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Abstract

This thesis addresses the formulation of and solution to broadband minimum vari-

ance distortionless response (MVDR) beamforming. Two approaches to this problem

are considered, namely, generalised sidelobe canceller (GSC) and Capon beamformers.

These are examined based on a novel technique which relies on polynomial matrix for-

mulations. The new scheme is based on the second order statistics of the array sensor

measurements in order to estimate a space-time covariance matrix. The beamforming

problem can be formulated based on this space-time covariance matrix. Akin to the

narrowband problem, where an optimum solution can be derived from the eigenvalue

decomposition (EVD) of a constant covariance matrix, this utility is here extended to

the broadband case. The decoupling of the space-time covariance matrix in this case

is provided by means of a polynomial matrix EVD.

The proposed approach is initially exploited to design a GSC beamformer for a uni-

form linear array, and then extended to the constrained MVDR, or Capon, beamformer

and also the GSC with an arbitrary array structure. The uniqueness of the designed

GSC comes from utilising the polynomial matrix technique, and its ability to steer the

array beam towards an off-broadside direction without the pre-steering stage that is

associated with conventional approaches to broadband beamformers.

To solve the broadband beamforming problem, this thesis addresses a number of ad-

ditional tools. A first one is the accurate construction of both the steering vectors based

on fractional delay filters, which are required for the broadband constraint formulation

of a beamformer, as for the construction of the quiescent beamformer. In the GSC case,

we also discuss how a block matrix can be obtained, and introduce a novel paraunitary

matrix completion algorithm. For the Capon beamformer, the polynomial extension

requires the inversion of a polynomial matrix, for which a residue-based method is

proposed that offers better accuracy compared to previously utilised approaches.

These proposed polynomial matrix techniques are evaluated in a number of simu-

lations. The results show that the polynomial broadband beamformer (PBBF) steers
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the main beam towards the direction of the signal of interest (SoI) and protects the

signal over the specified bandwidth, and at the same time suppresses unwanted signals

by placing nulls in their directions. In addition to that, the PBBF is compared to

the standard time domain broadband beamformer in terms of their mean square error

performance, beam-pattern, and computation complexity. This comparison shows that

the PBBF can offer a significant reduction in computation complexity compared to its

standard counterpart.

Overall, the main benefits of this approach include beam steering towards an ar-

bitrary look direction with no need for pre-steering step, and a potentially significant

reduction in computational complexity due to the decoupling of dependencies of the

quiescent beamformer, blocking matrix, and the adaptive filter compared to a standard

broadband beamformer implementation.
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Chapter 1

Introduction

1.1 Background and Motivation

In many applications such as radar [1, 2], sonar [3, 4], microphone arrays [5], radio

astronomy [4, 6], seismology, medical diagnosis [7], and wireless communications [8, 9],

beamforming techniques play a vital role. A beamformer is a signal processing system

consisting of an array of sensors; these sensors measure propagation fields with the aim

to emphasize a signal from a certain direction, while attenuating signals from other

directions. This emphasis is achieved by the beamformer operating as a spatial filter.

With respect to the bandwidth of the impinging signals, beamforming is catego-

rized as either narrowband or wideband beamforming. Narrowband beamformers are

designed to operate at a single frequency or narrow range of frequencies, whereby the

inverse of the bandwidth is large compared to the time delay that the signal component

experiences to travel between the reference and furthermost sensors in the array [10].

In contrast, broadband beamformers are utilized in a large range of applications which

need to work over a wide frequency band that extends over several octaves, such as in

audio or sonar signal processing [3, 11].

Many approaches exist for narrowband beamformering. These are categorised in

terms of data dependency, where in a first category the beamforming weights do not

depend on the arrays’ data but only on geometry such as the angle of arrival of the

signal of interest, as is the case of the delay and sum beamformer [12]. The second cate-
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Chapter 1. Introduction

gory are statistically optimum beamformers where beamforming weights are optimized

based on the arrays’ data; these are also referred to as adaptive beamformers [4, 13].

Some approaches related to this category optimise the beamformer with respect to

the signal to interference plus noise ratio (SINR) [14], minimum variance distortion-

less response (MVDR) [15, 16], or perform a sample matrix inversion (SMI) adaptive

beamformer, which is preferable in applications where adaptive beamformers suffer

from slow convergence due to a wide spread of the eigenvalues in the covariance matrix

[17, 18].

Broadband beamformers are often implemented as digital systems. A first method

is the implementation in time domain by using finite impulse response (FIR) filters or

tapped delay lines following each array element [19, 20, 21, 22, 23, 24, 25]. The second

is the frequency decomposition method [26], in which the time sequences measured at

each sensor are projected into narrowband frequency bins using the discrete Fourier

transform (DFT), and a broadband beam-pattern can then be created by applying

synthesis techniques across all frequency bins. Many advantages and properties of the

time domain broadband beamformer are reported in [27] and[28]. For instance, this

method of broadband design does not suffer from latency, which makes it suitable to

use in applications such as communications; the data can be updated for each new

snapshot which is advantageous in processing transient signals and short pulses. In

addition, it is proved in [27] that the time domain approach for broadband beamforming

estimates the weights more accurately compared to its frequency domain counterpart,

and functions better in scenarios where interference signals possess high power and

occupy large bandwidths. This is because frequency domain methods that operate in

independent DFT bin, while numerically very inexpensive, are known to have a very

poor worst-case performance [29].

While most of the existing work has been reported on narrowband beamforming

where a rich set of optimum tools are available, wideband beamforming technique

solutions are specific to parameters such as the tap delay line length, and can be

suboptimal. In addition, commonly, the design approaches of broadband beamforming

incorporate a pre-steering delay for each sensor, which can be achieved physically at
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the cost of extra hardware components in implementation. This in return can lead

to higher power consumption. Accordingly, in [30] a broadband beamformer without

pre-steering procedures was proposed, which simplifies the physical structure as well

as reduces the processing time and cost. This can be very significant when an array

consists of a large number of sensors.

From an implementation viewpoint, in the case of narrowband time domain beam-

forming the delay of signal samples between array elements is usually represented as a

phase shift. However, in the case of broadband processing the time delay or lag value

has to be taken into account when calculating the space-time covariance matrix that de-

scribes the interaction between the broadband sensor array signals. As a consequence,

the elements of the space-time covariance matrix are formed by the complete auto- or

cross-correlation sequences rather than just a single correlation coefficient as in the nar-

rowband case. By applying the - z transform to this matrix results in its corresponding

cross-spectral density (CSD) matrix that takes a polynomial form. Within the poly-

nomial matrix framework, a number of narrowband techniques have been extended to

the broadband case [31].

Regarding the previous statement of advantages and disadvantages of broadband

beamformers in time or frequency domain implementation, and also the benefit of

discarding the pre-steering process, in this research we are particularly interested in time

domain broadband beamforming with arbitrary look direction, since most beamformer

designs assume pre-steering and look towards broadside. This method is achieved by

manipulating the concept of polynomials in digital signal processing.

The proposed method shows a reduction of computational complexity and robust-

ness particularly for off-broadside constraints for linear or planar arrays, or for arrays

with an arbitrary configuration in three dimensions. This is achieved using the gen-

eralised sidelobe canceller (GSC) structure, which is an implementation of minimum

variance distortionless response (MVDR) beamformer and relies on adaptive filtering

algorithms, such as the normalised least mean square (NLMS) algorithm, to perform

unconstrained adaptive optimisation in order to determine the beamforming weights.

The MVDR beamformer in its generalised side-lobe canceller (GSC) structure addresses
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the optimisation problem and can also respond to any change in the statistics of the

array’s data. However, if a part of the signal of interest leaks along with interference

and noise through the system’s blocking matrix to the adaptive filter, this can lead to

cancellation of the signal that we would like to preserve. As a consequence the design

of a blocking matrix that prevents such scenario is very important in order to optimally

suppress interference and noise, and many approaches were proposed for this purpose

[32, 33, 34]. In this work the design of a blocking matrix for broadband signals is accom-

plished by invoking polynomial tools 1, namely a polynomial eigenvalue decomposition

algorithm (PEVD) which is an extension of the eigenvalue decomposition (EVD) of

conventional Hermitian matrices [35].

This approach is tested under scenarios that assume a uniformly spaced linear

array (ULA) as well as arbitrary array geometry and an environment without rever-

beration. The sole impairment that the desired signal encounters is due to interference

and noise. The performance of the proposed design is compared with a standard beam-

former by using MATLAB simulations. The metrics to assess the performance of the

adaptive beamfomer are its directivity pattern, the mean square residual error, and

its computational cost. The results show that the polynomial approach of designing

a broadband beamformer provides low computational complexity and can outperform

standard broadband beamforming.

To demonstrate the ease with which broadband array problems can be generalised

from their well-known narrowband equivalents when using polynomial matrix formu-

lations, this thesis further studies the Capon beamformer as an alternative form of

addressing the MVDR problem. This form of formulation of the MVDR includes the

inverse of the space-time covariance matrix, which is accomplished by a new polyno-

mial matrix inversion technique based on the residue method. Within this context, a

regularisation factor or diagonal loading is applied to the polynomial matrix in order

to mitigate poor conditioning in space and frequency. This is examined for a specific

regularisation parameter. This has also led to a reduction in sidelobe peak levels, and

can enhance the overall performance of the polynomial broadband beamformer.

1http://pevd-toolbox.eee.strath.ac.uk/
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This thesis also demonstrates the constraint design and broadband beamformer

implementation for an array with arbitrary configuration in 3-dimensional space for the

unconstrained adaptive MVDR beamformer. This is important since an equispaced,

linear arrangement of the sensor array might be inadequate for some applications. Also,

the spatial arrangement of the sensors overcomes the problem of the ambiguity cone

of the ULA. The performance of the polynomial broadband beamformer (PBBF), with

this type of sensor array configuration, is evaluated based on its beam-pattern, and the

residual error. The results for a number of defined simulation scenarios show sufficient

nulling of the interference and protection of the desired signal.

1.2 Contributions

This thesis aims to provide several novel aspects related to array processing and more

precisely the design of broadband beamformers, which are detailed below.

• The polynomial formulation of the objective and constraints of MVDR optimi-

sation problem for various MVDR beamforming techniques including GSC and

Capon solutions, and for arbitrary array geometry [36, 37, 38].

• A solution to a broadband beamformer with no pre-steering process that respond

to sources of interest that lie off-broadside[36].

• The construction of two of the main three parts of the GSC structure of the

MVDR beamformer based on polynomial methods, namely, the polynomial qui-

escent beamformer and the blocking matrix [36].

• The development of novel approach, that relies on the residue theorem, for the

numerical calculation of a polynomial matrix inverse [38].

• The application of the polynomial matrix inverse to compute the broadband

Capon beamformer’s weight vector [38].

• The implementation of the broadband Capon beamformer in three different ways,

which depends on different combinations of the desired signal, interference, and
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noise to obtain the space-time covariance matrix [38].

• The generalisation of the polynomial broadband beamformer to be adequate for

processing sampled data captured by an array of sensors[37].

1.3 Thesis Organisation

The overall organisation of the thesis is as follows.

Chapter 2 starts with basic concepts about electromagnetic waves and array signal

modelling and processing. Here, the beamforming techniques for narrowband signal are

first discussed, and their categories are introduced such as data independent or statisti-

cally optimum [15, 39]. Also, their implementation steps are explained. The fractional

delay filter is introduced in order to construct a broadband steering vector. General

structures for time domain and frequency domain beamformers are also introduced.

Since adaptive filters are usually incorporated in the design of adaptive beamformers,

some algorithms related to these techniques are described. The chapter also reviews

polynomial matrix techniques and algorithms in signal processing. The polynomial

matrix structure, their properties and some related algorithms to process this type of

matrices are treated in so far as they are required for implementation purposes in the

context of this thesis.

Next, Chapter 3 discusses the formulation and implementation of a broadband

MVDR beamformer using a GSC structure that relies on polynomial matrix techniques.

It concentrates on the aspects and characteristics associated with broadband steering

vectors and quiescent beamformer as well as the design of the blocking matrix and mul-

tichannel noise cancellation adaptive filter. The design is then examined by comparing

its performance with a tap-delay-line-based time domain broadband beamformer in

computer simulations.

Then, the Capon broadband beamformer is considered in Capter 4. Special con-

sideration is given to the implementation process, which includes the inversion of the

polynomial space-time covariance matrix. Implementation approaches are exemplified,

and a numerical evaluation of each of the approaches is presented.
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In Chapter 5, the extension of the broadband steering vector to a three dimensional

array set up is derived. Based on this derivation, the GSC beamformer implementation

is updated, and the performance of the beamformer is evaluated using metrics including

beam patterns that can adequately reflect a dependency on three parameters — azimuth

and elevation angles, as well as frequency.

The main points and observations of the work are summed up, together with some

ideas for future work, in Chapter 6.
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Chapter 2

Introduction to Beamforming

This chapter is concerned with fundamentals and concepts of array processing and

beamforming. The chapter begins with a description of antenna arrays in Sec. 2.1 based

on the organisation of array elements within a coordinate systems, along with the spatial

signal representation and its mathematical model. General beamforming is reviewed

in Sec. 2.2. In Sec. 2.3 the minimum variance distortionless response (MVDR) in its

linearly constrained minimum variance (LCMV) beamformer and generalised sidelobe

canceller (GSC) versions are presented. In order to extend this to the broadband case,

in Sec. 2.4 the time domain approaches of broadband beamformer are discussed. In the

last section of this chapter, some polynomial signal processing terminologies, definitions

and algorithms are defined in order to complete some of the background that will be

used in later chapters.

2.1 Antenna Array and Signal Model

2.1.1 Array Elements in Space and Wave Propagation

Antenna arrays comprise multiple antenna elements that can be organized into differ-

ent geometric configurations which depend on the application. This set of antenna

elements collects spatial samples of the signal impinging on the array. The output from

the individual elements are processed and combined to obtain a single output that rep-

resent the antenna array output. In comparison with continuous aperture antennas,
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the antenna array principle adds degrees of freedom to the array design, and also a

capability to control its radiation pattern [40, 41, 42]. Flexibility to control the shape

of the desired radiation pattern can improve the directivity and gain, and facilitate to

electronically steer the beam towards the specific direction from which a source that

emits a signal arrives at the array [43].

The mathematical representation of an impinging signal involves two parameters

that play an important role for the signal discrimination, as it is described in later

sections, with the aim of extracting information from the signal in the presence of

interference and noise. The first parameter is the position vector of the antenna array

elements, r, and the second is the time, t, at which the signal is observed. Hence, such

a signal is commonly known as a space-time signal, and it is symbolically indicated

as s(t, r). The location of the antenna elements, r, can be described within a three

dimensional right handed orthogonal coordinate system, such a rectangular or Cartesian

coordinate system x, y, z, or its Spherical coordinate counterpart system ρ, ϑ, ϕ.

However, the description of a vector within either system can be easily converted to

the other via

rm =


xm

ym

zm

 (2.1)

or

rm = ρm


cosϕm sinϑm

sinϕm sinϑm

cosϑm

 , (2.2)

where the transformation from the Cartesian to polar coordinate systems is achieved

by substituting xm = ρm cosϕm sinϑm, ym = ρm sinϕm sinϑm, and zm = ρm cosϑm.

The transformation (2.2) is illustrated in Fig. 2.1.

In the case when propagation occurs in free space, in which the medium is considered

as homogeneous, dispersion free, and lossless, the space time signal s(t, r) undergoes

e.g. the Maxwell equations in case of propagation of an electromagnetic wave, and can
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Figure 2.1: Antenna array with arbitrary configuration.
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be solved accordingly by the scalar wave equation [40]

∇2s(t, r)− ε0µ0
∂2s(t, r)

∂t2
= 0 , (2.3)

where ∇2 denotes the Laplacian operator, and ε0 and µ0 the dielectric constant

and magnetic permeability of free space, respectively. The solution for this differential

equation provides that

s(t, r) = Sej(ωt−k
T r) (2.4)

= Sejωte−jk
T r , (2.5)

where S refers to the signal amplitude, ω is the angular frequency, and k is a vector

termed as the angular wavenumber vector and is defined by e.g. [44] as

k = k(ϑ, ϕ) (2.6)

= k.u . (2.7)

The scalar k represents the magnitude of k and is often termed wavenumber or the

spatial frequency [25, 45],

k =
2π

λ
=
ω

c
. (2.8)

The vector u is a unit length vector that points to the direction specified by the

azimuth angle ϕ measured with respect to x axis, and the elevation angle ϑ that is

measured with respect to z axis. Therefore, the unit vector is defined as

u = u(ϑ, ϕ) =


cosϕl sinϑl

sinϕl sinϑl

cosϑl

 , (2.9)

with the azimuth angle ϕ ∈ [0, 2π] , and the polar angle ϑ ∈ [−π/2, π/2].
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2.1.2 Signal Model and Steering Vector

Assume that there are L spatially discrete far field sources at locations p1, p2, . . . pL,

and emitting signals whose baseband models are given by (2.5). Let sl[n] represents

a signal from far field radiated by the lth source at time instance n. If this signal

impinges on an antenna array with M elements, then the array elements will spatially

sample the plane wave, and the signal received by the m-th antenna element is

xm[n] = s[n, rm] + vm[n] . (2.10)

The signals at the output of antenna elements, apart from being time-delayed, are all

identical, whereby the delays depend on the angle of arrival (AOA) of the signal. With

the reference element located at the origin of the coordinate system, the relative delay

τ that a signal experience to travel to an mth element can be expressed as

τm =
rTm.ul
c

. (2.11)

Thereby, the array signal components at each element due to the source signal in

(2.10) can be organised to form a vector,

x[n] =


x0[n]

x1[n]
...

xM−1[n]

 (2.12)

By explicitly including the source signal and time delays, this becomes

x[n] =


s[n− τ0]

s[n− τ1]
...

s[n− τ(M−1)

+


v1[n]

v2[n]
...

v(M−1)[n]

 , (2.13)

whereby xm[n] = s[n− τm] + vm[n] .
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Alternatively, the signal vector can be expressed as a multiplication of the steering

vector, that incorporates the phase shifts due to delays as a function of the angle of

incidence, with a scalar signal, such that

x[n] =


e−jk

T r0

e−jk
T r1

...

e−jk
T rM−1

 s[n] + v[n] , (2.14)

with v[n] a noise vector characterised further below. The phase factor is also referred

to as array steering vector and incorporates all the spatial characteristics of the array.

For a general case, when complex baseband signals related to L spatially separated

and uncorrelated sources are received by an array with M elements at a single discrete

time instance n, we assume the underdetermined case L < M . In addition to that, these

signals are corrupted by zero-mean complex additive white Gaussian noise vm[n] ∼

CN(0, σ2). Then the array observation vectors can be represented by


e−jk

T
1 r0 e−jk

T
2 r0 . . . e−jk

T
Lr0

e−jk
T
1 r1 e−jk

T
2 r1 . . . e−jk

T
Lr1

...
... . . .

...

e−jk
T
1 rM−1 e−jk

T
2 rM−1 . . . e−jk

T
LrM−1

 . (2.15)

Here, a(ϕl, ϑl) denotes the steering vector of the array towards direction (ϑl, ϕl),

a(ϕl, ϑl) =


e−jk

T
l r0

e−jk
T
l r1

...

e−jk
T
l rM−1

 , (2.16)

and v[n] is the noise vector with elements representing the noise at each antenna
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element. Using compact matrix notation, (2.14) becomes

x[n] = A(ϕ, ϑ) · s[n] + v[n] , (2.17)

where A(ϑ, ϕ) is the array steering matrix of dimension M × L which contains in its

columns the steering vectors of the incoming signals, such that

A(ϕ, ϑ) =
[

a(ϕ1, ϑ1) a(ϕ2, ϑ2) . . . a(ϕL, ϑL)
]
. (2.18)

2.1.3 A Uniform Linear Array Signal Model Example

In light of this discussion, we exemplify how the above parameters are related to the

arrangement of the array elements. If a particular geometric structure of the antenna

array is considered, for instance, if we assume that this formulation is applied to the

uniform linear array (ULA) in Fig. 2.2, then the antenna elements are illuminated by

a planar wave coming from a source with direction of arrival ϑ. If (2.11) is applied to

evaluate the propagation time delay with respect to the first element, the time delay

for the m-th element will be

τm =
d cosϑ

c
(m), m = 0, 2, . . . ,M − 1 . (2.19)

The parameter d is the space distance between two adjacent antenna elements in the

array.

By drawing an analogy between the temporal sampling based on the Nyquist the-

orem [46] and spatial sampling [25], the distance d is considered as being the spatial

sampling period that has to be restricted to avoid spatial aliasing. For a bandlimited

signal, and by exploiting the relationship of the wavenumber k with the angular fre-

quency ω in (2.8) for ω ≤ ωmax , the spatial sampling period has to be d ≤ λmin/2

.

Based on correct spatial sampling, the spatial signature of the source is represented
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Figure 2.2: uniform linear array.

by the array steering vector

aULA(ϑ) =


1

e−jkd cosϑ

...

e−jkd cosϑ(M−1)

 . (2.20)

In the case of a monochromatic plane wave, this set of complex values represents phase

shifts that substitute time delay processors δ[n−τm], m = 0, . . . , (M−1) , and guarantee

the components of the plane wave from the direction ϑ to be coherently added. If

the noise vm[n] corrupting the sensors is assumed to be mutually independent, an

enhancement of the signal to noise ratio (SNR) can be achieved which leads to the
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socalled the array spatial gain (SG). The spatial gain is defined as

SG = 10 log
SNRa

SNRe
(dB) , (2.21)

where SNRa and SNRe are the signal to noise ratio of the array and of each element

in the array respectively.

For generalization, if a number of plane waves are picked up by an array of sensors,

and discrimination to a signal that comes from a specific direction is required, then it is

important to process this signal in order to extract the spatio-temporal characteristics.

To this end, direction finding algorithms need to be invoked, such as estimation of

signal parameters via rotational invariance techniques (ESPRIT) [47] or multiple signal

classification (MUSIC) algorithms [48], but these algorithms are beyond this research.

The obtained information is processed by space time filters to spatially filter the SoI

while simultaneously rejecting all other competing sources that are located spatially

apart. This process is technically known as beamforming, which is going to be the core

theme in the remainder of this thesis.

2.2 Beamforming Background

2.2.1 Beamforming Weights and Metrics

The capability of an antenna array to steer its beam pattern to a specific direction

in space is termed as beamforming. Assume that a desired signal is coming from a

direction (ϕd, ϑd) and propagates in a space shared with multiple interfering sources

that propagate from different directions. Then the main objective, in this case, is

to spatially filter the array signals such that the SoI is maintained while simultane-

ously nulling or suppressing undesired ones. To this end, a complex weight vector

w = [w0, w1, . . . , wM−1]H ∈ CM×1 is applied to the array signal vector x[n] to per-

form a weighted sum over the different signals gathered by the array. Therefore the

beamformer output is mathematically expressed as

y[n] = wHx[n] . (2.22)

17



Chapter 2. Introduction to Beamforming

x0[n]

x1[n]

xM−1[n]

w0

w1

wM−1

+

..
.

y[n]

Figure 2.3: A narrowband conventional beamformer

In a simple type of beamformer called a delay-and-sum beamformer, the weighting

in (2.22) is performed in order to compensate for the phase difference, and the array

signals are, consequently, coherently combined. The process is depicted in Fig. 2.3,

and this architecture, because of its structure and functionality, is generally called a

delay-and-sum beamformer.

The way of calculating the weights classifies the beamformers into two categories,

either as data independent or statistically optimum beamformers [18]. In the former

the weights are fixed and do not depend on the received data, but on known angles of

arrivals for both SoI and interferers. For the latter, the weights change or adapt based

on the statistics of the array data, hence they optimize the array response to achieve

a certain aim. This is used, for instance, to extract source signals when the array is

used in the presence of multiple sources whose directions may be unknown.

For a single point source scenario, the weights are chosen to appropriately align the

sensor signals such that they constructively interfer, as shown in Fig. 2.4. To this end,

the phase shifts collected in the steering vector a(ϑd) of the specific source are used to

define the beamformer weights in order to steer the array’s beam towards the desired
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direction. Consequently, the choice of w = a(ϑd) satisfies this requirement, so that

w =
1√
M


e−jk

T
d r0

e−jk
T
d r1

...

e−jk
T
d r(M−1)

 (2.23)

where kd represents the angular wavenumber vector of the desired signal. Once this

factor is obtained, it is straightforward to define the characteristics of the array and to

evaluate its performance by using metrics such as SNR or the directivity pattern of the

array. The normalized directivity or gain pattern of a such beamformer as a function

of the SoI’s direction of arrival is depicted in Fig. 2.4, which is calculated via

y[n] = wHa(ϑ) . (2.24)

As it can be seen that the main beam, or the maximum power, is located at the angle

of arrival of the SOI, and side-lobes are distributed over the other directions. The first

side-lobe, adjacent to the main lobe, level is -6.2dB relative to the peak of the main

lobe.

In contrast, SNR as a metric is related to the array average output power. This is

expressed as

E
{
|y[n]|2

}
= wHRxxw . (2.25)

Hence, from (2.25) it can be noticed that, the output power depends on the array

weights w, as well as the data covariance matrix Rxx that is addressed in the following

section.

2.2.2 Matrix Formulation of the Data Model

Most array processing approaches express the relationship between the array signals

in x[n] by means of a spatio-temporal correlation matrix. In the narrowband case,

the spatial correlation suffices to capture the phase differences that fully characterise

signals impinging on the array from different angles of arrival.
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Figure 2.4: Beam pattern of a conventional beamformer with 8 array elements and
an SoI from ϑs = 30◦.

The resulting spatial covariance matrix is

Rxx = E
{
x[n]xH[n]

}
. (2.26)

In most cases, it can be assumed that the observation vectors x[n], n ∈ Z are Gaussian

random variables with zero mean, which makes the correlation and covariance matrices

equivalent in such case. If this assumption is extended to the elements of the noise vector

and we consider them as being spatially and temporally uncorrelated with variance σ2,

then

E
{
v[n]vH[n]

}
= σ2I , (2.27)

where I is an M ×M identity matrix. By considering the data model in (2.17), the
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matrix Rxx can be rewritten as

Rxx = A(ϕ, ϑ)RssA
H(ϕ, ϑ) + σ2I . (2.28)

For L independent sources, the Rss is an L×L diagonal matrix containing the powers

of the different contributing sources. By construction, the covariance matrix therefore

is Hermitian and positive semi-definite. Hence Rxx possesses an eigenvalue decompo-

sition with real non-negative eigenvalues,

Rxx = UΛUH . (2.29)

The matrix U is unitary , and Λ is a diagonal matrix that contains the eigenvalues

λi, i = 1, . . . ,M

Λ = diag{λ1, λ2, . . . , λM} . (2.30)

These eigenvalues are assumed to be spectrally majorised, which means that λi ≥

λi+1 ≥ 0, i = 1, . . . , (M − 1).

Recall that the average power in (2.25) does not only depend on the covariance

matrix but also on the weight vector which needs to be adequately calculated to optimise

the overall performance of the system. The computation of the weights is usually

formulated as an optimisation problem. The basic formulation of such optimisation

techniques is described in the following section.

2.3 Optimal Beamforming

Sec. 2.2 addressed fixed beamforming. One might notice that it yields significant im-

provement in terms of the gain of the received signal. In that way, the beamformer

is fixed in the sense that the output signals from the elements are multiplied by a set

of fixed weights, which do not rely on the received data characteristics. However, this

method is not suitable in scenarios, for instance, when the AoA of an interferer may

not be known precisely, sources might be (slowly) moving, or there might be calibration

errors in the array. Which, in this case and in contrast to the conventional beamformer,
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requires that the beamforming algorithms incorporate the statistics of the received data

in the computation of the weights [49]. This permits these weights to change or adapt

based on the received data in order to accomplish a certain goal, for example to adapt

these weights to preserve the desired signal and improve rejection of interferers. To

avoid the trivial solution w = 0, we need to protect the look direction by a constraint.

This leads to the concept of optimum beamforming which we will address in this sec-

tion; more precisely, we consider the MVDR method and its GSC adaptive beamformer

structure.

2.3.1 Minimum Variance Distortionless Response (MVDR)

The aim is to optimize the beamformer response, so that the output signal of the

beamformer encompasses minimal contribution due to noise and signals impinging on

the array from spatial angles other than the specific angle of the desired signal. This

defines a constrained minimization problem, which permits a signal from the desired

spatial angle to pass through the array with a specified gain [39, 50]. This can be

written mathematically as

min
w
E
{
|wHx|2

}
(2.31)

s.t. wHa(ϑ,Ω) = f, (2.32)

where a(ϑ,Ω) is the steering vector.

This minimization of weights is usually solved by invoking the method of Lagrange

multipliers, as detailed in Sec.4.3, setting the ultimate weight vector to be

wopt =
R−1a(ϑ,Ω)

a(ϑ,Ω)HR−1a(ϑ,Ω)
, (2.33)

which represents the LCMV optimal solution of the weight vector.

For a special case when the constraint response value f , is chosen to be unity,

this leads to so called the minimum variance distortionless response (MVDR) solution.

As the name suggests, the MVDR beamformer minimises the variance of the output

signal while keeping the desired signal undistorted with a gain equal to unity in the
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Figure 2.5: Beam pattern of optimal beamformer with 8 antenna array elements, ϑs =
30◦, and ϑi=1,2 = [−20◦, 60◦]

look direction. An example of a beam-pattern of an optimum narrowband beamformer

with a ULA is depicted in Fig.2.5, where three sources in the far field imping on the

array from angles 30◦ for the SoI, and −20◦ and 60◦ for the interferers. Nevertheless,

the computation of the weights based on this method is expensive due to the need

of matrix inversion, that can be unacceptable for some applications. Consequently,

another approach to solve this optimisation problem adaptively is suggested in [51] and

summarised below.

2.3.2 Generalized Sidelobe Canceller

The GSC is another approach to implement the direct form of the constrained optimal

filter in (2.33). The computation of the constraint weight vector involves the inverse of

the covariance matrix , which renders the direct implementation of the LCMV to be

computationally expensive.
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An alternative approach, the GSC, can offer a less computationally costly imple-

mentation since it does not require the inverse of the covariance matrix R. Moreover,

it reduces the constrained optimisation problem to become an unconstrained minimiza-

tion process. Fig. 2.6 shows the structure of the GSC as an adaptive beamformer. The

derivation of the GSC begins by reformulation the problem in (2.32), which relies on

the concept of projecting w onto the subspace spanned by C, which generalises the

constraint formulation in (2.32) to CHw = f , to obtain a new vector wq, and in the

null space of C to obtain a term −Bwa, which will be explained later. Consequently,

the weight vector in (2.33) can be rewritten as [52]

w = wq −Bwa . (2.34)
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The first part on the right hand side of (2.34), wq, is known as quiescent vector and

works similarly to a conventional beamformer: it steers the mean beam towards the

direction of the desired signal in order to enhance its gain relative to omnidirectional

noise. The second part consists of a matrix B, with dimension M by M − L, that is

called blocking matrix, and wa, an M − L dimensional vector, is the adaptive filter

vector weights. The blocking matrix and the adaptive weight vector are collectively

responsible for minimising the total power at the output by reducing the contributions

of noise and interference.

This can be mathematically expressed by substituting the decomposition of w back

into the optimisation problem (2.32), which leads to

min
wa
E
{
|(wq −Bwa)

Hx|2
}
. (2.35)

this can be factorised to

min
wa
E
{

(wq −Bwa)
HR(wq −Bwa)

}
. (2.36)

The optimal solution of the adaptive filter weights thus becomes

wa = (BHRB)−1BHRwq, (2.37)

which minimises the mean square power in (2.25). For convenience, however, an ap-

proach to compute the values of the weights of the adaptive filter wa is suggested

in [51] in which they are obtained by invoking an adaptive algorithm such as the LMS

algorithm, that is briefly described in the following section. The advantage of this solu-

tion, in fact, is to convert the constrained optimisation problem into an unconstrained

one, for which many well-known solutions exist [52, 53].

2.3.3 LMS Algorithm

The least mean square (LMS) algorithm belongs to the family of stochastic gradient

methods. Its simplicity, low cost, as well as robustness to stochastic of signals make it
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Figure 2.7: LMS adaptive filter

a popular adaptive algorithms for a wide range of applications.

For an M − L tap adaptive filter the weight vector is defined as

wa[n] =
[
wa,1[n] wa,2[n] . . . wa,M−L[n]]

]H
(2.38)

as shown in Fig.2.7. If the signals from the blocking matrix, which referred to as

auxiliary signals in Fig. 2.6, are arranged in a vector u[n], this results in

u[n] = BHx[n], (2.39)

where u[n] =
[
u1[n] u2[n] . . . uM−L[n]

]T
. Then the output of the adaptive filter

is given as

y[n] =

M−L∑
m=1

wa,m[n]um[n] . (2.40)

Assuming that d[n] is the desired signal, or in the view of GSC beamformer is the

quiescent beamformer output as explained in Sec.2.3.2, the aim to utilise the LMS is

to minimise the error between y[n] and d[n] by using wa as a mean for achieving
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this aim. Then the error or the difference at time n is

e[n] = d[n]− y[n] . (2.41)

An adaptive process is used to adjust the filter tap weights so the error is minimised in

some sense. The update equation of the weights is derived based on stochastic gradient

approach, and its ultimate expression as follows

wa[n+ 1] = wa[n] + 2µe∗[n]u[n] (2.42)

and µ is a real scalar known as step size. It has a value which is bounded by

0 < µ ≤ 2

λmax
(2.43)

so that the convergence of wa[n+ 1] is guaranteed as n increases.

2.4 Broadband Beamformer

Broadband beamforming is a technique to extract or suppress the desired source or

competing sources respectively. In contrast to the narrowband beamformer, these sig-

nals extend over a larger fractional bandwidth that can cover up to several octaves,

and are known as broadband signals. In this section the generic time domain approach

to broadband beamforming [19] and its amendment [30], which omits the pre-steering

process in the former, will be discussed in sequence.

2.4.1 Generic Time Domain Broadband Beamformer Design

The time domain broadband beamformer is represented schematically in Fig. 2.8. From

the figure it can be seen that each sensor in the array is followed by a tap delay line

(TDL) or a finite impulse response filter (FIR) in order to perform space and time

sampling on the impinging wave in (2.5).

With analogy to the narrowband beamformer, values of TDLs or FIR filter coeffi-

cients are considered as beamformer weights which respond to the range of frequencies
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covered by the signal to compensate the phase difference for each frequency component.

The pioneering work on this method [19] relies on the pre-steering concept, where the

signal of each sensor is delayed such that the beamformer can treat its pre-steering

inputs as if they had arrived from the broadside.

For a plane-wave signal arriving on a ULA from a direction ϑ, for instance, the

pre-steered signal of the m-th sensor in this direction becomes [25, 54]

xm[n] = x̂m[n− Tm(ϑ)], (2.44)

where x̂m[n] is a non pre-steered mth sensor signal, and Tm(ϑ) is the steering delay

defined as

Tm(ϑ) = T0 + τm(ϑ), (2.45)

and T0 is the bulk delay [55], which by referring to (2.45) might take the values

T0 ≥ −min
m

(τm(ϑ)). (2.46)

Consequently, from (2.44) the result of applying pre-steering to the receive signal can

be noticed. It is obvious that after steering delays, the signal components related to

the plane-wave arriving from direction ϑ are now aligned in time.

Hence , for x[n] and w ∈ CMJ that are the array signal and the beamformer weights,

respectively, the beamformer output is

y[n] = wHx[n]. (2.47)

Using (2.47) the mean square output of the beamformer is

E
{
|y[n]|2

}
= wHRw , (2.48)

where R ∈ CMJ×MJ is the correlation matrix that is a non-negative definite. In order

to protect the SoI, constraints are introduced to obtain w by minimisation of (2.47).

The process of pre-steering the array’s signals facilitates the design of the constraint
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matrix of the broadband counterpart of the MVDR problem in (2.31) and (2.32). After

pre-steering the signals, the constraint matrix can be given as

C = [c1 c2 . . . cL], (2.49)

with C ∈ RML×M , and

cl = [0, 0, . . . , 0︸ ︷︷ ︸
M

, 0, 0, . . . , 0︸ ︷︷ ︸
M

, . . . , 1, 1, . . . , 1︸ ︷︷ ︸
lth,M

, 0, 0, . . . , 0︸ ︷︷ ︸
M

]T . (2.50)

The existence of the steering delays, on one hand, makes the design of the constraints

simple and straightforward, but on the other hand adds computational complexity.

Since this approach incorporates a pre-steering delay for each sensor, this step might

be achieved physically which requires extra hardware components in implementation.

This in turn leads to more power consumption during processing. In [30, 56] a broad-

band beamformer without pre-steering procedures was proposed, which simplifies the

physical structure as well as reduces the processing time cost. This can be very signif-

icant when an array consists of a large number of sensors. This method is discussed in

the next section.

2.4.2 Time Domain Broadband Beamformer without Steering Delays

The proposed approach in[30, 56] relies on the knowledge of the steering vector in

look direction. Hence, given the frequency response in look direction Â(ϕ, ϑ,Ω). This

steering vector is factorised into a set of frequency bins, such that its k-th frequency

bin is expressed as

Â(k) =

 A(k), k = 0, 1, . . . , L−1
2

A∗(L− k), k = L+1
2 , . . . , L− 1 ,

(2.51)
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then an L× L transformation matrix Cm is generated

Cm =


Ãm(1) Ãm(2) . . . Ãm(L)

Ãm(L) Ãm(1) . . . Ãm(L− 1)
...

...
. . .

...

Ãm(2) Ãm(3) . . . Ãm(1)

 , (2.52)

where

Ãm(u) =
L−1∑
k=0

Am(k)ej2πmk , (2.53)

and m = 0, 1, . . . ,M − 1 and u = 1, 2, . . . , L.

The transformation matrix in (2.52) is applied to sensors’ signals, such that the

m-th sensor’s signal becomes

x̃m[n] = CT
mxm[n], (2.54)

where

xm =
[
xm[n] xm[n− T ] . . . xm[n− (M − 1)T ]

]T
(2.55)

Thus, the array signal vector is

x =


x̃0

x̃1

...

x̃M−1

 (2.56)

and the covariance matrix is

R̃ = E
{
x[n]xH[n]

}
, (2.57)

the entries of this matrix contains information required to obtain the non pre-steering

beamformer’s weights by solving

w̃ = R̃−1C(CT R̃−1C)−1f (2.58)
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with C as defined in (2.49), and

f = [f1, f2, . . . , fL]T (2.59)

is a vector to constrain the frequency response of the beamformer in a specified direc-

tion.

This approach shows the possibility of obtaining beamformer without using any pre-

steering stage. In this thesis, we will use a different approach to implement the time

domain beamformer in its MVDR solution that does not require steering delays, and

could be steered to an off-broadside. The proposed approach relies on using polynomial

tools to construct the beamformer components. This leads us to Sec.2.5 where some

of the terminologies, concepts and algorithms of polynomial in digital signal processing

will be presented.

2.5 Polynomial Matrices and Algorithms in Digital Signal

Processing

Polynomial matrices can be used to describe broadband systems with multiple inputs

and outputs. Examples for successful deployment of polynomial matrix techniques in

applications are optimum source coding [57], pre-coding and equalisation for MIMO

communications [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70], channel coding [71],

blind source separation [72? ], identification of source-sensor transfer functions [73],

speech enhancement [74], and angle of arrival estimation . In this context, this section

is devoted to briefly review the polynomial matrix structure, properties and algorithms

in so far as they are required later in this thesis.

2.5.1 Polynomial Matrices

Consider a matrix A(z) which is given as

A(z) = A0 + z−1A1 + z−2A2 + · · ·+ z−kAk (2.60)
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with matrix-valued coefficients An ∈ CM×M , n = 0, 1, 2, and order or degree k [? ]. An

alternative approach to express (2.61) is via polynomial entries inside a matrix. The

matrix A(z) then can be reformulated to become

A(z) =


a11(z) a12(z) . . . a1M (z)

a21(z) a22(z) . . . a2M (z)
...

...
. . .

...

aM1(z) aM2(z) . . . aMM (z)

 . (2.61)

If A(z) is assumed to be a polynomial matrix of degree k, then its (i, j)-th element can

be given in the form

aij(z) = a
(0)
ij + a

(1)
ij z
−1 + · · ·+ a

(k)
ij z

−k . (2.62)

In the following, we introduce a specific type of polynomial matrix which will aid in

the formulation of broadband beamforming problems in subsequent chapters.

2.5.2 Space Time Covariance Matrix

Assume that an M -element sensor array measures the signal vector

x[n] =
[
x1[n] x2[n] . . . xM [n]

]T
. (2.63)

The covariance matrix of x[n] is calculated by taking the expectation, E{·}, of x[n]

multiplied with its Hermitian

R = E
{
x[n]xH[n]

}
. (2.64)

However, this matrix only accounts for instantaneous correlations but not for time lags

between different array signals. In array signal processing, inclusion of the time lag is

important since the relative delay between different array elements contains information

about the angle of arrival (AoA) of the signal. The space time covariance matrix
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therefore is formulated as [80, 81]

R[τ ] = E
{
x[n]xH[n− τ ]

}
. (2.65)

This matrix captures both spatial and temporal correlation within and between signals.

The diagonal of this matrix contains the autocorrelation sequences of the M signals,

while the off-diagonal terms are occupied by cross correlation sequences. If R[τ ] is

expanded, then it can be expressed as

R[τ ] =


E{x1[n]x∗1[n− τ ]} E{x1[n]x∗2[n− τ ]} . . . E{x1[n]x∗M [n− τ ]}

E{x2[n]x∗1[n− τ ]} E{x2[n]x∗2[n− τ ]} . . . E{x2[n]x∗M [n− τ ]}
...

...
. . .

...

E{xM [n]x∗1[n− τ ]} E{xM [n]x∗2[n− τ ]} . . . E{xM [n]x∗M [n− τ ]}

 ,

(2.66)

or equivalently

R[τ ] =


r11[τ ] r12[τ ] . . . r1M [τ ]

r21[τ ] r22[τ ] . . . r2M [τ ]
...

...
. . .

...

rM1[τ ] rM2[τ ] . . . rMM [τ ]

 (2.67)

where rij [τ ] = E
{
xi[n]x∗j [n− τ ]

}
is the cross-correlation sequence between the signals

of the i-th and the j-th sensors, and the auto-correlation sequence when i = j, and

i, j ∈ Z. Its z-transform, R(z) •—◦ R[τ ] is the cross spectral density (CSD) matrix.

This Laurent polynomial matrix inherits the symmetry of the space-time covariance

matrix, where R[τ ] = RH[−τ ], such that R(z) = RP(z) = RH(1/z∗). A polynomial

matrix fulfilling the later equality is termed a para-Hermitian matrix.

2.5.3 Para-Hermitian and Para-Unitary Operators

The para-Hermitian operator transposes, complex conjugates (transjugates) and time

reverses the polynomial matrices, such that

AP(z) = AH(1/z∗) . (2.68)
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A polynomial matrix is para-Hermitian, if its transpose complex conjugate and time

reverse version is identical to the matrix itself, i.e.

A(z) = AP(z) . (2.69)

If a matrix satisfies

A(z)AP(z) = AP(z)A(z) = I (2.70)

then A(z) is called a para-Unitary matrix, in analogy to the unitary property for

constant matrices. As a result A(z) is straightforwardly inverted, and is also termed a

lossless filter bank [80] in analogy to the norm-preserving property of a unitary matrix.

2.5.4 Polynomial Eigenvalue Decomposition

A para-Hermitian polynomial matrix can be diagonalised by a polynomial eigenvalue

decomposition [81, 82, 83], which can be considered as a generalisation or an extension

of the conventional EVD, since it relies on similar procedures. When the conventional

EVD is used to transform a Hermitian matrix, A, it computes a unitary matrix, U,

that can be used to find a diagonal matrix related to A, such that Λ = UHAU where

the eigenvalues of A appear on the main diagonal of the matrix Λ.

By analogy with the EVD, the PEVD takes a polynomial para-Hermitian matrix

and factorises it into a diagonal matrix and a para-Unitary matrix, such that

A(z) ≈ QP(z)Λ(z)Q(z) . (2.71)

The matrix Λ(z) is a diagonal para-Hermitian matrix and its diagonal entries contain

auto-correlation sequences. In the frequency domain the diagonal entries of this matrix

will represent power spectral density that are ordered, or spectrally majorised [80], over

the entire frequency band covered by the signal. Thus for

Λ(z) ∼= diag{λ11(z), λ22(z), . . . , λMM (z)} , (2.72)

the majorisation property means that on the unit circle, λ11(ejΩ) ≥ λ22(ejΩ) ≥ · · · ≥
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λMM (ejΩ) [84].

The matrix Q(z) is a para-Unitary matrix satisfying (2.70) . In the context of the

PEVD, Q(z) transforms a para-Hermitian matrix into diagonal form, such that for the

CSD matrix R(z)

Λ(z) ≈ QP(z)R(z)Q(z) . (2.73)

It is possible to achieve equality for the PEVD in (2.73), which however requires

Laurent series of potentially infinite order [82, 83, 85]. For the purpose of the work

in this thesis, we will typically content ourselves with a polynomial approximation of

sufficient accuracy.

PEVD Mechanism and Algorithms

We approach the PEVD via an iterative algorithm. We start with R(z), and in every

rotation, aim to reduce off-diagonal energy by (i) a delay and (ii) a rotation step.

The general procedure is described below, while the details differ for two families of

algorithms – the second order sequential best rotation (SBR2) [57, 81, 86, 87, 88] and

sequential matrix diagonalisation (SMD) families [89, 90, 91, 92, 93, 94, 95]. For an ith

iteration, the algorithm starts by a search step. The output of this step are a column

k(i) and a lag index τ (i). These two parameters are used to generate a diagonal matrix

which is termed as a shift matrix D(i)(z). For D(i)(z) ∈ RM×M this is expressed as

D(i)(z) = diag

1 . . . 1︸ ︷︷ ︸
k(i)−1

, z−
(i)

1, 1, . . . , 1︸ ︷︷ ︸
M−k(i)

 . (2.74)

Applying D(i)(z) to a partially diagonalised para-Hermitian matrix, lets say S(i−1)(z)

obtained from the (i − 1)th iteration, leads to a shift of its kth row produces S(i)′.

Where

S(i)′(z) = D(i)(z)S(i−1)(z)D(i)P(z), i = 1 . . . I , (2.75)

and I is a pre-determined upper limit of the number of iterations.

The ith iteration of PEVD ends by transferring the zero lag’s off-diagonal energy
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onto the diagonal by using

S(i)(z) = Q(i)S(i)′(z)Q(i)H, (2.76)

where Q(i) is a unitary matrix that rotates the off-diagonal energy onto the diagonal

and applied on the entire lags of S(i)′(z), although it is generated from its zero lag.

The PEVD algorithms stop once the forgoing pre-determined upper limit of iter-

ations I is reached, or the low threshold of the off-diagonal energy is exceeded. The

way of calculating the latter stopping criterion differs based on the algorithm as will

be discussed specifically for the SBR2 and SMD families below.

2.5.4.1 Sequential Best Rotation Algorithm-2 (SBR2)

The diagonal matrix of the decomposition, in this algorithm, is built by keeping the

k(i)th column elements of S(i)[τ ] in ŝ(i)[τ ] ∈ CM−1 but excluding the diagonal element

in this column [96, 97, 98]. At the same time the row index, m(i), of the maximum

element in the column is extracted. Consequently, the search of the off-diagonal element

can be expressed as

{m(i), k(i), τ (i)} = arg max
m,k,τ

‖ ŝ
(i)
k [τ ] ‖∞ (2.77)

In order for the diagonalisation in (2.77) to be completed, the unitary rotation matrix

in (2.76)is obtained from a scalar Jacobi rotation matrix

Q(i) =



I1

cosϕ(i) . . . ejϑ
(i)
sinϕ(i)

... I2
...

−e−jϑ(i)
sinϕ(i) . . . cosϕ(i)

I3


(2.78)

where {ϑ, ϕ} represent the rotation angles, and I1, I2 and I3 are identity matrices

with dimensions that are related to the maximum element in the k(i)th column as

(min{m(i), k(i) − 1}), (|m(i) − k(i)| − 1) and (M −max{m(i), k(i)}+ 1) respectively.
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The stopping criteria of the SBR2 algorithm are either a set maximum number of

iterations, or the energy of the maximum off-diagonal element that can be set to a

specific threshold value, for example η

max
k,τ
‖ ŝ

(I)
k [τ ] ‖∞< η . (2.79)

2.5.4.2 Sequential Matrix Diagonalisation (SMD)

The diagonalisation procedures in the SMD algorithm begins with initial diagonal ma-

trix given by

S(0)[0] = Q(0)R[0]Q(0)H , (2.80)

where R[0] is the zero lag matrix of R[τ ], and Q(0) is the modal matrix obtained

from the scalar EVD of R[0]. For every iteration new rows and columns are shifted

to S(i)[0], followed by transferring their energy onto the diagonal by the means of the

scalar EVD [89, 98]. Hence, the diagonalisation is applied on more than an element

for each iteration. The search step is modified to be adequate for this purpose and the

parameter selection in the ith iteration becomes

k(i), τ(i) = arg max
k,τ
‖ ŝ

(i−1)
k [τ ] ‖2 (2.81)

The stopping criterion of the SMD is similar to that for the SBR2; it depends on the

iteration limit or the off-diagonal energy threshold.

2.5.4.3 Computational Complexity

For both SBR2 and SMD, efficient implementation schemes have been explored for

PEVD algorithms. This includes numerical tricks such as search space reduction, sym-

metry considerations, divide-and-conquer schemes, as well as fast Givens rotations and

approximate EVDs [99, 100, 101, 102, 103, 104, 105, 106], but also approximations such

as truncation [107, 108, 109], which aid with the grow of polynomial terms as SBR2

and SMD iterations progress. The impact of numerically efficient schemes is typically

well controlled, and can dependent on both the environment [110] and the selected
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algorithm, see e.g. [111] in the context of angle of arrival estimation.

Nonetheless, a precise computational cost of SBR2 or SMD is difficult to state.

Since SBR2 and SMD operate iteratively, and the polynomial order growth at each

step is not known a priori, the overall cost will depend on the parahermitian matrix

that is to be factorised, despite the above tools to improve the computational efficiency

of SBR2 and SMD.

For many applications, such as the beamformers discussed in this thesis, a PEVD

via SBR2 or SMD only needs to be calculated once — this can therefore often be

performed off-line, such that the actual complexity of algorithms such as SBR2 or

SMD is less critical. Of importance, however, is the polynomial order of the PEVD

factors that these methods yield, in particular the matrix of polynomial eigenvectors,

which may continuous process the data to e.g. perform a subspace projection [77,

78] or dimensionality reduction [112]. Thus, for example for a matrix Q(z) : C →

CM×M of order L, we require M2(L + 1) multiplications and additions per sampling

period — hence the extracted order is crucial for the computational complexity of an

implementation. Therefore, truncation methods [107, 108, 109, 113] or decompositions

that pursue low order polynomial factors [114, 115, 116] can be important to keep the

computational complexity of an implementation such as beamforming low.

2.6 Summary

This chapter has reviewed some principles of broadband beamforming, starting from

extensions of narrowband beamformers to tap delay line structures capable of imple-

menting physical delays. These delays are required to resolve the propagation delay

with which the AoA of broadband signals must be characterised, as simple phase shifts

as in the narrowband case are no longer sufficient.

This has also led to the introduction of polynomial matrices as descriptions for

broadband multichannel signals and for capturing the second order statistical informa-

tion of sensor signals via the space-time covariance matrix. In the following Chapters

3–5, we will particularly use the tools provided by polynomial matrix algebra to for-
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mulate and solve broadband beamforming problems.

40



Chapter 3

Polynomial MVDR Beamforming

for Uniform Linear Arrays

3.1 Introduction

The aim of this chapter is to demonstrate an alternative and simplified design for adap-

tive broadband beamformers. The approach adopts the concept of conventional time

domain broadband beamforming and adaptive filters algorithms described in Sec. 2.4.

However, this has been addressed in a different perspective based on polynomial matrix

techniques, which simplifies the problem formulation and broadband solution, and sur-

prisingly can also reduce the computational complexity compared to a standard time

domain broadband beamformer.

More precisely, the developed algorithm is presented in the context of formulat-

ing a solution to the MVDR problem using a GSC structure. The main reason for

choosing this structure is its widespread use in practical applications such as wireless

communications [117], and audio acquisition systems [118] to name a few.

As it has been described in Chap. 2, if broadband signals need to be resolved by

an array of sensors, the sensors usually have to be followed by tap delay lines in order

to capture the relative lag rather than just a phase shift between signals. This has led

to the extension of many narrowband beamforming techniques to the broadband case,

such as MVDR beamforming and one of its realisations, the GSC [39].
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In general, the covariance and transfer functions of broadband array signals as well

as MIMO systems can be denoted as polynomial matrices [80]. For processing such

quantities, narrowband techniques such as the EVD and SVD have been extended

to the polynomial domains, with applications in denoising-type [119] or decorrelating

preprocessors [35], in transmit and receive beamforming across broadband MIMO chan-

nels [120, 121], broadband angle of arrival estimation [122], or in optimum sub-band

partitioning of beamformers [123].

In this chapter, polynomial matrix techniques are extended to the MVDR problem.

We show that this can provide an elegant framework for designing a beamformer

that steers its beam towards an angle of arrival other than the look direction of the

array, without the need to pre-steer the array signals. In constrast, most existing

beamformer designs assume presteering and look towards broadside [124, 125, 126],

where the constraint can be inexpensively implemented [25]. Consequently, this work

complements the sparse literature on designs with an arbitary look direction [56], for

which a significant reduction in computational complexity can be achieved.

The chapter begins in Sec. 3.2 with the formulation of polynomial MVDR beam-

forming, where the components of its GSC structure are designed. Most of the GSC

components are easily transferable to the polynomial domain; however, the blocking

matrix of the GSC requires the completion of a paraunitary matrix, which is separately

addressed in Sec. 3.3. In Sec. 3.5, the performance of the beamformer is evaluated by

examining its beam pattern, residual error and the computational complexity. Sec. 3.6

provides a numerical example to compare the proposed beamformer with its standard

tap delay line-based time domain counterpart and discussion of the result. Finally,

conclusions are presented in Sec. 3.7.

3.2 Proposed Approach

3.2.1 Polynomial MVDR and GSC

An appropriate choice of weights in the event when beamformers are designed to deal

with broadband signals is considered as a cumbersome process. A single weight pro-
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∆ ∆ ∆

+ + + +

w0 w1 w2 wJ−1

x0[n] x1[n] x2[n] xJ−1[n]

y[n]

Figure 3.1: Tapped delay line processor for a single channel.

cessor behind each array element, as in narrowband case, works for a single frequency

Ωi but will not be appropriate when opterating at another frequency Ωj 6= Ωi. This is

because of the dependency of the steering vector on the frequency and implicitly on the

wavelength λ, which makes the array pattern susceptible to deviation as the value of

λ changes. Therefore for every possible operating frequency, a different set of weights

is required to maintain the desired characteristic of the beamformer’s beampattern,

and prevent the deterioration of its performance.

To generalise a narrowband beamformer requires the substitution of single weights

by tapped delay lines or a transversal filters as shown in Fig. 3.1. The overall system

therefore implements a multichannel processor, where the total output of the channel

is the sum of scaled and delayed versions of the input signal, as shown in Fig. 3.2.

Using vector notation with

x[n] =


x1[n]

...

xM [n]

 , w[n] =


w∗1[−n]

...

w∗M [−n]

 , (3.1)

the output is compactly written as

e[n] = wH[−n] ∗ x[n] =
∑
ν

wH[−ν]x[n− ν] =
∑
ν

M∑
m=1

wm[ν]xm[n− ν] . (3.2)

The complex conjugation in the definition of the weights in (3.1) is undone by the

Hermitian transpose in (3.2), which is used for convenience [4]; the time reversal in the
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w1[n]

+

w2[n]

w3[n]

wM [n]

x1[n]

x2[n]

x3[n]

xM [n]

e[n]

..
.

Figure 3.2: Beamformer for Broadband signal processing

definition of w[n] is to accommodate the extension to the polynomial domain. In the

z-domain, if it was permissible to define x(z) •—◦ x[n] and E(z) •—◦ e[n], then with

w(z) •—◦ w[n], we can write for the output E(z) = wP(z)x(z), whereby the para-

hermitian operation performs the complex conjugation and restores the chronological

order of the coefficients.

With these definitions, we have for the output auto-correlation sequence

E{e[n]e∗[n− τ ]} = E

{(∑
ν

wH[−ν]x[n− ν]

)(∑
µ

xH[n− τ − µ]w[−µ]

)}

=
∑
ν

wH[−ν]
∑
µ

E
{
x[n− ν]xH[n− τ − µ]

}
w[−µ]

=
∑
ν

wH[−ν]
∑
µ

R[τ + µ− ν]w[−µ]

=
∑
ν

wH[−ν] (R[τ − ν] ∗w[τ − ν])

= wH[−τ ] ∗R[τ ] ∗w[τ ] . (3.3)
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wP
q (z) +

B(z) wP
a (z)

x[n]

u[n]

d[n] e[n]

y[n] −

Figure 3.3: Generalised sidelobe canceller with polynomial quiescent vector and poly-
nomial blocking matrix; the system wa(z) represents a multichannel adaptive filter.

In the z-domain, the power spectral density Re(z) •—◦ E{e[n]e∗[n− τ ]} is therefore

given by

Re(z) = wP(z)R(z)w(z) , (3.4)

based on R(z) being the CSD matrix of the array signals.

Based on the output PSD in (3.4), the output power is obtained by integrating over

the unit circle. This leads to the MVDR problem formulation

min
w(z)

∮
|z|=1

Re(z)
dz

z
(3.5)

s.t. aP(ϑs, z)w(z) = FP(z) . (3.6)

The broadband steering vector a(ϑs, z) defines the look direction of the array with a

desired transfer function F (z). For simplicity F (z) = 1 is assumed. The constraint in

(3.6) depends on spatial and temporal properties of the desired broadband signal and

is an extension of (2.32) for the narrowband LCMV.

To solve (3.5) and (3.6), we propose the polynomial GSC shown in Fig. 3.3. Analo-

gously to Sec. 2.3.2, the design of the illustrated components relies on decomposing the

weight vector w(z) into segments in two mutually orthogonal subspaces: the constraint

(or range) subspace and the null (or noise) subspace. Thus the quiescent beamformer
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wq(z) is derived from the constraint (3.6) as a vector lying in the constraint space,

which in turn defines a blocking matrix B(z) with columns spanning the null space,

thus making them orthogonal to the quiescent beamformer. A multichannel filter with

coefficients in wa(z) is adaptively calculated by using an adaptive algorithm which in

this work is chosen to be the normalized LMS.

The quiescent beamformer wq(z) is derived from the constraint (3.6), which in

turn defines a blocking matrix B(z) and a multichannel adaptive filter with coefficients

in wa(z). The designs of these components based on polynomial techniques will be

elaborated in turn below. These are, in general, an extension of their narrowband

counterparts, but with elements of vectors and matrices represented as polynomials.

3.2.2 Broadband Steering Vector and Quiescent Beamformer

The performance of a polynomial MVDR beamformer depends on the accuracy of the

steering vector implementation. Hence this section is devoted to fractional delay filters

as the core tool to obtain broadband steering vectors. Thereafter, the relationship

between the steering vector and the quiescent weight vector will be discussed.

3.2.2.1 Broadband Steering Vector

A broadband steering vector a(ϑ, z) contains explicit delays rather than phase shifts

as in the narrowband case, such that aϑ[n] ◦—• a(ϑ, z)

aϑ[n] =
1√
M


d[n]

d[n− τ2(ϑ)]
...

d[n− τM (ϑ)]

 , (3.7)

where d[n− τ ] is an ideal fractional delay by τ ∈ R samples. The first array element is

assumed to be the reference element at the origin of the coordinate system, such that

τ1 = 0.

A waveform from direction ϑ experiences a lag τm(ϑ) relative to element m = 1

when it arrives at the m-th sensor. Evaluating (3.7) at frequency Ω turns the delays
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d[n− τm(ϑ)] into phase shifts and aϑ[n] into a narrowband steering vector as discussed

in Sec. 2.2. With (3.7), aP(ϑ, z)a(ϑ, z) = 1 is easily verified.

To implement a broadband steering vector according to (3.7) requires fractional

delay filters. The impulse response of the m-th fractional delay is obtained by sampling

shifted versions of the sinc function. This might not be by integer multiples of the

sampling period [127]. With the definition for the sinc function[46]

sinc(t) =
sin(πt)

πt
, (3.8)

sampling with period Ts = 1 and starting at the origin, this yields an impulse, d[n] =

sinπn
πn = δ[n] due to the sinc function’s regular zero crossings. Sampling with a time

offset τ ∈ R however leads to

d[n− τ ] =
sinπ(n− τ)

π(n− τ)
(3.9)

which decays with 1/n , and therefore is (i) not absolutely summable and (ii) of infinite

support and hence not implementable.

Since the sinc function extends over an infinite time period, this leads to imprac-

ticality of this approach unless this function limited in its support. This is done by

truncation which in turn can lead to ripples in the fractional delay filters’ passband

due to Gibbs phenomena, and causes imperfections of the fractional delay response

behavior in terms of its magnitude and phase [31, 128]. The truncated response there-

fore approximates but no longer precisely matches the ideal fractional delay defined in

(3.7).

A tapered windowing technique can be used to reduce the effects of truncation.

The accuracy to which the steering vector matches the ideal delay can be assessed in the

frequency domain. There an error function can be formulated between the frequency

response of the ideal fractional delay filter and the approximated ones in the steering

vector. A relatively moderate order for a fractional delay filter (FDF) can yield high

accuracy close up to half of the sampling rate can be achieved by using, for example,

windowed sinc functions [127, 129], as will be exemplified later. This technique is
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therefore employed in this thesis to implement broadband steering vectors. We here

use the proposition in [127] and apply a raised cosine or Hann window of length 2L to

the sinc, such that

d[n− τ ] =

 g[n] −L+ τ < n < L+ τ,

0 otherwise
(3.10)

for (3.7) with

g[n] =
sinπ(n− τ)

π(n− τ)

(
1 + cos

π

L
(n− τ)

)
. (3.11)

Examples of broadband steering vectors are depicted in Fig. 3.4 and 3.5, showing

the impulse responses of a(ϑ, z) with ϑ = 0◦ and ϑ = 30◦ for a linear, critically sampled

array with M = 8 equispaced elements. Each filter qm[n] represents a polynomial of

order T = 50. For instance, in Fig. 3.4 where the vector demonstrates a steering

vector for a signal arriving from broadside, it can be seen that the filters have identical

impulse responses, where at the output of every individual filter the signal is delayed

equally with a value of the number of samples related to a half of the filter order.

This, alternatively, can be examined by the group delay of the filters. The group delay

of Qm(ejΩ) •—◦ qm[n] is defined as

gm(ejΩ) = − d

dΩ
Qm(ejΩ) . (3.12)

The group delays for the broadband steering vector examples above are shown in Fig. 3.6

and 3.7.

A comparison of the accuracy of an FDF, a(ϑ, z), with moderate order, T =

[50, 100], for ϑ = 30◦ and a linear, critically sampled array with M = 8 equispaced

elements is shown in Fig. 3.8. It can be seen from Fig. 3.8 that for both orders the

error function between the frequency response of the ideal and the approximated FDFs

is in an acceptable level, however as the order increases a closer approximation to the

ideal FDF can be achieved.
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Figure 3.4: Fractional delay filters of a(ϑ, z) with ϑ = 0◦.
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Figure 3.5: Fractional delay filters of a(ϑ, z) with ϑ = 30◦.
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Figure 3.6: Delays associated with Fractional delays filters with a(ϑ, z) and ϑ = 0◦.
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Figure 3.7: Delays associated with Fractional delays filters with a(ϑ, z) and ϑ = 30◦.
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Figure 3.8: Error E1(z) = aP(30◦, z)a(30◦, z) − 1 evaluated on the unit circle, with
windowed sinc functions of order T as fractional delay filters.
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3.2.2.2 Quiescent Beamformer

The quiescent beamformer wq(z) is derived from the constraint (3.6). Assuming that

aP(ϑ, z)a(ϑ, z) ≈ 1 for the steering vectors constructed above, and for the given as-

sumption F (z) = 1 to be fulfilled, this requires wq(z) = a(ϑs, z), ie, the quiescent

weight vector is the matched filter of the SoI’s steering vector. Therefore, the output

from the quiescent beamformer, d[n] in Fig. 3.3 is given by

d[n] =
T∑
ν=0

wH
q [−ν]x[n− ν], (3.13)

hence the quiescent weight vector might be realised as a conventional beamformer.

Note that wq(z) •—◦ wq[n] is of order T and holds the parahermitian transpose of the

actual coefficients.

3.2.3 Blocking Matrix

The quiescent weight vector was derived in Sec. 3.2.2.2 from the optimisation problem

in (3.6), where it has to satisfy the constraint. Thus, the beamformer constructively

interfers the SoI, but does not suppress any specific interferers1. To perform adaptive

noise cancellation on d[n] to cancel any remaining interference requires a reference signal

that consists of the interference only. The blocking matrix B(z) : C → C(M−1)×M

in Fig. 3.3 has the purpose of generating this reference signal by passing any signal

components other than the look direction defined by the constraint in (3.6).

Consequently, the relationship between the quiescent vector and the blocking matrix

must satisfy

B(z)wq(z) = 0 . (3.14)

This requires orthonormality between the row vectors of B(z) and wq(z). To achieve

that, a paraunitary matrix

Q(z) = [wq(z) BP(z)] (3.15)

1The case where the constrain equation also includes interfers will be addressed as part of the
polynomial Capon beamformer in Chap. 4.
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needs to be constructed, with Q(z)QP(z) = I.

In the narrowband case involving constant matrices and vectors, a design for the

block matrix can be derived from (3.15) by a variety of methods such as singular value

decomposition of the constraint matrix, or orthogonalisation of the columns in (3.15)

using Gram-Schmidt or QR decompositions [130]. However, the polynomial case is

more involved and will be separately addressed in Sec. 3.3.

The output of the blocking matrix as shown in Fig. 3.3 is u[n] ∈ CM−1. It ideally

does not contain any trace of the desired signal components, but serves as a reference

for interference plus noise, such that

u[n] =

N∑
ν=0

B[ν]x[n− ν], (3.16)

where B[n] ◦—• B(z) is of order N . This order N impacts on the computational

complexity of B(z) and will arise from its construction in Sec. 3.3.

3.2.4 Multichannel Noise Cancellation

The output from the quiescent beamformer in the upper part of Fig. 3.3 includes not

only the SOI signal, but also noise and interference. With wq(z) and B(z) as defined

previously, a multichannel filter wa(z) : C → CM−1 can be employed to minimise

the GSC beamformer output power by removing the remaining interference from the

quiescent beamformer output d[n]. This is done by using u[n] in Fig. 3.3 as a ref-

erence signal. With wa(z) containing the parahermitian transpose of the actual filter

coefficients akin to (3.2), the beamformer output is

e[n] = d[n]−
J∑
ν=0

wH
a [−ν]u[n− ν], (3.17)

whereby wa[n] ◦—• wa(z) is of order J .

The multichannel filter wa(z) can be determined through unconstrained minimi-

sation of E
{
|e[n]|2

}
. Various tools exist for this need, such as the MMSE or Wiener

approach for a direct solution, or adaptively by employing iterative algorithms such
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as LMS or RLS [49]. For simulations in Sec. 3.6, the multichannel normalised LMS

(NLMS) algorithm will be used. Compared to the LMS, the NLMS has a step size

which is independent of the input signal power [131]. NLMS shares the LMS’ low

computational complexity of O{L}, where the RLS typically possesses a complexity of

order O{L2}.

3.3 Paraunitary Matrix Completion

This section explains one possible approach to find the blocking matrix B(z) via the

matrix Q(z) in (3.15), i.e. by completing a paraunitary matrix from wq(z). For this,

we employ a polynomial eigenvalue decomposition (PEVD, [81]) of the rank one matrix

wq(z)wP
q (z) = Q̄(z)D(z)Q̄

P
(z). (3.18)

The PEVD approximately diagonalises and spectrally majorises D(z) by means of a

paraunitary matrix Q̄(z). Spectral majorisation is equivalent to the ordering of the

singular values in the SVD [130], and ensures that the energy is compacted into as few

polynomial eigenvalues in D(z) as possible. Since wq(z) has unit norm and (3.18) is

rank one by construction, we obtain

D(z) = diag{1 0 . . . 0} . (3.19)

The paraunitary matrix Q̄(z) is ambiguous even if (3.18) had full rank. If

Q̄(z) = [q̄1(z) q̄2(z) . . . q̄M (z)] , (3.20)

then q̄1(z) could, for example, be a shifted version of the polynomial vectors wq(z),

q̄1(z) = z−∆wq(z) , (3.21)

and still satisfy both (3.18) and (3.19). A more general ambiguity allows each eigen-

vector to be modified by an arbitrary allpass filter without violating paraunitarity of
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Q̄(z) [82, 83].

Similarly, the remaining columns q̄m(z) could be arbitrarily allpass filtered or

shifted. Therefore, when defining

BP(z) = [q̄2(z) . . . q̄M (z)] , (3.22)

BP(z)wq(z) = 0 is guaranteed, but B(z) may have a larger order than necessary.

Through appropriate shift of rows and truncation of small outer coefficients of B(z) [?

], this order can be reduced.

Using the previous example of wq(z) = a(30◦, z) with T = 50 and the above proce-

dure, B(z) is calculated by sequential matrix diagonalisation [89], which implements an

iterative PEVD algorithm. Measuring how much of the signal of interest leaks through

the blocking matrix is important, as this can result in signal cancellation in the GSC.

The following error metric defined over a set of frequencies {Ωi},

E2(ejΩi) = max
m∈{2...M}

|q̄H
m(e−jΩi)wq(ejΩi)| (3.23)

will be zero if B(z)wq(z) = 0; in case of a deviation, (3.23) extracts the maximum

error across all M − 1 inner products at every frequency. The result for truncation

of B(z) by 1% and 0.1% of its energy is shown in Fig. 3.9. The error is acceptable

particularly at low frequencies. It is dominated by inaccuracies in the construction of

the broadband steering vector, as evident from the increasing error towards half of the

sampling rate Ω = π, where fractional delay filters are known to break down [132]

and by the iterative PEVD or the truncation of B(z).

3.4 Relationship between Aperture, the FDF, and Adap-

tive Multichannel Filter Orders

The order of the FDF relies on several parameters, namely the AoAs’ of the impinging

sources, the bandwidth, the SNR, and the number of antenna elements, M . Later

on, in Sec. 3.6 the impact of the latter parameter on the performance of the PBBF is
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Figure 3.9: Leakage of blocking matrix according to (3.23).

studied with assumption that the other parameters are fixed. The experiment indicates

that the FDF order needs to be increased as M increases. The length of the FDF

has a significant impact on the beamformer response, particularly, to the interference

signals. Fig. 3.10 is produced based on the simulation scenario in Sec.3.6, where SOI’s

AoA is ϑs = 30◦ and interference sources’ AoAs are {−40◦,−70◦, 80◦}. The figure

reveals that the performance of the PBBF, in terms of nullifying interfering signals,

depends on the FDF order and the interference’s AoA. As it can be noticed that for a

specific number of array elements and low order FDFs ( with respect to a factor that is

discussed beneath) the PBBF is still suitable to suppress interference in the vicinity of

the broadside. However, as the interference moves towards the ULA antenna’s endfires,

the capability of the beamformer to sufficiently deal with interference degrades when

FDF’s order is less than twice of the spatial filter length. Thereby, a mathematical

expression of the relationship between T and M , for this particular scenario, can be
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ULA elements M = {5, 8, 12, 15, 20} and AoAs’ ϑi=1,2,3 = {−40◦,−70◦, 80◦}.

given as

T ≥ 2×M. (3.24)

Nonetheless, as the length is further increased,the performance degrades again. This

degradation of the performance is associated with misalignment of estimating inter-

ference samples at the output of the multichannel adaptive filter in relation to the

interference samples in the desired signal path in Fig. 2.6 and Fig. 3.3.

A solution, to this misalignment, can be provided by applying a suitable delay, let’s

say D, to the desired signal path. In [133] this delay is reported to be related to the

half of the adaptive filter channels’ length. Nonetheless for the PBBF, in addition to

that, the length of the FDFs, T , and blocking matrix entries,N , are also influence this

delay. Thus, before defining the delay D, we are defining two intermediate parameters.

The first is a reference point, which is the midpoint of the multi-channels length in the

adaptive process, and it is defined as

jr =


(J−1)

2 when J is odd ,

J
2 or (J2 )− 1 when J is even ,

(3.25)
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we recall that J is the length of the individual channel of the adaptive processor. The

second is ∆ which represents the shift from the reference point, jr, with an aim to

retain the filters’ impulse responses, in average, nearly centralised around the reference

point,

∆ =
N − T

2
. (3.26)

This, in turn, helps in providing better estimate of the interference signals and align it

with its exist copy in the GSC’s upper path. Then, the required delay is given by

D = jr + ∆. (3.27)

However, for (3.27) to be valid, the relationship between blocking matrix order and

the FDF order must satisfy, N
T/2 is greater than or approximately 1, otherwise the

multi-channel order,J , must be increased.

3.5 Performance Metrics

In this section, metrics to measure and evaluate the performance of the proposed beam-

former are described and examined, and will be used in the subsequent Sec. 3.6 to

compare the proposed polynomial approach to a standard time domain broadband

beamformer.

3.5.1 Directivity Pattern

The directivity or beam pattern A(ϑ,Ω) measures the gain response of a broadband

beamformer with respect to AoA ϑ and normalised angular frequency Ω. With a

broadband source at angle ϑ characterised by the broadband steering vector a(ϑ, z),

the overall transfer function of the beamformer is

w(z) = wq(z)−BP(z)wa(z) . (3.28)
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The directivity pattern is the magnitude of the response A(ϑ, ejΩ),

A(ϑ, z) = wP(z) · a(ϑ, z) , (3.29)

which is obtained by probing (3.29) with a series of steering vectors a(ϑ, z) that scan

over a range of different angles ϑ, and evaluating it on the unit circle, such that

A(ϑ,Ω) =
∣∣∣A(ϑ, z)|z=(ejΩ)

∣∣∣ (3.30)

defines the directivity pattern.

3.5.2 Residual Error

To assess convergence of the optimisation methods for wa(z), a useful metric is to assess

the mean square of the residual error er[n], obtained by subtracting the source signal

projected through the quiescent vector from the error e[n]. If s[n] is the SOI at the

reference element, i.e. x1[n] = s[n] in the absence of any noise and interferers, then the

residual error is defined as

er[n] = e[n]− s[n−∆T ]; , (3.31)

where ∆T is the delay imposed to make the broadband steering vector in the quiescent

beamformer causal. Thus the mean square residual error metric becomes

ξr = E
{
|er[n]|2

}
, (3.32)

which provides an accurate assessment of how well the adaptive filter wa(z) is adapted.

In the optimal case E
{
|e[n]|2

}
−→ σ2

r , where σ2
r is the power of any residual noise and

interference at the beamformer output. While ξr −→ 0 even in the presence of noise and

interferers and hence easier to assess than E
{
|e[n]|2

}
, particularly when displayed on a

logarithmic scale. This metric is similar to the echo return loss enhancement (ERLE)

in the adaptive noise cancellation literature for acoustic echo control [134, 135].
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3.5.3 Computational Cost

The computational complexity is a key metric to determine whether a beamformer

can be realistically implemented, and how much processing power a particular design

requires. Also, high computational complexity may lead to processing latency and

increase power consumption that are usually regarded as undesirable consequences.

The computational complexity of the various polynomial GSC components in Sec. 3.2

is listed in Tab. 3.1. For recollection, the parameters M,T,N and J are the number of

sensors in the array, the FDF order, the order of polynomials in the blocking matrix’s

elements, and the adaptive filter’s coefficients order respectively. For comparison, the

costs for a time domain broadband beamformer are also stated [25]. An off-broadside

look direction can be enforced through point constraints in the frequency domain, but

prevents simplifications to the blocking matrix, which has to be applied to the full

spatio-temporal data vector of dimension ML, with L represents the FIR filter order

as in Fig. 2.8 and 3.1. The independence of the blocking matrix from the steering vec-

tor length in the polynomial approach has reduced the overall computation complexity

and outperformed the standard approach in this aspect among others as we will see in

Sec. 3.6.

Table 3.1: Computational complexity of different broadband beamformer realisations
in multiply accumulates (MACs).

GSC cost
component polynomial standard

quiescent beamformer M(T+1) M(L+1)

blocking matrix M(M−1)(N+1) M(M−1)(L+1)2

adaptive filter (NLMS) 2(M−1)(J+1) 2(M−1)(J+1)

3.6 Simulations and Results

This section provides an example for designing a polynomial GSC, and compares its

result to standard broadband beamforming as a benchmark. As an example scenario, a

uniform linear array captures plane waves that propagate in free space from four wide-
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sense stationary and zero mean wideband sources at different locations in the far field. A

signal of interest from ϑs = 30◦, and three interferers from angles ϑi ∈ {−40◦,−10◦, 80◦}

are assumed, which are active over the frequency range Ω = 2π · [0.1; 0.45] at a signal

to interference power ratio of -40 dB. The M = 8 element linear uniform array, with

sensor spacing such that spatial sampling is just satisfied at the maximum frequency

of Ω = π, is also corrupted by spatially and temporally white additive Gaussian noise

at 20 dB SNR. . The simulation parameters are summarised in Tab. 3.2.

An example for the directivity pattern of only the quiescent beamformer wq(z) =

a(30◦, z) with T = 50, and wa(z) = 0 is shown in Fig. 3.11. For comparison, a time

domain broadband quiescent beamformer designed from T + 1 point constraints in the

frequency domain is provided as a benchmark in Fig. 3.12. Both beamformers are

similar and provide an approximate gain of one in direction of the SoI. Interestingly,

while the polynomial version in Fig. 3.11 has inaccuracies in look direction towards

Ω = π due to the broadband steering vectors lacking precision, the standard approach

in Fig. 3.12 has inaccuracies particularly at the lower end of the spectrum. This will

be further explored below and investigated in the discussion of Fig. 3.16 later.

With a quiescent design of T = 50 as shown previously and a blocking matrix via

PEVD completion with order N = 140, an NLMS algorithm optimises wa(z) with order

J . The convergence curve for the mean square residual error ξr as defined in (3.32) is

shown in Fig. 3.13, together with that of a standard time domain broadband GSC of

same dimension J . The directivity patterns with converged wa(z) are in Fig. 3.14 for

the proposed polynomial approach and Fig. 3.15 for the benchmark. Both beamformers

have placed nulls towards the three interferers, but the polynomial approach protects

the constraint better — an example for the gain in look direction, which is constrained

to 0 dB, is shown in Fig. 3.16 for T = L = 50 before and after adaptation. While

the standard approach oscillates strongly between its point constraints, the polynomial

approach is much better behaved.

With the design parameters in Tab. 3.2 and the cost as listed in Tab. 3.1, the pro-

posed beamformer requires 10.7 kMACs, while the standard broadband beamformer

takes 1.72 MMACs per iteration step. The difference in MACs between the two ap-
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Figure 3.14: Directivity pattern of adapted polynomial GSC.
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Figure 3.15: Directivity pattern of adapted standard GSC.
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Table 3.2: Simulation design parameters summary.

Parameter Characteristic or value

Antenna geometry ULA

Number of elements 8
sec:SFandFDF Sampling frequency fs 2fmax

SOI spectral Low pass

SOI bandwidth [0, 0.5]fs(Hz)

SOI AoA 30◦

Int1 AoA −10◦

Int2 AoA −40◦

Int3 AoA 80◦

Int-s spectral Bandpass

Int-s bandwidths [0.1, 0.45]fs(Hz)

FD filter order, T 50

Temporal dimension, L 50

NLMS temporal dimension J 175

NLMS initial step size µ 1

20
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0
|A

(ϑ
s
,e
jΩ

)|/
[d
B

]

Normalised angular frequency Ω/(2π)

Figure 3.16: Gain in look direction ϑs = 30◦ before and after adaptation.
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proaches comes from the high complexity of the blocking matrix required in the stan-

dard beamformer, since it non-linearly increases as a function of the square of the FIR

filter length. However, the blocking matrix of the PBBF is decoupled from this fac-

tor and its computational complexity depends linearly on its order after PEVD and

truncation processes.

One more factor that impacts on the performance of the proposed beamformer, as

was explained in Sec. 3.4, is the length of the FDFs. Fig. 3.17 and Fig. 3.18 illustrate

cross sections at 0.25fs for an antenna array with 8 and 20 elements respectively. In

Fig. 3.19, the response of PBBF over the entire simulated bandwidth and for various

FDF length is depicted. Simulations indicate that the FDF order needs to increase

with M . The length of the FDF has a significant impact on the beamformer response,

particularly, to the interference signals. For a different length of FDF the beamformer

behaviour changes which can be seen from the beam-pattern in Fig. 3.17, Fig. 3.18 and

Fig. 3.19. When the FDF has a length equal to T − 1 = M = 20, the beamformer

perfectly nulls the interference that has an AoA = 10◦ but not the others at −40◦ and

80◦. However, when its length is a double or Quadruple of the number of antenna

array elements, the entire interferers were suppressed and the main beam steered to

the direction of SoI.

As the length is further increased, deviation from complete null of the interferers,

along the specified frequency band, occurs, but the main beam towards the SoI is still

protected by the constraints and has a unity power, this can be observed from the

beam-pattern in Fig. 3.18 and Fig. 3.19.

Applying a proper delay on the desired signal path, as it was discussed in Sec. 3.4

retains the performance of the PBBF. An example of the impulse response of a length

175 adaptive filter, and for a number of sensors M = 8 and FDFs length T = 51 the

polynomial blocking matrix has a length of 87. Hence the resulting delay based on

(3.27) will be D = 124, and the impulse responses of the multichannel adaptive filter

is directed in Fig. 3.20. As it can be seen that the impulse response of the channels,

apart from wa,5[n], are nearly allocated about jr = 88, this renders the estimation of

the interference signal samples more accurate, thereby improves the attenuation of the
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Figure 3.17: A cross section of the beam patterns at Ω = π/2 and for different length
of FDFs with M = 8.
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Figure 3.18: A cross section of the beam patterns at Ω = π/2 and for different length
of FDFs with M = 20.
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Figure 3.19: Beam-patterns of PBBF with antenna array elements number M =
20 and various FDF order, for ϑs = 30◦ and ϑi = [−40◦ − 70◦, 80◦].
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Figure 3.19: Continued : Beam-patterns of PBBF with antenna array elements number
M = 20 and various FDF order, for ϑs = 30◦ and ϑi = [−40◦,−70◦, 80◦].
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interfering signals.

3.7 Conclusions

A polynomial matrix formulation of a GSC structure of MVDR beamformer has been

introduced, which requires the definition of constraints via broadband steering vectors.

For the construction of the blocking matrix, a paraunitary matrix completion has been

defined. The proposed method can elegantly and compactly incorporate off-broadside

constraints and define metrics such as the directivity pattern. It can also lead to

accurate beamformers of considerably lower complexity compared to the standard time

domain counterpart.

Since the beamformer gain depends on steering and the weight vectors as well

as the number of antenna array elements. The accuracy of the first two factors was

examined, the result shows that the steering vector handles the spatial characteristics of

the broadband signal up to around the half sampling rate with a satisfactory behaviour,

and the polynomial broadband beamformer performance outperformed its standard

time domain counterpart at lower frequencies.

Here only a single constraint —for the SoI — had been included. The more general

case, where some interferers are known to arrive from a specific AoA, will be addressed

as part of the Capon beamformer in the next chapter.
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Polynomial Matrix

Formulation-Based Capon

Beamformer

4.1 Introduction

The Capon solution to find the optimal coefficients of a beamformer is a constrained

method that represents an alternative to the unconstrained procedure based on the GSC

structure presented in Chap. 3. In the case of errors in the constraints, the leakage of

the signal components through the blocking matrix, presented in Fig. 3.9 in the lower

part of the GSC beamformer, could lead to the desired signal being eliminated by the

adaptive noise canceller at the beamformer output. This could be, for example, due to

non-stationarity of the source of interest or the change of sensor characteristics, which

in turn, might lead to the change of signals characteristics, and hence will impact on the

design of the blocking matrix. This leads to degradation of the system performance. In

applications where computational complicity is less of an issue, the constrained Capon

beamformer could offer a solution to overcome this problem. This beamforming solution

is well-known in the narrowband case.

Consequently, this chapter demonstrates the ease with which broadband array prob-

lems can be generalised from their well-known narrowband equivalents when using
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polynomial matrix formulations. This is exemplified for the Capon beamformer, which

presents a solution to the MVDR problem. Based on the space-time covariance matrix

of the array and the definition of a broadband steering vector, we formulate a polyno-

mial MVDR problem. Results from its solution in the polynomial matrix domain are

presented.

Narrowband array processing methods are well established and rely in their compu-

tation on optimal tools such as the eigenvalue decomposition to the covariance matrix.

However, when addressing broadband problems, the extension of these classical nar-

rowband algorithms is generally not straightforward. The inclusion of tap-delay-line

processors to manipulate explicit delays instead of narrowband gain factors to adjust

the phase of signals can complicate matters. Often the covariance matrix has to be

inflated to include a temporal dimension of a fixed, a-priori defined order [136].

In this chapter, we demonstrate how polynomial matrix formulations can be used

to easily generalise and calculate broadband beamforming solutions from narrowband

ones. We here extend work from Chap. 3 and address the definition and calculation of a

Capon beamformer such as discussed in e.g. [16, 38]. Based on broadband definitions of

steering vectors and the data covariance matrix in Sec. 4.2, we review the narrowband

Capon beamformer in Sec. 4.3 followed our broadband extension in Sec. 4.4. Some

implementation aspects are highlighted in Sec. 4.5. Sec. 4.6 gives details about the

inversion of the polynomial space-time covariance matrix. Implementation approaches

are exemplified in Sec. 4.7, and numerical evaluation of each of the approaches is re-

ported in Sec. 4.8. Finally, Sec. 4.9 presents conclusions.

4.2 Steering Vectors and Space-Time Covariance Matrix

For an M -element array receiving signals xm[n], m = 1 . . .M , we define a data vector

x[n] ∈ CM . If a source illuminates the array, its signal will be received with different
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time delays τm ∈ R, and omitting any attenuation, we have

x[n] =


s[n− τ1]

...

s[n− τM ]

 =


d[n− τ1]

...

d[n− τM ]

 ∗ s[n] = a[n] ∗ s[n] . (4.1)

The vector a[n] ∈ RM contains fractional delay filters (see e.g. [137]), and characterises

the direction of the source. Its z-transform a(z) =
∑

n a[n]z−n, or short a(z) •—◦ a[n],

was explained in Sec. 3.2.2.

If the array signal measures a superposition of K source signals sk[n], each charac-

terised by a steering vector ak(z), k = 1 . . .K, then

x[n] =

K∑
k=1

ak[n] ∗ sk[n] + v[n] (4.2)

with v[n] containing independent and identically distributed Gaussian noise. The

space-time covariance matrix R[τ ] = E
{
x[n]xH[n− τ ]

}
of the array vector is

R[τ ] =


r11[τ ] r12[τ ] . . . r1M [τ ]

r21[τ ] r22[τ ] . . . r2M [τ ]
...

...
. . .

...

rM1[τ ]} rM2[τ ] . . . rMM [τ ]

 , (4.3)

where its elements are auto- and cross-correlation sequences

rij [τ ] = E
{
xi[n]x∗j [n− τ ]

}
. (4.4)

The z-transform of R[τ ] gives the cross spectral density (CSD) matrix R(z) •—◦ R[τ ],

R(z) =

K∑
k=1

ak(z)ak(z)Sk(z) + Iσ2
v , (4.5)

where Sk(z) is the power spectral density (PSD) of the kth source and σ2
v the noise

power due to v[n] experienced at any array element.
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The resulting CSD matrix, R(z) , contains polynomials in its entries

R(z) =


R11(z) R12(z) . . . R1M (z)

R21(z) R22(z) . . . R2M (z)
...

...
. . .

...

RM1(z) RM2(z) . . . RMM (z)

 (4.6)

where

Rij(z) =

Ta∑
τ=−Ta

rijz
−τ (4.7)

where Ta ∈ Z, Ta ≥ 0 is the support over which auto- and cross-correlation sequences

take on finite values.

The type of matrix structure in (4.6) is involved in designing broadband Capon

beamformer as will be discussed later in this chapter. Prior to this, let us introduce

briefly the Capon solution for the narrowband scenario, before we generalise this

formula to the broadband signal processing case using polynomial matrix techniques.

4.3 Narrowband Capon Beamformer

In the narrowband case, the above definitions for steering vectors and space-time covari-

ance matrices are evaluated on the unit circle, z = ejΩ, and for a particular normalised

angular frequency Ω0. With this evaluation, the steering vector ak = ak(e
jΩ0) collapses

delays to scalar entries implementing phase shifts, and R = R(ejΩ0) also contains only

constant entries rather than polynomials.

If the array elements are followed by complex weight wm organised in a vector

w ∈ CM , then the LCMV problem minimises the output power

wopt = arg min
w

wHRw (4.8)

s.t. CHw = f (4.9)

subject to constraints. Without loss of generality, if the beamformer receives source

k = 1 as the signal of interest, then in the simplest case, C = a1, and f = 1 ensures unit
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(i.e. distortionless) gain. If the steering vectors ak, k = 2 . . . L ≤ K of L interfering

sources are known, then this knowledge can be embedded as

C = [a1, a2 . . . aL] , f =
[
1 0 . . . 0︸ ︷︷ ︸

L−1

]
(4.10)

in the constraint equation of (4.9).

In order to find the closed form solution to the optimisation problem in (4.8) and

(4.9), the Lagrange multiplier method is utilised. Solving the problem based on this

method for a single source, with assumption that the constraint is a scalar with unit

gain, gives
∂(wHE

{
xHx

}
−w − β(wHa− 1))

∂wH
= Rw − βa = 0 (4.11)

where β is the Lagrange multiplier. The solution then becomes

w = βR−1a, (4.12)

which is inserted into (4.9) in order to determine β. Hence

β = (aHR−1a)−1 (4.13)

and

wopt = (aHR−1a)−1R−1a. (4.14)

If this solution is generalised to more than one source, then

wopt =
(
CHR−1C

)−1
R−1C f , (4.15)

which is known as the Capon beamformer. Since the covariance matrix R can be

ill-conditioned, the inversion can be regularised in a number of fashions, see e.g. [16].

Unless the constraint only embraces the look direction a1, the term CHR−1C may also

be poorly conditioned.

As was mentioned, this beamformer is not sufficient to handle the process of band-
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limited or broadband signals, and some amendments and extensions are required. These

amendments are considered to deal with the cross-spectral density matrix using poly-

nomial signal processing in the following section.

4.4 Polynomial Broadband Capon Beamformer

In the previous chapter, the MVDR optimization problem was discussed, and the

design of the GSC broadband beamformer based on this problem formulation was in-

troduced. There, the adaptive filtering technique is manipulated to implicitly satisfy

constraints while calculating the weights using some polynomial matrix algebra opera-

tions. In this section, the linearly constrained beamformer, also known as the Capon

beamformer [138], is used to solve the broadband MVDR problem.

For the definition of the broadband problem, we follow the narrowband formulation

in Sec. 4.3 but use broadband instead of narrowband quantities. The beamformer now

has to implement a tap-delay-line with impulse responses wm[n] following every sensor,

leading to a filter vector w[n] ◦—• w(z), whose aim is to minimise the output power.

The latter can be obtained by integrating over the output PSD, such that the

broadband MVDR formulation takes the form

wopt(z) = arg min
w(z)

∮
|z|=1

wP(z)R(z)w(z)
dz

z
(4.16)

s.t. CP(z)w(z) = f(z) . (4.17)

The polynomial constraint matrix C(z) contains in its columns the broadband steering

vectors ak(z), k = 1 . . . L,

C(z) = [a1(z) a2(z) . . . aL(z)] . (4.18)

It is assumed that a1(z) points in look direction, and that the remaining columns define
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interferers. In this case, the constraining vector takes the form

f(z) =
[
F (z) 0 . . . 0︸ ︷︷ ︸

L−1

]P
, (4.19)

where F (z) is the desired array transfer function in look direction.

In order to verify the performance of the beamformer, in Sec. 4.7, two different

simulation scenarios are considered. In the first, ideal case, the space-time covariance

matrix R(z) in the algorithm is built based on actual data by using steering vectors,

or the true covariance matrix. In contrast, in practical applications, the space-time

covariance matrix must be estimated, leading to estimation errors and a perturbation

from the true space-time covariance matrix [139].

As a result, the proposed beamformer, on the basis of the true space-time covariance

matrix, is implemented in three different ways, based on the parameters that being used

to calculate the optimum weight vector. The first relies on the use of SoI’s steering

vector as constraint, whereas the second additionally uses the steering vectors of inter-

ferers. Fig. ?? shows the block diagram associated with this approach. Before looking

in depth into details and analysis of implementation procedures, some information that

is used to assist in the implementation are discussed in Sec. 4.5 and 4.6 .

4.5 Special Considerations

In this section two concerns with the design of the Capon beamformer will be discussed.

The first is diagonal loading in order to enhance the numerical stability of a subsequent

matrix inversion. The second is specific to the broadband case and consists of forming

steering vectors for signals with highpass characteristic for the interferers in order to

create a solvable problem, noting that a beamformer possesses no spatial discrimination

at DC, which we assume to be occupied by the SoI.

4.5.1 Diagonal Loading

For matrix inversion, diagonal loading or regularisation plays an important role. It

provides a remedy to the inversion of a matrix that is either poorly conditioned or even
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wP
opt(z)x[n]

Figure 4.1: The block diagram associated with the design of the polynomial Capon
beamformer.

singular otherwise.

In array processing, diagonal loading can be applied for LCMV beamformer com-

putation, since it enhances the beamformer robustness against AoA mismatch, for

example, due to inaccuracy of the steering vector, and also helps to achieve better

control over the sidelobe response [140, 141].

This concept involves adding a scaled identity matrix σI to the space-time covari-

ance or CSD matrix, where the value of the scaling parameter σ2 is small compared

to the received signal variance,

RL(z) = R(z) + σ2I. (4.20)

The scaled identity matrix transfers itself to the para-Hermitian matrix eigenvalue

decomposition of the CSD matrix RL(z),

RL(z) = U(z)Λ(z)UP(z) . (4.21)
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The result will be the addition of σ to eigenvalues without impacting the eigenvectors,

Λ(z) = diag{λ1(z) + σ, λ2(z) + σ, . . . , λM (z) + σ} . (4.22)

The value of σ2
L depends on available information about noise power, where it is

bounded by its value as follows [18]

σ2
w ≤ σ2

L<10σ2
w, (4.23)

however, the upper bound might vary from the one in (4.23) since it is application

dependent [18].

Hence the LCMV problem becomes

wopt(z) = arg min
w
wP(z)RL(z)w(z) (4.24)

s.t. CP(z)w(z) = f(z) , (4.25)

and the optimum weight vector as a solution to this optimisation problem is

wopt(z) = RL(z)−1C(z)
(
CP(z)RL(z)−1C(z)

)−1
f(z) . (4.26)

The regularisation introduces a bias term compared to a solution with σL = 0, but will

stabilise the inverse operations in (4.26), as will be further explored in Sec. 4.6.

4.5.2 Bandpass Interferers

Different from a narrowband beamformer, the broadband formulation may include com-

ponents at DC. While this may be suppressed in an implementation, at DC the general

constraint matrix C(z) becomes rank one as z −→ 1, whereas f(z) imposes two incon-

sistent equations in the case L > 1. One solution to this is to modify the broadband

steering vectors of interferering sources, ak(z), k = 2 . . . L, to have a bandpass char-

acteristic. As an example, we may impose a bandpass transfer function H(z) which

extends over, say, around 70% of the normalised frequency band, from 0.2 to 0.9. Such
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that

āk(z) = H(z)ak(z), k = 2 . . . L (4.27)

and (4.18) which then becomes

C̄(z) = [a1(z) ā2(z) . . . āL(z)] . (4.28)

The MVDR problem is obtained by extending (4.15) to a polynomial notation

wopt(z) = R−1(z)C̄(z)β(z) (4.29)

with β(z) a normalisation factor that is defined as

β(z) =
(
C̄

P
(z)R−1(z)C̄(z)

)−1
f(z) . (4.30)

As stated in Sec. 4.3 this is known as the Capon beamformer, but it is now represented

in its polynomial format to be adequate for a broadband beamformer application.

The inversions in (4.29) and (4.30) are performed on para-Hermitian matrix terms

R(z) and CP(z)R−1(z)C(z), which is addressed in the following section, extending

work in [142].

4.6 Inversion of the Space-Time Covariance Matrix

From (4.17) the power spectrum of the array output is a result of multiplication between

the weight vector and a space-time covariance matrix, which in this case has entries in

polynomial form. Also, from (4.29) the optimum weight vector in the minimum mean

square error sense requires the inversion of this space-time covariance matrix.

The space-time covariance matrix is, in general term, either symmetric or Hermitian

for real or complex-valued array signals x[n], respectively. Because it is built form

broadband signals, the autocorrelation and the cross-correlation sequences constituting

the space time covariance matrix force this symmetry. In the z-domain, this symmetry

of the space time covariance matrix translates into a para-Hermitian property, where
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RP(z) = RH(1/z∗) = R(z) [80] holds in analogy to the Hermitian property of

narrowband, instantaneous covariance matrices.

The inversion of such a matrix was attempted in [142] based on the polynomial

eigenvalue decomposition (PEVD) algorithm to approximate the inversion of the para-

Hermitian matrix such that

R(z)R−1(z) ≈ I . (4.31)

The PEVD decomposes the para-Hermitian matrix into a product of a diagonal

matrix and two para-unitary matrices. Such that

R(z) ≈ Q(z)Λ(z)QP(z) . (4.32)

The columns of a para-unitary matrix are orthogonal vectors with unit length, or in

other words they are orthonormal, such that

Q(z) ·QP(z) = QP(z)Q(z) = I (4.33)

or

Q−1(z) = QP(z). (4.34)

Taking these properties into consideration facilitates the inversion of R(z) simply

via the inversion of a diagonal matrix

R(z)−1 ≈ Q(z)Λ−1(z)QP(z) . (4.35)

where

Λ(z) ∼= diag[λ1(z), . . . , λM (z)] , (4.36)

contains the spectrally majorised polynomial eigenvalues of R(z). Thus, the inver-

sion of the cross-spectral density matrix R(z) requires the inversion of its polynomial

eigenvalues λm(z), m = 1, · · · ,M .

The inversion of the polynomial eigenvalues can be accomplished by means of spec-

tral factorisation. Since Λ(z) is a para-Hermitian matrix with Λ(z) = ΛP(z), the same
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holds for the polynomial eigenvalues, such that λm(z) = λP
m(z), m = 1 . . .M , i.e. they

are identical to their complex-conjugated and time-reversed copies. In fact, the eigen-

values therefore are Laurent polynomials (i.e. they contain both positive and negative

powers of z), such that

λm(z) =
N∑

τ=−N
λm[τ ]z−τ (4.37)

with λm[τ ] = λ∗m[−τ ] fulfilling the properties of an auto-correlation sequence. Be-

cause of its symmetry in (4.37), λm(z) is a zero-phase system that permits a spectral

factorisation

λm(z) = λm,min(z)λm,max(z) = λm,min(z)λP
m,min(z) . (4.38)

where λm,min(z) and λm,max(z) are the minimum and the maximum phase compo-

nents of λm(z), respectively.

The direct inverse of the maximum phase component λm,max(z) leads to a causal

but unstable system. Since, as intimated in (4.38),

λm,max(z) = λP
m,min(z) , (4.39)

and therefore
(
λP
m,min(z)

)−1
=
(
λ−1
m,min(z)

)P
, the inverse of λm(z) turns into the inver-

sion of the time-reversed and therefore anti-causal minimum phase system terms only,

such that

λ−1
m (z) = λ−1

m,min(z)
(
λ−1
m,min(z)

)P
. (4.40)

By assuming N <∞ and writing λm,min(z) in terms of its N roots,

λm,min(z) =
N∏
n=1

(1− αnz−1) , (4.41)

the first order sections of each term (1−αnz−1) on the right hand side can be inverted

separately, such that

λ−1
m,min(z) =

N∏
n=1

1

1− αnz−1
. (4.42)

This inversion can be accomplished using the geometric series expansions, since |αn| <
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1, n = 1 . . . N because of λm,min(z) being minimum phase. With adequate lengths L

in time domain,

1

1− αnz−1
≈

L∑
`=0

α`nz
−` . (4.43)

Therefore, as proposed in [142], the overall inverse can be approximated as

λ−1
m (z) ≈

N∏
n=1

L∑
`=0

α`nz
−`

N∏
n=1

L∑
`=0

(
1

αn
)`z` . (4.44)

The evaluation of (4.44) is performed in the time domain, with the coefficients of the

geometric series convolved for each of the first order sections. Noting that the geometric

series of the different terms αn, n = 1 . . . N decay at different rates, truncating every

first order term after L coefficients is suboptimal. Therefore, this thesis proposes an

enhanced approach below.

An alternative approach to (4.44) relies also on the spectral factorisation of λm,min(z),

but facilitates the process of computing its inverse via a partial fraction expansion based

on the residue theorem [46], such that (assuming that there is no multiplicity of roots)

λ−1
m,min(z) =

N∏
n=1

1

1− αnz−1
=

N∑
n=1

ρn
1− αnz−1

(4.45)

Therefore,

λ̂−1
m,min(z) ≈

N∑
n=1

ρn

L∑
`=0

α`nz
−` (4.46)

is a better length-L approximation of λ−1
m,min(z), and

λ−1
m (z) =

(
N∑
n=1

ρn

L∑
`=0

α`nz
−`

)(
N∑
n=1

ρ∗n

L∑
`=0

(α∗n)`z−`

)
(4.47)

will possess a better accuracy than (4.44) for the same support.

For example, let us consider an eigenvalue with power spectral density

λm(z) =
1

5
z2 − 1

4

25
z + 2− 1

4

25
z−1 +

1

5
z−2 ,
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which is depicted in Fig. 4.2. This eigenvalue can be factored into multiplication of

first order terms as in (4.38), which produces

λm(z) = (1− 1

5
z−1)(1− 4

5
z−1)(1− 5z−1)(1− 5

4
z−1)

that consists of minimum and maximum phase terms. By referring to (4.39), the

maximum phase component can be replaced by its reciprocal which relates to the

complex conjugate and time reverse of the minimum phase term

λm,max 1(z) = (1− 1

5
z),

and

λm,max 2(z) = (1− 4

5
z).

Consequently, the inverse of λm(z) based on (4.43) and (4.44) is a multiplication of

polynomials as

λ−1
m (z) ≈

(
40∑
l=0

(−1

5
)lz−l

40∑
l=0

(−4

5
)lz−l

)(
40∑
l=0

(−1

5
)lzl

40∑
l=0

(−4

5
)lzl

)
, (4.48)

with L = 40 the selected approximation order. The ultimate result of the inverse of

λm(z), when convolution is used can be seen in Fig. 4.3.

We now move to the residue method to find the polynomial inverse based on (4.47).

The partial fraction expansion is employed to obtain the coefficient ρn associated

with λ−1
m,min(z) . For this example ρn = {−5

3 ,
5
3}, n = 1, 2, therefore

λ−1
m (z) =

(
−5

3

40∑
l=0

(−1

5
)lz−l +

5

3

40∑
l=0

(−4

5
)lz−l

)2

, (4.49)

which is plotted in Fig. 4.4.

An assessment to the inversion process of λm(z) can be accomplished by multiply-

ing the eigenvalue by its inverse, which ideally results in an impulse. For the above

example, the results for both approximation approaches are shown in Fig. 4.5, which

demonstrates a closer match to an impulse and hence a lower estimation error when
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applying the residue method.

4.7 Implementation Methods

In the LCMV beamformer, based on the available information about the direction and

statistics of the SoI, interferences and noise, the optimum weight vector can be obtained

in several ways as explained in the following experiments.

Experiment-1

If AoAs of any interferences are unknown and the desired response in look direction is

unity, then the constraint in (4.17) simplifies to

aP
1 (z)w(z) = 1 . (4.50)

However, in this case, since a1(z) contains — potentially fractional — delays, a w(z)

satisfying (4.50) is likely non-causal, and the inclusion of a delay will be required to

force a viable solution wopt(z) in (4.26). In this case, the space time covariance matrix

is

R(z) = a1(z)aP
1 (z) +

L∑
l=2

āl(z)ā
P
l (z) + σvI; , (4.51)

and the desired weight vector of the MVDR problem can be found by substitut-

ing the constraints matrix, C(z), in (4.26) by the steering vector of the direction of

interest,a1(z). Hence, the LMVDR weights are

wopt(z) = R(z)−1a1(z)
(
aP

1 (z)R(z)−1a1(z)
)−1

f(z) . (4.52)

Experiment-2

The generalisation of experiment-1 is when the beamformer vector is computed by

using (4.29), then the constraint matrix C̄(z) in (4.28) consist of steering vectors of

the signals that illuminate the antenna array, and the space time covariance matrix is
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the same as defined in (4.51). thereby

wopt(z) = R−1(z)C̄(z)
(
C̄

P
(z)R−1(z)C̄(z)

)−1
f(z) .

In above examples, the space-time covariance matrix constructed from the combi-

nation of SOI with interference and noise. However, this might not be the case on every

occasion as the next example demonstrates.

Experiment-3

Within the same framework, in contrast to the method that depends on the knowledge

of signal of interest, the optimum weight vector can also be implemented even with the

absence of SOI but with knowledge of its steering vector. In this case R(z) is only a

result from interference and noise as [18]

Ri+n(z) =
L∑
l=2

āl(z)ā
P
l (z) + σvI. (4.53)

Hence,the consequent weight vector, with analogy to the concept in scenario 1, is

wopt(z) = R−1
i+n(z)a1(z)

(
aP

1 (z)R−1
i+n(z)a1(z)

)−1
f(z) , (4.54)

or in general as in (4.29) and (4.30) with R(z) substituted by Ri+n(z) in both equation,

and the constraint is the steering vector of the desired source, a1(z). The simulation

results of each of these experiments are going to be discussed in Sec. 4.8.

4.8 Numerical Examples

To provide some examples for the polynomial Capon beamformer based on the ex-

periments in Sec. 4.7, we assume that four sources illuminate an M = 8 element

linear equispaced sensor array. The signal of interest is located at 30◦ off broadside

with unit variance (σs = 1) , and interferers with -20dB SIR are located at angles

ϑ = {−40◦,−10◦, 70◦}. These interferers have a highpass PSD with a lower passband
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edge at Ω = π
10 . Additionally, the array data is corrupted by additive white Gaussian

noise (AWGN) with 30dB SNR.

In these examples we assumed precise knowledge of the true space-time covariance

matrix, R(z), in (4.25). The LCMV beamformer involves the inverse R−1(z), which,

herein, is calculated via the SMD algorithm in [89] following the procedure in [142]

but enhanced using the residue method in Sec. 4.6. helps to regularise the inversion

of R(z). The broadband steering vectors that are used to construct the space-time

covariance matrix have an order of 50. The simulation procedures are described in the

flow chart depicted in Fig. 4.6.

Numerical Evaluation of Experiment-1:

The PBBF in (4.29) is simulated in which the interfering sources are omitted from

the problem formulation, and the Capon beamformer only requires a correction by the

scalar term, which we refer to as a correction term in later sections, aP
1 (z)R−1(z)a1(z),

which is shown in Fig. 4.7. The beamformer has a polynomial order of 200, and a gain

response as shown in Fig. 4.8, with a gain to look direction shown in Fig. 4.10 indicating

a distortion-less response across almost the entire spectrum, and the interferers are

appropriately attenuated. However, additional diagonal loading σ2
L with a value of 16

dB above the AWGN level, to the space-time covariance matrix, R(z) + σ2
t I where

σ2
t = σ2

L + σ2
w, produces a PBBF with a polynomial order of 206, and a beam pattern

as shown in Fig. 4.9 with a correction term in Fig.4.7.

Numerical Evaluation of Experiment-2:

For our second scenario the same calculation in (4.29) is applied for more extensive

constraints with L = 3, which requires an additional regularisation to evaluate

(CP(z)R−1(z)C(z) + εI)−1, (4.55)

with ε � 1, with a value of ”ε” as it is defined in Matlab. The result is a Capon

beamformer of polynomial order 260. Fig. 4.11 shows the gain response of this beam-
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Figure 4.6: Polynomial Capon Beamformer simulation flowchart.
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former when the covariance matrix is diagonally loaded σ2
t with the same value as in

the previous scenario, a suitable suppression of the highpass interferers and a lower

sidelobe level is obtained from this approach with comparison to the PBBF in scenario

1, as it can be seen from Fig. 4.13 (a) .

Numerical Evaluation of Experiment-3:

In the third experiment where the interference and noise signals used for space time

covariance matrix Ri+n(z), and the beamformer achieved by (4.54). The beamformer

in this case has a polynomial order of 189 and 186 with DL = σ2
w and with DL = σ2

t

respectively, and its gain response for DL = σ2
t is shown in Fig. 4.12.

Fig. 4.13 shows a comparison among the beam patterns, at 0.5 of the normalised

frequency, for scenarios in Sec. 4.7. This for regularising R(z) by σ2
w = -30 dB and

also with additional diagonal loading with a value of σ2
L. It can be seen that with

an extra loading to the diagonal of the space-time covariance matrix using σ2
L, an im-

provement fulfilled in the beamformer performance in terms of sidelobe level reduction.

A numerical summary of this comparison is provided in Tab. 4.1.
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Figure 4.8: Directivity pattern of polynomial Capon beamformer, experiment (1) with
DL = σw.
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Figure 4.9: Directivity pattern of polynomial Capon beamformer, experiment (1) with
DL = σt .
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Table 4.1: A comparison of the performance of implementation methods based on their
beam pattern.

Example
NO

DL Constraints STC matrix
SL suppression
[dB]at ϑ = −25◦

Null depth [dB]
−40◦ −10◦ 70◦

1 σ2
w a1(z) R(z) - −40 −47 −33

3 σ2
w a1(z) Ri+n(z) 9.84 −35 −50 −43

1 σ2
t a1(z) R(z) 1.9 −40 −50 −35

2 σ2
t C̄(z) R(z) 7.79 −53 −47 −62

3 σ2
t a1(z) Ri+n(z) 10.9 −35 −47 −43

From Tab. 4.1 and Fig.4.13 it can be noticed that among the scenarios, the beam-

former in the third case offers the best main-lobe resolution and side-lobe level, defined

in Sec. 2.2, suppression but the lowest of null depth in both cases when DL = σ2
w and

σ2
t . But the beamformer with extensive constraints, as in the second example, when

diagonally loaded with σ2
t attenuates the interference more which results in deeper

nulls.
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Figure 4.11: Directivity pattern of polynomial Capon beamformer, experiment (2) with
DL = σt .
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DL = σt .
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4.9 Conclusions

Based on polynomial matrix formulations, exemplarily a broadband version of the clas-

sical narrowband Capon beamformer has been derived. Only the inclusion of DC

requires some extra considerations, and can be addressed by treating either the sig-

nal of interest or the interferers as high-pass processes. Throughout the chapter, we

assumed precise knowledge of the array space-time covariance matrix, and the inverse

of this matrix is accomplished via the PEVD in combination with the residue method

which with the latter providing an improvement over [82]. Within this context, a care-

ful regularisation is required when inverting polynomial matrices that may be poorly

conditioned in space and frequency, which examined for different regularisations that

are applied to the space time covariance matrix. This has also led to a reduction in

sidelobe peak levels, which enhances the overall performance of the PBBF.
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Chapter 5

Adaptive Broadband

Beamforming with Arbitrary

Array Geometry

5.1 Introduction

As it has been shown in preceding chapters, the steering vector plays a very crucial

rule in stating the time (or in the narrowband case the phase) difference with which

a source signal arrives at the array elements relative to the reference one. The signal

components at the element outputs then are coherently and incoherently combined for

the desired and interfering signals respectively. This leads to an improved SNR for the

desired signal.

Also previously, the difference between narrowband and broadband scenarios was

highlighted. In the narrowband case, the above time delays collapse to simple phase

shifts. In the broadband case however, time delays have to be explicitly incorporated,

typically via tapped delay lines as suggested in [39]. This then permits to construc-

tively or destructively combine the array signals via fractional delay filters [143]. Also,

polynomial techniques have been applied to achieve the same objective in Chapter 3.

This chapter is specifically dedicated to demonstrate the constraint design and

broadband beamformer implementation for an array with arbitrary configuration in
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3-dimensional space. The array element locations have to be known, but the elements

themselves can be randomly distributed as long as the spatial sampling theorem is

satisfied by at least two array elements. We extend the definition of the broadband

steering vector and metrics such as the directivity pattern to three dimensions, and

show how this can be applied in a three dimensional example scenario.

The chapter is organised as follows. Sec. 5.2 highlights the shortcomings of ULA

and the need for a 3D antenna rather than a ULA for some beamforming applications.

Sec. 5.3 will define the extension of a steering vector to a three dimensional array setup.

The implementation of broadband steering vectors and the blocking matrix required for

a generalised sidelobe canceller implementation of the MVDR is addressed in Sec. 5.4.

Finally, Sec. 5.5 presents some simulation results, followed by conclusions in Sec. 5.6.

5.2 Ambiguity Phenomena in Beam Steering Using ULA

So far in this thesis, beamformers have been derived for the case when the antenna

array elements are linear and uniformly distributed, with element spacing related to

the shortest wave length by factor of a half, 1
2λmin. Nevertheless, this type of geometry

will be unsuitable for some applications, for example, when the array needs to be fitted

to a surface with a particular shape or distributed over a space such that regularity

distribution of the elements is not practical. Also, a linear array cannot unambiguously

resolve all angles-of-arrival, or blind areas as encountered in the ULA case of Fig. 5.1.

The shortcomings of using a ULA in the three dimensional space is depicted in Fig. 5.2,

5.3, and 5.4. This demonstrates the ambiguity introduced by an 8 elements ULA as a

response to a impinging signal arrives from azimuthal and elevation angles ϕ = −70◦

and ϑ = 60◦ respectively. The beamformer, consequently, in this case is subject to cone

ambiguities and might be considered in some applications as useless for beam-steering.

Therefore in this chapter, arbitrary, volumetric arrays will be considered, which

inherently removes ambiguity, as going to be demonstrated later in Sec. 5.5.4. Such

structure of an antenna array are widely used for source localisation [144], and acoustic
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0 1 2 M-1

Figure 5.1: A uniform linear array and its ambiguity angle cone.

or sound applications [145] in order to improve the accuracy of parameter estimation.

5.3 3D Signal Model and Associated Steering Vectors

Let x[n] denotes a measurement vector at time instance n at the output of an

antenna array that consists of M elements. The measurements result from a su-

perposition of planar wave-fronts propagating from L far field sources as well as

white noise. The source contributions are arriving from directios described by angles

(ϑ1, ϕ1) . . . (ϑL, ϕL). The angles ϑ` and ϕ` represents the azimuth and elevation an-

gles of the `-th source respectively, with ` = 1, . . . , L. In this case, the measurement

vector is

x[n] =

L∑
`=1

aϕ`,ϑ` [n] ∗ s`[n] + v[n] = AΦ,Θ[n] ∗ s[n] + v[n] (5.1)

The parameters Φ and Θ ∈ RL contain the above azimuth and elevation angle

pairs

Φ = [ϕ1, ϕ2 . . . , ϕL]T (5.2)

Θ = [ϑ1, ϑ2, . . . ϑL]T . (5.3)

Further in (5.1), AΦ,Θ[n] ∈ CM×L is a matrix of broadband steering vectors, s[n] ∈ CL

contains the L source signals, and v[n] is an M × 1 of additive white Gaussian noise
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Figure 5.2: A ULA array beam-pattern for an azimuth and elevation angles ϕ = −70◦

and ϑ = 60◦ respectively.
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Figure 5.3: A top view of a ULA array beam-pattern for an azimuth and elevation
angles ϕ = −70◦ and ϑ = 60◦ respectively.
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at each antenna element.

The steering vector is given in Sec. 3.2.2 by (3.7). However, it was derived for ULA

array which is, in principle, a one dimensional array that considers the elevation angle

for AoA, and does not account for azimuthal one. In the case of 2D or 3D array of

sensors, the tow angles usually present, hence the steering vector in (3.7) becomes

aϑ,ϕ[n] =
1√
M


f [n− τ1(ϑ, ϕ)]

f [n− τ2(ϑ, ϕ)]
...

f [n− τM (ϑ, ϕ)]

 , (5.4)

As it can be seen, it includes the lag values τm, on the right hand side of (5.4),

which depends on the elevation ϑ and azimuth ϕ of the source, this is reflected by the

subscript of the broadband steering vector, aϑ,ϕ[n]. Attenuation of the wavefront while

travelling across the array is neglected. In order to highlight this dependency, let the

position of the mth sensor in the Cartesian coordinate to be defined as

pm =


xm

ym

zm

 ,m = 1, 2, . . . ,M, (5.5)

that specifies the distance relative to the array’s centre of gravity p0, that can be given

by

p0 =
1

M

M∑
m=1

pm (5.6)

The choice of the location of the array centre has a significant impact on the beamformer

performance, more precisely, on the interference null depth [15, 54].

With the assumption of being the signals are propagated from far field sources, and

with the definition of spherical coordinates, the normal vector of the wave-front related

to the l-th source is
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kϑl,ϕl =


sinϑl cosϕl

sinϑl sinϕl

cosϑl

 . (5.7)

This planar wave-front travels across the array, and arrives at different array ele-

ments with different time delays. When the normal vector of this wave-front is nor-

malised by the propagation speed c in the medium, kϑ,ϕ/c, in this case, this parameter

is also known as the source’s slowness vector. Based on this, the time delay which the

wave-front experiences at the m-th element relative to the origin is

tm =
1

c
kT
ϑ,ϕpm. (5.8)

If the unit length in the Cartesian coordinate system is chosen as half the minimum

wavelength, then

|kϑ,ϕ| = 1 = λmin/2 = c/(2fmax) = cTs , (5.9)

where Ts is the sampling period, assuming critical sampling.

Therefore,

tm = τmTs , (5.10)

with

τm(ϑ, ϕ) = kT
ϑ,ϕpm (5.11)

is the time taken by a wave-front related to a source in direction (ϑ, ϕ) and measured

by the m-th element relative to the origin in samples. It is also known as a lag or time

lag. Since we are dealing with a broadband signal that, we assume, is propagating in a

homogeneous medium, the propagation delay given in (5.11) as it is being directional

dependent, it is also a function of frequency. This will have a role in representing the

beamformer beampattern later.

Consequently, when the array is illuminated by a planar wave, the resulting signal
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received by the m-th element is

xm[n] = s[n− τm(ϑs, ϕs)] +

L−1∑
l=1

il[n− τm(ϑl, ϕl)] + vm[n]. (5.12)

The notation x[n−τ ] with a fractional τ implied the convolution of x[n] with a fractional

delay filter implementing a delay by τ samples. The signal components are assumed to

be zero mean stochastic processes with second order moments relationships as follows:

E{s[n− τm(ϑs, ϕs)]s[n]} = rm[τm] (5.13)

E{s[n− τm(ϑs, ϕs)]il[n]} = 0 (5.14)

E{il[n− τm(ϑs, ϕs)]ib[n]} = 0 (5.15)

where b 6= l

E{s[n− τm(ϑs, ϕs)]vm[n]} = 0 (5.16)

E{il[n− τm(ϑl, ϕl)]vm[n]} = 0 (5.17)

where E{.} indicates the expected value. Then, the expected values in (5.13) to (5.17)

denotes that the elemental signal components are mutually uncorrelated,and the direc-

tional discrete sources are expressed by their correlation function r[τ ] which constitutes

a Fourier transform pair with the source spectrum.

The signals measured by the array elements are stacked into a data vector

x[n] = [x1[n] x2[n] . . . xM [n]]T . (5.18)

This signal is processed by the beamformer, in either time, frequency, in order to

produce the desired response. In the following section, will explain processing the

array signal by the time domain beamformer based on the polynomial technique.
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5.3.1 The Polynomial MVDR

Having established the signal model of a three dimensional antenna array, we are de-

veloping the PBBF to process such signal, and then evaluate its performance based on

some criterion as in Sec. 5.5. Solutions to the MVDR problem using polynomial tech-

niques have been derived in Chap. 3 and 4 in terms of unconstrained and constrained

optimisation problem scenarios, respectively. The resulting beamformers based on these

derivation are given in (3.6) and (4.16). From the concept of the MVDR beamforming,

applying the signal defined in (5.18) might lead to distortion or even cancellation of the

desired signal, since the constraint in (4.17) does not reflect the correct array geometry

.

Because of the the widespread use of the unconstrained MVDR beamformer, the

implementation of this beamformer in Sec. 3.2 is going to be extended in order to suit

for processing 3D signals such as the one in (5.18). If we recall that the beamformer

output is given by

y[n] = w[n]Hx[n] (5.19)

where w[n] is ∈ C(2T )M×1 and contains the spatial filter coefficients. Applying the z

transform on (5.19)

Ry(z) •—◦ E{y[n]y∗[n− τ ]} ,

we get the power spectral density that is therefore given by

Ry(z) = wP(z)R(z)w(z) . (5.20)

Since the array signal model in (5.12) and (5.18) consists of a superposition of three

terms that are assumed to interact based on equation (5.13) to (5.17), then (5.20) can

be expressed as

Ry(z) = wP(z)(Rs(z) +Ri(z) +Rv(z))w(z) , (5.21)

where Rs(z),Ri(z), and Rn(z) are, respectively, the power spectral density of the SoI,

cross- and power spectral density of the interference, and the power spectral density of
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the AWGN noise.

Rs(z) •—◦ Rs[τ ] = E
{
s[n]sH[n− τ ]

}
(5.22)

Ri(z) •—◦ Ri[τ ] = E
{
i[n]iH[n− τ ]

}
(5.23)

Rv(z) •—◦ Rv[τ ] = σ2
vI (5.24)

If the objective is to keep the output power as low as possible with maximisa-

tion of the desired signal power, this makes such beamformer in is not preferable and

constraints need to be applied. From (5.21) we define

Rs(z) = wP(z)Rs(z)w(z) (5.25)

as the desired signal power spectral portion, and

Ri(z) = wP(z)Ri(z)w(z) (5.26)

is the contribution of interference in the beamformer output power spectral density,

and

Rv(z) = wP(z)Rv(z)w(z) (5.27)

the noise power spectral density. Then, minimisation of the beamformer output power is

equivalent to reducing the interference and noise power. Consequently, an appropriate

filtering of the interference and averaging the AWGN noise fulfils the requirement,

which means the design of the spatio-temporal filter is the key within this process.

The PBBF to solve the MVDR problem suggested in [36] helps to accomplish an

estimation of the beamformer weights to achieve reduction in noise level and hence

improvement in the mean power output. Sec. 5.4 will review the design procedures of

the MVDR beamformer in its GSC structure based on polynomial techniques.

108



Chapter 5. Adaptive Broadband Beamforming with Arbitrary Array Geometry

5.4 Implementation

In this section, the GSC version of the MVDR beamformer implementation is discussed,

where the broadband steering vectors for (3.7) is expanded, and building a blocking

matrix, B(z), from the constraint in (3.6) is presented. Also, for the completion of

GSC components, a multichannel adaptive filter and the calculation of the optimum

beamformer is considered.

5.4.1 Quiescent Vector and Blocking Matrix

From Sec. 3.2.2.2 we recall that the quiescent beamformer wq(z) is derived from the

constraint, and in the absence of further constraints for the suppression of interferers,

can be represented as a match filter of the SoI’s steering vector

wq(z) = a(ϕs, ϑs, z). (5.28)

Also, we recall that, in view point of the desired signal’s steering vector, the blocking

matrix can be considered as a null beamformer. Hence, the blocking matrix has to be

designed such that

B(z)wq(z) = 0 , (5.29)

which can therefore be achieved by completing wq(z) to a paraunitary matrix as sug-

gested in [36]. The procedures are depicted schematically in Fig. 5.5 .

The proposition in this procedure is that, since the covariance matrix, which re-

sulting from the outer product of the quiescent vector wq(z)wP
q (z), is para-Hermitian

and positive definite, it can be diagonalised by means of a para-Unitary transformation

matrix, for example, Q(z) . A polynomial eigenvalue decomposition (PEVD, [81]) is

applied to the rank one matrix so that

wq(z)wP
q (z) = Q̄(z)D(z)Q̄

P
(z) , (5.30)

where D(z) is a diagonal matrix of eigenvalues, and Q(z) is a modal square matrix for
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Figure 5.5: Construction of a paraunitary blocking matrix.

the covariance matrix, and consists of columns of eigenvectors. The PEVD is ordered

in descending power of the eigenvectors and due to the definition of the steering vector,

we have

D(z) = diag{1 0 . . . 0} . (5.31)

The paraunitary matrix Q̄(z) is not unique even in the case where (5.30) has full rank.

Defining the column vectors of the paraunitary matrix

Q̄(z) = [q̄1(z) q̄2(z) . . . q̄M (z)] , (5.32)

then e.g. q̄1(z) can be shifted with respect to wq(z),

q̄1(z) = z−∆wq(z) , (5.33)

and yet satisfy both (5.30) and (5.31). Similarly, the remaining columns q̄m(z) can be

arbitrarily shifted without affecting the validity of the decomposition.
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Therefore, if the blocking matrix

B(z) = [q̄2(z) . . . q̄M (z)] (5.34)

is selected, which defines an M ×M − 1 polynomial matrix with (M-1) orthonormal

columns. This choice of BP(z) implies that BP(z)wq(z) = 0 is guaranteed, in other

word, the projection of wq(z) onto the subspace of columns of B(z) is zero. But

B(z) could have a larger order than necessary. By appropriately shifting rows and

truncation of small leading and trailing coefficients of BP(z) [? ], it is possible to

reduce this order.

5.4.2 Adaptive Multichannel Filter

One necessary step in MVDR, besides steering the main beam towards a specific direc-

tion, is to minimise the output power. In the case of GSC this is done by estimating

the noise at the output of the quiescent beamformer by using a multichannel adaptive

filter as shown in Fig. 5.6.

wa[n]
u[n]

+

y[n]

−

d[n] e[n]

Figure 5.6: Multichannel adaptive filter.

The coefficients of the adaptive filter are obtained by NLMS algorithm [49], which

can be viewed as an approximation to the minimum norm solution to the filter co-

efficient vector wa[n], that depends on the statistics of the data as a normalisation

factor to adjust the coefficients during the recursion iterative calculation process. This
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Table 5.1: The NLMS algorithm

for each n compute

y[n] = wH
a u[n]

e[n] = d[n]− y[n]

wa[n+ 1] = wa[n] +
µ

uH [n]u[n] + ε
e∗[n]u[n]

process is expressed as

wa[n+ 1] = wa[n] +
µ

uH [n]u[n] + ε
e∗[n]u[n] . (5.35)

The inner product provides the input signal power for each iteration, which makes the

innovation vector of wa[n] less vulnerable to any change of the power at the input of

the filter. The term ε� 1 applies a regularisation to avoid numerical problems if the

input power is zero. Table 5.1 describes the NLMS algorithm steps, where d[n] repre-

sents the output of quiescent beamformer, and u[n] is a tap vector from the bocking

matrix at time n .

5.4.3 Overall GSC Optimum Weight

Consequently, the steady state optimum weight vector of MVDR beamformer based on

GSC concept, from (3.28), is

wgsc(z) = wq(z)−BP(z)wa(z), (5.36)

which consists of both data independent weights from the upper path in Fig. 3.3, and

the multiplication of the parameters in the lower path as interference filter.
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Figure 5.7: Polynomial broadband beamformer with arbitrary antenna array configu-
ration. At least two elements are separate by no more than λmin/2 .
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5.5 Simulations and Results

Based on performance metrics that were briefly mentioned in Sec. 2.2, in Sec. 5.5.1

broader explanations and definitions are given, followed by analysis of the PSV and

techniques to enhance the visualisation of the PBBF’s beam-pattern in Sec. 5.5.2.

Sec. 5.5.3 explains the methods that are used to demonstrate 3D beam-pattern. Finally,

simulation scenarios and results are in Sec. 5.5.4.

5.5.1 Performance Metrics

5.5.1.1 Residual Error

To assess the performance of broadband GSC beamformer, the mean square of the

residual error er[n] is a useful metric. Since the beamformer output e[n] in (3.31)

should contain the signal of interest plus residual error, subtracting out the desired

source signal — appropriately delayed to compensate for propagation delays in wq(z)

— provides a metric similar to echo return loss enhancement known in acoustic echo

cancellation.

5.5.1.2 Directivity Pattern

The directivity pattern represents the gain response of a broadband beamformer with

respect to the angles of arrival and frequency. Assuming that a broadband source is

located at (ϑ, ϕ) as characterised by the broadband steering vector a(ϑ, ϕ, z), if we

define the spatial Fourier transform the overall transfer function of the beamformer

with respect to this excitation is

A(ϑ, ϕ, z) =
(
wP

q (z)−wP
a (z)B(z)

)
· a(ϑ, ϕ, z) . (5.37)

By probing (5.37) with a series of steering vectors, the directivity pattern is obtained

evaluating it on the unit circle and taking the gain only.

The beam pattern of a broadband beamformer, as a spatio-temporal filter, is usually

visualised as a function of space variables and temporal frequency. The space variables
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can be expressed explicitly, as angles of the direction of arrival, or implicitly within the

wave-number, whereas the temporal frequency extends over an octave or a frequency

band between flow and fhigh. This, in consequence, indicates that the shortest wave

length within the band is λmin =
fhigh

c , in which c is the propagation speed of the wave

in the media.

For an arbitrary array that is assumed to be constructed with M sensors in this

study, the inter-element spacing should not be restricted to half of the shortest wave-

length among the entire array elements, but it should be guaranteed for at least between

two sensors in order to avoid spatial aliasing. The beam-pattern associated with such

arrays, as a response to plane-waves in space, are analysed over three dimensional

space. This space is specified by two dimensions that are related to azimuthal and ele-

vation angles, and the third dimension represents the frequency. The azimuthal angle

is ϕ ∈ [−180◦, 180◦] whereas elevation angle is ϑ ∈ [−90◦, 90◦], and normalised angular

frequency band extends between 0 and π.

5.5.1.3 Modified MVDR Polynomial Weights

Before we proceed with the visualisation procedures of the beam-pattern, we need to

improve the resolution of the beamformer over the temporal frequency to have higher

resolution spectral, which in turn becomes adequate for better visualisation and as-

sessment. By means of a longer DFT, the frequency resolution can be enhanced[146].

Mathematically, this can be expressed as

ŵ(k) = wgsc(z)|
z=e

−j( 2π
Q

)k (5.38)

for the k-th frequency bin, where Q� 2L, and 2L is the filter length after each sensor.

Alternatively, it can be interpreted as evaluating w(z) at Q points on the unit circle

which will be used as coefficients for the components of the broadband steering vector

during the beam-pattern assessment, that will be described in Sec.5.5.2.
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5.5.2 Analysis of the Polynomial Steering Vector

Since the broadband signals can be modelled as superposition of many narrowband

signals spreads over limited band [10]. This also applies on the broadband steering

vectors. From (3.7) and (5.4) the broadband steering vector in its Laurent polynomial

form expressed as

a(ϑ, ϕ, z) =
∞∑

n=−∞
aϑ,ϕ[n]z−n. (5.39)

If this PSV is evaluated on the unit circle for z = eΩo , the result is a narrowband

steering vector at frequency Ωo, which can be generalised to any frequency point. Then

the PSV that relates to a source from AoA (ϑ, ϕ) can be analysed at frequency f as

a(ϑ, ϕ, f) =


e−j2πf/fs(x1 cosϑ sinϕ+y1 sinϑ sinϕ+z1 cosϑ)

...

e−j2πf/fs(xM cosϑ sinϕ+yM sinϑ sinϕ+zM cosϑ)

 . (5.40)

where j =
√
−1, and (xm, ym, zm) refer to the Cartesian coordinates of the m-

th sensor of the array. This now leads us to the beam-pattern representation of PBBF.

5.5.2.1 3D PBBF’s Beam-pattern

In general, the beampattern is defined as the response or the gain of the beamformer

w.r.t. a specific direction and frequency of excitation. Hence, for the weights in (5.36),

the beamformer gain is

A(ϑ, ϕ, z) = wP(z) · a(ϑ, ϕ, z) . (5.41)

By using equations (5.38) and (5.40) then (5.41) can be rewritten as

A(ϑ, ϕ, f) = ŵH(ej2πf/fs) · a(ϑ, ϕ, ej2πf/fs). (5.42)

The equation (5.42) is used to illustrate the synthesis of the beam-pattern. However,

considering the three variables at the same time leads to a cumbersome visualisation
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process. For this reason, in Sec. 5.5.3 we will explain our approach to simplify the

representation of the beam-pattern synthesis.

5.5.3 Partial Representation of the PBBF 3D Beam-pattern

In this section, we demonstrate the method and the considerations of visualising the

beam-pattern of the GSC-PBBF with an arbitrary array geometry configuration.

For the array pattern in (5.41) it is possible to express A(ϑ, ϕ, z) as a function of

two variables while the third is substituted by a constant value. To evaluate the beam-

pattern based on elevation angle and the frequency, in this case, the beam-pattern it

can be rewritten as

A(ϑ, f) = ŵH(ej2πf/fs) · a(ϑ, ϕ, ej2πf/fs)|ϕ=const. (5.43)

This, then, can be examined in 3D plot with axes represent the elevation angle ϑ,

frequency , f , and the gain.

A similar procedures are repeated to represent the beamformer as a function of

azimuthal angle, ϕ, and the frequency to become

A(ϕ, f) = ŵH(ej2πf/fs) · a(ϑ, ϕ, ej2πf/fs)|ϑ=const. (5.44)

And, finally, for a specific frequency and variable angles it becomes

A(ϑ, ϕ) = ŵH(ej2πf/fs) · a(ϑ, ϕ, ej2πf/fs)|f=const. (5.45)

5.5.4 Scenarios

The first performance of PBBF after amending PSV, to be adequate for 3D antenna

arrays, and the other GSC components will now be illustrated for two scenarios. In a

first scenario, we consider an arbitrary configuration of antenna array elements. For

comparison, in the second scenario, we have chosen the location of antenna elements

such that they are arranged symmetrically around the centre of the array.
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Table 5.2: Sensor locations

i xi yi zi

1 -1.1242 -1.8617 0.7471
2 -1.8118 -1.7862 0.3559
3 0.7155 0.1188 1.7217
4 0.7172 0.6846 1.3847
5 1.7388 -1.9692 0.1077
6 -0.4660 -0.4663 -1.6321
7 0.0777 -1.7326 0.6157
8 1.3239 -0.3301 -0.3360

5.5.4.1 Scenario-1: Random antenna array configuration

The scenario simulates a polynomial adaptive beamformer with an arbitrary array

as in Fig. 5.7. This array with M = 8 elements is generated by randomly drawing

element locations from {xm, ym, zm} ∈ [−2; 2], i.e., all elements lie within a cube.

The resulting coordinates are listed in Table 5.2. Note in Tab. 5.2 that the shortest

inter-element distance among the array elements is occurring between the third and

fourth elements, which are separated by λmin/1.7. This is slightly wider than the

spatial Nyquist distance, and could potentially result in spatial aliasing for a number

of ’unlucky’ directions (e.g. perpendicular to the line defined by those two elements).

For all simulations that we have performed, in particular the once reported below,

spatial aliasing was not evident.

The uncorrelated source of interest is set to illuminate the array from an elevation

ϑs = 60◦ and azimuth ϕs = −45◦. A first interferer is located at {ϑi,1 = 0◦, ϕi,1 =

−45◦}, with a second at {ϑi,2 = 60◦, ϕi,2 = 90◦}. Both interferers have a signal-to-

interference noise ratio of −30 dB, and additive white Gaussian noise at a level of

20 dB relative to the signal of interest. Both interferers have a high-pass characteristic,

with passband edge at Ω = π/4. In the following we will look at and evaluate the

beampattern of the PBBF for this particular case before and after adaptation.
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5.5.4.1.1 Quiescent Response: The beam-pattern of the un-adapted beamformer,

which means that wa = 0, is the response of the quiescent beamformer only. The qui-

escent beamformer has been designed as a broadband steering vector consisting of

fractional delay filters of order 40, which was found to provide sufficient accuracy.

Fig. 5.8 and Fig. 5.9 show the directivity patterns |A(ϑ, ϕ, ejΩ)| for two fixed points.

Firstly, for ϑ = ϑs = 60◦, the beamformer is pointing in the elevation direction of the

source but with varying azimuth angle. Note that the gain response in Fig. 5.8 satisfies

the constraint for ϕ, with a frequency-independent unit gain response in direction

ϕ = ϕs = −45◦. Secondly, fixing the azimuth angle ϕ = ϕs = −45◦ but varying the

elevation ϑ in Fig. 5.9, the constraint is fulfilled for ϑ = ϑs = 60◦.

5.5.4.1.2 Adapted Beamformer: Based on the quiescent beamformer, a blocking

matrix was designed by paraunitary matrix completion, resulting in a blocking matrix

of order 480 after appropriate truncation [113]. The adaptive filter wa(z) was chosen

of order 140. Using a normalised LMS algorithm for unconstrained optimisation, the

mean square residual error is depicted in Fig. 5.10.

Fig. 5.11 and 5.12 show the directivity patterns of the GSC beamformer after adap-

tation. In Fig. 5.11, the elevation angle is fixed at ϑs = 60◦, such that the look direction

of the array is observed for the flexible azimuth angle at ϕ = ϕs = −45◦. The directiv-

ity pattern differs from the one of the quiescent beamformer in Fig. 5.8 but fulfils the

constraint.

As mentioned in Sec. 5.5.3, the beam-pattern of the PBBF can also be evaluated

in the azimuthal and elevational plane for a fixed frequency. For an arbitrary array

with M = 8 elements those are generated in a way similar to the current scenario,

the obtained results are plotted in Fig. 5.13 to 5.17. At this point we should say that

the values of the beam-pattern in theses plots are corresponding to the normalisation

by the maximum gain either in azimuthal or elevation direction. This evaluation is

based on the relationship between elevation angle, ϑ, and azimuth angle, ϕ, for fixed

frequency. Fig. 5.13 to Fig. 5.17 show this relationship when the look direction is

{ϑs = 60◦, ϕs = −45◦} and the frequency at Ω = π/2. These figures provide a broader
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Figure 5.8: Directivity pattern of polynomial quiescent beamformer wq(z) in elevation
look direction ϑs = 60◦ for variable azimuth angle ϕ.
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Figure 5.9: Directivity pattern of polynomial quiescent beamformer wq(z) in azimuth
look direction ϕs = −45◦ for variable elevation angle ϑ.
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Figure 5.10: Mean square residual error after switching adaptation on at n = 0.
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insight to evaluate the performance of the combination of the PBBF and the assumed

antenna, in addition to beam steering and forming nulls towards interference we can

see the back lobe and side lobes, this provide another measure that reflect the quality

of the combination. It can be seen that the main beam is steered towards the SoI and

nulls are formed at directions of arrival of interferers, also for this particular scenario

only relatively small back and side lobes are observed. Consequently, the objective of

deploying the beamformer is achieved, since it directs most of its gain towards the SoI

and suppresses interference.

5.5.4.2 Scenario-2: A Symmetric Antenna Array Configuration

The sensors’ positions in Tab. 5.2 were generated randomly by using Matlab program

command rand. Since the location of the reference element impacts the performance of

the beamformer [15, 54], we have examined a different scenario of the array geometry,

by which we can ensure that the centre of gravitation is located at the origin of the

coordinate system. The position of the sensors are listed in Tab. 5.3, the first and second

listed sensors are placed sufficiently apart so the minimum inter-element spacing is the

same as in scenario-1, that in order for the impinging signal is spatially sampled with

no aliasing, also the furthest antenna element has the same spacing distance from the

origin as the furthest element in scenario-1. This is in order to maintain the same

antenna aperture size in both cases. For illustrative purposes and for easy comparison

with an asymmetric antenna array configuration, we will assume the same number of

antenna elements, SNR, and AWGN level as in scenario-1.

However, two signals arrive at the array simultaneously, a desired signal and a single

interference which arrive from angles {ϑs = 60◦, ϕs = −45◦} and {ϑi = 0◦, ϕi = 90◦},

respectively. The performance of the PBBF is depicted in Fig. 5.18 in terms of the

residual error for the two different sets up of the antenna array, Figs. 5.19 and 5.20

cross-sections of the beam-pattern at Ω = π/2 as a function of the azimuthal and

elevation angles, respectively. Fig. 5.18 shows faster convergence can be achieved when

properly choose the reference sensor to be at the origin of the coordinate system. Also,

from Fig. 5.19 and Fig. 5.20 the response of the beamformer to the interferes has
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Figure 5.11: Directivity pattern of polynomial adapted beamformer w(z) in elevation
look direction ϑs = 60◦ for variable azimuth angle ϕ.
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Figure 5.12: Directivity pattern of polynomial adapted beamformer w(z) in azimuth
look direction ϕs = −45◦ for variable elevation angle ϑ.
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Table 5.3: Sensor locations

i xi yi zi

1 -0.2 -0.2 -0.2
2 0.2 0.2 0.2
3 0 -1 0
4 0 1 0
5 0 0 1.5
6 0 0 -1.5
7 -1.8617 -1.8617 -1.8617
8 1.8617 1.8617 1.8617

improved in terms of the null depth, where in the second scenario the beamformer

achieves a deeper null.

5.6 Conclusions

In Chap. 3 we have established some of the advantages of the proposed design, which

includes the decoupling of orders in the quiescent beamformer, the blocking matrix,

and the adaptive filter. Also, the proposed beamformer permits a simple handling of

constraints. In this chapter, we have shown that for an arbitrary array configuration,

constraints are straightforward to implement and are protected coherently across the

spectrum. This is in contrast to state-of-the-art broadband beamformers, where off-

broadside constraints or arbitrary array configurations generally require pre-steering

before any processing can be performed. One more advantage of this modified version

of polynomial broadband beamformer its ability to overcome direction ambiguity issue

associated with this beamformer when it is merged with a uniform linear array antenna.
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Chapter 6

Conclusion and Future Directions

In this chapter we first summarize the completed research work and then discuss the

main results, findings, and potential future directions.

6.1 Summary

Chap. 1 and Chap. 2 have provided a motivation and some background into broadband

beamforming, whereby spatial filtering is applied to array signals. These signals have a

fractional bandwidth that can cover up to several octaves in frequency, such that simple

narrowband processing is insufficient. As a standard, such broadband beamforming

problems have been addressed by tap delay lines following each sensor, such that signals

are processed in both space and time. Particularly Chap. 2 has provided some of the

background on polynomial matrix methods, which is a useful linear algebraic tool to

formulate and solve general broadband multichannel signal processing problems.

Chap. 3 has introduced a polynomial matrix notation to formulate the MVDR prob-

lem, including the minimisation of the beamformer’s ouput power and the description

of constraints via a broadband steering vector, and solved the broadband MVDR prob-

lem via a GSC. The GSC’s quiescent beamformer is directly given by the constraint

equation and hence the broadband steering vector, while we have introduced a para-

unitary matrix completion to find a polynomial form for the blocking matrix. For a

uniform linear array and off-broadside constraints, the polynomial form of the GSC
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gave better protection for such constraints, and due to the decoupling of dimensions

of the GSC components, provided a lower computational complexity compared to a

standard tap-delay line implementation of a broadband GSC beamformer.

Chap. 4 has utilised the polynomial matrix formulation to solve the problem via a

broadband extension of the Capon beamformer. This uses the same constraint formu-

lation as in Chap. 3 but extends the constraints by potentially including the directions

of known interference. Similar to the narrowband Capon solution, the broadband for-

mulation requires the inversion of a – now polynomial – matrix for which an accurate

residue-based approach has been proposed. The Capon beamformer is thus able to

suppress interferers either via the constraints if their direction and frequency range are

known, or via optimisation in case the interferers are unknown but contribute to the

space-time covariance matrix.

Chap. 5 has provided some further analysis and metrics to assess beamformer per-

formance, and expanded the broadband beamformer application from a uniform linear

array to arbitrary array configurations. The visualisation of 3D array performance is

difficult, and we have shown snapshots of the directivity pattern by fixing always one

quantity within the parameter triplet of azimuth, elevation and frequency.

Chap. 6 has given a chapter-wise summary, and will continue with overall conclu-

sions and some suggestions for future directions for research investigations.

6.2 Conclusions

Polynomial matrix techniques allow to generalise well-known narrowband concepts,

such as MVDR beamformers. We have investigated both GSC and Capon approaches.

Within this framework, we have shown the ease of applying the narrowband formula-

tion concepts to the broadband case, which reveals practical advantages obtained by

deploying this technique in designing a broadband beamformer with comparison to the

standard approach. In the following, we conclude these procedures and highlight the

main results, findings, and benefits.

The developed method is used to derive a solution to minimum variance distortion-

less response (MVDR) beamformer in its generalised sidelobe canceller (GSC) structure.

131



Chapter 6. Conclusion and Future Directions

The fundamental components of the GSC are the quiescent beamformer, blocking ma-

trix, and adaptive filter, these components are derived in an innovative way based on

the polynomial matrix techniques. The broadband steering vector, for the constraint

formulation, has been firstly implemented in polynomial form, then the quiescent beam-

former derived from the constraints of MVDR problem, which includes the broadband

steering vector. The quiescent vector, in turn, is used to define the blocking matrix

and multichannel adaptive filter. Lastly, in order to obtain the blocking matrix, we

proposed para-unitary matrix completion technique for this purpose, the procedures

involves building a proper matrix from the quiescent vector and using polynomial ma-

trix decomposition algorithm.

Each component of this structure is examined individually in order to assess its

performance, where the quiescent vector is evaluated by means of its beam-pattern,

the blocking matrix via the amount of the desired signal that leaks along with interfer-

ence and noise to the adaptive filter, and the multichannel adaptive filter based on its

convergence curve. The results show that the quiescent beamformer steers the beam

towards the desired direction, a little amount of the desired signal leaks through the

blocking matrix, and the multichannel adaptive filter converges and the contribution

of interferers and noise in output power is minimised.

In addition, we investigated the characteristics of the beamformer’s components

and their influence on each other, specifically; we investigated the relationship among

fractional delay filter length, blocking matrix order, and adaptive filter order. Based

on this investigation, we have presented the specifications in which these components

act collectively without causing the overall performance of the beamformer to degrade.

All in all, the proposed approach is tested under scenarios that assume a uniformly

spaced linear array (ULA) ULAuniformly linear array and an environment without

reverberation. The sole impairment that the desired signal encounters is due to inter-

ference and noise. The performance of the proposed design is compared with a standard

beamformer by using MATLAB simulations. The metrics to assess the performance of

the adaptive beamfomer are its directivity pattern, the mean square residual error, and

its computational cost.
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When the polynomial broadband beamformer is compared with the standard time

domain one, the simulation results illustrated that the former can respond faster due to

the reduction of complexity, and hence, in the processing time. The major complexity

saving is obtained via decoupling of the blocking matrix design from the fractional

filter length. Where the complexity associated to the standard form of the GSC is

greater than the one of the polynomial form by a factor related to the tap delay line

length, in our simulation the complexity is 1.72 MMAC versus 10.7 kMAC for the

former and the later, respectively. Also the polynomial technique offers a a flexible

approach to focusing the antenna array beam towards a specific direction with no need

for pre-steering process.

We have further studied the Capon beamformer as an alternative form of addressing

the MVDR problem. This form of formulation of the MVDR includes the inverse of

the space-time covariance matrix, which is accomplished by a new polynomial matrix

inversion technique based on the residue method. The polynomial extension requires

the inversion of a polynomial matrix, for which we proposed a residue-based method

as a novel approach that offers better accuracy compared to previously utilised con-

volution approach. Within this context, a regularisation factor or diagonal loading

is applied to the polynomial matrix in order to mitigate poor conditioning in space

and frequency. This is examined for a chosen regularisation parameter which in-

dicates some control over the the directivity pattern side-lobe levels and has led to a

reduction in sidelobe peak levels, hence can enhance the performance of the polynomial

broadband beamformer.

The derivation procedures of the GSC components were revisited and adapted to

become suitable to be incorporated with arbitrary layout of antenna array elements. In

this context, we were successful in making the polynomial based broadband beamformer

able to perform well, with performance evaluated via its beam-pattern, learning curve

convergence. We – also – examined the impact of the geometry of the antenna array

and the location of its elements on the beamformer behaviour; we considered, again,

the beam-pattern and learning curve as measures. A comparison of results shows that

when antenna array elements are arranged in a way that they are symmetric around
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the origin of coordinate axis, the beamformer responses faster and produces deeper

null at the interferes direction of arrival. One more advantage of this modified version

of polynomial broadband beamformer its ability to overcome direction ambiguity issue

associated with this beamformer when it is merged with a uniform linear array antenna.

The beamformer is demonstrated to sufficiently steer the beam at the desired direction

and nulls at unwanted signals directions.

6.3 Future Directions

Based on the work reported in this thesis, this last section provides a number of ideas

that where beyond the scope of this research but may represent worthwhile starting

points for further investigation.

As a first future step, it might be useful to design an algorithm to compute an

optimal diagonal loading factor to enhance Capon beamformer performance in terms

of null depth and side lobe levels reduction. This might be more significant, in the case,

when an estimated space time covariance matrix used instead of the true space time

covariance matrix that was used [139]. The estimation error in the sample space time

covariance can be minimised by selection the optimum lag support [? ]. Nevertheless,

this estimation error will perturb the eigenvalues and eigenspaces of the PEVD [? ].

The impact of subspace perturbation on angle of arrival estimation has been assessed

in [112, 147], and could be similarly investigated in the context of beamforming.

Secondly, this thesis has assumed ideal far-field propagation characteristics, such

that source signals illuminate the array from exactly a single direction. It would there-

fore be advantageous to evaluate for non-ideal propagation scenarios, for instance, with

multipath signals and mutual coupling among antenna elements. This would include

the case of near-field propagation, and particularly affect the constraint design in order

to protect the signal of interest, that may now arrive from several directions or over a

range of angles.

Another point is examining the beamformer response sensitivity to look direction

errors [148]. The error in the look direction leads to mismatch between the actual and

presumed steering vectors. In consequence, the space time covariance matrix cannot be
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accurately estimated, which in turn effects on the adaptive beamformer and degrades

its performance.

A family of DFT based polynomial EVD algorithms is currently emerging [114, 149,

150, 151], which aims to extract analytic functions rather than spectrally majorised ones

in case of SBR2/SMD. These algorithm are based on a smoothness metric [115, 116,

152, 153, 154] to extract analytic solutions, which therefore offer smoother subspaces

and yield significantly lower-order polynomial factors compared to the factorisations

provided by SBR2 and SMD. Therefore, the already enhanced computation cost of

polynomial beamformers could be further reduced.
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