of the cable under measurement. 

⚫ PD location: Time domain reflectometry (TDR) is a common method used for PD 

location in power cable systems. However, its accuracy of locating PD defects is highly 

dependent on the effect of attenuation and noise. It becomes even worse when more than 

one defect exists.  
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Figure 1-1 Challenges for the application of online PD measurement in power cable systems 
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Based on the discussion above, noise is one of most important challenges for PD monitoring 

in practical applications. As a result, techniques for noise reduction in PD measurement have 

been widely studied in past decades. The extent to which noise that can be suppressed is a 

major concern when a denoising strategy employed to mitigate the effect of noise on PD 

detection. In this project, the noise-induced challenges will be investigated and corresponding 

techniques will then be proposed to reduce its effects on PD measurement in power cables.  

1.2 Research Motivation 

In PD measurement, noise that contaminates PD signals may include discrete spectral 

interference (DSI), or radio frequency interference (RFI) in some references, pulse-shape 

noise and white noise [11]–[13]. To alleviate the effect of noise, signal processing techniques, 

e.g., Digital filters [14]–[16], Matched filters [17], [18],wavelet transform [12], [19]–[25], and 

empirical mode decomposition (EMD) [13], [26]–[29], have been investigated in PD 

detection during the past decades.  

For many applications in signal denoising, it is difficult to have a perfect strategy for noise 

cancellation as there is no access to the instantaneous value of noise or the noise-only signal 

[30]. As such, noise cannot be completely eliminated, but it may be reduced based on the 

statistics of the signal and the noise process in an average sense. In relation to the area of PD 

detection the denoising techniques mentioned above can reduce noise that accompanies with 

PD signals, although each of them has its own limits in noise reduction.  

Digital filters are only applicable to certain type of noise, e.g., stationary noise, the variance 

of which is independent of time. This is due to the working mechanism of digital filters, 

which relies on the Fourier Transform (FT) to analyze signals in an infinite interval. FT only 

transfers the information of a signal from its time domain to frequency domain. Due to the 

transient and non-periodic nature, FT cannot reveal the important information, e.g., time of 

arrival and pulse duration, carried by PD signals [9]. Also, the application of digital filters for 

PD denoising requires prior knowledge of noise, which is not the case in practice as noise 

varies with time. It is therefore extremely difficult to determine the noise presented in PD 
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measurement, particularly in online PD measurement.   

Matched filters are a basic signal processing tool for the extraction of a known waveform 

from a signal that has been interfered by noise. Provided the information of PD signals is 

known, weak PD signals can be detected since matched filters can maximize the 

signal-to-noise ratio (SNR) of the output signal. The factors, such as the type and location of 

PD sources, detecting circuits and the travelling path of PD signals, lead to the variety of PD 

signals in practical measurements, which impede the application of matched filters for the 

requirement of prior knowledge of PD signals. Also, the effectiveness of matched filters for 

PD noise reduction is affected by noise types. Matched filters are considered effective only if 

white noise is presented in PD measurement [9]. 

Wavelet transform (WT) has received high attention in signal denoising due to its appealing 

attribute in signal representations. It can simultaneously represent signal information both in 

time and frequency domain, which is particularly important for the analysis of non-stationary 

signals, e.g., PD signals. Compared to digital filters and matched filters, wavelet-based 

technique can be more flexible and robust in separation of PD signals from severe noise 

disturbance. The success for the application of wavelet-based technique in PD denoising, 

however, is dependent on three major challenging aspects, i.e., mother wavelet selection, 

decomposition scale or level determination, and threshold estimation. 

Although wavelet-based technique has been widely used in PD denoising, it is often criticized 

for its non-adaptivity due to the use of a predefined wavelet. As such, empirical mode 

decomposition (EMD), an adaptive and data driven algorithm, has been applied to PD 

denoising in recent years. A noisy PD signal can be decomposed into a few intrinsic mode 

functions (IMFs) by a sifting iteration. The relevant mode selection (RMS) is claimed to be 

important for EMD-based denoising, as it can distinguish the IMFs that are dominated by 

noise or not. As a result, the effectiveness of noise reduction can be improved if threshold is 

only applied to the IMFs that primarily contain signal information. Note that the threshold in 

EMD-based denoising is estimated by a white noise model. As aforementioned, noise that 

encounters in PD measurements is probably not white noise only, which may lead to 

inaccuracy in PD denoising via EMD-based technique.  
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As mentioned above, the performance of wavelet-based technique still relies on mother 

wavelet selection, decomposition scale determination, and threshold estimation. Thus, the first 

motivation of this research is to improve the performance of wavelet-based technique in PD 

denoising through these three aspects with further study of the statistical characteristics of PD 

signals and the associated noise. Then, EMD-based technique is further investigated as an 

alternative for PD denoising, since it does not require the selection of a pre-defined signal to 

represent the “unknown” signal of interest. Finally, an appropriate denoising strategy for PD 

detection is recommended based on the assessment of wavelet-based and EMD-based 

techniques for PD denoising.  

1.3 Research Contributions 

The research contributions in this thesis are subsequently outlined in Chapter 4 – 8, and the 

summary of the contributions are as follows: 

⚫ Wavelet selection is the first, and most, significant step in the application of 

wavelet-based technique for PD denoising. The match of PD signals and the wavelet 

used can maximize the reduction of noise accompanied with detected PD signals. 

Investigations have been implemented on the existing techniques, i.e., correlation-based 

and energy-based technique, for wavelet selection from a predefined wavelet library. The 

wavelets in this library are from Daubechies family (‘db2’ – ‘db25’). These wavelets 

have been used in the existing techniques. As such, wavelets selected from Daubechies 

family are used to directly compare the denoising results with the existing techniques. 

The number at the postfix of ‘db’ represents the number of vanishing moments of the 

wavelet, e.g., the wavelet ‘db2’ has two vanishing moments (A vanishing moment limits 

the wavelet’s ability to represent polynomial behavior or information in a signal). It is 

found that correlation-based technique is vulnerable to noise, and the criterion for 

wavelet selection in energy-based technique is not strictly true for PD signals, especially 

for damped oscillating pulse- (DOP-) type PD signals. Based on the analysis of the 

statistical characteristics of PD signals and the associated noise, two novel 

scale-dependent schemes have been proposed for the selection of appropriate wavelets 
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respectively. One scheme is based on the high-order statistics, i.e., kurtosis, of the 

transformed PD signals. The other is based on wavelet entropy, which is inspired by 

Shannon entropy and the associated information cost function in information theory. 

Results of simulated PD signals demonstrate that the kurtosis-based wavelet selection 

scheme is less effective than the existing schemes, while the entropy-based scheme 

outperforms the existing schemes for both simulated and real PD signals. As such, the 

entropy-based criterion has been adopted as the first improvement in wavelet-based 

technique for PD denoising.  

⚫ Decomposition scale in wavelet-based technique has a major effect on denoising results. 

Low-scale decomposition cannot sufficiently remove the noise while high-scale 

decomposition can lead to the loss of signal information. However, decomposition scale 

in wavelet-based technique is normally determined by trials and errors, or by experiences, 

or by an empirical formula (termed wavelet length method in this thesis). None of these 

methods has supports from a solid theory. In this thesis, a novel method has been 

proposed to choose an optimal decomposition scale for wavelet-based technique through 

sparse nature of PD signals in wavelet domain. The novel method is dependent on the 

significant coefficients ratio (SCR) of transformed PD signals. The investigations on 

simulated PD signals and a real PD signal with single pulse show that the scale selected 

by the sparsity-based method can have the best  or close to the best value denoising 

results. In turn, the sparsity-based method for decomposition scale determination is 

extended to real PD signals, together with the newly proposed wavelet selection scheme. 

The denoising results show that the effectiveness of wavelet-based technique for PD 

denoising has been substantially improved as compared to the wavelet length method.  

⚫ Threshold estimation is a key step in wavelet-based denoising. The threshold used 

determines the effectiveness of noise suppression. Underestimated or overestimated 

threshold can lead to severe distortion of denoised signals. The investigation of threshold 

estimation is initiated from the existing threshold estimations integrated in MATLAB. 

Denoising results of simulated PD signals show that the (revised) universal threshold is 

close to the noise level within PD signals. The universal threshold is estimated based on 
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the variance of noise, however. To reduce the dependence on noise for threshold 

estimation, a novel threshold estimation has been proposed. It is derived from the SCR of 

the transformed PD signals. Based on the value of SCR, the transformed PD signals are 

divided into four categories, i.e., noise-only, noise-dominated, signal-dominated and 

signal-only signals. Then, the new threshold has been estimated through the number of 

significant coefficients and SCR for each category. Denoising results of simulated and 

real PD signals demonstrate that the new threshold can improve the performance of 

wavelet-based technique for PD denoising.   

⚫ A new thresholding function proposed in the denoising of hydrologic series data has been 

referenced in this application of wavelet-based technique for PD denoising. The 

traditional hard- and soft-thresholding have their inherent limits: the discontinuous nature 

of hard-thresholding function and the derivative of soft-thresholding function is not 

desired for optimization problems. The new thresholding function can overcome the 

drawback of traditional thresholding functions. With its application in wavelet-based 

denoising of simulated and real PD signals, the effectiveness of wavelet-based technique 

has been remarkably improved.  

⚫ Relevant mode selection (RMS) is claimed to play a significant role in EMD-based 

denoising. RMS can distinguish an IMF if it is noise-only or dominated by signal. A 

noise-only model or an empirical value is required in the current existing RMSs. From a 

practical point of view, a new RMS is proposed based on the signal itself. The new RMS 

is derived from the concept of energy entropy. During the test of this new RMS, it is 

found that it can only present better denoising results when PD signals are not heavily 

contaminated by noise. It is also interesting to find that the RMS is not as important as 

claimed in the denoising of PD signals. Based on numerous tests, all the IMFs retained 

for denoising can present the best denoising results. In the meantime, a series of existing 

EMD-based denoising techniques, i.e., EMD-TR, EMD-DT, and EMD-IT, have been 

reviewed. EMD-IT can provide the best denoising results among these techniques with a 

newly developed code.  

As a reference method, EMD-based technique is investigated to highlight the advantages 
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of wavelet-based technique in PD denoising. The factors, such as inaccurate 

interpretation of IMFs and noise estimation, are analyzed to reveal the drawbacks of 

EMD-based technique for PD signal extraction. Based on this, the improved 

wavelet-based technique is recommended for denoising of PD detection of power cables 

in practice due to its strengths in effectiveness improvement.  

1.4 Organizations of the Thesis 

This thesis is comprised of nine chapters, and the structure of the thesis is described as 

follows. 

 

Chapter 1: 

Chapter 1 is the introduction of this thesis, including research background, research 

motivation, research contributions, and the thesis structure.  

 

Chapter 2: 

Chapter 2 introduces the literature review related to PD phenomenon in practice. The 

definition of PD and its underlying mechanism are introduced. The most commonly forms of 

PD signals in practice are presented, which  is followed by the description of PD 

characteristics. The understanding of PD characteristics is beneficial for the interpretation of 

PD data, e.g., pattern recognition. As the research contributions in this thesis are expected to 

be applied to power cables, a brief introduction of power cable theory is presented in this 

chapter. It then moves to the discussion of PD detection. Various methods for detection based 

on PD-induced phenomena have been introduced. Following this, noise as one of the 

challenges for PD measurement has been discussed based on different noise sources.    

 

Chapter 3: 

Chapter 3 focuses on the topic of denoising techniques, e.g., digital filters, matched filters, 

wavelet-based technique, and EMD-based technique, which are frequently used in the area of 

PD denoising. The fundamentals, principles, scope of application, together with the strengths 
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and weaknesses of these techniques are fully introduced. As wavelet-based technique and 

EMD-based technique are the primary strategies investigated in this thesis, these two 

techniques are presented with more details. In the meantime, the issues raised in 

wavelet-based and EMD-based technique are briefly discussed. These will be main topics in 

the following chapters.    

 

Chapter 4: 

Chapter 4 proposes a novel wavelet selection scheme for wavelet-based technique. The 

motivation of this new scheme is originated from the discussion of limits in the current 

existing wavelet selection schemes, i.e., correlation-based and energy-based schemes. In 

terms of further study of statistical characteristics of PD signals and the associated noise, a 

kurtosis-based and a wavelet entropy-based criterion are proposed for the selection of an 

appropriate wavelet at each decomposition scale. Denoising results of simulated PD signals 

suggest that kurtosis-based criterion is not as effective as current existing techniques, while 

wavelet entropy-based criterion presents its advances in PD denoising.  

 

Chapter 5: 

Chapter 5 aims to provide a novel method for decomposition scale determination in 

wavelet-based technique. The new method is inspired by the sparseness measurement method. 

To overcome the requirement of an empirical value in the sparseness measurement method, a 

new idea is derived from the concepts of sparsity in compressive sensing and Shannon 

entropy in information theory. Wavelet entropy introduced in last chapter is adopted to 

determine the number of significant coefficients of transformed PD signals. In turn, the 

sparsity can be reflected by the ratio of the number of significant coefficients to the length of 

that transformed PD signal. The scale selected by the sparsity-based method can have the best 

or close to the best SNR for denoised PD signals. This has been demonstrated by numerous 

simulated PD signals. Following this, the combination of the novel wavelet selection scheme 

proposed in last chapter and the sparsity-based method for decomposition scale selection is 

applied to simulated PD signals to embody its advance in PD denoising as compared to the 
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wavelet length method.   

 

Chapter 6: 

Chapter 6 investigates the effectiveness of current existing threshold estimations in MATLAB 

for wavelet-based denoising. The universal threshold can present best denoising results for 

PD signals among these existing threshold estimations. However, the universal threshold is 

estimated based on the variance of noise. To reduce the dependence on noise, a new 

scale-dependent threshold is estimated by a new formula comprised of the SCR value and the 

number of significant coefficients. Denoising results of simulated PD signals show that the 

new threshold estimation can improve the effectiveness of wavelet-based denoising than the 

universal threshold. In the meantime, a new thresholding function proposed in denoising of 

hydrologic series data is referenced to overcome the discontinuity of hard-thresholding 

function and derivative of soft-thresholding function. Denoising results indicate that the 

performance of wavelet-based technique can be increased by the use of this new thresholding 

function. 

 

Chapter 7: 

Chapter 7 discusses the role of RMS in EMD-based technique for PD denoising. A new 

adaptive RMS is proposed based on the energy entropy of IMFs. However, denoising results 

of simulated PD signals show that it only functions well when the SNR of original PD signal 

is relatively high. During the investigation of RMS, it is interesting to find that RMS is not as 

important as claimed in EMD-based denoising. With numerous tests, all the IMFs remained 

for further denoising can provide better denoising results than any RMS. Following this, a 

threshold estimated from a white noise model is adopted to each IMF to remove the noise. 

The performance test of EMD-based denoising is implemented on simulated PD signals. 

Although PD pulses can be extracted, the pulses with small magnitudes suffer serious 

distortion after denoising. Also, the tolerance of EMD-based denoising to DSI is very low, 

which may be due to the threshold estimation applied.  
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Chapter 8: 

Chapter 8 constitutes a critical chapter in this thesis. The proposed methods for wavelet-based 

denoising and EMD-based denoising are tested through simulated PD signals in previous 

chapters. The feasibility of all these methods for real PD data needs to be evaluated. In this 

chapter, real PD signals from laboratory experiment and on-site measurement are adopted to 

test the improved wavelet-based technique and EMD-based technique. Denoising results 

demonstrate that the improved wavelet-based technique still works well for real PD data, and 

the effectiveness is remarkably improved. However, EMD-based technique shows its 

ineffectiveness in real PD denoising. The reasons are discussed through the analysis of the 

underlying mechanism of EMD-based expansion. The comparison between wavelet-based 

technique and EMD-based technique is then fully discussed through executing time, 

distortion, effectiveness, adaptivity and robustness. It is therefore recommended that the 

improved wavelet-based denoising is more preferable in noise reduction due to its strength in 

the extraction of PD pulses, especially those with small magnitudes.    

 

Chapter 9: 

Conclusions are drawn in this chapter based on the contributions of this project. 

Recommendations on the potential future research directions are also discussed.   
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2  Partial Discharge-based Literature Review 

2.1  Introduction 

The reliability of high voltage (HV) power apparatus in power networks is a major concern of 

power utilities. Rigorous quality controls have been implemented through the design, 

manufacturing, and installation of HV apparatus. However, failure of these apparatuses 

continues while in service, which imposes pressure on power utilities. Electrical insulation is 

a key component of HV apparatus, and investigations reveal that, in most cases, insulation 

fault is the main cause of the failure of power apparatuses. The implementation of 

condition-based monitoring (CBM) becomes an ever-increasing demand of power utilities, 

since CBM can help them drive down the related high maintenance and operational costs. For 

the monitoring of insulation condition, partial discharge (PD) measurement is considered an 

indispensable, non-destructive, sensitive and powerful tool [16], [23]. It is possible to have an 

overall assessment of insulation conditions of power apparatus using PD data obtained 

through PD measurement.  

In this chapter, the definition of PD is detailed in Section 2.2.  PD is a common phenomenon 

in power apparatus, it is necessary to have a good understanding of its underlying mechanism, 

which is therefore introduced in Section 2.3, including the conditions for the occurrence of 

PDs and the recurrent nature of PDs. Section 2.4 presents the most commonly seen forms of 

PDs in practice. Following this, the characteristics of PDs, which are important for the 

analysis of PD phenomena in practice, are presented in Section 2.5. Due to power cables as a 

research object, related power cable theory is introduced in Section 2.6. Various methods of 

PD measurement are detailed in Section 2.7 from non-electrical to electrical ones. Also, PD 

detection methods for power cables are separately discussed in this section, including off-line 

and on-line approaches and PD sensor options. Section 2.8 introduces the challenges that 

affect the application of PD measurement in electrical apparatus, particularly in power cables. 

It primarily concentrates on the types of noise that frequently occur in PD measurement. 

Conclusions regarding the fundamentals of PDs are presented in Section 2.9. 
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2.2  Partial Discharge Definition 

In IEC 60270 [31] or BS EN 60270 [32], partial discharge is defined as a localized electrical 

discharge that only partially bridges the insulation between conductors and which may or may 

not occur adjacent to a conductor. PDs can result from breakdown of gaseous medium in a 

cavity or void, or breakdown at interfaces or surfaces, or breakdown between a conductor and 

a floating metal component, or breakdown of gas in an electrical tree channel, and to name a 

few [33], [34].  

The occurrence of PDs is due to the change of electric field configuration in gaseous, solid, 

and liquid dielectrics. Cavity-induced partial discharges have been seen as a major source that 

can cause progressive deterioration in the insulation systems of electrical apparatus, e.g., 

transformers and power cables subjected to electrical stresses at power frequencies [35], [36]. 

This progressive deterioration of electrical insulation can shorten the service life of electrical 

apparatus. In relation to power cables, polymeric insulating materials, e.g., polyethylene (PE), 

cross-link polyethylene (XLPE) and ethylene propylene rubber (EPR), have been widely 

adopted to increase their resistance to PD-induced progressive deterioration and temperature 

tolerance during operation. In spite of the rigorous implementation of quality control, cavities 

may be still formed during the period of the manufacturing, installation, and operation of 

power cables, and the resultant cavity-induced PDs can cause irreversible damages to their 

polymeric insulating materials. As such, the introduction of polymer insulated power cables 

stimulates a rapid development of PD diagnostics to assess their reliability for practical use.  

2.3 Partial Discharge Mechanism 

Partial discharge has been a hot topic in the area of electrical insulation for many decades. 

Various PD processes have been found in electrical insulation due to the diversity of 

insulating materials used in power apparatus and the associated cavity geometries within 

these materials. Cavities, as the most common source of partial discharges, cannot be seen 

since they are buried inside the electrical insulation. As such, detecting and locating PDs 

induced by such defects requires frequent use of PD diagnostics in practice [37]. Electron 
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avalanche is considered a critical process involved in the development of PDs. From a 

physical point of view, self-sustaining electron avalanches may only take place in gaseous 

dielectrics or gaseous inclusions (e.g., cavity) in solid and liquid dielectrics [38]. Based on 

this, a gas-filled cavity is used as the most technologically important source of PDs to reveal 

its underlying mechanism. 

2.3.1  Preconditions for PD Occurrence 

A gas-filled cavity within electrical insulation generally has a lower permittivity and a lower 

breakdown strength than the adjacent insulating material. The lower permittivity results in an 

enhanced electric field in the gas-filled cavity. The relationship between this enhanced electric 

field and the electric field of the adjacent insulating material is determined by the permittivity 

of the insulating material and the cavity geometry. Cavities with different geometries within 

the insulating material, depicted in Figure 2-1 [39], are used to unveil this relationship.  

Given the permittivity of the insulating material is 𝜀 and the electric field of the insulating 

material is 𝐸𝑑 , then the electric field of the cavity, 𝐸𝑐, in some cases, can be approximated 

by the following equations [39]: 

⚫ cavity (a) in Figure 2-1, which is a flat cavity and perpendicular to the electric field, the 

stress in the cavity can be calculated by  

𝐸𝑐 = 𝜀 ∙ 𝐸𝑑 (2-1) 

⚫ cavity (b) in Figure 2-1, which is a spherical cavity, the stress in the cavity can be 

calculated by 

𝐸𝑐 = 3𝜀/(1 + 2𝜀) ∙ 𝐸𝑑 (2-2) 

⚫ cavity (c) in Figure 2-1, which is long and parallel to the electric field, then the stress in 

the cavity tends to be equal to that in the dielectric, as shown in the following equation, 

𝐸𝑐 = 𝐸𝑑 (2-3) 
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(a) (b) (c)

 
Figure 2-1 Cavities with different geometries within the insulating material [39] 

 

Based on (2-1), (2-2), and (2-3), cavities buried in insulation systems of electrical apparatus 

generally subject to higher electric field than the surrounding insulating material. When the 

enhanced electric field in a cavity is raised with the increase of applied voltage and beyond a 

threshold, i.e., the minimum breakdown strength of the gaseous medium within the cavity, a 

PD can occur. It is worth noting that PDs will not take place instantly although the electric 

field within the cavity goes above its minimum breakdown strength. The presence of an 

initiating free electron within the cavity is another prerequisite condition for the occurrence of 

PDs. The initiating electron is required to appear in a favorable position in the cavity such that 

it can be accelerated in the electric field to obtain adequate energy for its collision with gas 

molecules. More electrons can be liberated from gas molecules in such manner, leaving the 

gas molecules ionized. This process is termed gas ionization and enables the formation of an 

electron avalanche. Electron avalanche is an essential step involved in the development of 

PDs occurring in the cavity as it can ultimately produce a conduction channel between the 

electrodes. 

The source of an initiating free electron can be cosmic radiation, field emission, or by 

detrapping of electrons deposited at the cavity walls due to previous PD activity [40]–[42]. As 

such, the emergence of this ‘first’ electron is a stochastic process, which results in a statistical 

time lag, 𝑡𝐿, as shown in Figure 2-2 [43], between the instant of the minimum breakdown 

voltage 𝑉𝑚𝑖𝑛 (equivalent to minimum breakdown strength) that has been reached and the 

start of an electron avalanche. 𝑡𝐿  is typically in the order of ms and so by no means 

negligible in discharge process [41]. In Figure 2-2, the voltage across the cavity may exceed 



16 

 

𝑉𝑚𝑖𝑛 by an overvoltage ∆𝑈 due to the statistical time lag, and thus, the breakdown voltage 

𝑉𝐼 of the cavity is the sum of 𝑉𝑚𝑖𝑛 and ∆𝑈. Note that the discharge process is strongly 

affected by this overvoltage ∆𝑈 [42]. In short, the occurrence of cavity-induced PDs should 

satisfy the following two conditions: minimum breakdown strength or voltage of gaseous 

medium and a free electron with sufficient distance to the cavity wall.  
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Figure 2-2 Voltage across a cavity in the dielectrics [43] 

 

2.3.2  Recurrence of PDs 

A well-known capacitive ‘abc’ model, as shown in Figure 2-3 [44], is often used as an 

analogue circuit to investigate the fundamental quantities related to internal discharges. The 

components of the electrical insulation with a cavity (Figure 2-3 (a)) are equivalently replaced 

by some partial capacitances (Figure 2-3 (b)). 𝐶𝑐 represents the capacitance of the cavity, 𝐶𝑏 

represents the capacitance of the components that start or end at the cavity wall, and the rest 

of the electric insulation is represented by 𝐶𝑎. 𝑉𝑑 denotes the applied voltage across the 

electrical insulation.  

If 𝑉𝑑 is an alternating-current (AC) voltage, recurrent PDs can occur in the cavity as the 

capacitance 𝐶𝑐 is repetitively charged and discharged when the breakdown voltage of the 

cavity reaches. That is, PD can repeat when electrical insulation is under continuous AC 

electric field beyond the minimum breakdown strength of the cavity. The repetition rate is a 
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critical parameter pertinent to the evaluation of the negative consequences of PDs on 

electrical insulation. To have a proper understanding of the recurrence of PDs, more details 

are explicated with the aid of Figure 2-4 [39]. 
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Figure 2-3 (a) Scheme of an insulation system comprising a cavity, (b) Analogue circuit [44] 

 

In Figure 2-4, the red sinusoid 𝑉𝑑 is an AC voltage of power frequency applied across the 

dielectrics. The blue dash sinusoid 𝑉𝑐  is the voltage which would appear across the 

discharge-free cavity. 𝑉𝑎𝑐 is the actual voltage applied across the cavity. The black lines 

𝑉𝐼
+and 𝑉𝐼

− represent the breakdown voltages (or inception voltages) of the cavity in the 

positive and negative half cycles of 𝑉𝑑, respectively. If the voltage 𝑉𝑐 goes beyond 𝑉𝐼
+ in 

the positive half cycle, a PD occurs in the cavity. 𝑉𝑐 then drops after the discharge to a 

residual voltage 𝑉𝑟
+, a voltage that cannot sustain PDs. A recovery time 𝑡𝑅 and a statistical 

time lag 𝑡𝐿, as shown in Figure 2-2, are required for 𝑉𝑐 to increase to 𝑉𝐼
+ again, and thus, a 

second PD occurs afterwards. This process repeats several times until the voltage 𝑉𝑑 over the 

dielectrics decreases (from positive to negative half cycle) and drops to 𝑉𝐼
− before a new PD 

occurs in the negative half cycle. Recurrent PDs also can occur in this negative half cycle 

when applied voltage over the cavity reaches breakdown voltage. Generally, current impulses 

of cavity-induced PDs, as shown in Figure 2-4, are concentrated at the ascending and 

descending regions of the AC voltage applied across the dielectrics. Meanwhile, the 

recurrence of PDs is distributed at each positive and negative half cycle of the AC voltage. 

∆𝑉+ and ∆𝑉− are the voltage drops between breakdown voltage and residual voltage in 

both polarities. If ∆𝑉+ and ∆𝑉− are equal and constant, all PD pulses will have equal 
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magnitudes [39], [45]. However, it is not the most frequently occurring case in practice. The 

repetition rate of PDs varies due to the statistical time lag required for the formation of an 

electron avalanche. As such, the recurrence of PDs is also a stochastic process. PD pattern 

recognition can benefit from this stochastic nature in the distribution of PDs as well as the 

associated PD magnitudes and phases [45]–[48]. 
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Figure 2-4 Recurrence of partial discharges [39] 

 

2.4 Partial Discharge Forms 

The term ‘Partial Discharge’ includes a wide range of discharge phenomena. To distinguish 

different PD sources, PDs can be simply categorized into surface discharge, corona discharge, 

electrical tree, and internal discharges [39], [44]. 

2.4.1  Surface discharge 

Surface discharge is a form of external discharge in the sense that gas breakdown takes place 
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between a stress component and a dielectric surface. Research reveals that the roughness and 

cleanliness of the dielectric surface have impacts on surface discharge behaviors [39]. Surface 

discharge can occur at bushings, cable splices and terminations, the overhang of windings, 

and where a discharge coming from the outside but contacting the insulation surface. The 

locations in which various surface discharges may occur are illustrated in Figure 2-5 [39]. 

 

Electrical Insulation

 

Figure 2-5 Surface discharge [39] 

 

2.4.2  Corona discharge 

Corona discharge is a ‘partial discharge’ that occur at sharp edges of stress components, e.g., 

electrodes, as shown in Figure 2-6 [39]. For a highly stressed electrode, the electric field 

concentrated at its sharp edge can result in the ionization of the surrounding gas. This 

ionization is referred to as corona discharge, and it normally produces light, audible noise, 

and ozone. Corona discharge is undesirable in electrical equipment due to its negative effects, 

e.g., the electromagnetic noise generated by corona discharge can interfere the associated 

low-energy-level communication or control circuits of electrical equipment [49]. In high 

voltage networks, corona discharge is an indicator of insufficient insulation condition and an 

early warning of potential flashovers [50]. To alleviate the negative effect of corona discharge 

in HV area, rounding the sharp edges, replacing sharp edges with large radii of curvature, and 

putting a round piece of wax over sharp edges have been adopted to alter the concentration of 

electric field at sharp edges [49]. As a result, the ionization of the surrounding gas cannot 
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occur due to insufficient energy. Although corona discharge is not desirable in certain cases as 

mentioned above, it has been surprisingly developed for a large number of commercial uses, 

e.g., ozone generations and electrostatic precipitator. 

 

 

Figure 2-6 Corona discharge [39] 

 

2.4.3  Electrical tree 

Discharges in electrical tree is considered a special form of internal discharges [39]. Electrical 

tree can initiate from the defects in polymeric insulation under high electrical stress. 

Discernable damage caused by the development of electrical tree can be found in the form of 

a small tube or cavity after a long time since the start of electrical tree in the insulation [51]. 

This time can be hours, days, weeks, or even years, which is highly dictated by the applied 

voltage. The stem and larger branches of electrical tree, as shown in Figure 2-7 [52], then 

grow hallow, and thus, the number of partial discharges increases rapidly in these hollow 

spaces. Under continuous application of high electric stress, the electrical tree ultimately 

propagates across the insulation and leads to the insulation breakdown. Normally, this 

breakdown can take place in an extremely short period (seconds or minutes) after 

considerable discharges are detectable. More details regarding the inception and propagation 

of electrical tree in polymeric insulation can be seen from [41]. 
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Figure 2-7 Electrical tree grown in epoxy resin [52] 

 

2.4.4  Internal discharge 

Inclusions of low dielectric strength in the dielectrics are the major sources of internal 

discharges. Various inclusions, including cavities (or voids in some references), dirt, paper, 

textile fiber, and other foreign particles, are introduced in the dielectrics during various 

manufacturing processes [39], [53]. Usually, gas-filled cavities are the most common 

inclusion within solid or liquid dielectrics. Behaviors of cavity-induced discharges are 

governed by the shape and the size of cavities, the type of gas, the gas pressure in cavities, 

and temperature. Figure 2-8 [39] delineates the internal discharges caused by cavities within 

the electrical insulation. Cavity-induced discharges are not expected in electrical apparatuses, 

particularly in those with solid insulation. These discharges can cause irreversible insulation 

deterioration and may ultimately lead to insulation breakdown. Electrical tree, as introduced 

above, may also be initiated in polymeric insulation due to partial discharges taking place in 

the gas-filled cavities [51].  

 

 

Figure 2-8 Internal discharges caused by cavities in the electrical insulation [39] 
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2.5  Partial Discharge Characteristics 

Partial discharge characteristics include PD waveform, the rise-time time of PD pulse, pulse 

width, pulse magnitudes, PD repetition rate (PD numbers), and to name a few. From a 

practical point of view, these characteristics are essential for the analysis of PD phenomena in 

PD detection, location, and pattern recognition.  

The rising time of a PD pulse is in the order of ns and the pulse duration, generally, is very 

short and much less than 1𝜇𝑠 (in nanosecond range) [38], [54]. In the case of long cables, the 

pulse duration may be extended above 1𝜇𝑠 due to shape distortions [55]. A typical PD pulse 

is illustrated in Figure 2-9, in which 𝑇𝑟 (rise from 10% to 90% of the peak) represents the 

rising time of the PD pulse, and 𝑇𝐹𝑊𝐻𝑀 (full width at half peak) represents the pulse width 

[56]. The rising time of a detected PD signal is highly dependent on the rising time of this PD 

signal at the site of its origin and its subsequent degradation along the propagating path from 

the site of origin to PD detectors. This degradation is particularly dominant in PD signals that 

take place in electrical apparatus that exhibits transmission line behaviors, e.g., power cables, 

transformers and rotating machines [45]. Investigation in [57] also reveals that the possible 

change in the overvoltage (∆𝑈, mentioned above) can lead to considerable variations in the 

rising time of PD signals. Lower overvoltage values can cause longer delays in the formation 

of PD signals as well as the increase of the corresponding pulse width. From practical point of 

view, the degradation of the rising time of PD signals can be applied in the techniques for PD 

location, e.g., the rising time of PD pulses combined with the transfer function of power 

cables to locate the defect within the insulation systems has been proposed in [56].   

A typical PD waveform is non-symmetrical, as shown in Figure 2-9. Due to this 

non-symmetry, PD signals have a non-Gaussian nature, which is different from the most 

common sources of noise, e.g., white noise and RFI, in PD detection. In statistics, the 

non-Gaussianity can be calculated based on the 3rd and 4th moment, i.e., the measures of 

skewness and kurtosis, of a series of data. As such, the skewness and kurtosis of PD signals 

have been investigated to minimize the effect of noise on PD detection [48], [53], [58]. 
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Figure 2-9 Rising time Tr and pulse width TFWHM of a typical PD pulse [56] 

 

The magnitude of PD signals is usually small, and measured in pC. In practice, the 

magnitudes of detected PD signals undergo substantial fluctuations due to the value of 

overvoltage ∆𝑈. These fluctuations are, generally, accompanied by significant variations of 

the phases of the PD pulse positions with respect to the applied AC voltage. Statistical 

analysis of variations of PD magnitudes and the associated phases have been intensively 

performed, and a phase-resolved PD (PRPD) analysis has been proposed afterwards to 

classify the types of defects that cause the discharges. The magnitudes and phases were first 

used for PD pattern recognition in [59], and later the number of the discharges in one or more 

power cycles was introduced into this technique in [60]. As such, PRPD is often referred to as 

‘𝜑 − 𝑞 − 𝑛’ in some references (𝜑 denotes the phase, 𝑞 denotes the magnitude, and 𝑛 

denotes the number). An example for the use of PRPD in PD pattern recognition is illustrated 

in Figure 2-10 [61]. Significant differences can be seen from the statistical distributions of 

magnitudes (amplitudes) and phases of cavity-induced discharges, corona discharges and 

surface discharges.  

The repetition rate, or the number, of PDs in one or more power cycles is highly correlated to 

the statistical time lag as mentioned before. In general, this parameter is not only involved in 

PD pattern recognition, but used to evaluate the severity caused by PDs on the insulation 

systems of power apparatus, together with PD magnitudes. 
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(a)

(b)

(c)

 

Figure 2-10 Phase resolved PD analysis. (a) 3D diagram of PD in a cavity, (b) 3D diagram of PD due to 

corona, (c) 3D diagram of PD at surface [61] 

 

Based on the discussion above, the statistical behaviors of PD characteristics can be analyzed 

to provide useful information of PD signals. Some of PD characteristics as aforementioned 

have been adopted for PD detection, location and pattern recognition. Further improvement of 
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these techniques for PD detection, location, and pattern recognition may be achieved from the 

study of more statistical behaviors of PD signals. 

2.6  Power Cable Theory 

Power cables constitute an essential component in power transmission and distribution 

networks. The ever-increasing demand to replace conventional overhead lines by 

underground cables for power transmission and distribution is accompanied by the 

accelerated urbanization. The history of the application of underground cables for electrical 

power delivery can date back over one century [62]. The technique of underground cables has 

developed steadily since World War II when several varieties of synthetic rubber and 

polyethylene were introduced in cables. To date, underground cables play a significant role in 

transmission and distribution applications, particularly in urban and congested areas, and 

areas where overhead lines are inappropriate due to practical limitations or risks involved [62], 

[63]. It is necessary to mention that underground cables are always more expensive when 

compared to equivalent overhead lines [63]. As such, their applications continue to be focused 

on specific areas as mentioned above. Submarine cables have been widely used to transport 

electrical power across water bodies. Recent years have seen a rapid development of high 

voltage direct current (HVDC) cables due to the expansion of renewable energy, e.g., offshore 

wind power, into current power supply and the need for inter-continent bulk power 

transmission. The figures regarding the dramatic increase of HVDC cables are shown in 

Figure 2-11[64]. HVDC cables are in preference to transmit the massive amount of electrical 

power for long distances due to their substantially lower power loss as compared to high 

voltage alternating current (HVAC) cables.   

The design of power cables for practical uses is dictated by the factors such as circumstance 

of application, voltage rating, thermal rating, and environmental concerns [65]. Various 

applications include underground and submarine cables. In IEC 60038, cables are categorized 

into low voltage (LV≤1kV), medium voltage (MV≤35kV), high voltage (HV≤230kV), and 

extra high voltage (EHV>245kV) based on the operating voltage level. Insulation requirement 

of cables is dependent on the operating voltage level. Ampacity of the cable determines its 
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thermal rating. Environmental concerns include recycling of cable insulating materials, health 

issues raised by hazardous substances, and magnetic induction [53]. In Figure 2-12 [66], an 

extruded power cable is used as an example to illustrate the principle components of power 

cables. These components include conductor, conductor screen, insulation, insulation screen, 

metal sheath, and Jacket. It is necessary to mention that the cable example shown in Figure 

2-12 is an extruded HVDC cable. However, the components in extruded HVAC and HVDC 

cables have no major differences except the thickness of insulation. The insulation for HVAC 

cables is thicker than that for HVDC cables under the same voltage level.  

 

 

Figure 2-11 Rapid development of HVDC cables in power transmission [64] 
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Figure 2-12 Schematic diagram showing the principle components of an extruded power cable [66] 
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2.6.1  Conductor 

Copper and aluminum are the most frequently used materials for conductors of power cables. 

Copper is a more efficient conductor as compared to aluminum due to its lower electrical 

resistance. Also, conductors made from copper can have smaller cross sections than those 

made from aluminum with the same cable rating. However, aluminum is lighter than copper, 

and thus, can have an advantage of enabling longer lengths to be safely handled [67]. Longer 

length means less jointing required. Aluminum generally has a lower price than copper on the 

metal commodity markets. Although aluminum has lower conductivity and mechanical 

strength than copper, aluminum conductors are more preferable for power cables due to the 

economic benefits. Usually, a power cable can have 1 or 3 conductors, which depends on its 

applications. The conductors are designed in strands or solid as shown in Figure 2-13 [68]. 

Stranded conductors are flexible and can mitigate the negative effects, e.g., skin effect, and 

proximity effect. Solid conductors are good for soldering and compression jointing, but with 

low flexibility.  

 

 

Figure 2-13 Stranded and solid conductors 

 

2.6.2  Conductor Screen 

Conductor screen normally consists of a semi-conducting layer functioning as the interface 

between the conductor and insulation. It is required for cables rated over 2kV, i.e., MV and 

HV cables [69]. The external surface of the conductor may not be smooth, particularly for 
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stranded conductors. As such, conductor screen can enable a uniformly distributed electrical 

field around the surface. For this layer to function properly, it needs to be fully bonded into 

the insulation to ensure that no air voids exist between the layer and the insulation.   

2.6.3  Insulation 

Insulation plays a significant role in power cables. As its name implies, it insulates the 

conductor at voltage from the outer screens which are at ground potential. The insulation is 

provided to withstand electric field under rated and transient operating conditions. The past 

century has seen a dramatic increase in the complexity of materials available for use as 

insulations of power cables. Figure 2-14 delineates the classifications of power cables in 

terms of the insulating material used. Oil-impregnated paper-insulated high voltage cables 

were applied for commercial uses by 1895 [62]. Polymeric materials, such as rubber and 

polyethylene (PE), were introduced into cable insulation during World War II. MV and LV 

voltage cable technology moved from mass impregnated paper insulated to extruded 

cross-linked polyethylene (XLPE) insulations since the 1960s [62], [64]. Ethylene propylene 

rubber (EPR) has been seen on market since 1980s [53]. Oil filled cable was first installed in 

the 1950s [62]. Gas insulated line (GIL) is an emerging technology that provides an 

alternative to fluid filled or XLPE cables [63].  

 

 

Figure 2-14 Cable classification based on the insulating material 
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To date, XLPE and EPR are the two major insulating materials applied in AC power cables. 

XLPE and mass-impregnated paper are the two main insulating materials used in HVDC 

power cables. The conductor temperature of XLPE insulated power cables during the normal 

operation can reach 90 C  as its cross-linking structure helps prevent the polymer from 

melting or separating at elevated temperatures. Although XLPE insulated cables have higher 

dielectric loss than PE, they have better aging characteristics and resistance to water treeing. 

EPR is a copolymer of ethylene and propylene, and also has a cross linking structure. It is 

more flexible than PE and XLPE, but it has higher dielectric loss than both. The temperature 

tolerance of EPR is better than XLPE, which can be safely operated at the temperature up to 

140 C  [70]. Mass-impregnated paper is not suitable for AC cables with voltages above 33kV 

due to its high technical stress levels, but it is now being used for DC cables at higher 

voltages [63]. 

2.6.4  Insulation Screen 

Insulation screen is a layer of semi-conductive material used in MV and HV power cables. It 

has the similar function as that of the conductor screen, providing a smooth transition from 

insulation to the grounded metal sheath.   

2.6.5  Metal Sheath 

Metal sheath of power cables is normally made up of concentric copper wire, laminated 

aluminum foil, or extruded lead alloy [67]. The main function of metal sheath is to confine 

electric field inside of power cables. Metal sheath needs to be grounded at least at one cable 

end. As such, it provides a path for the fault and leakage currents to flow away. Also, metal 

sheath protects the cable from moisture and other chemicals present in the environment or soil. 

Extruded polymeric insulations, such as XLPE and EPR, should not get exposed to moisture 

as the presence of a strong electric field with moisture can cause severe deterioration and 

ultimate failure of the insulations.  
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2.6.6  Jacket 

Jackets or sheaths are commonly used to protect underlying layers of the cable from physical 

abuse, sunlight, flame or chemical corrosion [69]. There are two main materials used for cable 

jackets. One is poly-vinyl chloride (PVC), the other is PE. PVC is primarily used for power 

cables with wire armouring or lead sheaths as it is softer than PE. Although PVC has fire 

retardant properties, the toxic or corrosive fumes released are prohibited by many users [67]. 

The need of fire-retardant properties of jackets is becoming more prevalent, particularly for 

the cables installed in tunnels and confined spaces. The material used for jackets is expected 

to reduce the spread of fires and release no harmful and corrosive fumes to protect personnel 

and equipment. Halogen-free fire retardant (HFFR) materials are applied for this purpose. 

However, this type of jackets has inferior mechanical properties than PVC or PE and the cost 

is high.  

2.7  Partial Discharge Detection 

PD testing is widely accepted as a diagnostic tool for the evaluation of insulation integrity. 

The main purpose of this testing is to determine if, or the degree to which, the insulation 

system of electrical apparatus is deteriorating while in service. During apparatus operation, 

the electrical insulation system can be degraded due to the combination of the thermal, 

electrical, mechanical and environmental stresses [71]. To effectively perform PD testing, 

various techniques for PD detection have been developed for many years. Partial discharges 

occurring in electrical apparatus can produce sound, light, chemical reactions, and electrical 

pulse currents [44], [72]. As such, PD activities can be detected by the techniques based on 

the aforementioned acoustic, optical, chemical and electrical phenomena. All these techniques 

used to ascertain PD activities can be divided into two categories, i.e., electrical and 

non-electrical PD detection.   

2.7.1  Non-electrical PD detection 

Non-electrical PD detections, as the name suggests, are techniques that measure PD signals 
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occurring in electrical apparatus based on the aforementioned non-electrical phenomena, i.e., 

sound, light, and chemical reactions, pertinent to PD activities.  

2.7.1.1  Acoustic Detection 

Partial discharge activities can cause collisions between molecules of the insulating materials 

resulting in the generation of acoustic emission (AE) waves. These waves propagate from the 

discharge-generating sites through the insulation and can be detected by AE sensors. Acoustic 

technique has remarkable advantages of being non-invasive and immune to electrical 

interferences [73]. However, AE waves are prone to be distorted during the propagation by a 

variety of factors, which imposes the difficulty on the detection and interpretation of acoustic 

signals from PDs. The acoustic technique is more suitable for the detection and location of 

PDs in oil-filled transformers, gas insulated substations (GIS) and switchgear [3], [72], [74]. 

Although acoustic technique has been applied in power cables [75], it requires that AE waves 

are not highly attenuated in this application, that is, AE sensors need to be placed as closely as 

possible to the origins of PDs.    

2.7.1.2  Optical Detection 

The optical technique for PD detection has two different measurement strategies, namely, 

direct and indirect optical detection. Direct optical detection detects the light generated as a 

result of various ionization, excitation and recombination processes during the discharges. 

Indirect optical detection evaluates the changes of an optical beam within an optical fiber 

caused by PD activities.  

In direct optical detection, the optical spectrum of light produced by PD activities varies with 

the types of PD. For a specified PD activity, the optical spectrum of the associated light is 

dependent on the chemical composition of its adjacent medium and the discharge intensity, 

e.g., the spectrum of PD in air is dominated by the spectrum of nitrogen [76]. Figure 2-15 and 

Figure 2-16 illustrate the optical spectrum of the light produced by a breakdown arc in 

transformer oil and corona discharge, respectively [77]–[79]. Differences between the optical 

spectra can be seen from the wavelength and discharge intensity. As such, the optical 
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spectrum of light emitted by PDs need to be taken into account at the selection of an optical 

sensor that can yield optimal measuring sensitivity. A photomultiplier is generally involved in 

the direct optical detection due to its high sensitivity of small light quantities [78]. The 

application of direct optical detection has been investigated in oil-filled transformer and GIS 

in laboratory measurement [78], [80].  

  
Figure 2-15 The optical spectrum of the light produced by corona discharge [76] 

 

 

Figure 2-16 The optical spectrum of the light produced by a breakdown arc in transformer oil [74] 

 

In indirect optical detection, PD-induced stress on the fiber optic cable can cause deformation 
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of the fiber optic structure. This deformation in turn can change the transmission properties, 

i.e., refractive index and fiber length, of the optical beam traversing the fiber. Subsequent 

interpretation of the demodulated optical beam can indicate the occurrence of PDs. The 

investigations of indirect optical detection can be seen in [81]–[83].  

Although both direct and indirect optical detection are insensitive to electrical interference 

and detected PD signals suffer extremely low degradation during transmission, their 

applications have not been widely used in field measurement. Factors contributing to this may 

include the insulating materials in which PD occurs need to be optically transparent (not 

applicable in most cases), invasive nature of the technique, and cost of equipment [74], [78]. 

2.7.1.3 Chemical Detection 

PD activities can result in chemical changes in the insulating materials. These chemical 

changes have been investigated for the detection of PDs in electrical apparatus. Generally, 

there are two chemical techniques, namely, Dissolved Gas Analysis (DGA) and High 

Performance Liquid Chromatography (HPLC), developed for practical uses [84], [85]. DGA 

is primarily used in liquid-insulated electrical apparatus, e.g., oil-filled transformer. Gases, 

such as hydrogen and ethane, are generated in the transformer oil due to PDs. Detection of 

these gases dissolved in the oil can provide information of PDs. Equally, PD activity in 

gas-insulated electrical apparatus can be detected in a similar manner through the analysis of 

gas samples [72]. For instance, SOF2 and SO2F2 are produced by PD activity in a 

SF6-insualted GIS [74], [86]. HPLC is also applied to detect PDs in power transformers with 

paper insulation. Glucose and degraded forms of glucose are generated due to PD-induced 

degradation of paper insulation [74]. As such, PD information can be obtained through 

monitoring glucose levels in the impregnated oil by HPLC.  

Unfortunately, the application of chemical detection of PDs in practice is limited. Nature, 

location, and intensity of PD activity cannot be ascertained through chemical detection. Also, 

chemical detection requires the analysis of liquid or gas samples from liquid or gas dielectrics, 

which is not suitable for on-line PD measurement.  
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2.7.2  Electrical PD Detection 

Electrical PD detections are the most commonly used and effective detection methods as 

compared to non-electrical PD detections. Also, the issued IEC standard for PD testing is 

related to electrical PD detections. Electrical techniques for PD detection are based on the 

capture of a PD pulse at the terminals of a test object. The flexibility of the test object in 

electrical PD detection is one of the reasons for its prevalence in both academic and industrial 

applications. The test object can be a simple dielectric test sample for fundamental 

investigations, or a real HV electrical apparatus for manufacturing quality check. Figure 2-17 

delineates a typical PD measuring circuit recommended by the IEC standard [31]. The 

elements of the measuring circuit are listed as follows, 
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Figure 2-17 Most common PD measuring circuit used in practice 

 

1. A high voltage source, 𝑇𝑟 ,which is preferably PD free, 

2. A test object, 𝐶𝑎, 

3. A noise block filter, 𝑍𝑛, 

4. A coupling capacitor, 𝐶𝑘 , which facilitates the pass of the high-frequency current 

impulses, and generally is the same order of magnitude as test object, 

5. An input impedance of measuring system, 𝑍𝑚, across which voltage impulses are caused 

by the discharge in test object, 

6. A coupling device, CD, which is an integral part of the measuring system and test circuit, 
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7. A connecting cable, CC, which transmits the voltage impulses from CD to the measuring 

instrument, 

8. A measuring instrument, 𝑀𝑖, which can store and manifest PD pulses in various forms.  

PD measuring circuit can be divided into two parts: test circuit (blue rectangle in Figure 2-17) 

and measuring system (red rectangle in Figure 2-17). It is worth noting the function of 

coupling device in the measuring system. As an integral part of the measuring system and test 

circuit, the frequency response of an individual coupling device is not of general interest, but 

the magnitude and frequency characteristics of the input impedance are of tremendous 

importance as this impedance interacts with the coupling capacitor and test object and is thus 

an essential part of the test circuit [31]. Based on this, the components of coupling device are 

specially designed to achieve the optimum sensitivity. The input impedance varies as a result 

of different configurations of the coupling device, resulting in different pulse shapes of 

detected PD signals. Generally, the coupling device behaves often as a RC impedance circuit 

or a RLC impedance circuit, as shown in Figure 2-18 (a) and (b), respectively [21], [44], [87]. 

The transfer function of RC and RLC impedance circuit can be expressed in the following 

Laplace forms [21], 

𝐺𝑅𝐶(𝑠) =
1

𝐶
∙

1

𝑠 + 1 𝜏⁄
 (2-4) 

𝐺𝑅𝐿𝐶(𝑠) =
1

𝐶
∙

𝑠

𝑠2 + 𝑠 𝜏⁄ + 𝜔0
2 (2-5) 

where 𝜏 = 𝑅𝐶, and 𝜔0 = 1/√𝐿𝐶. If 𝑖(𝑡) is an ideal Dirac current input, the output voltage 

𝑣(𝑡) behaves as a damped exponential pulse in RC circuit and a damped oscillatory pulse in 

RLC circuit. The parameter 𝜏 is the delay time of both pulses and 𝜔0 is the oscillating 

frequency of the damped oscillatory pulse.  
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Figure 2-18 Input impedance, (a) equivalent RC circuit, (b) equivalent RLC circuit 
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The current impulse generated by a PD is not an ideal Dirac current impulse. As mentioned in 

PD characteristics, a PD pulse normally has a duration in the order of ns (see Figure 2-9). As 

such, the voltage pulse converted from the current impulse of a PD through the coupling 

device has a finite rising time. Based on this, the output voltage pulse of RC and RLC circuit, 

termed damped exponential pulse (DEP) and damped oscillatory pulse (DOP), can be 

simulated through the following mathematical frames (2-6) and (2-7), respectively [88].     

𝑣𝐷𝐸𝑃(𝑡) = 𝐴(𝑒
−𝛼1𝑡 − 𝑒−𝛼2𝑡) (2-6) 

𝑣𝐷𝑂𝑃(𝑡) = 𝐴(𝑒
−𝛼1𝑡 𝑐𝑜𝑠(𝜔0𝑡 − 𝜑) − 𝑒

−𝛼2𝑡 𝑐𝑜𝑠 𝜑) (2-7) 

where A denotes the peak value of the pulses, 𝛼1 and 𝛼2 are the rise and decay time 

constants of the pulses, 𝜔0 is the angular frequency of the oscillation of DOP, and 𝜑 =

tan−1(𝜔0/𝛼2). Figure 2-19 (a) and (b) delineates these two typical PD pulses DEP and DOP 

respectively using the mathematical frames above. The sampling rate is set to 60MHz, and the 

values of related parameters used in (2-6) and (2-7) are listed in Table 2-1, where 𝑓0 is the 

oscillatory frequency of DOP [88]. Generally, DOP signal shown in Figure 2-19 (b) is closer 

to a real high-frequency PD signal detected from electrical power equipment in practice [88]. 

 

 

Figure 2-19 Typical PD pulses, (a) damped exponential pulse, (b) damped oscillatory pulse 
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Table 2-1 Values of parameters used in (2-6) and (2-7) 

Parameters Values 

𝐴 1 

𝛼1 106𝑠−1 

𝛼2 107𝑠−1 

𝑓0 1𝑀𝐻𝑧 

𝑤0 2𝜋𝑓0 

𝜑 𝑡𝑎𝑛−1(𝑤0/𝛼2) 

 

The measurable frequency components of PD signals are in the range of high kHz, and 

sometimes up to MHz due to the very short duration of a single PD signal (see Figure 2-9 and 

Figure 2-19). PD signals are also a type of electromagnetic waves. Based on the 

high-frequency and electromagnetic natures of PD signals, various PD detectors, such as 

current transformers (CTs), capacitive couplers, antenna and ultra-high frequency (UHF) 

sensors, have been successfully adopted in electrical PD detections. For a specified electrical 

apparatus, the selection of an appropriate PD detector is governed by its electrical property, 

together with its geometry and surrounding environment. The configurations of measuring 

circuits using these PD detectors are slightly different from that in Figure 2-17, but the basic 

principle for PD detection remains the same. 

Although electrical techniques are frequently used for PD detection in practice, they still have 

their weaknesses. The measuring circuit, as shown in Figure 2-17, is highly sensitive to noise. 

In a severe noisy condition, PD signals generated in the test object can be totally obscured by 

the interferences. It is obvious that up to now numerous methods to minimize the effect of 

noise on PD signals have been and still are a topic for research and development. As the main 

research objectives of this project, PD signal denoising techniques will be fully reviewed in 

Chapter 3. In addition, electrical PD detection suffers serious attenuation for the propagation 

of a PD signal from its origins to PD detectors. As a result, the characteristics of detected PD 

signals are highly dependent on the geometries of electrical apparatus. 

2.7.3  PD Detection in Power Cables 

The significance of PD on the life of insulation systems of power cables has long been 

recognized. As a major and effective tool, PD detection in power cables should have the 
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capability of measuring a wide range of PD characteristics. In practice, off-line and on-line 

measurement are the two general approaches for PD detection in power cables. An off-line 

PD measurement requires a separate voltage source to apply on the cable that has been 

removed from service, while an on-line PD measurement is carried out during normal 

operation of power cables.  

2.7.3.1  General Test Setup  

An off-line PD measurement is generally deployed as shown in Figure 2-20 [89]. The cable 

under test needs to be taken out of service from the power network at both ends and properly 

isolated for safety requirements. An external voltage source is applied to energize the power 

cable at the near end (i.e., close to voltage source), whilst the remote end (i.e., far from 

voltage source) is left open. The capacitive or inductive coupling devices are used to pick up 

PD signals and connected to PD data processing unit. Differences can be seen from the 

placement of capacitive and inductive sensors in the cable for PD signal capture (e.g., label 1, 

2, 3, and 4 indicate various positions of sensor installation). In general, PD measurement in 

HV power cables most often is performed off-line in the factory or site at regular time 

intervals for routine maintenance [4], [90]. 
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Figure 2-20 Typical setup for an off-line PD measurement in power cables 

 

For off-line PD measurement, the cable needs to be removed from online service, and thus, an 

external power supply is required to energize the cable under test (as shown in Figure 2-20). 

The most commonly used are 50/60Hz AC voltage, very low frequency (VLF) voltage, and 
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oscillating voltage wave (OVW) or damped AC voltage (DAC) [4], [89], [91]–[96]. 

⚫ The 50/60Hz AC voltage measuring circuit, as shown in Figure 2-21, is composed of a 

50kV set-up transformer, a damping resistor with high resistance to reduce the 

short-circuit current if breakdown occurs in test object, and a coupling capacitor in series 

with a measuring impedance used to couple out PD signals [94]. This measuring circuit 

is almost the same as that shown in Figure 2-17. During PD measurement, the 50/60Hz 

AC voltage is applied to the cable system ranging from 1 to 2 times operating voltage 

during a limited time interval [93]. Sequences of PD pulses, together with magnitude and 

phase information of each pulse can be obtained through this test [94]. Using 50/60Hz ac 

voltage for an off-line PD measurement has several advantages, e.g., the testing voltage 

waveform is the same as the operating voltage waveform, and this testing method is 

applicable to all types of failures related to cable insulation [92]. However, it is limited to 

apply on long-distance cable at one time. 
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Figure 2-21 50/60Hz AC voltage measuring circuit 

 

⚫ Figure 2-22 [94] illustrates the general setup for the VLF measuring circuit. Very low 

frequency voltage uses AC signals with a frequency in the range from 0.01Hz up to 1Hz 

to test all the types of power cables [92], [94], [97]. The most commonly used frequency 

for off-line PD measurement is 0.1Hz. Low current is required to energize the capacitive 

components in the dielectrics of the cable, since the test is conducted at low frequency 

[98]. The VLF setup consists of HVAC power supply at 0.1Hz, HV divider, cable sample, 
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and a coupling capacitor in series with a detection impedance. The magnitudes of PD 

pulses and the phase position of each PD pulse can be recorded during test. However, the 

results of PD measurement using VLF voltage, e.g., PD magnitudes and inception 

voltage, may be quite different to those obtained from tests under power frequency 

voltages [98], [99]. Also, a higher electrical stress is required for VLF test as compared 

to tests performed with power frequency voltages [89], [99]. Under high electrical stress, 

the initiation of new weak points of the cable during test may occur and hence lead to 

final electrical breakdown under service stress [93]. 
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Figure 2-22 The VLF measuring circuit 

 

⚫ Damped alternating current voltage (DAC), also called oscillating voltage waves (OVW), 

is applied for off-line PD measurement in after-laying tests of new cables and in 

diagnostics of old cables [4], [91]–[96]. DAC uses damped alternating current at 

frequencies between 20Hz and 500Hz [92], [96]. It is an effective method to all types of 

cable systems [4]. A DAC (OVW) measuring circuit is illustrated in Figure 2-23 [94]. 

The testing circuit mainly has a HV DC power supply, a specially designed HV switch, 

an air-core inductor, HV divider, PD coupling capacitors, detection device, and cable 

sample. For an off-line PD measurement using DAC as its external voltage source, the 

cable sample is charged with a dc voltage over a few seconds to a predefined voltage 

level. Then a solid-state switch (HV switch S in Figure 2-23) with an extremely short 

closure time (< 1us) is closed after the DC supply is disconnected [94]. Following this 
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step, an oscillating voltage (DAC voltage) wave is generated by a resonant circuit, 

formed by the inductance of the air-core inductor and the capacitance of the cable sample, 

and applied to the cable sample for PD detection [91], [95]. The resonant frequency of 

the damped oscillation varies from tens of hertz to a few kilohertz, which is dependent on 

the parameters of the resonant circuit [89]. It can be calculated based on the following 

equation, 

𝑓 = 1/(2𝜋 ∙ √𝐿 ∙ 𝐶) (2-8) 

where L is the inductance of the air-core inductor and C represents the capacitance of the 

cable sample. Testing systems using DAC have low power demand as the cable under 

test is charged with a dc power supply [95], [99]. The frequency of the oscillating voltage 

wave is as close as possible to power frequencies, and hence the testing results under 

DAC are generally comparable to those using power frequency voltages [92], [95]. 

Different from VLF test, PD under DAC test can be ignited at electrical stresses 

approaching to the operating voltage levels, at which new defects in the cable are not 

induced by test processes [99]. 
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Figure 2-23 The OVW measuring circuit [94] 

 

Different from off-line PD measurement systems, the setup of an on-line PD measurement is 

illustrated in Figure 2-24 [89]. The cable under PD measurement is remained in service with 

both ends connected to power network. It means the excitation voltage for on-line PD 

measurement is the operating voltage of the cable system rather than an external voltage 
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source. The coupling devices used to capture PD signals for on-line PD test are generally 

types 2, 3, and 4 shown in Figure 2-20. 
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Figure 2-24 Typical setup for an on-line PD measurement in power cables [89] 

 

It has in the past been assumed that off-line PD measurement is non-destructive to power 

cables under test. According to Boggs & Densley [34], and Ahmed & Srinivas [100], it is a 

misleading assumption because off-line PD measurements using elevated voltage stresses 

may accelerate the degradation of cable insulation, and thus reduce the service life of power 

cables. Off-line PD measurements only indicate the integrity of cable insulation at a certain 

time period of the routine maintenance. For power utilities it is desirable that a PD diagnostic 

tool can provide continuous information showing a progressive deterioration process in power 

cables for insulation evaluation [90], [101]. The cables under on-line measurements are 

stressed by the operating voltage of power network and risk of cable failure can be estimated 

with the trends of PD signals, e.g., the trends of PD magnitude and repetition rate can reveal 

the severity of the insulation degradation [90], [101], [102]. With support of the information, 

power utilities can make their decisions if any maintenance action is required to avoid the 

unplanned outages or minimize the downtime of cable systems. Therefore, on-line partial 

discharge measurements have received intensive investigations in recent years. Techniques 

now available for on-line PD measurement, ranging from simple-to-use and handheld PD 

screening test units to continuous (real-time) PD monitoring system, are widely deployed for 

detection and location of PD activities in power cables and their accessories while in service 

[102], [103]. The detection of PD signals through on-line PD monitoring system can provide 

an early warning against insulation failures [102]. However, the effectiveness of PD capture 
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for on-line detection is determined by the sensitivity and frequency response (bandwidth) of 

PD sensors as well as the noise level [102]. 

2.7.3.2  PD Detection Methods 

In general, acoustic and electrical techniques for PD detection are often used in power cables. 

The pros and cons of acoustic technique have been analyzed before. For its application in 

power cables, the challenge is the degradation of AE waves, which requires the placement of 

PD detectors close to the origins of PDs. It is not the case in practical PD measurements as 

PD detectors are normally placed at the terminations or joints of power cables. Based on this, 

electrical PD detection is more prevalent for power cables than acoustic one. Capacitive and 

inductive coupling sensors are the most commonly used sensors for electrical PD detection in 

power cables (see Figure 2-20) [102].  

A capacitive coupling sensor deployed in HV power cables for PD measurement is illustrated 

in Figure 2-25 [73]. A 40mm tin tape functioning as a capacitive sensor is wrapped around the 

cable at which a section of the cable metal sheath is removed. The capacitive sensor is 

attached on the top of outer semiconducting layer of the cable. The placement of the 

capacitive sensor does not impair the insulation system of the cable, since the outer 

semiconducting layer which works as power frequency ground does not disturb the internal 

field distribution of the cable [73], [104], [105]. PDs can be coupled out through a capacitive 

sensor and a resistive measuring impedance connected across the metal sheath interruption, as 

shown in Figure 2-25 [73], [106]. The use of capacitive sensors requires high frequency for 

PD detection, and thus, is qualified for short-distance detection [107]. From a practical point 

of view, it is essential to place capacitive sensors in an appropriate position. Capacitive 

sensors are good in the sense of sensitivity, but sensitivity check still needs to be performed 

by injecting calibration pulses into the system. Note that the sheath interruption can 

negatively affect the short circuit current handling ability, particularly for screen interruption 

method where a measuring impedance is connected across the interruption [73]. For on-line 

applications, the measuring impedance is required to place across an inductor or a voltage 

protection to enhance the short circuit current handling ability [73]. Based on this, the use of 
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capacitive sensors is not non-invasive to the cables. Also, the cable under test needs to be 

removed from service for the placement of capacitive sensors. Thus, awareness of the 

application of capacitive sensors for on-line PD measurement in power cables should be 

raised.  
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Figure 2-25 Diagram of a capacitive sensor [73] 

 

A high frequency current transformer (HFCT) sensor, also called radio frequency current 

transducer (RFCT), consists of an induction coil with a ferromagnetic and split core. HFCT 

sensors are often clamped around the cable earth wire or the shielded cable itself to detect PD 

signal, as shown in Figure 2-26 [108]. When a PD occurs in a cable, HFCT sensors can pick 

up the PD-induced current that flows through the metallic sheath or earth wire of the cable. In 

turn, an induced voltage can be measured over the input impedance of the HFCTs. The use of 

HFCT sensors for on-line PD measurement does not require the galvanic connection with the 

MV or HV conductors. As a result, HFCT sensors can be placed safely around the cable for 

on-line PD detection without the interruption of power supply or disconnection from power 

network [101], [106]. To comply with the requirements of sensitivity for sensor options, a 

wideband frequency response (in the range from 200kHz up to 30MHz) of HFCT sensors is 

recommended for their applications in on-line PD measurement systems [109]. This 

frequency response means that HFCT sensors have the ability to detect low-frequency PD 

signals that propagate certain distance along the cable. HFCT sensors have a measurement 

range of up to 5km in XLPE cables and approximately 2.5km in paper insulated lead covered 

(PILC) cables [102]. The reason for this discrepancy in measurement distance between XLPE 
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and PILC cables is signal attenuation in mass-impregnated PILC cables is higher than that in 

XLPE cables [110]. Due to relatively high sensitivity, wide frequency response, and simple 

placement, HFCT sensors are prevalent in the applications for on-line PD detection in MV 

and HV cables [33]. 

 

 

Figure 2-26 HFCT sensors attached to a 3 core 11kV cable, A: Cable with metallic sheath brought back 

through, B: Cable sheath connection to ground [108] 

 

Rogowski coil is another type of inductive sensors applied for PD detection in power cables. 

Figure 2-27 depicts a schematic diagram of a Rogowski coil [111]. Due to relatively small 

inductance, the Rogowski coil can be used to measure the transient current of pulses with 

considerably short time duration in the order of nanoseconds [111]. These air-cored, inductive 

sensors do not have a problem like a ferromagnetic-core sensor that material saturation occurs 

under heavy load currents [102]. However, Rogowski coils have very low sensitivity and 

narrow bandwidth in the detection of PD signal as compared to capacitive and HFCT sensors 

[102], [112]. It indicates that only PD signals with large magnitudes that occur in the cable 

can be detected by the use of the Rogowski coil.  

Apart from the sensors introduced above, coaxial cable sensors [113], [114] and directional 

coupling sensors [115]–[117] are also deployed as PD sensors for PD detection in power 

cables. 
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Figure 2-27 A schematic diagram of the Rogowski coil as a current sensor [111] 

 

2.8 Challenges in PD Measurement for Power Cables 

As shown in Figure 1-1, challenges, including signal attenuation, noise, PD sensor placement 

and location, are still existing for on-line PD measurement in power cables. In relation to the 

research objectives in this thesis, noise will be widely discussed in this section.  

Noise is considered the major challenge for the extraction of PD signals that take place in 

power cables while in service. A PD signal is generally very small, while environmental noise 

under field conditions can be very large [34]. As a result, PD signals, particularly for those 

with small magnitude, can be overwhelmed by noise in on-line measurement. This imposes 

difficulty on the decision makers of power utilities as wrong decisions can be made based on 

the evaluation of insulation degradation through on-line PD measurement under this condition. 

To improve the detection sensitivity of on-line PD measurement, numerous signal processing 

techniques have been investigated to mitigate the effect of noise on PD signals. All such 

techniques are based on either the knowledge of the characteristics of PD signals or the nature 

of noise.   

In general, noise that contaminates PD signals through on-line PD measurement can be 

broadly categorized as follows based on its nature [12], [23], [118]–[123].  

1. Discrete spectral interference (DSI), also termed radio frequency interference (RFI), 

which mainly comes from communication and radio transmissions. 

2. Pulse-type noise, including repetitive pulses that result from power electronics and 

random pulses that originate from switching operations or lighting or external discharges 

of HV apparatus. 
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3. White noise, sources of which can be ambient noise, amplifier noise, and thermal noise 

generated by the detection system.  

2.8.1  Discrete Frequency Interferences 

As mentioned above, DSI mainly comes from communication and radio transmissions. It is a 

narrow-band noise and has a sinusoidal nature. In reality, radio transmissions include 

amplitude modulation (AM) radio and frequency modulation (FM) radio, the frequency bands 

of which are 144-30000kHz and 880-108MHz, respectively. Mobile communication signals 

have frequency bands 890-1880MHz. With the sampling rate of tens of megahertz, the effect 

of FM and mobile communication signals on PD measurement are considered to be limited 

and only AM radio signals are considered the source of DSI for PD measurement [119], [124]. 

Generally, medium waves with the band of 530-1700kHz are the frequently used AM radio 

signals for commercial broadcasting. Based on this, DSI can be simulated by a combination 

of a series of amplitude modulated signals using the following formula [119], 

𝑑𝑠𝑖(𝑡) =∑(𝑐 +𝑚 ∙ 𝑠𝑖𝑛(2𝜋𝑓𝑚𝑡)) ∙ 𝑠𝑖𝑛(2𝜋𝑓𝑖𝑡)

5

𝑖=1

 (2-9) 

where 𝑐 is the amplitude of the carrier wave, 𝑚 is the amplitude of modulating signal, 𝑓𝑚 

is the frequency of modulating signal, 𝑓𝑖 is the frequency of the carrier wave. Figure 2-28 

and Figure 2-29 illustrate a simulated DSI with 2048 sampling points in MATLAB using (2-9) 

and its spectrum, respectively. It is obvious in Figure 2-29 that the spectrum of DSI is 

centered around dominant frequencies. The sampling rate is in accord with that used in PD 

signal simulation in Figure 2-19. The values for the parameters in (2-9) are listed in Table 2-2 

[119].   
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Figure 2-28 Simulated DSI with 2048 sampling points 

 

 

Figure 2-29 Spectrum of DSI 

 

Table 2-2 Parameters used in (2-9) for DSI simulation 

Parameters 𝑐 𝑚 𝑓𝑚 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 

Values 1 0.4 1kHz 600kHz 800kHz  1000kHz  1200kHz  1400kHz  

 

2.8.2  Pulse-type Noise 

Pulse-type noise, especially random pulse-type noise, is one of the most common 

interferences and causes significant problems for on-line PD measurement, since they have 

many characteristics that are quite similar to PD signals both in time and frequency domain. 

As aforementioned, switching operation is one of the main source of pulse-type noise, which 

is shown in Figure 2-30 [125]. The pulse-type noise shown in Figure 2-30 is detected from 
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on-site measurement conducted in [125]. From the shape of this noise caused by switching 

operations, it shows similarity with PD signals, and DOP-type PD signals (see Figure 2-19 (b)) 

in particular. Due to this similarity, this pulse-type noise could remain even if denoising 

strategy has been applied to the original noisy PD signals. As a result, it could be 

misinterpreted as PD signals occurred in the cable under monitoring, reducing the credibility 

of PD diagnostics. To minimize the negative effect of pulse-type noise, advanced techniques 

have to be adopted to extract PD signals. It is necessary to mention that this noise source in 

PD measurement is not covered in this thesis.  

 

 

Figure 2-30 Typical pulse shape from local switchgear events [125]. 

 

2.8.3  White Noise 

White noise, stemming from ambient noise, amplifier noise, or thermal noise from detection 

systems, is simply formed by random number with zero mean and varied standard deviation. 

Based on this, it can be simulated by a Gaussian model in MATLAB [12]. Figure 2-31 and 

Figure 2-32 delineate white noise (2048 sampling points) simulated at the sampling rate equal 

to 60MHz and its spectrum, respectively. Figure 2-32 demonstrates that the spectrum of white 

noise spreads over all the frequency domain. Figure 2-33 shows the Gaussianity of white 
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noise. This unique characteristic has been investigated to separate PD signals from white 

noise, which will be discussed later in this thesis.     

 

 

Figure 2-31 Simulated white noise with 2048 sampling points 

 

 

 

Figure 2-32 Spectrum of white noise 
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Figure 2-33 Gaussianity of white noise 

 

As discussed above, these three types of noise are the primary sources that negatively affect 

the sensitivity of PD detection in power cables. The differences between noise and PD signals 

in both frequency and time domain can be investigated to develop related denoising strategies 

for the suppression of different noise. Also, the unique statistical characteristics of PD signals 

or noise, e.g., Gaussianity, can be integrated into signal processing techniques, and thus, PD 

signals can be effectively extracted. Details regarding these techniques will be explicated in 

Chapter 3.  

2.9  Conclusion 

In this chapter, PD as a very common phenomenon that occurs in high voltage electrical 

apparatus has been introduced through its definition and the forms of which they express in 

practice. To have a better understanding of PD phenomena, the underlying mechanism has 

been explained with details using a development of cavity-induced PD in dielectrics. It is 

necessary to know that the occurrence of PD requires the minimum breakdown strength or 

voltage as well as an initiating free electron. The emergence of this ‘first’ electron is a 
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stochastic process, which leads to different characteristics of PDs, e.g., magnitude and phase. 

For a 50Hz AC voltage, the change of voltage polarity every 10ms results in the recurrence of 

PD. Characteristics, including rise time of PD pulse, PD magnitude and phase, and PD 

repetition rate, have been presented with details as they play a significant role in PD detection, 

location, and pattern recognition. In relation to the research objectives of this thesis, power 

cable theory has been introduced through a general structure of power cables. It has been 

accepted that PD can cause progressive deterioration of insulation systems of electrical 

apparatus, and thus, it is of tremendous importance to deploy PD detectors to couple out PD 

signals from electrical apparatus. Past decades have seen the development of various 

detection methods based on the phenomena generated by PDs, such as light, sound, chemical 

reactions, and electrical impulses. Each of them has its own strengths and weaknesses for 

practical applications. In power cables, two general approaches, e.g., off-line and on-line 

measurement, have been discussed. Based on practical concerns, capacitive and inductive PD 

sensors have been analyzed for their applications in PD detection in power cables. It is an 

unavoidable problem that PD measurement is most often accompanied with noise. Noise can 

reduce the credibility of PD measurement as a diagnostic tool, particularly for on-line PD 

measurement. As such, the types of noise, including discrete spectral interferences, pulse-type 

noise, and white noise, that can contaminate PD signals in PD measurement have been 

discussed. The differences between noise and PD signals in both time and frequency domain 

can be investigated, and thus, the sensitivity of PD detection can benefit from the 

development of related signal processing techniques based on these differences. Also, 

exclusive statistical characteristics of PD signals or noise can be integrated into denoising 

techniques to effectively separate PD signals from noise. It is worth noticing that the 

simulated PD signals are ideal signals used in investigations as the attenuation of PD signals 

during its propagation in real situations are not taken into account. The differences 

aforementioned in statistical characteristics between PD signals and noise requires further 

investigations through real PD signals for demonstration. As a result, both simulated PD 

signals and real PD signals will be applied for this investigation in this thesis.  
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3  Partial Discharge Denoising 

3.1  Introduction 

A signal is defined as a function that conveys information regarding the state, the 

characteristics, the composition, and to name a few [30]. In other words, a signal is a means to 

convey information. Based on this, noise can be defined as a signal that conveys unwanted 

information. Noise is a very common phenomena that frequently takes place in the real world, 

interfering with the communication, measurement, or processing of an information-bearing 

signal. Figure 3-1 illustrates a general process of the development of a noisy signal in practice. 

It is inevitable for a signal of interest to suffer distortion during its transmission from its 

origin to a signal receiver or detector. Meanwhile, noise from surrounding environment is 

added to the distorted signal during its propagation. At the signal receiver or detector, the 

signal is further corrupted by the internal noise generated in the receiver or detector. The 

combination of the signal of interest and various types of noise ultimately presents as a noisy 

signal at the output of the signal receiver or detector. Numerous signal processing techniques, 

such as model-based and non-parametric signal processing, have been developed to recover a 

signal of interest from its associated noisy signal.  

 

 Distortion

Noise

Signal Noisy signal

 

Figure 3-1 Illustration of a general process of the formation of a noisy signal 

 

In relation to PD measurement in power cables, PD signals are normally attenuated or 

distorted due to the dielectric loss or the semi-conducting layer [8]. Environmental noise, i.e., 

discrete spectral interference (DSI), pulse-type noise, and white noise, can be coupled out 

with distorted PD signals by PD detectors. The magnitude of PD signals is generally very 

small in pC range [126]. The sensitivity of PD detection is therefore significantly reduced due 
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to noise. To increase the sensitivity, digital filters, matched filters, wavelet transform, and 

empirical mode decomposition are the frequently used signal processing techniques to 

suppress noise that affects PD measurement in past decades. It is necessary to mention that 

none of the aforementioned techniques is an omnipotent technique that can suppress all the 

types of noise.  

To have a better understanding of these techniques, details regarding their investigations in 

PD denoising will be presented in the following subsections. Section 3.2 introduces digital 

filters with their applications and limits in PD measurement. Matched filters are presented in 

Section 3.3, which require the prior knowledge of PD waveforms. The effectiveness is highly 

dependent on the match of PD waveform and filter impulse response. Wavelet-based 

technique, the most prevalent method applied in the field of PD measurement, is discussed in 

Section 3.4. The advances of wavelet transform in PD denoising are presented as compared to 

traditional signal processing techniques, such as Fourier Transform (FT) and Short-time FT 

(STFT). Although wavelet-based denoising has been frequently used, it is often criticized for 

its non-adaptivity in the use of predefined mother wavelets. As such, Section 3.5 introduces 

an adaptive and data driven signal decomposition method, called empirical mode 

decomposition (EMD), and its associated denoising technique. Section 3.6 summarizes the 

application of all these techniques in PD measurement.  

3.2  Digital Filters 

Digital filtering is a very mature technique and has been widely applied in the fields, e.g., 

communication, speech enhancement, radar, and to name a few. As a result, a variety of 

structures and algorithms are available to design and realize digital filters. In relation to PD 

measurement, the spectral characteristics of periodic interferences, e.g., DSI, and PD signals 

are very different. DSI has a narrow-band spectrum while PD signals have a broad-band 

spectrum. Based on this difference, digital filters are primarily designed to reject DSI [118]. A 

filtering algorithm based on Fast Fourier Transform (FFT) was first proposed in [127] to 

reduce DSI in PD measurement in 1988. Nagesh and Gururaj [118] fully investigated the 

feasibility of digital filters and introduced a new digital filtering method based on a cascaded 
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2nd order infinite impulse response (IIR) lattice notch filter for rejection of DSI in 1993. Du 

[124] proposed an alternative technique using an adaptive notch filter to suppress DSI in 1994. 

Kopf and Feser [16] designed a digital finite impulse response (FIR) filter with a fixed order 

to reject DSI in 1995. Differences can be seen from these digital filtering applications, but the 

basic principle remains the same, i.e., a configurable digital filter is used as a multi-stopband 

filter to reduce the effect of DSI on PD detection, and thus, increase the signal to noise ratio 

of the measurement [16]. For a digital filter, it can be configured adaptively or non-adaptively. 

In a non-adaptive configuration, the filter coefficients of the digital filter are fixed regardless 

of the input signal. In contrast, the filter coefficients of an adaptive filter can automatically 

update based on the input data to reduce DSI. It is obvious that manual intervention is 

required for non-adaptive digital filters when the frequency ranges of periodic interferences 

change [15]. However, this is not the case for adaptive digital filters. Structure of a digital 

filter with an adaptive configuration is illustrated in Figure 3-2 [30]. In this system, 𝑦(𝑛) is 

the input noisy signal, 𝑠(𝑛) is the measured noise and processed by an adaptive digital filter 

to make it equal to the noise that residences in 𝑦(𝑛). The estimated noise �̂�(𝑛) is subtracted 

from 𝑦(𝑛) to cancel out the noise. 
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Figure 3-2 Configuration of an adaptive digital filter [30] 

 

In digital filtering techniques, filters transform a detected PD signal from its time domain to 

frequency domain using FFT. In the frequency domain, the frequency ranges of DSI are set to 

zero, thus rejecting the DSI from the noisy signal. This denoising technique is based on the 
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knowledge of the signal bandwidth of PD signals and DSI. The application of digital filters is 

applicable to suppress narrow-band noise, but not suitable for the rejection of noise that has 

broad-band frequency as PD signals, e.g., pulse-type noise and white noise. Also, the 

involvement of FFT in signal transformation is one of the main reasons for the ineffectiveness 

of digital filtering techniques. It is known that FFT analyzes the signal in an infinite interval 

using trigonometric functions for signal decomposition. As a result, localized information 

(time instant) of the frequency components cannot be obtained through FFT (Further details 

regarding the drawbacks of Fourier Transformation in PD denoising will be introduced in 

Section 3.4). PD signals generally are transient, irregular, and non-periodic. A number of 

important pieces of information carried by PD signals cannot be unveiled by FFT. Based on 

this, the application of digital filters is limited for on-site PD measurement.  

3.3  Matched Filters 

The concept of Matched filter was first introduced in the 1940s for the use in radar detection. 

Matched Filters have become a standard technique for signal detection in the presence of 

noise [17]. For the application of Matched filters in the area of PD signal extraction, it was 

initially investigated in [87] and further discussed in [128].  

Matched filters are a basic signal-processing tool for the extraction of a known waveform 

from a signal that has been interfered by noises. Figure 3-3 uses a typical digital filter as an 

example to explain the underlying principle of matched filters. Provided that 𝑠(𝑡) is the 

input signal and 𝑛(𝑡) is the noise that contaminates 𝑠(𝑡), the filter ℎ(𝑡) that maximizes the 

signal-to-noise ratio (SNR) of the output signal 𝑦(𝑡) at sample time 𝑇𝑠 is given by the filter 

ℎ(𝑡) = 𝑠(𝑇𝑠 − 𝑡). It becomes clear by recognizing that filtering a waveform, which is referred 

to as 𝑠(𝑡) in Figure 3-3, is equivalent to calculating the cross correlation of the waveform 

and the reversed and time delayed filter impulse response [17]. If the reversed and time 

delayed impulse response equals the waveform itself (as shown in Figure 3-4), which is the 

case for a matched filter, then the filter output signal equals the autocorrelation function of the 

waveform. Details regarding the proof for the required filter response of a matched filter can 

be seen in [129].  
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Figure 3-3 Basic filter 

 

(a) (b)
 

Figure 3-4 (a) Waveform of transmitted signal (b) The required filter impulse response of a matched 

filter 

 

In [17], a semi-automated PD detection method was proposed using matched filter banks, 

which is shown in Figure 3-5. A range of matched filters with different impulse responses was 

employed in this matched filter banks. This configuration aims to improve the accuracy of the 

application of matched filters in PD denoising. The variation of impulse responses of matched 

filters is dependent on the PD pulse shapes, which can be derived from a PD pulse 

propagation model based on power cables. In this model, pulse width of PD waveform, 

frequency dependent dispersion, and phase response of detection circuit are taken into 

account. Wagenaars et al. [18] in 2011 proposed an adaptive algorithm to update the impulse 

responses of existing matched filters based on the detected PD pulses. Although this method 

introduced a new template for matched filter banks, adaptive process still depends on the 

initial PD pulse propagation model. It needs to be aware that the PD pulse propagation model 

mentioned above varies with the transmission parameters of power cables.   

In theory, perfect match between the desired PD pulse shape and the matched filter can 

produce maximum effect. However, factors, e.g., variation in the PD pulse shapes due to 

dispersion and attenuation, can reduce the effectiveness of matched filters for their 
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applications in on-site PD measurement [130]. 
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Figure 3-5 Example of a partial discharge matched filter bank [17] 

 

3.4  Wavelet-based Technique 

Signal representation plays a critical role in signal processing. A good signal representation is 

desirable as it is beneficial for a series of signal processing procedures, such as analysis, noise 

filtering, and compression [131]. Most of the signals are generally time-domain signals in 

practice. The underlying idea of signal representation is certain aspect of a signal that is not 

readily available in its time domain can be highlighted, and thus, the information of interest 

carried by this signal can be easily obtained. Fourier transform (FT), as mentioned before, is 

such a representation that frequency information of time-domain signals can be represented 

through it. To represent local characters of frequency information, FT is applied to windowed 

signals. This is referred to as Short Time Fourier Transform (STFT). Although STFT is the 

first approach that can simultaneously represent the time and frequency information of a 

signal, the time resolution is determined by the length of the window. In recent decades, the 

prevalence of wavelet transform reveals that it is a more robust technique that can 

simultaneously represent the time and frequency information of a signal than STFT. Based on 
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this, it is necessary to have a brief introduction of FT and STFT before wavelet transform.  

3.4.1  Fourier Transform (FT) 

The history of FT can date back to early 19th century, a French mathematician J. Fourier 

discovered that a periodic function can be represented as an infinite sum of sine and cosine 

functions [20], [132]. This discovery has been expanded to non-periodic functions, periodic 

discrete and non-periodic discrete functions many years later. In 1965, the invention of a new 

algorithm called Fast Fourier Transform (FFT) broadened the popularity of FT as a tool in 

signal processing.  

As mentioned before, a signal can be decomposed by FT through a series of sine and cosine 

functions at an infinite interval. Given a time-domain signal 𝑥(𝑡) , its frequency 

representation 𝑋(𝑤) through FT can be calculated based on the following equation, 

𝑋(𝑤) = ∫ 𝑥(𝑡) ∙ 𝑒−𝑗𝜔𝑡
∞

−∞

𝑑𝑡 (3-1) 

Equally, if ( )X w  is known, an inverse FT can be applied to obtain ( )x t  using the equation 

below, 

𝑥(𝑡) = ∫ 𝑋(𝑤) ∙ 𝑒𝑗𝜔𝑡
∞

−∞

𝑑𝑤 (3-2) 

The definition of FT in (3-1) further indicates that the transformation is implemented through 

an infinite time interval. The time information of any frequency component in 𝑋(𝑤) is not 

available. In other words, no matter a frequency component occurs in any time instant 𝑡1 or 

𝑡2, it has the same effect on 𝑋(𝑤). It is the reason that FT is not suitable for the analysis of 

signals that have time varying frequency. Figure 3-6 delineates the frequency representations 

of two different time-domain signals. It can be seen that difference between (a) and (c) in the 

time domain has no effect on their frequency representations in (b) and (d). A few oscillations 

around the frequency components in (d) is due to the sudden change between frequencies. 

Based on this, only frequency information of a signal can be easily obtained through FT. If 

concerns of the local characters of frequency components raised, i.e., requirement of a 

time-frequency representation of a signal, FT is not a suitable tool for signal representation.  
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Figure 3-6 (a) A time-domain signal with the summation of a 5Hz and 20Hz sine waves, (c) A 

time-varying signal, (b) and (d) are the frequency representations of (a) and (c), respectively 

 

3.4.2  Short-Time Fourier Transform (STFT) 

STFT, introduced by Dennis Gabor in 1940s, is a revised version of FT with a minor 

difference. However, this difference in STFT enables it to represent a signal in both time and 

frequency domain. In STFT, a time-domain signal 𝑥(𝑡) is portioned into many small enough 

segments such that these segments can be assumed stationary [20], [133]. A fixed window 

function is adopted for this purpose and its width is required to be equal to the signal 

segments where its stationarity is valid. The window function is applied to the beginning of 

the signal 𝑥(𝑡), and then shifted to the end of 𝑥(𝑡) with equal intervals. Figure 3-7 

illustrates the procedures of the involvement of a window function in STFT. As assumed to be 

stationary, FT can be applied to these windowed signals to obtain their frequency information. 

The result of STFT of the signal 𝑥(𝑡) can be calculated by the given expression as follows, 

𝑆𝑇𝐹𝑇𝑓(𝜏, 𝑤) = ∫ 𝑥(𝑡) ∙ 𝑤∗
∞

−∞

(𝑡 − 𝜏) ∙ 𝑒−𝑗𝑤𝑡𝑑𝑡 (3-3) 
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Figure 3-7 Illustration of the application of a window function in STFT 

 

(3-3) indicates that STFT of 𝑥(𝑡) is a measure of similarities between the signal and the 

selected window function, and decomposes the signal into a set of frequency bands at any 

given time as well, e.g., 𝑡1 in Figure 3-7. STFT thus can represent a signal simultaneously in 

time and frequency domain.  

Although STFT can map a signal in the time-frequency plane, it has its inherent resolution 

problem due to the Heisenberg Uncertainty Principle [134]–[136]. That is, it is impossible to 

obtain precise localization in both time and frequency domain. In STFT, time and frequency 

resolution are dictated by the width of the selected window. With a pre-defined window width, 

the STFT gives a fixed resolution in both time and frequency over the entire period of signal 

analysis. Narrow windows can improve time resolution at the cost of frequency resolution, 

while wide windows can improve frequency resolution at the cost of time resolution. For 

aperiodic and transient signals, they cannot be easily characterized by the STFT using 

continuous, periodic basis functions [22]. 

3.4.3  Wavelet Transform 

3.4.3.1  Wavelet Theory 

Wavelet transform (WT), as its name implies, is a wavelet-based expansion or decomposition of 

signals. It is developed as an alternative to STFT for the analysis of non-stationary features of a 

signal and hence it can map the signal in the time-scale plane. Different from Short-time Fourier 



62 

 

Transform (STFT), applies the Fourier Transform to a fixed window of a signal, the wavelet used 

in WT can be scaled to analyse the localized features of a signal at various time or frequency 

resolutions. The scaling operation of wavelet transform is visually depicted in Figure 3-8 [137].  
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Figure 3-8 The scaling and translating operation of wavelet transform. x(t) is the signal under analysis, 

𝜓0 is mother wavelet, 𝜓a,b is the daughter wavelet scaled by a and translated by b [137] 

  

The process of a wavelet-based expansion or decomposition can be explicated with the amid of 

Figure 3-8. The performance of WT is started from a selection of a prototype, or mother wavelet, 

𝜓0, which is then dilated or shrunk with an unaltered wavelet shape. At some scale, 𝜓0 is scaled 

by a and translated by b to be a daughter wavelet, 𝜓𝑎,𝑏. The relationship between 𝜓0 and 𝜓𝑎,𝑏 

can be expressed as [131] 

𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓0(

𝑡 − 𝑏

𝑎
)                (3-4) 

where 1 √𝑎⁄  is a normalized factor. The daughter wavelet 𝜓𝑎,𝑏 is then shifted along the entire 

signal 𝑥(𝑡), and correlated with 𝑥(𝑡). The procedure of such shift and correlation is iteratively 

executed through all possible scales and around each temporal translation, obtaining a matrix of 

correlation coefficients that indicate the similarity between 𝑥(𝑡) and the daughter wavelets.  

The concept of scale replaces the concept of frequency in wavelet spectral analysis. Typically, 
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scale is a duration of wavelet and for many wavelets is related to the reciprocal of frequency [137]. 

This relationship between scale and frequency can be easily seen from Figure 3-9. In Figure 3-9 

(a), b is assigned to be 0, and a is assigned to be 1, 2, and 4 respectively to obtain 3 different 

daughter wavelets based on (3-4). Note that a = 1 and b = 0 indicate that the mother wavelet is not 

scaled and translated. The corresponding FT of these daughter wavelets are illustrated in Figure 

3-9 (b). It can be seen that the central frequency of the daughter wavelets decreases with the 

increase of scale (from 1 to 4). It also demonstrates the underlying mechanism of wavelet 

transform that can give time-frequency localizations of a signal through scaling operations.  

 

 

Figure 3-9 Scale is the reverse of frequency. (a) daughter wavelets with scale a = 1,2, and 4 

respectively, and translation b = 0; (b) the resulting spectrum of these daughter wavelets in (a) 

 

Generally, wavelet transform can be achieved through the application of continuous wavelet 

transform (CWT) and discrete wavelet transform (DWT). The CWT of a signal, 𝑥(𝑡), is a linear 

operation defined as [137] 

𝑊𝑥
𝜓
(𝑎, 𝑏) = ∫ 𝑥(𝑡) ∙ 𝜓0

∗(
𝑡 − 𝑏

𝑎
)𝑑𝑡

∞

−∞

           (3-5) 

where 𝑊𝑥
𝜓
(𝑎, 𝑏) is the matrix of correlation values (wavelet coefficients) and asterisk (*) 
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denotes the conjugate of the scaled and translated mother wavelet. The CWT of a signal, as 

mentioned above, calculates the wavelet coefficients at all possible scales and around each 

temporal translation. This fully calculation using CWT, however, can lead to a remarkable 

redundancy in signal representation. It is desirable that wavelet-based techniques applied for 

signal compression and denoising can provide the economy in signal representation [137]. With 

the employment of orthogonal basis functions, DWT is introduced to reduce the redundancy in 

signal representation and enable the possibility of perfect signal reconstruction using inverse DWT 

(IDWT). In DWT, scale a and translation b are replaced by 2−𝑗  and 2−𝑗 ∙ 𝑖  respectively. 

Substituting these new parameters into (3-4) and (3-5) yields 

𝜓𝑗,𝑖(𝑡) = 2
𝑗 2⁄ 𝜓0(2

𝑗 ∙ 𝑡 − 𝑖)                 (3-6) 

𝑥(𝑡) =∑∑𝑊𝑗,𝑖
𝑗𝑖

∙ 𝜓𝑗,𝑖(𝑡)                 (3-7) 

Note that (3-7) is actually the definition of IDWT, {𝑊𝑗,𝑖} is the matrix of correlation values, 

which is also called the DWT of 𝑥(𝑡). j and i in (3-6) and (3-7) denote the scale index and the 

translation index respectively. The wavelet 𝜓0 used in DWT has a stricter constraint than that 

in CWT: it should be orthogonal or biorthogonal. This constraint can guarantee the 

transformed signal 𝑥(𝑡) to be sufficiently represented by the coefficients {𝑊𝑗,𝑖} with no 

redundancy, and thus, the information embedded in {𝑊𝑗,𝑖} is adequate to reconstruct 𝑥(𝑡) 

with good accuracy [137]. Based on this, DWT is preferable in the application of signal 

denoising. 

Figure 3-10 shows the implementation of DWT in signal expansion, which is in agreement with 

the analysis above. A signal is convolved by a low-pass filter h and a high-pass filter g, followed 

by a downsampling operation by 2, generating approximation and detail coefficients, respectively. 

The downsampling operation constitutes a critical step in DWT. Generally, it is a process that 

removes the odd-numbered entries of the data set and generates a new data set with half length. 

Figure 3-11 illustrates the downsampling operation in DWT, it demonstrates that the length of the 

data set is halved repeatedly. Approximation coefficients, as the output of the low-pass filter, is 

then iteratively filtered by the low- and high-pass filters until the predefined scale J reaches. Note 

that the maximum decomposition scale 𝐽𝑚𝑎𝑥 is defined as 𝑙𝑜𝑔2𝑁, where N is the length of the 

input signal. The results of DWT, as shown in Figure 3-10, is composed of one set of 



65 

 

approximation coefficients and J -set of detail coefficients. The reconstruction of the input signal, 

i.e., inverse DWT (IDWT), is a reverse operation as shown in Figure 3-10. Instead of 

downsampling in DWT, upsampling is involved in IDWT. Figure 3-12 delineates the processes of 

IDWT for signal reconstruction. To obtain perfect signal reconstruction, the low- and high-pass 

filters are designed as quadrature mirror filters (QMFs).  

 

Input data

2

2

2

2
Low-pass filter

h

g

h

g

High-pass filter

Downsampling

Detail cfs

Approx. cfs
Low-pass filter

High-pass filter

Downsampling

Scale 1

Scale 2

 
Figure 3-10 The implementation of DWT in signal decomposition 
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Figure 3-11 Illustration of downsampling operation in DWT 
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Figure 3-12 The implementation of IDWT in signal reconstruction 
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As shown in Figure 3-9 (b), the scaled wavelet can be interpreted as band-pass filters in the 

frequency domain. WT is therefore equivalent to filtering a signal in different subbands by the 

filter pairs, e.g., the low-pass filter h and the high-pass filter g, and each subband represents the 

signal in a different resolution. Ideally, these filter pairs halve the frequency band with the increase 

of scale. Let 𝑓𝑠 be the sampling frequency of the input signal, the frequency band, 𝐺1(𝑤), of the 

output of the high-pass filter is 𝑓𝑠/4 − 𝑓𝑠/2, while the frequency band, 𝐻1(𝑤), of the output of 

the low-pass filter is 0 − 𝑓𝑠/4. For next scale, 𝐻1(𝑤) is further split into 𝐺2(𝑤) and 𝐻2(𝑤), 

which are 𝑓𝑠/8 − 𝑓𝑠/4 and 0 − 𝑓𝑠/8, respectively. The frequency band is iteratively halved in 

the subsequent decomposition in the same manner until the predefined scale reaches. For a J-scale 

DWT, the distribution of the corresponding frequency bands is shown in Figure 3-13. It can be 

seen that the frequency band of low-pass filter is 0 − 𝑓𝑠/2
𝐽+1 and the frequency band of 

high-pass filters is 𝑓𝑠/2
𝐽+1 − 𝑓𝑠/2 for a J-scale decomposition. 
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Figure 3-13 The frequency bands of filters at each decomposition scale 

 

3.4.3.2  Wavelet-based Denoising 

The wavelet-based denoising theory is dependent on the fundamental idea that the energy of a 

signal is often concentrated in only a few coefficients while the energy of noise is widely spread 

among all the coefficients in the wavelet domain [22], [138], [139]. General procedures for the 

wavelet-based denoising of a signal are as follows, 

1) Select a suitable wavelet from a pre-defined wavelet library.  

2) Apply DWT to decompose a noisy signal s with a selected wavelet to a predefined scale J, 

and obtain approximation coefficients 𝑎𝐽 at the final scale J and detail coefficients 𝑑𝑗 at 

decomposition scale j, where j = 1, 2, ..., J. 
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3) Estimate the threshold through a noise estimation technique and apply this threshold to detail 

coefficients, 𝑑𝑗, at decomposition scale j using hard or soft thresholding function. 

4) Apply IDWT to the approximation coefficients 𝑎𝐽 and the thresholded detail coefficients 𝑑𝑗
′ 

to reconstruct the denoised signal 𝑠′. 

Based on the noise estimation technique proposed in [22], [140], the scale-dependent threshold 

used in this thesis , if not specified, is estimated by 

     𝑡ℎ𝑟𝑗 =
𝑀𝐴𝐷|𝑑𝑗|

0.6745
√2log (𝑛𝑗)  (3-8) 

where 𝑀𝐴𝐷|∙| is the median absolute deviation of the detail coefficients 𝑑𝑗 at decomposition 

scale j, and 𝑛𝑗 is the length of 𝑑𝑗. It is worth mentioning that the threshold estimated by (3-8) is 

effective in the suppression of white noise, while is not effective in the reduction of pulse-type 

noise.  

For the thresholding scheme, two thresholding functions are normally applied in wavelet-based 

denoising, i.e., hard thresholding and soft thresholding. The mathematical expressions for these 

two functions are given by 

Hard thresholding: 

𝑑𝑗,𝑖
′ = {

      𝑑𝑗,𝑖            𝑖𝑓 |𝑑𝑗,𝑖| > 𝑡ℎ𝑟𝑗
 0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (3-9) 

Soft thresholding: 

𝑑𝑗,𝑖
′ = {

𝑠𝑔𝑛(𝑑𝑗,𝑖)(|𝑑𝑗,𝑖| − 𝑡ℎ𝑟𝑗)  𝑖𝑓 |𝑑𝑗,𝑖| > 𝑡ℎ𝑟𝑗

                             0               𝑖𝑓 |𝑑𝑗,𝑖| ≤ 𝑡ℎ𝑟𝑗
  (3-10) 

where 𝑖 = 1,2, … , 𝑛𝑗. 

Difference of these two thresholding functions in (3-9) and (3-10) can also be seen from Figure 

3-14. Note that soft thresholding is used in this thesis, if not specified.  
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Figure 3-14 (a) the original detail coefficients dj, (b) hard thresholding, (c) soft thresholding 

 

3.4.3.3  Issues in the Implementation of Wavelet-based Denoising 

From the analysis of wavelet theory and wavelet-based denoising, the implementation of 

wavelet-based technique in signal denoising is highly correlated to the issues, such as mother 

wavelet selection, decomposition scale determination, and noise estimations. These three 

aspects determine the effectiveness of wavelet-based denoising. During the past decades, 

numerous techniques have been proposed to optimize the application of wavelet-based 

denoising through these aspects. In relation to PD denoising, improvement of wavelet-based 

technique can be obtained through further analysis of the statistical characteristics of PD 

signals and the associated noise. As the research objectives in this thesis, the choice of mother 

wavelet, selection of an appropriate decomposition scale, and effective noise estimation will 

be fully discussed with newly proposed algorithms in Chapter 4 - 6, respectively. 

3.5  Empirical Mode Decomposition (EMD) 

3.5.1  EMD Fundamentals 

Empirical mode decomposition (EMD), introduced by Huang et al. [141] in 1998, is a 

nonlinear technique for non-stationary signal analysis and representation [141]–[143]. Since 

the emergence of EMD, it has been intensively investigated in non-stationary signal 

processing due to its major advantage for no requirements of base functions. The base 

functions of the EMD are derived from the signal itself, which is the fundamental difference 
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between WT and EMD [144]. Accordingly, EMD is known as an adaptive and fully 

data-driven method for signal decomposition. EMD is merely an algorithm without admitting 

an analytical formulation that allows for theoretical analysis and performance evaluation, 

although it has been proven remarkably effective in signal decomposition [142]. The lack of 

theoretical frame may impose difficulties on the interpretation of the transformed signals in 

some sense.  

The essence of the EMD is that any signal is assumed to have a large number of simple 

intrinsic modes of oscillation. In turn, a signal can be effectively decomposed into a series of 

intrinsic mode functions (IMFs). The IMFs are extracted through a sifting process in EMD, 

and each IMF has a distinct time scale [138], [141]. To be successfully decomposed into IMFs, 

a signal must have at least two extrema, i.e., one maximum and one minimum. For an IMF, it 

has the following properties: 1) zero mean, that is, the mean value of the envelop defined by 

the local maxima and the envelope defined by the local minima is zero, 2) all the maxima and 

all the minima will be positive and negative, respectively, which guarantees that a single 

zero-crossing point exists in any pair of two adjacent maxima and minima [139]. The upper 

and lower envelopes are produced by the use of a cubic spline interpolation to connect the 

local maxima and minima, respectively. Figure 3-15 illustrates the formation of these two 

envelopes using a cubic spline interpolation in EMD. The red dash line is the upper envelope 

and the blue dash line is the lower envelope in Figure 3-15. 

 

 

Figure 3-15 The formation of upper and lower envelopes using a cubic spline line in EMD 
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A sifting process used to extract the IMFs from a signal serves two purposes: to eliminate 

riding waves and to make the wave-profiles more symmetric [141]. The procedures of this 

process to extract an IMF is detailed as follows [98], [138], [141], [145]–[151], 

1. Locate the extrema of a signal 𝑥(𝑡), 𝑥𝑚𝑎𝑥(𝑡) and 𝑥𝑚𝑖𝑛(𝑡)  (red and blue dots in 

Figure 3-15), 

2. Apply a cubic spline interpolation to produce the upper and lower envelopes, 

𝑒𝑚𝑎𝑥(𝑡) and 𝑒𝑚𝑖𝑛(𝑡) (red and blue dash line in Figure 3-15), 

3. Calculate the mean of the two envelopes, 𝑚1 = (𝑒𝑚𝑎𝑥(𝑡) + 𝑒𝑚𝑖𝑛(𝑡))/2 (black dash 

line in Figure 3-15), 

4. Subtract the mean from the original signal 𝑥(𝑡) to obtain the first potential IMF, 

ℎ1 = 𝑥(𝑡) − 𝑚1, 

5. Check if ℎ1 is zero-mean signal with the number of maxima and minima differing at 

most by one, if yes, ℎ1 is remained as the first IMF, 

6. Repeat the process by replacing 𝑥(𝑡) with ℎ1, if it is not the case in step 5 

7. A stopping criterion for the sifting process to extract an IMF is used to guarantee that 

the IMF components retain enough physical sense of both amplitude and frequency 

modulation. The standard deviation (SD) of the signal, calculated by the following 

equation (3-11), is often used as the stopping criteria. The sifting process stops when 

the SD reaches 0.2, 

𝑆𝐷 = ∑(
|ℎ𝑘−1(𝑡) − ℎ𝑘(𝑡)|

2

ℎ𝑘−1
2 (𝑡)

)

𝑇

𝑡=0

  (3-11) 

8. When the stopping criterion is satisfied, the remaining component of the signal is 

known as the residual. For residual, it is used to extract IMFs from the original signal 

repeatedly. This extraction of IMFs will not stop until the residual 𝑟𝑛 in equation 

(3-12) is less than a predetermined small value or the residual 𝑟𝑛  becomes a 

monotonic function from which no more IMF can be extracted. The signal can then 

be expressed in equation (3-12) after n iterations. 

𝑥(𝑡) =  ∑ ℎ𝑘(𝑡) + 𝑟𝑛(𝑡)

𝑛

𝑘=1

    (3-12) 
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Figure 3-16 is the flow chart that can clearly illustrate the procedures of the sifting process 

used to extract an IMF from an arbitrary signal [98], [143]. The objective of the EMD is to 

use these procedures in the original signal to extract the first IMF and then to iterate on the 

residual components of the signal to extract more IMFs. It allows the identification of various 

oscillatory modes within the signal [143]. An example of EMD applied to a noisy signal is 

delineated in Figure 3-17. As discussed above, the signal with 2048 sampling points is 

decomposed into 9 IMFs and the residual.  
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Figure 3-16 Flow chart of the sifting process in the EMD 
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Figure 3-17 EMD of a noisy signal with 2048 sampling points 

 

3.5.2  EMD-based Denoising 

3.5.2.1  EMD Traditional Denoising 

EMD-based denoising was initially investigated to understand if a specific IMF extracted 

from a signal contained useful information or was primarily noise [139]. Flandrin et al. [152] 

and Wu et al. [153] developed the significance IMF test procedures using a signal 

contaminated only by fractional Gaussian noise and white Gaussian noise, respectively. It is 

necessary to mention that fractional Gaussian noise in discrete time corresponds to a time 

series {𝑦𝐻[𝑛], 𝑛 = ⋯ ,−1,0,1, … } indexed by a real-valued parameter 0 < 𝐻 < 1, where 𝐻 

refers to Hurst exponent of this time series [152]. It is known that white noise is the special 

case of this time series when 𝐻 = 1/2 [152]. The significance test procedure is proposed 

based on the statistical analysis of modes resulting from the decomposition of these noisy 
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signals [139]. In both investigations, noise that interferes the signal of interest is known, i.e., 

fractional Gaussian noise or white Gaussian noise, and thus, the energy of the IMFs extracted 

from noise-only signals can be obtained through EMD. Equally, the EMD can be performed 

on the noisy signal to obtain the energy of its IMFs. Comparison of the IMF energy between 

the noise and the associated noisy signal can indicate the presence of useful information [139]. 

In a denoising scenario, the signal of interest can be reconstructed by the IMFs that only carry 

useful information and those IMFs that contain primarily noise are discarded. To differentiate 

from other EMD-based denoising methods, this method discussed above is termed EMD 

traditional denoising (EMD-TR), i.e., IMFs dominated by noise are set to zeros. In short, 

EMD-TR is mainly based on a noise model such that the difference of energy distribution of 

each IMF of the noise and the associated noisy signal can be highlighted. Figure 3-18 shows 

this difference based on a signal only corrupted by white noise. The original noisy signal and 

the noise only are shown on the top-right in Figure 3-18, along with their energy distributions 

of IMFs. It can be seen that the energy of IMFs differs from the 5th IMF, which indicates that 

noise is mainly carried by IMF1-4 and useful information of the signal is primarily 

concentrated on IMF5-10. The noise-only signal is generally not the case in the real world for 

the application of EMD. As such, the finding of the mode boundary that can distinguish if the 

IMFs carry signal information or not becomes difficult. As one of the research objectives in 

this thesis, this will be discussed with a novel method for relative mode selection (RMS) in 

Chapter 8.  
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Figure 3-18 Energy distribution of IMFs from white noise and a signal corrupted by white noise 

(top-right: original noisy signal and noise only) 

 

3.5.2.2  EMD Direct Thresholding 

Signal reconstruction using direct summation of the IMFs that contain signal information in 

EMD-TR is not strictly true, since noise and signal of interest are generally mixed within each 

IMF. An alternative EMD-based denoising method was inspired by noise estimation 

techniques adopted in wavelet-based denoising. A noise threshold is estimated using (3-13) 

and then directly applied to each IMF through soft or hard thresholding function (see (3-15) 

and (3-16)) in [144], [154], [155].  

𝑡ℎ𝑟𝑗 =
𝑀𝐴𝐷|ℎ𝑗|

0.6745
∙ √2𝑙𝑜𝑔𝑛 (3-13) 

𝜎𝑗 =
𝑀𝐴𝐷|ℎ𝑗|

0.6745
 (3-14) 

where ℎ𝑗  denotes the 𝑗𝑡ℎ  IMF, n denotes the length of original signal, and 𝜎𝑗  is the 

estimation of noise level of the 𝑗𝑡ℎ IMF. 

Hard thresholding is defined by 
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ℎ𝑗
′ = {

      ℎ𝑗(𝑖)            𝑖𝑓 | ℎ𝑗(𝑖)| > 𝑡ℎ𝑟𝑗
 0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (3-15) 

Soft thresholding is given by 

ℎ𝑗
′ = {

𝑠𝑔𝑛(ℎ𝑗(𝑖))(|ℎ𝑗(𝑖)| − 𝑡ℎ𝑟𝑗)    𝑖𝑓 |ℎ𝑗(𝑖)| > 𝑡ℎ𝑟𝑗

                             0                      𝑖𝑓 |ℎ𝑗(𝑖)| ≤ 𝑡ℎ𝑟𝑗
  (3-16) 

where 𝑖 denotes the 𝑖𝑡ℎ element in the 𝑗𝑡ℎ IMF, and 1,2,...,i n= .    

This alternative method is termed EMD direct thresholding (EMD-DT) in this thesis. 

However, the direct application of wavelet-like thresholding to IMFs can cause discontinuity 

in the reconstructed signals. Figure 3-19 illustrates this unwanted result of EMD-DT. The 

drawback of EMD-DT is obviously shown in Figure 3-19 (d), i.e., the reconstructed signal 

suffers severe signal discontinuity. In Figure 3-19 (c), it is the denoising results of EMD-TR, 

which is in agreement with the statement above that noise is remained in the reconstructed 

signal and can be seen through the oscillations at both sides of the main pulse.  

 

 

Figure 3-19 EMD-based denoising results, (a) original signal, (b) noisy signal, (c) EMD-TR, (d) 

EMD-DT 
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3.5.2.3 EMD Interval Thresholding 

To overcome the drawback of EMD-TR, an improved method, termed EMD interval 

thresholding (EMD-IT), was proposed in [139]. This interval thresholding was developed 

based on the characteristics of an IMF, i.e., zero mean and the number difference between 

zero-crossings and extrema must be zero or at most by one. The definition of EMD-IT is that 

if the absolute value of an extrema is higher than the threshold, the part of an IMF between its 

two adjacent zero-crossings will remain, or this part will be discarded. The understanding of 

the definition of EMD-IT can benefit from Figure 3-20, which illustrates an IMF with 

highlighted maxima (red dots), minima (blue dots), and zero-crossings (black dots). The 

zero-crossings positioned at the time instances 𝑧𝑖−1 and 𝑧𝑖, maxima positioned at the time 

instance 𝑚𝑖, and minima positioned at the time instance 𝑛𝑖 are marked as well. Given that 

this IMF is ℎ𝑗(𝑡), the part of ℎ𝑗(𝑡) from ℎ𝑗(𝑧𝑖−1) to ℎ𝑗(𝑧𝑖) (red circle in Figure 3-20) will 

be remained if |ℎ𝑗(𝑚𝑖)| is higher than the threshold, or this part will be discarded if 

|ℎ𝑗(𝑚𝑖)| is less than the threshold. Similar as wavelet thresholding and EMD-DT, the IMFs 

can be thresholded through hard or soft thresholding functions. It is worth noting the 

thresholding functions mentioned here are slightly different from (3-15) and (3-16). The 

thresholding functions used in EMD-IT are given by equation (12) and (13) in [139]. 

Difference between EMD-DT and EMD-IT can be seen from the results of the thresholded 

IMF in Figure 3-21, where the threshold is set to 0.05 and hard thresholding function is 

applied. Figure 3-21 (a) illustrates the thresholded IMF using EMD-DT and EMD-IT. Figure 

3-21 (b) - (d) focus on the extrema of the IMF higher than the threshold and show the 

difference of the application of thresholding on the IMF between EMD-DT and EMD-IT. The 

results clearly show that the discontinuity in thresholded IMF caused by EMD-DT is not the 

case in EMD-IT. The noisy signal, as shown in Figure 3-19 (b), is still used as an example to 

compare the denoising results among EMD-TR, EMD-DT, and EMD-IT. Results are 

illustrated in Figure 3-22. From the direct observation in Figure 3-22, EMD-IT can obtain a 

smoother denoised signal than the others. 
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Figure 3-20 An IMF with highlighted maxima, minima, and zero-crossings 

 

 

Figure 3-21  (a) Difference between EMD-DT and EMD-IT, (b) – (d) Separation of dash-square area 

in (a) to highlight the difference 
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Figure 3-22 EMD-based denoising results, (a) original signal, (b) noisy signal, (c) EMD-TR, (d) 

EMD-DT, (e) EMD-IT 

 

3.6  Conclusion 

This chapter reviewed the strengths and weaknesses of the most commonly used denoising 

techniques, i.e., digital filters, matched filters, wavelet-based denoising, and EMD-based 

denoising, in PD denoising. Digital filters are more suitable for noise that has a major 

difference with PD signals in frequency domain. Matched filters require a prior knowledge of 

the shape of PD signals, which determines their effectiveness in noise reduction. 

Wavelet-based denoising presents its advances in PD denoising due to its appealing attribute, 

i.e., the transformed PD signals can be simultaneously represented in both time and frequency 

domain. However, its effectiveness is dictated by the wavelet used, the decomposition scale 

selected, and the threshold estimated. Based on this, the motivation of this research is to 

propose new algorithms based on the study of characteristics of both PD signals and noise, 

and thus, to improve the performance of wavelet-based denoising in PD detection. 

EMD-based denoising has an attractive attribute, i.e., a signal can be decomposed by EMD 

without the requirement of any predefined base function, which is a concern commonly 
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expressed by critics for wavelet-based technique. As a result, another area of interest in this 

research is to investigate the effectiveness of EMD-based denoising in PD detection through 

the relative mode selected and noise estimation of IMFs. In turn, a suitable PD denoising 

strategy can be recommended through performance comparisons between wavelet-based and 

EMD-based denoising.   
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4  Wavelet Selection Schemes for Wavelet-based PD 

Denoising 

4.1  Introduction 

Signal denoising can benefit from a good signal representation. Generally, a signal 

representation is defined by a function ℜ: 𝐻 → 𝑆 that maps a Hilbert space 𝐻 into a space 

of sequences [131]. For a given signal, 𝑥 ∈ 𝐻, its representation ℜ(𝑥) is a sequence in 

space 𝑆 and defined by 

ℜ(𝑥)  =  (𝑠1, 𝑠2, 𝑠3, . . . )  (4-1) 

where 𝑠𝑛, 𝑛 = 1,2,3, . .., is a pair (𝛼𝑛, 𝘨𝛾𝑛), 𝛼𝑛 represents a coefficient and 𝘨𝛾𝑛 represents 

a waveform. For a signal decomposition, it is the critical step to obtain the sequence of 

waveforms (𝘨𝛾𝑛)𝑛∈𝑍  and their associated coefficients(𝛼𝑛)𝑛∈𝑍 . A suitable sequence of 

waveforms can successfully reveal signal properties through the corresponding coefficients. 

Numerous methods in signal decomposition have been investigated for this purpose. Basis, 

e.g., mother wavelet in wavelet transform, is such a method widely used as an effective tool 

for signal decomposition. 

A basis is defined as a set of linearly independent elements (𝜙𝜆)𝜆∈𝛤 that span the Hilbert 

space 𝐻. Linear independence indicates that the elements in basis set are orthogonal, i.e., any 

one function in this set cannot be expressed by the combination of the others. This orthogonal 

property of base functions implies the set used for signal representation is minimal. For an 

orthogonal basis set, its base functions should satisfy [131], [156] 

∫ 𝜙𝑖(𝑡)
∞

−∞

�̅�𝑗(𝑡)𝑑𝑡 = 𝑐𝑖 ∙ 𝛿(𝑖 − 𝑗) = {
𝑐𝑖, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

, ∀𝑖, 𝑗 ∈ 𝛤 (4-2) 

where if 𝑐𝑖 = 1  for all 𝑖 , the 𝜙𝑖(𝑡) s are said to be normalized. In this case, the 

representation of signal 𝑥 is exact and the reconstruction is given by [131]  

𝑥 =∑〈𝑥, 𝜙𝜆〉

𝜆∈𝛤

∙ 𝜙𝜆 (4-3) 

where the inner product 〈𝑥, 𝜙𝜆〉 = ∫ 𝑥(𝑡) ∙ �̅�𝜆(𝑡)𝑑𝑡 
∞

−∞
is interpreted as the projection of the 

signal 𝑥 in the base functions 𝜙𝜆. 
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In wavelet transform, 𝜓0 is the mother wavelet that corresponds to the basis set as defined 

above, and thus, its dilated or compressed versions, i.e., daughter wavelets 𝜓𝑗,𝑖  in (3-6), 

corresponds to the base functions. As shown in Figure 4-1, wavelet selection is one of three 

important steps necessary for a successful wavelet-based denoising. As a result, different 

denoised signals can be obtained by using different wavelet base functions in practice [157]. 

In relation to wavelet-based PD denoising, the simulated or detected PD signals are projected 

into 𝜓𝑗,𝑖  to obtain the corresponding coefficients 𝑊𝑗,𝑖 . As such, it is of paramount 

importance to select a suitable 𝜓0 for wavelet-based denoising as 𝜓0 can be translated and 

scaled to represent the PD signal of interest as effectively as possible. Based on this, the 

investigation of an appropriate wavelet for wavelet-based PD denoising has been 

implemented in [22], [88].  

 

 

Figure 4-1 Three distinct steps necessary for a successful wavelet-based denoising 

 

A wavelet selection scheme (WSS) was introduced in [22] based on the correlation coefficient 

between a known PD signal and wavelet waveform. This scheme is termed correlation-based 

wavelet selection scheme (CBWSS). The optimal wavelet is desired to generate the highest 

wavelet coefficients in wavelet analysis of PD signals, and thus, the essence of PD signal of 

interest can be effectively preserved. Based on this, the wavelet that can maximize the 

correlation coefficient is selected as the most appropriate wavelet for PD denoising. This 

approach for best wavelet selection, however, has an inherent limitation, it requires prior 

knowledge of PD waveforms. The waveform of PD signals depends on: the type and location 

of PD sources, propagating medium and path, and the detecting circuit. The variability of PD 
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waveforms impedes the application of CBWSS for online PD monitoring systems. Also, it is 

not a scale-dependent wavelet selection scheme. The selected wavelet is applied to a PD 

singal during the entire singal decomposition and reconstrucntion. As a result, the denoised 

PD signal may not be as good as expected. The most significant limit of CBWSS is that a PD 

signal is normally corrupted by the noise in the environment, which can lead to the selected 

wavelet being a match of the noise rather than the PD signal, especially when the signal to 

noise ratio (SNR) is very low. In an attempt to overcome the limitation mentioned above in 

CBWSS, a scale-dependent energy-based wavelet selection scheme (EBWSS) was presented 

in [88]. The wavelet that can maximize the energy ratio of approximation coefficients at each 

decomposition scale is selected as the best wavelet. It has been demonstrated to outperform 

CBWSS in PD denoising [88]. In EBWSS, two typical PD waveforms, DEP and DOP, as 

shown in Figure 2-19, were used to demonstrate the energy criterion for the optimal wavelet 

selection. With further analysis in details of EBWSS, it has been found that the criterion is not 

strictly true for DOP signals, particularly when the decomposition scale increases. One of the 

research objectives in this thesis is therefore to provide an automated and data-driven wavelet 

selection scheme for the choice of an appropriate wavelet in the context of PD denoising. 

It is necessary to mention that the noise involved in the investigation of WSS in [22], [88] is 

white noise. The underlying reason is that white noise is difficult to be identified and 

suppressed as both white noise and PD signals have wide-band frequencies [158]. Also, white 

noise is a very common noise source for PD contamination in off-line and on-line PD 

measurement. As such, the new wavelet selection schemes proposed in this chapter start from 

white noise reduction, and then extends to investigate if it is still effectvie when DSI is 

involved.  

Further study of statistical behaviors of both PD signals and noise may shed light on the 

improvement of PD denoising techniques. As mentioned in Section 2.7, Gaussianity is one of 

the prominent characteristics of whtie noise. However, PD signals are generally irregular, 

aperiodic, and transient, which lead to the non-Gaussianity of them. In statistics, the fourth 

moment of a data set, i.e., kurtosis, can be calculated to evalute the Gaussianity. Thus, the 

first new WSS is proposed based on this difference, i.e., the wavelet that can minimize the 
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kurtosis of detail coefficients will be selected as the best wavelet. This new WSS is termed 

kurtosis-based WSS (KBWSS). Also, white noise is a random and disordered noise source. 

The analysis of PD characteristics in Section 2.4 indicates that PD signals have less 

randomness and disorder than white noise. Based on this, the second new WSS is inspired by 

the concept of Shannon Entropy [159], and the associated information cost functions (ICF) in 

information theory [160]–[162]. An ICF can select the best wavelet to expand a signal in 

wavelet domain. Wavelet entropy, derived from Shannon Entropy, can measure the 

randomness of the wavelet coefficients at each decomposition scale. The smaller the wavelet 

entropy, the lower the randomness of the wavelet coefficients. As such, the second new 

selection scheme is proposed with the combination of ICF and wavelet entropy, and termed 

wavelet entropy-based WSS (WEBWSS). Simulated PD signals, i.e., DEP and DOP, are used 

to demonstrate the performance of these novel wavelet selection schemes. Results show that 

WEBWSS is a promising WSS to improve the effectiveness of PD denoising, while KBWSS 

cannot provide any improvement as compared to EBWSS. Further demonstration of 

WEBWSS will be performed through PD signals obtained through laboratory experiment 

using test samples with artificial defects and on-site PD measurements in Chapter 8.  

4.2  Correlation-based Wavelet Selection Scheme (CBWSS) 

In signal processing, correlation is a measure of association between two signals, and most 

commonly used is the linear correlation coefficient. For two signals, 𝑥𝑖 and 𝑦𝑖, 𝑖 = 1,2, … ,𝑁, 

the normalized correlation coefficient   is given by [22] 

𝛾 =  
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑖

√∑ (𝑥𝑖 − �̅�)
2

𝑖 ∙ √∑ (𝑦𝑖 − �̅�)
2

𝑖

  , (4-4) 

where �̅� is the mean of 𝑥𝑖 and �̅� is the mean of 𝑦𝑖. The value of γ is in the range of -1 to 1. It 

takes on a value close to 1 indicating 𝑥𝑖 and 𝑦𝑖 are positively correlated, and a value close to -1 

denoting they are negatively correlated. A value of γ  near zero means 𝑥𝑖  and 𝑦𝑖  are 

uncorrelated.  

Correlation in CBWSS [22] is used as a measure of the similarity between a pure PD signal and a 

wavelet. Note that this similarity is referred to as their shapes. The more similar their shapes, the 

higher the correlation coefficient is. As such, the wavelet that has the highest correlation 
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coefficient with the shape of a PD signal is selected to maximize the wavelet coefficients through 

wavelet analysis. 

The general process for the choice of appropriate wavelet using CBWSS is described as 

follows: 

a. Analyse the detected PD signal to generate a ‘typical’ PD pulse, 

b. Set up a wavelet library, consisting of the wavelets that have similar characteristics to the 

PD pulse, 

c. Normalize the PD pulse and each wavelet retrieved from the wavelet library, 

d. Calculate the correlation coefficient, 𝛾, between the PD pulse and each wavelet, 

e. Select the wavelet that has the maximum correlation coefficient with the PD pulse, it will 

be applied for the following wavelet-based denoising 

Figure 4-2 also illustrates a flow chart of the general process of CBWSS, where 𝑠(𝑛) is the PD 

signal and 𝜓𝑖 is the wavelet.  

As aforementioned, the CBWSS approach is limited by noise and is scale-independent. Also, a 

heuristic method was introduced in [88] to obtain better correlation results. Resampling both the 

PD signal and wavelet function in time domain is applied to align their peaks as well as their first 

zero-crossing points after the peaks. This heuristic method is adopted in this chapter for 

comparisons of denoising results among EBWSS, KBWSS, and WEBWSS methods. 
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Figure 4-2 Flow chart of the general process of CBWSS 

 

4.3  Energy-based Wavelet Selection Scheme (EBWSS) 

EBWSS was proposed by Li [88], in which the wavelet that can maximize the energy ratio of the 

approximation coefficients is selected as the best wavelet for PD denoising. For a one-dimensional 

wavelet decomposition, the energy ratio of approximation 𝑎𝑗 at scale j is defines as follows [88]: 

𝐸𝑎 =
∑  𝑎𝑗,𝑖

2
𝑖

∑  𝑎𝑗,𝑖
2

𝑖 + ∑ ∑ 𝑑𝑗,𝑖
2

𝑖𝑗

   (4-5) 

where 𝑖 = 1,2, … , 𝑛𝑖, 𝑛𝑖 is the length of approximation coefficients or detail coefficients at scale 

j, and 𝑑𝑗 is the detail coefficients at scale j. 

The idea of wavelet energy was introduced in EBWSS. For an orthogonal wavelet, energy 

preservation is one of the desirable properties of DWT [163]. The equation for energy 
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preservation is given by  

‖𝑋‖2 = ‖𝑎‖2 + ‖𝑑‖2                          (4-6) 

where 𝑎 and 𝑑 are the approximation and detail coefficients of the DWT of a signal 𝑋. This 

property is also applied to PD signals using DWT decomposition. A PD signal 𝑠 can be 

decomposed into 𝐽  scales with 𝐽 + 1signals, i.e.,  𝑠1, 𝑠2, . . . , 𝑠𝐽, 𝑠𝐽+1 . Among these signals, 

𝑠1, 𝑠2, . . . , 𝑠𝐽 are detail coefficients from scale 1 to scale 𝐽, while 𝑠𝐽+1 is the approximation 

coefficients at scale 𝐽. The energy of a decomposed signal 𝑠𝑘 is given by  

𝐸𝑘 = ∑ 𝑠𝑘
2(𝑖)𝑖     (4-7) 

where 𝑘 = 1,2,… , 𝐽 + 1 , 𝑖 = 1,2, … , 𝑛𝑖 , and 𝑛𝑖  is the length of 𝑠𝑖 . Then, 𝑠  can be 

represented by a normalized energy vector (𝑒1, 𝑒2, … , 𝑒𝐽 , 𝑒𝐽+1), where 𝑒𝑘 is defined as 

𝑒𝑘 =
𝐸𝑘
‖𝑠‖2

=
𝐸𝑘

∑ 𝐸𝑘
𝑘=𝐽+1
𝑘=1

                           (4-8) 

It can be seen that the concept of energy ratio in EBWSS can be interpreted as a normalized 

energy vector. Figure 4-2 shows the DEP, DOP, and white noise (WN) used in [88] to explain the 

criterion of EBWSS for wavelet selection. Figure 4-3 (a) and (b) show the DEP signal and its 

normalized energy vector. Equally, Figure 4-3 (c) and (d) present the DOP signal and its 

normalized energy vector. Figure 4-3 (e) and (f) delineate WGN and its normalized energy vector. 

Based on Figure 4-3 (b), (d) and (e), the approximations of the DEP and DOP signals cover the 

most energy of total coefficients while the details of WGN preserve the most energy of total 

coefficients [88]. 

The general process for the choice of an appropriate wavelet using EBWSS is presented with its 

corresponding flow chart (Figure 4-4) as follows: 

a. Given a wavelet library {𝜓𝑖: 𝑖 = 1,2, … ,𝑁}, select a wavelet from {𝜓𝑖}, and perform a 

one-scale DWT decomposition of a noisy PD signal s(n). Obtain its approximation 

coefficients 𝑎1
(𝑖)

 and detail coefficients 𝑑1
(𝑖)

, 

b. Calculate the energy ratio of approximation coefficients 𝐸
𝑎1
(𝑖) based on (4-5). If 𝐸

𝑎1
(𝑝)is 

the maximum of 𝐸
𝑎1
(𝑖), 1 ≤ 𝑝 ≤ 𝑁, select 𝜓𝑝 as the optimal wavelet for the first scale, 

c. Apply 𝜓𝑝 to obtain the approximation coefficients 𝑎1
(𝑝)

 and 𝑑1
(𝑝)

, 

d. 𝑎1
(𝑝)

 is used as the input signal for next-scale DWT decomposition, and select the optimal 
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wavelet based on the strategy used in steps a, b, and c, 

e. Iterate the steps above until the predefined decomposition scale J reaches. The optimal 

wavelet for each decomposition scale will be selected. 

 

 

Figure 4-3 Representations of (a): DEP, (c): DOP, and (e): White noise by normalized energy vectors 

(b), (d) and (f) respectively 

 

Results in [88] show that EBWSS outperforms CBWSS for the best wavelet selection. However, 

EBWSS is not as robust as expected. It selects the wavelet that can maximize the energy ratio of 

approximation coefficients. It is not strictly true for DOP signals, particularly when the 

decomposition scale increases. It can be seen from the normalized vector of DOP in Figure 4-3 (d), 

the energy of PD signal with a 6-scale decomposition is preserved on the detail coefficients rather 

than approximation coefficients. When more scales are required, e.g., 7 scales, the EBWSS is still 

trying to select the appropriate wavelet by maximizing the energy ratio of approximation 

coefficients. 
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Figure 4-4 Flow chart of the general process of EBWSS 

 

The limitation of EBWSS can be interpreted in the frequency domain. Based on Parseval’s 

theorem, the time and frequency domains are equivalent representations of the signal, and thus, 

they must have the same energy [164]. As shown in Figure 3-13, the filter pairs of DWT 

iteratively halve the frequency bands of a signal with the increase of decomposition scales. The 

spectrum of DEP, DOP, and white noise are illustrated in Figure 4-5 (a), (b), and (c) respectively. 
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With a 6-scale decomposition, the filter pairs iteratively separate these signals into disjoint 

frequency bands, 𝐺1(𝑤), 𝐺2(𝑤),… , 𝐺6(𝑤) and 𝐻6(𝑤). From the spectral curve of DOP, it is 

clear that the magnitudes of frequency in 𝐺5(𝑤) and 𝐺6(𝑤) are larger than those at other 

frequency bands. It is in agreement with the normalized energy vector of DOP shown in Figure 

4-3 (b). With further decomposition, the energy of the signal will be preserved in detail 

coefficients rather than approximation coefficients. 

 

G1(w)G2(w)G3(w)G4(w)

G5(w)G6(w)H6(w)

 

Figure 4-5 Spectrum of (a): DEP, (b): DOP, and (c): WN 

 

4.4  Kurtosis-based Wavelet Selection Scheme (KBWSS) 

Kurtosis in statistics is a parameter used to measure the shape of a distribution. It is formally 

defined as the standardized fourth moment about the mean, and is given by [165] 

𝑘𝑢𝑟𝑡 =
𝐸(𝑋 − 𝜇)4

(𝐸(𝑋 − 𝜇)2)2
=
𝜇4
𝜎4

 (4-9) 

where 𝐸 is the expectation operator of 𝑋, 𝜇 is the mean of 𝑋, 𝜇4 is the fourth moment 

about the mean, and 𝜌 is the standard deviation of 𝑋. The reference standard is a normal 

distribution, which has a kurtosis of 3. Generally, excess kurtosis, i.e., 𝑘𝑢𝑟𝑡 − 3, is often 

used, and thus, the reference normal distribution has an excess kurtosis of zero. Note that the 

kurtosis mentioned below will be referred to as excess kurtosis if not specified.  
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As discussed in Section 2.7, white noise can be modeled by a Gaussian model, which 

indicates that white noise obeys the normal distribution. In contrast to white noise, PD signals 

do not obey the normal distribution as a result of their non-Gaussianity. This difference 

between white noise and PD signals can be revealed by the kurtosis, as listed in Table 4-1. 

DEP and DOP are shown in Figure 2-19, and white noise is shown in Figure 2-32. It can be 

seen that white noise has a kurtosis value extremely close to zero, while both DEP and DOP 

have a very high kurtosis value. 

 

Table 4-1 Kurtosis of DEP, DOP, and White noise 

Signals kurt 

𝐷𝐸𝑃 23.5079 

𝐷𝑂𝑃 35.3862 

𝑊ℎ𝑖𝑡𝑒 𝑛𝑜𝑖𝑠𝑒 0.0008 

 

For wavelet-based PD denoising, it is accepted that noise is predominant in detail coefficients 

of wavelet decomposition. It is the reason that thresholding functions are applied to detail 

coefficients for noise reduction. Based on this, a new scale-dependent WSS, termed KBWSS, 

is developed using the kurtosis value of detail coefficients at each decomposition scale. The 

wavelet that can have the kurtosis value of detail coefficients closer to zeros will be selected 

as the best wavelet at that scale. A flow chart of the general process of KBWSS for wavelet 

selection is illustrated in Figure 4-6.  

In KBWSS, a wavelet library {𝜓𝑖: 𝑖 = 1,2,… ,𝑁} is set, and each wavelet in the library is 

extracted for the first-scale decomposition of a noisy PD signal s(n). The kurtosis value of the 

detail coefficients is calculated based on (4-9) and stored into a kurtosis vector. When all the 

wavelets in the library have been applied to s(n), the wavelet 𝜓𝑝 (1 ≤ 𝑝 ≤ 𝑁) that have the 

kurtosis value closer to zero is selected as an appropriate wavelet at this level. In turn, 𝜓𝑝 is 

applied to s(n) for first-scale decomposition, generating approximation and detail coefficients, 

𝑎1
(𝑝)

and𝑑1
(𝑝)

, respectively. 𝑎1
(𝑝)

 is then adopted as the input signal for next-scale decomposition. 

The wavelet selection criterion is iterated until the predefined decomposition scale J reaches. 
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Figure 4-6 Flow chart of the general process of KBWSS 

 

4.5  Wavelet Entropy-based Wavelet Selection Scheme 

(WEBWSS) 

4.5.1  Wavelet Entropy 

The concept of wavelet entropy was derived from Shannon entropy and presented in [166]. 
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Suppose {𝑊𝑗,𝑖} are the wavelet coefficients obtained through a J-scale wavelet transform, in 

which j represents the decomposition scale and 𝑗 = 1, 2, … , 𝐽, 𝑖 denotes the 𝑖𝑡ℎ element in 𝑊𝑗,𝑖 

and 𝑖 = 1, 2, … , 𝑛𝑗, 𝑛𝑗 is the length of wavelet coefficients at scale j. The energy of wavelet 

coefficients at the decomposition scale j can be calculated by 

𝐸𝑗 = ∑|𝑊𝑗,𝑖|
2

𝑖

                        (4-10) 

The distribution of energy probability for wavelet coefficients at scale j can be derived by   

 𝑝𝑖 =
|𝑊𝑗,𝑖|

2
 

∑ |𝑊𝑗,𝑖|
2

𝑖  
=  
|𝑊𝑗,𝑖|

2

𝐸𝑗
 (4-11) 

with  ∑ 𝑝𝑖 = 1𝑖 . Wavelet entropy 𝑊𝐸(𝑗) is defined as follows [166]: 

𝑊𝐸(𝑗) =  −∑𝑝𝑖 ln(𝑝𝑖)

𝑖

  (4-12) 

where 0 ≤ 𝑊𝐸(𝑗) ≤ 𝑙𝑛(𝑛𝑗).  

Similar to Shannon entropy, wavelet entropy is applied to measure the degree of disorder of 

wavelet coefficients or signify the randomness of wavelet coefficients. It is important to note that 

wavelet entropy is not an information cost function (ICF), since it requires the energy of 

wavelet coefficients to be normalized as shown in (4-11), and is thus not additive [161], [162]. 

Substituting (4-11) into (4-12) yields: 

𝑊𝐸(𝑗) = ∑𝑝𝑖 ln (
1

𝑝𝑖
)

𝑖

 
 

 

=  ∑
|𝐶𝑗,𝑖|

2
 

𝐸𝑗  
ln

𝐸𝑗

|𝐶𝑗,𝑖|
2

𝑖

 

 

 

= 
1

𝐸𝑗  
(∑|𝐶𝑗,𝑖|

2
ln 𝐸𝑗 +∑|𝐶𝑗,𝑖|

2

𝑖

ln
1

|𝐶𝑗,𝑖|
2

𝑖

) 

 

 

= ln𝐸𝑗 +
1

𝐸𝑗  
(∑|𝐶𝑗,𝑖|

2

𝑖

ln
1

|𝐶𝑗,𝑖|
2

⏞          
𝑙

) 

 

 
= ln𝐸𝑗 +

𝑙
𝐸𝑗
⁄  . (4-13) 

In (4-13), 𝑙  is an ICF based on the definition in [161]. As such, wavelet entropy is a 

monotonic-increasing function of 𝑙 , which means minimizing 𝑙  over wavelet coefficients 

minimizes wavelet entropy. 
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4.5.2  WEBWSS Fundamentals 

Given ℓ is an ICF over a sequence 𝑥, the best basis used for the representation of 𝑥 is the basis 

that can minimize the value of ℓ(𝜙𝑥), where 𝜙𝑥 is the coefficient vector of 𝑥 in the orthogonal 

basis 𝜙[160]. Such an ICF, from a practical point of view, can describe concentration or 

number of coefficients required to sufficiently represent the sequence. As aforementioned, 

wavelet entropy is not an ICF, but 𝑙 in (4-13) is monotonically increased with the wavelet 

entropy. As such, the best wavelet also can be selected when the value of wavelet entropy is 

minimum. In [161], it was shown that wavelet entropy value is inversely proportional to the 

energy concentrated in the number of wavelet coefficients. Also, an N-sample signal can be 

viewed as noisy or incoherent relative to the selected wavelet if it does not correlate well with the 

wavelet, i.e., if its entropy is of the same order of magnitude as 𝑙𝑛𝑁 − 𝜀 with small 𝜀 [161]. 

The denoising can benefit from this incoherence between white noise and the selected wavelet. 

White noise, as a frequently occurring noise source for PD corruption, has high degree of 

randomness or disorder, and thus, the entropy value can describe the random characters of noise 

[167]. Based on this, a smaller value of wavelet entropy indicates that the wavelet used for WT 

decomposition can preserve more energy of the original signal in fewer number of coefficients 

and contain less white noise in the wavelet coefficients and, consequently, the wavelet used is 

closer to the best wavelet as expected. Differences can be seen from Table 4-2 when the wavelet 

entropy values of decomposed white noise are compared to those of decomposed DEP and DOP 

and the theoretical maximum entropy values. In Table 4-2, DEP and DOP are simulated PD 

signals, as shown in Figure 4-3. White noise is simulated by a Gaussian model with 2048 

sampling points, equal to the length of DEP and DOP. 6-scale wavelet decomposition has been 

applied to DEP and white noise using the wavelet ‘db3’, and to DOP and white noise using the 

wavelet ‘db10’. From the figures listed in Table 4-2, it is clear that the wavelet entropy values of 

DEP and DOP are less than that of white noise at each scale. Also, the wavelet entropy values of 

white noise are close to its theoretical maximum entropy value, which means white noise is 

incoherent to the wavelet used and presents high degree of randomness or disorder at each 

decomposition scale. In contrast, the wavelet entropy values of both DEP and DOP indicate that 

they are far less random or disordered at each scale. As such, a new criterion for the best wavelet 
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selection is therefore proposed, i.e., a wavelet that can have minimum wavelet entropy of the 

approximation coefficients at each decomposition scale through WT decomposition will be 

selected for denoising of PD detection. The new method has several promising advantages: it is 

scale-dependent, automated, and data-driven. 

 

Table 4-2 Wavelet entropy values of approximation coefficients of DEP, DOP and white noise with 

6-scale decomposition 

 

DEP WN DOP WN 

Entropy 

value 
Max 

Entropy 

value 
Max 

Entropy 

value 
Max 

Entropy 

value 
Max 

𝒂𝟏  3.8526               6.9334 6.1321 6.9334 3.5901 6.9402 6.1391 6.9402 

𝒂𝟐  3.1627 6.2442 5.5611 6.2442 2.9095 6.2653 5.4684 6.2653 

𝒂𝟑  2.4834 5.5607 4.8463 5.5607 2.2966 5.6058 4.8418 5.6058 

𝒂𝟒  1.8301 4.8828 4.1916 4.8828 1.4736 4.9767 4.2325 4.9767 

𝒂𝟓  1.2912 4.2195 3.2735 4.2195 1.4094 4.4067 3.6450 4.4067 

𝒂𝟔  0.988 3.5835 2.377 3.5835 1.0035 3.9120 3.2127 3.9120 

 

The general process for the proposed novel wavelet selection scheme is illustrated in a flow chart 

in Figure 4-7. Given a wavelet library {𝜓𝑖: 𝑖 = 1,2,… ,𝑁}, one wavelet of which is selected for a 

one-level DWT decomposition of a noisy PD signal s(n) each time. Next the wavelet entropy of 

the generated approximations is calculated based on (6) and (7). The wavelet 𝜓𝑝 (1 ≤ 𝑝 ≤ 𝑁) 

that minimize the wavelet entropy of approximations will be selected as the best wavelet. The 

selected 𝜓𝑝 is then applied for the DWT decomposition of s(n) for the first scale, obtaining 

approximation coefficients 𝑎1
(𝑝) and detail coefficients 𝑑1

(𝑝)
. Finally, 𝑎1

(𝑝) is used as the 

input signal for next scale DWT decomposition, using the strategy presented above. When the 

predefined decomposition scale J reaches, the best wavelet for each scale will be successfully 

selected. 
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End
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Figure 4-7 Flow chart of the general process of WEBWSS 

 

4.6  Performance Evaluation of New Proposed Selection 

Schemes 

4.6.1  Parameters for Performance Evaluation 

Generally, parameters, e.g., magnitude error (ME), mean square error (MSE), signal to noise ratio 
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(SNR), and cross correlation (XCORR) are adopted to evaluate the performance of a proposed 

denoising method or algorithm. Given a noisy signal is 𝑦(𝑖), 𝑖 = 1,2, . . . , 𝑁, it can be expressed 

by  

𝑦(𝑖) = 𝑠(𝑖)  + 𝑛(𝑖)  (4-14) 

where 𝑠(𝑖)  represents the signal of interest and 𝑛(𝑖)  represents noise. Based on (4-14), 

XCORR, ME, MSE and SNR are calculated by the equations as follows, 

𝑋𝐶𝑂𝑅𝑅 =  
∑ (𝑠(𝑖) − �̅�(𝑖)) ∙ (𝑠′(𝑖) − 𝑠 ′̅(𝑖))𝑁
𝑖=1

√∑ (𝑠(𝑖) − �̅�(𝑖))2𝑁
𝑖=1 ∙ √∑ (𝑠′(𝑖) − 𝑠 ′̅(𝑖))2𝑁

𝑖=1

 
(4-15) 

𝑀𝐸 =
𝑚 −𝑚′

𝑚
 (4-16) 

𝑀𝑆𝐸 =
∑ (𝑠(𝑖) − 𝑠′(𝑖))2𝑁
𝑖=1

𝑁
 (4-17) 

𝑆𝑁𝑅(𝑑𝐵) = 10 ∙ 𝑙𝑜𝑔10
𝐸𝑠

𝐸𝑛
  (4-18) 

where 𝑠′(𝑖) in (4-15) denotes the denoised signal, �̅�(𝑖) and 𝑠 ′̅(𝑖) are the mean of 𝑠(𝑖) and 

𝑠′(𝑖) respectively. 𝑚 and 𝑚′  in (4-16) are the peak value of 𝑠(𝑖) and 𝑠′(𝑖) respectively. 

Better denoised results can be obtained with lower ME, MSE, and higher XCORR. The SNR is 

used to measure the noise level in the signal, 𝐸𝑠 and 𝐸𝑛 in (4-18) denote the energy of the signal 

of interest and noise, respectively. Given the signal 𝑠(𝑖) is known, the SNR after denoising can 

be calculated by  

𝑆𝑁𝑅(𝑑𝐵) = 10 ∙ 𝑙𝑜𝑔10
∑ (𝑠(𝑖))2𝑁
𝑖=1

∑ (𝑠(𝑖) − 𝑠′(𝑖) )2𝑁
𝑖=1

 (4-19) 

Equally, the higher SNR in (4-19), the lower level of noise is remained in the denoised 𝑠′(𝑖). In 

this chapter, SNR, ME, MSE, and XCORR are used to compare the denoising results of different 

wavelet selection schemes. 

4.6.2  PD Signals Corrupted by White Noise 

As mentioned before, the test of these WSSs starts from PD signals corrupted by white noise. 

In the analysis of EBWSS, the underlying idea is not strictly true when the decomposition 

scale increases over 6. To highlight this limit, the decomposition scale is set to 7 for the 

performance evaluation. The wavelet library used for all selection schemes consists of 

wavelets in the range of ‘db2’ to ‘db25’ from Daubechies family, which is in agreement with 
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those used in [88], and thus, is convenient for comparisons of denoising results among all 

WSSs. Two simulated PD signals, 𝑠1 and 𝑠2, which are referred to as DEP and DOP (see 

Figure 4-3) respectively, as well as their noisy signals 𝑛𝑠1 and 𝑛𝑠2 with SNR = -10 are 

depicted in Figure 4-8.  

 

 

Figure 4-8 Pure and Noisy PD Signals, (a) s1, (b) ns1, (c) s2, (d) ns2 

 

Various wavelet selection schemes are used to reduce white noise and evaluated by the 

parameters introduced above. The denoised versions of 𝑛𝑠1 and 𝑛𝑠2 using the four discussed 

WSSs are delineated in Figure 4-9 and Figure 4-10, respectively. Due to different wavelet 

selection criteria, Table 4-3 lists the wavelet selected at each decomposition scale for the 

denoising of 𝑛𝑠1 and 𝑛𝑠2 . In CBWSS, fixed wavelets ‘db3’ and ‘db9’ are selected 

for  𝑛𝑠1 and 𝑛𝑠2  at all decomposition scales. In contrast, the wavelet selected at each 

decomposition scale presents variations in EBWSS, KBWSS, and WEBWSS. In Figure 4-9 

and Figure 4-10, the figures in the top right corner are the SNRs after denoising. Based on this 

parameter, it can be seen that WEBWSS has the best denoising result among all the WSSs for 

both noisy PD signals 𝑛𝑠1  and 𝑛𝑠2. Also, the SNR indicates that KBWSS does not exhibit 

any robustness as compared to EBWSS, although it has a higher SNR than CBWSS in 𝑛𝑠1  
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denoising (see Figure 4-9 (a) and (c)). From a practical point of view, the selection scheme 

proposed based on kurtosis value of detail coefficients at each decomposition scale is not an 

appropriate WSS in PD denoising. The underlying reason may be from the accuracy error of 

kurtosis calculation of white noise in MATLAB. Although white noise is simulated through a 

Gaussian model, the kurtosis value is not zero. As such, KBWSS will not be further discussed 

in this thesis. 

 

 

Figure 4-9 Denoised versions of ns1 using (a) CBWSS, (b) EBWSS, (c) KBWSS, (d) WEBWSS 

 

 

Figure 4-10 Denoised versions of ns2 using (a) CBWSS, (b) EBWSS, (c) KBWSS, (d) WEBWSS 
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Table 4-3 Selected wavelet using different WSSs at each decomposition scale for ns1 and ns2 

 
Decomposition Scale 

1 2 3 4 5 6 7 

𝑠1   

CBWSS ‘db3’ ‘db3’ ‘db3’ ‘db3’ ‘db3’ ‘db3’ ‘db3’ 

EBWSS ‘db7’ ‘db5’ ‘db2’ ‘db2’ ‘db7’ ‘db4’ ‘db7’ 

KBWSS ‘db22’ ‘db22’ ‘db25’ ‘db10’ ‘db8’ ‘db21’ ‘db5’ 

WEBWSS ‘db2’ ‘db6’ ‘db2’ ‘db2’ ‘db4’ ‘db2’ ‘db2’ 

𝑠2   

CBWSS ‘db9’ ‘db9’ ‘db9’ ‘db9’ ‘db9’ ‘db9’ ‘db9’ 

EBWSS ‘db8’ ‘db13’ ‘db10’ ‘db6’ ‘db5’ ‘db11’ ‘db7’ 

KBWSS ‘db3’ ‘db3’ ‘db12’ ‘db6’ ‘db22’ ‘db2’ ‘db19’ 

WEBWSS ‘db6’ ‘db4’ ‘db2’ ‘db15’ ‘db6’ ‘db9’ ‘db4’ 

 

Admittedly, significant advancement of the proposed scheme, WEBWSS, in the denoising of PD 

signals with single pulse cannot be directly seen from Figure 4-9 and Figure 4-10. More 

parameters, i.e., ME, MSE, and XCORR, are listed in Table 4-4 for further performance 

evaluation of WEBWSS. Two columns in Table 4-4, Improvement 1 and Improvement 2, have 

presented the improvements by WEBWSS. Improvement 1 is the improved ratio (%) of the use of 

WEBWSS to CBWSS and Improvement 2 is the improved ratio (%) of the use of WEBWSS to 

EBWSS. Significant improvements can be seen from these figures of Improvement 1 and 

Improvement 2 for ME, MSE, and XCORR. The underlying meaning of the improvement of ME 

is PDs with small magnitude may be picked up by the use of WEBWSS as compared to the other 

two schemes. This enhanced capability of PD detection has been verified through the application 

of WEBWSS in on-site PD data, which will be presented in Chapter 8. The improvement of MSE 

and XCORR indicates that less distortion of the denoised signals can be achieved through 

WEBWSS. It is good for the accuracy of PD location. In addition, SNR and the parameters in 

Table 4-4 verify the conclusion presented in [88] that EBWSS outperforms CBWSS in PD 

denoising. 

In the attempt to fully evaluate the performance of the new WEBWSS, PD signals buried in 

various noise levels are investigated. SNR are set to -8, -6, -4, -2, 0 and 2 for this investigation, 

representing different noise levels. The parameters used to evaluate the performance of three 

different schemes are delineated in Figure 4-11 and Figure 4-12 for 𝑛𝑠1 and 𝑛𝑠2, respectively. 

From the trends of ME, MSE, and XCORR for all denoised signals with the increase of SNR (the 

higher SNR, the lower noise level is), the new WEBWSS is better than the existing schemes for 
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wavelet-based denoising of PD detection under various noise levels, and the performance is 

particularly good when the SNR is low.  

 

Table 4-4 Parameters used to evaluate the performance of WSSs. 

Signal Parameter CBWSS EBWSS WEBWSS 
Improvement 

1 (%) 

Improvement 

2 (%) 

𝑠1  

ME 0.3701 0.3457 0.3071 17 11.2 

MSE 0.0055 0.0028 0.0024 56.4 14.3 

XCORR 0.8689 0.9358 0.9495 8.5  1.4  

𝑠2  

ME 0.5686 0.5673 0.5238 7.9 7.7 

MSE 0.0054 0.0044 0.0041 24.1 6.8 

XCORR 0.8757 0.9182 0.9414 7  2.5  

 

 
Figure 4-11 ME, MSE, and XCORR between s1 and denoised s1 using various WSSs 

 

 

Figure 4-12 ME, MSE, and XCORR between s2 and denoised s2 using various WSSs 

 

Although advances of the novel WEBWSS in denoising of PD signals with single pulse have 

been demonstrated, it is necessary to apply the new method to PD signals with multiple pulses, 

and then, its performance can be evaluated close to a real case. Tow simulated PD signals, 
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named 𝑠𝑝𝑑1  and 𝑠𝑝𝑑2, with 20000 sampling points, together with their noisy versions, 

𝑛𝑠𝑝𝑑1  and 𝑛𝑠𝑝𝑑2 (SNR = -10) are used for the test of WEBWSS. In 𝑠𝑝𝑑1  and 𝑠𝑝𝑑2, 5 

DEPs and DOPs are randomly distributed along the time scale. The denoising results of 

𝑛𝑠𝑝𝑑1  and 𝑛𝑠𝑝𝑑2  through three WSSs are illustrated in Figure 4-13 and Figure 4-14, 

respectively.  

In Figure 4-13 and Figure 4-14, the advantages of WEBWSS can be clearly seen from the 

denoised 𝑛𝑠𝑝𝑑1  and 𝑛𝑠𝑝𝑑2. The figures in the top right corner of Figure 4-13 (c) – (e) and 

Figure 4-14 (c) – (e) are the SNRs of denoised PD signals using three different selection 

schemes. It directly demonstrates that the application of WEBWSS in PD denoising is better 

than the existing two schemes. Table 4-4 demonstrates that the new selection scheme has the 

capability to extract PD signals with small magnitude. The denoised results illustrated in 

Figure 4-13 and Figure 4-14 are in agreement with that demonstration. It can be seen in 

Figure 4-13 that two PD pulses with low magnitude can be extracted through WEBWSS 

(highlighted with red line), while one of them is missing through EBWSS and both of them 

are missing through CBWSS. Similar situation occurs in Figure 4-14. Also, it is interesting to 

find that each extracted PD pulse of the denoised 𝑛𝑠𝑝𝑑1  and 𝑛𝑠𝑝𝑑2  using WEBWSS 

suffers less distortion and has higher magnitudes than EBWSS and CBWSS. Further 

investigation has been implemented through comparisons of the parameters, i.e., MSE and 

XCORR, results are listed in Table 4-5. These parameters also prove that WEBWSS 

outperforms EBWSS and CBWSS in denoising of PD signals with multiple pulses. 
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Figure 4-13 (a) spd1, (b) nspd1, denoising results using (c) CBWSS, (d) EBWSS, (e) WEBWSS 
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Figure 4-14 (a) spd2, (b) nspd2, denoising results using (c) CBWSS, (d) EBWSS, (e) WEBWSS
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4.6.3  PD Signals Corrupted by White Noise and DSI 

The novel wavelet entropy-based wavelet selection scheme is proposed for the suppression of 

white noise. White noise is not the only noise source that affects PD measurement. In this 

section, another very common noise source, i.e., DSI, will be involved to test the proposed 

WSS. 

The DSI with 2048 sampling points, as shown in Figure 4-15 (the same as that shown in 

Figure 2-28), is simulated by the use of (2-9) and parameters in Table 2-2 for this 

investigation. Table 4-6 lists the entropy value of approximation coefficients at each 

decomposition scale of DSI. As did in Table 4-2, ‘db3’ and ‘db10’ are used for DSI 

decomposition with 6 scales. Based on the figures of entropy value at each decomposition 

scale in both Table 4-2 and Table 4-6, difference between PD signals, i.e., DEP and DOP, and 

DSI is not as big as that between PD signals and white noise. Although the entropy value of 

DSI at each decomposition scale still indicates the decomposed DSI has relatively high degree 

of randomness or disorder, it is not very close to its theoretical maximum value. This could be 

a potential reason that the suppression of DSI using WEBWSS is not as good as that for white 

noise. 

Figure 4-16 illustrates the simulated PD signals 𝑠1  and 𝑠2, as shown in Figure 4-8 (a) and (c), 

with the DSI and white noise. In both simulated signals, the DSI is added with magnitude of 

0.1, and white noise has a mean value of zero and standard deviation of 0.3. The SNRs of 

noisy 𝑠1  and 𝑠2, based on (4-16), are -6.22 and -8.06, respectively. The novel scheme, 

WEBWSS, is applied to both noisy PD signals, and the selected wavelet at each scale is listed 

in Table 4-7. The denoising results of noisy 𝑠1  and 𝑠2 are delineated in Figure 4-17. Based 

on the denoising results, both DSI and white noise can be reduced by the new WEBWSS. 

Note that the peak values of both denoised 𝑠1  and 𝑠2 are lowered after denoising. This also 

can be seen from Table 4-8, the ME figures in which are used to evaluate the denoising 

performance of WEBWSS. The effective reduction of DSI from noisy 𝑠1  and 𝑠2 may be due 

to its small magnitude, which will be increased for further investigation. The magnitude of 

DSI is then increased to 0.3 while white noise is remained as the same. The corresponding 
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SNRs of noisy 𝑠1  and 𝑠2 decrease to -6.59 and -8.43, respectively. The denoising results of 

these simulated noisy PD signals are illustrated in Figure 4-18. As highlighted with red circles 

in Figure 4-18, DSI cannot be completely reduced by WEBWSS when its magnitude 

increases. The critical value of the magnitude of DSI involved in noisy PD signals is 0.3 after 

investigation. It means when the figure exceeding this critical value, DSI cannot be 

effectively suppressed by the novel WEBWSS. A conclusion can be drawn based on this 

investigation, i.e., WEBWSS is effective for the reduction of white noise and DSI in PD 

measurement, but the prerequisite is that the DSI level in noisy PD signals cannot be high. 

 

 

Figure 4-15 Simulated DSI with 2048 sampling points 

 

Table 4-5 Parameters used for performance evaluation of various WSSs 

 CBWSS EBWSS WEBWSS 

𝒔𝒑𝒅𝟏  
MSE 0.0012 0.0011 0.0009 

XCORR 0.8327 0.8516 0.8791 

𝒔𝒑𝒅𝟐  
MSE 0.0009 0.0006 0.0005 

XCORR 0.8246 0.8823 0.8847 

 

Table 4-6 Wavelet entropy values of approximation coefficients of DSI with 6-scale decomposition 

 
DSI (‘db3’) DSI (‘db10’) 

Entropy value Max Entropy value Max 

𝒂𝟏  5.6677 6.9334 5.6842 6.9402 

𝒂𝟐  4.9764 6.2442 5.0233 6.2653 

𝒂𝟑  4.2878 5.5607 4.3866 5.6058 

𝒂𝟒  3.6590 4.8828 3.8988 4.9767 

𝒂𝟓  3.2023 4.2195 3.5549 4.4067 

𝒂𝟔  2.4675 3.5835 2.8076 3.9120 
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Figure 4-16 (a) noisy s1 with DSI and white noise, (b) noisy s2 with DSI and white noise 

 

Table 4-7 Selected wavelet at each decomposition scale using WEBWSS for noisy s1 and noisy s2 

 
Decomposition Scale 

1 2 3 4 5 6 7 

𝒔𝟏   ‘db2’ ‘db2’ ‘db4’ ‘db2’ ‘db5’ ‘db5’ ‘db2’ 

𝒔𝟐   ‘db2’ ‘db2’ ‘db3’ ‘db11’ ‘db5’ ‘db6’ ‘db4’ 

 

 

Figure 4-17 (a) denoised noisy s1 by WEBWSS, (B) denoised noisy s2 by WEBWSS 
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Table 4-8 Parameters used for performance evaluation of WEBWSS in noisy s1 and noisy s2 

 Parameters 

ME MSE XCORR SNR 

𝒔𝟏   0.2698 0.0019 0.9655 11.1701 

𝒔𝟐   0.4548 0.0035 0.9417 6.1361 

 

 

 

Figure 4-18 High-level DSI in noisy PD signals: (a) denoised noisy s1 by WEBWSS, (b) denoised 

noisy s2 by WEBWSS 

4.7  Conclusion 

Wavelet selection constitutes a critical step in wavelet-based denoising. Analysis of current 

existing wavelet selection schemes, i.e., correlation-based and energy-based wavelet selection 

schemes, revealed their limits for practical uses in this chapter. To improve the accuracy of 

wavelet selection and provide an alternative to current existing schemes, further study of 

characteristics of both PD signals and noise was accomplished by the investigations of the 

high-order statistics and the degree of disorders of their transformed signals through 

wavelet-based technique. As a result, kurtosis-based (high-order statistics) and wavelet 
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entropy-based (degree of disorders) wavelet selection schemes were proposed. Simulated PD 

signals were used for performance test of these new schemes in wavelet-based PD denoising. 

Results show that the wavelet selected by wavelet entropy-based scheme can present better 

performance than the others, especially for situations when signal to noise ratio is unity or 

less. This scale-dependent, automated, and data-driven scheme enables it a promising 

technique in PD detection. Accordingly, it has the potential to extend the range of PD 

detection in cables through the use of this new technique.  

The analysis of statistical characteristics of PD signals was based on simulated PD signals in 

this chapter. It was investigated under the same environment as that used in correlated-based 

and energy-based selection scheme. This new wavelet selection scheme may have limits as 

the signals used for investigations are ideal in some sense. As aforementioned, the shapes or 

waveforms of PD signals vary due to the factors, such as signal attenuation and noise level. 

The suitability of this entropy-based wavelet selection scheme for real PD signal denoising 

requires the involvement of real PD signals that can have as many waveforms as possible. In 

Chapter 8, several real PD signals will be used for this purpose, the range of waveform 

variations may still be far less than those in real situation.  
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5  Decomposition Scale Determination for 

Wavelet-based PD Denoising 

5.1  Introduction 

Wavelet transform has been widely investigated in the area of PD denoising in recent decades 

due to its advance for the time and frequency representation of signals. As known, the 

effectiveness of wavelet-based denoising is dictated by the choice of wavelet, decomposition 

scale, and noise estimation. The choice of wavelet has been fully discussed in last chapter. As 

a series of improvement of wavelet-based denoising in the area of PD detection, the effect of 

decomposition scale on the denoising results will be investigated in this chapter.  

Decomposition scale plays a significant role in wavelet-based denoising. For a predefined 

decomposition scale, the noisy PD signal is decomposed from fine scale (high frequency 

bands) to coarse scale (low frequency bands). The purpose of this is to have sufficient 

frequency resolutions at coarse scales, and thus, low frequency interferences can be 

effectively removed. If the scale is too small, it is really difficult to separate the mixed PD 

signals and low frequency interferences, if the scale is too large, it takes longer computational 

time and some information of PD signals of interest may be discarded as well. Theoretically, 

decomposition scale is dependent on the length of the detected PD signals. In practice, it is 

often determined by trail and errors or experience [12], [21], [23], [119]. 

Optimal decomposition scale is a desirable property for the application of WT in signal 

denoising, which is not limited to its use in the area of PD denoising. In [168], an 

entropy-based selection of optimal decomposition scale was introduced for WT in hydrologic 

series data. It is a method to measure the entropy differences between the decomposed signal 

and noise which is artificially generated based on the probability distribution. Optimal 

decomposition scale is determined when the resultant entropy of the decomposed signal is 

significantly different from that of noise. Prior knowledge of noise is required as the 

probability distribution of noise is an essential part of this method. It is not the case in 

practice since noise is random in nature. In an attempt to overcome the limit of the 
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entropy-based method, Lei et al [169] proposed an alternative method to determine 

decomposition scale based on sparseness measurement in the area of bio-signal (sparseness 

measurement is referred to as this method in this chapter). It is known that the basic idea 

behind wavelet-based denoising is that the wavelet transform can provide a sparse 

representation for many real-world signals [163]. In this method, the degree of sparseness is 

quantified for the decomposed signals by evaluating the percentage of the number of 

zero/near-zero wavelet coefficients. An empirical parameter is adopted in the count of 

zero/near-zero coefficients. Also, the curve of sparseness of the decomposed signal is 

monotonically increasing, a suitable threshold of sparseness is required to choose the best 

decomposition scale. Obviously, the requirement of an empirical parameter and a proper 

threshold makes this method less robust and more subjective. In relation to PD denoising, 

Zhou et al in [119] claims that a noisy PD signal can be decomposed with a maximum 

decomposition scale which is determined by both the length of PD signals and the length of 

the wavelet filter being used (wavelet length is referred to as this method in this chapter). The 

involvement of the length of the wavelet filter means that a fixed wavelet needs to be applied 

during the entire decomposition and reconstruction of PD signal denoising. As discussed in 

last chapter, a scale-dependent wavelet can provide better denoising results. In [170], 

determination of decomposition scale was based on the energy spectral density of real PD 

signals. It requires prior knowledge of pure PD signals. However, PD signals vary due to the 

type and location of PD defects, propagating medium and path, and the detecting circuit. Also, 

PD signals are normally contaminated by background noise. The variation of PD signals and 

noise limits this method to be used for online PD monitoring systems.  

Based on the discussion above, it is necessary to introduce an automated method to select an 

optimal decomposition scale without the requirement of any prior knowledge of PD signals or 

noise as well as the involvement of any empirical parameter and threshold. As such, the new 

method can provide more accurate denoised PD signals with possibly less computational time. 

It is one of the motivations for the author in this research project. As a result, a novel method 

for decomposition scale determination is proposed in this chapter based on the concepts of 

Shannon entropy in information theory [159] and sparsity in compressive sensing [171]. 



111 

 

Wavelet entropy is a relatively new concept derived from Shannon entropy. For a decomposed 

signal, its wavelet entropy value is highly correlated to the number of wavelet coefficients 

that preserves energy of the original signal. A smaller wavelet entropy value indicates that 

energy of the original signal is preserved in fewer number of wavelet coefficients. As such, 

wavelet entropy can be used to measure the number of significant coefficients in the 

decomposed signals through WT [172]. As mentioned above, sparsity is the basic idea 

underlying wavelet-based denoising technique. For a sparse signal, its sparsity defined in [171] 

is inversely proportional to the number of significant elements. In this thesis, sparsity is 

reflected by the ratio of the number of significant coefficients to the total number of the 

wavelet coefficients. Based on this, wavelet entropy is applied to quantify the number of 

significant coefficients of decomposed PD signal at each decomposition level and then 

resultant sparsity is used to determine the optimal decomposition scale. Simulated PD 

signals,  𝑠1, 𝑠2,  𝑠𝑝𝑑1 and 𝑠𝑝𝑑2 used in last chapter, will be applied to demonstrate the 

performance of this novel method for the determination of decomposition scale. Results show 

that it is an effective technique for the selection of decomposition scale.  

5.2  Methods for Decomposition Scale Determination 

A number of methods used to determine the decomposition scale has been analyzed above. 

Due to the variations of PD signals and noise, the methods based on the probability 

distribution of noise or energy spectral density of pure PD signals will not be introduced with 

more details. Wavelet length method and sparseness measurement method will be discussed in 

depth. Wavelet length method functions as a reference method to the new proposed method 

for scale selection. The concept of sparsity used for decomposition scale determination is first 

introduced in sparseness measurement method. The novel sparsity-based method is inspired 

by this idea and can present better denoising results.  

5.2.1  Wavelet Length Method 

The theoretical maximum decomposition scale, 𝐽𝑚𝑎𝑥, in DWT is determined by the length of 

a signal, as  𝐽𝑚𝑎𝑥 is equal to 𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔2𝑁), where the function 𝑓𝑙𝑜𝑜𝑟(∙) rounds the value 
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of 𝑙𝑜𝑔2𝑁 to the closest integer (< 𝑙𝑜𝑔2𝑁) and N is the length of the signal. In [119], it 

points out that the signal length at the highest decomposition scale should be no less than the 

length of the wavelet filter being used when the wavelet toolbox is employed in MATLAB. 

As a result, the maximum decomposition scale for the wavelet-based decomposition of a 

signal is defined by  

𝐽𝑚 = 𝑓𝑖𝑥(𝑙𝑜𝑔2(𝑁/𝑁𝑤 − 1)) (5-1) 

where 𝑁𝑤 is the length of the wavelet filter being used, and the function 𝑓𝑖𝑥(∙) is to round 

the value in the bracket to its nearest integer. For example, if the length of a noisy PD signal is 

2048 sampling points and the wavelet ‘db3’ (𝑁𝑤 = 6) is used as the mother wavelet, the 

decomposition scale of this signal based on (5-1) is 8.  

The decomposition scale determined by (5-1) requires a fixed wavelet to be applied in PD 

signal denoising. However, it has been demonstrated that the denoising result of 

scale-dependent wavelet is better than scale-independent one. Also, the length of a detected 

PD signal in practice is often long (millions of sampling points, see in Chapter 8) due to high 

sampling rate. If a short-length wavelet, e.g., ‘db3’, is selected for PD denoising, then the 

decomposition scale determined by (5-1) is very close to its theoretical maximum 

decomposition scale. In this case, the denoising is time consuming as compared to a small 

optimal decomposition scale.  

5.2.2  Sparseness Measurement Method 

Sparseness measurement method is proposed based on the basic idea of wavelet-based 

denoising, i.e., the coefficients of DWT are generally sparse. The degree of sparseness is 

quantified by the percentage of the number of zero/near-zero coefficients among the entire 

transformed coefficients. The degree of sparseness is defined by [169] 

𝑠𝑝 =
𝑁𝑧
𝑁 − 1

 (5-2) 

where 𝑁𝑧 is the number of zero/near-zero coefficients, and 𝑁 is the length of the original 

signal. It can be seen that the quantity of 𝑁𝑧  plays a key role in (5-2). In sparseness 

measurement method, an empirical parameter 𝐾 ∈ [5,10]  is employed to quantify the 

number of zero/near-zero coefficients. The amplitude of the DWT coefficients less than or 
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equal to 1/𝐾 of the largest coefficient at each decomposition scale, i.e., 𝑑𝑗,𝑖 ≤ 𝑚𝑎𝑥(𝑑𝑗,𝑖)/𝐾, 

is counted as a zero/near-zero coefficient.  

Figure 5-1 illustrates the sparseness of decomposed signals noisy 𝑠1 and 𝑠2 with SNR = -5. 

An increase of the value of sparseness with the increasing decomposition scale can be seen in 

Figure 5-1. The increasing rate of the value of sparseness decreases with the increasing 

decomposition scale, and the value approaches the theoretical maximum value 1 

asymptotically. From the distribution of sparseness along the entire signal decomposition, it 

can be seen that the statistical characteristics of both transformed noisy 𝑠1 and 𝑠2 do not 

vary much after the 5th decomposition. A suitable threshold is then selected for the 

determination of optimal decomposition scale.  

 

Figure 5-1 Sparseness of the decomposed signal (a) noisy s1, (b) noisy s2 

 

The criterion for decomposition scale determination in sparseness measurement method is 

briefly introduced above. It is not a robust selection criterion due to the involvement of 

empirical parameters, which determine the quantity of zero/near-zero coefficients and the 
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threshold of sparseness for the selection of optimal decomposition scale. However, it is a 

good idea that sparseness of the transformed signal can be used for decomposition scale 

determination. It can be improved as an adaptive or data-driven method if the number of 

zero/near-zero coefficients or significant coefficients can be quantified based on the statistical 

characteristics of the signal.   

5.3 Sparsity-based Decomposition Scale Determination  

5.3.1  Significant Coefficients 

The concept of wavelet entropy has been introduced in 4.5.1 and applied for the selection of 

optimal wavelet for PD denoising. Given a signal x of length N, the optimal wavelet is the 

wavelet that can minimize the cost of representing x, i.e., the wavelet that can minimize the 

entropy, as discussed in last chapter. If the coefficients of transformed x is put into decreasing 

order of magnitude, the rate at which the coefficients decrease controls the theoretical 

dimension 𝑁0  [161]. 𝑁0  is a number between one and N describing the number of 

significant coefficients. Generally, 𝑁0 can be defined in several ways. The simplest is to 

count the number of the coefficients with magnitude exceeding certain threshold. Another is 

to exponentiate the entropy of the coefficient sequence. 𝑁0 obtained based on the coefficient 

sequence itself is more desirable than certain threshold if it is involved in the development of 

an adaptive and data-driven method for decomposition scale selection. Also, the concept of 

wavelet entropy in [172] was adopted to measure the number of significant wavelet coefficients 

𝑁0 through wavelet expansion of a signal x. 𝑁0 can be calculated by the equation below [172],  

𝑁0 = 𝑒
𝐻  (5-3) 

where 𝐻 =  𝑊𝐸 and WE is a wavelet entropy calculated based on (4-13). The value of 𝑁0 

also means the number of the largest wavelet coefficients that needs to be preserved for an 

adequate representation of x. It has been demonstrated in Figure 5-2, which illustrates 𝑠1 and 

𝑠2 with their corresponding 𝑁0 representation in (a) and (b), respectively. Both PD signals 

are decomposed into 3 scales with the wavelet selected by WEBWSS. Parameters, e.g., 

XCORR and MSE, are used to investigate the difference between PD signals and the 
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corresponding 𝑁0 representations, which are listed in Table 5-1. The results are in agreement 

with the statement above, i.e., the original signal can be sufficiently represented by 𝑁0 

coefficients. 

 

 

Figure 5-2 (a) s1 and its N0 representation, (b) s2 and its N0 representation 

 

Table 5-1 Parameters for the difference investigation between PD signals and their N0 representations 

 MSE XCORR 

𝒔𝟏 & 𝑵𝟎 𝒓𝒆𝒑.  65.6 10−   0.9999 

𝒔𝟐 & 𝑵𝟎 𝒓𝒆𝒑. 
51.6 10−  0.9994 

 

5.3.2  Sparsity 

Sparsity is the prerequisite for the application of compressive sensing in signal processing. 

Mathematically, for a given N-sample signal [𝑋], it is k-sparse if it has at most k non-zeros, 

i.e., ‖𝑋‖0 ≤ 𝑘 [173]. The definition is also extended to a nearly sparse signal, that is, 𝑋 is 

k-sparse if k elements are remarkably larger than the other 𝑁 − 𝑘 elements. Generally, signals 

are not sparse themselves, but they may have sparse nature when they are represented in some 

domains, e.g., wavelet domain. In this case these signals are also referred to as k-sparse [173].  
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The quantification of sparsity is given by [171] 

 𝑠𝑝 = (1 −
𝑘

𝑁
) × 100% (5-4) 

where 𝑠𝑝 is the sparsity value. In fact, the definition of sparsity in (5-2) and (5-4) are the 

same in essence but represented by different equations.  

In relation to the signal representation in wavelet domain, {𝑑𝑗,𝑖}  represents the detail 

coefficients of the 𝑗𝑡ℎ scale with the length of 𝑛𝑗, and thus, i = 1,2, . . . , nj. Based on the 

definition of sparsity, {𝑑𝑗,𝑖} is sparse if k coefficients in {𝑑𝑗,𝑖} are larger than the rest, and 

the sparsity of {𝑑𝑗,𝑖} can be expressed by  

𝑠𝑝𝑗 = (1 −
𝑘

𝑛𝑗
) × 100% (5-5) 

5.3.3  Sparsity-based Method for Decomposition Scale Selection 

An inappropriate decomposition may lead to either ineffective reduction of noise (low scale) or 

distortion of the signal of interest, together with long computational time (high scale). It is 

therefore necessary to propose a new method that can select the best decomposition scale in an 

automated way. The combination of the concepts of wavelet entropy and sparsity discussed 

above sheds light on this. Note that the concept of sparsity will not be directly applied in the 

new proposed method for scale determination. A new concept, significant coefficients ratio 

(SCR), will be used to reflect sparsity of the decomposed signals. For an arbitrary signal, 𝑁0 

denotes the number of significant wavelet coefficients that can adequately represent it in the 

wavelet domain. The SCR is then defined by 

𝑆𝐶𝑅𝑗 =
𝑁0
𝑛𝑗

 (5-6) 

The inverse relationship between sparsity and SCR can be seen from (5-5) and (5-6). The 

sparsity reaches its maximum value when SCR is its minimum value. Substituting 𝑁0 from 

(5-3) into (5-6) yields 

𝑆𝐶𝑅𝑗 =
𝑒𝐻

𝑛𝑗
 (5-7) 

Based on (5-7), SCR reaches its minimum value if 𝑒𝐻 is minimum, i.e., the wavelet entropy 

is minimum. Smaller wavelet entropy value is desirable since it indicates that fewer number of 

wavelet coefficients that preserve energy as well as less randomness of the signal [161].  
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SCR in (5-7) can reflect the sparsity of detail coefficients of a transformed signal and enables the 

identification of the presence of noise in detail coefficients. A large SCR means that noise is 

presented with a large number of coefficients with small magnitudes, and a small SCR implies that 

signal is presented with only a few coefficients with large magnitudes. Table 5-2 lists the SCR of 

transformed 𝑠1, 𝑠2 and white noise with 2048 sampling points. The difference of SCR figures 

among simulated PD signals and white noise can be seen from Table 5-2. For pure PD signals, the 

SCR at each decomposition scale is less than 0.1, which means PD signals are presented with only 

a few large coefficients. In contrast to PD signals, the SCR of white noise at each decomposition 

scale is larger than 0.4, indicating that noise is presented with a large number of coefficients. After 

numerous simulations of PD signals and white noise as well as their wavelet-based transforms, it 

is interesting to find that a detail coefficient sequence at certain scale is noise only if its SCR is 

larger than 0.4 and is signal only if its SCR is less than or equal to 0.1. 

 

Table 5-2 SCR of transformed s1 and s2 with white noise at each decomposition scale 

 
SCR of Transformed Signals 

𝒔𝟏  𝒔𝟐  𝒘𝒏 

𝒅𝟏  0.0009 0.0019 0.4552 

𝒅𝟐  0.0039 0.0076 0.4680 

𝒅𝟑  0.0077 0.0110 0.5385 

𝒅𝟒  0.0152 0.0207 0.4773 

𝒅𝟓  0.0294 0.0610 0.4559 

𝒅𝟔  0.0556 0.0400 0.6111 

𝒅𝟕  0.10 0.0588 0.6500 

𝒅𝟖  0.0833 0.0954 0.4167 

 

Based on the analysis above, SCR can be adopted as a criterion for the determination of an 

appropriate decomposition scale. The general process of this novel method for decomposition 

scale determination is described as follows, 

1. Given an N-sample noisy PD signal, 𝑛𝑠, the maximum decomposition scale 𝐽𝑚𝑎𝑥 is given 

by 𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔2𝑁), 

2. DWT of 𝑛𝑠 generates the detail coefficients {𝑑𝑗} at scale j, 𝑗 = 1,2, . . . , 𝐽𝑚𝑎𝑥, 
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3. Based on (5-7), the SCR of each {𝑑𝑗} can be calculated, 

4. The selection of an appropriate decomposition scale needs to follow the rules below, 

a) Select the decomposition scale DS at which the detail coefficient sequence has the 

minimum SCR; 

b) If SCR at the selected DS is less than or equal to 0.1, then DS = DS – 1. 

Figure 5-3 is a flow chart of the general process of the selection of an appropriate decomposition 

scale for the wavelet expansion of a noisy PD signal.  

 

Start

Load PD signal ns, calculate the  

maximum decomposition scales 

Jmax based on the length of ns

DWT of ns to obtain the approx. 

cfs, {dj } at scale j, j = 1.

Calculate the wavelet entropy H(j) 

and the the number of significant 

cfs N0(j) based on (4-12) & (5-3)

[~,DS] = min(SCR(j)), 

DS    [ 1,Jmax]

DS is selected as the optimal 

decomposition scale for the 

wavelet-expansion of ns

End

Calculate the SCR of detail  

coefficient sequence at scale j  

based on (5-7)

j = Jmax ?

Yes

No

j = j+1

SCR(DS)≤0.1 ?

No

Yes

DS = DS - 1

 

Figure 5-3 Flow chart of the general process of decomposition scale determination 
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5.4  Performance Evaluation of New Decomposition Scale 

Determination 

Parameters introduced in Section 4.6.1 will be applied to evaluate the performance of 

sparsity-based method for decomposition scale determination in wavelet-based PD denoising. 

The new method is initially proposed based on simulated PD signals contaminated by white 

noise, as did for WEBWSS. The performance evaluation is then extended to PD signals with 

the involvement of DSI. 

5.4.1  PD Signals Corrupted by White Noise 

𝑠1 and 𝑠2 represent typical PD signals with a single pulse, i.e., DEP and DOP. Figure 5-4 

delineates 𝑠1 and 𝑠2, and their corresponding noisy signals corrupted by white noise with 

SNR = -5. As wavelet length method is used as a reference method, the wavelets selected by 

CBWSS for the wavelet decomposition of noisy  𝑠1  and 𝑠2  are ‘db3’ and ‘db10’, 

respectively. 

 

 

Figure 5-4 (a) s1, (b) noisy s1, (c) s2, (d) noisy s2 

 

The linked distribution of SCRs of noisy PD signals are illustrated in Figure 5-5 and Figure 
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5-6. Based on the sparsity-based method for decomposition scale determination, 7 and 5 are 

the selected decomposition scale for noisy 𝑠1 and 𝑠2 , respectively. For wavelet length 

method, 8 and 7 are the selected decomposition scales based on (5-1) for noisy 𝑠1 and 𝑠2, 

respectively. To evaluate the performance of different methods for scale selection, Figure 5-7 

illustrates the denoising results of noisy 𝑠1 and 𝑠2 with the selected scales mentioned 

above.  

 

 

Figure 5-5 SCR distribution of transformed noisy s1 

 

 

Figure 5-6 SCR distribution of transformed noisy s2 
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Figure 5-7 Denoising results of (a) noisy s1, (b) noisy s2 using different scale selection methods 

 

Better denoising results of both noisy 𝑠1 and 𝑠2 can be seen from Figure 5-7 due to the 

application of the sparsity-based method for decomposition scale determination. The shapes 

of denoised PD signals using both methods are similar, but the peak distortion using the new 

method is reduced as compared to wavelet length method. Parameters regarding the 

performance evaluation of the sparsity-based method are listed in Table 5-3. Figures in the 

table are in agreement with the direct observation from Figure 5-7, i.e., the ME of denoised 

PD signals has been improved when the sparsity-based method is applied. The improvement 

of ME means that PD pulses with small magnitudes may be successfully extracted from 

background noise with the application of the new scale selection method. Equally, 

improvements can be seen from MSE and XCORR of denoised PD signals, which are 

desirable as relatively lower distortion of PD signals can increase the accuracy for the 

location of PD defects within insulation systems. 
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Table 5-3 Parameters used for performance evaluation of different scale selection methods 

 Wavelet Length method Sparsity-based method 

𝑠1 

ME 0.2650 0.2308 

MSE 0.0034 0.0029 

XCORR 0.9302 0.9386 

𝑠2 

ME 0.4012 0.2865 

MSE 0.0028 0.0022 

XCORR 0.9335 0.9353  

 

Noisy 𝑠1 and 𝑠2 are processed through one-scale to full-scale wavelet-based denoising to 

further evaluate the performance of the sparsity-based method for decomposition scale 

determination. The SNRs after denoising with various scales for noisy 𝑠1  and 𝑠2  are 

delineated in Figure 5-8 and Figure 5-9, respectively. Based on the SNRs after denoising, 

7-scale and 4-scale wavelet-based denoising can obtain the best SNR after denoising for noisy 

𝑠1 and 𝑠2, respectively. The scale that can have best denoising result for noisy 𝑠1 is in 

agreement with the scale selected by the sparsity-based method. The scale selected by the 

sparsity-based method for noisy 𝑠2 is 5, which is not the scale at which it can obtain the best 

SNR after denoising. However, the scale selected by the novel method is a  scale close to the 

optimum scale, which means the SNR after denoising is just lower than the best one (see 

Figure 5-9). Note that variations of SNRs after PD denoising further demonstrate that 

decomposition scale constitutes a critical component in wavelet-based PD denoising. 

Denoising with higher decomposition scale may lead to the loss of some information of PD 

signals of interest. In contrast, denoising with lower decomposition scale may lead to the 

residual of noise in the denoised PD signals. 

A full-scale wavelet expansion of noisy 𝑠1  and 𝑠2  have been implemented, and their 

approximation and detail coefficients at each decomposition scale are illustrated in Figure 

5-10 and Figure 5-11, respectively. Based on the SCR distributions in Figure 5-5 and Figure 

5-6, the minimum SCR for noisy 𝑠1 and 𝑠2 are obtained at scale 7 and scale 6, respectively. 

This can be directly observed from the detail coefficient sequences, as shown in Figure 5-10 

and Figure 5-11. In Figure 5-10, D7 is smoother than any other detail coefficient sequence, 

which means that it has the minimum randomness. Equally, D6 in Figure 5-11 is less random 

than the others. Low randomness implies that white noise is not remained, or the residual of 
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white noise is minimum at that scale. The presence of white noise can be determined by the 

SCR value of that scale. As such, it is reasonable to adopt the SCR as a criterion for 

decomposition scale determination in wavelet-based denoising. 

 

 

Figure 5-8 SNRs after denoising of noisy s1 with various decomposition scales 

 

 

Figure 5-9 SNRs after denoising of noisy s2 with various decomposition scales 
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Figure 5-10 A full-scale wavelet expansion of noisy s1: approximation and detail coefficients at each decomposition scale 
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Figure 5-11 A full-scale wavelet expansion of noisy s2: approximation and detail coefficients at each decomposition scale 
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The effectiveness of the sparsity-based method for decomposition scale determination has 

been analyzed with simulated PD signals contaminated by white noise with SNR = -5. In this 

scenario, it can select an appropriate decomposition scale for wavelet-based PD denoising and 

outperforms wavelet length method. In the attempt to fully evaluate its performance, PD 

signals 𝑠1 and 𝑠2 corrupted by different white noise levels are investigated. SNR is then set 

to -3, -1, 1, and 3 representing noise presence with various levels. Table 5-4 lists the 

decomposition scale selected by the sparsity-based method for PD signals with various SNRs.  

 

Table 5-4 Decomposition scale selected by sparsity-based method for PD signals with various SNRs 

  
SNRs 

-3 -1 1 3 

𝒏𝒔𝟏 

DS 7 7 7 7 

Best SNR Scale 7 7 7 6 

𝒏𝒔𝟐 
DS 5 5 5 5 

Best SNR Scale 4 4 4 4 

 

𝑛𝑠1 and 𝑛𝑠2 refer to as noisy PD signals, and Best SNR Scale is the scale at which the 

denoised PD signal can obtain the best SNR after denoising. Difference can be seen between 

the decomposition scale selected by the sparsity-based method and the best SNR scale for 

𝑛𝑠1 when the noise level in noisy PD signals is not high. For 𝑛𝑠2, the selected scales are not 

in agreement with the best SNR scales. It is necessary to mention that the scales selected for 

𝑛𝑠1 with SNR = 3 and for 𝑛𝑠2 at each noise level are the scales close to the best one, which 

means the resultant denoised PD signals using the selected scale can obtain the SNR just 

lower than the best one. As such, the decomposition scale determined by the sparsity-based 

method can provide a relatively good denoising results than wavelet length method, even if 

the scale selected is not the best one in certain scenario. Parameters, such as ME, MSE, and 

XCORR, used to compare the denoising results between the sparsity-based method and 

wavelet length method are illustrated in Figure 5-12 and Figure 5-13 for 𝑛𝑠1 and 𝑛𝑠2, 

respectively. Remarkable differences can be seen from these parameters of denoised PD 

signals using the sparsity-based method and wavelet length method, especially when SNR is 
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low. The promising performance of the sparsity-based method enables it to be a good 

approach for decomposition scale determination in wavelet-based PD denoising. 

The sparsity-based method for decomposition scale determination is also applied to noisy PD 

signals with multiple pulses (see Figure 5-14), where 𝑠𝑝𝑑1 and 𝑠𝑝𝑑2, as shown in Figure 

4-12 (a) and Figure 4-13 (a), are corrupted by white noise with SNR = -5. The SCR 

distribution of both noisy PD signals are illustrated in Figure 5-15 based on (5-7). Scale 7 and 

scale 4 are then selected based on the SCR criterion for the wavelet-expansion of noisy 𝑠𝑝𝑑1 

and 𝑠𝑝𝑑2, respectively. Also, the scale at which the denoised PD signals can obtain the best 

SNR after denoising has been highlighted in Figure 5-16. It demonstrates that the selected 

scales by the sparsity-based method are in agreement with the best SNR scales. As a reference 

method, scale 11 and scale 9 are selected by wavelet length method for noisy 𝑠𝑝𝑑1 and 

𝑠𝑝𝑑2, respectively. In fact, the SNRs after denoising shown in Figure 5-16 indicate that the 

selection of scale by the sparsity-based method is much better than wavelet length method. 

The denoising results of noisy PD signals with multiple pulses shown in Figure 5-17 further 

demonstrate that the sparsity-based method is a promising approach that can be applied for 

scale determination in wavelet-based PD denoising. 
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Figure 5-12 ME, MSE, and XCORR of denoised ns1 using sparsity-based and wavelet length method 

 

 

Figure 5-13 ME, MSE, and XCORR of denoised ns2 using sparsity-based and wavelet length method
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Figure 5-14 (a) spd1 with SNR = -5, (b) spd2 with SNR = -5 

 

 
Figure 5-15 SCR distribution of transformed (a) noisy spd1, (b) noisy spd2 
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Figure 5-16 SNRs of denoised PD signals with various scales, (a) noisy spd1, (b) noisy spd2 

 

 

Figure 5-17 Denoising results of (a) noisy spd1, (b) noisy spd2 using different scale selection methods 
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In Chapter 4, a novel wavelet selection scheme, WEBWSS, was proposed based on the 

concept of wavelet entropy. It is necessary to investigate the performance of the 

sparsity-based method in combination with WEBWSS. As mentioned before, wavelet length 

method for the determination of decomposition scale is dependent on a fixed wavelet applied 

through the whole decomposition and reconstruction of PD signals. The fixed wavelet used in 

wavelet length method is selected by the correlation-based technique. For comparison, the 

combination of WEBWSS and the sparsity-based method for scale determination is termed 

WEBWSS-SP, and the integration of CBWSS and wavelet length method for scale 

determination is termed CBWSS-WL. PD signals 𝑠1 and 𝑠2 contaminated by white noise 

with SNR = -5 (shown in Figure 5-18 (a) and (b) respectively) are denoised by WEBWSS-SP 

and CBWSS-WL, respectively. Table 5-5 lists the decomposition scales selected by 

WEBWSS-SP and CBWSS-WL for noisy 𝑠1 and 𝑠2. The corresponding denoising results 

are illustrated in Figure 5-18 (c) – (f). Denoised PD signals shown in Figure 5-18 (c) and (d) 

using these two different methods demonstrate that denoised PD signals suffer less distortion 

due to the application of WEBWSS-SP. Residuals between original and denoised PD signals 

shown in Figure 5-18 (e) and (f) also indicate that denoised PD signals using the new method 

are closer to the original ones. The parameters used for performance evaluation are listed in 

Table 5-6, which indicates that WEBWSS-SP is much better than CBWSS-WL in PD signal 

denoising. In addition, the differences of the denoising results between Figure 5-7 and Figure 

5-18 further demonstrate that WEBWSS is more advantageous than CBWSS in wavelet-based 

denoising of PD signals. 

 

Table 5-5 Decomposition scale selected by WEBWSS-SP and CBWSS-WL for noisy s1 and s2 

 Wavelet-based Denoising 

WEBWSS-SP CBWSS-WL 

 𝒔𝟏 6 8 

 𝒔𝟐 5 7 
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Figure 5-18 (a) noisy s1 , (b) noisy s2 , denoising results of (c) noisy s1, (d) noisy s2 using WEBWSS-SP 

and CBWSS-WL, (e) residuals between original and denoised s1 using WEBWSS-SP and CBWSS-WL, 

(f) residuals between original and denoised s2 using WEBWSS-SP and CBWSS-WL 
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Table 5-6 Parameters for performance evaluation of CBWSS-WL and WEBWSS-SP in PD denoising 

  CBWSS-WL WEBWSS-SP 

 𝒔𝟏 

ME 0.2650 0.1821 

MSE 0.0034 0.0010 

XCORR 0.9302 0.9784 

 𝒔𝟐 

ME 0.4012 0.2436 

MSE 0.0028 0.0015 

XCORR 0.9335 0.9511  

 

A full comparison between WEBWSS-SP and CBWSS- WL in PD denoising is presented in 

Table 5-7 with PD signals 𝑠1 and 𝑠2 under various noise levels. Lower ME and MSE, and 

higher XCORR are desirable by the application of new techniques in wavelet-based PD 

denoising. The parameters listed in Table 5-7 demonstrate that noisy PD signals processed by 

WEBWSS-SP can have better denoising results than CBWSS-WL. 

 

Table 5-7 Parameters used for comparisons between CBWSS-WL and WEBWSS-SP in PD denoising 

with various noise levels 

 
SNRs for CBWSS-WL SNRs for WEBWSS-SP 

-3 -1 1 3 -3 -1 1 3 

𝒔𝟏 

ME 0.2067 0.1741 0.1485 0.1287 0.1603 0.1243 0.0411 0.0127 

MSE 0.0026 0.0019 0.0013 0.0010 0.0008 0.0006 0.0003 0.0002 

XCORR 0.9494 0.9646 0.9752 0.9826 0.9822 0.9870 0.9928 0.9947 

𝒔𝟐 

ME 0.3495 0.2967 0.2470 0.2043 0.2007 0.1034 0.1106 0.1901 

MSE 0.0021 0.0015 0.0011 0.0008 0.0012 0.0004 0.0003 0.0006 

XCORR 0.9502 0.9641 0.9745 0.9816 0.9627 0.9878 0.9899 0.9874 

 

Based on the analysis above, the sparsity-based method for decomposition scale 

determination is a promising technique that can be applied in the field of PD denoising. The 

SCR-based criterion for an appropriate scale selection is a data-driven and automated 

technique. When incorporated with wavelet-based PD denoising, it provides a reasonable 

scale that can effectively minimize the negative effects, e.g., signal distortion, on denoised PD 

signals. Accordingly, PD extraction and location can benefit from the improvement of 

wavelet-based PD denoising due to the involvement of the sparsity-based method for scale 
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determination. 

5.4.2  PD Signals Corrupted by White Noise and DSI 

The application of the sparsity-based method for decomposition scale determination has been 

fully discussed based on PD signals corrupted by white noise. As did for the test of WEBWSS 

for wavelet selection, the sparsity-based method is also extended to PD signals contaminated 

by both white noise and DSI.  

The noisy PD signals with white noise and DSI used for the test are shown in Figure 4-14, 

where the DSI is added with magnitude of 0.1, and white noise has a mean value of zero and 

standard deviation of 0.3. The SNRs of noisy 𝑠1 and 𝑠2, based on (4-16), are -6.22 and -8.06, 

respectively. WEBWSS-SP is then applied to both noisy PD signals, and scale 7 (Figure 5-19) 

and scale 6 (Figure 5-20) are selected for noisy 𝑠1 and 𝑠2, respectively. The selected scale 

can reflect the randomness of the detail coefficient sequence at that scale, i.e., less random 

than the others. Denoising results with the selected scale are illustrated in Figure 5-21. The 

effect of DSI on denoised PD signals can be effectively reduced in this case. Based on this, 

low DSI level in noisy PD signals can be successfully suppressed by WEBWSS-SP. Further 

investigation is implemented through the increase of DSI level in original PD signals. As the 

magnitude of DSI increases to 0.3, scale 8 and scale 6 are the selected scale for noisy 𝑠1 and 

𝑠2, respectively. The DSI starts to remain in both denoised PD signals, which can be seen 

from Figure 5-22. Also, severe distortion of the denoised PD signals can be observed in 

Figure 5-22 due to the involvement of DSI.   
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Figure 5-19 SCR distributions of noisy s1 with white noise and DSI 

 

Figure 5-20 SCR distributions of noisy s2 with white noise and DSI 
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Figure 5-21 Denoising results of (a) noisy s1, (b) noisy s2 with white noise and DSI 

 

 

 

Figure 5-22 Denoising results of (a) noisy s1, (b) noisy s2 corrupted by white noise and relatively 

high-level DSI  

 

Results presented above have seen the influence of DSI on the decomposition scale 

determination. The selected scale by the sparsity-based method, in combination with 

WEBWSS, cannot fully suppress DSI with relatively high level in noisy PD signals. Also, the 
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pulse peak of denoised PD signals are seriously distorted with the increased DSI level in 

noisy PD signals. The lower effectiveness of the reduction of DSI may be mainly due to the 

wavelet-based PD denoising technique, as the similar situation also cannot be circumvented in 

the wavelet selection for PD denoising.  

5.5 Conclusion 

In the area of PD denoising, decomposition scale of wavelet-based technique is either 

determined by trial and error, or experience. As a result, the motivation of this research is to 

propose a new method that can automatically select a reasonable decomposition scale. In this 

chapter, a SCR-based criterion has been proposed to automatically select an appropriate 

decomposition scale in the context of PD denoising. The SCR of the detail coefficient 

sequence at each decomposition scale can reflect the sparsity of that sequence. The lower 

SCR, the higher the sparsity is. Based on the definition of SCR, high sparsity indicates that 

low level noise presented in that scale. In the meantime, wavelet length method and 

sparseness measurement method have been discussed. Sparseness measurement method 

functions as a part of inspiration for the novel method with significant improvement in scale 

selection. In relation to PD denoising, wavelet length method is adopted as a reference 

method to highlight the advantages of the sparsity-based method. Investigations show that the 

sparsity-based method can select a reasonable decomposition scale for wavelet-based PD 

denoising, and present better denoising results than wavelet length method.  

The aforementioned explication of the sparsity-based method is based on the assumption that 

PD signals are only contaminated by white noise. To test its robustness in noise reduction, it 

has been extended to noisy PD signals with white noise and DSI. Results indicate that the 

integration of WEBWSS and the sparsity-based method for scale selection can suppress both 

noise if DSI is in a low level. With the increase of DSI level in noisy PD signals, the 

effectiveness of DSI reduction deteriorates.  

It is necessary to mention that the improved effectiveness of this sparsity-based method in 

wavelet-based noise suppression was derived from simulated PD signals. Further 

investigation requires to extend it to real PD signals, which can have various waveforms due 
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to those frequently mentioned factors such as signal attenuation and design of detecting 

circuits. For this purpose, real PD signals will be applied in Chapter 8 to demonstrate its 

feasibility in PD denoising in terms of varied waveforms. It may have the same limit as that in 

the wavelet selection scheme proposed in last chapter, which is caused by the limited range of 

PD waveforms involved in the investigation.  
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6  Threshold Estimation for Wavelet-based PD 

Denoising 

6.1  Introduction 

Signal denoising can benefit from wavelet expansion as both time and frequency information 

can be unveiled simultaneously. Wavelet selection and decomposition scale determination 

have been discussed in last two chapters. Threshold estimation is another critical element in 

wavelet-based technique for signal denoising. Note that both the signal of interest and noise 

are decomposed and possibly remained together at each decomposition scale through a 

wavelet expansion. To remove the noise from the signal of interest, an appropriate threshold 

needs to be applied to the detail coefficient sequence at each decomposition scale using a 

thresholding function or policy. Generally, threshold estimation technique is proposed based 

on the basic idea that the energy of a signal often concentrates in a few coefficients while the 

energy of noise spreads among all coefficients in wavelet domain. Due to the difference of 

energy concentration, a few large coefficients representing the signal are remained, while a 

large number of coefficients with small magnitudes representing noise is removed through the 

estimated threshold as well as a thresholding function or policy. As such, thresholds of 

wavelet coefficients determine the quality of the denoised signal. If the estimated threshold is 

too low, annoying noise will be remained in the denoised signal, while if the estimated 

threshold is too high, the signal of interest will suffer severe distortion. Based on this, 

numerous techniques for threshold estimation, including Minimax threshold [140], the 

Rigorous SURE threshold [140], [174], and the universal threshold [140], have been 

developed during the past decades.  

6.2 Existing Threshold Estimation Techniques 

Decomposition, thresholding, and reconstruction are the basic procedures for wavelet-based 

denoising. The selection of wavelet and decomposition scale, which is closely related to 

decomposition, has been fully discussed in previous chapters. Reconstruction is not a critical 
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issue if challenges of decomposition and thresholding have been well addressed. The 

thresholding normally includes two aspects. One aspect is to define an operator 𝛤{∙} for the 

determination of an appropriate threshold 𝑡ℎ𝑟, the other is to define an operator 𝑇{∙} that 

reduces noise to obtain the thresholded wavelet coefficients 𝑑′𝑗,𝑖. These two aspects can be 

expressed by the following equations, 

𝑡ℎ𝑟 = 𝛤{𝑑𝑗,𝑖}  (6-1) 

𝑑′𝑗,𝑖 = 𝑇{𝑑𝑗,𝑖, 𝑡ℎ𝑟} (6-2) 

In this section, the most commonly used threshold estimations that function as the operator 

𝛤{∙} in MATLAB are discussed as follows.  

6.2.1  Minimax Threshold 

Minimax threshold is a threshold estimation technique proposed to minimize the constant 

term in an upper bound of the risk involved in estimating a function [140], [174], [175]. 

Minmax adopts a fixed threshold that can yield minimum/maximum variance. The minimax 

principle is used in statistics to design estimators. Since the denoised signal can be assimilated 

to the estimator of the unknown regression function, the minimax estimator is the option that 

realizes the minimum, over a given set of functions, of the maximum mean square error [163]. 

Details of the mathematical derivations of Minimax threshold is not in the scope of this thesis 

and can be seen in [140].    

6.2.2  Rigorous SURE Threshold 

Rigorous SURE threshold in MATLAB is named ‘rigrsure’. It is a threshold estimation 

technique that uses the Stein’s Unbiased Risk Estimate(SURE) criterion to get an unbiased 

estimate [140], [175], [176]. Different from Minimax threshold, ‘rigrsure’ threshold is 

estimated based on the wavelet coefficients at each decomposition scale, i.e., the estimated 

threshold is scale-dependent. The estimate of the risk for a particular threshold value 𝜆 can 

be obtained through SURE, and then minimizing the risks in 𝜆 gives a selection of the 

threshold value [163]. More details regarding ‘rigrsure’ threshold can be seen in [140], [174]. 
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6.2.3  Universal Threshold 

Universal threshold is proposed by Donoho & Johnstone as an alternative to the use of 

minimax thresholds in [140]. It suggests thresholding of wavelet coefficients by a fixed 

threshold given by  

𝑡ℎ𝑟 = �̂�√2𝑙𝑜𝑔𝑛  (6-3) 

where n is the number of data points or the length of the signal and �̂� is the estimate of the 

noise level, which is the median absolute deviation of the wavelet coefficients at the finest 

level, divided by 0.6745. This threshold is easy to remember and its implementation in 

software requires no costly development of look-up tables as compared to minimax threshold 

[140], [174]. The universal threshold is substantially larger than the minimax threshold for 

any particular value of n (see the difference in Figure 6-1). As such, fewer coefficients will be 

involved in the reconstruction resulting in an approximation that is smoother than the 

minimax threshold.  

For a given signal or data sequence, the parameter n in (6-3) is constant and 

scale-independent. However, the wavelet patterns of PD signals and noise are scale dependent 

[22]. As a result, the threshold using (6-3) can reduce too much energy of the PD signal in 

wavelet-based PD denoising. To mitigate this negative effect, a revised universal threshold 

(see (3-8)) has been proposed in [22].  

6.2.4  Existing Threshold Estimation Techniques in PD Denoising 

It is necessary to mention that the universal threshold in MATLAB is equal to √2𝑙𝑜𝑔𝑛, and 

named ‘sqtwolog’. In relation to PD signal denoising, a revised version of the universal 

threshold has been proposed in [22]. It is a scale-dependent noise estimation technique, and 

thus, more accurate denoising results can be obtained. Due to the enhanced quality of 

denoised PD signals, it has been widely used in PD denoising [12], [21], [123], [170], [177]–

[179]. Figure 6-1 illustrates the threshold estimation techniques for white noise with 2048 

sampling points. The white noise is normal distributed in Figure 6-1. It can be seen that a 

small portion of coefficients are retained for rigrsure and minimax thresholds, while all values 
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are rejected in the case of the universal threshold. The difference between sqtwolog and 

revised universal threshold indicate that the coefficients of noise can be over-smoothed by 

both thresholds, but the over-smoothing caused by sqtwolog is more serious than the revised 

universal threshold.  

 

 

Figure 6-1 Threshold for white noise selected by different threshold estimation techniques 

 

Figure 6-2 and Figure 6-3 delineate the denoising results of PD signals, 𝑠1  and 𝑠2 

contaminated by white noise with SNR = 0. For both denoising results, it can be seen that the 

universal threshold (refers to as revised universal threshold) can present better results than the 

others. Also, the use of various threshold estimations further demonstrates that the distortion 

of denoised signals is dependent on the threshold used.  
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Figure 6-2 Denoising results of s1 through different threshold estimation techniques 

 

 

Figure 6-3 Denoising results of s2 through different threshold estimation techniques 

 

The parameter, MSE, is used to evaluate the degree of distortion of denoised 𝑠1 and 𝑠2 with 

various threshold estimations, and the corresponding figures are listed in Table 6-1. 

Parameters in the table show that the distortion of denoised PD signals using the universal 

threshold is much less than the others. It means that the universal threshold is preferable than 

the minimax, rigrsure and sqtwolog thresholds in the area of PD denoising. Based on this, the 

universal threshold is adopted as a reference threshold estimation technique for the novel 

threshold estimation introduced in next section.  
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Table 6-1 MSE used for the evaluation of denoising results through various threshold estimations 

 Threshold Estimations 

Minimax Rigrsure Sqtwolog Universal 

𝒔𝟏  0.0022 0.0015 0.0033 0.0005 

𝒔𝟐  0.0034 0.0029 0.0044 0.0008 

 

6.3  A Novel Threshold Estimation Technique 

Among the aforementioned threshold estimation techniques, the universal threshold takes a 

leading position in signal denoising due to its optimality properties [140], [180]. The 

universal threshold, however, is estimated based on the noise level, typically a scaled median 

absolute deviation of the wavelet coefficients [181]. Although the application of the universal 

threshold ‘guarantees’ a noise-free reconstruction, it usually underfits the data [181]. Also, it 

was claimed that the application of the universal threshold can lead to over-smoothed 

approximations [180], [182]. Either the underfitting or the over-smoothing of the data 

indicates that unexpected distortion is an inevitable consequence of the application of the 

universal threshold.  

Distortion of a denoised signal is highly correlated to both base wavelet selection and 

threshold estimation when the wavelet-based technique is used for signal denoising [183]. 

Due to the particular strengths in the processing of non-stationary signals, e.g., PD signals, the 

searching for an optimal wavelet and threshold of wavelet-based denoising is still an 

expanding area of ongoing research. The goal is to recover an unknown function or signal 

with less distortion from sampled data that are contaminated by noise. In Chapter 4, a wavelet 

entropy-based scheme was proposed to minimize the distortion of denoised PD signals. 

However, threshold estimation for wavelet-based PD denoising is still a challenge. It is 

widely accepted that the choice of threshold is crucial to the success of wavelet-based 

techniques for signal denoising. As such, a new formula is proposed in this chapter for the 

selection of an appropriate threshold for the application of wavelet-based denoising in PD 

signal extraction.  

The novel threshold estimation technique is proposed based on the SCR distribution of 
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transformed PD signals, and thus, named as SCR-based noise estimation. It is expected that 

the application of this new technique can minimize the distortion of denoised PD signals due 

to the threshold used. The definition of SCR has been introduced in last chapter for the 

determination of an appropriate decomposition scale. The SCRs of detail coefficient 

sequences of a noisy PD signal through wavelet expansion is hereby used to distinguish the 

level of noise presented in these sequences. By virtue of numerous simulations, the detail 

coefficient sequence can be divided into four categories (C1 – C4) based on the value of SCR: 

1. C1: Detail coefficient sequence only consists of noise coefficients if the SCR is higher 

than 0.4; 

2. C2: Detail coefficient sequence is mainly dominated by noise coefficients with very few 

high-magnitude signal coefficients if the SCR is in the range of 0.25 to 0.4; 

3. C3: Detail coefficient sequence is primarily dominated by signal coefficients with 

small-magnitude noise coefficients if the SCR is in the range of 0.1 to 0.25; 

4. C4: Detail coefficient sequence only contains signal coefficients, i.e., noise is no longer 

discernable if the SCR is less than 0.1. 

The wavelet expansion of noisy 𝑠1 (used for Figure 6-2) is used as an example to explicate 

the categories above. Figure 6-4 illustrates the detail coefficient sequences of the transformed 

noisy 𝑠1. The figure on the top right corner of each detail coefficient sequence is the SCR at 

that scale. The SCR of D1, D2, and D3 is over 0.4, and thus, these detail coefficient 

sequences are categorized into noise coefficients only. The high degree of randomness of 

these three coefficient sequences can be seen from a direct observation. For D4, its SCR is 

0.28, and thus, is categorized into the coefficient sequence which is primarily dominated by 

noise coefficients and very few signal coefficients with high magnitudes. D5, D6, and D7 are 

categorized into the detail coefficient sequences that mainly contain the signal coefficients as 

the SCRs are in the range of 0.1 to 0.25. The last detail coefficient sequence, D8, is signal 

coefficients only due to its SCR is less than 0.1. It is worth noting that the detail coefficient 

sequence in the aforementioned categories occurs in sequential order, as shown in Figure 6-4.  

Based on the categories of detail coefficient sequences, a new formula is proposed for the 

noise estimation, and is given by 
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𝜆 = ℾ(𝑘) ∙ √2𝑙𝑜𝑔𝑛𝑗  (6-4) 

𝑘 = 𝑓𝑙𝑜𝑜𝑟(𝑐𝑚 ∙ 𝑁0),𝑚 = 1,2,3,4  (6-5) 

where ℾ(𝑘)  is a function to select the 𝑘𝑡ℎ  element of the wavelet coefficients in a 

descending order of absolute magnitudes, 𝑛𝑗 is the length of the detail coefficient sequence, 

𝑐𝑚 is a constant determined by the category of detail coefficient sequences, and 𝑁0 is the 

number of significant coefficients of the detail coefficient sequence, which can be calculated 

based on (5-3). 

The parameter 𝑐𝑚 is assigned to different values with respect to the category of detail 

coefficient sequences. The coefficients in C1 are noise coefficients only. The value of 

threshold 𝜆 is expected to high enough such that all the linked coefficients can be discarded 

for reconstruction. Based on this idea, 𝜆 is equal to the maximum value of the absolute 

magnitudes of the wavelet coefficients. Then, 𝑐1 for this threshold can be calculated by the 

equation below, 

𝑐1 ≈
𝑚𝑎𝑥(|𝑑𝑗,𝑖|)

𝑁0 ∙ √2𝑙𝑜𝑔𝑛𝑗
 (6-6) 

 

 
Figure 6-4 The SCRs of detail coefficient sequences of transformed noisy s1 
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With numerous simulations of PD signals contaminated by various levels of white noise, 𝑐𝑗 

equal to 0.6 in (6-6) can present effective suppression of noise in denoised PD signals. Similar 

idea is applied to the detail coefficient sequences in C2, C3, and C4. The values of 𝑐2 , 𝑐3 

and 𝑐4 can be estimated based on 𝑐1 and the SCR range of that category. The equation for 

the estimation is given by  

𝑐𝑚 ≈
𝑐1

𝑆𝐶𝑅𝑚
∙
𝑚𝑎𝑥(|𝑑𝑗,𝑖|)

𝑁0 ∙ √2𝑙𝑜𝑔𝑛𝑗
, 𝑚 = 2,3,4 (6-7) 

Based on (6-7) and results of numerous simulations, the value of 𝑐2 equal to 1 for C2, 𝑐3 

equal to 2.5 for C3, and 𝑐4 equal to 10 for C4 can lead to effective reduction of white noise.  

The definition of this new threshold estimation denotes that the threshold at each 

decomposition scale is dependent on the significant coefficient ratio rather than the estimation 

of noise level. As such, it is expected to remove more noise from noisy PD signals and cause 

less distortion to the denoised PD signals. This will be demonstrated through simulated PD 

signals later in this chapter.  

6.4 A New Thresholding Function for Wavelet-based 

Denoising 

The reduction of noise in wavelet coefficients at each decomposition scale is implemented 

through a thresholding function or policy. As shown in (3-9) and (3-10), the hard- and 

soft-thresholding functions are frequently used in wavelet-based denoising. Both of them 

have their particular strengths and weakness. Generally, soft-thresholding function is better 

than the hard-thresholding function as the thresholded wavelet coefficients 𝑑′𝑗,𝑖 in (3-9) are 

discontinuous at the points of both −𝑡ℎ𝑟𝑗  and 𝑡ℎ𝑟𝑗 [123], [174], [184], [185]. Due to its 

discontinuity, hard thresholding function is not stable, i.e., hard thresholding function is 

sensitive to small changes in the data. This is not the case in soft-thresholding function. 

Continuous transition can be obtained as the coefficients with magnitudes larger than the 

threshold shrink by an amount equal to the threshold [180]. However, the derivative of 

soft-thresholding function is discontinuous, which is undesirable as the continuous derivative 

or higher order derivatives are often desired for optimization problems [183], [186]. Also, the 
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difference |𝑑𝑗,𝑖 − 𝑑
′
𝑗,𝑖| is constant (see Figure 3-14 (c)), which can affect the precision of 

wavelet reconstruction results [184]. To overcome the weakness of both hard- and 

soft-thresholding functions, a new thresholding function proposed in [184] without 

introducing any new parameter is applied in this chapter and defined as  

𝑑′𝑗,𝑖 = {
𝑠𝑔𝑛(𝑑𝑗,𝑖) ∙ (|𝑑𝑗,𝑖| − 𝑡ℎ𝑟𝑗/𝑒𝑥𝑝(

|𝑑𝑗,𝑖| − 𝑡ℎ𝑟𝑗

𝑡ℎ𝑟𝑗
)), 𝑖𝑓 |𝑑𝑗,𝑖| > 𝑡ℎ𝑟𝑗

0,                                                                               𝑖𝑓 |𝑑𝑗,𝑖| ≤ 𝑡ℎ𝑟𝑗

 (6-8) 

The new thresholding function in (6-8)does not include any new parameter, and has 

continuous high order derivatives [184]. In addition, this smooth thresholding function can 

reduce or even remove the constant difference between 𝑑𝑗,𝑖 and 𝑑′𝑗,𝑖, and thus, improve the 

precision of signal reconstruction [184]. To differentiate it from other thresholding functions, 

it is termed as H-S thresholding function in this thesis.  

The H-S thresholding function will be applied in wavelet-based PD denoising, and the 

denoising results will be compared to those using traditional thresholding functions. Details 

regarding this investigation is presented in next section.  

6.5 Performance Evaluation of the SCR-based Threshold 

Estimation 

A novel threshold estimation has been proposed in this chapter. Simulated PD signals with 

various noise levels are used to investigate its effectiveness in PD denoising. As discussed 

above, the universal threshold (refers to the revised universal threshold from this section) can 

present the best denoising results among the existing threshold estimations in the field of PD 

detection. As a result, the universal threshold is adopted as a reference threshold estimation in 

this investigation. Initially, the novel threshold estimation technique is applied to PD signals 

corrupted by white noise. It is then extended to PD signals contaminated by both white noise 

and DSI, as did for wavelet selection scheme and decomposition scale determination. In the 

meantime, the H-S thresholding function is used to show its advances as compared to the 

conventional hard- and soft-thresholding functions.  
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6.5.1  PD Signals Corrupted by White Noise 

6.5.1.1  SCR-based Threshold Estimation 

PD signals 𝑠1 and 𝑠2 contaminated by white noise with SNR = -5, as shown in Figure 5-4, 

are used to test the novel threshold estimation. The wavelet entropy-based selection scheme 

and sparsity-based decomposition scale determination are applied to noisy PD signals but 

with different thresholds, i.e., the universal and the novel threshold. Figure 6-5 and Figure 6-6 

illustrate the detail coefficient sequences of transformed noisy 𝑠1 and 𝑠2, respectively. Both 

the universal threshold and the novel threshold have been highlighted at each decomposition 

scale, the red line denotes the novel threshold while the black dash line is the universal 

threshold. 

 

 

Figure 6-5 Thresholds selected by different threshold estimations for transformed noisy s1 
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Figure 6-6 Thresholds selected by different threshold estimations for transformed noisy s2 

 

The figure on the top right corner of each detail coefficient sequence is the SCR of that scale. 

Difference can be seen from the universal threshold and the novel threshold for the detail 

coefficient sequences. The detail coefficients at the scale that has the SCR over 0.4 are 

discarded based on the novel threshold. However, some of them have been retained based on 

the universal threshold (see D3 and D5 in Figure 6-5). 

The denoising results of noisy 𝑠1  and 𝑠2  are delineated in Figure 6-7 (a) and (b), 

respectively. Admittedly, significant advancements of the novel threshold cannot be directly 

seen from Figure 6-7. Parameters, such as ME, MSE, and XCORR, are listed in Table 6-2, 

which demonstrate that the application of the novel threshold estimation can present better 

denoising results or cause less distortion than the universal threshold estimation in the field of 

PD extraction. The improvement of ME indicates that PD signals with small magnitudes may 

be extracted through the application of this novel threshold estimation. Lower MSE and 

higher XCORR mean that the denoised PD signals suffer less signal distortion as compared to 

the universal threshold estimation. 
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Figure 6-7 Denoised results of (a) noisy s1, and (b) noisy s2 using different thresholding functions 

 

Table 6-2 Parameters used for performance evaluation of different threshold estimations 

 ME MSE XCORR 

Universal Novel Universal Novel Universal Novel 

𝒔𝟏 0.1745 0.1497 0.0010 0.0008 0.9781 0.9824 

𝒔𝟐 0.2815 0.2737 0.0014 0.0013 0.9562 0.9598 

 

In the attempt to fully test the novel threshold estimation in PD denoising 𝑠1 and 𝑠2 are 

simulated with white noise contamination under various noise levels. The noise levels of 

noisy PD signals are presented by setting SNRs equal to -3, -1, 1, and 3. The results of 

performance test of the novel threshold estimation are illustrated in Figure 6-8 and Figure 6-9. 

It can be seen that better performances can be achieved through the use of the novel threshold 

estimation. Based on this, the novel threshold estimation can be a promising approach for the 

improvement of wavelet-based PD denoising.  
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Figure 6-8 ME, MSE, and XCORR between s1 and denoised s1 using different threshold estimations 

 

 

Figure 6-9 ME, MSE, and XCORR between s2 and denoised s2 using different threshold estimations 

 

Performance test is also applied to PD signals with multiple pulses, i.e., 𝑠𝑝𝑑1 and 𝑠𝑝𝑑2, as 

shown in Figure 4-12 (a) and Figure 4-13 (a), respectively. Both 𝑠𝑝𝑑1  and 𝑠𝑝𝑑2  are 

corrupted by white noise with SNR = 0. Denoising results of noisy 𝑠𝑝𝑑1 and 𝑠𝑝𝑑2 using 

different threshold estimations are delineated in Figure 6-10. The corresponding parameters 

used to evaluate the performance of the novel threshold estimation are listed in Table 6-3. 

Although the improvement for the denoising of PD signals with multiple pulses are not that 

remarkable, less distortion of the denoised PD signals can be obtained by the application of 

the novel threshold estimation (see Table 6-3). Also, the improved SNR of denoised PD 

signals means more noise can be reduced by the use of the novel threshold estimation. This 

investigation further supports that improvement of wavelet-based PD denoising can be 

achieved through the application of the novel threshold estimation.  
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Figure 6-10 Denoising results of (a) noisy spd1, (b) noisy spd2 using different threshold estimations 

 

Table 6-3 Parameters used for performance evaluation of different threshold estimations 

 MSE XCORR SNR 

Universal Novel Universal Novel Universal Novel 

𝒔𝒑𝒅𝟏  41.18 10−  41.06 10−  0.9827 0.9845 14.65 15.11 

𝒔𝒑𝒅𝟐 41.76 10−  41.34 10−  0.9608 0.9700 11.09 12.26 

 

6.5.1.2  H-S Thresholding Function 

The advances of the novel threshold estimation have been demonstrated through the 

denoising results of simulated PD signals. Based on this, the effectiveness of the H-S 

thresholding function in wavelet-based PD denoising will be investigated in combination of 

the new threshold estimation. The noisy 𝑠1 and 𝑠2, as shown in Figure 5-4, are used for this 

investigation. The denoising results of both noisy PD signals are illustrated in Figure 6-11. 

Direct observation of both denoised PD signals indicates that wavelet-based denoising using 

the H-S thresholding function can lead to less peak distortion of the denoised PD signals. 

Further demonstration of the H-S thresholding function is implemented through the 

parameters listed in Table 6-4. Both ME and MSE of the denoised PD signals using this new 
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thresholding function can be improved over 35% as compared to the soft thresholding 

function. This remarkable improvement is desirable as it implies that PD signals can be 

effectively extracted with less distortion, especially those with small magnitudes.  

 

 

Figure 6-11 Denoising results of (a) noisy s1, (b) noisy s2 using different thresholding functions 

 

Table 6-4 Parameters used for performance evaluation of different thresholding functions 

 ME MSE XCORR 

Soft New Soft New Soft New 

𝒔𝟏 0.1497 0.0576 0.0008 0.0004 0.9824 0.9908 

𝒔𝟐 0.2737 0.1751 0.0013 0.0008 0.9598 0.9760 

 

The H-S thresholding function is also applied to PD signals with multiple pulses. The noisy 

PD signals are the same as those used for Figure 6-10. The denoising results of these PD 

signals with multiple pulses are illustrated in Figure 6-12, and the associated parameters used 

for performance test of the H-S thresholding function are listed in Table 6-5. The lower MSE 

and higher XCORR indicate that the denoised PD signals suffer less distortion by the use of 

the H-S thresholding function. The higher SNR after denoising denotes that more noise can be 
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reduced through this new thresholding function.  

The denoising results from both PD signals with single and multiple pulses demonstrate that 

the H-S thresholding function can improve the performance of wavelet-based techniques for 

PD denoising.  

 

 

Figure 6-12 Denoising results of (a) noisy spd1, (b) noisy spd2 using different thresholding functions 

 

Table 6-5 Parameters used for performance evaluation of different thresholding functions 

 MSE XCORR SNR 

Soft H-S Soft H-S Soft H-S 

𝒔𝒑𝒅𝟏  41.06 10−  58.34 10−  0.9845 0.9880 15.11 16.18 

𝒔𝒑𝒅𝟐 41.34 10−  41.02 10−  0.9700 0.9779 12.26 13.55 

 

6.5.2  PD Signals Corrupted by White Noise and DSI 

Investigations of the novel threshold estimation as well as the new thresholding function are 

also implemented on PD signals corrupted by both white noise and DSI. The test procedures 

are the same as those for WEBWSS and sparsity-based scale determination. The noisy PD 

signals with white noise and DSI used for the test are shown in Figure 4-14, where the DSI is 
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added with magnitude of 0.1, and white noise has a mean value of zero and standard deviation 

of 0.3. The SNRs of noisy 𝑠1 and 𝑠2 , based on (4-16), are -6.22 and -8.06, respectively. 

The denoising results of PD signals corrupted by white noise and DSI are delineated in Figure 

6-13. 

 

 

Figure 6-13 Denoising results of (a) noisy s1, (b) noisy s2 with white noise and DSI 

 

In this case, the effect of white noise and DSI on PD signals can be minimized through the 

application of the SCR-based threshold estimation and the H-S thresholding functions in 

wavelet-based PD denoising. As compared to the denoising results shown in Figure 4-15 and 

Figure 5-21, it is clear that the peak distortion has been remarkably reduced. Equally, the 

effectiveness of noise suppression will be impaired if the novel level of DSI increases in the 

noisy PD signals. The denoising results when the DSI is added with magnitude of 0.3 are 

illustrated in Figure 6-14. The residual of DSI start to have a minor effect on the denoised PD 

signals. This effect of DSI becomes serious with the increase of DSI level. It is the same issue 

that has occurred in WEBWSS and WEBWSS-SP for the denoising of PD signals 

contaminated by both white noise and DSI. The results indicate that wavelet-based PD 

denoising with the SCR-based threshold method and the H-S thresholding function can 

minimize the effect of the DSI, but this is limited to low-level DSI in noisy PD signals. The 
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residual of DSI can have a major effect on denoised PD signals with the increase of t DSI 

level in noisy PD signals.  

 

 

Figure 6-14 Denoising results of (a) noisy s1, (b) noisy s2 corrupted by white noise and relatively 

high-level DSI 

 

6.6 Conclusions 

In this chapter, universal threshold estimation was proved to be more effective than other 

threshold estimations integrated in MABLAB for PD denoising. However, universal threshold 

is derived from the estimation of noise level, more exactly, white noise level. To estimate the 

threshold through a signal itself, a new method was proposed based on the findings presented 

in last chapter. That is, the sparsity of a transformed PD signal at each decomposition was 

applied for the noise estimation. Denoising results show that the effectiveness of 

wavelet-based denoising is slightly improved by introducing this new method. Also, less 

distortion can be achieved for denoised PD signals. It demonstrates that this new method can 

provide an alternative to current existing threshold estimations.  

In the meantime, conventional thresholding functions cannot effectively split the noise from 

PD signals due to their inherent limits. To overcome these limits, a new H-S thresholding 
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function used was referenced from others. Results show that this H-S thresholding function 

can improve the performance of wavelet-based denoising in PD detection.  

Wavelet-based denoising, integrated with the proposed wavelet selection scheme, 

decomposition scale determination, and the findings in this chapter, has been applied to 

simulated PD signals, results demonstrate that the performance of wavelet-based technique in 

PD denoising are remarkably enhanced. This further indicates that the wavelet-based 

technique with these new algorithms applied has a great potential to extend its range into PD 

detection in power cable systems.  

As discussed in Chapter 4 and Chapter 5 for proposed wavelet selection scheme and 

decomposition scale determination, real PD signals are required for further investigation of 

this SCR-based threshold estimation, together with the H-S thresholding function due to the 

variations of PD waveforms in practice. Real PD signals will serve as this function in Chapter 

8. However, it may still have limits in real PD denoising due to the limited range of PD 

waveforms used.  
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7 Comparison of Wavelet-based PD Denoising using 

Empirical Mode Decomposition (EMD)  

7.1 Introduction 

Wavelet-based PD denoising has been studied for decades and still has its inherent challenges, 

e.g., selection of base wavelet, scale determination, and threshold estimation. Although a 

series of improvements have been proposed in previous chapters, it is necessary to note that 

the wavelet is selected from a predefined wavelet library in WEBWSS. Wavelet-based 

denoising is often criticized for its non-adaptivity due to the use of a predefined wavelet for 

the signal under processing. This predefined wavelet in some sense cannot be a ‘best’ match 

of the signal of interest. Accordingly, signal distortion inevitably occurs and the extent to 

which the distortion of the denoised signal depends on the matching degree of the wavelet and 

the signal of interest. This challenge of wavelet-based denoising is the driving force for the 

investigation of a new technique that can denoise the signal without any prior knowledge or 

assumption. That is, the new technique is completely adaptive and automated for signal 

expansion and reconstruction. Empirical mode decomposition (EMD) is such a technique that 

can decompose the signal with the base function derived from the signal itself. Since the 

advent of EMD, it has been widely used in the area of signal denoising due to its advantages.  

EMD can decompose a given signal into a number of IMFs, from low order mode with high 

frequency to high order mode with low frequency. In other words, each IMF occupies lower 

frequencies locally in the time-frequency domain than its preceding ones. Note that the 

expansion of a given signal is just the first step for EMD-based denoising. The goal of the 

application of EMD is to split the signal into IMFs, and thus, is convenient for the following 

thresholding and reconstruction. Similar to wavelet-based denoising, the reduction of the 

annoying noise presented in the signal by EMD-based denoising requires the application of 

thresholds to IMFs. Generally, noise is dominated in low order IMFs while signal is mainly 

presented in high order IMFs. However, whether a specific IMF that carries useful 

information or noise is not known. Normally, a technique termed relative mode selection 
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(RMS) is applied to find out the relevant and irrelevant IMF modes, which has been claimed 

to be significant in EMD-based denoising. In turn, thresholds are only applied to the relative 

IMFs that are mainly dominated by signal.   

Due to the high demand for EMD-based denoising, a number of techniques have been 

developed for RMS. Noise model-based RMS (NMRMS) was introduced in [139]. The 

energy distribution of the IMFs of a given noisy signal 𝑥 and the associated white noise 

generated by a noise-only model with equal length of 𝑥 will present difference from certain 

mode, as shown in Figure 3-18. Generally, the mode that begins to present this difference is 

adopted as the mode boundary. A stricter criterion for NMRMS (termed SNMRMS) is 

adopted in [145], [153], [187], i.e., a confidence interval is used as a threshold to select 

relevant modes and only the IMFs that have energies higher than the threshold will be 

retained for further processing. In NMRMS and SNMRMS, a noise-only model is required for 

noise energy estimation, which is usually not the case in practice. To avoid the dependence of 

a noise-only model, a correlation-based RMS (CRMS) was proposed in [13], [188], [189]. 

The correlation coefficient between the original noisy signal and IMF modes is adopted as a 

criterion for the selection of the mode boundary. Although a noise-only model is not involved, 

this method is very unstable for the noisy signals with different SNRs as the correlation 

coefficient between the noisy signal and the first IMF is too strong or too weak [188]. Based 

on this, the motivation of this chapter is to find a new RMS derived from the signal itself, and 

thus, can provide an alternative to the existing methods.  

The basic idea underlying RMS is that most of important information of the signal is often 

concentrated on the higher order modes and decreases toward lower order ones. In other 

words, the information of noise is often presented in lower order modes. As mentioned in 

Chapter 4, Shannon entropy can measure the randomness or the degree of disorder of a signal. 

The energy entropy of IMF modes is derived from Shannon entropy and can also reflect the 

linked randomness or degree of disorder. As such, the energy entropy of IMF modes is used as 

a new criterion for the selection of the mode boundary. This new criterion is derived from the 

signal or data itself, and thus, it is an adaptive and data-driven method for the distinction of 

relevant and irrelevant modes for EMD-based PD denoising.  
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However, it is very interesting to find that RMS is not as important as expected in 

EMD-based PD denoising during the investigation of the effect of RMS on denoising results. 

Based on the threshold estimation introduced later, thresholding all IMFs can present better 

denoising results than any RMS mentioned above. Details regarding RMS in EMD-based PD 

denoising are discussed in the following section.  

7.2 Relative Mode Selection (RMS) for EMD in PD Denoising 

Given a noiseless signal 𝑠(𝑡) contaminated by white noise 𝑛(𝑡), the noisy signal 𝑥(𝑡) can 

be expressed by  

𝑥(𝑡) = 𝑠(𝑡) + 𝑛(𝑡)  (7-1) 

The denoising of 𝑥(𝑡) is to find an estimation �̃�(𝑡) of the noiseless signal 𝑠(𝑡). For 

EMD-based denoising, one of the critical steps is to distinguish an IMF if it is a relevant or 

irrelevant mode. This step is so-called relative mode selection. When RMS is applied to IMFs, 

together with a thresholding technique, an estimation �̃�(𝑡) can be given by 

�̃�(𝑡) = ∑ ℎ̃𝑘

𝑛

𝑘=𝑖𝑡ℎ

(𝑡) + 𝑟𝑛(𝑡) (7-2) 

where 𝑖𝑡ℎ is the mode boundary, which means IMFs from 𝑖  to 𝑛  primarily contain the 

signal information, ℎ̃𝑘(𝑡) is the thresholded IMFs. Based on (7-2), the mode boundary has a 

major effect on the estimation of 𝑠(𝑡). As a result, the techniques used to find this mode 

boundary will be discussed in this section.  

7.2.1  Noise Energy Estimate-based RMS 

The purpose of significance IMF test implemented by Wu in [153] was to establish a method 

of assigning statistical significance of information content for IMF components from any 

noisy data or signal. Numerous experiments on white noise using EMD reveal that the EMD 

behaviors like a dyadic filter for the decomposition of white noise. This finding is further 

developed to propose a noise-only model by Flandrin et al. in [145], [187] and Kopsinis et al. 

in [139] for EMD-based denoising.  

Due to a dyadic filter structure of EMD-based expansion for white noise, the power spectra of 
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the IMFs exhibit self-similar characteristics, except the first IMF [139], [153]. The 

self-similar characteristics can also be presented by the IMF energies 𝐸𝑘, which are linearly 

decreased in a semilog diagram of, e.g., log2 𝐸𝑘, with respect to k for 𝑘 ≥ 2 [139]. This 

appealing feature can be seen from Figure 7-1 that the IMF energies 𝐸𝑘 linearly decrease 

from 2nd IMF to 10th IMF of EMD-based decomposition of white noise. The IMF energies 

shown in Figure 7-1 also indicate that the first IMF carries the highest amounts of energy. 

EMD is an effective and simple algorithm but lacking theoretical frames, as shown in Figure 

3-16. As such, the sifting iterations using EMD vary due to the variation of extrema numbers 

of different signals. To further investigate the appealing feature mentioned above, white noise 

is decomposed through EMD using 1 to 15 sifting iterations. The corresponding results of the 

IMF energies log2 𝐸𝑘 are illustrated in Figure 7-2. Obviously, the linear decrease of log2 𝐸𝑘 

from the 2nd IMF to the 10th IMF can be seen in EMD decompositions using different sifting 

iterations. Based on this, a noise-only model was proposed in [139] and [187] to estimate the 

IMF energies of white noise by  

𝐸𝑘 =
𝐸1
2

𝛽
𝜌−𝑘, 𝑘 = 2,3,4, . .. (7-3) 

where 𝐸1
2 is the energy of the first IMF, and 𝛽 = 0.719, 𝜌 = 2.01.  

The first IMF of a given noisy signal through a EMD-based decomposition is considered a 

noise-only IMF [139]. For a PD signal contaminated by white noise, the first noise-only IMF 

is quite important as the subsequent IMF energies of white noise in the PD signal can be 

estimated using (7-3). As such, the IMF energies of a noisy PD signal and its linked white 

noise can be obtained for searching the mode boundary. The IMF energies log2(energy) of 

noisy PD signals 𝑠1 and 𝑠2 contaminated by white noise with SNR = -5, are used as 

examples to explain NMRMS in Figure 7-3. For noisy 𝑠1, as shown in Figure 7-3 (a), a 

significant difference between the IMF energies of real signal and the noise-only model 

initiates at the 5th IMF. As a result, IMFs 5-11 mainly contain the information of 𝑠1. For noisy 

𝑠2, as shown in Figure 7-3 (b), IMFs 1 -3 and the 7th IMF are noise-only IMFs, and thus, will 

be discarded for further processing. Based on this, the mode boundary selected by NMRMS is 

the mode that the energy of real signal remarkably deviates from the noise-only model.  
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Figure 7-1 The IMF energies Ek linearly decrease in log2(Ek) with respect to k>1 due to a dyadic filter 

structure of EMD-based decomposition of white noise 

 

1 sifting

15 sifting

 

Figure 7-2 The estimated energies of IMFs that correspond to EMDs using 1 to 15 sifting iterations 
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Figure 7-3 (a) The IMF energies of noisy s1 and the noise-only model, (b) the IMF energies of noisy s2 

and the noise-only model 

 

For SNMRMS, a confidence interval is applied and functions as the threshold to select the 

IMFs that have energies higher than that threshold. To have a 99% confidence interval, the 

threshold can be calculated by the equation [187] 

𝑙𝑜𝑔2(𝑙𝑜𝑔2(𝑇𝑘/𝐸𝑘)) = 0.46 ∙ 𝑘 − 1.919 (7-4) 

where 𝑇𝑘 is the threshold for the kth IMF. Noisy PD signals used in Figure 7-3 are also 

applied to explicate SNMRMS. Figure 7-4 illustrates the IMF energies of noisy PD signals, 

together with the noise-only model and 99% confidence intervals. Based on SNMRMS, only 

IMFs 5, and 7-9 are retained in noisy 𝑠1 and only IMF 4 is kept in noisy 𝑠2 for further 

processing. Differences of the remained IMFs can be seen in both noisy PD signals between 

NMRMS and SNMRMS.  
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Figure 7-4 (a) The IMF energies of noisy s1 together with the noise-only model and 99% confidence 

intervals, (b) The IMF energies of noisy s2 together with the noise-only model and 99% confidence 

intervals 

 

7.2.2  Correlation-based RMS 

The correlation-based RMS (CRMS), as its name implies, adopts correlation coefficient as a 

criterion to identify the degree of relevance between the IMFs that carry information and the 

original signal. Given that 𝑖𝑡ℎ  is the mode boundary for EMD-based denoising of an 

arbitrary signal 𝑥(𝑡), the summation of relevant modes can be defined by [188], [189] 

𝑥𝑚(𝑡) = 𝑥(𝑡) −∑ℎ𝑘(𝑡)

𝑚

𝑘=1

 (7-5) 

where 𝑚 = 𝑖𝑡ℎ − 1. In turn, the correlation coefficient between 𝑥(𝑡) and 𝑥𝑚(𝑡) can be 

calculated by [188], [189] 

𝜌(𝑚) =∑𝑥(𝑡) ∙

𝑁

𝑡=1

𝑥𝑚(𝑡)/(√∑𝑥2(𝑡)

𝑁

𝑡=1

∙ √∑𝑥𝑚
2(𝑡)

𝑁

𝑡=1

) (7-6) 
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where N is the length of the signal 𝑥(𝑡), m is the mode number when 𝜌(𝑚) starts to be less 

than an empirical value in the range of [0.75 0.85].  

As mentioned before, the CRMS is not stable due to the variations of SNRs of the original 

noise signal. As did for NMRMS, noisy PD signals with SNR = -5 will be used to test the 

feasibility of CRMS in EMD-based PD denoising. The correlation coefficients for both noisy 

PD signals are shown in Figure 7-5. Based on the criterion of CRMS, all the IMFs of both 

noisy 𝑠1 and 𝑠2 are retained for further processing if the empirical value is set to 0.8. It also 

indicates that the first IMF has a strong correlation with the original signal when the SNR is 

low.  

 

 

Figure 7-5 Correlation coefficients for (a) noisy s1, (b) noisy s2 
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7.2.3  A Novel Energy Entropy-based RMS 

7.2.3.1  Energy Entropy 

The definition of energy entropy is similar to that of wavelet entropy in Chapter 4. For a 

N-sample signal 𝑥(𝑡), the distribution of energy probability for 𝑥(𝑡) can be derived by 

𝑝𝑗 =
𝑥2(𝑗)

∑ 𝑥2(𝑗)𝑁
𝑗=1

 (7-7) 

where ∑ 𝑝𝑗 = 1𝑗 . Then, the energy entropy of 𝑥(𝑡) can be calculated by  

𝐸𝐸 = −∑ 𝑝𝑗 ∙ 𝑙𝑛 𝑝𝑗
𝑗

 (7-8) 

Similar to the Shannon entropy in information theory, the energy entropy of 𝑥(𝑡) can 

measure the randomness or the degree of disorder of 𝑥(𝑡). For signals corrupted by white 

noise, the energy entropy can also reflect the presence of white noise in the signal. The lower 

the entropy value, the less white noise is presented in that signal.  

7.2.3.2  Energy Entropy-based RMS 

The energy entropy-based RMS (EERMS) is inspired by CRMS. The energy entropy is 

measured by gradually removing the IMFs (fine to coarse) from the original signal. Given that 

𝑖𝑡ℎ is the mode boundary for EMD-based denoising of 𝑥(𝑡) using EERMS, the summation 

of relevant modes can be calculated based on (7-5). The energy entropy of 𝑥𝑚(𝑡) can be 

calculated based on (7-7) and (7-8). The value of m is determined when 𝑥𝑚(𝑡) has the 

minimum energy entropy. The minimum energy entropy indicates that the randomness of 

𝑥𝑚(𝑡) is minimum, i.e., the noise remained in 𝑥𝑚(𝑡) is minimum. Noisy 𝑠1 and 𝑠2, as 

used for NMRMS and CRMS, are also used as examples to show the mode boundary selected 

by EERMS in Figure 7-6 (b) and (d). Based on EERMS, IMFs from 5 to 9 for noisy 𝑠1, and 4 

to 8 for noisy 𝑠2 are remained for further thresholding and reconstruction. 

 



168 

 

ith

ith

 

Figure 7-6 (a) noisy s1, (b) the mode boundary ith selected by EERMS for (a) (c) noisy s2, (d) the mode 

boundary ith selected by EERMS for (c) 

 

7.3 EMD for Partial Discharge Denoising 

The EMD-based denoising methods, e.g., EMD-TR, EMD-DT, and EMD-IT, have been fully 

discussed in Chapter 3. The denoising results suggest that EMD-IT outperforms EMD-TR and 

EMD-DT in signal denoising. However, the selection of the threshold applied in these 

methods has not been mentioned. This will be mainly discussed in this section. With selected 
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thresholds, the RMSs and EMD-based denoising methods adopted in the area of PD denoising 

will be compared. 

7.3.1  Threshold Estimation 

The threshold applied in EMD-based denoising, as derived from (3-13) and (3-14), is a direct 

use of the threshold defined as the universal threshold in wavelet-based denoising. 

EMD-based denoising may have a serious problem in this case due to two major differences 

between wavelet- and EMD-based denoising [139]. Firstly, the object that needs to be 

processed by the threshold is different, i.e., the threshold is applied to the wavelet components 

in wavelet-based denoising, while the threshold in the EMD case is applied to each IMF, 

which basically contains the signal portion in each adaptive subband. As a result, the 

thresholding in EMD-based denoising is equivalent to the procedure in the wavelet method 

that thresholding is performed on the reconstructed signal after synthesizing the function on 

each scale separately. Secondly, the IMF samples are not Gaussian distributed with variance 

equal to the noise variance, which is, however, the basic idea for the introduction of the 

universal threshold in wavelet-based denoising. In other words, noise can be estimated 

through the variance of wavelet components irrespective of scale. In fact, the noise contained 

in each IMF is colored, leading to the difference of noise energy concentrated on each mode 

[139]. Based on this, a new formula was proposed in [139] to calculate multiples of the 

IMF-dependent universal threshold. The formula for the threshold is defined as  

𝜆𝑘 = 𝐶√𝐸𝑘 ∙ 2 𝑙𝑛 𝑁 (7-9) 

where C is a constant, N is the length of the signal, and Ek is the IMF energies that can be 

computed based on (7-3). Note that Ek in (7-9) is estimated based on white noise, it is the 

main cause of ineffectiveness of EMD-based technique in PD denoising when other type of 

noise, e.g., DSI, is involved.  
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7.3.2  Denoising Results Analysis 

7.3.2.1  Denoising Results of Various RMSs 

Four methods, i.e., NMRMS, SNMRMS, CRMS, and EERMS, have been presented in 

Section 7.2. EERMS is a novel method proposed by the author for searching the mode 

boundary in EMD-based denoising. Tests are implemented to evaluate the performance of this 

novel RMS with comparisons of the other RMSs.  

PD signals 𝑠1 and 𝑠2 are contaminated by white noise with SNR = -5. With an EMD-based 

expansion, noisy 𝑠1 is split into 10 IMFs and one residual, and noisy 𝑠2 is decomposed into 

9 IMFs and one residual. The relevant IMFs selected by various RMSs are listed in Table 7-1. 

Note that all the IMFs are selected for denoising by the use of CRMS. It is in agreement with 

the drawback claimed for CRMS, i.e., the correlation coefficient between the original PD 

signals and the first IMF is too strong when SNR of noisy PD signals is very low. With the 

relevant IMFs, the threshold estimated by (7-10) and EMD-IT are applied to obtain the 

denoising results. Parameters, i.e., ME, MSE, XCORR, and SNR (after denoising), used for 

the performance evaluation of various RMSs in EMD-based PD denoising are listed in Table 

7-2. It is found that the novel RMS cannot provide better denoising results than the others for 

noisy 𝑠1, while it can provide the same denoising results as NMRMS and CRMS for noisy 

𝑠2. In the meantime, CRMS can provide the best denoising results for both noisy 𝑠1 and 𝑠2 

among all the RMSs. 

 

Table 7-1 IMFs of noisy s1 and s2 selected by various RMSs for further denoising (SNR=-5) 

 
RMS 

NMRMS SNMRMS CRMS EERMS 

𝒔𝟏 5-10 5,7,8,9 1-10 6-10 

𝒔𝟐 4,5,6,8,9 4 1-9 4-10 
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Table 7-2 Parameters used for the performance evaluation of various RMSs in EMD-based denoising 

𝒔𝟏 
Parameters 

𝒔𝟐 
Parameters 

ME MSE XCORR SNR ME MSE XCORR SNR 

NMRMS 0.533 0.0067 0.8533 5.182 NMRMS 0.517 0.0049 0.8892 4.762 

SNMRMS 0.552 0.0078 0.8202 4.562 SNMRMS 0.540 0.0050 0.8883 4.650 

CRMS 0.533 0.0067 0.8533 5.182 CRMS 0.517 0.0049 0.8892 4.762 

EERMS 0.608 0.0081 0.8127 4.368 EERMS 0.517 0.0049 0.8892 4.762 

 

With the attempt to further test the novel RMS in EMD-based PD denoising, PD signals are 

simulated with different SNRs to represent PD signals detected in different noisy environment. 

For this purpose, the SNRs of simulated PD signals are set to -3, -1 ,1, 3, and 5. The 

parameters, as used in Table 7-2, are applied to evaluate the performance of various RMSs 

and illustrated in Figure 7-7, Figure 7-8, Figure 7-9 and Figure 7-10, respectively. Based on 

these diagrams, the novel RMS can have the same denoising results as NMRMS or SNMRMS 

for noisy 𝑠2 with low SNRs, and it can present better denoising results for noisy 𝑠2 with 

high SNRs (over 5 in Figures). Also, it can be seen that CRMS can present better denoising 

results of both noisy PD signals when the SNR of original signals is low (less than 1 in 

Figures) while NMRMS can provide better denoising results when the SNR is relatively high 

(over 1 in Figures). It is interesting to find that CRMS can deliver better denoising results 

when SNR of the noisy PD signals is low, but worse denoising results when the SNR is high. 

As known, the correlation coefficients between original PD signals and IMF modes are highly 

dependent on the SNR of the original PD signals. In other words, all the IMFs can be selected 

by CRMS for denoising when the SNR is very low, e.g., IMFs selected for both noisy 𝑠1 and 

𝑠2 with SNR = -5 (see Table 7-1). However, fewer IMFs will be selected by CRMS if the 

SNR is relatively high, as shown in Table 7-3, where the SNR for both noisy 𝑠1 and 𝑠2 is 5. 

Noisy 𝑠1 is decomposed into 9 IMFs and one residual while noisy 𝑠2 is split into 10 IMFs 

and one residual. Based on the parameters for performance evaluation of RMSs and the 

number of IMFs remained for denoising, it indicates that better denoising results can be 

obtained if the number of IMFs retained is high. As such, more details regarding the effect of 

RMS on EMD-based PD denoising will be explored in depth.  
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Figure 7-7 ME of denoised PD signals (a) s1, (b) s2 using various RMSs at different noise levels 

 

 

Figure 7-8 MSE of denoised PD signals (a) s1, (b) s2 using various RMSs at different noise levels 
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Figure 7-9 XCORR of denoised PD signals (a) s1, (b) s2 using various RMSs at different noise levels 

 

 

Figure 7-10 SNR of denoised PD signals (a) s1, (b) s2 using various RMSs at different noise levels 
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Table 7-3 IMFs of noisy s1 and s2 selected by various RMSs for further denoising (SNR =5) 

 

RMS 

NMRMS SNMRMS CRMS EERMS 

𝒔𝟏 4-9 4-9 6-9 5-9 

𝒔𝟐 3-10 3-5&8 4-10 3-10 

 

To further investigate RMSs, noisy 𝑠1 and 𝑠2 with SNR = 1 are used as examples. 10 and 9 

IMFs are obtained through EMD-based expansions of noisy 𝑠1 and 𝑠2, respectively. The 

IMFs selected by various RMSs are listed in Table 7-4. Also, the IMFs and the associated 

thresholds based on (7-10) for noisy 𝑠1 and 𝑠2 are illustrated in Figure 7-11 and Figure 

7-12. 

 

Table 7-4 IMFs of noisy s1 and s2 selected by various RMSs for further denoising (SNR=1)  

 
RMS 

NMRMS SNMRMS CRMS EERMS 

𝒔𝟏  5-10 5-10 3-10 5-10 

𝒔𝟐  4,5 4,5 2-9 4-9 

 

The red line at each IMF in both Figure 7-11 and Figure 7-12 is the threshold estimated for 

that mode. Based on the relationship between threshold and IMF, IMF4 to IMF10 of noisy 𝑠1 

need to be remained for denoising while IMF1 to IMF3 are noise-only IMFs in Figure 7-11. 

As a result, IMFs 4-10 should be selected by an appropriate RMS. Table 7-4 demonstrates 

that no RMS investigated can be considered an optimal technique for the selection of relevant 

modes. However, the IMFs selected by CRMS include 4-10 and CRMS provides better 

denoising results than the others, as shown in Figure 7-7 to Figure 7-10 when SNR = 1. This 

indicates that the redundant IMFs selected by CRMS has no effect on the denoising results. 

Equally, IMF3 to IMF5 of noisy 𝑠2 need to be selected for denoising based on Figure 7-12. 

IMF3 is discarded as it is assumed to be a noise-only IMF by NMRMS, SNMRMS, and 

EERMS, while it is retained by CRMS. CRMS coincidently presents the best denoising 

results than the others for noisy 𝑠2 (see Figure 7-7 to Figure 7-10 when SNR = 1), even if 

IMF2, IMF6 to IMF9 are also retained. It is found that the IMFs retained by CRMS for both 
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noisy PD signals contain the IMFs that need to be denoised (see Figure 7-11 and Figure 7-12). 

Also, the redundant IMFs selected by CRMS have no effect on the denoising results as they 

are noise-only IMFs (see Figure 7-11 and Figure 7-12). When the SNR is relatively high, e.g., 

SNR = 5, NMRMS can provide better denoising for noisy 𝑠1 and 𝑠2. Based on Figure 7-13 

and Figure 7-14, IMFs 3-9 and 3-10 of noisy 𝑠1 and 𝑠2 respectively should be retained for 

further denoising. Table 7-3 demonstrates that only NMRMS can select the IMFs close to the 

numbers mentioned above, even if some IMFs are missing. Based on this, the RMS that can 

keep more IMFs will have better denoising result. 

 

 

Figure 7-11 IMFs and the associated threshold for noisy s1 with SNR = 1 
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Figure 7-12 IMFs and the associated threshold for noisy s2 with SNR = 1 

 

 

Figure 7-13 IMFs and the associated threshold for noisy s1 with SNR = 5 
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Figure 7-14 IMFs and the associated threshold for noisy s2 with SNR = 5 

 

The findings presented above indicate that the number of IMFs that need to be retained for 

further denoising varies due to the SNR of original PD signals. In other words, the RMS 

techniques discussed above cannot be solely applied to select the optimal number of IMFs for 

PD signals under various noise levels. Only the RMS that can keep sufficient IMFs will 

achieve better denoising results, although it may not be an optimal one. Based on this, it is 

recommended that all the IMFs can be remained for denoising as the redundant IMFs 

normally are the noise-only IMFs which have no effect on the denoising results. Accordingly, 

the best results of EMD-based PD denoising can be obtained in this scenario. 

7.3.2.2  Denoising Results: Wavelet-based Technique versus EMD-based 

Technique 

EMD-based denoising is applied as an alternative to wavelet-based denoising in the field of 

PD detection, and is claimed with the advantage of adaptivity. In this section, simulated PD 

signals with noise are adopted to investigate the effectiveness of wavelet-based and 
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EMD-based techniques for PD denoising.  

In wavelet-based denoising, soft-thresholding function can cause less discontinuity in 

denoised PD signals than hard-thresholding function. However, peak distortion caused by 

soft-thresholding function in EMD-IT is more serious than the discontinuity caused by 

hard-thresholding function in denoised PD signals. The serious peak distortion can be seen in 

Figure 7-15, where PD signals 𝑠1 and 𝑠2 are corrupted by white noise with SNR = 0. The 

peak distortion can be remarkably improved by the use of hard-thresholding function in 

EMD-IT. Parameters listed in Table 7-5 further demonstrate that hard-thresholding function 

cause less distortion than soft-thresholding function in EMD-IT for PD denoising. Based on 

this, EMD-based PD denoising using hard-thresholding function will be applied to noisy PD 

signals, and then, compared to wavelet-based PD denoising.  

PD signals 𝑠1 and 𝑠2 corrupted by white noise with SNR = -5 are used as the testing signals 

for EMD-based and wavelet-based PD denoising. The denoising results are illustrated in 

Figure 7-16 and Figure 7-17 for noisy 𝑠1 and 𝑠2, respectively. Figure 7-16 (c) and Figure 

7-17 (c) are the denoising results using EMD-based technique, and Figure 7-16 (d) and Figure 

7-17 (d) are the denoising results using wavelet-based technique. It is necessary to mention 

that the wavelet-based technique used for comparison is an improved one based on the 

previous 3 chapters. Direct observation from Figure 7-16 cannot distinguish major difference 

between EMD-based and wavelet-based denoising technique for noisy 𝑠1. However, Figure 

7-17 reveals that the wavelet-based PD denoising presents better results than EMD-based PD 

denoising for noisy 𝑠2, since EMD-based technique cause more serious distortion in the 

denoised 𝑠2. Parameters used to evaluate the performance of these two techniques in PD 

denoising are listed in Table 7-6, which demonstrates wavelet-based technique can present 

better denoising results than EMD-based technique, except the ME of noisy 𝑠1. 

 



179 

 

 

Figure 7-15 EMD-based denoising of (a) noisy s1, (b) noisy s2 using hard- and soft-thresholding 

function 

 

Table 7-5 Parameters used for performance evaluation of EMD-based denoising through hard- and 

soft-thresholding function 

 ME MSE XCORR SNR 

soft hard soft hard soft hard soft hard 

𝒔𝟏   0.349 -0.028 0.0027 0.0011 0.953 0.978 9.19 13.08 

𝒔𝟐  0.379 0.009 0.0018 0.0007 0.958 0.978 9.12 13.42 
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Figure 7-16 (a) s1, (b) noisy s1, (c) EMD-based denoising result, (d) wavelet-based denoising result 

 

 

Figure 7-17 (a) s2, (b) noisy s2, (c) EMD-based denoising result, (d) wavelet-based denoising result 
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Table 7-6 Parameters used for performance test of EMD-based and wavelet-based PD denoising 

 ME MSE XCORR SNR 

EMD Wavelet EMD Wavelet EMD Wavelet EMD Wavelet 

𝒔𝟏  -0.017 -0.057 0.0029 0.0025 0.951 0.954 8.84 9.95 

𝒔𝟐  0.121 0.075 0.0029 0.0023 0.897 0.931 7.01 8.47 

 

Further comparisons between EMD-based and wavelet-based PD denoising are implemented 

on PD signals simulated with various noise levels. The SNR of simulated PD signals is set to 

-3, -1, 1, 3, and 5, representing various noise levels. Figure 7-18 and Figure 7-19 illustrate the 

parameters used to evaluate the performance of both denoising techniques for noisy 𝑠1 and 

𝑠2 respectively at various noise levels. For noisy 𝑠1, neither EMD-based technique nor 

wavelet-based technique presents remarkable advances than the other in denoising results (see 

Figure 7-18). The distortions of denoised PD signals caused by both techniques are very close 

to each other. However, EMD-based technique provides better denoising results than 

wavelet-based technique for noisy 𝑠2, as shown in Figure 7-19. 

Based on the analysis above, wavelet-based denoising outperforms EMD-based denoising 

when the SNR of the original PD signal is very low, as shown in Figure 7-16 and Figure 7-17. 

With the increase of SNR, EMD-based denoising can present similar denoising results as 

wavelet-based denoising for noisy 𝑠1, while the denoising results of noisy 𝑠2 are slightly 

improved by EMD-based denoising. 

The comparison between EMD-based and wavelet-based denoising is also implemented on 

PD signals with multiple pulses. 𝑠𝑝𝑑1 and 𝑠𝑝𝑑2, as shown in Figure 4-12 (a) and Figure 

4-13 (a), are corrupted by white noise with SNR = -5. Denoising results of 𝑠𝑝𝑑1 and 𝑠𝑝𝑑2 

using EMD-based and wavelet-based technique are delineated in Figure 7-20 and Figure 7-21, 

respectively. A direct observation of Figure 7-20 (c), (d) and Figure 7-21 (c), (d) show that all 

PD pulses of both 𝑠𝑝𝑑1 and 𝑠𝑝𝑑2 have been successfully extracted through EMD-based 

and wavelet-based denoising. The parameters, e.g., MSE and XCORR, of denoised 𝑠𝑝𝑑1 and 

𝑠𝑝𝑑2  are listed in Table 7-7. It can be seen that EMD-based denoising has similar 

effectiveness as wavelet-based denoising in the extraction of 𝑠𝑝𝑑1, but can improve the 
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denoising results for 𝑠𝑝𝑑2 as compared to wavelet-based denoising.  

 

 

Figure 7-18 ME, MSE and XCORR of denoised s1 using EMD-based and wavelet-based denoising 

 

 

Figure 7-19 ME, MSE and XCORR of denoised s2 using EMD-based and wavelet-based denoising 

 

 
Figure 7-20 (a) spd1, (b) noisy spd1, (c) EMD-based denoising result, (d) wavelet-based denoising 

result 
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Figure 7-21 (a) spd2, (b) noisy spd2, (c) EMD-based denoising results, (d) wavelet-based denoising 

results. 

 

Table 7-7 Parameters of denoised spd1 and spd2 using EMD-based and wavelet-based denoising 

 MSE XCORR 

EMD Wavelet EMD Wavelet 

𝒔𝒑𝒅𝟏 0.00026 0.00025 0.9652 0.9643 

𝒔𝒑𝒅𝟐 0.00019 0.00034 0.9578 0.9233 

 

The findings in the denoising results of PD signals with single pulse and multiple pulses 

indicate that EMD-based technique could be an effective alternative to wavelet-based 

technique in the area of PD denoising. One of the most important aspects is EMD-based 

expansion is a data-driven and adaptive, while wavelet-based denoising requires an 

assumption of the wavelet. However, a close observation of the denoised PD signals shows 

that the PD pulses with small magnitude, e.g., the 1st, the 3rd, and the 5th PD pulse in 𝑠𝑝𝑑1 

and 𝑠𝑝𝑑2, suffers serious distortion under EMD-based denoising when SNR is low, although 

EMD-based denoising presents a better denoising result for the whole PD signal. Figure 7-22 

and Figure 7-23 illustrate the 1st, the 3rd and the 5th PD pulse of denoised 𝑠𝑝𝑑1 and 𝑠𝑝𝑑2 

respectively using EMD-based denoising. It can be seen that the PD pulses with small 
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magnitudes suffer serious distortion after denoising, especially for DOP-type (𝑠2) PD pulses 

(see Figure 7-23). This serious distortion of PD pulse is not expected as it can negatively 

affect the following PD data analysis, e.g., lower the accuracy of PD defect location and 

pattern recognition. Note that this distortion reduces with the increase of the SNR of noisy PD 

signals. 
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Figure 7-22 The 1st, the 3rd and the 5th PD pulse of denoised spd1 using EMD-based denoising 
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Figure 7-23 The 1st, the 3rd and the 5th PD pulse of denoised spd2 using EMD-based denoising 

 

Wavelet-based denoising has been demonstrated to be tolerant to DSI when its level in the 
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original PD signal is not very high. For EMD-based technique, it is also necessary to extend 

its application in PD signals with both white noise and DSI. EMD functions as a dyadic filter 

for white noise, and thus, lead to the power spectra of IMFs exhibiting self-similar 

characteristics. As such, the threshold for each IMF can be estimated through (7-3) and (7-9). 

When DSI is involved, (7-3) and (7-9) is not suitable for the threshold estimation as the IMFs 

of DSI cannot have that appealing feature. As a result, the residual of DSI in the denoised PD 

signals could be very noticeable. Figure 7-24 delineates the denoising results of PD signals 

corrupted by both white noise and DSI using EMD-based denoising. In both noisy 𝑠1 and 𝑠2, 

DSI is added with magnitude of 0.1, and white noise has a mean value of zero and standard 

deviation of 0.3. Figure 7-24 clearly shows that the main PD pulse have been distorted due to 

the remained DSI, together with small residuals of DSI in the denoised PD signals. This 

becomes more and more serious with the increase of DSI level in the noisy PD signals. Figure 

7-25 illustrated the EMD-based denoising result of noisy 𝑠1 and 𝑠2, where the magnitude of 

DSI increases from 0.1 to 0.3.  

The denoising results shown in Figure 7-24 and 7-25 support that the existing threshold 

estimation in EMD-based denoising is not suitable for PD signals corrupted by other noise 

sources, e.g., DSI, except white noise. From a practical point of view, wavelet-based 

technique, is better than EMD-based technique for PD denoising due to its relatively strong 

robustness. Low level of DSI in the noisy PD signals can be effectively reduced by 

wavelet-based denoising, as shown in Figure 6-13. 
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Figure 7-24 EMD-based denoising of (a) noisy s1, (b) noisy s2, corrupted by white noise and DSI with 

low level 

 

 

Figure 7-25 EMD-based denoising of (a) noisy s1, (b) noisy s2 corrupted by white noise and DSI with 

relatively high level 

 

Possible threshold estimation that may be applied in EMD-based denoising is analyzed 

through the difference of working principle between EMD-based expansion and wavelet 

transform. In wavelet-based denoising, it is possible to detect the noise separately through 
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certain special layouts of power apparatus, e.g., noise detection from an offline power cable 

parallel to the cable under monitoring in [12]. Wavelet coefficients of a wavelet-based 

expansion is dependent on the correlation between the signal and the wavelet used. Given that 

separate wavelet transform is applied to the detected noise, and to a noisy PD signal corrupted 

by that noise, the noise can present the same characteristics at each decomposition scale if the 

same wavelet is used in these two separate transforms. As a result, the noise level at each 

decomposition scale of the noisy PD signal can be estimated through transformed noise. Also, 

the decomposition scale is determined by the length of the noise and the noisy PD signal. 

Normally, these two signals are sampled with equal length, and thus, decomposition scale can 

be set equal for these two wavelet-based expansions. However, this is not the case in 

EMD-based denoising. It is ascribed to the adaptivity of EMD in some sense. The number of 

IMFs of a signal under EMD-based expansion is dependent on the number of its extrema and 

the stopping criterion of sifting iterations. When EMD is applied to the noise or the PD signal 

contaminated by that noise, the number of extrema of them is not the same, and thus, the 

number of IMFs split from EMD is different. The difference in IMF numbers means that the 

noise at each IMF from these two EMD-based expansions cannot present the same 

characteristics. Based on this, the threshold estimation through ‘noise-only’ signal is not 

applicable to EMD-based denoising. To improve the effectiveness of EMD-based technique in 

PD denoising, more investigations need to be implemented through the analysis of the noise 

characteristics based on various noise sources.  

7.4 Conclusion 

EMD-based denoising in PD detection has been investigated in this chapter for the reason that 

wavelet-based denoising is often criticized for its non-adaptivity in denoising. Relative mode 

selection is claimed to be an important element in EMD-based denoising as it can differentiate 

the IMFs that contain noise only or not. Based on this, a new entropy-based criterion was 

proposed for relative mode selection. Results show that this new criterion does not 

outperform the existing ones. It was interesting to find that relative mode selection is actually 

not as important as claimed during the investigation, however. The output of this investigation 



188 

 

is that noise reduction applied to all IMFs can obtain the best denoising results. Also, it was 

found that the hard thresholding function in EMD-based denoising can have better 

performance than soft thresholding function.  

Comparisons of performance between wavelet-based and EMD-based denoising were 

implemented through the denoising results of simulated PD signals. One serious issue of 

EMD-based denoising was unveiled:  PD signals, especially those with small magnitudes, 

experienced severe distortion after denoising. It is also important to emphasize that the 

difference of decomposition mechanism between wavelet transform and EMD leads to the 

variations of denoised PD signals. As aforementioned, IMFs extracted from noisy PD signals 

are not Gaussian distributed with variance equal to the noise variance, while this is not the 

case for transformed signals decomposed by wavelet transform. That is, noise can be 

estimated through the variance of wavelet components irrespective of scale. Although a new 

threshold estimation was applied in EMD-based denoising, the noise energy model applied in 

this estimation may cause inappropriate thresholds used. Based on the discussion above, the 

improved wavelet-based denoising can provide better denoising results. 
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8 Validation of Proposed Denoising Algorithms with 

Real PD Data 

8.1 Introduction 

For a frequently used technique in PD signal denoising, wavelet-based technique has been 

improved through the analysis of statistical characteristics of noise and PD signals in previous 

chapters. The new algorithms proposed have been tested through simulated PD signals 

derived from (2-6) and (2-7). The results present the advances of these new algorithms in PD 

denoising. However, the performance evaluations were demonstrated from simulated PD 

signals. As known, simulated PD signals are derived from an optimal detecting environment, 

which cannot exactly reflect the characteristics of real PD signals in some sense. PD pulse 

shape, for example, may be distorted to some extent from a real detection system, not like the 

shapes shown in Figure 2-19. Based on this, the denoising results of real PD signals through 

the use of those newly proposed algorithms are under uncertainty. The advances of the 

improved wavelet-based technique in the reduction of noise from simulated PD signals need 

to be further investigated on real PD signals. This is also applied to EMD-based technique for 

PD denoising. As mentioned in last chapter, EMD-based technique can have its advantages in 

PD denoising when white noise is the only source for PD contamination. With the application 

into real PD signals, the denoising results may support that EMD-based technique is 

intolerant to other noise sources involved in PD contamination due to the threshold estimation 

used.  

Details regarding the acquisition of real PD signals will be introduced in sub-sections. Real 

PD signals are mainly originated from experiments conducted in HV laboratory and on-site 

PD detection in one power substation in the UK. Experimental PD signals are obtained 

through PD tests performed on a dielectric insulation sample and power cable sample based 

on IEC60270. On-site PD data was detected from an in-service power cable in one power 

substation It is necessary to mention that the PD data from power cable sample and on-site 

measurement are shared by colleagues. The new algorithms proposed for wavelet-based 
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technique in pervious chapters, together with EMD-based technique, are applied to these real 

PD signals. The denoising results of real PD signals demonstrate that EMD-based technique is 

not as effective as expected, while the improved wavelet-based technique is a promising 

approach for PD denoising. When the improved wavelet-based technique is applied to cable 

diagnostics, it should have the potential to extend the range of PD detection from cables. 

8.2 PD Data Acquisition through Dielectric Insulation 

Sample Test 

The dielectric insulation sample is an epoxy resin disc with two brass plane electrodes fixed 

to its upper and lower faces, as shown in Figure 8-1. Two artificial voids with diameters 1.25 

and 2.05 mm respectively are buried within the epoxy resin disc. The experiment setup for PD 

test of this epoxy resin disc is based on IEC60270 and delineated in Figure 8-2. The goal of 

the AC test is to obtain the real PD signal from laboratory experiment for algorithm validation. 

The test circuit is comprised of: 

⚫ AC test set 

⚫ A 100kV transformer 

⚫ A coupling capacitor, 𝐶𝑘 

⚫ The dielectric insulation sample, 𝐶𝑠 

⚫ HFCT 

⚫ An oscilloscope 

In this test, a high frequency current transformer (HFCT) is clipped around the earth wire of the 

testing sample to collect PD signals. The specifications of the HFCT are listed in Table 8-1. This 

HFCT is also adopt for the experiment test on EPR cable sample as well as on-site PD detection in 

the power substation. Note that a pulse injection calibration unit needs to ensure the output from 

the HFCT could be quantified as an apparent charge on the IEC60270 measurement system. A 

high-performance digital oscilloscope with up to 10G/s is used to display and record PD signals 

detected by HFCT. The sampling rate of digital oscilloscope is set to 5G/s in the test. When the 

voltage applied on the epoxy resin disc reaches 7.2kV, sustaining PD pulses can occur in this 

testing sample. The PD signal recorded by the oscilloscope are illustrated in Figure 8-3. 
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Figure 8-1 Dielectric insulation sample used for PD data acquisition: an epoxy resin disc with two 

artificial voids of diameters 1.25 and 2.05 mm respectively 
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Figure 8-2 AC test circuit for dielectric insulation sample 

 

Table 8-1 Specifications of the HFCT 

Parameters HFCT 

Sensitivity 5 V/A 

-3 dB bandwidth 90 kHz – 20 MHz 

Internal diameter 50 mm 

External diameter 110 mm 

Load resistance 50 𝛺 

Output conductor BNC 

Manufacturer IPEC 
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Figure 8-3 PD signal generated within the epoxy resin disc with applied voltage equal to 7.2kV （One 

single PD pulse is zoomed up to show the waveform） 

 

In the attempt to test those new algorithms for wavelet selection, decomposition scale 

determination and threshold estimation, one of the PD pulses with 2048 samples, named 𝑠3, 

is picked up from the recorded PD signal. It is important to note that the recorded PD signal 

shown in Figure 8-3 is slightly corrupted by ambient noise during experiment. To mitigate the 

effect of this noise on the denoising results, 𝑠3 has been pre-processed using the method 

introduced in [88]. The smoothed and normalized 𝑠3 is depicted in Figure 8-4. Difference 

between simulated and real PD signal can be seen from Figure 4-3 and Figure 8-4.  
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Figure 8-4 The smoothed and normalized s3 

 

8.2.1  WSS Validation 

As did for 𝑠1  and 𝑠2 , 𝑠3  (smoothed and normalized) is contaminated by white noise 

generated from a Gaussian model in MATLAB with various SNRs. Then, different WSSs 

introduced in Chapter 4 are applied to the noisy 𝑠3. Parameters, such as ME, MSE, and 

XCORR, are used to evaluate the performance of novel WSS proposed. All the related 

parameters are illustrated in Figure 8-5. For a real PD signal with single pulse, it can be seen 

that the novel WSS, i.e., WEBWSS, can present better denoising results than the existing ones, 

especially when the SNR is low. The improvement in magnitude error and mean square error 

indicates that the denoised PD signal using WEBWSS can suffer less peak and shape 

distortion through wavelet-based denoising. In other words, PD pulses with small magnitudes 

may be picked up and the accuracy for the PD location can be increased based on the novel 

WSS. 
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Figure 8-5 ME, MSE, and XOCRR between s3 and denoised s3 using various WSSs 

 

The tolerance of the WEBWSS to DSI is also investigated, as did for 𝑠1 and 𝑠2. The issue 

raised in simulated PD signals is also involved in the denoising of 𝑠3 contaminated by both 

white noise and DSI. When the level of DSI in the noisy 𝑠3 is low, the residual of the DSI 

cannot be found in the denoised 𝑠3. Instead, the residual of the DSI is clearly presented in the 

denoised 𝑠3 with the increasing level of DSI. This can be seen from Figure 8-6, where the 

magnitude of the DSI increases from 0.1 to 0.3. The same conclusion drawn for the denoising 

of PD signals corrupted by white noise and DSI is the novel WSS can effectively reduce both 

white noise and DSI from noisy PD signals when the level of DSI is low. However, this 

effectiveness is gradually decreased with the increase of DSI level in noisy PD signals.  

 

 

Figure 8-6 Denoising results of noisy s3 with different DSI level: magnitude = 0.1 (left), magnitude = 

0.3 (right) 
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8.2.2  Decomposition Scale Validation 

For the validation of the sparsity-based method for decomposition scale selection, 𝑠3 

corrupted by white noise with SNR = -5 is used as an example for performance evaluation. 

Based on (5-3) and (5-7), the SCR of transformed noisy 𝑠3 is shown in Figure 8-7. In terms 

of the selection criterion shown in Figure 5-3, 4 is the appropriate decomposition scale for 

wavelet-based expansion of noisy 𝑠3 . The detail coefficient sequences of a full-scale 

expansion of noisy 𝑠3 is illustrated in Figure 8-8. On the top right corner of each diagram is 

the linked SCR of that scale. With a closer observation of Figure 8-8, the randomness or 

degree of disorder of the detail coefficient sequence at scale 5 is the minimum. However, the 

SCR of scale 5 is equal to 0.1, which means this detail coefficient sequence is comprised of 

signal component only with high possibility. As a result, 4-scale decomposition is a 

reasonable choice. To further explicate the new algorithm is a promising approach for 

decomposition scale determination, noisy 𝑠3 has been denoised through wavelet expansion 

from 1 scale to full scale (11 scale in this case). The SNRs of these denoised 𝑠3 are depicted 

in Figure 8-9. Obviously, 4-scale wavelet-based denoising of noisy 𝑠3  can have the 

maximum SNR after denoising. In other words, the decomposition scale selected by this new 

algorithm for a real PD signal with single pulse can maximize the noise reduction from the 

PD signal. The investigation is also implemented on noisy 𝑠3 corrupted by various levels of 

white noise. The decomposition scale selected by the new algorithm and the scale that has the 

best SNR after denoising are listed in Table 8-2. Difference between DS and Best SNR Scale 

can be seen when the SNR is equal to -3 and 3. It is necessary to mention that the scale 

selected by the sparsity-based method for these two SNRs are the scales close to the best one 

for wavelet-based denoising of noisy 𝑠3 , i.e., the SNRs of denoised 𝑠3  in these two 

conditions are just lower than the best SNR scale listed in the table. Based on this, good 

denoising results can be obtained through the sparsity-based method for decomposition scale 

selection.  
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Figure 8-7 The SCR distribution of a full-scale transformed noisy s3 

(o represents the SCR value at each decomposition scale) 

 

 

Figure 8-8 Detail coefficient sequence of a full-scale transformed noisy s3 
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Figure 8-9 The SNRs of denoised s3 through 1 scale to full-scale wavelet-based denoising 

(o represents the SNR value of denoised PD signal after each scale − dependent denoising) 

 

Table 8-2 Decomposition scale selected by sparsity-based method for PD signals with various SNRs 

𝒏𝒔𝟑 
SNR 

-3 -1 1 3 

DS 4 4 4 3 

Best SNR 

Scale 

5 4 4 4 

 

As aforementioned in Chapter 5, a wavelet length method has been adopted for 

decomposition scale decomposition in wavelet-based PD denoising. As such, the comparison 

between wavelet length method (CBWSS-WL) and the sparsity-based method (WEBWSS-SP) 

has been implemented on noisy 𝑠3 (SNR = -5). For noisy 𝑠3, a fixed wavelet, ‘db16’, is 

selected by CBWSS for wavelet-based expansion. The decomposition scales selected by 

wavelet length method and sparsity-based method for noisy 𝑠3 are 6 and 4 respectively. 

Denoising results are illustrated in Figure 8-10, which demonstrates that WEBWSS-SP 

outperforms CBWSS-WL in noise reduction for noisy 𝑠3. The related distortions of denoised 

𝑠3 are evaluated through the parameters, e.g., ME and MSE, and listed in Table 8-3. The 

figures in the table clearly show that WEBWSS-SP can remarkably improve the denoising 
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results of noisy 𝑠3. 

 

 

Figure 8-10 Denoising results of noisy s3 using WEBWSS-SP and CBWSS-WL 

 

Table 8-3 Parameters used for performance test of WEBWSS-SP and CBWSS-WL 

𝒔𝟑 

Parameters 

ME MSE XCORR 

WEBWSS-SP 0.134 0.0007 0.978 

CBWSS-WL 0.272 0.0035 0.934 

 

The analysis of the sparsity-based method for decomposition scale determination through a 

real PD signal with single pulse demonstrates that the newly proposed algorithm can be 

applied as an alternative to the existing methods and provide good denoising results in PD 

denoising.  

The combination of WEBWSS and sparsity-based method for scale selection is also applied 

to noisy 𝑠3 contaminated by both white noise and DSI. The aim of this investigation is to test 

the tolerance of this improved method to DSI, and thus, DSI is set with low level to high level 

in noisy 𝑠3. Similar results are obtained as the tolerance of WEBWSS to DSI. Denoising 

results using WEBWSS-SP are illustrated in Figure 8-11. It can be seen that the new method 

cannot effectively remove the DSI from noisy 𝑠3 with the increase of DSI level. Figure 8-11 

shows that when the magnitude of DSI is equal to or over 0.3, residuals of DSI can be directly 

observed in the denoised 𝑠3. 
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Figure 8-11 Denoising results of noisy s3 using WEBWSS-SP with different DSI level: magnitude 

= 0.1 (left), magnitude = 0.3 (right) 

 

8.2.3  Threshold Estimation Validation 

A novel threshold estimation was proposed based on the SCR distribution of detail coefficient 

sequences of transformed PD signals. For simulated PD signals, it can improve the 

performance of wavelet-base denoising. As did for WSS and sparsity-based method for 

decomposition scale selection, the PD signal from experiment is also applied to test its 

performance for real PD signal. 𝑠3  is corrupted by white noise with various levels. 

Evaluation of the denoising results using this novel threshold is illustrated in Figure 8-12. The 

parameters indicate that the use of new threshold can present better denoising results than the 

existing universal threshold for noisy 𝑠3. It is highly desirable that less distortion of denoised 

𝑠3 can be obtained using new threshold.  

White noise in noisy 𝑠3 can be effectively reduced through the application of new threshold 

estimation. To investigate its application in complex noise environment, DSI is added into 𝑠3, 

together with white noise. The denoising results of noisy 𝑠3 with different DSI levels are 

illustrated in Figure 8-13. It has the same problem in the reduction of DSI, i.e., the 

effectiveness of the improved wavelet-based technique for PD denoising is inverse 

proportional to the level of DSI in the noisy 𝑠3. As compared to the result in Figure 8-11, it 

can be seen that peak distortion of the denoised 𝑠3 is reduced by the use of new threshold.  
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Figure 8-12 ME, MSE, and XCORR for performance test of soft threshold and new threshold 

 

Figure 8-13 Denoising results of noisy s3 using new threshold with different DSI level: magnitude = 

0.1 (left), magnitude = 0.3 (right) 

 

In Chapter 6, a new H-S thresholding function was also introduced for wavelet-based PD 

denoising. 𝑠3 contaminated by white noise with SNR = -5 is used as an example to embody 

the advance of this H-S thresholding function. The denoising result of noisy 𝑠3 in Figure 

8-14 demonstrates that the H-S thresholding function can provide better denoising result than 

traditional soft-threshold function. Parameters shown in Table 8-4 further supports the that the 

H-S thresholding function can remarkably improve the effectiveness of wavelet-based 

technique in PD denoising.  
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Figure 8-14 Denoising results of noisy s3 with soft-thresholding function and H-S thresholding function 

 

Table 8-4 Parameters used to evaluate the H-S thresholding function in wavelet-based PD denoising 

𝒔𝟑 

Parameters 

ME MSE XCORR SNR 

Soft-thresholding 0.252 0.0009 0.979 12.79 

H-S thresholding 0.136 0.0004 0.988 15.89 

 

In this subsection, a real PD signal with single pulse was extracted from a real PD signal from 

laboratory experiment. Note that the noise that contaminates the PD signal is simulated in 

MABLAB. The aim of this is to further demonstrate the newly proposed algorithms in 

wavelet-based technique are still effective for noise reduction from a real PD signal with 

single pulse. The denoising results through 3 aspects in the improved wavelet technique show 

that better denoising results can be obtained as compared to the exiting techniques in the area 

of PD detection. 

Based on the discussion in this subsection and Chapter 4-6, it is necessary to detail the 

methods used in denoising of real PD signals (with multiple pulses) in the following 

subsections. For comparison, three methods, named M1, M2, and M3 respectively,  vary 

from different combination of wavelet selection scheme, decomposition scale determination, 

threshold estimation and thresholding functions, and are described as follows: 

⚫ M1: CBWSS + Wavelet length method + Universal + Soft-thresholding function 

⚫ M2: EBWSS + Sparsity-based method + Universal + Soft-thresholding function 
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⚫ M3: WEBWSS + Sparsity-based method + SCR-based threshold + H-S thresholding 

function 

It is obvious that each method is comprised of techniques for wavelet selection, 

decomposition scale determination, threshold estimation and thresholding functions. The 

method M3 is the combination of all the newly proposed algorithms introduced in previous 

chapters.  

8.3 PD Data Acquisition through EPR-insulated Power 

Cable Test 

To develop the improved wavelet-based denoising for practical use, real PD signals were 

generated through an artificial defect of a 7𝑚𝑚 × 7𝑚𝑚 breach in the outer conductor 

created in a 1.5m 11 kV EPR-insulated cable sample [190]. PD signals are detected using a 

HFCT, the specifications of which are listed in Table 8-1. Details regarding the experiment 

setups are depicted in Figure 8-15 [190]. 
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Figure 8-15 PD testing of a defective 11 kV EPR cable. HFCT was used to collect PD pulses (Ck and 

Zm represent the coupling capacitor and measuring impedance respectively) 

 

Experiments are performed at various voltage levels. The PD pulses measured at 9kV are 

used as the real PD signal to demonstrate the improved wavelet-based denoising in this thesis. 

Figure 8-16 delineates the detected noisy PD signal from the EPR-insulated cable in the HV 

laboratory. The comparisons of the denoising results using M1, M2, and M3 introduced above 
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are illustrated in Figure 8-17.  

As shown in Figure 8-17, the differences of denoising results among these 3 methods have 

been highlighted with red ovals. It is obvious that many more PD pulses with small 

magnitudes can be successfully extracted from noise using M3, the method comprised of 

novel algorithms proposed in each step of wavelet-based denoising. Several PD pulses from 

denoised EPR PD signal are taken as examples to show the advances of M3, which can be 

seen from Figure 8-18. In the meantime, it can be seen that the peak distortion of PD pulses 

extracted by M3 has been remarkably reduced as compared to M1 and M2. With a closer 

observation of the denoising results of M1 and M2, it is in agreement with the claim in [88] 

that energy-based wavelet selection scheme is better than correlation-based wavelet selection 

scheme in PD denoising. 
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Figure 8-16 A noisy PD signal detected from a 11kV EPR-insulated power cable with an artificial defect under 9kV 
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Figure 8-17 Denoising results of a noisy PD signal from an EPR cable using (a) M1, (b) M2, and (c) M3 
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 Figure 8-18 Highlight of some pulses from denoised EPR PD signal using M3 
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8.4 PD Data Acquisition through On-site Measurement 

Real onsite PD data was collected from one power substation in the UK with a sample rate of 

100MS/s. Figure 8-19 delineates the original on-site PD signal. The denoising results of this 

on-site measured PD signal using the methods, i.e., M1, M2, and M3, are depicted in Figure 

8-20 for comparison. It can be seen that not only the PD pulses with magnitudes higher than 

the noise level has been extracted, but those ones with small magnitudes buried in the noise 

has been effectively extracted through the application of the improved wavelet-based 

technique (M3). The number of the PD pulses with small magnitude that have been extracted 

by M1 and M2, as shown in Figure 8-20 (a) and (b), is less than that by M3. The difference of 

the number of small-magnitude PD extraction among these three methods has been 

highlighted in red ovals in Figure 8-20. Also, the peak distortion of denoised PD pulses using 

M3 is substantially reduced as compared to M1 and M2. In Figure 8-21, two single PD pulse 

are selected from denoised PD signal using M3. It clearly shows that the PD pulse with small 

magnitude can be effectively extracted through M3 with lower distortion. The remarkable 

improvements of denoised PD signals by the use of newly proposed algorithms provide 

further support that the improved wavelet-based technique is more advantageous than the 

existing ones for denoising of PD detection of electrical apparatus in practice.   
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Figure 8-19 A noisy PD signal from on-site measurement in a power substation 
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Figure 8-20 Denoising results of a noisy PD signal from on-site measurement using (a) M1, (b) M2, and (c) M3 
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Figure 8-21 Highlight of some pulses from denoised on-site PD signal using M3 
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8.5 Denoising Real PD Data with EMD-based Technique 

The real PD data used in last three sections to test the performance of improved 

wavelet-based technique is also applied to investigate the effectiveness of EMD-based 

technique for PD denoising. For 𝑠3, the associated noise is still simulated with a Gaussian 

model in MATLAB. As such, noisy 𝑠3 is a PD signal contaminated by white noise with SNR 

= -5. The denoising results of three real PD signals are illustrated in Figure 8-22. It can be 

seen that EMD-based denoising can extract PD pulses from PD data obtained through HV 

laboratory, as shown in Figure 8-22 (a) and (b). This may be due to the HV laboratory is 

highly screened, and thus, noise, such as DSI, has less or no effect on the detected PD signals. 

In other words, the detected PD signals in HV laboratory may be contaminated only by white 

noise. However, EMD-based denoising is ineffective in the extraction of PD pulses with small 

magnitudes from on-site measured PD data (see Figure 8-22 (c)). 

 

 

Figure 8-22 EMD-based denoising results of PD signal from (a) dilectric insulation sample, (b) 

EPR-insulated power cable, and (c) on-site measurement 
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Comparisons between EMD-based and wavelet-based techniques for PD denoising are 

depicted in Figure 8-23, in which the PD signal obtained through an EPR-insulated power 

cable is used as the original signal. As highlighted in red ovals in Figure 8-23(a) and (b), more 

PD pulses with small magnitudes that are successfully extracted by wavelet-based denoising 

as compared to EMD-based denoising. In this scenario, wavelet-based denoising is more 

preferable than EMD-based denoising as the effectiveness in extraction of small-magnitude 

PDs is highly desirable for the analysis of PD data, e.g., the degree of PD-induced 

deterioration of insulation system of electrical apparatus can be reflected by the number of PD 

events.  

 

 

Figure 8-23 Denoising results of PD signal from EPR-insulated power cable using (a) EMD-based 

denoising, (b) wavelet-based denoising 

 

In addition, Figure 8-24 delineates a closer observation of some pulses of the denoised PD 

signal from an EPR-insulated power cable using EMD-based technique. They are zoomed up 

with numbering ○1 -○4 , as shown in Figure 8-24. Number ○4  is a real PD pulse generated in 

the EPR-insulated power cable when the applied voltage increased to 9kV. However, the 

denoised pulses, numbered as ○1 -○3 , are severely distorted under EMD-based denoising, and 

thus, cannot be recognized if they are real PD pulses in this case. This distortion of pulses 

with small magnitude has already been encountered in EMD-based technique for simulated 

PD signals. Based on the denoising results shown in Figure 7-22 and Figure 7-23, the 
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underlying reason leading to this distortion may be due to the low SNR or the involvement of 

noise types, e.g., DSI, in detected PD signals.  
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Figure 8-24 EMD-based denoising results of a PD signal from an EPR-insulated power cable in 

laboratory test 

 

Denoising result of an on-site measured PD signal, as shown in Figure 8-22 (c), demonstrates 

that EMD-based denoising presents its ineffectiveness in extraction of PD pulses with small 

magnitudes. In other words, noise in on-site detected PD signals cannot be remarkably 

reduced through the application of EMD-based technique. The potential reasons for this 

ineffectiveness could be the underestimated threshold at each IMF mode or the involvement 

of other noise sources, e.g., DSI, which is equivalent to inappropriate threshold estimation 

based on (7-3) and (7-9). For underestimated threshold, Figure 8-23 illustrates the difference 

of 𝑙𝑜𝑔2(𝑒𝑛𝑒𝑟𝑔𝑦) between estimated noise energy and real noise energy of each IMF from 

an EMD-based expansion of white noise. Numerous simulations have been implemented to 

verify the relationship between real noise energy and estimated noise energy. This relationship 

shown in Figure 8-23 indicates that the estimated noise energy in the IMFs with relatively 

high order is smaller than the real noise energy of those IMFs. The difference increases with 

the increasing order of the IMF. As a result, the noise threshold estimated based on (7-3) and 
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(7-9) for high-order IMFs could be lower than real noise level, leading to the remains of noise 

in the denoised signals. For inappropriate noise threshold, the involvement of DSI, for 

example, can lead to serious distortion or noise residuals of denoised signals, as shown in 

Figure 7-24 and Figure 7-25.  

 

 

Figure 8-25 The log2(energy) of each IMF from a noise model estimation and real noise energy 

 

8.6 Recommendations on Denoising Techniques for PD 

Detection 

Denoising strategies, i.e., wavelet-based technique and EMD-based technique, have been 

fully discussed through their applications in both simulated and real PD signals. Denoising 

results show that wavelet-based technique is more preferable than EMD-based technique as 

more PD pulses with small magnitudes can be successfully extracted using wavelet-based 

technique. A brief summary of the comparison between these two strategies are presented as 

follows: 
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⚫ Executing time: The time for execution of the improved wavelet-based technique for PD 

denoising is substantially less than that of EMD-based technique under the same 

environment. For example, the executing time is 11.08s for wavelet-based denoising of 

the PD signal from the EPR insulated power cable while 41.72s for EMD-based 

denoising. The longer the signal, the more time is required for EMD-based denoising 

than wavelet-based denoising. 

⚫ Distortion: Distortion of denoised PD signals, especially for single PD pulses, using 

EMD-based technique is much more severe than the improved wavelet-based technique. 

This has been demonstrated in Figure 7-22, Figure 7-23 and Figure 8-24. The severe 

distortion of denoised PD signal is not expected as it can negatively affect the following 

analysis of PD data for, e.g., PD location and recognition.  

⚫ Effectiveness: More PD pulses with small magnitudes of real PD signals can be 

extracted through the application of the improved wavelet-based technique than 

EMD-based technique. An example can be seen from Figure 8-23. Also, more noise is 

remained in the denoised PD signals by the use of EMD-based technique, as shown in 

Figure 8-22 (c). Based on this, the effectiveness of EMD-based technique is highly 

reduced as compared to the improved wavelet-based technique. 

⚫ Adaptivity: The adaptivity is referred to as the decomposition of a signal using wavelet 

transform and EMD. Obviously, EMD is adaptive as the basis function used for signal 

expansion is derived from the data itself, while it is the limit for wavelet transform as 

wavelet transform is often criticized for its predefined wavelet for signal decomposition. 

However, the adaptivity of EMD sometimes may arise the issues for EMD-based 

denoising, as discussed in subsection 7.3.2.  

⚫ Robustness: The detected PD signal on site can be contaminated by white noise, DSI, 

pulse-type noise, and most of time are corrupted by the combination of these types of 

noise. Based on the investigations implemented in previous chapters, the improved 

wavelet-based technique is more robust than EMD-based technique as the improved 

wavelet-based technique can successfully reduce white noise and DSI with small levels. 

However, the EMD-based technique is not tolerant to DSI, even if it is involved with 
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small levels. Note that this intolerance of EMD-based technique may be due to the 

threshold estimation. However, the uncertainty of DSI information distributed in each 

IMF limits the development of new threshold estimation technique in EMD-based 

technique.  

Apart from this, it is necessary to discuss more details regarding EMD-based technique in 

signal denoising. EMD expansion constitutes a critical element of EMD-based denoising. 

However, EMD is a simple, effective, and adaptive tool for signal decomposition but without 

any supportive theory for analysis. It is merely an algorithm that splits a signal into a few 

IMFs based on the number of extrema, cubic spline interpolation and a sifting iteration. As a 

result, the components of the IMFs can be easily affected by these factors. Also, it is claimed 

that the IMFs extracted from a signal are ranging from high frequency components with low 

order to low frequency components with high order. However, this is sometimes not the case 

due to the mode fixing problem of EMD. Based on this, it is difficult to interpret the 

information of the IMFs. It is not like wavelet transform that noise information may only 

concentrate on detail coefficient sequences, the noise and signal information are mixed 

together in the IMFs. The threshold estimation of each IMF for EMD-based denoising is 

highly dependent on the interpretation of the IMFs. The unexpected distortion of denoised 

signal can be easily encountered with an overestimated or underestimated threshold. This can 

be demonstrated through the denoising results shown in Figure 8-20 (b) and (d). Another issue 

raised by the IMFs in EMD-based denoising is for long-length signal processing. The analysis 

of long-length signals with EMD is extremely time-consuming, and sometimes even 

impossible in a reasonable time due to the fact cubic spline interpolation of a large number of 

points takes a lot of computer resources [191], [192]. For wavelet-based denoising, the 

long-length signals can be portioned into sections, and then, are processed separately to 

reduce the executing time. This segment-based processing of long-length signals, especially 

for those have fast changes in their frequency domain, is not suitable for EMD-based 

denoising. The number of IMFs extracted from each segment varies due to different number 

of extrema and sifting iterations, and thus, causes errors [192]. Generally, window functions 

are applied to address this issue, which increases the complexity of EMD-based technique for 
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PD denoising.   

8.7 Conclusion 

In previous chapters, the research output was demonstrated through simulated PD signals. To 

validate those newly proposed algorithms in real environment, PD data obtained from 

experiments in HV laboratory and onsite measurement were applied in this chapter. The 

results further support the findings in previous chapters, i.e., integrating those new algorithms 

into wavelet-based denoising can remarkably improve the effectiveness in PD detection. It 

can be seen that the PD pulses with small magnitudes can be successfully extracted using this 

improved wavelet-based denoising. In the meantime, EMD-based denoising was found 

ineffective in real PD denoising, which may be due to the noise estimation used. Comparisons 

of performance of the improved wavelet-based denoising and EMD-based denoising have 

been made through the aspects, i.e., executing time, distorting, effectiveness, adaptivity, and 

robustness, in PD signal processing. Results from real PD signal denoising indicate that the 

improved wavelet-based denoising is more effective than EMD-based denoising. As a result, 

the improved wavelet-based denoising was recommended for PD denoising in real situation.   
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9 Conclusion and Future Recommendations 

9.1 Conclusions 

Wavelet-based denoising has been intensively investigated for decades in the area of PD 

denoising but is still an area that faces challenges. Improvements of wavelet-based denoising 

can be achieved through wavelet selection, decomposition scale determination, and noise 

estimation. With further study of the statistical characteristics of PD signals and the associated 

noise, novel methods have been proposed in this research to improve the effectiveness of 

wavelet-based denoising through those three aspects mentioned above. In the meantime, 

EMD-based denoising, which does not require a predefined basis function for signal 

decomposition, has been discussed as an alternative to wavelet-based denoising in the context 

of PD signals. Comparisons between these two denoising strategies have been implemented 

through both simulated and real PD data. Details regarding these new methods and 

comparisons have been outlined in Chapter 4 – 8. A brief conclusion based on these 

contributions in this thesis are as follows: 

1. A novel wavelet entropy-based wavelet selection scheme proposed in Chapter 4 was 

derived from the concept of Shannon entropy and the associated information cost 

function in information theory. This novel wavelet selection scheme selects the wavelet 

that can minimize the value of wavelet entropy of the approximation coefficient 

sequence at each decomposition scale, and thus, is adaptive and scale-dependent. It is 

one of the main contributions of this research project. Results of both simulated and real 

PD signals demonstrate that this new wavelet selection scheme can present better 

performance, i.e., the effectiveness of wavelet-based denoising can be improved by the 

use of this new method. As such, it can be a promising approach when applied to cable 

diagnostics. PD pulse variation during its propagation in the medium has been mentioned 

before. Although this new algorithm was demonstrated through simulated and real PD 

signals, the range of PD waveforms may still be far less than those in real situation. The 

following research work may continue based on the output of this as it sheds lights on the 

improvement of wavelet-based denoising for PD signals through the analysis of the 
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statistical characteristics.  

2. Decomposition scale has not been received high attention in wavelet-based denoising, as 

it is normally selected by trial and error, or by experience, or by an empirical formula 

(termed wavelet length method in this thesis). Investigations in Chapter 5 demonstrated 

that the variation of decomposition scale did have a major effect on the denoising results. 

A sparsity-based method was then proposed as one major contribution based on the 

concepts of sparsity in compressive sensing and Shannon entropy in information theory. 

The sparsity of transformed PD signals can be reflected by the significant coefficient 

ratio, which is the ratio of the number of significant coefficients to the total length of that 

scale. Results from both simulated and real PD data show that it is an effective method 

for the decomposition scale determination in wavelet-based PD denoising. The new 

method for scale determination may have possible limit as same as that for the optimal 

wavelet selection, i.e., the involvement of PD waveforms in the investigation may not 

cover all PD waveforms from a practical point of view. However, the improvement of 

effectiveness in wavelet-based denoising indicates that it can be in a right track for PD 

denoising.  

3. Chapter 6 firstly reviewed current existing threshold estimation techniques integrated in 

MATLAB, and it was found that the universal threshold estimation can provide the best 

threshold close to the noise level. The universal threshold is derived from noise 

estimation in noisy signals rather than the signal itself, however. Based on this, a novel 

SCR-based threshold estimation technique was then proposed based on the concept of 

significant coefficient ratio introduced in Chapter 5. The combination of the value of 

significant coefficient ratio and the number of significant coefficients can determine a 

reasonable threshold without the dependence on noise variance. The improvement of 

denoising results by the use of this new threshold has been demonstrated through both 

simulated and real PD signals. In the meantime, a new H-S thresholding function 

proposed in the processing of hydrologic series data was referenced in this thesis to 

overcome the discontinuous nature of traditional hard- and soft-thresholding functions. 

The denoising results of both simulated and real PD signals show that the effectiveness 
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of wavelet-based technique can be improved.  

4. Chapter 7 reviewed the methods for RMS in EMD-based denoising. Based on the limits 

of these methods, the energy entropy of IMFs was proposed as a new method for RMS. 

The denoising results of simulated PD signals showed that it only works well when the 

SNR of original PD signals is relatively high. However, this investigation revealed that 

RMS is not as important as expected for EMD-based technique in PD denoising. 

Numerous simulations showed that all IMFs remained for further denoising can achieve 

better denoising results. One serious issue was raised from the application of EMD-based 

denoising in PD signals, i.e., denoised PD signals received severe distortion, especially 

those PD signals with small magnitude. Also, EMD-based denoising was found 

ineffective in real PD denoising. This may be highly related to the noise estimation used.   

5. Chapter 8 tested the proposed algorithms in previous chapters by introducing real PD 

data. Experiment on testing samples conducted in HV laboratory was presented with 

details. Also, real PD data from an experiment on a power cable sample and onsite 

measurement was provided by other researchers for algorithms’ tests. Comparisons 

between wavelet-based and EMD-based denoising was made through executing time, 

distortion, effectiveness, adaptivity and robustness. The denoising results of real PD 

signals showed that the improved wavelet-based technique is more preferable for the 

denoising of PD detection of electrical apparatus in practice due to its strength in 

effectiveness.  

9.2 Recommendations for Future Work 

Although the improved wavelet-based technique can present good denoising results of PD 

signals, some aspects as the subsequent effects of the contributions made may prompt future 

investigations.  

1. The novel entropy-based wavelet selection scheme is an adaptive, automated, and 

scale-dependent approach. The appealing features of this new scheme is based on a 

preset wavelet library. As a result, the scope of the wavelet library has a major effect on 

the denoising results. In this thesis, the wavelets from Daubechies family were used to 
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build the wavelet library. For a future work, this can be extended to include wavelets 

from, e.g., Symlets, Coiflet, and Biorthogonal wavelets. It could be that the 

scale-dependent wavelet from these new wavelet families can provide better denoising 

results than current wavelet selected.  

2. A SCR-based threshold estimation was proposed based on the number of significant 

coefficients and the significant coefficient ratio. Based on numerous simulation results, 

the tolerance of this improved threshold to noise, e.g., DSI, is not significantly enhanced. 

More efforts can be put into the investigations of a more robust threshold estimation in 

the future, and thus, increase the tolerance of wavelet-based denoising to DSI.  

3. Current threshold estimation in EMD-based denoising is based on a white noise model, 

which cannot render EMD-based technique as a competitive alternative to wavelet-based 

technique in PD denoising. Based on simulation results, EMD-based denoising can 

present similar or better denoising results, but severe distortion occurs for PD pulses with 

small magnitude. Also, ineffectiveness can be seen from its application for real PD data. 

As a result, a series of future work can be done to improve the performance of 

EMD-based technique in PD denoising. A brief summary of these work is as follows. 

a) As aforementioned, the extraction of IMF in current algorithm is based on the 

number of extrema. When noise involved, this extraction cannot distinguish signal 

and noise components. It imposes the difficulty on IMF interpretation. Based on this, 

it is necessary to develop a method that can improve the accuracy of interpretations 

of the IMFs, and thus, reduce the inaccuracy for EMD-based denoising. 

b) With the accurate interpretation of the IMFs, a more accurate threshold estimation 

can be proposed to overcome the drawbacks of current existing one.  

c) Consider the effect of noise from other noise sources, except white noise, in 

EMD-based technique. The characteristics of noise, e.g., DSI, of the IMFs are not 

investigated. A more robust threshold estimation can be proposed with further 

investigation of noise characteristics of the IMFs.  

d) For long-length signals, a new method needs to be developed to enable EMD-based 

denoising to cope with segment-based processing, and thus, reduce the total 
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executing time.  

4. During the investigation of the sparsity-based method for decomposition scale 

determination, it is known that PD signals can present sparse nature in some domains, 

e.g., wavelet domain. This attractive feature of PD signals can be further investigated 

with the combination of some popular sparsity-based denoising algorithms, e.g., 

dictionary learning algorithm (K-SVD) and compressive sensing.  
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