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Abstract

The desire to operate large antenna arrays for e.g. RADAR applications over a wider

frequency range is currently limited by the hardware, which due to weight, cost and

size only permits complex multipliers behind each element. In contrast, wideband

processing would have to rely on tap delay lines enabling digital filters for every element.

As an intermediate step, in this thesis we consider a design where elements are grouped

into subarrays, within which elements are still individually controlled by narrowband

complex weights, but where each subarray output is given a tap delay line or finite

impulse response digital filter for further wideband processing.

Firstly, this thesis explores how a tap delay line attached to every subarray can be

designed as a delay-and-sum beamformer. This filter is set to realised a fractional delay

design based on a windowed sinc function. At the element level, we show that designing

a narrowband beam w.r.t. a centre frequency of wideband operation is suboptimal,

and suggest an optimisation technique that can yield sufficiently accurate gain over a

frequency band of interest for an arbitrary look direction, which however comes at the

cost of reduced aperture efficiency, as well as significantly increased sidelobes.

We also suggest an adaptive method to enhance the frequency characteristic of a

partial wideband array design, by utilising subarrays pointing in different directions

in different frequency bands — resolved by means of a filter bank — to adaptively

suppress undesired components in the beam patterns of the subarrays.

Finally, the thesis proposes anovel array design approach obtained by rotational

tiling of subarrays such that the overall array aperture is densely constructed from the

same geometric subarray by rotation and translation only. Since the grating lobes of

differently oriented subarrays do not necessarily align, an effective grating lobe atten-
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uation w.r.t. the main beam is achieved. Based on a review of findings from geometry,

a number of designs are highlight and transformed into numerical examples, and the

theoretically expected grating lobe suppression is compared to uniformly spaced arrays.

Supported by a number of models and simulations, the thesis thus suggests various

numerical and hardware design techniques, mainly the addition of tap-delay-line per

subarray and some added processing overhead, that can help to construct a large partial

wideband array close in wideband performance to currently existing hardware.
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Relations and operators

(.)T Transpose operation

(.)∗ Conjugate operation

(.)
H

Conjugate transpose operation

||.||F Frobenius norm of a matrix

1p Column vector of ones with length p

1pxq Matrix of ones with size pxq

std() Standard deviation function

be Rounding function

◦—• Discrete Fourier Transform pair, s[n] ◦—• S(ejΩ)

•—◦ Inverse Discrete Fourier Transform pair, S(ejΩ) •—◦ s[n]

∆ Difference operator e.g. ∆k = k− k0

Φ(.) Phase of a complex value

cin Incircle of a Euclidean shape

Conv(.) Convex hull of a set of points

diag(A) Vector of the diagonal elements of matrix A

std() Standard deviation

sgn() Sign function

LCM() Least common multiple

N Total number of array elements

M Number of subarray

J Order of tapped delay line
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τ Time delay
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P (ω, θ, φ) Array response
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ξss Sum of squares of mailobe deviation
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Ts Sampling time

ξ the summation of the error squares over space and frequency

� Element-wise multiplication

⊗ Kronecker product
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Chapter 1

Introduction

This is a study of wideband antenna subarray design and beamforming. Standard

wideband beamforming requires time delay units or digital receivers for each array

element. The work of this thesis focuses on achieving a suitable wideband characteristic

by controlling the narrowband weights of the individual array elements, introducing tap

delay line for groups of sensors organized in subarrays, and improving the subarrays

processing and geometry.

1.1 Background and Motivation

Introducing adaptive processing or expanding the instantaneous bandwidth of an an-

tenna array generally requires the digital representation of the signal paths at the

element level [1], or introducing time delay units [2], or sacrificing a spatial domain

to apply spectral domain processing [3]. Antenna arrays that utilise these components

have a frequency-invariant response but are also large, heavy and have a high power

demand. Many applications that require adaptive processing can meet the required

performance with fewer degrees of freedom compared to the number of antenna ele-

ments contained within their antenna array. For example, the number of targets and

interference sources that a phased array radar needs to handle is lower than its number

of elements, compared to the number of elements required to meet a certain gain or

beamwidth.
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In addition, there are many practical factors that restricts the wideband perfor-

mance of an array like the antenna element, the microwave distribution and switching

network and the digital receivers sampling speed and throughput.

The main motivation of adopting subarray structures in this thesis, is to meet the

practical constraints in airborne and mobile antenna array systems that need wide

instantaneous bandwidth to fulfil their missions. For example, the next-generation

airborne active electronically steered array (AESA) radar in fighter aircrafts promises

to perform high resolution imaging by functioning as synthetic aperture radar (SAR),

identify threats using non-cooperative target identification (NCTI), improve detection

and tracking by applying advanced signal processing algorithms like space-time adap-

tive processing and reuse radar front end for electronic warfare and communications

functions [4]. While advancements in microwave and fabrication led to the minia-

turisation of phase shifters, the true time delay and analog to digital conversion are

impractical at element level on airborne AESA.

Subarray structures allow the system designer to control the performance of the

antenna and the signal processing requirements independently, especially when the

required number of the receiver channels is a fraction of the array size. For exam-

ple, AESA radar can improve clutter and jammer rejection while conforming to size,

weight, heat dissipation, and power consumption. A subarray structure is not without

drawbacks. The additional weighting at the subarray level is excessive if the required

performance and constraints can be met by a fully analog or fully digital array. Im-

proving the elements weighting can be more feasible than adding an additional layer to

an already complex system.

This thesis specifically targets phased array radars that traditionally utilise complex

weighting at elements level. Among phased array radar aspects that this thesis aims

to improve are,

• broadband waveforms required for high range resolution, target classifications,

imaging and Low Probability of Intercept (LPI) Radars.

• Life cycle cost reduction by introducing modularity. Utilising common compo-

nents reduces time and cost of design, verification and integration. It also offers
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higher reliability and easier maintenance.

• Multi-functionality by offering a highly flexible spatial and spectral response.

Most beamforming techniques target arrays at the element level. Most of the reviewed

literature on subarrays deals with the formation of grating lobes or studies the band-

width impact of Time Delay Units (TDU). Adaptive subarray processing in Radars and

acoustics is also an active topic. This study applies wideband beamforming to subar-

rays and proposes subarray structures and beamformers to resolve bandwidth-related

issues like beam squinting, spectral flatness and grating lobes.

1.2 Original contributions

The following is considered to be the novel contributions of this research.

• Low-cost and accurate broadband beamforming based on narrowband

subarrays [5]. Simplified broadband beamformers can be constructed by shar-

ing a single tapped delay line within a narrowband subarray. This contribution

proposes the use of fractional delay filters for steering in the digital domain. For

the narrowband subarrays, an optimisation approach is proposed to maintain a

flat off-broadside beam pointing constraint across a given frequency range.

• Beam alignment using phase windowing. Current implementations of beam-

steering or delay-and-sum beamforming suggest a linear phase progression cal-

culated at the centre of the operating frequency band. Even if the wideband

beamforming is utilisedon narrowband arrays, most beamformers use a single fre-

quency point that minimizes the variation across the bandwidth. Linear phased

progression results in beam drift across the frequency range in the mainlobe. I

suggested applying a window function on the elements’ phase shift of a partially

adaptive subarray. This window maintains a peak response towards the desired

direction across the band.

• Interference suppression of a phase-windowed partial wideband array.

Using the phase windowing in partial wideband arrays, a subband adaptive noise

8
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cancellation filter bank uses the subarrays steered away from desired direction at

each frequency subband as an interference source. The noise cancellation filters

individually suppress the interference frequency components from the subarrays

output.

• Grating Lobe Suppression in Rotationally Tiled Arrays [6]. Uniform

placement of array elements limits the maximum operational frequency due to the

formation of grating lobes. While non-uniform spacing of elements or subarrays

has significantly lower grating lobes, it reduces the aperture efficiency and leads

to arrays that are difficult to design and manufacture. I proposed a novel planar

array design using a modular asymmetric convex-shaped subarray to build the

array by rotation and translation, filling the aperture without overlaps or gaps.

These new arrays can significantly reduce grating lobes compared to uniform

arrays. They can also lower the design, manufacturing and operation costs by

offering identical subarrays and providing an array that can be easily scaled in

size.

1.3 Outline of the Thesis

The remainder of this thesis is organized as follows.

Chapter 2 reviews wave propagation, array and partial wideband array models.

The chapter also introduces technologies necessary to extend the array bandwidth like

tapped delay lines and time delay units. Wideband data-independent beamforming

techniques are then introduced and discussed. Finally, three different approaches to

apply beamforming to partial wideband arrays are described and evaluated.

Chapter 3 introduces the fractional delay filter and how it can be applied to

subarrays to improve the partial wideband array’s bandwidth. Then, fractional delay

filters are combined with an optimisation of the element-level weighting to reduce the

variation of frequency response at the desired direction. This approach is illustrated

with two examples.

Chapter 4 discusses beam squinting in narrowband arrays and proposes windowing
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of the elements’ phase shifts in a linear partial wideband array structure. The chapter

investigates decorrelation between subarray outputs when a phase windowing is applied.

A subband adaptive noise cancellation architecture is then proposed utilising the signal

decorrelation between subarray as a result of phase windowing. The phase windowing

is demonstrated on a linear, partially adaptive wideband array and compared to the

conventional delay-and-sum beamforming.

Chapter 5 reviews the formation of grating lobes in uniformly spaced arrays and

the available solutions in the literature. The chapter then introduces the tiling con-

cept in geometry and reviews the related terminology and classifications. The design

methodology of tiled arrays and various measures are introduced. Finally, two novel

designs of tiled arrays are introduced, simulated and evaluated.

Chapter 6 provides a summary of the contributions and a discussion of the results,

and provides some suggestions for further research.
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Chapter 2

Wideband Beamforming

2.1 Introduction

The study of antenna arrays dates back to 1920. Among the early researchers in the ar-

ray field were G. H. Brown, E. Bruce, P. S. Carter, C. W. Hansell, and many others [7].

Antenna arrays were operating in Very High Frequency (VHF) and Ultra High Fre-

quency (UHF) bands during the Second World War. After that, antenna array radars

were built in the microwave range [8]. Today, antenna arrays cover more frequencies

and have many applications in both the commercial and military areas. It has not been

until the recent advances in Gallium arsenide (GaAs) microwave circuitry and real-time

signal processing that array antenna have become affordable and reliable enough for

mass production and wider ranges of applications. Antenna arrays have recently been

deployed in many ground, naval, and airborne platforms because of the reduction in

microwave component cost and size, and because of their flexibility compared to single

antenna systems [9].

Among the advantages of an antenna array over single antenna systems in radars

are the elimination of moving parts, which enhances reliability and speed. An array

antenna beam pattern can be controlled electronically, allowing control over the signal

environment and pattern characteristics like the gain and sidelobes.
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2.2 Wave Propagation

Communication and Radar use radio waves to convey information, detect objects, or

measure the environment. Radio waves are electromagnetic waves with wavelengths

from 1 mm up to 100,000 km. These waves are interpreted as signals when they arrive

at the antenna elements. Radio frequency waves travel in a straight path at the speed

of light, which is approximately 3x108 m/s.

The propagation of radio frequency (RF) waves in the space is commonly described

using Cartesian or spherical coordinates. Cartesian coordinates (x, y, z) are suitable

to describe the antenna array geometry and elements locations. Spherical coordi-

nates (r, θ, φ) are more suitable to describe wave propagation and signal environment.

Waves propagating from far field sources, called plane waves shown in figure 2.1,

have a constant phase along the plane normal to the propagation direction. Consider a

sinusoidal signal with frequency ω = 2π f and phase Φ propagating towards the origin

of the coordinate system. The wave amplitude is assumed constant across the array

because the free-space attenuation and path loss is negligible in the relatively small

space containing the antenna array. However, the phase of the wave fluctuates in both

time and space. If the phase is observed at a specific point in space w.r.t. the phase at

the point of origin, it will vary with the product of frequency and time ω t. If a snapshot

is taken in time, the phase along the propagation path will vary according to the

term ω
c r, where r is the length of the propagation path. The space-time representation

of the phase function at an observation point r = [x, y, z]T is

Φ(t, r) = ω t+ kTr , (2.1)

where the angular frequency ω is the time rate of change of the wave phase, ω = ∂Φ
∂ t

and is measured in radians per second. The wavenumber vector k

k(θ, φ) = −ω
c


sin θ cosφ ~x

sin θ sinφ ~y

cos θ ~z

 , (2.2)
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Figure 2.1: Propagation model in Cartesian and spherical coordinates.

which is also referred to as the spatial frequency, is the directional gradient of the

wave phase with respect to space. Figure 2.1 demonstrates the wavenumber vector and

its relationship to the plane wave propagation. The wavenumber amplitude |k| is a

measure of the wave oscillation per unit distance [10] and is measured in radians per

meter. The negative sign indicates an approach of the wave since the azimuth and

elevation angles are measured w.r.t. to the point of origin instead of the propagation

source. The u − v coordinates are the components of the propagation vector and are

commonly used to describe the propagation path,


u

v

t

 =


sin θ cosφ

sin θ sinφ

cos θ

 , (2.3)

where the third coordinate term t = cos θ is omitted when dealing with planar arrays.

The wavenumberprojection on the u− v space can be expressed as,

kuv = −ω
c

[u, v]T . (2.4)
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Figure 2.2: Categories of antenna arrays.

2.3 Array Model

The antenna array is a plurality of antennae in proximity that are connected to achieve

a performance that is otherwise not possible using an individual antenna. Arrays can be

categorized based on their geometry into linear, planar, and conformal arrays. A linear

array extends over a straight line. A linear array is steerable in one spatial dimension

only. Planar arrays include circular, rectangular and ring arrays, and are steerable in

both azimuth and elevation angles. A conformal array takes the shape of its platform

due to constraints such as aerodynamics, structural integrity, and aesthetics. Figure 2.2

lists such antenna array classifications and types.

The element distribution can be uniform, where the element spacings are fixed

in all dimensions. The distribution can also be incremental, such as harmonically

nested arrays, or randomly distributed, such as found with some sparse arrays. In

uniform spacing, the two-dimensional lattice of the elements can be square, rectangular,

or triangular. Figure 2.3 lists different combinations of elements spacings and array

outlines. A planar array is shown in figure 2.4, having N elements in three-dimensional

space. Element are located at locations described by the vector r = [x,y, z], where the

nth row of r contains the location vector of the nth element. If a plane wave illuminates

the array, the signal is sampled in space by the antenna elements, and the spatial

response of these elements is represented by the steering vector. The steering vector
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Linear array Rectangular array Circular array Rectangular array

Incremental lattice Rectangular lattice Circular lattice Random lattice

Figure 2.3: Antenna arrays with different combinations of array outlines and element
distributions or lattices.

φ

θ

x

y

z

Figure 2.4: A planar antenna array model lying on the x–y plane.

is normally calculated w.r.t. the median element location or the phase centre. The

steering vector for an incident signal of frequency ω and angle of arrival (θ, φ) is

a(ω, θ, φ) = ej(r k) . (2.5)

The steering vector becomes

a(ω, θ, φ) = e−j
ω
c
r[sin θ cosφ , sin θ sinφ , cos θ]T . (2.6)

The arrays studied in this thesis are either linear or planar and have no structure along

15



Chapter 2. Wideband Beamforming

the z-axis such that the element location vectors have zero z components. Hence, in

this thesis, the location vectors r are reduced to only x and y components, and the

wavenumber vector k also only requires u and v components.

a(ω,u, v) = e−j
ω
c
r[u , v]T . (2.7)

Each antenna element is attached to a complex weight. The elements’ outputs are

combined to form the array response or array factor P (ω, θ, φ) as

P (ω, θ, φ) = wHa(ω,u, v) =
N∑
n=1

wn e
−j ω

c
rn[u , v]T , (2.8)

where rn contains the location vector of the nth element, and wH is the Hermitian

conjugate of the column vector containing the array weights.

wH = [w1 , w2 , . . . , wN ] . (2.9)

A linear array with a uniform spacing d has the response,

P (ω, θ) = wHa =

N−1∑
n=0

wn e
−j ω

c
(n−N−1

2
) d sin θ . (2.10)

Beam-steering aims to adjust the array weights such that the phases of signals align for

a waveform with a particular angle of arrival. In response to beam-steering towards θ0

and frequency ω0, the nth element weight shown in equation (2.9) according to [2] is,

wn =
h(n)√
N
ej

ω0
c

(n−N−1
2

) d sin θ0 (2.11)

where h(n) is a tapering window for a linear array. Substituting (2.11) into (2.10) the

beam-steering response of a linear array is,

P (ω, θ, φ) =

N−1∑
n=0

h(n)√
N
e−j

1
c

(n−N−1
2

) d (ω sin θ−ω0 sin θ0) . (2.12)
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Equation (2.12) shows that the array response is a function of the difference (ω sin θ−
ω0 sin θ0). The peak response is reached when ω sin θ = ω0 sin θ0. Up to this point, the

signal is assumed continuous in time. In digital signal processing (DSP) the signal is

sampled every Ts seconds which corresponds to a sampling rate fs of 1
Ts

sample per

seconds. For discrete signals, it is common to use the normalized angular frequency Ω =

2π f
fs

.

2.3.1 Array Characteristics

Directivity

Directivity is the array ability to concentrate power towards a particular direction. It is

the ratio between the power concentration towards the desired direction and the total

power propagated through the unit hemisphere around the antenna array, i.e.

D(ω, θ, φ) =
|P (ω0, θ0, φ0)|2

1
4π

∫
θ

∮
φ |P (θ, φ)|2d sin θ dθdφ

(2.13)

Substituting the array response P with (2.8) leads to,

D(ω, θ, φ) =
w HR0 w

1
4πwH(

∫
θ

∮
φ a2(θ, φ) sin θ dθdφ)w

=
w HR0 w
1

4πwH 4πw

=
w HR0 w

wH w
, (2.14)

where R0 is the sensor covariance matrix obtained at the desired direction as

R0 = a(ω0, θ0, φ0) aH(ω0, θ0, φ0) . (2.15)

Equation (2.14) describes the directivity of planar arrays, with weights w and steer-

ing vector a(ω, θ, φ). The equation shows that the array directivity depends on the

beamformer, represented by the weights vector w. The equation will be later used in

section 2.7 to compare between weights application methods.
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Beamwidth

Beamwidth is the angular width of the mainlobe measured in degrees. There are two

common definitions of beamwidth: half-power and null-to-null beamwidths. The half-

power beamwidth θ3db is the angle between the directions where the array power drops

by one-half or 3 dB from its peak value. The null-to-null beamwidth is the angular width

between the nearest two nulls in both sides the mainlobe. The half-power beamwidth

is more common because it represents the width of the beam that can maintain a

relatively high gain. The half-power beamwidth of the mainlobe at angle θ0 is defined

as

θ3db = {min(θ2 − θ1) : θ2 > θ0 > θ1, P (θ1) = P (θ2) =
1√
2
P (θ0)} . (2.16)

The definition in (2.16) means that the beamwidth is the minimum difference between

two arbitrary angles θ1 and θ2 on either side of the beam pointing direction, where the

array response drops by 1√
2

which corresponds to half in power ratio.

Mainlobe and Sidelobes

The highest peak in the array beam pattern is called the mainlobe or mainbeam. For a

narrowband arrayoperating over a wideband range, the mainlobe direction varies with

frequency. A progressive shift of the mainlobe direction is a result of the non-linear

time delay response of phase shifters. Sudden change of mainlobe directios is the result

of the rise of the sidelobes above the mainlobe level. Partial wideband structures, like

a contiguous subarray and harmonic nesting arrays, can be subjected to either of these

variations. In this chapter, the mainlobe is defined as the lobe closer to the desired

direction, and beam squinting angle is the angle between the desired direction and the

mainlobe.

Beam-steering

Historically, a single antenna is mechanically rotated when changing the beam-pointing

direction. Initially, an antenna array was able to change its beam-pointing direction to
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a discrete number of angles without mechanical rotation, which is called beam switch-

ing [11]. Beam switching has been realized in microwave design using the Blass ar-

ray [12], the Butler matrix [13] and the Rotman lens [14], or using a sample delay [11]

in the digital domain. But the most common form of beam control is beam-steering or

delay-and-sum beamforing [15], which is compensating for the propagation delay using

phase shift or time delay.

Taper Efficiency

Taper efficiency measures how amplitude taper effects the array directivity. Beam-

steering with a uniform amplitude provides the highest directivity, albeit at the cost of

high sideobe level. For a uniform array, the taper efficiency is defined similarly to the

aperture efficiency [16] as

ηt =
D(ω0, θ0, φ0)

Dmax(ω0, θ0, φ0)
, (2.17)

where D(ω0, θ0, φ0) is the directivity and Dmax(ω0, θ0, φ0) is the maximum directivity

at which w = 1.

2.3.2 Grating Lobes in Uniform Arrays

One of the main design goals in array antenna design is achieving the largest aperture

with the smallest number of elements. Directivity increases with the increase in effective

aperture and beamwidth is inversely proportional to the effective aperture size [17]. In

uniformly spaced array however, if the element spacing exceeds half the wavelength of

the highest operating frequency, grating lobes will form within −π/2 ≤ θ ≤ π/2 and

−π ≤ φ ≤ π, which is called the visible region. Figure 2.5 demonstrates the antenna

pattern of a 5x5 uniform planar array operating at four times the maximum frequency.

Notice that the reduction in array response between the angles 0◦ and 180◦ is due to the

reduced aperture projection towards the angle of arrival. Figure 2.6 demonstrates the

effect of the steering angle, shown here for azimuth angle, and the operating frequency

on the location and spacing of grating lobes. In the figure, the black dot represents

the mainlobe, the grey dots represent the grating lobes. The green circles represents

the visible region where the azimuth angle θ is bound between −π and π. The pink
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Figure 2.5: Array pattern with a steering angle of 0◦ operating at Ω = 4π. The graph
shows the mainlobe, the grating lobes and sidelobes.

circles are images of the visible region that does not manifest in the real observable

array response. The effect of the steering angle is to shift the grating lobes, as well

as the mainlobe, without affecting the spacing between them. However, the operating

frequency changes the grating lobes spacing by expanding the grating lobes, when

decreasing the frequency, or compacting them, when increasing the frequency.

Consider a rectangular array with a uniform spacing d lying in the x – y plane.

An incident signal with frequency ω from azimuth angle φ and elevation angle θ is

characterized by the wavenumber vector as

k = −ω
c


sin θ cosφ

sin θ sinφ

cos θ

 . (2.18)

The array factor in response to theprojection of the wavenumber vector kon the u–v

space, due to zero component of r in the z axis, is

P (ω, θ, φ) =

Nx−1∑
nx=0

Ny−1∑
ny=0

w[nx, ny]e
−jr(nx,ny)kuv , (2.19)

where r(nx, ny) and w[nx, ny] are the the location vector and the weight of the sensor
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visible region bounded by −π=2 ≤ θ ≤ π=2

imaginary region

(a) θ = 0◦ , Ω = π

mainlobe
grating lobe

(b) θ = 90◦ , Ω = π

(c) θ = 0◦ , Ω = 2π

Figure 2.6: A demonstration of the effect of steering angle and frequency on the grating
lobes locations. (a) The array is steered to boresight θ = 0◦ and the maximum frequency
which is half the Nyquist frequency Ω = π. (b) The array is steered to θ = 90◦ and the
maximum frequency Ω = π. (b) The array is steered to boresight θ = 0◦ but at twice
the maximum frequency Ω = 2π.

with indexes nx and ny. Notice that r(nx, ny) is the nth row of the location matrix

introduced in (2.6). Also notice that the third term component of the location vector

is zero due to structure of the array in the z axis. For a square and symmetric array

with a uniform element spacing d, the location of the element with indexes (nx , ny) is

r(nx, ny) = d

[
nx −

Nx − 1

2
, ny −

Ny − 1

2
, 0

]
, (2.20)
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i.e. the array is centred in the origin. The beamformer can shape or steer the array

response, but it cannot reduce grating lobe levels or separation w.r.t. the main lobe. For

a delay-and-sum beamformer, the array is steered towards the direction k0(ω0, θ0, φ0)

and the array factor in (2.19) simplifies to

P (ω, θ, φ) =
1√

Nx Ny

sin(1
2rH

max∆k)

sin(1
2rH

min∆k)
, (2.21)

where ∆k = k − k0, rmin = [d, d, 0] and rmax = d[Nx, Ny, 0]. The array response is

periodic w.r.t. wave number vector ∆k with period 2π
d . As a result, the grating lobes are

located at the zeros of the denominator in (2.21), for ∆k = p2π
d ∀ p ∈ Z in the direction

of both x- and y-axes. To avoid grating lobes, the zeros of the response denominator

should be outside the visible region bounded by −π/2 ≤ θ ≤ π/2 and −π ≤ φ ≤ π or

−ω
c ≤ ∆k(ω, θ, φ) ≤ ω

c . For a wideband uniform array, the manifestation of grating

lobes in the visible region limits its upper operating frequency.

2.4 Wideband Array Antenna

Narrowband array structures have a complex-valued weight per element in order to

facilitate a phase shift. But when the operating bandwidth increases, the beam-pointing

direction starts to squint and the level of the sidelobes increases [2, p. 31]. A time delay

unit, which is utilised in wideband and partial wideband arrays as will be defined in the

next section, can compensate for the propagation delay irrespective of the wavelength.

Alternatively, the signal can be sampled in time to apply temporal filtering. Temporal

filtering can be implemented using finite impulse response (FIR) or infinite impulse

response (IIR) filters. It can also be implemented using an additional dimension of

elements provided that it is not perpendicular to the direction of propagation. This

structure is called a sensor delay line, and it uses two-dimensional arrays to steer or

scan in azimuth while using the elevation dimension for spectral processing [3, 18].
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Figure 2.7: Three examples of a wideband linear array. (a) Elements with time delay
units. (b) Elements with tapped delay line to apply temporal filtering. (c) Sensor delay
line architecture where the elevation angle is fixed.

2.4.1 Wideband Architectures

The narrowband antenna array’s reliance on a phase shifter means that the signal

delay introduced in each element is frequency dependent. Wideband operation requires

wideband weights which have a linear phase of the form,

w = |w|e−jΩτ , (2.22)

where |w| is the amplitude tapering and τ is the propagation delay vector. The defini-

tion of wideband is relative to the antenna architecture and the desired performance.

But generally a fractional banwidth ∆f
f0

of 0.25 is considered broadband according

to [19], where ∆f is the bandwidth and f0 is the centre frequency. Extending the an-

tenna array bandwidth can be achieved using either a true time delay module [20,21],

a tapped delay line (TDL) [22, 23], or a sensor delay line [18, 24, 25]. Time delay units

(TDU) are photonic-based or subband transmission lines. Tapped delay lines are real-

ized mainly in the digital domain and allow the application of Finite Impulse Response

(FIR) or frequency selective filtering. Figure 2.7 shows the three types of wideband

arrays. Figure 2.7 shows the three types of wideband weights that can be applied to

array elements, as in the case of wideband arrays, or subarray elements, as in the case

of partial wideband array. This thesis utilises the time delay unit and the tapped delay

line weights while the sensor delay line is only shown for completeness. The analog

array in figure 2.7(a) is utilising time delay units for each element to compensate for
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the propagation delay. The digital array in figure 2.7(b) implements a representation of

the time delay unit in the digital domain. The narrowband planar array in figure 2.7(c)

uses the planar array as a one-dimensional wideband array.

Tapped Delay Line (TDL) Architecture

The tapped delay line is a means to apply spectral filtering and weighting. TDL pro-

cesses the signals purely in the time domain, and its response is independent of the

angle of arrival. TDL is used to implement FIR-based data-independent beamform-

ing [26] or adaptive algorithms [1]. TDL can also realize an IIR-based beamforming [27]

or Fast Fourier Transform (FFT) [28].

Sensor Delay Line (SDL) Architecture

A sensor delay line is applied to a narrowband planar array to substitute the elevation

angle control for a frequency-invariant response. A planar array can be narrowband

with full control over azimuth and elevation, or wideband with azimuth control only,

which offers a functional flexibility [3, 18].

2.4.2 Subarray Model

A subarray is a group of elements within an array that are accessible through one port.

The individual elements are not accessible and are not necessarily exclusive. This

means that elements can be shared between several subarrays and such an architecture

is called an overlapped subarray [2]. The subarray architecture offers fewer processing

degrees of freedom than a fully digital array. Control over the elements weighting is

still possible, with the exception of a limited field of view (LFOV) subarray [29,30].

The subarray structure allows for two-tier weighting to enhance bandwidth, such as

the contiguous subarray, or to reduce the number of weights as in the LFOV subarrays.

The architecture of narrowband subarrays followed by a time delay or a digital filter is

referred to as the contiguous subarray, which has been addressed in [31–34]. Subarray

architectures offer the following advantages:
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weights
wideband
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TDL or TDU
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Figure 2.8: The array architectures studied in this thesis. (a) The narrowband archi-
tecture where elements are connected to narrowband weights, (b) the wideband archi-
tecture where all array elements are connected to a TDL or TDU wideband weights,
(c) the partial wideband architecture consisting of multiple narrowband arrays as sub-
arrays, and wideband weights, either TDL or TDU, attached to the subarrays’ outputs.

• Separation of array performance aspects such as beamwidth, directivity, and side-

lobe level, from processing requirements such as interference suppression, noise

cancellation, and adaptive beamforming. The number of digital channels can be

reduced without compromising the beam pattern characteristics.

• Subarrays can be frequency-allocated, as in the overlapped nested array, to pro-

vide a wideband coverage.

• The subarray can be modular in terms of the distribution network design, mi-

crowave filtering and conditioning. Modularity can reduce complexity and cost.

• Subarrays are easier to assemble and interface because they have fewer ports than

a full array.

Figure 2.8 shows the three array architectures discussed in this thesis. The nar-

rowband architecture is where elements are connected to complex weights consisting of

gain control and phase shifts. Although the gain control is wideband, the phase shift

introduces a time delay that changes with frequency, as will be explained in chapter

4. The wideband architecture has a similar configuration to the narrowband array.

But the array can be either a fully digital array where the elements are digitised and

processed using TDL filter, or the complex weights are replaced with a TDU which
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can implement a frequency-independent time delay. The partial wideband architecture

uses the narrowband array as a subarray, and combines the subarrays’ outputs after

applying wideband weights identical to those used in the wideband architecture.

A partial wideband array consists of N sensors distributed in the x–y plane, fol-

lowed by narrowband weights. The partial wideband array contains M subarray. Each

subarray consists of K sensors. The sensors within the subarray are weighted and com-

bined into one output. If the wideband weights are TDUs, then the required time delay

for each subarray is compensated using a scalar time delay value in the TDU without

further processing or gain control. If the wideband weights are TDLs, then the partial

wideband array needs a mathematical model to represent this two-tier weighting. Each

subarray is then followed by a TDL of length J . The subarray spatial steering is a

column vector as(Ω, θ, φ) which is derived from equation (2.6) as

as(Ω, θ, φ) = e

−j Ω
c
r

 sin θ cosφ

sin θ sinφ


, (2.23)

where r is the sensor location matrix where each row contains the x− y coordinated of

a sensor. The temporal delay vector at(Ω) that represents the TDL transfer function

is

at(Ω) = e−jΩ[0:J−1]T . (2.24)

The entire steering vector a(Ω, θ, φ) is the Kronecker product of the spatial steering

vector (2.23) and the temporal sample delay (2.24),

a(Ω, θ, φ) = at(Ω)⊗ as(Ω, θ, φ) . (2.25)

The resulting steering representation is a column vector of length KMJ .

The mth subarray has a complex weights column vector wm attached to its K

sensors, and a TDL weights column vector vm attached to its J tabs. Similar to (2.25),

the entire array weights are the Kronecker product of the subarray TDL weights and

26



Chapter 2. Wideband Beamforming

the subarrays elements weights, i.e.

w =


v1 ⊗w1

...

vM ⊗wM

 , (2.26)

which is a column vector of length KMJ . Finally, the array response is obtained by

substituting the modified steering and weight vectors in (2.10) as P (Ω, θ, φ) = wH a.

Each K rows of the array weights in (2.26) are linearly dependent. This prevents

the use of many fixed and adaptive beamforming techniques without proper modelling

of the steering vector and weights. Finally, it is useful to define a subarray ratio to

reflect the ratio between the number of subarrays and the total number of elements.

For example, an array containing 16 elements and 4 subarrays has a subarray ratio of

4:16.

2.4.3 Beamspace Adaptive Beamforming

Beamspace beamforming is the formation of multiple array outputs or beams, and

the processing of the signals derived from those beams to meet a specific optimization

criteria [11]. In the architectures described in figure 2.8, each array element is attached

to a single narrowband weight. This limits the degrees of freedom of the adaptive

processing or wideband beamforming that can be ut at the subarray level. However, in

beamspace processing, multiple beams can be produced by applying a multiple element-

level beamformers that are independent from each other. Figure 2.9 shows a beamspace

array consisting of Q beam outputs. Each beamformer independently steers the angle

and the frequency while having access to all array elements.

In adaptive beamspace processing, one beam is steered towards the main source

and is called quiescent pattern [11]. The remaining beams, called the auxiliary beams,

are steered towards the interfering sources to enable adaptive filtering such as noise

cancellation and interference rejection. For a beamspace beamformer containing N
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Figure 2.9: A generic structure for a beamspace array. Beamspace beamformers contain
narrowband weights and are independently steered to produce multiple beams.

elements and Q beam processors, the quiescent beam is

P (Ω, θ, φ) = wH
q as(Ω0, θ0, φ0), (2.27)

where wq is the row vector containing the narrowband weights steered towards the

signal of interest, and as(Ω0, θ0, φ0) is the spatial steering vector for the direction and

frequency of the signal of interest. Similarly, the array response of the for the ath

auxiliary beam is

P (Ω, θ, φ) = wH
a as(Ω, θ, φ) , a = 1, · · · , Q− 1. (2.28)

The simplest form of the adaptive beamspace processing is the generalised sidelobe can-

celer (GSC) which has one quiescent and one auxiliary beam processors. The quiescent

beamformer has fixed weights vector wq which is steered towards the signal of interest.

The auxiliary part consists of a fixed blocking matrix B to remove the signal of interest

by placing a null at its direction, i.e. BHa(Ω0, θ0, φ0) = 0, and an adaptive weights

vector wa to minimize the output power while maintaining a unit response towards the

desired direction. The resulting weight of the GSC is

wgsc = wq −Bwa . (2.29)
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2.5 Wideband Beamforming

The beamformer is a form of discrete spatial filtering. It is the weighted combina-

tion of the incident signals on the array elements for a receiving array. Beamforming

can perform more than just beam-steering towards the desired direction. Provided

that sufficient degrees of freedom are available, beamforming can generate multiple

beams towards sources of interest, or form multiple nulls towards interferences. More

specifically, the number of controllable sensors defines the combined number of beams

and nulls that can be formed, while the aperture size limits the beamwidth of the

beam(s) [35]. In this section, the common wideband beamforming techniques will be

introduced. These are designed using least squares, the eigenfilter method and convex

optimisation.

2.5.1 Least Squares

The least squares solution is an unconstrained optimisation technique [36] of the form

minimize
x

|Ax− b|2 . (2.30)

Recall from (2.8) that the array response can be represented in vector format as the

product of weights and the steering vector. The goal is to minimize the deviation

between the array response wHa(Ω, θ, φ), and the desired pattern Pd(Ω, θ, φ). The

least squares approach minimizes the absolute squared deviation of the array response

from the desired pattern, called the error. The error at a frequency Ω, an elevation

angle θ and an azimuth angle φ is given by

e(Ω, θ, φ) = Pd(Ω, θ, φ)−wHa(Ω, θ, φ) . (2.31)
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The squared error is obtained by squaring and expanding the brackets in (2.31). The

squared error is decomposed into three terms,

e2(Ω, θ, φ) = (Pd(Ω, θ, φ)−wHa(Ω, θ, φ))(Pd(Ω, θ, φ)−wHa(Ω, θ, φ))∗ (2.32)

= |Pd(Ω, θ, φ)|2 + wHR(Ω, θ, φ)w

− |Pd(Ω, θ, φ)aH(Ω, θ, φ)w| − |P ∗d (Ω, θ, φ)wHa(Ω, θ, φ)| ,

where R(Ω, θ, φ) = a(Ω, θ, φ) aH(Ω, θ, φ) is the steering matrix. The cost function ξ is

the summation of the error squares over space and frequency.

ξ =

∫
Ω

∫
θ

∫
φ
h(Ω, θ, φ)e2(Ω, θ, φ)φdθdΩ , (2.33)

where h(Ω, θ, φ) is a weighting function that emphasis certain frequency bands or angle

sectors. For a planar array lying on the x − y plane, the pattern is plane-symmetric

around z = 0. Hence it is sufficient to evaluate the cost function over the upper

hemisphere where θ = [0, π/2]. Substituting (2.32) into the error function results in

ξ =

∫
Ω

∫ π/2

θ=0

∮ π

φ=−π
h(Ω, θ, φ)e2(Ω, θ, φ)dφdθdΩ (2.34)

= wH R̂ls(Ω, θ, φ) w − wH d̂(Ω, θ, φ)

− d̂H(Ω, θ, φ) w − wH d̂(Ω, θ, φ)

+

∫
Ω

∫ π/2

θ=0

∮ π

φ=−π
h(Ω, θ, φ)|Pd(Ω, θ, φ)|2dφdθdΩ .

The Hermitian matrix R̂ls is the summation of the steering matrices over all bands and

directions at which the desired pattern Pd(Ω, θ, φ) is defined.

R̂ls(Ω, θ, φ) =

∫
Ω

∫
θ

∮
φ
h(Ω, θ, φ)a(Ω, θ, φ) aH(Ω, θ, φ)dφdθdΩ (2.35)

d̂(Ω, θ, φ) =

∫
Ω

∫
θ

∮
φ
h(Ω, θ, φ)|Pd(Ω, θ, φ)aH(Ω, θ, φ)|dφdθdΩ

The cost function is quadratic w.r.t. wH, which is a differentiable and a convex function.

The minimum point can be found by differentiating the cost function w.r.t. wH then
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finding the null space that represents the minimum value [15].

∂ξ

∂wH
= R̂ls(Ω, θ, φ) w − d̂(Ω, θ, φ) = 0 . (2.36)

Hence the optimum weights that minimize the sum of the squared errors is

wopt = R̂−1
ls (Ω, θ, φ) d̂(Ω, θ, φ) . (2.37)

The simplest representation of the desired response Pd(Ω, θ, φ) is binary, with a unit

value over the passband in both spectral domain at which Ω ∈ [ΩL,ΩH ], and spatial

domains at (θ0, φ0), and zero value over stopband regions [37,38], i.e.

Pd =


1 if (Ω ∈ [ΩL,ΩH ]) ∩ (θ ∈ θ0) ∩ (φ ∈ φ0)

0 otherwise

, (2.38)

where ΩL and ΩH are the lower and upper frequency limits respectively. When the

desired beam pattern is defined as in (2.38), the steering matrix integral R̂ls is defined

over all directions and frequencies, while d̂ is only defined over the passband region,

because of multiplication with Pd, as

d̂(Ω, θ0, φ0) =

∫ ΩH

ΩL

h(Ω, θ0, φ0)|aH(Ω, θ0, φ0)|dΩ . (2.39)

The definition of d̂ in (2.39) does not require the desired response Pd because it has

been already used to define its integration limits i.e. ΩH and ΩL.

2.5.2 Eigenfilter

The eigenfilter approach was introduced in 1987 as an extension of the least squares

approach to FIR filter design [39]. The eigenfilter approach has been applied to 1-

Dimensional FIR filter design [40], 2-D FIR filters [41, 42], IIR Filters [43], and sensor

arrays [23]. The eigenfilter approach requires the calculation of a Hermitian, semi-

definite matrix instead of the steering matrix inversion required in least squares method.
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The eigenfilter approach can also include additional spatial and spectral constraints [37].

Similar to the least squares definition, the eigenfilter cost function is the sum of the

squared deviation from the normalized desired response,

ξg =

∫
Ω

∫
θ

∮
φ
h(Ω, θ, φ)|w

Ha(Ω0, θ0, φ0)

Pd(Ω0, θ0, φ0)
Pd(Ω, θ, φ) − wHa(Ω, θ, φ)|2 dφdθdΩ (2.40)

= wH R̂g w ,

where R̂g is defined similar to R̂LS in (2.35)

R̂g =

∫
Ω

∫
θ

∮
φ
h(Ω, θ, φ)| a(Ω0, θ0, φ0)

Pd(Ω0, θ0, φ0)
Pd(Ω, θ, φ) − a(Ω, θ, φ)|2 dφdθdΩ . (2.41)

The filter weights are obtained by solving the following optimisation problem [37]

minimize
w

ξg (2.42)

subject to wHw = 1 ,

where the term wHw = 1 prevents the trivial solution. The desired pattern Pd(Ω, θ, φ)

is normalized by the factor wHa(Ω0,θ0,φ0)
Pd(Ω0,θ0,φ0) so that the error value is zero at the reference

frequency and the desired direction. Therefore, (2.42) can be formulated as a Rayleigh

quotient [44], i.e.

minimize
w

wH R̂g w

wHw
. (2.43)

The minimum and maximum values of the cost function in the numerator are reached

when the weight vector w is equal to the eigenvector corresponding to the minimum

and maximum eigenvalues of R̂g respectively.

The passband–stopband definition of the desired response Pd(Ω, θ, φ) in (2.38) can

be utilised here. In addition, a region between the passband and the stopband can be

left to allow for the transition of the response from the mainlobe to the sidelobe region.

The desired pattern is consequently defined over the passband and stopband regions in
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passband stopbandstopband

BW

TT

θ − θ0

Figure 2.10: A diagram showing passband, stopband and transition regions for the
elevation angle θ as an example. The passpand bandwidth is labeled as BW and the
transition bandwidth is labeled as T.

both the spectral and spatial domains, but undefined over the transition regions:

Pd =


1 if (Ω ∈ [ΩL,ΩH ]) ∩ (|θ − θ0| ≤ 1

2θ3db) ∩ (|φ− φ0| ≤ 1
2φ3db)

0 if (Ω ∈ [ΩL,ΩH ]) ∩ (|θ − θ0| > 1
2θ3db + θT ) ∪ (|φ− φ0| > 1

2φ3db + φT ) .

Here, θ3db and φ3db are the half-power elevation and azimuth beamwidths respectively,

θT and φT are the width of the transition regions in elevation and azimuth. The desired

beam pattern is undefined at these angles and hence the array response is unconstrained

in the transition regions. The transition band can be applied in the frequency domain

but normally the wide separation between frequency samples provides a sufficient space

for a transition. Figure 2.10 illustrated the three regions of constraints in (2.44) for

the elevation angle as an example. The cost function R̂g can now be split into R̂p for

the passband and R̂s for the stopband regions. The weighting function h(Ω, θ, φ) can

be replaced by α for the passband region, and 1 − α for the stopband region where

0 ≤ α ≤ 1. Now R̂g in the passband region is defined as

R̂p = α

∫
Ω

∫
θ

∫
φ
(1− a(Ω, θ, φ))(1− a(Ω, θ, φ))H dφdθdΩ , (2.44)

where 1 is a column vector of the same size as a(Ω, θ, φ). The stopband cost function

is

R̂s = (1− α)

∫
Ω

∫
θ

∫
φ

a(Ω, θ, φ)aH(Ω, θ, φ) dφdθdΩ . (2.45)

Equations (2.44) and (2.45) are the Eigenfilter cost functions for the passband and
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f(x)

f(y)

f(βx + (1 − β)y)

βf(x) + (1 − β)f(y)

Figure 2.11: The convexity condition of a function f over a period [x, y].

stopband, respectively, when the desired response Pd is defined as Pd = 1 for the

passbandand and 0 for the stopband in (2.41).

2.5.3 Convex Optimisation

The array beam pattern can be designed more flexibly using convex optimisation meth-

ods if the problem and the constraints are modelled as convex quadratic or affine func-

tions. Convex optimisation includes linear programming, like the least squares problem

described in Section 2.5.1, and non-linear programming like the Quadratically Con-

strained Quadratic Programming (QCQP) problem. This section uses a combination

of linear and quadratic functions to describe the array response.

A convex function f is one that satisfies

f(βx+ (1− β)y) ≤ βf(x) + (1− β)f(y) ∀x, y ∈ Rn, β ≤ 1 . (2.46)

A function f is convex over a period [x, y] if all its values are on or below the affine

line connecting [f(x), f(y)] as shown in Figure 2.11. The standard convex optimisation

problem of a convex objective function and constraints [36] is

minimize f0(x) (2.47)

subject to fi(x) ≤ bi i = 1, · · · ,m

The look direction is intended to attain the highest directivity or power concentra-

tion. The array response can be constrained to the unit value wHa(Ω0, θ0, φ0) = 1. If
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the beam pattern is normalized w.r.t. the maximum directivity, then the unit value is

the highest value as a constraint. A more relaxed constraint is required to allow ripple

variations in the mainlobe region if it is defined over a range of angles rather than a

single direction. This relaxation can be achieved by the Euclidean ball [36] where the

equality is replaced by an inequality constraints.

|wHa(Ω0, θ, φ)− 1| ≤ γml (2.48)

γml = 10σr/20 ,

where γml is a small positive value that allows spatial or spectral variations in power

decibels σr, if more than one point is sampled in the mainlobe.

2.6 Applying Beamforming on Subarrays

Consider partial wideband arrays described in Section 2.4.2, the beamforming phase

weighting is divided between the element-level phase shifters and subarray-level time

delays. The three possible ways to distribute the phase of the beamforming weights

between the elements and the subarrays are:

1. Location alignment.

2. Segregated subarrays.

3. Phase separation.

These will be discussed below in turn.

2.6.1 Location Alignment

In the location alignment approach, the steering vector is replaced by a virtual steering

vector so that the subarrays phase centres are aligned with the desired direction. The

virtual steering vector reflects the electronic response of the subarray instead of the

physical one measured at the elements. The mth subarray virtual steering vector is

calculated by replacing the location vector of its elements rm with a vector r̂m defined
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wavefront

element's substituted location

element's physical location

cτ3
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steering vector phase

Figure 2.12: Location alignment of the subarrays along the plane of the wavefront .

as

r̂m = rm − cτττm(θ0, φ0) . (2.49)

Here τττm(θ0, φ0) is the propagation delay vector experienced by the elements of the mth

subarray w.r.t. the desired direction (θ0, φ0) and rm is the physical locations of the mth

subarray elements. Figure 2.12 illustrates how the steering vector uses the modified

elements locations to include the subarray time delay.

2.6.2 Segregated Subarrays

In the segregated subarrays approach, wideband beamforming is applied to the subar-

rays separately. Beamforming is applied locally to the subarray and if subarrays are

identical, then the elements weighting is identical to all subarrays. The subarrays have

a wider bandwidth than the full array due to the smaller aperture size. The subarrays

outputs are combined using time delay or TDL-based alternative like a fractional delay

filter [45].

2.6.3 Phase Separation

In the phase separation approach, wideband beamforming is applied to the entire array.

Then the phase term of the beamformer weights Φ(w) is divided between the subarray-

level time delay Ωτττm, and the element-level phase shift(Φ(w)− Ω0 τττm) as follows:

Φ(wm) = (Φ([w]m)− Ω0τττm) + Ωτττm (2.50)
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where [w]m is the initial beamforming weights assigned to the mth subarray. The

propagation delay to the phase center of each subarray is compensated by the subarray’s

TDU or TDL. This propagation delay is deducted from the elements’ phase shifts. For

example, If the phase center of the subarray is experiencing a propagation delay of

2.5 Ts w.r.t. an arbitrary steering angle, then the kth element’s weight within this

subarray will be w(k)− ej2.5TsΩ where w(k) is the complex valued weight assigned by

the narrowband beamformer to the kth element.

2.7 Comparison Between Subarray Beamforming Approaches

The wideband beamforming techniques described in 2.5.1 and 2.5.2 have been proposed

for narrowband array structures. The convex optimisation technique in Section 2.5.3

is an iterative technique and can optimise the elements and the subarrays weighting

separately. In this section we will explore the three different approaches to implement

wideband beamforming on the partial wideband array. Eigenfilter is a suitable wide-

band beamformer to be used for the comparison, as it is a representative of the least

squares beamformer because they are both derived from the same error definition. Con-

vex optimisation bypasses the need to allocate the weights between the element level

and the subarray level because both the elements weights and the subarrays weights

can be optimisation variables.

In this comparison, the eigenfilter is applied to a 32-element uniform linear array.

In addition to the narrowband and the wideband arrays, three different partial wide-

band configurations are used: 4 subarrays containing 8 elements each or 4:32 ratio, 8

subarrays with 4 elements each or 8:32 ratio, and an extreme case of 16 subarrays with

2 elements each or 16:32 subarray ratio. The subarray ratio is M : K where M is the

number of subarrays and K is the total number of elements as defined in Section 2.4.2.

The beamformer frequency starts from zero frequency to half the spatial sampling fre-

quency w.r.t. the elements spacing. The desired direction of the linear array is 45◦.

The desired response is defined as a passband-stopband as in equation (2.44). The

mainlobe or passband region is set to be 3◦ wide. The transition region is 10◦ on each
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Figure 2.13: Directivity of a uniform linear array of 32 elements processed with wide-
band eigenfilter applied using the three application approaches described in section
2.6, for five different array architectures:(a) Narrowband array, (b) wideband array,
and three partial wideband arrays in (c),(d) and (e).

side of the mainbeam. The sidelobe suppression starts 11◦ from the desired direction

and is sampled with 1◦ spacing. In the following sections, the three subarray beam-

forming methods are examined in terms of directivity, beamwidth, beam squinting, and

sidelobe level.

2.7.1 Subarray Directivity Comparison

Figure 2.13 shows that the segregated subarray approach maintains the highest directiv-

ity, which is defined in section 2.3.1, among all partial wideband structures. This is due

to the relatively flatter amplitude tapering applied by individual subarray beamformer

compared to the combined partial wideband array beamformer in the location align-

ment and phase separation methods. Notice that the subarray weighting application

approaches do not apply to narrowband and wideband architectures in figure 2.13(a)

and (b) respectively. The narrowband array has lowest directivity except at the cen-

ter frequency which is the design frequency of the narrowband weights. While the

wideband array has the highest directivity among other arrays.
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Figure 2.14: Eigenfilter amplitude weighting obtained using phase separation and seg-
regated subarray approached for the partial wideband array with 4:32 subarrayratio.

Figure 2.14 shows the normalized amplitude weighting of the partial wideband array

constructed with the 4:32 subarrayratio. The weighting of the phase separation method

shown in figure 2.14 has a taper efficiency, — elaborated in Section 2.3.1 — of 0.42

while the segregated subarray has achieved 0.81. The location alignment approach has

the same amplitude taper as the phase separation approach hence it is not shown here.

Notice that the directivity is unaffected by the subarray ratio, more clearly around

the centre of the band. However, the flatness of the directivity across the frequency

band degrades for lower subarray ratios. The directivity degrades further from the

centre frequency due to drifting in elements phase shifts with frequency.

In theory, the bandwidth of a subarray that utilises true-time delay increases by a

factor of M where M is the number of subarrays, compared to a narrowband array of

the same size [34]. The directivity graphs in figure 2.13 show an improved directivity

by 3 dB for every time the subarray ratio doubles, except at the lower frequency end

of the 16:32 subarray. The low directivity near the zero frequency is because the signal

wavelength is very large compared to the element spacing. Therefore, the array aperture

size is very small w.r.t. the low frequency wavelength.
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Figure 2.15: Beamwidth of a uniform linear array of 32 elements processed with wide-
band eigenfilter applied using the three application approaches described in section
2.6, on five different array architectures:(a) Narrowband array, (b) wideband array,
and three partial wideband arrays in (c),(d) and (e). The beamwidth is calculated with
a resolution of 0.1◦.

2.7.2 Subarray Beamwidth Comparison

Figure 2.15 shows that the segregated subarray approach offers the narrowest beamwidth,

followed closely by the location alignment method. This is expected due the high di-

rectivity of these two methods. When a sidelobe exceeds the mainlobe directivity, the

beamwidth is measured for the newly formed mainlobe off the desired direction. This

explains the sudden change in phase separation beamwidth in 4:32 subarray. This

change is also apparent in the beam-squinting graph in figure 2.16(c). The beamwidth

of a uniform linear array is B3db = .886
sin θ0

λ
Nd [46]. This means that the beamwidth is

expected to reduce as the frequency increases. The beamwidth of the narrowband array

is 10◦ at the centre frequency. But it broadens as the frequency increases. However

the wideband array produces the narrowest beamwidth at the design frequency and

narrows as the frequency increases.
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Figure 2.16: Beam squinting of a uniform linear array of 32 elements processed with
wideband eigenfilter applied using the three application approaches described in section
2.6, on five different array architectures:(a) Narrowband array, (b) wideband array, and
three partial wideband arrays in (c),(d) and (e).

2.7.3 Subarray Beam Squinting Comparison

Close to the upper frequency edge, a sudden drift in beam-pointing angle appears in

figures 2.16(c)and 2.16(d) due to the appearance of a sidelobe that is higher than the

mainlobe. Figures 2.16(c) and 2.16(d) show that at high frequencies, the sidelobe level

exceeds the mainlobe level in the 4:32 and 8:32 subarray ratios, causing the sudden

change in peak value from the desired direction to a sidelobe direction. The difference

between narrowband and wideband arrays is obvious w.r.t. the beam squinting. The

mainlobe of the narrowband array is aligned at the design frequency, but drifts away

from the boresight direction as frequency changes. But, the wideband array is aligned

to the boresight direction over the entire frequency band except around zero frequency.

In terms of comparison between subarray application approaches, the location align-

ment technique has the lowest beam squinting in most of the frequency band. The

mainlobe in the phase separation technique drifts further away from the desired direc-

tion compared to the other methods, especially at low frequency.
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Figure 2.17: Sidelobe level of a uniform linear array of 32 elements processed with
wideband eigenfilter applied using the three application approaches described in section
2.6, on five different array architectures:(a) Narrowband array, (b) wideband array, and
three partial wideband arrays in (c),(d) and (e).

2.7.4 Subarray Sidelobe Level Comparison

As explained in section 2.3.1, a positive sidelobe level indicates that the response at the

desired direction is lower than that of the sidelobe. Figure 2.17 shows that the phase

separation method has achieved low sidelobe levels over a small bandwidth around the

centre of the band. Exactly at the middle of the band, the sidelobes of all partial

wideband arrays are at the same level of about -15dB. This level conforms with the

theoretical level of a uniform linear array of side lobe level (SLL) ≈ 1/N [34]. Further

away from the centre frequency, the sidelobe level increases with the increase in subarray

ratio. Appendix A lists the frequency versus angle graphs for the different partial

wideband arrays which are used to generate figures 2.13 through to 2.17. The sidelobe

level of the narrowband array has a positive sidelobe level over frequencies above the

centre frequency. This is due to the squint of the mainlobe. The wideband array has

generally achieved a sidelobe level of -15dB which is close to the theoretical sidelobe

level mentioned above.

The assessment in section 2.7 is based on a 32-elements linear array. Figure 2.18
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Figure 2.18: Pattern characteristics of partial wideband arrays of different sizes showing
(a) directivity and (b) beamwidth of three partial wideband arrays with different num-
ber of subarrays, (c) directivity and (d) beamwidth of three partial wideband arrays
with different number of elements per subarray.

shows the directivity and beamwidth of different sizes of partial wideband array. Fig-

ure 2.18(a) and (b) shows a partial wideband arrays with different numbers of subarrays

but with the same subarray size. The increase in the number of subarrays shows to in-

crease the directivity and narrows the beamwidth over the whole bandwidth Ω = [0, π],

while it does not shift or scale the frequency response. This vertical improvement is due

to the increase in number of elements irrespective of the subarray ratio. The stability of

the frequency response is because of the fact that the addition of subarrays comes with

an increase in the wideband weights, hence the subarray ratio is unchanged. Hence,

the narrowband weights are limited to the same subarray aperture size.

In figure 2.18(c) and (d), the partial wideband array is shown for different subarray

sizes but with the same number of subarrays. The directivity does not show any

noticeable vertical improvement because the increase in the number of elements is very

small compared to the array size. However, the frequency response shows a spreading

or shifting caused by the increase in the subarray size while the number of subarray is

unchanged. This means that the frequency response of the partial wideband array is

mainly affected by the subarray size or subarray ratio.
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2.8 Conclusion

This chapter presents the background knowledge required to demonstrate the contribu-

tion of this thesis. First, the general concepts of wave propagation and array architec-

tures have been reviewed. Then, wideband data-independent beamforming techniques

have been described and investigated. We also studied the application of these beam-

formers to partial wideband array and identified three possible approaches.

In location alignment, the steering vector used in the beamforming calculations is

obtained by aligning the subarrays phase centres along the desired wavefront. This

approach replaces the steering vector with a virtual vector that uses the elements

locations w.r.t. subarrays’ phase centres prior to the beamforming calculations. The

segregated subarray approach applies the beamforming individually to each subarray.

Then the subarrays outputs are steered using time delays. The phase separation method

divides the phase of the beamformer weights between the elements and the subarrays.

The subarrays are responsible for the time lag to the subarrays phase centres, and the

elements are responsible for the steering phase between the elements and the subarray

phase centre. These approaches are irrelevant when using iterative optimisation because

the optimisation explores all possible value combinations of narrowband and wideband

weights without the need to define the allocation of phase shift between the narrowband

and wideband weights.

Applying beamforming on a partial wideband structure is demonstrated and eval-

uatedon a 32-elements linear array using the eigenfilter beamformer. The segregated

subarray approach achieved a higher directivity and narrower beamwidthon uniform

linear arrays compared to the other two methods, with a marginal advantage over the

location alignment method. Both the segregated subarray method and the location

alignment method have similar beam squinting results. The phase separation method

has a poor performance in all beam pattern criterion except for its very low sidelobe

level over a small bandwidth at the centre frequency.

This chapter aims to define many of the metrics related to wideband subbarrays,

and investigate the methods of applying weights on elements and subarrays level. In
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the remainder of this thesis, these metrics and methodology will be utilised to improve

wideband subarray beamforming. Chapter 3 will apply time delays to subarrays us-

ing digital filters, and examine the choice of the centre frequency as a design point

in wideband beamforming. Chapter 4 proposes applying a window function to the

phase of the weights at the element level to maintain a flat frequency response. Then a

noise cancellation filter is proposed which utilises an isolation effect of the phase win-

dow. Chapter 5 solves the manifestation of grating lobes inpartial wideband arrays by

reducing rotational symmetry of subarrays shapes and elements distribution.
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Chapter 3

Accurate Broadband Subarrays

Beamforming

This chapter demonstrates the use of the fractional delay filter for spatial steering in the

digital domain. Fractional delay filter (FDF) is applied to subarrays in partial wideband

arrays to compensate for the propagation delay to the subarrays’ phase centre. Three

different FDF structures are introduced and compared in terms of bandwidth and

flatness of delay value over frequency. An optimisation approach to a narrowband

subarray structure is proposed to maintain the off-boresight look direction constraint

as flat as possible across a given frequency bandwidth.

3.1 Introduction

Antenna arrays have been widely studied and utilised in narrowband signal transmission

and detection. However, many applications require the arrays to operate over a wider

bandwidth to enhance performance. In radar for example, the use of wideband wave-

forms increases range resolution and reduces peak power. In communication, wideband

transmission can yield a higher information rate.

The propagation delay with which the wavefront impinges on the array must be

compensated explicitly. For a wideband signal, compensation of the propagation delay

requires a time delay instead of just the phase shift that sufficed in the narrowband
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case. If the signals are transformed to the digital domain, then an approximation of

the time delay can be achieved by sample delay [11]. But the samples are discretely

timed, while the exact delay is not necessarily a multiple of the sampling period Ts. At

half the sampling frequency, one sample delay can only provide a spatial steering step

from 0o to 90o. While the digital structure favours integer delays, the precise delay of a

wavefront that needs to be aligned across the sensor array is generally a fractional value

of the sampling period. Fractional delays can be achieved by interpolating between

signal samples, which is the approximation of a value within a set of known data

points. Fractional delay filters are finite impulse response (FIR) implementations of

the approximation theory.

Broadband beamforming requires each array element to be followed by a true time

delay or a tapped delay line (TDL) to implement frequency-selective filters [47] like

the FDF mentioned above. But for most radar applications this is not practical due

to the small sensor spacing and limited weight, space and power. Instead, elements

can be grouped into smaller subarrays within the array aperture. A compromise for

broadband processing in state-of-the-art broadband radar hardware is to operate com-

plex multipliers following the sensor elements. The subarray outputs are then fed into

hardware time delay units (TDU), or equivalent digital implementation to reach an

acceptable performance across the operating bandwidth [31]. FDF has been implement

on subarrays in partial wideband arrays in [48,49]. However, these sources focus on the

implementation of FDF filters, where [48] deals with the digital implementation and [49]

uses Farrow FDF structure and focuses on linear frequency modulation waveform.

This chapter explores the digital implementation of time delay using fractional delay

filters, and instead of optimising sidelobe levels, the deviation in the beamformer’s

gain in look-direction is minimized. We demonstrate that the combination of fractional

delay filters and optimisation of narrowband weight can provide an acceptable mainlobe

performance.

The chapter is organized as follows: The fractional delay filter implementation

using tap delay line structure is studied in Section 3.2. The FDF-based subarray

architecture is defined in section 3.3. Section 3.4 reviews the standard construction
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of the narrowband beamformers by means of designing optimisation at the centre, or

median frequency point for wideband response. The FDF-based beamformer design is

optimised for flat look-direction response in Section 3.5 and demonstrated in Section 3.6.

Finally, conclusions are drawn in Section 3.7.

3.2 Fractional Delay Filters

The FDF filter aims to implement a general delay τ ∈ R, where R is the set of real

numbers. In the array context of this thesis, we want it to compensate for the propa-

gation delay Tm experienced by the collection of signals arriving at the mth subarray

referenced to the subarray’s phase centre. The utilisation of a sample delay can reduce

the FDF filter size by an amount of Dm. In this case, the sample delay Dm is the nor-

malized delay rounded to the nearest integer, and fractional delay τm is the normalized

remainder of this rounding, i.e.

Dm = bTm
Ts
e

τm = Tm/Ts −Dm , (3.1)

where be denotes the rounding function.

The ideal interpolation is a consequence of the sampling theory which states that

a band-limited signal can be uniquely reconstructed from its discrete samples. The

reconstruction requires a passband filtering which transforms to sinc function in time

domain, rect(ejω) •—◦ sinc(n), where n is the discrete time index. This implies that

in order to approximate a value of a continuous signal from its discrete representation,

it should be convolved with an infinite sinc function centred at time τm as

x(τm) =
∞∑

n=−∞
x[n] ∗ sin(π[n− τm])

π[n− τm]
, (3.2)

where x[n] is the discrete representation of x(t). A common measure of a filter phase

response is the group delay [50]. The group delay of a filter with phase response Φ(Ω)

is G(Ω) = −dΦ(Ω)
dΩ . Ideally, the FDF would have to be an infinite sinc function to have
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a constant group delay. To obtain finite and causal FDF filter coefficients v[n], the sinc

function is shifted and truncated to the filter size J as

v[n] =
sin(π[n− J

2 − τm])

π[n− J
2 − τm]

. (3.3)

where τm is the desired time lag of the mth subarray in a partial wideband array. The

estimated signal value at the fractional delay τm is

x(τm) =
J∑
n=0

x[n] ∗ v[n] , (3.4)

Applying a tapering window to the truncated sinc filter can reduces the ripples in

frequency domain response [51,52]. Von Hann window for an odd filter size is

wHann[n] = 0.5− 0.5 cos (
2πn

J
) . (3.5)

Approximation can also be achieved by representing the given signal samples using

polynomials such as the Lagrange interpolation technique [53]. The Lagrange coeffi-

cients v[n] of a filter of order J are

v[n] =
J∏

k=0,n 6=k

τm − k
n− k , n = 0, · · · , J . (3.6)

Another common FDF is the Farrow filter structure which isolates the desired delay

value from the filter coefficients [54]. However, the filter can only maintains an accept-

ably flat frequency response at low frequencies [52]. Hence, the use of the Farrow filter

is not justified for the data-independent subarray structures discussed in this chapter.

The desired property of a fractional delay filter is its ability to apply frequency-

invariant time lag to its input. Filters with constant lag across the frequency band of

interest are called Linear phase. Linear phase filters have linear phase as a function

of frequency, hence the name. The error metric defined in [52] will be used as a

performance measure to compare the three fractional delay filters described above.

The error function is the squared absolute difference between the Fourier transform of
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Figure 3.1: (a) Filter coefficients and (b) group delays for fractional delay filters con-
structed from sinc and windowed sinc functions for J = 32 and τm = 0.5.

the FDF coefficients V (Ω) •—◦ v[n] and the frequency response e−jΩτm of an ideal

sinc filter, i.e.

egd(Ω, τm) = |V (Ω)− e−jΩτm |2 . (3.7)

Comparison Between Fractional Delay Filters

As a demonstration of the accuracy, the sinc and Hann-windowed sinc filters for the case

J = 32 are depicted in figure 3.1(a) for τm = 0.5. The fractional delay is approximately

centred in the filter. The group delays for the two systems in figure 3.1(b) show the

fluctuation of the truncated sinc, while the Hann-tapered window design exhibits a

constant phase response at τm. The three FDF filters introduced in this chapter, the

truncated sinc, the windowed sinc and the Lagrange filter, will be evaluated based on

the squared deviation measure introduced in (3.7). For this comparison, each filter

has J + 1 = 51 tabs, and the sample delay is employed to shift thecentre of the filter

coefficients to the centre tap. Figure 3.2 shows the deviation measure of the three

FDF structures. The truncated sinc filter in figure 3.2(a) has maintained a progressive

increase in error towards the Nyquist frequecy limit which is higher than that of the

Hann-windowed sinc. The truncated sinc FDF also suffers from high ripples along the

frequency domain for all values of time lag. However, the error value of the truncated
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(a) Squared deviation of frequency response in truncated sinc FDF filter.
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(b) Squared deviation of frequency response in Hann-windowed sinc FDF filter.
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(c) Squared deviation of frequency response in Lagrange FDF filter.

Figure 3.2: The squared deviation of the time lag from the desired delay of a 51-tap
filter using (a) truncated sinc, (b) Hann-windowed sinc and (c) Lagrange fractional
delay filters.

sinc is maintained below −20dB from Ω
π = 0 up to about Ω

π = 0.95. The Hann-

windowed sinc FDF in figure 3.2(b) has a slightly smaller bandwidth compared to that

of the truncated sinc FDF, where the error is maintained below −20dB up to Ω/π = 0.9.
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However, the ripples in Hann-windowed sinc are only visible on the frequencies above

Ω
π = 0.6. Most importantly, the Hann-windowed sinc has the lowest error among the

three filters across the bandwith Ω
π = [0 0.9]. Finally, the Lagrange FDF filter has the

highest error across the entire bandwidth and, despite the lack of frequency ripples, its

error value is higher than −20dB across most of the frequency and time domains. If

both bandwidth and group delay flatness are desirable, then the performance of the

Hann-windowed sinc filter is balanced between wide bandwidth and low group delay

deviation. The Hann-windowed sinc FDF coefficients are

v[n] = (0.5− 0.5 cos (
2πn

J
)) · sin(π[n− J

2 − τm])

π[n− J
2 − τm]

. (3.8)

In this rest of chapter, (3.8) will be used to align the subarrays’ phase centres.

3.3 Array Configuration

The subarray configuration addressed in this chapter is shown in figure 3.3, where M

subarrays each contains K sensors. The Kx2 sensors location matrix is r where the kth

row of r is the 2-dimensional x − y location of the kth sensor. If a signal arrives from

the direction θ and φ, then the delay at the kth sensor relative to the subarray phase

centre is τk = rkkθ,φ, where rk is the kth row of the location matrix r and kθ,φ is the

wavenumber vector derived from equation (2.2) as

kθ,φ = − Ω

cTs


sin θ cosφ

sin θ sinφ

cos θ

 . (3.9)

Subarray elements are followed by a narrowband complex weights wk. The M antenna

elements are identically configured and are identical across the M subarrays as sug-

gested in the segregated subarray structure in Section 2.6.2, and is organised into the

weights vector w as

wH =
[

w1 w2 . . . wK

]
. (3.10)
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Figure 3.3: Uniform linear array divided into M narrowband subarrays of K sensors
each, which are then combined via M filters with coefficients vm[n], m = 1 . . .M . The
angle of arrival of an incoming far-field waveform is θ0.

Each subarray feeds into one of the M TDLs where the mth TDL has the coefficients

vm[n]. The purpose of this TDL processor is to coarsely align the subarrays’ phase

centres towards the desired direction. While the narrowband sensor weights w will

fine-tune the spatial response at a specific frequency.

The proposed approach’s aim is to firstly adjust the tap delay filters and secondly

to optimise the narrowband coefficient over the operating frequency range to obtain a

beamforming response with a constraint in a particular look direction.

3.4 Mainlobe Variation over Frequency

In this section we will analyse the look direction of a narrowband subarray beamformer

when operated across a wide bandwidth. For this purpose, we define a steering vector

a that characterises the phase profile of an incoming waveform with the wavenumber
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vector k as

a(Ω, θ) =
1√
K


ejΩτ1

ejΩτ2

...

ejΩτK

 , (3.11)

The azimuth angle φ is omitted for the linear array. In addition, The dependency on

the l.h.s. term the on elevation angle θ will also be omitted because it is fixed atthe

desired angle θ0.

Using the steering vector definition in 3.11, we aim to design a subarray beamformer

w and study how the reference frequency influences the look direction when the overall

beamformer is operating over a wider bandwidth. If the gain in the direction θ0 is

expected to be a unit value, then a frequency-dependent error e can be defined as

e(Ω) = aH(Ω, θ0)w − 1 , (3.12)

and can be evaluated over a range of frequencies Ω ∈ [Ωl; Ωu], leading to an overall cost

function

ξ =
1

2π

Ωu∫
Ωl

|e(Ω)|2dΩ . (3.13)

Here, Ωl and Ωu are the lower and upper frequency bounds respectively. Array weights

obtained from delay-and-sum beamformers, have been suggested for broadband partial

wideband arrayss [32,34,55] using a Wiener-Hopf type solution [11,56] as

w0 = (aH(Ω0, θ0)a(Ω0, θ0))−1a(Ω0, θ0) . (3.14)

Assuming a unit value constraint in the look direction, the Wiener-Hopf solution of the

normalised steering vector a(Ω0) folds back to a delay-and-sum solution, such that

w0 = a∗(Ω0, θ0) . (3.15)

Typically the median point of the frequency band Ω0 = (Ωu+Ωl)/2 serves as a suitable
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Figure 3.4: The standard deviation of the error function defined in (3.13) calculated
over the frequency Ω = [0, π] over all desired angles sin θ0 for different sizes of linear
narrowband arrays.

reference point to synthesize the beam pattern and frequency response, as suggest

e.g. in [47], [32] and [57]. However, the aim here is test the assumption that choosing

the median frequency leads to the least frequency-dependent response at the desired

direction. The cost function in (3.13) is a measure of the deviation of the mainlobe

response from unit value. Figure 3.4 shows the standard deviation of the cost function

described in (3.13). The graph is obtained for different array sizes and directions of

arrival θ0. the graph also shows high mainlobe deviation for large arrays close to the

boarsight direction. As the the array decrease in size, the peak value of the cost function

moves further away from the boarsight direction. The cost function however reduces

as the direction approaches sin θ0 = 1.

3.5 Proposed Broadband Subarray Design

The analysis in Section 3.4 indicated that computing the subarray weights at the me-

dian frequency does not always lead to the lowest response error in the look direction.

Therefore, this section will attempt to optimise thenarrowband weights w. Given that

a(Ω, θ0) is the steering vector in the look direction θ0 at an arbitrary normalised an-

gular frequency Ω. The error defined in (3.12) is the deviation from unit gain in a
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beamformer with weights w ∈ CK .

The cost function ξ defined in (3.13) is evaluated over a range of frequencies Ω ∈
[Ωl; Ωu]. The optimisation problem for thenarrowband weights w can be stated as

wopt = arg min
w

ξ. (3.16)

The solution to (3.16) is given by the Wiener-Hopf solution, which can be also derived

using the analysis in section 2.5.1, as

wopt = R−1p , (3.17)

with the covariance matrix R derived similar to (2.35) as

R =
1

2π

Ωu∫
Ωl

a(Ω, θ0)aH(Ω, θ0)dΩ ,

and

p =
1

2π

Ωu∫
Ωl

a(Ω, θ0)dΩ .

This solution can be approximated by a numerical integration over a specified number

of frequency bins. The problem is reformulated as a discrete approximation over a set

of N + 1 frequencies Ωn = Ωl + n(Ωu − Ωl)/N , n = 0 . . . N , i.e.

ê =


e(Ω0, θ0)

e(Ω1, θ0)
...

e(ΩN , θ0)

 =


aH(Ω0, θ0)

aH(Ω1, θ0)
...

aH(ΩN , θ0)

 ·w − 1 = AHw − 1 . (3.18)

The discretized cost function becomes ξ̂ = êHê. Differentiating ξ̂ w.r.t. w∗ yields

∂ξ̂

∂w∗
= AAHwopt −A1 = 0 . (3.19)
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Therefore, the optimum narrowband weights vector is

wopt = (AAH)−1A1 = A†1 , (3.20)

where A† is the pseudo-inverse of A.

3.6 Simulations and Results

The weights optimization and FDF application approach proposed in this chapter is

simulated over all steering angles sin θ0. A total of 32 sensors are used to produce

five different array architectures. A narrowband array architecture with 32 elements, a

partial wideband architecture of 3 subarrays with 12 elements each, 4 subarrays with

8 elements each, 16 subarrays with 2 elements each and a 32 elements wideband array

with wideband weights only. The fractional delay is achieved using a Hann-windowed

sinc function of order J = 50. Figure 3.5 quantifies the flatness of the mainlobe re-

sponse of the five different array architectures, measured as the standard deviation

of the absolute value of the main lobe response std(|P (Ω, θ0)|). Figure 3.5 shows a

varying degree of deviation in the mainlobe among array architectures. In the nar-

rowband array, the narrowband weights optimisation does not show an improvement

over the the weight calculation based on the centre frequency. In the wideband ar-

ray, only the wideband FDF weights exist, hence the narrowband weights optimisation

does not apply, as apparent in Figure 3.5(e) where both weights calculations coincide.

The wideband array produces the lowest deviation from the mainlobe, which is what is

expected from frequency-independent weights behind each antenna element. The clos-

est architecture to the wideband array is the 16-subarray architecture in Figure 3.5(d)

which maintains a steady deviation over the desired angle range of [−80◦,80◦]. For

the partial wideband weights, the optimisation of the narrowband weights have gener-

ally achieved lower variations over the mainlobe response. Both narrowband weights

calculation methods, i,e, the weights optimisation or the beam-steering w.r.t. centre

frequency, are identical around the partial wideband array boarsight. This is due to the

lower phase difference between array elements. There are various locations where the
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Figure 3.5: Standard deviation of the absolute response in the mainlobe over the en-
tire frequency bandwidth Ω = [0, π], obtained from five different architectures: (a)
Narrowband array architecture with narrowband weights only, (b)partial wideband ar-
chitecture of 3 subarrays with 12 elements each, (c) partial wideband architecture of 4
subarrays with 8 elements each, (d) partial wideband architecture of 16 subarrays with
2 elements each and (e) wideband array architecture with wideband weights only.

weights optisation method generate more variation over the mainlobe. However these

locations are limited in width and amplitude value. For most of the desired directions,

the weights optimization method have improved the mainlobe flatness over the entire

bandwidth when compared to beam-steering w.r.t. the centre frequency.

A partial wideband array containing 4 subarrays with 8 elements each is used here

to demonstrate the narrowband weights optimisation. The subarrays are followed by

TDL employing Hann-windowed sinc FDF filters of order J = 50. The desired band-

width is one octave between Ωl = π
2 and Ωu = π. Noting that the fractional delay

filters are imperfect at frequencies Ω −→ π, the performance at the upper limit of the

frequency operating range is not highly accurate. The beam patterns of the two weights

calculation methods are shown below for two directions of arrival. Figure 3.6 shows

the beamformer normalised beam pattern P (Ω, θ) where the TDL filters are designed

as FDF filters for an angle of arrival of θ0 = −30◦. As a benchmark, figure 3.6 uses

a steering vector for θ0 and the centre frequency of the interval [Ωl; Ωu]. In contrast,
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Figure 3.6: Subarray architecture pointing towards θ0 = −30◦ with narrowband beam-
formers selected w.r.t. centre frequency.

figure 3.7 shows the array response for the case of a narrowband filter design according

to (3.20). Sidelobes with a level as high as -0.1 dB appear across the frequency band,

but the response in the look direction θ0 = −30◦ has less variations over frequency

when compared with the case of figure 3.6.

The same array configuration is used to implement a look direction of θ0 = 60◦.

In this case, the beam squinting and variation of the steering vector a(Ω, θ) over the

operating frequency range is greater than that of the previous example, and the error is

higher. The result for the subarray architecture and a narrowband design at the centre

frequency of the interval [Ωl ; Ωu] is shown in figure 3.8. The introduced error is such

that the desired unit gain in the look direction cannot be maintained.

For the proposed optimised design of the narrowband beamformer, the resulting

directivity pattern is shown in figure 3.9. There is a significant improvement over the

standard case in figure 3.8, as the unit valued gain in the look direction is maintained

across the band. A small deviation towards Ω = π is due to the inaccuracies of the
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Figure 3.7: Subarray architecture pointing towards θ0 = −30◦ with narrowband beam-
formers obtained using the optimisation in (3.20).

fractional delay filters as shown in figure 3.2(b).

As a drawback of the proposed design, figures 3.7 and 3.9 exhibit stronger sidelobes

compared to the benchmark approach in figures 3.6 and 3.8. A reason for this is that

multiple frequency constraints also applies to off-mainlobe directions due to the corre-

lation between spatial and spectral domains. Another reason is the way the optimal

design in Section 3.5 tapers the weights and therefore restricts the aperture illumination

at the array edges, as shown in figure 3.10, which shows the coefficients for the case of

K = 8 for a look direction θ = 60◦.

The taper efficiency in (2.17) is a measure of the weighting amplitude effect on

the directivity. It is equivalent to the aperture efficiency in the absence of all other

factors like blockage and current distribution. The taper efficiency of the delay-and-

sum weights is 0.3 while the proposed weighting achieves 0.2. This is a slight reduction

of spatial resolution in the proposed optimised design compared to the improvement in

frequency flatness.
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Figure 3.8: Subarray architecture pointing towards θ0 = −60◦ with narrowband beam-
formers selected w.r.t. centre frequency.

3.7 Conclusions

This chapter studies the use of FDF filters to simulate a frequency-independent time de-

lays at the subarray level which, by similarity with TDU-based subarrays, can improve

the bandwidth by a factor of the number of subarrays, and maintain a unit response on

the look direction over the entire frequency band, at the cost of a high sidelobes level.

Three FDF types are presented and evaluated in this chapter. The truncated sinc

FDF filter is a truncation of the ideal reconstruction filter known in the sampling theory.

The truncated sinc has maintained a low deviation up to Ω = 0.95π frequency, but

the filter’s group delay has high ripples across the band causing distortion to wideband

signals. The Hann-windowed sinc filter maintains low deviation from the desired lag and

have a flat group delay response across the band, albeit at a slightly lower bandwidth.

The Lagrange filter has the highest deviation from the desired group delay compared

to the truncated sinc and Hann-windowed sinc.

Additionally, a subarray architecture was proposed where fractional delay filters
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Figure 3.9: Subarray architecture pointing towards θ0 = −60◦ with narrowband beam-
formers optimised w.r.t. (3.20).

1 2 3 4 5 6 7 8

element index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|w
|/
||
w
||

center frequency optimization
proposed optimization

Figure 3.10: Normalized amplitude of the narrowband elements coefficients w within a
subarray designed for the look direction θ = 60◦. The blue graph is for the delay-and-
sum beamformer designed at the centre frequency, while the red graph represents the
proposed optimisation.

62



Chapter 3. Accurate Broadband Subarrays Beamforming

coarsely align subarrays in time. The implementation utilise windowed sinc functions

of moderate order, which can demonstrate sufficient accuracy close to half the sampling

rate. A finer tuning for every subarray is performed by narrowband weights applied

to the elements within subarrays. If defined as phase shifts, these narrowband weights

can only provide an accurate beamforming at one given frequency, and are likely to

generate an error in the look direction gain at other frequencies.

Therefore, an error minimization for the subarray gain deviation in the look direc-

tion is required. When operating a partially wideband array in a very wide bandwidth,

the centre frequency is commonly adopted to design the array weights, this has shown

here to generally yield sub-optimal results. For the delay-and-sum beamformer, this

assumption has been challenged in this chapter and shown to cause a higher response

error at angles away from boresight direction. Instead, we have proposed a weight

optimisation that can accurately impose the desired constraint, albeit at the cost of

sidelobes due to a waste of the narrowband beamformer aperture, which is a by-product

of the optimisation procedure.
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Chapter 4

Mainlobe Alignment in

Wideband Subarrays

This chapter explores the elimination of the beam squinting caused by the elements’

phase shifting in linear subarrays by windowing the elements’ phase. Then, this phase

windowing is applied to a partially adaptive subarray structure, which is shown to

provide a level of isolation between the subarray outputs. This isolation is then used

to implement a subband adaptive noise cancellation (ANC) system to improve the

wideband interference suppression.

4.1 Introduction

For planar arrays, the elevation angle has the same effect on the steering vector as the

signal frequency. The steering vector described in (2.6) is shown here for a planar array

lying in the x–y plane.

a(ω, θ, φ) = e−j
ω
c
r[sin θ cosφ , sin θ sinφ]T . (4.1)

For a fixed steering vector, the angular frequency ω and the elevation direction sin θ

are inversely proportional, and satisfy the relation ω
sin θ =constant. Therefore, the pairs

of frequency and elevation angles cannot be discriminated. An incident signal from an

elevation angle θ1 and a frequency f1 can produce the same response as another signal
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180 Normalized power (dB)

Figure 4.1: The squinting effect of frequency on a narrowband linear array containing 30
elements. The narrowband weights are beam-steered towards θ0 = 30◦ w.r.t. Ω0 = 0.5π
.

from an elevation angle θ2 and a frequency f2 if they satisfy the condition

f1

f2
=

sin θ2

sin θ1
. (4.2)

Given a reference parameter pair (f0, θ0), this results in a beam direction θ that changes

with frequency f as

θ = sin−1
(f0

f
sin θ0

)
. (4.3)

Figure 4.1 demonstrates the deviation of the mainlobe over frequency. The figure shows

the elevation pattern of a narrowband linear array containing 30 elements. The array

is beam-steered towards the angle θ0 = 30◦ w.r.t. the center frequency Ω0 = 0.5π. The

mainlobe is sampled at five frequencies within the frequency range Ω
π = [0.4, 0.6]. The

figure shows squinting and widening, or shrinking, of the mainlobe as a function of the

operating frequency.

In the remainder of this chapter, the phase shift windowing approach is introduced

in Section 4.2. Section 4.3 develops the phased-windowed array weighting and derives

the array response for a generic Hamming window function. Section 4.4 studies the

correlation between the spectral components of the desired wideband signal when ap-

plying phase windowing to a subarray. Section 4.5 describes a structure that combines
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phase-windowed subarrays with a subband adaptive noise cancellation to improve the

signal to interference plus noise ratio(SINR). Then, the phase windowed subarray and

the subband ANC are demonstrated in examples and discussed in Section 4.6. Finally,

conclusions are drawn in Section 4.7.

4.2 Phase Shift Windowing

Phase shifting in phased arrays compensates for the propagation delay between the

wavefront of the desired direction and the array elements. However, phase shifting

is not a linear phase, meaning its time lag depends on frequency. Several solutions

exist for the frequency dependency of the phase shifting in wideband arrays. True-

time delay (TTD) [58, 59] simulates a propagation delay rather than a phase shift.

TTD is commonly constructed using switched optical delay lines or a subband phase

shift structure. However,hardware for true-time delay is larger and heavier than a

phase shifter [32], hence it is commonly not feasible for an individual array element.

Fractional delay filters (FDF) [5,60] are the digital realization of a time delay based on

interpolation filtering. FDFs interpolate the sampled input and approximate its value

at delays that are not necessarily an integer multiple of the sampling period. Section 3.2

has covered some of the theory and methods of FDF filters. However, FDF requires

Analog to Digital Conversion (ADC), which complicates the system if applied to array

elements.

The contiguous subarray solution [59,61] provides a trade-off by using phase shifting

at the element level and a TTD at the subarray level. Wideband beamforming of

the contiguous subarray commonly combines a simple beam-steering at the element

level [60] and digital adaptive beamforming at the subarray level [62]. In beam-steering,

the array weights are the conjugate of the steering vector towards the desired direction

θ0 at frequency ω0 as demonstrated in equation (3.15). In a uniform linear array, the

wideband beam pattern with beam-steering is

P (ω, θ) =
h(ω, θ)√

N

sin 1
2N

d
c (ω sin θ − ω0 sin θ0)

sin 1
2
d
c (ω sin θ − ω0 sin θ0)

, (4.4)
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where h(ω, θ) is the amplitude tapering. The use of phase shifts leads to the displace-

ment of the array pattern as the frequency changes. From (4.4), both ω and u = sin θ

have the same effect on the array amplitude response.

Wideband beamforming techniques do not address beam squinting directly. At best,

they consider the directivity variation as a cost function to be minimized. The inverse

DFT method defines two auxiliary frequency terms to control the frequency over a fixed

elevation angle [24,63] or uses auxiliary terms that represent both the frequency and the

elevation [47]. The inverse DFT method assumes a given fixed elevation angle, requires

uniform elements spacing, and applies an approximation that leads to a deviation from

the desired response.

The Least Squares and Eigenfilter approach [37,39,41] minimizes the deviation from

the desired pattern. The deviation is averaged over the bandwidth and can include a

weighting function to emphasise some frequency bands over others. Eventually, a single

frequency is represented in the steering vector at which the pattern is synthesised. If

no frequency weighting is employed, the median of the bandwidth becomes the design

frequency.

Iterative optimisation techniques like minimax optimisation [64], convex optimisa-

tion [36,57] and SRV constrained pattern [18] searches the set of complex weights from

the solution space that minimizes the objective function. Optimisation techniques im-

plicitly address phase shift deviation over frequency. However, optimisation techniques

are computationally complex and require the constraints and the objective functions

to be convex. In the next section, we present a simple phase windowing approach that

reduces pattern squinting over frequency.

4.3 Phase-Windowed Array Response

When steering an array towards a direction u0 = sin θ0, the phase shift is calculated

based on a single frequency, which is commonly the centre of the operating band. How-

ever, the steering vector at frequencies across the band will vary in phase, causing the

response at the edges of the band to drift off-direction or even outside the beamwidth.
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This drift is even higher for wider bandwidths or narrower beamwidths. We suggest

applying a window function to the elements’ phase shifters in a subarray structure, then

apply subband adaptive noise cancellation at the subarrays’ outputs. The window will

allow the subarrays to steer towards the desired direction at different frequencies.

4.3.1 Phase-Windowed Weights and Window Limits

The phase window function g(k) is applied to the elements’ weights of the uniform

linear array as

w(k) =
h(k)√
K

ejω0g(k)r(k) 1
c

sin θ0 , (4.5)

where r(k) = (k − K−1
2 )d is the location of the kth element and h(k) is the amplitude

tapering function. The array factor of a linear array, beam-steered at frequency ω0

toward a direction θ0 and phase window g(k) is

P (ω, θ) =

K−1∑
k=0

h(k)√
K
e−j (k−K−1

2
) d

c
(ω sin θ−g(k)ω0 sin θ0) . (4.6)

The window function can be any type of the common window functionsf(k), but it

should be truncated around the frequency limits . The window edges should extend

beyond the points where the weights gradient is perpendicular to the steering vector

phase at the desired direction and at edge frequencies Φ(a(ωHL , θ0)). The lower window

limit can be described by the equality

[g(k)]ωL ≤ {g(k) | (Φ(w(k + 1))− Φ(w(k))).Φ(a(ωL, θ0)) = −1} . (4.7)

The same limit applies to the upper frequency limit ωH since the window function is

an even function around K
2 . For a small bandwidth or near the boresight direction, the

windowing has minor effect because the beam squinting is negligibly small.
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Table 4.1: Window types generalized by (4.8). The variable F1 in truncated Taylor
window is called the pedestal.

window type A B

Cosine Window 0 1

Hamming window 0.54 0.46

von Hann window 0.5 0.5

Truncated Taylor 1+F1
2

1−F1
2

4.3.2 Generic Hamming Window Array Response

The generic Hamming function gh(k) is representative of the cosine, modified Taylor,

von Hann, and Hamming windows [65], and can be described as

gh(k) = A+B cos
[
π(

k

K − 1
)/K

]
. (4.8)

Table 4.1 shows the window types that can be obtained by specifying the values A

and B in the generic window definition in (4.8). The response of a linear array after

applying the generalized Hamming phase window is

P (ω, θ) =
K−1∑
k=0

h(k)√
K
e−j(2k+K+1) d

c

(
ω sin θ+Aω0 sin θ0+Bω0 sin θ0 sin [π 2k+1

2K
]
)
. (4.9)

The derivation of (4.9) can be found in Appendix B. Equation (4.9) shows the response

of a linear array where the phase windowing approach is combined with beam-steering.

4.4 Spectral Isolation in Phase Windowing

In this section, it will be shown that applying phase windowing to a partial wideband

array can partially isolate the frequency components of a wideband signal between the

subarray outputs. This spectral decomposition is then used to improve the signal SNR

using an ANC filters at the subarrays’ processors.

For simplicity, a signed rectangular window is applied to a partial wideband array

containing two subarray (M = 2). The signed rectangular window is not applicable

to more than two subarrays because its integral, which is a triangular function, only
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have two slopes. The window is applied to all array elements including the subarrays,

where K is the number of elements in the array. Each subarray is subjected to a

segment of the window. Consequently, this partial wideband array employing a signed

rectangular window across all its narrowband weights, has two subarrays each being

steered a quarter of the bandwidth to either side of the centre frequency.

The lower and higher frequency limits in (4.7) are ωL = ω̂L + 1
4BW and ωH =

ω̂H − 1
4BW , where ω̂L and ω̂H are the lowest and the highest operating frequencies,

respectively. The window function is now defined as

g(k) = 1 + sgn(k − (K − 1)

2
)
ωH − ωL

4ω0
, k ∈ [0, · · · ,K − 1] . (4.10)

where sgn() is the sign function and K is the number of elements in the array including

all subarrays. Note that since sgn(0) = 0, the element at k = K−1
2 has a unit valued

window function. Hence it will support both subarrays because it will be steered at the

frequency ω0 which is the median of the frequency limits ωL and ωH . The elements of

the weight vector in (4.5) become

w(k) =
h(k)√
K
ej(ω0+sign(k− (K−1)

2
)
ωH−ωL

4
)rk

1
c

sin θ0 (4.11)

The response of the upper band subarray k ∈ [K2 , (K − 1)] to a lower band signal at

frequency ω0 − ωH−ωL
4 arriving from θ0 is

P (ω, θ) = wH
t a

(
ω0 −

ωH − ωL
4

, θ0

)
(4.12)

=
K−1∑
k=K

2

h(k)√
K
e−jrk

1
c

sin θ0
[
(ω0−

ωH−ωL
4

)−(ω0+
ωH−ωL

4
)
]

=

K−1∑
k=K

2

h(k)√
K
ejrk

1
c

sin θ0
ωH−ωL

2 .

Figure 4.2 shows the isolation between the subarrays in a partial wideband array

containing two subarrays with 15 elements each. The isolation is calculated using (4.12)

for all angles and all bandwidths (ΩH − ΩL), where P1 in the figure is the normalised
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Figure 4.2: Isolation between subarrays in a partial wideband array, using the signed
rectangular window in (4.10).

response of the low band subarray and P2 is the normalised response of the high band

subarray. Graphs of both P1 and P2 are shown in Appendix C in real and imaginary

values. The signed rectangular window described in (4.10) is used with a uniform

tapering function, h(k) = 1. The figure shows that for the signed rectangular window,

the isolation between the subarrays ranges from 0dB, meaning that the subarrays’s

responses are identical, to 27dB in power ratio. In general, this graph shows that there

are ranges of bandwidths and directions where the subarry outputs can maintain a level

of isolation between them. The subarrays’ isolation can be further improved with more

subarrays or by applying window functions with more curvature so that the steering

frequencies of of the edge subarrays exceeds the bandwidth edges.

4.5 Interference Suppression in Phase-Windowed Subar-

rays

This section combines the phase windowing with adaptive noise cancellation on the

partial wideband architecture. This adaptive noise cancellation is a local deviation from

the data-independent theme of the thesis. The phase windowing will enable sampling

the target wideband signal at various frequencies. Then, using the beam squinting
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phenomenon, subband adaptive noise cancellers are used to suppress the wideband

interference.

4.5.1 Phase Windowing on a Subarray Structure

The proposed array structure is a linear partial wideband array similar to the struc-

ture suggested in [31–34] and described in Section 2.4.2. The partial wideband array is

partially adaptive, meaning only the subarray outputs are accessible by digital process-

ing. The array contains M subarrays, each containing K elements. The subarrays are

steered using FIR-based fractional delay filters. Figure 4.3 illustrates the phase win-

dowing on a linear partial wideband array. The proposed phase windowing differs from

the conventional beamspace beamforming described in section 2.4.3 in that the phase

windowing can be applied to the partial wideband architecture, while the beamspace

processor requires a set of narrowband weights for each synthesised beam. For example,

the generalised sidelobe canceler (GSC) and the postbeamformer interference canceler

(PIC) [11] apply a main and an auxiliary beamforming to the array elements directly.

However, the elements in the architecture described in Figure 2.8 are only accessible

by one set of weights.

An FDF filters shift the subarray’s phase centre (dotted line in Figure 4.3) to the

wavefront of the desired direction (dashed line in Figure 4.3). The elements’ phase shifts

apply the phase-windowed weights (solid line in Figure 4.3). The partial wideband array

is beam-steered using the wideband weights towards the desired direction θ0. However,

at each subarray, the phase shifts are tuned at different frequencies depending on the

window gradient. This arrangement can lead to a spatial isolation between subarray

outputs, particularly at the edges of the array aperture. With the elements’narrowband

weights are modified to include the phase window as in (4.5) and the subarray steering

vector is defined by am(Ω, θ), the mth subarray response is

Pm(Ω, θ) = wH
mam(Ω, θ)ejΩτm , (4.13)

where τm is the time delay w.r.t. the mth subarray’s phase centre. The phase windowing
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non-windowed combined weighting phase at Ω0

windowed combined weighting phase at Ω0

Figure 4.3: Demonstration of the phase shift window method and its effect on beam
pattern at the centre and edges of the frequency band. The window is shown in solid
line. The wavefront is shown as dashed line and the subarray FDF delay is shown as
dotted line.

is imposed by the weights term wm. Notice the use of the normalised angular frequency

Ω to suit the discrete signal representation.

4.5.2 Subband Adaptive Noise Cancellation

The phase window, if suitably designed, can maintain a level of isolation between the

subarray outputs, as demonstrated in Section 4.4. Subband decomposition of the subar-

ray outputs can isolate the signal’s frequency components while containing a correlated

estimate of the noise and unwanted wideband interference. The mth subarray output,

assuming only one source of interference, is

ym[n] = Pm(Ω, θ0)s[n] + Pm(Ω, θi)si[n] + v[n] , (4.14)

where s[n] is the signal of interest, θi and si[n] are the angle of arrival and the waveform

of the interference signal, respectively, and v[n] is a spatially uncorrelated noise.

Figure 4.4 shows the proposed combined partial wideband and subband ANC struc-

ture. The subarray outputs are digitally delayed using a fractional delay filter (FDF)

to align the subarrays’ phase centres. The FDF outputs are divided into M frequency
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Figure 4.4: The proposed subband ANC structure attached to the subarrays’ outputs
of a partial wideband array.

components using an analysis filter bank [66]. The mth ANC filter receives the mth

subband of the mth subarray’s output as its signal input dm[n], and delays it to an

equivalent of the adaptive filter order T . The ANC filter also receives the sum of the

mth frequency components of the remaining subarrays’ outputs as its noise input xm[n].

Many types of adaptive filters can realize the ANC structure, such as the Affine Pro-

jection Algorithm (APA), Recursive Least Squares (RLS), or Normalised Least Mean

Squares (NLMS).

The signal bandwidth is divided into M subbands using analysis filters banks. The

subarrays are attached to analysis filter banks that decompose the entire bandwidth
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into M bands each connected to its associated ANC filter. Note that both subarrays

and bands share the same indexing letter m. This is because each subarray is allocated

a band in the phase windowing approach. The mth ANC filter accepts the mth

frequency component of the mth subarray output dm[n] ◦—• Ym(ejΩm) as the signal

input. It also takes xm[n] ◦—• ∑p,p 6=m Yp(e
jΩm), which is the the sum of the remaining

subarray outputs, as the noise input or reference signal. Finally, the subband ANC

filter outputs are combined using a synthesis filter bank to produce the output of the

adaptive part of the combined partial wideband array and ANC structure.

4.6 Results and Discussion

In this section, the phase windowing is applied to a partial wideband array employing

the delay-and-sum beamformer and compared to the same array but without the appli-

cation of the phase windowing. Then the subband noise cancellation is demonstrated

using a broadband multi-carrier signal active over 5 subbands. The design alignment

of the mainlobe across the the operating frequency band is evaluated using the sum of

the squared deviations from the steering angles θ0 across the operating bandwidth ∆Ω

as

ξss =

Ωu∑
Ωl

|θ|Pmax(Ω,θ) − θ0|2 (4.15)

where θ|Pmax(Ω,θ) is the measured mainlobe direction.

The proposed phase window is applied to a linear partial wideband array with

5 subarrays of 12 elements each. The narrowband elements’ weights are obtained

using (4.5) for all steering angles θ0 and center frequencies Ω0 over a bandwidth of

∆Ω = 0.2π. Figure 4.5 shows the sum of squares of the mainlobe deviation ξss defined

in (4.15). The amplitude taper applied is a Hamming function, and the phase window

is a Gaussian function with a constant σ = 0.8. In Figure 4.5(a) the array is beam-

steered using a delay-and-sum beamformer as a benchmark, while in Figure 4.5(b) the

array is using the proposed phase windowing in addition to beam-steering. Figure 4.5

demonstrates the role of phase windowing in improving the mainlobe alignment on this

array example. The mainlobe deviation is generally lower near the boresight direction.
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Figure 4.5: Sum of squares of the mainlobe deviation ξss for a partial wideband array
containing 5 subarrays with 12 elements each (a) using a delay-and-sum beamformer.
(b) using the proposed phase windowing on the conventional beam-steering.

At higher steering angles, the conventional beam-steering progressively increases the

mainlobe deviation in both arrays. However the proposed phase windowing maintains

the low deviation from Ω = 0.75π up to the upper frequency limit. For the rest of the

band, the phase windowing approach generally maintains lower deviation compared to

the conventional beam-steered array.

As an example, Figures 4.6 and 4.7 show a partial wideband array array response at

a specific steering angle of 30◦ or u = 0.5. The array is slightly larger with 6 subarrays

of 30 elements each. Figure 4.6 shows the response of the combined outputs of the

phase-windowed partial wideband array. Figure 4.7 shows the same array steered using

conventional beam-steering.

The array’s mainlobe in Figure 4.6 is aligned with an acceptable beamwidth over the

frequency band [0.25π; 0.75π], except at the transitions between the subbands, which

can be improved by increasing the number of subarrays. By contrast, the conventional

beam steered partial wideband array in Figure 4.7 shows a drifting mainlobe across the

frequency band. The sidelobes are not significantly different between the two cases.

The subband ANC filter structure is also tested on an array containing 5subarrays

with 20 elements each. The subarray outputs are aligned to the desired wavefront using
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Figure 4.6: Phase-windowed subarrays’ response with 6 subarrays of 30 elements each
and a desired angle of 30◦.

81-tap windowed sinc FDF filters [51]. The desired multi-carrier signal comprises of 5

subbands or frequency components covering a normalised bandwidth of [0.5π;π] with

an angle of arrival 30◦. The input is a multi-carrier signal with a signal to noise ratio

of 28 dB. The input interference has the exact waveform as of the desired signal, but

shifted in frequency by an amount of +0.1π to allow for comparison, and arrives from

θ = 60◦ AOA. A band-limited noise is added to the the received signal, in the form of

a spatially distributed clutter. The noise power is -30dB w.r.t the signal power. The

ANC is implemented using 51-tap RLS filters.

Figure 4.8 shows the power spectral density (PSD) of the signal and the interference

at various points in the proposed structure. Figure 4.8(a) shows the desired signal with

an angle of arrival of 30◦, and Figure 4.8(b) illustrates the interference with angle of

arrival of 60◦. Figure 4.8(c) depicts the combined subarray output prior to the subband

ANC filters. Finally, Figure 4.8(d) shows the resulting waveform after combining the

outputs of the ANC filters. Figure 4.9 quantifies the signal to interference plus noise
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Figure 4.7: Response of a partial wideband array containing 6 subarrays of 30 elements
each beam-steered towards direction of θ = 30◦ or sin θ = 0.5.

ratio (SINR) at the outputs of the phase-windowed part and the adaptive parts shown

in figure 4.4. The component at 0.85π has experienced a small increase in SINR of

about about 0.1dB. This can be due to the alignment of frequency and angle where the

change in frequency and angle of arrival has the same effect on the response according

to (4.2). Apart from the 0.85π component, the SINR at the output of the adaptive part

has improved across the spectrum. Although the interference is not completely rejected,

the figure shows an interference reduction, with the exception of the 0.85π component,

ranging from 2.5dB for the 0.7π component to 15dB for the 0.7π component. The

strong response at the 0.8π component can be due to the relative flatness of the window

function at the centre subarray, leading to a better phase alignment of the frequency

components at the center of the subband.
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Figure 4.8: Power spectral density of the broadband signal arriving from angle 30◦ as it
propagates through the proposed system. (a) The desired signal arriving from θ = 30◦,
(b) the interference signal arriving from θ = 60◦ , (c) the combined subarray output
and (d) the subband ANC output.
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4.7 Conclusion

The previous chapter proposed an optimisation approach to maintain a flat frequency

response over the mainlobe without considering its effect on the sidelobes. This chapter

attempted to remedy the underlying cause of mainlobe variation with frequency, and

then use a by-product of that treatment to improve the interference suppression in

partial wideband array using subband ANC filters.

First, the chapter studied beam squinting in wideband arrays, analyzed the rela-

tionship between frequency and elevation angle in linear arrays, and described beam

squinting as a function of frequency. A phase windowing was then proposed on the

elements’ phase shifts in a partially adaptive subarray to remove the drifting of the

mainlobe over frequency. The phase-windowed response of a linear array was derived

for a generic Hamming window, which is representative of many other window types.

The window function is truncated around the points where the tangent of the phase

is perpendicular to the angle of arrival at the edge frequencies. The phase window

was tested on a partial wideband array containing 6 subarrays with 30 elements each.

The resulting weights was able to align the mainlobe over a normalised bandwidth of

[0.25π; 0.75π], albeit beam drifting appears at subband transitions.

A subband adaptive noise cancellation was proposed to remove the wideband inter-

ference from the subarrays’ outputs using subband ANC filters to improve the signal to

interference plus noise ratio. The subarrays are divided into frequency subbands using

analysis filter banks. At the mth subarray, the mth subband is used as the signal input

dm[n] in the mth ANC filter since it contains a frequency component of the desired

signal. In contrast, the remaining subbands are fed to the remaining ANC filters as

noise inputs xp[n], p 6= m.

A phase-windowed partial wideband array containing 5 subarrays with 20 elements

each was then used to demonstrate the subband adaptive noise cancellation structure.

The subband ANC filter structure consists of 5 RLS filters with 51 taps. The simulation

showed improved SINR in most of the frequency components, although the SINR in

one frequency component was unaffected. The subband ANC can be further improved
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by increasing the size of the FDF filters and considering subarray spatial decorrela-

tion techniques like null placement in the frequency domain or applying an additional

blocking matrix to the edge subarrays.
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Rotationally Tiled Subarray

This chapter proposes a structural array design that reduces grating lobes and modu-

larizes the subarray structure.

5.1 Introduction

To avoid spatial aliasing in uniform sensor arrays, element spacing should be shorter

than half the wavelength of the maximum observed frequency. If the element spacing

exceeds this limit, grating lobes appear in the visible region of the array response. For

wideband arrays, increasing the upper frequency limit will require smaller element spac-

ing leading to increased risk of mutual coupling. More importantly, spacing reduction

leads to a higher number of sensor elements needed to satisfy a fixed aperture size.

Many solutions have been suggested towards grating lobe reduction and elimination.

In thinned arrays [2, 17], random array elements can be removed without significantly

affecting the beam pattern performance. This arrangement can maintain the original

beamwidth but the gain degrades and the sidelobe level increases because of the reduced

total number of elements per unit area combined with inefficient aperture illumination.

Grating lobe suppression has also been applied to subarrays. At the subarray

level, the grating lobes are reduced but not eliminated since each subarray output

still suffers from grating lobes that, when not considering the sine of the angle from

the array boresight, are equal to the level of the main beam. However, the subarray
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position or shape ensures that grating lobes do not necessarily coincide. One popular

subarray approach is to construct subarrays with random shapes [67, 68] resulting in

randomly spaced phase centres. Another solution is to slightly twist the subarray

by different angles [69, 70] or randomly displace their location in one dimension [71]

or two dimensions [69]. These techniques are likely to complicate the array design

and manufacturing because random subarray outline and element distribution require

unique assembly, components and programming for each subarray. The distribution

network and subarray processing will also need tailoring to suit each subarray.

Array architecture design in practice is a balance between the performance objec-

tives on one side, and physical, technological and economical constraints on the other

side. Performance objectives such as gain, sidelobe level, beamwidth and bandwidth

are dictated by the aperture size and shape, elements distribution and the instanta-

neous bandwidth of the system. On the hand, physical, technological and economical

constraints affect the array maximum aperture size, manufacturing processes and tech-

nologies employed such as time delay versus phase shift.

The solutions for grating lobe reduction listed earlier require additional design,

assembly and verification processes to manage randomness in the elements or the sub-

arrays location and structure. These architectures also increase data management

complexity, increase production variance, hence contributing to quality loss [72]. These

outcomes are discouraged by quality control theories like statistical process control

(SPC) and six sigma [73]. Modularization is called ”the goal of good design” [74].

Therefore, this chapter proposes two novel designs of planar arrays from identical

subarrays that can fit by translation (displacement) and rotation. These new array

outline designs suppress grating lobes and provides expandable array size. The modular

partial wideband array can also include time delay units, down conversion and analog to

digital conversion (ADC). We will show that this arrangement minimizes the subarray

external interconnections allowing simple and reliable system integration and testing.

This chapter is organized as follows: Section 5.2 analyses the formation of grating

lobes in standard uniform arrays and rotationally tiled arrays. Section 5.3 introduces

plane tiling, isometry operations, tiling design notations and limitations to be consid-
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ered when applying tiling to arrays and subarrays. Section 5.4 further elaborates on

the relationship between tiling and subarray design and offers performance measures,

symmetry detection and an approach to explore tile-design combinations. Sections 5.5

and 5.6 demonstrate grating lobes reduction and other attributes using two examples

of subarrays constructed using tiles and designs found in the literature on geometry.

Finally, discussions and conclusions are drawn in Section 5.7.

5.2 Analysis of Grating Lobes

5.2.1 Grating Lobes in Rotationally Tiled Arrays

Partial wideband array with suppressed grating lobes can be constructed with isohedral

subarrays. Isohedral tiling is a plane tiling based on a single shape of tile, where the

overall array can be constructed by placing rotated and displaced subarrays. While

displacement does not affect the subarray response w.r.t. its phase centre, rotation

changes the azimuth angle of arrival by an amount equal to the rotation angle ψ.

Consider a rotationally tiled array that has M subarrays and an order of rotation L,

— to be further elaborated in Section. 5.3 — the M subarrays will rotate at L different

angles. If the array is steered towards k0(ω0, θ0, φ0), the response of the rotationally

tiled array w.r.t. a signal characterised by the wavenumber k(ω, θ, φ) is

P (ω, θ, φ) =
1√
NxNy

L−1∑
l=0

∑
m

m∈Ml

sin(1
2rmax diag{cosψl, sinψl}∆k))

sin(1
2rmin diag{cosψl, sinψl}∆k)

, (5.1)

where Ml is the set of subarrays that share the same rotation angle ψl. As an illustra-

tion, the design shown in figure 5.4(c), have 30 subarrays (M = 30), six rotation angles

(L = 6) and size (Ml) = 5 subarrays sharing the same rotation angle ψl. The peaks of

the response in (5.1) are located at the zeros of the denominator. For a partial wideband

array with subarrays that have the same orientation, the subarrays rotation angles are

ψl = 0◦ ∀ l = 1, .., L. In this case the response folds back to (2.21) and the grating lobes

occur at ∆k = [px; py]
2π
d ∀ px, py ∈ Z. However, for a rotationally tiled array with sub-

arrays rotated at angles ψl, each subarray group m ∈ Ml has grating lobes forming at
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a periodicity of ∆kl = 2[(pxπ(d cosψl)
−1 ; pyπ(d sinψl)

−1)]T ∀ px, py =∈ Z. The sum

of periodic functions is also periodic with a period equal to the least common multiple

LCM() [75]. The overall array grating lobes are the result of the alignment of the grat-

ing lobes of all the subarrays, which is where the grating lobes of all subarrays coincide

in the k space. As the order of rotation L increases, the separation between overall ar-

ray grating lobes will increase by a factor of [LCM((cosψl)
−1) ; LCM((sinψl)

−1)] ∀l
in the k 2-dimensional space. Minor grating lobes are the contribution of subarrays

groups m ∈Ml sharing the same rotation angle. If the tile and design have no symme-

try alignment then the upper limit of minor grating lobes is Ml
K = 1

L . This is because

only Ml out of K subarrays share the same element spacing in any given direction.

There are cases where the subarray tile is rotationally symmetric at one of the design

rotation angles such as the hexagonal tile that will later be discussed in figure 5.4(b).

If this is the case, and the elements lattice is also symmetric at these angles then

subarrays are said to be congruent and will have an aligned grating lobes. A rectangular

lattice has a second-order symmetry, and the isosceles triangular lattice have only

one, while equilateral triangular lattice has a third-order rotational symmetry. A brief

introduction to rotational symmetry can be found in [76].

5.3 Plane Tiling for Subarrays

5.3.1 Tiling

In geometry, tiling or tessellation is the problem of finding a countable family of shapes

that can tile a plane without overlaps or gaps [77]. The closed set of tiles that can fill

the plane in such a fashion is described as

T = {T1 · · · , Tm, · · · TM} . (5.2)

Specifically, isohedral tiling allows only congruent tiles T1 · · · , Tm, · · · TM to populate

the array aperture. Congruent tiles are of the same shape but have been displaced or

rotated differently. The subarray outline is defined by the tile shape.
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Figure 5.1: Defining subarray tile as (a) a separate motif and (b) polygon outline, or
(c) as a combined complex structure.

There are two possible definitions of the subarray tile. The first definition is where

the subarray outline and the elements are defined separately. Subarray elements can

be defined as points on the Euclidean space forming a motif as shown in figure 5.1(a).

Then, the subarray outline is defined as a polygon as shown in figure 5.1(b). Both the

elements and the subarray outline are superimposed on each other to form the subarray.

The second definition is that the subarray tile is a complex shape that includes a

polygon outline and a point grid representing element locations in figure 5.1(c). Unlike

the closed tile which is only defined by its closed curve outline e.g. a polygon, a motif

can have any arbitrary shape [78].

The difference between these tile definitions is that, instead of using the combined

motif definition in figure 5.1(c), the array elements and the subarray outline are sep-

arated in 5.1(a) and 5.1(b), respectively, to simplify the geometric structure. The

separate definitions of the element lattice and the subarray outline make it geometri-

cally easier to transform and measure the motif which represents the element lattice,

and the motif outline which represents the subarray outline. The combined motif def-

inition is more difficult to transform and measure. For example, for a polygon with

v vertices, the rotational symmetry detection and order calculation requires v steps,

while complex combined motif requires v log v steps [79].
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Figure 5.2: cyclic groups classifications.

5.3.2 Design

Design is the arrangement of tiles, or the way tiles fit together to cover a Euclidean

plane. For an isohedral tiling, the design is the set of transformations applied to the

generating tile to fit to the plane T. The designis represented by the transformation

set {σ1, · · · , σM : T =
∑M

1 σmT0}. The tile T0 is the generating or base tile and it

is not necessarily part of the design. In other words, the mth tile can be obtained by

transforming the base tile using the mth transformation, i,e, Tm = σmT0. Designs can

be finite or infinite. Infinite designs are periodic [80], meaning that they can fill an

infinite plane by periodic repetition. If the repetition extends over one dimension, then

the pattern is called a frieze group. If it extends over the entire plane, then it is called

a wallpaper group. There are two distinct groups of wallpaper class, the cyclic group,

which is denoted as cn and dihedral group, which is denoted as dn where n denotes the

number of rotation angles. For example cyclic group with a second-order symmetry

is denoted c2. Cyclic symmetry group applies rotation and transition transformations

only. The dihedral group, also, includes reflection and glide reflection transformations.

Finite patterns are dihedral groups, meaning they always include reflection or glide

reflection. This research is only concerned with infinite cyclic groups because reflective

transformations are not applicable to subarrays due to their aperture being fixed to

one face. Figure 5.2 shows the hierarchy of cyclic groups. Finite designs can attain the

characteristics of other groups, hence left outside the hierarchy in figure 5.2.
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Figure 5.3: The four isometries, rotation, translation, reflection and glide reflection.

5.3.3 Tile Isometry

Isometry, also called rigid motion, is any transformation in Euclidean space σ : R2 → R2

that maps the tile T onto itself while preserving all distances [77]. Direct isometry

additionally preserves the orientation [80]. For any two polygons for example, if all

distances between vertices remain the same, then both tiles are said to be congruent.

The symmetry transformation T ′ = σT has four types, called symmetry groups or

isometry operations:

1. Rotation: A tile rotate around a centre of rotation O with angle θ. The number

of angles that tiles rotate within a design is called the order of rotation n and the

design is said to have n-fold order of rotation.

2. Translation is the displacement by a distance s in the Euclidean space.

3. Reflection is the 180o rotation around any axis line of reflection G that lies on

the tile Euclidean plane.

4. Glide reflection is the combination of reflection along the line G and translation

along a path parallel to G.

Figure 5.3 shows the four isometry operations on an asymmetric triangle. The first

two operations in figure 5.3 are direct isometries because they preserve the sequence of

vertices. The third and forth operations are called indirect or reflective.
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Table 5.1: Four-symbol notation of the International tables for Crystallography that
describes tiling design.

Symbol Value Description

1 p,c p = primitive used primitively without reflection on itself
c = centred tiles reflected along its edges prior to translation

2 1 ... 6 The order of rotation n

3 m , g , 1 m = reflection axis normal to x-axis
g = glide reflection axis normal to x-axis
1 = no reflective symmetries normal to x-axis

4 m , g , 1 m,g,1 = similar to the third symbol above but at an angle α
from x-axis, where α is a design rotation angle indicated in
symbol 2 above.

5.3.4 Notation

One of the most commonly used tessellation notations is the international tables for

crystallography [81]. This international notation has four symbols to describe the unit

cell and the design symmetries that are described in Table 5.1. It is common to omit

the last two symbols in Table 5.1 for non-reflective designs when the last two digits

in the notation are 1. If the tile order of rotational symmetry equals the design order

of rotation then the order of rotation n falls back to 1. For example if the hexagonal

tile in figure 5.4(b) is used in a p611 design, the tiles will rotate back to the original

shape. Making the design equivalent to p111. Notice that primitive designs p are

non-reflective. Figure 5.4 shows three examples of non-reflective designs.

5.3.5 Subarray Limitations

The choice of subarray outlinesis limited to convex polygons. A convex polygon has

reflex interior angles that are less than 180 degrees. Only rotation and translation can

be applied to subarray tiling when generating congruent tiles. Therefore, reflective

operation, reflection and slide reflection are not applicable to subarray tiles due to the

aperture orientation. Hence, only a limited number of patterns in the literature are

applicable to subarrays. These are identified by their notation pn11 for n = 2, 3, . . .

indicating non-reflective configuration. The parameter n is the tile’s order of rotation,

which is different from the design order of rotation L in Section 5.2.1 above, which is
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n=1 order rotational
symmetry of regular hexagon

p 1 1 1

n=2 rotational order symmetry
of isosceles right triangles

p 2 1 1 p 3 1 1

n=3 order rotational symmetry

of irregular quadrangle

(a) (b) (c)

Figure 5.4: Examples of non-reflective tiling: (a) a simple n = 2 rotational design with
rotationally asymmetric tile, (b) n = 1 design with 6-order rotationally symmetric tile
and (c) n = 3 design with rotationally asymmetric tile.

the number of angles by which the base tile T0 is rotated in a design. Non-rotational de-

signs, where n = 1 in p111, have regular or equilateral polygons with uniform subarray

spacing. These designs suffer from high grating lobes due to their rotational symmetry.

5.4 Tiling and Design Approach

There are three geometric aspects that affect grating lobes level and aperture efficiency

in tiled arrays. These are the elements distribution, the subarray shape and the de-

sign, which is the way subarrays fit together. This section investigates these factors

individually and introduces some performance measures.

5.4.1 Lattice Selection

The grating lobe locations follow the same pattern as the element lattice. The grating

lobes derived in Section 5.1 belong to a square lattice. Another common lattice distri-

bution is the Isosceles triangular lattice where every alternate row or column is shifted

by half the element spacing. The elements in the Isosceles triangular lattice are located

at x = nxd, y = nyd for odd nx and y = (ny − .5)d for even nx. Figure 5.5 shows the
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(a) Grating lobe locations in square lattice (b) Grating lobe locations in triangular lattice

Figure 5.5: Locations of grating lobes, shown as dots, and the visible region, shown as
a circle, for (a) square and (b) Isosceles triangular lattices.

square and Isosceles triangular lattice with the element spacing in x and y axes. The

array response of a planar array with a triangular lattice is

P (ω, θ, φ) =

Nx−1∑
nx=0

[ ∑
ny

2ny+1∈Z

w(nx, ny)e
−j[nx−Nx−1

2
,ny−

Ny−1

2
]ω
c
d∆k (5.3)

+
∑
ny

2ny∈Z

w(nx, ny)e
−j[nx−Nx−1

2
,ny−

Ny
2

]ω
c
d∆k
]
.

An important aspect to consider when choosing the lattice is the rotational sym-

metry of the lattice itself. A rectangular lattice has a second-order symmetry with

symmetry angles π and 2π. A square lattice has a forth-order symmetry at angles

π
2 , π,

3π
2 , 2π. The Isosceles triangular lattice described in figure 5.5 is rotational asym-

metric hence it has a first-order of symmetry at 2π. An equilateral triangular lattice

has a third-order rotational symmetry at angles q 2π
3 ∀ q = 1, 2, 3.. The rotational

symmetry order of any equilateral polygon equals the number of its vertices and its

symmetry angles are Ψlattice = p2π
v for p = 1, · · · , v where v is the number of vertices.

5.4.2 Tile Selection

All triangles and quadrilaterals can tile a plane [82]. But there are only 15 convex

pentagons and three hexagons that can tile a plane without gap or overlap [83]. The
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Table 5.2: Known convex isohedral polygons that can tile a plane.

polygon known isohedrals highest order of symmetry

triangular all 3

quadrilateral all 4

pentagonal 15 5

hexagonal 4 6

heptagonal&higher none > 6

most recent discovery in isohedral tiling is the 15th convex pentagon that can tile a

plane, by Mr and Mrs Mann [84] in 2015. There are no known convex polygons beyond

hexagons that can tile a plane. In fact, Ivan Niven [85] proved that there are no convex

n-gons with n≤ 7 that can tile a plane. Table 5.2 list the number of all known types of

convex polygons that can tile a plane. The ”highest symmetry” column indicates the

highest order of rotational symmetry of the regular polygon.

When choosing a tile, the base tile should have the lowest rotational symmetry

order possible. High rotational symmetry produces congruent tiles when the design

rotates at one of the tile symmetry angles. Regular polygons should be avoided since

they have the highest rotational symmetry order. The set of angles at which the base

tile is symmetric is noted Ψtile. The order of rotational symmetry of a polygon can be

obtained by finding the rotation angles that fulfills the congruency condition V·Rθ = V

where Rθ is the 2-D rotation matrix at angle θ, and V is the matrix of the vertices

location.

The internal space of the tile should be sufficiently wide to contain subarray hard-

ware and interconnections. This space can be characterized by the diameter of the

incircle, which is the largest circle contained inside the tile, i.e. cin ≥ αin, where cin is

the incircle diameter and αin is the minimum width to allow sufficient internal space.

5.4.3 Design Selection

The design is characterised by the set of transformations applied to the base tile to

populate the plane. For periodic designs, these transformations are finite and defined

by the closed set {σm ,m = 1, · · · ,M}, and create the design as T =
∑M

m=1 σmT1. The

set of rotation angles in the closed set σm, m = 1..M is {Ψdesign = ψl , l = 1, · · · , L}
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where L is the design order of rotation. An edge-to-edge tiling, also called isogonal, is

where tiles vertices only meet other vertices. For tiled subarrays, edge-to-edge tiling

provides a simpler structural frame and fewer joints between subarrays.

5.4.4 Survey of tiles suitable for array tiling

This section is a huristic attempt to create new array geometries based on properties

of existing results from the tilling literature. The 15 convex pentagons that can admit

isohedral tiling have been surveyed for suitability to antenna array by eliminating tiles

that have reflective designs, have low order of rotation or have high rotational symme-

try. Only pentagonal tiles are considered in the survey. Triangles and quadrangle are

ignored due to the large number of possibilities for isoedral tiling, and due to the fact

that higher order polygons have larger internal area, represented by the size of their

incircles. Hexagons are also ignored because there are no convex polygons above pen-

tagons that can admit an isohedral tiling higher than 3rd-order of rotation. Table 5.3

lists all known types of convex pentagons that admit an isohedral tiling. The pentagon

angles are designated by capital letter A-E sequenced in counter-clockwise rotation.

The pentagon edges are designated by small letters a-e sequenced in counter-clockwise

rotation. Figure 5.8 demonstrated a model pentagon for reference. Notice that the

i-block transitive in the third column is where the rotation order applies to i symmetric

tiles instead of one, where i is number of tiles (blocks) acting transitively on each other

as defined in [84].

From the review in table 5.3, type 1 and type 5 pentagons are possibly the most

suitable tiles for antenna array design. These two types of pentagons will be further

analysed for rotational symmetry, and instantiated to generate a new array designs in

sections 5.5 and 5.6

5.4.5 Aperture Efficiency

The effective area of an antenna is the ratio between the power captured by the antenna

to the total incident power [88]. Instead of calculating losses and power density, it is

more convenient to compare the aperture of a tiled array with that of a circular array.
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Table 5.3: Review of the 15 types of convex pentagons applicable for isohedral tiling.

Pentagon
type

definition highest
order of
rotation

design ref-
erence

comment

type 1 D+E=180◦ 6 [82] suitable for array tiling

type 2 C+E=180◦ , a=d 2 [82] low rotation order

type 3 A=C=D=120◦, a=b,
d=c+e

3 [80] high rot. symmetry

type 4 A=C=90◦, a=b, c=d 4 [80] high rot. symmetry

type 5 C=2A=90◦, a=b, c=d 6 [80] suitable for array tiling

type 6 C+E=90◦, A=2C,
a=b=e, c=d

1 [86] low rotation order

type 7 2B+C=360◦,
2D+A=360◦, a=b=c=d

2-block
transi-
tive

[86] reflective designs only

type 8 2A+B=360◦,
2D+C=360◦, a=b=c=d

2-block
transi-
tive

[86] reflective designs only

type 9 2E+B=360◦,
2D+C=360◦, a=b=c=d

2-block
transi-
tive

[87] reflective designs only

type 10 E=90◦, A+D=180◦, 2B-
D=180◦, 2C+D=360◦,
a=e=b+d

3-block
transi-
tive

[84] low rotation order

type 11 A=90◦, C+E=180◦,
2B+C=360◦, d=e=2a+c

2-block
transi-
tive

[87] reflective designs only

type 12 A=90◦, C+E=180◦,
2B+C=360◦, 2a=c+e=d

2-block
transi-
tive

[87] reflective designs only

type 13 A=C=90◦,
2B+D=2E+D=360◦,
c=d, 2c=e

2-block
transi-
tive

[87] reflective designs only

type 14 D=90◦, 2E+A=360◦,
A+C=180◦, b=c=2a=2d

2-block
transi-
tive

[84] reflective designs only

type 15 A=60◦, B=135◦,
C=105◦, D=90◦, E=150◦,
a=2b=2d=2e

2-block
transi-
tive

[84] reflective designs only

Aperture efficiency is measured here as

η =
Ktiled

Kcpa
, (5.4)
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which is the ratio between the number of elements of a tiled array Ktiled, to that

of a uniform circular array Kcpa, which has the same size as the circle enclosing the

tiled array, or excircle. The excircle ratio is directly proportional to the effective area

and hence the directivity. The circular array aperture size can be approximated as

Kcpa = π(D2d)2 where D is the circular array diameter.

5.4.6 Problem Formulation

Many combinations of tiles and designs can be found in the tessellation literature.

Alternatively, tiling can be synthesised through a geometric optimisation approach.

The geometric design can be obtained through an optimisation approach to find a

polygon that tiles a plane without gaps or overlaps. In addition to the tiling constraint,

the polygon is constrained to be rotationally asymmetric at lattice symmetry angles

Ψlattice or the design rotation angles Ψdesign. The optimisation problem

minimize
Vi

1

L
(5.5)

subject to

M∑
i=1

Conv(Vi) = Conv
( M∑
i=1

Vi
)

(no gaps)

Conv(Vi) ∩ Conv(Vj) = ∅, ∀ i 6= j (no overlaps)

(Ψtile ∩ Ψlattice) ∩ Ψdesign = ∅ (no alignments)

η ≤ 0.7 ≤ (70% aperture efficiency)

is an example of a subarray geometric design that minimizes the grating lobes level

by maximizing the design rotation angles, while avoiding rotational symmetry of the

tile or the lattice at these angles. The variable Vi , i = 1 · · ·M is the set of vertices of

the polygon tile Ti and Conv(
∑M

i=1 Vi) is the convex hull of all tiles vertices. Notice

that
∑M

i=1 Conv(Vi) excludes the area between the internal circle and the external circle

which is included in the convex hull defined by Conv(
∑M

i=1 Vi). Although the geometric

outline of the base tile is convex, finding a tiling design introduces concave constraints

to leaves no gaps or overlaps. The edge-to-edge alignment of the tiles, to avoid gaps

or overlaps, is external the convex tile outline, making it a non-convex constraint. The
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design rotation angles and the tile’s rotational symmetry constraint are transformation

operations and have no effect on the problem convexity. Due to the difficulty of solve

such optimisation problem, we will rely on the current literature to derive candidate

array structures. This chapter is a heuristic attempt to create new array geometries

based on properties of existing results from the tilling literature.

5.4.7 Symmetry Detection and Measurement

Section 5.2.1 pointed out that the base tile and the elements lattice should not be

rotationally symmetric at any of the design rotation angles. It is not always obvious

if a tile is rotationally symmetric and at what angles. But there are many algorithms

in computational geometry and image processing that can detect and compute an

image symmetry. For example, the scale-Invariant Feature Transform (SIFT) identifies

and describes features in an image, then matches pairs of symmetric features [89].

Gradient Vector Flow (GVF) is used in [90] to obtain the directional derivatives of

all points in an image to extract symmetric constellations. These methods can resolve

multiple symmetric features in an image but suffer from high computational complexity.

A simplified approach adapted from [76] is applied here to the subarray outline and

elements lattice to detect and measure rotational symmetry, which is comprised of the

following steps:

1. Locate the centre of rotation or centroid.

2. Apply frieze expansion around the centroid.

3. Obtain the autocorrelation to the frieze model.

When applied to subarray tiling, symmetry detection is tested on the base tile instead

of the entire design. Hence there is only one centre of rotation in the image. The base

tile is represented by its edges as a polygon. The centre of rotation C of a polygon is

its centroid [90] which is calculated as C = 1
v [
∑v

i=1 vx,
∑v

i=1 vy], where vx and vy are

the x and y components of the vertices location matrix V.

Frieze expansion is the transformation of the image from the Cartesian coordinates

to the polar domain around the centre of rotation. The frieze expansion of the polygon
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Figure 5.6: Autocorrelation of the frieze model of a square tile. The square tile is
rotationally symmetric at 90◦, 180◦, 270◦ and 360◦.

is

vr =
√

(vx − Cx1)2 + (vy − Cy1)2 (5.6)

vθ = tan−1((vy − Cy1)/(vx − Cx1)) ,

where 1 is a column vector of size v, and tan−1 is the four-quadrant inverse tangent.

Finally, the frieze model is correlated with a translated copy of itself to obtain the

autocorrelation function Ar(θ) = [vθ,vr]. Rotational symmetry exists if the autocor-

relation function has peaks other than Ar(0) and the symmetry angles are the location

of these peaks, i.e.

Ψtile = {θi , Ar(θi) = Ar(0)} . (5.7)

Figure 5.6 shows the autocorrelation of a frieze model of a simple square with

vertices at (0, 0), (0, 1), (1, 0) and (1, 1).

5.5 Design case 1: Rice Tile with a sixth-order Design

To demonstrate grating lobe suppression, we use the type 5 pentagon tile and design

introduced by Marjorie Rice [80] shown in figure 5.7. The tile is rotationally asymmetric
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Figure 5.7: A pentagon that can tile a plane without gaps or overlaps. The tile is
rotationally asymmetric, i.e. its rotated copies are not congruent to the original tile.
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Figure 5.8: Rotational symmetry analysis of the tile in figure 5.7. The tile is rotationally
asymmetric but have partial symmetry at 180o. (a) Frieze expansion of the tile edges
(b) Autocorrelation of the frieze expansion.

but has partial symmetry at 180 o rotation angle.

The array contains 18 subarrays with 50 elements each. The design has 6 rotation

angles L = 6. Hence, there are three subarrays sharing the same rotation angle.

Figure 5.9 shows 18 Rice’s subarrays tiled into a star-shaped aperture. The different

colours are to help distinguish subarrays. The tiled array is compared to a circular

planar array of the same number of elements and the same element spacing and lattice.

The red circle encloses all elements of the tiled array plus a margin of a half element

spacing. The blue circle is the size of a circular planar array containing the same

number of elements. The tiled array has an excircle diameter of 18.15d while the
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Figure 5.9: Tiled array constructed using 18 subarrays shaped like Rice’s tile. The red
circle encloses all tiled array elements, while the blue circle encloses the circular array
which have the same number of elements.

circular uniform array excircle is 16.88d. The grating lobes are shown for the circular

planar array in figure 5.10, and for the tiled array in figure 5.11. Grating lobes locations

in a triangular lattice have a triangular distribution. Both arrays follows the same

locations and distribution of grating lobes. However, the tiled array has lower grating

lobe levels and more dispersed gain around the grating lobe locations and on the lines

connecting these locations. Figure 5.12 shows the grating lobes of both arrays across

the horizontal dimension of the ∆k–axis where ∆k = k− k0 and k is the wavenumber

vector defined in (2.18).

The reduction in grating lobe levels is not significant because the 180o rotational

symmetry of the element lattice coincides with the design rotation angle of 180o. This

reduces the grating lobes limit to a third or -10.9dB. However the response shows an

additional -7.7dB grating lobe next to the expected -10.55dB grating lobe at ∆k =
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Figure 5.10: Grating lobes of the circular array containing 900 elements distributed
uniformly on a triangular lattice.

Table 5.4: Comparison summary between the tiled array and the uniform circular array
of design case 1.

property tiled array circular planar array

number of elements 900 900

diameter 18.15d 16.88d

grating lobe level -7.7dB 0dB

beamwidth 7◦ 7◦

directivity 31.08dBi 31.42dBi

±2π
d . This indicates that the array response at the minor grating lobes is not only the

contribution of the grating lobes from a subset of the subarrays, but also the sidelobes

of the remaining subarrays,

Table 5.4 summarizes the sizes and the beam pattern characteristics of the tiled

array and the benchmark circular planar array. By examining the tiled array response

in figure 5.11, the grating lobes formation is more dispersed than that of the uniform
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Figure 5.11: Grating lobes of the tiled array built using Rice’s tile. The array contain
900 elements distributed uniformly with triangular lattice.

circular array. There are also lines of high gain that connect the grating lobes. This

could be due to an interaction between the subarrays grating lobes and the random

subarrays spacing which slightly shifts the location of the subarray grating lobes without

changing the spacing between its peaks.

5.6 Design case 2: Equilateral Pentagon Subarray

The tiling concept for subarrays is further demonstrated using an aperiodic pattern

suggested by [82] based on a type 1 equilateral pentagon as described in [80]. Shown

in figure 5.13 is an equilateral pentagon that has interior angles of α = 140◦, β = 60◦,

γ = 160◦, δ = 80◦ and ε = 100◦ respectively. A type 1 equilateral pentagon has one

degree of freedom derived from the equality δ+ε = 180◦. The angle ε can take any value

between 60o and 120o. Beyond this range the polygon loose its convexity. This tile is

an opportunity to study the effect of design parameters, like the angles and the edges’

lengths, on the rotational symmetry. The rotational symmetry strength is represented

by the auto-correlation of the frieze transform. It is shown for this tile in figure 5.14
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Figure 5.12: Grating lobes along u-space for both arrays of example 1. The tiled array
have a lower grating lobe level at -7.7dB. The bandwidth shown in the graph is four
times wider than the bandwidth allowed by the element spacing.
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Figure 5.13: Type 1 equilateral pentagon with δ + ε = 180◦. Vertices A, B and C can
be moved along the circles while maintaining parallel sides AE and CD. ABC is an
equilateral triangle and ACDE is a rhombus.

for values of ε ranging from 90o to 120o. Varying ε from 90o to 60o is omitted because

it produces a reflection symmetry w.r.t. values from 90o to 120o. Figure 5.14 shows

that low rotational symmetry can be obtained forε + δ = 90o. This however may come

at the cost of the design’s rotation order. Also, many designs require a specific values

of ε such as the design used in design case 2. In figure 5.15, 18 pentagons of the type

102



Chapter 5. Rotationally Tiled Subarray

0.9

0.91

350

0.92

0.93

300

0.94

0.95

250A
ut

o-
co

rr
el

at
io

n 
of

 fr
ie

ze
 e

xp
an

si
on

0.96

0.97

200

Rotation angle (o)

110

0.98

150

0.99

 (o)

105

1

100 100
50 95

90

Figure 5.14: The rotational symmetry strength of the equilateral polygon in design
case 2 computed w.r.t to ε. Notice that at rotation angles 0o and 360o the tile does not
rotate hence rotational symmetry is a unit value.

shown in figure 5.13 construct an approximately circular array. Each subarray contains

42 array elements arranged on a square lattice, whereby the element spacing d is half

the wavelength at the operating frequency fc. Therefore, across the 18 subarrays the

total number of array elements is 756.

The tiled array requires a small separation between subarrays as seen in figure 5.15

to account for subarrays boundaries. Also, the tiled array circumference is a series of

straight edges that does not constitute a perfect circle. It can however be inscribed

in a circle of radius 15.62d. We compare the tiled array in figure 5.15 with a uniform

circular array having square elements lattice as shown in figure 5.16. Both the circular

array and the tiled array contain the same number of elements.

Due to the lack of internal subarray boundaries, the circular array is smaller in

diameter compared to the tiled array. The uniform circular array of figure 5.16 has a

15.51d radius vs. 15.62d for the tiled array, if both arrays are circumscribed by a circle.

Figure 5.17 demonstrates that spatial aliasing occurs when the uniform array op-
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Chapter 5. Rotationally Tiled Subarray

Figure 5.15: Tiled array constructed by rotation and displacement of 18 pentagon
subarray tiles each containing 42 sensor elements. The array is contained within an
outer circle of radius 15.62 d.

Figure 5.16: A uniform circular array containing 756 elements. Solid and dashed circles
circumscribe the uniform circular array and the tiled array, respectively. Notice how
the tiled array is slightly larger than the circular array.

erates beyond the maximum frequency where the element spacingis half the signal

wavelength. This leads to the grating lobes appearing at integer multiples of 2π
d in

both u and v directions, as shown in (2.21) for a uniformly spaced array.
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Figure 5.17: Grating lobes of the uniform circular array from design case 2.

Figure 5.18: Grating lobes of the tiled array of design case 2 showing the dispersion and
reduction of grating lobes compared to the circular array characterised in figure 5.17.
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Figure 5.19: Grating lobes along the u = sin θ domain of both the circular array in
blue dot-dash line, and the tiled array in red dashed line. The tiled array shows 20 dB
reduction in grating lobes.

By contrast, the gain response of the tiled array in figure 5.18 shows the destructive

superposition of subarray grating lobes. The distance between minor grating lobes

and the mainlobe is unchanged at 2π
d because the element spacing is the same across

subarrays. But the subarray rotation by the angles ψl in (5.1) causes grating lobes to

rotate by the same angles around the mainlobe.

To directly compare the two gain responses, a cross-section of the first component

of ∆k for both the uniform circular and proposed tiled array are shown in figure 5.19.

The graphs show the grating lobes of the uniform circular array with a periodicity of

2π
d and a level of 0dB. By contrast, the gain response of the proposed tiled array has

a reduced grating lobe level at -20dB. The mainlobe beamwidth is approximately the

same in both cases. Table 5.5 summarizes the comparison between the uniform circular

array in figure 5.16 and the proposed tiled array in figure 5.15.

As the analysis in Section 5.2 indicated, the grating lobes of the tiled array decreases

with the increase of design rotation angles. However, a high rotational symmetry of the

subarray or the element lattice may cause grating lobes from subarrays to coincide. The

tiled array response in figure 5.19 is suppressed by -20dB or to one-tenth of the mainlobe

level. This can be traced to the rotational symmetry of the square lattice w.r.t. 180◦,
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Table 5.5: Comparison summary between the tiled array and the uniform circular array
of design case 2.

property tiled array circular planar array

number of elements 756 756

diameter 15.62 d 15.51d

grating lobe level -20 dB 0 dB

beamwidth 7◦ 7◦

directivity 30.6 dBi 30.7 dBi

which is a design rotation angle at 3β = 180◦. The number of unique design rotation

angles in figure 5.15 is 9. This is due to the rotational symmetry of the square lattice

around 180◦ which is a design angle. Therefore grating lobe suppression is expected to

be around 1
9 . Table 5.5 shows that the grating lobes have reduced significantly while

the directivity and beamwidth are unaffected. This is expected because both directivity

and beamwidth depend only on the number of sensors and their separation only.

5.7 Conclusion

Previous chapters have dealt with the beamforming of uniformly spaced arrays. In

contrast, this chapter has proposed a novel planar array design that can reduce grating

lobesby rotational tiling without introducing randomness or variations in the elements

placement or the subarrays outline.

Utilising rotational tiling in array design can introduce variance in both subarray

phase centres and sensors locations. This variance results from the rotation and place-

ment of rotationally asymmetric subarrays into a pattern that leaves no gaps or over-

laps. Rotationally tiled subarrays can significantly reduce grating lobes by disrupting

the alignment of subarrays grating lobes. This potentially allows spacing the elements

further apart to avoid mutual coupling, or utilising fewer elements while maintaining

the same aperture size. Rotational tilling, however, increases the array size due to the

potentially irregular outer edges of the array and the clearance required for subarray

boundaries.

The tiling literature is rich in tile outline and design combinations that can tile a
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plane without gaps or overlaps. In this chapter, these combinations have been reviewed

and two tile outlines have been found to be most suitable for antenna array design.

Geometric tools and measures are introduced to assess symmetry alignments. The

grating lobes are calculated for an isohedral pentagon tile and design to demonstrate

the rotational tiling. Additionally, we have formulated the geometric design as an

optimisation problem that can be used to discover a tile and design combination that

can be tailored to specific requirements such as shape and density of the subarrays and

the outline of the overall array. However, the optimization of problem is found to be

difficult to solve due to the lack of convexity in the problem objective function and

constraints.

Finally, two cases of tiles from the literature are used for the subarray design. The

highest grating lobe of the first design case is -7.7dB below the main lobe which is higher

than the expected reduction of -9.5dB or 1
3 below main lobe. The grating lobes level

of the second design case is -20dB. This is close to the expected -19dB or 1
9 reduction

for a design with 9 unique rotation angles. The expectation of overall array grating

lobe levels are based on the subset of subarrays which coincide in their grating lobes

locations. Therefore, the difference between the calculated and the expected levels can

be due to the gain contribution of the rest of the subarrays.

Compared to a circular uniform array containing the same number of sensors, the

beamwidth and directivity of the tiled design in both case studies are nearly unaffected,

because the aperture and the number of elements are comparable.

The tiled array has the same directivity as a uniform array of the same size, but the

power that used to be in the grating lobes is re-distributed so that the grating lobes

of the subarrays do not necessarily add up constructively. Therefore, it is possible to

design arrays with an element spacing that is wider than half the wavelength of the

maximum frequency, be it to reduce cost or eliminate mutual coupling between sensor

elements, or to operate an existing array at a wider bandwidth without incurring spatial

ambiguity.

Grating lobe formation limits the bandwidth of uniformly spaced wideband arrays

buy limiting the maximum operable frequency [91]. The tiled array only addresses
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the grating lobe issue. When tiling is combined with the signal processing techniques

introduced in Chapter 3, the array bandwidth can approach that of a wideband array

with only M TDLs or TDUs instead of N , where M and N are the number of subarrays

and the number of elements respectively.
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Summary and Future Work

6.1 Summary

In this thesis, we have investigated wideband data-independent beamforming techniques

for partial wideband arrays. The general structure of the partial wideband array was

a linear or a planar array consisting of a plurality of subarrays. The array elements

are attached to a narrowband complex-valued weight consisting of a scalar multiplier

and a phase shifter. Subarrays can be virtually defined, as in section 4.2, or attached

to either time delay units, as in section 2.6, or fractional delay filters, as in chapters

3 and 4. The partial wideband array structure in this study gradually progressed in

complexity and sophistication from a linear array structure with narrowband optimized

weights at the look direction only in chapter 3, through an partial wideband array with

wideband mainlobes alignment and adaptive noise cancellation in chapter 4, to the full

structural design and integration of subarrays that suppresses grating lobes in chapter

5.

In chapter 2, we have prepared the background for the research by reviewing antenna

array geometries, architecture and pattern characteristics. We then presented wideband

beamforing and frequency-invariant components and reviewed wideband beamforming

techniques. Three ways to implement wideband beamforming on partial wideband ar-

rays were subsequently investigated, where location alignment, segregated subarrays

and phase separation were discussed. These approaches were applied using eigenfilter
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beamformers and evaluated against directivity, beamwidth, beam squinting and side-

lobe level. We concluded that applying wideband beamforming separately to individual

subarrays leads to higher gain and lower sidelobe levels compared to the other methods.

The bandwidth of all methods is approximately M times wider than the narrowband

array equivalent, where M is the number of subarrays.

In chapter 3, we investigated the use of fractional delay filters in delay-and-sum

beamformers. We have demonstrated, using a uniform linear array, that choosing the

median frequency of the band of interest for beam-steering does not always leads to

the flattest mainlobe response across the band. After that the fraction delay filter

was combined with the narrowband elements weights to minimize the variation of the

mainlobe response. This resulted in a flat mainlobe spectral response but with increased

sidelobe level.

In chapter 4, we have proposed tapering the element phase shifts of a partially

adaptive subarray to reduce beam squinting. The results showed that when combining

the FDF filtered subarrays outputs, the mainlobes are aligned toward the desired direc-

tion but with a slight deviation of the mainlobe around the subband transitions. Then

we investigated the signal decorrelation between subarrays when phase windowing is

applied to the overall array with a signed rectangular window. The subarrays outputs

showed a level of isolation between the spectral components of the signal. Building on

the subarrays isolation, a subband adaptive noise cancellation is proposed using the

subbands other than the those containing the desired signal in the subarrays outputs.

In chapter 5, we reviewed the tiling, as a field of geometric tessellation, and applied

the tilling concept to the subarray outline, the elements lattice and the integration into

the array aperture. The aim was to reduce the grating lobe level while maintaining

modularity and aperture efficiency. The problem was then formulated into a geomet-

ric optimisation problem that can be used to achieve specific requirements. However

the optimisation problem is modeled with a non-convex objective function and con-

strains, hence has been challenging to solve. A measure of the rotational symmetry of

tiles and tessellations was introduced, to identify the grating lobe distribution of arbi-

trary subarray shapes. This analysis was underpinned by two illustrative examples, in
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which, at a minimal cost to aperture efficiency, grating lobes were shown to be reduced

substantially.

6.2 Future work

The novel aspects of combining narrowband subarrays with wideband processing, as

well as the construction of tiled subarrays has opened several routes for further research.

Two of these appears particularly promising and are briefly discussed below. The

subband adaptive noise cancellation that follows a phase-tapered linear subarray from

Chapter 4, and the exploration of new tiles that can tile a finite aperture without gaps

or overlaps in Chapter 5.

Section 4.5.2 proposes a subband adaptive noise cancellation that benefits from

the cross-frequency signal isolation between subarrays outputs as demonstrated in Sec-

tion 4.4. The subband adaptive noise cancellation structure offers a wideband array

that offers flat wideband gain and noise rejection.

However, the proposed structure suffers from signal cancellation at some channels

due to high correlation between subarrays output and the subarray output intended

as the noise source. To be able to avoid signal cancellation, we suggest pursuing the

following treatments:

• Increase the phase window curvature by changing the window type or increasing

the truncation limits.

• Increase the number of subarrays. This increases the spatial channels and hence

improves the spectral decomposition of the subarray output.

• Create orthogonality between the subarrays by minimizing gain outside the sub-

array band while maintaining a unit response at the subarray frequency. This is

only required for the subarrays intended as noise sources. For example, the first

subarray gain P1(ω, θ) which is intended to cover the lowest subband centred at
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ω1 can be further processed to meet the condition:

minimize P1(ω, θ0) , ω ∈ [ωL ,
ωL + ωH

2
]

subject to P1(ω1, θ0) = 1 .

Likewise, the last subarray can have a similar condition on the lower half of the

frequency band.

Chapter 5 demonstrates rotational tiling using two examples found in the Geometry

literature. New subarray outlines and aperture designs, that minimizes grating lobes

while maintaining high elements density, can be found. The exploration efforts in the

field of Geometry are not concerned with increasing rotation order or with elements

distribution. A guided search in the field of antenna array design can lead to new

useful congruent tiles and designs for subarrays. Alternatively, Section 5.4 provides

a numerical optimisation guide and a tool for detecting and measuring congruency in

complex tiles that can be used to create new tiles and designs suitable for antenna

arrays.
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Appendix A

Graphs of Wideband

Beamforming Application on

Subarrays

This appendix lists the graphs where wideband eigenfilter beamforming is applied on

different subarray configurations in Section 2.6. These graphs are used to obtain Fig-

ures 2.13 to 2.17 and the subsequent conclusions. These graphs are the array responses

in angle versus frequency for three subarray structures and three subarray beamforming

methods.
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Figure A.1: linear array response using Eigenfilter beamformer using the three ap-
proaches on an array containing 4 subarrays each containing 8 elements. The angle of
arrival is 45o.
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Figure A.2: linear array response using Eigenfilter beamformer using the three ap-
proaches on an array containing 8 subarrays each containing 4 elements. The angle of
arrival is 45o.
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Figure A.3: linear array response using eigenfilter beamformer using the three ap-
proaches on an array containing 16 subarrays each containing 2 elements. The angle of
arrival is 45o.
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Appendix B

Phase-Windowed Linear Array

Response Derivations

This appendix shows the derivation of (4.9) which is the response of a linear array with

the generic Hamming window applied to its phase shifts. In the following, the array

response, as a result of a generic Hamming windowing is obtained by substituting the

generic Hamming window in (4.8) into (4.6).

P (ω, θ) =
h(k)√
K

K−1∑
k=0

e−j (k−K−1
2

) d
c

(ω sin θ−g(k)ω0 sin θ0) (B.1)

First, the exponent of (4.6) is expanded into four complex exponentials.

e−j (k−K−1
2

) d
c

(ω sin θ−g(k)ω0 sin θ0) (B.2)

=
e−j k

d
c
ω sin θ

ej k
d
c
Aω0 sin θ0ej k

d
c
B sin [π( k

K
+ 1

2K
)]ω0 sin θ0

ej
K−1

2
d
c
ω sin θ

e−j
K−1

2
d
c
Aω0 sin θ0e−j

K−1
2

d
c
B sin [π( k

K
+ 1

2K
)]ω0 sin θ0

(B.3)

The exponents are then collected into one complex exponential.

e−j (k−K−1
2

) d
c

(ω sin θ−g(k)ω0 sin θ0)

= e−j(2k+K+1) d
c

(ω sin θ+Aω0 sin θ0+Bω0 sin θ0 sin [π 2k+1
2K

]) (B.4)
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The resulting polynomial is substituted into Equation 4.6. The response of a linear

array with the generalized Hamming phase window is

P (ω, θ) =

K−1∑
k=0

h(k)√
K
e−j(2k+K+1) d

c
(ω sin θ+Aω0 sin θ0+Bω0 sin θ0 sin [π 2k+1

2K
]) . (B.5)
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Appendix C

Subarrays Isolation in a

Triangular-Windowed Array

This appendix shows the response of the two subarrays in the triangular-windowed

partial widenband array in Section 4.4.
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Figure C.1: The response of the lower band subarray (tuned at the reference frequency
ω0 − ωH−ωL

4 ) in response to a lower band signal, (a) real-valued and (b) imaginary-
valued.
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4 ) in response to a lower band signal, which is ωH−ωL
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frequency, (a) real-valued and (b) imaginary-valued.
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