
University of Strathclyde

Department of Mechanical & Aerospace Engineering

Computational Fluid Dynamics Study

of Erosion Processes

Alejandro López Garćıa

A thesis presented in fulfilment of the requirements

for the degree of Doctor of Philosophy

2017

Declaration of author’s rights

This thesis is the result of the author’s original research. It has been composed by the

author and has not been previously submitted for examination which has led to the

award of a degree.

The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50.

Due acknowledgement must always be made of the use of any material contained in, or

derived from, this thesis.

Alejandro López Garćıa

October 3, 2017

i

Abstract

A very large number of papers have been published on erosion for over 50 years. For the

first time, a series of geometry independent tools and methodologies have been devel-

oped to calculate erosion and its associated mesh deformation in any three dimensional

domain. The software used for development is verified first against the literature and

Ansys Fluent. An error was found in the implementation of the Lagrangian phase in

Fluent which was corrected in a later version. It is suspected that the error affects a

large number of CFD publications in which the Discrete Phase Model was used. An

experimental methodology and test-rig that is able to erode samples at mass concen-

trations ranging from 1% to 7% were developed and repeatability confirmed through

testing. Despite not being able to use the test-rig due to technical issues, erosion as-

sociated deformation was validated from the literature, confirming the appearance of

a new stagnation area as the wear scar deepens in the Jet Impingement Test. The

algorithm was also applied to centrifugal slurry pumps in combination with state of

the art erosion modeling and its results validated through visual inspection of eroded

models.

ii

Acknowledgements

First of all, I would like to thank my PhD supervisor Dr. Matthew Stickland for his

support and help from the start to the end and for his unmeasurable patience with me.

I would also like to thank my second supervisor Dr. William Dempster for his valuable

input and help throughout the PhD. I wouldn’t have had this opportunity if it wasn’t

for them.

I would also like to thank Prof. Donald Mackenzie and David Cunningham, who

sadly passed away, for their support and help, not only to me but to all the PhD

students in the Weir Advanced Research Centre.

I would also like to express my deep gratitude to The Weir Group for the funding

that has made this project possible and in particular to Dr. Luis Moscoso Lavagna

for his help as a Project Champion and Alan Bickley and Anthony Kinsella for their

support.

My special thanks are extended to all the colleagues in WARC and especially to

Athanasios, Georgios, Frazer and Aleksandar. Dr. Aldo Ianetti was especially helpful

and his advice was of great assistance to me during the project as well as making my

stay in Glasgow much more enjoyable.

I would like to offer my special thanks to my friend Dr. David Garcia for many

enjoyable discussions about our projects and lots of help throughout the years.

I would also like to thank my dear friends Arrate and Julio for their kindness and

help during my stay in Glasgow.

I would like o express my deep gratitude to my friends from Leeds for their help and

support and, in particular, Dr. Yahia Fouda for his advice and excellent suggestions.

I don’t think I will ever be able to thank my wife Nicole, my parents and family as

well as my friends back home enough for their support and help throughout my life.

iii

Publication list

Journal Papers

• CFD study of jet impingement test erosion using Ansys Fluent ®and OpenFoam

®. Lopez, A., Nicholls, W., Stickland, M. and Dempster, W. Dec 2015, Computer

Physics Communications. 197, p. 88-95 8 p.

• Modeling erosion in a centrifugal pump in an Eulerian-Lagrangian frame using

OpenFOAM ®. Lopez, A., Stickland, M. and Dempster, W. 24 Jul 2015, Open

Engineering. 5, 1, p. 274-279 6 p.

• Computational study of fluid flow changes with erosion. Lopez, A., Nicholls, W.,

Stickland, M. and Dempster, W. Computer Physics Communications. (under

review)

Conference Proceedings

• Comparative study different erosion models in an Eulerian-Lagrangian frame us-

ing Open Source software. Lopez, A., Stickland, M. and Dempster, W. 6 Oct

2014 12 p.

• Modelling erosion in a centrifugal pump in an Eulerian-Lagrangian frame using

OpenFOAM ®. Lopez, A., Stickland, M. and Dempster, W. 20 Oct 2014 9 p.

• A comparison of CFD software packages’ ability to model a submerged jet MacKen-

zie, A., Lopez, A., Ritos, K., Stickland, M. T. and Dempster, W. M. 7 Dec 2015

The 11th International Conference on CFD in the Minerals and Process Indus-

tries. Dickson, Australia, p. 1-4.

iv

• A combined Euler-Euler Euler-Lagrange slurry model. MacKenzie, A., Lopez,

A., Stickland, M. and Dempster, W. 27 Jun 2016 15 p.

Workshops

• Erosion modeling in OpenFOAM, Training Course. OpenFOAM Workshop 2016,

University of Minho, Guimaraes, Portugal. http://openfoam-extend.sourceforge.

net/OpenFOAM_Workshops/OFW11_2016_Guimaraes/courses.html

• Simulations with particles, using the Lagrangian method, Training Course. Open-

FOAM Workshop 2016, University of Minho, Guimaraes, Portugal. http://

openfoam-extend.sourceforge.net/OpenFOAM_Workshops/OFW11_2016_Guimaraes/

courses.html

• Predicting surface evolution in erosion processes with OpenFOAM ®A. Lopez,

OpenFOAM Workshop 2015, Ann Arbor, Michigan (USA) http://openfoam-extend.

sourceforge.net/OpenFOAM_Workshops/OFW10_2015_AnnArbor/?page_id=146

• Comparison of Jet Impingement Test CFD modeling using Ansys Fluent®and

OpenFOAM®Alejandro Lopez*, Matthew Stickland, William Dempster, William

Nicholls http://openfoam-extend.sourceforge.net/OpenFOAM_Workshops/OFW9_

2014_Zagreb/download.html

v

http://openfoam-extend.sourceforge.net/OpenFOAM_Workshops/OFW11_2016_Guimaraes/courses.html
http://openfoam-extend.sourceforge.net/OpenFOAM_Workshops/OFW11_2016_Guimaraes/courses.html
http://openfoam-extend.sourceforge.net/OpenFOAM_Workshops/OFW11_2016_Guimaraes/courses.html
http://openfoam-extend.sourceforge.net/OpenFOAM_Workshops/OFW11_2016_Guimaraes/courses.html
http://openfoam-extend.sourceforge.net/OpenFOAM_Workshops/OFW11_2016_Guimaraes/courses.html
http://openfoam-extend.sourceforge.net/OpenFOAM_Workshops/OFW10_2015_AnnArbor/?page_id=146
http://openfoam-extend.sourceforge.net/OpenFOAM_Workshops/OFW10_2015_AnnArbor/?page_id=146
http://openfoam-extend.sourceforge.net/OpenFOAM_Workshops/OFW9_2014_Zagreb/download.html
http://openfoam-extend.sourceforge.net/OpenFOAM_Workshops/OFW9_2014_Zagreb/download.html

Contents

Abstract ii

Acknowledgements iii

Publication List iv

Contents vi

List of figures xii

List of tables xx

Nomenclature xxi

1 Introduction 1

2 Literature Review 4

2.1 Factors affecting erosion . 4

2.1.1 Particles . 5

2.1.2 Characteristics of the surfaces involved 19

2.1.3 Carrier fluid . 23

2.2 Erosion prediction with CFD . 27

2.3 Aims and objectives . 29

3 Computational Fluid Dynamics in OpenFOAM 30

3.1 CFD in OpenFOAM . 30

3.2 Verification of OpenFOAM . 31

vi

CONTENTS vii

3.2.1 Introduction . 31

3.2.2 The Euler-Lagrange Approach 32

3.2.3 Simulation parameters . 34

3.2.4 Eulerian phase steady-state . 37

3.2.5 Discrete phase modeling . 40

3.2.6 Impingement conditions . 42

3.2.7 Erosion modeling in OpenFOAM 51

3.2.8 Conclusions . 52

4 CFD of Erosion Processes 54

4.1 Introduction . 54

4.2 Erosion field calculation in OpenFOAM 54

4.3 Mesh deformation in OpenFOAM . 61

4.3.1 Introduction . 61

4.3.2 erodedBoundaryCellList.C . 62

4.3.3 erosion.H . 66

4.4 Implementation of an additional erosion model in OpenFOAM 79

4.4.1 Introduction . 79

4.4.2 Implementation of an additional erosion model in OpenFOAM . 79

4.5 Patch interaction models . 84

4.5.1 Introduction . 84

4.5.2 Patch interaction models . 84

4.6 Patch post processing . 86

4.7 Turbulence model . 89

4.7.1 Dispersed phase transient simulation 89

4.8 Statistics of target impacts . 90

4.8.1 General case . 90

4.9 Implementation of Euler-Lagrange and dynamic mesh solver 94

5 Experimental work 96

5.1 Introduction . 96

5.2 Test rig design . 96

CONTENTS viii

5.2.1 Experimental configuration . 99

5.2.2 Simulation parameters . 101

5.3 Three Dimensional Scanning . 102

5.3.1 Alicona Infinite Focus IFM G4 102

5.4 Particle Image Velocimetry . 103

5.4.1 Principles of PIV . 103

5.4.2 Post-processing the PIV data . 105

6 Results discussion 112

6.1 Introduction . 112

6.2 Experimental results . 112

6.2.1 1.15% Concentration tests . 113

6.2.2 7% Concentration tests . 115

6.3 Test rig preliminary CFD simulations 115

6.4 Validation fluid flow changes due to wear scar 122

6.4.1 Introduction . 122

6.4.2 Methodology . 122

6.4.3 Influence of the rebound model 125

6.4.4 Validation of the 3-dimensional wear scar 125

6.4.5 Time-scaling . 138

6.5 Erosion calculation with a dynamic mesh solver 139

6.6 Three dimensional implementation of the Wear Map Method 142

6.6.1 Equation fitting . 143

6.6.2 Equation fit with 120 points . 146

6.6.3 Equation fit with 24 points . 151

6.6.4 Discussion . 155

6.7 Application to centrifugal pumps . 156

6.7.1 86 AH slurry pump volute . 156

6.7.2 150 WBH slurry pump impeller 161

6.8 Application to other cases . 168

7 Conclusions 169

CONTENTS ix

Appendices 171

A Facewise Average and Standard Deviation calculation 172

A.1 Procedure . 172

A.1.1 FacewiseStandardDeviation.C . 172

A.1.2 FacewiseStandardDeviation.H . 183

B Implementation of additional rebound models 190

B.1 Procedure . 190

B.1.1 StandardWallInteraction.C . 190

B.1.2 StandardWallInteraction.H . 201

B.1.3 PatchInteractionModel.C . 206

B.1.4 PatchInteractionModel.H . 213

B.1.5 LocalInteraction.C . 220

C Matlab Script for Scar comparison 235

C.1 Procedure . 235

C.2 Matlab Script for Scar comparison . 235

D LPT for Erosion Modelling in OpenFOAM 239

D.1 Introduction . 239

D.2 Report . 241

D.2.1 Theoretical Background . 242

D.2.2 Introduction . 242

D.2.3 Lagrangian Particle Tracking . 242

D.2.4 Erosion . 244

D.2.5 Implementation of LPT in OpenFOAM 245

D.2.6 Introduction . 245

D.2.7 SolidParticle Class . 245

D.2.8 The intermediate library . 246

D.2.9 KinematicParcel Class . 247

D.2.10 KinematicCloudProperties dictionary 248

D.2.11 Submodels . 251

CONTENTS x

D.2.12 Erosion modeling . 258

D.2.13 Implementation of Erosion Modelling in OpenFOAM 258

D.2.14 Templating in OpenFOAM . 262

D.2.15 Function Templates [104] [98] [62] 262

D.2.16 Class Templates [104] [98] [62] 264

D.2.17 Coupling of the kinematicCloud class and an incompressible solver265

D.2.18 Uncoupled Lagrangian Particle Tracking 265

D.2.19 Coupled Lagrangian Particle Tracking 275

D.2.20 Preprocessing . 280

D.2.21 Geometry definition . 280

D.2.22 The 0/ directory . 281

D.2.23 The constant/ directory . 282

D.2.24 The system/ directory . 283

D.2.25 Running the case . 284

D.2.26 Postprocessing . 284

D.2.27 Lagrangian Particles in Paraview 284

D.2.28 Results of Coupled and Uncoupled Simulations 285

D.2.29 Post-processing erosion in Paraview 3.12.0 285

D.2.30 Report Appendix 1 . 286

D.2.31 kinematicCloudProperties Dictionary 286

D.2.32 Report Appendix 2 . 295

D.2.33 blockMeshDict . 295

E Implementation of E-L solver with Dynamic meshing 299

E.1 introduction . 299

E.2 Implementation of an Euler-lagrange solver with Dynamic meshing in

OpenFOAM 2.2.x . 300

E.3 Implementation of an Euler-lagrange solver with Dynamic meshing in

OpenFOAM 2.3.x . 301

E.3.1 DPMErosionFOAM.C . 301

E.3.2 erosion.H . 308

CONTENTS xi

F Implementation of Gnanavelu’s methodology 312

F.1 Introduction . 312

F.2 gnanaveluErosion.C . 312

F.3 erosion.H . 315

G Average velocity field calculation 319

G.1 Introduction . 319

G.2 avgVelocity.C . 319

H Average truncated vorticity field calculation 324

H.1 Introduction . 324

H.2 avgTruncVorticity.C . 324

I Erosion calculation in a pump 333

I.1 Introduction . 333

I.2 pumpErosion.C . 333

J Mesh deformation with dynamic meshing 343

J.1 Introduction . 343

J.2 erodedBoundaryAdaptive.C . 343

J.3 erosion.H . 347

K Application to count the minimum number of impacts 350

K.1 Introduction . 350

K.2 ecountParticles.C . 350

References 355

List of figures

2.1 Velocity exponent n plotted against the ratio particle to target hardness

(
Hp
Ht

): (a) for the glass targets, (b) for the ceramic targets [19] 7

2.2 Influence of rotation on weight loss-angle relation. The assumed distri-

bution for the dimensionless parameter a = φ0r/U is also shown, where

φ0 is the rotational velocity, U is the particle velocity and r is the particle

radius. [13] . 8

2.3 Illustration of the contact between spinning spherical particles and a

target wall [20] . 8

2.4 Example of a particles with different shapes in a DEM simulation [29] . 12

2.5 Effect of an increase in particle concentration on different alloys [34] . . 13

2.6 Experimental data gathered in [41] and interpolated plots where τ is the

incubation time of fracture . 16

2.7 Erosion rate Vs. particle impingement angle for various sample temper-

atures (particle size, 451.5 µm; particle velocity, 183 m
s):

◦, 577◦C;4, 493◦C;5, 371◦C. (Left) and Erosion rate us. sample tem-

perature for various impingement angles (particle size, 451.5 µm; particle

velocity, 183 m
s (Right) [44]. 21

2.8 Velocity exponents for erosion data: normal incidence [17] 21

2.9 Effect of turbulence intensity on the wear of a ductile metal by 5 µm

particles (h = 0.41)in an air jet with Rej = 20000, H
d = 12 and

ρp
ρf

=

1709. Finnie’s [12] model was used to calculate the erosion [56] 24

xii

LIST OF FIGURES xiii

2.10 Variation in erosion rate Rt (x106 g
m2∗min) and collision efficiency of cylin-

drical steel targets 4.76 mm in diameter as a function of viscosity for 3

wt.% 75-106 µm Al2O3 suspensions in a slurry pot tester at 18.7 m
s [59] 27

2.11 Example of Wear Map obtained by Gnanavelu et al in [9] 28

2.12 CFD of target after 30 mins erosion showing appearance of new stagna-

tion point [60] . 28

3.1 Overview of OpenFOAM structure [62] 31

3.2 3D geometry used showing the location of the boundary conditions . . . 34

3.3 5mm JIT domain with the inlet boundary highlighted in red and dimen-

sions in mm . 35

3.4 25 mm JIT domain with the inlet boundary highlighted in red and di-

mensions in mm . 36

3.5 5 mm separation Steady state velocity contours comparison. Open-

FOAM(right) and Ansys Fluent . 38

3.6 25 mm separation Steady state velocity contours comparison. Units in

m/s . 38

3.7 Contours of the absolute differences for the 5 mm separation case 39

3.8 Contours of the absolute differences for the 25 mm separation case. Units

in m/s . 39

3.9 25 mm diameter cillindrical target subdivided into 1mm regions 43

3.10 Average particle velocities (ms) at impingement versus distance from the

centre of the target (m) in the two Fluent versions 44

3.11 Average impact angles at impingement (degrees) versus distance from

the centre of the target (m) in the two Fluent versions 45

3.12 Impact locations for the 5mm nozzle distance case obtained with Open-

Foam on the central part of the target 46

3.13 Impact locations for the 25mm nozzle distance case obtained with Open-

Foam on the whole target . 46

3.14 Fluent 15.0 Vs OpenFOAM 2.2.x particle velocities at impingement (ms)

for the 5 mm distance case . 48

LIST OF FIGURES xiv

3.15 Fluent 15.0 Vs OpenFOAM 2.2.x particle velocities at impingement (ms)

for the 25 mm distance case . 49

3.16 Fluent 15.0 Vs OpenFOAM 2.2.x angles at impingement (degrees) for

the 5 mm distance case . 50

3.17 Fluent 15.0 Vs OpenFOAM 2.2.x angles at impingement (degrees) for

the 25 mm distance case . 51

4.1 Different views of cube with manually set boundary values for erosion

(1a and 1b, non-zero values coloured in red), same values interpolated

with IDW (2a and 2b, red being the highest values; blue the lowest) and

deformation proportional to the interpolated values (3a and 3b. 76

4.2 Erosion contours in a flat cylindrical probe and the resulting deformed

geometry . 78

4.3 Erosion contours in a pipe bend and the resulting deformed geometry . 78

4.4 Representation of a circular domain divided in four faces, where N1, N2,

N3 and N4 are the sample sizes to be obtained for each of the faces . . . 91

4.5 Face-wise impact velocity average (ms) after 10 seconds with an escape

condition at the target’s boundary . 92

4.6 Face-wise impact velocity average (ms) after 10 seconds with Forder’s [16]

rebound model at the target’s boundary 92

4.7 Face-wise impact angle average (degrees) after 10 seconds with an escape

condition at the target’s boundary . 93

4.8 Face-wise impact angle average (ms) after 10 seconds with Forder’s [16]

rebound model at the target’s boundary 93

4.9 Face-wise impact number after 10 seconds with an escape condition at

the target’s boundary . 93

4.10 Face-wise impact number after 10 seconds with Forder’s [16] rebound

model at the target’s boundary . 94

5.1 3D printed plastic venturi for particle injection 98

5.2 Schematic of the venturi for particle injection 99

5.3 Design of the contraction before the nozzle (all dimensions in mm) . . . 100

LIST OF FIGURES xv

5.4 Velocity contours of the Jet Pump configuration obtained with Start

CCM+ . 100

5.5 Velocity vectors at the pipe inside the Jet Pump 101

5.6 Manufactured jet pump configuration 102

5.7 Modification of venturi to be adapted to a jet pump configuration (all

dimensions in mm) . 103

5.8 Jet pump design . 104

5.9 Nozzle configuration with sacrificial pump 106

5.10 Test rig with sacrificial pump, scale and stirrer 107

5.11 Schematic of test rig . 107

5.12 Cumulative siize distribution of the Frac Sand used for the experimental

work . 108

5.13 Profilometry for three different samples eroded under the same condi-

tions (1.15% sand concentration) for 15 minutes. Depth in µm and

horizontal axis in mm . 108

5.14 Profilometry for three different samples eroded under the same condi-

tions (7.2% sand concentration) for 15 minutes. Depth in µm and hori-

zontal axis in mm . 109

5.15 Wear scar obtained in a 15 minutes experiment with 7.2% sand concen-

tration . 109

5.16 Alicona Infinite Focus IFM G4 . 110

5.17 PIV setup schematics for a wind tunnel[80] 110

5.18 Contours of velocity magnitude (ms) obtained with PIVlab [83] 111

6.1 Contours of erosion and wear scar profile after 30 mins of experiment at

1.15% sand concentration. Depth in µm and horizontal axis in mm . . . 113

6.2 Contours of erosion and wear scar profile after 45 mins of experiment at

1.15% sand concentration. Depth in µm and horizontal axis in mm . . . 114

6.3 Contours of erosion and wear scar profile after 1 hour of experiment at

1.15% sand concentration. Depth in µm and horizontal axis in mm . . . 114

6.4 Contours of erosion and wear scar profile after 2 hours of experiment at

1.15% sand concentration. Depth in µm and horizontal axis in mm . . . 115

LIST OF FIGURES xvi

6.5 Contours of erosion and wear scar profile after 1 hour of experiment at

7% sand concentration. Depth in µm and horizontal axis in mm 115

6.6 Test rig steady state velocity contours(ms) 116

6.7 Test rig steady state velocity contours(ms) around the particle injection . 117

6.8 Test rig steady state velocity contours(ms) around the target 117

6.9 Test rig steady state pressure contours(Pa) 118

6.10 Test rig steady state pressure contours(Pa) around the target 118

6.11 Mean particle impact velocity (ms) on test rig’s target 119

6.12 Mean particle impact angle (degrees) on test rig’s target 119

6.13 Lagrangian particles coloured by velocity magnitude in the test rig do-

main and target coloured in blue . 120

6.14 Erosion contours at the targets surface showing the symmetry axes . . . 121

6.15 Erosion contours at the target’s surface showing the symmetry axes and

the mesh faces . 121

6.16 Contours of erosion per unit mass of impacting particles at 4 different

simulation times. From left to right and from top to bottom: 1, 4, 8 and

10 seconds . 123

6.17 Contours of erosion per unit mass of impacting particles at 0.5 and 10

seconds of simulation . 124

6.18 Comparison of the normalised erosion ratio over the radius of the probe

(mm) . 124

6.19 Contours of erosion per unit mass of impacting particles for the same

erosion model [84] and different rebound models. Forder et al [16] (left)

and OpenFOAM’s default rebound model (right) 125

6.20 Wear scar profile depth comparison (µm) along the radius (mm) for

different scaling factors . 126

6.21 Wear scar profile comparison with the experimental scars measured by

Nguyen et al in [60] . 127

6.22 Velocity contours of the uneroded geometry (ms) 127

6.23 Static pressure contours of the uneroded geometry(Pa) 128

6.24 Velocity contours of the eroded geometry (ms) for a scaling factor of 0.00349128

LIST OF FIGURES xvii

6.25 Static pressure contours of the eroded geometry(Pa) for a scaling factor

of 0.00349 . 129

6.26 Velocity (ms , left) and pressure contours (Pa, right) for scaling factor =

0.001976 . 130

6.27 Velocity (ms , left) and pressure contours (Pa, right) for scaling factor =

0.0027 . 131

6.28 Velocity (ms , left) and pressure contours (Pa, right) for scaling factor =

0.00349 . 132

6.29 Velocity (ms , left) and pressure contours (Pa, right) foscaling factor =

0.00428 . 133

6.30 Velocity (ms , left) and pressure contours (Pa, right) for scaling factor =

0.006585 . 134

6.31 Velocity (ms , left) and pressure contours (Pa, right) for all the scaling

factor = 0.02634 . 135

6.32 Surfaces obtained for all the scaling factors. From top to bottom and

left to right: 0.001976, 0.0027, 0.00349, 0.00428, 0.006585 and 0.02634 . 136

6.33 Pressure contours (Pa) at the surfaces for all the scaling factors. From

top to bottom and left to right: 0.001976, 0.0027, 0.00349, 0.00428,

0.006585 and 0.02634 . 137

6.34 Progressive mesh deformation and result of the dynamic meshing 140

6.35 Progressive mesh deformation results for the velocity contours 141

6.36 Progressive surface deformation with high damaging particles 142

6.37 Impact velocity average across the radius of the test sample in m
s 143

6.38 Impact angle average across the radius of the test sample in degrees . . 144

6.39 Velocity at impingement average in m
s 144

6.40 Impact angle average in degrees . 145

6.41 Wear scars after 5, 15 and 30 minutes of test [60] 145

6.42 Surface fitting for the wear scar and CFD case in [60] 147

6.43 Residuals after fitting . 147

6.44 Wear map for the wear scar and CFD case in [60] 148

6.45 Velocity contours in m
s . 148

LIST OF FIGURES xviii

6.46 Static pressure contours in Pa . 149

6.47 Static pressure contours in Pa showing the formation of a possible stag-

nation point . 149

6.48 Velocity contours in m
s . 150

6.49 Velocity contours in m
s for the edge of the wear scar 150

6.50 Static pressure contours in Pa at the target’s surface 151

6.51 Surface fitting for the wear scar and CFD case in [60] with 24 points . . 152

6.52 Residuals after fitting using 24 points 153

6.53 Wear map for the wear scar and CFD case in [60] fitted with 24 points . 153

6.54 Velocity contours and deformed surface in m
s 154

6.55 Static pressure contours in Pa and deformed surface showing no new

stagnation point . 154

6.56 Vorticity contours in s−1 at the surface of the eroded geometry truncated

to a value of 100000 . 155

6.57 Picture of 86AH centrifugal slurry pump’s mesh 156

6.58 Picture of 86AH centrifugal slurry pump’s steady state coloured by ve-

locity magnitude m
s . 157

6.59 Picture of 86AH centrifugal slurry pump’s volute 157

6.60 Picture of 86AH centrifugal slurry pump’s volute coloured by erosion ratio158

6.61 Picture of 86AH centrifugal slurry pump’s volute deformed according to

erosion . 158

6.62 Picture of 86AH centrifugal slurry pump’s volute deformed according to

erosion field with contours of erosion . 159

6.63 Top: 86AH centrifugal slurry pump’s volute operating with Impeller

WRT1, Middle:Picture of 86AH centrifugal slurry pump’s volute ob-

tained from worn unit operating with F6145WRT1 impeller and F6083

throatbush, Bottom: Computational volute wall deformed according to

erosion showing similar erosion pattern 160

6.64 Cross section of 150WBH pump showing the different parts 162

6.65 Picture of 150WBH centrifugal slurry pump showing uneroded impeller 162

6.66 Picture of 150WBH centrifugal slurry pump showing volute and wear disc163

LIST OF FIGURES xix

6.67 Picture of 150WBH centrifugal slurry pump front vanes scan before

(right) and after erosion (left) . 163

6.68 Picture of 150WBH centrifugal slurry pump impeller scan before and

after erosion . 164

6.69 Picture of 150WBH centrifugal slurry pump front vanes truncated vor-

ticity field . 164

6.70 Picture of 150WBH centrifugal slurry pump impeller truncated vorticity

field . 165

6.71 Picture of 150WBH centrifugal slurry pump impeller truncated vorticity

field . 165

6.72 Picture of 150WBH centrifugal slurry pump impeller before erosion de-

formation . 166

6.73 Picture of 150WBH centrifugal slurry pump eroded impeller according

to calculated erosion magnitude . 166

D.1 Predicted variation of volume removal with angle of impingement for a

single abrasive grain. Experimental points for erosion by many grains

(4 copper, � SAE I020 steel, ◦ aluminium) are plotted so that the

maximum erosion is the same in all cases. 245

D.2 Normal Distribution for Particle diameters between 150µm and 350µm . 256

D.3 Rosin-Rammlerl Distribution for Particle diameters between 150µm and

350µm . 257

D.4 Geometry of the pipe used for the tutorial case. 280

D.5 Check ”Skip Zero Time” box . 285

D.6 Check ”kinematicCloud-lagrangian” and any of the available lagrangian

fields . 286

D.7 Visualization of the particles in paraview 287

D.8 Erosion contours in paraview . 288

List of tables

2.1 Factors affecting erosion [10] . 4

2.2 Velocity exponents for erosion data: normal incidence [17] 6

2.3 Review of particle diameter and velocity exponents as shown in [18] . . 10

2.4 Particle density data [40] . 15

2.5 Parameters selected in erosion wear models [1] 19

3.1 Transient simulation features . 42

6.1 Results of the fit for 120 points . 146

6.2 Results of the fit for 24 points . 152

xx

Nomenclature

V velocity (ms)

Rep Particle Reynolds Number (-)

dp Particle diameter (m)

up Particle velocity (ms)

u Fluid velocity (ms)

Hp Particle Hardness (HB, HV, HRC...)

Ht Target material Hardness (HB, HV, HRC...)

CD Drag coefficient (-)

ρp Particle density (kg
m3)

τp Particle characteristic time (s)

µf Fluid’s dynamic visosity(N∗s
m2)

û Unitary surface normal vector (-)

u Surface normal vector (m2)

‖u‖ Modulus of surface normal vector (m2)

E(Pj) unknown values of the erosion field in location Pj (m)

E(Ci) values of the erosion field at the known locations(m)

λi weighting factors (-)

li inverse distance (1
m)

lit sum of inverse distances (1
m)

di distance from each face centre to each point (m)

Dj distance to be added to each of the boundary points (m)

P 1
i location of the new boundary points (m)

P 0
i initial location of the boundary points (m)

xxi

NOMENCLATURE xxii

Acronyms

ARCHIE-WeST Academic and Research Computer Hosting Industry

and Enterprise in the West of Scotland

CFD computational fluid dynamics

JIT Jet Impingement Test

Chapter 1

Introduction

Erosion is responsible, amongst others, for destroying a wide variety of equipment

and causing vast losses in all kinds of industries. For over 50 years, engineers have

been trying to understand the process and, as a result, a large number of scientific

papers have been published on this subject. Most of these authors have captured their

very own and specific ideas about the way erosion mechanisms work as well as the

equations to predict wear in a number of different geometries. Meng and Ludema [1]

carried out a broad literature review of more than 5000 papers dating from 1957 to

1992. In their article they identified 28 separate erosion models out of the almost

2000 existing empirical models, a fact which exemplifies the poor agreement between

authors on this subject. One of the few theories on which there seems to be some

kind of agreement describes two mechanisms acting together to produce the wear scar:

cutting and deformation wear. When particles hit the surface and they tear material

away with them in a cutting action, it is called cutting wear. This mechanism is the

predominant one for ductile materials and particles impinging at low angles of attack

with respect to the surface being eroded. Alternatively, several particles might impact

on the same place transferring some of their kinetic energy to the surface in the form

of hardening work [2]. According to this theory, in a given collision with the target

material, as soon as the particle contacts the surface, stress concentrations appear

as a result of the elastic deformation that takes place. If these stresses are not over

the elastic limit of the target material, and also leaving aside fatigue damage effects,

they should cause no deformation. However, if the elastic limit is reached, plastic

1

CHAPTER 1 INTRODUCTION 2

deformation will occur at the location of the maximum stress. The repeated impacts

then create a plastically deformed layer that will deform further upon repetition of the

particle collisions. This deformation causes hardening and increases the elastic limit in

that region turning the material harder and more brittle until it reaches a point where

it can no longer be plastically deformed. Eventually, upon further load, pieces of the

material’s surface separate from the target and are carried away by the fluid. This

hypothesis was studied by Davies in [3], and Van Riemsdijk and Bitter in [4] and then

adopted by several authors [2, 5–8]. This mechanism is called deformation wear and it

predominates for high angles of impingement and in brittle materials.

However, the final forms of the equations differ tremendously from each other.

This is due to the fact that the number of factors to be taken into account is very

large. An assessment of some of the variables mentioned in the literature yields more

than 20 different factors, of which many are susceptible of further subdivision. One

of the factors that has not yet been properly addressed is the effect on the fluid flow

that the erosion-modified surface has. The aim of this work is to develop a three

dimensional mesh deformation algorithm which, combined with a suitable mechanism

for subdividing the enlarged cells at the eroded boundaries, will enable computing how

the fluid flow changes with progressing erosion. The test chosen for both modelling

and validation is the Jet Impingement Test. Numerous works have been carried out

on erosion modelling of the jet impingement, giving as a result a number of different

formulae for calculating erosion induced by solid particles. These formulae serve as an

optimum starting point for calculating erosion contours which will be the precursor of

the deformation algorithm.

Numerical verification of the software used for erosion modelling (OpenFOAM ®)

will be carried out in a comparison of the averages of the particle impact variables

as previously outlined by Gnanavelu et al in [9]. A test rig will be developed and

implemented after this with the aim of validating the CFD results through Particle

Image Velocimetry. This technique allows comparing both particle trajectories for the

particles eroding the geometry as well as the contours of the fluid flow before and after

erosion.

Finally, additional cases of real eroded slurry pumps will be set up to test if the

CHAPTER 1 INTRODUCTION 3

deformation algorithm is able to capture erosion induced deformation in such complex

systems.

Chapter 2

Literature Review

2.1 Factors affecting erosion

When considering erosion induced by solid particles, factors affecting erosion may be

grouped under three categories [10], corresponding to the particles, the surfaces involved

in the process and the carrier fluid as shown in table 2.1.

For particles For surfaces For the carrier fluid

1 Impact and rebound angles 1 Physical properties 1 State of motion (laminar versus turbulent)
2 Impact and rebound speeds 2 Change in shape caused by erosion 2 Velocity
3 Rotation before and after impact 3 Stress level 3 Temperature
4 Shape and size 4 Temperature 4 Chemical composition and physical properties
5 Volume concentration 5 Presence of oxide (or other) coatings
6 Physical properties (hardness strength and density) 6 Simultaneous occurrence of corrosion
7 Fragmentation
8 Interactions (with surfaces, fluid or other particles)
9 Temperature
10 Presence of additives
11 Electrical charge

Table 2.1: Factors affecting erosion [10]

In this section, some of the factors in table 2.1 and their influence on the process

will be discussed. In many cases, individual factors may be considered in different ways

by different authors. Sometimes, even the same authors may add some new ideas or

factors that they hadn’t previously considered in the initial theory. Because each of

these authors have their very own approach to erosion, a variety of their opinions about

each of the factors will be highlighted.

4

CHAPTER 2 LITERATURE REVIEW 5

2.1.1 Particles

Impact and rebound angles

Dependency of the erosion rate on the impact and rebound angles varies significantly

between authors. Most of the equations have been developed empirically. From the

observations for each material, there seems to be an angle of impingement for which

erosion is maximum. In ductile materials, the angle of maximum erosion tends to be

small, while values closer to 90 degrees maximise erosion for brittle materials. The

difference in the angle with which the particle strikes makes it affect the surface in

a different way, either by ploughing and cutting, when the angles are smaller, or by

crack formation , fatigue and material extrusion when the angles are closer to normal

impingement [3, 6, 7, 11]. In the equations developed by some authors like Finnie

[12, 13] and Bitter [6, 7] the angle dependency in the erosion equation is derived from

a theoretical approach. Others like Gnanavelu et al [9, 14], develop empirical formulae

for the angle of impingement taking into account their experimental wear scar. The

rebound angle depends on a number of parameters; the size of the particle, surface

roughness, materials involved, density of the particulate phase and the fluid etc. There

are several models which attempt to represent the relationship between the normal and

tangential components of the velocity before and after impact like the ones developed

by Sommerfeld et al [15] and Forder et al. [16]. According to Humphrey [10], the

accuracy of mechanical methods in determining impact and rebound angles usually

decreases with increasing particle concentration and decreasing particle size.

Impact and rebound speeds

The main expression used in erosion prediction is equation 2.1:

wear rate ∝ V n (2.1)

Where the exponent of the impact velocity may vary depending on each author

and also on the methodology used in the experiments from which the equation was

derived. In general, the wear rate specifies the rate at which material is removed from

the surface or the rate at which dimensions change due to wear of the surface. The

CHAPTER 2 LITERATURE REVIEW 6

units used in the definition of the wear rate may differ depending on the dimensional

analysis of the parameters used in its calculation. A set of velocity exponents was

gathered by Wiederhorn et al [17] and is shown in table 2.2. Sheldon and Kanhere

also made a survey [18] and found different exponents in the erosion equation for both

diameter and particle velocity. These exponents are represented in table 2.2. Bitter

[6] also postulated that when very high velocities are taken into account (2000 m
s and

dry solid particle erosion) different phenomena appear such as enlarged craters several

times bigger than the particle along with large heat effects due to the collision.

Target Material Erosion particles Exponent
Soda-lime-silica glass SiC, 120 gritt 3.0

MgO (96.5%) SiC, 120 gritt 2.7
Al2O3 (99.5%) SiC, 120 gritt 2.7

Pyrex glass Al2O3 30µm 10µm 2.2 2.7
Hot pressed Si3N4 SiC 8µm to 940µm 4.0

Silicon Al2O3 23µm to 270µm 3.4 to 2.6 depending on particle size
Reaction bonded SiC Al2O3 130µm 270µm 2.3 to 2.0

Hot pressed SiC (96.5%) Al2O3 130µm 270µm 1.8 1.5

Table 2.2: Velocity exponents for erosion data: normal incidence [17]

Shipway and Hutchings [19] investigated the effect of the ratio of particle to target

hardness on the velocity exponent and illustrated the results in figure 2.1

CHAPTER 2 LITERATURE REVIEW 7

Figure 2.1: Velocity exponent n plotted against the ratio particle to
target hardness (

Hp

Ht
): (a) for the glass targets, (b) for the ceramic

targets [19]

In the table, values for the exponent ranging from around 2.2 up to 4.7 can be

found, exemplifying its variability and its dependence on the properties of the particle

and target materials.

Rotation before and after impact

One of the first formulae for calculating wear was proposed by Finnie [12]. However,

results are not accurate when angles close to normal incidence are considered. In order

to have a better representation of what he found in his experiments, Finnie published

a second article a few years later [13] in which he incorporated other factors such as

particle rotation at impingement. A rotational component to the particle movement is

CHAPTER 2 LITERATURE REVIEW 8

incorporated through a hypothetical omega distribution and it’s effect is illustrated on

figure 2.2, which represents the weight loss against angle of impingement.

Figure 2.2: Influence of rotation on weight loss-angle relation. The
assumed distribution for the dimensionless parameter a = φ0r/U is also
shown, where φ0 is the rotational velocity, U is the particle velocity and
r is the particle radius. [13]

Bingley et al investigated the effect of particle rotation on the erosion rate of metals

in [20]. From their experiments they concluded that higher erosion rates are expected

when the impinging particles have back-spin (see figure 2.3) and the difference was more

significant at low impact angles, when the cutting wear mechanism is of importance.

Figure 2.3: Illustration of the contact between spinning spherical
particles and a target wall [20]

As Bingley et al stated in [21], there is not much work carried out on the influence

of particle rotation on erosion, although it’s effect has been repeatedly acknowledged.

One of the problems is the difficulty in the measurement of particle rotation when the

particles are very small. Thus, most research on particle rotation has been carried out

for relatively big sized particles or theoretical modelling [13]. The effect of rotation

CHAPTER 2 LITERATURE REVIEW 9

becomes more important in rotating flows such as centrifugal erosion testers [21] and

centrifugal pumps. Finnie [13] suggested that its effect may be accounted for by intro-

ducing particle rotation by means of a statistical distribution. He analysed the effect

of this distribution on the theoretical erosion of metals, obtaining higher rates when

particle rotation was considered. It should be possible to estimate particle rotation

velocities with high speed photography. However, even then, it will still be difficult to

determine how this variable influences the erosion rate. One of the tests that has been

most commonly used in previous studies is the Jet Impingement Test (JIT). Particle

rotation may also be of importance in this test. In fact, as the particles impinge on

the target, they might do it with back spin, since, in the region outside the stagnation

point, the fluid layers are traveling faster as they get closer to the surface, generat-

ing vorticity and, consequently, particle rotation. With the development of Molecular

Dynamics theory [22], an in depth study of how rotation affects the erosion rate is

now possible. A suitable starting point would be simulating particles with and without

rotation in order to obtain a quantifiable difference in the amount of material eroded.

Apart from this, particle rotation may also notoriously affect its trajectory when

the Magnus force (the force caused by particle rotation inside a viscous flow that acts

orthogonally to the particles movement direction) is strong enough. In the cases treated

in this thesis the effect of this force is considered to be included with the incorporation

of turbulent dispersion to the particles. It can be said that the variations in the impact

location that would be induced by the Magnus force due to the rotation of the par-

ticles (random a priori) inside the viscous fluid (a rotation induced by the fluid shear

stresses) are successfully represented by the turbulent dispersion term that provides

the randomness to the simulation that the real impacts would have.

Shape and size

Regarding the size of the erodent, the exponent of the diameter of the particles also

changes significantly with each author and experimental procedure, as shown in table

2.3. Regarding particle trajectories, in a submerged jet, these are going to be strongly

dependent on the particle size, as well as the jet velocity at the nozzle exit, as pointed

out by Benchaita et al in [23]. Assuming the same density, if the volume is increased,

CHAPTER 2 LITERATURE REVIEW 10

particles will follow the flow less faithfully. In their article, Benchaita et al refer to a

size of the particle (dp > 2000µm) for which the buoyancy force will probably be larger

than the drag force on the particle. The outcome of this is that the particles will hit the

target at approximately the same impact angle as the jet. When the opposite is true,

i.e. the particles are smaller than a certain size (dp < 200µm was the critical diameter

in Benchaita’s study), they will tend to follow the flow. Having, as a consequence, less

impacts on the target since some of the particles will escape the area without interacting

with it. In the JIT the number of impacts on the target will also depend on the distance

between the exit of the jet and the target as outlined by Lopez et al in [24]. Sheldon

and Kanhere carried out a literature review in [18] and confirmed this disparity. They

assumed the equation used to calculate wear produced by single particles has the form

of equation 2.2 and found different exponents for both diameter and velocity depending

on materials and type of experimental procedure.

wear rate = K ∗ V a ∗Db (2.2)

Test type Impact angle a b
Air blast, 60 mesh, SiC grit on steel, Cu, Al 20◦ 2.36 -
Air blast, 180 mesh, SiC grit on steel 20◦ 2.36-2.69 -
Air blast, SiC > 100µm on steel, Cu, Al 30◦ 3.0 -
Air blast, 60 mesh, SiC on many metals 20◦ 2.05-2.44 2
Air blast, 60 mesh, SiC > 100µm on Aluminium 20◦ - 3.0*
Air blast, 60 mesh, SiC grit on Al, Cu, steel 20◦ 2.9 3.0
Whirling arm, quartz grit > 125µm on 11% Cr-steel aluminium, etc. 90◦ 2.3 3.0*
Whirling arm, 125− 150µm glass shot on Aluminium 90◦ 2.4 -
*As inferred from the independence of erosion weight loss,
per unit weight of abrasive particles (mg/g) on abrasive particle size.

Table 2.3: Review of particle diameter and velocity exponents as shown in [18]

According to the literature survey made by Zhong and Minemura in [25], wear

increases with increasing particle size. However, there seems to be a critical size (repre-

sented by the diameter of the particle dp for which the rate at which the wear changes

will depend on the elastic and plastic properties of the material being eroded. Finnie

also investigated the effect of particle size in [13]. In this study he located the value

of the critical size around 100µm stating that the erosion rate becomes independent

of particle size when this number is reached. He also found erosion to be less and less

efficient as the particles become smaller. Some of the explanations he offered as an

CHAPTER 2 LITERATURE REVIEW 11

attempt to explain this behaviour relate to particle fragmentation when their size is

bigger, grain size of the metal being eroded or an oxidized layer of the eroded surface.

Regarding the shape of the abrasive, in general, the rate at which the material is being

eroded increases with particle sharpness [26]. The typical variable used to describe the

sphericity of the abrasive is the particle roundness. A sphere would have a roundness

value of 1, while very sharp and angular abrasives have typical roundness values which

range from 0.25 to 0.40 [27]. Some authors like Oka et al [28] reported some effect of

the angularity of the particles on the erosion rate, not affecting however the impact an-

gle dependence. Jennings et al [27] tested three different abrasives with three different

shapes; one spherical and two angular. In their experiments they noted that at low ve-

locities, the difference between the erosion rate produced by the angular and spherical

particles was much higher than at high velocities. This difference became much smaller

at high velocities, with the erosion rate of the angular particles not increasing signifi-

cantly. According to them, this meant that the erosion rate for the spherical particles

drastically increases when moving from low to high velocities. In CFD, the simplest

way of modelling particles with different shapes is by adding a roundness factor to

the drag in Lagrangian simulations which has a value between 0 and 1. This factor is

usually calculated as a ratio involving the perimeter of the particle and it’s projected

area (P 2

4πA , where P is the perimeter and A is the projected area of the particle [11]).

DEM (Discrete Element modelling) simulations enable modelling of particles made up

of spheres of different sizes which are able to mimic very different shapes, as shown in

figure 2.4.

CHAPTER 2 LITERATURE REVIEW 12

Figure 2.4: Example of a particles with different shapes in a DEM
simulation [29]

Volume concentration

The effect of particle concentration has been repeatedly studied [5, 20, 30–34]. Mea-

surements confirm that the erosion rate increases with an increment in the particle

concentration. However, differences in the properties of the target materials, the range

of concentrations, particle properties, sizes and even the carrier fluid make it difficult

to extract definitive conclusions. Grant and Tabakoff’s tests [5] on 2024 Aluminium

with 80 µm Alumina particles at an angle of impingement of 30 degrees showed almost

no variation in the erosion rate with concentration (0.328 to 1.312 kg
m3) when the test

velocity was 140.208 m
s and 164.592 m

s) using air as the carrier fluid. Similar results

were obtained by Sage and Tilly in [35] for sand (15-35 µm and 125-135 µm) eroding

a titanium alloy at airspeeds of 243.84 m
s and 335.28 m

s , concluding that concentra-

tion effects made no sensible difference. When included in empirical formulae, different

coefficients for a power-law relationship have been proposed, being between 0.5 and

1.0 [31]. Stack et al studied the erosion-corrosion of pure metals with varying con-

centration of particles.Their investigation proved higher erosion-corrosion rates with

increasing concentration. As the concentration increases so does the frequency of par-

ticle interactions. This influences the kinetic energy of the particles when they reach

the target, but not the impact frequency [30]. Patil et al [32] measured in their alu-

CHAPTER 2 LITERATURE REVIEW 13

minium samples a non-linear increase of the erosion rate with concentration of 505 µm

sand particles when concentration is increased from 20% to 40%. However, Rajahram

et al [33] measured a linear increase in the mass loss when the concentration of sand

particles was increased from 1% to 5%. Erosion, synergy (explained in Section 2.1.2)

and erosion-corrosion also follow linear trends in the austenitic stainless steel tested.

In a recent study, Bart et al [34] showed how erosion rate changed when concentration

was increased from 2% to 3.5%, as shown in figure 2.5

Figure 2.5: Effect of an increase in particle concentration on different
alloys [34]

In general, if particle concentration is increased, for the same experimental set up,

a higher number of particles will impact the target material thus showing an increase

in the erosion rate [34]. It has also been reported [20] that concentration effects on

the erosion rate might also depend on particle shape. Bingley et al investigated this

effect for low and high particle concentrations. Erosion rate decreases when the angle

of impingement is increased in all cases. But, for the same impingement angle, tests

with high and low concentrations seem inconclusive. The explanation offered in this

case relates to a ’shielding effect’ by which the particles rebounding from the target

walls protect the target from further impacts. However, the same observation can’t be

confirmed for spherical particles. For this reason, in their study, Bingley et al attribute

the effect to an increase in particle collisions which would reduce the amount of spin

the particles may have thus reducing the erosion rate.

CHAPTER 2 LITERATURE REVIEW 14

Physical properties

The extensive literature review carried out by Meng and Ludema in [1] in which the

most important and frequently used equations for erosion prediction are listed, serves

as a valuable tool to analyse which physical properties are considered in the different

models. The physical properties gathered by Meng and Ludema include the density,

hardness, roundness, size (discussed in section 2.1.1)and moment of inertia of the par-

ticles. One of the first authors to investigate the effect of the physical properties of the

abrasive was Finnie in [12]. Amongst the properties considered were shape (discussed

in section 2.1.1), hardness and strength. In general, the harder the abrasive, the higher

the erosion rate [26]. However, Head et al [36] reported fluorite particles (Moh’s hard-

ness=4.0) being more erosive than alumina particles (Moh’s hardness=9.0). Mason et

al [37] stated that the angle for which maximum erosion occurs is not dependent upon

particle shape. It was also reported that if the surface is softer than the particle, an

increase in particle hardness would not impact the erosion rate significantly. Particle

hardness is actually the most widely used property to define erosion rates for different

materials [38]. Bitter’s model [6] assumes the surface is deformed plastically only if the

particles are harder than the surface and provided that they don’t disintegrate upon

impact. Shipway and Hutchings studied the erosion mechanisms of some brittle ma-

terials [19] and concluded that fracture induced by indentation was the predominant

mechanism when the particles were harder than the target material. If the particles

were softer than the target material a small-scale chipping mechanism would domi-

nate erosion. They analysed some of the existing erosion models for brittle materials

and stated that deviations occur depending on the ratio of particle hardness to target

material hardness. If it was close to unity the velocity exponent increased while the

erosion rate decreased. The transition in the erosion rates when this ratio reaches the

value of unity had previously been noted by Srinivasan and Scattergood when studying

the effect of erodent hardness on the erosion of brittle materials in [39]. Regarding

particle density, Clark investigated its effect in [40]. He argued that, under the same

test conditions, higher density particles will impact the target with higher velocities

and will show higher collision efficiency: effects which are related to the drag force

exerted by the surrounding fluid. Table 2.4 shows correspondence between predicted

CHAPTER 2 LITERATURE REVIEW 15

and experimental velocities for particles with different densities.

Material Density (kg
m3) Mean particle Mean crater Experimental impact Predicted impact

diameter (µm) diameter (µm) velocity (m
s) νIexpt.

velocity (m
s) νI(18.7)

Glass 2420 666 103.5 8.5 11.14
Zirconium Oxide 3810 629 118.2 9.5 13.29
High density 5320 538 114.4 10.6 14.41
zirconium oxide 5320 580 122.7 10.9 14.49
Steel 7830 701 170.8 14.15 15.78

Table 2.4: Particle density data [40]

Fragmentation

Particle fragmentation upon impact with the sample might affect erosion producing

what has been named secondary erosion. However, reviewing the literature, in most

of the references that consider particle fragmentation the particle velocity is over 100

m/s. In the present case, the velocity magnitude is in the range of a tenth of that

value. Thus, fragmentation should not affect the particles at such a low velocity. In

[41] fragmentation specific energy and the threshold velocity are analysed for spherical

particles at normal incidence. The experimental data gathered allowed Gorbushin and

Petrov to conclude that there is a threshold value in the energy below which there is

no fracture. According to their experimental data there should be no fragmentation

at all when the velocity is kept under 20 m/s and, with particles smaller than 500

µm, fragmentation would definitely not be expected. Figure 2.6 illustrates the data

gathered in the experiments in [41] and the interpolated curves obtained.

CHAPTER 2 LITERATURE REVIEW 16

Figure 2.6: Experimental data gathered in [41] and interpolated plots
where τ is the incubation time of fracture

Interactions (with surfaces, fluid or other particles)

When dealing with the movement of a group of particles inside a fluid there are basically

two different ways to approach the problem. The first method is the Eulerian-Eulerian

CHAPTER 2 LITERATURE REVIEW 17

approach and it is suitable for medium to large particle concentrations. In this kind of

simulation both particle-particle interactions and the influence of the particles on the

fluid phase are important. One of the limitations of this methodology is in its applica-

tion when large particle size distributions need to be simulated. Additional continuity

and momentum equations have to be implemented for each of the simulated particle

sizes. Inclusion of these additional equations increases the complexity of the simulation

considerably [42]. On the other hand, in the Eulerian-Lagrangian approach, the Eule-

rian continuum equations are solved for the fluid phase, while Newton’s equations for

motion are solved for the particulate phase in order to determine the trajectories of the

particles [43]. There are three different possibilities when constructing the equations

that will define the motion of the particles inside the fluid phase. These are outlined

by Lopez et al in [43]:

• One way coupling: The influence that the particles exert on the fluid phase is

neglected. This approach is suitable for low particle concentrations.

• Two way coupling: This methodology implies that the force the particles exert

on the fluid is no longer neglected and a new term is incorporated into the fluid’s

equations to account for this.

• Four way coupling: In this case also particle-particle interactions are taken into

account.

A third approach is the Drift-flux model or algebraic slip. In this methodology, the

Eulerian equations are solved for a single fluid phase with variable density depending on

the local particle concentration summed across all particle sizes. This makes the fluid

density equivalent to the slurry density. The forces and distribution of the particles

are obtained by solving a single scalar transport equation for the volume fraction of

each particle size. It has an obvious advantage with respect to the computational time

compared to the previous two approaches if the particle concentration is high enough

and multiple particle sizes are present [42].

Finally, the Discrete Element Method (DEM) treats the particles individually and

provides dynamic information on particle interactions with fluid, walls and other parti-

cles and is therefore a potential candidate for erosion studies. In this case the fluid flow

CHAPTER 2 LITERATURE REVIEW 18

would be modeled as a continuous phase using CFD and the particles would be mod-

eled as a discrete phase with the DEM method. This has been called the CFD-DEM

approach. In DEM Newton’s laws of motion are solved for each particle individually

and, as an example, collisions between particles are modeled with the aid of a spring

to represent the rebound and a damper to account for deformation upon impact.

Temperature

Although most studies are run under ambient temperature conditions, some authors

have studied erosion under higher temperatures ([17], [44]). Two of these studies are

briefly commented on in section 2.1.2. In these articles the whole system is subjected to

high temperatures. However, if only the abrasive’s temperature were to be increased in

dry solid particle impingement, more pronounced temperature effects such as melting

of the target upon impact should be expected. Changes in the hardness and properties

of the abrasive itself along with changes in the material properties after several impacts

due to heat transfer phenomena between the abrasive and the target material are also

likely to occur. In a submerged jet, if the temperature of the abrasive were higher,

most of it would be expected to dissipate before reaching the target, thus making the

increase in temperature less noticeable in the target. However, if the heat transfer was

high enough as a result of a high concentration of particles for example, it could have

an effect on the fluid properties such as viscosity or even on the target material.

Presence of additives

Addition of certain additives to lubricating oils can reduce erosion-corrosion between

different parts in contact [45]. In the case of solid particle erosion the use of additives

can change the physical properties of the fluid along with its behaviour. This may

potentially increase or decrease the wear rates or even change the location of the max-

imum wear rate. Ilmar and Priit [46] indicated that the content of water in sand-water

mixtures can abruptly change the erosive behaviour of the slurry by increasing it in

both metals and non-metallic materials. They also mentioned that often, the increase

of the wear rate can not be explained solely by the additional effect of corrosion. They

presented research studies in [46] confirming that adding a non-corrosive liquid such as

CHAPTER 2 LITERATURE REVIEW 19

Kerosene will considerably increase the wear rate.

Electrical charge

Cathodic protection is a well known technique which consists of applying an external

electric charge in order to reduce corrosion and eliminate its synergystic effect when

combined with erosion. Application of an external electric charge can reduce corrosion

to almost zero. One way of doing this is connecting the target material with a more

active metal. This second metal provides the first one with a constant flow of electrons,

thus acting as an anode and the target as the cathode. The target is then protected

against corrosion while the anode is sacrificed. This is why this technique is called

cathodic protection with sacrificial anode. The second method consists of using an

inert anode and applying a direct current between the anode and the target material

[47].

2.1.2 Characteristics of the surfaces involved

Physical properties

In [1] Meng and Ludema presented a table citing the variables contained in the 28

models that they separated for special study and applicable for erosion by solid particle

impingement. Of these variables, the ones that represent physical properties of the

target material are shown in table 2.5.

1 Density
2 Hardness
3 Flow stress
4 Young’s modulus
5 Fracture toughness
6 Critical strain
7 Thermal conductivity
8 Melting temperature
9 Enthalpy of melting
10 Heat capacity

Table 2.5: Parameters selected in erosion wear models [1]

Analysing the 28 equations highlighted by Meng and Ludema in [1], material density

is only included in a small number of formulae, its exponent ranging between the values

of 1
3 in the equation used by Jennings et al in [27] and 2 in the one by Lhymn and Wapner

CHAPTER 2 LITERATURE REVIEW 20

in [48]. More complicated expressions for erosion involving the material’s density can

be found in [49–51]and [52].

Hardness of the target material has been considered largely in the literature and it

presents itself as one of the most important factors when calculating erosion by solid

particle impingement. Brittle and ductile materials are eroded in different ways as

has been discussed in section 2.1. Truscott reviewed the existing literature on erosive

wear in hydraulic machinery [26]. Metals, rubbers, plastics and ceramics are the four

material types surveyed though not much was found on plastics or ceramics. Truscott

found that erosive resistance of some synthetic rubbers, plastics and especially of some

ceramics could exceed that of some metals such as some types of steel.

Jennings et al [27] proposed a model which included the melting temperature of the

target surface as well as its enthalpy of melting. In his study, Jennings used an electron

microscope and concluded that there were signs of melting on the target, adding to

what other authors like Smeltzer et al [53] had pointed out before. By examining

their samples they argued that several areas appeared to be melted or molten debris

had been deposited on them. Sundararajan and Shewmon studied erosion at normal

incidence in [52] and developed two different equations: one of them being a simplified

form of the other, very complex, one. Both mathematical expressions include the

melting temperature of the target material and its heat capacity. Also a number of

other properties like the critical plastic strain, densities of both the target material and

the eroding particles are included. As with many other erosion related theories the

possibility of the particle’s kinetic energy being converted into thermal energy, which

in turn melts the target’s surface, can not be neglected.

Stress level

Finnie investigated this effect in [13] by applying external bending moments to the

samples and detected that erosion barely changed, thus concluding that surface stresses

have very little effect in erosion by solid particle impingement.

CHAPTER 2 LITERATURE REVIEW 21

Temperature

Tabakoff and Vittal carried out some tests on the Inconel alloy INCO 600, which was

commonly used for turbomachinery blades, and discovered that the erosion rates at

elevated temperatures were considerably higher than at ambient temperatures. The

test rig used was able to reproduce target temperatures between ambient and 1093◦C

using air as the carrier fluid. Some of their results are shown in figure 2.7.

Figure 2.7: Erosion rate Vs. particle impingement angle for various sample temperatures
(particle size, 451.5 µm; particle velocity, 183 m

s
):

◦, 577◦C;4, 493◦C;5, 371◦C. (Left) and Erosion rate us. sample temperature for various
impingement angles (particle size, 451.5 µm; particle velocity, 183 m

s
(Right) [44].

Wiederhorn and Hockey [17] studied how the velocity exponent changes with tem-

perature for some ceramic materials. Their results are shown in figure 2.8.

Figure 2.8: Velocity exponents for erosion data: normal incidence [17]

CHAPTER 2 LITERATURE REVIEW 22

Presence of oxide (or other) coatings

Some metals under certain conditions, develop a film of metal oxide on their outer layer.

This oxide is often attributed as having passivating characteristics. Passivity of a metal

can be described as the property of a metal, susceptible to corrosion, experiencing a

lower corrosion rate than expected for a certain period of time [33]. This ability, of

generating an oxide coating that shields the target material from further corrosion, is

well known for Aluminium which develops a layer of Alumina (Al2O3) when in contact

with oxygen. Rajahram et al also encountered this effect in [33] when testing High-

Chromium cast irons and stainless steel UNSS31603. However, the passivation layer

can also break down through its partial or complete removal. L. L. Shreir, classified the

different kinds of breakdown into three main types; electrochemical, chemical and me-

chanical breakdown [54]. In the present case of solid particle impingement mechanical

breakdown of the passivation layer is the main type of breakdown considered. Regard-

ing coatings, other than passivating layers, many have been developed in industry and

academia. Applying a layer of coating to the surface affected by erosion would indeed

reduce the potential damage on the target. Some pump manufacturers use special coat-

ings for some of the pumps’ parts in an attempt to mitigate the effects of erosion and

corrosion. However, in the case of coatings, there is always the compromise between

the cost of the application of the coating and the potential extension in the pump’s life

due to that coating.

Simultaneous occurrence of corrosion

When both corrosion and erosion occur at the same time, an additional wear rate

is experienced by the target material. This additional wear is called synergy. It’s

effect can be calculated by subtracting the pure erosion rate and corrosion rates from

the combined erosion-corrosion wear rate [33] and it is expressed as in equation 2.3.

Where, T is the total wear rate, E and C are the pure erosion and corrosion wear rates

respectively and S is the synergistic effect.

S = T − (E + C) (2.3)

CHAPTER 2 LITERATURE REVIEW 23

Li et al. made measurements of the influence of the corrosion component on the

erosion of Aluminium by aqueous silica slurries in [55]. In most of the practical cases

the transported slurries are also corrosive and, even though the corrosion component

by itself might be very low, the synergistic effect of both erosion and corrosion usually

yields much higher wear rates than the pure erosion ones. In their experiments, Li et al.

concluded that, after 1 hour of water jet test with tap water, corrosion on the probe was

below the measurable limit, and thus neglected. They also include the chemistry of the

corrosion mechanism and concluded that the elimination of the work-hardened layer is

not, after comparison of microhardness measurements, the main cause of acceleration

of erosion by corrosion. According to them, corrosion leads to propagation of cracks,

which accelerates the detachment of the flakes, thus inducing a synergistic effect when

combined with erosion.

2.1.3 Carrier fluid

State of motion (laminar versus turbulent)

Sudip and Humphrey studied the influence of turbulence on a particle-laden fluid jet

in [56]. In particular, they focused on how the turbulent diffusion affects the particle

dispersion by varying the turbulence intensity in a particle-laden jet. They came to

the conclusion that turbulence can have a significant effect on erosion by solid particle

impingement, as figure 2.9 shows.

CHAPTER 2 LITERATURE REVIEW 24

Figure 2.9: Effect of turbulence intensity on the wear of a ductile
metal by 5 µm particles (h = 0.41)in an air jet with Rej = 20000,
H
d

= 12 and
ρp
ρf

= 1709. Finnie’s [12] model was used to calculate the

erosion [56]

Even if random functions are incorporated to the injection of the particles at the

inlet, all the impacts on the target would be fairly organised. In CFD, there are

other methods which include terms of the turbulence that are used to add additional

randomness to the trajectories of the particles through the computational domain as

Lopez et al commented on in [24]. In the Open Source CFD software OpenFOAM,

this function is called Stochastic Dispersion , while in Ansys Fluent it is named the

Random Walk Model.

Velocity

The main way that the velocity of the fluid phase influences the particles entrained

in it is computed through the drag force. The force balance on the particle is shown

in equation 2.5. The drag force on spherical particles (which is particularly big in

relation to the rest of the forces acting on the particles when dealing with liquids)

takes the form of equation 2.6. There are different expressions that can be used for

CHAPTER 2 LITERATURE REVIEW 25

the drag coefficient. For instance, the drag coefficient (CD) in OpenFoam is obtained

from equation 2.7, while in Fluent the formula developed by Morsi and Alexander in

[57] and shown in equation 2.4 is used, where a1, a2 and a3 are constants applicable to

smooth and spherical particles given by the authors in [57]. Influence of the velocity

of the fluid on erosion is often also studied through the Stokes number. Stokes number

is usually calculated as shown in equation 2.8, where τp,2.9, is the characteristic time

of the particle. U is the average exit velocity and D is the nozzle diameter. Spherical

particles will have a higher characteristic time than angular particles such as aluminum

oxide resulting in a higher stokes number [58]. Frosell et al reviewed the Stokes number

for some articles in the erosion literature in [58] and stated that a high stokes number

would imply that the particles have minimal entrainment, a fact which would cause

them to impact the surface with almost the same trajectory as the one they had when

they left the nozzle.

CD = a1 +
a2
Re

+
a3

(Re)2
(2.4)

Fp = mp
dup
dt

= FD (2.5)

FD = mp
18µ

ρpd2p

CDRep
24

(u− up) (2.6)

CD =


24
Rep

: Rep < 1

24
Rep

(1 + 0.15Re0.687p) : 1 ≤ Rep ≤ 1000

0.44 : Rep > 1000

(2.7)

St =
τpU

D
(2.8)

τp =
ρpd

2
p

18µf
(2.9)

Equation 2.9 shows how the characteristic time is calculated. In this equation ρp

corresponds to the particle density, dp is the particle diameter and µf is the fluid

CHAPTER 2 LITERATURE REVIEW 26

viscosity. Finally Rep is the particle Reynolds number.

Temperature

Most authors that have carried out erosion studies use ambient temperature in their

tests. However, a rise in the temperature of the carrier fluid would change its viscosity

and with it, the trajectories of the particles, since a change in the viscosity also affects

the drag coefficient. Thus, temperature changes in the carrier fluid could potentially

change the shape of the wear scar. Sudip and Humphrey concluded in [56] that some

of the erosion parameters vary strongly with temperature. There are some additional

studies such as the ones by Tabakoff and Vittal’s in [44] or by Wiederhorn et al in [17]

which deal with erosion at higher temperatures. These have been briefly commented

in 2.1.2.

Chemical composition and physical properties

Chemical composition of the carrier fluid can influence the target’s surface by means

of corrosion, because some of the chemicals entrained in the fluid may affect the target

material. For tap water, Li et al [55] carried out some experimental work commented on

2.1.2 and concluded that the corrosive effect of it after a test of one hour is negligible.

Viscosity of the fluid can also change with its chemical composition. Clarke studied the

effect of fluid viscosity on the erosion rate of metals [59]. An example of the effect of

viscosity on the erosion rate of steel can be observed in figure 2.10 where a significant

reduction in erosion rate is obtained with increasing viscosity.

CHAPTER 2 LITERATURE REVIEW 27

Figure 2.10: Variation in erosion rate Rt (x106 g
m2∗min) and collision

efficiency of cylindrical steel targets 4.76 mm in diameter as a function
of viscosity for 3 wt.% 75-106 µm Al2O3 suspensions in a slurry pot
tester at 18.7 m

s
[59]

Change in shape of the target material caused by erosion

The effect of the change in shape of the target material has not yet been studied deeply.

However the need for an in depth study of how the fluid flow and erosion are affected

by the deformation has been acknowledged repeatedly ([9, 10, 14, 60]). Nguyen et al

[60] studied it to some extent in [60]. However, their study seems to be limited to

simple targets because it involved 3D scanning of the eroded material, which in most

cases is not possible, whether because it is in the field or because the geometry is too

complicated to scan it completely.

2.2 Erosion prediction with CFD

Since Finnie’s wear model [12] a very large number of papers and wear models have

been published in numerous journals and books. Lately, in 2009, a new methodology

was published which allows more accurate predictions of material wear rates due to

erosion [9]. This method is known as the Wear Map method and it consists of two

main stages. In the first stage Jet Impingement Tests are performed in order to obtain

the wear rate on a standard disc. The wear map will be drawn for the particular

material used for the test coupon. The 90 degrees angle of impingement is chosen

CHAPTER 2 LITERATURE REVIEW 28

because of its ability to reproduce a wide range of impingement conditions. A CFD

model of the same experiment is then used to obtain the local impingement conditions

at each point of the surface and combining both tests the wear map can be obtained

for the particular material under test. With the wear map it will yield the wear rate

as a function of particle impact velocity and particle impact angle [9]. An example of

such a map can be found in figure 2.11 .

Figure 2.11: Example of Wear Map obtained by Gnanavelu et al in
[9]

Nguyen et al tried a novel technique for analysing the flow conditions when erosion

has progressed enough so that these have changed. In their article [60] they set up a

Jet Impingement Test and 3D scan the target after 30 seconds, 5, 15 and 30 minutes.

After that, the 3D scanned target was incorporated into the CFD, substituting the

undeformed one and, after 30 minutes they were able to capture the appearance of a

new stagnation point around the scar, which is shown in figure 2.12.

Figure 2.12: CFD of target after 30 mins erosion showing appearance
of new stagnation point [60]

CHAPTER 2 LITERATURE REVIEW 29

Rajahram et al pointed out in [33] how complex erosion-corrosion processes are and

stated that, ideally, testing on the materials should be done in the field in order to

be able to obtain accurate data on the material’s performance under such conditions.

Shipway and Hutchings also mentioned in [19] the importance of the erodent particles

used in the experiments, having similar properties to those in the real application, in

order to have a test which is representative of the reality.

2.3 Aims and objectives

In order to acquire a better understanding of the erosion process, as it has been com-

mented before, a deforming mesh algorithm is of the utmost importance. This algorithm

will enable knowing how erosion changes the shape of the domain and how the fluid flow

changes and it’s effect on the erosive process. To achieve this and, since the work here

will be based in the Jet Impingement Test, a methodology needs to be selected amongst

the existing ones. Once the method is selected, it will be implemented in OpenFOAM.

Given the choice between Ansys Fluent commercial software and OpenFOAM’s Open

Source CFD softwares, the latter was chosen. The choice of OpenFOAM was due to its

ease of manipulation, having no user interface and having the source code completely

available. Availability of the code makes implementing new models, creating a deform-

ing mesh algorithm or even new solvers easier. Secondly, a statistical study of the jet

impingement will also be carried out since it is very important to be able to optimise

the time needed to get an accurate wear scar on the target that can be used for de-

formation. Finally, once the deforming mesh algorithm and the statistical study are

ready, the JIT will be studied experimentally with Particle Image Velocimetry. This

technique will allow us to visualisation of the fluid flow and the impinging particles in

the vicinity and on the wear scar in order to compare with the deformed geometry and

fluid flow in CFD.

Chapter 3

Computational Fluid Dynamics

in OpenFOAM

3.1 CFD in OpenFOAM

OpenFOAM (Open source Field Operation and Manipulation) is a free Open Source

CFD package developed in C++ with pre and post-processing tools for the solution of

fluid flows involving chemical reactions, turbulence and heat transfer, acoustics, solid

mechanics or electromagnetics [61]. One of the main reasons that makes OpenFOAM

suitable for the purpose of this work is that the code is completely accessible, enabling

the user to freely modify the CFD code, which makes programming of new applications,

solvers and utilities much easier. OpenFOAM consists of a series of C++ libraries

used to create executables. These executables are called applications and these can be

subdivided into two categories: solvers and utilities. Each solver is designed to be used

for a specific problem in continuum mechanics while the utilities are used to perform

tasks involving data manipulation [62]. A general overview of OpenFOAM’s structure

can be seen in figure 3.1.

30

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 31

Figure 3.1: Overview of OpenFOAM structure [62]

3.2 Verification of OpenFOAM

3.2.1 Introduction

The initial aim of this section was to compare OpenFoam and Ansys Fluent in order

to verify OpenFoam’s Lagrangian Library and erosion modelling capabilities. However,

it was found that previous versions of Fluent have been providing wrong results for

the discrete phase and the differences with the latest version (Ansys Fluent 15) are

shown [24]. A Submerged Jet Impingement Test is an effective method for studying

erosion created by solid particles entrained in a liquid. When considering low particle

concentrations Lagrangian modelling of the particulate phase is a reasonable approach.

Proper linkage between OpenFOAM 2.2.x’s Lagrangian library and the solver pimple-

Foam for incompressible transient flows allows two-phase simulations to be undertaken

for comparison with Ansys Fluent.

In this section a thorough comparison of a jet impingement test simulated with Ansys

Fluent (Fluent) 15.0 and OpenFOAM 2.2.x. is presented in order to verify that Open-

Foam’s combination of libraries is able to reproduce correctly the particle behavior in

the jet impingement test, focusing on the correlation between particle variables and the

radial distance from the centre of the target. Implementation of several erosion models

and testing all of them simultaneously is of great interest and OpenFoam proves itself,

after comparison, as an asset for erosion modeling. Two different configurations of the

JIT were set up and compared; those implemented by Hattori et al. [63] and Gnanavelu

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 32

et al. [9, 14]. However, when the same simulation corresponding to the 5 mm Jet Im-

pingement Test was set up in Fluent 14 and OpenFoam 2.2.x, significant differences

in both particle velocities and angles were found. OpenFoam’s code was thoroughly

checked and it’s validity confirmed. As the latest Fluent version (15) was available it

was verified that, due to a programming error that has been corrected in that latest

update, previous versions of the commercial software had been providing wrong values

for the particles. These results are discussed here and some of the articles affected

by these miscalculation are reviewed. The CFD results confirm that the maximum

and minimum velocity magnitude of the impinging particles does not experience large

variations when the distance between nozzle exit and target is increased to 25 mm.

However, the effect is more visible in its profile variation along the target’s radius.

3.2.2 The Euler-Lagrange Approach

When dealing with particles entrained in a fluid flow there are a number of possibilities

available for the numerical treatment of the dispersed phase. The number of operations

needed for the calculation of the particle trajectories may become numerically unman-

ageable if high concentrations are taken into account. In these cases, treatment of the

dispersed phase as a second Eulerian phase is common practice. As the concentration

diminishes solids may be handled in a Lagrangian way, defining the forces acting on

the discrete phase and obtaining velocities and positions by means of integration of

Newton’s equations (3.1, 3.2).

mp
d ~up
dt

= ~Fp (3.1)

d ~xp
dt

= ~up (3.2)

Where mp and ~up are the mass and velocity of the particle, ~Fp is the term cor-

responding to the forces acting on the particle and ~xp is the position of the particle.

The Lagrangian approach may be further classified by the type of coupling between

particles and fluid:

• One-way coupling: If the concentration of particles is low enough, as in the case

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 33

discussed here, the influence that the particles exert on the fluid phase may is

neglected.

• Two-way coupling: In this case the force exerted by the particles on the fluid is

no longer neglected and a new term should be included into the fluid’s equations

of motion in order to account for this.

• Four-way coupling: In this case also particle-particle interactions are taken into

account.

Furthermore, the discrete phase can be modeled as computational parcels, which are

groups of particles with average quantities for the main variables, or single particles. In

this thesis one-way coupling of single particles is selected in both Fluent and OpenFoam

due to the very low concentration of solids. This is in the range of 1% by volume and

the particles are only affected by the drag force, as other forces like gravity or pressure

gradient are considered to be negligible. In this case, the momentum transfer from the

particles to the fluid phase can be neglected. This was confirmed by computing the

momentum transfer in two-way coupled simulations with the same amount of solids.

Lagrangian and Eulerian phases coupling in OpenFoam

Fluent gives the user the possibility of adding a cloud of particles and tracking their

movement at any given point. However, in order to do the same in OpenFoam, some

programming was required because of the non-existence of an Eulerian-Lagrangian

solver amongst the default solvers in version 2.2.x. To do this, a linkage between

an incompressible transient solver and the Lagrangian intermediate library had to be

implemented. The incompressible solver chosen was pimpleFoam which, as its name

states, has the merged PISO-SIMPLE algorithm implementation. The linkage was es-

tablished through the inclusion in the top level solver of the header file responsible for

the definitions of the particulate phase and a call to the function that uses the fluid

flow variables to calculate the forces acting on the solids for integration to obtain their

velocities and positions. All the properties of the particles, as well as the templates

used to gather the necessary variables at impingement, are defined through a dictio-

nary which is read when the simulation starts. The full linking process between the

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 34

intermediate library and the incompressible solver is detailed in Appendix D along with

examples of preprocessing, running and postprocessing a simple case of a pipe bend

with a squared section with its geometry and mesh defined with blockMesh. Newer

versions of OpenFOAM starting with 2.3.x include an Eulerian-Lagrangian solver with

the same abilities of the one developed in the tutorial but with improved algorithm

efficiency when handling larger cases.

3.2.3 Simulation parameters

Two different configurations of the normal jet impingement test were implemented

at distances of 5 mm and 25 mm. Figure 3.2 shows the location of the boundary

conditions. Schematics of both configurations are shown in figures 3.3 and 3.4. The

velocity magnitude at the inlet of both was chosen to be uniform with a value of 10 m
s .

For each of the cases one symmetry plane was used so only half of the geometry was

simulated and the mesh used was the same for OpenFoam and Fluent. Geometry and

mesh sensitivity were obtained by Dr. William Nicholls, as part of an investigation for

the Weir Group.

Figure 3.2: 3D geometry used showing the location of the boundary conditions

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 35

Figure 3.3: 5mm JIT domain with the inlet boundary highlighted in red and dimensions in mm

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 36

Figure 3.4: 25 mm JIT domain with the inlet boundary highlighted in red and dimensions in
mm

Once the steady-state convergence was reached for the continuous phase in both

Fluent and OpenFoam, a uniform distribution of 250 µm spherical particles were incor-

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 37

porated into the flow and their impacts against the target were individually monitored.

The domains shown in Figures 3.3 and 3.4 were discretized into 984960 and 670349 cells

respectively, paying special attention to the y+ around the target which was considered

adequate for the K-Epsilon turbulence model used. Two different configurations of the

normal jet impingement test were implemented at distances from the pipe outlet and

to the target of 5 mm and 25 mm.

3.2.4 Eulerian phase steady-state

Convergence criteria were satisfied for the fluid phase when the residuals fell below 10−4

and this was achieved by both packages in a similar number of iterations for both the 5

mm and the 25 mm cases. The SIMPLE algorithm was chosen for the pressure/velocity

coupling and the same set of discretization schemes, solvers and boundary conditions

were used in both simulations. The inlet was also situated sufficiently far upstream to

allow the fluid flow to fully develop inside the pipe before it’s outlet and before imping-

ing on the target. As shown in Figures 3.5 and 3.6, minor differences can be observed in

the steady state flow fields from both CFD packages. The largest discrepancies between

solutions are located at the corners of the jet as shown in figures 3.7 and 3.8, which

are contour plots of the absolute difference between the results of each package. In the

case of the 5mm distance the highest value of the relative difference is 6%, affecting a

very small region of the domain. In the 25mm case the maximum relative difference

is 9.7% with a similar region affected. These discrepancies may be attributed to some

small differences in the calculation algorithms. The differences between velocities in

the region of the domain where the impact velocities and angles of the particles at the

moment they reach the test target are considered, and which is most significant for this

study, are minor and the fields can be considered to be identical.

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 38

Figure 3.5: 5 mm separation Steady state velocity contours comparison. OpenFOAM(right) and
Ansys Fluent

Figure 3.6: 25 mm separation Steady state velocity contours comparison. Units in m/s

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 39

Figure 3.7: Contours of the absolute differences for the 5 mm separation case

Figure 3.8: Contours of the absolute differences for the 25 mm separation case. Units in m/s

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 40

3.2.5 Discrete phase modeling

Once the steady-state values for the main flow field variables were obtained, these were

set as the initial conditions for the transient simulations. In fact, the difference between

a transient simulation with one or two iterations for the Eulerian phase and another

one in which no iterations were considered yielded the same values for the variables of

the particles. Particle tracking inside the fluid was carried out in a similar way in both

packages. The user needs first to define which are the most relevant forces influencing

the particle. In Fluent, the drag force was chosen as the sole force acting on the particles

and the same arrangement was made in OpenFoam. The rest of the forces, including

gravity, were ignored in this simulation due to their negligible influence on the discrete

phase in comparison with the drag force. The force balance according to equation 3.1

is shown in equation 2.5.

The drag force on spherical particles takes the form of equation 2.6 and the drag

coefficient in OpenFoam is obtained from equation 2.7, while in Fluent, the formula

developed by Morsi and Alexander in [57] is employed and is shown in equation 2.4.

The drag formula in [57] was also implemented and tested in OpenFoam and found to

have no differences with respect to the impingement conditions.

Particle Injection

Differences arose when taking into consideration the injection models available in both

software packages. In order to inject the same mass of particles, surface injection was

chosen in OpenFoam and single injections in Fluent. One of the main differences re-

garding the injection models is that, even though both softwares use the name surface

injection, they differ considerably from each other. OpenFoam’s surface injection calcu-

lates the number of particles to be injected per time-step and, using a random function,

chooses different locations at the selected surface for the injections. In Fluent however,

when surface injection is selected, the number of particles injected per time-step will be

equal to the number of faces on the selected surface. For this reason two single injec-

tions are chosen in two different locations at the inlet so that the number of particles

released matches that in OpenFoam. If surface injection had been used in Fluent the

number of particles would have been much greater. Despite OpenFoam’s randomization

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 41

of the particle injection, if stochastic dispersion is not included, impact locations on the

target will lack randomness. Fluent faces the same lack of randomness problem given

that all the particles are released from the same point. In this case the so called discrete

random walk model was selected in Fluent. In the case of OpenFoam, the stochastic

dispersion is included through the kinematicCloudProperties dictionary. The particles

chosen were spheres with a uniform radius distribution of 250 µm, density of 2206 kg
m3 in

the 5 mm case and 2300 kg
m3 in the 25 mm case together with an initial velocity equal to

the fluid’s inlet velocity (10 m
s). A thorough study of the particle trajectories revealed

that modification of the particle inlet velocity (setting it to 0 m
s for instance) was not

perceived downstream due to the small distance the particles travelled to accelerate

close to the fluid’s velocity and the comparably long distance to the target’s surface.

Particle variables gathering

In Fluent a User Defined Function (UDF) was created which gathered the particle

velocity, particle angle of impingement and impact location in terms of radius along

the target. In addition to this the UDF also terminates the particle trajectory once

they impact the target so that no second impacts of the same particle were consid-

ered. The same condition was met in OpenFoam. However, in this case, this was

implemented via the kinematicCloudProperties dictionary by defining an escape type

for the target’s boundary. OpenFoam’s solution for the output of particle variables was

achieved through a cloudFunctionObject called patchPostProcessing. This template

allows printing of the desired particle variables into a text file so that radius, velocity

and angle of impingement were successfully gathered, calculated and stored as soon as

the particles struck the surface.

Transient simulation features

Some of the features corresponding to the transient simulation are shown in Table 3.1:

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 42

Variable Units Value

Time-step s 1.8759e-05

Number of time-steps - 53308

Particle material - Carbon

Particle diameter distribution - Uniform

Particle diameter value m 2.5e-04

Coupling between phases - One-way

Forces - Drag

Drag coefficient - Sphere drag

Particle density kg
m3 2206

Table 3.1: Transient simulation features

When considering a volume fraction of the solids of 1%, the yielded mass flow rate

of solid particles was as low as 0.000962 kg
s which, in turn, yielded a rate of 53308

particles per second. This allowed setting up the time-step for the transient simulation

as 1.8759 ∗ 10−5 seconds. During the simulation in OpenFOAM the Courant number

was monitored to verify that the particles did not travel too fast through the mesh cells

and their trajectory was accurately calculated.

3.2.6 Impingement conditions

Once all the impingement variables of the more than 50000 particles were gathered, they

were post-processed in order to obtain their average compared to the distance from the

centre of the circular target. In order to do this the 25 mm diameter circle was divided

into smaller concentric regions separated by 1 mm from each other as shown in figure

3.9. The impacts located within each of these regions were then averaged and a mean

value for both the angle and the velocity was obtained for each of the software packages

and compared with each other. A surprising fact was that, for the same parameters,

different versions of Ansys Fluent (namely 14.0 and 15.0) yielded very different particle

velocity profiles. This may indicate that a programming irregularity was present in

previous versions but has been corrected in the latest one, thus affecting a wide range

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 43

of publications. This would have been impossible to detect unless a comparison with

other software packages like the present one had been carried out. Velocities presented

here correspond to Fluent 15.0, while in Gnanavelu et al. [9, 14], a previous version of

Fluent (dating from 2011) was used in which the velocity profiles deviated from their

correct values due to the irregularity. However, this should not affect the methodology

but only the results concerning those simulations and the graphs obtained from them.

In fact, the use of data from the corrected version of Fluent should yield results that

fit much better to the experimental data than the existing ones. Figures 3.10 and 3.11

show the differences in the particle velocity and angle of impingement profiles between

two cases which were exactly the same but solved by the two versions of Fluent when the

separation between nozzle outlet and target was 5 mm. These results can be confirmed

by comparing them to the profiles obtained by Gnanavelu et al in [9] with Fluent and

those obtained by Hattori et al in [63] with the Star-CD commercial code.

Figure 3.9: 25 mm diameter cillindrical target subdivided into 1mm regions

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 44

Figure 3.10: Average particle velocities (m
s

) at impingement versus distance from the centre of
the target (m) in the two Fluent versions

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 45

Figure 3.11: Average impact angles at impingement (degrees) versus distance from the centre
of the target (m) in the two Fluent versions

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 46

Figure 3.12: Impact locations for the 5mm nozzle distance case obtained with OpenFoam on
the central part of the target

Figure 3.13: Impact locations for the 25mm nozzle distance case obtained with OpenFoam on
the whole target

Figures 3.12 and 3.13 illustrate the location of all the particle impacts. Most of

these were located within the 0-4 mm region of the target when the separation between

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 47

the nozzle and the target was 5 mm. As the number of impacts in the outer region

was not high enough, values of the average in those regions were not considered due to

the low density of these in comparison with the impact density in the inner (0-4 mm)

region.

Velocity at impingement versus radius

As shown in Figures 3.14 and 3.15, minor differences can be observed between the

profiles of the particle velocity along the radius for OpenFoam and Fluent 15, with

a mean relative difference of 2%, which represents more than a 26% improvement if

compared to Fluent 14. It is worth noting that, in the 5mm case, impingement velocities

at the centre of the target have lower values, values being higher the further away from

the centre. When the separation between nozzle and target is bigger, the contrary is

true, the velocities at the centre being slightly higher than further away from it.

This is probably due to the disparity in the accelerations that both fluid and par-

ticles experience in the two different gaps left between the target and the nozzle exit.

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 48

Figure 3.14: Fluent 15.0 Vs OpenFOAM 2.2.x particle velocities at impingement (m
s

) for the 5
mm distance case

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 49

Figure 3.15: Fluent 15.0 Vs OpenFOAM 2.2.x particle velocities at impingement (m
s

) for the 25
mm distance case

Angle of impingement versus radius

Figures 3.16 and 3.17 represent the trends followed by the angles of impingement for

both software packages under the two different configurations of the JIT. Improved

agreement between both Fluent and OpenFoam is once more corroborated, the average

relative difference being 15.3%, which is a 10% improvement if compared with the

Fluent 14 results (25.2%). The small differences could be attributed to the slightly

different steady state results, in which differences in the velocity close to the wall would

account for the differences in the angles of impingement. However, both softwares

capture the same slope for the behavior of the angle of impingement along the target’s

radius. In this case, the difference in the slope of the lines formed by the averaged

angles of impingement is smaller in comparison with that of the velocities. Results

indicate that this slope is slightly steeper for the 25 mm distance JIT.

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 50

Figure 3.16: Fluent 15.0 Vs OpenFOAM 2.2.x angles at impingement (degrees) for the 5 mm
distance case

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 51

Figure 3.17: Fluent 15.0 Vs OpenFOAM 2.2.x angles at impingement (degrees) for the 25 mm
distance case

3.2.7 Erosion modeling in OpenFOAM

Erosion is a very complex process, involving a very large number of variables. There

is a significant number of papers on erosion, containing many different approaches on

how to predict it. Table 2.1 shown in Chapter 2 highlights some of the factors that

have been taken into consideration in the literature.

The existence of such a high number of variables and ways to predict erosion results

in the following procedure being common practice. Most of the times the performance

of different approaches and formulae on the real case are tested and, from the results,

the model that compares best to the recorded wear scar is chosen for forecasting similar

cases. This is all based on the assumption that the conditions in the CFD simulation

are close enough to those of the real problem. The results found in this article show

that, CFD can sometimes be misleading if there is a lack of validation data for the

given algorithm. The structure of OpenFoam’s Lagrangian library is based on C++

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 52

templates. This structure allows, in the context of erosion, the definition of as many

additional models as required for simultaneous calculation of erosion, making the task

of comparing the performance of several approaches for a single problem easier. Each

particle impinging the surface generates a value for erosion at the face being hit. All

the impacts are summed up and stored in a field of scalars with a value for each face

of the selected boundary. By generating several erosion templates and calling them

during runtime, the possibility of having erosion calculated by different formulae in the

same simulation is enabled.

3.2.8 Conclusions

Minor discrepancies were found between Fluent 15 and OpenFoam. Considering the

absolute difference in the steady-state simulations and the portion of the domain af-

fected by these it can be said that both results are basically equivalent. This verified

OpenFoam’s accuracy and the validity of the package for steady-state calculations of a

single incompressible phase as well as for multiphase simulations of a Lagrangian phase

dragged by a continuous phase. In fact, versions of Fluent since at least 2011 have been

providing miscalculated values of the particle variables due to, most likely, a small pro-

gramming instability in the discrete phase model that is responsible for integrating

the sum of the forces divided by the mass in order to obtain velocities and positions.

Unfortunately, this may affect some of the published literature including some of the

references mentioned previously [9, 14]. With respect to the discrete phase model of

the latest Fluent version minor differences were also found. The level of agreement

between trends for the particle velocities and angles of impingement in both software

packages is very good. Considering the two different configurations, as figures 3.10 and

3.11 illustrate, for the same values of the inlet particle and fluid velocities, the profiles

yielded, especially the one representing the particle velocity, are visibly different. Two

of the differentiating factors lie in the location and concentration of the impacts and in

the trends for the velocity and the angle of impingement. As the particles have more

space to travel between the nozzle outlet and the impact surface, the impacts are more

distributed over the whole target. This makes the impact rate lower given that more

particles will leave the area without an impact. Steeper slopes are obtained for velocity

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS IN OPENFOAM 53

and angle of impingement in the 5 mm case due to the greater bend the fluid has to

overcome in the smaller gap left for it to flow between the nozzle exit and the target’s

surface. It is this bend which induces the different slopes in the average velocities be-

tween the two cases considered showing an increasing velocity as the distance form the

centre is increased in the 5mm case and a decreasing one for the 25mm case.

Chapter 4

CFD of Erosion Processes

4.1 Introduction

In the following section, the procedure used to deform the mesh according to the ero-

sion field is explained in detail. First, the application used to compute the erosion

field is described along with the implementation procedure of a further erosion model.

Thereafter, the procedure consists of a series of operations with the erosion field pro-

duced by the particleErosion function object until the desired output is reached. It

is after this transformations that the mesh boundary will be deformed by means of an

extension of deformedGeom.C, which allows moving the mesh boundary according to a

field of vectors stored at each time step. After that, the implementation of a Dynamic

Mesh solver for erosion modeling will be discussed and finally, a study of the statistics

involved in the experiment will be commented along with some utilities developed for

that purpose.

4.2 Erosion field calculation in OpenFOAM

One of the many classes OpenFOAM provides the users with is the CloudFunctionObjects.

This is a templated library that adds additional capabilities to the cloud-based solvers.

The available CloudFunctionObjects in OpenFOAM 2.2.x are the following ones:

• facePostProcesing It records particle face quantities on user-specified face zone.

It supports accumulated mass and average mass flux calculations.

54

CHAPTER 4 CFD OF EROSION PROCESSES 55

• particleCollector Function that collects the parcel-mass and mass flow rate

over a set of polygons, defined as a list of points.

• particleTracks It records all particle variables on each call to postFace.

• particleTrap Traps the particles within a given phase fraction for multiphase

cases.

• patchPostProcessing Standard post-processing. It outputs the desired infor-

mation at the user-specified patches.

• voidFraction Creates the particle void fraction on the carrier phase.

• particleErosion This function creates the particle erosion field on the user-

specified patches. It outputs a volScalarField, or a field of scalars, which, at

each face, will be the sum of the volume eroded by all the particle hits.

Focusing on the particleErosion function object, an example of an erosion field file

in OpenFOAM with only one boundary patch with three boundary faces would be the

following one:

/*--------------------------------*- C++ -*------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.x |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

location "1";

object kinematicCloudQ;

CHAPTER 4 CFD OF EROSION PROCESSES 56

}

// * //

dimensions [0 3 0 0 0 0 0];

internalField uniform 0;

boundaryField

{

boundary-wall

{

type calculated;

value nonuniform List<scalar>

3

(

4.42523e-15

1.24376e-14

0

)

;

}

}

// *** //

The different parameters shown in the file above are described in the following lines:

• Version Refers to the version of the code

• Format States in which format the file is written, ascii in this case

• Class Shows which kind of class is being printed. For this particular func-

CHAPTER 4 CFD OF EROSION PROCESSES 57

tion object it is a field of scalars, which in OpenFOAM is represented as a

volScalarField

• Location Folder where the file is located. 1 means that this file can be found in

the folder named with the same number inside the case directory.

• Object The name of the object inside the file.

• Dimensions Dimensions of the object printed in the file. In this case, as it is Iain

Finnie’s formula [12] the one being used, the units are cubic meters, corresponding

to the volume of material removed.

• InternalField Values of the field for the internal cells of the domain. Erosion

only takes place at the boundaries, which means the internal field will always be

null.

• BoundaryField Values of the field for the boundaries of the domain. In this case,

as the mesh has only three boundary faces, only three values (one per face) will

be written to the file. In any case, numbering of the boundary faces is specified

inside the polyMesh directory, in the ”boundary” file. Information regarding the

mesh numbering can be found in [62] and [64].

Impingement information, such as impact speed and impact angle, is gathered as parti-

cles hit the walls of the geometry. Taking a look inside the ParticleErosion.C file, the

constructor is implemented and it requires the names of the patches where it is going to

be applied and the plastic flow stress of the material being eroded. Both ratios, depth

of contact to length of cut and normal to tangential forces, are also read but in this case,

if they are not found, the default ones are used (2 is the default value for both of them).

// * * * * * * * * * * * * Member Functions * * * * * * * * * * //

template<class CloudType>

void Foam::ParticleErosion<CloudType>::preEvolve()

{

CHAPTER 4 CFD OF EROSION PROCESSES 58

if (QPtr_.valid())

{

QPtr_->internalField() = 0.0;

}

else

{

const fvMesh& mesh = this->owner().mesh();

QPtr_.reset

(

new volScalarField

(

IOobject

(

this->owner().name() + "Q",

mesh.time().timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh,

dimensionedScalar("zero", dimVolume, 0.0)

)

);

}

}

The preEvolve member function, as seen in the code, initializes the field. It can be

observed that the name the field will be given is going to be the name of the cloud that

is being tracked with a Q at the end. In case the kinematicCloud is being used, the

CHAPTER 4 CFD OF EROSION PROCESSES 59

erosion field will have the name of kinematicCloudQ. The member function in charge

of gathering all the necessary information, manipulate it and store it inside the erosion

field is called postPatch. Here is where one can set a different erosion model from the

one that is already implemented, just by reading the necessary particle variables and

changing the function into the desired one.

template<class CloudType>

void Foam::ParticleErosion<CloudType>::postPatch

(

const parcelType& p,

const polyPatch& pp,

const scalar trackFraction,

const tetIndices& tetIs,

bool&

)

const label patchI = pp.index();

const label localPatchI = applyToPatch(patchI);

if (localPatchI != -1)

vector nw;

vector Up;

// patch-normal direction

this->owner().patchData(p, pp, trackFraction, tetIs, nw, Up);

// particle velocity relative to patch

const vector& U = p.U() - Up;

// quick reject if particle traveling away from the patch

CHAPTER 4 CFD OF EROSION PROCESSES 60

if ((nw & U) < 0)

return;

//Calculate magnitude of the particle velocity at impingement

const scalar magU = mag(U);

//Udir is the velocity unitary vector, i.e, the direction of the

//particle at impingement.

const vector Udir = U/magU;

// determine impact angle, alpha

const scalar alpha = mathematical::pi/2.0 - acos(nw & Udir);

const scalar coeff=p.nParticle()*p.mass()*sqr(magU)/(p_*psi_*K_);

const label patchFaceI = pp.whichFace(p.face());

scalar& Q = QPtr_->boundaryField()[patchI][patchFaceI];

if (tan(alpha) < K_/6.0)

Q += coeff*(sin(2.0*alpha) - 6.0/K_*sqr(sin(alpha)));

else

Q += coeff*(K_*sqr(cos(alpha))/6.0);

// *** //

CHAPTER 4 CFD OF EROSION PROCESSES 61

If the user-specified-patch is hit, the magnitude of the velocity of the impinging par-

ticle at that instant is calculated with the expression mag(U) and stored inside magU.

In order to calculate the angle of impingement, the direction of the particle veloc-

ity is determined first and stored in the Udir vector. The angle of impingement is

the complementary one to the angle between Udir and the patch normal direction

(π/2−arccos(angle)) and, once calculated, it is stored inside alpha. The scalar coeff

is the number of particles inside the parcel times the mass of those particles (i.e., the

total mass) multiplied by the velocity and the constant coefficients: plastic flow stress

and the two ratios. The field that this CloudFunctionObject writes to the case direc-

tory is going to be zero everywhere but in the specified patches, where it is going to

print a nonuniform List<scalar>, which will be the erosion calculated at each face

of the boundary patches specified. The equation used for the calculation of the erosion

field is exactly Finnie’s equation, developed in [12]. The variables used to perform the

calculations in the template include members of the class used to define parcels such

as:

• p.nParticle() Number of particles that the current parcel contains.

• p.mass() Mass of the current parcel.

• p.U() Velocity of the parcel.

• p.face() Face the current parcel is at.

4.3 Mesh deformation in OpenFOAM

4.3.1 Introduction

Once the erosion field has been calculated, the mesh deformation can be accomplished

through an already implemented utility called deformedGeom. This utility serves as a

base for the mesh deformation, providing the function responsible for the point dis-

placement. There is more than one function that could be used to deform the mesh,

such as the one used for dynamic meshes which will be discussed later.

CHAPTER 4 CFD OF EROSION PROCESSES 62

4.3.2 erodedBoundaryCellList.C

In this section, an explanation of the code in the utility developed by the author is

provided, before the description of the transformations to be applied to the erosion field

and their implementation in C++ are described in the following sections. The code

inside the file erodedBoundaryCellList.C, which is derived from deformedGeom.C is

represented below:

1 /*--*\

2 ========= |

3 \\ / F ield |OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration |

5 \\ / A nd |Copyright (C) 2011 OpenFOAM Foundation

6 \\/ M anipulation |

7 --

8 License

9 This file is part of OpenFOAM.

10

11 OpenFOAM is free software: you can redistribute it and/or modify it

12 under the terms of the GNU General Public License as published by

13 the Free Software Foundation, either version 3 of the License, or

14 (at your option) any later version.

15

16 OpenFOAM is distributed in the hope that it will be useful, but

17 WITHOUT ANY WARRANTY; without even the implied warranty

18 of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

19 See the GNU General Public License for more details.

20

21 You should have received a copy of the GNU General Public License

22 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

23

24 Application

25 erodedBoundaryCellList

CHAPTER 4 CFD OF EROSION PROCESSES 63

26 Description

27 Deforms a polyMesh using an erosion displacement field and a

28 scaling factor supplied as an argument. It creates topoSetDict

29 dictionary with the labels of the deformed cells as a cellSet.

30

31 *--*/

32 #include "OFstream.H"

33 #include "argList.H"

34 #include "fvMesh.H"

35 #include "pointFields.H"

36 #include "IStringStream.H"

37 #include "volPointInterpolation.H"

38 #include "fvCFD.H"

39

40 using namespace Foam;

41

42 // * //

43

44 int main(int argc, char *argv[])

45 {

46 argList::validArgs.append("scaling factor");

47

47 # include "setRootCase.H"

48

49 const scalar scaleFactor = args.argRead<scalar>(1);

50

51 # include "createTime.H"

52 # include "createMesh.H"

53

54 volPointInterpolation pInterp(mesh);

55

CHAPTER 4 CFD OF EROSION PROCESSES 64

56 // Get times list

57 instantList Times = runTime.times();

58 label lastTime=Times.size()-1;

59 pointField zeroPoints(mesh.points());

60

61 // skip "constant" time

62 if (label timeI = lastTime)

63 {

64 runTime.setTime(Times[timeI], timeI);

65

66 # include "erosion.H"

67

68 // Check that the erosion field was created successfully

69 if (erosion.headerOk())

70 {

71 Info<< "Reading point displacement" << endl;

72 //Calculate the new point field for the new mesh

73 pointField newPoints

74 (

75 zeroPoints

76 + pointMotionU

77);

78 mesh.polyMesh::movePoints(newPoints);

79 mesh.write();

80 Info<< "Writing new points in Time = "<< runTime.timeName()<< endl;

81 }

82 else

83 {

84 Info<< " No erosion Field" << endl;

85 }

86

CHAPTER 4 CFD OF EROSION PROCESSES 65

87 Info<< endl;

88 }

89

90 Info<< "End\n" << endl;

91

92 return 0;

93 }

94// ** //

Initially, the user is able to specify a velocity field and, when running in the terminal

window erodedBoundaryCellList 1, the code will read the scale factor specified (1 in

this case) and apply a movement to the points of the mesh equivalent to the erosion

field specified.

• Lines 1-31 This part is the default header for OpenFOAM Files. Usually, a brief

description of the application or utility is usually included.

• Lines 32-38 Include statements. These are files that contain definitions or func-

tions that need to be linked to the current file, so that certain variables and

functions needed in the utility are available for use.

• Lines 39-42 Declaration of the namespace where one is working.

• Line 43 This is where the main program starts and it does it by first declaring

that additional information apart from the name of the application has to be

provided in order for it to work. This additional information is, in this case, a

scaling factor.

• Lines 44-53 Here the additional arguments are defined. The scaleFactor is

used to scale the field of scalars by the number entered after the name of the

utility in the terminal window. createTime.H and create createMesh.H are two

headers. The first one reads the controlDict dictionary and establishes the time

parameters, while the latter creates an object to manipulate the mesh.

• Line 54 volPointInterpolation is a class that interpolates volume fields to

point fields. The files needed to perform the interpolation can be found inside

CHAPTER 4 CFD OF EROSION PROCESSES 66

$FOAM_SRC/finiteVolume/interpolation/volPointInterpolation. This class

interpolates from cell centres to points (vertices) using inverse distance weighting.

The weight of each of the adjacent data points to the one being interpolated will

be inversely proportional to its distance from the latter. First, the algorithm cal-

culates the inverse distances between cell centres and points and it stores them in

the weighting factor array. This is done inside the file volPointInterpolation.C

in two steps. First the weighting factors corresponding to the internal cells are

calculated and then the boundary ones. After this, both internal and bound-

ary weights are normalised. For the interpolation, the volume field is multiplied

by the weighting factor matrix, after which a field of points is created. Some

references about Inverse distance interpolation can be found in [65] and [66].

• Line 55-60 The time directories created within the case are read and stored.

Given that the erosion field needed for the deformation is located in the last

time’s directory, it is this one that is stored to the variable named lastTime.

After that, a field consisting of all the points of the mesh before being moved is

created and consequently called zeroPoints.

• Line 61-65 Locate and enter directory lastTime.

• Line 66 Include file erosion.H, where the erosion field will be manipulated.

• Line 68-94 Check that the manipulated erosion field exists and if so, read the

point displacement (vector field connecting initial and final position of each point),

move the points to the final position and write the mesh points to lastTime

directory. If the erosion field is not found, end program with the message

No erosion Field.

4.3.3 erosion.H

The file erosion.H is the file responsible for the transformations applied to the initial

erosion field and also the one in charge of printing out a dictionary that will be used

to create a cell set with the deformed cells for an upcoming selective remeshing.

//read erosion volScalarField from time directory

CHAPTER 4 CFD OF EROSION PROCESSES 67

Info<< "Reading kinematicCloudQ field" << endl;

volScalarField kinematicCloudQ

(

IOobject

(

"kinematicCloudFinnie1960",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh

);

//multiply the erosion scalar field by the scaling factor in order to

// magnify it and be able to see it (if necessary)

volScalarField scaledkinematicCloudQ = scaleFactor*kinematicCloudQ;

//Interpolate the erosion volScalarField to the faces of the cells

surfaceScalarField FkinematicCloudQ =

fvc::interpolate(scaledkinematicCloudQ, "linear");

//The algorithm is going to be executed on the moving-wall patch so we

// look for the right patch

label patchID = mesh.boundaryMesh().findPatchID("incident_wall");

//unitary surface vectors (mesh.Sf()/mesh.magSf()) divided by the face

//area)

const surfaceVectorField Avectors = mesh.Sf()/mesh.magSf();

volVectorField erosion

CHAPTER 4 CFD OF EROSION PROCESSES 68

(

IOobject

(

"erosion",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh,

dimensionedVector("erosion", dimensionSet(0,0,1,0,0,0,0),

Foam::vector(0,0,0))

);

forAll(erosion.boundaryField()[patchID], facei)

{

erosion.boundaryField()[patchID][facei] =

Avectors.boundaryField()[patchID][facei]*FkinematicCloudQ.boundaryField()

[patchID][facei];

}

//write the new erosion field created, which is a vectorField with

//magnitude the erosion and the same direction as the face area

//points outside vectors (i.e. in the boundaries of the domain)

erosion.write();

//Finally interpolate that vectorField at each face to each point

//of the face, thus obtaining a pointVectorField

CHAPTER 4 CFD OF EROSION PROCESSES 69

volPointInterpolation interpolateVolPoint (mesh);

Info<< "Interpolating" << endl;

pointVectorField pointMotionU=interpolateVolPoint.interpolate(erosion);

pointMotionU.write();

//create and fill in list to store modified cells for remeshing

//get list of patches from boundary mesh

const fvPatchList& patches = mesh.boundary();

//from those patches, get the one that is patchID defined at the

//beginning of the file

const fvPatch& currPatch = patches[patchID];

//Initialize variable to count the number of cells deformed

label numDeformedCells = 0;

//Assign number of cells in the patch as size of the list

//loop over all faces of the patch and get the cell number associated

//with each of them, storing them into a list

//set it initially to a very high number so the first comparison does

//only depend on the erosion field being bigger than 0.

label prevCell1=500000000;

forAll (kinematicCloudQ.boundaryField()[patchID], facei)

{

if (kinematicCloudQ.boundaryField()[patchID][facei] >

0 && currPatch.faceCells()[facei] != prevCell1)

{

//store cell for comparison

//faceCells() gives cell owner of current face inside

//current patch

prevCell1 = currPatch.faceCells()[facei];

CHAPTER 4 CFD OF EROSION PROCESSES 70

//increase number of deformed cells if conditions

// are met

numDeformedCells=numDeformedCells+1;

}

}

//create a labelList (list of labels) and assign it the size of the

//number of deformed cells, which is calculated in the previous

//forAll loop.

labelList patchDeformedCells (numDeformedCells,0);

//set it initially to a very high number so the first comparison

//does only depend on the erosion field being bigger than 0.

label prevCell2=500000000;

//initialization of counter to start from 0.

label counter = 0;

forAll (kinematicCloudQ.boundaryField()[patchID], faceI)

{

if (kinematicCloudQ.boundaryField()[patchID][faceI] >

0 && currPatch.faceCells()[faceI] != prevCell2)

{

//position number "counter" of the patchDeformedCells labelList will

// be occupied by the owner of faceI (the cell that owns that cell)

// in case conditions are met (the previous cell in the list is not the

// same one and the erosion field is bigger than 0, i.e., there

// is deformation.

patchDeformedCells[counter]=currPatch.faceCells()[faceI];

//store the previous cell for comparison with the next one

prevCell2 = patchDeformedCells[counter];

//increment counter

counter = counter+1;

}

}

CHAPTER 4 CFD OF EROSION PROCESSES 71

//Create and Open the file topoSetDict to write the deformedCells to

//be added to a set with topoSet

const fileName& fName(mesh.time().system()/"topoSetDict");

OFstream os(fName);

os << "//Dictionary gathering the deformed cells of the domain.

Used to create a cellSet with the topoSet utility\n";

os << "FoamFile\n{\n";

os <<" version 2.0;\n";

os <<" format ascii;\n";

os <<" class dictionary;\n";

os <<" location ""system"";\n";

os <<" object topoSetDict;\n}\n";

os <<"// * //\n";

os << "actions\n(\n{\n";

os << "name deformedCells;" << endl;

os << "type cellSet;" << endl;

os << "action new;" << endl;

os << "source labelToCell;" << endl;

os << "sourceInfo\n{" << endl;

os << "value (";

forAll(patchDeformedCells, i)

{

os << patchDeformedCells[i] << " ";

}

os << ");\n";

os << "}\n}\n);";

Once the information of the particle impacts is gathered, the variables are operated

in order to obtain an erosion field. This field will consist of a scalar value at each

boundary face. In the first part of the file, this volScalarField is read from the

CHAPTER 4 CFD OF EROSION PROCESSES 72

directory specified in the previous line of erodedBoundaryCellList.C, which in this

case is the last time stored in memory. After that, the field undergoes a number of

transformations. The first step is to multiply it by the scaleFactor defined by the user

at the beginning of the program. Normally, the value of this factor should be 1, so one

can see the real deformation of the surface if the erosion field is given in the appropriate

units. However, not all the formulae used for erosion calculations output the result in

meters. In theses cases, this scaling factor could be used to transform the units into

meters. Also, given that for a certain amount of time the wear calculated only varies in

magnitude but not so much in location or relative difference between points, the erosion

field could be subjected to an amplification which would be the equivalent of advancing

the simulation in time. This seems reasonable provided that, after a certain number of

impacts which can be calculated through sample size determination, the shape of the

scar does not vary significantly until the flow does. The line:

surfaceScalarField FkinematicCloudQ=

fvc::interpolate(scaledkinematicCloudQ,"linear");

interpolates the field of scalars at each cell and at each face of the boundary into what

is called in OpenFOAM a surfaceScalarField which is a field of scalars that contains

a value at each face of the mesh. The word linear states that the interpolation

scheme to be used will be central differencing. Next, the name of the patch on which

the deformation is going to be applied is declared. The next step is to create a field

that contains all the surface area vectors. A surface area vector is defined as a vector

that points outside of the cell, it is orthogonal to the face and its magnitude is the

area of the face. If this is applied to the boundaries, the face area vectors will point

outside of the domain and these will give the direction for the point displacement.

In OpenFOAM, mesh.Sf() and mesh.magSf() output the face area vectors and their

magnitude respectively. As the magnitude of the displacement of the mesh points will

be equal to the magnitude of the erosion, unit normal vectors are required. By dividing

the face area vectors by their scalar magnitude, the unit face area normal vectors are

obtained as defined in equation 4.1.

û =
u

‖u‖
(4.1)

CHAPTER 4 CFD OF EROSION PROCESSES 73

Once this stage is completed, a further field of vectors is created containing a unitary

vector orthogonal to each face of each of the mesh cells. For each boundary, a set of

unit vectors orthogonal to each of its faces will be stored. It is this field of vectors

that will be used to multiply it by the erosion field of scalars to have a field of vectors

proportional to the magnitude of erosion and pointing orthogonally out of each face

at the boundaries. After creating the unit vectors, a field of vectors named erosion is

generated and a loop is implemented to assign values to its boundaries. In order to do

this, the patch where this loop is to be applied is read (incident-wall is the patch in

this particular case) and the values will be the result of multiplying the interpolated

erosion field by the unit surface area vectors. The loop will perform the same operation

on all the defined patches and all the faces belonging to them while the erosion field of

vectors will be written to memory after that.

The final step before being able to move the mesh points is to interpolate the field values

contained at each face of the boundaries to each point of those faces using an inverse

distance weighting interpolation algorithm. Once the interpolation is completed, the

new field will consist of a vector at each point of each face of the boundary, pointing in

a direction which will be an interpolation of the directions of the vectors in the adjacent

faces and with a value which will be an interpolation of the values of the adjacent faces.

In mathematical form, defining E(Ci) as the calculated erosion field at the face

centres of the boundary, the expression of the inverse distance interpolation that yields

the values of erosion at the vertices of the boundary takes the form of equation 4.2 [67].

E(Pj) =

n∑
i=0

λiE(Ci) (4.2)

where:

• E(Pj) are the unknown values of the erosion field in location Pj , i.e, the boundary

vertices and with j 6= i since the number of points is different to the number of

faces.

• E(Ci) are the values of the erosion field at the known locations, i.e, the face

centres Ci

• λi is the linear combination of the weights and is defined in equations 4.3, 4.4

CHAPTER 4 CFD OF EROSION PROCESSES 74

and 4.5

li =
1

di
(4.3)

lt =
n∑
i=0

li (4.4)

λi =
li
lt

(4.5)

Where di is the distance from each centre to each point, li is the inverse distance and

lt is the sum of inverse distances which defines the weighting factors.

with

n∑
i=0

λi = 1 (4.6)

Once this first operation is performed, the field composed of a value at each vertex

is multiplied (if needed) by a scaling factor and by the unitary surface normal vectors,

obtained with equation 4.1, thus obtaining the complete solution shown in equation

4.7. This solution results in a vector field which is the distance to be added to each

boundary point.

Dj(x, y, z) = K ∗ û(x, y, z) ∗ E(Pj)(x, y, z) (4.7)

Being K the scaling factor and Dj the distance in the direction of the surface normal

vector of each face to be added to each of the boundary points.

The final step in what leads to the mesh deformation is defined in lines 73-77 inside

erodedBoundaryCellList.C and is available in the original utility from which this new

application was created (deformedGeom.C):

73 pointField newPoints

74 (

75 zeroPoints

76 + pointMotionU

CHAPTER 4 CFD OF EROSION PROCESSES 75

77);

This operation can be represented as equation 4.8 shows.

P 1
j = P 0

j +Dj (4.8)

Being P 1
j the location of the new boundary points, P 0

j their initial location and Dj the

distance added to them in the direction of their corresponding surface normal vectors.

In OpenFOAM, the field of new points to be written to the mesh is the result of adding

to the initial field of points, which was redefined as zeroPoints, the field of points that

was just created and that is zero everywhere except where erosion takes place. Figure

4.1 shows a very simple mesh of a cube with an erosion value manually set at some of

the faces (top and bottom views), an inverse weighted interpolation of the same values

and the deformed mesh after the interpolation.

CHAPTER 4 CFD OF EROSION PROCESSES 76

a b

1

2

3

Figure 4.1: Different views of cube with manually set boundary values for erosion (1a and 1b,
non-zero values coloured in red), same values interpolated with IDW (2a and 2b, red being the
highest values; blue the lowest) and deformation proportional to the interpolated values (3a and
3b.

CHAPTER 4 CFD OF EROSION PROCESSES 77

It might happen that only a small part of the geometry (or patch) is affected by erosion.

In that case, the deformation would take place only in a small number of cells within the

domain (or patch). It is worthwhile storing the cells where erosion is detected for further

manipulation. In this case, a dictionary called topoSetDict is created, collecting all

the cells where erosion has been stored. When this dictionary is written to memory,

it can be used to create a set of cells within the mesh by running the application

topoSet.The set will be kept inside the constant/polyMesh/sets. Creation of this

set of cells proves itself very useful when remeshing the deformed parts of the geometry.

It is likely that only the cells where erosion has been measured want to be remeshed, and

the set stored within the case allows the algorithm to be applied only to those specific

elements of the mesh. Thus, the last part of the code consists of a series of loops to

store and count all those cells where erosion is present together with the declaration of

the class OFstream, which allows creating files and writing data out to them. For the

dictionary to work with the application it needs to have a particular structure, which

accounts for the format used for the last part of the code. Further examples of pre and

post-deformation structures are shown in figures 4.2 and 4.3.

CHAPTER 4 CFD OF EROSION PROCESSES 78

Figure 4.2: Erosion contours in a flat cylindrical probe and the re-
sulting deformed geometry

Figure 4.3: Erosion contours in a pipe bend and the resulting de-
formed geometry

The rest of the code after the mesh deformation in ”erosion.H” leads to the storage

of the cell numbers affected by the mesh deformation in a set of cells. This set of cells

CHAPTER 4 CFD OF EROSION PROCESSES 79

is automatically introduced in a dictionary generated by the application which, used in

combination with topoSet, creates a cellSet that can be later visualised.

4.4 Implementation of an additional erosion model in Open-

FOAM

4.4.1 Introduction

In this section, the procedure to create a new cloudFunctionObject for particle erosion

processing is described. Given that the variables needed for the new models are the

same ones as for the existing particleErosion, this template will be used as the

starting point.

4.4.2 Implementation of an additional erosion model in OpenFOAM

The new object is going to be placed in the same directory as the existing

particleErosion so that the compiler is able to find it. In this case, Nandakumar’s

erosion model will be implemented [68]. By executing in the terminal the following

commands, the new erosion model will be created in the aforementioned directory:

mkdir NandakumarParticleErosion

cp ParticleErosion/* NandakumarParticleErosion

cd NandakumarParticleErosion

mv ParticleErosion.C NandakumarParticleErosion.C

mv ParticleErosion.H NandakumarParticleErosion.H

This series of commands allow us to open a new directory with the name Nandaku-

marParticleErosion and then copy all the files inside ParticleErosion into the new

directory to finally change their names to NandakumarParticleErosion.C and

NandakumarParticleErosion.H. After this, it is necessary to let the compiler know

where to find these new files in order to compile them and add the new erosion

model to the list.The file responsible for compiling the Templates inside the interme-

diate library is makeParcelCloudFunctionObjects.H and it can be found inside the

CHAPTER 4 CFD OF EROSION PROCESSES 80

parcels/include directory inside the intermediate library. By adding the following

two lines, the compiler will be able to know what to compile and where to get it from:

#include "NandakumarParticleErosion.H"

makeCloudFunctionObjectType(NandakumarParticleErosion, CloudType);\

The next step is to change the name of the class by substituting every ParticleErosion

by NandakumarParticleErosion, including the header inside the .C file. Once this is

completed, recompilation should work properly and the new class will be successfully

created. For recompiling libraries in OpenFOAM, the following commands need to be

executed in the directory where the Make folder is located:

wclean lib

wmake libso

Implementation of Nandakumar et al. erosion model in OpenFOAM [68]

For the implementation of this particular model, some parts of the code need to be

changed. The name of the command to call the erosion model as well as the name

of the file the cloudFunctionObject will output have to be changed. The first part

is changed inside NandakumarParticleErosion.H, where the name used to call the

cloudFunctionObject, i.e., particleErosion, need to be renamed as something else to

avoid conflicts. In this case a suitable name would be NandakumarParticleErosion.

Also, a slight modification to the preEvolve function inside the .C file is needed. The

name of the file that the program is going to write in the case directory should be

changed in case more than one model is being used to avoid overwriting several files or

conflicts that might cause a complete crash. In this case the preEvolve function looks

like:

template<class CloudType>

void Foam::NandakumarParticleErosion<CloudType>::preEvolve()

{

if (QPtr_.valid())

{

CHAPTER 4 CFD OF EROSION PROCESSES 81

QPtr_->internalField() = 0.0;

}

else

{

const fvMesh& mesh = this->owner().mesh();

QPtr_.reset

(

new volScalarField

(

IOobject

(

this->owner().name() + "Nandakumar",

mesh.time().timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh,

dimensionedScalar("zero", dimVolume, 0.0)

)

);

}

}

Where this->owner().name() ”Q”,+ has been substituted by this->owner().name()

”Nandakumar”,+ so that the new output file’s name will be kinematicCloudNandakumar.

The last modification is made in the last few lines inside the postPatch function in

NandakumarParticleErosion.C. The model constants are first defined as C and D

and then the rest of the properties such as density mass and diameter. The last step

would be to change the Q function because, in this model, there is only one formula,

independent of the angle of impingement. The initial code of the postPatch function

CHAPTER 4 CFD OF EROSION PROCESSES 82

can be found in 4.2 and Nandakumar’s erosion model is shown in equation 4.9.

∆Q = Cmρ0.15p (V0sinθ)
2.3 +Dm1.1875d−0.0625

p V 2.375
0 (cosθ)2(sinθ)0.375 (4.9)

And the new code is:

template<class CloudType>

void Foam::NandakumarParticleErosion<CloudType>::postPatch

(

const parcelType& p,

const polyPatch& pp,

const scalar trackFraction,

const tetIndices& tetIs,

bool&

)

{

const label patchI = pp.index();

const label localPatchI = applyToPatch(patchI);

if (localPatchI != -1)

{

vector nw;

vector Up;

// patch-normal direction

this->owner().patchData(p, pp, trackFraction, tetIs, nw, Up);

// particle velocity relative to patch

const vector& U = p.U() - Up;

CHAPTER 4 CFD OF EROSION PROCESSES 83

// quick reject if particle traveling away from the patch

if ((nw & U) < 0)

{

return;

}

const scalar magU = mag(U);

const vector Udir = U/magU;

// determine impact angle, alpha

const scalar alpha = mathematical::pi/2.0 - acos(nw & Udir);

//alpha mag(U) p.position()

const scalar C = 7.5e-4;

const scalar D = 0.082;

const scalar rhoP = 2650;

const scalar massP = p.nParticle()*p.mass();

const scalar diamP = p.d();

const scalar vosintet = magU*sin(alpha);

scalar sinA = sin(alpha);

const label patchFaceI = pp.whichFace(p.face());

scalar& Q = QPtr_->boundaryField()[patchI][patchFaceI];

Q += C*massP*pow(rhoP,0.15)*pow(vosintet,2.3)

+ D*pow(massP,1.1875)*pow(diamP,-0.0625)*pow(magU,

2.375)*sqr(cos(alpha))*pow(sinA,0.375);

}

}

This new function gathers the particle’s velocity and impact angle at every impact

CHAPTER 4 CFD OF EROSION PROCESSES 84

and calculates erosion according to Nandakumar’s erosion model in order to finally

sum up all the erosion produced by all the impacts recorded inside Q, which will

have a value for each boundary face and will be stored inside a file with the name

kinematicCloudNandakumar.

4.5 Patch interaction models

4.5.1 Introduction

OpenFOAM offers the possibility of both defining the interaction with a certain patch

of the mesh and recording the information as particles impact one of these patches

4.5.2 Patch interaction models

There are 5 different patch interaction models which are:

• localInteraction In this model, the patch interaction is defined on a patch-by-

patch basis, i.e., an interaction type is defined for each of the desired patches. A

basic condition for the model to work properly is that the particle interaction with

all the wall patches is defined. If the model is correctly defined, every iteration,

the terminal will print out the number of particles and the mass that sticks to or

that escapes the corresponding patch

• multiInteraction It runs multiple patch interaction models in turn. It takes a

dictionary where all the sub-dictionaries are interaction models.

• noInteraction As defined in its header file, it is a dummy class for ’none’ option.

It will raise an error if any functions are called that require return values.

• standardWallInteraction Provides three choices which are rebound, stick or

escape and both elasticity and restitution coefficients can be optionally defined.

In this case, the interaction model will be the same for all patches.

The definition of which patch interaction model is going to be used is made inside

the kinematicCloudProperties dictionary, inside the submodels section and under

CHAPTER 4 CFD OF EROSION PROCESSES 85

the name of patchInteractionModel. There are three different possible interactions

with a wall patch:

• Rebound

• Stick

• Escape

Stick

In some environments, particles may reach a boundary and, instead of bouncing off,

they may remain stuck to the boundary layer. For this cases, a stick boundary condition

can be defined, so that every particle that reaches that boundary will stay stuck on it.

Escape

In cases where an outlet is defined, one may want to let the particles in the domain

escape through that patch. For those circumstances, the escape boundary condition is

defined, so that when a particle reaches a patch, it will be removed from the domain.

Rebound

Finally,the rebound boundary condition may also be defined. This means that when

a particle reaches a distance of 0.5*diameter or less, it will bounce off the wall and

the new velocity will be calculated taking into account the patch velocity (in case it is

a moving wall) and reading (if present) the UFactor coefficient defined along with the

interaction model, which is known as the restitution coefficient.

template<class CloudType>

bool Foam::Rebound<CloudType>::correct

(

typename CloudType::parcelType& p,

const polyPatch& pp,

bool& keepParticle,

const scalar trackFraction,

CHAPTER 4 CFD OF EROSION PROCESSES 86

const tetIndices& tetIs

)

{

vector& U = p.U();

keepParticle = true;

p.active() = true;

vector nw;

vector Up;

this->owner().patchData(p, pp, trackFraction, tetIs, nw, Up);

// Calculate motion relative to patch velocity

U -= Up;

scalar Un = U & nw;

if (Un > 0.0)

{

U -= UFactor_*2.0*Un*nw;

}

It is also possible to implement additional rebound models in OpenFOAM. The

procedure and modifications to the files necessary to add any rebound models to the

code is discussed in AppendixB. In Appendix B, two additional rebound models are

implemented in OpenFOAM.

4.6 Patch post processing

As explained in 4.2, patchPostProcessing is a utility that provides information about

the cloud at the user-specified patches. By default, patchPostProcessing prints out to

CHAPTER 4 CFD OF EROSION PROCESSES 87

file most of the information relevant to each parcel that impacts the specified patches;

velocity components , number of particles within the parcel, etcetera. However, it

does not provide the angle of impingement of the particle relative to the surface be-

ing impacted. In order to do this, the code relative to the angle of impingement

and the magnitude of the velocity inside the file particleErosion.C is added to

patchPostProcessing.C so that it will also print those values to the same file. The

code inside the modified PatchPostProcessing function object is shown below. In this

case, the OStringStream class is used to print out the required data to a file that will

be stored in a folder named postProcessing.

template<class CloudType>

void Foam::PatchPostProcessing<CloudType>::postPatch

(

const parcelType& p,

const polyPatch& pp,

const scalar trackFraction,

const tetIndices& tetIs,

bool&

)

{

const label patchI = pp.index();

const label localPatchI = applyToPatch(patchI);

if (localPatchI != -1 && patchData_[localPatchI].size()

< maxStoredParcels_)

{

times_[localPatchI].append(this->owner().time().value());

vector nw;

vector Up;

// patch-normal direction

CHAPTER 4 CFD OF EROSION PROCESSES 88

this->owner().patchData(p, pp, trackFraction, tetIs, nw, Up);

// particle velocity relative to patch

const vector& U = p.U() - Up;

// quick reject if particle traveling away from the patch

if ((nw & U) < 0)

{

return;

}

const scalar magU = mag(U);

const vector Udir = U/magU;

// determine impact angle, alpha

const scalar alpha = mathematical::pi/2.0 - acos(nw & Udir);

//alpha mag(U) p.position()

OStringStream data;

data<< Pstream::myProcNo() << ’ ’ << p;

data<<" Alpha= " <<alpha << " mag(U)= " << mag(U);

patchData_[localPatchI].append(data.str());

The additional variables are alpha and mag(U), which represent the angle of impinge-

ment and the magnitude of the velocity respectively. This functionality has been used

when comparing the velocity and angle average values radially by Lopez et al in [24]

and [43].

CHAPTER 4 CFD OF EROSION PROCESSES 89

4.7 Turbulence model

In this section, the effect of the turbulence model will be analysed. In order to do this,

two different turbulence models have been assessed. The first one is the k−ε model[69],

which has repeatedly been used to predict erosion [9, 14, 60, 70] and the second one

is the k − ωSST model [71]. The k − ε model is a semi-empirical model composed of

two equations offering reasonable accuracy at an acceptable computational cost. These

reasons make it very popular in industrial applications and over a wide range of flow

regimes [72]. On the other hand, the Shear Stress Transport (SST)k−ω blends k- ω’s

robust and accurate formulation near the walls with k − ε’s free-stream independence

in the far field [72]. In a recent publication, the validity and accuracy of some of the

most widely used turbulence models (inluding k − ε and k − ωSST) has been assessed

by Mackenzie et al in [73], concluding that the most widely used one, which is the

k − ε model, is able to capture the general trend of the axial and radial velocities at a

reasonable computational cost. With the known limitations of two-equation turbulence

models, the k − ε model seems like a reasonable approach, given that it is the general

trend of the velocity, the variable that will define the form that the wear scar takes.

4.7.1 Dispersed phase transient simulation

Calculation of the number of impacts per boundary face as well as both angle of im-

pingement and impact velocity averages are carried out through an additional function

object that has been implemented for this purpose. The code responsible for the cal-

culation is shown in appendix A. The function sums up the number of impacts on

the target, as well as all of the angles and velocities per face and then calculates the

averages and standard deviations. In this case, one function object outputs 4 fields at

once. Which fields are written to memory at each time step are defined with the line

QPtr1_->write();. In this case, the fields QPtr1 and QPtr4 to QPtr7 will be written,

which correspond to the number of particles, the averages and the standard deviations

respectively.

CHAPTER 4 CFD OF EROSION PROCESSES 90

4.8 Statistics of target impacts

4.8.1 General case

In order to calculate how many impacts on the target are needed for an accurate

representation of the impact probability on the whole sample the transient simulation

is used. Once the steady state in the transient simulation is reached, i.e., the number of

particles within the control volume doesn’t change or fluctuate around a number, the

parameters that allow calculation of the size of the sample needed are obtained. Three

new fields are also computed which give some insight into how the mean is evolving

during the simulations. These can be written to memory at any time step. For the

particular case of a discretised plane, like in the boundary being impinged by particles,

the total area (surface of the target) is divided into a set of faces. This means that,

as the simulation progresses, a mean and a standard deviation can be calculated for

each of the faces of the boundary. By running a transient simulation, a time for which

the mean values and the standard deviation stop changing can be found. Once that

simulation has been studied and the mean and standard deviation values satisfying the

criteria are met, two meaningful values for each of the cells: the mean and the standard

deviation are produced. With these two values and the formula used for calculating

the size of a sample, the minimum number of particles necessary for a good average

can be calculated. In order to calculate the size of the sample that is needed to have

a good average of the erosion field, first, the level of confidence has to be specified. In

this case this level is set to be 99%, so looking on the Normal Distribution table, it can

be inferred that zα
2

= 2.576. In addition to that, the error needs also be specified. For

this variable, a 5 per cent of the mean velocity at each cell is chosen. The procedure is

illustrated in equation 4.10 and equation 4.11, which is used for calculating the sample

size for each of the faces of the boundary.

δ =
zα

2
σ
√
n

(4.10)

n = (
zα

2
σ

δ
)2 (4.11)

CHAPTER 4 CFD OF EROSION PROCESSES 91

Where δ is the maximum error of the estimate or the half-width of the confidence

interval, n is the size of the sample and σ is the standard deviation [74].

Figure 4.4: Representation of a circular domain divided in four faces,
where N1, N2, N3 and N4 are the sample sizes to be obtained for each
of the faces

Once the size of the sample has been calculated for each of the faces, all that is

needed is to sum up the numbers and see how many particles per face are necessary.

However, this process can be made in two different ways: an escape condition can be

set up at the target’s boundary or a rebound model may be chosen. If the latter is

used, the impact velocity average is radically different, as can be observed in images

4.5 and 4.6 since the first impacts have the highest kinetic energy and a big part of it

is lost thereafter.

CHAPTER 4 CFD OF EROSION PROCESSES 92

Figure 4.5: Face-wise impact velocity average (m
s

) after 10 seconds
with an escape condition at the target’s boundary

Figure 4.6: Face-wise impact velocity average (m
s

) after 10 seconds
with Forder’s [16] rebound model at the target’s boundary

Differences are also spotted in the mean angle of impingement and the number of

impacts is around 1.5 ∗ 105 times higher, as can be observed in images 4.7, 4.8, 4.9 and

4.10.

CHAPTER 4 CFD OF EROSION PROCESSES 93

Figure 4.7: Face-wise impact angle average (degrees) after 10 seconds
with an escape condition at the target’s boundary

Figure 4.8: Face-wise impact angle average (m
s

) after 10 seconds with
Forder’s [16] rebound model at the target’s boundary

Figure 4.9: Face-wise impact number after 10 seconds with an escape
condition at the target’s boundary

CHAPTER 4 CFD OF EROSION PROCESSES 94

Figure 4.10: Face-wise impact number after 10 seconds with Forder’s
[16] rebound model at the target’s boundary

A total of 10 seconds of transient simulation is set up and the fields are monitored

every 0.1 seconds. Values of the fields at 10 seconds are used for calculation of the

number of impacts and the velocity and angle averages will be taken from the case

with the escape condition, which was previously used by Gnanavelu et al in [9, 14], and

which also gives an average which represents more accurately the different wear scar

regions, also discussed in [9].

4.9 Implementation of Euler-Lagrange and dynamic mesh

solver

An additional solver including dynamic meshing for the deformed boundary has been

implemented in both versions of OpenFOAM (2.2.x and 2.3.x). In the latter, dynamic

meshing is added to DPMFoam, which is the Euler-Lagrange solver available in that

version. The intermediate library in OpenFOAM 2.3.x has an improved efficiency in

solving the Lagrangian phase if compared to that of the previous version. The necessary

files along with the code implemented to make the dynamic meshing available can be

found in Appendix E.

If the code in section 4.3.2 is used, the boundaries of the mesh are deformed according

to erosion. This procedure enlarges the cells adjacent to the boundaries which means

that they will need remeshing in order to accurately capture the behaviour close to

those walls. OpenFOAM has a couple of utilities available for that purpose. One of

CHAPTER 4 CFD OF EROSION PROCESSES 95

them is called refineWallLayer. This utility refines the mesh by adding layers of cells

on the specified patches. Another possibility is to use the set of cells created with

topoSet and only refine those. Depending on how complicated the geometry is and the

cel distribution at the specified walls, these utilities could create some cells with bad

aspect ratios or very skewed, so the results of running the deformed geometry could

not be as reliable as one might think. The Laplacian solver used for dynamic meshing,

changes the positions of the mesh nodes so that it adapts to the deformation of the

boundaries. The algorithm can be set to use inverse distance weighing [66]. In this

case the displacement of the mesh nodes is based on the inverse distance of those to the

moving boundary, so that the one closest will move more than the ones further away.

This methodology is suitable when the mesh deformation is relatively small, as in the

present case. Appendix J shows the code developed by the author for a utility that

first, calculates the boundary nodes’ displacement and then solves the same equations

used in dynamic meshing in order to move the adjacent nodes by only one step, with

no solution of the fluid flow involved.

In Chapter 6, the methodologies discussed here will be tested and the suitability of

each of them for the proposed geometries will be discussed.

Chapter 5

Experimental work

5.1 Introduction

In this chapter the setup of the experimental part of the project will be discussed.

During the development phase of the test rig, several nozzle configurations and particle

injection methods have been tested, all of which, will be commented in detail.

5.2 Test rig design

The jet impingement test was the test chosen for the experimental work. As indicated

by Gnanavelu et al in [9], the jet impingement test is able to reproduce a wide range

impact angles and velocities along the target’s surface. Trajectories of the particles

can be determined using CFD modelling, along with erosion contours and averages of

impact angles and velocities. One of the challenges faced during the implementation of

the present experiment involved finding a suitable methodology for particle injection.

In the literature, when it comes to the injection of the particles into the fluid flow,

these are usually circulated through a slurry pump [23, 75–77], which then sends the

mixture to the nozzle to erode a metallic sample when a liquid is used. In the case of

erosion with air and particles, other methodologies for particle injection may be used

such as the ones commented in [5, 12, 35, 37, 78]. The initial approach here, was to

avoid circulating the sand used as erodent through the main pump. In order to do

this, two different configurations were implemented and tested. First, a venturi was

96

CHAPTER 5 EXPERIMENTAL WORK 97

set up through a bifurcation of the main flow, as shown in figure 5.1. This bifurca-

tion included two valves which allowed control of the mass flow rate going through the

venturi. The aim of introducing the venturi was to create a low pressure that would

incorporate the sand particles to the flow from the tank where these were isolated.

However, it was discovered that, due to the back pressure generated in the contraction

situated before the nozzle and represented in figure 5.3, this was not possible as the flow

that should be entering the venturi with the particles was in fact, reversed. This was

corroborated once the contraction was disconnected and the flow was reversed again

and a suction force was measured at the inlet of the pipe situated inmediately after

the smallest section of the venturi. A nozzle size of 27 mm, coincident with the size

of the inlet and outlet sections of the venturi would have allowed this methodology to

work. However, due to the greater size of the nozzle outlet and the specifications of the

main pump used for the tests, particle velocity would have been much smaller. This

would have involved excessively long testing periods so the configuration was discarded.

The second configuration implemented in the test rig was that of a jet pump, rep-

resented in figure 5.6 and figure 5.7. The smallest section of the venturi was enlarged,

which created a length of constant section inside the venturi where a 6 mm pipe was

introduced after a 90 degrees bend, as figure 5.8 shows. Unnecessary material was also

eliminated in order to minimise the weight of the brass part. CFD simulations of the

the new configuration confirmed that, at the exit of the 6 mm pipe, a low pressure

was again obtained as shown in figures 5.4 and 5.5. However, when connected to the

rest of the circuit, the flow was again reversed due to the back pressure created by the

contraction situated before the nozzle exit.

The successful introduction of the particles to the flow was achieved though the

use of an inexpensive sacrificial pump which injected them after the contraction in the

pipe diameter. This configuration is shown in figure 5.9, where a pipe is welded to the

nozzle immediately after the contraction. With an initial nozzle diameter of 9.5 mm, the

preliminary tests proved successful but excessively long so the diameter of the nozzle

was reduced to allow for tests of reduced duration. The decision to reduce the test

CHAPTER 5 EXPERIMENTAL WORK 98

Figure 5.1: 3D printed plastic venturi for particle injection

duration was driven by the necessity of having several samples with different depths of

the wear scar in order to be able to compare these to the CFD simulations and validate

the developed code. The final test rig allowed having different particle concentrations,

which ranged from none to around 10% by mass with varying velocities. It is worth

noting that the distance between the particle injection and the nozzle exit was higher

than 50 mm, while the nozzle diameter was 4.5 mm, allowing more than 10 times the

diameter in distance before the exit.

A bypass situated right after the main pump allowed changing the mass flow rate,

thus obtaining different velocities at the nozzle. The test rig was composed of three

different tanks. The first one had three windows and was where the submerged nozzle

was located. The purpose of the windows was for the required imaging and to allow

the laser to penetrate the environment for the Particle Image Velocimetry. The second

tank contained a smaller cylindrical container inside which the particles were stored.

CHAPTER 5 EXPERIMENTAL WORK 99

Figure 5.2: Schematic of the venturi for particle injection

A pipe and a valve led directly to this circular container from the nozzle container so

that, once these had hit the target (or not) they returned to their tank to be circulated

again. The last tank was connected to the second one by means of a pipe with a fine

mesh at it’s inlet to prevent the few particles that escape the cylindrical container from

transferring to the particle-free tank. The particle free tank had two different outlets:

the first one was the inlet for the main pump while the second one was an inlet to

an auxiliary pump which was used for emptying the whole system at the end of each

experiment as well as to help evacuate the particles from the nozzle tank by inducing a

flow across its base. A picture of the test rig is shown in figure 5.10 and a schematic is

shown in figure 5.11. The last two items of the test rig were a stirrer used to move the

particles in order to have a uniform distribution in the tank and a weighing scale which

was placed under the nozzle tank which was used as a secondary way of measuring the

mass flow rate coming out of the nozzle.

5.2.1 Experimental configuration

The sand used for the experimental work is known as Frac Sand. Frac Sand is a special

sand used in the hydraulic fracturing process which is also resistant to crushing. The

size distribution of the sand used is shown in figure 5.12. Some of the benefits of using

this sand is that the particles can be considered spherical, thus making their numerical

simulation less time-consuming as well as being more resistant to break up. The latter

is important, since the sand is constantly recirculated. If, instead of spherical Frac

Sand, angular sand was used, a high degree of degradation of the sand edges would be

CHAPTER 5 EXPERIMENTAL WORK 100

Figure 5.3: Design of the contraction before the nozzle (all dimensions
in mm)

Figure 5.4: Velocity contours of the Jet Pump configuration obtained
with Start CCM+

expected. This would imply changing the sand at regular intervals in order to make

sure that it keeps its angularity. Since Frac Sand is spherical, no rounding or breaking

upon impact was expected.

Once the introduction of the particles was guaranteed by the inclusion of the sacrificial

pump, six different tests were run in order to adjust the sand concentration and to

check the repeatability of the experiments.

The first three profilometries shown in figure 5.13 correspond to three samples which

were eroded for 15 minutes each under the nozzle and scanned in 3 dimensions. The

measured concentration of sand was 1.15% by mass and the measured velocity at the

CHAPTER 5 EXPERIMENTAL WORK 101

Figure 5.5: Velocity vectors at the pipe inside the Jet Pump

nozzle was 21.8 m
s . These samples were scanned with the Alicona Infinite Focus scanner,

detailed in 5.3.1. Additionally, three other samples were eroded for 15 minutes with a

7.2% sand concentration and the same fluid velocity at the nozzle exit. These were also

scanned and the profilometry is shown in figure 5.14. The higher amount of noise in the

profilometry corresponding to the lower sand concentration is due to the difference in

the scaling. The samples with lower concentration have an average maximum depth of

40 µm while the samples with 7.2% concentration by mass have an average maximum

depth of 350 µm.

5.2.2 Simulation parameters

Sand concentration and fluid velocity were measured directly under the nozzle in order

to calculate the parameters necessary for the CFD simulation. These measured values

were also checked against the weight change of the scale. Even though the injection of

the particles was sufficiently upstream to ensure a fully developed flow at the nozzle

exit, an analysis of the wear scar revealed certain asymmetry. This was noticed before

running any simulation of the final test rig and it is assumed that the asymmetry is

induced by the particle injection. Given the high inertia of the injected particles and

their initial velocity (measured velocity of 5.3 m
s), a high number of them seemed to

travel across the nozzle pipe from the injection point exiting it at the diametrically

opposed side, thus creating an asymmetry like the one in figure 5.15 and in the profiles

shown in figures 5.13 and 5.14.

For the CFD simulation to be able to represent such a scar, the asymmetry in the

particle trajectories must also be included. In order to do this, a length of the pipe

CHAPTER 5 EXPERIMENTAL WORK 102

Figure 5.6: Manufactured jet pump configuration

responsible for the particle injection will also be simulated. The measured concentration

of sand in that secondary pipe is 26.2% by mass.

5.3 Three Dimensional Scanning

The equipment used for 3D scanning of the eroded samples is part of a set of very

advanced materials characterisation equipment located in the Advanced Forming Re-

search Centre, which is a collaborative venture between the University of Strathclyde,

Scottish Enterprise, the UK Government and leading multinational engineering firms.

5.3.1 Alicona Infinite Focus IFM G4

The equipment, along with an example of its capabilities is shown in figure 5.16[79].

The most relevant specifications are the following ones:

CHAPTER 5 EXPERIMENTAL WORK 103

Figure 5.7: Modification of venturi to be adapted to a jet pump
configuration (all dimensions in mm)

• Non-contact optical 3 dim. surface digitisation based on Focus-variation

• Surface profile form and roughness measurement

• Minimum vertical repeatability less than 0.12

• Best vertical resolution in the range of 10 to 410 nm

• Fully automated and programmable xyz stages

• 5x, 20x, 50x and 100x objective

5.4 Particle Image Velocimetry

5.4.1 Principles of PIV

Particle Image Velocimetry (PIV) is a non intrusive technique in which some tracer

particles are illuminated by a laser sheet. These particles scatter light and the light

scattered is then recorded in one or more frames. The displacement of the particle is

CHAPTER 5 EXPERIMENTAL WORK 104

Figure 5.8: Jet pump design

then evaluated through analysis of the recorded images [80]. In an experiment like the

one explained here, two different sets of particles can be traced. The tracer particles

are assumed to faithfully follow the flow while the Frac Sand can be tracked to validate

erodent trajectories. Tracer particles have unit specific gravity, which means it is the

same as the water used in the experiments while Frac Sand’s specific gravity is around

2.6. Diameters of the sand and the tracer particles also differ: the tracer particles are

between 20 and 50 µm in diameter while the Frac Sand’s mean diameter is around

500 µm. The efficiency in following the streamlines can be assessed through the stokes

number of the particles traveling through the nozzle. Calculation of the stokes number

is shown in equation 5.1 [81].

St =
ρpd

2
p

18µf

U

D
(5.1)

Where ρp and dp are the density and diameter of the particle respectively, µf is

the dynamic viscosity of the fluid, U is the mean velocity of the fluid and D is the

diameter of the pipe. Values of the Stokes number above 2 indicate highly inertial flow

while values below 0.25, the particles are tightly coupled to the fluid flow [42]. Given

two equal stokes numbers in two different cases, if the geometrical configurations are

similar, this indicates a high similitude in the particle trajectories [82]. If the Stokes

CHAPTER 5 EXPERIMENTAL WORK 105

number is calculated for both a tracer particle and a sand particle with diameters of

50 and 500 µm respectively, the numbers obtained are 0.32 for the tracer particles and

82.87 for the sand particles, confirming the predicted difference in inertia.

Once the frames are stored, these can be post-processed with commercial or open source

software. This technique was used when different software packages were compared with

experimental results in [73]. In this article, a very simple experiment was set up with

the flow driven solely by gravity. The aim was to assess how various turbulence models

are able to represent the jet impingement test. It was concluded that most of them are

able to capture the general trend of the velocity, including k-epsilon model. However,

none of the models were able to output an accurate quantitative result when compared

to the experiment.

5.4.2 Post-processing the PIV data

There was a number of options for post-processing the images obtained in PIV. One

of these options is Open Source Software such as PIVlab [83] which was used for post-

processing in [73]. The image obtained through PIV and post-processing the images

with PIVlab is shown in figure 5.18. Despite the low velocity at the exit of the nozzle,

the method is successfully able to capture the stagnation point right under the nozzle

exit as well as the areas where there is higher velocity due to the fluid’s change in

direction. The standard PIV technique used allowed two velocity components in a

plane (the sheet of laser) to be obtained. In order to get a third component, two or

more cameras should be used.

CHAPTER 5 EXPERIMENTAL WORK 106

Figure 5.9: Nozzle configuration with sacrificial pump

CHAPTER 5 EXPERIMENTAL WORK 107

Figure 5.10: Test rig with sacrificial pump, scale and stirrer

Figure 5.11: Schematic of test rig

CHAPTER 5 EXPERIMENTAL WORK 108

Figure 5.12: Cumulative siize distribution of the Frac Sand used for
the experimental work

Figure 5.13: Profilometry for three different samples eroded under the same conditions (1.15%
sand concentration) for 15 minutes. Depth in µm and horizontal axis in mm

CHAPTER 5 EXPERIMENTAL WORK 109

Figure 5.14: Profilometry for three different samples eroded under the same conditions (7.2%
sand concentration) for 15 minutes. Depth in µm and horizontal axis in mm

Figure 5.15: Wear scar obtained in a 15 minutes experiment with
7.2% sand concentration

CHAPTER 5 EXPERIMENTAL WORK 110

Figure 5.16: Alicona Infinite Focus IFM G4

Figure 5.17: PIV setup schematics for a wind tunnel[80]

CHAPTER 5 EXPERIMENTAL WORK 111

Figure 5.18: Contours of velocity magnitude (m
s

) obtained with
PIVlab [83]

Chapter 6

Results discussion

6.1 Introduction

A series of tests were run with the test rig after ensuring repeatability. These were run

for different time intervals, with the aim of obtaining progressively increasing depths

in the wear scar under the same conditions. The test rig was drained after each test to

ensure that the debris from the previous sample wouldn’t affect the new test and that

the temperature of the water did not increase excessively. The sand concentration and

flow rate were measured in situ both by taking samples directly under the nozzle and

using the scale under the impingement tank to verify the obtained values.

6.2 Experimental results

Several experiments have been performed with the designed test rig. Contours of the

wear scars for 1.15% mass concentration of sand at 30, 45 minutes, 1 hour and 2 hours

test are presented in this section. A 1 hour test with 7% mass concentration was also

run and is presented in this section. The wear scars and contour plots of erosion were

obtained with the Alincona Infinite Focus detailed in section 5.3.1. For each test, a

sample was placed in the holder and eroded for the specified amount of time, after

which, the wear scar was measured. The procedure to measure the wear scars was

to find the area of maximum depth and then trace a line where the scar profile was

measured. It is worth noting that, due to the difference in duration and therefore in

112

CHAPTER 6 RESULTS DISCUSSION 113

depth between the different tests, the scaling on the contour plots and profiles differ

from each other. As the wear scar deepens, some of the material is deformed plastically

instead of being removed from the target, having as a result a small area around the

scar protruding from the initial surface. Aluminium’s ductility makes this visible for

the cases of 45 minutes (Figure 6.2), 1 hour (Figure 6.3) and 2 hours duration (Figure

6.4). As a result of this, the colour corresponding to areas with no erosion is slightly

shifted. However, when the concentration in a 1 hour test was increased to 7% (Figure

6.5) this feature became no longer visible. The deeper wear scar obtained for that

test would substantially modify the fluid flow. This would in turn affect the particle

trajectories producing a wear scar with no accumulation of material on the edges as

seen in previous cases.

6.2.1 1.15% Concentration tests

Wear scar profiles and contours form 30, 45 minutes, 1 and 2 hours tests are shown in

figures 6.1, 6.2, 6.3 and 6.4 respectively.

Figure 6.1: Contours of erosion and wear scar profile after 30 mins of experiment at 1.15% sand concen-
tration. Depth in µm and horizontal axis in mm

CHAPTER 6 RESULTS DISCUSSION 114

Figure 6.2: Contours of erosion and wear scar profile after 45 mins of experiment at 1.15% sand
concentration. Depth in µm and horizontal axis in mm

Figure 6.3: Contours of erosion and wear scar profile after 1 hour of experiment at 1.15% sand
concentration. Depth in µm and horizontal axis in mm

CHAPTER 6 RESULTS DISCUSSION 115

Figure 6.4: Contours of erosion and wear scar profile after 2 hours of experiment at 1.15% sand
concentration. Depth in µm and horizontal axis in mm

6.2.2 7% Concentration tests

The wear scar profile and contours of erosion for a 1 hour test at 7% concentration is

shown in figure 6.5.

Figure 6.5: Contours of erosion and wear scar profile after 1 hour of experiment at 7% sand
concentration. Depth in µm and horizontal axis in mm

6.3 Test rig preliminary CFD simulations

It has been commented in 5.2.2 that an asymmetric wear scar is obtained in the ex-

periments. This asymmetry is attributed mainly to the location of the injection of the

particles into the main pipe. A CFD simulation was set up and the averaged values

CHAPTER 6 RESULTS DISCUSSION 116

for the impact angle and the impact velocity were calculated. In order to do this, a

steady state simulation was performed first and the particles were later introduced into

the flow in a transient Euler-Lagrange simulation. The mesh used for the simulation

consisted of 1910673 elements, mostly hexahedral. The velocity contours are shown

in Figure 6.6, 6.7 and 6.8 while the pressure contours are displayed in figures 6.9 and

6.10. Figure 6.8 shows the asymmetry in the fluid flow impinging on the target. The

averaged magnitude of the impact velocity and angle are shown in Figures 6.11 and

6.12. These contours follow the same trend seen previously in the experimental work,

capturing a similar ”C” shape on the target’s surface.

Figure 6.6: Test rig steady state velocity contours(m
s

)

CHAPTER 6 RESULTS DISCUSSION 117

Figure 6.7: Test rig steady state velocity contours(m
s

) around the particle injection

Figure 6.8: Test rig steady state velocity contours(m
s

) around the target

CHAPTER 6 RESULTS DISCUSSION 118

Figure 6.9: Test rig steady state pressure contours(Pa)

Figure 6.10: Test rig steady state pressure contours(Pa) around the target

CHAPTER 6 RESULTS DISCUSSION 119

Figure 6.11: Mean particle impact velocity (m
s

) on test rig’s target

Figure 6.12: Mean particle impact angle (degrees) on test rig’s target

These contours confirmed the previously mentioned asymmetry in what respects to

the particle impacts. The inertia of the relatively big sand particles used for eroding the

geometry was sufficiently high so that their trajectory as they exited the injection was

CHAPTER 6 RESULTS DISCUSSION 120

not sufficiently affected by the flow in the main pipe and a higher number of them ended

up impinging on the opposite side of the test sample relative to the injection. This is

also illustrated when the particles are represented and coloured by velocity magnitude

at the time-step corresponding to 10 seconds. In Figure 6.13, the target is coloured in

blue and the asymmetry in the particle distribution is clearly visible, showing that the

majority of the particles are driven to one side of the target.The mesh used for this

preliminary simulations was relatively coarse. A finer mesh would have been required

had the test rig been used for validation given the small size of the nozzle compared

to the size of the faces on the target. Three different erosion models were implemented

and used to calculate erosion contours for the test rig, namely Tabakoff et al [84],

Finnie [12] and Menguturk et al [85]. From these three models, the latter is shown,

since it was the one that represented the wear scar measured in the experimental work

more closely. The erosion contours on the target’s surface obtained with Menguturk’s

equation [85] are shown in Figure 6.14 and 6.15. Figure 6.15 also shows the mesh faces

at the target’s surface and the symmetry axes. The wear scar shape obtained in this

preliminary simulation is similar to the one obtained in the experiments both showing

similar ”C” shapes. These results could be improved by refining the mesh around

the target in combination with other erosion equations which may better capture the

erosive behaviour of the Frac Sand particles.

Figure 6.13: Lagrangian particles coloured by velocity magnitude in the test rig domain and
target coloured in blue

CHAPTER 6 RESULTS DISCUSSION 121

Figure 6.14: Erosion contours at the targets surface showing the symmetry axes

Figure 6.15: Erosion contours at the target’s surface showing the symmetry axes and the mesh
faces

CHAPTER 6 RESULTS DISCUSSION 122

6.4 Validation fluid flow changes due to wear scar

6.4.1 Introduction

Technical issues with the laser used in the Particle Image Velocimetry prevented val-

idation of the algorithm with this technique. However, the results presented in the

work by Nguyen et al [60] seem to predict the creation of a new stagnation area af-

ter 30 minutes of erosion with an inlet velocity of 30 m
s . In their work, Nguyen et al

eroded a target for 30 minutes and used a 3 dimensional scan of the wear scar as the

new geometry. Once the steady state was calculated for this new geometry, a new low

pressure area appeared as a result of the increased velocity of the fluid induced by the

new configuration of the worn surface. In this section, a computational analysis of the

experimental work in [60] is presented with the purpose of validating the deformation

algorithm. In addition to this, a new approach including mesh deformation is proposed

in order to calculate the evolution of any 3 dimensional eroded geometry.

6.4.2 Methodology

With the statistical analysis outlined in section 4.8 the minimum number of impacts

needed to obtain both velocity and impact angle averages with a certain degree of

confidence can be calculated. In order to do this, 10 seconds of erosion were simulated

for the case studied by Nguyen et al [60]. Initially, a visual inspection of the results for

different times, showed that the wear scar variations after the first second of simulation

were negligible, as shown in figure 6.16, where the wear scar was obtained using the

formula developed by Tabakoff et al [84]. These figures show how the contours only

increase their values without changing the shape of the scar from the first second of

simulation.

CHAPTER 6 RESULTS DISCUSSION 123

Figure 6.16: Contours of erosion per unit mass of impacting particles at 4 different simulation
times. From left to right and from top to bottom: 1, 4, 8 and 10 seconds

Since one of the aims is to optimise the computational time invested in running

the simulation, the results between time 0 and 1 were analysed every 0.1 seconds of

simulation. In addition to this, with the aid of the fields developed in section 4.8, the

minimum number of impacts required per face were calculated. The results after 10

seconds of simulations were used in order to calculate this minimum number of impacts

with a confidence level of 95 %. The number of particles released after 10 seconds

was 1 million. Additionally, an application was compiled (shown in appendix K) in

order to sum up the minimum number of impacts required at each face for the impact

angle and impact velocity averages. When the application was run, two numbers were

obtained, of which the highest one was chosen as the minimum number of impacts.

The value obtained for the simulation was 48677, which corresponded with 0.48677

seconds of simulation. However, this value only accounts for the time at which the

particles are released, but 48677 refers to the number of impacts. Thus, the average

time that a particle spends inside the domain was added to the 0.48677 seconds. The

calculation of the average time a particle spends in the domain was obtained from

CHAPTER 6 RESULTS DISCUSSION 124

the log of OpenFOAM’s particle variables and estimated to be 0.02 seconds for this

simulation. It was after this simulation time that the number of particles within the

domain (incoming minus exiting) fluctuated around 330. Therefore, the total time was

rounded up to 0.5 seconds of simulation. A qualitative comparison between the erosion

contours at time 0.5 seconds and 10 seconds is shown in figure 6.17. Figure 6.18 shows

a comparison of the normalised erosion ratio between the same two time-steps plotted

along the radius of the target. The average difference between lines is 1.19%, which

validates the statistical accuracy of the erosion contours at 0.5 s.

Figure 6.17: Contours of erosion per unit mass of impacting particles at 0.5 and 10 seconds of
simulation

Figure 6.18: Comparison of the normalised erosion ratio over the radius of the probe (mm)

CHAPTER 6 RESULTS DISCUSSION 125

6.4.3 Influence of the rebound model

The computational erosion obtained by Nguyen et al in [60] incorporated a different

erosion model than the default one in OpenFOAM. The model used was developed

by Forder et al in [16]. Forder’s model was implemented in OpenFOAM and a 10

s simulation was obtained for each model. The erosion contours obtained after 10

seconds are shown in figure 6.19. As can be observed, the wear scars obtained with

both models are practically identical. The only difference between both scars relates

to the magnitude of the erosion. This indicates that a simple model, which would also

be less computationally expensive, would be sufficient to calculate erosion with enough

accuracy for this configuration.

Figure 6.19: Contours of erosion per unit mass of impacting particles for the same erosion model
[84] and different rebound models. Forder et al [16] (left) and OpenFOAM’s default rebound model
(right)

6.4.4 Validation of the 3-dimensional wear scar

An equivalent case to that one of Nguyen et al [60] was set up for validation. Steady

state results were computed first and after that, an Euler-Lagrange simulation was run

in OpenFOAM in order to calculate erosion induced by solid particle impingement.

The parameters of the simulation were set to be the same as the ones used by Nguyen

et al in [60]. The formula used for prediction of the erosion contours was developed by

Tabakoff et al in [84] and implemented in OpenFOAM. This model was run alongside

other models such as the ones developed by Menguturk et in [85] (also discussed in

[86] and [87]) and Nandakumar et al [31] producing for all of them very similar erosion

profiles and only differing in magnitude. The mesh deformation is applied after 10

CHAPTER 6 RESULTS DISCUSSION 126

seconds of simulation. Once the erosion ratios were calculated, the scar was scaled

so that the maximum depth was 542 µm and the steady state was calculated again.

The scaling factor which corresponds to 542 µm of depth was 0.0349 for the erosion

contours obtained with the proposed formula. Additionally, different scaling factors

were applied in order to analyse the evolution of the fluid flow during the steady state

erosion. A radial average of the wear scars was obtained for each scaling factor and the

different profiles are shown in figure 6.20

Figure 6.20: Wear scar profile depth comparison (µm) along the radius (mm) for different scaling
factors

A quantitative comparison between the wear scar profile obtained with simulations

and the ones measured by Nguyen et al is shown in Figure 6.21. It was also found that,

as the scar progresses, the new stagnation point is captured, validating the deformation

algorithm. As opposed to the work developed by Nguyen et al shown in 2.12, where the

wear scar is 3D scanned and introduced into the CFD software again, the results here

were obtained entirely computationally after 10 s of simulation . The initial contours

of velocity and pressure are shown in figures 6.22 and 6.23 respectively while the same

are shown in figures 6.24 and 6.25 respectively for the deformed geometry after being

eroded for a value of the scaling factor of 0.00349.

CHAPTER 6 RESULTS DISCUSSION 127

Figure 6.21: Wear scar profile comparison with the experimental scars measured by Nguyen et al
in [60]

Figure 6.22: Velocity contours of the uneroded geometry (m
s

)

CHAPTER 6 RESULTS DISCUSSION 128

Figure 6.23: Static pressure contours of the uneroded geometry(Pa)

Figure 6.24: Velocity contours of the eroded geometry (m
s

) for a scaling factor of 0.00349

CHAPTER 6 RESULTS DISCUSSION 129

Figure 6.25: Static pressure contours of the eroded geometry(Pa) for a scaling factor of 0.00349

Additionally, the same two images are shown for all the different scaling factors

analysed in figure 6.26-6.31.

CHAPTER 6 RESULTS DISCUSSION 130

Figure 6.26: Velocity (m
s

, left) and pressure contours (Pa, right) for scaling factor = 0.001976

CHAPTER 6 RESULTS DISCUSSION 131

Figure 6.27: Velocity (m
s

, left) and pressure contours (Pa, right) for scaling factor = 0.0027

CHAPTER 6 RESULTS DISCUSSION 132

Figure 6.28: Velocity (m
s

, left) and pressure contours (Pa, right) for scaling factor = 0.00349

CHAPTER 6 RESULTS DISCUSSION 133

Figure 6.29: Velocity (m
s

, left) and pressure contours (Pa, right) foscaling factor = 0.00428

CHAPTER 6 RESULTS DISCUSSION 134

Figure 6.30: Velocity (m
s

, left) and pressure contours (Pa, right) for scaling factor = 0.006585

CHAPTER 6 RESULTS DISCUSSION 135

Figure 6.31: Velocity (m
s

, left) and pressure contours (Pa, right) for all the scaling factor =
0.02634

Figure 6.32 shows the different surfaces obtained after the mesh deformation for the

same scaling factors.

CHAPTER 6 RESULTS DISCUSSION 136

Figure 6.32: Surfaces obtained for all the scaling factors. From top to bottom and left to right:
0.001976, 0.0027, 0.00349, 0.00428, 0.006585 and 0.02634

Figure 6.33 shows the pressure contours at the deformed surfaces for all the scaling

factors with different scales for the pressure. This figure seems to indicate that the

stagnation point appears even before an equivalent depth to the experiment of Nguyen

et al [60]. In the computational calculation, the first appearance of the stagnation point

was detected at a scar obtained with a scaling factor which was 1.766 times smaller

than that the one equivalent to the scar measured by Nguyen et al in [60].

CHAPTER 6 RESULTS DISCUSSION 137

Figure 6.33: Pressure contours (Pa) at the surfaces for all the scaling factors. From top to
bottom and left to right: 0.001976, 0.0027, 0.00349, 0.00428, 0.006585 and 0.02634

It is worth noting that the values of the pressure at the stagnation area increase as

the wear scar progresses while the location of the stagnation point doesn’t change its

relative location. However, the maximum velocity generated by the new scars signifi-

cantly changes it’s value at around the same depth analysed by Nguyen et al in [60],

which corresponds to a scaling factor of 0.00349. After that point, it fluctuates between

different values, not increasing any further. Therefore, it is predicted that the fluid flow

CHAPTER 6 RESULTS DISCUSSION 138

changes would be significant enough to affect particle trajectories once the wear scar

is around 540 µm in depth. These results confirm the validity of the approach for the

wear scar obtained by Nguyen et al in [60] after 30 minutes of erosion. An analysis of

the experimental scars obtained for different experiment durations would be necessary

in order to assess how the shape of the wear scar changes as the fluid flow does.

6.4.5 Time-scaling

The proposed methodology introduces three different time-scales. These scales are

optimised in order to calculate the deformed state of the geometry once eroded in the

minimum amount of time possible.

Lagrangian particles

The Lagrangian time-scale is related to the time-step set in the solver in order to

calculate particle trajectories accurately. In this type of simulations the time-step

should satisfy a low enough courant-number so that the trajectories are calculated

accurately. The lower the courant-number, the more accurately these will be calculated.

In theory, the courant number should be kept below a value of 1. In the simulations

shown in this work, the courant number was kept between 0.2 and 0.9. The Lagrangian

time-step used in the simulations for validation was 1e−5s.

Erosion and mesh deformation

The time-scale related to both erosion rate and mesh deformation, will be dependent

upon the number of impacts necessary in order to calculate the wear scar with the

chosen level of confidence. The mesh deformation time-scale will have the same value,

as the algorithm will be applied when the wear scar is accurate enough. In this case,

as it was outlined in this section, this value is equal to 0.5 seconds.

Fluid flow

Finally, the fluid-flow time-step should have the same value as the erosion and mesh

deformation one. The reason behind this is that only after the mesh is deformed, the

fluid flow steady state has to be recalculated in order to compute the modified particle

CHAPTER 6 RESULTS DISCUSSION 139

trajectories. Regarding the number of iterations of fluid flow in order to achieve a new

steady state, this will depend on the complexity of the geometry on which erosion is

calculated.

6.5 Erosion calculation with a dynamic mesh solver

One of the possible techniques to avoid having an increasing size of the cells adjacent

to the boundaries is to insert a dynamic mesh solver within the code that moves the

points of these adjacent cells and creates new ones where required. Dynamic meshing

with a laplacian solver and inverse distance interpolation was implemented in this case

although there are other schemes available for dynamic meshing as well as interpola-

tion. The features of this solver have been commented in 4.9 and the code is available

in Appendix E. Figures 6.34 and 6.35 represent two series of images of the mesh and

velocity contours obtained with this code for the case studied in [60]. In figure 6.34,

it can be observed how, as deformation progresses, the whole mesh is adapted to the

new shape of the deformed geometry. Figures 6.34 and 6.35 show the solution for the

dynamic meshing and the velocity field at each second from left to right. It can be ob-

served how the magnitude of the maximum velocity increases with scar depth. When

the dynamic mesh is used, an additional dictionary is included where the number of

fluid flow iterations after deforming the mesh is defined as well as other parameters

such as the value determining when convergence is reached. In this case, that number

was set to 100 and the values for determining when convergence was reached was set

to 10−4. The velocity field seemed to have converged well and no inconsistencies were

found. However, the pressure field, which is not shown, didn’t seem to have reached

convergence at each deformation step since its values differed considerably from one

time-step to the next one. This could be addressed by increasing the number of iter-

ations for better convergence, which would yield a smooth transition of the pressure

field between deformation steps. This solver allows automating the process of erosion

calculation, provided that the three different time-scales are introduced in the con-

trolDict and erosionDict dictionaries for the particle time-step and mesh deformation

respectively.

It is also worth noting that, the smaller the deformation steps and the higher the damage

CHAPTER 6 RESULTS DISCUSSION 140

each particle causes on the surface, the more irregular the deformed surface becomes,

as evidenced by figure 6.36. These surfaces were obtained by increasing the damage

the particles cause on the surface and deforming the mesh at every time-step, yielding

a very uneven geometry which eventually cased divergence. A complete sequence of

these images was developed and presented in [88] by Lopez et al.

Figure 6.34: Progressive mesh deformation and result of the dynamic meshing

CHAPTER 6 RESULTS DISCUSSION 141

Figure 6.35: Progressive mesh deformation results for the velocity contours

CHAPTER 6 RESULTS DISCUSSION 142

Figure 6.36: Progressive surface deformation with high damaging particles

6.6 Three dimensional implementation of the Wear Map

Method

In the work by Gnanavelu et al [9, 14], a methodology is proposed to calculate the ero-

sion rate based on both experimental and computational methods. The CFD method-

ology in this paper was analysed in chapter 3 and in an article published by Lopez et

al [24]. In section 4.8, a methodology was developed for averages calculation of impact

angles and velocities. The aim in this section is to implement the Wear Map Method

in a three dimensional configuration based on the experimental results published by

Nguyen et al in [60]. The erodent used in [60] were angular sand particles with an

averaged shape factor of 0.58 and with a concentration of 0.5% by volume, while the

CHAPTER 6 RESULTS DISCUSSION 143

material used in the samples was stainless steel (SUS304).

6.6.1 Equation fitting

Several tools and different fitting methodologies [89, 90] have been investigated. In this

section, two of the most accurate ones are presented. In order to obtain the fitting

surfaces, contours and residuals, Matlab’s fitting toolbox was used [89]. The first step

was to run the transient simulation in order to obtain averages for the velocity and the

angle of impingement. The profiles along the radius of the sample were easily obtained

using Paraview’s ”Plot over line” feature [91] and the results are presented in figures

6.37 and 6.38 for velocity and impact angle respectively and taken from the contour

plots of the velocity and angle of impingement averages shown in figures 6.39 and 6.40.

After that, the averages were matched to Nguyen’s wear scar after 30 minutes [60]

which is represented in figure 6.41 together with the wear scars after 5 and 15 minutes

of test.

Figure 6.37: Impact velocity average across the radius of the test sample in m
s

CHAPTER 6 RESULTS DISCUSSION 144

Figure 6.38: Impact angle average across the radius of the test sample in degrees

Figure 6.39: Velocity at impingement average in m
s

CHAPTER 6 RESULTS DISCUSSION 145

Figure 6.40: Impact angle average in degrees

Figure 6.41: Wear scars after 5, 15 and 30 minutes of test [60]

Once the data for impact angle, impact velocity and wear scar depth were put

together the wear map was calculated using Matlab.

Two different fits based on different number of points for the equation proposed by

Gnanavelu et al in [14], represented in equation 6.1 were tried.

CHAPTER 6 RESULTS DISCUSSION 146

ER = V 2(Asin(θ)4 +Bsin(θ)3 + Csin(θ)2 +Dsin(θ) + E) ∗ F (6.1)

Where ER is the erosion ratio (as defined in 2.1), θ is the angle of impingement and

V is the velocity at impingement.

6.6.2 Equation fit with 120 points

The surface which represents the best fit for this case is shown in figure 6.42. The

residuals after the fitting operation are plotted in figure 6.43 while the resulting Wear

Map is shown in figure 6.44 including all the figures the points used for fitting the

equation.

The coefficients obtained are represented in table 6.1 along with some parameters

that show the goodness of the fit.

A -4.747

B 10.11

C -7.813

D 2.995

E -0.18

F 11.19

SSE 1.375e+04

R-square 0.9939

Adjusted R-Square 0.9936

RMSE 10.98

Table 6.1: Results of the fit for 120 points

CHAPTER 6 RESULTS DISCUSSION 147

Figure 6.42: Surface fitting for the wear scar and CFD case in [60]

Figure 6.43: Residuals after fitting

CHAPTER 6 RESULTS DISCUSSION 148

Figure 6.44: Wear map for the wear scar and CFD case in [60]

The equation obtained was implemented in OpenFOAM and the utility described in

Appendix F was run in order to obtain the deformed geometry. Once the geometry was

deformed, another utility (refineWallLayer) was used in order to create new layers

at the specified boundary and a steady state reached again. The deformed geometry

and the steady state results are shown in figures 6.45, 6.46, 6.47, 6.48, 6.49 and 6.50,.

Figure 6.45: Velocity contours in m
s

CHAPTER 6 RESULTS DISCUSSION 149

Figure 6.46: Static pressure contours in Pa

Figure 6.47: Static pressure contours in Pa showing the formation of a possible stagnation point

CHAPTER 6 RESULTS DISCUSSION 150

Figure 6.48: Velocity contours in m
s

Figure 6.49: Velocity contours in m
s

for the edge of the wear scar

CHAPTER 6 RESULTS DISCUSSION 151

Figure 6.50: Static pressure contours in Pa at the target’s surface

As figures 6.46 and 6.47 illustrate, a region with lower pressure indicating the for-

mation of a stagnation point is found in the area where the velocity is higher. However,

the central part of the scar is less accurate than the one commented in section 6.4. This

may have to do with the accuracy of the fit, which is represented by the residuals in

figure 6.43.

6.6.3 Equation fit with 24 points

The surface which represents the best fit for this second case with less points is shown

in figure 6.51. The residuals are plotted in figure 6.52 and the resulting Wear Map is

shown in figure 6.53. All figures include the points used in the fitting.

The coefficients obtained can be found in table 6.2 along with some parameters

showing the goodness of the fit.

CHAPTER 6 RESULTS DISCUSSION 152

A -7.994

B 18.3

C -15.43

D 6.494

E -0.3936

F 4.819

SSE 2.003e+04

R-square 0.9709

Adjusted R-Square 0.9623

RMSE 34.33

Table 6.2: Results of the fit for 24 points

Figure 6.51: Surface fitting for the wear scar and CFD case in [60] with 24 points

CHAPTER 6 RESULTS DISCUSSION 153

Figure 6.52: Residuals after fitting using 24 points

Figure 6.53: Wear map for the wear scar and CFD case in [60] fitted with 24 points

The geometry was deformed according to the new formula obtained and layers of

cells were created at the specified boundary and a steady state was reached again. The

deformed geometry and the steady state corresponding to this case are shown in figures

6.54, 6.55 and 6.56.

CHAPTER 6 RESULTS DISCUSSION 154

Figure 6.54: Velocity contours and deformed surface in m
s

Figure 6.55: Static pressure contours in Pa and deformed surface showing no new stagnation
point

CHAPTER 6 RESULTS DISCUSSION 155

Figure 6.56: Vorticity contours in s−1 at the surface of the eroded geometry truncated to a value
of 100000

6.6.4 Discussion

As seen in the results, no developing stagnation point is found when applying the

Wear Map method. However, this might be due to a relatively poor fit as a result of

wide prediction bounds or other factors such as the number of points used in the fitting,

distance between those, their corresponding standard deviation, layering after the mesh

deformation, etcetera. It is worth noting that the mesh used for both fits was the same

one used previously for validation of the algorithm. In the case of the latter, given

that the utility used divides the cells at the surface of the specified patch by creating

a layer and defining a percentage for the relative thickness between the newly created

cells, the cell size at some locations might not be adequate to capture the changes in

the variables of the fluid flow. Regarding the goodness of the fit, Figures 6.43 and 6.52

show how well each point adapts to the fitted surface, being in this case the maximum

difference of around 40 µm. However, the overall shape of the scar is captured by the

method so it is expected that a better fit would yield significantly improved results for

the three dimensional wear scar.

CHAPTER 6 RESULTS DISCUSSION 156

6.7 Application to centrifugal pumps

6.7.1 86 AH slurry pump volute

In many cases the erosion field in the volute of a centrifugal slurry pump can be approx-

imated by calculating the square of the velocity field and interpolating it to the faces of

the volute’s boundary. The immediate implication of this is that erosion behaviour in

the volute of the pump is similar to that of the Jet Impingement Test. In the JIT, ero-

sion is calculated through formulae which, in most of the cases, have either the square

of the velocity as a variable or a similar power of this magnitude. The code developed

gets the magnitude of the velocity field at the cells nearest to the walls. These values

are then introduced in the desired formula for calculating erosion and transferred to

the boundary faces, which generates an erosion field at the walls of the geometry.

Figure 6.57: Picture of 86AH centrifugal slurry pump’s mesh

CHAPTER 6 RESULTS DISCUSSION 157

Figure 6.58: Picture of 86AH centrifugal slurry pump’s steady state coloured by velocity magni-
tude m

s

Figure 6.59: Picture of 86AH centrifugal slurry pump’s volute

CHAPTER 6 RESULTS DISCUSSION 158

Figure 6.60: Picture of 86AH centrifugal slurry pump’s volute coloured by erosion ratio

Figure 6.61: Picture of 86AH centrifugal slurry pump’s volute deformed according to erosion

CHAPTER 6 RESULTS DISCUSSION 159

Figure 6.62: Picture of 86AH centrifugal slurry pump’s volute deformed according to erosion field
with contours of erosion

Figures 6.57 and 6.58 show the pump’s mesh and the steady state of the 86AH

centrifugal slurry pump, both of which were obtained by David Smith, an engineer in

the Weir Group for a volume flow rate of 0.235 m3

s and a rotational speed of 1100 rpm

[92]. Figure 6.59 shows the boundary corresponding to the volute of the pump before

being deformed and figure 6.60 shows the same geometry coloured by erosion contours.

Figures 6.61 and 6.62 show the deformed geometry with a solid color and with the

erosion contours respectively. Field data available for the volute of this model, shown

in figure 6.63 compared with the computational eroded volute, confirms the validity

of the approach as well as the ability of the algorithm to capture the erosion induced

deformation. Erosion contours and the deformed state of the volute were calculated

using the code in Appendix I. It must be noted that the impeller used for the simulation

had 4 vanes, which is equivalent to the one operating in the pumps shown in figure 6.63.

Simulations with different number of vanes would have created a different erosion field.

CHAPTER 6 RESULTS DISCUSSION 160

Figure 6.63: Top: 86AH centrifugal slurry pump’s volute operating with Impeller WRT1, Mid-
dle:Picture of 86AH centrifugal slurry pump’s volute obtained from worn unit operating with
F6145WRT1 impeller and F6083 throatbush, Bottom: Computational volute wall deformed ac-
cording to erosion showing similar erosion pattern

CHAPTER 6 RESULTS DISCUSSION 161

6.7.2 150 WBH slurry pump impeller

A novel approach for calculating an erosion ratio on rotating parts such as impellers

in centrifugal pumps was developed by Dr. Luis Moscoso in an internal report for the

Weir Group [93] and in his PhD thesis [94] which has not been published and where

he developed a formula for erosion calculation that includes the vorticity field. The

approach consists of computing the vorticity field, which usually gives a very realistic

indication of the erosion pattern in the impeller. The relationship between vorticity and

erosion in centrifugal slurry pumps has also been investigated in a more recent paper

by Cai et al [95]. Additionally, here, an average of the vorticity field was calculated

for the transient of the pump. Once the vorticity field is plotted, if the whole pump is

included in the rendering, there may be some areas where vorticity values are higher.

However, in this case, focusing on the impeller and with the aid of an application

specifically developed for this purpose, a truncated averaged vorticity is calculated.

This way, relative values can not only be better visualised, but at the same time this

new field was used to show how the eroded impeller would look like comparing it to

the new one. The code used for calculating the averages and its truncated field can be

found in Appendix G and Appendix H. The idea behind the vorticity field indicating

the erosion pattern in rotating parts [93, 94] is based on the definition of the vorticity

itself. The magnitude of the vorticity indicates how fast the fluid layers are rotating

with respect to each other. In a pump’s impeller (and in all rotating machinery), the

particles traveling through it can be divided into two main groups. The first group is

the one composed mainly by bigger, more inertial particles. The second group contains

the smaller particles, which are mainly driven by the fluid’s drag and follow it to a

further extent. In a slurry pump it is this second group the one that accounts for most

of the erosion. These smaller particles are captured in the smaller eddies close to the

walls and are the ones responsible for most of the erosion in the impeller [93, 94]. This

doesn’t mean that the erosion is only caused by small particles. Bigger solids can have

an impact on the erosion in the impeller too. A number of these may impact on an

area which is not being subjected to much erosion. During the trajectory of the bigger

particles and after impact, the path of the smaller particles may be changed by either

the bigger ones themselves or the notch they may leave on the impeller’s wall. The

CHAPTER 6 RESULTS DISCUSSION 162

smaller particles’ behaviour may change in such a way that erosion starts progressing

faster in that new area. Once the erosion ratio is calculated, the mesh can be deformed

with the aid of the code in Appendix I.

Figure 6.64: Cross section of 150WBH pump showing the different parts

Figure 6.65: Picture of 150WBH centrifugal slurry pump showing uneroded impeller

CHAPTER 6 RESULTS DISCUSSION 163

Figure 6.66: Picture of 150WBH centrifugal slurry pump showing volute and wear disc

Figure 6.67: Picture of 150WBH centrifugal slurry pump front vanes scan before (right) and after
erosion (left)

CHAPTER 6 RESULTS DISCUSSION 164

Figure 6.68: Picture of 150WBH centrifugal slurry pump impeller scan before and after erosion

Figure 6.69: Picture of 150WBH centrifugal slurry pump front vanes truncated vorticity field

CHAPTER 6 RESULTS DISCUSSION 165

Figure 6.70: Picture of 150WBH centrifugal slurry pump impeller truncated vorticity field

Figure 6.71: Picture of 150WBH centrifugal slurry pump impeller truncated vorticity field

CHAPTER 6 RESULTS DISCUSSION 166

Figure 6.72: Picture of 150WBH centrifugal slurry pump impeller before erosion deformation

Figure 6.73: Picture of 150WBH centrifugal slurry pump eroded impeller according to calculated
erosion magnitude

For the 150 WBH slurry pump, a frozen rotor simulation was set up first in order

CHAPTER 6 RESULTS DISCUSSION 167

to set it as the initial condition for the transient simulation of the pump with dynamic

meshing. The pump operation was simulated for a volume flow rate of 125 l
s and a

rotational speed of 653 rpm. In this case, the images of the real pump were obtained

through a 3D scan of an eroded impeller, front vanes and the wear disc, which is sit-

uated between the front vanes and the volute. A cross section of the slurry pump 150

WBH is shown in figure 6.64. Results obtained with the proposed methodology seem to

capture well the location of erosion as a comparison between figures 6.67 and 6.69 and

figures 6.68 and 6.70-6.71 shows. However, the scanned pump is clearly in a much more

advanced state of erosion hence the similarity in the eroded profile is not as good as

in the previous case. However, this state could be achieved by applying the method a

second time after converging the flow field for the first stage of erosion. This would give

as a result, a modified erosion ratio, given the the geometry is progressively changing

the flow field, thus obtaining a more accurate representation of the geometry in a more

advanced stage of erosion. Figures 6.72 and 6.73 show the new and eroded impellers

respectively. The front vanes at the top of figure 6.73 as well as the walls close to the

exit of the impeller are expected to be eroded first, as the deformation in the figure

shows.

With the developed techniques, it is now possible to calculate, amongst other pa-

rameters, the decreased performance of the pump as it is being eroded. In order to

do this, first, erosion would be calculated, the mesh would be deformed and remeshed

afterwards (or the corresponding cells layered) and the new flow in the pump could

be calculated. If this is done for progressively increasing wear scar depth, the trend

of the performance could be obtained as well as the new head provided by the pump.

Correlating in situ measurements of the pump’s performance with the simulated one

could give a very good indication of the time the pump will operate before it fails.

In addition to this, many customers change the impellers in their pumps before they

reach failure. With the aid of this technique, the expected performance and head of

the worn impeller can be calculated along with the expected number of extra hours the

impeller would last. This would have a high impact on customers savings.

CHAPTER 6 RESULTS DISCUSSION 168

6.8 Application to other cases

In principle, the mesh deformation algorithm can be applied to any geometry subjected

to erosion. In the case of centrifugal pumps and rotating machinery in general, existing

tools and fields allow computing the erosion field on the walls of the geometry. A dif-

ferent method may be applied if the fluid pattern changes between different parts. The

algorithm is developed to work independently of how the erosion field is calculated.

Hence, it allows deforming the geometry according to erosion for any geometrical con-

figuration. The application of the algorithm is only limited when, after applying it,

boundaries intersect due to excessive deformation. Even when two different boundaries

intersect, there are some alternatives which allow creation of holes in the mesh. One

of these alternatives is using some of the commercial meshers which allow deleting and

creating individual faces so that the intersecting ones can be deleted and new ones can

be created to close the geometry again generating a hole(ICEM and StarCCM+ both

have this function). This process, depending on the size of the mesh may become quite

long. An algorithm could be implemented that automatically finds intersecting faces,

deletes them and then joins opposite boundaries creating the hole automatically. In

general, the smaller the faces at the boundary to be eroded and deformed the more

accurate the scar will be. Once the eroded geometry is simulated a new simulation can

be set up in order to obtain the updated fields and new efficiency of the eroded machine.

Finally, application of the algorithm is not restricted to erosion subjected machinery.

It can also be used in scouring erosion in bridges, natural erosion processes, river ero-

sion and, in general, any process that implies material removal from the geometry or

deformation by impact.

Chapter 7

Conclusions

A new methodology has been developed for erosion calculation including mesh defor-

mation according to the erosion rate. The mesh deformation algorithm is independent

of the geometrical configuration and as such, applicable to any geometry subjected to

erosion. It was found that, depending on the technique used for interpolation in the

dynamic meshing, the smoother or more uneven wear scars are calculated. Amongst

the many techniques, a laplacian solver was chosen due to its suitability to solve de-

formation for smaller displacements. With the aid of the implementation of a number

of erosion formulae in OpenFOAM, it was proved that, as erosion progresses in the

jet impingement, a new stagnation ring appears around the wear scar as the velocity

increased induced by the higher bend the fluid experiences. As opposed to Nguyen et

al [60], in this work, the deformed surface was obtained only by computational means

and the appearance of the stagnation point was predicted at a scar depth 1.766 times

smaller than the one reported in their work. However, the results for the fluid ve-

locity seem to predict that the fluid flow changes become significant enough at a wear

scar depth of around 540 µm which is similar to the one analysed by Nguyen et al in [60]

It was also discovered through comparison with OpenFOAM that Ansys Fluent had

an erroneous implementation of their particle tracking algorithm, at least in version 14.

By systematically comparing results from Star CCM+, Ansys Fluent 14, OpenFOAM

and Ansys 15, errors in the calculations of the particle velocities and angles of im-

pingement were successfully identified. This issue with Fluent’s Lagrangian particle

169

CHAPTER 7 CONCLUSIONS 170

tracking has affected a number of articles that is estimated to be quantitatively very

important in the literature, not only in erosion but in all articles were Lagrangian par-

ticle’s trajectories have been analysed. It is unknown if this problem was there from the

beginning or if it appeared after an update or even which update. Thus, the number

of publications affected can not be calculated.

A working test-rig was developed and is currently being used for erosion experi-

ments. However, due to technical issues it couldn’t be used for validation. The test-rig

design allows varying the mass concentration of particles between 1% and 7% approx-

imately. Asymmetric scars are produced as a result of the location of the particle

injection. However, this issue can be easily solved by moving the injection of the par-

ticles to another position such as on the pipe bend directly on top of the nozzle. The

samples obtained with the test rig were 3D scanned and the profilometry and wear scars

analysed, proving the asymetry, which was also anticipated by the CFD calculations.

Erosion in centrifugal slurry pumps was also investigated and it was found that there

is a correlation between the square of the velocity at the cells nearest to the walls and

the erosion ratio. It was also proved that erosion in the impeller can be approximated

by means of the vorticity calculation. A set of applications have been implemented in

OpenFOAM for calculation of the erosion contours and to deform the mesh according

to those afterwards. A visual comparison with worn pumps proves the suitability of the

technique to calculate performance decay as the pump is being eroded. This technique

could also lead to a significant improvement in failure prediction. Further work in this

area would include vorticity calculation in the moving parts with increased viscosity

similar to that of the slurry. This would in theory give a more accurate vorticity field at

the impeller and front vanes, thus enabling a more accurate erosion ratio calculation.

The deformation algorithm can also be used with or without dynamic meshing for

many other applications such as simulating progressive pipe blockage or even the blood

flow in arteries progressively blocked by accumulating bodies. In these cases, the direc-

tion of the surface normal vectors would be inverted as the geometry represented by the

fluid path would be becoming smaller instead of bigger. Deformation can be coupled

CHAPTER CONCLUSIONS 171

not only to erosion but also to other fields such as pressure or velocity to simulate other

processes.

Regarding the limitations of the mesh deformation algorithm, these are mainly as-

sociated to the mesh size and the geometrical configuration. Decreasing values of the

face size at the eroded boundary will produce a more accurate representation of the

deformed geometry. However, in the simple test case of the JIT, this would imply

calculating erosion for a longer period of time since, being the faces smaller, a higher

number of impacts will be required to calculate a reasonable average of the velocity and

impact angles. Areas with relatively sharp angles could produce face intersection with

little erosion applied. However, as discussed in the previous section, this issue could be

addressed by creating new surfaces after deleting the intersecting faces.

Some of the proposed further work includes being able to generate holes in the

geometry. This feature was investigated and, although not easy, it is feasible. The first

thing to do would be to look for intersecting faces and manipulate them by cutting or

elimination in order to form a new closed surface with those remaining cuts and new

faces created. This would generate a hole connecting two parts of the geometry. This

would enable simulating extreme erosion cases in which blades of pumps or turbines

continue to operate without failing and the associated effects of this such as vibrations

as well as learning how to predict them.

Appendix A

Facewise Average and Standard

Deviation calculation

A.1 Procedure

The methodology to be folllowed in this case is the same as the one explained in 4.4.2.

The files to be created in this case are named differently and, instead of only one field,

several will be written to memory. The means of both impact angle and velocity along

with the number of impacts per face, the standard deviations and the sample sizes are

calculated with the code in this section.

A.1.1 FacewiseStandardDeviation.C

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation

\\/ M anipulation |

License

This file is part of OpenFOAM.

172

CHAPTER A FACEWISE AVERAGE AND STANDARD DEVIATION CALCULATION 173

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

--/

#include "FacewiseStandardDeviation.H"

// * * * * * * * * * * * * * Protected Member Functions * * * * * * * *//

template<class CloudType>

Foam::label Foam::FacewiseStandardDeviation<CloudType>::applyToPatch

(

const label globalPatchI

) const

{

forAll(patchIDs_, i)

{

if (patchIDs_[i] == globalPatchI)

{

return i;

}

CHAPTER A FACEWISE AVERAGE AND STANDARD DEVIATION CALCULATION 174

}

return -1;

}

template<class CloudType>

void Foam::FacewiseStandardDeviation<CloudType>::write()

{

if (QPtr1_.valid() && QPtr2_.valid() && QPtr3_.valid())

{

QPtr1_->write();

QPtr4_->write();

QPtr5_->write();

QPtr6_->write();

QPtr7_->write();

}

else

{

FatalErrorIn("void Foam::FacewiseStandardDeviation<CloudType>::write()")

<< "QPtr not valid" << abort(FatalError);

}

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * *//

template<class CloudType>

Foam::FacewiseStandardDeviation<CloudType>::FacewiseStandardDeviation

(

const dictionary& dict,

CHAPTER A FACEWISE AVERAGE AND STANDARD DEVIATION CALCULATION 175

CloudType& owner

)

:

CloudFunctionObject<CloudType>(dict, owner, typeName),

QPtr1_(NULL),

QPtr2_(NULL),

QPtr3_(NULL),

QPtr4_(NULL),

QPtr5_(NULL),

QPtr6_(NULL),

QPtr7_(NULL),

patchIDs_()

{

const wordList allPatchNames = owner.mesh().boundaryMesh().names();

wordList patchName(this->coeffDict().lookup("patches"));

labelHashSet uniquePatchIDs;

forAllReverse(patchName, i)

{

labelList patchIDs = findStrings(patchName[i], allPatchNames);

if (patchIDs.empty())

{

WarningIn

(

"Foam::FacewiseStandardDeviation<CloudType>::FacewiseStandardDeviation"

"("

"const dictionary&, "

"CloudType& "

")"

) << "Cannot find any patch names matching " << patchName[i]

CHAPTER A FACEWISE AVERAGE AND STANDARD DEVIATION CALCULATION 176

<< endl;

}

uniquePatchIDs.insert(patchIDs);

}

patchIDs_ = uniquePatchIDs.toc();

// trigger ther creation of the Q field

preEvolve();

}

template<class CloudType>

Foam::FacewiseStandardDeviation<CloudType>::FacewiseStandardDeviation

(

const FacewiseStandardDeviation<CloudType>& pe

)

:

CloudFunctionObject<CloudType>(pe),

QPtr1_(NULL),

QPtr2_(NULL),

QPtr3_(NULL),

QPtr4_(NULL),

QPtr5_(NULL),

QPtr6_(NULL),

QPtr7_(NULL),

patchIDs_(pe.patchIDs_)

{}

CHAPTER A FACEWISE AVERAGE AND STANDARD DEVIATION CALCULATION 177

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * *//

template<class CloudType>

Foam::FacewiseStandardDeviation<CloudType>::~FacewiseStandardDeviation()

{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * *//

template<class CloudType>

void Foam::FacewiseStandardDeviation<CloudType>::preEvolve()

{

if (QPtr1_.valid() && QPtr2_.valid() && QPtr3_.valid())

{

QPtr1_->internalField() = 0.0;

QPtr2_->internalField() = 0.0;

QPtr3_->internalField() = 0.0;

QPtr4_->internalField() = 0.0;

QPtr5_->internalField() = 0.0;

QPtr6_->internalField() = 0.0;

QPtr7_->internalField() = 0.0;

}

else

{

const fvMesh& mesh = this->owner().mesh();

QPtr1_.reset

(

new volScalarField

(

IOobject

CHAPTER A FACEWISE AVERAGE AND STANDARD DEVIATION CALCULATION 178

(

this->owner().name() + "ImpactNumber",

mesh.time().timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh,

dimensionedScalar("zero", dimless, 0.0)

)

);

QPtr2_.reset

(

new volScalarField

(

IOobject

(

this->owner().name() + "SumImpactVelocity",

mesh.time().timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh,

dimensionedScalar("zero", dimVelocity, 0.0)

)

);

QPtr3_.reset

(

new volScalarField

(

CHAPTER A FACEWISE AVERAGE AND STANDARD DEVIATION CALCULATION 179

IOobject

(

this->owner().name() + "SumImpactAngle",

mesh.time().timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh,

dimensionedScalar("zero", dimless, 0.0)

)

);

QPtr4_.reset

(

new volScalarField

(

IOobject

(

this->owner().name() + "MeanImpactVelocity",

mesh.time().timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh,

dimensionedScalar("zero", dimVelocity, 0.0)

)

);

QPtr5_.reset

(

new volScalarField

CHAPTER A FACEWISE AVERAGE AND STANDARD DEVIATION CALCULATION 180

(

IOobject

(

this->owner().name() + "MeanImpactAngle",

mesh.time().timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh,

dimensionedScalar("zero", dimless, 0.0)

)

);

QPtr6_.reset

(

new volScalarField

(

IOobject

(

this->owner().name() + "ImpactVelStdDev",

mesh.time().timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh,

dimensionedScalar("zero", dimless, 0.0)

)

);

QPtr7_.reset

(

CHAPTER A FACEWISE AVERAGE AND STANDARD DEVIATION CALCULATION 181

new volScalarField

(

IOobject

(

this->owner().name() + "ImpactAngleStdDev",

mesh.time().timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh,

dimensionedScalar("zero", dimless, 0.0)

)

);

}

}

template<class CloudType>

void Foam::FacewiseStandardDeviation<CloudType>::postPatch

(

const parcelType& p,

const polyPatch& pp,

const scalar trackFraction,

const tetIndices& tetIs,

bool&

)

{

const label patchI = pp.index();

const label localPatchI = applyToPatch(patchI);

CHAPTER A FACEWISE AVERAGE AND STANDARD DEVIATION CALCULATION 182

if (localPatchI != -1)

{

vector nw;

vector Up;

// patch-normal direction

this->owner().patchData(p, pp, trackFraction, tetIs, nw, Up);

// particle velocity reletive to patch

const vector& U = p.U() - Up;

// quick reject if particle travelling away from the patch

if ((nw & U) < 0)

{

return;

}

const scalar magU = mag(U);

const vector Udir = U/magU;

// determine impact angle, alpha

const scalar alpha =

(180/mathematical::pi)*(mathematical::pi/2.0 - acos(nw & Udir));

const label patchFaceI = pp.whichFace(p.face());

scalar& Q1 = QPtr1_->boundaryField()[patchI][patchFaceI];

scalar& Q2 = QPtr2_->boundaryField()[patchI][patchFaceI];

scalar& Q3 = QPtr3_->boundaryField()[patchI][patchFaceI];

scalar& Q4 = QPtr4_->boundaryField()[patchI][patchFaceI];

CHAPTER A FACEWISE AVERAGE AND STANDARD DEVIATION CALCULATION 183

scalar& Q5 = QPtr5_->boundaryField()[patchI][patchFaceI];

scalar& Q6 = QPtr6_->boundaryField()[patchI][patchFaceI];

scalar& Q7 = QPtr7_->boundaryField()[patchI][patchFaceI];

Q1 += p.nParticle();

Q2 += magU*p.nParticle();

Q3 += alpha*p.nParticle();

Q4 = Q2/Q1;

Q5 = Q3/Q1;

Q6 = sqrt(sqr(Q4 - magU)/Q1);

Q7 = sqrt(sqr(Q5 - alpha)/Q1);

}

}

// *** //

A.1.2 FacewiseStandardDeviation.H

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation

CHAPTER A FACEWISE AVERAGE AND STANDARD DEVIATION CALCULATION 184

\\/ M anipulation |

--

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty

of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class

Foam::FacewiseStandardDeviation

Description

Creates averages for particle variables

SourceFiles

FacewiseStandardDeviation.C

---/

#ifndef FacewiseStandardDeviation_H

CHAPTER A FACEWISE AVERAGE AND STANDARD DEVIATION CALCULATION 185

#define FacewiseStandardDeviation_H

#include "CloudFunctionObject.H"

#include "volFields.H"

// * //

namespace Foam

{

/*---*\

Class FacewiseStandardDeviation Declaration

---/

template<class CloudType>

class FacewiseStandardDeviation

:

public CloudFunctionObject<CloudType>

{

// Private Data

// Typedefs

//- Convenience typedef for parcel type

typedef typename CloudType::parcelType parcelType;

//- Particle erosion field

autoPtr<volScalarField> QPtr1_;

autoPtr<volScalarField> QPtr2_;

autoPtr<volScalarField> QPtr3_;

CHAPTER A FACEWISE AVERAGE AND STANDARD DEVIATION CALCULATION 186

autoPtr<volScalarField> QPtr4_;

autoPtr<volScalarField> QPtr5_;

autoPtr<volScalarField> QPtr6_;

autoPtr<volScalarField> QPtr7_;

//- List of patch indices to post-process

labelList patchIDs_;

//- Plastic flow stress - typical metal value = 2.7 GPa

scalar p_;

//- Ratio between depth of contact and length of cut - default=2

scalar psi_;

//- Ratio of normal and tangential forces - default=2

scalar K_;

protected:

// Protected Member Functions

//- Returns local patchI if patch is in patchIds_ list

label applyToPatch(const label globalPatchI) const;

//- Write post-processing info

virtual void write();

public:

CHAPTER A FACEWISE AVERAGE AND STANDARD DEVIATION CALCULATION 187

//- Runtime type information

TypeName("FacewiseStandardDeviation");

// Constructors

//- Construct from dictionary

FacewiseStandardDeviation

(const dictionary& dict, CloudType& owner);

//- Construct copy

FacewiseStandardDeviation

(const FacewiseStandardDeviation<CloudType>& pe);

//- Construct and return a clone

virtual autoPtr<CloudFunctionObject<CloudType> > clone() const

{

return autoPtr<CloudFunctionObject<CloudType> >

(

new FacewiseStandardDeviation<CloudType>(*this)

);

}

//- Destructor

virtual ~FacewiseStandardDeviation();

// Member Functions

// Evaluation

CHAPTER A FACEWISE AVERAGE AND STANDARD DEVIATION CALCULATION 188

//- Pre-evolve hook

virtual void preEvolve();

//- Post-patch hook

virtual void postPatch

(

const parcelType& p,

const polyPatch& pp,

const scalar trackFraction,

const tetIndices& tetIs,

bool& keepParticle

);

};

// * //

} // End namespace Foam

// *//

#ifdef NoRepository

include "FacewiseStandardDeviation.C"

#endif

// *//

#endif

// **//

CHAPTER A FACEWISE AVERAGE AND STANDARD DEVIATION CALCULATION 189

Appendix B

Implementation of additional

rebound models

B.1 Procedure

There is more than one way to implement additional rebound models. The one pre-

sented in this Appendix is the one that would require less ”effort”, since only some files

need some additions and no additional files are added for compilation. The modified

files are shown with the two added rebound models, which are Sommerfeld et al [15]

and Forder et al [16]. The implementation of the rebound model is carried out inside

the StandardWallInteraction.C file so both models will be available if Standard-

WallInteraction is chosen in the kinematicCloudProperties dictionary along with the

original rebound, escape and stick conditions. In order to make them available within

StandardWallInteraction, PatchInteractionModel.C and PatchInteractionModel.H

need also be modified to include them, as well as LocalInteraction.H in case different

boundaries have different rebound models. Once the files have been modified, the code

is recompiled again.

B.1.1 StandardWallInteraction.C

--\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

190

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 191

\\ / O peration |

\\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation

\\/ M anipulation |

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "StandardWallInteraction.H"

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * //

template<class CloudType>

Foam::StandardWallInteraction<CloudType>::StandardWallInteraction

(

const dictionary& dict,

CloudType& cloud

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 192

)

:

PatchInteractionModel<CloudType>(dict, cloud, typeName),

interactionType_

(

this->wordToInteractionType(this->coeffDict().lookup("type"))

),

e_(0.0),

mu_(0.0),

nEscape_(0),

massEscape_(0.0),

nStick_(0),

massStick_(0.0)

{

switch (interactionType_)

{

case PatchInteractionModel<CloudType>::itOther:

{

const word interactionTypeName(this->coeffDict().lookup("type"));

FatalErrorIn

(

"StandardWallInteraction<CloudType>::StandardWallInteraction"

"("

"const dictionary&, "

"CloudType& cloud"

")"

) << "Unknown interaction result type "

<< interactionTypeName

<< ". Valid selections are:" << this->interactionTypeNames_

<< endl << exit(FatalError);

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 193

break;

}

case PatchInteractionModel<CloudType>::itRebound:

{

e_ = this->coeffDict().lookupOrDefault("e", 1.0);

mu_ = this->coeffDict().lookupOrDefault("mu", 0.0);

break;

}

default:

{

// do nothing

}

}

}

template<class CloudType>

Foam::StandardWallInteraction<CloudType>::StandardWallInteraction

(

const StandardWallInteraction<CloudType>& pim

)

:

PatchInteractionModel<CloudType>(pim),

interactionType_(pim.interactionType_),

e_(pim.e_),

mu_(pim.mu_),

nEscape_(pim.nEscape_),

massEscape_(pim.massEscape_),

nStick_(pim.nStick_),

massStick_(pim.massStick_)

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 194

{}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * *//

template<class CloudType>

Foam::StandardWallInteraction<CloudType>::~StandardWallInteraction()

{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * //

template<class CloudType>

bool Foam::StandardWallInteraction<CloudType>::correct

(

typename CloudType::parcelType& p,

const polyPatch& pp,

bool& keepParticle,

const scalar trackFraction,

const tetIndices& tetIs

)

{

vector& U = p.U();

bool& active = p.active();

if (isA<wallPolyPatch>(pp))

{

switch (interactionType_)

{

case PatchInteractionModel<CloudType>::itEscape:

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 195

{

keepParticle = false;

active = false;

U = vector::zero;

nEscape_++;

break;

}

case PatchInteractionModel<CloudType>::itStick:

{

keepParticle = true;

active = false;

U = vector::zero;

nStick_++;

break;

}

case PatchInteractionModel<CloudType>::itRebound:

{

keepParticle = true;

active = true;

vector nw;

vector Up;

this->owner().patchData(p, pp, trackFraction, tetIs, nw, Up);

// Calculate motion relative to patch velocity

U -= Up;

scalar Un = U & nw;

vector Ut = U - Un*nw;

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 196

if (Un > 0)

{

U -= (1.0 + e_)*Un*nw;

}

U -= mu_*Ut;

// Return velocity to global space

U += Up;

break;

}

case PatchInteractionModel<CloudType>::itForder:

{

keepParticle = true;

active = true;

vector nw;

vector Up;

this->owner().patchData(p, pp, trackFraction, tetIs, nw, Up);

// Calculate motion relative to patch velocity

U -= Up;

scalar Un = U & nw;

vector Ut = U - Un*nw;

const scalar magU = mag(U);

const vector Udir = U/magU;

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 197

// determine impact angle, alpha

const scalar alpha = mathematical::pi/2.0 - acos(nw & Udir);

//determine the normal and tangential restitution coefficients

//normal coefficient of restitution

scalar e_n =

0.988-0.78*alpha+0.19*sqr(alpha)-0.024*pow(alpha,3)+0.0027*pow(alpha,4);

//tangential coefficient of restitution

scalar e_t =

1.0-0.78*alpha+0.84*sqr(alpha)-0.21*pow(alpha,3)+

0.28*pow(alpha,4)-0.022*pow(alpha,5);

//New velocity is the previous normal and tangential components

//multiplied by their respective restitution coefficients

//calculated above

U -= e_n*(Un*nw) + e_t*Ut;

// Return velocity to global space

U += Up;

break;

}

case PatchInteractionModel<CloudType>::itSommerfeldHubber:

{

keepParticle = true;

active = true;

vector nw;

vector Up;

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 198

this->owner().patchData(p, pp, trackFraction, tetIs, nw, Up);

// Calculate motion relative to patch velocity

U -= Up;

scalar Un = U & nw;

vector Ut = U - Un*nw;

const scalar magU = mag(U);

const vector Udir = U/magU;

// determine impact angle, alpha

const scalar alpha = mathematical::pi/2.0 - acos(nw & Udir);

//determine the normal and tangential restitution coefficients

//normal coefficient of restitution

scalar e_n =

1.0-0.4159*alpha+0.4994*sqr(alpha)- 0.292*pow(alpha,3);

//tangential coefficient of restitution

scalar e_t = 1.0-2.12*alpha+3.0775*sqr(alpha)-1.1*pow(alpha,3);

//New velocity is the previous normal and tangential components

//multiplied by their respective restitution coefficients calculated above

U -= e_n*(Un*nw) + e_t*Ut;

// Return velocity to global space

U += Up;

break;

}

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 199

default:

{

FatalErrorIn

(

"bool StandardWallInteraction<CloudType>::correct"

"("

"const polyPatch&, "

"const label, "

"bool&, "

"vector&"

") const"

) << "Unknown interaction type "

<< this->interactionTypeToWord(interactionType_)

<< "(" << interactionType_ << ")" << endl

<< abort(FatalError);

}

}

return true;

}

return false;

}

template<class CloudType>

void Foam::StandardWallInteraction<CloudType>::info(Ostream& os)

{

scalar mpe0 = this->template getBaseProperty<scalar>("massEscape");

scalar mpe = mpe0 + returnReduce(massEscape_, sumOp<scalar>());

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 200

label npe0 = this->template getBaseProperty<scalar>("nEscape");

label npe = npe0 + returnReduce(nEscape_, sumOp<label>());

label nps0 = this->template getBaseProperty<scalar>("nStick");

label nps = nps0 + returnReduce(nStick_, sumOp<label>());

scalar mps0 = this->template getBaseProperty<scalar>("massStick");

scalar mps = mps0 + returnReduce(massStick_, sumOp<scalar>());

os << " Parcel fate (number, mass)" << nl

<< " - escape = " << npe << ", " << mpe << nl

<< " - stick = " << nps << ", " << mps << nl;

if (this->outputTime())

{

this->setModelProperty("nEscape", npe);

nEscape_ = 0;

this->setModelProperty("massEscape", mpe);

massEscape_ = 0.0;

this->setModelProperty("nStick", nps);

nStick_ = 0;

this->setModelProperty("massStick", mps);

massStick_ = 0.0;

}

}

// **//

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 201

B.1.2 StandardWallInteraction.H

/*--*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation

\\/ M anipulation |

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty

of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class

Foam::StandardWallInteraction

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 202

Description

Wall interaction model. Three choices:

- rebound - optionally specify elasticity and resitution coefficients

- stick - particles assigined zero velocity

- escape - remove particle from the domain

Example usage:

StandardWallInteractionCoeffs

{

type rebound; // stick, escape

e 1; // optional - elasticity coeff

mu 0; // optional - restitution coeff

}

---/

#ifndef StandardWallInteraction_H

#define StandardWallInteraction_H

#include "PatchInteractionModel.H"

// *//

namespace Foam

{

/*---*\

Class StandardWallInteraction Declaration

---/

template<class CloudType>

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 203

class StandardWallInteraction

:

public PatchInteractionModel<CloudType>

{

protected:

// Protected data

//- Interaction type

typename PatchInteractionModel<CloudType>::interactionType

interactionType_;

//- Elasticity coefficient

scalar e_;

//- Restitution coefficient

scalar mu_;

// Counters for particle fates

//- Number of parcels escaped

label nEscape_;

//- Mass of parcels escaped

scalar massEscape_;

//- Number of parcels stuck to patches

label nStick_;

//- Mass of parcels stuck to patches

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 204

scalar massStick_;

public:

//- Runtime type information

TypeName("standardWallInteraction");

// Constructors

//- Construct from dictionary

StandardWallInteraction(const dictionary& dict, CloudType& cloud);

//- Construct copy from owner cloud and patch interaction model

StandardWallInteraction(const StandardWallInteraction<CloudType>& pim);

//- Construct and return a clone using supplied owner cloud

virtual autoPtr<PatchInteractionModel<CloudType> > clone() const

{

return autoPtr<PatchInteractionModel<CloudType> >

(

new StandardWallInteraction<CloudType>(*this)

);

}

//- Destructor

virtual ~StandardWallInteraction();

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 205

// Member Functions

//- Apply velocity correction

// Returns true if particle remains in same cell

virtual bool correct

(

typename CloudType::parcelType& p,

const polyPatch& pp,

bool& keepParticle,

const scalar trackFraction,

const tetIndices& tetIs

);

// I-O

//- Write patch interaction info to stream

virtual void info(Ostream& os);

};

// *//

} // End namespace Foam

// *//

#ifdef NoRepository

include "StandardWallInteraction.C"

#endif

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 206

// *//

#endif

// **//

B.1.3 PatchInteractionModel.C

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation

\\/ M anipulation |

--

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty

of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License

for more details.

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 207

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

--/

#include "PatchInteractionModel.H"

#include "fvMesh.H"

#include "Time.H"

#include "volFields.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * *//

template<class CloudType>

Foam::wordList Foam::PatchInteractionModel

<CloudType>::interactionTypeNames_

(

IStringStream

(

"(rebound stick escape Forder SommerfeldHubber)"

)()

);

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * *//

template<class CloudType>

Foam::word Foam::PatchInteractionModel

<CloudType>::interactionTypeToWord

(

const interactionType& itEnum

)

{

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 208

word it = "other";

switch (itEnum)

{

case itRebound:

{

it = "rebound";

break;

}

case itStick:

{

it = "stick";

break;

}

case itEscape:

{

it = "escape";

break;

}

case itForder:

{

it = "Forder";

break;

}

case itSommerfeldHubber:

{

it = "SommerfeldHubber";

break;

}

default:

{

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 209

}

}

return it;

}

template<class CloudType>

typename Foam::PatchInteractionModel<CloudType>::interactionType

Foam::PatchInteractionModel<CloudType>::wordToInteractionType

(

const word& itWord

)

{

if (itWord == "rebound")

{

return itRebound;

}

else if (itWord == "stick")

{

return itStick;

}

else if (itWord == "escape")

{

return itEscape;

}

else if (itWord == "Forder")

{

return itForder;

}

else if (itWord == "SommerfeldHubber")

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 210

{

return itForder;

}

else

{

return itOther;

}

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * //

template<class CloudType>

Foam::PatchInteractionModel<CloudType>::PatchInteractionModel

(

CloudType& owner

)

:

SubModelBase<CloudType>(owner),

UName_("unknown_UName")

{}

template<class CloudType>

Foam::PatchInteractionModel<CloudType>::PatchInteractionModel

(

const dictionary& dict,

CloudType& owner,

const word& type

)

:

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 211

SubModelBase<CloudType>(owner, dict, typeName, type),

UName_(this->coeffDict().lookupOrDefault("UName", word("U")))

{}

template<class CloudType>

Foam::PatchInteractionModel<CloudType>::PatchInteractionModel

(

const PatchInteractionModel<CloudType>& pim

)

:

SubModelBase<CloudType>(pim),

UName_(pim.UName_)

{}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * *//

template<class CloudType>

Foam::PatchInteractionModel<CloudType>::~PatchInteractionModel()

{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * *//

template<class CloudType>

const Foam::word& Foam::PatchInteractionModel<CloudType>::UName() const

{

return UName_;

}

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 212

template<class CloudType>

bool Foam::PatchInteractionModel<CloudType>::correct

(

typename CloudType::parcelType&,

const polyPatch&,

bool&,

const scalar,

const tetIndices&

)

{

notImplemented

(

"bool Foam::PatchInteractionModel<CloudType>::correct"

"("

"typename CloudType::parcelType&, "

"const polyPatch&, "

"bool&, "

"const scalar, "

"const tetIndices& "

") const"

);

return false;

}

template<class CloudType>

void Foam::PatchInteractionModel<CloudType>::info(Ostream& os)

{

// do nothing

}

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 213

// *//

#include "PatchInteractionModelNew.C"

// ***//

B.1.4 PatchInteractionModel.H

/*--*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation

\\/ M anipulation |

--

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty

of MERCHANTABILITY or FITNESS FOR A PARTICULAR

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 214

PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class

Foam::PatchInteractionModel

Description

Templated patch interaction model class

SourceFiles

PatchInteractionModel.C

PatchInteractionModelNew.C

---/

#ifndef PatchInteractionModel_H

#define PatchInteractionModel_H

#include "IOdictionary.H"

#include "autoPtr.H"

#include "runTimeSelectionTables.H"

#include "polyPatch.H"

#include "wallPolyPatch.H"

#include "tetIndices.H"

#include "SubModelBase.H"

// *//

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 215

namespace Foam

{

/*--*\

Class PatchInteractionModel Declaration

--/

template<class CloudType>

class PatchInteractionModel

:

public SubModelBase<CloudType>

{

public:

// Public enumerations

// Interaction types

enum interactionType

{

itRebound,

itStick,

itEscape,

itForder,

itSommerfeldHubber,

itOther

};

static wordList interactionTypeNames_;

private:

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 216

// Private data

//- Name of velocity field - default = "U"

const word UName_;

public:

//- Runtime type information

TypeName("patchInteractionModel");

//- Declare runtime constructor selection table

declareRunTimeSelectionTable

(

autoPtr,

PatchInteractionModel,

dictionary,

(

const dictionary& dict,

CloudType& owner

),

(dict, owner)

);

// Constructors

//- Construct null from owner

PatchInteractionModel(CloudType& owner);

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 217

//- Construct from components

PatchInteractionModel

(

const dictionary& dict,

CloudType& owner,

const word& type

);

//- Construct copy

PatchInteractionModel(const PatchInteractionModel<CloudType>& pim);

//- Construct and return a clone

virtual autoPtr<PatchInteractionModel<CloudType> > clone() const

{

return autoPtr<PatchInteractionModel<CloudType> >

(

new PatchInteractionModel<CloudType>(*this)

);

}

//- Destructor

virtual ~PatchInteractionModel();

//- Selector

static autoPtr<PatchInteractionModel<CloudType> > New

(

const dictionary& dict,

CloudType& owner

);

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 218

// Access

//- Return name of velocity field

const word& UName() const;

// Member Functions

//- Convert interaction result to word

static word interactionTypeToWord(const interactionType& itEnum);

//- Convert word to interaction result

static interactionType wordToInteractionType(const word& itWord);

//- Apply velocity correction

// Returns true if particle remains in same cell

virtual bool correct

(

typename CloudType::parcelType& p,

const polyPatch& pp,

bool& keepParticle,

const scalar trackFraction,

const tetIndices& tetIs

);

// I-O

//- Write patch interaction info to stream

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 219

virtual void info(Ostream& os);

};

// *//

} // End namespace Foam

// *//

#define makePatchInteractionModel(CloudType) \

\

typedef CloudType::kinematicCloudType kinematicCloudType; \

defineNamedTemplateTypeNameAndDebug \

(\

PatchInteractionModel<kinematicCloudType>, \

0 \

); \

defineTemplateRunTimeSelectionTable \

(\

PatchInteractionModel<kinematicCloudType>, \

dictionary \

);

#define makePatchInteractionModelType(SS, CloudType) \

\

typedef CloudType::kinematicCloudType kinematicCloudType; \

defineNamedTemplateTypeNameAndDebug(SS<kinematicCloudType>, 0); \

\

PatchInteractionModel<kinematicCloudType>:: \

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 220

adddictionaryConstructorToTable<SS<kinematicCloudType> > \

add##SS##CloudType##kinematicCloudType##ConstructorToTable_;

// *//

#ifdef NoRepository

include "PatchInteractionModel.C"

#endif

// *//

#endif

// **//

B.1.5 LocalInteraction.C

/*--*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation

\\/ M anipulation |

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 221

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty

of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "LocalInteraction.H"

// * * * * * * * * * * * * * * * Constructors * * * * * * * * * * *//

template<class CloudType>

Foam::LocalInteraction<CloudType>::LocalInteraction

(

const dictionary& dict,

CloudType& cloud

)

:

PatchInteractionModel<CloudType>(dict, cloud, typeName),

patchData_(cloud.mesh(), this->coeffDict()),

nEscape_(patchData_.size(), 0),

massEscape_(patchData_.size(), 0.0),

nStick_(patchData_.size(), 0),

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 222

massStick_(patchData_.size(), 0.0),

writeFields_(this->coeffDict().lookupOrDefault("writeFields", false)),

massEscapePtr_(NULL),

massStickPtr_(NULL)

{

if (writeFields_)

{

word massEscapeName(this->owner().name() + ":massEscape");

word massStickName(this->owner().name() + ":massStick");

Info<< " Interaction fields will be written to " << massEscapeName

<< " and " << massStickName << endl;

(void)massEscape();

(void)massStick();

}

else

{

Info<< " Interaction fields will not be written" << endl;

}

// check that interactions are valid/specified

forAll(patchData_, patchI)

{

const word& interactionTypeName =

patchData_[patchI].interactionTypeName();

const typename PatchInteractionModel<CloudType>::interactionType& it =

this->wordToInteractionType(interactionTypeName);

if (it == PatchInteractionModel<CloudType>::itOther)

{

const word& patchName = patchData_[patchI].patchName();

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 223

FatalErrorIn("LocalInteraction(const dictionary&, CloudType&)")

<< "Unknown patch interaction type "

<< interactionTypeName << " for patch " << patchName

<< ". Valid selections are:"

<< this->PatchInteractionModel<CloudType>::interactionTypeNames_

<< nl << exit(FatalError);

}

}

}

template<class CloudType>

Foam::LocalInteraction<CloudType>::LocalInteraction

(

const LocalInteraction<CloudType>& pim

)

:

PatchInteractionModel<CloudType>(pim),

patchData_(pim.patchData_),

nEscape_(pim.nEscape_),

massEscape_(pim.massEscape_),

nStick_(pim.nStick_),

massStick_(pim.massStick_),

writeFields_(pim.writeFields_),

massEscapePtr_(NULL),

massStickPtr_(NULL)

{}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * *//

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 224

template<class CloudType>

Foam::LocalInteraction<CloudType>::~LocalInteraction()

{}

// * * * * * * * * * * * * * * Member Functions * * * * * * * *//

template<class CloudType>

Foam::volScalarField& Foam::LocalInteraction<CloudType>::massEscape()

{

if (!massEscapePtr_.valid())

{

const fvMesh& mesh = this->owner().mesh();

massEscapePtr_.reset

(

new volScalarField

(

IOobject

(

this->owner().name() + ":massEscape",

mesh.time().timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::AUTO_WRITE

),

mesh,

dimensionedScalar("zero", dimMass, 0.0)

)

);

}

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 225

return massEscapePtr_();

}

template<class CloudType>

Foam::volScalarField& Foam::LocalInteraction<CloudType>::massStick()

{

if (!massStickPtr_.valid())

{

const fvMesh& mesh = this->owner().mesh();

massStickPtr_.reset

(

new volScalarField

(

IOobject

(

this->owner().name() + ":massStick",

mesh.time().timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::AUTO_WRITE

),

mesh,

dimensionedScalar("zero", dimMass, 0.0)

)

);

}

return massStickPtr_();

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 226

}

template<class CloudType>

bool Foam::LocalInteraction<CloudType>::correct

(

typename CloudType::parcelType& p,

const polyPatch& pp,

bool& keepParticle,

const scalar trackFraction,

const tetIndices& tetIs

)

{

label patchI = patchData_.applyToPatch(pp.index());

if (patchI >= 0)

{

vector& U = p.U();

bool& active = p.active();

typename PatchInteractionModel<CloudType>::interactionType it =

this->wordToInteractionType

(

patchData_[patchI].interactionTypeName()

);

switch (it)

{

case PatchInteractionModel<CloudType>::itEscape:

{

scalar dm = p.mass()*p.nParticle();

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 227

keepParticle = false;

active = false;

U = vector::zero;

nEscape_[patchI]++;

massEscape_[patchI] += dm;

if (writeFields_)

{

label pI = pp.index();

label fI = pp.whichFace(p.face());

massEscape().boundaryField()[pI][fI] += dm;

}

break;

}

case PatchInteractionModel<CloudType>::itStick:

{

scalar dm = p.mass()*p.nParticle();

keepParticle = true;

active = false;

U = vector::zero;

nStick_[patchI]++;

massStick_[patchI] += dm;

if (writeFields_)

{

label pI = pp.index();

label fI = pp.whichFace(p.face());

massStick().boundaryField()[pI][fI] += dm;

}

break;

}

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 228

case PatchInteractionModel<CloudType>::itRebound:

{

keepParticle = true;

active = true;

vector nw;

vector Up;

this->owner().patchData(p, pp, trackFraction, tetIs, nw, Up);

// Calculate motion relative to patch velocity

U -= Up;

scalar Un = U & nw;

vector Ut = U - Un*nw;

if (Un > 0)

{

U -= (1.0 + patchData_[patchI].e())*Un*nw;

}

U -= patchData_[patchI].mu()*Ut;

// Return velocity to global space

U += Up;

break;

}

case PatchInteractionModel<CloudType>::itForder:

{

keepParticle = true;

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 229

active = true;

vector nw;

vector Up;

this->owner().patchData(p, pp, trackFraction, tetIs, nw, Up);

// Calculate motion relative to patch velocity

U -= Up;

scalar Un = U & nw;

vector Ut = U - Un*nw;

const scalar magU = mag(U);

const vector Udir = U/magU;

// determine impact angle, alpha

const scalar alpha = mathematical::pi/2.0 - acos(nw & Udir);

//determine the normal and tangential restitution coefficients

//normal coefficient of restitution

scalar e_n =

0.988-0.78*alpha+0.19*sqr(alpha)-

0.024*pow(alpha,3)+0.0027*pow(alpha,4);

//tangential coefficient of restitution

scalar e_t =

1.0-0.78*alpha+0.84*sqr(alpha)-0.21*pow(alpha,3)+

0.28*pow(alpha,4)-0.022*pow(alpha,5);

//New velocity is the previous normal and tangential components

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 230

//multiplied by their respective restitution

//coefficients calculated above

U -= e_n*(Un*nw) + e_t*Ut;

// Return velocity to global space

U += Up;

break;

}

case PatchInteractionModel<CloudType>::itSommerfeldHubber:

{

keepParticle = true;

active = true;

vector nw;

vector Up;

this->owner().patchData(p, pp, trackFraction, tetIs, nw, Up);

// Calculate motion relative to patch velocity

U -= Up;

scalar Un = U & nw;

vector Ut = U - Un*nw;

const scalar magU = mag(U);

const vector Udir = U/magU;

// determine impact angle, alpha

const scalar alpha = mathematical::pi/2.0 - acos(nw & Udir);

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 231

//determine the normal and tangential restitution coefficients

//normal coefficient of restitution

scalar e_n = 1.0-0.4159*alpha+0.4994*sqr(alpha)- 0.292*pow(alpha,3);

//tangential coefficient of restitution

scalar e_t = 1.0-2.12*alpha+3.0775*sqr(alpha)-1.1*pow(alpha,3);

//New velocity is the previous normal and tangential components

//multiplied by their respective restitution coefficients

//calculated above

U -= e_n*(Un*nw) + e_t*Ut;

// Return velocity to global space

U += Up;

break;

}

default:

{

FatalErrorIn

(

"bool LocalInteraction<CloudType>::correct"

"("

"typename CloudType::parcelType&, "

"const polyPatch&, "

"bool&, "

"const scalar, "

"const tetIndices&"

") const"

) << "Unknown interaction type "

<< patchData_[patchI].interactionTypeName()

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 232

<< "(" << it << ") for patch "

<< patchData_[patchI].patchName()

<< ". Valid selections are:" << this->interactionTypeNames_

<< endl << abort(FatalError);

}

}

return true;

}

return false;

}

template<class CloudType>

void Foam::LocalInteraction<CloudType>::info(Ostream& os)

{

// retrieve any stored data

labelList npe0(patchData_.size(), 0);

this->getModelProperty("nEscape", npe0);

scalarList mpe0(patchData_.size(), 0.0);

this->getModelProperty("massEscape", mpe0);

labelList nps0(patchData_.size(), 0);

this->getModelProperty("nStick", nps0);

scalarList mps0(patchData_.size(), 0.0);

this->getModelProperty("massStick", mps0);

// accumulate current data

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 233

labelList npe(nEscape_);

Pstream::listCombineGather(npe, plusEqOp<label>());

npe = npe + npe0;

scalarList mpe(massEscape_);

Pstream::listCombineGather(mpe, plusEqOp<scalar>());

mpe = mpe + mpe0;

labelList nps(nStick_);

Pstream::listCombineGather(nps, plusEqOp<label>());

nps = nps + nps0;

scalarList mps(massStick_);

Pstream::listCombineGather(mps, plusEqOp<scalar>());

mps = mps + mps0;

forAll(patchData_, i)

{

os << " Parcel fate (number, mass) : patch "

<< patchData_[i].patchName() << nl

<< " - escape = " << npe[i]

<< ", " << mpe[i] << nl

<< " - stick = " << nps[i]

<< ", " << mps[i] << nl;

}

if (this->outputTime())

{

this->setModelProperty("nEscape", npe);

nEscape_ = 0;

CHAPTER B IMPLEMENTATION OF ADDITIONAL REBOUND MODELS 234

this->setModelProperty("massEscape", mpe);

massEscape_ = 0.0;

this->setModelProperty("nStick", nps);

nStick_ = 0;

this->setModelProperty("massStick", mps);

massStick_ = 0.0;

}

}

// **//

Appendix C

Matlab Script for Scar

comparison

C.1 Procedure

It is clear that the two scars to be compared (CFD and Experimantal) will not have the

same number of points. What is needed then is to be able to compare the two sets of

points. To achieve this, both scars are interpolated onto a new grid, whose size can be

chosen and then the points can be compared. The only condition is that the coordinate

system’s origin is the same. However, having the same origin is the easiest part, since

once both origins are chosen, one set of points can be changed to the second coordinate

system by applying a simple transformation which displaces all the points and adapts

them to the new coordinate system. In this appendix, the script includes an example

of two sets of points with the same coordinate system but different coordinates. The

figures show the results of running such script for this particular case.

C.2 Matlab Script for Scar comparison

X1=[0 1 2 0 1 2 0 1 2]’;%append transpose sign ’ to create column vector

Y1=[0 0 0 1 1 1 2 2 2]’;

Z1=[-0.1 -0.15 -0.1 -0.15 0.9 0 -0.1 -0.1 0]’;

235

CHAPTER C MATLAB SCRIPT FOR SCAR COMPARISON 236

X2=[0.25 0.75 1.75 0.4 0.75 1.75 0.4 0.75 2.25 0.5 1.25 1.25 0.575]’;

Y2=[0.25 0.25 0.25 1.25 1.25 1.25 1.6 1.6 2.25 0.5 0.25 1.5 1.425]’;

Z2=[0.15 -0.5 -0.15 -0.1 -1.2 -0.05 -0.3 -0.85 -0.05 -0.5 -0.4 -0.3 -0.35]’;

%find

Mx=max(max(X1),max(X2));

My=max(max(Y1),max(Y2));

mx=min(min(X1),min(X2));

my=min(min(Y1),min(Y2));

%Create a grid with liear spacements between our max and min values

%of both sets of points in X and Y

xlin=linspace(mx,Mx,13);

ylin=linspace(my,My,13);

%Construct the common grid

[X,Y]=meshgrid(xlin,ylin);

%interpolate our Z coordinates to our new grid for both sets of points

Z_1=griddata(X1,Y1,Z1,X,Y,’linear’)

Z_2=griddata(X2,Y2,Z2,X,Y,’linear’)

mesh(X,Y,Z_1) %interpolated

mesh(X,Y,Z_2) %interpolated

axis tight;hold on

plot3(X,Y,Z_1,’.’,’MarkerSize’,10,’color’,’red’)

plot3(X,Y,Z_2,’.’,’MarkerSize’,10,’color’,’blue’)

CHAPTER C MATLAB SCRIPT FOR SCAR COMPARISON 237

0

0.5

1

1.5

2

0

0.5

1

1.5

2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

CHAPTER C MATLAB SCRIPT FOR SCAR COMPARISON 238

0

0.5

1

1.5

2

0

0.5

1

1.5

2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Appendix D

LPT for Erosion Modelling in

OpenFOAM

D.1 Introduction

The following peer reviewed report was developed for the CFD Course with Open

Source Software taught by H̊akan Nilsson in Charmers University of Technology and

it can be found in http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2013/. The

aim of this report is to provide information about the Lagrangian libraries available in

OpenFOAM 2.2.x as well as a tutorial and instructions on how to implement an Euler-

Lagrange solver in OpenFOAM. The following versions of OpenFOAM (2.3.x and 3.0)

include an Euler-Lagrange solver for incompressible flows called DPMFoam. This solver

implements the same linkage between the intermediate library and pimpleFoam as the

one explained in this section. DPMFoam has an improved efficiency in the calculation

of the variables of the discrete phase, allowing the implementation of a much higher

number of particles. All the libraries, solvers and utilities developed within the frame

of this work for erosion calculation and mesh deformation have been also upgraded to

be used with OpenFOAM 2.3.x. This upgrade involved adding additional functions

and changing some of the names of the templates in order for the libraries to work with

the newer version of OpenFOAM.

239

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2013/

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 240

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 241

D.2 Report

CFD with OpenSource software

A course at Chalmers University of Technology

Taught by Håkan Nilsson

Project work:

LPT for erosion modeling in OpenFOAM
Differences between solidParticle and kinematicParcel, and how to

add erosion modeling

Developed for OpenFOAM-2.2.x

Author:

Alejandro López

Peer reviewed by:

Abolfazl Asnagi

Olivier Petit

Disclaimer: This is a student project work, done as part of a course where OpenFOAM

and some other OpenSource software are introduced to the students. Any reader

should be aware that it might not be free of errors. Still, it might be useful for someone

who would like learn some details similar to the ones presented in the report and in the

accompanying files. The material has gone through a review process. The role of the

reviewer is to go through the tutorial and make sure that it works, that it is possible

to follow, and to some extent correct the writing. The reviewer has no responsibility

for the contents.

February 4, 2014

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 242

D.2.1 Theoretical Background

D.2.2 Introduction

The aim of this tutorial is to effectively describe the available possibilities in Open-

FOAM to simulate lagrangian inert particles and the different classes used for their

modeling. The tutorial also tries to give a description of how to create an incompress-

ible multiphase solver and how to pre-process, run and post-process a case involving

an incompressible flow with inert Lagrangian particles in a three-dimensional domain.

D.2.3 Lagrangian Particle Tracking

When dealing with the movement of a group of particles inside a fluid, there are basically

two different ways to approach the problem. In the Eulerian-Eulerian models, the

particles are treated as a continuous phase and conservation equations are solved for the

particulate phase. This method is suitable for large particle concentrations, where two-

way coupling between the fluid and the particulate phases as well as particle-particle

collisions are important. On the other hand, in the Eulerian-Lagrangian approach, the

Eulerian continuum equations are solved for the fluid phase, while Newton’s equations

for motion are solved for the particulate phase in order to determine the trajectories of

the particles (or groups of particles). The trajectories are obtained once the following

equation for the particles has been solved:

mp
dup
dt

= Fp (D.1)

Once the force has been calculated, the trajectories are calculated by means of integra-

tion of the particle velocity:

dxp
dt

= up (D.2)

There are three different possibilities when constructing the equations to solve particle

motion:

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 243

• One way coupling: particle influence on the fluid phase is neglected

• Two way coupling: the force the particles exert on the fluid is no longer neglected

• Four way coupling: also particle-particle collisions are taken into acount

For a more accurate selection of the correct approach, the particle mass loading, β, and

the Stokes number, St might also be calculated [97].

The particle mass loading is expressed as follows:

β =
particulate mass per unit volume of flow

fluid mass per unit volume of flow
=
rpρp
rρ

(D.3)

Where r is a volume fraction and ρ is a density. Significant two-way coupling is expected

for particle mass loadings greater than 0.2 and values greater than 0.6 indicate that

particle collisions are likely in, at least, some parts of the domain.

The Stokes number defines the degree to which particle motion is tied to fluid

motion:

St =
ρpd

2
pVs

18µLs
(D.4)

Where dp is the particle diameter, µ is the dynamic viscosity of the fluid and Vs and Ls

are the characteristic velocity and length scales of the flow. For values of St > 2.0 the

flow will be dominated by particle-wall interactions, whereas for St < 0.25 the effect of

particle-wall interactions is negligible and the particles are tightly coupled to the fluid

through viscous drag. At St < 0.05 the particles and the fluid are strongly coupled,

while for St << 0.01 the particles are expected to respond almost instantaneously to

any changes in the fluid flow.

The force balance on a spherical particle inside a viscous fluid is written:

Fp = mp
dVp

dt
= FD + FP + Fg + FA (D.5)

The drag force on spherical particles is then calculated as:

FD = mp
18µ

ρpd2p

CDRe(Re)

24
(u− up) (D.6)

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 244

Where the drag coefficient CD is obtained from the following equation:

CD =


24
Re if Rep < 1

24
Rep

(1 + 0.15Re0.687p) if 1 ≤ Rep ≤ 1000

0.44 if Rep > 1000

The gravity and buoyancy force is:

Fg = mpg(1 +
ρ

ρp
) (D.7)

The pressure gradient force is:

FP =
1

6
πd3p∇P (D.8)

And the added mass force:

FA =
1

12
πd3pρp

dVp

dt
(D.9)

D.2.4 Erosion

Throughout the years many authors have published a very large amount of papers and

literature on erosion, having most of them developed their own equations for predicting

erosive wear taking into account different approaches and factors that may influence

erosion. One of the most important authors in erosion literature and responsible for

one of the most commonly used equations for erosion prediction is Iain Finnie [12].

The equation developed by Finnie yields the volume of material, Q removed by a single

abrasive grain of mass, m, and velocity, V .

Q =
mV 2

pψK

(
sin2α− 6

K
sin2α) if tan α ≤ K

6
(D.10)

Q =
mV 2

pψK

(Kcos2α
6

) if tan α >
K

6
(D.11)

Where p is the plastic flow stress of the material being eroded, ψ is the ratio of the

depth of contact to the depth of cut and K is the ratio of vertical to horizontal force

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 245

components acting on the particle.

Figure D.1: Predicted variation of volume removal with angle of impingement for a single abrasive
grain. Experimental points for erosion by many grains (4 copper, � SAE I020 steel, ◦ aluminium)
are plotted so that the maximum erosion is the same in all cases.

Although this equation predicts no erosion for angles of impingement close to 90 degrees

(figure D.1), it serves its purpose as a first approach, and, implementing an additional

term which takes into account particle rotation at impingement, erosion at normal

angles can also be predicted [13].

D.2.5 Implementation of LPT in OpenFOAM

D.2.6 Introduction

OpenFOAM provides the user with a number of possibilities in order to represent la-

grangian particles, two of which are going to be commented here: The

/lagrangian/intermediate library and the /lagrangian/solidParticle library. Some

of the available examples and references are [100], [101] and [102], as well as the material

at the course homepage [103].

D.2.7 SolidParticle Class

The solidParticle class enables the user to implement solid particles and to couple

those to a given solver. Some examples on coupled solvers can be found in the references

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 246

mentioned above. This library can be found by typing the following in the terminal

window:

cd $WM_PROJECT_DIR/src/lagrangian/solidParticle

This folder contains the files solidParticle.C and solidParticleCloud.C, which

define how the particles are implemented and their behaviour. The solidParticle.C

starts with a definition of the solidParticleCloud class, which is, in fact, a templated

Cloud of solid particles. The Foam::solidParticle::move function includes the im-

plementation of the Reynolds number, needed for the calculation of the drag force and

the new velocity. This new velocity will be affected by the parameters yielded by the op-

erations performed on the eulerian phase. The carrier phase properties are represented

inside the code by rhoc for the density,Uc for the velocity and nuc for the viscosity.

Also some additional functions are implemented that determine what happens when a

patch is hit by a particle and these are different depending on whether it is a processor

patch or a wall patch for example. Regarding the file solidParticleCloud.C, the

constructor for the cloud of solid particles is defined first. This constructor reads the

properties from a dictionary called particleProperties and initially only the density

of the particles (rhop) the restitution ratio (e) and the friction coefficient (mu) are

required. In the examples and tutorials cited above, various modifications are imple-

mented to this class such as the addition of an injector and modification of particle

shape among others, for which additional properties need to be defined. Also a more

specific definition of the class and the functions of its different members can be found

in those references.

D.2.8 The intermediate library

The lagrangian/intermediate library in OpenFOAM consists of a series of models,

forces and CloudFunctionObjects templated for each of the classes derived from the

parcel class. The classes available are the following ones:

• CollidingParcel

• ReactingParcel

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 247

• ReactingMultiphaseParcel

• ThermoParcel

• KinematicParcel

This report is mainly focused on the description of the KinematicParcel class and it

will also try to briefly introduce the additional features of the CollidingParcel class.

Before making any changes in the code, it is highly recommended to recompile the files

needed in the $WM_PROJECT_USER_DIR/src/lagrangian directory. In order to do this,

we can run the following commands in the terminal window:

cd $WM_PROJECT_USER_DIR

mkdir -p src/lagrangian

cp -r $FOAM_SRC/lagrangian/intermediate $WM_PROJECT_USER_DIR/src/lagrangian

Once this is done, the necessary files will be copied into the user source directory and

the next step would be to recompile them. It is highly reccommended to recompile

only the necessary files into the user directory both to save disk space and to make

the compilation faster. In this case, only the necessary files to compile both kinematic

libraries (kinematicCloud and kinematicClollidingCLoud) are recompiled. This way,

the user is able to run one, two or four-way coupled simulations of inert particles.

D.2.9 KinematicParcel Class

While in the solidParticle class the particles are tracked individually, in the

KinematicParcel class, a set of particles or computational parcel is tracked. This con-

struction is made because it is usually too expensive in computational terms to simulate

all the real particles. In order to capture the behaviour of the real particles, some real

case properties are defined. Thus, the main difference between the solidParticle

class and the kinematicParcel class is that the solidparticle class contains no parcel

treatment, but only real particles. However, both classes share some of their member

functions and both are derived from the particle class and their clouds are both tem-

plates of the Cloud class. Nevertheless, the kinematicParcel class complexity lies far

beyond the solidParticle class one.

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 248

D.2.10 KinematicCloudProperties dictionary

In order to set up the properties of the parcel as well as the additional submodels a

dictionary called kinematicCloudProperties is needed. An example of such a file

can be found on Appendix 1. Additional examples can also be found by typing in the

terminal window the following commands:

run

find tutorials/ -name kinematicCloudProperties

By running this command, the search is made inside the tutorials folder within the run

directory. If one wishes to find examples inside the $FOAM_TUTORIALS directory, the

commands to run in the terminal window would be the following ones:

find $FOAM_TUTORIALS -name kinematicCloudProperties

and once the appropriate tutorial has been found, it can be copied to the run

directory by typing:

cp -r desiredTutorial/ $FOAM_RUN

The properties of our Lagrangian particles are going to be defined within this dictio-

nary, such as the injection model, the forces on the particles and the cloudFunctionOb-

jects, which will enable the user to output erosion rates. The first dictionary entry

(solution) consists of a series of switches, sourceTerms, interpolationSchemes, and

integrationSchemes The coupled option can be set to true or false and the user may

choose between transient or steady-state solution by switching the boolean transient

to yes or no respectively.

template<class CloudType>

template<class TrackData>

void Foam::KinematicCloud<CloudType>::evolveCloud(TrackData& td)

{

if (solution_.coupled())

{

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 249

td.cloud().resetSourceTerms();

}

if (solution_.transient())

{

label preInjectionSize = this->size();

this->surfaceFilm().inject(td);

// Update the cellOccupancy if the size of the cloud has changed

// during the injection.

if (preInjectionSize != this->size())

{

updateCellOccupancy();

preInjectionSize = this->size();

}

injectors_.inject(td);

// Assume that motion will update the cellOccupancy as necessary

// before it is required.

td.cloud().motion(td);

}

else

{

// this->surfaceFilm().injectSteadyState(td);

injectors_.injectSteadyState(td, solution_.trackTime());

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 250

td.part() = TrackData::tpLinearTrack;

CloudType::move(td, solution_.trackTime());

}

}

As it can be seen in the code above, depending on whether we choose the solution to be

coupled, uncoupled, transient or steady-state, the evolveCloud function will perform

different operations. For instance, in case the solution is transient, the function

Foam::InjectionModel<CloudType>::inject(TrackData& td)

will inject the parcels. However, if it is a steady-state solution, the injection will be

performed by the function

Foam::InjectionModel<CloudType>::injectSteadyState

In the file InjectionModel.C, which can be found in

$WM_PROJECT_USER_DIR/src/lagrangian/intermediate/submodels/Kinematic/

InjectionModel/InjectionModel

both functions are implemented and, as an example, one of the main differences be-

tween them has to do with the mass that the injector is going to introduce inside our

computational domain. In a steady state case, the total mass to be injected is equal to

the mass flow rate that the user specifies inside the kinematicCloudProperties dic-

tionary, while in a transient case, the time-step, the duration of the injection, the mass

flow rate and other properties defined are taken into account to calculate the number of

parcels the injector is going to introduce in the system per time-step in order to fulfill

the user’s requirements.

In the particular case of a coupled simulation, the sourceTerms dictionary entry al-

lows the user to specify what kind of scheme to use, which can be set to explicit or

semiImplicit, as well as the relaxation factors, which have to be preceded by the name

of the field they are going to be applied on (default value is 1). All this data intro-

duced by the user will be processed by cloudSolution.C, located inside the following

directory:

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 251

$WM_PROJECT_USER_DIR/src/lagrangian/intermediate/clouds/Templates/

KinematicCloud/cloudSolution

It is also inside this file where it can be found what the switch active does. In fact, if

it is set to true, cloudSolution will call the function read() in order to set up how is

the solution going to be obtained according to the rest of parameters specified in the

dictionary.

The cellValueSourceCorrection switch, when set to on, activates the correction of

the momentum transferred from the lagrangian phase to the carrier phase in case the

simulation is coupled. This is done by manipulating the updated momentum for the

lagrangian phase and dividing its cell value by the mass of the cell. The function is

implemented in the following file:

$WM_PROJECT_USER_DIR/src/lagrangian/intermediate/parcels/Templates

/KinematicParcel/KinematicParcel.C

The interpolationSchemes entry is used for the definition of how the fields relative

to the lagrangian phase have to be interpolated. The last entry inside solution states

which schemes going to be used when integrating the lagrangian fields. Options for the

schemes are Euler or analytical. In what concerns the constantProperties dictio-

nary entry, at least rho0, youngsModulus and poissonsRatio have to be specified.

Other parameters such as parcelTypeId, rhoMin and minParticleMass will be set

to their default values in case they are not found (1e-15 is the default value for both

density and mass). While the meaning of the last two parameters is fairly clear, the

first one might not be so obvious. The parcelTypeId is just a form of identification

of the particles belonging to this particular cloud. This might be useful if two or more

different clouds with different properties are being post-processed. In this case, set-

ting different parcelTypeId numbers, the different clouds will be flagged with different

numbers (default is 1).

D.2.11 Submodels

The submodels directory contains the different templated models that can be added

to the lagrangian particle cloud classes. The structure of the submodels directory in

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 252

what concerns the KinematicCloud class is as follows:

submodels/

---- CloudFunctionObjects

---- CloudFunctionObject

---- CloudFunctionObjectList

---- FacePostProcessing

---- ParticleCollector

---- ParticleErosion

---- ParticleTracks

---- ParticleTrap

---- PatchPostProcessing

---- VoidFraction

---- ForceTypes

---- ParticleForceList

---- Kinematic

---- CollisionModel

---- DispersionModel

---- InjectionModel

---- ParticleForces

---- PatchInteractionModel

---- SurfaceFilmModel

---- SubModelBase.C

---- SubModelBase.H

This structure is what should be seen if one wants to recompile the intermediate library

only taking the kinematicCloud class into account. This is useful in case this class is

the only one being used since the compilation will be much faster.

Injection Model

The different injection models available are the following ones:

• cellZoneInjection

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 253

• coneInjection

• coneNozzleInjection

• fieldActivatedInjection

• inflationInjection

• injectionModel

• kinematicLookupTableInjection

• manualInjection

• noInjection

• patchInjection

• patchFlowRateInjection

A quick description of the injection along with the entries needed in the dictionary can

be found at each .H file inside the correspondent injection model folder, which can be

reached by typing the following line in the terminal

cd $WM_PROJECT_USER_DIR/src/lagrangian/intermediate/submodels/Kinematic/

InjectionModel

Particle Forces

OpenFOAM allows the user to choose the forces to be included in the model. The

forces inside the ParticleForces directory are:

• Drag Two possible drag models are available: SphereDrag and NonSphereDrag.

The first one is a drag model assuming spherical particles while the latter is used

for non-spherical particles and it is based on a coefficient obtained by dividing

the area of a sphere with the same volume by the particle area. The Drag force

for both cases is basically calculated as in equation D.6.

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 254

• Lift Both Saffman-Mei for spherical particles and Tomiyama for deformable bub-

bles lift models are implemented. The lift coefficient is calculated with the chosen

model and then the force is calculated inside LiftForce.C, after which it is stored

in forceSuSp This class is a helper container for both explicit and implicit terms

where Su is the explicit contribution (directly calculated as a force), and Sp is

the implicit contribution (calculated as force
velocity) so that the total contribution is

calculated as F = Sp(u− up) + Su.

• Gravity The Gravity force is calculated with equation D.7 and in the standard

KinematicParcel class, a file named g with both units and value of the gravita-

tional acceleration is needed inside the constant directory. The constructor of the

cloud will ask for this file, which will be used for the calculation of the gravity

force.

• Paramagnetic This model calculates the particle paramagnetic (magnetic field)

force. Both the field and the magnetic susceptibility of the material are needed

for the calculations.

• PressureGradient Function that calculates the pressure grandient force on the

particles. An additional interpolation scheme has to be included for the DUcDt

field, used for the calculations.

• VirtualMass Calculates the virtual mass force in coupled simulations in conjunc-

tion with the pressure gradient force. A dictionary with the virtual mass coeffi-

cient (Cvm) must be specified, along with the interpolation scheme for DUcDt. A

typical value for the virtual mass coefficient is 0.5.

• NonInertialFrame Used to calculate the non inertial frame of reference force.

The solver will look up inside the kinematicCloudProperties dictionary for the

linear acceleration, angular velocity and angiular acceleration. If the user does

not specify a name, default values will be chosen. If no value for accelerations

and velocity is specified, zero values will be used as default, so the reference frame

will remain static.

• SRF Allows calculation of the SRF (Simple Reference Frame) force. The class

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 255

contains a pointer to the SRF model being used so that the values needed will be

extracted from the SRF properties

Distribution Models

In what concerns the injection of the lagrangian parcels, OpenFOAM contains a library

of runtime-selectable distribution models.A distribution model is a function that, for

a particular property defines quantitatively how the values of that property are dis-

tributed among the particles in the entire population. The current distribution models

include:

• exponential

• fixedValue

• general

• multiNormal

• normal

• RosinRammler

• uniform

The equation used by each one of these distributioin models is specified inside the .H file

inside OpenFOAM’s distributionModels directory, which can be reached by running

in the terminal window:

cd $FOAM_SRC/lagrangian/distributionModels

As an example, the Normal and the Rosin-Rammler distristributions are plotted below:

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 256

Figure D.2: Normal Distribution for Particle diameters between
150µm and 350µm

CloudFunctionObjects

One of many useful classes OpenFOAM provides the users with is the CloudFunctionObjects.

These are library functions that provide additional capabilities to the cloud-based

solvers. The available ones in OpenFOAM 2.2.x are the following ones:

• facePostProcesing It records particle face quantities on user-specified face zone.

It supports accumulated mass and average mass flux calculations.

• particleCollector Function that collects the parcel-mass and mass flow rate

over a set of polygons, defined as a list of points.

• particleTracks It records all particle variables one each call to postFace.

• particleTrap Traps the particles within a given phase fraction for multiphase

cases.

• patchPostProcessing Standard post-processing. It outputs the desired infor-

mation at the user-specified patches.

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 257

Figure D.3: Rosin-Rammlerl Distribution for Particle diameters be-
tween 150µm and 350µm

• voidFraction Creates the particle void fraction on the carrier phase.

• particleErosion This function creates the particle erosion field on the user-

specified patches. It outputs a volScalarField which, at each face, it will be

the sum of the volume eroded by all the particle hits.

A set up example of the particleErosion CloudFunctionObject can be found in the

kinematicCloudProperties dictionary in Appendix 1. For the rest of the functions,

the set up is basically the same. Only some of the variables have to be changed

because each function requires different input information. However, the information

needed can be found inside the code, by entering the respective .H file inside each

CloudFunctionObject folder. This folders can be reached by typing in the terminal:

cd $WM_PROJECT_USER_DIR/src/

And then,

cd lagrangian/intermediate/submodels/CloudFunctionObjects

In case the intermediate folder has been recompiled in the user directory.

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 258

D.2.12 Erosion modeling

Impingement information, such as impact speed and impact angle, is gathered as par-

ticles hit the wall of the geometry.

D.2.13 Implementation of Erosion Modelling in OpenFOAM

Taking a look inside the ParticleErosion.C file, the constructor is implemented and

it requires, in this case, the names of the patches where it is going to be applied and

the plastic flow stress of the material being eroded. Both ratios, depth of contact to

length of cut and normal and tangential forces, are also read but in this case, if they

are not found, the default ones are used (2 is the default value for both of them).

//* * * * * * * * * * * * Member Functions * * * * * * * * * * *//

template<class CloudType>

void Foam::ParticleErosion<CloudType>::preEvolve()

{

if (QPtr_.valid())

{

QPtr_->internalField() = 0.0;

}

else

{

const fvMesh& mesh = this->owner().mesh();

QPtr_.reset

(

new volScalarField

(

IOobject

(

this->owner().name() + "Q",

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 259

mesh.time().timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh,

dimensionedScalar("zero", dimVolume, 0.0)

)

);

}

}

The preEvolve member function, as seen above, initializes the field. It can be seen

that the name the field will be given is going to be the name of the cloud that is being

tracked with a Q at the end. In case the kinematicCloud is being used, the erosion field

will have the name of kinematicCloudQ. The member function in charge of gathering

all the necessary information, manipulate it and store it inside the erosion field is called

postPatch. Here is where the user can set up his own erosion model (different from the

one that is already implemented) just by taking the necessary particle variables and

changing the function into the desired one.

template<class CloudType>

void Foam::ParticleErosion<CloudType>::postPatch

(

const parcelType& p,

const polyPatch& pp,

const scalar trackFraction,

const tetIndices& tetIs,

bool&

)

{

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 260

const label patchI = pp.index();

const label localPatchI = applyToPatch(patchI);

if (localPatchI != -1)

{

vector nw;

vector Up;

// patch-normal direction

this->owner().patchData(p, pp, trackFraction, tetIs, nw, Up);

// particle velocity reletive to patch

const vector& U = p.U() - Up;

// quick reject if particle travelling away from the patch

if ((nw & U) < 0)

{

return;

}

//Calculate magnitude of the particle velocity at impingement

const scalar magU = mag(U);

//Udir is the velocity unitary vector, i.e, the direction of

//the particle at impingement.

const vector Udir = U/magU;

// determine impact angle, alpha

const scalar alpha = mathematical::pi/2.0 - acos(nw & Udir);

const scalar coeff = p.nParticle()*p.mass()*sqr(magU)/(p_*psi_*K_);

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 261

const label patchFaceI = pp.whichFace(p.face());

scalar& Q = QPtr_->boundaryField()[patchI][patchFaceI];

if (tan(alpha) < K_/6.0)

{

Q += coeff*(sin(2.0*alpha) - 6.0/K_*sqr(sin(alpha)));

}

else

{

Q += coeff*(K_*sqr(cos(alpha))/6.0);

}

}

}

// ***//

If the user-specified patch is hit, the magnitude of the velocity of the impinging particle

at that moment is calculated with the expression mag(u) and stored inside magU. In

order to calculate the angle of impingement, the direction of the particle velocity is

determined first ad stored in the Udir vector. The angle of impingement is the one

between Udir and the patch normal direction, and it is stored inside alpha. the scalar

coeff is the number of particles inside the parcel times the mass of those particles

(i.e., the total mass) multiplied by the velocity and the constant coefficients: plastic

flow stress and the two ratios. The field this CloudFunctionObject writes to the case

directory is going to be zero everywhere but in the specified patches, where is is going

to print a nonuniform List<scalar>, which will be the erosion rate at each face of

the boundary patches specified. The equation used for the calculation of the erosion

field is exactly equations D.10 and D.11.

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 262

D.2.14 Templating in OpenFOAM

Due to the fact that templates are very common within the KinematicParcel class,

an introduction to templating could be of some use in order to be able to understand

and customize Lagrangian simulations in OpenFOAM.

C++ requires the declaration of variables, functions, and most other kinds of entities

using specific types. However, a lot of code looks the same for different types. Templates

are functions or classes that are written for one or more types not yet specified. When

using a template, the types are passed as arguments, explicitly or implicitly.

D.2.15 Function Templates [104] [98] [62]

A function template is used to represent a family of functions. The difference with or-

dinary functions is that, in the template, some of the parameters are left undetermined,

i.e., parametrized. For example, in case one wants to create a function that returns the

greater one of two objects:

template <typename T>

inline T const& max (T const& a, T const& b)

{

return a<b?b:a;

}

The keyword typename introduces a type parameter. This is the most common one

but it is not the only possible kind of parameter. The template parameters have to be

announced with a syntax like:

template<parameters separated by commas>

In the example, the type parameter is T. This type parameter can have any identifier.

It represents an arbitrary type that is going to be specified when the function is called.

The condition to use a particular type is that it supports the operation that is being

done in the function. For instance, in the example, the type specified has to support

the operator <. The word typename may also be substituted by the word class. This

keyword was actually the only way to introduce type parameters until the use of the

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 263

keyword typename was enabled and it still remains valid. Normally, templates aren’t

compiled into single entities that can handle any type. Instead, different entities are

generated from the template for every type for which the template is used. The process

of replacing the template parameters by concrete types is called instantiation. In the

example above the template can be instantiated:

inline int const& max (int const& a, int const& b)

{

// if a < b then use b else use a

return a<b?b:a;

}

for integers,

const double& max (double const&, double const&);

for double,

const std::string& max (std::string const&, std::string const&);

for strings and so on.

OpenFOAM contains a very large amount of templates. As an example, the following

functions are used inside the KinematicParcel class to interpolate the density and the

velocity. However,they have different types, being the density a scalar and the velocity

a vector. That is why the generic type of Foam::interpolation is redefined for each

one of the functions: scalar for the density and vector for the velocity.

template<class ParcelType>

template<class CloudType>

inline const Foam::interpolation<Foam::scalar>&

Foam::KinematicParcel<ParcelType>::TrackingData

<CloudType>::rhoInterp() const

{

return rhoInterp_();

}

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 264

template<class ParcelType>

template<class CloudType>

inline const Foam::interpolation<Foam::vector>&

Foam::KinematicParcel<ParcelType>::TrackingData

<CloudType>::UInterp() const

{

return UInterp_();

}

An attempt to instantiate a template for a type that doesn’t support all the operations

used within it will result in a compile-time error. Thus, templates are compiled twice:

without instantiation, the template code is checked for correct syntax and when instan-

tiated, it is checked that the calls are valid. When function templates are called for

some arguments, the template parameters are determined by the arguments passed. If

integers are passed as arguments, the compiler must conclude that the parameters are

integers. In templating, there are two different kinds of parameters:

• Template parameters: These are declared in angle brackets (template<typename T>)

before the function template name.

• Call parameters: Declared in parentheses (max (T const& a, T const& b))after

the function template name.

Also, like ordinary functions, function templates can be overloaded. There can be

different function definitions with the same function name so that when that name is

used in a function call, a C++ compiler must decide which one of the various candidates

to call.

D.2.16 Class Templates [104] [98] [62]

Similar to functions, classes can also be parameterized with one or more types. Con-

tainer classes, which are used to manage elements of a certain type, are a typical ex-

ample of this feature. The declaration procedure is very similar to function templates.

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 265

Just before the declaration, a statement declares an identifier as a type parameter.

Inside the class, the type parameter can be used like any other type in oder to declare

members and member functions. Because templates are compiled when required, the

implementation of a template class function must be in the same file as its declaration.

The class template declaration starts with the same syntax as the function templates:

template<class T>

class Item

The keyword class is used twice. The first one defines the template type specification,

and the second one is the C++ class declaration. While in funciton templates, it is

the compiler the one that deduces the template type arguments, in class templates the

user must explicitly pass the template type (in angle brackets <>).

An additional feature of templates is specialization. This feature enables the user

to define a different implementation for a template when a specific type is passed as

template parameter. An example of specialization could be as follows:

template <> class myclass <char> { ... };

This allows the definition of a specific implementation when the argument is of type

char. The fact that the angle brackets are empty (<>) allows the identification of this

structure as a template specification.

D.2.17 Coupling of the kinematicCloud class and an incompressible

solver

D.2.18 Uncoupled Lagrangian Particle Tracking

First of all, it is best if the necessary libraries to couple the incompressible solver are

recompiled inside the $WM_PROJECT_USER_DIR directory. An src/lagrangian directory

should have been created inside the user directory by typing:

cd $WM_PROJECT_USER_DIR

mkdir -p src/lagrangian/

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 266

As explained at the beginning of this chapter. The -p argument is used in this case

to create the nested directories. Once this has been done, the next step is to copy the

necessary files for compilation.

cp -r $FOAM_SRC/lagrangian/intermediate

$WM_PROJECT_USER_DIR/src/lagrangian

Now all the files inside the intermediate library have been copied to the user directory

and the next step is to recompile them. Here, there are two possibilities: Recompile

them without changing anything inside the \Make directory or change a few lines there

and then recompile the library inside the user’s src/ directory. The basic difference is

the compilation time. If one is going to be constantly working with this library (or any

other library) and assuming that, in the process of adding new lines to the source code

and changing the functions, the library is going to be recompiled, it is more efficient

to just recompile the part of the code being used, since this will save a lot of time in

compilation time. In this case, as the libraries that are going to be used are the ones

that have the word kinematic on them, the rest of the parcel types can be deleted

from the Make/files directory, leaving only the following:

PARCELS=parcels

BASEPARCELS=$(PARCELS)/baseClasses

DERIVEDPARCELS=$(PARCELS)/derived

CLOUDS=clouds

BASECLOUDS=$(CLOUDS)/baseClasses

DERIVEDCLOUDS=$(CLOUDS)/derived

/* Cloud base classes */

$(BASECLOUDS)/kinematicCloud/kinematicCloud.C

/* kinematic parcel sub-models */

KINEMATICPARCEL=$(DERIVEDPARCELS)/basicKinematicParcel

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 267

$(KINEMATICPARCEL)/defineBasicKinematicParcel.C

$(KINEMATICPARCEL)/makeBasicKinematicParcelSubmodels.C

KINEMATICCOLLIDINGPARCEL=$(DERIVEDPARCELS)/basicKinematicCollidingParcel

$(KINEMATICCOLLIDINGPARCEL)/defineBasicKinematicCollidingParcel.C

$(KINEMATICCOLLIDINGPARCEL)/makeBasicKinematicCollidingParcelSubmodels.C

submodels/Kinematic/PatchInteractionModel/

LocalInteraction/patchInteractionData.C

submodels/Kinematic/PatchInteractionModel/

LocalInteraction/patchInteractionDataList.C

KINEMATICINJECTION=submodels/Kinematic/InjectionModel

$(KINEMATICINJECTION)/KinematicLookupTableInjection/

kinematicParcelInjectionData.C

$(KINEMATICINJECTION)/KinematicLookupTableInjection/

kinematicParcelInjectionDataIO.C

$(KINEMATICINJECTION)/KinematicLookupTableInjection/

kinematicParcelInjectionDataIOList.C

/* integration schemes */

IntegrationScheme/makeIntegrationSchemes.C

/* phase properties */

phaseProperties/phaseProperties/phaseProperties.C

phaseProperties/phaseProperties/phasePropertiesIO.C

phaseProperties/phasePropertiesList/phasePropertiesList.C

/* Additional helper classes */

clouds/Templates/KinematicCloud/cloudSolution/cloudSolution.C

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 268

LIB = $(FOAM_USER_LIBBIN)/libkinematiclagrangianIntermediate

Inside the \Make directory, the files file should be similar to the one above. It is

important to remember changing the location directory into the user’s one. In this case

the library is written inside username-2.2.x/plattforms/linux64GccDPOpt/lib (the

folder containing the lib and bin directories may a slightly different name).

After this, the library can be recompiled by typing the following two commands in

the terminal window:

wclean lib

wmake libso

Once the library is compiled, the next step is to link it to the incompressible solver

that is going to be created. In this first case, an incompressible transient uncoupled

solver is going to be created. For low particle concentrations, this is a sufficiently

accurate assumption. The steps to create the solver are the following ones:

• Create the solver directory inside the user’s applications/solvers directory

and copy the original pimpleFoam solver into that directory by doing:

cd $WM_PROJECT_USER_DIR/ applications/solvers/

mkdir pimpleKinematicFoam

• Copy the pimpleFoam solver into the created directory

cd pimpleKinematicFoam

cp -r $WM_PROJECT_DIR/ applications/solvers/incompressible/pimpleFoam/* .

This will copy all the files inside the pimpleFoam directory into the user directory

(also pimpleDyMFoam and SRFPimpleFoam solvers will be copied, but one can

get rid of them easily, if they are not going to be used by doing

rm -r pimpleDyMFoam SRFPimpleFoam The next step is to change the name of

the solver to the desired one by doing:

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 269

mv pimpleFoam.C pimpleKinematicFoam.C

• Modify the Make/files and Make/options

Inside files, the user should have:

pimpleKinematicFoam.C

EXE = $(FOAM_USER_APPBIN)/pimpleKinematicFoam

Which tells the compiler which files to compile and to store the app created inside

the user directory.

The options file should contain the following lines for the compiler to know where

to look for the files:

LIB_USER_SRC = $(WM_PROJECT_USER_DIR)/src

EXE_INC = \

-I$(LIB_SRC)/turbulenceModels/incompressible/turbulenceModel \

-I$(LIB_SRC)/transportModels \

-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \

-I$(LIB_SRC)/finiteVolume/lnInclude\

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/fvOptions/lnInclude \

-I$(LIB_SRC)/sampling/lnInclude \

-I$(LIB_SRC)/lagrangian/basic/lnInclude \

-I$(LIB_SRC)/regionModels/surfaceFilmModels/lnInclude \

-I$(LIB_SRC)/regionModels/regionModel/lnInclude \

-I$(LIB_SRC)/lagrangian/intermediate/lnInclude \

-I$(LIB_USER_SRC)/lagrangian/intermediate/lnInclude \

#swap LIB_USER_SRC for LIB_SRC in case the $FOAM_SRC library is used

-I$(LIB_SRC)/lagrangian/distributionModels/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 270

-I$(LIB_SRC)/thermophysicalModels/properties/liquidProperties/

lnInclude \

-I$(LIB_SRC)/thermophysicalModels/properties/liquidMixtureProperties/

lnInclude \

-I$(LIB_SRC)/thermophysicalModels/properties/solidProperties/

nInclude \

-I$(LIB_SRC)/thermophysicalModels/properties/solidMixtureProperties/

lnInclude \

-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/SLGThermo/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/radiationModels/lnInclude \

-I$(LIB_SRC)/dynamicFvMesh/lnInclude \

-I$(LIB_SRC)/sampling/lnInclude

EXE_LIBS = \

-lincompressibleTurbulenceModel \

-lincompressibleRASModels \

-lincompressibleLESModels \

-lincompressibleTransportModels \

-lfiniteVolume \

-lmeshTools\

-lfvOptions \

-llagrangian\

-llagrangianIntermediate \

-lkinematiclagrangianintermediate \

-lthermophysicalFunctions \

-lsurfaceFilmModels \

-ldistributionModels \

-lregionModels \

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 271

-lspecie \

-lfluidThermophysicalModels \

-lliquidProperties \

-lliquidMixtureProperties \

-lsolidProperties \

-lsolidMixtureProperties \

-lreactionThermophysicalModels \

-lSLGThermo \

-lradiationModels \

-lLESdeltas \

-lcompressibleTurbulenceModel \

-lcompressibleRASModels \

-lcompressibleLESModels \

-lregionModels \

-lsurfaceFilmModels \

-ldynamicFvMesh \

-lsampling

It is essential to tell the compiler where to look for the user’s library. The purpose

of the first line is to let the compiler know that when it reads, LIB_USER_SRC,

it should go to the WM_PROJECT_USER_DIR/src directory, and there, look for the

intermediate library.

• Once this is ready, it is time to modify the createFields.H file:

At the beginning of the file the following lines are added in order to be able to look

for some properties defined in the transportProperties dictionary for further

manipulation:

Info<< "\nReading transportProperties\n" << endl;

IOdictionary transportProperties

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 272

(

IOobject

(

"transportProperties",

runTime.constant(),

mesh,

IOobject::MUST_READ_IF_MODIFIED,

IOobject::NO_WRITE

)

);

dimensionedScalar rhoInfValue

(

transportProperties.lookup("rhoInf")

);

Where rhoInf is the density of the carrier phase defined in the mentioned dictio-

nary.

• A couple of fields for the carrier phase density and viscosity have to be cre-

ated too. It is an incompressible solver and they are not going to vary, but the

KinematicCloud class needs those for the constructor. The first of those fields is

the density:

volScalarField rhoInf

(

IOobject

(

"rho",

runTime.timeName(),

mesh,

IOobject::NO_READ,

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 273

IOobject::AUTO_WRITE

),

mesh,

rhoInfValue

);

And the second one is the dynamic viscosity:

volScalarField mu

(

IOobject

(

"mu",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

laminarTransport.nu()*rhoInfValue

);

The dynamic viscosity is to be added just after the following lines:

autoPtr<incompressible::turbulenceModel> turbulence

(

incompressible::turbulenceModel::New(U, phi, laminarTransport)

);

• The last modification inside the createFields.H file is to include the constructor

for the KinematicCloud class:

word kinematicCloudName("kinematicCloud");

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 274

args.optionReadIfPresent("cloudName", kinematicCloudName);

Info<< "Constructing kinematicCloud " << kinematicCloudName << endl;

basicKinematicCloud kinematicCloud

(

kinematicCloudName,

rhoInf,

U,

mu,

g

);

As seen in this last piece of code, the constructor needs the density of the carrier

phase and the dynamic viscosity, which were created in the previous step. This

constructor will also ask for the gravity, and that means, that the user must have

a g file inside the constant directory with the value and units of the gravity

force so that the readGravitationalAcceleration.H header, which is going to

be included later, is able to read it from that location.

• The modifications to the pimpleKinematicFoam.C file are the following ones:

Copy the following line after #include "IOMRFZoneList.H":

#include "basicKinematicCloud.H"

This tells the compiler which cloud is going to be used. If four way coupling was

necessary, the file to paste inside the #include statement would be

basicCollidingCloud.H.

Include after int main(int argc, char *argv[]) the following lines:

argList::addOption

(

"cloudName",

"name",

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 275

"specify alternative cloud name. default is ’kinematicCloud’"

);

Which adds the option for the user to specify an alternative cloud name.

Then, after #include "createMesh.H":

#include "readGravitationalAcceleration.H"

So the solver knows how and where from to read the gravitational acceleration

to use it for both calculations and the construction of the cloud.

• Finally, just before runTime.write(); the following lines are added too:

Info<< "Evolving " << kinematicCloud.name() << endl;

kinematicCloud.evolve();

• Once all this is completed, the solver can be compiled and, hopefully, the process

will not output any errors. In order to compile, inside the solver directory run,

as always:

wclean

wmake

This is the procedure to create the solver. In the next chapter, the necessary files

for running a case will be specified.

D.2.19 Coupled Lagrangian Particle Tracking

As it can be seen in the calc function displayed below, the term responsible for the

coupling is Su().

template<class ParcelType>

template<class TrackData>

void Foam::KinematicParcel<ParcelType>::calc

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 276

(

TrackData& td,

const scalar dt,

const label cellI

)

{

// Define local properties at beginning of time step

// ~~~

const scalar np0 = nParticle_;

const scalar mass0 = mass();

// Reynolds number

const scalar Re = this->Re(U_, d_, rhoc_, muc_);

// Sources

//~~~~~~~~

// Explicit momentum source for particle

vector Su = vector::zero;

// Linearised momentum source coefficient

scalar Spu = 0.0;

// Momentum transfer from the particle to the carrier phase

vector dUTrans = vector::zero;

// Motion

// ~~~~~~

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 277

// Calculate new particle velocity

this->U_ = calcVelocity(td, dt, cellI, Re, muc_, mass0, Su, dUTrans, Spu);

// Accumulate carrier phase source terms

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

if (td.cloud().solution().coupled())

{

// Update momentum transfer

td.cloud().UTrans()[cellI] += np0*dUTrans;

// Update momentum transfer coefficient

td.cloud().UCoeff()[cellI] += np0*Spu;

}

}

And the function to calculate the new particle velocity (calcVelocity):

//- Calculate new particle velocity

template<class TrackData>

const vector calcVelocity

(

TrackData& td,

const scalar dt, // timestep

const label cellI, // owner cell

const scalar Re, // Reynolds number

const scalar mu, // local carrier viscosity

const scalar mass, // mass

const vector& Su, // explicit particle momentum source

vector& dUTrans, // momentum transfer to carrier

scalar& Spu // linearised drag coefficient

) const;

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 278

If the solution is properly coupled, the solver will write out two fields:

• nameoftheCloud:Ucoeff It is of type volscalarField::DimensionedInternalField It

is a nonuniform List<vector>

• nameoftheCloud:Utrans It is of type volVectorField::DimensionedInternalField It

is a nonuniform List<scalar>

However, if the solution is not coupled, these fields will be written to the runTime but

instead of being non-uniform lists, they will be uniform 0; and uniform (0 0 0);

respectively. First, and provided that the KinematicClass is being coupled to an

incompressible solver, the momentum will have to be divided by the density of the

carrier phase. In pimpleFoam and the rest of the incompressible solver in OpenFOAM,

the equations are divided by the carrier phase density. An easy way of doing this is

creating the inverse of the density and then, in the fileUEqn.H, multiply the momentum

by that inverse, so there will be no mismatched units. Inside the createFields.H

the following line is added after the density is read from the particleProperties

dictionary:

dimensionedScalar invrhoInf("invrhoInf",(1.0/rhoInfValue));

Then, in order to create the coupled version of the solver it is necessary to include

this momentum transfer into the UEqn.H, so the file will look now like:

// Solve the Momentum equation

tmp<fvVectorMatrix> UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

+ turbulence->divDevReff(U)

==

fvOptions(U)

+invrhoInf*kinematicCloud.SU(U)

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 279

);

UEqn().relax();

fvOptions.constrain(UEqn());

volScalarField rAU(1.0/UEqn().A());

if (pimple.momentumPredictor())

{

solve

(

UEqn()

==

-fvc::grad(p)

);

fvOptions.correct(U);

}

Finally, once all the changes are done and the files are saved the final step is to run in

the terminal (inside the solver directory):

wclean

wmake

Given that the two-way coupling is going to be switched on and off inside the

kinematicCloudProperties dictionary, it is probably a good option to create a unique

solver and decide whether the simulation is going to be coupled or uncoupled switching

from on to off in the mentioned dictionary.

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 280

D.2.20 Preprocessing

D.2.21 Geometry definition

The geometry chosen for this tutorial is a very simple one, consisting of a 100 mm

length quadrangular pipe with a 90 degrees bend (figure D.4).

Figure D.4: Geometry of the pipe used for the tutorial case.

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 281

The geometry is defined in the blockMeshDict dictionary and in order to generate

the rest of the mesh files needed by OpenFOAM, the blockMesh command has to be

run in the case directory.

D.2.22 The 0/ directory

In order to have a more efficient case solution it is recommended to run the case without

the particles until it reaches the steady state (simpleFoam is the most suitable one for

this simulation) and then use the command,

mapFields /Path-To-Steady-State-Case-Directory -consistent

to map the fields obtained for the fluid flow into the transient case with particles and

use them as initial conditions in our 0 directory. Regarding the application settings,

before running mapFields, the starting time in the transient case has to be the same

one as the time step being mapped from the steady state solution, and the directory

created by the application and containing the non-uniform scalar and vector fields has

to be renamed as 0, once mapFields has finished the transfer.

For the steady-state case, three directories are necessary: 0, constant and system.

Once the steady-state case has been defined, the command to run it is as follows:

simpleFoam >&log&

The calculation process can also be viewed (and stopped with ctrl + C) in the terminal

typing:

tail -f log

The case can also be killed by typing,

pidof simpleFoam

Which outputs the PID of the process and then, being PID the number obtained in

the terminal window, run,

kill PID

Once the steady state case fields are correctly mapped into the transient case directory,

it is time to set up the necessary files for the lagrangian simulation.

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 282

D.2.23 The constant/ directory

Inside the constant directory the user must specify the properties of the lagrangian

simulation in a dictionary called kinematicCloudProperties. The example used for

this tutorial can also be found in Appendix 1. A file named g is necessary for the

construction of the cloud, as explained before. This file must, at least, contain:

FoamFile

{

version 2.0;

format ascii;

class uniformDimensionedVectorField;

location "constant";

object g;

}

// *//

dimensions [0 1 -2 0 0 0 0];

value (0 -9.81 0);

Where the gravity vector is specified, depending on which reference is being used. For

this case, the gravity is in the -̂ direction.

In this particular case, a k − ε model has been chosen. For this, a RASProperties file

is also required containing:

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object RASProperties;

}

// * //

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 283

RASModel kEpsilon;

turbulence on;

printCoeffs on;

And as explained before, the transportProperties file, which should look similar to:

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object transportProperties;

}

// *//

transportModel Newtonian;

nu nu [0 2 -1 0 0 0 0] 1e-06;

rhoInf rhoInf [1 -3 0 0 0 0 0] 1000;

D.2.24 The system/ directory

The files inside the system directory will be the usual ones, i.e., fvSchemes, fvSolution

and controlDict. However, it is good to pay some attention in this kind of simulations

to the Courant number. The Courant number is defined as:

C =
u∆t

∆x
(D.12)

Being u the velocity, ∆x the space interval and ∆t the time interval. Keeping the

courant number under the value of 1 will help the solution converge, specially when

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 284

dealing with coupled simulations.

D.2.25 Running the case

Once the case is properly set up, it can be run by typing:

pimpleKinematicFoam >&log&

which will allow later the use of foamLog to extract the residuals relative to each of the

variables for plotting.

D.2.26 Postprocessing

D.2.27 Lagrangian Particles in Paraview

There are actually two ways for visualization of the lagrangian cloud in paraview. The

first one is to transform the case data into VTK format by doing:

foamToVTK

The second one is to run paraFoam in the terminal window and then click on ”Skip

Zero Time” (no parcels have been released at zero time. That is why no lagrangian

fields or cloud are available for display). Once this is done, any of the lagrangian fields

as well as the kinematic cloud can be displayed with paraview just by checking the box

relative to each one of them.

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 285

Figure D.5: Check ”Skip Zero Time” box

D.2.28 Results of Coupled and Uncoupled Simulations

As expected, in this particular case, the case with two-way coupling is practically

identical to the one-way coupled. This is due to the fact that the momentum transferred

between phases is actually negligible, being the values very close to zero. In case of

the uncoupled simulation, the solver allows the user to set up a higher courant number

(maxCo in controlDict), which, consequently will enlarge the time step, and will be

reflected in a much faster simulation. However, in the coupled case, instabilities might

appear when trying to set a high courant number, causing the solver to diverge. Thus,

the courant number to be set up in the controlDict dictionary must be carefully

chosen, taking into account the size of our mesh the velocity and the time-step.

D.2.29 Post-processing erosion in Paraview 3.12.0

In order to postprocess erosion in Paraview, the ”kinematicCloudQ” field box has to

be checked ito display the erosion field as shown in picture D.8.

What paraview is representing in the erosion contours is the volume of material

eroded, as the sum of the material eroded by each of the individual impacts of the

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 286

Figure D.6: Check ”kinematicCloud-
lagrangian” and any of the available lagrangian
fields

particles at each face.

D.2.30 Report Appendix 1

D.2.31 kinematicCloudProperties Dictionary

/*--------------------------------*- C++ -*-------------------*\

| ========= |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

| \\ / O peration | Version: 2.2.0

| \\ / A nd | Web: www.OpenFOAM.org

| \\/ M anipulation |

---/

FoamFile

{

version 2.0;

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 287

Figure D.7: Visualization of the particles in paraview

format ascii;

class dictionary;

location "constant";

object kinematicCloudProperties;

}

// *//

solution

{

active true; //can be set to true or false

coupled false; //true or false for coupled or uncoupled simulations

transient yes; //yes or no, no for steady-state calculations

cellValueSourceCorrection off; //when set to on it activated the

//correction of the momentum tranferred to the eulerian phase

sourceTerms

{

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 288

Figure D.8: Erosion contours in paraview

schemes

{

U semiImplicit 1;//explicit or semiImplicit

//ALSO specify relaxCoeff for each of the fields

}

}

interpolationSchemes

{

rho cell;

U cellPoint;

mu cell;

//curlUcDt cell; //field used for Lift force calculations

//DucDt cell;//filed used for pressureGradient calculations

/*Available schemes are:

cell

cellPatchConstrained

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 289

cellPoint

cellPointFace

cellPointWallModified

pointMVC

*/

}

integrationSchemes

{

U Euler;

/*Available schemes are:A dictionary with the value of

Euler

analytical

*/

}

}

constantProperties

{

//parcelTypeId 1:

//rhoMin 1e-15;

//minParticleMass 1e-15:

rho0 3217;

youngsModulus 700e9;

poissonsRatio 0.187;

}

subModels

{

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 290

particleForces

{

sphereDrag;

gravity;

/*SaffmanMeiLiftForce //TomiYamaLift may be chosen instead

{

U U;

}

*/

/*paramagnetic

{

magneticSusceptibility -6.3e-9; //m^3/kg for graphite

HdotGradH U;

*/ }

/*pressureGradient

{

U U;

}

*/

/*virtualMass

{

Cvm 0.5;

}

*/

/*nonInertialFrame

{

linearAccelerationName linearAc;

linearAcceleration 10;

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 291

angularVelocityName angVelo;

angularVelocity 5;

angularAccelerationName angAcc

angularAcceleration 5;

}

*/

//SRF;

}

injectionModels

{

model1

{

type patchInjection;

patchName inlet;

SOI 0; //Start of injection

massFlowRate 0.01;

massTotal 0.2;

parcelBasisType mass;

flowRateProfile 0.01;

sizeDistribution

{

type RosinRammler;

RosinRammlerDistribution

{

minValue 200e-6;

maxValue 300e-6;

d 250e-6;

n 3;

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 292

}

}

duration 20;

parcelsPerSecond 500000;

U0 (0 -15 0);

}

}

dispersionModel none;

patchInteractionModel standardWallInteraction;

heatTransferModel none;

surfaceFilmModel none;

collisionModel none;

radiation off;

pairCollisionCoeffs

{

// Maximum possible particle diameter expected at any time

/* maxInteractionDistance 0.006;

writeReferredParticleCloud no;

pairModel pairSpringSliderDashpot;

pairSpringSliderDashpotCoeffs

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 293

{

useEquivalentSize no;

alpha 0.12;

b 1.5;

mu 0.52;

cohesionEnergyDensity 0;

collisionResolutionSteps 12;

};

wallModel wallLocalSpringSliderDashpot;

wallLocalSpringSliderDashpotCoeffs

{

useEquivalentSize no;

collisionResolutionSteps 12;

walls

{

youngsModulus 1e10;

poissonsRatio 0.23;

alpha 0.12;

b 1.5;

mu 0.43;

cohesionEnergyDensity 0;

}

frontAndBack

{

youngsModulus 1e10;

poissonsRatio 0.23;

alpha 0.12;

b 1.5;

mu 0.1;

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 294

cohesionEnergyDensity 0;

}

};*/

}

standardWallInteractionCoeffs

{

type rebound;

}

}

cloudFunctions

{

particleErosion

{

functionObjectLibs ("libcloudFunctionObjects.so");

enabled true;

outputControl outputTime;

log true;

valueOutput true;

p 11000000; //yield stress

//for aluminium = 11000000 Pa or 11 MPa

psi 2;//Ratio of the depth of contact to the depth of cut

//(default value = 2)

K 2; //Ratio of vertical to horizontal force components

//(2 for angular abrassive grains)

patches

(

moving-wall

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 295

);

}

}

// ***//

D.2.32 Report Appendix 2

D.2.33 blockMeshDict

/*--------------------------------*- C++ -*----------------------*\

| ========= |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

| \\ / O peration | Version: 2.2.0

| \\ / A nd | Web: www.OpenFOAM.org

| \\/ M anipulation |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// * //

convertToMeters 0.001;

vertices

(

(0 0 0)//0

(0 50 0)//1

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 296

(0 50 -10)//2

(0 0 -10)//3

(10 10 0)//4

(10 50 0)//5

(10 50 -10)//6

(10 10 -10)//7

(50 0 0)//8

(50 10 0)//9

(50 10 -10)//10

(50 0 -10)//11

(10 0 -10)//12

(10 0 0)//13

(0 10 -10)//14

(0 10 0)//15

);

blocks

(

hex (13 4 9 8 12 7 10 11) (10 40 10) simpleGrading (1 1 1)

hex (0 15 4 13 3 14 7 12) (10 10 10) simpleGrading (1 1 1)

hex (15 1 5 4 14 2 6 7) (40 10 10) simpleGrading (1 1 1)

);

edges

(

);

boundary

(

inlet

{

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 297

type patch;

faces

(

(1 5 6 2)

);

}

outlet

{

type patch;

faces

(

(9 8 11 10)

);

}

walls

{

type wall;

faces

(

(4 9 10 7)

(4 13 8 9)

(12 11 8 13)

(7 10 11 12)

(3 12 13 0)

(0 13 4 15)

(0 15 14 3)

(3 14 7 12)

(15 4 5 1)

(5 4 7 6)

(6 7 14 2)

(14 15 1 2)

CHAPTER D LPT FOR EROSION MODELLING IN OPENFOAM 298

);

}

);

mergePatchPairs

(

);

// ***//

Appendix E

Implementation of E-L solver

with Dynamic meshing

E.1 introduction

In this seciton, an Euler-Lagrange coupled solver with Dynamic Meshing is imple-

mented. Since the structure of the solver is different for the two versions of Open-

FOAM, the code needed for both versions is commented here. Only the modified files

will be listed here, since the rest of them are the default ones for pimpleFoam in ver-

sion 2.2.x and DPMFoam in version 2.3.x. For both solvers, an additional dictionary is

required. The name of this dictionary should be erosionDict and it should be placed

in the constant directory with the following entries which will be read by the top level

solver:

/*--------------------------------*- C++ -*------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

299

CHAPTER E IMPLEMENTATION OF E-L SOLVER WITH DYNAMIC MESHING 300

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object erosionDict;

}

// * //

patches

(

incident-wall

);

erosionStep 6e-8;//minimum required erosion to deform the mesh.

//This is multiplied by nDef to get the second, and following conditions.

//If these are satisfied at runTime, the mesh will be deformed and the

//displacement of the mesh nodes calculated with the dynamic mesh solver.

nDef 1; //Initialise to 1. It counts the number of deformation steps.

scaleFactor 10; //Factor by which the erosion field is scaled up

// *** //

E.2 Implementation of an Euler-lagrange solver with Dy-

namic meshing in OpenFOAM 2.2.x

The implementation of such a solver is similar in OpenFOAM 2.2.x and 2.3.x. The

main difference is that, as commented before, OpenFOAM 2.3.x already has a builtin

lagrangian solver. Therefore, only the implementation of the solver in OpenFOAM 2.3.x

will be shown, as the same solver in 2.2.x can be easily implemented by comparing it

to the one in 2.3.x.

CHAPTER E IMPLEMENTATION OF E-L SOLVER WITH DYNAMIC MESHING 301

E.3 Implementation of an Euler-lagrange solver with Dy-

namic meshing in OpenFOAM 2.3.x

E.3.1 DPMErosionFOAM.C

/*--*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2013-2014 OpenFOAM Foundation

\\/ M anipulation |

--

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application

DPMErosionFOAM

Description

CHAPTER E IMPLEMENTATION OF E-L SOLVER WITH DYNAMIC MESHING 302

Transient solver for the coupled transport of a single kinematic particle

cloud including the effect of the volume fraction of particles on the

continuous phase and dynamic mesh deformation according to erosion

--/

#include "fvCFD.H"

#include "dynamicFvMesh.H"

#include "singlePhaseTransportModel.H"

#include "PhaseIncompressibleTurbulenceModel.H"

#include "pimpleControl.H"

#include "fvIOoptionList.H"

#include "fixedFluxPressureFvPatchScalarField.H"

#include "volPointInterpolation.H"

#ifdef MPPIC

#include "basicKinematicMPPICCloud.H"

#define basicKinematicTypeCloud basicKinematicMPPICCloud

#else

#include "basicKinematicCollidingCloud.H"

#define basicKinematicTypeCloud basicKinematicCollidingCloud

#endif

int main(int argc, char *argv[])

{

argList::addOption

(

"cloudName",

"name",

"specify alternative cloud name. default is ’kinematicCloud’"

);

CHAPTER E IMPLEMENTATION OF E-L SOLVER WITH DYNAMIC MESHING 303

#include "setRootCase.H"

#include "createTime.H"

#include "createDynamicFvMesh.H"

#include "readGravitationalAcceleration.H"

#include "initContinuityErrs.H"

pimpleControl pimple(mesh);

#include "createFields.H"

#include "createUf.H"

#include "createFvOptions.H"

#include "readTimeControls.H"

#include "createPcorrTypes.H"

#include "CourantNo.H"

#include "setInitialDeltaT.H"

Info<< "\nStarting time loop\n" << endl;

while (runTime.run())

{

#include "readControls.H"

#include "CourantNo.H"

#include "setDeltaT.H"

runTime++;

Info<< "Time = " << runTime.timeName() << nl << endl;

continuousPhaseTransport.correct();

muc = rhoc*continuousPhaseTransport.nu();

CHAPTER E IMPLEMENTATION OF E-L SOLVER WITH DYNAMIC MESHING 304

Info<< "Evolving " << kinematicCloud.name() << endl;

kinematicCloud.evolve();

// Update continuous phase volume fraction field

alphac = max(1.0 - kinematicCloud.theta(), alphacMin);

alphac.correctBoundaryConditions();

alphacf = fvc::interpolate(alphac);

alphaPhic = alphacf*phic;

fvVectorMatrix cloudSU(kinematicCloud.SU(Uc));

volVectorField cloudVolSUSu

(

IOobject

(

"cloudVolSUSu",

runTime.timeName(),

mesh

),

mesh,

dimensionedVector

(

"0",

cloudSU.dimensions()/dimVolume,

vector::zero

),

zeroGradientFvPatchVectorField::typeName

);

cloudVolSUSu.internalField() = -cloudSU.source()/mesh.V();

cloudVolSUSu.correctBoundaryConditions();

cloudSU.source() = vector::zero;

CHAPTER E IMPLEMENTATION OF E-L SOLVER WITH DYNAMIC MESHING 305

//check that there is erosion

Info<< "Checking kinematicCloudMenguturk field conditions" << endl;

IOobject erosionHeader

(

"kinematicCloudMenguturk",

runTime.timeName(),

mesh,

IOobject::NO_READ

);

if (erosionHeader.headerOk())

{

//create labels to go over the patches that experience erosion

label patchesDef;

patchesDef = mesh.boundaryMesh().findPatchID("incident-wall");

Info<< "Reading kinematicCloudMenguturk field" << endl;

volScalarField kinematicCloudQ

(

IOobject

(

"kinematicCloudMenguturk",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh

);

CHAPTER E IMPLEMENTATION OF E-L SOLVER WITH DYNAMIC MESHING 306

//scalar minErVal= min(mag(kinematicCloudQ)).value();

scalar maxErVal= max(mag(kinematicCloudQ)).value();

Info<< "Maximum Erosion is "<< maxErVal << endl;

//If the value found for the maximum erosion is bigger

//than nDef (integer that counts the number of times

//he mesh has been deformed) * erosionStep

//value read from dictionary transportProperties

//for the minimum erosion that we consider for

//deformation to be applied) then it will enter the

//loop and deform the mesh. If not it will just run

//the particles.

if(maxErVal > nDef*erosionStep)

{

nDef=nDef+1;

#include "erosion.H"

mesh.update();

// Calculate absolute flux from the mapped surface velocity

phic = mesh.Sf() & Uf;

if (mesh.changing() && correctPhi)

{

#include "correctPhi.H"

}

// Make the fluxes relative to the mesh motion

fvc::makeRelative(phic, Uc);

if (mesh.changing() && checkMeshCourantNo)

CHAPTER E IMPLEMENTATION OF E-L SOLVER WITH DYNAMIC MESHING 307

{

#include "meshCourantNo.H"

}

// --- Pressure-velocity PIMPLE corrector loop

while (pimple.loop())

{

#include "UcEqn.H"

// --- PISO loop

while (pimple.correct())

{

#include "pEqn.H"

}

if (pimple.turbCorr())

{

continuousPhaseTurbulence->correct();

}

}

}

}

else

{

Info<< "No deformation is applied in this loop" << endl;

}

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

CHAPTER E IMPLEMENTATION OF E-L SOLVER WITH DYNAMIC MESHING 308

<< nl << endl;

}

Info<< "End\n" << endl;

return 0;

}

// ***//

E.3.2 erosion.H

volPointInterpolation pInterp(mesh);

pointField zeroPoints(mesh.points());

//read erosion volScalarField from time directory

//scalar scaleFactor = 10000;

//multiply the erosion scalar field by the scaling factor in

//order to magnify it and be able to see it (if necessary)

volScalarField scaledkinematicCloudQ =

scaleFactor*kinematicCloudQ;

//Interpolate the erosion volVectorField to the faces of the cells

surfaceScalarField FkinematicCloudQ =

fvc::interpolate(scaledkinematicCloudQ, "linear");

//unitary surface vectors (mesh.Sf()/mesh.magSf())

//divided by the face area to get erosion in meters instead of m.

const surfaceVectorField Avectors = mesh.Sf()/mesh.magSf();

CHAPTER E IMPLEMENTATION OF E-L SOLVER WITH DYNAMIC MESHING 309

volVectorField erosion

(

IOobject

(

"erosion",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh,

dimensionedVector

("erosion", dimensionSet(0,1,0,0,0,0,0), Foam::vector(0,0,0))

);

forAll(erosion.boundaryField()[patchesDef], facei)

{

erosion.boundaryField()[patchesDef][facei] =

Avectors.boundaryField()[patchesDef][facei]*

FkinematicCloudQ.boundaryField()[patchesDef][facei];

}

/*forAll(erosion.boundaryField()[patchesDef[1]], facei)

{

erosion.boundaryField()[patchesDef[1]][facei] =

Avectors.boundaryField()[patchesDef[1]][facei]*

FkinematicCloudQ.boundaryField()[patchesDef[1]][facei];

}

forAll(erosion.boundaryField()[patchesDef[2]], facei)

{

CHAPTER E IMPLEMENTATION OF E-L SOLVER WITH DYNAMIC MESHING 310

erosion.boundaryField()[patchesDef[2]][facei] =

Avectors.boundaryField()[patchesDef[2]][facei]*

FkinematicCloudQ.boundaryField()[patchesDef[2]][facei];

}

*/

//Finally interpolate that vectorField at each face to

//each point of the face, thus obtaining a pointVectorField

volPointInterpolation interpolateVolPoint (mesh);

Info<< "Interpolating" << endl;

pointVectorField pointMotionU = interpolateVolPoint.interpolate(erosion);

pointMotionU.write();

pointField newPoints

(

zeroPoints

+ pointMotionU

);

mesh.movePoints(newPoints);

//const pointMesh& pMesh= pointMesh::New(mesh);

pointVectorField &pointDisplacement = const_cast<pointVectorField&>

(mesh.lookupObject<pointVectorField>("pointDisplacement"));

pointDisplacement.boundaryField() = pointMotionU.boundaryField();

CHAPTER E IMPLEMENTATION OF E-L SOLVER WITH DYNAMIC MESHING 311

pointDisplacement.write();

Appendix F

Implementation of Gnanavelu’s

methodology

F.1 Introduction

This utility is based on OpenFOAM’s deformedGeom.C. The utility is renamed and

an additional header file is included (erosion.H) which is where the averaged fields are

called and the method is implemented. The results from field manipulation are then

passed over to the deformation algorithm, which takes a field of vectors as an input.

This version is working on OpenFOAM 2.3.x.

F.2 gnanaveluErosion.C

/*--*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation

\\/ M anipulation |

License

This file is part of OpenFOAM.

312

CHAPTER F IMPLEMENTATION OF GNANAVELU’S METHODOLOGY 313

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application

erodedBoundaryCellList

Description

Implementation of Gnanavelu et al’s methodology in OpenFOAM

including mesh deformation

--/

#include "OFstream.H"

#include "fvCFD.H"

#include "argList.H"

#include "fvMesh.H"

#include "pointFields.H"

#include "IStringStream.H"

#include "volPointInterpolation.H"

using namespace Foam;

CHAPTER F IMPLEMENTATION OF GNANAVELU’S METHODOLOGY 314

// * //

int main(int argc, char *argv[])

{

include "setRootCase.H"

include "createTime.H"

include "createMesh.H"

volPointInterpolation pInterp(mesh);

// Get times list

instantList Times = runTime.times();

label lastTime=Times.size()-1;

pointField zeroPoints(mesh.points());

// skip "constant" time

if (label timeI = lastTime)

{

runTime.setTime(Times[timeI], timeI);

include "erosion.H"

//Check that the erosion field was created successfully

if (erosion.headerOk())

{

Info<< "Reading point displacement" << endl;

//Calculate the new point field for the new mesh

pointField newPoints

CHAPTER F IMPLEMENTATION OF GNANAVELU’S METHODOLOGY 315

(

zeroPoints

+ pointMotionU

);

mesh.polyMesh::movePoints(newPoints);

mesh.write();

Info<< "Writing new points in Time = " << runTime.timeName() << endl;

}

else

{

Info<< " No erosion Field" << endl;

}

Info<< endl;

}

Info<< "End\n" << endl;

return 0;

}

// **//

F.3 erosion.H

//Read fields of average velocities and angles of impingement

Info<< "Reading Averages fields" << endl;

volScalarField velocityAverage

(

CHAPTER F IMPLEMENTATION OF GNANAVELU’S METHODOLOGY 316

IOobject

(

"kinematicCloudMeanImpactAngle",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh

);

volScalarField angleAverage

(

IOobject

(

"kinematicCloudMeanImpactVelocity",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh

);

//unitary surface vectors (mesh.Sf()/mesh.magSf())

//divided by the face area

const surfaceVectorField Avectors = mesh.Sf()/mesh.magSf();

//Get the label identifying the patch

label patchID =

CHAPTER F IMPLEMENTATION OF GNANAVELU’S METHODOLOGY 317

mesh.boundaryMesh().findPatchID("incident-wall-part-solid");

volVectorField erosion

(

IOobject

(

"erosion",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh,

dimensionedVector("erosion", dimensionSet(0,1,0,0,0,0,0),

Foam::vector(0,0,0))

);

forAll(erosion.boundaryField()[patchID], facei)

{

scalar Vel = velocityAverage.boundaryField()[patchID][facei];

scalar angle = angleAverage.boundaryField()[patchID][facei]*

(constant::mathematical::pi/180);

scalar depth = (1e-6)*Vel*Vel*(-7.156*((Foam::sin(scalar(angle)))*

(Foam::sin(scalar(angle)))*

(Foam::sin(scalar(angle)))*(Foam::sin(scalar(angle))))

+17.05*((Foam::sin(scalar(angle)))*(Foam::sin(scalar(angle)))*

(Foam::sin(scalar(angle))))

CHAPTER F IMPLEMENTATION OF GNANAVELU’S METHODOLOGY 318

-15.02*((Foam::sin(scalar(angle)))*(Foam::sin(scalar(angle))))

+6.565*(Foam::sin(scalar(angle)))-0.4047)*4.693;

erosion.boundaryField()[patchID][facei] =

Avectors.boundaryField()[patchID][facei]*depth;

}

//write the new erosion field created,

//which is a vectorField with magnitude

the erosion and the same direction as the face area vectors

(i.e. in the boundaries points outside of the domain)

erosion.write();

volPointInterpolation interpolateVolPoint (mesh);

Info<< "Interpolating" << endl;

pointVectorField pointMotionU = interpolateVolPoint.interpolate(erosion);

pointMotionU.write();

Appendix G

Average velocity field calculation

G.1 Introduction

This utility calculates the average of the velocity field in the pump for all the specified

time-steps.

G.2 avgVelocity.C

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation

\\/ M anipulation |

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

319

CHAPTER G AVERAGE VELOCITY FIELD CALCULATION 320

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application

avgVelocity

Description

Calculates the magnitude of the velocity at each time and its average

over all time-steps

--/

#include "fvCFD.H"

#include "argList.H"

#include "fvMesh.H"

#include "pointFields.H"

#include "IStringStream.H"

#include "volPointInterpolation.H"

using namespace Foam;

// * //

int main(int argc, char *argv[])

{

CHAPTER G AVERAGE VELOCITY FIELD CALCULATION 321

include "setRootCase.H"

include "createTime.H"

include "createMesh.H"

volPointInterpolation pInterp(mesh);

// Get times list

instantList Times = runTime.times();

volVectorField averagedVelocity

(

IOobject

(

"averagedVelocity",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::AUTO_WRITE

),

mesh,

Foam::vector(0,0,0)

);

volVectorField sumVelocity

(

IOobject

(

"sumVelocity",

runTime.timeName(),

mesh,

CHAPTER G AVERAGE VELOCITY FIELD CALCULATION 322

IOobject::READ_IF_PRESENT,

IOobject::AUTO_WRITE

),

mesh,

Foam::vector(0,0,0)

);

// skip "constant" time

for (label timeI = 1; timeI < Times.size(); ++timeI)

{

runTime.setTime(Times[timeI], timeI);

Info<< "Reading U field at Time = " << runTime.timeName() << endl;

volVectorField U

(

IOobject

(

"U",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh

);

forAll(sumVelocity.internalField(), cellI)

{

sumVelocity.internalField()[cellI] =

CHAPTER G AVERAGE VELOCITY FIELD CALCULATION 323

U.internalField()[cellI] + sumVelocity.internalField()[cellI];

}

}

forAll(averagedVelocity.internalField(), cellI)

{

averagedVelocity.internalField()[cellI] =

sumVelocity.internalField()[cellI]/Times.size();

}

Info<< "Writing new fields..." << endl;

averagedVelocity.write();

Info<< endl;

Info<< "End\n" << endl;

return 0;

}

// **//

Appendix H

Average truncated vorticity field

calculation

H.1 Introduction

This utility calculates the average of the vorticity field and then truncates the max-

imum value to a specified one. The vorticity field is not automatically calculated in

OpenFOAM so first, the corresponding utility to calculate it (vorticity)would have

to be run so the field is available for operating with it.

H.2 avgTruncVorticity.C

/*--*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation

\\/ M anipulation |

--

License

This file is part of OpenFOAM.

324

CHAPTER H AVERAGE TRUNCATED VORTICITY FIELD CALCULATION 325

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application

deformedGeom

Description

Deforms a polyMesh using a displacement field U and a scaling factor

supplied as an argument.

--/

#include "fvCFD.H"

#include "argList.H"

#include "fvMesh.H"

#include "pointFields.H"

#include "IStringStream.H"

#include "volPointInterpolation.H"

using namespace Foam;

// *//

CHAPTER H AVERAGE TRUNCATED VORTICITY FIELD CALCULATION 326

int main(int argc, char *argv[])

{

argList::validArgs.append("truncating factor"); //value at which

the averaged vorticity gets truncated

include "setRootCase.H"

const scalar truncatingFactor = args.argRead<scalar>(1);

include "createTime.H"

include "createMesh.H"

volPointInterpolation pInterp(mesh);

// Get times list

instantList Times = runTime.times();

pointField zeroPoints(mesh.points());

volScalarField truncatedAvgVorticity

(

IOobject

(

"truncatedAvgVorticity",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::AUTO_WRITE

),

mesh,

CHAPTER H AVERAGE TRUNCATED VORTICITY FIELD CALCULATION 327

dimensionedScalar("truncatedAvgVorticity", dimensionSet(0,0,0,0,0,0,0),

Foam::scalar(0))

);

volScalarField averagedVorticity

(

IOobject

(

"averagedVorticity",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::AUTO_WRITE

),

mesh,

dimensionedScalar("averagedVorticity", dimensionSet(0,0,0,0,0,0,0),

Foam::scalar(0))

);

volScalarField sumVorticity

(

IOobject

(

"sumVorticity",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::AUTO_WRITE

),

mesh,

dimensionedScalar("sumVorticity", dimensionSet(0,0,0,0,0,0,0),

CHAPTER H AVERAGE TRUNCATED VORTICITY FIELD CALCULATION 328

Foam::scalar(0))

);

// skip "constant" time

for (label timeI = 1; timeI < Times.size(); ++timeI)

{

runTime.setTime(Times[timeI], timeI);

Info<< "Reading magVorticity field at Time = "

<< runTime.timeName() << endl;

volScalarField magVorticity

(

IOobject

(

"magVorticity",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh

);

label patchID1 = mesh.boundaryMesh().findPatchID("imp-walls");

label patchID2 = mesh.boundaryMesh().findPatchID("wall-impeller");

label patchID3 = mesh.boundaryMesh().findPatchID("fv-walls");

forAll(sumVorticity.boundaryField()[patchID1], facei)

{

CHAPTER H AVERAGE TRUNCATED VORTICITY FIELD CALCULATION 329

sumVorticity.boundaryField()[patchID1][facei] =

magVorticity.boundaryField()[patchID1][facei] +

sumVorticity.boundaryField()[patchID1][facei];

}

forAll(sumVorticity.boundaryField()[patchID2], facei)

{

sumVorticity.boundaryField()[patchID2][facei] =

magVorticity.boundaryField()[patchID2][facei] +

sumVorticity.boundaryField()[patchID2][facei];

}

forAll(sumVorticity.boundaryField()[patchID3], facei)

{

sumVorticity.boundaryField()[patchID3][facei] =

magVorticity.boundaryField()[patchID3][facei] +

sumVorticity.boundaryField()[patchID3][facei];

}

}

label patchID1 = mesh.boundaryMesh().findPatchID("imp-walls");

label patchID2 = mesh.boundaryMesh().findPatchID("wall-impeller");

label patchID3 = mesh.boundaryMesh().findPatchID("fv-walls");

forAll(averagedVorticity.boundaryField()[patchID1], facei)

{

averagedVorticity.boundaryField()[patchID1][facei] =

sumVorticity.boundaryField()[patchID1][facei]/Times.size();

}

CHAPTER H AVERAGE TRUNCATED VORTICITY FIELD CALCULATION 330

forAll(averagedVorticity.boundaryField()[patchID2], facei)

{

averagedVorticity.boundaryField()[patchID2][facei] =

sumVorticity.boundaryField()[patchID2][facei]/Times.size();

}

forAll(averagedVorticity.boundaryField()[patchID3], facei)

{

averagedVorticity.boundaryField()[patchID3][facei] =

sumVorticity.boundaryField()[patchID3][facei]/Times.size();

}

Info<< "Creating truncating vorticity field at a value of"

<< truncatingFactor << endl;

forAll(truncatedAvgVorticity.boundaryField()[patchID1], facei)

{

if (averagedVorticity.boundaryField()[patchID1][facei] >=

truncatingFactor)

{

truncatedAvgVorticity.boundaryField()[patchID1][facei]=truncatingFactor;

}

else if (averagedVorticity.boundaryField()[patchID1][facei] <

truncatingFactor)

{

truncatedAvgVorticity.boundaryField()[patchID1][facei]=

averagedVorticity.boundaryField()[patchID1][facei];

}

}

forAll(truncatedAvgVorticity.boundaryField()[patchID2], facei)

CHAPTER H AVERAGE TRUNCATED VORTICITY FIELD CALCULATION 331

{

if (averagedVorticity.boundaryField()[patchID2][facei] >=

truncatingFactor)

{

truncatedAvgVorticity.boundaryField()[patchID2][facei]=truncatingFactor;

}

else if (averagedVorticity.boundaryField()[patchID2][facei] <

truncatingFactor)

{

truncatedAvgVorticity.boundaryField()[patchID2][facei]=

averagedVorticity.boundaryField()[patchID2][facei];

}

}

forAll(truncatedAvgVorticity.boundaryField()[patchID3], facei)

{

if (averagedVorticity.boundaryField()[patchID3][facei] >=

truncatingFactor)

{

truncatedAvgVorticity.boundaryField()[patchID3][facei]=truncatingFactor;

}

else if (averagedVorticity.boundaryField()[patchID3][facei] <

truncatingFactor)

{

truncatedAvgVorticity.boundaryField()[patchID3][facei]=

averagedVorticity.boundaryField()[patchID3][facei];

}

}

Info<< "Writing new fields..." << endl;

CHAPTER H AVERAGE TRUNCATED VORTICITY FIELD CALCULATION 332

truncatedAvgVorticity.write();

averagedVorticity.write();

Info<< endl;

Info<< "End\n" << endl;

return 0;

}

// **//

Appendix I

Erosion calculation in a pump

I.1 Introduction

This utility calculates an approximation of the erosion field in a centrifugal pump. It

first transfers the values of the velocity at closest cells to the walls to the boundary and

then uses the second power of the velocity for the static parts of the pump. For the

rotating parts, the truncated vorticity field is used instead. Both fields are computed

and the whole geometry is then deformed by calling the corresponding patches. For

the mesh deformation, the application is based on the existing utility defomedGeom.

I.2 pumpErosion.C

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation

\\/ M anipulation |

--

License

This file is part of OpenFOAM.

333

CHAPTER I EROSION CALCULATION IN A PUMP 334

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application

pumpErosion

Description

Deforms a polyMesh using a displacement field erosion and two scaling

factors defined at the beginning of the file. The erosion field is

proportional to the vorticity field for the rotating parts and

proportional to the square of the averaged velocity

(previously calculated with avgVelocity app) for the non

rotating parts.

--/

#include "OFstream.H"

#include "fvCFD.H"

#include "argList.H"

#include "fvMesh.H"

#include "pointFields.H"

#include "IStringStream.H"

#include "volPointInterpolation.H"

CHAPTER I EROSION CALCULATION IN A PUMP 335

using namespace Foam;

// *//

int main(int argc, char *argv[])

{

include "setRootCase.H"

const scalar scaleFactor1 = 0.00007;

const scalar scaleFactor2 = 4e-8;

include "createTime.H"

include "createMesh.H"

volPointInterpolation pInterp(mesh);

// Get times list

instantList Times = runTime.times();

label lastTime=Times.size()-1; //Get the last saved time-step

pointField zeroPoints(mesh.points());

// skip "constant" time

if (label timeI = lastTime)

{

runTime.setTime(Times[timeI], timeI);

///

Info<< "Reading Averaged Velocity field" << endl;

CHAPTER I EROSION CALCULATION IN A PUMP 336

volVectorField averagedVelocity

(

IOobject

(

"averagedVelocity",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh

);

Info<< "Reading Averaged Vorticity field" << endl;

volScalarField averagedVorticity

(

IOobject

(

"averagedVorticity",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh

);

//Normalised surface normal vectors

const surfaceVectorField Avectors = mesh.Sf()/mesh.magSf();

//150 WBH PUMP WALLS

CHAPTER I EROSION CALCULATION IN A PUMP 337

//ROTATING_WALLS

//wall-impeller

//imp-walls

//fv-walls

//imp-back

//STATIC-WALLS

//volute-tb-walls

label patchID1 = mesh.boundaryMesh().findPatchID("wall-impeller");

label patchID2 = mesh.boundaryMesh().findPatchID("imp-walls");

label patchID3 = mesh.boundaryMesh().findPatchID("fv-walls");

label patchID4 = mesh.boundaryMesh().findPatchID("imp-back");

label patchID5 = mesh.boundaryMesh().findPatchID("volute-tb-walls");

//Velocity of each closest cell to each boundary face computed

at each boundary face

volScalarField magErosion

(

IOobject

(

"magErosion",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh,

CHAPTER I EROSION CALCULATION IN A PUMP 338

dimensionedScalar

("magErosion", dimensionSet(0,0,0,0,0,0,0), Foam::scalar(0.0))

);

const fvPatchList& patches = mesh.boundary();

//ROTATING_WALLS

//wall-impeller patchID1

//imp-walls patchID2

//fv-walls patchID3

//imp-back patchID4

forAll(magErosion.boundaryField()[patchID1], facei)

{

magErosion.boundaryField()[patchID1][facei] =

scaleFactor2*averagedVorticity.boundaryField()[patchID1][facei];

}

forAll(magErosion.boundaryField()[patchID2], facei)

{

magErosion.boundaryField()[patchID2][facei] =

scaleFactor2*averagedVorticity.boundaryField()[patchID1][facei];

}

forAll(magErosion.boundaryField()[patchID3], facei)

{

magErosion.boundaryField()[patchID3][facei] =

scaleFactor2*averagedVorticity.boundaryField()[patchID1][facei];

}

forAll(magErosion.boundaryField()[patchID4], facei)

{

magErosion.boundaryField()[patchID4][facei] =

scaleFactor2*averagedVorticity.boundaryField()[patchID1][facei];

CHAPTER I EROSION CALCULATION IN A PUMP 339

}

//STATIC-WALLS

//volute-tb-walls patchID5

forAll(magErosion.boundaryField()[patchID5], facei)

{

const fvPatch& currPatch = patches[patchID5];

label intCell = currPatch.faceCells()[facei];

vector vecVel = averagedVelocity.internalField()[intCell];

scalar avgMagU = mag(vecVel);

magErosion.boundaryField()[patchID5][facei] = scaleFactor1*sqr(avgMagU);

}

magErosion.write();

volVectorField erosion

(

IOobject

(

"erosion",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh,

dimensionedVector

CHAPTER I EROSION CALCULATION IN A PUMP 340

("erosion", dimensionSet(0,0,1,0,0,0,0), Foam::vector(0,0,0))

);

forAll(erosion.boundaryField()[patchID1], facei)

{

erosion.boundaryField()[patchID1][facei] =

Avectors.boundaryField()[patchID1][facei]*

(magErosion.boundaryField()[patchID1][facei]);

}

forAll(erosion.boundaryField()[patchID2], facei)

{

erosion.boundaryField()[patchID2][facei] =

Avectors.boundaryField()[patchID2][facei]*

(magErosion.boundaryField()[patchID2][facei]);

}

forAll(erosion.boundaryField()[patchID3], facei)

{

erosion.boundaryField()[patchID3][facei] =

Avectors.boundaryField()[patchID3][facei]*

(magErosion.boundaryField()[patchID3][facei]);

}

forAll(erosion.boundaryField()[patchID4], facei)

{

erosion.boundaryField()[patchID4][facei] =

Avectors.boundaryField()[patchID4][facei]*

(magErosion.boundaryField()[patchID4][facei]);

}

forAll(erosion.boundaryField()[patchID5], facei)

{

CHAPTER I EROSION CALCULATION IN A PUMP 341

erosion.boundaryField()[patchID5][facei] =

Avectors.boundaryField()[patchID5][facei]*

(magErosion.boundaryField()[patchID5][facei]);

}

//write the new erosion field created, which is a vectorField with

//magnitude the erosion and the same direction as the face

//area vectors (i.e. in the boundaries points outside of the

//domain)

erosion.write();

//Finally interpolate that vectorField at each face to each point

//of the face, thus obtaining a pointVectorField

volPointInterpolation interpolateVolPoint (mesh);

Info<< "Interpolating" << endl;

pointVectorField pointMotionU = interpolateVolPoint.interpolate(erosion);

pointMotionU.write();

///

// Check that the erosion field was created successfully

if (erosion.headerOk())

{

Info<< "Reading point displacement" << endl;

//Calculate the new point field for the new mesh

pointField newPoints

(

zeroPoints

CHAPTER I EROSION CALCULATION IN A PUMP 342

+ pointMotionU

);

mesh.polyMesh::movePoints(newPoints);

mesh.write();

Info<< "Writing new points in Time = " << runTime.timeName() << endl;

}

else

{

Info<< " No erosion Field" << endl;

}

Info<< endl;

}

Info<< "End\n" << endl;

return 0;

}

// ** //

Appendix J

Mesh deformation with dynamic

meshing

J.1 Introduction

The utility calculates the displacement of the boundary according to erosion. Instead

of just moving the nodes, a dynamic mesher is included in this application so that after

deforming it will iterate and move the adjacent nodes accordingly. For this utility to

work, a field in the 0 directory (pointDisplacement) and a dynamicMeshDict in the

constant directory are needed.

J.2 erodedBoundaryAdaptive.C

/*--*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation

\\/ M anipulation |

--

License

This file is part of OpenFOAM.

343

CHAPTER J MESH DEFORMATION WITH DYNAMIC MESHING 344

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application

deformedGeomAdaptive

For this application to work we need the directory with

0/pointDisplacement, constant directory with

dynamicMeshDict and System directory with cellDisplacement

in fvSchemes and fvSolution (to tell the OpenFOAM how

to solve the cell displacements of the dynamic mesh)

Description

Deforms a polyMesh using a displacement field U and a scaling factor

supplied as an argument.

--/

#include "fvCFD.H"

#include "argList.H"

#include "fvMesh.H"

#include "pointFields.H"

CHAPTER J MESH DEFORMATION WITH DYNAMIC MESHING 345

#include "IStringStream.H"

#include "volPointInterpolation.H"

#include "dynamicFvMesh.H"

using namespace Foam;

// * //

int main(int argc, char *argv[])

{

//scaling factor to magnify erosion and be able to see the deformation

argList::validArgs.append("scaling factor");

include "setRootCase.H"

const scalar scaleFactor = args.argRead<scalar>(1);

include "createTime.H"

include "createDynamicFvMesh.H"

volPointInterpolation pInterp(mesh);

// Get times list

instantList Times = runTime.times();

pointField zeroPoints(mesh.points());

// skip "constant" time

if (label timeI = 1)

CHAPTER J MESH DEFORMATION WITH DYNAMIC MESHING 346

{

runTime.setTime(Times[timeI], timeI);

include "erosion.H"

// Check that the erosion field was created successfully

if (erosion.headerOk())

{

Info<< "Reading point displacement" << endl;

//Calculate the new point field for the new mesh

pointField newPoints

(

zeroPoints

+ pointMotionU

);

mesh.movePoints(newPoints);

mesh.update();

mesh.polyMesh::movePoints(newPoints);

mesh.write();

Info<< "Writing new points in Time = " << runTime.timeName() << endl;

}

else

{

Info<< "No erosion Field" << endl;

}

Info<< endl;

}

CHAPTER J MESH DEFORMATION WITH DYNAMIC MESHING 347

Info<< "End\n" << endl;

return 0;

}

// ** //

J.3 erosion.H

//read erosion volScalarField from time directory

Info<< "Reading kinematicCloudQ field" << endl;

volScalarField kinematicCloudQ

(

IOobject

(

"kinematicCloudHutchings",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh

);

//multiply the erosion scalar field by the scaling factor

in order to magnify it and be able to see it (if necessary)

volScalarField scaledkinematicCloudQ = scaleFactor*kinematicCloudQ;

//Interpolate the erosion volVectorField to the faces of the cells

surfaceScalarField FkinematicCloudQ =

CHAPTER J MESH DEFORMATION WITH DYNAMIC MESHING 348

fvc::interpolate(scaledkinematicCloudQ, "linear");

//The algorithm is going to be executed on the

//moving-wall patch so we look for the right patch

label patchID = mesh.boundaryMesh().findPatchID("incident_wall");

const surfaceVectorField Avectors = mesh.Sf()/mesh.magSf();

volVectorField erosion

(

IOobject

(

"erosion",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh,

dimensionedVector("erosion", dimensionSet(0,0,1,0,0,0,0),

Foam::vector(0,0,0))

);

forAll(erosion.boundaryField()[patchID], facei)

{

erosion.boundaryField()[patchID][facei] =

Avectors.boundaryField()[patchID][facei]*

FkinematicCloudQ.boundaryField()[patchID][facei];

}

CHAPTER J MESH DEFORMATION WITH DYNAMIC MESHING 349

//write the new erosion field created, which is a

vectorField with magnitude the erosion and the

same direction as the face area vectors

(i.e. in the boundaries points outside of the domain)

erosion.write();

//Finally interpolate that vectorField at each face

to each point of the face, thus obtaining a pointVectorField

volPointInterpolation interpolateVolPoint (mesh);

Info<< "Interpolating" << endl;

pointVectorField pointMotionU = interpolateVolPoint.interpolate(erosion);

//const pointMesh& pMesh= pointMesh::New(mesh);

pointVectorField &pointDisplacement = const_cast<pointVectorField&>

(mesh.lookupObject<pointVectorField>("pointDisplacement"));

pointDisplacement.boundaryField() = pointMotionU.boundaryField();

pointDisplacement.write();

Appendix K

Application to count the

minimum number of impacts

K.1 Introduction

This utility calculates the number of impacts needed to calculate the wear scar with

the desired level of confidence. The application takes the two fields with those values

for the impact angle and the impact velocity and calculates the sum over all the faces

of the specified boundary after rounding the obtained values up to the nearest integer.

The result consists of two numbers, one for the impact angle and one for the impact

velocity, of which the highest one should be chosen

K.2 ecountParticles.C

/*--*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation

\\/ M anipulation |

--

License

350

CHAPTER K APPLICATION TO COUNT THE MINIMUM NUMBER OF IMPACTS 351

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application

countParticles

Description

Counts necessary number of impacts for an average

with a certain degree of confidence

--/

#include "fvCFD.H"

#include "argList.H"

#include "fvMesh.H"

#include "pointFields.H"

#include "IStringStream.H"

#include "volPointInterpolation.H"

using namespace Foam;

CHAPTER K APPLICATION TO COUNT THE MINIMUM NUMBER OF IMPACTS 352

// * //

int main(int argc, char *argv[])

{

include "setRootCase.H"

include "createTime.H"

include "createMesh.H"

volPointInterpolation pInterp(mesh);

// Get times list

instantList Times = runTime.times();

pointField zeroPoints(mesh.points());

// skip "constant" time

if (label timeI = 1)

{

runTime.setTime(Times[timeI], timeI);

//read sample sizes for angle and impact velocity from time directory

Info<< "Reading kinematicCloudQ field" << endl;

volScalarField kinematicCloud1

(

IOobject

(

CHAPTER K APPLICATION TO COUNT THE MINIMUM NUMBER OF IMPACTS 353

"kinematicCloudVelocitySampleSize",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh

);

Info<< "Reading kinematicCloudQ field" << endl;

volScalarField kinematicCloud2

(

IOobject

(

"kinematicCloudImpactAngleSampleSize",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh

);

//We look for the right patch

label patchID = mesh.boundaryMesh().findPatchID("incident-wall-part-solid");

//initialise variables

scalar numImpVel=0;

scalar numImpAng=0;

//sum all the sample sizes for all faces of the patch after rounding

//up to the nearest integer with std::ceil

CHAPTER K APPLICATION TO COUNT THE MINIMUM NUMBER OF IMPACTS 354

forAll(kinematicCloud1.boundaryField()[patchID], facei)

{

numImpVel=numImpVel+std::ceil(kinematicCloud1.boundaryField()

[patchID][facei]);

}

forAll(kinematicCloud1.boundaryField()[patchID], facei)

{

numImpAng=numImpAng+std::ceil(kinematicCloud2.boundaryField()

[patchID][facei]);

}

//Print both numbers, of which we take the highest one

Info<< "Number of Particles for Impact Velocity" << numImpVel << endl;

Info<< "Number of Particles for Impact Angle" << numImpAng << endl;

}

Info<< "End\n" << endl;

return 0;

}

// *** //

References

[1] H. C. Meng and K. C. Ludema. Wear models and predictive equations: their form and

content. Wear, 181: 443–457, 1995.

[2] I. M. Hutchings. A model for the erosion of metals by spherical particles at normal

incidence. Wear, 70: 269–281, 1981.

[3] R. M. Davies. The determination of static and dynamic yield stresses using a step ball.

Proceedings of the Royal Society of London, 197A: 416–432, 1949.

[4] A. V. Riemsdijk and J. G. A. Bitter. Erosion in gas-solid systems. Fifth World Petroleum

Congress, Section VII, Engineering, Equipment and Materials, pages 43–58, 1959.

[5] G. Grant and W. Tabakoff. An experimental investigation of the erosion characteristics

of 2024 aluminum alloy. Department of Aerospace Engineering Tech. Rep., University of

Cincinnati, pages 73–77, 1973.

[6] J. G. A. Bitter. A study of erosion phenomena part i. Wear, 6: 5–21, 1963.

[7] J. G. A. Bitter. A study of erosion phenomena part ii. Wear, 6: 169–190, 1963.

[8] J. H. Neilson and A. Gilchrist. Erosion by a stream of solid particles. Wear, 11: 111–122,

1968.

[9] A. Gnanavelu et al. An integrated methodology for predicting material wear rates due to

erosion. Wear, 267: 1935–1944, 2009.

[10] J. A. C. Humphrey. Fundamentals of fluid motion in erosion by solid particle impact.

International Journal of Heat and Fluid Flow, 11: 170–195, 1990.

[11] M. A. Al-Bukhaiti et al. Effect of impingement angle on slurry erosion and mechanisms

of 1017 steel and high-chromium white cast iron. Wear, 262: 1187—1198, 2007.

[12] I. Finnie. Erosion of surfaces by solid particles. Wear, 3: 87–103, 1960.

355

REFERENCES 356

[13] I. Finnie. Some observations on the erosion of ductile metals. Wear, 19: 81–90, 1972.

[14] A. Gnanavelu et al. An investigation of a geometry independent integrated method to

predict erosion rates in slurry erosion. Wear, 271: 712–719, 2011.

[15] M. Sommerfeld and N. Hubber. Experimental analysis and modelling of particle-wall

collisions. International Journal of Multiphase Flow, 25(6-7): 1457—1489, 1999.

[16] A. Forder, M. Thew and D. Harrison. A numerical investigation of solid particle erosion

experienced within oilfield control valve. Wear, 216: 184—193, 1998.

[17] S. Wiederhorn and B. Hockey. Effect of material parameters on the erosion resistance of

brittle materials. Journal of Materials Science, 18: 766–780, 1983.

[18] G. L. Sheldon and A. Kanhere. An investigation of impingement erosion using single

particles. Wear, 21: 195—209, 1972.

[19] P. Shipway and I. Hutchings. The role of particle properties in the erosion of brittle

materials. Wear, 193: 105–113, 1996.

[20] T. Deng, M. Bingley and M. Bradley. The influence of particle rotation on the solid

particle erosion rate of metals. Wear, 256: 1037–1049, 2004.

[21] T. Deng, M. Bingley and M. Bradley. Understanding particle dynamics in erosion testers:

A review of influences of particle movement on erosion test conditions. Wear, 267: 2132–

2140, 2009.

[22] D. W. Nicholls. Private Communication on Molecular Dynamics. University of Strath-

clyde, 2013.

[23] M. T. Benchaita, P. Griffith and E. Rabinowicz. Erosion of metallic pate by solid partiles

entrained in a liquid jet. Journal of engineering for industry, 105: 215–222, 1983.

[24] A. Lopez, M. Stickland, W. Dempster and W. Nicholls. Cfd study of jet impingement

test erosion using ansys fluent and openfoam. Computer Physics Communications, 197:

88–95, 2015.

[25] Y. Zhong and K. Minemura. Measurement of erosion due to particle impingement and

numerical prediction of wear in pump casing. Wear, 199: 36–44, 1996.

[26] G. F. Truscott. A literature survey on abrasive wear on hydraulic machinery. Wear, 20:

29–50, 1972.

REFERENCES 357

[27] W. Jennings, W. Head and J. C.R. Manning. A mechanistic model for the prediciton of

ductile erosion. Wear, 40: 93–112, 1976.

[28] Y. Oka, H. Ohnogi, T. Hosokawa and M. Matsumura. The impact angle dependenceof

erosion damage caused by solid particle impact. Wear, 203-204: 573–579, 1997.

[29] S. J. Cummins, M. D. Sinnott and P. W. Cleary. Dem modelling of wear in high shear mix-

ers. Eleventh International Conference on CFD in the Minerals and Process Industries,

2015.

[30] M. Stack, C. Telfer and B. Jana. Particle concentration and size effects on the erosion-

corrosion of pure metals in aqueous slurries. Tribology International, 53: 35–44, 2012.

[31] K. Nandakumar et al. A phenomenological model for erosion of material in a horizontal

slurry pipeline flow. Wear, 269: 190–196, 2010.

[32] M. S. Patil et al. Study of the parameters affecting erosion wear of ductile material in

solid-liquid mixture. Proceedings of the World Congress on Engineering, 3, 2011.

[33] S. Rajahram, T. Harvey and R. Wood. Evaluation of a semi-empirical model in predicting

erosion-corrosion. Wear, 267: 1883–1893, 2009.

[34] H.-J. Bart and M. Azimian. Erosion investigations by means of centrifugal accelerator

erosion tester. Wear, 328-329: 249–256, 2015.

[35] G. Tilly and W. Sage. The interaction of particle and material behaviour in erosion

processes. Wear, 16: 447–465, 1970.

[36] W. Head, L. Lineback and C. Manning. Modification and extension of a model for

predicting the erosion of ductile metals. Wear, 23: 291–298, 1973.

[37] J. S. Mason and B. V. Smith. The erosion of bends by pneumatically conveyed suspensions

of abrasive particles. Powder Technology, 6: 323–335, 1972.

[38] B. F. Levin, K. Vecchio, J. N. Dupont and A.R.Marder. Modeling solid-particle erosion

of ductile alloys. Metallurgical and materials transactions, 30A: 1763–1774, 1999.

[39] S. Srinivasan and R. O. Scattergood. Effect of erodent hardness on erosion of brittle

materials. Wear, 128: 139–152, 1988.

[40] H. M. Clark. Specimen diameter, impact velocity, erosion rate and particle density in a

slurry pot erosion tester. Wear, 162-164: 669–678, 1993.

REFERENCES 358

[41] N. A. Gorbushin and Y. V. Petrov. Dynamic fragmentation of solid particles interacting

with a rigid barrier. Technical Physics, 59: 194–198, 2014.

[42] G. J. Brown. Erosion prediction in slurry pipeline tee-junctions. Applied Mathematical

Modelling, 26: 155–170, 2002.

[43] A. Lopez, M. Stickland and W. Dempster. Comparative study of different erosion mod-

els in an eulerian-lagrangian frame using open source software. Proceedings of the 12th

European Fluid Machinery Congress, 2014.

[44] W. Tabakoff and B. V. R. Vittal. High temperature erosion study of inco 600 metal.

Wear, 86: 89–99, 1983.

[45] F. T. Barwell. Wear of metals. Wear, 1: 317–332, 1957.

[46] I. Kleis and P. Kulu. Solid Particle Erosion: Occurrence, Prediction and Control.

Springer, 2008.

[47] P. A. Schweitzer. Fundamentals of Corrosion: Mechanisms, Causes and Preventive Meth-

ods. CRC Press, 2010.

[48] C. Lhymn and P. Wapner. Slurry erosion of polyphenilene sulfide-glass composites. Wear,

119: 1–12, 1987.

[49] S.Johansson, F. Eriscon and J. Schweitz. Solid particle erosion - a statistical method for

evaluation of strength properties of semiconducting materials. Wear, 115: 107–120, 1987.

[50] A. G. Evans. Impact damage mechanics: solid projectiles in c. m. preece (ed.). Treatise

on Material Science and Technology, 16: 1, 1979.

[51] A. W. Ruff and S. M. Wieherhorn. Erosion by solid particle impact in c. m. preece (ed.).

Treatise on Material Science and Technology, 16: 69, 1979.

[52] G. Sundararajan and P. Shewmon. A new model for the erosion of metals at normal

incidence. Wear, 84: 237–258, 1983.

[53] C. E. Smeltzer et al. Mechanisms of sand and dust erosion in gas turbine engines. US-

AAVLABS Tech. Rep. 70-36, U.S. Army Air Mobility Research and Development Labo-

ratory, 1970.

[54] L. L. Shreir. Corrosion, volume 1. Newnes-Butterworths, 1963.

REFERENCES 359

[55] Y. Li, G. Burstein and I. M. Hutchings. The influence of corrosion on the erosion of

aluminium by aqueous silica slurries. Wear, 186-187: 515–522, 1995.

[56] S. Dosanjh and J. A. C. Humphrey. The influence of turbulence on erosion by a particle-

laden fluid jet. Wear, 102: 309–330, 1985.

[57] S. Morsi and A. Alexander. An investigation of particle trajectories in two-phase flow

systems. Journal of Fluid Mechanics, 55(2): 193–208, 1972.

[58] T. Frosell, M. Fripp and E. Gutmark. Investigation of slurry concentration effects on

solid particle erosion rate for an impinging jet. Wear, 342-343: 33–43, 2015.

[59] H. M. Clark. The influence of the flowfield in slurry erosion. Wear, 152: 223–240, 1992.

[60] V.B. Nguyen et al. A combined numerical-experimental study on the effect os surface

evolution on the water-sand multiphase flow characteristics and the material erosion be-

havior. Wear, 319: 96–109, 2014.

[61] T. Maric, J. Höpken and K. Mooney. The OpenFOAM Technology Primer. Sourceflux,

2014.

[62] OpenFOAM Foundation. Openfoam user guide, 2011. http://www.openfoam.org/docs/

user/.

[63] K. Sugiyama, K. Harada and S. Hattori. Influence of impact angle of solid particles on

erosion by slurry jet. Wear, 265: 713–720, 2008.

[64] OpenFOAM Foundation. Openfoam programmer’s guide, 2011. http://foam.

sourceforge.net/docs/Guides-a4/ProgrammersGuide.pdf.

[65] D. Shepard. A two-dimensional interpolation function for irregularly spaced data. Pro-

ceedings 1968 ACM National Conference, 1: 517–524, 1968.

[66] G.Allasia. Some physical and mathematical properties of inverse distance weighted meth-

ods for scattered data interpolation. Calcolo, 29: 97–109, 1992.

[67] G. Y. Lu and D. W. Wong. An adaptive inverse-distance weighting spatial interpolation

technique. Computers and Geosciences, 34: 1044–1055, 2008.

[68] K. Nandakumar et al. A comprehensive phenomenological model for erosion of materials

in jet flow. Powder Technology, 187: 273–279, 2008.

http://www.openfoam.org/docs/user/
http://www.openfoam.org/docs/user/
http://foam.sourceforge.net/docs/Guides-a4/ProgrammersGuide.pdf
http://foam.sourceforge.net/docs/Guides-a4/ProgrammersGuide.pdf

REFERENCES 360

[69] B. E. Launder and D. Spalding. Lectures in Mathematical Models of Turbulence. Academic

Press, 1972.

[70] K. Abdellatif et al. Predicting initial erosion during the hole erosion test by using turbu-

lent flow cfd simulation. Applied Mathematical Modellling, 36: 3359–3370, 2012.

[71] F. Menter. Two-equation eddy-viscosity turbulence models for engineering applications.

AAIA Journal, 32: 1598–1605, 1994.

[72] Ansys Inc. Ansys Fluent User Guide. Ansys, Inc., 2009.

[73] A. Mackenzie, A. Lopez, K. Ritos, M. Stickland and W. Dempster. A comparison of cfd

software packages’ ability to model a submerged jet. Eleventh International Conference

on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 2015.

[74] P. Mathews. Sample Size Calculations: Practical Methods for Engineers and Scientists.

Mathews Malnar and bailey, Inc., 2010.

[75] L. J. W. Graham, D. R. Lester and J. Wu. Quantification of erosion distributions in

complex geometries. Wear, 268: 1066–1071, 2010.

[76] R. Okita, Y. Zhang, B. S. McLaury and S. A. Shirazi. Experimental and computational

investigations to evaluate the effects of fluid viscosity and particle size on erosion damage.

Journal of Fluids Engineering, 134: 0631301, 2012.

[77] R. J. K. Wood and T. F. Jones. Investigations of sand-water induced erosive wear of aisi

304l stainless steel pipes by pilot-scale and laboratory-scale testing. Wear, 255: 206–218,

2003.

[78] W. J. Head and M. E. Harr. The development of a model to predict the erosion of

materials by natural contaminants. Wear, 15: 1–46, 1970.

[79] A.F.R.C. Advanced forming research centre equipment directory, 2015.

https://www.strath.ac.uk/media/departments/dmem/afrc/afrc-refurbwebsite/

equipment/AFRC_equipment_brochure.pdf.

[80] M. Raffel, C. E. Willert, S. T. Wereley and J. Kompehans. Particle Image Velocimetry:

A practical guide. Springer, 2007.

[81] L. Nicolaou and T. A. Zaki. On the stokes number and characterization of aerosol de-

position in the respiratory airways. 4th International Conference on Computational and

Mathematical Biomedical Engineering - CMBE2015, 1: 224–227, 2015.

https://www.strath.ac.uk/media/departments/dmem/afrc/afrc-refurbwebsite/equipment/AFRC_equipment_brochure.pdf
https://www.strath.ac.uk/media/departments/dmem/afrc/afrc-refurbwebsite/equipment/AFRC_equipment_brochure.pdf

REFERENCES 361

[82] R. C. Flagan and J. H. Seinfeld. Fundamentals of air pollution engineering. Prentice

Hall, Inc., 1988.

[83] W. Thielicke and E. J. Stamhuis. Pivlab - time-resolved digital particle image velocimetry

tool for matlab (version: 1.4), 2014.

[84] W. Tabakoff, R. Kotwal and A. Hamed. Erosion study of different materials affected by

coal ash particles. Wear, 52: 161–173, 1979.

[85] M. Menguturk and E. F. Sverdrup. Calculated tolerance of a large electric utility gas

turbine to erosion damage by coal gas ash particles. ASTM Special Technical Publications,

664: 193–224, 19.

[86] K. Sun, L. Lu and H. Jin. Modeling and numerical analysis of the solid particle erosion

in curved ducts. Abstract and Applied Analysis, 2013: 1–8, 2013.

[87] X. Song, J. Z. Lin, J. Zhao and T. Y. Shen. Research on reducing erosion by adding ribs

on the wall in particulate two-phase flows. Wear, 193: 1–7, 1996.

[88] A. Lopez, M. Stickland and W. Dempster. Predicting surface evolution in erosion pro-

cesses with openfoam, 2015. http://openfoam-extend.sourceforge.net/OpenFOAM_

Workshops/OFW10_2015_AnnArbor/?page_id=146.

[89] The MathWorks Inc., Massachusetts, United States. Matlab and statistics toolbox release

2016a, 2016.

[90] OriginLab, Northampton, US. Origin 2016, 2016.

[91] J. Ahrens, B. Geveci and C. Law. Paraview: An end-user tool for large data visualization.

Visualization Handbook, Elsevier, 1, 2005.

[92] D. Smith. Modelling cavitation in centrifugal pumps using OpenFOAM. University of

Strathclyde, 2016.

[93] L. Moscoso. Internal report/communication. pump technology centre, weir minerals,

australia.

[94] L. Moscoso, University of Sydney. Computational Investigation of Wear in Centrifugal

Slurry Pumps. University of Sydney, 2010.

[95] X. Cai, S. Zhou and S. Li. Study on the influence of back blade shape on the wear

characteristics of centrifugal slurry pump. IOP Conf. Series: Materials Science and

Engineering, 129: 12–58, 2016.

http://openfoam-extend.sourceforge.net/OpenFOAM_Workshops/OFW10_2015_AnnArbor/?page_id=146
http://openfoam-extend.sourceforge.net/OpenFOAM_Workshops/OFW10_2015_AnnArbor/?page_id=146

REFERENCES 362

[96] J. Stijnen, A. Heemink and H. Lin. An efficient 3d particle transport model for use in

stratified flow. International journal for numerical methods in fluids, 51: 331–350, 2006.

[97] G. Brown. Erosion prediciton in slurry pipeline tee-junctions. Applied Mathematical

Modelling, 26: 155–170, 2002.

[98] OpenFOAM Foundation. Openfoam c++ documentation, 2011. http://www.openfoam.

org/docs/cpp/.

[99] Cplusplus.com. C++ tutorial, 2012. http://www.cplusplus.com/doc/tutorial/.

[100] A. Vallier. Tutorial lagrangian particle tracking, 2011. http://www.tfd.chalmers.se/

~hani/kurser/OS_CFD_2009/AureliaVallier/oscfd09_present_aureliapdf.pdf.

[101] A. Vallier. Coupling of vof with lpt in openfoam, 2011. http://www.tfd.chalmers.se/

~hani/kurser/OS_CFD_2011/OF_kurs_LPT_120911.pdf.

[102] S. I. G. on Multiphase Flows (SIG Multiphase). Tutorials for particle based meth-

ods, 2011. http://openfoamwiki.net/index.php/Tutorials_for_particle_based_

methods.

[103] H. Nilsson. Msc/phd course in cfd with opensource software, 2013 and previous years,

2013. http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/.

[104] D. Vandevoorde and N. M. Josuttis. C++ Templates. Addison Wesley, 2002.

http://www.openfoam.org/docs/cpp/
http://www.openfoam.org/docs/cpp/
http://www.cplusplus.com/doc/tutorial/
http://www.tfd.chalmers.se/~hani/kurser/OS _ CFD _ 2009/AureliaVallier/oscfd09 _ present _aureliapdf.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS _ CFD _ 2009/AureliaVallier/oscfd09 _ present _aureliapdf.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2011/OF_kurs_LPT_120911.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2011/OF_kurs_LPT_120911.pdf
http://openfoamwiki.net/index.php/Tutorials_for_particle_based_methods
http://openfoamwiki.net/index.php/Tutorials_for_particle_based_methods
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/

	Abstract
	Acknowledgements
	Publication List
	Contents
	List of figures
	List of tables
	Nomenclature
	Introduction
	Literature Review
	Factors affecting erosion
	Particles
	Characteristics of the surfaces involved
	Carrier fluid

	Erosion prediction with CFD
	Aims and objectives

	Computational Fluid Dynamics in OpenFOAM
	CFD in OpenFOAM
	Verification of OpenFOAM
	Introduction
	The Euler-Lagrange Approach
	Simulation parameters
	Eulerian phase steady-state
	Discrete phase modeling
	Impingement conditions
	Erosion modeling in OpenFOAM
	Conclusions

	CFD of Erosion Processes
	Introduction
	Erosion field calculation in OpenFOAM
	Mesh deformation in OpenFOAM
	Introduction
	erodedBoundaryCellList.C
	erosion.H

	Implementation of an additional erosion model in OpenFOAM
	Introduction
	Implementation of an additional erosion model in OpenFOAM

	Patch interaction models
	Introduction
	Patch interaction models

	Patch post processing
	Turbulence model
	Dispersed phase transient simulation

	Statistics of target impacts
	General case

	Implementation of Euler-Lagrange and dynamic mesh solver

	Experimental work
	Introduction
	Test rig design
	Experimental configuration
	Simulation parameters

	Three Dimensional Scanning
	Alicona Infinite Focus IFM G4

	Particle Image Velocimetry
	Principles of PIV
	Post-processing the PIV data

	Results discussion
	Introduction
	Experimental results
	1.15% Concentration tests
	7% Concentration tests

	Test rig preliminary CFD simulations
	Validation fluid flow changes due to wear scar
	Introduction
	Methodology
	Influence of the rebound model
	Validation of the 3-dimensional wear scar
	Time-scaling

	Erosion calculation with a dynamic mesh solver
	Three dimensional implementation of the Wear Map Method
	Equation fitting
	Equation fit with 120 points
	Equation fit with 24 points
	Discussion

	Application to centrifugal pumps
	86 AH slurry pump volute
	150 WBH slurry pump impeller

	Application to other cases

	Conclusions
	Appendices
	Facewise Average and Standard Deviation calculation
	Procedure
	FacewiseStandardDeviation.C
	FacewiseStandardDeviation.H

	Implementation of additional rebound models
	Procedure
	StandardWallInteraction.C
	StandardWallInteraction.H
	PatchInteractionModel.C
	PatchInteractionModel.H
	LocalInteraction.C

	Matlab Script for Scar comparison
	Procedure
	Matlab Script for Scar comparison

	LPT for Erosion Modelling in OpenFOAM
	Introduction
	Report
	Theoretical Background
	Introduction
	Lagrangian Particle Tracking
	Erosion
	Implementation of LPT in OpenFOAM
	Introduction
	SolidParticle Class
	The intermediate library
	KinematicParcel Class
	KinematicCloudProperties dictionary
	Submodels
	Erosion modeling
	Implementation of Erosion Modelling in OpenFOAM
	Templating in OpenFOAM
	Function Templates tamplates ofdoxygen ofuserguide
	Class Templates tamplates ofdoxygen ofuserguide
	Coupling of the kinematicCloud class and an incompressible solver
	Uncoupled Lagrangian Particle Tracking
	Coupled Lagrangian Particle Tracking
	Preprocessing
	Geometry definition
	The 0/ directory
	The constant/ directory
	The system/ directory
	Running the case
	Postprocessing
	Lagrangian Particles in Paraview
	Results of Coupled and Uncoupled Simulations
	Post-processing erosion in Paraview 3.12.0
	Report Appendix 1
	kinematicCloudProperties Dictionary
	Report Appendix 2
	blockMeshDict

	Implementation of E-L solver with Dynamic meshing
	introduction
	Implementation of an Euler-lagrange solver with Dynamic meshing in OpenFOAM 2.2.x
	Implementation of an Euler-lagrange solver with Dynamic meshing in OpenFOAM 2.3.x
	DPMErosionFOAM.C
	erosion.H

	Implementation of Gnanavelu's methodology
	Introduction
	gnanaveluErosion.C
	erosion.H

	Average velocity field calculation
	Introduction
	avgVelocity.C

	Average truncated vorticity field calculation
	Introduction
	avgTruncVorticity.C

	Erosion calculation in a pump
	Introduction
	pumpErosion.C

	Mesh deformation with dynamic meshing
	Introduction
	erodedBoundaryAdaptive.C
	erosion.H

	Application to count the minimum number of impacts
	Introduction
	ecountParticles.C

	References

