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Abstract

Earth observation technologies constitute a powerful set of tools for understanding the

systems and ongoing processes that occur on Earth. The technology largely focuses

on satellite imaging, which relies on observation from remote positions, away from the

planet’s surface. As a consequence, a large portion of the satellite imagery in the optical

spectrum is hindered by the presence of clouds in the atmosphere, which obstruct a

clear view of the ground. While it is difficult to prevent this issue at the acquisition

stage, it may be possible to approach the problem from a data-based perspective by

processing images affected by clouds. More precisely, the cloud removal technology

aims to approximate the features of the ground obscured by the clouds present in a

given image. Given the established power and versatility of Deep Learning methods

for image synthesis problems, the recent solutions to the cloud removal problem are

primarily focused on deep neural networks. Still, state-of-the-art techniques are limited

in at least several aspects; they often cannot easily adapt to new signal representations,

or easily ingest new types of guidance signals. Trained on limited datasets, they are

generally run under the risk of overfitting. Furthermore, the evaluation of these models

is often performed on non-ideal validation data, where the cloud-free ground truth

is often divergent from the theoretical ground truth corresponding to a given cloudy

image.

This work explores several themes related to these limitations and proposes solutions

to overcome some of them. Several novel methods for performing cloud removal or

satellite image inpainting are proposed, most of them operating in an internal learning

setting, where no dataset-based training is performed. These methods either rely on the

existing information in the inference sample or priors captured by models trained on
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different tasks, such as vision-language models. The key advantage of these techniques

is their flexibility and ability to adjust to diverse data scenarios, with different numbers

of channels and guidance signals.

The related problem of evaluating cloud removal solutions and training on reliable

data is also explored, and consequently, a novel framework of SatelliteCloudGenerator

for simulating clouds and shadows in optical multi-spectral images is proposed. The key

advantage of the approach is a high degree of control over the features of the generated

clouds, based on a set of adjustable parameters. The quality of the simulated images is

further demonstrated by applying models trained exclusively on simulated data to real

images.

Finally, the question of the benefits of the proposed internal learning and language-

based techniques, compared to an externally trained model, is treated by testing these

approaches on a common dataset with both historical (Sentinel-2) and cross-sensor

(Sentinel-1) guidance. It is found that a performance gap remains between the internal

learning and language-based methods when compared to externally trained solutions,

despite a promising level of performance.
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Chapter 1

Introduction

Figure 1.1: The Blue Marble, one of the first non-stitched photographs of fully-
illuminated Earth, demonstrates the wide-spread effect of clouds on satellite imagery.

On their way to the Moon, Apollo 17 crew had a unique opportunity to capture one

of the most widely known satellite images of the Earth, The Blue Marble [1] (Figure 1.1).

It was not the first time a human has taken a photograph of the entire Earth from its side

(that would be the Earthrise taken from the lunar orbit during the Apollo 8 mission [2]),

so there should be more reasons for the high popularity and wide recognition of the

image [3]. The official name of the photograph might be a good hint. The comparison

to a marble has been made because, unlike in Earthrise, The Blue Marble shows Earth
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illuminated by sun with no visible shadow, allowing to observe the entire scope of one of

the planet’s sides. The Blue Marble gave an opportunity for humans to look at a true,

non-stitched photograph of the Earth and perceive it in detail, as a whole, integrated

object.

However, upon inspection, one can realise that the blue marble is not really blue,

despite the name. There is quite a lot of dark blue ocean present, but this colour is not

exclusive. There is also some green and orange, indicating land, and most importantly,

quite a lot of white. This white component, widely known as clouds and ever-present

in Earth’s atmosphere, is the key subject in this work. No matter how much data is

captured, how frequently, and how high the resolution is, the clouds are very likely to

obscure a large part of all remote optical measurements of Earth.

This thesis proposes that both statements of “Planet Earth is blue / And there’s

nothing I can do”, made at least as early as 1969 (”Space Oddity” by David Bowie),

are very much incorrect in their literal sense. It is argued that (i) Earth is not only

blue, often due to cloud cover, and (ii) there is something that can be done about that,

at least in the domain of image synthesis methods.

Coincidentally, the year of the Apollo 17 mission, 1972, links not only to the birth

of The Blue Marble, but also to the launch of the first Landsat satellite dedicated to the

sensing of environment [1], as part of the NASA program aimed at capturing satellite

imagery of Earth. Landsat-1 (originally ERTS-A) was the first satellite to carry a

multi-spectral scanner, which allowed to capture observations of the Earth’s surface,

such as the one pictured in Figure 1.2. The program continues to run at the time when

this text is being written (Landsat-9 is the latest operating satellite), making it one

of the most profound and long-term examples of human effort to monitor Earth from

space. As later described, the amount of imagery captured this way is rapidly growing.

Yet, the challenge of understanding the observations distorted by clouds remains.

This challenge can be addressed in many ways. The techniques and tools developed

within the fields of machine learning and computer vision are particularly appropriate

and powerful. However, their power is directly dependent on the data used for the

learning process. Hence, the development of effective methods for processing or re-

2
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Figure 1.2: An image of San Francisco Bay Area captured by Landsat 1 Satellite [4].

moving clouds from satellite imagery demands a good understanding of the value that

diverse and high-quality data sources can bring.

This work aims to explore a variety of sources and learning contexts. The learning

context can be i) internal (for example, the high prevalence of the dark blue colour

in the Blue Marble sample should give a good hint of what the likely colours are in

some areas covered by clouds), ii) external, where the solution is based on information

extracted from other samples. Furthermore, in the external context, it is often possible

to transfer knowledge from other tasks, which could be treated as a separate context of

its own. In terms of the data sources used for removing clouds, a plethora of potential

configurations exists with the available sources of imagery. In this work, it is recog-

nised that the use of historical optical images and recent radar acquisitions (which can

penetrate the clouds) can considerably improve the quality of the cloud removal tools.
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1.1 Problem Definition

In this introductory chapter, it is crucial to precisely define the problem addressed in

this work. Cloud removal refers to the task of synthesizing a satellite image without

the presence of clouds based on an input image that could contain clouds. In other

words, the aim is to produce an output image that precisely corresponds to the input

image under cloud-free conditions.

The motivation for a cloud removal tool links to a large number of remote sensing

applications, such as agricultural or disaster monitoring. Simply put, the presence of

clouds can be problematic for applications where an image from a specific time must be

acquired, or where a region must be observed over an extended period of time (known

as satellite image time series).

1.2 Motivation: Next Generation of Cloud Removal Tech-

nology

What follows is a description of some of the desired features in a technology tasked to

remove clouds from satellite imagery.

• No Requirement for Supplied Cloud Mask. The advancement of cloud

detection algorithms is still in progress, and a good cloud removal system will

not be dependent on the selection of a specific cloud mask source. Instead, the

knowledge should ideally be shared implicitly between the cloud detection and

cloud removal task. Furthermore, this allows the system to be readily applied by

the end user.

• Good Preservation of Cloud-Free Pixels. In many images, there will be

some areas that contain minimal or no cloud obstructions. The property of pre-

serving this information and reconstructing it in the generated sample is not

guaranteed by any algorithm and it is partially dependent on the implicit or ex-

plicit cloud detection mechanism. An ideal system will be able to identify these
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regions precisely and make sure that they are faithfully reproduced in the gener-

ated sample.

• Generalisation Across:

– Time (Conditions). The cloud removal model should be able to remove

the clouds in a variety of new conditions.

– Space. The model should also be capable of performing well over varying

regions of the Earth.

In both cases, it may likely be infeasible to retrain the model over all acquired

data and the volume of the acquired data is still merely a portion of the entire

spatial and temporal scope of potential Earth observation. Hence, the model

must be able to generalise beyond the limited volume of data available during its

production.

• Adaptation to Sensing Modalities. There is a large number of different

sensing modalities affected by clouds to various extents, coming from various

sources and instruments. Ideally, a cloud removal model will not need to be

retrained for every new type of sensor. This reduction in cost does require solving

two key challenges: i) different sensing modalities may require a model with a

different number of image channels, and ii) if the image is severely dominated by

cloud obstruction, the limited information about the ground properties will likely

need to be supported by other sources (such as historical data). Just like in the

case of different channels, it would also be beneficial to offer flexibility of selecting

the supporting information at inference time, based on what is available to the

user.

The features listed above require solutions to several technical challenges. Given

the ease of learning directly from data owing the advances in the field of deep learning,

there is a common tendency to rely on deep neural networks for this type of computer

vision problems. This work is no exception, where several fundamentally different types

of learning are explored, all of which can be classified as deep learning.
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1.3 Summary of Contributions

This thesis explores several distinct paths for applying deep learning for removing clouds

from satellite images. It proposes solutions for internal learning (within the sample)

and learning from language (beyond the sample). It also introduces a new model for

simulating presence of clouds in satellite images and demonstrates the utility of using

it for training and evaluation of models trained on pair-based datasets. Finally, several

techniques from different modes of learning are compared on a common evaluation

dataset.

• Three types of internal learning approaches to convolutional parameterisation

for satellite image generative tasks are proposed and tested on satellite image

inpainting and super-resolution (Chapter 3)

• It is shown that a pre-trained CLIP model can be used for detecting cloud presence

in a zero-shot manner and can transfer well between different data sources of

Sentinel-2 and Landsat-8 (Chapter 4)

• A pipeline for StableDiffusion inpainting with ControlNet guide is introduced

and used for conditional inpainting of satellite images (based on historical data)

(Chapter 4)

• A method for filling additional channels of multi-spectral images based on an

RGB inpainting is proposed and tested (Chapter 4)

• A new model for simulating cloud presence in satellite images is introduced (Chap-

ter 5)

• It is demonstrated that deep learning models trained solely on simulated data can

achieve good performance on real data for the task of cloud and shadow detection

and cloud removal (Chapter 5)

• A new convolutional neural network architecture capable of ingesting both SAR

and optical support data has been proposed and trained (Chapter 6)
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• A common evaluation dataset has been designed to test the problem setting where

a radar image as well as a historical optical image are available (Chapter 6)

• A comparison between different types of learning has been performed on the

common evaluation dataset (Chapter 6)
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1.5 Thesis Outline

This work is organised with the following structure:

• Chapter 2 (Background) contains an overview of the research conducted to

date on the relevant topics of remote sensing, computer vision, and image gener-

ation.

• Chapter 3 (Internal Learning) introduces several techniques capable of satel-

lite image inpainting task based on the input sample. The experiments test the

performance achieved by each technique based on several types of supporting data

(such as historical and SAR). These approaches require no large-scale training and

can adapt to any number of spectral channels. It is also demonstrated how a sim-

ilar approach can be used for other tasks, such as satellite image super-resolution

or guided image inpainting.

• Chapter 4 (Learning from Language) explores the suitability of the rep-

resentations learned by large language-based vision models for satellite image

processing. Several methods of employing the CLIP model for classifying cloud-

affected images are proposed and evaluated. Further, a technique for performing

image inpainting with the open-source StableDiffusion text-to-image model is

shown. The StableDiffusion model operates on RGB data, so a subsequent step

of transferring the information from the RGB inpainting output to more channels

is also proposed and tested.

• Chapter 5 (Simulation) describes the features and internal design of a satellite

cloud generator tool. The tool has been designed to provide high-quality synthetic

data for training and evaluating deep learning models for cloud removal and

cloud detection. To demonstrate the quality of the synthesised data, networks are

trained from scratch on real data and simulated data to enable a comparison. It is

shown that models trained solely on synthetic data can achieve good performance

on real data.
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• Chapter 6 (Comparison) describes the creation of a common evaluation dataset

using the cloud simulation tool and compares several methods using the same test

images. Specifically, the internal learning method of MCPN is compared against

the StableDiffusion approach, and finally, an externally trained network is pro-

posed for the purpose of this work. The external approach is an extension of the

DSen2-CR approach, developed to allow conditioning on both radar and historical

images.

• Chapter 7 (Conclusion) contains a summary of findings delivered in this work

and a description of the wider context and impact of these findings.
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Background

Given the several overlapping themes present in this work, the background chapter

is divided into sections with specific focus topics. It begins with the general topic of

remote sensing of Earth, followed by a section on the phenomenon of clouds in the

atmosphere, and after that, more technical topics of cloud detection, removal, and

image synthesis.

2.1 Remote Sensing of the Earth

Remote Sensing is a broad term coined in the 1960s [5] for a technique of extract-

ing information about environment without immediate physical contact between the

measuring device and the observed scene [1]. In the context of environmental sensing

(which is what the term remote sensing often implicitly refers to), the information-

carrying medium is most often some type of electromagnetic radiation. Depending on

whether the sensing instrument transmits electromagnetic waves to enable imaging, it

can be classified as either active or passive measurement.

The history of remote sensing of the Earth was determined by two key inventions,

one related to seeing and one related to flying. Both correspond to the two key compo-

nents necessary for carrying out a remote sensing observation, an instrument capable

of acquiring images must be placed in a position with a suitable view, which often

happens to be in the air. Consequently, some of the first known attempts at remote
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sensing occurred shortly after the first successful inventions enabling humans to fly ob-

jects and take photographs. Early examples of that include several successful attempts

of taking photographs from balloons made in the second half of the 19th century [1],

or the invention of mounting cameras to carrier pigeons [5]. These techniques could

already provide a new kind of perspective for understanding the environment, however,

it was usually limited to acquisitions from sparse paths taken by the sensing instru-

ment. In the case of pigeon photography, this path was not completely predictable and

the camera angles could be random.

As it turns out, what really enabled remote sensing of Earth with a wide cover-

age with high-quality captures was the use of Earth-orbiting satellites, a technology

conceived initially by Herman Potočnik in The Problem of Space Travel - The Rocket

Motor as early as 1929 [6] and realised for the first time with the successful launch

of Soviet Sputnik I satellite in 1957 [5]. This was soon followed by the first full-scale

weather satellite launched in 1960 by NASA, equipped with a wide-angle TV camera [5].

The next important invention was to replace the camera with line radiometers, capable

of scanning the Earth’s surface line by line to form a larger image. In the following

decades, a large number of Earth observation satellites have been launched by various

organisations. A notable example of that is the Landsat program, started by NASA in

1972 and running continuously until today, with the last launch of Landsat 9 having

occurred on 27 September 2021 [7].

At the time of writing this work in 2023, the Committee on Earth Observation

Satellites (CEOS) reports 183 active missions, with another 157 at various stages of

preparation [8]. Some of the sources often featured in the scientific literature [7] are

shown in Table 2.1. The table summarises the modality of each instrument as well

as the data availability. Despite the high number of sources, access to relevant Earth

observation data is not straightforward. Satellite image products are often commer-

cialised and sold to provide financial support to the programmes. Even if free, some

sources can only be accessed after successful approval of a project proposal. The two

most prominent exceptions to this are the Sentinel and Landsat programmes, run by

the European Space Agency (ESA) and NASA, which offer open and free access to
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Table 2.1: Selected Source for Remote Earth Observation.

Source Modality Free Open Access

ISRO - Cartosat RGB+NIR ✗

ISRO - INSAT-3DR Mulitspectral ✗

ASI - COSMO-SkyMed SAR ✗

CSA - Radarsat SAR ✓

DLR - TerraSAR SAR ✗

CMA - Fengyun Mulitspectral ✓

CNSA - Gaofen-2 RGB+NIR ✗

CNSA - Gaofen-3 SAR ✗

NASA - Landsat-8/9 Mulitspectral ✓

NASA - MODIS Mulitspectral ✓

NASA - ASTER Mulitspectral ✓

ESA - Sentinel-1 SAR ✓

ESA - Sentinel-2 Mulitspectral ✓

ESA - Sentinel-3 Mulitspectral ✓

EUMETSAT - MetOp Mulitspectral ✓

Commercial

Airbus - SPOT6/7 red green blue (RGB)+NIR ✗

Airbus - Pleiades RGB+NIR ✗

Airbus - Pleiades Neo RGB*+NIR ✗

Maxar - WorldView 2 Mulitspectral ✗

Maxar - WorldView 3 Mulitspectral ✗

Planet - SkySat RGB+NIR ✗

Planet - Planetscope RGB*+NIR ✗

ICEYE SAR ✗

several sources of satellite Earth observation data.

The majority of the commonly used Earth observation devices rely on the propa-

gation of electromagnetic waves through the space between the sensor and the Earth’s

surface. To this day, the most common method of measuring the environment is via the

optical medium, by taking photographs. This can involve a conventional type of camera

sensitive to the three colours perceived by humans, or imaging in different bands of the

electromagnetic spectrum. multi-spectral imaging (MSI) is a sensing technique involv-

ing the acquisition of multiple optical bands each with a relatively wide bandwidth.

The number of bands in a MSI sensor will usually be in the order of 10 or 20 channels.

This is different from hyperspectral imaging (HSI), where hundreds of channels with

much narrower bandwidths are acquired to better approximate the interaction of the
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scene with a diverse set of carrier frequencies.

The main motivation for acquiring images beyond the visible bands is to observe

different types of phenomena in the scene, not apparent (or maybe difficult to detect)

in the RGB bands, for example, aerosols or temperature changes.

Another popular type of sensing is synthetic-aperture radar (SAR), which is a fun-

damentally different technology from optical sensing. Instead of detecting the elec-

tromagnetic energy emitted or reflected from the Earth, SAR relies on transmitting

its own electromagnetic carrier signal and processing the reflections returned from the

ground. The control over the transmitted carrier signal allows for several sensing modes

that are generally not possible with passive optical sensing, such as polarimetric or in-

terferometric modes. The polarimetric SAR relies on measuring the polarisation of the

returned carrier wave, which is affected by the scattering properties of the reflecting

objects. The interferometric SAR relies on the comparison of the phase of the reflected

component from multiple acquisitions, which enables the detection of subtle distance

shifts in the scene. This wide range of functionality, combined with the fact that the

radar signals can penetrate clouds and do not depend on the sunlight make SAR an

attractive source of information besides optical data. However, it is important to ac-

knowledge that SAR images are generally harder to interpret due to the speckle noise

and side-looking sensing direction.

2.2 Phenomenon of Clouds

Just like the water on Earth is responsible for the blue components in the Blue Marble

(Figure 1.1 in Chapter 1), it is also responsible for the white clouds obscuring some

portions of the ground surface. This is because atmospheric clouds are inherently a

water-based phenomenon and occur when liquid or frozen particles of water vapour are

suspended in the air.

Air containing water vapour can form a cloud (in other words, achieve saturation),

by either increasing moisture level or by cooling. Cooling can be achieved by either

transferring heat outside or via adiabatic expansion (with no heat transfer). Further-

more, for clouds to form, the air must contain aerosols, which provide a surface for
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water condensation. These are known as cloud condensation nuclei [9].

Given this mechanism of cloud formation, it can be assumed that clouds are an

integral and unavoidable phenomenon on a planet with a substantial content of surface

water and the type of atmosphere and temperature range that Earth happens to have.

Cloud physics is a wide and currently explored topic on its own [10], where the be-

haviour of clouds in the atmosphere can be used as a source for understanding weather

and climate. In the scope of this work, clouds are primarily treated as obstacles in

the context of observing ground surface from space. For that reason, their physical

appearance may be of more interest than the processes contributing to their presence.

Recognised cloud types can be grouped into high-altitude clouds (cirrus type), medium-

altitude (alto type), and low-altitude. Another important feature is their approximate

orientation, with cumuliform clouds being vertically developed (along the path of ele-

vated air) and stratiform clouds horizontally developed. The temperature of the cloud

is also an important factor (the temperature is generally inversely proportional to al-

titude), because warmer clouds, containing mostly water droplets, tend to have more

defined edges than cold clouds containing ice crystals. The cold cloud edges are more

stretched due to the longer transition time between ice and vapour (as opposed to liquid

and vapour) [9].

In the cloud detection and cloud removal literature, the clouds are often classified

into thin clouds and thick clouds [11]. These do not necessarily have a rigorous definition

and are generally discriminated based on whether the cloud appears semi-transparent,

resulting in some part of the ground image being perceivable.

2.3 Satellite Cloud Detection

In many cases, the simple approach to avoid the issue of the cloud presence in satellite

image analysis is to filter them out and exclude from analysis, and that, in turn, requires

the cloud-affected portions of the image to be identified. The practice of classifying

whether a pixel in a satellite image is affected by clouds is commonly known as the cloud

detection task. Note that this definition is not entirely consistent with what detection
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means in the field of computer vision and instead resembles image segmentation.

The space of existing cloud detection solutions can be divided into knowledge-driven

and data-driven categories [11], based on whether the detection function is designed via

hand-engineered features by humans (knowledge-driven) or learned from some volume

of data. Similarly to other areas of machine learning, feature engineering can lead to

a good level of generalisation, but often at the expense of certain pitfalls, such as the

frequent omission of thin clouds [11].

The knowledge-driven approaches were the first type of solution to be explored,

as early as 1988 [12] on AVHRR data, followed by other works on MODIS data [13],

POLDER data [14], or SPOT data [15]. For the types of satellites with a constant

viewing angle, multi-temporal detection methods have been explored too, such as

MAJA [16]. Another important challenge addressed was to design algorithms capa-

ble of detecting clouds without access to a thermal acquisition band [16, 17] (which

has often been an important part of the input data capable of differentiating between

colder clouds and warmer ground surface).

For the two most popular sensor sources, cloud masks are often now provided as part

of the product, including Fmask [18] for Landsat, and Sen2Cor [19, 20] for Sentinel-2.

Both of these methods are rule-based. Another popular choice for Sentinel-2 data is

s2cloudless [21], which is based on gradient boosting.

The more recent approaches to cloud detection largely focus on the deep learning

approaches, most commonly developing solutions based on the convolutional neural

network architecture, such as the early use of LeNet [22, 23],convolutional neural net-

works (CNNs) with superpixel preprocessing [24], or CNNs applied to small patch in-

put [25]. Further advancements include the application of deep pyramind network s [26],

PCANet [27], multi-scale convolutional feature fusion [28], UNet architecture [29, 30],

transfer learning [31], or MobileNetV2 [11]. However, in many cases, these trained

networks will only work for one specific sensor that they were designed for, which

motivated some research on cross-sensor domain adaptation [32].

The high number of developed solutions to cloud detection and the fast advancement

of the field also sparked some interest in benchmarking techniques compatible with the
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same sensor, such as the validation of Sentinel-2 cloud masks [33, 34], Landsat [35], or

both [36,37].

2.4 Satellite Cloud Removal

The task of cloud removal involves translating an image affected by the presence of

clouds into a corresponding equivalent with no clouds present. The first mentions of

the possibility of cloud removal from satellite images have been published as early as

1977 with the short paper Mitchell [38] describing a method based on linear filtering

and estimation of noise statistics. The approach relied on the assumptions of the

clouds being semi-transparent, the cloud-free region being darker than the clouds, and

the cloud shape being of lower (spatial) frequency. The manuscript contains several

visual examples computed on Landsat MSI data, but other than that, the evaluation

of the method was rather limited. Other approaches followed in the next decades,

often focused on the compositing approaches [39–42]. A slightly different approach was

proposed in [43], where regression trees were used to predict cloud-free pixel values

in the regions affected by clouds and cloud shadows. Following that, more techniques

relying on predictive models were introduced, such as linear predictor ensembles and

Support Vector Machines [44]. Another approach was based on comparing the image

to the statistics extracted from an artificial cloud prototype [45]. Further developments

include uses of geometric flow and bandlet transform to facilitate inpainting of masked

area [46]. The inpainting approach (where the mask is assumed to be available) [47]

was also explored for other types of missing regions, such as sensor faults [18, 48, 49].

Still, many approaches in the following years would still assume that the cloud-affected

regions can be replaced with the content from images taken at different times [50, 51].

Dictionary learning [52] and homomorphic filtering were explored [53] around the same

time. An early proposal to use a SAR image as a source of guidance for the cloud

removal task was introduced in [54]. In general, the methods operating on a single

image would assume that the clouds were not opaque and that a substantial reflection

from the ground is passing through the cloud [38, 53, 55, 56]. Another technique for
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inpainting proposed in [57] was based on matrix completion.

Starting from 2016, a rise in interest in deep learning occurred, with a heavy focus on

the generative modelling method, and more specifically generative adversarial networks

(GANs). This began with [58] proposing McGAN tasked to transform RGB+NIR

images into cloud-free RGB and a cloud mask. The model was trained on synthetic

cloud images computed by alpha blending a Perlin noise sample with a cloud-free

image. This approach required matched pairs of cloudy and cloud-free images, which

motivated the use of synthetic data. To address this limitation, the CycleGAN approach

was adapted for the cloud removal task in [59]. The simulated cloud approach was still

explored in some later works. This included the techniques incorporating SAR data

into the input of the generator network [60, 61] (also related was the concurrent work

on the translation of SAR images to optical using conditional GANs [7, 62]) or the

cloudy image arithmetic, where a real cloud would be extracted from a cloudy image

and mixed into a cloud-free image to generate a realistic cloudy image with matched

cloud-free ground truth [63].

In some of the other works, datasets for training GANs were created by pairing

cloud-free images with temporally proximate cloudy images of the same region [64–71].

Another common theme was to start incorporating multi-temporal data into the GAN

input [64,71], or multi-source (most often SAR) [71,72].

It should also be noted that not all of the approaches rely on a purely GAN-based

framework. Another popular solution is to use CNNs without adversarial losses [35,

73–78].

Finally, less conventional cloud removal techniques based on deep learning have been

proposed, including deep spatio-temporal prior combined with low-rank tensor singular

value decomposition [79], internal learning on image sequences [80], or a transformer-

based architecture of Former-CR [81]. It is generally uncommon in the last few years to

see publications on cloud removal that do not make use of deep learning. One exception

of that is [82], where cloud removal of cloud trajectory is proposed that does not involve

neural networks.

The contributions made in this work are motivated by exploring different learning
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strategies for cloud removal with deep neural networks, such as learning from within the

sample or learning from language-based models. Not only does it propose several new

approaches to the task, but it also compares them to the more conventional approach

involving learning from datasets. Finally, since both training and evaluation of these

models highly depend on the quality of data, a novel framework for simulating realistic

clouds in satellite images is proposed with experiments demonstrating the utility of this

data source for both training and validating cloud removal solutions.

2.5 Image Synthesis Techniques

The task of cloud removal can be interpreted as an example of a wider class of problems

within the theme of image synthesis. This theme is more general and correspondingly,

the size of the literature published on the topics is far larger. Since a large portion of

modern cloud removal solutions are inspired by image synthesis techniques proposed

within the computer vision literature, the following section provides a summary of the

progress to date achieved within this area.

Image synthesis is a complex process that can take many forms, such as uncondi-

tional synthesis, image translation, or image completion. As a learning task, all these

different forms can be interpreted as a task of approximating a probability distribution

q(x) of some data source and then sampling new images x ∼ q(x) from that distribu-

tion. In the case of conditional variants, such as image translation or image completion,

the distribution q(x) is conditioned on a separate input variable c, yielding q(x|c). So

far, the key advances in image synthesis have been achieved mostly by optimizing pow-

erful parametric models over a relatively large volume of images acquired from q(x).

Hence, the main bulk of technical advances has occurred after the rise of deep learn-

ing in 2012 [83], which generally combines deep neural networks, parallel computing

platforms based on GPUs, and large datasets.
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Before AlexNet

Some research on image synthesis was conducted before the era of large-scale deep

learning began, but it was still rather far from generating high-resolution images.

The early approaches would often focus on the simpler problem of texture synthe-

sis, where good quality results could be achieved by applying specialised algorithms.

Examples of early texture include texture synthesis by non-parametric sampling [84] or

image quilting for texture synthesis and transfer [85]. In non-parametric sampling, a

texture is modelled using a Markov Random Field, where the probability distribution

of a given pixel colour is derived from the discrete distribution of the nearest neighbours

of the patch surrounding the pixel.

Another related work of image quilting [85] introduced a method for stitching ex-

isting patches from an observed texture and harmonizing the overlapping regions by

finding minimum error boundary cuts in an algorithmic fashion. This technique can be

used to generate new images based on a single source image. Without any explicit type

of learning, the method is able to synthesise non-trivial samples of the observed texture.

A related use of the technique is texture transfer, where the patches extracted from

the source texture are arranged in space based on a correspondence map (for example

luminance) derived from a source image to inject information about image structure.

The domain of texture is usually interpreted as the domain of images with highly

repeatable patterns, where the local patches have little dependence on their position

in the scope of the full image. This means that the methods of texture synthesis are

generally applicable in a narrow portion of the wider image domain and will be inap-

propriate for many complex image generative problems. Yet, texture-based methods

can generate images with relatively good visual quality, as demonstrated in [85].

In approximately the same period, more work focused on other generative tasks has

been published too. An example of that is the image inpainting algorithm published

in [86], which generates the inpainted region based on the information in the neighbour-

ing regions by connecting isophote lines (lines of equal brightness). This rather simple

constraint is able to generate visually-pleasing inpaintings as demonstrated in [86].

Other notable approaches have managed to complete larger regions of the image, such
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as fragment-based image completion [87] or image completion with structure propaga-

tion [88]. In the case of fragment-based completion, the method is capable of composing

the inpainting based on existing fragments using adaptive neighbourhood.

Another relevant line of work from the period prior to the deep learning era focuses

on the techniques of mixing large portions of existing images, a fundamentally different

approach to image synthesis. An early example of that was introduced as content-based

image synthesis [89], where the user could specify a mask and the desired inpainting

content. The technique would then search a database with a carefully designed vocab-

ulary and combine the images using an extension of the method of image quilting [85].

Semantic photo synthesis [90] made further progress by allowing the user to draw mul-

tiple regions and link them to specific desired labels (and also relying on a database

of 16,000 images rather than 50). The power of larger sets of images was explored

further in the work on scene completion using a million photographs [91]. It is one of

the first works, where the information used for inpainting is extracted from the domain

beyond the inpainted image, even though no learning is involved. Instead, it elevates

the existing technique of gist scene descriptors [92] and finds matches in the database

using a simple nearest neighbour approach. This is followed by local context matching

based on colour error and then blending. As a result, not only are the scenes inpainted

with high-quality real content but also multiple solutions can be found based on the

same input.

At least one more noteworthy contribution was the work on deep belief nets [93],

where an early application of generating new samples from the MNIST dataset was

presented. It was one of the earliest approaches to the problem of image generation

based on a neural network. Yet, the MNIST dataset of handwritten digits represents

a rather narrow domain, since it contains 10-digit classes, with each sample being

a centred greyscale image of 28 by 28 pixels. For comparison, the state-of-the-art

generators of today, such as StableDiffusion [94], will generate high-quality RGB images

of 512 by 512 pixels with complex structural content from a wide domain of natural

images, often specified in a zero-shot manner using text prompts.
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After AlexNet

The publication of the AlexNet paper [83] proved to be a turning point in computer

vision research. Deep neural networks have been explored before, but this was the

first time large-scale data (ImageNet classification [95]), relatively deep neural network

models, and high computing capacity were combined to deliver a solution far superior

to the state of the art at that time. The volume and diversity of training data combined

with large models are now the key feature of the state-of-the-art solutions for a wide

range of tasks, including image classification, image segmentation, image synthesis, or

even outside of the visual domain, such as natural language processing. Furthermore,

the frameworks, such as CUDA, capable of computing output and the internal gradients

of deep neural network models in a highly parallelised fashion considerably decrease

the training time.

The deep image classifiers were the first big success of deep learning applied for

processing visual data. The early works largely relied on convolutional neural network

architectures, but there were certain tasks that the classifier architecture was not suit-

able for. The classifiers would be designed to compress the information present in the

image to a vector of much lower dimensionality. In the case of AlexNet, an input image

of 224×224×3 (height, width, and 3 colour channels) would be converted to a vector

with 1,000 of dimensions corresponding to the classes of the ImageNet challenge. In

the works on deep representations in [96–98] the architectures did not take the spatial

context into account and modelled simple grayscale images (digits and faces) of low

resolution as a flattened vector (for example, MNIST digits with a 28-pixel border was

modelled as a 784-feature vector). Yet, in the problem of image generation, the output

of the deep neural network is an image, which will generally be a relatively large tensor

containing a specific arrangement of pixels in space so the flattened representation can

be problematic for high-resolution data with colour channels.

This, among other reasons, motivated the introduction of the convolutional archi-

tecture used for GANs [99], one of the first works where this type of generation of

colour images was demonstrated on the large-scale dataset of CIFAR-10. GANs were

designed as a set of two models, one tasked to generate samples (generator) and the
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Figure 2.1: Diagram of the Generative Adversarial Network architecture

other tasked to differentiate between real and synthetic samples (discriminator), as

shown in Figure 2.1.

The generator and discriminator were trained as two agents competing against

each other. The discriminator consists of a convolutional encoder, similar to a classifier

architecture, and computing a score approximating the likelihood of the input sample,

the value of which should be high for real samples x and low for samples x′ outside

of the domain. This is done by minimizing the following discriminator loss LD, where

D() indicates the output of the discriminator:

LD = logD(x) + log(1−D(x′) (2.1)

Since the samples G(z) generated by the generator G() with latent noise z are not

real, the discriminator should assign low confidence to them, so the loss is in fact:

LD = logD(x) + log(1−D(G(z)) z ∼ N (0, 1) (2.2)

On the other hand, the objective of the generator is to generate samples resembling

real samples, which should confuse the discriminator by minimizing the following loss

LG:
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LG = log(1−D(G(z)) z ∼ N (0, 1) (2.3)

With these losses, both networks are trained jointly in a minimax setting, where the

usual approach is to repeatedly switch between the parameter updates of the generator

and the discriminator based on their individual losses. In the seminal paper on GANs

by Goodfellow [99], successful generations of colour low-resolution images based on

CIFAR-10 dataset [100] were achieved.

Another relatively popular generative approach introduced around the same period

is the variational autoencoder (VAE) [98]. In this case, the convolutional encoder is

used to encode a real image x from the observed distribution into a latent code E(x)

(generally, of lower dimensionality), which can then be fed through the decoder D()

module to reconstruct the exact same image, as shown in Figure 2.2. Minimizing the

autoencoder reconstruction loss LAE alone can allow to learn a compressed latent space

that describes the observed data distribution.

LAE = d(x,E(D(x))) (2.4)

Note that the distance metric d() could be selected based on the designer’s prefer-

ence as long as it can represent the error between the two samples well.

However, the reconstruction alone is not sufficient for approximating the data dis-

tribution and sampling from it. Presumably, new samples could be generated by the

decoder, but at this point, there is no mechanism employed for finding latent codes

that correspond to samples within the distribution. To allow this, the latent space is

modelled as a Gaussian distribution with mean and variance parameters generated by

the encoder. This is shown in Figure 2.2. In order to allow sampling to inference,

Kullback-Leibler divergence loss LKL is minimised, which measures a distance between

the latent distribution and a zero-mean unit-variance Gaussian during training. This

means that upon inference, a random code from N (0, 1) can be generated and decoded

into a new sample.

LAE = d(x,E(D(x))) (2.5)
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Figure 2.2: Diagram of the Variational Autoencoder Architecture

Given a latent code z, a Gaussian normal prior p(z) and the distribution q(z|x)

parameterised by the encoder output E(x), the LKL loss is computed as:

LKL = log q(z|x)− log p(z) (2.6)

The total loss LVAE optimised during the training of a VAE is equal to

LVAE = LAE + λLKL, (2.7)

with a λ hyperparameter controlling the ratio between the reconstruction loss and

the divergence loss. Unlike GAN, VAE is trained with a single non-competing loss,

which is generally easier to train than a two-agent setting.

Coincidentally, not long after the introduction of GANs and VAEs, the seminal

paper on the denoising diffusion models has been published [101]. However, this type

of generative approach only became widely popular in 2020, when many more papers

on the topic were published with greatly improved results [102–105].

However, the main principle of denoising diffusion has not changed, and it is based

on using a deep neural network to reverse a forward degradation process, most com-

monly formulated as a Gaussian process. The forward degradation process q is defined

based on a time step t, which indicates the number of degradation steps taken away

from the original distribution at t = 0:

q(xt|xt−1) = N (
√

1− βtxt−1, βtI) (2.8)
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Figure 2.3: Diagram of training a denoising diffusion process.

This means that an image sample at a step t comes from a Gaussian distribution

with a mean based on the image xt−1 previous step t − 1 in the forward process and

a specific variance βt (which is defined through the variance schedule, part of the

hyperparameter configuration). After the total number of steps T (also dependent on

the βt schedule), the forward process distribution approaches a pure normal Gaussian

distribution. The reverse process of transforming the normal Gaussian to the data

distribution constitutes a generative model.

Also, it can be shown [103] that for an initial sample x0 (no degradation applied)

a state from any time step t of the Gaussian forward process can be derived with

αt = 1− βt and ᾱt =
∏t

i=0 ai as:

q(xt|xt−1) = N (
√
ᾱtx0, 1− ᾱtI) (2.9)

This shortcut allows to compute degraded samples at any time step t in a single

step.

As shown in Figure 2.3 the model can be trained to predict the noise present in

a given sample xt computed based on a clean sample x0 and a time step t (generally

sampled from a uniform distribution).

The resulting loss for a denoising diffusion model is as simple as the distance d()

(usually ℓ1 or ℓ2 norm of difference) between the predicted noise sample ˆepsilon and
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the true noise sample ϵ:

LDiffusion = d(ϵ̂, ϵ) (2.10)

This makes it easier to train than a GAN (since there are no competing losses), but

generally much more expensive to train and sample from.

A model capable of accurate prediction of ϵ can be used to step through the complete

chain of the reverse process, starting with a sample drawn from a normal Gaussian at

stage t = T and finishing with an approximation of a real sample at t = 0. This process

is known as sampling and many types of samplers have been proposed to date [102–

105]. The most conventional sampler is known as denoising diffusion probabilistic

model (DDPM) [103] and it simply attempts to reverse every step of the operation by

approximating a Gaussian distribution of the previous step xt−1:

xt−1 ∼ N (µ̃θ, σ
2
t I) (2.11)

In DDPM, the variance σt of the reverse distribution is assumed to be independent

of the sample xt and set to σ2
t = β̃t = 1−ᾱt−1

1−ᾱt
βt [103], while the mean is approximated

using the ϵ̂ prediction (which is directly computed by the neural network).

µ̃θ =
1
√
αt

(xt −
βt√

1− ᾱt
ϵ̂) (2.12)

This means that a diffusion model trained with T = 1, 000 diffusion steps (a common

number) will require 1,000 sequential forward passes through the neural network if

DDPM sampling is used, making it about 1,000 times slower than a GAN or VAE model

of comparable size. Later proposed samplers, such as denoising diffusion implicit model

(DDIM) [102] aim to reduce the number of network evaluations to reduce this cost and

improve sample quality, however, the inference cost of diffusion-based generative models

can be expected to always be higher than GANs and VAEs.

In the few years that followed the introduction of these three generative frameworks,

GANs were considered to deliver optimal quality of synthesis (while diffusion models

were largely unexplored for several years after their introduction) and as a result, it

was more commonly used for subsequent developments in the area of image genera-
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tion [106, 107]. Radford et al. introduced a deep convolutional GAN (DCGAN) [108],

where latent vector arithmetic was demonstrated for the first time. The arithmetic

involved simple manipulations of latent codes of the images in order to achieve specific

semantic changes in the generated output. For example, by averaging the latent vector

corresponding to three images with a shared property (such as glasses), these averaged

codes could be added and subtracted to achieve meaningful output corresponding to

specific combinations of the relevant concepts. In the example, the mean latent vector

of a ‘man without glasses‘ was subtracted from the vector of ‘man with glasses‘ (to ap-

proximate the ‘with glasses‘ property) and then added to the vector of ‘woman without

glasses‘, resulting in images of women wearing glasses.

Not long after the introduction of GANs as a method for generative modelling,

conditional GANs (cGANs) were explored by adding some type of condition to the

generator input. This eventually lead to the application of GANs for image-to-image

translation, for example, the pix2pix network [109], where the Generator would take

an image from one domain as the input and output another domain as the output, as

shown in Figure 2.4. It was also found that the inclusion of a random latent vector was

not a necessary component and in pix2pix, this component was omitted. The approach

relied on paired image examples, such as images with their segmentation maps. It was

also shown that with the presence of paired data, a pixel-wise loss, such as difference

magnitude, was beneficial and was hence added to the standard loss of the generator.

In a related line of work to pix2pix, CycleGAN was proposed to lift the requirement

for paired image data, which was quite restrictive [110]. CycleGAN made it possible to

train image-to-image translation without matched image pairs by using two generator

networks, one for each direction of change between the two domains, as shown in

Figure 2.5. The diagram in Figure 2.5 illustrates a cycle from domain A to domain B

and back to A, all of which could be learned without a matched sample from domain

B. This relies on another loss (apart from the adversarial loss propagated through

the domain-specific discriminator), which is computed between the input image and

the image derived by passing through both generators in a cycle. A corresponding

approach would be followed for an input image from domain B, with the Generator A
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Figure 2.4: Diagram of the pix2pix network [109] capable of image-to-image translation.

being used first, and the second discriminator for domain A used for the score.

With CycleGAN, it became possible to translate between domains where matched

images would be difficult or impossible, such as images of horses to images of zebras,

or paintings to real photographs.

Another considerable improvement in the quality of generated photographs was

enabled by the introduction of StyleGAN architecture [111]. In this case, the main

difference was the design of the generator network, where the latent code was used

to modulate the internal features of the convolutional network via adaptive instance

normalisation. It was also found that the input latent vector was not necessary anymore

and it was replaced by a learned constant vector. The architecture increased the fidelity

of results and latent factors with higher disentanglement (control over semantically

meaningful features).

In the follow-up work on StyleGAN2, the adaptive instance normalisation mech-

anism was simplified and redesigned as the modulation of the convolutional weights

and furthermore, more regularisation mechanisms were proposed [112]. This resulted

in further improvements in the synthesised image quality. Finally, StyleGAN3 [113]

developed this architecture further by enforcing translation and rotation equivariance,
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Figure 2.5: Example of the CycleGAN training for a single input sample from domain
A. The same two generators (in reverse order) would be used for an input sample from
domain B, along with another discriminator (for domain A, instead of B).

which nullified the texture-sticking artefacts.

Another big advancement in the area of image synthesis occurred around 2020 when

the denoising diffusion was further explored in literature, in works such as DDPM [103],

DDIM [102], or [105]. One considerable obstacle related to the wider use of these models

was the cost of training and inference, which were significantly higher than for GAN

equivalents. This topic is now heavily researched, and one of the major breakthroughs

was the introduction of latent diffusion models [94], which involved the same generative

process but applied to the compressed latent representation of a pre-trained image

autoencoder (such as one based on VQGAN [114]).

The use of latent diffusion models has proven to be particularly useful in the do-

main of text-to-image generation. For the first few years of the rise of deep generative

modelling (following the introduction of GANs and VAEs), the majority of models

were trained to generate one specific type of data, such as faces (StyleGAN [111–113]),

horses (CycleGAN [110]), or building facades (pix2pix [109]). These were indeed much

richer domains than the previously explored datasets of MNIST of CIFAR-10, however,

they were still very focused on a narrow theme. However, in order for a more universal

31



Chapter 2. Background

image generator to be useful, some type of conditioning mechanism for controlling the

synthesis would be beneficial. Consequently, the written text, a natural medium for

humans to express their thoughts, was explored as a conditioning mechanism in some

early works such as [115]. However, in recent years, the quality of such solutions has

significantly increased, with a prominent example of DALLE by OpenAI [116] achiev-

ing considerably higher quality compared to earlier works. DALLE was designed as an

auto-regressive model, inspired by the robustness of the transformer architecture [117],

and essentially treated the text-to-image generation equivalently to sequence gener-

ation (for which the transformer architecture is suitable), by compressing an image

to 1024 compressed tokens, treated in the same way as text tokens. This approach

was enough to generate samples based on text description with an unprecedented level

of quality and flexibility. The autoregressive approach based on sequence generation

has ignited wider interest in the topic of text-to-image generation, but the subsequent

research has mostly moved on to diffusion-based generators, with contributions such

as GLIDE [104], DALLE-2 [118], Imagen [119], or StableDiffusion [94]. The majority

of these models have achieved the generation of high-resolution images in a zero-shot

manner by conditioning on text input. The last one, StableDiffusion, has had a unique

impact on the research community and industry as it was the first model with open-

source and available trained parameters for anyone to use, which has triggered the

currently ongoing developments.

The conditional image generation (such as image-to-image translation explored in

the works of CycleGAN [110] or pix2pix [109]) can be used to solve a variety of common

image inverse problems (problems where only the observed sample is a deteriorated or

limited view of the true image), such as image inpainting or super-resolution.

Consequently, a number of works used similar approaches for the task of image

inpainting, including context encoders [120], local and global discriminators [121], par-

tial convolutions [122], contextural attention [123], residual aggregation [124], recurrent

feature reasoning [65], comodulated GANs [125], Fourier convolutions [126], or region-

wise operations [127]. More recently, the diffusion models have also been designed for

this task, which either rely on an adjusted sampling algorithm as in RePaint [128], or
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architectural change as in Palette [129]. The recent developments, such as LaMA [126]

can perform image inpainting on large images with visually convincing completion.

Similarly, super-resolution has been explored in many works, such as super-resolving

GAN (SRGAN) [130], enhanced SRGAN (ESRGAN) [131], pixel-recursive super-resolu-

tion [132], facial priors for face super-resolution (FSRNET) [133], latent space explo-

ration (PULSE) [134], or diffusion with iterative refinement (SR3) [135].

Deep Internal Learning

The practice of machine learning is often categorised as either supervised or unsuper-

vised. The supervised learning mode refers to the conditions, where the labels, or more

generally, the desired network output, is available and used within the optimised ob-

jective. Alternatively, unsupervised learning covers the techniques attempting to learn

representations from a set of data, without any task-specific labels. However, both su-

pervised or unsupervised learning generally assumes that a large set of training samples

is available. This scenario is referred to as external learning.

Another, arguably less mainstream, area of image synthesis research explores the

potential of learning from the single test input sample alone rather than extracting

the priors from an external dataset. This is known as deep internal learning [136], a

technique involving deep learning applied within the context of a single sample. Several

potential advantages of internal learning can be identified. First, there is no risk of

dataset bias as such, since no dataset is involved (instead, the specific method itself

embodies a certain bias). Second, a lot of internal learning techniques can be easily

adjusted for different signal modalities, for example, non-RGB images, which can be

important for certain domains, such as MSI satellite imagery. Given these benefits,

internal learning is explored as a potential solution in this work.

An early example of employing deep neural networks in an internal learning regime

and using the term of deep internal learning was published in 2018 [136] in a work

focused on zero-shot super-resolution (ZSSR), which trained deep CNNs based on a

single example, relying on the earlier findings in the literature regarding patch recur-

rence in images [137, 138]. This was done by training a convolutional neural network
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to super-resolve artificially downsampled crops of the test image with the original crop

used as ground truth, and then, applying the same network to the test image to go

beyond the original resolution.

Another line of work explored the prior enforced by the sole use of convolutional neu-

ral network architecture, starting with the introduction of Deep Image Prior (DIP) [139].

It has been found that optimizing randomly initialised parameters of a CNN enforces

a strong constraint on the type of images that can be used, which can be employed for

a variety of synthetic tasks, such as inpainting, super-resolution, or denoising.

The approach of using convolutional architectures as a source of prior in zero-shot

settings has been further explored in works, such as Double-DIP [140], capable of

decomposing mixed images into two sources of a mixture, or in a system designed for

video inpainting [141]. Convolutions have also been used for super-resolving videos in

the temporal dimensions [142].

Another useful technique employed in several works is the inclusion of adversarial

losses in an internal learning framework. This has resulted in techniques such as Internal

GAN (InGAN) [143], which uses adversarial loss to train a generator to synthesise

different versions of the same image that share the same patch statistics. Other related

works include the use of adversarial losses for zero-shot super-resolution [144], or a more

general SinGAN approach suitable for a variety of tasks such as harmonisation, super-

resolution, or animation [145]. In the case of SinGAN, the generator is constructed

using networks transforming noisy input into likely patches at a specific scale, and

stacking modules for several scales on top of each other. For each scale, a discriminator

operating solely at that scale is used for the adversarial loss. A similar method of

TuiGAN [146] has also been proposed for image-to-image translation, by including two

generators to switch between two domains and enable a cyclic loss.

Finally, other works performing internal learning using additional losses from a

pre-trained feature extractor (such as VGG19) have also been proposed [147, 148].

Another line of work investigates internal single image synthesis based on patch nearest

neighbours (no deep neural networks involved) and achieving high-quality output [149].

In the same work, it has been found that adversarial neural network approaches are
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capable of synthesizing new similar patches not observed in the input (where nearest-

neighbour approaches cannot), but this comes at a cost of relatively long optimisation

process (often taking hours on the recent GPU models). The patch nearest neighbours

can arrive at a solution in a matter of seconds. It should also be stated that the internal

learning approaches without adversarial losses are generally much faster to train and

can generate output in a matter of several minutes.

Neural Style Transfer

The mentioned internal learning approaches in [147, 148] rely on the gradients propa-

gated from large pre-trained external networks. This is related to a whole area of work

in the theme of neural style transfer [150–159].

As early as 2016, Gatys et al. proposed that the style and content of images could

be extracted from different sets of features inside a pre-trained deep classifier network,

such as VGG [160]. This fact was used to define perceptual losses for style and content,

which could then be used to optimise random input to minimise these losses and match

the style and content of two source images.

Later advancements include training a model that can translate an input image into

a trained style in a single forward pass of an image-to-image translation network (in-

stead of following an optimisation procedure at test time) [151], mixing any style and

content input in real-time with adaptive instance normalisation [152], separate style

and content encoders [161], attentional-based style networks [153], multi-adaptation

architecture [154], additional structural losses and decoders [158], manifold alignment

of the style and content encoded features [159], adaptive attention normalisation [157],

a combination of internal-external and contrastive learning [156], and progressive at-

tentional manifold alignment [162].

2.6 Problem Formulation

As part of the background, what follows is a more precise formulation of the cloud

removal problem. It is possible to interpret it as an inverse problem, which corresponds
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to the reconstruction of an unknown signal y based on a limited observation x [163]. The

observation y is the output of a forward process, a potentially non-invertible function

D() applied to x.

y = D(x) (2.13)

The forward process could involve many types of degradation, such as masking,

downsampling, blurring, or additive noise. The presence of clouds can be treated as a

mixture (via element-wise multiplication ⊙) between two sources x (cloud-free image)

and c (cloud component), based on a mask M .

y = D(x) = M ⊙ x + c⊙ (1−M) (2.14)

This model is quite flexible since it can easily model any type of effect related to

clouds. If the mask M equals 1, then the pixel is unaffected by the cloud. Otherwise,

the pixel is mixed with c, which is either the colour of the cloud reflection or the

resulting light colour received due to cloud shadow.

Cloud removal is defined as a reverse operation R(y) applied to the observed input

satellite image y (which could be cloudy or cloud-free). The reverse operation R() is

aimed to counteract the degradation operation D that models the presence of clouds

in the image based on an ideal cloud-free representation x of the image.

R(y) = R(D(x)) ≈ x (2.15)

However, the degradation operation D can destroy some of the information in the

original sample x, depending on the value of M . In that case, the reverse operation

R() must approximate a whole distribution of potential samples p(x|y) rather than one

specific sample.

R(y) ∼ p(x|y) (2.16)

This distribution can generally be expected to be rather wide, meaning that almost
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every cloudy sample y could correspond to a very large number of possible cloud-free

images with non-zero likelihood, that could all have been a feasible original sample.

This may make both training and evaluating the network problematic, and hence, a

potential solution is to narrow this distribution by introducing more conditions yc.

R(y) ∼ p(x|y, yc) (2.17)

These conditions could be images coming from different sensors, a different point in

time, or they could be any other piece of information useful for predicting the original

image.

2.7 Metrics

The quality of the solutions and approximations for the problem of cloud removal can

be assessed in a quantitative fashion by computing the distance between the tested

approximation x̂ and ground truth reference x. However, it is not immediately clear

what type of distance, or a metric, should be used to measure the similarity between

the two.

A simple approach is to compute some type of pixel-wise error and average it. In

such cases, the similarity computation is performed independently for every pixel and

hence, there is no spatial context involved. One example of that is the mean absolute

error (MAE), where the absolute difference between x̂ and x for each of the N pixels

in the image is computed:

MAE(x̂, x) =

∑N |x̂− x|
N

(2.18)

Other popular pixel-wise metrics, related to the second order, are mean square error

(MSE) and root mean square error (RMSE), equal to the average squared difference

and the square root thereof:

MSE(x̂, x) =

∑N |x̂− x|2

N
(2.19)
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RMSE(x̂, x) =

√∑N |x̂− x|2
N

(2.20)

A common pixel-wise metric in the field of image compression is peak signal-to-noise

ratio (PSNR) [164], which is defined as the logarithmic ratio between the power of the

image signal and the power of the present distortion:

PSNR(x̂, x) = 20 log10
MAXx

RMSE
(2.21)

The metric can be defined via the ratio of the maximum value of the image repre-

sentation MAXx to the MSE.

These metrics have no context of space. In contrast, structural similarity index

(SSIM) [165] does consider this context, and is defined as the product of three factors:

luminance, contrast, and structure. These three components are computed across many

patch neighbourhoods, most often by applying an 11-by-11 pixel Gaussian kernel with

σ=1.5 pixel. More specifically, the approach of applying a local window across the

images and averaging is technically mean SSIM, or MSSIM, but in many works and

packages it is simply referred to as SSIM and in this work, the same assumption applies

in the reported results.

The luminance factor l is based on the means µp̂ and µp of the two source patches

p̂ and p at a given location (factors Ci are static parameters used for stability):

l(p̂i, pi) =
2µp̂µp + C1

µ2
p̂ + µ2

p + C1
(2.22)

The contrast c is a similar measure applied to variance values σx̂ and σx for each

source patch:

c(p̂i, pi) =
2σp̂σp + C2

σ2
p̂ + σ2

p + C2
(2.23)

The third factor of structure s is slightly different as it is based on the covariance

σp̂p:
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s(p̂i, pi) =
σp̂p + C3

σp̂σp + C3
(2.24)

The exact local value of SSIM is equal to a product of these three factors:

SSIM(p̂i, pi) = l(p̂i, pi)
αc(p̂i, pi)

βs(p̂i, pi)
γ (2.25)

And finally, for N total neighbourhoods i over which a window has been applied,

the average SSIM for the two images x̂ and x is equal to:

MSSIM(x̂, x) =
N∑
i

SSIM(p̂i, pi) (2.26)

This value of mean SSIM is generally reported as SSIM throughout this work.

The computer vision community, especially after the growth of deep generative

models for images, has also explored the topic of image comparison metrics. In many

contexts, it is helpful to determine the perceptual similarity between two images or

two sets of images. This motivated the definition of perceptual metrics, which aim to

compare high-level abstract features and appearances in images. This includes the work

on the style and content losses based on deep perceptual losses [151], Fréchet Inception

distance [166], LPIPS [167], or DISTS [168]. However, these metrics are based on the

features learned by models on generic datasets, such as ImageNet [95] and attempt to

emulate human perception. It is not entirely clear whether the similarity expressed by

these metrics amounts to an improvement for remote sensing tasks and hence, has not

been used much in the literature on satellite cloud removal.

Another solution to measure the utility of a given cloud removal solution is to

test the performance on a proxy test, for example, satellite image segmentation, for

which well-defined ground truth exists. That allows one to immediately understand the

impact of the cloud removal tool on a task of interest. It can be expected that the cloud

removal tools are going to be deployed for more narrow tasks in many cases, so their

performance could be relative to the specific domain they are subsequently employed

for. However, this type of evaluation requires the selection of the end task and there is

a risk that the resulting conclusions could only apply to that task. Consequently, this
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approach has not been explored extensively for assessing general cloud removal models.

In the field of cloud removal, a variety of metrics has been used, however, a large

overlap can be observed between individual manuscripts evaluating the performance of

cloud removal tools. The majority of works will report the SSIM [63, 64, 69–71, 169]

supported by some pixel-wise metric such as PSNR [63, 64, 68–71, 169], RMSE [63,

68, 71, 169], or MAE [63, 69, 169]. In some cases, a less conventional metric, such as

spectral angle mapper (SAM) (computing the error as the angle between the spectral

components) [170] was used [69,71,169].

In this work, it is recognised that the existing metrics could have certain limitations.

Ultimately, under the assumption that an ideal cloud removal transformation is not

attainable, some error between the ground truth and the cloud removal output should

be expected. However, the magnitude and impact of this error depend heavily on

the end application. The invention of new metrics as well as their relationship to

the relevant end tasks could be an important direction of research but lies outside of

the scope of this work. Consequently, the existing metrics of SSIM or RMSE with a

relatively simple definition provides a good approximation of the general performance

and will be used for further analysis.
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Internal Learning from the

Sample

Perhaps the most rudimentary level of learning can occur in the context of the sample

itself. For example, in the task of image completion, the information contained in the

known pixels is often a powerful source of information for predicting the content of the

missing pixels. This type of learning regime is often referred to as internal learning

(a term popularised in [171], where it is described as “internal self-supervision”), as

opposed to external learning, when the priors are extracted from a larger number of

samples.

The approach of constraining the learning context to a single image may at first seem

quite limiting, however, it can bring a certain advantage. Internal learning approaches

will generally offer higher flexibility in regard to the network topology and data source

than externally trained models. An externally trained model requires the same topology

to be preserved in order to reuse the optimised weights. In contrast, an internal learning

approach allows for this topology to be adjusted based on the processed sample (for

example, the size of the neural network and, conveniently for multi-spectral images, the

number of channels in the image representation) since the parameters are learned from

scratch. As it will be shown, this is highly beneficial for satellite imagery, which comes

in a variety of spatial and channel shapes. Another advantage is that internal learning

does not suffer from dataset bias to the extent the externally trained networks do.
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Naturally, this comes at the cost of a less-specific and hence, likely less powerful prior.

Finally, there are no training costs associated with internal learning, and consequently,

no costs of acquiring and curating data. At the same time, it is crucial to acknowledge

that there are at least two potential disadvantages of internal learning. First, for many

tasks, the solutions may simply be less powerful than alternative data-based techniques.

Second, the inference routine requires a short optimisation process, which will generally

result in a more costly inference compared to an external model.

There already exists a body of literature focused on the applications and techniques

of deep internal learning, a term referring to the use of deep learning methods in the

context of the single sample [139,145,171]. This includes many solutions to tasks such

as inpainting [139], super-resolution [139, 145, 171], or denoising [139]. However, the

majority of works focus on general computer vision applications and there has only

been a limited number of works focused on the application of deep internal learning to

satellite image processing [80]. In this chapter, this gap is filled by setting the primary

objective to propose and evaluate architectures that can incorporate additional sources,

such as Sentinel-1 data into the synthesis process.

To explore the utility of the internal learning practice in the context of satellite im-

age cloud removal, this work proposes several techniques of varying complexity. These

techniques are largely based on a convolutional topology and aim to fulfil the task of

inpainting Sentinel-2 images based on additional informing sources, such as Sentinel-1

SAR acquisition, or a historical representation of Sentinel-2 capture from the same

region. The task of inpainting can be effectively turned into cloud removal if a cloud

detection (or more technically, segmentation) tool is used to identify the areas affected

by clouds or shadows.

In this chapter, the methods for satellite image inpainting are evaluated to an

open-source dataset containing a record of samples from a region in Scotland for the

years 2019 and 2020 (available at https://zenodo.org/record/5903334) [172] to compare

their performance. The example samples from the dataset are shown in Figure 3.1.

Furthermore, the best-performing approach from this chapter is contrasted against

other types of learning explored in subsequent chapters on a dataset containing samples
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Figure 3.1: Selected samples from the Scotland dataset, consisting of pairs of cloud-free
Sentinel-2 and Sentinel-1 images.

from a wider set of locations. This can be found in Chapter 6.

In summary, this chapter brings the following contributions. First, three novel so-

lutions for solving synthetic tasks on satellite images internally are introduced. Their

utility and versatility are demonstrated in two use cases, inpainting (later used for cloud

removal) and super-resolution. Since these techniques are based on an internal opti-

misation process performed at inference, a convergence analysis for identifying optimal

solutions is conducted. Finally, the proposed techniques are evaluated for multi-spectral

image inpainting in a region-oriented context over a period of one year.

3.1 Deep Image Prior

Deep Image Prior, introduced in [139], refers to a technique of fitting a randomly

initialised deep CNN to produce a source image observation as output, as illustrated

in Figure 3.7. The term Deep Image Prior indicates that the sole topology of a CNN

already constitutes a strong priors about the domain of natural images. As a result,

such models exhibit a certain impedance to noise and naturally prioritise correlations

present in the data.

The processed image x can be any type of incomplete observation of visual data,

such as a masked image, low-resolution image, or image with added noise, which can

be modelled as the output of a specific degradation operation D applied to the true

image x0.

x = D(x0) (3.1)
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Figure 3.2: Diagram of the Deep Image Prior technique.

By propagating any activation signal α (in practice, this is often a sample from

uniform noise, or a mesh grid of coordinate-based values as described in [139]) through

a CNN with parameters θ, the output y can be derived as a value of the function fθ

parameterised by the network.

y = fθ(α) (3.2)

It can be expected that output y will not have any relevant value for randomly

initialised network parameters θ. However, these parameters can be optimised with

respect to the distance d between the network output y and the limited observation

x, based on the known degradation operation D() (such as a mask or a downsampling

kernel).

Lθ = ℓ(D(y), x) (3.3)

When the loss function Lθ is minimised, the convolutional kernels are optimised

based on the gradients propagated through the degradation operation from the observed

component of the image. For example, if the degradation D() is a mask, only the

gradients from the non-masked pixels will be propagated. As a result, a lot of the

information about the structure and textures in the known region is encoded into the

weights of the network, and will often naturally transfer to the full scope of the image

y.

This effect closely links to the effect described as noise impedance in the original

Deep Image Prior paper [139]. Figure 3.3 demonstrates that a CNN architecture will
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Figure 3.3: Examples of source images and the output of the convolutional module
optimised over 2,000 update steps. The clean image is a Sentinel-2 image from the test
dataset. Noisy contains additional noise, while shuffle contains the original image with
shuffled pixels. Noise contains noise from a normal Gaussian distribution.

converge towards structured data output, such as natural images, much faster than

towards unstructured output, such as noise. The experiment has been conducted by

optimizing a standard convolutional network (described in more detail in the next

paragraph) to 4 types of images: i) a clean satellite image, ii) the same satellite image

with a level of added Gaussian noise, iii) the clean satellite image with randomly shuffled

pixels, and iv) a sample of uniform noise. Figure 3.3 shows these images in the top

row and the network output after 2,000 optimisation steps in the bottom row (an

optimisation step is a single update of network parameters based on the gradients

computed using the internal loss). For this experiment, the degradation operation

D(y) has been set to an identity operation I(), meaning that all pixels contribute to

the loss. This is done in order to show that even when a complete signal is observed,

the CNN network will converge to structured signals much faster than to unstructured

ones. The evolution of loss for each image is shown in Figure 3.4 to further confirm

that point. The effect of noise impedance can be explained by the fact that in structure

data, a higher alignment between gradients from different parts of the image can be
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Figure 3.4: Loss trace for the 4 example images (Figure 3.3) over 2,000 optimisation
steps with the Deep Image Prior technique.

expected, whereas in random noisy images, these gradients will not be correlated.

In summary, the process for this synthesis approach starts with a randomly ini-

tialised neural network (more details below), the parameters of which are optimized to

minimize the difference between the network output (in response to a pre-defined static

activation input) and the observed signal (such as partially incomplete image). After

a certain number of optimization steps the network output is used as the output of the

reconstruction process.

In the work introducing Deep Image Prior [139], a simple convolutional architecture

(referred to as SkipNetwork, and quite similar to U-Net) is used with an encoder-

decoder topology and additional skip connections across each level. Each task presented

in that work is solved with a slightly different configuration (that has been motivated

by empirical insights in an attempt to increase the performance for each task).

The SkipNetwork architecture is shown in Figure 3.5 and consists of three types of

blocks. The network input is processed in sequence by a set of N downsampling blocks

(green), producing N intermediate feature maps, each half the size of the previous.

Furthermore, each computed feature map is optionally fed into a corresponding skip

block (yellow) to compute a skip feature map that can later be injected into the decoding

stage. The decoding stage begins by feeding the N th feature map to the lowest level

upsampling block (pink). Similarly, to the encoding process, the decoding involves a
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Figure 3.5: Architecture of the SkipNetwork used as the backbone for solutions involv-
ing Deep Image Prior. Figure based on Fig.21 in [139].

(a) (b) (c)

Figure 3.6: Three building blocks of a SkipNetwork (a) a Downsample Block (b) an
Upsample Block (c) an (optional) Skip Block.

sequence of upsampling operations applied in a chain to the feature map. At each step,

the features from a skip block at the corresponding level (if available) are combined with

the feature map via concatenation and then treated as input to the next upsampling

block.

The exact implementation of each block is shown in Figure 3.6. A downsampling

block (Figure 3.6(a)) at level i contains a convolution with kernel size kd[i] and nd[i]

output channels. Downsampling is performed by setting the stride of the first convo-

lution to 2 (leading to an output half the size), this aspect is still represented by a

separate downsample block in green. This is followed by a sequence of a batch norm,

a leaky ReLU activation, and another convolution (this time stride of 1 and no down-

sampling) with the same kernel size and output channels, followed by another batch

norm and leaky ReLU. The content of an upsampling block is shown in Figure 3.6(b)

and it includes a batch norm, followed by a sequence of two groups of operations, each

containing a convolution with kernel size ku(i) and output channels nu(i), a batch

norm and leaky ReLU activation. Finally, an upsampling operation is performed to

increase the spatial size of features using nearest neighbour upsampling. The optional
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Figure 3.7: Diagram of the Stacked technique applied for satellite images based on
Deep Image Prior.

Table 3.1: Stacked architecture parameters for inpainting

Parameter Value

Input activation α meshgrid
Downsampling block channels nd [16, 32, 64, 128, 128, 128]
Downsampling block kernels kd [3, 3, 3, 3, 3, 3]
Upsampling blocks nu [16, 32, 64, 128, 128, 128]
Upsampling kernels ku [5, 5, 5, 5, 5, 5]
Skip blocks ns None
Skip kernels ks None

skip block shown in Figure 3.6(c) contains only a single convolution with a kernel size

ks[i] and output channels ns[i], followed by a batch norm and a leakyReLU activation.

If used, they are concatenated with upsampled features from the corresponding level

in the decoder part.

In this work, a large portion of the configuration is based on the large-hole inpaint-

ing use case from the Deep Image Prior paper [139] and the architecture illustrated

in Figure 3.5 with the parameters listed in Table 3.1 is used. To instil an additional

smoothness prior, a mesh grid activation α is used, as suggested in the original pa-

per. The mesh grid input contains 2 channels, each with a value between 0.0 and 1.0

corresponding to the position of a given pixel within each spatial axis.

The original Deep Image Prior is applied to natural RGB images. In this chapter,

we explore the potential of using multiple spatially aligned images as a representation

(for example, the inpainted Sentinel-2 image concatenated with a Sentinel-1 represen-

tation). To accommodate additional data sources for satellite image inpainting (such

as SAR image, or historical optical image), the channels of the output layer are ad-
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justed appropriately, and the observed image representation consists of a stack of the

inpainted signal with potential support representations. The abstract representation of

this approach, referred to as stacked variant from here on, is included in Figure 3.7.

The stacked approach described above can yield a reasonable level of performance.

However, the approach of stacking signal representations may not be entirely appro-

priate when these come from different domains. This motivates the introduction of

a wider framework of multi-modal convolutional parameterisation network (MCPN)

introduced in the following section.

3.2 Proposed Method: Multi-Modal Convolutional Pa-

rameterisation Networks

Combining the aligned images into a single representation, as done in the stacked

approach, might be too restrictive. For example, radar images can be expected to

contain very different types of textures and higher levels of noise compared to optical

data. As a result, the stacking technique requires the convolutional kernels in the last

layers of the network to potentially learn a very diverse set of textures, which could

potentially lead to suboptimal performance. This motivates the introduction of the

MCPN technique, which seeks a trade-off between information sharing between signal

domains and the freedom to easily reconstruct each domain.

The MCPN consists of a single core network (very similar to the main SkipNetwork

used in the stacked approach) for producing a shared signal representation, as shown in

Figure 3.8. The core synthesis network is responsible for producing a shared core signal

from which all domain-specific signals can be derived. The derivation is carried out by

domain-specific convolutional heads that transform the shared core signal to individual

target domains. In effect, spatial information sharing between the domains is enforced

by relying on the same shared core signal. Finally, a set of domain cycle heads is

used to convert each domain target signal back to the shared core signal and promote

consistency of inpaintings. This arrangement yields two loss terms optimised by the

network, the domain-specific loss LD(M) computed between the synthesised domain
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Figure 3.8: Diagram of the MCPN approach, consisting of a core synthesis network
and domain-specific heads. Each domain path is also supported by a cyclic head to
preserve shared structure between domains.

signals and the existing target reference, applied with an appropriate domain-specific

mask M , and the cycle consistency loss Lcycle computed as the difference between the

shared core signal and the outputs of the cycle heads. Both losses LD(M), Lcycle are

computed as MSE between the respective inputs.

The shared core signal is learned in an emergent fashion by backpropagating from

the sum of individual domain-specific reconstruction losses LD(M) and the cyclic terms

Lcycle. This variant of MCPN is referred to as Emergent Core MCPN and is further

illustrated in Figure 3.9(a). Another possibility is to use the synthesised signal of inter-

est, such as an incomplete optical image, as the shared core representation, effectively

dropping one of the domain-specific branches. Hence, LD(M) is defined as a sum of a

loss directly computed on the synthesised signal of interest at the output of the core

network, plus the domain-specific losses, at the output of the head networks. This

variant is referred to as Direct Core MCPN, as shown in Figure 3.9(b).

3.2.1 MCPN Framework Configuration

The capacities of the core network and the domain-specific heads determine how much

information is contained in the shared core signal. As the capacity of the domain-

specific heads decreases, the possible transforms between the shared core and individual

output images are simpler. This capacity can be controlled by the number of layers,

their width, and the activation functions applied to the networks. In this study, the core

network is identical to the SkipNetwork employed in Deep Image Prior [139] for the in-
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(a) Emergent Core (b) Direct Core

Figure 3.9: The Emergent Core variant (a) allows for a shared core signal to be learned
in an emergent fashion, synthesizing each domain signal, including the target image
(blue) using specific heads. The Direct Core variant (b) instead uses the target image
(blue) as the shared core signal, leading to one less domain head network

painting task with the configuration where nd = nu = [16, 32, 64, 128, 128, 128] (where

nd and nu are the numbers of channels of the downsampling and upsampling submod-

ules, respectively) and skip modules of 4 channels. The domain-specific networks are

also composed of similar elements, but contain only two stages of [32, 32] channels,

along with skip modules also with [32, 32]. For the Emergent variant, downsampling

and upsampling operations are maintained as in the Deep Image Prior reference net-

work. For the Direct variant, stride of 1 is used for all layers, resulting in preserved

representation shape and no spatial bottleneck.

Further important factors influencing the performance are the size of the convolu-

tional kernels in the domain-specific heads and the number of channels of the shared

core representation. If the domain-specific kernels are set to the size of 1×1, then

all pixels of the shared representations are processed independently, which forces the

shared representation to contain a lot of information for every output pixel. If the

kernel size is increased, then the local neighbourhood information is passed on to the

head network, meaning that individual shared pixels do not have to contain full global

context information. In this study, based on exploratory analysis, it has been found

that a core representation with 8 channels for the Emergent variant, and head kernel

sizes of 3×3 provide an appropriate baseline configuration. For the Direct variant, the

number of channels in the core representation is by definition equal to the number of

channels in the target representation.
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Table 3.2: Parameters used for the MCPN architecture used for satellite image inpaint-
ing

Parameter Value

Input activation α meshgrid
Downsampling block channels nd [16, 32, 64, 128, 128, 128]
Downsampling block kernels kd [3, 3, 3, 3, 3, 3]
Upsampling blocks nu [16, 32, 64, 128, 128, 128]
Upsampling kernels ku [5, 5, 5, 5, 5, 5]
Skip blocks ns [4, 4, 4, 4, 4, 4]
Skip kernels ks [5, 5, 5, 5, 5, 5]

Head Network Base [32, 32]
Head Network Skip [32, 32]
Head Kernel Size [5, 5]
Head Activation None

In the evaluation section, and for all resulting images, the configuration listed in

Table 3.2 is used for MCPN, unless otherwise stated. Optimisation is carried out

by employing an AdamW optimiser with standard parameter values (betas of (0.9,

0.999), eps of 10−8, and a weight decay of 0.01). The learning rate and the number of

optimisation steps are determined based on the convergence discussion in Section 3.3.

3.3 Detecting Model Convergence

Comparison of convolutional parameterisation approaches (the two proposed MCPN

variants and the Stacked baseline) is challenging because they may require different

learning rates to allow stable convergence and a different number of optimisation steps.

Hence, setting the same learning rate and applying the same number of weight updates

for all architectures may put some of the models at a disadvantage and bias the evalua-

tion. To explore this effect, a set of experiments was carried out where the performance

computed based on known ground truth is traced for 20,000 optimisation steps (this

number has been selected to gain more perspective than the usual 2,000-4,000 steps

as in [139]). The two metrics used to measure the quality of a synthesised image with

reference to a specific ground truth are SSIM and RMSE.

In the seminal work on the Deep Image Prior [139], the output was produced using

the weights obtained after applying a fixed number of optimiser steps, depending on
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the task, usually a few thousand steps were used. Alternatively, an adaptive strategy

for detecting a suitable convergence state can be devised. One solution for adaptive

convergence detection is to measure the performance of the synthesis on the known,

non-masked region and base a stopping criterion on that quantity, for example, RMSE

between the source image and the network output in the non-masked region. This is

proposed here as a known reconstruction RMSE strategy. However, in some scenarios,

the reconstruction error of the known region could monotonically decrease or saturate

without ever reaching a minimum, while the error in the inpainting could be increasing,

thus yielding a poor solution.

Hence, another adaptive approach is proposed that takes into consideration the in-

painted region too. This is done by measuring the quality of inpainting as the similarity

of texture patches between the inpainted and known region of the image, termed as

patch consistency metric. The metric is computed as the Fréchet distance between the

two distributions of low-level features of a pre-trained Inception network [173] in re-

sponse to the inpainting region and the distribution of features from the known region,

in a similar fashion to single image Fréchet inception distance (SIFID) [145]. The met-

ric requires the computation of a feature map Fsource of the source image and a feature

map Foutput of the image produced by the network. Patch representations of the known

and inpainted regions can be obtained by applying the inpainting mask to the Foutput

and the inverse of the mask to Fsource. Since the size of the feature maps is reduced in

the layers of the Inception model, the maskM must also be reduced to apply it to the

feature maps Fsource and Foutput. This is achieved by downsampling the mask M in the

same manner as the features to obtain a downsampled feature mask MF . The feature

mask MF equals to 1.0 if and only if a given feature is affected by any pixel from

the inpainting region. This way, the features extracted with the mask MF correspond

to all features affected by the synthesised pixels, and the features extracted with the

inverse mask M′
F filter out features that are only affected by the known region. The

downsampling strategy is such that any feature influenced by the boundary effect is

assigned to the inpainted region of the mask.

Figure 3.10 demonstrates how the values of the two adaptive convergence metrics
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Figure 3.10: Values of the ground truth inpainting SSIM and two considered con-
vergence metrics (Known Region RMSE and Patch Consistency) evolving over 20,000
optimisation steps.
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and ground truth inpainting SSIM evolve over the optimisation process. The rows

in order, correspond to i) ground truth inpainting SSIM, ii) known reconstruction

RMSE, and iii) patch consistency. The three columns correspond to the tested learning

rates of 10−4, 10−3, and 10−2. The traces have been obtained for 4 repeated runs of

inpainting a single Sentinel-2 sample based on Sentinel-1 informing data. The analysis

of the convergence detection methods is performed for the SAR-to-optical synthesis

because it represents the most challenging scenario where the gap between domains is

considerable. The inpainting mask used covers the whole image except for a border of

50 pixels around the image’s periphery.

The top row in Figure 3.10 contains the traces recording the value of the inpainting

SSIM, which has been computed with reference to the ground truth. The maximum

value of the trace indicates the top performance that could be achieved by each model,

but extracting it requires knowledge of the ground truth, not available in practice.

The maximum values of inpainting SSIM tend to occur within the first 5,000 steps for

all three model types, regardless of the learning rate (with the exception of Emergent

Core at 10−2 learning rate, which occurs at around 6,000 steps). For the Stacked

baseline (green line), this maximum value appears to be reached early into the process.

This relates to the dynamics of Deep Image Prior convergence [139], where the low-

frequency components are fit first before the fine detail. In effect, the low-frequency

approximation at the beginning of the optimisation scores better than later solutions

where high-frequency components are synthesised. The second and third rows contain

the traces of the adaptive convergence detection metrics. The known region RMSE

decreases monotonically (with occasional local spikes), and may be a poor choice for a

proxy metric. In the third row, the patch consistency reaches a minimum closer to the

top performance states identified by the ground truth SSIM, but the two do not seem

to align particularly well; for example, the minimum patch consistency is achieved long

after the top performing SSIM for Direct and Stacked model variants.

As a supplement to Figure 3.10, Table 3.3 contains the average of extreme values of

the inpainting SSIM, known region RMSE and patch consistency for four repetitions.

Furthermore, for each record, the table presents the mean and standard deviation of the
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number of optimisation steps after which the extreme value was reached. The Inpaint-

ing SSIM provides an indication of which learning rate results in the best performance

for the tested sample. It is further apparent, that the minimised known region RMSE

occurs very late in the training process and it is possible that it could keep decreasing

further with more steps in the experiment. The patch consistency does reach a mini-

mum value closer to the top-performing Inpainting SSIM. Lastly, based on this result,

the learning rate for each model has been selected, with 10−3 for MCPN Emergent and

10−2 for MCPN Direct and the Stacked baseline.

Using these learning rates, a broader experiment to find the optimal convergence de-

tection technique is conducted on the whole dataset of cloud-free images from Scotland

(described in Section 3.4.1), with 4 repetitions on each sample and with the same mask

leaving out a 50-pixel border in the image. The average maximum inpainting SSIM

that can be achieved is presented in the first column of Table 3.4, while the remain-

ing columns contain the average inpainting SSIM obtained using the three convergence

detection strategies (4,000 steps, known region RMSE and patch consistency). The

Known Region RMSE method is resulting in the top inpainting SSIM for the MCPN

Emergent variant. This is likely caused by the optimisation dynamic that can be ob-

served in the traces of Figure 3.10 (top row, blue lines), where the MCPN Emergent

solution reaches a fairly stable plateau, where on average, it may be more beneficial

to train longer to ensure all samples in the dataset can reach a stable plateau. The

traces of the other two methods (top row, orange and green lines) do not exhibit this

level of stability, as the Inpainting SSIM tends to decrease monotonically. This re-

sults in higher sensitivity in the number of optimisation steps and in particular, the

top inpainting SSIM is achieved early and consistently in fewer than 4,000 steps. In

contrast, the other convergence strategies prefer solutions after 4,000 steps (as shown

in Table 3.3) and they are likely to yield lower inpainting SSIM for MCPN Direct and

the Stacked baseline, as shown Table 3.4. The rest of the experiments in this chapter

are conducted with model-specific learning rates.
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Table 3.3: Optimal values of the ground truth reference and the two adaptive conver-
gence methods, along with the number of steps after which they were obtained

Method LR Inpainting SSIM (GT) ↑ Known RMSE ↓ Patch Consistency ↓
10−4 0.732 at 3600 ± 1579 0.022 at 19325 ± 491 3.782 at 8600 ± 5839

MCPN Emergent 10−3 0.735 at 3725 ± 914 0.021 at 19575 ± 449 3.805 at 15275 ± 7553
10−2 0.735 at 3575 ± 1380 0.021 at 19525 ± 363 3.875 at 15000 ± 7510

10−4 0.706 at 800 ± 254 0.017 at 19400 ± 494 2.989 at 5375 ± 1028
MCPN Direct 10−3 0.689 at 1350 ± 390 0.018 at 19600 ± 212 3.322 at 6425 ± 1987

10−2 0.714 at 1000 ± 158 0.017 at 19850 ± 50 3.025 at 5750 ± 1425

10−4 0.713 at 75 ± 43 0.011 at 17650 ± 3332 2.261 at 9700 ± 5980
Stacked 10−3 0.712 at 1400 ± 2136 0.011 at 19450 ± 384 2.032 at 9025 ± 4935

10−2 0.716 at 3450 ± 3377 0.011 at 16525 ± 5063 2.367 at 8675 ± 4246

Table 3.4: Mean inpainting SSIM values for different convergence detection strategies
achieved for 4 repetitions carried out on the entire Scotland dataset (SAR guidance)

Ideal 4,000 Known Patch
Method LR (GT) Steps RMSE Consistency

MCPN Emergent 10−3 0.677 0.626 0.669 0.637
MCPN Direct 10−2 0.663 0.611 0.521 0.601
Stacked 10−2 0.650 0.573 0.545 0.570

3.4 Evaluation of DIP and MCPN

The proposed internal learning methods are evaluated on two common tasks related to

remote sensing applications: (a) image inpainting and (b) super-resolution. Further-

more, to demonstrate their applicability beyond the domain of satellite images, tests on

image completion with other multi-modal image translation datasets are carried out.

3.4.1 Satellite Image Inpainting

For the inpainting, a test dataset comprising of 340 inpainting samples is used, which

has been created using a framework described [174]. The dataset contains pairs of

temporally proximate Sentinel-1 and Sentinel-2 images for a period of 2 years. More

specifically, the clear sky images from Scotland in year 2020 are used as targets for the

inpainting task, and the clear sky images from 2019 are averaged and used as historical

informing prior. The dataset also contains cloud masks supplied with Sentinel-2 data,

which were obtained for dates when cloud coverage was between 10% and 50%. These

17 masks are combined with 20 cloud-free images from 2020 to yield the resulting
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Figure 3.11: Comparison of reconstructed Sentinel-2 image for 3 types of support data
(one per row) and the three tested methods

340 inference samples. The shape of each image is 256 by 256 pixels, and the same

pre-processing routine as in [77] is followed.

Similarly to the experiments in Section 3.3, where convergence dynamics were stud-

ied, all models are optimised for 20,000 steps in order to compare several convergence

detection methods. The obtained peak SSIM level for the inpainted region is shown

in Table 3.5. This value corresponds to the highest quality of the inpainting during

the full optimisation process of 20,000 steps. In order to identify this value, access to

ground truth is needed, so it is crucial to note that the value is reported for analytic

purposes. Although this is infeasible when deployed on new samples, it provides an

indication of the upper-bound performance of each method within the test dataset.

For the challenging case where Sentinel-1 is the informing signal, the Emergent

variant of MCPN offers higher inpainted SSIM, compared to the other two methods.

It can be observed that the whole image SSIM is drastically lower for the Stacked

compared to MCPN Emergent. This is primarily caused by the fact that the extracted
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Table 3.5: Results for the Scotland Dataset: Peak Performance. The reported are
the maximum metrics achieved throughout the optimisation process of 20,000 steps.
Naturally, this requires the knowledge of the ground truth in order to identify the
optimal image, so the numbers can be treated as a limit of the achievable performance,
rather than a practical measure.

Dataset
MCPN MCPN

Stacked
(Emergent Core) (Direct Core)

Current Sentinel-1
Whole

SSIM ↑ 0.854 ± 0.041 0.760 ± 0.052 0.743 ± 0.053
RMSE ↓ 0.079 ± 0.053 0.088 ± 0.029 0.092 ± 0.041

Inpainting
SSIM ↑ 0.665 ± 0.082 0.657 ± 0.072 0.661 ± 0.077

RMSE ↓ 0.137 ± 0.090 0.130 ± 0.053 0.131 ± 0.063

Historical Sentinel-2
Whole

SSIM ↑ 0.879 ± 0.044 0.853 ± 0.069 0.879 ± 0.062
RMSE ↓ 0.081 ± 0.062 0.072 ± 0.026 0.071 ± 0.046

Inpainting
SSIM ↑ 0.719 ± 0.113 0.714 ± 0.068 0.738 ± 0.090

RMSE ↓ 0.142 ± 0.108 0.120 ± 0.039 0.120 ± 0.069

Current Sentinel-1
+

Historical Sentinel-2

Whole
SSIM ↑ 0.876 ± 0.036 0.838 ± 0.056 0.869 ± 0.065

RMSE ↓ 0.071 ± 0.055 0.071 ± 0.030 0.066 ± 0.038

Inpainting
SSIM ↑ 0.743 ± 0.098 0.694 ± 0.064 0.741 ± 0.083

RMSE ↓ 0.121 ± 0.101 0.117 ± 0.050 0.111 ± 0.059

images yielding maximised SSIM for the inpainting region are often premature in the

case of the Stacked approach and the MCPN direct. For the historical Sentinel-2 case,

the Stacked method achieves the highest SSIM, which could be attributed to the less

severe domain shift between the informing and synthesised signals. For the case of

combined Sentinel-1 and Sentinel-2 informing sources, the Emergent variant results in

higher SSIM for both the inpainted region and the whole image. In terms of peak

performance, the direct variant of MCPN is not as performant as the other methods,

which could potentially be attributed to the bottleneck aspect of the architecture.

However, as described in Section 3.4.2 this MCPN variant is beneficial for the image

super-resolution task.

In practice, one of the convergence detection methods described in Section 3.3, must

be employed; namely constant number of steps, patch consistency metric, or RMSE of

the known pixels. It has been found that the optimisation dynamics of each synthesis

method are quite different and hence different convergence detection techniques are

appropriate. Experimentally it was discovered that for this dataset, the Known Region

RMSE metric works best for the Emergent variant of MCPN, while the constant of

4,000 steps is most beneficial for the Direct MCPN and the baseline Stacked approach.
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Table 3.6: Results for the Scotland Dataset: Achievable Performance with Optimal
Convergence Detection. The samples for the experiment were selected based on com-
putable proxy metrics, and hence, the same can be done for any new samples, without
the knowledge of the ground truth.

Dataset
MCPN MCPN

Stacked
(Emergent Core) (Direct Core)
Known RMSE 4,000 steps 4,000 steps

Current Sentinel-1
Whole

SSIM ↑ 0.859 ± 0.041 0.824 ± 0.045 0.837 ± 0.063
RMSE ↓ 0.079 ± 0.048 0.081 ± 0.033 0.086 ± 0.050

Inpainting
SSIM ↑ 0.638 ± 0.081 0.601 ± 0.068 0.576 ± 0.080

RMSE ↓ 0.141 ± 0.082 0.140 ± 0.055 0.149 ± 0.071

Historical Sentinel-2
Whole

SSIM ↑ 0.880 ± 0.043 0.864 ± 0.041 0.875 ± 0.063
RMSE ↓ 0.079 ± 0.051 0.075 ± 0.028 0.086 ± 0.059

Inpainting
SSIM ↑ 0.698 ± 0.107 0.692 ± 0.075 0.703 ± 0.105

RMSE ↓ 0.142 ± 0.089 0.131 ± 0.044 0.147 ± 0.089

Current Sentinel-1
+

Historical Sentinel-2

Whole
SSIM ↑ 0.882 ± 0.036 0.861 ± 0.039 0.879 ± 0.055

RMSE ↓ 0.069 ± 0.048 0.071 ± 0.032 0.074 ± 0.049

Inpainting
SSIM ↑ 0.735 ± 0.096 0.679 ± 0.070 0.713 ± 0.100

RMSE ↓ 0.120 ± 0.087 0.124 ± 0.054 0.128 ± 0.076

Hence, the performance resulting from these choices is contained in Table 3.6, indicating

the quality of synthesis that can be realistically achieved.

The highest quality of inpainting (as well as reconstruction of the known region)

is achieved by employing the Emergent MCPN framework for both current Sentinel-

1 and historical Sentinel-2 images. Furthermore, the introduction of historical data

from the same modality brings significantly higher benefits compared to the current

cross-modal Sentinel-1 representation. The domain shift between the informing and

synthesised signals (as in the case of Sentinel-1) remains difficult to handle for the

convolutional parameterisation models. However, the use of MCPN scheme offers a

significant improvement in inpainting quality, where the inpainting SSIM of MCPN

Emergent and Direct are 0.638 and 0.601, compared to 0.576 achieved by the Stacked

approach.

To explore how the inpainting quality changes for different sizes of the synthesised

region, a sweep is conducted, where 4 clear-sky images from across the year are in-

painted using a square mask with a varying area. Furthermore, both inward synthesis

(where the synthesised region is fully surrounded by non-masked pixels) and outward

synthesis (where the synthesised region is not surrounded by non-masked pixels) are ex-
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Figure 3.12: Traces indicating the changes of SSIM values for different percentage of
missing pixels

plored by applying an inverse mask. The results of the sweep are shown in Figure 3.12,

where the left column corresponds to inward synthesis and the right column to outward

synthesis. The two metrics of whole-image SSIM and inpainting SSIM are recorded for

all three synthesis methods, each using the supporting data that provides the highest

performance in Table 3.6 (S2 for MCPN Direct, and S1+S2 for MCPN Emergent and

Stacked).

The Emergent variant of MCPN (blue line) is leading significantly for all metrics

if the missing region covers 40% of the image or more. The Direct variant of MCPN

is outperformed by the Stacked method, which is consistent with the performance

reported in Table 3.6 (0.692 Inpainting SSIM for MCPN Direct and 0.713 for Stacked).

3.4.2 Guided Satellite Image Super-Resolution

The two MCPN variants as well as the Stacked baseline can all be readily used to

perform a super-resolution operation when high-resolution guidance coming from an-

other signal is available. This can be achieved by employing a downsampling operation

to the output of the target domain head and backpropagating gradients from a low-

resolution source through it. Apart from this operation, the architectures require no
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changes. Additional informing sources (such as the historical optical mean), inherently

in high resolution, can be synthesised as standard images along with the super-resolved

image. This fusion of sources at different resolutions can help with producing struc-

turally coherent super-resolution output. In all presented experiments, the bilinear

downsampling operation is used for the low-resolution sample. It is worth noting pre-

vious literature addressing a similar problem, and commonly referring to it as guided

super-resolution [175–180]. However, most of the previous work [177, 179, 180] focuses

on the task of super-resolving a single-channel depth image, based on a corresponding

three-channel RGB image of higher resolution. This makes the application of many

existing models to new problem settings difficult. Furthermore, MCPN constitutes a

fully unsupervised framework, where no pretraining is carried out. In that regard, the

PixTransform approach [179] is particularly appropriate as a baseline since it also op-

erates without supervised training. With minimal changes applied, to accommodate

for 3 channels in the super-resolved image (rather than 1, as in the depth image), it

has been used for comparison in the conducted experiments. Furthermore, a com-

mon, externally-trained, baseline of EDSR [181] is tested as well (in this case, the

low-resolution image is super-resolved without any guide image).

With this adjustment, all three proposed synthesis methods are employed to upsam-

ple an inherently low-resolution source. Here, Band 9 Sentinel-2 with SWIR data, with

a resolution of 60 metres, is super-resolved by using the current RGB bands (Bands 4,

3, and 2) with 10 m resolution as the informing signal. The results are shown in Fig-

ure 3.13, along with the two employed baselines of PixTransform [179] and EDSR [181].

In this case, the target upscaling factor is close to 6, and for EDSR it is achieved by

passing the image through the model with factor 2 followed by the model with factor 4.

The result of these two consecutive EDSR passes yields an 8 times larger image, which

is then interpolated down to 256×256px resolution with a bilinear operation. Simi-

larly, since the PixTransform tool requires the upscaling factor to be a whole integer,

the image is first upsampled to 64×64 pixels and then supplied as the low-resolution

source. In the case of MCPN, any upscaling factor can be achieved by substituting an

exact downsampling operation into the process, making it more flexible than the com-
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Figure 3.13: With the support of the image from the RGB bands (10 m resolution),
the low-resolution SWIR image (Band 9 with 60 m resolution) is upsampled. This is
an exploratory result since no ground truth exists for a high-resolution SWIR source

pared baselines. Since high-resolution ground truth for Band 9 of Sentinel-2 does not

exist, it is challenging to compare these results beyond visual impression. The EDSR

method results in a significant perceived blur while the convolutional parameterisation

methods increase the fidelity of the image. The output of the Stacked baseline and

the Emergent Core MCPN appears to contain more fine details propagated from the

RGB image compared to the Direct Core MCPN. The PixTransform output appears

to produce high-quality fine details compared to the other methods, but it also appears

to yield reduced contrast in some parts of the image.

To conduct a quantitative evaluation, pairs of high-resolution images (standard

resolution of Sentinel-2) and their corresponding downsampled versions are used to

provide ground truth. The experiment has been conducted on 20 clear-sky RGB images

from Scotland from the year 2020 with the supporting information of the historical

average from the year 2019 (similar to the inpainting example). Each of the 20 images

was subject to bilinear downsampling to compute the low-resolution input. The super-

resolution performance achieved by each method is shown in Table 3.7, with the SSIM

and RMSE values for three upscaling factors of 16, 8, and 4.

MCPN Direct approach achieves superior performance for the task of super-resolution,

consistently outperforming all other methods for all scaling factors. An example of the

super-resolved outputs and corresponding ground truth is shown in Figure 3.14, where
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Figure 3.14: Example of Super-Resolution performance for several upscaling factors:
×16 (top row), ×8 (middle row), ×4 (bottom row). The informing high-resolution
source used for the experiment was the historical optical mean from the previous year

Table 3.7: Results for the Super-Resolution Task (Historical High-Resolution Optical
Reference Used for Super-Resolving Current Downsampled Optical (Achievable Perfor-
mance)

Factor
MCPN MCPN

Stacked
PixTransform [179] EDSR [181](Emergent Core) (Direct Core)

4,000 steps Known RMSE 4,000 steps

×16
SSIM ↑ 0.487 ± 0.137 0.733 ± 0.068 0.719 ± 0.072 0.718 ± 0.060 0.699 ± 0.055

RMSE ↓ 0.184 ± 0.057 0.085 ± 0.047 0.094 ± 0.060 0.094 ± 0.046 0.098 ± 0.045

×8
SSIM ↑ 0.584 ± 0.168 0.782 ± 0.049 0.771 ± 0.085 0.758 ± 0.052 0.727 ± 0.050

RMSE ↓ 0.135 ± 0.067 0.064 ± 0.029 0.076 ± 0.061 0.076 ± 0.039 0.080 ± 0.040

×4
SSIM ↑ 0.685 ± 0.137 0.847 ± 0.029 0.825 ± 0.084 0.815 ± 0.044 0.789 ± 0.038

RMSE ↓ 0.104 ± 0.068 0.047 ± 0.017 0.062 ± 0.057 0.061 ± 0.031 0.061 ± 0.031

MCPN Direct produces the highest quality output, especially for the larger factors,

while MCPN Emergent introduces more artefacts to the super-resolved image since

the correspondence between the two domain signals is not as constrained as in the

case of the Direct Core variant. The PixTransform method appears to do well with

reconstructing fine details in the scene (such as sharp region borders), but at the same

time, it creates a considerable colour distortion, which ultimately leads to performance

inferior to MCPN Direct Core.
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3.4.3 Other Multi-Modal Image Translation Tasks

The same techniques of encoding spatially aligned images using convolutional networks

can be applied to other tasks than satellite images, as long as spatially-aligned multi-

modal data is available. As an example of that capability, image inpainting is performed

on 4 other datasets that contain aligned multi-domain data: Facades, Maps, Night-to-

Day, and CityScapes [182]. The task involves filling the square area in the middle of

each image within a border of 50 pixels around the image periphery (this translates to

about 37% of fill area for 256×256px images).

The four datasets representing other types of tasks can be categorised into those con-

taining a shallow descriptive guide, such as a segmentation mask (Facades, Maps, and

CityScapes), and those containing a rich natural image guide (Night-to-Day). Depend-

ing on this aspect, a different convergence detection technique may be appropriate, and

hence, the best performing one is applied on a per-dataset and per-synthesis-method

basis, as shown in Table 3.8 by indicating § as the 4,000 steps technique, † as Known

Region RMSE, and ‡ as Patch Consistency.

Results in Table 3.8 demonstrate that the MCPN variants can achieve superior

performance to the Stacked baseline, for all tasks. For the datasets of Maps, Night-to-

Day, and Cityscapes, the MCPN Emergent variant outperforms both other methods.

For the task of inpainting Facade images based on a segmentation map, the Direct

variant of MCPN exhibits higher performance than the Emergent variant. The Stacked

baseline yields the lowest inpainting SSIM across all datasets, with the exception of the

Night-to-Day, where it performs better than the Direct Core MCPN.

Selected results are shown in Figure 3.15. The tendency of the Stacked method to

produce inpaintings inconsistent with the rest of the image is apparent, contributing

to the highest errors associated with that technique. The Emergent MCPN produces

higher structural distortions compared to the Direct MCPN.
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Figure 3.15: Example output for the three tested inpainting methods for each experi-
ment dataset (from top to bottom: Facades, Map-to-Aerial, Night-to-Day, Cityscapes).
The reported metric values correspond to the inpainted area only
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Table 3.8: Inpainting Results for the four spatially-aligned multi-domain datasets.
Mean values along with corresponding standard deviations are reported. Metrics for
both whole image comparison (Whole) and inpainting comparison (Inpainting) are
shown. (Achievable Performance). § - 4,000 steps, † - Known Reconstruction RMSE,
‡ - Patch Consistency

Dataset
MCPN MCPN

Stacked
(Emergent Core) (Direct Core)

Facades
(Segmentation → Building)

Whole
SSIM ↑ 0.763 ± 0.044§ 0.784 ± 0.058† 0.720 ± 0.100†

RMSE ↓ 0.108 ± 0.031§ 0.113 ± 0.040† 0.118 ± 0.038†

Inpainting
SSIM ↑ 0.476 ± 0.109§ 0.505 ± 0.144† 0.453 ± 0.130†

RMSE ↓ 0.172 ± 0.051§ 0.183 ± 0.067† 0.184 ± 0.061†

Maps
(Map → Aerial)

Whole
SSIM ↑ 0.791 ± 0.070† 0.768 ± 0.074§ 0.744 ± 0.076§

RMSE ↓ 0.085 ± 0.031† 0.085 ± 0.030§ 0.113 ± 0.038§

Inpainting
SSIM ↑ 0.512 ± 0.174† 0.510 ± 0.175§ 0.404 ± 0.169§

RMSE ↓ 0.137 ± 0.051† 0.134 ± 0.050§ 0.183 ± 0.061§

Night-to-Day
(Day → Night)

Whole
SSIM ↑ 0.870 ± 0.068† 0.769 ± 0.093‡ 0.828 ± 0.103‡

RMSE ↓ 0.075 ± 0.041† 0.100 ± 0.038‡ 0.096 ± 0.055‡

Inpainting
SSIM ↑ 0.709 ± 0.167† 0.576 ± 0.148‡ 0.644 ± 0.178‡

RMSE ↓ 0.121 ± 0.067† 0.157 ± 0.060‡ 0.150 ± 0.076‡

Cityscapes
(Segmentation → Street)

Whole
SSIM ↑ 0.822 ± 0.031§ 0.793 ± 0.041§ 0.802 ± 0.047§

RMSE ↓ 0.093 ± 0.030§ 0.092 ± 0.023§ 0.093 ± 0.028§

Inpainting
SSIM ↑ 0.613 ± 0.077§ 0.610 ± 0.071§ 0.608 ± 0.077§

RMSE ↓ 0.150 ± 0.050§ 0.143 ± 0.037§ 0.147 ± 0.047§

3.5 Summary

The internal learning methods proposed in this chapter demonstrate the capability

of parameterising spatially aligned signals from multiple domains using convolutional

neural network architectures, harnessing the powerful priors induced by the deep convo-

lutional topology. This capability enables an internal solution to several image inverse

tasks, such as image inpainting or super-resolution, and easy application of additional

image-based guides. By definition, an MCPN model can readily be applied for any

number of domains, and it has been shown that it can work with domain shifts as large

as between image segmentation maps and corresponding natural images.

The presented results identify several trade-offs relating to the application of in-

ternal learning techniques based on a CNN architecture. First, the motivation for

exploring this type of solutions was that the same method can be applied to treat

images of various channel shapes. This property is particularly beneficial when work-

ing with satellite images, which have varying numbers of channels and different value

distributions depending on the type of pre-processing applied beforehand.
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The techniques presented in the chapter have been shown to be capable of several

different tasks, such as image completion or super-resolution, and can flexibly accept

various guidance signals at inference time, which is beneficial for satellite image pro-

cessing applications, where different sources of support data, such as SAR or historical

captures may be available.
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Learning from Language

The previous chapter has explored the potential of learning from a single sample with no

pre-training on the specific task of cloud removal, by relying on the priors extracted from

the inference sample. In this chapter, another source of priors is explored, embarking

on an attempt to learn from beyond the domain of the downstream task using language-

based models. This may appear familiar, as it follows the same principle as the wide

set of techniques commonly referred to as transfer learning [183]. However, transfer

learning [183] was largely popularised within the machine learning field long before

the rise of large-scale language-based models. As an example, a common transfer

learning practice is to initialise a network backbone with parameters trained on the

ImageNet classification task [184–186] to reduce the burden of learning the task of

interest. However, that usually still involves quite costly fine-tuning. In this work, a

special focus is put on use cases where the additional training costs are either absent or

trivially low (such as fine-tuning in a matter of several minutes) owing to the emerging

capabilities of large language-based models trained on a mix of text and visual data [94,

187] produced recently.

Instead of fine-tuning a deep neural network on the task of cloud removal, it is

explored how to directly use general language-based models for processing clouds in

satellite imagery. More specifically, two techniques are proposed in this chapter, (i)

employment of the pre-trained CLIP model for cloud presence detection, and (ii) em-

ployment of a pre-trained text-to-image StableDiffusion model for cloud removal. It is
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shown that transferring the knowledge gained in the wider domain of combined text

and images can lead to a non-trivial performance in a zero-shot setting, where the exact

type of operation is defined upon inference.

So far, the exploration of the applications of language-based models to satellite

image processing has been quite limited. At the time of writing, three published works

on the topic can be identified [188–190]. The first two [188, 189] were focused on

visual question answering, however, these methods focused on the setting, where custom

models are trained from scratch on task-specific datasets. On the other hand, the work

described in [190] involved fine-tuning a pre-trained CLIP model on satellite images.

This work aims to fill the gap by exploring the potential uses of language-based

models for processing clouds in satellite images. More specifically, the aim is to avoid

the need for extensive fine-tuning and instead rely on the emergent capabilities of

existing models. This approach can potentially lead to multiple benefits, ranging from

a flexible sensor-agnostic formulation, a powerful set of biases drawn from large-scale

image data, and reduced risks of overfitting that can normally occur during conventional

dataset-based training.

This chapter brings two major contributions in this context. First, the represen-

tations learned by the open-source CLIP model are used for detecting the presence of

clouds, with several approaches tested on datasets containing both Sentinel-2 and Land-

sat images. Second, a brand new set of methods is proposed and tested for conditional

MSI inpainting of satellite images based on StableDiffusion pre-trained models.

4.1 Detecting Presence of Clouds with CLIP

As the first use-case for language-based models, it is demonstrated that models trained

on general datasets of text and images have learned representations that are any useful

for processing clouds in satellite images, and the level of achievable performance is

reported.

This is motivated by two contexts. First, the understanding of the phenomenon of

clouds in satellite images by general language-based visual models determines whether

they are suitable for more complex tasks, such as cloud removal. Secondly, successful
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detection of clouds in satellite images is useful on its own, because the imagery affected

by clouds is not usable for many tasks. Hence, it is common to filter those data instances

out and exclude them from the analysis. In order to successfully filter this undesired

portion of data, cloud detection mechanisms are often used.

4.1.1 Summary of the CLIP Model

The recent years, especially after the introduction of the transformer architecture [117],

have brought a significant rise in deep learning solutions based on large-scale training on

text data. Shortly after, natural language supervision has been applied to visual data,

and in [187], language has been used to support the use-case of zero-shot classification

of images.

In the previous convention of deep learning classifiers, a model would be trained

to produce confidence for a predetermined number of classes, following an approach

similar to the seminal work of AlexNet [83]. In such a case, a convolutional architecture

was designed to produce 1,000-dimensional output, where 1,000 corresponded to the

number of classes in the ImageNet task. As can be expected, this approach leads to

fairly rigid classifiers, meaning that there is little space for applying those models to new

classification tasks. In such a context, the common approach to transferring knowledge

learned from one task to another is to finetune on the new task directly. This, however,

can bring certain disadvantages as it requires a new dataset to be provided, specific for

the new task, and it introduces the cost and inconvenience of executing and designing

another training process.

For those reasons, the inclusion of text-based conditioning in the models was an

important step in the development of versatile deep learning classifiers. Text input

data allows adjusting the behaviour of the model in a zero-shot setting. Instead of

having the model choose between the 1,000 static classes of ImageNet, the user of the

CLIP model can ask to assign an image to one of 10 new classes specified by them via

text during inference.

In the case of CLIP, this assignment, or classification, is carried out by measuring

the degree of alignment between the embeddings encoded from text and the embed-
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Figure 4.1: Overview of Contrastive Language-Image Pre-training (CLIP) method.
Figure extracted from [187]

dings encoded from the image. As shown in Figure 4.1, the embeddings are computed

using two separate encoder modules, one for text data and another one for images.

The alignment can be measured by computing a measure of alignment between the

embeddings, such as cosine similarity, as shown in the right-hand side of Figure 4.1.

The capabilities of the CLIP model are largely owed to two key factors, the dataset

it has been trained on and the method of training. The dataset, named WebImageText

(WIT), was built specifically with the intention of training the model on large-scale

data since the datasets existing at the time did not have sufficient volume. The WIT

dataset contains 400 million pairs of text and images downloaded from the web and

covering a very wide range of concepts, where queries were based on the presence

of a term in English Wikipedia (at least 100 occurrences of a term required). The

method of training was another crucial component in CLIP’s success. Specifically, it

relies on maximizing the cosine similarity between text and image embeddings from

corresponding pairs in a batch and minimizing the similarities between the text and

image embeddings across pairs. This is demonstrated in the left portion of Figure 4.1,

where a batch of N text-image pairs yields N2 similarity values, where only N of them

(the diagonal blue squares) are maximised as they correspond to the similarity within

individual matched pairs from the dataset.

The capability of the CLIP model to recognise cloud-affected satellite images can be

expected to rely on at least one key factor, that is the data the model has been trained
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on. At the time of writing this, the authors of the CLIP model have not disclosed

further details about the training dataset other than the short description in the paper

of how the dataset was built. However, since the trained model is open-source it is

possible to measure the capability of the model to process clouds in satellite imagery

in an empirical manner.

4.1.2 Proposed Solutions for Cloud Presence Detection

The approach to applying CLIP to satellite MSI images is not immediately obvious;

the CLIP model operates on RGB images, while a typical solution to detect clouds

in satellite imagery involves more than the RGB visible bands, such as infrared, and

is often sensor-specific. Some past works have explored the potential of an RGB-only

cloud detection model [26], but the task is considered significantly more challenging.

There exist several available CLIP models published along with the original manuscript,

each with a different image encoder. The official CLIP python package [191] contains 5

ResNet-based models (’RN50’, ’RN101’, ’RN50x4’, ’RN50x16’, ’RN50x64’) and 4 ViT-

based models (’ViT-B/32’, ’ViT-B/16’, ’ViT-L/14’, ’ViT-L/14@336px’), corresponding

to different sizes of models tested in the original paper. This variety in models cor-

responds to the two explored architecture types (ResNet and vision transformer) and

different model sizes with different levels of the trade-off between compute cost and

model capacity. For the experiments conducted with satellite images, the most effi-

cient vision transformer model in standard resolution is used (’ViT-B/32’) to minimise

inference cost. Since the model expects a constant input shape of 224 by 224 pixels,

bilinear interpolation with anti-aliasing is applied to the input before passing through

the network.

Four methods of employing the pre-trained CLIP model are considered here, all

shown in Figure 4.2. The first method (Figure 4.2(a)) is fully zero-shot and relies on

the embeddings encoded from two text prompts, one corresponding to the presence

of the clouds in the image and the other one to the absence. The text prompts were

arbitrarily selected as “This is a satellite image with clouds” and “This is a satellite

image with clear sky” with no attempt to improve them. Following the approach
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described in the CLIP paper [187], cosine similarity between the test image embedding

and the two text embeddings is computed, and the text embedding with the higher

similarity determines the assigned class (cloud versus cloud-free).

(a) Standard CLIP (b) Linear Classifier

(c) CoOp (d) Radar-Gradient

Figure 4.2: Explored methods of CLIP-based cloud presence detection. Method (a) is
the standard approach, while (b)-(d) techniques are based on a low-cost fine-tuning on
a small dataset.

The other three methods rely on a minor fine-tuning stage, which involves only 1,000

optimisation steps with a batch size of 10 (on samples outside of the test dataset), which

takes no more than a few minutes on a single consumer-grade GPU. The optimised

components are displayed in orange colour in Figure 4.2.

The second method (Figure 4.2(b)) involves training a linear classifier on top of

the image embeddings encoded by the CLIP image encoder. For this setting, text

prompts are not required, however, it is important to recognise that the image en-

coder weights still come from the training process based on the similarity between text

and image inputs) and the approach resembles many techniques from the domain of

transfer learning [183]. Another related method (Figure 4.2(c)) is based on the context

optimisation (CoOp) method [192], where additional context is prepended to the core

class prompts, consisting of a fixed number (in this experiment, 16) of tunable tokens

of the same dimensionality as text tokens. This context is then optimised during the
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fine-tuning process. Hence, methods (b) and (c) approach the fine-tuning process from

two opposite directions, where the linear classifier method attempts to optimise weights

applied to features encoded by the image encoder, while the CoOp method attempts

to optimise the text input before it is processed by the text encoder.

Figure 4.3: Examples from the CloudSEN12 [11] test dataset.

Finally, the fourth method shown in Figure 4.2(d) is a novel approach proposed here,

where a reference signal from a separate image, in this case a radar representation is

used as a source of information. This context is injected by training a linear probe

classifier based on the image encodings of both RGB test image data and a false-colour

composite of the SAR data (Sentinel-1 VV, VH, and mean of the two channels are

encoded as 3 input channels). Interestingly, even though radar false-colour images

might lie outside of the domain that CLIP was originally trained on, the performance

achieved by this method indicates that the image encoder is still capable of extracting

features that are useful for cloud presence detection.

The approaches are tested on two benchmark datasets: (i) CloudSEN12 [11], con-
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Figure 4.4: Examples from the SPARCS [193] test dataset.

taining Sentinel-2 and Sentinel-1 data (test dataset contains 195 cloud-free images and

780 cloudy images), and (ii) SPARCS [193], containing Landsat-8 imagery (containing

40 cloud-free images and 88 cloudy ones). By testing on two datasets with Sentinel-2

and Landsat-8 data, it is possible to measure the transferability of the proposed meth-

ods. Example samples from the CloudSEN12 test dataset are shown in Figures 4.3

and 4.4.

Another relevant aspect is that the annotators of the SPARCS dataset while la-

belling the images, have been shown false-colour images with bands B6 (SWIR), B5

(NIR), and B4 (Red) assigned to RGB channels, respectively [193]. While these images

are artificial in the sense that the channels do not correspond to RGB intensities, they

can be interpreted by a CLIP model. Hence, two versions of the SPARCS dataset are

tested here, one with the RGB bands and one with the false-colour images observed by

the annotators. Example samples (both real-colour and false-colour) from the SPARCS

test dataset are shown in Figure 4.4.
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The achieved performance is reported in Table 4.1 as true positive rate (TPR),

the fraction of all cloudy images detected as cloudy (Equation 4.1); true negative rate

(TNR), the fraction of all cloud-free images detected as cloud-free (Equation 4.2);

and F1 score, a harmonic mean between the ratio of correct predictions among all

cloudy samples and the ratio of correct predictions from all samples classified as cloudy

(Equation 4.3).

TPR =
TP

TP + FP
(4.1)

TNR =
TN

TN + FN
(4.2)

F1 =
2 · TP

2 · TP + FP + FN
(4.3)

As mentioned earlier, three types of test data are used (corresponding to three sets

of three columns in the table), starting with CloudSEN12 data with RGB Sentinel-2

input, and then Landsat-8 data from the SPARCS dataset with either RGB bands or

B6-B4 false colour composite bands. The rows in the table correspond to different

methods explored in this work:

1. Text Prompts: zero-shot classification with CLIP using text prompts

2. Linear Probe: linear probe fine-tuning

3. CoOp: Context Optimization technique

4. Radar: linear probe appleid to image and radar-based input (which can only be

applied to CloudSEN12 which provides both Sentinel-2 RGB and Sentinel-1 SAR

data)

Furthermore, the variants 2. and 3. are fine-tuned on one type of 3-channel input

and can be tested on another type of 3-channel data from a different sensor. This is

indicated by an additional letter, where (a) is used to signify training and testing data

coming from the same sensor, and (b) indicates the transfer across the sensor type.
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Table 4.1: Performance of cloud presence detection techniques for the tested datasets
and detection methods.

Test Dataset CloudSEN12 SPARCS
Modality S2/RGB L8/RGB L8/B6-B4

TPR TNR F1 TPR TNR F1 TPR TNR F1

1. Text Prompts 0.929 0.638 0.919 0.922 0.737 0.907 0.900 0.737 0.895

Trained on: S2/RGB L8/RGB L8/B6-B4

2a. Linear Probe 0.924 0.975 0.957 0.856 1.000 0.922 0.822 1.000 0.902
3a. CoOp 0.936 0.980 0.964 0.878 0.921 0.919 0.822 0.974 0.897
4a. Radar 0.930 0.960 0.959 N/A N/A N/A N/A N/A N/A

Trained on: L8/B6-B4 S2/RGB S2/RGB

2b. Linear Probe 0.961 0.759 0.950 0.811 1.000 0.896 0.811 1.000 0.896
3b. CoOp 0.988 0.578 0.943 0.789 1.000 0.882 0.844 0.974 0.910

The results in the first row with the zero-shot text prompt performance indicate

that the CLIP-based model combined with the employed text prompts can achieve a

high performance of at least 0.9 true positive rate, which means that the model can

be quite reliable at picking up the cloudy samples. However, consistently across all

three test datasets, the true negative rate is considerably lower, with values of 0.638 for

Sentinel-2 data and 0.737 for Landsat-8 data (regardless of the representation), which

means that more cloud-free images are classified as cloudy.

The true negative rate is considerably improved by fine-tuning. For the CloudSEN12

dataset, the true negative rate increases to 0.975 for the linear probe approach (2a),

0.980 for the CoOp approach (3a) and 0.960 for the radar-based variant (4a). The true

positive rate is consistently lower, meaning that some of the true positives are as a

result traded off for true negatives.

For the models fine-tuned on the Landsat-8 data, a similar effect is observed, with

a very high true negative rate, and the true positive rate decreasing considerably from

the level achieved in the fully zero-shot setting.

The transferability is tested by applying the models from Sentinel-2 to the SPARCS

dataset and the model trained on Landsat-8 B6-B4 to the Sentinel-2 images. In this

case, the Sentinel-2 models appear to transfer better than the Landsat-8 models as the

L8/B6-B4 model suffers a large decrease of TNR when applied to Sentinel-2 RGB data.
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True Positives

True Negatives

False Positives

False Negatives

Figure 4.5: Examples of the predictions produced by the CLIP model in a zero-shot
setting (no fine-tuning). The values above images correspond to the difference between
cosine similarity of the positive prompt and the negative prompt (high positive value
indicates overlap with the positive label).

However, a decrease in performance is observed upon transfer across modalities, which

could mean that the discriminative relationships of the CLIP encodings differ to some

degree depending on the sensor type and do not transfer as well, however, this would

need to be confirmed by further experimentation.

Further insight into the model’s behaviour can be obtained by inspecting some of

the samples from the four potential prediction types (true positive, true negative, false

positive, and false negative). A random 10 samples from each group are shown in

Figure 4.5 for (1) the zero-shot approach based on text prompts and in Figure 4.6 for

(2a) the linear probe trained on the Sentinel-2 data.

It is apparent from Figure 4.5 that the model is capable of picking up clouds, some
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True Positives

True Negatives

False Positives

False Negatives

Figure 4.6: Examples of the predictions produced by the CLIP model with a linear
probe trained on Sentinel-2 data. In this case, the values above images correspond to
the score computed by the linear classifier (positive values correspond to the positive
class).

of which are semi-transparent, such as the one in the fifth column of true positives.

However, it also picks up quite a lot of false positives, samples which should mostly be

trivial to the human eye or a pre-trained classifier. False negatives generally contain

difficult examples of thin clouds or clouds covering a very limited local region.

A model fine-tuned on Sentinel-2 date for 1,000 gradient steps performs considerably

better as shown in Figure 4.6. The number of false positives is reduced to only 5

samples, while the false negatives include predominantly visually challenging examples.

This is still quite similar to the sets of samples identified for the zero-shot model, which

could mean that the fine-tuning does not drastically change the types of errors made

by the cloud presence detector, but rather their prevalence.
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The results in Table 4.1 lead to the following conclusions. First, it has been found

that the features learned from large-scale datasets containing text-image pairs repre-

sent non-trivial knowledge for processing satellite imagery, as shown in the example

of detecting cloud presence. Second, while the fully zero-shot approach based on text

prompts can lead to non-trivial performance, the accuracy of the classification can be

increased at a low cost by a short fine-tuning stage. In that case, training a single linear

layer on top of the image features appears to be the most effective technique. Lastly,

it has been demonstrated that the technique can be applied across different modalities

(in this case Sentinel-2 and Landsat 8), where the model fine-tuned on one data type

can lead to good performance on another one.

4.2 Satellite Image Inpainting Using Text-to-Image Mod-

els

The experiments show that the CLIP zero-shot classifier pre-trained on a wide-context

dataset containing text-image pairs can detect the presence of clouds in satellite images.

This hints at the potential of employing general pre-trained models for processing

satellite images and motivates the exploration of related solutions for synthetic tasks.

The topic of text-conditioned image synthesis has gained considerable traction in

the recent years [94,104,105,116,118,119,194,195], with big improvements achieved in

the quality of generation. Similarly to CLIP, the solutions are often based on large-scale

datasets containing pairs of text and images, leading to models encompassing rich and

powerful priors. There are several generative architectures commonly used for text-to-

image pipelines. One of the earliest successful approaches, DALL-E [116], was based

on the transformer architecture [117] trained in an autoregressive fashion, achieved

by training the image as a sequence of tokens (corresponding to compressed image

regions) similar to the tokens derived from the text. This approach allowed to treat the

problem of text-to-image synthesis in a manner very similar to regular text synthesis

(since the joint text-image representation was expressed as a sequence of tokens), and

several other methods were based on a similar principle, such as CogView [194] or
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Parti [195]. However, the increased interest in text-to-image synthesis coincided with

another important advancement in the field of generative modelling, namely, denoising

diffusion of images [94, 104, 118, 119]. It has been shown that diffusion models have

the capacity to achieve a higher quality of synthesis than GANs [105], and soon after,

several manuscripts have been published where the image synthesis component was

designed as a diffusion model, including works such as GLIDE [104], DALL-E 2 [118],

Imagen [119], or Latent Diffusion [94].

A fundamental aspect of using text-to-image generative models for research is ac-

cessibility. In order to advance research further and develop new solutions, both infer-

ence source code and even more crucially, trained model weights need to be provided.

Training large-scale models from scratch is costly, for example, the earliest checkpoint

of StableDiffusion (1.1) has been trained for 431,000 steps with an effective batch size

of 2048 (32 clusters with 8 GPUs with 2 gradient accumulations and 4 samples per

GPU) [196]. The associated cost of training has been quoted as 600,000 USD by Sta-

bilityAI CEO, Emad Mostaque on Twitter [197]. More advanced checkpoints that were

released following version 1.1 can be expected to cost several times more. With these

levels of costs, it is difficult to imagine research groups and independent researchers

training these models from scratch in order to enable further research. Even if the

financial cost of training from scratch is not an obstacle, it is difficult to guarantee

that independent training runs of the same pipeline will yield models with equivalent

behaviour and knowledge, which means that the comparison of results from multiple

studies is not well grounded. Lastly, even if the same training run could be reproducible

and the training cost was not a limiting factor, it is important to acknowledge the envi-

ronmental impact of training large-scale models. As per model card [196], the estimated

carbon emissions associated with training the first checkpoint of StableDiffusion were

around 11,250 kg. For these reasons, the open sharing of model weights is important for

facilitating the further advancement of science. Among the models mentioned above,

only LatentDiffusion [94] (also known as StableDiffusion) and GLIDE [104] provide un-

restricted access to model weights, while DALL-E [116], DALL-E 2 [118], Imagen [119],

and Parti [195] do not give access to the model weights nor inference scripts. This
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study will be focused on pre-trained StableDiffusion models due to their high quality

of synthesis as well as the open-source code base and access to model weights.

At this point, it is important to again consider the data the pre-trained models

have been trained on. Unlike CLIP [187], StableDiffusion has been trained on a widely

available dataset from the LAION (Large-scale Artificial Intelligence Open Network)

organisation. The base dataset, LAION-5B [198], has been created by scraping a large

public web archive (Common Crawl1) in search for image components accompanied by

alt (alternative) text in HTML source code, followed by several filtering stages. As

a result, 2.32 billion images with English descriptions make up the LAION-2B subset

of the dataset. This dataset is expected a comparable level of prevalence of satellite

images to the level encountered in the world wide web since 2008 (beginning of the

Common Crawl project).

In this work, the potential of employing the StableDiffusion text-to-image model

for satellite image inpainting will be explored. Furthermore, two related challenges are

addressed; first, a custom pipeline is proposed that combines the Stable Diffusion in-

painting model with the ControlNet method [199] in order to allow additional guidance

from historical data (the standard version of the Stable Diffusion inpainting model does

not accept on additional guidance signals). Second, a technique based on Deep Image

Prior [139] is introduced with the aim to use the inpainting in the RGB channels for

completing the same region in a larger number of MSI bands in Sentinel-2 data.

4.2.1 Background

Denoising Diffusion of Image Data

StableDiffusion is an instance of a diffusion-based generative model. The denoising

diffusion process is a technique of generative modelling based on a chain of degradation

operations that links the distribution of observed data x0 with a simple prior distribu-

tion, such as a pure Gaussian. In the conventional setting, the operation of additive

Gaussian noise is used as degradation [103], however, other types of degradation have

also been explored [200,201]. During training, a neural network is optimised to estimate

1https://commoncrawl.org/the-data/get-started
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Figure 4.7: Example of a forward diffusion process chain (from left to right). The
sample at t = 0 is a clean image, while higher values of t correspond to the number of
times Gaussian noise (with a variance following a specific schedule) has been added to
the sample.

Figure 4.8: Diagram of training a Denoising Diffusion Model. At each step, a random
diffusion index t is sampled (equal likelihood) and the network is trained to predict
noise sample ϵ contained in the noisy sample xt.

the parameters required to reverse the degradation process. Most commonly, this pa-

rameter is the exact sample ϵ of added normal Gaussian noise present in the degraded

sample, which closely relates to the score-based interpretation of these models [202].

The degradation is formulated as the forward process q(xt|t−1) applied to an image xt

based on a temporal index t indicating the stage of diffusion (x0 is the beginning of the

diffusion chain, which represents a clean sample). In the case of Gaussian diffusion, the

forward process can be defined as

q(xt|xt−1) = N (
√

1− βtxt−1, βtI), (4.4)

where xt indicates a sample at the diffusion stage t, and βt is a parameter obtained

from the diffusion schedule, which controls the magnitude of the Gaussian steps taken

at each point of the diffusion chain. An example of a forward chain is illustrated in

Figure 4.7, for different values of t ranging from 0 (clean sample) to 875 (875 steps of

the forward process of Gaussian diffusion).

The corresponding reverse process is based on progressing through the same chain
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in the opposite order, and, if the Gaussian steps are small enough, it can also be

approximated by a Gaussian; with unknown parameters µ(xt, t) and σt:

q(xt−1|xt) = N (µ(xt, t), σ
2
t I) (4.5)

These parameters depend on the stage of diffusion t and the sample xt at that

stage and are quite difficult to approximate. A deep neural network is used to learn

this approximation, most commonly a convolutional encoder-decoder network, such as

U-Net [103].

During training, the network is trained with samples xt, where t is sampled from a

uniform distribution across all T indices in the schedule. This is illustrated in Figure 4.8,

where the clean sample x0 is used to compute a noisy sample xt. Noise is added to

the sample x0 (a clean training sample image) according to the forward process defined

in Equation 4.4. The error is computed between the ground truth ϵ and the network

output ϵ̂.

Figure 4.9: Diagram of sampling from a Denoising Diffusion Model. To generate a
sample xT is gradually transformed into x0 by predicting the noise and stepping through
the reverse diffusion chain.

During inference, a model trained to predict ϵ can be used with different sam-

pling methods, such as the conventional DDPM (Denoising Diffusion Probabilistic

Model) [103], or DDIM (Denoising Diffusion Implicit Model) [102]. As shown in Fig-

ure 4.9, the process begins with a sample from pure Gaussian noise, which is treated

as the sample xT at the end of the chain t = T . It then is passed to the sampling

loop, where a chosen sampler approximates a chain of samples in the reverse direction,

eventually reaching x0. The presented solution employs a more recent UniPC sam-

pler [203] for inference, as it has been demonstrated to yield excellent performance for
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small numbers of inference steps.

Figure 4.10: Diagram of training a latent diffusion model. In this case, encoder of
the autoencoder network is used to compress an image x0 to a latent code z0, and the
same approach as in conventional diffusion is applied to learn approximating the noise
ϵ present in a noisy sample zt.

Stable Diffusion Text-to-Image Model

Stable Diffusion is an instance of a latent diffusion model [204] focused on the text

conditioning modality. Latent diffusion is a type of image diffusion aimed at high-

resolution data. Apart from the core network used for the reverse process, it employs

an autoencoder to compress image input into a latent space (with lower resolution and 4

latent channels) so that the denoising diffusion process is performed in a more compact

domain than high-resolution images. As shown in Figure 4.10, the diffusion process is

applied to a latent code z0 computed by passing the clean sample x0 through a pre-

trained image encoder (obtained via autoencoder training, composed of an encoder and

decoder with a compressed latent space [114]). The code z0 is effectively treated as a

sample, and the network is trained to predict a sample present in the noisy state zt.

The inference is also similar (shown in Figure 4.11), as the process begins with a

Gaussian sample that is then assigned to state zT , and then subject to the sampling

loop. At the end of the sampling loop, once z0 is obtained, the latent code is fed into

the image decoder to obtain a clean image sample x0 in the original domain.

The work on latent diffusion also proposes a unified approach to conditioning the

process of image generation. One notable type of conditioning, and the subject of this

chapter, is text-based conditioning. In this case, the condition encoder ingests text

input y, as shown in Figure 4.12, and uses the encoding τθ(y) as the key input in the
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Figure 4.11: Diagram of sampling from a latent diffusion model. In this case, once
a latent encoding has been generated by reversing the diffusion chain, the code is fed
through the decoder part of the autoencoder network to generate an image.

Figure 4.12: Example of conditioning latent diffusion on text. This is achieved by using
an additional encoder for text and injecting the text-embedding into cross-attention
layers of the neural network.

cross-attention components of the U-Net model. The text encoder and the core U-Net

model are trained jointly with the standard loss used to approximate ϵ. The majority

of StableDiffusion models released to date follow this approach, where text can be used

to condition the synthesis of an image.

In the past few years, several approaches for employing denoising diffusion for the

task of image inpainting have already been explored. Some prominent examples include

Palette [129], where the network performing denoising diffusion directly in pixel space

(no compression) is also provided with an additional channel corresponding to the

inpainting mask, effectively serving as an extra condition present in the input. An

alternative approach of RePaint [128] shows how a pre-trained denoising diffusion model

can be used for inpainting with a different type of sampling technique, where the known

regions of the input (passed through the forward process) are mixed with the diffused

signal representation. Finally, StableDiffusion [204] also provides inpainting-oriented

variants (different from the regular text-only variants), where the underlying latent
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Figure 4.13: Diagram of Stable Diffusion Inpainting approach. The mask is interpolated
to the same shape as the latent representations. The masked input image is fed through
an image encoder, and along with the downsampled mask, it is concatenated with the
generated latent code zt.

space model besides the 4-channel latent representation accepts an extra channel for

the mask (downsampled to match the latent spatial shape). This is demonstrated in

Figure 4.13, where it is shown how the additional representations zc (4-channel latent of

the masked condition image) and mc (1-channel downsampled mask) are concatenated

with the input noisy state zt before entering the core network. The standard cross-

attention text-conditioning is employed too.

Lastly, another important component of the technique proposed in this work is

ControlNet [199], which enables the injection of additional spatial guidance into the

inpainting process. ControlNet has been introduced [199] as an extension to Stable

Diffusion with the aim of incorporating more image-based conditions into the synthesis

process. The method uses a separate encoding network to inject internal features to

the core Stable Diffusion U-Net network based on a pre-selected condition type, such

as Canny Edge. This is achieved by training a copy of some of the network’s modules

and merging the internal features of the copies and the originals via zero-convolution,

as shown in Figure 4.14. At the beginning of the training process, a zero-convolution

technique (1×1 convolution with all parameters initialised with zeros) nullifies the effect

of the added network to ensure the preservation of the features learned by the core

original model. It then learns to edit the internal feature representations of the core
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Figure 4.14: Diagram of the zero convolution technique [199]. The zero-convolution
elements consist of 1×1 kernels initialised with zero weight and zero bias.

Figure 4.15: Diagram of ControlNet technique applied on top of the text-based Sta-
bleDiffusion model.

network to satisfy a given control input image. For StableDiffusion, the first 12 encoder

blocks and 1 middle block are copied for the ControlNet module, and their external

features are injected into the skip connections of the middle block and the 12 decoder

blocks.

Figure 4.15 illustrates the full scope of ControlNet applied to StableDiffusion, where

it combines the text-based diffusion pipeline (as in Figure 4.12) with an additional com-

ponent of ControlNet, where a control image xcontrol is passed through a preprocessing

stage to obtain the control guide gcontrol, which is then passed to a trained ControlNet

module (trained on that specific type of guide). The outputs of the ControlNet module

are injected into the middle and decoder blocks of the core StableDiffusion model. In

the original ControlNet paper [199], several choices for the conditioning signal gcontrol

type are proposed, including Canny edge, Hough lines, user sketches, human pose, or

HED boundary detections [205].
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4.2.2 Proposed Method: Edge-Guided Inpainting

This work proposes to combine the components described in the above paragraphs into

an edge-guided inpainting framework. As mentioned earlier, the Stable Diffusion in-

painting model does not accept additional structural guidance into the process. On the

other hand, ControlNet has only been applied to the regular text-to-image variants of

Stable Diffusion, but not the inpainting one. At a high level, the edge-guided inpaint-

ing approach applies a pre-trained ControlNet model with a StableDiffusion inpainting

model. As a result, the model can inpaint portions of an image, based on an additional

control guide and text condition. This allows to apply StableDiffusion to satellite im-

ages, where a portion of a current image must be inpainted using information from a

historical example. As shown in Figure 4.16, this is achieved by modulating the inter-

nal denoising network representations with the signal from the ControlNet. The full

computation process is as follows: the denoised representation zt is concatenated with

the inpainted image condition xc aand the downsampled mask condition mc, which are

then all fed into the noise prediction network, responsible for approximating ϵ̂. The

noise prediction network is also fed with text-based conditioning encoded by the text

encoder and the internal features are modulated by the ControlNet module in response

to the control signal. This computation of ϵ̂ is used for diffusion reverse process sam-

pling to yield a generated code z0 starting from a pure noise sample zT . The generated

code z0 is passed through the image decoder to produce the output generated image

x0.

The pipeline has been tested with a historical edge-guidance and a simple prompt

of ”a cloud-free satellite image” as text input. However, there is a large degree of

flexibility for choosing different text prompts (including potential negative prompts)

to guide the output as well as different sources of structural information other than

historical image edges.

As a result, the framework can generate clean inpainted data based on the following

inputs: the main input image xc subject to inpainting, the inpainting mask mc, the

optional control guide xcontrol, and an additional (and also optional) text guide. The

complete flow of information is visualised in Figure 4.16.
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Figure 4.16: The Edge-Guided Inpainting diffusion pipeline used for this work employs
a ControlNet approach [199], with an inpainting StableDiffusion backbone.

4.2.3 RGB-to-MSI transfer with Deep Image Prior

The diffusion frameworks trained on large datasets of RGB images can be readily

applied to 3-channel satellite data, where the satellite RGB channels are likely the

most appropriate to use. Yet, MSI modalities like Sentinel-2 contain more channels in

their representation. Hence, inpainting in the RGB space may not be enough, when

more channels from the MSI representation are of interest.

In this work, the context of completing the inpainting task without large-scale

training on specialised satellite datasets is explored. To fulfil this criterion, the potential

of employing the Deep Image Prior approach [139] is investigated, where a randomly

initialised convolutional network is used as a source of prior for the inverse task of

inpainting. More specifically, a sequential approach is followed, as shown in Figure 4.17,

where the RGB images are first inpainted using the proposed edge-guided inpainting

diffusion tool, and after that, Deep Image Prior approach is applied to the original MSI

image stack, but with the incomplete RGB channels replaced by the inpainted content.

In this way, it is possible to test whether the information injected into the process by

the text-to-image model can be used to facilitate inpainting in the non-RGB bands.

For the Deep Image Prior component, a SkipNetwork with the same architecture
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Figure 4.17: Complete pipeline for multi-spectral satellite image inpainting. The pro-
cess involves two steps, where a pre-trained diffusion model is first applied to RGB
data for inpainting, and then a Deep Image Prior [139] approach is used to propagate
the inpainting in RGB space to all channels of the multi-spectral representation. The
arrows in the first step of the chain represent indexing operation.

as in the stacked variant from Chapter 3 is optimised with MSE loss backpropagated

from the known region for 4,000 gradient steps at a learning rate of 0.02. The known

region contains available pixels of all non-RGB bands as well as a complete inpainted

image of the RGB bands, arranged in the same fashion as the input representation.

4.2.4 Evaluation Method

The test dataset used for this study has been based on SEN12MS-CR-TS dataset [206].

A subset of 888 cloud-free Sentinel-2 test samples has been selected, each paired with the

oldest historical cloud-free Sentinel-2 sample from the exact same location. This enables

guidance of the inpainting process using historical data. The inpainting masks come

from real cloudy samples captured in the same region computed using the s2cloudless

tool [37].

The original Sentinel-2 data contain intensity images in [0-10,000] range and are

subject to the same type of rescaling and normalisation as in the original dataset

paper [77], followed by a clipping operation to constrain the samples to [0,1] range

expected by the diffusion frameworks. It is also ensured that the mean value of the

sample is not higher than 0.9 before the clipping operation to exclude saturated images

from analysis (that is how 888 samples are selected from the initial pool of 1,031

samples).

As shown in Figure 4.17, the process begins with the extraction of the RGB channels

from the input sample. These bands are then fed into the inpainting process based on

ControlNet and StableDiffusion. The inpainted RGB image is then incorporated into

92



Chapter 4. Learning from Language

Figure 4.18: Comparison of the two methods of filling the masked region in the input
to the diffusion models. Furthermore, the output achieved with the StableDiffusion
Inpainting scheme is shown for reference as a result of using each method.

the original MSI sample (at this point, the RGB bands contain complete filled images,

while the remaining channels do not) and supplied into the channel expansion process

based on the Deep Image Prio.

The two tested text-based models include the standard StableDiffusion inpainting

approach and the proposed Edge-Guided Inpainting approach.

4.2.5 Stable Diffusion Parameter Tests

As in the majority of the pipelines based on the denoising diffusion process, the op-

eration can be controlled via multiple parameters, and these parameters are generally

expected to have a considerable influence on the type of generated results. Here, the

impact of the following features is analysed: (1) the content of the masked region, (2)

the text-guidance scale, (3) the number of sampling steps, and (4) the edge-guidance

scale (which only applies to the edge-guided inpainting approach). The results are

shown in Table 4.2. For each tested parameter, the remaining parameters are set to

the values printed in bold.

First, an important decision to make is whether the inpainted region in the input

image should be filled with zeros or perhaps with some other content. This study is

heavily focused on the utility of historical optical data and hence, a possible alternative

is to fill these missing regions with the values extracted from the historical sample,

in order to inject some structure information into the network input. An example

of these two input variants is shown in Figure 4.18. It is found that injecting the

historical sample to the missing region in the network input is highly beneficial and can

greatly increase the quality of the produced output, especially in terms of structure, as
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indicated by the large jumps in SSIM in Table 4.2. This effect is found to be strong for

both standard StableDiffusion inpainting (inpainted SSIM goes from 0.54 to 0.67) and

Edge-Guided Inpainting (inpainted SSIM goes from 0.58 to 0.67). These numbers also

indicate that without using this technique, the edge-guided inpainting performs better

at reconstructing the missing region, which is consistent with the fact that it receives

additional guidance from the historical sample using ControlNet. However, once the

technique of historical input filling is employed, both methods appear to achieve a

comparable level of synthetic quality.

Another important parameter, commonly discussed in the context of StableDiffusion

pipelines, is the classifier-free guidance scale for the text prompt (here referred to as

text-guidance scale), as defined in [105]. Since additional information is supplied in the

form of historical data (either via ControlNet or input historical filling), it is possible

that text-based guidance is not as important in this use case as other priors instilled in

the parameters of the StableDiffusion network. To test that, the text-guidance scale has

been set to three distinct levels, ranging from 0.0 (no effective text guidance) through

1.0 to 7.5 (StableDiffusion default). Interestingly, while the differences are very small,

the text guidance appears to be less useful for the standard StableDiffusion inpainting,

with the performance slightly higher for low levels of text-guidance scale, while for the

Edge-Guided Inpainting model, it is the opposite. Furthermore, these values are all

very close to each other as shown in Table 4.2.

As in all denoising diffusion models, the sampling method and the sampling schedule

can make a big impact on the quality of synthesis and also allow to trade off the two

factors of the compute cost and output quality. However, since most of the discussions

on this topic assume the quality to correspond to the visual attractiveness and similarity

to the domain of realistic images, it is not obvious whether the same dynamics will be

observed for the task of satellite image synthesis. Furthermore, it is not clear whether

more can be gained by increasing the number of sampling steps since a large portion of

the necessary information could be coming from the historical reference and the known

regions of the unpainted region rather than from the wide domain knowledge. In this

study, the UniPC sampler [203] is used for all diffusion sampling, and the main tested
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Table 4.2: Parameter test results for the text-based models.

StableDiffusion Inpainting Edge-Guided Inpainting
SSIM (↑) RMSE (↓) SSIM (↑) RMSE (↓)

Whole Mask Whole Mask Whole Mask Whole Mask

Mask Blank 0.70 0.54 0.11 0.15 0.71 0.58 0.10 0.14
Content Historical 0.78 0.67 0.10 0.13 0.77 0.67 0.10 0.13

Text- 0.0 0.78 0.67 0.10 0.13 0.77 0.67 0.10 0.13
Guidance 1.0 0.78 0.67 0.10 0.13 0.77 0.67 0.10 0.13

Scale 7.5 0.77 0.66 0.11 0.14 0.78 0.68 0.09 0.12

20 0.78 0.67 0.10 0.13 0.77 0.67 0.10 0.13
Steps 50 0.77 0.66 0.10 0.13 0.77 0.66 0.10 0.13

100 0.77 0.66 0.10 0.13 0.76 0.66 0.10 0.13

Edge- 0.1 NA 0.78 0.67 0.10 0.13
Guidance 0.5 NA 0.79 0.69 0.09 0.12

Scale 1.0 NA 0.77 0.67 0.10 0.13

factor is the number of sampling steps. As in [203], 20 steps are reported to yield

good output quality with this sampler and we use this value as a lower limit for this

parameter. The synthesis quality is tested for longer sampling chains of 50 and 100

steps, and it is found that the increased number of steps does not have a beneficial

impact in this case, and in fact, can lower the quality of the produced output.

Finally, for the edge-guided inpainting method based on ControlNet, the influence of

the soft-edge HED conditioning can be controlled by another scale factor, as described

in [199], which corresponds to a factor applied to the ControlNet features before they

are added to the core network features. Here, the default value of 1.0 is tested, along

with 0.5 and 0.1 values that explore a more subtle conditioning scheme. It is found

that between the tested values, 0.5 appears to achieve the highest output quality and

is hence used for the subsequent section.

4.2.6 Multi-Spectral Inpainting Evaluation

The proposed method is compared against several alternative solutions. First, the

standard Stable Diffusion inpainting pipeline (with the same inpainting core as the

proposed solution) is tested alongside the proposed edge-guided inpainting as a bench-

mark to measure the utility of the historical edge data in the first stage of the process
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(the language-based inpainting). Second, two variants of Deep Image Prior are tested,

where the Deep Image Prior (DIP) method is used as the only inpainting method (as

opposed to the two-step approach outlined in the diagram in Figure 4.17 with the RGB

Diffusion models). The first variant of DIP, referred to as Direct-DIP, uses the same

convolutional neural network with the same parameters and is only supplied with the

image to be inpainted. The second variant of DIP (Direct-DIP w/ Historical) receives

a stack of the image to be inpainted and the historical sample (where the portion of

the mask corresponding to the historical image is set to all 1). Finally, as a purely

experimental reference, the performance achieved by applying the same type of DIP-

based channel filling as for the RGB inpaintings from Stable Diffusion is reported, but

for a case, where the RGB channels are populated with ground truth RGB data. This

is done in order to provide a reference of the potential channel fill performance if the

RGB inpainting performed in the first stage of the pipeline had no errors at all. This

is referred to as the ideal-RGB channel fill in the table.

Table 4.3: Inpainting results computed for all 13 channels of the multispectral images
in the test dataset.

Method SSIM (↑) RMSE (↓)
Whole Mask Whole Mask

SD-Inpainting + DIP Post 0.78 0.65 0.16 0.21
Edge-Guided Inpainting + DIP Post 0.62 0.48 0.37 0.48

Direct-DIP 0.64 0.45 0.38 0.53
Direct-DIP w/ Historical 0.85 0.74 0.14 0.19

Ideal-RGB Channel Fill 0.89 0.82 0.12 0.16

Table 4.4: Inpainting results computed only for the RGB channels of the multispectral
images in the test dataset.

Method SSIM (↑) RMSE (↓)
Whole Mask Whole Mask

SD-Inpainting + DIP Post 0.78 0.67 0.10 0.13
Edge-Guided Inpainting + DIP Post 0.79 0.69 0.09 0.12

Direct-DIP 0.72 0.58 0.23 0.31
Direct-DIP w/ Historical 0.88 0.79 0.08 0.11

For the diffusion-based approaches, all registered metrics in Table 4.3 indicate much

lower performance when operating on a stack of 13 MSI channels instead of 3 RGB
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channels when compared to Table 4.2. Furthermore, the simpler Stable Diffusion in-

painting technique appears to outperform the edge-guided approach for 13-channel

data, indicating that the inpainting produced by that method is better aligned with

the DIP-based channel-filling technique used in the second stage of the process. Further-

more, while the Direct-DIP results in poor performance, the Direct-DIP with historical

data is the most competitive, indicating that the simple method of filling all channels

from scratch with Deep Image Prior may be more powerful. Finally, neither method

reaches the performance achieved by applying the channel fill with ideal-RGB values

supplied, meaning that if the RGB inpainting was perfect, the two-stage technique with

channel-filling method would result in the highest performance.

Since the text-to-image models delivered a higher performance for the RGB-only

representation, that is another important context to consider. The test results for

the RGB channels are reported in Table 4.4, which shows increased performance for

the RGB bands across all methods, but for the two-stage methods, the edge-guided

inpainting performs marginally better than standard Stable Diffusion inpainting.

Visual examples of the achieved results are shown in Figure 4.19 (RGB bands) and

Figure 4.20 (13 bands). It becomes more apparent that Direct-DIP may be struggling

to produce good inpainting without any support structural information and with large

portions of the image missing. As in the case of all methods, the settings of DIP

optimisations could potentially be tuned further, however, that lies outside of the scope

of this work. Furthermore, despite the efforts to enforce the structure extracted from

a historical sample for the text-based models, both models appear to generate some

structurally inconsistent, yet visually appealing additions, which is likely responsible

for the lower performance achieved by those methods. In the conducted study, it is the

Direct-DIP with historical reference that appears to deliver the best results in both the

visual and quantitative context.

4.3 Summary

The models trained on the combination of text and image data can learn powerful

representations of the world from large-scale wide-context datasets. This could be
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Figure 4.19: RGB visualisation of 4 random samples drawn from the test dataset and
the corresponding output from each method. It is shown that the Direct-DIP struggles
to perform good quality inpainting with no extra source of information, producing
visually incoherent output. The text-based models appear to produce visually coherent,
yet inaccurate inpaintings, despite the efforts to inject correct structural information
into the process.

Figure 4.20: Comparison of the method output for all 13 bands of the first sample from
Figure 4.19. This further shows certain instabilities and distortions produced in the
output representation.
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useful for defining new applications for remote sensing data. It has been shown that

the CLIP model is capable of cloud presence detection in a zero-shot manner and that

low-cost retraining can further improve the performance.

Apart from analyzing existing images, the language-based models can also be used

for synthesis and it has been shown that the open-source Stable Diffusion models can

be employed for image inpainting. A method of injecting additional spatial guidance

(such as a historical image) was proposed as well as a DIP-based channel filling method

to propagate the solution produced for the RGB channels into the remaining channels

of a MSI representation.

It is shown that, even with structure-oriented adjustments, the general-purpose

diffusion models may not be immediately performant for the task of MSI satellite

image inpainting. Their high synthetic capability, while visually pleasing, appears to

lead to added unnecessary distortions in the output. It is likely for those reasons, that

the Direct-DIP baseline with a historical guide has been found to yield much higher

performance, owing to the simple convolutional priors that the method is based on and

easy access to structural guidance information.

There are several reasons why the application of text-based models may still be

deemed promising and motivate further work on the topic. First, the synthesis process

can be controlled via text-prompt in a zero-shot manner, which could enable a variety

of different applications in other areas, such as image augmentation. However, for the

specific task of image inpainting, these methods appear suboptimal when used in a

zero-shot setting.
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Simulation of Clouds in Optical

Satellite Images

A large number of cloud removal techniques are trained and evaluated on datasets

containing real cloud-free images paired with cloudy observations from a proximate

period, which may be a poor approximation of the ground truth. The difference between

the cloud-free proxy image and the factual state behind the cloud can be problematic

in the context of evaluating solutions (and potentially, this could also introduce noise

at the stage of training). As shown in Figure 5.1, the datasets containing real pairs

of cloudy and cloud-free images will often exhibit inconsistencies due to the changes

occurring on the ground between the acquisitions. The figure contains an image pair

from a commonly used SEN12MS-CR dataset [72], demonstrating that many details

present on the ground are not consistent across images (for example, one field in the

second crop goes has a bright brown hue in the clean image and green hue in the cloudy

image). Consequently, inaccurate ground truth samples could be used for evaluation

or learning if this approach is followed.

With the intention to expand the evaluation process and make it more reliable, the

technique of training and evaluating on simulated data is explored. The clear advantage

of the simulated data is that a synthetic cloud can be added to a cloud-free satellite

image with a guarantee that the ground surface remains the same.

The chapter begins by highlighting the data-related challenges with a summary of
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Figure 5.1: The approach of using pairs of real data often results in fundamental
differences of the ground surfaces. Examples from SEN12MS-CR [72]. It is apparent,
that some of areas significantly change their state among acquisitions.

existing approaches to obtaining paired cloudy data for cloud removal tasks is provided,

which is followed by the introduction of analysis of the novel tool developed as part of

this work, designed to generate an unlimited amount of synthetic pairs of cloudy and

cloud-free satellite images.

Apart from the advantages of simulated data in the context of model evaluation,

introducing synthetic data within the training process is beneficial too. First, it can

be used for performance tracking as another source of information for validating model

checkpoints. Secondly, simulating new data during training and minimizing the error

on the synthetic samples leads to a larger and richer dataset. In a real image dataset,

there can only be 1 or 2 (if both past and future captures are considered) cloudy samples

associated with each cloud-free image. In contrast, the same cloud-free sample can be

used to create a large number of simulated cloudy samples. This motivates the second

important context being addressed in this chapter, namely, the use of simulated data

for training.

In summary, the contributions of this chapter include the definition and implemen-

tation of SatelliteCloudGenerator, a versatile PyTorch-compatible tool for generating

clouds in optical satellite imagery and subsequent demonstration and comparison be-

tween deep neural network models trained on real and synthetic data.

5.1 Two Sources of Paired Cloudy Image Data

There are two distinct paths to obtain pairs of cloudy and cloud-free samples that have

been explored in the literature, one relying exclusively on real data and the other on
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simulated images. Both are motivated by a certain limitation of the real physical world.

The limitation is the fact that it is (most likely) not physically possible to acquire a

cloud-free observation and a corresponding cloudy observation, where all factors (such

as lighting, exact time and conditions on the planet’s surface), apart from the presence

of the cloud, are preserved.

The first approach to generating pair cloudy data relaxes this requirement for con-

stant factors and it links cloudy and cloud-free images that are proximate in time. This

occurs under the assumption that all other factors remain similar, rather than constant,

within some unknown margin. However, the assumption may be too optimistic, and

the conditions may vary enough to make the cloud-free sample a rather inaccurate ap-

proximation of the cloudy image with clouds removed. An example of that was shown

earlier in Figure 5.1.

This approach has been adopted in works such as [35, 64, 72, 74, 169, 207]. In [74]

and [35], Landsat image pairs are gathered with a time gap of 16 or 32 days. In [207]

this gap is up to 15 days apart, while in [64] it could be up to 35 days. These lengths

between acquired paired samples mean that the changes in the ground surface view

may be profound even without any clouds present in either image. In SEN12MS-CR

dataset [72], it is ensured that the optical cloudy and cloud-free images are captured

within the same meteorological season, which appears to be a rather loose constraint,

as illustrated in Figure 5.1. In the related work on SEN12MS-CR-TS dataset [169], 30

samples evenly spaced in time are captured for each ROI across the full year, yielding

temporal gaps of at least 12 days.

The alternative approach maintains the constant-factor requirement, by simulating

the cloud component and adding it to a source cloud-free image. In this case, the

compromise is that it is not guaranteed how accurate the simulated clouds are; they

could be a better or worse representation of the real phenomenon of clouds, depending

on the quality of the simulation engine.

A limitation shared by both approaches is that they both rely on the presence of

clear-sky data. This in itself enforces a very strong bias on the resulting datasets, since

only the subset of all ground data is processed. The correlation between the cloud
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cover and the state of the Earth’s surface is likely not strong enough to completely hide

away some features of the ground surface data. However, in the practical context, only

a finite number of image samples is acquired over a finite temporal scope, which can

contribute to substantial sampling bias. In the presence of this noisy sampling, the bias

of the cloud-free samples could be quite strong and it is not yet clear how that can be

mitigated apart from aiming for larger datasets.

The phenomenon of clouds in the Earth’s atmosphere is a complex process and it

may require a respectively complex and expensive computational simulation. Yet, the

majority of literature to date has focused on borrowing from the fields of computer

graphics, where the generation of random shapes that resemble structures encountered

in nature has been of interest for many years [208]. In the seminal paper, Perlin noise

has been introduced [208] as a relatively lightweight method for generating naturally

looking random structures. Almost three decades later, the approaches of applying

procedural noise for the simulation of clouds received some attention in the literature,

starting with a rather brief description in [209], and eventually including some of the

more developed use cases [58,65].

Other than that, many hybrid approaches were proposed, seeking a trade-off be-

tween the disadvantages of real and simulated data. In [75], cloud masks are extracted

from real images using either layer separation methods or channel threshold and then

used to synthesise a cloudy image. Some similar approaches have also been previously

applied to the problem of dehazing [73, 210], and later revisited for the thin cloud re-

moval problem [78]. In the case of [73, 78], the transparency is adjusted by channel

wavelength. In [211] a framework of cloudy image arithmetic is proposed, which relies

on extracting real clouds (rather than masks) from images and then the addition of

those clouds to new scenes.

In this work, a novel technique is proposed, where the simplicity of the Perlin noise

is combined with a flexible and versatile open-source framework for simulating realistic

clouds. It enables previously unexplored features such as control over the scale of the

synthesised clouds, the thickness of the clouds, the influence of the ground image over

the perceived colour of the cloud, spatial misalignment of the cloud layer between im-
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Figure 5.2: Diagram of the SatelliteCloudGenerator pipeline for generating an image
with cloud and shadow presence from a cloud-free source image.

age channels, blurring of the cloud, simulation of cloud shadows, and channel-specific

magnitude. It is demonstrated how these settings are managed by adjusting configu-

ration objects and how the generated cloud masks and shadows can be converted to

segmentation masks if required.

In summary, the SatelliteCloudGenerator1 framework provides a high level of flex-

ibility for generating an unlimited number of cloudy-clear image data pairs.

5.2 SatelliteCloudGenerator Framework

What follows is a more in-depth description of SatelliteCloudGenerator, starting from

the method of noise generation and then progressing to the analysis of specific parame-

ters that control features of the generated data. An outline flow diagram of the internal

operation of SatelliteCloudGenerator is shown in Figure 5.2, where a cloud-free source

image Iclear is supplied as input and a cloudy image Icloudy is returned as output.

1https://github.com/cidcom/SatelliteCloudGenerator
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Figure 5.3: Diagram of the SatelliteCloudGenerator cloud generation component.

Furthermore, the core component responsible for generating a cloud mask and a

cloud image is shown in more detail in Figure 5.3 and a similar (but not the same)

functionality responsible for shadow generation is shown later in Figure 5.17. The

following paragraphs provide detail on the pipeline represented by these diagrams.

5.2.1 Synthetic Shape

The key structure of the generated clouds is derived using a function based on Perlin

noise [208], as indicated by the green region of the diagram in Figure 5.3. The use

of Perlin Noise has been explored in earlier literature [58, 65, 209], but little detail is

provided about the generation process. This work explicitly reports on that and defines

a set of parameters to simulate a diverse range of cloud transparency maps.

The first stage of the process involves generating the base shape of the cloud trans-

parency map. This can be done using procedural synthetic noise generation methods,

and here, a Perlin noise πs generated at several harmonic scales s is used to generate

the resulting cloud shape mask MC . As shown in Figure 5.4(a)-(c), Perlin noise can be

generated at various scales, resulting in different frequencies present in the spectrum.

These different scales can be weighted with scalar factor ws and summed in order to

generate more complex-looking noise structures, as shown in Figure 5.4(d).

MC =

N∑
s

wsπs (5.1)
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Figure 5.4: Demonstration of the Perlin noise generated at several scales (32, 16, 8)
(a)-(c) and the result of their weighted sum (d). An example of the resulting cloud
mask mixed with a real image is shown in (e).

Figure 5.5: Example of a threshold of 0.30 applied to the cloud mask from Figure 5.4.

The weights ws applied to individual shapes at each scale s control the spectral

content of the image (spatial frequency domain). Hence, they can be adjusted to

obtain shapes that are smoother by applying lower weights for finer scales, or sharper by

increasing the weight of those scales. This is controlled by the decay factor parameter.

By default, this factor is set to 1, and higher values will result in smoother shapes. The

decay factor df parameter corresponds to the exponent, to which the base of each

weight ws is raised. This base corresponds directly to the scale number s:

ws = s(df ) (5.2)

The resulting shape computed using the Perlin noise method is likely to have a few

sparsely distributed global minimum points, instead of a larger region of floor values,

which would be required to produce larger areas in the image with no clouds present.

To produce such an effect, a clear threshold can be applied, which will assign a value
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Figure 5.6: Example of range adjusted to [0.0, 0.5] from the original shape

of 0.0 to all values of MC below that threshold, as illustrated in Figure 5.5. For a noise

shape MC scaled to the range of [0,1], the threshold τc is applied as:

MC ←
ReLU(MC − τc)

max(MC)− τc
(5.3)

The denominator of (max(MC)− τc) is used to rescale the range of the noise shape

back to [0,1].

Once the shape passes through the threshold operation, the value range can be

adjusted by setting the min lvl and max lvl parameters, which shift the minimum

and maximum value of the shape to these two levels, correspondingly. For example, a

min lvl value of 0.0 will indicate that the most transparent pixels will have no cloud

cover at all. By increasing the min lvl it can be ensured that all pixels have cloud

presence at least at that level. An example of range adjustment is shown in Figure 5.6.

This gives the properly scaled transparency mask MC for the cloud:

MC ← min lvl + MC ⊙max lvl (5.4)

The shape mask MC adjusted to the range of [min lvl, max lvl] is treated as the

final transparency map of the simulated cloud. The last step of the process involves

using this mask in a mixing operation with the clear-sky source sample. The mixing

operation for the clouds is defined as

Icloudy = Iclear ⊙ (1−MC) + MC ⊙ Icloud, (5.5)
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Figure 5.7: Varying levels of locality degree obtained for a range of locality degree

parameter values.

where the output is the cloudy image Icloudy, based on a source clear-sky image Iclear

and a cloud-component image Icloud. In the simplest setting, the cloud-component

image Icloud could be equal to a constant colour of the ambient cloud, however, the

subsequently introduced feature attempts to make this aspect more realistic.

5.2.2 Cloud Locality Degree

Another desirable feature is to be able to make the generated clouds more local. In

many cases, the clouds will only occupy a limited area of the image, as opposed to an

approximately uniform spread generated by the Perlin noise method. The approach

proposed in this work is to multiply several generated cloud mask shapes to increase

the sparsity of the cloud shape, which is performed directly before the thresholding op-

eration, as shown in the diagram in Figure 5.3. Each shape in multiplication decreases

the likelihood of a high value of cloud thickness being preserved in the resulting prod-

uct. After multiplication, the cloud shape is rescaled to [0,1], and a similar process of

applying threshold and then scaling to the range between min lvl and max lvl is per-

formed. An example is shown in Figure 5.7, where the parameter of locality degree

indicates the number of noise shapes multiplied by each other. As shown, the clouds

become sparser with the increasing value of this parameter.

Notably, a changed locality of the clouds can also be achieved by increasing the

clear threshold value, as shown in Figure 5.8. This, however, brings another effect of

sharper cloud edges compared to the example with changed locality degree (Figure 5.7).
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Figure 5.8: Different degrees of locality can also be achieved by adjusting the
clear threshold parameter value, but the cloud edges tend to become sharper.

Figure 5.9: An example of channel misalignment (b) applied to a cloud shape (a). The
result of mixing the cloud-free image with the channel shifted cloud shape is shown
in (c).

Effectively, the proposed tool provides two distinct ways of producing sparser clouds

with distinct visual effects as illustrated by Figures 5.7 and 5.8.

5.2.3 Channel Misalignment

The real cloud data will often exhibit an effect of channel misalignment, where in-

dividual channels of the cloud object are spatially misaligned due to the velocity of

the acquiring sensor (if the individual channels are sensed at slightly different time in-

stants) [75]. This effect can be simulated using the channel offset parameter, which

determines the maximum possible offset between two consecutive channels in either

the x or y spatial dimension of the image, in terms of the number of pixels. In the

generator, the exact value of shift in each dimension will be sampled uniformly from
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Figure 5.10: An example of a cloud with colour adjusted by the ground reflectance.
Icloud based on the ground colour (a) and the result of mixing using such a base cloud
colour (b).

[-channel offset, +channel offset], resulting in a range of potential discrete offsets.

Subpixel values are not considered. An example of the feature is shown in Figure 5.9.

5.2.4 Cloud colour

As described in an earlier work of [75], the clouds present in satellite imagery do not

generally resemble a purely white component, but rather, are coloured by the ambient

light reflected from the ground.

The cloud colour will tend to be similar to the mean colour reflected from the

ground surface in that area. This colour can be computed by averaging all pixels

(mean value per channel) in the source clear-sky image. Furthermore, this effect is

partially dependent on the cloud thickness, meaning that the thicker cloud will let

through less light from the ground and therefore, the influence of the ground colour is

weaker.

To simulate this feature, the colour cloud component Icloud is adjusted to a value

between pure white and the average normalised colour γ of the clear ground image

Iclear, which is performed after the channel misalignment operation. The ambience

colour γ is normalised by scaling the maximum value to 1. In effect, the cloud colour

component Icloud receives the following assignment:

Icloud ← 1⊙ (1−MC) + γ ⊙MC (5.6)
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Figure 5.11: Example of cloud-free and cloudy regions masked from a real cloudy
sample.

Figure 5.10 shows an example of Icloud (left) and the final result Icloudy of mixing

with the colour cloud base (right).

5.2.5 Channel-Specific Magnitude

In several works [78, 212] it has been noted that the exact magnitude of the cloud

transparency mask will depend on the wavelength of the specific image channel. This

means that the phenomenon of cloud presence in satellite images does not only vary

across space but also across sensor channels. In the context of evaluating the techniques

for detection and removal of clouds, this aspect is particularly important, in order to

make the simulated data as similar as possible to the real data. During training, this

could also be important for many tasks, since optimizing the loss only on simulated

clouds could make the real clouds be perceived as out of domain objects and as a

consequence, prevent successful detection or removal.

The intensity of the cloud component can be adjusted by applying a set of channel-

specific weights to Icloud before mixing with the cloud-free input image, as shown in

Figure 5.3. However, it is not immediately clear what the values of those weights should

be.

In this work, the channel magnitude weights is extracted from real cloudy images

accounting for the ratio ρ between a selected statistic feature cclear in the cloud-free

region and another statistic feature ccloud in the cloud-affected region of the image.

Figure 5.11 demonstrates how a real cloudy sample can be used for sampling cloud-free

and cloudy regions using the cloud detection technique of s2cloudless [21].
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Figure 5.12: Histogram curves for the example image. In each case, it is shown that the
cloudy region (orange plot) contains higher values, but also exhibits some resemblence
to the cloud-free histogram (blue) due to the leakage.

ρ =
ccloud
cclear

(5.7)

For example, the statistic feature can be chosen as the mean reflected colour. How-

ever, in some cases, the cloudy region may be heavily influenced by the non-cloudy due

to the likely presence of nearly-cloud-free pixels in the cloud mask, as illustrated in Fig-

ure 5.11. This interference can lead to an underestimated reflection statistic from the

cloudy region. To reduce this effect, the statistic ccloud is instead selected as the 95%

quantile of the distribution observed in the cloudy region. This value can be expected

to correspond to be close to the maximum reflected value in the true cloudy region,

with more stability than the maximum value (100% quantile). This approach should

work well for the vast majority of scenarios, as long as more than 5% of the cloud mask

coverage does, in fact, contain a cloud.

A further illustration of the relationship between the distribution of values in the

cloudy and cloud-free region is shown in Figure 5.12, where histogram curves are shown

for the cloud-free (blue) and cloudy (orange) region of the image, individually for each

band. It is apparent that the cloudy region tends to contain higher values for each

channel. The leakage of cloud-free pixels to the cloud mask can also be observed,

manifested by similar histogram shapes for the lower values. It may be worth comparing

these curves to the histogram curves of a real completely cloud-free image from the same

location and proximate time, as shown in Figure 5.13. It appears that the histogram

curves extracted from the cloud-free region of a cloudy image, and the curves extracted
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Figure 5.13: Histogram curves for the example cloud-free image. The histogram curves
exhibit some resemblance to the cloud-free histogram curves extracted from the cloud-
free region of a cloudy image.

from the cloud-free image are very similar.

Since the cloud-free mask is generally unlikely to contain any clouds, the statistic

cclear extracted from that region can be closer to the centre and is indeed selected as

the central 50% quantile (median) of the distribution.

ρ =
c95%cloud

c50%clear

(5.8)

The ratio ρ can then be multiplied with the statistic ĉclear extracted from a new

cloud-free image and give a predicted channel weight vector ĉcloud for the cloud strength:

ĉcloud = ĉclearρ (5.9)

The cloud component Icloud is then multiplied by ĉcloud to give a magnitude-adjustment

cloud component:

Icloud ← ĉcloud ⊙ Icloud (5.10)

Figure 5.14 shows the effect of applying this approach, showing that the application

of the CSM scaling results in an image more visually similar to a real reference (in both

cases, the values go well above 1.0 and are hence saturated in this figure).

More insight can be obtained by exploring the histogram curves within each band

for the three images in Figure 5.14. This is shown in Figure 5.15, where each row shows

the cloud-free and cloudy histograms for each image. It is apparent that a simulated
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Figure 5.14: Example of a sample simulated with (c) and without (b) channel-specific
magnitude (CSM) scaling. The real image reference used for magnitude scaling is shown
in (a).

Figure 5.15: Comparison between the cloud-free and cloudy histogram curves between
a real image (top), a simulated image with naive magnitude scaling (middle), and
channel-specific magnitude scaling (bottom). It can be observed that the channel-
specific magnitude histogram curves cover value ranges more similar to those in the
real cloudy image. Plot axis are the same as in Figure 5.12 and 5.13, but are omitted
for clarity.
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Figure 5.16: Example of the ground blurring effect. Locally varying Gaussian blur
kernel is applied to the image to yield a locally blurred ground image (a), which can
then be used as the representation of the ground in the mixture (b).

image (middle row) results in an unnatural peak around the value of 1.0, and the

cloudy colour distribution (orange) rarely exceeds the range of the cloud-free colour

distribution (blue), as it should in a real image (top row). However, if channel-specific

magnitude (CSM) feature is applied, the range of intensities is more similar to a real

cloudy sample and consistently higher than the cloud-free region range.

5.2.6 Ground Blurring

Another effect of the through-cloud scattering, besides changed cloud colour, is the

blurring of the underlying ground image, as identified in [75]. There, the source clear-

sky image is transformed into a mixture of the original image and a blurred version

(blur with a constant Gaussian kernel), performed based on an alpha mask dependent

on the cloud thickness.

Here, a more precise approach is developed by applying convolution to the source

clear-sky image Iclear with a locally changing Gaussian blur kernel h(), as opposed to a

static one. The variance of the used kernel is proportional to the cloud thickness MC ,

and can be adjusted by multiplying the modulating signal MC by the blur scaling

factor β.

Iclear ← Iclear ∗ h(βMC) (5.11)

By default, this value is equal to 1.0, when the ground blurring effect is applied. It
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Figure 5.17: Diagram of the SatelliteCloudGenerator shadow generation component.

can also be disabled by assigning 0 to the blur scaling factor β.

Figure 5.16 illustrates the output of the blurring operation (a) as well as the final

mixture output (b).

5.2.7 Ground Shadow

Satellite images with cloud presence will often include shadows cast on the ground

surface. Depending on the sun’s angle and other conditions, the shadows present in

the image could be a result of clouds that are outside of the view. For that reason, the

shadows generated in an uncorrelated fashion could be a plausible representation of a

possible event. An example is shown in Figure 5.18. The mixture process for a shadow

is similar to the cloud mixing operation, in a manner analogous to Equation 5.5:

Iclear ← Iclear ⊙ (1−MS) + MS ⊙ Iclear (5.12)

but since the shadow component image Ishadow can be approximated by a zero constant,

the operation will simply be:

Iclear ← Iclear ⊙ (1−MS) (5.13)

Similarly to the cloud example, a simple mask, such as one shown in Figure 5.18(a),
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Figure 5.18: An example of a shadow generation feature.

can be mixed with a clear image to achieve a simulated shadow in the image as in

Figure 5.18(b):

5.2.8 Configuring Cloud Generators

The use of synthetic noise source allows to generate effectively an unlimited number of

cloudy samples for every single cloud-free source image. Consequently, it is possible to

sample from a very wide distribution of samples, much larger than what can be stored

and packaged into a single dataset. To model this source of data as a sampler, this

work introduces modules known as Cloud Generators.

The introduction of Cloud Generators allows to encapsulate a specific simulation

configuration (corresponding to a type of generated clouds) with a sampling function.

A Cloud Generator module behaves in a manner similar to torchvision image augmen-

tation modules and inherits from torch.nn.module. That way, new samples of specific

type can be generated by simply passing through this module.

Four predefined configurations are provided in the software release, and new ones

can be created as a Python dictionary. Table 5.1 contains the parameter levels for

each of these four configurations. The first one uses a wide range between min lvl and

max lvl values to simulate large thick clouds in the image. The other three generators

focus on more specific types of clouds, namely, local (thick clouds covering a smaller

portion of the image), thin (local semi-transparent clouds), and fog (semi-transparent

layer over the entire image). Thick clouds are achieved by setting the max lvl parame-

ter to 1.0, meaning that portions of the image will contain pixels completely dominated
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Figure 5.19: Random samples synthesised using 4 different Cloud Generator configu-
rations used for this work.
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by the cloud component. The thick and local configurations differ only by value of the

locality degree parameter, where thick has that set 1 (large clouds), and local has

it set to a [2,4]2 range (various degrees of more local clouds). The thin configuration

limits the max lvl parameter to [0.4,0.7] range, to ensure semi-transparency. Finally,

Fog lifts the min lvl parameter to [0.3,0.6] range, resulting in the full image containing

a semi-transparent cloud.

Table 5.1: Configuration parameters for four types of clouds.

Parameter Config: Thick Config: Local Config: Thin Config: Fog

min lvl 0.0 0.0 [0.0,0.1] [0.3,0.6]
max lvl 1.0 1.0 [0.4,0.7] [0.6,0.7]
threshold [0.0,0.2] [0.0,0.2] 0.0 0.0
locality degree 1 [2,4] [1,3] 1

decay factor 1.0 1.0 1.0 1.0
cloud colour True True True True
channel offset 2 2 2 2
blur scaling 2.0 2.0 2.0 2.0

Example samples from each configuration are shown in Figure 5.19.

5.2.9 Generation of Segmentation Masks

For many applications, especially that of cloud detection, segmentation labels are re-

quired to train the models. Since the cloud simulation tool described herein has direct

access to the cloud mixing mask, it can be used to generate discrete segmentation data.

The process of transforming the exact cloud and shadow mixing masks MC and

MS to discrete segmentation-like labels is as follows. The format of the segmentation

labels in this example will follow the approach in CloudSEN12 [11], but could be easily

adapted to other formats. In this case, the segmentation map is composed of 4 classes,

0 for clear sky, 1 for thick cloud, 2 for thin cloud, and 3 for cloud shadow. This way,

the label output Mseg can be based on 3 binary masks:

Mseg = 1⊙Bthick + 2⊙Bthin + 3⊙Bshadow (5.14)

2For any part of the configuration expressed as range, the used value is extracted by sampling from
a uniform distribution (discretised, if necessary).
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Figure 5.20: Example of a precise segmentation mask derived from the simulation tool.

where Bthick, Bthin, and Bshadow are the binary segmentation masks for thick clouds,

thin clouds, and shadows, respectively. The values of these binary masks can be derived

directly from the cloud and shadow transparency masks based on a range of values that

should result in a positive binary value. An example of the process of translating a

cloud mask and a shadow mask into a segmentation mask is shown in Figure 5.20.

In the cloud detection training example that follows in the next paragraphs, both

thick and thin cloud classes are merged in to a single class representing a cloud. In

this case, any value above 0.1 for the cloud transparency mask or shadow transparency

mask results in a positive binary value for that pixel. For pixels with both cloud and

shadow presence, the cloud label is assigned.

5.3 Comparison to Real Data: Cloud Detection

The first experiment to show the use of synthetic data for training and evaluation

is focused on the task of cloud detection. For this task, the architecture of Mo-

bileNetV2 [213] (which achieved the highest performance in the CloudSEN12 paper [11])

is trained from scratch on Sentinel Level-2A images. The networks are trained from

scratch (no pretraining) in order to match the exact optimisation conditions for the ex-

plored data variants. The baseline variant (a) is optimised on the manually annotated

data of real clouds sourced from the official high-quality subset of CloudSEN12 dataset

(the first released version) [11]. The alternative variants (b)-(d) use the clear images

from that subset and simulate the clouds using the simulation method proposed in this

work. The variants involving the use of simulator data include two variants that use

samples simulated without channel-specific magnitude (b) and (c), and two variants (c)
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and (d) where the channel-specific magnitude is used. In each case, a fully synthetic

approach is tested as in (b) and (d), as well as a hybrid approach that mixes 50% of

real data with 50% of simulated data as in (c) and (e).

For this experiment, the network operates on the bands contained in the Sentinel-2

L2A product. The networks are trained with the standard cross entropy loss for 3

classes (clear, cloud, shadow), until a point where the validation loss does not decrease

for 240 epochs. Each batch contains 32 clear images and 32 cloudy images, but the loss

on the clear images is multiplied by a factor of 0.1 so that the cloudy images are pri-

oritised during learning. The weights parameters are optimised using an AdamW [214]

optimiser with the initial learning rate of 10−3, which is scaled down by a factor of 0.1

whenever the validation loss does not decrease for 128 epochs.

As a result, each network has been trained for about 20,000 optimisation steps until

the validation loss ceased to improve. Although this process could be tuned further

to optimise various learning hyperparameters and yield a lower validation loss, the

motivation for the experiments conducted here is to compare the effect of the real or

simulated training data for these models.

The metrics reported for the performance were selected based on the CloudSEN12

work [11], where Producer’s Accuracy (PA), User’s Accuracy (UA) and Balanced Over-

all Accuracy (BOA) are reported. The first two metrics are more widely known in the

field of object classification as Recall (Producer’s Accuracy) and Precision (User’s Ac-

curacy). Finally, the false positive rate is also reported in addition to the metrics used

in CloudSEN12.

The Producer’s Accuracy (PA), or Recall, is computed as the fraction of positives

that are correctly detected. For an example of the cloud class, it corresponds to the

number of correctly detected cloud pixels divided by the number of all true cloud pixels.

It can be interpreted as an approximate probability of a pixel containing a cloud being

assigned cloud class by the model. A high level of PA means that a large portion of

the cloud present in the image is contained in the cloud mask.

PA =
TP

TP + FN
(5.15)
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User’s Accuracy (UA), or Precision, corresponds to the fraction of all positive de-

tection that are correct detections. For the example of the cloud class, it is computed

as the number of correctly detected cloud pixels divided by the number of all pixels de-

tected as cloud. It can be interpreted as an approximate probability of a pixel detected

as cloud containing, in fact, cloud. A high level of UA means that a large portion of

the cloud mask produced in the model contains cloud pixels, with minimal leakage of

non-cloudy pixels into the mask.

UA =
TP

TP + FP
(5.16)

The Balanced Overall Accuracy (BOA) is the average of True Positive Rate (Pro-

ducer’s Accuracy or recall) and True Negative Rate. This is particularly helpful for

non-balanced datasets, where there is a significant imbalance between positives and

negatives in the ground truth. The true negative rate corresponds to the ratio of all

negative instances correctly labeled as negatives.

BOA =
TP

TP+FN + TN
TN+FP

2
(5.17)

Finally, False Positive Rate (FPR) is provided as the rate of falsely rejected positive

instances. For the example of cloud detection, it can be interpreted as the number of

pixels incorrectly detected as cloud divided by the total number of cloud-free pixels.

FPR =
FP

FP + TN
(5.18)

Table 5.2 contains the metrics computed on the cloudy images of the test dataset

containing the original real cloudy samples. In terms of balanced overall accuracy for

the cloud class, the performance is quite comparable across variants, with the model

trained on real data performing best (0.79). Yet, the models (b) and (d) trained

exclusively on simulated data can achieve non-trivial performance of 0.75 and 0.78,

respectively. This also demonstrates the improvement achieved with realistic channel-

specific magnitude (CSM) feature of the simulator. This improvement is also observed

for the hybrid approaches (c) and (e), where the BOA increases from 0.73 to 0.76 for
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the clear class, and from 0.71 to 0.74 for the shadow class.

These observations motivate two important conclusions. First, it is possible to

train cloud detection models exclusively on simulated data and achieve good perfor-

mance when tested on real samples. Second, the channel-specific magnitude appears

to consistently lead to improved accuracy on real test data.

An important aspect of this test that should be acknowledged is that the real data

labels have been produced by humans, who have inevitably instilled some bias into

the ground truth. This bias is the net effect of many factors and may be difficult to

determine precisely, however, it can be understood that any type of error consistently

produced by humans leads to a certain bias in both real training and test data. Con-

sequently, the models trained only on simulated data (b) and (d) had no access to

observe this type of bias, yet are expected to reproduce it when tested on real data.

Hence, they may be put at an unavoidable disadvantage. To understand this effect

better, the models (c) and (e) can be inspected. In terms of BOA, these models per-

form marginally lower for the cloud class (both scoring 0.78 compared to 0.79 achieved

with (a)), meaning that the presence of simulated data in the training samples makes

it more difficult to learn the biases present in the real data.

The other metrics beyond BOA provide more insight into the results. Producer’s

Accuracy (PA), as discussed earlier, measures the amount of coverage for each class,

which can be understood as how much of the present class is actually contained in

the detected region. In this case, all of the models trained on simulated data (b)-(e)

strongly outperform the real data model (a) for the cloud class. It means that those

models are more likely to contain the complete set of cloudy pixels in the cloud masks

they produce, which could often be considered beneficial for the purpose of masking out

the cloud-affected regions. Conversely, they consistently achieve lower User’s Accuracy

(UA), which means that the cloud masks they produce will often contain a higher

portion of cloud-free pixels.

This leads to one more conclusion, which is that the models trained with simulated

data are less conservative in the process of producing cloud masks, meaning that they

tend to overestimate the cloud-affected region compared to the model trained on real
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data. Depending on the application, this behavior could be considered more or less

beneficial (this depends on whether precise cloud-free region masks with no presence

of cloud are prioritised or not).

Table 5.2: Evaluation on the real cloudy images for the cloud detection task.

Model Trained on Label Test on Real: Cloudy Subset
BOA PA UA FPR

Cloud 0.79 0.68 0.85 0.11
(a) Real Clear 0.78 0.86 0.66 0.31

Shadow 0.72 0.47 0.65 0.03

Cloud 0.75 0.84 0.70 0.34
(b) Simulated Clear 0.68 0.63 0.61 0.28

Shadow 0.50 0.01 0.67 0.00

Cloud 0.78 0.87 0.72 0.32
(c) Hybrid Clear 0.73 0.60 0.74 0.14

Shadow 0.71 0.45 0.60 0.04

Cloud 0.78 0.75 0.78 0.20
(d) Simulated Clear 0.75 0.76 0.67 0.25

with CSM Shadow 0.72 0.47 0.66 0.03

Cloud 0.78 0.75 0.79 0.19
(e) Hybrid Clear 0.76 0.74 0.69 0.23

with CSM Shadow 0.74 0.53 0.59 0.05

To support this quantitative analysis, a set of visual results produced for each model

is shown in Figure 5.21, containing both thin and thick type of clouds. It can also be

observed (and further confirmed by the performance achieved for the shadow class) that

the model (b) appears to fail at detecting any kind of shadow. Yet, model (d), which

follows the exact same training scenario but with channel-specific magnitude, achieves

BOA of 0.72 for the shadow class, on par with the model (a) trained on real data, which

suggests that the channel-specific magnitude feature could have a wider positive effect

on the model apart from more accurate learning of the cloud class representation.

So far, testing on real data has confirmed that it is possible to train models exclu-

sively on simulated data and achieve competitive performance on real data, as in the

case of the model (d). This indicates a degree of alignment between the simulated and

real data, and demonstrates a considerable value that simulated data can bring in the

context of training.

However, the use of simulated data can be helpful beyond the training stage. Specif-
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Figure 5.21: Detection models applied to three samples of real cloudy data.

ically, the cloudy images produced by the simulator can guarantee precise ground truth

labels, unlike the real data annotated by humans. This is due to the access to the exact

cloud transparency map during the synthesis process, which can be used to produce

exact ground truth labels, as demonstrated earlier in this chapter. The models have

been trained using four different configurations described earlier for several types of

clouds (thick, local, thin, fog). The correspondence between the configurations and

the images they produce allows to produce datasets of test images that only contain

a specific type of clouds, which cannot be easily done with real data. Tables 5.3-5.6

contain metrics recorded for the four types of cloud.

The results in the tables prove that all models trained on simulated data (b)-(e)

outperform the model (a) trained on real data only. This could be attributed to two

effects - first, the simulated test data does not suffer from noisy ground truth like the

human annotations, and second, the simulated clouds are not equivalent to the real

clouds, so in this case, the models trained on simulated data had more access to adjust

to that domain.

For the thick clouds test images, as shown in Table 5.3, the BOA achieved by

the models (b)-(e) is higher compared to the real data, which could indicate that the
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Table 5.3: Evaluation on the simulated thick cloud for cloud detection.

Model Trained on Label Test on Simulated: Thick
BOA PA UA FPR

Cloud 0.78 0.58 0.99 0.02
(a) Real Clear 0.72 0.83 0.32 0.40

Shadow 0.67 0.40 0.29 0.06

Cloud 0.80 0.95 0.90 0.34
(b) Simulated Clear 0.77 0.64 0.61 0.10

Shadow 0.51 0.02 0.37 0.00

Cloud 0.85 0.93 0.93 0.23
(c) Hybrid Clear 0.76 0.60 0.62 0.08

Shadow 0.70 0.45 0.39 0.04

Cloud 0.81 0.66 0.98 0.04
(d) Simulated Clear 0.75 0.82 0.36 0.33

with CSM Shadow 0.67 0.38 0.30 0.05

Cloud 0.83 0.70 0.98 0.05
(e) Hybrid Clear 0.74 0.74 0.39 0.27

with CSM Shadow 0.71 0.51 0.28 0.08

ground truth labels between the training and test images are more consistent. This is

consistent with the fact that simulated data allows for precise ground truth extracted

from the synthesis process. Another interesting observation is that the models (b) and

(c) trained without channel-specific magnitude achieve the best trade-off between PA

and UA, meaning that they achieve values above 0.90 for both. This means that these

models can mask out most of the cloudy area and include few non-cloudy pixels in the

resulting cloud mask. On the other hand, the models (a), (d), and (e) consistently

achieve much higher UA than PA, which means that they tend to produce masks that

mostly contain cloudy pixels, but not all of the cloudy pixels in the image do get

contained in that mask. Finally, the issue with the model (b) not being able to detect

shadows is still present and appears to be minimised when channel-specific magnitude

is used for the clouds, as in model (d).

For local clouds, the model trained on real data still achieves superior performance

of BOA at 0.80, compared to 0.77 achieved by channel-specific magnitude with only

simulated data, as shown in Table 5.4. However, the models (b)-(d) trained on sim-

ulated images achieve higher PA, meaning that they are capable of including larger

portions of the cloud in the resulting cloud mask.
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Table 5.4: Evaluation on the simulated local cloud for cloud detection.

Model Trained on Label Test on Simulated: Local
BOA PA UA FPR

Cloud 0.80 0.75 0.66 0.14
(a) Real Clear 0.74 0.80 0.82 0.32

Shadow 0.61 0.26 0.35 0.05

Cloud 0.76 0.89 0.47 0.37
(b) Simulated Clear 0.69 0.63 0.82 0.24

Shadow 0.50 0.00 0.45 0.00

Cloud 0.77 0.90 0.48 0.36
(c) Hybrid Clear 0.71 0.55 0.88 0.14

Shadow 0.64 0.35 0.32 0.07

Cloud 0.77 0.78 0.55 0.23
(d) Simulated Clear 0.71 0.71 0.81 0.29

with CSM Shadow 0.60 0.25 0.35 0.04

Cloud 0.79 0.83 0.55 0.25
(e) Hybrid Clear 0.72 0.66 0.84 0.23

with CSM Shadow 0.63 0.32 0.31 0.07

For the thin clouds in Table 5.5, the simulated data models (b)-(d) achieve higher

accuracy than the real model (a), and their PA is considerably higher, which again,

suggests that they can extract a larger portion of the cloud in their cloud masks.

Visual results of the models applied to the three types of simulated data are shown

in Figure 5.22.

Finally, two more subsets are tested in Table 5.6 and Table 5.7, which contain

foggy image examples and cloud-free image examples, respectively. In the case of foggy

images (where the entire image is covered by cloud), only User’s Accuracy is reported,

which corresponds to the fraction of pixels correctly classified as a cloud. In this case,

all models achieve maximum performance, meaning that they assign the correct label

to all examples in the test dataset.

Similarly, for the cloud-free examples, User’s Accuracy is reported for the clear class

and again, all models achieve maximum performance. This suggests that the foggy and

cloud-free images are universally less challenging compared to the thick, local, and thin

cloud types.

This concludes the analysis of the cloud detection task, which demonstrates that
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Table 5.5: Evaluation on the simulated thin clouds for cloud detection.

Model Trained on Label Test on Simulated: Thin
BOA PA UA FPR

Cloud 0.70 0.49 0.91 0.09
(a) Real Clear 0.67 0.83 0.41 0.49

Shadow 0.62 0.28 0.27 0.05

Cloud 0.72 0.87 0.79 0.44
(b) Simulated Clear 0.68 0.54 0.56 0.17

Shadow 0.51 0.02 0.37 0.00

Cloud 0.74 0.85 0.81 0.36
(c) Hybrid Clear 0.68 0.51 0.59 0.14

Shadow 0.67 0.40 0.32 0.06

Cloud 0.71 0.58 0.87 0.16
(d) Simulated Clear 0.69 0.77 0.44 0.40

with CSM Shadow 0.61 0.27 0.28 0.05

Cloud 0.72 0.63 0.86 0.19
(e) Hybrid Clear 0.68 0.68 0.45 0.33

with CSM Shadow 0.65 0.38 0.25 0.08

Figure 5.22: Detection models applied to three types of simulated cloudy data.
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Table 5.6: Evaluation on the detection task for fog images. Producer Accuracy (PA),
User Accuracy (UA) Balanced Accuracy (BOA), and False Positive Rate.

Model Trained on Test on Simulated: Fog
UA

(a) Real 1.0
(b) Simulated 1.0
(c) Hybrid 1.0
(d) Simulated with CSM 1.0
(e) Hybrid with CSM 1.0

Table 5.7: Evaluation on the cloud-free images for the detection task. Producer Accu-
racy (PA), User Accuracy (UA) Balanced Accuracy (BOA), and False Positive Rate.

Model Trained on Test on Real: Cloud-Free Subset
UA

(a) Real 1.0
(b) Simulated 1.0
(c) Hybrid 1.0
(d) Simulated with CSM 1.0
(e) Hybrid with CSM 1.0

cloud detection models can be trained exclusively on simulated cloudy data and achieve

performance comparable to the models trained on real data. Furthermore, the realistic

magnitude of the cloud component in each channel of multi-spectral data has been

found beneficial for the performance on real clouds when learning from simulated data.

In the next section, a similar experiment focused on the cloud removal task is

presented.

5.4 Comparison to Real Data: Cloud Removal

For the task of cloud removal, the dataset of SEN12MS-CR is used, containing real

pairs of cloudy and non-cloudy Sentinel-2 images, along with corresponding Sentinel-1

samples. The dataset contains Sentinel-2 Level-1C product, which consists of 13 bands

of multispectral data. Furthermore, Band 10 is excluded from the experiment, since

it primarily responds to the top of atmosphere reflections of cirrus clouds [215], which

has often a different effect than in other bands, as can be observed in Figures 5.23

and 5.24. This effect is not currently modelled by the cloud simulator and hence the
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Figure 5.23: Example of content of individual multi-spectral bands in each channel
for a cloudy Sentinel-2 L1C image. Intensity range for each band is listed in square
brackets.

Figure 5.24: Example of content of individual multi-spectral bands in each channel for
a clear Sentinel-2 L1C image.

exclusion. The two figures contain visualisations of individual bands from a Sentinel-2

L1C product for a cloudy and clear sample. In both cases, all bands except for Band-10

(short wave infrared (SWIR) – Cirrus) appear to be highly correlated. In the cloudy

image, the bands tend to contain a similar presence of the cloud, while in Band-10 this

object appears absent. Similarly, Band-10 in the clear image appears to detect a fairly

different structure than the other bands.

The baseline architecture used for the experiments on cloud removal is DSen2-

CR [77], a simple residual-based architecture consisting primarily of convolutional op-

erations. In each case, it is trained from scratch to a point where no improvement

in the validation loss occurs for 30 epochs. The networks are trained using AdamW
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Table 5.8: Evaluation on the cloud removal task - (↑) SSIM Metric

Trained on Real Thick Local Thin Fog

(a) Real 0.623/0.561 0.619/0.541 0.858/0.668 0.842/0.803 0.740/0.739

(b) Simulated 0.444/0.323 0.474/0.343 0.837/0.530 0.846/0.790 0.669/0.669
(c) Hybrid 0.603/0.538 0.619/0.531 0.873/0.666 0.859/0.814 0.746/0.745

(d) Sim-CSM 0.544/0.462 0.682/0.604 0.899/0.737 0.882/0.846 0.755/0.753
(e) Hyb-CSM 0.567/0.485 0.670/0.595 0.889/0.728 0.872/0.839 0.749/0.748

optimiser [214] with a starting learning rate of 10−4 and the same decay strategy as

the cloud detection model above. Each batch of data contained 4 clear and 4 cloudy

images, and, similarly to the cloud detection scheme, the loss on the clear images is

multiplied by a factor of 0.1. Due to the large dataset size of SEN12MS-CR, during

each epoch, the loss is optimised on 1000 random samples from the training dataset,

and the validation loss is computed on 500 random samples from the validation dataset.

Similarly to the previous example with cloud detection, the models are tested on 5

different test datasets, one with real clouds and another four with simulated-only data

of different cloud types. The commonly used metrics of SSIM (Table 5.8) and RMSE

(Table 5.9) are used to evaluate the models. Furthermore, each metric is reported for

the whole image (the first listed value) as well as the isolated cloud-affected region (the

second listed value).

The results in Table 5.8 indicate that while the model trained on the real data

(a) performs best on that type of data (SSIM of 0.623 for the whole image and 0.561

for the inpainted region), the model (d) trained exclusively on simulated data with

channel-specific magnitude achieves SSIM 0.544/0.462. On the other hand, for any type

of simulated test data, model (d) outperforms model (a). Similarly to the detection

task, model (b) trained on simulated cloudy images without channel-specific magnitude

consistently produces results of the lowest quality. In Figures 5.25 and 5.26, it can be

observed that the model (b) does not really apply any visible changes to the input

image, indicating that it does not recognise the cloud objects as something that should

be removed. It achieves a SSIM of 0.444/0.323, compared to 0.544/0.462 the equivalent

model trained with channel-specific magnitude.

In the case of the cloud removal task, the conclusions are similar to the earlier
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Figure 5.25: Examples of model output on real images.

Figure 5.26: Examples of model output on the four types of simulated cloudy images.

132



Chapter 5. Simulation of Clouds in Optical Satellite Images

Table 5.9: Evaluation on the cloud removal task - (↓) RMSE Metric

Trained on Real Thick Local Thin Fog

(a) Real 0.217/0.229 0.289/0.323 0.142/0.233 0.165/0.187 0.266/0.266

(b) Simulated 0.884/1.042 1.108/1.271 0.330/0.628 0.300/0.364 0.802/0.802
(c) Hybrid 0.227/0.236 0.303/0.344 0.136/0.247 0.162/0.193 0.276/0.276

(d) Sim-CSM 0.261/0.264 0.198/0.223 0.099/0.170 0.126/0.146 0.196/0.196
(e) Hyb-CSM 0.238/0.251 0.209/0.235 0.107/0.180 0.134/0.154 0.209/0.209

example of cloud detection. It is possible to train a model to remove clouds from

satellite imagery, provided that channel-specific magnitude is applied during synthesis.

There remains a gap between the real and simulated data, meaning that models trained

exclusively on the real data do not perform as well on simulated data, and vice versa.

5.5 Summary

The issue with the quality of the cloud-free ground truth in the real data has motivated

the introduction of SatelliteCloudGenerator. It has been designed for fast computation

on GPU and for high control over the cloud appearance. The quality of the simulated

data has been tested by training cloud detection and cloud removal models, demon-

strating that the models trained exclusively on simulated data can perform the same

task on real data, especially if the channel-specific magnitude effect is employed. The

performance of these simulation-based models never reached the same level of perfor-

mance on real data as models trained on real data, which could be due to two effects.

First, the models trained on real data have the advantage of accessing real input cloudy

samples, unlike the models trained only on the simulated images, which could indicate

a gap between the appearance of real and simulated clouds. The second effect is the

bias of human annotators for cloud detection or the bias of changes occurring on the

ground for the cloud removal data. This means that the model trained on real data

could have had the opportunity to learn the accurate features in the real data, but also

the biases in it. The latter could lead to good performance on the real test data, but

be harmful when generalising beyond the curated dataset. On simulated test data, the

model trained with the simulated data (again, channel-specific magnitude is crucial)
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performs better than the model trained on the real data. This again, could be an effect

of the biases in the simulated data (due to the nature of the simulation framework) or

the result of the more precise ground truth in simulated data, which should influence

both during the training and evaluation stage.

Ultimately, neither real nor simulated data appears to be universally more advanta-

geous. The ideal is an abundant source of real images with precise ground truth. The

real image sources are not abundant and are likely to contain distorted ground truth.

The simulated sources are abundant and with precise ground truth, but a certain gap

between real and simulated images can be expected. Given this state of matters, a

good way to achieve a trade-off is to perform both training and evaluation on both

data sources, which is also what the next chapter describes.
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Chapter 6

Comparison of Different Learning

Levels

The Chapters 3 and 4 have proposed two novel learning modes for satellite image

inpainting; internal learning and learning from language. These two approaches are

different from the most often employed type of deep learning, which is based on op-

timizing the network parameters on a large set of data tailored for that specific task.

This mode of learning is referred to as external learning.

The primary aim of this chapter is to compare the explored learning modes and

based on that, draw some conclusions about the strengths and weaknesses of each

variant. To facilitate such a comparison, a common task pipeline must be defined. In

the chapters on the topics of internal learning and language-based learning methods,

the focus has been put on the inpainting part of the process. Hence, in order to remove

clouds, these techniques are now combined with cloud and shadow detection to act as

the inpainting mask. In the context of the more general cloud removal task, a cloud

mask must be obtained, which could be computed using an existing cloud detection

technique.

Furthermore, apart from different learning regimes, this work also explores the

potential of using both multi-source (radar) and multi-temporal (historical) data to

increase the quality of cloud-free prediction. The complete comparison is made on a

common test dataset.
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The chapter begins with a description of the design of the dataset, taking into con-

sideration both testing and training since the external network will require a separate

set of data for training. The dataset takes advantage of the simulation framework

proposed in Chapter 5.

This relates to the second contribution of this chapter, which is the externally

trained network. Despite the presence of several well-performing cloud removal models,

there is no available model that can flexibly accept multi-source and multi-temporal

guidance input at inference. In order to fill that gap and enable comparison with the

other two variants of learning, a new type of externally trained deep neural network

model is defined.

These two elements, the common test dataset and an externally trained network

lead to the final set of results in this work, which contains a performance evaluation of

each learning type; internal, external, and learning from language.

6.1 Dataset

The dataset is built based on the openly available SEN12MS-CR-TS [169]. In order

to test the cloud removal performance in a setting with access to multi-source and

multi-temporal guidance, a dataset containing this type of matched data is necessary.

The majority of publicly available datasets do not satisfy this condition. The majority

of datasets will contain only cloudy images paired with cloud-free (e.g. RICE1 [207]

or STGAN [64]), and a few with accompanied radar data (e.g. SEN12MS-CR [67],

SEN12MS-CR-TS [169], CloudSEN12 [11]). However, only SEN12MS-CR-TS contains

both radar data and historical optical data. This is delivered as 30 samples for each

location containing both Sentinel-1 and Sentinel-2 acquisitions. The acquisitions cover

53 regions of interest (ROIs), corresponding to a total of 80,000 square kilometres

of global coverage. This work follows the same splitting approach as in the original

dataset, where 40 of the ROIs are used for training purposes, while 13 are kept out as

a test set. Each sampled ROI yields 30 images evenly distributed across the year 2018.

Finally, each scene is split into patches (with no overlap) of 256 by 256 pixels.

An example collage for a single patch with 30 captures of both Sentinel-1 and
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Figure 6.1: A patch from the test dataset containing 30 acquisitions throughout the
year. The white patches are oversaturated due to cloud presence. The dates correspond
to the Sentinel-2 samples. The bottom row contains a false-colour image of the Sentinel-
1 data.

Sentinel-2 images from a single year is shown in Figure 6.1. Sentinel-1 data is displayed

as false colour with VV, VH, and the mean of the two assigned to the RGB display

channels. Sentinel-2 images are scaled in the same way as described in the dataset

manuscript [169].

Following the conclusions of the previous chapter on simulation, both real and sim-

ulated data pairs have unique disadvantages. Real cloudy data does not have accessible

clear-sky ground truth, while the simulated data will always be an approximation of

what real clouds should look like. For that reason, both types of cloudy samples are

considered in training and testing. The simulated cloudy samples are generated with

the available cloud-free data as input.
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Test Subset

For the test subset, the main objective is to obtain a static set of samples suitable for

evaluation. As described below, the initial set of 3,716 test patches undergoes a filtering

stage, followed by a manual inspection.

Step 1: Selection of Valid Patches

First, the patches (each containing the record of 30 optical and radar samples) are

filtered based on the following conditions:

• A single cloudy sample with cloud coverage between 0.1 and 0.9, followed or

preceded by a cloud-free sample (treated as ground truth) exists for that patch.

• Another cloud-free sample has been captured before the ground truth cloud-free

image that can be used as a historical sample, if more than one historical image

exists, the oldest one is selected.

• SAR samples are extracted for all three optical samples.

This reduces the initial number of 3,716 patches to 1,222. Each of the 1,222 samples

contains a pair of cloudy and cloud-free images as well as a historical cloud-free image

from the past, all accompanied by temporally proximate SAR acquisitions. This allows

for testing the capability of the cloud removal methods to transfer different types of

knowledge (historical and cross-sensor).

Step 2: Manual Output Filtering

To ensure the high quality of the testing samples, each image from the filtered set of

1,222 patches is manually inspected. It can be observed, that some of the cloud-free

images contain very little variance and are almost trivial, therefore, not particularly

useful for evaluation. These images most often contained water, green areas, or were

outside of the acquired tile and hence black, as shown in Figure 6.2.

After filtering out the cloud-free images with low-variance, a similar approach was

applied to the historical samples, and the samples in Figure 6.3 were further excluded.
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Figure 6.2: Manually removed cloud-free samples due to conditions such as water, cloud
haze, invalid black pixels.
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Figure 6.3: Manually removed historical cloud-free samples due to conditions or cloud
haze or invalid black pixels.

Figure 6.4 shows cloudy samples excluded from the dataset due to the lack of

apparent clouds or tile margin effects.

The manual inspection has reduced the number of patches from 1,222 to 1,031.

Examples of samples included in the dataset are shown in Figure 6.5 (cloud-free),

Figure 6.7 (cloudy), and Figure 6.6 (historical).

The resulting triplets (of matched Sentinel-2 and Sentinel-1 captures) are shown

in Figure 6.8. Depending on the region, the acquisition dates, and the type of scene

present on the ground, the historical Sentinel-2 image is more (like in the fourth row)

or less similar to the cloud-free ground truth (like in the second row).

Simulation

For each triplet in the resulting test dataset, another image with simulated clouds is

generated using the cloud-free sample. This is done using the simulation tool described

in the previous chapter, with the channel-specific magnitudes extracted from the real

cloudy image of the triplet. This allows to obtain a set of cloudy samples with realistic
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Figure 6.4: Manually removed cloudy samples due to conditions such as absent cloud
or invalid black pixels.

Table 6.1: Parameters used for the simulated test clouds

Parameter Value

Locality Degree [1,2,3]*
max lvl *
min lvl 0.0
const scale True
cloud color True
clear threshold 0.1
channel offset 2
blur scaling 2

features and comparable conditions to those observed for real samples.

The settings used to simulate the clouds are listed in Table 6.1. The locality degree

ranges between 1 and 3, depending on the percentage of the cloud cover in the real

sample (to achieve a more representative set of simulated clouds). If the real cloud

percentage in the triplet is above 60%, the degree is selected as 1. For values larger than

40% but no higher than 60%, the value of 2 is used. For the remaining range, locality

degree of 3 is used. Note that this assignment has been selected intuitively through

experimentation since the locality degree does not exhibit a precise relationship to the

percentage of coverage due to the complexity and randomness of the synthesis process.

Examples of clouds generated for the test set using the described process are shown in

Figure 6.9.
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Figure 6.5: Subset of included cloud-free samples.
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Figure 6.6: Subset of included historical cloud-free samples.
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Figure 6.7: Subset of included cloudy samples.
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Figure 6.8: Examples of cloudy, cloud-free, historical triplets present in the filtered test
dataset.
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Figure 6.9: Subset of simulated samples.
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Training Subset

For training, the simulation tool can be used by generating new clouds during training

and that is the approach followed in this work. However, the challenge of converting

the 30 samples from 2018 in each patch to a set of triplets still remains.

In the case of test subset, the historical sample was selected to maximise the distance

in time to the cloud-free ground truth image (and hence increase the difficulty of the

task). For training, the volume of data is prioritised over the difficulty of the samples,

and hence, if more than one triplet is available from a single series of 30 images, it will

be extracted.

The possible triplets are sampled in the following way. First, there must exist at

least two cloud-free samples, where the latter one has to be neighbouring with a cloudy

sample. If this condition is not met, the patch is not a suitable source. Otherwise, the

indices of all cloud-free samples are saved as potential historical sources. Then, the

indices of all neighbouring pairs of cloudy and cloud-free are saved too. With those two

lists, a triplet can be sampled by first i) selecting a cloudy-clear pair from the second

list, and then ii) selecting a historical sample from the indices in the historical list that

precede the indices selected in the first step.

Given the size of the training subset, manual filtering has not been performed under

the expectation that noisy samples in the training dataset will not prevent successful

learning of the task with a sufficiently large batch size and good training practice.

6.2 External Learning Model

To compare the internal learning and learning with language approaches to a more

standard approach, a new type of model must be designed that will accept the same

type of data (historical and radar guidance images) since there have been no such

models proposed in the literature.

The starting point for the proposed model is the convolutional residual network of

DSen2-CR [77], which is trained to predict the residual between the cloudy Sentinel-2

image and the cloud-free Sentinel-2 image. As shown in Figure 6.11, the regular DSen2-
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Figure 6.10: Diagram of a residual block used for the DSen2-CR architecture.

CR network takes the concatenated Sentinel-2 and Sentinel-1 image from the cloudy

sample as input, and returns the approximated residual of Sentinel-2 as output. The

key element of the architecture is the residual block, shown in Figure 6.10.

The residual block takes a 2D feature map with F channels, and feeds it through a

convolution layer, followed by a ReLU activation, and another convolution (all of which

operate on F -dimensional representations). The output of the second convolution layer

is multiplied by a scaling factor (used for training stabilisation [216], equal to 0.1 by

default) and added to the input feature map. Hence, the convolutions are responsible

for predicting a residual representation.

The complete flow inside the network includes an initial mapping from the con-

catenated Sentinel-2 and Sentinel-1 channels1 to 256 dimensions, followed by a ReLU

activation, and then 16 residual blocks. Finally, another convolutional layer transforms

256-dimensional output feature to 12 channels of Sentinel-2, which is added to the input

(and potentially cloudy) Sentinel-2 image.

Naturally, this approach is constrained to accept Sentinel-1 as the only source of

additional guidance. To allow both Sentinel-1 radar data as well as historical Sentinel-

2 input, two lightweight encoding modules are added to the DSen2-CR, as shown in

Figure 6.12, in order to populate a guidance image with 2-channels with appropriate

data. This approach allows for flexible use of either Sentinel-1 or Sentinel-2 guidance

data, depending on the type of supporting data available during inference. This way,

the network can be used like the regular DSen2-CR network that only takes Sentinel-1

1Note that in this work, 12 channels of the Sentinel-2 representation are used, instead of 13 like in
the DSen2-CR work.
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Figure 6.11: Architecture of DSen2-CR, capable of accepting both Sentinel-1 and
Sentinel-2 guidance for the cloud removal task.

Figure 6.12: Architecture of Multi-DSen2-CR, capable of accepting both Sentinel-1 and
Sentinel-2 guidance for the cloud removal task.

data, but just as well, it could also take Sentinel-2 historical data (or even multiple

historical samples). This is because both Sentinel-1 and Sentinel-2 encoders used for

pre-processing compute output with the same number of channels and can therefore be

combined by averaging.

The resulting averaged 2-channel representation is concatenated with the input

Sentinel-2 data subject to cloud removal. The rest of the architecture is the same as in

DSen2-CR with 16 residual blocks of 256 channels, and another final convolution layer

for channel conversion.

The network is trained with both real and simulated cloudy data (each used ran-
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domly with 50% likelihood) and 4 types of simulator configurations used in the simu-

lation chapter. Furthermore, to support different combinations of guidance data, the

network is fed with either i) radar-only guidance, ii) historical-only guidance, or iii)

both types of guidance, each with equal probability.

The network is trained using an AdamW optimiser with a learning rate of 10−4 and

a batch size of 16. A learning rate scheduler is employed to divide the learning rate

value by a factor of 10 if the training loss does not decrease for 2 epochs. Finally, the

checkpoint with the lowest validation loss is used as the final model, which in this case

occurred after 626 epochs.

6.3 Comparison

With the external cloud removal model trained, it is now possible to identify 3 types

of solutions:

• The internal learning approach tested is the MCPN network (Emergent type)

taking historical and radar data as supporting signals and optimizing with the

standard settings for 4,000 steps. Cloud detection of s2cloudless is used to gen-

erate the masks for the real data, while exact cloud-shadow masks are available

for the simulated data.

• The external network is precisely what has been described in the previous para-

graphs.

• The language model follows the main inpainting approach from the language

chapter, which involves edge-guided inpainting of RGB channels, followed by

DIP-based multi-channel filling with historical and radar data stacked on top of

each other. Similarly to the internal approach, cloud detection of s2cloudless is

used to generate the masks for the real data, while exact cloud-shadow masks are

available for the simulated data.

Before comparing the performance, it is important to identify the technical dif-

ferences between the three tested approaches, from the usage perspective. Table 6.2
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Table 6.2: Key Features of Compared Cloud Removal Solutions

Method Internal External Language

Mask-Free ✗ ✓ ✗

Modality-Agnostic ✓ ✗ ✗

Inference Speed Low High Low

contains a summary of the key technical aspects of the cloud removal techniques. First,

the use of the externally trained network makes it easy to remove the requirement for

a mask, unlike the other two methods focused on inpainting. However, the internal

approach has the advantage of freely allowing any type of input data, for both cloudy

input and guidance images, while the externally trained network is constrained to only

operate on the type of data it has been trained on. The language-based pipeline incor-

porates a multi-channel fill that has the flexibility of the internal learning regime, but

it still requires the RGB bands to be present in the main representation so that edge-

guided inpainting with StableDiffusion can be performed. Finally, the inference speed

for the external network is considerably higher than in the case of internally optimised

solutions, which could often take 2-3 orders of magnitude longer to compute.

The first comparison is performed on the test subset with real cloudy images. As

discussed in the simulation chapter, it must be acknowledged that the quality of the

ground truth could be lower in this case since the cloud-free reference comes from about

10 days before or after the cloudy image. However, the advantage of this subset is that

the models are evaluated on the removal of real instances of clouds.

Table 6.3 contains the metrics achieved for all 12 MSI channels contained in the

representation (mean and standard deviation are reported). In this case, the exter-

nally trained model achieves considerably higher performance (mean inpainting SSIM

of 0.743) compared to the two alternative methods (0.567 and 0.563). Among those two,

the internal learning approach achieves slightly better performance for the inpainting

region (0.567 as opposed to 0.563), yet lower whole image SSIM, indicating distortion

of the known region of the image.

Interestingly, the performance for the RGB is generally higher for the internal and

external techniques, but not for the language. The latter is attributed to two effects.
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Table 6.3: Evaluation on the cloud removal task - Real test subset, 12 MSI channels

Method SSIM-Whole SSIM-Inpainting RMSE-Whole RMSE-Inpainting

Internal 0.650±0.107 0.567±0.106 0.301±0.177 0.384±0.307
External 0.786±0.064 0.743±0.066 0.135±0.046 0.142±0.046
Language 0.665±0.114 0.563±0.094 0.245±0.114 0.276±0.120

Table 6.4: Evaluation on the cloud removal task - Real test subset, RGB channels

Method SSIM-Whole SSIM-Inpainting RMSE-Whole RMSE-Inpainting

Internal 0.714±0.119 0.657±0.126 0.168±0.091 0.197±0.149
External 0.834±0.064 0.798±0.070 0.079±0.032 0.083±0.033
Language 0.664±0.135 0.561±0.129 0.146±0.047 0.165±0.044

First, the language model has already been identified as prone to adding a lot of new

features to the images, often resembling satellite images of Earth taken from a larger

distance, instead of cropped patches, leading to distortions in the RGB bands. After

the RGB inpainting, the MSI DIP-based filling is used, which tends to first reconstruct

the lower frequency content of the image, which could act as a filter that removes some

of the distortions introduced in the RGB band and hence, increasing the performance

in the non-RGB bands.

For the models performing better in the RGB region, it could be that those bands

are generally easier to process and hence, the performance is considerably higher with

the internal method achieving 0.657 SSIM of the inpainting as opposed to 0.567 for all

bands, and the external method reaching 0.798 instead of 0.743.

These results are illustrated in Figure 6.13, with several randomly picked samples

from the test dataset. The externally trained network introduces less distorted output.

Internal learning will often converge to distorted representations of the image, like in

the first and last rows. Furthermore, it is more prone to produce distortions in some

types of signals, such as dark spots in the cloudy region. The same issue can be observed

in the output of the language-based technique but to a lesser degree.

For the simulated clouds, similar effects are observed, as shown in Table 6.5 (12

channels) and Table 6.6 (RGB), but the margin between the best performing external

approach and the internal learning approach is smaller, which could likely be attributed

to the better quality of the inpainting masks. This is because the simulated subset
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Figure 6.13: Output of the tested techniques for real cloudy images.

contains the exact cloud and shadow masks, which allows to eliminate the distortions

in the cloud-free region that can occur for real cloudy samples. The external model does

not rely on the provision of masks, so this effect will not apply in that case. Finally,

the RMSE metric appears to be more favourable for the Internal approach here than

for the External learning method. This, again could be an effect of the precise cloud

mask provision, which prevents leakage of the cloudy component to the output of the

Internal approach (this generally occurs in the case of real data). This way, simple

solutions that are close to the mean colour but lack precise details could outperform

the External technique. However, for the SSIM metric, which is dependent on the local

correlations of the two images, the External learning approach is still optimal of the

three. This demonstrates a certain bias of the commonly used metrics and the need for

structure-based evaluation measures, such as SSIM.

Again, the performance for the RGB bands is consistently higher for all three meth-

ods (in this case, also for the language-based approach). This could be the result of

the more precise masking in the case of the two methods relying on the provision of
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Table 6.5: Evaluation on the cloud removal task - Simulated test subset, 12 MSI chan-
nels

Method SSIM-Whole SSIM-Inpainting RMSE-Whole RMSE-Inpainting

Internal 0.775±0.081 0.775±0.083 0.151±0.095 0.148±0.097
External 0.805±0.104 0.805±0.104 0.187±0.087 0.186±0.089
Language 0.707±0.101 0.642±0.087 0.235±0.112 0.261±0.120

Table 6.6: Evaluation on the cloud removal task - Simulated test subset, RGB chaannels

Method SSIM-Whole SSIM-Inpainting RMSE-Whole RMSE-Inpainting

Internal 0.813±0.084 0.815±0.086 0.079±0.059 0.076±0.052
External 0.847±0.093 0.848±0.094 0.106±0.069 0.104±0.070
Language 0.776±0.123 0.777±0.123 0.092±0.039 0.090±0.039

the mask, as well as the simulated cloud removal being a potentially easier task.

These observations can be further supported by the visual results shown in Fig-

ure 6.14. It appears that the external model does not perform as well with simulated

clouds, while the internal and the language methods produce quite consistent output

owing to the precise masking of the cloud-affected region. The convergence issues for

MCPN are still present like in the sample in the second row.

6.4 Summary

This concludes the comparison experiments, with the externally trained model being a

clear winner in terms of performance. However, there is still more to the problem than

mere performance on a single dataset. The two methods based on internal learning

and language-based learning achieved worse (yet non-trivial) performance, but most

importantly, both have been used to perform the task without ever training on it. This

means that these two approaches can be used for a variety of different modalities, while

the external model accepts only 12-channel data with guidance from 12-channel optical

and 2-channel radar signals, and cannot remove clouds from different representations

of satellite images.

The context of using two types of paired cloudy data, real and simulated, is also

important. There is a trade-off associated with not only training but also evaluation,

which ultimately determines the conclusions that can be drawn about the models’

154



Chapter 6. Comparison of Different Learning Levels

Figure 6.14: Examples of output computed for simulated cloud input.

performance. In the case of real data, the ground truth cloud-free image is a capture

from several days before or after the cloudy sample, which can lead to significant

changes having occurred on the ground between the two acquisitions. This means

that the quality of ground truth for real images could be non-ideal and hence, a data-

induced error could influence the measured model performance. On the other hand,

the simulated data source guarantees that the ground truth will be accurate, however,

the appearance of the clouds is only an approximation of what real clouds look like and

in this case, the input cloudy image could contain some inaccuracies.

For that reason, it may be crucial to always perform the evaluation with both real

and simulated data and consider the limitations outlined above. An ideal cloud removal

model should be able to remove all clouds perfectly, and in that case, it should achieve

zero error on the simulated images. However, for real data, given the drift of the

ground truth image, the same method will yield a non-zero error whenever there is any

inaccuracy in the ground truth.

Arriving at a solution that represents this ideal model with perfect performance
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is a considerable challenge, as demonstrated by this work. The results indicate that

pre-training on large-scale datasets leads to the highest gains in performance. However,

the internal or language-based methods exhibit non-trivial capabilities while offering a

high degree of flexibility. These observations motivate further progress in this direction,

where the advantages of high performance and flexibility are combined into improved

techniques for cloud removal. Based on the results presented in this work, this is a

likely venue for getting close to the ideal cloud removal system.
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Conclusions

Cloud removal is a challenging problem that remains an open area of research. The

problem of clouds obscuring the optical images of the Earth is relevant in many contexts

and hence, high-quality solutions to the problem will be highly beneficial in a wide range

of applications.

This work has explored the technical challenges behind cloud removal and proposed

several unconventional techniques applicable to this task. Another important challenge

of data availability was addressed by proposing a cloud simulator tool and demon-

strating its applicability for the training and evaluation of cloud-removing deep neural

networks. Finally, a comparison chapter introduced a shared dataset for evaluation and

compared different types of solutions. The externally trained network has proven to

perform best on all types of data, however, the other approaches achieved non-trivial

performance while offering more flexibility than the externally trained model.

7.1 Contributions

The relevance of the cloud removal problem and the motivation for better solutions to

this technical challenge was outlined in the introductory Chapter 1, which was followed

by an overview of the existing remote sensing solutions, the phenomenon of clouds, and

the literature on cloud detection, removal and image synthesis, contained in Chapter 2.

The chapter also provided a formulation of the cloud removal problem as well as the
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metrics used to evaluate the agreement with a ground truth reference.

In Chapter 3, the techniques of internal learning for cloud removal were proposed.

These techniques were of interest because they can be flexible in regards to the input

representation (the shape of processed data and the domain they come from). Several

solutions inspired by the work on Deep Image Prior were proposed, all relying on

the parameterisation of the images using convolutional neural network architecture,

hence name Multi-modal Convolutional Parameterisation Networks (MCPN). It was

shown that these networks can achieve good performance for the inpainting and super-

resolution tasks, and freely accept guidance data, such as SAR images or historical

optical references.

In Chapter 4, another novel path was explored, where the use of models pre-trained

on the combination of text and visual data was explored. First, it was demonstrated

that such models can capture useful representations for processing clouds in satellite

imagery, despite never having been trained on the task specifically. It was shown that

a CLIP pre-trained model can be effectively used to detect the presence of clouds in

satellite imagery and can identify cloud-affected images from multiple data sources

(Sentinel-2 and Landsat) as well as with various channel mappings (RGB and false-

colour mappings from different bands). This analysis was followed by another proposal

of applying a pre-trained StableDiffusion text-to-image model with ControlNet guid-

ance to inpaint parts of the satellite images. These models are constrained to RGB

channels, so a technique of transferring the information synthesised in RGB to other

multi-spectral channels was proposed, based on Deep Image Prior. However, the gen-

eral text-to-image models from the StableDiffusion family have been found prone to

hallucinating a lot of undesired features in the inpainted regions, making them less

suitable for inpainting, especially for large masks.

A reliable evaluation of cloud removal solutions requires reliable data. In Chapter 5,

a novel technique for simulating the presence of clouds in multi-spectral imagery was

proposed. This was a result of combining multiple methods for generating realistic

clouds, such as cloud colour, channel misalignment, or channel-specific magnitude. It

was shown how the controllable parameters of the simulation tool could be used to
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achieve different types of clouds. To demonstrate the utility of the simulated data,

it was shown that deep neural networks can be trained to perform two relevant tasks

of cloud-shadow detection and cloud removal. The results indicate that the channel-

specific magnitude is a particularly important feature of the simulated data and that

networks trained purely on synthetic clouds can perform well on real ones. Finally,

the data drift in real pairs of cloudy and cloud-free data means that the ground truth

could be an inaccurate approximation of the correct output. In this case, simulated

data does not suffer from this drift and it was shown how it can be used to evaluate

models and get more insight into the performance for different types of clouds.

In Chapter 6, a shared test dataset for evaluating different types of solutions was

proposed. The dataset contains pairs of cloud-free and cloudy samples (both real and

simulated), a historical optical sample (usually from months before), and matched tem-

porally proximate SAR images for each. It was described how the dataset was filtered

to only contain high-quality data. Consequently, a deep neural network architecture

capable of using both historical and radar guidance data for the cloud removal pro-

cess was proposed and trained for comparison. The comparison was made to the two

types of solutions explored in Chapter 3 (internal learning) and Chapter 4 (language).

The results show that the externally trained model was capable of achieving higher

performance and that the internal learning and the language-based techniques suffered

from poor convergence, or undesired artefacts. That said, it is recognised that, unlike

the external model, the alternative proposed approaches exhibit greater freedom and

transferability across different domains and representations.

This work makes contributions in several key aspects related to cloud removal tech-

nologies, which can be summarised as:

• Proposes an internal satellite image inpainting technique termed MCPN with

multi-source and multi-temporal guidance

• Demonstrates use and evaluation of CLIP, a general vision-language model, for

the task of cloud presence detection

• Proposes an edge-guided image inpainting using StableDiffusion and evaluates
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text-to-image generators for the task of satellite image inpainting

• Proposes an RGB-to-MSI channel completion technique based on the Deep Image

Prior

• Proposes and evaluates a framework designed for the simulation of clouds and

shadows in multi-spectral satellite images

• Demonstrates that models trained exclusively on simulated data are capable of

processing real cloudy images

• Proposes a novel external architecture capable of fusing multi-source and multi-

temporal guidance for cloud removal

• Designs a common evaluation dataset consisting of both real and simulated clouds

as well as multi-source and multi-temporal guiding signals

• Evaluates and contrasts the proposed solutions on a common test dataset

7.2 Future Work

Several solutions were proposed as a potential replacement to the established approach

of acquiring a (hopefully large) set of images and training a deep neural network to

minimise the error in the output. This was motivated by certain problems associated

with this approach, such as the risk of overfitting and limited adaptation to different

sensing modalities.

However, the performance of these alternative methods was generally lower than the

externally trained equivalent. In some sense, it is understandable given the fact that

the externally trained model has the advantageous opportunity to learn from a wide

set of examples precisely relevant to the performed task. Yet, it was demonstrated that

a considerable amount of useful information for the removal task can be found in the

input sample (in the cloud-free regions, the radar data, or the historical reference) or

that a lot of powerful priors can be extracted from other tasks, such as vision-language

joint learning.
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A natural direction would be to try to bridge this gap and either redesign the

external learning architectures to offer more flexibility (some effort in this direction

was already done in this work, where any number of radar guidance images and optical

guidance images can potentially be used) or inject more information into the internal

learning methods while stabilising the internal optimisation process.

Finally, the cloud simulation framework proposed herein is an effective tool for

the training and evaluation of models designed for cloud detection or cloud removal.

However, further research could focus on potential extensions to further increase the

realism of the generated clouds. This could follow a physics-informed approach with

additional expert knowledge manually incorporated into the process, or a data-based

approach where some of the advancements in generative modelling could be employed.

The findings of this work could provide foundations for such efforts and eventually

lead to techniques that can adapt to different types of new data and make robust

predictions about the view underneath the clouds in any image of the Earth, regardless

of the sensing type, channels, season, or location.
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[14] F. M. Bréon and S. Colzy, “Cloud detection from the spaceborne POLDER instru-

ment and validation against surface synoptic observations,” Journal of Applied

Meteorology, vol. 38, no. 6, pp. 777–785, 1999.

[15] G. Lissens, P. Kempeneers, F. Fierens, and J. Van Rensbergen, “Development

of cloud, snow, and shadow masking algorithms for VEGETATION imagery,”

International Geoscience and Remote Sensing Symposium (IGARSS), vol. 2, pp.

834–836, 2000.

[16] O. Hagolle, M. Huc, D. V. Pascual, and G. Dedieu, “A multi-temporal method for

cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-

2 images,” Remote Sensing of Environment, vol. 114, no. 8, pp. 1747–1755, 2010.

[Online]. Available: http://dx.doi.org/10.1016/j.rse.2010.03.002

[17] P. L. Scaramuzza, M. A. Bouchard, and J. L. Dwyer, “Development of the landsat

data continuity mission cloud-cover assessment algorithms,” IEEE Transactions

on Geoscience and Remote Sensing, vol. 50, no. 4, pp. 1140–1154, 2012.

163

http://dx.doi.org/10.1016/j.rse.2010.03.002


Bibliography

[18] X. Zhu, F. Gao, D. Liu, and J. Chen, “A modified neighborhood similar pixel

interpolator approach for removing thick clouds in landsat images,” IEEE Geo-

science and Remote Sensing Letters, vol. 9, no. 3, pp. 521–525, 2012.

[19] J. Louis, V. Debaecker, B. Pflug, M. Main-Knorn, J. Bieniarz, U. Mueller-Wilm,

E. Cadau, and F. Gascon, “Sentinel-2 SEN2COR: L2A processor for users,” Eu-

ropean Space Agency, (Special Publication) ESA SP, vol. SP-740, no. August, pp.

9–13, 2016.

[20] D. Frantz, E. Haß, A. Uhl, J. Stoffels, and J. Hill, “Improvement of the Fmask

algorithm for Sentinel-2 images: Separating clouds from bright surfaces based on

parallax effects,” Remote Sensing of Environment, vol. 215, no. April 2017, pp.

471–481, 2018.

[21] Sentinel Hub Team, “Sentinel hub’s cloud detector for sentinel-2 imagery,”

2017, [Online; accessed April 29, 2023]. [Online]. Available: https:

//github.com/sentinel-hub/sentinel2-cloud-detector

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2323,

1998.

[23] T. Johnston, S. R. Young, D. Hughes, R. M. Patton, and D. White, “Optimizing

Convolutional Neural Networks for Cloud Detection,” 2017.

[24] M. Shi, F. Xie, Y. Zi, and J. Yin, “Cloud detection of remote sensing images

by deep learning,” International Geoscience and Remote Sensing Symposium

(IGARSS), vol. 2016-November, pp. 701–704, 2016.

[25] G. Mateo-Garcia, L. Gomez-Chova, and G. Camps-Valls, “Convolutional neural

networks for multispectral image cloud masking,” in International Geoscience

and Remote Sensing Symposium (IGARSS), vol. 2017-July, 2017, pp. 2255–2258.

164

https://github.com/sentinel-hub/sentinel2-cloud-detector
https://github.com/sentinel-hub/sentinel2-cloud-detector


Bibliography

[26] S. Ozkan, M. Efendioglu, and C. Demirpolat, “Cloud detection from RGB color

remote sensing images with deep pyramid networks,” International Geoscience

and Remote Sensing Symposium (IGARSS), vol. 2018-July, pp. 6939–6942, 2018.

[27] Y. Zi, F. Xie, and Z. Jiang, “A cloud detection method for Landsat 8 images

based on PCANet,” Remote Sensing, vol. 10, no. 6, pp. 1–21, 2018.

[28] Z. Li, H. Shen, Q. Cheng, Y. Liu, S. You, and Z. He, “Deep learning

based cloud detection for medium and high resolution remote sensing

images of different sensors,” ISPRS Journal of Photogrammetry and Remote

Sensing, vol. 150, no. February, pp. 197–212, 2019. [Online]. Available:

https://doi.org/10.1016/j.isprsjprs.2019.02.017

[29] J. H. Jeppesen, R. H. Jacobsen, F. Inceoglu, and T. S. Toftegaard, “A cloud

detection algorithm for satellite imagery based on deep learning,” Remote

Sensing of Environment, vol. 229, no. May, pp. 247–259, 2019. [Online].

Available: https://doi.org/10.1016/j.rse.2019.03.039

[30] M. Domnich, I. Sünter, H. Trofimov, O. Wold, F. Harun, A. Kostiukhin,

M. Järveoja, M. Veske, T. Tamm, K. Voormansik, A. Olesk, V. Boccia,

N. Longepe, and E. G. Cadau, “KappaMask: Ai-based cloudmask processor for

sentinel-2,” Remote Sensing, vol. 13, no. 20, 2021.
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[97] Y. Bengio, É. Thibodeau-Laufer, G. Alain, and J. Yosinski, “Deep generative

stochastic networks trainable by backprop,” 31st International Conference on

Machine Learning, ICML 2014, vol. 2, pp. 1470–1485, 2014.

[98] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2nd Interna-

tional Conference on Learning Representations, ICLR 2014 - Conference Track

Proceedings, no. Ml, pp. 1–14, 2014.

[99] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in Neural

Information Processing Systems, vol. 3, no. January, pp. 2672–2680, 2014.

[100] A. Krizhevsky, “Learning multiple layers of features from tiny images,” 2009.

[101] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep

unsupervised learning using nonequilibrium thermodynamics,” in 32nd Interna-

tional Conference on Machine Learning, ICML 2015, vol. 3, 2015, pp. 2246–2255.

[102] J. Song, C. Meng, and S. Ermon, “Denoising Diffusion Implicit Models,” pp.

1–22, 2020. [Online]. Available: http://arxiv.org/abs/2010.02502

174

https://proceedings.mlr.press/v28/bengio13.html
https://proceedings.mlr.press/v28/bengio13.html
http://arxiv.org/abs/2010.02502


Bibliography

[103] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in

Advances in Neural Information Processing Systems, vol. 2020-December, no.

NeurIPS 2020, 2020, pp. 1–25.

[104] A. Nichol and P. Dhariwal, “Improved Denoising Diffusion Probabilistic Models,”

2021.

[105] P. Dhariwal and A. Nichol, “Diffusion Models Beat GANs on Image Synthesis,”

Advances in Neural Information Processing Systems, vol. 11, pp. 8780–8794, 2021.

[106] E. L. Denton, S. Chintala, arthur Szlam, and R. Fergus, “Deep Generative

Image Models using a Laplacian Pyramid of Adversarial Networks,” in Advances

in Neural Information Processing Systems, C. Cortes, N. Lawrence, D. Lee,

M. Sugiyama, and R. Garnett, Eds., vol. 28. Curran Associates, Inc., 2015.

[Online]. Available: https://proceedings.neurips.cc/paper{ }files/paper/2015/

file/aa169b49b583a2b5af89203c2b78c67c-Paper.pdf

[107] A. Dosovitskiy, J. T. Springenberg, and T. Brox, “Learning to generate chairs

with convolutional neural networks,” Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, vol. 07-12-June-2015,

pp. 1538–1546, 2015.

[108] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning

with deep convolutional generative adversarial networks,” 4th International Con-

ference on Learning Representations, ICLR 2016 - Conference Track Proceedings,

pp. 1–16, 2016.

[109] P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with

conditional adversarial networks,” Proceedings - 30th IEEE Conference on Com-

puter Vision and Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 5967–

5976, 2017.

[110] J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image Trans-

lation Using Cycle-Consistent Adversarial Networks,” Proceedings of the IEEE

175

https://proceedings.neurips.cc/paper{_}files/paper/2015/file/aa169b49b583a2b5af89203c2b78c67c-Paper.pdf
https://proceedings.neurips.cc/paper{_}files/paper/2015/file/aa169b49b583a2b5af89203c2b78c67c-Paper.pdf


Bibliography

International Conference on Computer Vision, vol. 2017-Octob, pp. 2242–2251,

2017.

[111] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for genera-

tive adversarial networks,” Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, vol. 2019-June, pp. 4396–4405,

2019.

[112] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,

“Analyzing and improving the image quality of stylegan,” Proceedings

of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, no. NeurIPS, pp. 8107–8116, 2020. [Online]. Available:

https://blog.faradars.org/generative-adversarial-networks/

[113] T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen, and

T. Aila, “Alias-Free Generative Adversarial Networks,” Advances in Neural

Information Processing Systems, vol. 2, no. NeurIPS, pp. 852–863, 2021.

[Online]. Available: http://arxiv.org/abs/2106.12423

[114] P. Esser, R. Rombach, and B. Ommer, “Taming transformers for high-resolution

image synthesis,” Proceedings of the IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition, pp. 12 868–12 878, 2021.

[115] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski, “Plug & play

generative networks: Conditional iterative generation of images in latent space,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition. IEEE, 2017.

[116] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford,

M. Chen, and I. Sutskever, “Zero-shot text-to-image generation,” in

Proceedings of the 38th International Conference on Machine Learning, ser.

Proceedings of Machine Learning Research, M. Meila and T. Zhang, Eds.,

vol. 139. PMLR, 18–24 Jul 2021, pp. 8821–8831. [Online]. Available:

https://proceedings.mlr.press/v139/ramesh21a.html

176

https://blog.faradars.org/generative-adversarial-networks/
http://arxiv.org/abs/2106.12423
https://proceedings.mlr.press/v139/ramesh21a.html


Bibliography

[117] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin, “Attention is All you Need,” in Advances in

Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30.

Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.

cc/paper{ }files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[118] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical

Text-Conditional Image Generation with CLIP Latents,” no. Figure 3, 2022.

[Online]. Available: http://arxiv.org/abs/2204.06125

[119] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S.

Ghasemipour, R. Gontijo-Lopes, B. K. Ayan, T. Salimans, J. Ho, D. J.

Fleet, and M. Norouzi, “Photorealistic text-to-image diffusion models with

deep language understanding,” in Advances in Neural Information Processing

Systems, A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022. [Online].

Available: https://openreview.net/forum?id=08Yk-n5l2Al

[120] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,

“Context Encoders: Feature Learning by Inpainting,” in Proceedings

of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, vol. 2016-December, 2016, pp. 2536–2544. [Online].

Available: https://www.cv-foundation.org/openaccess/content cvpr 2016/

papers/Pathak Context Encoders Feature CVPR 2016 paper.pdf%0Apapers3:

//publication/uuid/9E05080B-9457-4DFE-B5DA-C42DC2CFEE40

[121] S. Iizuka, E. Simo-Serra, and H. Ishikawa, “Globally and locally consistent image

completion,” ACM Transactions on Graphics, vol. 36, no. 4, 2017.

[122] G. Liu, F. A. Reda, K. J. Shih, T. C. Wang, A. Tao, and B. Catanzaro, “Im-

age Inpainting for Irregular Holes Using Partial Convolutions,” in The European

Conference on Computer Vision (ECCV), 2018.

177

https://proceedings.neurips.cc/paper{_}files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper{_}files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/2204.06125
https://openreview.net/forum?id=08Yk-n5l2Al
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Pathak_Context_Encoders_Feature_CVPR_2016_paper.pdf%0Apapers3://publication/uuid/9E05080B-9457-4DFE-B5DA-C42DC2CFEE40
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Pathak_Context_Encoders_Feature_CVPR_2016_paper.pdf%0Apapers3://publication/uuid/9E05080B-9457-4DFE-B5DA-C42DC2CFEE40
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Pathak_Context_Encoders_Feature_CVPR_2016_paper.pdf%0Apapers3://publication/uuid/9E05080B-9457-4DFE-B5DA-C42DC2CFEE40


Bibliography

[123] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, “Generative Image In-

painting with Contextual Attention,” Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pp. 5505–5514, 2018.

[124] Z. Yi, Q. Tang, S. Azizi, D. Jang, and Z. Xu, “Contextual Residual Aggregation

for Ultra High-Resolution Image Inpainting,” Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, pp. 7505–7514,

2020.

[125] S. Zhao, J. Cui, Y. Sheng, Y. Dong, X. Liang, E. Chang, and Y. Xu, “Large

scale image compeletion via comodulated GAN,” in International Conference on

Learning Representations, 2021.

[126] R. Suvorov, E. Logacheva, A. Mashikhin, A. Remizova, A. Ashukha,

A. Silvestrov, N. Kong, H. Goka, K. Park, and V. Lempitsky, “Resolution-

robust Large Mask Inpainting with Fourier Convolutions,” Proceedings - 2022

IEEE/CVF Winter Conference on Applications of Computer Vision, WACV

2022, pp. 3172–3182, 2022. [Online]. Available: http://arxiv.org/abs/2109.07161

[127] Y. Ma, X. Liu, S. Bai, L. Wang, A. Liu, D. Tao, and E. R. Hancock, “Region-

wise Generative Adversarial Image Inpainting for Large Missing Areas,” IEEE

Transactions on Cybernetics, vol. 1, no. c, pp. 1–14, 2022.

[128] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van

Gool, “RePaint: Inpainting using Denoising Diffusion Probabilistic Models,”

Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, vol. 2022-June, pp. 11 451–11 461, 2022. [Online]. Available:

http://arxiv.org/abs/2201.09865

[129] C. Saharia, W. Chan, H. Chang, C. Lee, J. Ho, T. Salimans, D. Fleet,

and M. Norouzi, “Palette: Image-to-Image Diffusion Models,” Proceedings

of ACM SIGGRAPH, vol. 1, no. 1, pp. 1–10, 2022. [Online]. Available:

http://arxiv.org/abs/2111.05826

178

http://arxiv.org/abs/2109.07161
http://arxiv.org/abs/2201.09865
http://arxiv.org/abs/2111.05826


Bibliography

[130] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,

A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic

single image super-resolution using a generative adversarial network,” in

Proceedings - 30th IEEE Conference on Computer Vision and Pat-

tern Recognition, CVPR 2017, vol. 2017-January, 2017, pp. 105–114.

[Online]. Available: http://openaccess.thecvf.com/content cvpr 2017/papers/

Ledig Photo-Realistic Single Image CVPR 2017 paper.pdf

[131] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced Deep Residual Net-

works for Single Image Super-Resolution,” in IEEE Computer Society Conference

on Computer Vision and Pattern Recognition Workshops, vol. 2017-July, 2017,

pp. 1132–1140.

[132] R. Dahl, M. Norouzi, and J. Shlens, “Pixel Recursive Super Resolution,” Pro-

ceedings of the IEEE International Conference on Computer Vision, vol. 2017-

October, pp. 5449–5458, 2017.

[133] Y. Chen, Y. Tai, X. Liu, C. Shen, and J. Yang, “FSRNet: End-to-End Learning

Face Super-Resolution with Facial Priors,” Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, pp. 2492–2501,

2018.

[134] S. Menon, A. Damian, S. Hu, N. Ravi, and C. Rudin, “PULSE: Self-Supervised

Photo Upsampling via Latent Space Exploration of Generative Models,” Proceed-

ings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pp. 2434–2442, 2020.

[135] C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi,

“Image Super-Resolution Via Iterative Refinement,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2022. [Online]. Available:

http://arxiv.org/abs/2104.07636

179

http://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.pdf
http://arxiv.org/abs/2104.07636


Bibliography

[136] A. Shocher, N. Cohen, and M. Irani, “Zero-Shot Super-Resolution Using Deep

Internal Learning,” Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pp. 3118–3126, 2018.

[137] D. Glasner, S. Bagon, and M. Irani, “Super-resolution from a single image,”

Proceedings of the IEEE International Conference on Computer Vision, pp. 349–

356, 2009.

[138] M. Zontak and M. Irani, “Internal statistics of a single natural image,” Proceed-

ings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pp. 977–984, 2011.

[139] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep Image Prior,” International

Journal of Computer Vision, vol. 128, no. 7, pp. 1867–1888, 2020.

[140] Y. Gandelsman, A. Shocher, and M. Irani, “’Double-dip’: Unsupervised image de-

composition via coupled deep-image-priors,” Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, vol. 2019-June,

pp. 11 018–11 027, 2019.

[141] H. Zhang, L. Mai, H. Jin, Z. Wang, N. Xu, and J. Collomosse, “An internal

learning approach to video inpainting,” Proceedings of the IEEE International

Conference on Computer Vision, vol. 2019-Octob, pp. 2720–2729, 2019.

[142] L. P. Zuckerman, E. Naor, G. Pisha, S. Bagon, and M. Irani, “Across Scales and

Across Dimensions: Temporal Super-Resolution Using Deep Internal Learning,”

Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-

ficial Intelligence and Lecture Notes in Bioinformatics), vol. 12352 LNCS, pp.

52–68, 2020.

[143] A. Shocher, S. Bagon, P. Isola, and M. Irani, “InGAN: Capturing and retargeting

the ’DNA’ of a natural image,” Proceedings of the IEEE International Conference

on Computer Vision, vol. 2019-Octob, no. i, pp. 4491–4500, 2019.

180



Bibliography

[144] S. Bell-Kligler, A. Shocher, and M. Irani, “Blind super-resolution kernel

estimation using an internal-GAN,” Advances in Neural Information Processing

Systems, vol. 32, no. 788535, pp. 1–10, 2019. [Online]. Available: http:

//arxiv.org/abs/1909.06581

[145] T. R. Shaham, T. Dekel, and T. Michaeli, “SinGAN: Learning a generative model

from a single natural image,” Proceedings of the IEEE International Conference

on Computer Vision, vol. 2019-Octob, pp. 4569–4579, 2019.

[146] J. Lin, Y. Pang, Y. Xia, Z. Chen, and J. Luo, “TuiGAN: Learning Versatile

Image-to-Image Translation with Two Unpaired Images,” in ECCV 2020,

A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds., vol. 12349 LNCS.

Cham: Springer International Publishing, 2020, pp. 18–35. [Online]. Available:

10.1007/978-3-030-58548-8 2

[147] I. D. Mastan and S. Raman, “DeepCFL: Deep contextual features learning from

a single image,” Proceedings - 2021 IEEE Winter Conference on Applications of

Computer Vision, WACV 2021, pp. 2896–2905, 2021.

[148] I. D. Mastan, S. Raman, and P. Singh, “DILIE: Deep Internal Learning for Image

Enhancement,” Proceedings - 2022 IEEE/CVF Winter Conference on Applica-

tions of Computer Vision Workshops, WACVW 2022, vol. 2, pp. 24–33, 2022.

[149] N. Granot, B. Feinstein, A. Shocher, S. Bagon, and M. Irani, “Drop the GAN:

In Defense of Patches Nearest Neighbors as Single Image Generative Models,”

Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, vol. 2022-June, pp. 13 450–13 459, 2022. [Online]. Available:

http://arxiv.org/abs/2103.15545

[150] L. Gatys, A. Ecker, and M. Bethge, “A Neural Algorithm of Artistic Style,”

Journal of Vision, vol. 16, no. 12, p. 326, 2016.

[151] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time

style transfer and super-resolution,” Lecture Notes in Computer Science

181

http://arxiv.org/abs/1909.06581
http://arxiv.org/abs/1909.06581
10.1007/978-3-030-58548-8_2
http://arxiv.org/abs/2103.15545


Bibliography

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 9906 LNCS, pp. 694–711, mar 2016. [Online]. Available:

http://arxiv.org/abs/1603.08155

[152] X. Huang and S. Belongie, “Arbitrary Style Transfer in Real-Time with Adaptive

Instance Normalization,” Proceedings of the IEEE International Conference on

Computer Vision, vol. 2017-October, pp. 1510–1519, 2017.

[153] D. Y. Park and K. H. Lee, “Arbitrary style transfer with style-attentional net-

works,” Proceedings of the IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition, vol. 2019-June, pp. 5873–5881, 2019.

[154] Y. Deng, F. Tang, W. Dong, W. Sun, F. Huang, and C. Xu, “Arbitrary Style

Transfer via Multi-Adaptation Network,” MM 2020 - Proceedings of the 28th

ACM International Conference on Multimedia, pp. 2719–2727, 2020.

[155] Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song, “Neural Style Transfer: A

Review,” IEEE Transactions on Visualization and Computer Graphics, vol. 26,

no. 11, pp. 3365–3385, 2020.

[156] H. Chen, L. Zhao, Z. Wang, H. Zhang, Z. Zuo, A. Li, W. Xing, and D. Lu,

“Artistic Style Transfer with Internal-external Learning and Contrastive Learn-

ing,” Advances in Neural Information Processing Systems, vol. 32, no. NeurIPS,

pp. 26 561–26 573, 2021.

[157] S. Liu, T. Lin, D. He, F. Li, M. Wang, X. Li, Z. Sun, Q. Li, and E. Ding,

“AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer,”

Proceedings of the IEEE International Conference on Computer Vision, pp.

6629–6638, 2021. [Online]. Available: http://arxiv.org/abs/2108.03647

[158] M. M. Cheng, X. C. Liu, J. Wang, S. P. Lu, Y. K. Lai, and P. L. Rosin,

“Structure-Preserving Neural Style Transfer,” IEEE Transactions on Image Pro-

cessing, vol. 29, pp. 909–920, 2020.

182

http://arxiv.org/abs/1603.08155
http://arxiv.org/abs/2108.03647


Bibliography

[159] J. Huo, S. Jin, W. Li, J. Wu, Y. K. Lai, Y. Shi, and Y. Gao, “Manifold

Alignment for Semantically Aligned Style Transfer,” Proceedings of the IEEE

International Conference on Computer Vision, pp. 14 841–14 849, 2021. [Online].

Available: http://arxiv.org/abs/2005.10777

[160] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” in International Conference on Learning Representations,

2015.

[161] Q. Zhang, Q. Yuan, C. Zeng, X. Li, and Y. Wei, “Missing data reconstruction in

remote sensing image with a unified spatial-temporal-spectral deep convolutional

neural network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56,

no. 8, pp. 4274–4288, 2018.

[162] X. Luo, Z. Han, and L. Yang, “Progressive attentional manifold alignment for

arbitrary style transfer,” in Proceedings of the Asian Conference on Computer

Vision (ACCV), December 2022, pp. 3206–3222.

[163] G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett,

“Deep Learning Techniques for Inverse Problems in Imaging,” IEEE Journal on

Selected Areas in Information Theory, vol. 1, no. 1, pp. 39–56, 2020.
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